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Abstract

Nanoscale beam-like structures have attracted ratiehtion due to their superior
mechanical properties for applications in nanomeah and nanoelectromechanical
systems (NEMS). Nanoscale structures are chaiaateby a high surface to volume
ratio. The elastic response of surface layers omatis different from that of the bulk
atoms due to reduced connectivity. Thus, surfa@ggnhas a significant effect on the
response of nanoscale structures, and is associatiedheir size-dependent behavior.
The classical continuum mechanics fails to captiheesurface energy effects and hence
is not directly applicable at nanoscale. To overedms limitation, modified continuum
models incorporating surface energy effects nedzktdeveloped in order to evaluate the
size-dependent mechanical response of nanoscatdusts.

This thesis presents a modified continuum model fantk element formulation
to study the static and dynamic response of nat®bemms. The objective is to provide
NEMS designers with an efficient set of tools tbah predict static deflections, natural
frequencies of vibrations, and uniaxial bucklingds of nanoscale beams with different
geometries, applied forces, and boundary conditidngeneral beam model based on
Gurtin-Murdoch continuum surface elasticity the@yleveloped for the analysis of thin
and thick beams of arbitrary cross-section. Cldseah analytical solutions for static
bending of thin and thick beams under differentdings and boundary conditions are
obtained. Their free vibration characteristics @s® investigated. Analytical expressions
for critical buckling loads of thin beam are pretgeh An intrinsic length scale depending
on both surface and bulk elastic properties isn@efito characterize surface energy
effects in beam bending problems. The finite elensenulation results of static bending,
free vibration and axial buckling of nanoscale bsaare compared with the analytical
solutions for validation. Selected numerical resudre presented for aluminum and
silicon beams to demonstrate their salient respéeeteires. A technique is proposed to
estimate surface elastic properties from measuataral frequencies of GaAs cantilever
specimen. The surface elasticity continuum meclsardnd finite element models
developed in this work provide designers efficietls to predict mechanical response of

beam structures in nano devices.
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Chapter 1

INTRODUCTION

1.1 Nanotechnology

Nanotechnology is an emerging technology involuing characterization, design,
production and application of materials, structuaesl systems through the control of

matter on the nanometer length scale, that ishatlével of atoms and molecules. A

nanometer is one billionth of a metdiO’m). This is roughly four times the diameter of
an individual atom. For comparison, a red blood isehpproximately 7,000nm wide and
a water molecule is almost 0.3nm across. Matemald structures with at least one
dimension inl—-100m are within the purview of nanotechnology. In thisalm,
nanomaterials and nanostructures exhibit properdied phenomena that cannot be
observed at macro-scale, which opens new prospétgshnology innovation.
Nanotechnology is a multi-disciplinary field. Infamous speech entitled “There is
plenty of room at the bottom” [1] Richard Feynmarueciated the key challenges to be
addressed in small-scale systems in 1959. He peedithe ability to manipulate
individual atoms and molecules to create new mal&ristructures and devices which
would lead to revolutionary changes in all aspe€wsur life. He also pointed out that, for
this to happen, a set of precise tools were netmletiserve and operate such nanoscale
objects. It was not until 1980s that the instrureestuch as scanning tunneling
microscopes (STM) and atomic force microscopes (AMMre invented, providing the
researchers with efficient tools to manipulate tamomaterials and detect their novel
properties. Thereafter, many avenues of researdmaimoscience and nanotechnology
have opened. Over the past decade, nanomateriglsnanostructures have been
synthesized and exploited in a wide range of appbas, such as computers, medicine,
advanced materials, communication, etc. With imirepdemand for high performance
devices and fast pace of miniaturization, nanoteldgy will undoubtedly become

central to the epoch of technology era and profouimdpact our industries and society.



Nanomaterials and nanostructures, such as nansjayanowires, nanotubes and
nanoparticles are the outcomes of direct molecutamnipulation and also the
fundamental building blocks for the nanocompositemosystems and nanodevices. In
this special length scale, quantum effects andasareffects become dominant, which
lead to the fundamental change in material progertffor instance, mechanical,
electrical, magnetic, optical, chemical and otheopprties), triggering ever-broader
applications. For example, the nanoparticles andolagers have a high surface to
volume ratio, making them ideal for applications dhemical reaction, combustion,
composite materials and energy storage. Nanopestiolade of semiconducting material
are used in biomedical applications as drug careeimaging agents. Carbon nanotubes
(CNT) are reported to have Young’s modulus fiveetinthat of steel (Young’s modulus
of CNT is in the range of 1.0 to 5.0 Tpa) [2, 3hundred times of its tensile strength and
only one-sixth of its weight. Meanwhile the elecali conductivity is six orders of
magnitude higher than copper. As a result, theyuaezl in nanocomposite fibers, field
emission panel displays, chemical sensing, nanwelecs, etc. Nanoporous membranes
with pores smaller than 10 nm are suitable for howechanical filtration devices.
Nanowires are being explored to make efficient rsotdls due to their unique chemical
and electrical properties. Dispersions of conduciagowires in different polymers are
being investigated for use as transparent electréateflexible flat-screen displays. It is
apparent that the unique properties and phenomiesaned at nanoscale will provide
significant enhancement beyond what current tedgies have established. A
comprehensive introduction of nanotechnology andetu breakthroughs can be found

in a recent report [4].

1.2 Nanomechanics

To successfully design and manufacture the namtisiied materials, devices and
systems, a fundamental understanding of their nmechla behavior is required.
Nanomechanics is a new area of mechanics concewitadthe study of mechanical
properties and response of materials and structarehe nanoscale. In this regard,
experimental techniques, theoretical models andocwational tools are being developed



to investigate the mechanics of nhanomaterials @mbstructures, such as their effective

elastic moduli, bending stiffness, buckling loaaisd tensile/compressive strengths.

Experimental developments have brought about sfyiki progress in
nanotechnology in the last few decades. The dewsop of advanced instrumentation
tools enables the researchers to resolve and ¢barac objects at nanoscale level.
Among the various techniques, scanning probe ntomg has been a major tool in
investigating the properties of individual nanosttues. For example, Tomasetti et al. [5]
guantitatively assessed the elastic modulus ofrpeig and polypropylene by measuring
their indentation hardness with an atomic forcerascope (AFM). Cuenot et al. [6]
measured the elastic modulus of metallic nanowares polymer nanotubes with varied
diameter using a resonant-contact AFM. Wong et[gl.used AFM to measure the
mechanical properties of individual, structuralsolated silicon carbide nanorods and
multiwall carbon nanotubes that were pinned at end to molybdenum disulfide
surfaces. Han et al. [8] developediamsitu transmission electron microscopy method for
conducting bending or axial tensile experiments f@nowires and nanotubes in
transmission electron microscopy. The experimemgslilits can provide verifications for
the theoretical and numerical modeling. A contimiodevelopment of advanced
experimental equipment and methodology is requifed further development of

nanoscience and nanotechnology.

Another approach is atomistic simulation which deaith the motion of atoms and
characterizes the behavior of the nanoscale obpgctensidering a cluster of atoms. The
two main molecular simulation methods ateinitio quantum mechanical methods and
molecular dynamics (MD). Thab initio methods are based on the first principles and
deal with the solutions to the Schrodinger equal@nin generalab initio methods give
more accurate results than MD, but they are alsohnmiore computationally intensive.
MD is widely used in atomistic modeling. It looks$ e interactions of atoms or
molecules for a period of time and the objectivéoisolve the governing equations of
particle dynamics based on Newton’s second lawth&satomistic simulations reflect the
real configurations of the structures, the resolitined from this approach can be very
accurate. However, in engineering applications whée materials and structures are

normally modeled up to a scale of several micramsisting billions of atoms, the



atomistic simulations have difficulty in analyzinguch structures due to the

computational limitations in length and time scales

In searching for more efficient ways to model picdtnanoscale systems, many
researchers have resorted to the continuum mechapjgroaches due to their superior
computational efficiency and versatility. Howevethe conventional continuum
mechanics is based on the assumption that quantiiey slowly over atomic length
scale; it fails to capture the atomic features led hanostructures. To overcome this
limitation, a set of modified continuum theoriesshaeen proposed to incorporate the
guantum/molecular effects existing at the nanosaatie the conventional continuum
framework. The main approach is to incorporate sepexial parameters extracted from
interatomic potentials or atomistic properties irttee continuum mechanics model.
Several such models have been successfully devklsoeh as multi-scale continuum
models, surface elasticity models and non-locatilidy models. They have shown good
agreement with atomistic simulations, and surp&ss atomistic models in terms of

computational efficiency and versatility.

1.3 Review of Surface Elasticity Model

One significant reason that gives rise to the etiopal properties and behaviour of
nanomaterials and nanostructures is the surfaaggyen&s explained by Streitz et al. [10],
the atoms at a free surface or interface are expmsa different environment than those
in the bulk of a material; the equilibrium positiand energy of those atoms are
consequently different from bulk positions and gres. Properties of the solid which are
sensitive to the atomic positions or energies aeessarily affected at or near a surface
or interface. Especially for thin films or layersttuctures where there are a great number
of atoms near the surface or interface comparetabin bulk, these surface effects can

be substantial.

The surface energy quantity referred to as theasarfree energy or excess surface
energyy was first introduced by Gibbs [11] in the thermpdsnics of solid surfaces. It
is equal to the reversible work per unit area ndddecreate a surface by a process such

as cleavage or creep. The ratio of surface freeggne(J/m’) to Young’s modulus



E (J/m®),y/E, is dimensional n) and points to some other intrinsic length scale

parameter of a material [12]. This intrinsic ldmgtale is usually small, in the nanometer
range or even smaller. When a material elemenbhascharacteristic length comparable
to the intrinsic scale, the surface/interface feeergy can play an important role in its
properties and behaviour. There is another fund@h@arameter, called surface stress,
which was also defined by Gibbs [11] for the fitghe. It is associated with the
reversible work per unit area needed to elasticsifgtch a pre-existing surface. The
relationship between the surface stress and suffaeeenergy has been formulated as
[13, 14]

O, = V0,5 +0y[0E,, (1.1)

where g, and €,, denote the surface stress and strain, respectiaelyJ,; is the

1l a=
Kronecker deltag,, :{ o

. Note that the surface free energys a scalar, while
0 azp

the surface stresg,; is a second rank tensor in tangent plane of timfase and the

strain normal to surface is excluded in Eq. (114d a and 8 take integers 1 or 2. The
form of Eq. (1.1) is shown to depend on the coattinframe of reference. In the
Eulerian frame of reference where the surfacefiter area changes with strain,
surfacelinterface stress is in the expression of @dl). However, in Lagrangian
coordinates embedded in elastically deforming nmgtethe surface/interface stress

appears explicitly as a variation of surface/irded free energy with elastic strain [15].

By analogy to constitutive relationship for bulk texdal in elasticity, Miller and
Shenoy [16] suggested a linear surface constitugigeation by introducing a set of

surface elastic constants as,

— 50
Oap = Tap + Sipe€is (1.2)

wherer,; is the surface stress when the bulk is unstraiaed,S,,; is the fourth order

surface elasticity tensor. Due to the symmetriesre are a total of nine independent
elastic constants for a crystal surface. The nurobeardependent elastic constants can be

further reduced according to the surface geomsymemetry [17].



Gurtin and Murdoch [18, 19] proposed a generic tbioal framework based on
continuum mechanics concepts that accounts forstiface/interface energy. In their
model, the surface is regarded as a mathematigat taf zero thickness adhered to the
underlying bulk material without slipping. The sacé properties are different from those
in the bulk and are characterized by the surfactdwel stress and surface Lameé
constants. For an isotropic surface, the surfamssts and strains are related by the

following surface constitutive equation.

Oop =1°0,, +(A°+1°),0,, +2(1°-T e, (1.3)

where7? is the surface residual stress without constraintand x° are surface Lamé

constants or surface elastic constants.

The above mathematical formulation suggests that ehastic responses of
nanostructures significantly depend on the surfalestic constants, which could be
determined by experiments or atomistic simulatiodfexmaak et al. [20, 21] determined
the absolute surface stresses by observing theaction of small gold, silver and
platinum particles under the influence of the stefatress. Their experimental results for
surface stress are 1.175, 1.415 and 2N67h respectively. Jing et al. [22] measured the
elastic properties of silver nanowires by using taoh AFM. A good review of
experimental work can be found in [23, 24]. Besidee experiment efforts, many
theoretical approaches have been used to predictutiace properties. Surface stresses
were evaluated usingb initio methods in semiconductors by Maede et al. [25] iand
metals by Needs [26].With the assumption of isofrdgiller and Shenoy [16] computed
surface moduli of different surface orientations uing the embedded atom method
(EAM) for FCC Al and Stillinger-Weber empirical mattials for Si. Dingreville et al.
[27, 28] used a semi-analytic method to compute shdface elastic properties of
crystalline materials. A systematic study of suefaglastic constants using atomistic
simulations has been presented by Shenoy [17]sUiHace elastic parameters of several
crystal faces of FCC crystal metals were compuedm their simulations, it is found

that the surface elastic tensgy,,, need not be positive definite, i.e., the quadrim
Sus€ap€s CAN be negative, which may suggest a violatiorbagic thermodynamic

postulates. To explain this phenomenon, Shenoytgaiout that the positive definiteness



of the bulk elastic modulus tensor which guarantbessolid stability can not be applied
to the surface elastic tensor. Though it is treatephrately in the study, the surface can
not exist independently without the bulk and thiltenergy (bulk+surface) still satisfies
the positive definite condition.

According to the generalized Young-Laplace equatitve presence of surface
stresses gives rise to a set of non-classical yyndonditions. These non-classical
boundary conditions and surface stress-strainioalgtalong with the classical elasticity
equations for the bulk form a coupled system dfifequations. Gurtin and Murdoch’s
model [18, 19] has been widely adopted to investiga variety of size-dependent
problems at nanoscale. For instance, Hamilton awifaV[29] presented an embedded
atom method calculation of the surface elastic @oris of Cu (111) using the Gurtin and
Murdoch theory. Miller and Shenoy [16] and Shen8§][developed a one-dimensional
model to demonstrate that the surface effects eamddeled as additional terms to the
overall elastic moduli of structural elements inaxmal tension, bending and torsion and
the results are generally in a good agreement tvéhatomistic simulations. Wang et al.
[31] investigated the influence of surface tensamal the residual stress field in the bulk
induced by surface tension on the elastic defoonatf nanostructures. Sharma and
Ganti [32] and Sharma [33] studied the size-dependiain states of inhomogeneities
and Eshelby tensor for nanoinclusions with surfanergy. Tian and Rajapakse [34]
investigated a cylindrical nanoinclusion under a-t¥mensional dilatational eigenstrain
and far-field loading. Wang and Feng [35] extentlesl surface elastic model to study
the effects of surface stresses on contact probterdsderived the closed-form solution
of the deformation around an elliptic hole incluglithe surface energy effects. Zhao and
Rajapakse [36] examined the plane and axisymmetoblems for a surface-loaded

elastic layer in the presence of surface energcedf

1.4 Nanoelectromechanical Systems

An important area of nanotechnology that has reckiincreasing interests in
recent years is the design and fabrication of nawbranical and nanoelectromechanical
systems (NEMS). These are devices integratingrelacand mechanical functionality

at nanoscale. In this regime, NEMS offer a numbhemique attributes such as small size,



low mass, high mechanical resonance frequenciashagh sensitivity. Application of
NEMS includes actuators, sensors, machines antrads at nanoscales [37]. NEMS
can be used to measure extremely small displacensrd forces that lead to new
developments for applications in medicine, commjtesommunications, etc. The
principal components of NEMS are mechanical elemémdt either deflect or vibrate in
response to the external excitations, and a traesdhat can convert mechanical energy
to electrical or optical signals. Nanostructureshsias nanobeams, nanoplates and
nanomembranes are the common components of NEM®&amieal parts. Structural
integrity, reliability and durability of NEMS areniportant issues in practical applications.
Therefore, understanding the mechanical propertiesponse and stability of NEMS
structural elements is crucial to the exploitattdiNEMS technology.

Due to the surface energy effects at nanoscalantiestigation of the mechanical
behavior of nanostructures with surface energyceffeemains a topic of substantial
interest. Lagowski et al. [38] carried out an expent to measure the natural frequencies
of GaAs wafers in the configuration of cantileverams within a small scale region.
They found that the natural frequencies substdytiidpend on the surface stress which
cannot be explained by classical theory of vibrati®o investigate this experimental
phenomenon, Gurtin et al. [39] developed a simpie-dimensional beam model to
illustrate that the beam resonant frequency is peddent of the surface stress and
therefore the experimental results require a dfierexplanation. Wang and Feng [40]
developed a sandwich-beam model to study the seffeicsurface elasticity and surface
tension on the natural frequencies of micro- oraseézed beams and revealed that when
the thickness of beams reduces to microns or naleospdoth the surface elasticity and
surface tension have significant effects on itgation frequency. Yang et al. [41] and
Ekinci and Roukes [42] have fabricated nanometales®lectromechanical beam
resonators and examined their response experirhentdbng et al. [43] studied the
surface buckling of a microbeam due to surface ggneffects. Sadeghian et al. [44]
studied the effects of surface stress on reson@egaency of nanocantilevers. Recently,
Lachut and Sader [45] proposed a three-dimensiooalel to examine the surface stress
effects on the stiffness of cantilever platésm and He [46] analyzed the deformations

of nanofilms under bending by incorporating thefate elasticity effects into Von



Karman plate theory. Lu et al. [47] complementednLand He’s model [48] by
considering the normal stress variation along thiekhess direction and presented a
general model for static and dynamic analysis of tim structures. He and Lilley [49,
50] studied the surface energy effects on statieding and bending resonance of

nanowires with different boundary conditions.

1.5 Scope of the Current Work

Based on the above introduction and literature esgnit can be seen that
understanding the size-dependent behavior of béamdtructures at nanoscale is
essential for effective NEMS design. The continummdeling approach accounting for
surface energy effects is considered to be atmactiue to its simplicity and
computational efficiency. Current continuum modaisilable for studying the beam
response with surface effects are confined to bemithssimple geometries and boundary
conditions. Meanwhile these models are mostly agad to analyze thin beams (Euler
beams), which fail to capture the shear deformatibiat are important when the aspect
ratio becomes relatively small (In the present egtaspect ratio corresponds to height-
to-length ratio) and also for the analysis of highatural frequencies. The aim of this
thesis is to develop a general beam model basedustin-Murdoch theory to analyze
thin and thick nanoscale beams with an arbitragssisection. The model is further
applied to investigate the static bending, uniakiatkling and free vibration of such
beams respectively. A finite element scheme is ptesented to analyze the nanoscale
beam structures with complex geometries and boynctamnditions. This thesis has two
main objectives: first, to show the significancesafface effects on the beam static and
dynamic response and structural stability; secémgbrovide a set of analytical solutions

and numerical tools to the designers in NEMS ahérobtanoscale devices.

Chapter 2 presents the detailed formulation ofgbeerning equations of a beam
including surface energy effects. Surface pre-str@s well as surface elasticity are
considered. Based on the general model, thin béautertBernoulli beam) and thick
beam (Timoshenko beam) theories accounting forasarfeffects are established.
Analytical solutions for static response of thirdahick beams under different loading

(point and uniformly distributed loading) and boang conditions (simply-supported,



cantilever and both ends clamped) are derived. skhbility of beam structures under
axial compression is also investigated and thécatitoads for different beam restraints
are presented. To the best of our knowledge, sotltiens have not been reported
previously. The numerical results of deflection fppes and critical loads of selected
beams based on the proposed models are also me#santd compared with the solutions
from classical thin and thick beam theory to quatitiely assess the influence of surface

energy effects.

Chapter 3 studies the dynamic response of thin thmck beams. Analytical
solutions of free vibration characteristics of sumdams are derived. The numerical
results of natural frequency and mode shape ot®weldoeams are presented and again
compared with the classical solutions to examimedinface energy effects. The energy
approach, Rayleigh quotient, is also applied taveethe closed-form solution of natural
frequencies for thin beams. The solutions are &rdmployed to fit the experimentally
measured natural frequencies of GaAs cantilevembe@ported in [38]. A suggestion
for the determination of surface stress and surtdastic constants by measuring the

natural frequency of free vibration is thereaftesgmsed.

In Chapter 4, a finite element scheme is develdpedtudy the complex beam
problems encountered in NEMS and other nanotechgapplications. In conventional
finite element method (FEM) surface elasticity eféeare not considered. Therefore, new
thin and thick beam elements considering surfafexisf are developed respectively. The
finite element formulation based on Galerkin’s noetlis first presented and then verified
by simulating the static deflections, natural freqcies and buckling problems of
selected beams and comparing the results with miaéytecal solutions obtained from
Chapter 2 and 3.

Chapter 5 concludes the major findings of the 8)esimmarizes the contributions
of current study and provides suggestions for futmork.
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Chapter 2
STATIC AND DYNAMIC ANALYSISOF NANOSCALE BEAMS

2.1 Problem Description

Based on the previously reported work, the suréasticity theory is extended in
this section to study the size-dependent behaviomamoscale beams. A general
mechanistic model based on Gurtin-Murdoch continubeory accounting for surface
effects is presented. Thereafter the thick and b@am models incorporating surface
elasticity effects are developed in order to amalifze static and dynamic response of
nanoscale beams. The thin beam model is based tm-Bernoulli beam theory, in
which the shear deformations are neglected andepémttions remain normal to the
neutral axis after bending. It gives good results $lender beams where bending
dominates the deformation fields. The thick beandehas based on Timoshenko beam
theory. The shear deformation is taken into acgooohsequently, the assumption of
plane sections to remain plane after deformatiorelisxed. It is suitable for analyzing
short and stocky beams where the shear effecsgniicant.

A nanoscale beam with lendttand heightH is modeled in Cartesian coordinate
system(x,y,z) as shown in Figure 2.1. The cross-section is rayit(symmetric about
z-axis) with unit normah and tangertt. The area and perimeter of the cross-section are
Aand s respectively. To incorporate the surface effeittss assumed that the response
of the beam is governed by the continuum theorp@sed by Gurtin and Murdoch [18,
19]. Unlike the classical case, the beam in Gurtirdoch model has an elastic surface
with zero thickness fully bonded to its bulk maaérBulk materials are assumed to be
homogeneous and isotropic with Young’s modufis Poisson’s ratiov and mass
densityp . The stress state of the bulk material of the beaassumed to be plane stress
with the non-zero stresses,,o,, and g, as shown in Figure 2.2. The corresponding

bulk strains ares,,,£,, ands,,. The equilibrium and constitutive equations foe thulk

solid are the same as those in classical elastibigpry [52]. In general, the elastic

surface (outward unit normal and unit tangent)) has surface stress componenjs 7,

11



andr,, shown in Figure 2.2. In the engineering beam theonly r,, and r,, are
considered. The elastic properties of surface nead¢eare Lamé constamds, 4, and

surface residual stress under unstrained conditgnand the mass density of the surface

IS0, .

,  Surface layer Aos UosTgs P, BUK E,Vv, 0
A Ve
‘ /

[
\|

L

Figure 2.1 Geometry of beam with arbitrary crosstiea and coordinate system

g

z

A

_’ 0_
“ Tnx Ttx
O ;‘ ; T,

4+—

v

Figure 2.2 State of stress of the bulk and surface

2.2 Formulation of General Beam Surface Elasticity M odel
Consider a free-body diagram for a small segmentof the beam (bulk) as

shown in Figure 2.3. The internal resultant sheaceQ and momenM act on both
faces of the segment. On the right hand face, therénfinitesimal increments iQ and
M respectively The inertia forcesoli, and pti, exist in the segment body. For the

purpose of generality, the beam is subjected tarbitrary lateral loadingj(x) along the

12



beam length. As a result of the interaction betwtberelastic surface and bulk materials,

the tractionT, =o;n; act on the overall surface of the bulk elementtfie free-body

diagram, only the tractions on the top surfacehef tbulk are shown). Within the beam,

plane stress state implies non-zero tractignandT, only. Note that the out-of-plane
stressT, is induced from the in-plane stresses when thenbisadeformed due to the

generalized Young-Laplace equation.

YYVVYVY (X)
T

Mclpux,puz >M+—

Bulk
Q Q+

Figure 2.3 Free-body diagram of a segment of tlaerbe

The vertical force and moment equilibrium equatiohshe bulk element can be

written as:
dQ Lo
=+ LTst— q(x) - jA PU,dA=0 (2.1)
dm o
=7 J;szds—Q— jA,ouxsz-o (2.2)

where the shear force resultant and bending mommestllitant are defined as,
Q= jAaxszand M = jAaxxsz, respectively.

The equilibrium relations for the surface can kpressed in terms of the surface
and bulk stress components as [18, 19],

Z-it)/,t)/ _Ti = IOOUiS ‘32
Wherei = x,n,t anda = x,t; 7 denotes the surface stresi§.denotes the acceleration of

surface layer in thé direction. The presence of surface stress andianessults in the
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surface traction. Rewriting the non-zero surfa@ettonsT, andT, in form of surface
stress and inertia terms from equation (2.3) yigh@sfollowing,

T = Lo = Pl (R4

T, =T.n, = (T — PUIN, (2.5)
wheren, =cos<n,z> is the direction vector.

Substitution of equations (2.4) and (2.5) into Yahd (2.2) yields the following

equilibrium equations,

D4 [, nds=a(9 = [ pida+ [ o ds 6.

dM o
K-F J‘Srwzds—Q = IAPUdeA+ LponZdS (2.7)

Note that in the absence of the surface stressggnantia, equation (2.6) and
(2.7) are reduced to the classical beam bendingenband shear force relationships.
Since both the bulk and surfaces of the beam a@@ed to be homogeneous and

isotropic, the constitutive relations of the bulkterial relating non-zero stresseg, o,
and o, to the corresponding strains can be expressed as,

o, =Ee tvo,

o,, = 2Ge¢,, (2.8)
where E is the elastic modulus;is Poisson’s ratio an is the shear modulus.

Note that in a beam bending problem, the stresgpoaento,, is not zero. But it
is small enough compared to axial stress to neglect in classical beam theory.

However, in Gurtin-Murdoch model the surface is notbalance with the above

assumption. To remedy this, following Lu et al. ][47, is assumed to vary linearly

through the beam thickness and satisfy the equfibrconditions on the surface. The

significance ofo,, on the beam responses will be further investigatethe following

section while presenting numerical results. Wii #issumptiong,, can be written as,
o =Lt +0)+ 2 (0 —07) (2.9)
where the superscripts + armddenote the surface quantities on the very tophkartbm

14



points of the surface layer respectivety, and o, are stresses at the top and bottom
fibers respectively where the outward unit normadter n is parallel to thez direction,
and H is the height of the beam.

Rewriting g, in terms of surface stresses and inertia yields,

1 + - .ot oe— Z + - oot ve—
Jzz ZE(TZX,X + sz,x _pOuz _pouz ) +W(sz,x - sz,x _pd'lz +pd'lz) (210)
The surface constitutive relations given by Gudimd Murdoch [18, 19] can be
simplified in present study as,
Z-xx = TO + (2/'10 + Ao)ux,x

T, =Tu

nx

(2.11)

n,x
wherer, is the residual surface stress under unconstragoediitions; 4, and A, are

surface Lamé constants.

2.2.1 Thick Beam Surface Elasticity M odel

In the thick beam model where the shear deformatr@hrotational inertia effects
are considered (Timoshenko beam theory), the @estenal rotation is an independent
variable in addition to the transverse (vertica#flection of the neutral axis. Therefore

the displacement field is given as [52],

u, = zg(X,t)

u, =w(x,t) (2.12)
where ¢(x,t) and w(x,t) are the angular displacement and transverse deplent of

beam respectively.
The state of non-zero strains are expressed istthm-displacement relations as,

g =0l _0¢xt)
o 0X 0X
£, =
1(0u, Ou 1/ ow(x,t)
=T XXy 2z | =) Ay ,t 2.13
Ea 2(62 axj 2( 0x #x )) @19

Substitution of equation (2.12) into equation (2.%ields the following surface

stress field,
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d
T = To+ 2244 +/10)a—f

ow
Tnx = TO & nz . :(2)

Therefore, the surface vertical stresses at theatapbottom of the surface layer

can be obtained from equation (2.14) wherr1,

ow
r =T,—
% ax
_ ow
T =-T,— 2.15

Substitution of equations (2.15) and (2.12) intoadpn (2.10), the vertical stress

o,, can be derived as,

0, =2 o‘?;vzv—po i) (2.16)
Using equation (2.8), the non-zero bulk stressesbaawritten in the following
form:
0, =E@3Y+ 22,2 TW_ ot
0 H

g,,= G/((a—W +¢)
0X

—po V) (2.17)

where « is the shear correction coefficient which accoufus the deviation from
assumed constant shear stress along thicknessialirét the Timoshenko beam theory.
The values of k for various cross-sectional shapes are givenandsird texts such as
Gere and Timoshenko [52].

Equation (2.17) and equation (2.14) give the stfesdd of the thick beam. By
substituting both of the equations along with thgplcement field in equation (2.12)
into the general beam equilibrium equations (2r®) €.7), the governing equations for a

thick beam including surface effects can be obthase

6W 0 . 0°W . 0°W
SIS S -d() = (0A+ pS) S (2.18)
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9° qo i, 0w ow
El +(2u, +1,)I -GKA(—+
[El + (24, + Ao) ] TR A(ax ?
v °w
=(p1 1) ¢’ P (2.19)

wherel = IA Z°dA is the moment of inertia of the beam cross-seatiarea.l " = Lzzds

is the perimeter moment of inertia, an analogutaéomoment of inertia for the bulk, and

has units of [lengtl). s" = Lnﬁds has the unit of length. All the above three partars

are dependent on the geometry of the cross-sechiorthe case of beams with a
rectangular cross section of heigbit and widthb , and a circular cross-section of
diameteD , the parameters are given by,
H o {Zh ¢ = {Zb . {2bh3/3 . {2bh2+4h3/3
D' /2’ D% /64’ nD*/8
The resultant shear force and bending moment ohlmeass section including the

(2.20)

surface contributions can be expressed as,

Q' GKA(—+¢)+T s a—W
ox

(2.21)

op , 1, 0w lp,
MT =[El +1" (21, + Al O \W
[ 2+ A ] T TH ol H

where the superscrigt denotes quantities belonging to thick beam madempared to

the classical Timoshenko beam theory, in equatbh8) the surface residual stress

introduce an additional second derivative termheftransverse deflection, and the inertia
term on the right hand side of the equation is aisdlified by the surface mass density.
In equation (2.19), it is found that the bendinffrstss of the beam is modified due to the
surface elastic constants; meanwhile the surfasidual stress and surface mass density
also come to influence by bringing the second teomshe left and right hand sides

respectively. If the surface effects are completadglected, namely,, 1,, 7, and p,

are zero, equations (2.18) and (2.19) reduce togtheerning equations of classical

Timoshenko beam theory [52].

17



2.2.2 Thin Beam Surface Elasticity M odel

The thin beam model (Euler-Bernoulli beam theowy)ai more restricted case
based on thick beam model with further simplifisduamptions. It is normally applicable
for the slender beams with span-to-thickness ratitd > 20 where the effects of shear
deformation are small. Meanwhile the rotationatiaeare also ignored, i.¢.=0. Based

on the above assumptions, equation (2.19) canviréten as,

6(p T, 0°w_ lp, 0w
H ox® H oxot?

GKA(—+¢) =[El +(24, + A)! ] (2.22)

Taking the first derivative of equation (2.22) wispect tox and substituting it
into equation (2.18), together with the displacetresmsumptionp= _g_vv' the governing
X

equation of thin beam model in the presence ofasareffects can be obtained in terms
of the transverse deflection as,

. 2T, 64 g 0w
[El +(24, + A1 - ] 6x2 +0(X)

’'w vlp, 0w

— A+ 223

(p po )atz H axzatz ( )

The resultant shear force and bending moment aen dgy,

2
© = Bl +(2, + A1 - 2|/Ir]aw Z/I,oo

v a3 Ha 21, (2.24)

E = Bl +(2u, + A))l " — L0 g MW_21p W

Q™ =—{El +(244, + A,) H TS " "H  ox

where subscripE denotes quantities belonging to thin beam modatel on equation
(2.23), the modified bending stiffness of a thiratmeincluding surface effects can be
defined as,

K, = [El +(24, +A,)1 "~ 2"”] (2.25)

Note that the surface residual stresg)(contributes to the bending stiffness only
due to the consideration af, in the formulation. Ifo,, is neglected then the last term in

K, containingz, and the last inertial term on the right hand sifeequation (2.23)
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vanish. Again if the surface effects are negledtéd, 1, ,7, and p, are zero), the

governing equation (2.23) is identical to thatlamssical Euler-Bernoulli beam theory.
The ratio of change of bending stiffness due tdaser effects to the classical
bending stiffness is defined as,
K, —El _ [Cu +A) -2t la]l a _ aﬂ
El E H H

(2.26)

wherea =1"H /1 is a non-dimensional constant that depends org#imenetry of the
beam cross section. For examptejs calculated to be 8 for both square and circular
cross sections. The first term of the length-saalédentical to Miller and Shenoy’'s
analytical result for a nanobeam with a rectangatess-section [16]. The second term is
due to the consideration of surface residual stvdssh is not included in Miller and
Shenoy’s work. Zhu et al. [53] have investigate@ #tombined effects of surface
elasticity and surface residual stress on the Ingnsliffness. Their observations on the
influence of surface residual stress are in agreéemeith our models.
H, =[2u,+A,) —2vr,/all E is an intrinsic length parameter for the beam bend
problem that sets a range in which the surfacesfieecome significant. Note thit is

a positive quantity, but the surface elastic camtstand surface residual stress can be

positive or negative for different materials, heridg can be positive or negative.
ForH >>|H0|, the bulk material dominates the overall propsridé the structure; the

contribution from the surface is so small thatabhde neglected. Wher is comparable

to|HO|, the surface effects become noticeable, thereéf@ye cannot be ignored.

2.3 Static Bending of Nanoscale Beams

In this section, several practical cases of nanesibaams based on the beam
theories derived above are solved. In the nextesttioss, a set of closed-form analytical
solutions for static bending of thin and thick besaunder different loading (point and
uniformly distributed) and boundary conditions (pigrsupported, cantilever and both

ends clamped) as shown in Figure 2.4 are presented.
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Figure 2.4 Beams under different boundary and l@adonditions
2.3.1 Analytical Solutionsfor Thin Beam Static Bending

For the static problems, the governing equatiod3Ris further simplified to,

[El +(24, + )1 - 2"”]O'W ((ij+q(x) 0 (2.27)

The non-dimensional quantities are introduced Havis,

=x/L,Ww=w/L and& = }Z L> (2.28)

b

Equation (2.27) can therefore be rewritten in teaheon-dimensional quantities

X andw in the following form,

4— 3
dw_ dw, d_j (2.29)
dx dx® K,
The shear force and bending moment can also bdttewas,
ME = -K, d*w
2

Lo B (2.30)

QE:_Kde+ . dw

a0

Note that negative surface elastic constants atll stmaensions could yield
negativeK,, which lead to deflection instability. The readon this phenomenon is that
the non-positive definiteness of surface elastiergy will dominate over the bulk strain
energy at small dimensions. In this case, the GWfiirdoch theory essentially breaks
down and other atomistic models need to be cha3anmodel is applicable only when

the bulk is still the dominant part although theface contribution is prominent.
Therefore, the following derivations are basedhanrestrictiork, >0.
Solving the fourth order differential equation @)2the general solution for a

uniformly distributed loady, can be derived as,
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I N/ ~X/2 v qol—3 <2

w=ce" +ce " +c,tc X+——X 2.31
Cl 2 3 4 2Kb£ ( )

As shown in equation (2.31), the normalized deifbecicontains four unknown

constantsc, —c,. These constants can be evaluated from the beamdaoy conditions.

In our work, three common boundary conditions fobeam subjected to uniformly
distributed load and point load (Figure 2.4) atglsd and the normalized deflections are
presented for each case.
Simply Supported (SS) Beams

The boundary conditions for simply supported bedfigure 2.4a) under a
uniformly distributed load are given as,

w0)=w(@)=0

MEO0)=M*(@)=0

Using equations (2.30), (2.31) and the above baynttanditions, the solution for
the normalized deflection of the beam under unifgrdistributed load is obtained as,
Je -%\e

(2.32)

_ qo L3 eY f

E_, —
—Zx2+ix-1 3
K.e? 1+es 1+e¥® 2 2 ) )

W=

Now consider the beam under a mid-point load of mtageP . As the structure
and boundary conditions are symmetric with respedhe loading plane, half beam is
considered here. The boundary conditions can beesged as,

w(0)=W ¥/ 2)=0

MF(0)=0 (2.34)

Q" (Y2)=-P/2

Using equations (2.30) and (2.31) with=0 and boundary conditions (2.34)

yields the following solution for the four arbityaconstants.

¢ = PL? e oo PL?
2Kb£3/2 eJE/2+e—JE/2)' 2 2Kb£3/2 e\/E/2+e—ﬁ/2)
=0: ¢ =- P& (2.35)
=55 2K, & '
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Cantilever (C) Beams
In the case of cantilever beam (Figure 2.4b) subfeto a uniformly distributed
load, the boundary conditions are,
w(0)=w (0
©)=w () 2.36)
M=1)=Q"(1)=0

Using the above boundary conditions and equati2rg9) and (2.31) yields the

following,
Cl—_qoL3(1—e‘ﬁ\/E)_ __glia+e”e)
Kb£2(ex/; +e—\/z) ’ Kb£2(e\/; +e‘x/E)
3 Ve [0 _ae 8
:q442+eAﬂE i_JE%(a:_%L (2.37)
bez(e £ +e 5) be

In the case of a cantilever beam under a tip Bathe boundary conditions are

given by,

w0)=w(0)=0
ME@D)=0 (2.38)
Q*M=-P
The solutions for the four unknowns can be derizgd
= PL> o =- PL%e?

Kb£3/2(e2«/z +1) ! Kb£3/2(e2x/g +1)

PL2(e*" -1) PL’
— c =— 2.39
Kb£3/2(e2\/g +1) 4 Kb‘g ( )

Clamped-Clamped (CC) Beam
For the clamped-clamped beam (Figure 2.4c) underifarmly distributed load,

the boundary conditions are,
w(0)=w(0)=0
wl)=w(@)=0

Solving equation (2.31) with the boundary condisipthe four unknown constants

(2.40)

are obtained as,

gl gl
2K, £¥2 (e -1)" 2K, £¥2 (e -1)

(‘1:
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Gl +) gl
2K, £¥2 (e -1)’ K,&

C,= (2.41)

In the case of clamped-clamped beam under a miat-pogdP , as the loading
and boundary conditions are symmetric, half of beam is considered. Therefore the
boundary conditions are given by,

w(0) =W (0)=wW (¥ 2)= C

(2.42)

Q"(¥2)=-P/2
The solutions for the arbitrary constants are,

PL2e ¢/ PL
G= 312 ~Jel2 G =7 312 (e I2

2K, 7 (e +1) 2K, e7°(e +1)
2 —f/z 2
PL°1-e™"7) | __bL (2.43)

= ; C
2K, e¥2(eVe2+1)" 1 2Ky
The above closed-form analytical results clearlgvsithat the deflections of the
thin beams are influenced by the surface energyeims of the modified bending

stiffnessK, and the non-dimensional material consgarn further quantitative study of

such surface effects is presented in the ensuictgpeadealing with numerical results.

2.3.2 Analytical Solutionsfor Thick Beam Static Bending

In some practical situations where the beam aspma is relatively small
(e.g.L/H <10), the thick beam model needs to be applied to tiakeshear deformations
into consideration. The governing equations forckhbeam static bending can be

simplified from equations (2.18) and (2.19) as,

d W d d2W
4”) S 7 A9 =0 (2.44)
d® w i, dw

[El +(244, + A))] ]

dw
s GKA(&+@=O (2.45)

Following the procedure in thin beam, rewrite abgegerning equations in terms
of the non-dimensional quantitie#g and X as,

2
d W d¢) 3;2\/—q(i)L=O (2.46)
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dqa vir, d*w
H dx®

[E1+(2t + A1 T GKALZ(‘i'_“;H@ -0 (2.47)

The angular displacement can be expressed in terms @ by using equation

(2.46) for a uniformly distributed load, as,

1 ., dw
=———_[(GKA+7,8) — —q,LX+C 42
P~ R AL CKATTS ) =Gl X+ CJ 48)

whereC, is an arbitrary constant obtained from the integra

Substitution of equation (2.48) into (2.47) yields,

d*w dw , q,> - C,L?

- =0 2.49
ax® 5d¥ K, K, (2.49)
r.s . 2ir
whereK_=[El +(2u, + A )1 5|1 +—2") - 0 =S L2. Analogy to thin
s [ ( Ho o) D]( GKA) H dé= ay

S

beam caseK, >0 is assumed in the following derivations.
The general solution of equation (2.49) is,

3 2
w=CeV +C e +C ;&"f X2 - i '} (2.50)

Using equations (2.48) and (2.50), the solutiontfar angular displacement can

be derived as,

)((Cexf e ) - ‘;'(05— %—L; (2.51)

whereC, to C, are unknowns to be determined by the boundaryitons. Meanwhile,

_(1+

the resultant shear force and bending moment camig@ified from equation (2.21) as,

Q' GKA(—+¢)+T s a—W
ox

op , i1, 9w (2.52)

T=[El+1"(2u, +A)I
[ (24, o)]x TR

Analogous to thin beam case, in the rest of thidiee, three beam supported
cases (Figure 2.4) under uniformly distributed |l@aml point load are studied and the
normalized deflections of thick beams with surfatfects are presented.
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Simply Supported (SS) Beams
For a simply supported beam, the boundary conditiare given in equation
(2.32). Substituting the general solutions (2.50) é&.51) into the boundary conditions
together with equation (2.52), the four arbitrankonowns are obtained as the following,
__KglP-e¥) | KglP(e” -1
K2 -e¥) = K2 - )

1

KoGol” .  _ Gk
272 ' 4T
K2& 2

C,= (2.53)

For a simply supported beam subjected to a midtdoad of magnitud®, the
boundary conditions for half beam are shown in &qna(2.34). Settingy, to zero in
equations (2.50) and (2.51) and then substitutiegtinto the boundary conditions leads
to,

PL?

Cl : *
oK £32(1+ I,S V412 4 gér2
& GxA A)( )

2
C = pL

ZKSESIZ (1+ GT(;(S:A\)(e\/EIZ + e—\/?/2)

C,=0
_P
2

Cantilever (C) Beams

C, (2.54)

In the case of cantilever beam under uniformlyrdisted load, the solutions can
be obtained by using boundary conditions giverguagion (2.36) as,

N
c =%t &" %) @fie)
K \/?(1+ I,S ) K<
Gk A
3 g
c,=-%b _°© + Koy ) (@ 4o

K& s, K&
Jear 22
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3 (@l —g V¢
qoL((e ) b)/(e +eJ—)
K< \/—(1 Z'OSA Kf

C,=qlL (2.55)

3

In the case of a cantilever beam subjected to atpoad P at the free end, the

solution is derived as,

2a-V¢
C = PL

Kf”a+G e +e )

PLzeﬁ

f”a+G )" +e )

pPL2 (eﬁ e V%)

C, =
K?%ﬂ- )@f+ef)
C,=P (2.56)

Clamped-Clamped (CC) Beam
For a clamped-clamped beam with a uniformly distigld load, using the

boundary conditions in equation (2.40), the solufar arbitrary constants is given by,

3
C]_:_ qOL
2K5”ﬂ+ )@f 1)
3¢
C,=- qoLe
2Kf”a+G )€ - 1)
3(alé
C, = QoL (e +1)
2Kf”a+G )€ -1)
c, =%t (2.57)

2
For a clamped-clamped beam subjected to a midpoéat of magnitude P, the
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solution is derived by using boundary conditiong 22,

PLZ(l g Ve2y

C =
2K 53/2(1+G )(e\/—/z e\/—/2)
C - PL?(1-e%'2)
2 *
oK £32(1+ [,S eléi2 _ gEr
E )G )
c o PLE" ’2+e‘ﬁ’2 2)
’ 2K 53/2(1_'_ )(eIIZ \/?/2)
Gk A
P
1= (2.58)

Again it is noted that the deflections of the thiam are dependent on the two

parameters and K, which are the representations of the surface gredfgcts.

2.4 Buckling of Nanoscale Beams

In the preceding sections, we have discussed tlieoth® to determine the beam
deflections, tacitly assuming that the beams wén@ays in stable equilibrium. Some
nanoscale beams exploited in NEMS devices, howewaeg, often subjected to
compressive axial forces. If these compressiveefoexceed a critical force, they will
cause the beams to buckle. Quite often the bucklamglead to a dramatic failure of the
mechanism of the devices. As a result, the critmadls need to be examined to assure the
structural stability.This section begins with a general discussion efrtanoscale beam
deformation under compression with surface effaotorporated, followed by the

determination of the critical loads for differergam restraints.

a(x)
222222222 22222222222XF
F _» _____________________________________________________ <_ F
< . >

Figure 2.5 Geometry and loading conditions of béamnaxial buckling
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2.4.1 Modified Thin Beam Modél for Axial Buckling

In conventional continuum mechanics, the bucklihg beam under compressive
force was first derived by Euler [51]. To incorprathe surface effects into the
conventional theory, based on the thin beam mond{fied Euler-Bernoulli beam
theory) obtained in last section, an axial fofe€positive in compression) is added to the
beam configuration as shown in Figure 2.5. Consattyyehe differential equation (2.27)
needs to be modified by the presence of the cormpeeforce as,

VT, 0%w 03w

: +(F -7,8)—+q(x) =0 2.59
H ]aﬁ- ( %S)GXZ a(x) (2.59)

Equation (2.59) is the general differential equafior the deflections of a beam-

[El +(24, + )] o-

column considering surface effects. It is an ordirienear differential equation of fourth
order. Its general solution can be derived as,

W(X) =C, cosfx+C, sinBx+Cx+C,+w, & (260
_ F-1,5 :
where S = VT , C,—C, are arbitrary constants that must be
El +(2/Jo +/]o)| D_TO

determined by appropriate boundary conditiong,(x) is a particular solution

corresponding to the transverse loadg{¢) , which can be ignored in the process of

determining the critical loads. The critical loaoflsbeams with different restraints are
elaborated in the following subsection.

2.4.2 Critical Loads for Beam with Different Restraints
Simply supported (SS) beam

Z
A
F F
—> O|<— —> X
74 o’
L |

Figure 2.6 Configuration of simply supported beamer compression
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Figure 2.6 shows a compressed simply supported b&aenboundary conditions
are given asy0)=w(L)=0M"(0)=M* ()= C. Substituting the boundary conditions to
equation (2.60) gives,

C,+C,=0
-p°C, =0

C,cosBL+C, sinBL+C,L+C,= ( (2.61)
—-C,3% cosBL-C,B% sinBL = (

Solving above equations yieldsn SL = 0 for a nontrivial solution, so

BL=nm, n=123,.. (2.62)
The critical load is derived wher=1,
72 (EL +(24t, + M) 7= 210
F = E H +rs (2.63)
Cantilever beam
Z
F
1 e— — X
/T »)|
/1 >

L
Figure 2.7 Configuration of cantilever beam undenpression

For the cantilever beam, the boundary conditionse agiven as
w(0)=w (0),M ® (L)=QF (L)= 0. Substitution of the boundary conditions into the
general equation leads to,

C,+C,=0
BC,+C,=0
—-C,% cosBL -C,B% sinBL = ( (2.64)
i,
H
+(F —7,5 )(-C,BsinfL+C,B cosBL+C, )= (

(El +(2/Jo +/10)| o- )(CLB3 sinSL _Czﬂs cosBL |
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Solving the above equations yieldssfSL = O for nontrivial solution, so

,3L=@T, n=123.. (2.65)
Thus, the critical force is obtained as,
77 (B + 2ty + A1 = 21 T0)
F, = e +7,S (2.66)
Clamped-clamped ends beam
Z
4
F F
¥ N —» X
< L >

Figure 2.8 Configuration of clamped-clamped endmiender compression

For the both end clamped beam, the boundary conditiare given as,
w(0)=w (0)=0,w (L )=w (L )= 0. Substitution of the boundary conditions into the
general solution yields the following expressions,

C,+C,=0
C,G+C,=0
C,cosBL+C, sinBL+C,L+C,= ( (2.67)
-C,BsinfBL+C,BcosBL+C,= (
The existence of non trivial solution requires,

sin& (& cos&— siﬁ[’l F ( (2.68)
2 2 2 2

Equation (2.68) is satisfied by,

- pL_
sin 5 (2.69)
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pL_ . pBL

or — =tan— (!
5 5 1Q)
The critical force obtained from equation (2.69) is
A7 (EI + (2, + A ) - 2"F'| o

I:CI' L2

Solving (2.70) numerically leads to another criticace as,

+7,S (2.71)

VT,
H

8.187 El + (2, + A, )" -
I:cr = L2
Since the value of (2.71) is bigger than (2.72)sa@eneral buckling cases, the

+7,S 27

critical force is taken the smaller value as shaw(R.71).
Based on the above derivation, the critical load>aél buckling of nanoscale

beam can be written as,

. _arr’K,

cr 2
L

+T (2.73)

a is a coefficient that must be determined accordinthe boundary conditions.
The derivation indicates that still takes the value given in classical theoryEafler

beams.K, is the modified bending stiffness. is a constant determined by the surface

residual stress and the geometry of cross section.

2.5 Numerical Resultsfor Nanoscale Beam Static Response

In this section, selected numerical results areg@red to demonstrate the salient
features of mechanical behavior of nanoscale beathsrectangular cross-section and
the effects of surface energy for different beamrfatary conditions. Beams made of
aluminum (Al) and silicon (Si) are considered ie tiumerical study. The bulk properties
and surface properties for [1 0 0] surface of gekbaenaterials have been obtained by
Miller and Shenoy [16, 17] by using the embeddedratmethod proposed by Daw and
Baskes [54]. The results are as shown in Table Phk dimensions for thin beams
are L=120m , H=2h=6nm and b=3nm , and those for thick beams

areL =50nm,H =2h=6nm andb =3nm in all the calculations of static bending.
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Table 2.1 Material Properties of Aluminum and Sific

Material E v Uy A T, P o
(Gpa) (N/m) | (N/m) | (N/m) | (ka/ ) | )y
Al 90 | 0.23 | -5.4251] 3.4939 05689 27x1G | 5.46x 107
Si 107 | 0.33| -2.7779 -4.4930 0.6056233x10G | 3.17x 107

Based on the analysis presented in section 2s3séen from equations (2.29) and
(2.49), the influence of surface energy is refldatethe constant&, and ¢ in the case
of thin beamK, and ¢ in the case of thick beam respectively. If thefare energy
effects are completely neglected, and K, will reduce to the classical bending
stiffnesskl , £ and ¢ will vanish. To get a quantitative assessmenthef effects of

surface energy, the deflection profiles of thin &id Si beams for the three common

boundary conditions (SS, C and CC) are plotted igufe 2.9. For generality, the

normalized deflectionsi/\/qE :%q L) andeE =% are used. Solutions are presented
0

for a uniformly distributed loadd,) as well as a mid-point concentrated lo&t) for SS

and CC beams and an end point load for a C beamd@&flections with surface effects
are also compared with those of identical beam&das classical beam theory (no
surface effects). From Figure 2.9, it can be sd&t surface energy effects have a
substantial influence on the deflections on Al &ideams. This behavior can also be

interpreted by the intrinsic length scale definedequation (2.26). The intrinsic lengths

|aHO| for Al and Si beams of aforementioned dimensions &20,& and 9.43&

respectively. The beam heights are comparable doirttrinsic lengths, therefore the
surface energy effects are pronounced in both casess also found that when the
surface parameters are neglected in the thin beadelnthe deflection curves of thin
beam model will overlap with those from classicaaim theory.

Reconsider the surface effect factdfs and ¢ for thin beam model as shown in
equations (2.25) and (2.28) respectively. It may naged that positivey, and A,

increaseK, and consequently decrease the deflections whenpa@u to bending
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stiffnessEl and the corresponding deflections in the clasdiealm theory respectively

(and vice versa for negative, andA,). This is confirmed in Figure 2.10(a) where the
normalized deflections of a half Si SS beam undéferént values of2u,+ A, are
compared with the classical resul(, + A, = 0). It is also found that the contribution of
I, to K, is trivial, which implies that the influence of rieal stresso,, on the beam
deformation is very small and can be neglectedafopractical purposes. Howevaer,

has a more significant influence on the dimenssslfactoe. The value ofs can be

positive or negative depending on the positive a@gativer, and its value is controlled
by 7, as well. Figure 2.10 (b) shows the influencesobn the beam deformations by
changingr, in a reasonable range and settpagand A, to zero. It can be seen that

positive £ increases the overall bending stiffness and negatidecreases the overall
bending stiffness.

For slender beams with aspect ratioH > 20 , thin beam model is sufficient to
predict the beam behavior with a good accuracy. [B8]the aspect ratio decreases, the
shear deformation and rotary inertia become importhe thick beam model needs to be
used. However, it is found that for beams with aspatio10< L /H < 20the difference
between maximum deflections corresponding to thith thick beam theories is less than
5% and thick beam theory is therefore needed whdnd <10.

Figure 2.11 shows the solutions for Al and Si thiglams. The same loading and
boundary conditions and normalized deflections wsed as those in thin beams. The
incorporation of shear deformations increases #a@bflexibility and the deflections
predicted by thick beam theory are therefore latgan the corresponding results from
thin beam theory. In the case of thick beams, tfierdnce between the deflections of the
present model and classical thick beam model besaomparatively less compared to
the case of thin beams. The underlying reason eaexblained to the energy point of
view. With the consideration of shear deformatiorthick beam model, a larger portion
of the total energy will distribute in the bulk cpared to that in thin beam model,
therefore the energy stored on the surface willobex less, which results in weaker

surface effects on the thick beams.
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A review of Figures 2.9 and 2.11 shows that the lemgndary conditions affect
the influence of surface energy. For example, &l Si beam shows a relatively small
influence of surface energy effects whereas botlai5C Al beams show a substantial
influence. The influence of surface energy becomese important as the surface strains
become larger due to increasing deflections.

The critical loads of Al and Si beams under aboventioned restraints are
calculated and compared with those from classieabry. In the calculation, beams
with L =2000m, H =2h=10nm and b=10nm are used. Table 2.2 shows the results
using the surface elastic model, followed by thoséng classical theory in square
brackets. It can be seen that the magnitude ofcariloads could be significantly
influenced by the presence of surface effects. Toeyd either be increased or decreased
compared to the classical results depending orsitres of surface elastic constants and
surface residual stress. In the cases of Al andh®i,critical loads are shown to be
increased due to the positive surface residualsstré\ccuracy of the numerical
calculations is confirmed by setting the surfacepprties in surface elastic solutions to
zero and comparing them with the classical solstidh is found that the results are
identical. It can also be seen that the signifieaotsurface energy effects also depends
on the boundary conditions. The largest influesceliserved for cantilever beam. This is
consistent with the results observed in static bepdFigure 2.12 shows the non-
dimensional difference of critical load of Si simpbupported beam with above
mentioned dimensions from surface elastic modeldaskical theory. It can be seen that
the influence of surface effects on critical loagcémes more prominent as the beam
height decreases.

Table 2.2 Critical loads for beams under diffefemtindary conditions

Beam type Critical load (NN )
Al Si

A% | 28.67[18.51] | 32.45[22.00]
4 15.70 [4.63] | 17.20[5.50]

/— % | 80.53[74.02] | 93.47[88.00]
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Figure 2.12 Non-dimensional differences betweeticatiload predicted by

surface elastic model and classical theory
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Chapter 3

DYNAMIC ANALYSISOF NANOSCALE BEAMS

3.1 Free Vibration of Nanoscale Beams

The free vibration characteristics (natural freques and mode shapes) of
nanoscale beams are essential in the NEMS devisigrdeAlthough the closed-form
solutions for natural frequencies cannot be obthidee to the complexity of the
configurations, characteristic equations for freeration of thin and thick beams
including surface effects are presented and theesponding mode shapes are studied in

this chapter.

3.1.1 Thin Beam Free Vibration
From equation (2.23), the equation of motion fon theam free vibration can be

written as,
0'w 0w 0w, 0w
K.—-7.s —+M +1 =0 3.1
“oaxt YT ax? at? Xt 2 3-1)
whereM "= (pA+ p,s),1° :% :
Assume the transverse deflection is in the form as,
w(x,t) =W (X)sinat (3.2)

where W(x) is the transverse vibration mode; is the natural frequency. By

substituting equation (3.2) into equation (3.1& éguation of motion becomes,

d'w _ dW
d)(4 _ﬂly_ﬂzw =0 (33)
> 0 0
where n, :M a_ndq2 = M & )
Kb Kb

The general solution of equation (3.3) can be amits,
W(X) = ¢, sinA,x+c, cosi x+c, sinbl x+c, cosh x (3.4)

wherec (i =1,2,3,4) are arbitrary constantd, and A, are given by,
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A= (—/71+\/f712 +4’72)%,)|2 _ (/71+\/nf+4f72)§
2 2 (B.5
The value ofw and three of the four arbitrary unknowns can klerdeéned from
the boundary conditions. For the three types ofrtsegiven in last chapter, the solutions
are obtained as follows,
Simply Supported (SS) Beams
For a simply supported beam, substitution of theega& solution (3.4) to the

boundary conditions given in equation (2.32) togethvith equation (2.24) vyields
C, =c,=c, =0. The natural frequencies can further be calculated
N7, , « NI,
Ky(—) " +1,s (—
o) TS ()

«f = , n=12,.....
M 0o_ | O(nLIT)Z (36)

For comparison, the classical natural frequencies abtained by setting the
NJ7, 4
surface parameters to zero ag,= El (T) / M.

Cantilever (C) Beams
For a cantilever beam, the boundary conditions6(2t8gether with equation
(2.24) lead to the following characteristic equatioom which the natural frequencies

can be determined.

Ale(_Kb/‘g +/]2R3) "'/]le(Kb/]i'l'/1 Bg
AR(-K A2+ A,R) ~AR{K A3+ AR)]sin A LsinhA L

TAR(K A+ AR) + AR(K, A%-A R)]cosA L cosM | = ( (3.7)
whereR = (K A2 +1°%0%), R, = (-K, A2 +1°%°) andR, =71,s +1°«f.
Clamped-Clamped (CC) Beam

For the clamped-clamped beam, repeating the saoctegure, the characteristic
equation can be obtained as,

2
24, + (A, —j—l)sin/]lL sinm,L— 2, cod L cosh) = (3.8)
2

The characteristic equations contain the only umkmo. Therefore, by solving

the characteristic equations numerically, the ratirequencies of each case can be
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obtained. Subsequently, the individual mode shape'ﬁbrationw(x) can be calculated.

As only three of the four arbitrary unknowns in afjon (3.4) can be determined. The
fourth unknown becomes the arbitrary magnitudehef eéigenfunction (It is assumed to
be unit in our derivations). Table 3.1 summarizes mode shapes for three boundary

configurations.

Table 3.1 Mode shapes of thin beams in various thaynconfigurations

Configuration Mode shape Coefficient A,

Thin SS sinAx=10 None

_ coshA,x— cosgl,x— A, (sinhzx—ﬁ SiAX )IRl cosd| - R, cosi )
Thin C Al 72 Rlsm/‘ll _ R2 SinhAJ

1

cosA|l — coshi,l

_ coshd,x— cosl x— A, (sinblzx—ﬁ SIAX g
Thin CC A “rsinA) - sinh,

1

If the contributions of vertical stress,, surface stresg,

nx ?

surface density, and

surface stresses on the vertical sides of a reglangeam are neglected, then equation
(3.1) reduces to the governing equation propose@unyin et al. [39] as following,
°w

v, 0'W
[El +(24, + A1 ]W-F'OA?

+q(x) =0 (3.9)

| =2blf is simplified perimeter moment of inertia for a ta@wgular cross-section with

height 2h and widthb . Comparing equation (3.9) to the classical govegrequation
for thin beam vibration, it can be seen that thky difference between the classical case
and the simplified surface energy incorporated beaauel is the modified bending
stiffness. Therefore, the natural frequency of atitever beam governed by equation

(3.9) can be written in terms of classical naturagjiencyf, _ in the following form,

class

f2=f2_ [1+—(2/”’0 ;"0)' } (3.10)
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For a beam of rectangular cross section of heightequation (3.10) can be

{1+ 6(24, +/10)}
EH

rewritten asf? = fdzass , Which is identical to the solution given by

Gurtin and coworkers [19, 39].

3.1.2 Thick Beam Free Vibration
The equations of motion for thick beam free vilmatcan be written as,

o°w 0 ., 0°w . 0°W
GrA +a_f(”)+ros S = (PATPS) 5 (3.11)
L 0°p 2T, O°wW ow
El +(2u,+A)I + 0 -GKA—+
[ (24, +Ay) ]6x2 0 o A(ax )
. 0° o%w
=(,0| +100| )?Zw'l‘low (312)

To obtain the characteristic equations of transverbration, it is assumed that
the transverse and angular displacements are iioltbe/ing forms respectively,
w=W(X)sinat ; g=¢(X)sinat (3.13)
where w is the natural frequencyy/(x) and/(x) are vibration modes of the transverse

and angular displacements respectively.
Substitution of equation (3.13) into (3.11) andlgd. and the solution of the
resulting pair of coupled ordinary differential edions yield,
W(x) =C,siny,x+C, cos/,x+C, sinly x+C, cospx (3.14)
Y (x) =Ck, cosy,x—Ck, sinyx+Ck, coslyx+Ck, sinpx (3.15)
where C, to C, are four arbitrary unknowns.

1/2 1/2
1~ /2 T

2 2

B+, + AN IM T [GKkA+(L+T,8 /GKA)pl +py )b -1°WF -1 8
L K

S

N

(ol + ol WM S |GKA-M "o
K

S

N, =
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* O
= S y p M @1
Gk A GkA "y,

7,S M, 1
), ( )— (3.16)
Gk A GKkA "y,

=+

Note that if the surface quantities are all negldctiee above general solutions are
reduced to the classical solutions given by Huabg [5

By substituting above general solutions into theurtmary conditions, the
characteristic equations for different types otkhbeams are obtained as following,
Simply Supported (SS) Beams

The boundary conditions are given in equation (R.B¥ substituting equations
(3.14) and (3.15) into the boundary conditions, tharacteristic equation for natural
frequencies can be obtained as,

siny,L sinhy,L= C (3.17)

Cantilever (C) Beams

For a cantilever thick beam, the characteristicatign can be derived as,
BBk, + BB, +(BBK, +BBK,)sinyL sinhy L

+(B,B,k, —BBk,)cosyL costy L = ( (3.18)
where B, = [EI + (24, + A,) *]ylka + 2V|_||T° Ve —1°af
B, =(GKA+71,5 )y, +GKAK,
B, =[El + (2, + Al Ty k. + ZVH'TO Y +1%af
B, = (GKA+1,S )y, + Gk Ak, (3.19)

Clamped-Clamped (CC) Beam
For a clamped-clamped beam, the characteristictiequa obtained as,

(k? —k?)siny,L sinhy,L+ X k (cogL cosplL- B (3.20)
a 1 2 a 1 2
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3.1.3 Numerical Results

By solving the characteristic equations derivedha last two subsections, the
natural frequencies of thin and thick Al and Si beamere computed. In the calculations,
the dimensions for thin beams &re120nm, H =2h = 6nm andb=3nm, and those for
thick beams aré =50nm, H =2h=6nm andb=3nm. The solutions are shown in
Tables 3.2 and 3.3. The corresponding solutionm fadassical thin and thick beam
theories are also presented in parenthesis. tued that surface energy effects have a
significant influence on the first natural frequeraf thin and thick beams for the three
common boundary conditions considered in this stdithe highest influence is observed
for cantilever beams followed by SS and CC beams. évew the higher natural
frequencies are not significantly affected as thdk tbending stiffness becomes the
dominant factor controlling the higher modes. ltwierth pointing out that the natural
frequencies with surface effects could increaseearehse compared with the classical
results, depending on the signs of the surfacdielesnstants, wave number and also the
boundary conditions. Take the Si thin simply-supgdroeam for example, the natural

(B + (24t + A1 7~ 2000

frequencies are shown agp = H
PA

niT,, nr,,
)(T) +T0(T)

(the surface

density p,is so small that its effect is neglected in theregpion). The classical natural

niT.
ElC)"
frequencies for simply-supported beam can be wrigsg’ = ; . Therefore the
Yo,
non-dimensional difference is derived as,
vl L
i - @+ AN =T 0T r
2 El 3.71)

In the case of Si(24, +A,)1 " - 2V|_||T° is negative, ana‘o(i)2 is positive. When
nIT

the wave numben is small, the summation of the two terms in the erator of

equation (3.21) is positive, therefore the freqyefmiom surface elastic model is higher
than classical result. While the value Qf(L)ZWi" decrease with increasing wave
nJr

number, thus the first term of the numerator inaggun (3.21) will become dominant
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after the wave number reaches certain integer. &sultr for higher natural frequencies,
the results from surface elastic model become smabhmpared to the classical ones.
This trend can be observed from Tables 3.2 andIB.fact for some higher modes, the
classical solution overestimates the natural fragies by 2-8%. It should be noted that
thin beam theory is not generally accurate for éigmodes and the thick beam theory
should be used irrespective of thé H ratio. The mode shapes of SS, C and CC beams
were also compared. It is found that the mode shassurface energy effects are
identical to the classical mode shapes for the B5GC beams. A noticeable difference
is observed for a cantilever beam and the corraipgmmode shapes of a cantilevered Al

beam are shown in Figure 3.1.

Table 3.2 Natural frequencies of aluminum beams

Beam type 1st GHz) 2nd(GHz) 3rd (GHz) 4th (GHz)

Thin SS 1.45 (1.09) | 4.47 (4.36) 9.39 (9.82)| 2If17.45)
Thin C 0.75(0.39) | 2.90 (2.44) 6.82 (6.82) 92(63.36)
ThinCC | 252 (2.47) | 6.37 (6.82) 12.49 (13.36)0.35 (22.09)
Thick SS | 6.10 (6.14) | 21.49(23.13) 43.96 (47.8431.08 (77.43)
Thick C 2.62(2.21) | 12.60(13.05) 31.24 (33.71%5.31 (60.16)
Thick CC | 12.18(13.05)| 30.40(32.79) 53.92 (58.2530.85(87.12)

Natural frequency from the corresponding classitabty is shown in parenthesis.

Table 3.3 Natural frequencies of silicon beams

Beam type 1st GHz) 2nd(GHz) 3rd (GHz) 4th (GHz)
Thin SS 1.66 (1.28) 5.19 (5.12) 10.96 (11.53)9.02 (20.49)
Thin C 0.86 (0.46) 3.34 (2.86) 7.93(8.01)] 1484.69)
ThinCC | 2.94 (2.90) 7.64 (8.00) 14.59 (15.693.83 (25.93)
Thick SS | 7.08 (7.20) 25.07(27.02) 51.33 (55.7@2.92 (89.76)
Thick C 3.02 (2.60) 14.67(15.28)  36.48 (39.31§4.46 (69.74)
Thick CC | 14.20(15.25) | 35.41(38.10) 62.74 (67.383.86(100.47)

Natural frequency from the corresponding classitabty is shown in parenthesis.
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Figure 3.1 Comparison of mode shapes of a cantgéelvAl beam based on thin beam
model and classical theory.

3.2 Study on Natural Frequency of GaAs Cantilever

Previous section has shown the substantial influehseirface energy effects on
the natural frequencies of the nanoscale beams. fds also been observed in many
experimental works, among which, Lagowski and his c&eisr [38] reported that the
measured natural frequencies of GaAs cantilever beamsnoticeably below those

predicted by classical beam theory. Especially wiendimensions become small, the
first natural frequency does not follow the lineariation with respect tdd / L ratio as

expected from classical theory. Instead, they mmeewith decreasing values Mf/ L2.
This phenomenon has been discussed in [38, 39]inGaonhcludes that surface residual
stress does not influence the first natural fregyenhile surface elasticity can within
linear theory of elasticity. In the following, wewvisit these experimental data. The first
natural frequency of a cantilever beam with suriaestic terms needs to be determined.
The characteristic equation to determine the nhfueguencies has been presented in
Section 3.1. A closed-form analytical solution rémsaa challenge. Therefore, we need
to adopt energy method to obtain the closed-foriutiem for the first natural frequency.
We follow Rayleigh’s energy method with surface gtaterms included to fit

the experimental data of GaAs cantilever beams repdsty Lagowski. A closed-form
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expression for the first natural frequency as action of surface elastic material
constants allows us to determine their values.

Lord Rayleigh pioneered an energy method that eanded to estimate natural
frequencies or buckling loads (eigenvalues in gahesf linear elastic structures by
suitably choosing displacement functions (guessgiggnvectors) that satisfy kinematic
boundary conditions. To this end, a quotient, caRayleigh quotient, is defined as the
ratio of potential and kinetic energies in vibratiproblems. Similar quotient can be
defined for buckling problems too. A fundamental ggdy of Rayleigh quotient is its
stationarity with respect to small perturbationslisplacement functions. Consequently,
even if one makes errors in the choice of displargnfunction, say of the order, the
error introduced in the natural frequency estimiateof second ordes”. Hence, a
Rayleigh quotient can be used to obtain the fundaéahenatural frequency very
accurately.

As the system is conservative, strain energy storéte bulk can be written as,

B =% Laxxgxxdv

)(~z—Y)dv

dw 1,2 0°W dw
H o0x dx

1 VT, d’w
==—(El - 9) | (—5)%dx 3.22
SE -2 (D) (3.22)
The strain energy stored in the surface can béenrds,
s _ 1
U _EJ;(Txxgxx T nx)dr

dw

L - dwy W
= [ - 224+ )" ) n,)C o nldr

_—(2/,10+/1 )l j;(d Myeax+= rsfo(—) dx 3p3

whereV is the bulk volumeJ is the surface area. The stresses and strainfid¢obulk

and surface can be found in Chapter 2. Therefar¢atial energy is derived as,

U=U®+U°
1 5 T, ¢ ,0°W 24
=§(E| + 24y + Ap)! —T)L(ﬁ) f(—) dx (3.24)
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The kinetic energyl stored in the overall system is shown as,
T=TP+T®

-1 LpA(W)de e leos* (W)Zdx (3.25)

2 2

The principle of conservation of energy requirest,th
U = Tax 3.26)
For free vibration, the transverse deflection carekpressed as,
w(x,t) =W, (X) sinat (3.27)
Substitution of equation (3.27) into equations 43-(3.26) yields,
K, [0y 2ax+ 78 [ (Wi()ax

i
M [ W, (9)?ax

n

(3.28)

where K, = El + (24, + A,)1 " - it

and M”=(pA+ p,s). Equation (3.28) is in the

form of Rayleigh quotient [S6MV, () is a suitable mode shape of vibration, which is not
known in advance. A suitable candidate ¥dy(x) is the function that is sufficiently

differentiable as required in equation (3.28) aralisfes the geometric boundary

conditions of the problem.

For a simply supported beam, it has been foundeicti®& 3.1 that the first
mode shape with surface effects is identical tacthssical one, which is known as,

W, (X) = sin%T X (3.29)

Substitution of above shape function into equat{dr28) yields the natural

frequencies of simply supported beam as,
NJT, 4 « NTT,,
K—)"+71,5 (—
_ b ( 3 ) +7,8 ( 3 )
n M O

The solution using energy method in equation (3i8@lentical to that shown

(3.30)

in equation (3.6) except for an additional terﬁp% in equation (3.6). This is due

to the consideration of vertical stregg in our previous formulation. It has been proved
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numerically thato,, is trivial and can be neglected in all practicades Therefore it can

be seen that the solution estimated by the Raylgighient is very accurate.

Based on above verification, we can further applyg thethod confidently to
determine the natural frequency of a cantilevembefs the influence of vertical stress
o,, and the surface densify, are shown numerically to be very small on the dyicam
response of beams, they can be neglected for #e afasimplicity. Thus, the natural

frequencies in equation (3.28) can be simplified as

(B + (2 + A1) [ WO e+ 78 [ WL ()2l
PA[ W, ()’ ax

Non-dimensional quantitie®,= x/ L, W, (X) =W, (X) / L are introduced; rewrite
equation (3.31) as,

(Bl +@uo+ A)1) [ W )R + 7,8 [ W (X))?dk

(3.31)

” PAL [[(W, (3) ek
_ (Bl + (2, + /1O)|4D)Ah +7,5 B, (3.32
PALC,
where A = ﬂ (W, (x))?dx
B, = [(W;(%))?dx
C, = [ (W, (x))’dx. (3.33)

Rewrite equation (3.32) as a function l8f/ L* for a rectangular cross-section

as,

A E (2ﬂ0+/l) AQCuA) HY L ZT B
; Cp(12 )( 5)7+ Tl (Lz) c L4( )

=D, X?+E X +% (3.34)

where X =H/L?*,D, = A, (E+(2/'10+/]o)
Cp 12 (50

n

A Cpy +4) andE. = 21,B,

' En = n .
) 2C pl? C ol

From equation (3.34), the fundamental natural feeqy of cantilever beam can

be obtained as,
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of =D, X*+EX +% (3.35)

CL(E_F (Zﬂo +/10))
0 12 Gy

(2, +Ay)
2C,pl?

where D, =

£ = Al *A)

— 21—0 Bl
C,pol*

With equation (3.35), we are able to examine theegrental data reported by

(3.36)

1

Lagowski et al. [38]. In their experiments, the famental natural frequencies of GaAs
wafer in the configuration of cantilevers whose disiens range from 3 to 5@m in

thickness, 6 to 1Bmin length, and 1 to 1/m in width are measured. It can be seen in
Figure 3.2 that the experimental data show a uniggrel that the classical theory cannot
emulate. Equation (3.35) is applied to fit the ekpental data using least square fit. Our
surface elasticity model can successfully captiee éxperimental trend as shown in

Figure 3.2. The least squares fit yields the valokghe parameter®,, E andF

as3.6415< 10, —1.196x 10and 0.0204x 10respectively.

With a good guess of eigenfuctdf(x) for cantilever fundamental mode shape,

the values of Young’s modulus for the bulk, the acef elastic properties as well as the

surface residual stress can be determined. As nmeatiearlier, suitable guess\®f (x) is

the function that is sufficiently differentiable érsatisfies the geometric boundary
conditions of the problem. Good approximations carhe deflection of the beam under
its own weight or first buckling mode. In the presshidy, the first buckling mode is
used as an approximation given as,

W,(X) = cos%— 1 (3.37)
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Figure 3.2 Natural frequency of vibration of thitii() GaAs crystals in cantilever

configuration as a function of crystal dimensiehsL?

4
Substitution of equation (3.37) into equation (3.g@ldsA =%, B, =§and
Clzg—ﬁ. Solving equation (3.36) using above obtained emlyields the material
Vg

properties of GaAs ag, =0.996N /m, 24, +A,=-9.474% 10N M, E=174.9Gpa.
Compared with the Young's modulus of GaAs used in ttpeemente = 131.16pa,

the prediction using our model provides reasongolyd results. Note that the value of
Young’s modulus used in the experiment is determibgdfitting the first natural
frequencies in the classical formulation. The ralturequencies measured in the
experiment are of specimens with different dimensionder room pressure. As the
accuracy of measurement is influenced by factarsh &s ambient atmosphere, damping
and specimen geometry, so the value presentedtisjuapproximation to the real case.
The dimensions of the cantilever beam are not exigligiven, thusL = 16m and
b=1mm are used in the calculation. It is shown that vagypin the given range has

unnoticeable effects on the values of all matecmbstants. Varying the values bf
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gives noticeable changes in surface properties, ragligible change in Young's
modulus.

A review of equation (3.35) along with the above aiedi material constants
can well explain the trend in the experiment. ThH#erknce between the natural
frequencies obtained from experiments and classieadry is attributed to two parts,

surface elastic constan®y, +A,present in the first two terms of equation (3.351 an
surface residual streggn the last term of equation (3.35). The overaleets from the
surface depend on the combination of the two pamnsigtor GaAs2/, + A, is negative
so that it will decrease the natural frequency. Whjl is positive, thus it will increase
the natural frequency. At large/ L*, 24, + A, plays dominant role; therefore smaller

natural frequencies compared to classical predistiare observed. Whe / L* goes

small, the effect ofr, will surpass that d2y, + A,; as a result the natural frequencies are
increased compared to the classical ones. The nefasancreasing natural frequency

with decreasingH / L* is entirely due to the presence of last term nagign (3.35).

3.3 Influence of Surface Residual Stress

Analyses in Chapter 2 and 3 indicate that the sartasticity modifies the
bending stiffness of nanoscale beams, which conségumfluences their static and
dynamic response. This agrees well with the exiditegature [16, 22, 44]. The surface
residual stress is also found to influence meclaiehaviour of nanoscale beams and
the effects are shown to be significant in our nucaéstudy.

The effect of surface residual stress has beentelklextensively. Lagowski
and his coworkers [38] idealised the surface residirass as compressive force acting
on a typical beam element in the bulk. They remgbtteat the surface residual stress
affects the first natural frequency. This was lateown to be incorrect by Gurtin et al.
[39]. They showed that the transverse distributeat larising due to Young-Laplace
relation cancels the force term associated with cesgive force in the beam bending
equation derived by Lagowski et al. However, Gurtith dot consider all the surfaces.
Moreover, both the approaches are in violation ofvtée’s third law: there is no
externally applied compressive force that can lmaahe axial stress resultant of a bulk
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element at either ends of the beam. In our one-tineal beam model we avoid this by
ensuring that there is no net axial force actingaooross section. We found that the
surface residual stress does influence the firstirabfrequency. Our approximate

engineering beam model is consistent with the resfltWang et al. [31]. They presented
a rigorous 3-D elasticity model to investigate tiffeats of surface elasticity and surface
residual stress on the elastic properties of natesiructures. They found that besides
surface elasticity, the surface residual stress afects the effective Young’s modulus of

nanoscale structures. Thus the first natural ®equ is influenced by surface residual

stress in our model and that of Wang et al. [31].
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Chapter 4

FINITE ELEMENT ANALYSISOF NANOSCALE BEAMS

4.1 Finite Element For mulation
Analytical models can be used for simple geometied boundary conditions.

For the analysis of complex geometries and boundagditions such as those
encountered in NEMS and other nanotechnology apjaits versatile numerical models
such as the finite element method (FEM) need taddweeloped. The conventional FEM
cannot characterize the size-dependent behaviothith chapter, new finite element
models based on the beam theories presented int€€tad and 3 are developed to
incorporate the surface effects into the clasdi&all. A detailed derivation of the finite

element formulation by using Galerkin’s method iegented. Thereafter, the finite
element scheme is applied to study static and dymeesponse of thin and thick beam
under different loading and boundary conditions. émparison with the analytical

solutions given in Chapter 2 and 3 is also presernte confirm the accuracy and

convergence of the finite element solutions.

4.1.1 Thin Beam Static Bending
For thin beams under a static transverse loadinyaanaxial compression, the
governing equation of thin beams has been derinesection 2.4 as shown in equation

(2.59) as,

It 0'w
B+ +A)1 -
[B +(2 +A) q ] e

One of the weighted residual methods, Galerkin’s outis applied to develop

+(F—To§)%2v+c(><) =0 (4.1)

the finite element formulation and the correspogdimatrix equations.
The weighted residual statement of equation (4.4)oeawritten as,

dw

dx®

I, . d*w

Y= E{[El +(2:uo+/]o)| _TO] o +(F _Tos)

+q(x)}v‘vdx:0 (4.2)

whereL is the length of the beam and is the weighting function. Integrating equation

(4.2) by part, the weak formulation of equation J4s2obtained as,
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L I, d’w d*w « Ow dw
= El +(2u, +A)1"- F-rs)——+ X
L{[ (g + AN ==y ~(F=18) -+ W

dw
+(M v (4.3)

I, d*w

-2y 9% and Q=81 +(2p +A)1 - 21 (R 1)

wherem = -[El +(2y, + A)1"”

are the bending moment and shear force respectively

W2
Wl A A
gl 4‘\ "\ 62 [ X
x =0 % =1

Figure 4.1 Two node beam element for thin beam

Consider a 2-node finite element with two nodal degref freedom per node,

i.e., wand H:z—w, as shown in Figure 4.1. The element nodal displace vector is,

X

w=[w 6 w, 6 (4.4)

The transverse displacements interpolated by using Hermitian shape functions
as,

w=N(x)w* (4.5)
where the shape functions are given as,

N, (X) = 1—31i+ 2x° NZ(X):X_2|_><2+X_3

13 |2
X 23 X X3

N3(X)=|_2_|_3’ N4(X):‘|—+|—2

Substitution of equation (4.5) into equation (4@ids,

(4.6)

L{[a +(2u+ ) D—%}N"TN"—FN'TN'+ros*N'TN'}mFdx:— Lq(x) Nok  (4.7)
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Therefore, the element stiffness matrix is obtaiagd
[Ke]= L{[EI +2p+ )] D——2V|_||T°]N"TN"— FN’TN’+TOS*N’TN'}dx

12 4 -12 6
6 4° -d 2°?
I® -12 -d 12 -6

[El +(2/Jo+/]o)| H-

36 3 -36 3
(F-1,8)| 3 4® -3 -°

(4.8)
30 -36 -3 36 -3
3 -2 -3 4?2
The element force vector is defined as,
{Re} =~ q(x)Naix (4.9)

If the element is subjected to a uniform pressyrehe force vector becomes
el —_ 0 2 27

{r}= 1—02[6| 1> 8 7] (4.10)

In the case of concentrated force within the beameht, the force vector is

{Re} = [ -Pa(x—x,)Naix

=-P[Ny(%) Na(x) Nyx9 N xJ]' (4.12)
where P is the concentrated force applied at poirt X, .

The assembly of element stiffness matrices and Infdlee vectors yield the
global equilibrium equations as,

[K){r} ={R} 12)

Where[ K] is the global stiffness matrix a{ﬂ} is the global force vector.
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4.1.2 Thin Beam Free Vibration

For dynamic analysis, the inertial forces on thghtihand side of thin beam
governing equation (2.23) are included in the @retement formulation and these terms
correspond to the element mass matrix. The trasswdflection is a function of andt.

The deflection is interpolated within the beam edabas,
w(x,t) = N(xX)we(t) (4.13)

The same interpolation functions are used to obdaioonsistent’” mass matrix.

Substitution of equation (4.13) into the inertiatde terms yields,
L{(pA+pos*)NTN —% N'TN'}WE(t)dx 14)

where superimposed dot denotes temporal derivafrnen equation (4.14), the element

mass matrix becomes,
o . V100 ot an
[m ]= £{(pA+pOS JN'N _TON ™N }dx

156 22 54 -1B 36 13 - 36 13
_(pA+ps)H| 22 4% 13 -B| vip,| B 4 -B -?
B 420 54 13 156 - 2P - 1HI |- 36-183 36 - |
-13 -3% -22 3 8 -1 -8 ¥

(4.15)

Thus, the global matrix equation for dynamic beamalygsis is obtained after

assembly of element matrices and vectors,

[MI{r}+[K]{r} ={R)} (4.16)
where [M] is the global mass matrix. In the case of free atibn
problemsy® { F €“w*, it becomes an eigenvalue problem,

(K]-ef[MD{r} =0 (4.17)

where w is the angular frequency of vibration in rad/s} is the mode shape.

4.1.3 Thick Beam Static Bending

In the case of thick beams under static transvdoseling and uniaxial

, dw . .
compressive force, a terFde— corresponding to the presence of compressive force
X
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needs to be added to the moment equilibrium of ttmué2.19). Therefore, the governing

equations for thick beam are modified as,

6 W 0 02W . 0°W
4”) S S U =(pA+pS) SF (4.17)
9° qa V1T, 0°W _ _ 0w ow
El +(2u, + )l F—-G —+
[ (2, +Ay) ] PVE o KA(ax )
qa vlp, ’w
=(pol +p.I" 4.18

In the same procedure, applying Galerkin’s methgairaleads to the following

weighted residual statement.

dw d *dzw
+-H +

—qmw
dqo 2|/Irdw d_vv
H dx® dx

H([EI + (245 + A)! D]

—GKA(%V+@)ZL} dx=0  (4.19)

where {\iv} is the weight function.
Y

Integrating equation (4.19) by part yields the wéeknulation as,

(oK (M4 B 42+ 911 925

X dx
wir, d>wdg dw— . dw dw
+—9—— T4 s——+ X)Whdx —(Qw+ M =0 (4.20
g TR PTTS g HAIWd—(Qw Mg [ =0 (4.20)

To derive the stiffness matrix for a thick beamege telement generalized
displacementsv and ¢ need to be interpolated within each element. AstthAnsverse
deflectionw and the angular displacemeptare independent variables for a thick beam,
they can be interpolated independently using prspape functions. Due to the presence

of second derivative ofvin the equation (4.20)G°continuous shape functions which are
normally used in classical thick beam cannot bdiegjn the present case. To satisfy the
continuity between the neighboring elemei@$,shape functions can be used for the new
thick beam element. As a result, a 3-node beameziemith two degrees of freedom per

node (wandg ) shown in Figure 4.2 is used for both variabtethis study.
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/2 /2

Figure 4.2 Three node beam element for thick beam

The displacements are interpolated as,

W
a
w N, O N, O N, Of|w
= ! ’ ° ? (4.21)
® 0O N O N 0 Ngj|lo,
W3
1
where N, (i =1, 2,3)are shape functions given as,
2
N1:2|_)2(_|§+1
2
N2:—4_)2(+ﬁ
I I
2x° X
N3:|_2_|_' 428)

Using equation (4.22) and (4.21) along with equa(#®20) yields the following
stiffness matrix for thick beam.

[Ke]=[Ke]+[Ks]+[Ke]+[Ks]+[Ke] (4.23)

where

[14/37 -1 -168 -4B pB N3]
-1l 29 43 29 -4B -A9
[Ke]:GKAI -16/32 43 32 % 0 -1613 - /A3

' 2 | -43 29 0 g9 48 29
2/3> -13 -168% 4B 1413 N
. Y3 -¥9 -43 29 A 29
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0 0 0 0 0 O
0 76 0-43 0 16
[K§]=2[|5|+(2/,10+/10)|*]0 0 0 0 0 O
I 0 -43 0 §3 0 -43
0 0 0 0 0 O
0 Y6 0 -43 0 76
(0 -1 0 0 0 1
-1 0 2 0-10
[Ke]:% 0 2 0 0 0 -2
1 H2?2]0 0 0 0 0 O
0 -1 00 0 1
1 0 -2 0 1 0
(7/6 0 -43 0 16 (
0 0 0 0 0 O
[Ke]:2ros* -4/3 0 g3 0 -43 (
¢ | 0 0 0 0 0 O
Y6 0 -43 0 76 C
0 0 0 0 0 O
0 -1/2 0 -23 0 1/6
-1/2 0 23 0 -1/6 O
[Ke]zi o 23 0 0 0 -2/3
*12]-2/13 0 0 0 2/3 0
0O -¥6 0 23 0 1/2
'1/6 0 -2/3 0 1/2 0O

(4.24)

Exact integration is performed to obtain the s&ffa matricefK;] , [K;] ,

[K;]and[K:], while reduced-integration technique [57] is usedcalculate the shear

stiffness tern{K;] in order to avoid shear locking [58]. That is, ineelements can have

3 or higher number of nodes. For each case, ther siiéfness matrix needs to be under-

integrated consistently. The order of integrationghear stiffness matrix is one less than

what is required for exact integration. For exampiethe present case the expression of

[K;] is a third order polynomial so that the 3-pointu€s quadrature can evaluate the
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integration exactly. For under-integration, 2-poi@auss quadrature is used to
obtain K7 .
For an element subjected to a uniformly distributeiq,, the force vector can

be derived as,

{Re}z—q—gl[l 0401¢ (4.25)

4.1.4 Thick Beam Free Vibration
In the dynamic analysis, the consistent elementsnmaatrix can be computed
from the inertial forces on the right hand sideeqéiation (4.17) and (4.18).

[m]= [ml]+[mz] +[mg] (4.26)
where
[4/15 0 215 0-A15 @
0O 0 0O O 0 ©
[nﬂz(pmpos*n 2/15 0 1615 0 215 (
2 0O 0 0O O 0 ©
-1/15 0 215 0 415 0
0 0 0 0 0 QO
0o 0 0 0 0 0]
0 415 0 215 0-A1%
I:rng:lz(p|+,00|*)| 0 0 0 0 0 0
2 0 215 0 1615 0 214
0O 0 O 0O 0 O
0 -¥15 0 215 0 A15

0O -1 0 -43 0 13]
-1 0 43 0 -13 0
4 vip| O 43 0 0 0 -83
I= 2H|-43 0 0 0 43 0
0 -¥3 0 43 0 1
Y3 0 -g3 0 1 O
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4.2 Finite Element Simulation of Nanoscale Beam Static and Dynamic Response

To assess the accuracy of the proposed finite elefoemulation, static bending
buckling and free vibration problems of selecteid #nd thick beams are computed and
compared with the analytical results obtained fil@hapter 2 and 3. The materials used
in the simulation are Si and Al, the bulk matepabperties and surface properties for a
[1 0 O] surface of which can be found in Table 2ZIhe dimensions for thin beams
are L=2000m , H=2h=10m and b=10nm , and those for thick beams
areL =60nm,H =2h =10nm andb =10nm in all the calculations.

In the nanoscale beam static analysis, normalizdtéations of thin and thick
beams under different boundary conditions (simplgp®rted, cantilever and clamped-

clamped ends) and loadings (uniformly distributeed g,or mid-point loadP for SS

and CC, tip loadP for C) are plotted using FEM and analytical modietan be seen in
Figure 4.3 that the numerical results from the FBM in good agreement with the
analytical solutions, which speaks well of the d#yi of the new FEM. In each
simulation 5 elements are used. As we can see Figore 4.4, for static deflection the
variation is not much once the number of elemeagéshes certain amount, in this case

the results converge very fast after 5 elements.
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Figure 4.3 Normalized deflections of Si beams undestributed loading and point
loading using FEM and analytical model. (a) thimgly supported (b) thin cantilever (c)
thin clamped-clamped ends (d) thick simply supmbre) thick cantilever (f) thick
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Figure 4.4 Normalized deflections of half Si thilaroped-clamped ends beam under

point loadP with varied element numbers.

The natural frequencies of beams with above meetiodimensions are also
computed using 20 elements and the first 4 naftegliencies for each case are listed in
Table 4.1. The analytical results obtained by sgvihe characteristic equations of the
surface elastic model in Chapter 3 are presentqzhianthesis, followed by the results
using classical theory in square brackets. Therabttequencies using FEM are slightly
higher than the analytical result, which agree$he principle that FE representation is
stiffer than the true continuum. By comparing witie analytical results, the error is
within 3%. Such accuracy is adequate for most malcdesign of NEMS devices.
Therefore, we can extend our model to beams withreraomplicated geometry, loading
and boundary conditions confidently. It is foundttthe mode shapes converge fast after
20 elements. The fourth mode shape of a simply g beam is plotted using 40
elements as shown in Figure 4.5. The instabilitthefmode shapes is observed when the
element number increases to a high value. A furithezstigation shows that the reason
for the instability is the second term of local masatrix in equation (4.15) increases
dramatically with the decreasing of element lemgttiherefore, the mass matrix cannot

remain positive definite. However, numerical stuyChapter 3 shows that the influence
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of this term is very small on beam vibrations, #iere it can be neglected in order to

avoid the instability in the FE simulations.

Table 4.1 Natural frequencies of Si thin and thlmdkams under different boundary
conditions using FEM, analytical solution are inrggdghesis and classical solution in

square bracket.

Thinbeam | 1% (G 2" @ 3' @ 4" Gy

A ;" 0.92 (0.92) [0.77] 3.13(3.13)[3.07] 6.78(6.77)[6.91] | 11.90(11.88)[12.29]
b—— 0.45(0.45)[0.27] 1.92(1.92)[1.72] 4.83(4.82)[4.80] 9.19(9.18)[9.40]

— 1.77 (L77)[L.74] 4.72(4.71)[4.80] 9.12(9.10)[9.41] | 14.99(14.96)[15.56]
Thick beam

S % 8.05(7.96)[8.16] | 28.40(28.14)[29.28]| 55.87(55.36)[57.30] | 86.93(85.94)[89.13]
—— 3.09(3.00)2.98] | 16.21(16.17)[16.63]| 39.68(39.33)[40.74]| 67.54(66.85)[69.23]
J4— N | 15.88(15.85)[16.42]| 37.86(37.60)[38.83] 64.49(64.01)[66.05] | 93.69(92.84)[95.49]

o
)

©
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o
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Figure 4.5 Mode shape of a Si simply supported besing 40 elements

Table 4.2 shows the critical loads of Al and Sireaunder aforementioned
restrains with dimensions b = 10 nm, 2h = 10 nm lard200nm. It can be seen that the
critical loads could be changed significantly bg firesence of surface effects. The FEM

gives a very good prediction compared to the aiwalysolution.
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Table 4.2 Critical loads for beams under differezgtrains using FEM, analytical

solution in parenthesis and classical solutiomuese bracket.

Beam type Critical load (NN)

Al Si
28.67(28.67) [18.51]| 32.45(32.45)[22.00]

5B
4 15.70 (15.70) [4.63] 17.20(17.20)[5.50]

4 \ | 80.55(80.53) [74.02]| 93.49(93.47)[88.00]
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Chapter 5

SUMMARY AND CONCLUSION

5.1 Summary of Present Work and Major Findings

The main purpose of this thesis is to develop disonm beam model accounting
for surface energy effects based on Gurtin-Murdelelsticity theory to analyze the static
and dynamic responses of nanoscale beams. The nsodpplied specifically to study
the static bending, vibration and buckling loadstlitk and thin nanoscale beams.
Selected numerical results are presented to denabmsthe salient features of the
response and to assess the influence of surfaagyeeffects. A new finite element
formulation is derived from weighted residual methto analyze complex beam

problems. The conclusions of current study arerghwow.

(1) The governing equations are developed for #m thick beams with an
arbitrary cross-section. Closed-form analyticaluiohs can be derived for the static
deflections of thin and thick beam subjected tofarmly distributed loading and
concentrated loads for several common boundary itondg (simply supported,
cantilever, both ends clamped). The buckling of asaale beams under uniaxial
compression is also analyzed and the critical laau$er various restraints are derived.
The present formulation shows that the surfacetielpsoperties can make the material
stiffer or softer than the classical case due #osilgn of the surface elastic constants and
surface residual stress, and this effect will beeanore pronounced with the decreasing
size. The difference of the results predicted freumface elasticity and classical models
relies on the magnitudes of the surface properthgs. intrinsic length parameter,
controlled by both surface elastic properties antk Iproperties can be established to
characterize the surface energy effects for beardibg problems. As the height of beam
becomes comparable to the intrinsic length, th&asarenergy effects become important.
Selected numerical results show that Al and Si team deflections as well as the
critical loads are significantly influenced by sacé energy effects. The numerical study
demonstrates that large absolute value of negativéace elastic properties at small
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dimensions could result in negati¥g ( K, for thick beam), which may consequently lead

to deflection instability as well as complex natufi@quencies. The reason for this
phenomenon is that the non-positive definitenessudface elastic energy will dominate
over the bulk strain energy at small dimensionghla case, the Gurtin-Murdoch theory
essentially breaks down and other atomistic modelsd to be chosen. Our model is
applicable only when the bulk is still the domingart although the surface contribution
is prominent.

(2) The surface energy effects on free vibratidn nanoscale beams are
investigated and the characteristic equations teroéne the natural frequencies are
presented. The numerical solutions indicate thatrnthtural frequencies are affected by
both surface elastic properties and surface denBity effect of surface residual stress on
natural frequencies will decrease with the increalsevave number for higher modes.
The impact of surface energy also depends on tam iundary conditions. The highest
influence is observed for cantilever beams follovgdsimply supported and clamped-
clamped beams. Rayleigh quotient is adopted toveletihe closed-form analytical
solution for natural frequency with surface eneggfects. A method to determine the
material elastic constants by measuring naturgleacies is thereafter proposed.

(3) A new finite element formulation taking intocatint surface energy effects
has been derived from weighted residual method.ftiund that the effect of the surface
on the finite element formulation is to change #téfness and mass matrices of the
elements, which consequently change the mechdmteviour significantly. As a result,
the conventional beam theories are inadequate ddigirthe responses of nanoscale
beams. The new finite element scheme is applieshébyze the thin and thick beam static
bending and vibration responses as well as thimbeackling problems; by comparing
with the analytical results, the error is within 3%uch accuracy is adequate for most
practical design of NEMS devices. The FEM modelailigyed in this thesis provide an
efficient tool for NEMS designers to investigatee tbomponent structures in device

design.

68



5.2 Suggestions for Future Work

Based on the findings of the thesis, it is recomthedrthat the following studies
be undertaken to further understand the mechanhicarmscale structures;

(1) In the present work, the beam models are bhalsed on the classical
assumption of small strains and small displaceméitis is sufficient to analyze static
and dynamic behavior of a beam within small deitexs. In many practical cases, the
structures can undergo large scale elastic deflectherefore it is useful to examine the
surface energy effects on large-deflection (elajtimsed problems.

(2) Finite element study is conducted to studydtagic and dynamic response of
nanoscale beams. The transient analysis is alsgesteyl to be implemented into the
current finite element scheme.

(3) The thesis proposed an energy method basedagleigh quotient to predict
the natural frequency of beam and the material gntags, provided that an appropriate
trial function is adopted to approximate the beane imode shape. The selection of the
trial function needs to be further investigateaider to obtain accurate solution.

(4) Current study shows that the static and dynaesponse of nanoscale beams
are significantly dependent on the surface elagtioperties. Therefore, precise
measurement technique or efficient atomistic cormporial means are required to extract
those properties. Meanwhile, experimental studied atomistic simulations are also
recommended for validation and further extensioowfsurface elastic model and finite
element scheme presented in this work.

(5) The beam theories developed in this work aetteon simplified state of
stress of the three-dimensional elastic solidthinspirit of engineering beam theory we
introduced surface elasticity effects. It is alsosgible to solve the complete three-
dimensional elasticity problem using appropriatess functions. This may provide an
alternate route to validate the modified enginegliaam theories proposed in this work.

(6) In classical elasticity and beam theories weke Saint Venant’s principle to
study the influence of boundaries, or sudden chamgecross section. The scaling of
Saint Venant elastic boundary layer thickness iralsscale system remains an open

problem.
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