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  Abstract 

Nanoscale beam-like structures have attracted much attention due to their superior 

mechanical properties for applications in nanomechanical and nanoelectromechanical 

systems (NEMS).  Nanoscale structures are characterized by a high surface to volume 

ratio. The elastic response of surface layers of atoms is different from that of the bulk 

atoms due to reduced connectivity. Thus, surface energy has a significant effect on the 

response of nanoscale structures, and is associated with their size-dependent behavior. 

The classical continuum mechanics fails to capture the surface energy effects and hence 

is not directly applicable at nanoscale. To overcome this limitation, modified continuum 

models incorporating surface energy effects need to be developed in order to evaluate the 

size-dependent mechanical response of nanoscale structures. 

This thesis presents a modified continuum model and finite element formulation 

to study the static and dynamic response of nanoscale beams. The objective is to provide 

NEMS designers with an efficient set of tools that can predict static deflections, natural 

frequencies of vibrations, and uniaxial buckling loads of nanoscale beams with different 

geometries, applied forces, and boundary conditions. A general beam model based on 

Gurtin-Murdoch continuum surface elasticity theory is developed for the analysis of thin 

and thick beams of arbitrary cross-section. Closed-form analytical solutions for static 

bending of thin and thick beams under different loadings and boundary conditions are 

obtained. Their free vibration characteristics are also investigated. Analytical expressions 

for critical buckling loads of thin beam are presented. An intrinsic length scale depending 

on both surface and bulk elastic properties is defined to characterize surface energy 

effects in beam bending problems. The finite element simulation results of static bending, 

free vibration and axial buckling of nanoscale beams are compared with the analytical 

solutions for validation. Selected numerical results are presented for aluminum and 

silicon beams to demonstrate their salient response features. A technique is proposed to 

estimate surface elastic properties from measured natural frequencies of GaAs cantilever 

specimen. The surface elasticity continuum mechanics and finite element models 

developed in this work provide designers efficient tools to predict mechanical response of 

beam structures in nano devices.  
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Chapter 1  

 

INTRODUCTION 

 

1.1 Nanotechnology  

Nanotechnology is an emerging technology involving the characterization, design, 

production and application of materials, structures and systems through the control of 

matter on the nanometer length scale, that is, at the level of atoms and molecules. A 

nanometer is one billionth of a meter (910 m− ). This is roughly four times the diameter of 

an individual atom. For comparison, a red blood cell is approximately 7,000nm wide and 

a water molecule is almost 0.3nm across. Materials and structures with at least one 

dimension in1 100nm− are within the purview of nanotechnology. In this realm, 

nanomaterials and nanostructures exhibit properties and phenomena that cannot be 

observed at macro-scale, which opens new prospects of technology innovation. 

Nanotechnology is a multi-disciplinary field. In a famous speech entitled “There is 

plenty of room at the bottom” [1] Richard Feynman enunciated the key challenges to be 

addressed in small-scale systems in 1959. He predicted the ability to manipulate 

individual atoms and molecules to create new materials, structures and devices which 

would lead to revolutionary changes in all aspects of our life. He also pointed out that, for 

this to happen, a set of precise tools were needed to observe and operate such nanoscale 

objects. It was not until 1980s that the instruments such as scanning tunneling 

microscopes (STM) and atomic force microscopes (AFM) were invented, providing the 

researchers with efficient tools to manipulate the nanomaterials and detect their novel 

properties. Thereafter, many avenues of research in nanoscience and nanotechnology 

have opened. Over the past decade, nanomaterials and nanostructures have been 

synthesized and exploited in a wide range of applications, such as computers, medicine, 

advanced materials, communication, etc. With increasing demand for high performance 

devices and fast pace of miniaturization, nanotechnology will undoubtedly become 

central to the epoch of technology era and profoundly impact our industries and society. 
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Nanomaterials and nanostructures, such as nanolayers, nanowires, nanotubes and 

nanoparticles are the outcomes of direct molecular manipulation and also the 

fundamental building blocks for the nanocomposites, nanosystems and nanodevices. In 

this special length scale, quantum effects and surface effects become dominant, which 

lead to the fundamental change in material properties (for instance, mechanical, 

electrical, magnetic, optical, chemical and other properties), triggering ever-broader 

applications. For example, the nanoparticles and nanolayers have a high surface to 

volume ratio, making them ideal for applications in chemical reaction, combustion, 

composite materials and energy storage. Nanoparticles made of semiconducting material 

are used in biomedical applications as drug carriers or imaging agents. Carbon nanotubes 

(CNT) are reported to have Young’s modulus five times that of steel (Young’s modulus 

of CNT is in the range of 1.0 to 5.0 Tpa) [2, 3], a hundred times of its tensile strength and 

only one-sixth of its weight. Meanwhile the electrical conductivity is six orders of 

magnitude higher than copper. As a result, they are used in nanocomposite fibers, field 

emission panel displays, chemical sensing, nanoelectronics, etc. Nanoporous membranes 

with pores smaller than 10 nm are suitable for novel mechanical filtration devices. 

Nanowires are being explored to make efficient solar cells due to their unique chemical 

and electrical properties. Dispersions of conducing nanowires in different polymers are 

being investigated for use as transparent electrodes for flexible flat-screen displays. It is 

apparent that the unique properties and phenomena observed at nanoscale will provide 

significant enhancement beyond what current technologies have established. A 

comprehensive introduction of nanotechnology and current breakthroughs can be found 

in a recent report [4]. 

 

1.2 Nanomechanics 

 To successfully design and manufacture the nanostructured materials, devices and 

systems, a fundamental understanding of their mechanical behavior is required. 

Nanomechanics is a new area of mechanics concerned with the study of mechanical 

properties and response of materials and structures at the nanoscale. In this regard, 

experimental techniques, theoretical models and computational tools are being developed 
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to investigate the mechanics of nanomaterials and nanostructures, such as their effective 

elastic moduli, bending stiffness, buckling loads, and tensile/compressive strengths.  

Experimental developments have brought about striking progress in 

nanotechnology in the last few decades. The development of advanced instrumentation 

tools enables the researchers to resolve and characterize objects at nanoscale level. 

Among the various techniques, scanning probe microscopy has been a major tool in 

investigating the properties of individual nanostructures. For example, Tomasetti et al. [5] 

quantitatively assessed the elastic modulus of polymers and polypropylene by measuring 

their indentation hardness with an atomic force microscope (AFM). Cuenot et al. [6] 

measured the elastic modulus of metallic nanowires and polymer nanotubes with varied 

diameter using a resonant-contact AFM. Wong et al. [7] used AFM to measure the 

mechanical properties of individual, structurally isolated silicon carbide nanorods and 

multiwall carbon nanotubes that were pinned at one end to molybdenum disulfide 

surfaces. Han et al. [8] developed an in situ transmission electron microscopy method for 

conducting bending or axial tensile experiments for nanowires and nanotubes in 

transmission electron microscopy. The experimental results can provide verifications for 

the theoretical and numerical modeling. A continuous development of advanced 

experimental equipment and methodology is required for further development of 

nanoscience and nanotechnology. 

Another approach is atomistic simulation which deals with the motion of atoms and 

characterizes the behavior of the nanoscale objects by considering a cluster of atoms. The 

two main molecular simulation methods are ab initio quantum mechanical methods and 

molecular dynamics (MD). The ab initio methods are based on the first principles and 

deal with the solutions to the Schrödinger equation [9]. In general, ab initio methods give 

more accurate results than MD, but they are also much more computationally intensive. 

MD is widely used in atomistic modeling. It looks at the interactions of atoms or 

molecules for a period of time and the objective is to solve the governing equations of 

particle dynamics based on Newton’s second law. As the atomistic simulations reflect the 

real configurations of the structures, the results obtained from this approach can be very 

accurate. However, in engineering applications where the materials and structures are 

normally modeled up to a scale of several microns, consisting billions of atoms, the 
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atomistic simulations have difficulty in analyzing such structures due to the 

computational limitations in length and time scales.  

In searching for more efficient ways to model practical nanoscale systems, many 

researchers have resorted to the continuum mechanics approaches due to their superior 

computational efficiency and versatility. However, the conventional continuum 

mechanics is based on the assumption that quantities vary slowly over atomic length 

scale; it fails to capture the atomic features of the nanostructures. To overcome this 

limitation, a set of modified continuum theories has been proposed to incorporate the 

quantum/molecular effects existing at the nanoscale into the conventional continuum 

framework. The main approach is to incorporate some special parameters extracted from 

interatomic potentials or atomistic properties into the continuum mechanics model. 

Several such models have been successfully developed, such as multi-scale continuum 

models, surface elasticity models and non-local elasticity models. They have shown good 

agreement with atomistic simulations, and surpass the atomistic models in terms of 

computational efficiency and versatility.  

 

1.3 Review of Surface Elasticity Model 

One significant reason that gives rise to the exceptional properties and behaviour of 

nanomaterials and nanostructures is the surface energy. As explained by Streitz et al. [10], 

the atoms at a free surface or interface are exposed to a different environment than those 

in the bulk of a material; the equilibrium position and energy of those atoms are 

consequently different from bulk positions and energies. Properties of the solid which are 

sensitive to the atomic positions or energies are necessarily affected at or near a surface 

or interface. Especially for thin films or layered structures where there are a great number 

of atoms near the surface or interface compared to that in bulk, these surface effects can 

be substantial.  

The surface energy quantity referred to as the surface free energy or excess surface 

energy γ  was first introduced by Gibbs [11] in the thermodynamics of solid surfaces. It 

is equal to the reversible work per unit area needed to create a surface by a process such 

as cleavage or creep. The ratio of surface free energy γ ( 2/J m ) to Young’s modulus 
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E ( 3/J m ), / Eγ , is dimensional (m ) and points to some other intrinsic length scale 

parameter of a material [12].  This intrinsic length scale is usually small, in the nanometer 

range or even smaller. When a material element has one characteristic length comparable 

to the intrinsic scale, the surface/interface free energy can play an important role in its 

properties and behaviour. There is another fundamental parameter, called surface stress, 

which was also defined by Gibbs [11] for the first time. It is associated with the 

reversible work per unit area needed to elastically stretch a pre-existing surface. The 

relationship between the surface stress and surface free energy has been formulated as 

[13, 14] 

αβαβαβ εγγδσ ∂∂+=                                                                      (1.1) 

where αβσ  and αβε  denote the surface stress and strain, respectively, and αβδ  is the 

Kronecker delta,
1

0αβ
α β

δ
α β

=
=  ≠

. Note that the surface free energy γ  is a scalar, while 

the surface stress αβσ  is a second rank tensor in tangent plane of the surface and the 

strain normal to surface is excluded in Eq. (1.1) and α and β  take  integers 1 or 2. The 

form of Eq. (1.1) is shown to depend on the coordinate frame of reference. In the 

Eulerian frame of reference where the surface/interface area changes with strain, 

surface/interface stress is in the expression of Eq. (1.1). However, in Lagrangian 

coordinates embedded in elastically deforming material, the surface/interface stress 

appears explicitly as a variation of surface/interface free energy with elastic strain [15]. 

By analogy to constitutive relationship for bulk material in elasticity, Miller and 

Shenoy [16] suggested a linear surface constitutive equation by introducing a set of 

surface elastic constants as, 

0 Sαβ αβ αβγδ γδσ τ ε= +                                                                          (1.2) 

where 0
αβτ  is the surface stress when the bulk is unstrained, and αβγδS  is the fourth order 

surface elasticity tensor. Due to the symmetries, there are a total of nine independent 

elastic constants for a crystal surface. The number of independent elastic constants can be 

further reduced according to the surface geometric symmetry [17].  
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Gurtin and Murdoch [18, 19] proposed a generic theoretical framework based on 

continuum mechanics concepts that accounts for the surface/interface energy. In their 

model, the surface is regarded as a mathematical layer of zero thickness adhered to the 

underlying bulk material without slipping. The surface properties are different from those 

in the bulk and are characterized by the surface residual stress and surface Lamé 

constants. For an isotropic surface, the surface stresses and strains are related by the 

following surface constitutive equation. 

0 S 0 S 0( ) 2( )αβ αβ γγ αβ αβσ τ δ λ τ ε δ µ τ ε= + + + −                                 (1.3) 

where 0τ  is the surface residual stress without constraint; Sλ  and Sµ  are surface Lamé 

constants or surface elastic constants. 

The above mathematical formulation suggests that the elastic responses of 

nanostructures significantly depend on the surface elastic constants, which could be 

determined by experiments or atomistic simulations. Vermaak et al. [20, 21] determined 

the absolute surface stresses by observing the contraction of small gold, silver and 

platinum particles under the influence of the surface stress. Their experimental results for 

surface stress are 1.175, 1.415 and 2.574/N m  respectively. Jing et al. [22] measured the 

elastic properties of silver nanowires by using contact AFM. A good review of 

experimental work can be found in [23, 24]. Besides the experiment efforts, many 

theoretical approaches have been used to predict the surface properties. Surface stresses 

were evaluated using ab initio methods in semiconductors by Maede et al. [25] and in 

metals by Needs [26].With the assumption of isotropy, Miller and Shenoy [16] computed 

surface moduli of different surface orientations by using the embedded atom method 

(EAM) for FCC Al and Stillinger-Weber empirical potentials for Si. Dingreville et al. 

[27, 28] used a semi-analytic method to compute the surface elastic properties of 

crystalline materials. A systematic study of surface elastic constants using atomistic 

simulations has been presented by Shenoy [17]. The surface elastic parameters of several 

crystal faces of FCC crystal metals were computed. From their simulations, it is found 

that the surface elastic tensor αβγδS  need not be positive definite, i.e., the quadratic form 

γδαβαβγδ εεS  can be negative, which may suggest a violation of basic thermodynamic 

postulates. To explain this phenomenon, Shenoy pointed out that the positive definiteness 
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of the bulk elastic modulus tensor which guarantees the solid stability can not be applied 

to the surface elastic tensor. Though it is treated separately in the study, the surface can 

not exist independently without the bulk and the total energy (bulk+surface) still satisfies 

the positive definite condition.  

According to the generalized Young-Laplace equation, the presence of surface 

stresses gives rise to a set of non-classical boundary conditions. These non-classical 

boundary conditions and surface stress-strain relations, along with the classical elasticity 

equations for the bulk form a coupled system of field equations. Gurtin and Murdoch’s 

model [18, 19] has been widely adopted to investigate a variety of size-dependent 

problems at nanoscale. For instance, Hamilton and Wolfer [29] presented an embedded 

atom method calculation of the surface elastic constants of Cu (111) using the Gurtin and 

Murdoch theory. Miller and Shenoy [16] and Shenoy [30] developed a one-dimensional 

model to demonstrate that the surface effects can be modeled as additional terms to the 

overall elastic moduli of structural elements in uniaxial tension, bending and torsion and 

the results are generally in a good agreement with the atomistic simulations. Wang et al. 

[31] investigated the influence of surface tension and the residual stress field in the bulk 

induced by surface tension on the elastic deformation of nanostructures. Sharma and 

Ganti [32] and Sharma [33] studied the size-dependent strain states of inhomogeneities 

and Eshelby tensor for nanoinclusions with surface energy. Tian and Rajapakse [34] 

investigated a cylindrical nanoinclusion under a two-dimensional dilatational eigenstrain 

and far-field loading. Wang and Feng [35] extended the surface elastic model to study 

the effects of surface stresses on contact problems and derived the closed-form solution 

of the deformation around an elliptic hole including the surface energy effects. Zhao and 

Rajapakse [36] examined the plane and axisymmetric problems for a surface-loaded 

elastic layer in the presence of surface energy effects. 

 

1.4 Nanoelectromechanical Systems 

An important area of nanotechnology that has received increasing interests in 

recent years is the design and fabrication of nanomechanical and nanoelectromechanical 

systems (NEMS).  These are devices integrating electrical and mechanical functionality 

at nanoscale. In this regime, NEMS offer a number of unique attributes such as small size, 
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low mass, high mechanical resonance frequencies, and high sensitivity. Application of 

NEMS includes actuators, sensors, machines and electronics at nanoscales [37]. NEMS 

can be used to measure extremely small displacements and forces that lead to new 

developments for applications in medicine, computers, communications, etc. The 

principal components of NEMS are mechanical elements that either deflect or vibrate in 

response to the external excitations, and a transducer that can convert mechanical energy 

to electrical or optical signals. Nanostructures such as nanobeams, nanoplates and 

nanomembranes are the common components of NEMS mechanical parts. Structural 

integrity, reliability and durability of NEMS are important issues in practical applications. 

Therefore, understanding the mechanical properties, response and stability of NEMS 

structural elements is crucial to the exploitation of NEMS technology.  

Due to the surface energy effects at nanoscale, the investigation of the mechanical 

behavior of nanostructures with surface energy effects remains a topic of substantial 

interest. Lagowski et al. [38] carried out an experiment to measure the natural frequencies 

of GaAs wafers in the configuration of cantilever beams within a small scale region. 

They found that the natural frequencies substantially depend on the surface stress which 

cannot be explained by classical theory of vibration. To investigate this experimental 

phenomenon, Gurtin et al. [39] developed a simple one-dimensional beam model to 

illustrate that the beam resonant frequency is independent of the surface stress and 

therefore the experimental results require a different explanation. Wang and Feng [40] 

developed a sandwich-beam model to study the effects of surface elasticity and surface 

tension on the natural frequencies of micro- or nanosized beams and revealed that when 

the thickness of beams reduces to microns or nanometers, both the surface elasticity and 

surface tension have significant effects on its vibration frequency. Yang et al. [41] and 

Ekinci and Roukes [42] have fabricated nanometer scale electromechanical beam 

resonators and examined their response experimentally. Wang et al. [43] studied the 

surface buckling of a microbeam due to surface energy effects. Sadeghian et al. [44] 

studied the effects of surface stress on resonance frequency of nanocantilevers. Recently, 

Lachut and Sader [45] proposed a three-dimensional model to examine the surface stress 

effects on the stiffness of cantilever plates.  Lim and He [46] analyzed the deformations 

of nanofilms under bending by incorporating the surface elasticity effects into Von 
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Karman plate theory. Lu et al. [47] complemented Lim and He’s model [48] by 

considering the normal stress variation along the thickness direction and presented a 

general model for static and dynamic analysis of thin film structures. He and Lilley [49, 

50] studied the surface energy effects on static bending and bending resonance of 

nanowires with different boundary conditions. 

 

1.5 Scope of the Current Work 

Based on the above introduction and literature survey, it can be seen that 

understanding the size-dependent behavior of beam-like structures at nanoscale is 

essential for effective NEMS design. The continuum modeling approach accounting for 

surface energy effects is considered to be attractive due to its simplicity and 

computational efficiency. Current continuum models available for studying the beam 

response with surface effects are confined to beams with simple geometries and boundary 

conditions. Meanwhile these models are mostly developed to analyze thin beams (Euler 

beams), which fail to capture the shear deformations that are important when the aspect 

ratio becomes relatively small (In the present context, aspect ratio corresponds to height-

to-length ratio) and also for the analysis of higher natural frequencies. The aim of this 

thesis is to develop a general beam model based on Gurtin-Murdoch theory to analyze 

thin and thick nanoscale beams with an arbitrary cross-section. The model is further 

applied to investigate the static bending, uniaxial buckling and free vibration of such 

beams respectively. A finite element scheme is also presented to analyze the nanoscale 

beam structures with complex geometries and boundary conditions. This thesis has two 

main objectives: first, to show the significance of surface effects on the beam static and 

dynamic response and structural stability; second, to provide a set of analytical solutions 

and numerical tools to the designers in NEMS and other nanoscale devices. 

Chapter 2 presents the detailed formulation of the governing equations of a beam 

including surface energy effects. Surface pre-stress as well as surface elasticity are 

considered. Based on the general model, thin beam (Euler-Bernoulli beam) and thick 

beam (Timoshenko beam) theories accounting for surface effects are established. 

Analytical solutions for static response of thin and thick beams under different loading 

(point and uniformly distributed loading) and boundary conditions (simply-supported, 
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cantilever and both ends clamped) are derived. The stability of beam structures under 

axial compression is also investigated and the critical loads for different beam restraints 

are presented. To the best of our knowledge, such solutions have not been reported 

previously. The numerical results of deflection profiles and critical loads of selected 

beams based on the proposed models are also presented, and compared with the solutions 

from classical thin and thick beam theory to quantitatively assess the influence of surface 

energy effects. 

Chapter 3 studies the dynamic response of thin and thick beams. Analytical 

solutions of free vibration characteristics of such beams are derived. The numerical 

results of natural frequency and mode shape of selected beams are presented and again 

compared with the classical solutions to examine the surface energy effects. The energy 

approach, Rayleigh quotient, is also applied to derive the closed-form solution of natural 

frequencies for thin beams. The solutions are further employed to fit the experimentally 

measured natural frequencies of GaAs cantilever beams reported in [38]. A suggestion 

for the determination of surface stress and surface elastic constants by measuring the 

natural frequency of free vibration is thereafter proposed. 

In Chapter 4, a finite element scheme is developed to study the complex beam 

problems encountered in NEMS and other nanotechnology applications. In conventional 

finite element method (FEM) surface elasticity effects are not considered. Therefore, new 

thin and thick beam elements considering surface effects are developed respectively. The 

finite element formulation based on Galerkin’s method is first presented and then verified 

by simulating the static deflections, natural frequencies and buckling problems of 

selected beams and comparing the results with the analytical solutions obtained from 

Chapter 2 and 3.  

Chapter 5 concludes the major findings of the thesis, summarizes the contributions 

of current study and provides suggestions for future work. 

 
 
 
 
 

 



11 

 
Chapter 2 

 
STATIC AND DYNAMIC ANALYSIS OF NANOSCALE BEAMS 
 

2.1 Problem Description 

Based on the previously reported work, the surface elasticity theory is extended in 

this section to study the size-dependent behavior of nanoscale beams. A general 

mechanistic model based on Gurtin-Murdoch continuum theory accounting for surface 

effects is presented. Thereafter the thick and thin beam models incorporating surface 

elasticity effects are developed in order to analyze the static and dynamic response of 

nanoscale beams. The thin beam model is based on Euler-Bernoulli beam theory, in 

which the shear deformations are neglected and plane sections remain normal to the 

neutral axis after bending. It gives good results for slender beams where bending 

dominates the deformation fields. The thick beam model is based on Timoshenko beam 

theory. The shear deformation is taken into account; consequently, the assumption of 

plane sections to remain plane after deformation is relaxed. It is suitable for analyzing 

short and stocky beams where the shear effects are significant.  

A nanoscale beam with lengthL and height H  is modeled in Cartesian coordinate 

system ( , , )x y z  as shown in Figure 2.1. The cross-section is arbitrary (symmetric about 

z-axis) with unit normal n  and tangentt . The area and perimeter of the cross-section are 

A and s  respectively. To incorporate the surface effects, it is assumed that the response 

of the beam is governed by the continuum theory proposed by Gurtin and Murdoch [18, 

19]. Unlike the classical case, the beam in Gurtin-Murdoch model has an elastic surface 

with zero thickness fully bonded to its bulk material. Bulk materials are assumed to be 

homogeneous and isotropic with Young’s modulusE , Poisson’s ratio v  and mass 

densityρ . The stress state of the bulk material of the beam is assumed to be plane stress 

with the non-zero stresses,xxσ , xzσ  and zzσ as shown in Figure 2.2. The corresponding 

bulk strains are xxε , xzε  and zzε . The equilibrium and constitutive equations for the bulk 

solid are the same as those in classical elasticity theory [52]. In general, the elastic 

surface (outward unit normal n  and unit tangentt ) has surface stress components xxτ , txτ  
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and nxτ shown in Figure 2.2. In the engineering beam theory, only xxτ  and nxτ  are 

considered. The elastic properties of surface materials are Lamé constants0λ , 0µ  and 

surface residual stress under unstrained conditions 0τ , and the mass density of the surface 

is 0ρ . 

 

 

Figure 2.1 Geometry of beam with arbitrary cross-section and coordinate system 

 

 

Figure 2.2 State of stress of the bulk and surface 

 

2.2 Formulation of General Beam Surface Elasticity Model 

Consider a free-body diagram for a small segment x∆  of the beam (bulk) as 

shown in Figure 2.3. The internal resultant shear force Q  and moment M  act on both 

faces of the segment. On the right hand face, there are infinitesimal increments in Q  and 

M  respectively. The inertia forces xuρ ɺɺ  and zuρ ɺɺ  exist in the segment body. For the 

purpose of generality, the beam is subjected to an arbitrary lateral loading ( )q x  along the 

 

L

Bulk: , ,E v ρSurface layer: 0 0 0 0, , ,λ µ τ ρ

x

z

H y

z
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xzσ
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beam length. As a result of the interaction between the elastic surface and bulk materials, 

the traction i ij jT nσ=  act on the overall surface of the bulk element (In the free-body 

diagram, only the tractions on the top surface of the bulk are shown). Within the beam, 

plane stress state implies non-zero tractions xT  and zT  only. Note that the out-of-plane 

stress zT  is induced from the in-plane stresses when the beam is deformed due to the 

generalized Young-Laplace equation.  

 

 

Figure 2.3 Free-body diagram of a segment of the beam 

 

The vertical force and moment equilibrium equations of the bulk element can be 

written as: 

( ) 0z zs A

dQ
T ds q x u dA

dx
ρ+ − − =∫ ∫ ɺɺ                                                                       (2.1) 

0x xs A

dM
T zds Q u zdA

dx
ρ+ − − =∫ ∫ ɺɺ                                                                      (2.2) 

where the shear force resultant and bending moment resultant are defined as, 

xzA
Q dAσ= ∫ and xxA

M zdAσ= ∫ , respectively. 

 The equilibrium relations for the surface can be expressed in terms of the surface 

and bulk stress components as [18, 19], 

, 0
s

i i iT uα ατ ρ− = ɺɺ                                                                                                    (2.3) 

Where , ,i x n t=  and ,x tα = ; τ denotes the surface stress. s
iuɺɺ  denotes the acceleration of 

surface layer in the i  direction. The presence of surface stress and inertia results in the 

 
  dM

M x
dx

+ ∆M

Q dQ
Q x

dx
+ ∆

zuɺɺρxuɺɺρ

Bulk 

 
( )q x

zT
xT
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surface traction. Rewriting the non-zero surface tractions xT  and zT  in form of surface 

stress and inertia terms from equation (2.3) yields the following,  

, 0
s

x xx x xT uτ ρ= − ɺɺ                                                                                                   (2.4) 

, 0( )s
z n z nx x n zT T n u nτ ρ= = − ɺɺ                                                                                   (2.5) 

where cos ,zn n z= < >  is the direction vector. 

Substitution of equations (2.4) and (2.5) into (2.1) and (2.2) yields the following 

equilibrium equations, 

, 0( ) s
nx x z z n zs A s

dQ
n ds q x u dA u n ds

dx
τ ρ ρ+ − = +∫ ∫ ∫ɺɺ ɺɺ                                                 (2.6) 

, 0
s

xx x x xs A s

dM
zds Q u zdA u zds

dx
τ ρ ρ+ − = +∫ ∫ ∫ɺɺ ɺɺ                                                      (2.7) 

Note that in the absence of the surface stresses and inertia, equation (2.6) and 

(2.7) are reduced to the classical beam bending moment and shear force relationships. 

Since both the bulk and surfaces of the beam are assumed to be homogeneous and 

isotropic, the constitutive relations of the bulk material relating non-zero stresses xxσ , xzσ  

and zzσ  to the corresponding strains can be expressed as, 

xx xx zzEσ ε νσ= +  

2xz xzGσ ε=                                                                                                          (2.8) 

where E  is the elastic modulus, ν is Poisson’s ratio and G  is the shear modulus.  

Note that in a beam bending problem, the stress component zzσ  is not zero. But it 

is small enough compared to axial stress xxσ  to neglect in classical beam theory. 

However, in Gurtin-Murdoch model the surface is not in balance with the above 

assumption. To remedy this, following Lu et al. [47] zzσ  is assumed to vary linearly 

through the beam thickness and satisfy the equilibrium conditions on the surface. The 

significance of zzσ  on the beam responses will be further investigated in the following 

section while presenting numerical results. With this assumption, zzσ can be written as, 

1
( ) ( )

2zz zz zz zz zz

z

H
σ σ σ σ σ+ − + −= + + −                                                                       (2.9)              

where the superscripts + and −  denote the surface quantities on the very top and bottom  
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points of the surface layer respectively. zzσ + and zzσ − are stresses at the top and bottom 

fibers respectively where the outward unit normal vector n  is parallel to the z  direction, 

and H  is the height of the beam. 

Rewriting zzσ  in terms of surface stresses and inertia yields, 

, , 0 0 , , 0 0

1
( ) ( )

2zz zx x zx x z z zx x zx x z z

z
u u u u

H
σ τ τ ρ ρ τ τ ρ ρ+ − + − + − + −= + − − + − − +ɺɺ ɺɺ ɺɺ ɺɺ                   (2.10) 

The surface constitutive relations given by Gurtin and Murdoch [18, 19] can be 

simplified in present study as, 

0 0 0 ,(2 )xx x xuτ τ µ λ= + +  

0 ,nx n xuτ τ=                                                                                                         (2.11) 

where 0τ is the residual surface stress under unconstrained conditions; 0µ  and 0λ  are 

surface Lamé constants. 

 

2.2.1 Thick Beam Surface Elasticity Model 

In the thick beam model where the shear deformation and rotational inertia effects 

are considered (Timoshenko beam theory), the cross-sectional rotation is an independent 

variable in addition to the transverse (vertical) deflection of the neutral axis. Therefore 

the displacement field is given as [52], 

( , )xu z x tφ=  

( , )zu w x t=                                                                                                        (2.12) 

where ( , )x tφ  and ( , )w x t  are the angular displacement and transverse displacement of 

beam respectively. 

The state of non-zero strains are expressed in the strain-displacement relations as, 

( , )x
xx

u x t
z

x x

φε ∂ ∂= =
∂ ∂

 

0zzε =  

1 1 ( , )
( , )

2 2
x z

xz

u u w x t
x t

z x x
ε φ∂ ∂ ∂   = + = +  ∂ ∂ ∂  

                                                    (2.13) 

Substitution of equation (2.12) into equation (2.11) yields the following surface 

stress field, 
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0 0 0(2 )xx z
x

φτ τ µ λ ∂= + +
∂

 

0nx z

w
n

x
τ τ ∂=

∂
                                                                                                    (2.14) 

Therefore, the surface vertical stresses at the top and bottom of the surface layer 

can be obtained from equation (2.14) when 1zn = , 

0zx

w

x
τ τ+ ∂=

∂
        

0zx

w

x
τ τ− ∂= −

∂
                                                                                                     (2.15) 

Substitution of equations (2.15) and (2.12) into equation (2.10), the vertical stress 

zzσ  can be derived as, 

2

0 02

2
( )zz

z w
w

H x
σ τ ρ∂= −

∂
ɺɺ                                                                                    (2.16) 

Using equation (2.8), the non-zero bulk stresses can be written in the following 

form: 

2

0 02

2
( ) ( )xx

z w
E z w

x H x

φ νσ τ ρ∂ ∂= + −
∂ ∂

ɺɺ  

( )xz

w
G

x
σ κ φ∂= +

∂
 

2

0 02

2
( )zz

z w
w

H x
σ τ ρ∂= −

∂
ɺɺ                                                                                    (2.17) 

where κ  is the shear correction coefficient which accounts for the deviation from 

assumed constant shear stress along thickness direction in the Timoshenko beam theory. 

The values of  κ  for various cross-sectional shapes are given in standard texts such as 

Gere and Timoshenko [52]. 

Equation (2.17) and equation (2.14) give the stress field of the thick beam. By 

substituting both of the equations along with the displacement field in equation (2.12) 

into the general beam equilibrium equations (2.6) and (2.7), the governing equations for a 

thick beam including surface effects can be obtained as, 

2 2 2
* *

0 02 2 2
( ) ( ) ( )

w w w
G A s q x A s

x x x t

φκ τ ρ ρ∂ ∂ ∂ ∂+ + − = +
∂ ∂ ∂ ∂

                                     (2.18) 
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2 3
0

0 0 2 3

2
[ (2 ) ] ( )

I w w
EI I G A

x H x x

ν τφµ λ κ φ∗ ∂ ∂ ∂+ + + − +
∂ ∂ ∂

                                  

2 3
0

0 2 2

2
( )

I w
I I

t H x t

ν ρφρ ρ ∗ ∂ ∂= + +
∂ ∂ ∂

                                                               (2.19) 

where 2

A
I z dA= ∫  is the moment of inertia of the beam cross-sectional area. 2

s
I z ds∗ = ∫  

is the perimeter moment of inertia, an analogue to the moment of inertia for the bulk, and 

has units of [length3]. * 2
zs

s n ds= ∫  has the unit of length.  All the above three parameters 

are dependent on the geometry of the cross-section. In the case of beams with a 

rectangular cross section of height 2h  and widthb , and a circular cross-section of 

diameterD , the parameters are given by, 

2h
H

D


= 


, * 2

/ 2

b
s

Dπ


= 


,  
3

4

2 3

64

bh
I

Dπ
= 


,  
2 3

*

3

2 4 3

8

bh h
I

Dπ
 += 


                      (2.20) 

The resultant shear force and bending moment of beam cross section including the 

surface contributions can be expressed as, 

*
0

2
* * 0 0

0 0 2

( )

2 2
[ (2 ) ]

T

T

w w
Q G A s

x x

I Iw
M EI I I w

x H x H

κ φ τ

ν τ ν ρφµ λ

∂ ∂= + +
∂ ∂

∂ ∂= + + + −
∂ ∂

ɺɺ

                                  (2.21) 

where the superscript T  denotes quantities belonging to thick beam model. Compared to 

the classical Timoshenko beam theory, in equation (2.18) the surface residual stress0τ  

introduce an additional second derivative term of the transverse deflection, and the inertia 

term on the right hand side of the equation is also modified by the surface mass density. 

In equation (2.19), it is found that the bending stiffness of the beam is modified due to the 

surface elastic constants; meanwhile the surface residual stress and surface mass density 

also come to influence by bringing the second terms on the left and right hand sides 

respectively. If the surface effects are completely neglected, namely0λ , 0µ , 0τ  and 0ρ  

are zero, equations (2.18) and (2.19) reduce to the governing equations of classical 

Timoshenko beam theory  [52]. 
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2.2.2 Thin Beam Surface Elasticity Model 

The thin beam model (Euler-Bernoulli beam theory) is a more restricted case 

based on thick beam model with further simplified assumptions. It is normally applicable 

for the slender beams with span-to-thickness ratio / 20L H ≥  where the effects of shear 

deformation are small. Meanwhile the rotational inertia are also ignored, i.e. 0φ =ɺɺ . Based 

on the above assumptions, equation (2.19) can be rewritten as, 

2 3 3
0 0

0 0 2 3 2

2 2
( ) [ (2 ) ]

I Iw w w
G A EI I

x x H x H x t

ν τ ν ρφκ φ µ λ ∗∂ ∂ ∂ ∂+ = + + + −
∂ ∂ ∂ ∂ ∂

           (2.22) 

Taking the first derivative of equation (2.22) with respect to x  and substituting it 

into equation (2.18), together with the displacement assumption 
w

x
φ ∂= −

∂
, the governing 

equation of thin beam model in the presence of  surface effects can be obtained in terms 

of the transverse deflection as, 

4 2
* *0

0 0 04 2

2
[ (2 ) ] ( )

I w w
EI I s q x

H x x

ν τµ λ τ∂ ∂+ + − − +
∂ ∂

 

             
2 4

* 0
0 2 2 2

2
( )

Iw w
A s

t H x t

ν ρρ ρ ∂ ∂= − + −
∂ ∂ ∂

                                                         (2.23) 

The resultant shear force and bending moment are given by, 

2
* 0 0

0 0 2

3
* *0 0

0 0 03

2 2
[ (2 ) ]

2 2
[ (2 ) ]

E

E

I Iw
M EI I w

H x H

I Iw w w
Q EI I s

H x x H x

ν τ ν ρµ λ

ν τ ν ρµ λ τ

∂= − + + − −
∂

∂ ∂ ∂= − + + − + −
∂ ∂ ∂

ɺɺ

ɺɺ

                        (2.24) 

where subscript E  denotes quantities belonging to thin beam model. Based on equation 

(2.23), the modified bending stiffness of a thin beam including surface effects can be 

defined as, 

0
0 0

2
[ (2 ) ]b

I
K EI I

H

ν τµ λ ∗= + + −                                                                      (2.25) 

Note that the surface residual stress (0τ ) contributes to the bending stiffness only 

due to the consideration of zzσ  in the formulation. If zzσ  is neglected then the last term in 

bK  containing 0τ  and the last inertial term on the right hand side of equation (2.23) 
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vanish. Again if the surface effects are neglected ( 0λ , 0µ , 0τ  and 0ρ  are zero), the 

governing equation (2.23) is identical to that in classical Euler-Bernoulli beam theory. 

The ratio of change of bending stiffness due to surface effects to the classical 

bending stiffness is defined as, 

0 0 0 0[(2 ) 2 / ]bK EI H

EI E H H

µ λ ντ α α α− + −= =                                                    (2.26) 

where * /I H Iα =  is a non-dimensional constant that depends on the geometry of the 

beam cross section. For example, α  is calculated to be 8 for both square and circular 

cross sections. The first term of the length-scale is identical to Miller and Shenoy’s 

analytical result for a nanobeam with a rectangular cross-section [16]. The second term is 

due to the consideration of surface residual stress which is not included in Miller and 

Shenoy’s work. Zhu et al. [53] have investigated the combined effects of surface 

elasticity and surface residual stress on the bending stiffness. Their observations on the 

influence of surface residual stress are in agreement with our models. 

0 0 0 0[(2 ) 2 / ] /H Eµ λ ντ α= + −  is an intrinsic length parameter for the beam bending 

problem that sets a range in which the surface effects become significant. Note that E  is 

a positive quantity, but the surface elastic constants and surface residual stress can be 

positive or negative for different materials, hence 0H  can be positive or negative. 

For 0H H≫ , the bulk material dominates the overall properties of the structure; the 

contribution from the surface is so small that it can be neglected. When H  is comparable 

to 0H , the surface effects become noticeable, therefore they cannot be ignored.  

 

2.3 Static Bending of Nanoscale Beams 

In this section, several practical cases of nanoscale beams based on the beam 

theories derived above are solved. In the next subsections, a set of closed-form analytical 

solutions for static bending of thin and thick beams under different loading (point and 

uniformly distributed) and boundary conditions (simply-supported, cantilever and both 

ends clamped) as shown in Figure 2.4 are presented.  
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     (a) simply-supported                     (b) cantilever                      (c) clamped ends 

Figure 2.4 Beams under different boundary and loading conditions 

2.3.1 Analytical Solutions for Thin Beam Static Bending 

For the static problems, the governing equation (2.23) is further simplified to, 

4 2
*0

0 0 04 2

2
[ (2 ) ] ( ) 0

I d w d w
EI I s q x

H dx dx

ν τµ λ τ∗+ + − − + =                                     (2.27)     

The non-dimensional quantities are introduced as follows,  

/x x L= , /w w L=  and 
*

20

b

s
L

K

τε =                                                                  (2.28)  

Equation (2.27) can therefore be rewritten in terms of non-dimensional quantities 

x  andw  in the following form, 

4 2 3

4 2
0

b

d w d w qL

dx dx K
ε− + =                                                                                      (2.29) 

The shear force and bending moment can also be rewritten as, 

2

2

3
*

02 3

E b

E b

K d w
M

L dx

K d w dw
Q s

L dx dx
τ

−=

−= +
                                                                                 (2.30) 

Note that negative surface elastic constants at small dimensions could yield 

negative bK , which lead to deflection instability. The reason for this phenomenon is that 

the non-positive definiteness of surface elastic energy will dominate over the bulk strain 

energy at small dimensions. In this case, the Gurtin-Murdoch theory essentially breaks 

down and other atomistic models need to be chosen. Our model is applicable only when 

the bulk is still the dominant part although the surface contribution is prominent. 

Therefore, the following derivations are based on the restriction 0bK > . 

Solving the fourth order differential equation (2.29), the general solution for a 

uniformly distributed load 0q  can be derived as, 

0q
P P

0 q 
0q

P
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3
20

1 2 3 4 2
x x

b

q L
w c e c e c c x x

K
ε ε

ε
−= + + + +                                                          (2.31) 

As shown in equation (2.31), the normalized deflection contains four unknown 

constants, 1 4c c− . These constants can be evaluated from the beam boundary conditions. 

In our work, three common boundary conditions for a beam subjected to uniformly 

distributed load and point load (Figure 2.4) are studied and the normalized deflections are 

presented for each case. 

Simply Supported (SS) Beams 

The boundary conditions for simply supported beams (Figure 2.4a) under a 

uniformly distributed load are given as,  

(0) (1) 0

(0) (1) 0E E

w w

M M

= =
= =

                                                                                          (2.32) 

Using equations (2.30), (2.31) and the above boundary conditions, the solution for 

the normalized deflection of the beam under uniformly distributed load is obtained as, 

3
20

2
( 1)

2 21 1

x x

b

q L e e
w x x

K e e

ε ε

ε ε

ε ε
ε

−

−
= − + − + −

+ +
                                                (2.33) 

Now consider the beam under a mid-point load of magnitudeP . As the structure 

and boundary conditions are symmetric with respect to the loading plane, half beam is 

considered here. The boundary conditions can be expressed as, 

(0) (1 2) 0

(0) 0

(1 2) 2

E

E

w w

M

Q P

′= =

=
= −

                                                                                            (2.34) 

Using equations (2.30) and (2.31) with 0 0q =  and boundary conditions (2.34) 

yields the following solution for the four arbitrary constants. 

2

1 3/2 /2 /22 ( )b

PL
c

K e eε εε −
=

+
; 

2

2 3/2 /2 /22 ( )b

PL
c

K e eε εε −
= −

+
 

3 0c = ; 
2

4 2 b

PL
c

K ε
= −                                                                                          (2.35)      
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Cantilever (C) Beams 

In the case of cantilever beam (Figure 2.4b) subjected to a uniformly distributed 

load, the boundary conditions are, 

(0) (0)

(1) (1) 0E E

w w

M Q

′=
= =

                                                                                           (2.36)      

 Using the above boundary conditions and equations (2.30) and (2.31) yields the 

following, 

3
0

1 2

(1 )

( )b

q L e
c

K e e

ε

ε ε

ε
ε

−

−

−= −
+

; 
3

0
2 2

(1 )

( )b

q L e
c

K e e

ε

ε ε

ε
ε −

+= −
+

 

3
0

3 2

(2 )

( )b

q L e e
c

K e e

ε ε

ε ε

ε ε
ε

−

−

+ −=
+

; 
3

0
4

b

q L
c

K ε
= −                                                    (2.37)      

In the case of a cantilever beam under a tip loadP , the boundary conditions are 

given by,  

(0) (0) 0

(1) 0

(1)

E

E

w w

M

Q P

′= =
=

= −
                                                                                               (2.38)      

The solutions for the four unknowns can be derived as, 

2

1 3/2 2( 1)b

PL
c

K e εε
=

+
; 

2 2

2 3/2 2( 1)b

PL e
c

K e

ε

εε
= −

+
 

2 2

3 3/2 2

( 1)

( 1)b

PL e
c

K e

ε

εε
−=

+
;  

2

4
b

PL
c

K ε
= −                                                                    (2.39)     

Clamped-Clamped (CC) Beam       

For the clamped-clamped beam (Figure 2.4c) under a uniformly distributed load, 

the boundary conditions are, 

(0) (0) 0

(1) (1) 0

w w

w w

′= =
′= =

                                                                                            (2.40)      

Solving equation (2.31) with the boundary conditions, the four unknown constants 

are obtained as, 

3
0

1 3/22 ( 1)b

q L
c

K e εε
= −

−
; 

3
0

2 3/22 ( 1)b

q L e
c

K e

ε

εε
= −

−
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3
0

3 3/2

( 1)

2 ( 1)b

q L e
c

K e

ε

εε
+=

−
; 

3
0

4
b

q L
c

K ε
= −                                                                    (2.41) 

In the case of clamped-clamped beam under a mid-point loadP , as the loading 

and boundary conditions are symmetric, half of the beam is considered. Therefore the 

boundary conditions are given by, 

(0) (0) (1 2) 0

(1 2) 2E

w w w

Q P

′ ′= = =
= −

                                                                                (2.42)                                                  

 The solutions for the arbitrary constants are, 

2 /2

1 3/2 /22 ( 1)b

PL e
c

K e

ε

εε

−

−
=

+
; 

2

2 3/2 /22 ( 1)b

PL
c

K e εε −
= −

+
 

2 /2

3 3/2 /2

(1 )

2 ( 1)b

PL e
c

K e

ε

εε

−

−

−=
+

;  
2

4 2 b

PL
c

K ε
= −                                                              (2.43)     

The above closed-form analytical results clearly show that the deflections of the 

thin beams are influenced by the surface energy in terms of the modified bending 

stiffness bK  and the non-dimensional material constantε . A further quantitative study of 

such surface effects is presented in the ensuing section dealing with numerical results. 

 

2.3.2 Analytical Solutions for Thick Beam Static Bending 

In some practical situations where the beam aspect ratio is relatively small 

(e.g. / 10L H < ), the thick beam model needs to be applied to take the shear deformations 

into consideration. The governing equations for thick beam static bending can be 

simplified from equations (2.18) and (2.19) as, 

2 2
*

02 2
( ) ( ) 0
d w d d w

G A s q x
dx dx dx

φκ τ+ + − =                                                       (2.44) 

2 3
0

0 0 2 3

2
[ (2 ) ] ( ) 0

Id d w dw
EI I G A

dx H dx dx

ν τφµ λ κ φ∗+ + + − + =                           (2.45) 

Following the procedure in thin beam, rewrite above governing equations in terms 

of the non-dimensional quantities w  and x  as,   

2 2
*

02 2
( ) ( ) 0
d w d d w

G A s q x L
dx dx dx

φκ τ+ + − =                                                    (2.46)  



24 

2 3
20

0 0 2 3

2
[ (2 ) ] ( ) 0

Id d w dw
EI I G AL

dx H dx dx

ν τφµ λ κ φ∗+ + + − + =                       (2.47) 

The angular displacement φ  can be expressed in terms of  w  by using equation 

(2.46) for a uniformly distributed load 0q  as, 

*
0 0 4

1
[( ) ]

dw
G A s q Lx C

G A dx
φ κ τ

κ
= − + − +                                                  (2.48) 

where 4C  is an arbitrary constant obtained from the integral. 

Substitution of equation (2.48) into (2.47) yields, 

3 23
0 4

3
0

s s

q L C Ld w dw
x

dx dx K K
ξ− + − =                                                                  (2.49)  

where
*

0 0
0 0

2
[ (2 ) ](1 )s

s I
K EI I

G A H

τ ν τµ λ
κ

∗= + + + −   and 
*

20

s

s
L

K

τξ = . Analogy to thin 

beam case, 0sK >  is assumed in the following derivations. 

The general solution of equation (2.49) is, 

3 2
20 4

1 2 3 2
x x

s s

q L C L
w C e C e C x x

K K
ξ ξ

ξ ξ
−= + + + −                                           (2.50)    

Using equations (2.48) and (2.50), the solution for the angular displacement can 

be derived as, 

* 3 2
0 0 4

1 2(1 ) ( )x x

s s

s q L C L
C e C e x

G A K K
ξ ξτφ ξ

κ ξ ξ
−= − + − − +                               (2.51)    

where 1C  to 4C  are unknowns to be determined by the boundary conditions. Meanwhile, 

the resultant shear force and bending moment can be simplified from equation (2.21) as, 

*
0

2
* * 0

0 0 2

( )

2
[ (2 ) ]

T

T

w w
Q G A s

x x

I w
M EI I I

x H x

κ φ τ

ν τφµ λ

∂ ∂= + +
∂ ∂

∂ ∂= + + +
∂ ∂

                                             (2.52)     

Analogous to thin beam case, in the rest of this section, three beam supported 

cases (Figure 2.4) under uniformly distributed load and point load are studied and the 

normalized deflections of thick beams with surface effects are presented. 
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Simply Supported (SS) Beams 

For a simply supported beam, the boundary conditions are given in equation 

(2.32). Substituting the general solutions (2.50) and (2.51) into the boundary conditions 

together with equation (2.52), the four arbitrary unknowns are obtained as the following, 

3
0

1 2 2

(1 )

( )
b

s

K q L e
C

K e e

ξ

ξ ξξ

−

−

−= −
−

; 
3

0
2 2 2

( 1)

( )
b

s

K q L e
C

K e e

ξ

ξ ξξ −

−= −
−

 

3
0

3 2 2
b

s

K q L
C

K ξ
= ; 0

4 2

q L
C =                                                                              (2.53) 

For a simply supported beam subjected to a mid-point load of magnitudeP , the 

boundary conditions for half beam are shown in equation (2.34). Setting 0q  to zero in 

equations (2.50) and (2.51) and then substituting them into the boundary conditions leads 

to, 

2

1 *
/2 /23/2 02 (1 )( )s

PL
C

s
K e e

G A
ξ ξτξ

κ
−

=
+ +

 

2

2 *
/2 /23/2 02 (1 )( )s

PL
C

s
K e e

G A
ξ ξτξ

κ
−

= −
+ +

                                    

3 0C =   

4 2

P
C =                                                                                                           (2.54) 

Cantilever (C) Beams 

In the case of cantilever beam under uniformly distributed load, the solutions can 

be obtained by using boundary conditions given in equation (2.36) as, 

3
0

1 *
0

( ) / ( )
(1 )

b

s s

q L Ke
C e e

sK K

G A

ξ
ξ ξ

τξ ξξ
κ

−
−= − +

+
 

3
0

2 *
0

( ) / ( )
(1 )

b

s s

q L Ke
C e e

sK K

G A

ξ
ξ ξ

τξ ξξ
κ

−= − + +
+
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3
0

3 *
0

2( )
( ) / ( )

(1 )

b

s s

q L Ke e
C e e

sK K

G A

ξ ξ
ξ ξ

τξ ξξ
κ

−
−−= + +

+
 

4 0C q L=                                                                                                         (2.55) 

In the case of a cantilever beam subjected to a point load P  at the free end, the 

solution is derived as, 

 

2

1 *
3/2 0(1 )( )s

PL e
C

s
K e e

G A

ξ

ξ ξτξ
κ

−

−
=

+ +
 

2

2 *
3/2 0(1 )( )s

PL e
C

s
K e e

G A

ξ

ξ ξτξ
κ

−
= −

+ +
 

2

3 *
3/2 0

( )

(1 )( )s

PL e e
C

s
K e e

G A

ξ ξ

ξ ξτξ
κ

−

−

−=
+ +

 

4C P=                                                                                                            (2.56) 

Clamped-Clamped (CC) Beam       

For a clamped-clamped beam with a uniformly distributed load, using the 

boundary conditions in equation (2.40), the solution for arbitrary constants is given by, 

3
0

1 *
3/2 02 (1 )( 1)s

q L
C

s
K e

G A
ξτξ

κ

= −
+ −

 

3
0

2 *
3/2 02 (1 )( 1)s

q L e
C

s
K e

G A

ξ

ξτξ
κ

= −
+ −

 

3
0

3 *
3/2 0

( 1)

2 (1 )( 1)s

q L e
C

s
K e

G A

ξ

ξτξ
κ

+=
+ −

 

0
4 2

q L
C =                                                                                                        (2.57) 

For a clamped-clamped beam subjected to a midpoint load of magnitude P, the 
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solution is derived by using boundary conditions (2.42), 

/22

1 *
/2 /23/2 0

(1 )

2 (1 )( )s

PL e
C

s
K e e

G A

ξ

ξ ξτξ
κ

−

−

−=
+ −

 

/22

2 *
/2 /23/2 0

(1 )

2 (1 )( )s

PL e
C

s
K e e

G A

ξ

ξ ξτξ
κ

−

−=
+ −

 

/2 /22

3 *
/2 /23/2 0

( 2)

2 (1 )( )s

PL e e
C

s
K e e

G A

ξ ξ

ξ ξτξ
κ

−

−

+ −=
+ −

 

4 2

P
C =                                                                                                           (2.58) 

Again it is noted that the deflections of the thick beam are dependent on the two 

parameters ξ  and sK  which are the representations of the surface energy effects. 

 

2.4 Buckling of Nanoscale Beams 

In the preceding sections, we have discussed the methods to determine the beam 

deflections, tacitly assuming that the beams were always in stable equilibrium. Some 

nanoscale beams exploited in NEMS devices, however, are often subjected to 

compressive axial forces. If these compressive forces exceed a critical force, they will 

cause the beams to buckle. Quite often the buckling can lead to a dramatic failure of the 

mechanism of the devices. As a result, the critical loads need to be examined to assure the 

structural stability. This section begins with a general discussion of the nanoscale beam 

deformation under compression with surface effects incorporated, followed by the 

determination of the critical loads for different beam restraints.  

 

 

Figure 2.5 Geometry and loading conditions of beam for axial buckling 
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2.4.1 Modified Thin Beam Model for Axial Buckling 

In conventional continuum mechanics, the buckling of a beam under compressive 

force was first derived by Euler [51]. To incorporate the surface effects into the 

conventional theory, based on the thin beam model (modified Euler-Bernoulli beam 

theory) obtained in last section, an axial force F (positive in compression) is added to the 

beam configuration as shown in Figure 2.5. Consequently, the differential equation (2.27) 

needs to be modified by the presence of the compressive force as, 

        
4 2

*0
0 0 04 2

2
[ (2 ) ] ( ) ( ) 0

I w w
EI I F s q x

H x x

ν τµ λ τ∗ ∂ ∂+ + − + − + =
∂ ∂

                   (2.59) 

Equation (2.59) is the general differential equation for the deflections of a beam-

column considering surface effects. It is an ordinary linear differential equation of fourth 

order. Its general solution can be derived as,  

1 2 3 4( ) cos sin ( )qw x C x C x C x C w xβ β= + + + +                                               (2.60) 

where 
*

0

0
0 0

2
(2 )

F s
I

EI I
H

τβ ν τµ λ ∗

−=
+ + −

, 1 4C C− are arbitrary constants that must be 

determined by appropriate boundary conditions. ( )qw x  is a particular solution 

corresponding to the transverse loading ( )q x , which can be ignored in the process of 

determining the critical loads. The critical loads of beams with different restraints are 

elaborated in the following subsection. 

 

2.4.2 Critical Loads for Beam with Different Restraints 

Simply supported (SS) beam 

 

Figure 2.6 Configuration of simply supported beam under compression 
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Figure 2.6 shows a compressed simply supported beam. The boundary conditions 

are given as (0) ( ) 0, (0) ( ) 0E Ew w L M M L= = = = . Substituting the boundary conditions to 

equation (2.60) gives, 

 1 4 0C C+ =       

  2
1 0Cβ− =    

1 2 3 4cos sin 0C L C L C L Cβ β+ + + =                                                                (2.61) 

 2 2
1 2cos sin 0C L C Lβ β β β− − =                            

Solving above equations yields sin 0Lβ =  for a nontrivial solution, so  

L nβ π= , 1,2,3,...n =                                                                                       (2.62) 

The critical load is derived when 1n = , 

2 0
0 0

*
02

2
( (2 ) )

cr

I
EI I

HF s
L

ν τπ µ λ
τ

∗+ + −
= +                                                       (2.63) 

 
Cantilever beam 

 

 
Figure 2.7 Configuration of cantilever beam under compression 

 
For the cantilever beam, the boundary conditions are given as 

(0) (0), ( ) ( ) 0E Ew w M L Q L′= = = . Substitution of the boundary conditions into the 

general equation leads to, 

1 4 0C C+ =  

2 3 0C Cβ + =  

2 2
1 2cos sin 0C L C Lβ β β β− − =                                (2.64) 

3 30
0 0 1 2

2
( (2 ) )( sin cos )

I
EI I C L C L

H

ν τµ λ β β β β∗+ + − −  

*
0 1 2 3( )( sin cos ) 0F s C L C L Cτ β β β β+ − − + + =                                                                                        

x

z

F

L
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Solving the above equations yields cos 0Lβ =  for nontrivial solution, so 

(2 1)

2

n
L

πβ −= , 1,2,3....n =                                                                             (2.65) 

Thus, the critical force is obtained as, 

2 0
0 0

*
02

2
( (2 ) )

4cr

I
EI I

HF s
L

ν τπ µ λ
τ

∗+ + −
= +                                                       (2.66) 

 

Clamped-clamped ends beam 

 

 

Figure 2.8 Configuration of clamped-clamped ends beam under compression 

 

For the both end clamped beam, the boundary conditions are given as, 

(0) (0) 0, ( ) ( ) 0w w w L w L′ ′= = = = . Substitution of the boundary conditions into the 

general solution yields the following expressions, 

1 4 0C C+ =  

2 3 0C Cβ + =  

1 2 3 4cos sin 0C L C L C L Cβ β+ + + =                                                                (2.67) 

1 2 3sin cos 0C L C L Cβ β β β− + + =  

The existence of non trivial solution requires, 

sin ( cos sin ) 0
2 2 2 2

L L L Lβ β β β− =                                                                     (2.68) 

Equation (2.68) is satisfied by,  

sin 0
2

Lβ =                                                                                                         (2.69) 

z

x
FF

L
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or        tan
2 2

L Lβ β=                                                                                                     (2.70) 

The critical force obtained from equation (2.69) is, 

2 0
0 0

*
02

2
4 ( (2 ) )

cr

I
EI I

HF s
L

ν τπ µ λ
τ

∗+ + −
= +                                                     (2.71) 

Solving (2.70) numerically leads to another critical force as,  

2 0
0 0

*
02

2
8.18 ( (2 ) )

cr

I
EI I

HF s
L

ν τπ µ λ
τ

∗+ + −
= +                                                (2.72) 

Since the value of (2.71) is bigger than (2.72), so for general buckling cases, the 

critical force is taken the smaller value as shown in (2.71). 

Based on the above derivation, the critical load of axial buckling of nanoscale 

beam can be written as, 

2

2
b

cr

a K
F

L

π= + Τ                                                                                                (2.73) 

a  is a coefficient that must be determined according to the boundary conditions. 

The derivation indicates that a  still takes the value given in classical theory of Euler 

beams. bK  is the modified bending stiffness. T  is a constant determined by the surface 

residual stress and the geometry of cross section. 

 

2.5 Numerical Results for Nanoscale Beam Static Response 

In this section, selected numerical results are presented to demonstrate the salient 

features of mechanical behavior of nanoscale beams with rectangular cross-section and 

the effects of surface energy for different beam boundary conditions. Beams made of 

aluminum (Al) and silicon (Si) are considered in the numerical study. The bulk properties 

and surface properties for [1 0 0] surface of selected materials have been obtained by 

Miller and Shenoy [16, 17] by using the embedded atom method proposed by Daw and 

Baskes [54]. The results are as shown in Table 2.1. The dimensions for thin beams 

are 120L nm= , 2 6H h nm= =  and 3b nm= , and those for thick beams 

are 50L nm= , 2 6H h nm= =  and 3b nm=  in all the calculations of static bending. 
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Table 2.1 Material Properties of Aluminum and Silicon  

Material  E
( )Gpa  

v  
0µ

( / )N m  
0λ

( / )N m  
0τ

( / )N m  

ρ
3( / )kg m  

0ρ
2( / )kg m  

Al 90 0.23 -5.4251 3.4939 0.5689 32.7 10×  75.46 10−×
 Si 107 0.33 -2.7779 -4.4939 0.6056 32.33 10×  73.17 10−×
  

Based on the analysis presented in section 2.3, it is seen from equations (2.29) and 

(2.49), the influence of surface energy is reflected in the constants bK  and ε  in the case 

of thin beam; sK  and ξ  in the case of thick beam respectively. If the surface energy 

effects are completely neglected,bK and sK  will reduce to the classical bending 

stiffnessEI , ε  and ξ  will vanish. To get a quantitative assessment of the effects of 

surface energy, the deflection profiles of thin Al and Si beams for the three common 

boundary conditions (SS, C and CC) are plotted in Figure 2.9. For generality, the 

normalized deflections, 
0( )

E
q

wW q L=  and E
p

wW P= are used. Solutions are presented 

for a uniformly distributed load (0q ) as well as a mid-point concentrated load (P ) for SS 

and CC beams and an end point load for a C beam. The deflections with surface effects 

are also compared with those of identical beams based on classical beam theory (no 

surface effects). From Figure 2.9, it can be seen that surface energy effects have a 

substantial influence on the deflections on Al and Si beams. This behavior can also be 

interpreted by the intrinsic length scale defined in equation (2.26). The intrinsic lengths 

0Hα  for Al and Si beams of aforementioned dimensions are 8.20
°
Α  and 9.43

°
Α  

respectively. The beam heights are comparable to the intrinsic lengths, therefore the 

surface energy effects are pronounced in both cases.  It is also found that when the 

surface parameters are neglected in the thin beam model, the deflection curves of thin 

beam model will overlap with those from classical beam theory.  

Reconsider the surface effect factors bK  and ε  for thin beam model as shown in 

equations (2.25) and (2.28) respectively. It may be noted that positive 0µ  and 0λ  

increase bK  and consequently decrease the deflections when compared to bending 
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stiffness EI  and the corresponding deflections in the classical beam theory respectively 

(and vice versa for negative 0µ  and 0λ ). This is confirmed in Figure 2.10(a) where the 

normalized deflections of a half Si SS beam under different values of 0 02µ λ+  are 

compared with the classical result (0 02 0µ λ+ = ). It is also found that the contribution of 

0τ  to bK  is trivial, which implies that the influence of vertical stress zzσ  on the beam 

deformation is very small and can be neglected for all practical purposes. However, 0τ  

has a more significant influence on the dimensionless factorε . The value of ε  can be 

positive or negative depending on the positive and negative 0τ  and its value is controlled 

by 0τ  as well. Figure 2.10 (b) shows the influence of ε  on the beam deformations by 

changing 0τ  in a reasonable range and setting 0µ  and 0λ  to zero. It can be seen that 

positive ε  increases the overall bending stiffness and negative ε  decreases the overall 

bending stiffness. 

For slender beams with aspect ratio / 20L H >  , thin beam model is sufficient to 

predict the beam behavior with a good accuracy [52]. As the aspect ratio decreases, the 

shear deformation and rotary inertia become important, the thick beam model needs to be 

used. However, it is found that for beams with aspect ratio 10 / 20L H≤ ≤ the difference 

between maximum deflections corresponding to thin and thick beam theories is less than 

5% and thick beam theory is therefore needed when/ 10L H < .  

Figure 2.11 shows the solutions for Al and Si thick beams. The same loading and 

boundary conditions and normalized deflections are used as those in thin beams. The 

incorporation of shear deformations increases the beam flexibility and the deflections 

predicted by thick beam theory are therefore larger than the corresponding results from 

thin beam theory. In the case of thick beams, the difference between the deflections of the 

present model and classical thick beam model becomes comparatively less compared to 

the case of thin beams. The underlying reason can be explained to the energy point of 

view. With the consideration of shear deformation in thick beam model, a larger portion 

of the total energy will distribute in the bulk compared to that in thin beam model, 

therefore the energy stored on the surface will become less, which results in weaker 

surface effects on the thick beams.  
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(c)                                   (f) 

Figure 2.9  Normalized deflections of thin beams under point and distributed loads; (a) Al 

simply supported (b) Al cantilever (c) Al clamped-clamped ends (d) Si simply supported 

(e) Si cantilever (f) Si clamped-clamped ends.  
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               (b) 

Figure 2.10 Normalized deflections of half Si simply supported beam under uniformly 

distributed load. (a) 0 02µ λ+  varies, 0ε →  (b) 0τ  varies, 0 0 0µ λ= =  . 
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Fig. 2.11  Normalized deflections of thick beams under point and distributed loads; (a) Al 

simply supported (b) Al cantilever (c) Al clamped-clamped ends (d) Si simply supported 

(e) Si cantilever (f) Si clamped-clamped ends 
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A review of Figures 2.9 and 2.11 shows that the end boundary conditions affect 

the influence of surface energy. For example, a CC thin Si beam shows a relatively small 

influence of surface energy effects whereas both SS and C Al beams show a substantial 

influence. The influence of surface energy becomes more important as the surface strains 

become larger due to increasing deflections. 

The critical loads of Al and Si beams under above mentioned restraints are 

calculated and compared with those from classical theory. In the calculation, beams 

with 200L nm= , 2 10H h nm= =  and 10b nm=  are used. Table 2.2 shows the results 

using the surface elastic model, followed by those using classical theory in square 

brackets. It can be seen that the magnitude of critical loads could be significantly 

influenced by the presence of surface effects. They could either be increased or decreased 

compared to the classical results depending on the signs of surface elastic constants and 

surface residual stress. In the cases of Al and Si, the critical loads are shown to be 

increased due to the positive surface residual stress. Accuracy of the numerical 

calculations is confirmed by setting the surface properties in surface elastic solutions to 

zero and comparing them with the classical solutions. It is found that the results are 

identical. It can also be seen that the significance of surface energy effects also depends 

on the boundary conditions. The largest influence is observed for cantilever beam. This is 

consistent with the results observed in static bending. Figure 2.12 shows the non-

dimensional difference of critical load of Si simply supported beam with above 

mentioned dimensions from surface elastic model and classical theory. It can be seen that 

the influence of surface effects on critical load becomes more prominent as the beam 

height decreases.  

Table 2.2 Critical loads for beams under different boundary conditions 

Critical load (nN ) 
 

Beam type 
 
 
 

 
 
 

 
 

 
 

Al 
 

28.67 [18.51] 
 

15.70  [4.63] 
 

80.53 [74.02] 

Si 
 

32.45 [22.00] 
 

17.20 [5.50] 
 

93.47 [88.00] 
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Figure 2.12 Non-dimensional differences between critical load predicted by   

surface elastic model and classical theory 
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Chapter 3 

 
DYNAMIC ANALYSIS OF NANOSCALE BEAMS 

 

3.1 Free Vibration of Nanoscale Beams 

The free vibration characteristics (natural frequencies and mode shapes) of 

nanoscale beams are essential in the NEMS device design. Although the closed-form 

solutions for natural frequencies cannot be obtained due to the complexity of the 

configurations, characteristic equations for free vibration of thin and thick beams 

including surface effects are presented and the corresponding mode shapes are studied in 

this chapter.  

 

3.1.1 Thin Beam Free Vibration  

From equation (2.23), the equation of motion for thin beam free vibration can be 

written as,  

4 2 2 4
* 0

04 2 2 2 2
0b

w w w w
K s M I

x x t x t
τ ∗∂ ∂ ∂ ∂− + + =

∂ ∂ ∂ ∂ ∂
                                                     (3.1) 

where *
0( )M A sρ ρ∗ = + , 0 02 I

I
H

ν ρ= . 

Assume the transverse deflection is in the form as,  

( , ) ( )sinw x t W x tω=                                                                                        (3.2) 

where ( )W x  is the transverse vibration mode, ω   is  the natural frequency. By 

substituting equation (3.2) into equation (3.1), the equation of motion becomes, 

4 2

1 24 2
0

d W d W
W

dx dx
η η− − =                                                                                    (3.3) 

where  
* 0 2

0
1

b

s I

K

τ ωη +=  and
2

2
b

M

K

ωη
∗

= . 

The general solution of equation (3.3) can be written as, 

1 1 2 1 3 2 4 2( ) sin cos sinh coshW x c x c x c x c xλ λ λ λ= + + +                                      (3.4)  

where ic ( 1,2,3,4i = ) are arbitrary constants. 1λ  and 2λ  are given by, 
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2 21 1
1 1 2 1 1 22 2

1 2

4 4
( ) , ( )

2 2

η η η η η η
λ λ

− + + + +
= =

                                               (3.5) 

The value of ω  and three of the four arbitrary unknowns can be determined from 

the boundary conditions. For the three types of beams given in last chapter, the solutions 

are obtained as follows,  

Simply Supported (SS) Beams 

For a simply supported beam, substitution of the general solution (3.4) to the 

boundary conditions given in equation (2.32) together with equation (2.24) yields 

2 3 4 0c c c= = = . The natural frequencies can further be calculated as, 

4 * 2
0

2

0 2

( ) ( )

( )

b

n

n n
K s

L L
n

M I
L

π πτ
ω π∗

+
=

−
,  1,2,......n =                                                           

(3.6) 

For comparison, the classical natural frequencies are obtained by setting the 

surface parameters to zero as, 2 4( )n

n
EI M

L

πω = . 

Cantilever (C) Beams 

For a cantilever beam, the boundary conditions (2.36) together with equation 

(2.24) lead to the following characteristic equation from which the natural frequencies 

can be determined. 

3 3
1 2 2 2 3 2 1 1 1 3( ) ( )b bR K R R K Rλ λ λ λ λ λ− + + +

3 3
2 1 2 2 3 1 2 1 1 3 1 2[ ( ) ( )]sin sinhb bR K R R K R L Lλ λ λ λ λ λ λ λ− − + − +        

3 3
2 2 1 1 3 1 1 2 2 3 1 2[ ( ) ( )]cos cosh 0b bR K R R K R L Lλ λ λ λ λ λ λ λ− + + − =                    (3.7)             

where 2 0 2
1 1( )bR K Iλ ω= + , 2 0 2

2 2( )bR K Iλ ω= − +  and * 0 2
3 0R s Iτ ω= + .        

Clamped-Clamped (CC) Beam       

For the clamped-clamped beam, repeating the same procedure, the characteristic 

equation can be obtained as, 

2
1

1 2 1 2 1 1 2
2

2 ( )sin sinh 2 cos cosh 0L L L L
λλ λ λ λ λ λ λ
λ

+ − − =                                   (3.8) 

The characteristic equations contain the only unknownω . Therefore, by solving 

the characteristic equations numerically, the natural frequencies of each case can be 



41 

obtained.  Subsequently, the individual mode shapes of vibration ( )W x can be calculated. 

As only three of the four arbitrary unknowns in equation (3.4) can be determined. The 

fourth unknown becomes the arbitrary magnitude of the eigenfunction (It is assumed to 

be unit in our derivations). Table 3.1 summarizes the mode shapes for three boundary 

configurations. 

 

Table 3.1 Mode shapes of thin beams in various boundary configurations 

Configuration                     Mode shape     Coefficient nA  

   Thin SS                     1sin 0xλ =             None 

    

Thin C 

2
2 1 2 1

1

cosh cos (sinh sin )nx x A x x
λλ λ λ λ
λ

− − −  1 1 2 2

2
1 1 2 2

1

cos cosh

sin sinh

R l R l

R l R l

λ λ
λ λ λ
λ

−

−
 

    

Thin CC 

2
2 1 2 1

1

cosh cos (sinh sin )nx x A x x
λλ λ λ λ
λ

− − −  1 2

2
1 2

1

cos cosh

sin sinh

l l

l l

λ λ
λ λ λ
λ

−

−
 

 

If the contributions of vertical stresszzσ , surface stress nxτ , surface density 0ρ and 

surface stresses on the vertical sides of a rectangular beam are neglected, then equation 

(3.1) reduces to the governing equation proposed by Gurtin et al. [39] as following, 

      
4 2

**
0 0 4 2

[ (2 ) ] ( ) 0
w w

EI I A q x
x t

µ λ ρ∂ ∂+ + + + =
∂ ∂

                                              (3.9) 

** 22I bh= is simplified perimeter moment of inertia for a rectangular cross-section with 

height 2h  and width b . Comparing equation (3.9) to the classical governing equation 

for thin beam vibration, it can be seen that the only difference between the classical case 

and the simplified surface energy incorporated beam model is the modified bending 

stiffness. Therefore, the natural frequency of a cantilever beam governed by equation 

(3.9) can be written in terms of classical natural frequency classf  in the following form, 

**
2 2 0 0(2 )

1class

I
f f

EI

µ λ += + 
 

                                                                     (3.10) 
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For a beam of rectangular cross section of heightH , equation (3.10) can be 

rewritten as 2 2 0 06(2 )
1classf f

EH

µ λ+ = + 
 

, which is identical to the solution given by 

Gurtin and coworkers [19, 39]. 

 
 

3.1.2 Thick Beam Free Vibration 

The equations of motion for thick beam free vibration can be written as, 

2 2 2
* *

0 02 2 2
( ) ( )

w w w
G A s A s

x x x t

φκ τ ρ ρ∂ ∂ ∂ ∂+ + = +
∂ ∂ ∂ ∂

                                             (3.11)     

2 3
* 0

0 0 2 3

2
[ (2 ) ] ( )

I w w
EI I G A

x H x x

ν τφµ λ κ φ∂ ∂ ∂+ + + − +
∂ ∂ ∂

 

2 3
* 0

0 2 2
( )

w
I I I

t x t

φρ ρ ∂ ∂= + +
∂ ∂ ∂

                                                                (3.12)     

To obtain the characteristic equations of transverse vibration, it is assumed that 

the transverse and angular displacements are in the following forms respectively, 

( )sinw W x tω= ; ( )sinx tφ ψ ω=                                                                   (3.13)     

where ω  is the natural frequency, ( )W x  and ( )xψ  are vibration modes of the transverse 

and angular displacements respectively. 

Substitution of equation (3.13) into (3.11) and (3.12) and the solution of the 

resulting pair of coupled ordinary differential equations yield, 

1 1 2 1 3 2 4 2( ) sin cos sinh coshW x C x C x C x C xγ γ γ γ= + + +                                        (3.14)     

1 1 2 1 3 2 4 2( ) cos sin cosh sinha a b bx C k x C k x C k x C k xψ γ γ γ γ= − + +                           (3.15)                            

where  1C  to 4C  are four arbitrary unknowns. 

1/2 1/2
2 2

1 1 2 1 1 2
1 2

4 4
;

2 2
γ γ

   Λ + Λ − Λ −Λ + Λ − Λ
   = =
   
   

 

* 2 * * 2 0 2 *
0 0 0 0 0

1

[ (2 ) ] (1 )( )

s

EI I M G A s G A I I I s

K

µ λ ω κ τ κ ρ ρ ω ω τ∗+ + + + + − −Λ =  

* 4 2
0

2

( )

s

I I M G A M

K

ρ ρ ω κ ω∗ ∗+ −Λ =  
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* 2
0

1
1

1
(1 ) ( )a

s M
k

G A G A

τ ωγ
κ κ γ

∗

= − + +  

* 2
0

2
2

1
(1 ) ( )b

s M
k

G A G A

τ ωγ
κ κ γ

∗

= − + −                                                                             (3.16)  

Note that if the surface quantities are all neglected, the above general solutions are 

reduced to the classical solutions given by Huang [55]. 

By substituting above general solutions into the boundary conditions, the 

characteristic equations for different types of thick beams are obtained as following, 

Simply Supported (SS) Beams 

The boundary conditions are given in equation (2.32). By substituting equations 

(3.14) and (3.15) into the boundary conditions, the characteristic equation for natural 

frequencies can be obtained as, 

1 2sin sinh 0L Lγ γ =                                                                                         (3.17) 

Cantilever (C) Beams 

For a cantilever thick beam, the characteristic equation can be derived as, 

3 4 1 2 1 4 3 2 1 2( )sin sinha b b aB B k B B k B B k B B k L Lγ γ− + + +

3 2 1 4 1 2( )cos cosh 0b aB B k B B k L Lγ γ+ − =                                                      (3.18) 

where * 2 0 20
1 0 0 1 1

2
(2 ) a

I
B EI I k I

H

ν τµ λ γ γ ω = + + + −   

*
2 0 1( ) aB G A s G Akκ τ γ κ= + +  

2

* 2 0 20
3 0 0 2

2
[ (2 ) ] a

I
B EI I k I

H

ν τµ λ γ γ ω= + + + +  

*
4 0 2( ) bB G A s G Akκ τ γ κ= + +                                                                           (3.19) 

Clamped-Clamped (CC) Beam      

For a clamped-clamped beam, the characteristic equation is obtained as, 

 2 2
1 2 1 2( )sin sinh 2 (cos cosh 1) 0a b a bk k L L k k L Lγ γ γ γ− + − =                            (3.20) 
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3.1.3 Numerical Results 

By solving the characteristic equations derived in the last two subsections, the 

natural frequencies of thin and thick Al and Si beams were computed. In the calculations, 

the dimensions for thin beams are120L nm= , 2 6H h nm= =  and 3b nm= , and those for 

thick beams are 50L nm= , 2 6H h nm= =  and 3b nm= . The solutions are shown in 

Tables 3.2 and 3.3. The corresponding solutions from classical thin and thick beam 

theories are also presented in parenthesis. It is found that surface energy effects have a 

significant influence on the first natural frequency of thin and thick beams for the three 

common boundary conditions considered in this study. The highest influence is observed 

for cantilever beams followed by SS and CC beams. However, the higher natural 

frequencies are not significantly affected as the bulk bending stiffness becomes the 

dominant factor controlling the higher modes. It is worth pointing out that the natural 

frequencies with surface effects could increase or decrease compared with the classical 

results, depending on the signs of the surface elastic constants, wave number and also the 

boundary conditions. Take the Si thin simply-supported beam for example, the natural 

frequencies are shown as 
4 20

0 0 0
2

2
( (2 ) )( ) ( )

ns

I n n
EI I

H L L
A

ν τ π πµ λ τ
ω

ρ

∗+ + − +
= (the surface 

density 0ρ is so small that its effect is neglected in the expression). The classical natural 

frequencies for simply-supported beam can be written as

4

2
( )

n

n
EI

L
A

π

ω
ρ

= . Therefore the 

non-dimensional difference is derived as, 

20
2 2 0 0 0

2

2
[(2 ) ] ( )

ns n

n

I L
I

H n
EI

ν τµ λ τω ω π
ω

∗+ − +− =
                                                  (3.21) 

In the case of Si, 0
0 0

2
(2 )

I
I

H

ν τµ λ ∗+ − is negative, and 2
0( )

L

n
τ

π
 is positive. When 

the wave number n  is small, the summation of the two terms in the numerator of 

equation (3.21) is positive, therefore the frequency from surface elastic model is higher 

than classical result. While the value of 2
0( )

L

n
τ

π
will decrease with increasing wave 

number, thus the first term of the numerator in equation (3.21) will become dominant 
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after the wave number reaches certain integer. As a result, for higher natural frequencies, 

the results from surface elastic model become smaller compared to the classical ones. 

This trend can be observed from Tables 3.2 and 3.3. In fact for some higher modes, the 

classical solution overestimates the natural frequencies by 2-8%. It should be noted that 

thin beam theory is not generally accurate for higher modes and the thick beam theory 

should be used irrespective of the /L H ratio. The mode shapes of SS, C and CC beams 

were also compared. It is found that the mode shapes with surface energy effects are 

identical to the classical mode shapes for the SS and CC beams. A noticeable difference 

is observed for a cantilever beam and the corresponding mode shapes of a cantilevered Al 

beam are shown in Figure 3.1.  

 

Table 3.2 Natural frequencies of aluminum beams 

Natural frequency from the corresponding classical theory is shown in parenthesis. 

 

Table 3.3 Natural frequencies of silicon beams 

Beam type    1st (GHz ) 2nd(GHz ) 3rd (GHz ) 4th (GHz ) 

Thin SS 1.66 (1.28)  5.19 (5.12)  10.96 (11.53)  19.02 (20.49)  

Thin C 0.86 (0.46)  3.34 (2.86)  7.93 (8.01)  14.81 (15.69)  

Thin CC 2.94 (2.90)  7.64 (8.00)  14.59 (15.69)  23.83 (25.93)  

Thick SS 7.08 (7.20)  25.07(27.02)  51.33 (55.70)  82.92 (89.76)  

Thick C 3.02 (2.60)  14.67(15.28)  36.48 (39.31)  64.46 (69.74)  

Thick CC 14.20(15.25)  35.41(38.10)  62.74 (67.38)  93.86(100.47)  

Natural frequency from the corresponding classical theory is shown in parenthesis. 

Beam type    1st (GHz )  2nd(GHz )  3rd (GHz )  4th (GHz ) 

 Thin SS 1.45 (1.09)  4.47 (4.36)  9.39 (9.82)  16.27 (17.45)  

 Thin C 0.75 (0.39)  2.90 (2.44)  6.82 (6.82)  12.69 (13.36)  

 Thin CC 2.52 (2.47)  6.37 (6.82)  12.49 (13.36)  20.35 (22.09)  

 Thick SS 6.10 (6.14)  21.49(23.13)  43.96 (47.84)  71.08 (77.43)  

 Thick C 2.62 (2.21)  12.60(13.05)  31.24 (33.74)  55.31 (60.16)  

 Thick CC 12.18(13.05)  30.40(32.79)  53.92 (58.25)  80.85(87.12)  
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Figure 3.1 Comparison of mode shapes of a cantilevered Al beam based on thin beam 
model and classical theory. 
 

3.2 Study on Natural Frequency of GaAs Cantilever  

Previous section has shown the substantial influence of surface energy effects on 

the natural frequencies of the nanoscale beams. This has also been observed in many 

experimental works, among which, Lagowski and his coworkers [38] reported that the 

measured natural frequencies of GaAs cantilever beams are noticeably below those 

predicted by classical beam theory. Especially when the dimensions become small, the 

first natural frequency does not follow the linear variation with respect to 2/H L  ratio as 

expected from classical theory. Instead, they increase with decreasing values of 2/H L . 

This phenomenon has been discussed in [38, 39]. Gurtin concludes that surface residual 

stress does not influence the first natural frequency while surface elasticity can within 

linear theory of elasticity. In the following, we revisit these experimental data.  The first 

natural frequency of a cantilever beam with surface elastic terms needs to be determined. 

The characteristic equation to determine the natural frequencies has been presented in 

Section 3.1.  A closed-form analytical solution remains a challenge.  Therefore, we need 

to adopt energy method to obtain the closed-form solution for the first natural frequency. 

 We follow Rayleigh’s energy method with surface elastic terms included to fit 

the experimental data of GaAs cantilever beams reported by Lagowski. A closed-form 
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expression for the first natural frequency as a function of surface elastic material 

constants allows us to determine their values.  

Lord Rayleigh pioneered an energy method that can be used to estimate natural 

frequencies or buckling loads (eigenvalues in general) of linear elastic structures by 

suitably choosing displacement functions (guessing eigenvectors) that satisfy kinematic 

boundary conditions. To this end, a quotient, called Rayleigh quotient, is defined as the 

ratio of potential and kinetic energies in vibration problems. Similar quotient can be 

defined for buckling problems too. A fundamental property of Rayleigh quotient is its 

stationarity with respect to small perturbations in displacement functions. Consequently, 

even if one makes errors in the choice of displacement function, say of the order ε , the 

error introduced in the natural frequency estimate is of second order2ε . Hence, a 

Rayleigh quotient can be used to obtain the fundamental natural frequency very 

accurately. 

As the system is conservative, strain energy stored in the bulk can be written as, 

1

2
B

xx xxV
U dVσ ε= ∫  

   
2 2 2

0
2

21
( )( )

2 V

zd w w d w
Ez z dV

dx H x dx

ντ ∂= − + −
∂∫  

2
20

20

21
( ) ( )

2

lI d w
EI dx

H dx

ν τ= − ∫                                                                   (3.22) 

The strain energy stored in the surface can be written as, 

1
( )

2
s

xx xx nx nxU dτ ε τ ε
Γ

= + Γ∫         

      
2 2

0 0 0 02

1
[( (2 ) )( ) ( )( )]

2 z z

d w d w dw dw
z z n n d

dx dx dx dx
τ µ λ τ

Γ
= − + − + Γ∫  

       
2

2 * 2
0 0 020 0

1 1
(2 ) ( ) ( )

2 2

l ld w dw
I dx s dx

dx dx
µ λ τ∗= + +∫ ∫                                     (3.23)                                                                    

where V is the bulk volume, Γ is the surface area. The stresses and strains for the bulk 

and surface can be found in Chapter 2. Therefore the total energy is derived as, 

B sU U U= +  

    
2

2 * 20
0 0 020 0

21 1
( (2 ) ) ( ) ( )

2 2

l lI w w
EI I dx s dx

H x x

ν τµ λ τ∗ ∂ ∂= + + − +
∂ ∂∫ ∫                (3.24) 
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The kinetic energy T stored in the overall system is shown as, 

B sT T T= +  

   2 * 2
00 0

1 1
( ) ( )

2 2

l l
A w dx s w dxρ ρ= +∫ ∫ɺ ɺ                                                              (3.25) 

The principle of conservation of energy requires that, 

max maxU T=                                                                                                      (3.26) 

For free vibration, the transverse deflection can be expressed as, 

( , ) ( )sinn nw x t W x tω=                                                                                    (3.27) 

Substitution of equation (3.27) into equations (3.24)-(3.26) yields, 

2 * 2
02 0 0

2

0

( ( )) ( ( ))

( ( ))

l l

b n n

n l

n

K W x dx s W x dx

M W x dx

τ
ω

∗

′′ ′+
= ∫ ∫

∫
                                                    (3.28) 

where 0
0 0

2
(2 )b

I
K EI I

H

ν τµ λ ∗= + + −  and *
0( )M A sρ ρ∗ = + . Equation (3.28) is in the 

form of Rayleigh quotient [56]. ( )nW x is a suitable mode shape of vibration, which is not 

known in advance. A suitable candidate for ( )nW x is the function that is sufficiently 

differentiable as required in equation (3.28) and satisfies the geometric boundary 

conditions of the problem.  

For a simply supported beam, it has been found in Section 3.1 that the first 

mode shape with surface effects is identical to the classical one, which is known as, 

( ) sinn

n
W x x

L

π=                                                                                            (3.29) 

Substitution of above shape function into equation (3.28) yields the natural 

frequencies of simply supported beam as, 

4 * 2
0

2
( ) ( )b

n

n n
K s

L L
M

π πτ
ω ∗

+
=                                                                            (3.30) 

The solution using energy method in equation (3.30) is identical to that shown 

in equation (3.6) except for an additional term 0 02 I
I

H

ν ρ=  in equation (3.6). This is due 

to the consideration of vertical stress zzσ in our previous formulation. It has been proved 
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numerically that zzσ is trivial and can be neglected in all practical cases. Therefore it can 

be seen that the solution estimated by the Rayleigh quotient is very accurate.  

Based on above verification, we can further apply this method confidently to 

determine the natural frequency of a cantilever beam. As the influence of vertical stress 

zzσ  and the surface density 0ρ  are shown numerically to be very small on the dynamic 

response of beams, they can be neglected for the sake of simplicity. Thus, the natural 

frequencies in equation (3.28) can be simplified as, 

2 * 2
0 0 02 0 0

2

0

( (2 ) ) ( ( )) ( ( ))

( ( ))

l l

n n

n l

n

EI I W x dx s W x dx

A W x dx

µ λ τ
ω

ρ

∗ ′′ ′+ + +
= ∫ ∫

∫
                    (3.31) 

Non-dimensional quantities, /x x L= , ( ) ( ) /n nW x W x L= are introduced; rewrite 

equation (3.31) as, 
1 12 * 2 2

0 0 02 0 0
14 2

0

( (2 ) ) ( ( )) ( ( ))

( ( ))

n n

n

n

EI I W x dx s L W x dx

AL W x dx

µ λ τ
ω

ρ

∗ ′′ ′+ + +
= ∫ ∫

∫
 

  
* 2

0 0 0
4

( (2 ) ) n n

n

EI I A s L B

AL C

µ λ τ
ρ

∗+ + +=                                                        (3.32)                                           

where  
1 2

0
( ( ))n nA W x dx′′= ∫  

1 2

0
( ( ))n nB W x dx′= ∫  

1 2

0
( ( ))n nC W x dx= ∫ .                                                                                          (3.33) 

Rewrite equation (3.32) as a function of 2/H L  for a rectangular cross-section 

as, 

2
2 20 0 0 0 0

2 2 2 4

(2 ) (2 ) 2
( )( ) ( ) ( )
12 6 2

n n n
n

n n n

A A BE H H L

C b L C L L C L H

µ λ µ λ τω
ρ ρ ρ

+ += + + +            

2 n
n n

F
D X E X

X
= + +                                                                                 (3.34)  

where 2/X H L= , 0 0(2 )
( )
12 6

n
n

n

A E
D

C b

µ λ
ρ

+= + , 0 0
2

(2 )

2
n

n
n

A
E

C L

µ λ
ρ

+= and 0
4

2 n
n

n

B
F

C L

τ
ρ

= .  

From equation (3.34), the fundamental natural frequency of cantilever beam can 

be obtained as, 
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2 2 1
1 1 1

F
D X E X

X
ω = + +                                                                                   (3.35) 

where 0 01
1

1

(2 )
( )
12 6

A E
D

C b

µ λ
ρ

+= +  

1 0 0
1 2

1

(2 )

2

A
E

C L

µ λ
ρ

+=   

0 1
1 4

1

2 B
F

C L

τ
ρ

=                                                                                                        (3.36) 

With equation (3.35), we are able to examine the experimental data reported by 

Lagowski et al. [38]. In their experiments, the fundamental natural frequencies of GaAs 

wafer in the configuration of cantilevers whose dimensions range from 3 to 50mµ  in 

thickness, 6 to 15mm in length, and 1 to 1.5mm  in width are measured. It can be seen in 

Figure 3.2 that the experimental data show a unique trend that the classical theory cannot 

emulate. Equation (3.35) is applied to fit the experimental data using least square fit. Our 

surface elasticity model can successfully capture the experimental trend as shown in 

Figure 3.2. The least squares fit yields the values of the parameters1D , 1E  and 1F  

as 73.6415 10× , 71.196 10− × and 70.0204 10× respectively.  

With a good guess of eigenfuction1( )W x for cantilever fundamental mode shape, 

the values of Young’s modulus for the bulk, the surface elastic properties as well as the 

surface residual stress can be determined. As mentioned earlier, suitable guess of ( )nW x is 

the function that is sufficiently differentiable and satisfies the geometric boundary 

conditions of the problem. Good approximations can be the deflection of the beam under 

its own weight or first buckling mode. In the present study, the first buckling mode is 

used as an approximation given as, 

1( ) cos 1
2

x
W x

π= −                                                                                          (3.37) 
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Figure 3.2 Natural frequency of vibration of thin (111) GaAs crystals in cantilever 

configuration as a function of crystal dimensions 2/H L  

 

Substitution of equation (3.37) into equation (3.33) yields
4

1 32
A

π= , 
2

1 8
B

π= and 

1

3 4

2
C

π
= − . Solving equation (3.36) using above obtained values yields the material 

properties of GaAs as,0 0.9968 /N mτ = , 5
0 02 9.4743 10 /N mµ λ+ = − × , 174.97E Gpa= . 

Compared with the Young’s modulus of GaAs used in the experiment 131.15E Gpa= , 

the prediction using our model provides reasonably good results. Note that the value of 

Young’s modulus used in the experiment is determined by fitting the first natural 

frequencies in the classical formulation. The natural frequencies measured in the 

experiment are of specimens with different dimensions under room pressure. As the 

accuracy of measurement is influenced by factors, such as ambient atmosphere, damping 

and specimen geometry, so the value presented is just an approximation to the real case.  

The dimensions of the cantilever beam are not explicitly given, thus 10L mm=  and 

1b mm=  are used in the calculation. It is shown that varying b in the given range has 

unnoticeable effects on the values of all material constants. Varying the values of L  



52 

gives noticeable changes in surface properties, but negligible change in Young’s 

modulus.   

A review of equation (3.35) along with the above obtained material constants 

can well explain the trend in the experiment. The difference between the natural 

frequencies obtained from experiments and classical theory is attributed to two parts, 

surface elastic constants 0 02µ λ+ present in the first two terms of equation (3.35) and 

surface residual stress0τ in the last term of equation (3.35). The overall effects from the 

surface depend on the combination of the two parameters. For GaAs, 0 02µ λ+  is negative 

so that it will decrease the natural frequency. While 0τ  is positive, thus it will increase 

the natural frequency. At large 2/H L , 0 02µ λ+  plays dominant role; therefore smaller 

natural frequencies compared to classical predictions are observed. When 2/H L goes 

small, the effect of 0τ will surpass that of 0 02µ λ+ ; as a result the natural frequencies are 

increased compared to the classical ones. The reason for increasing natural frequency 

with decreasing 2/H L  is entirely due to the presence of last term in equation (3.35).   

 

3.3 Influence of Surface Residual Stress  

Analyses in Chapter 2 and 3 indicate that the surface elasticity modifies the 

bending stiffness of nanoscale beams, which consequently influences their static and 

dynamic response. This agrees well with the existing literature [16, 22, 44]. The surface 

residual stress is also found to influence mechanical behaviour of nanoscale beams and 

the effects are shown to be significant in our numerical study.  

The effect of surface residual stress has been debated extensively.  Lagowski 

and his coworkers [38] idealised the surface residual stress as compressive force acting 

on a typical beam element in the bulk. They reported that the surface residual stress 

affects the first natural frequency. This was later shown to be incorrect by Gurtin et al. 

[39]. They showed that the transverse distributed load arising due to Young-Laplace 

relation cancels the force term associated with compressive force in the beam bending 

equation derived by Lagowski et al.  However, Gurtin did not consider all the surfaces.  

Moreover, both the approaches are in violation of Newton’s third law: there is no 

externally applied compressive force that can balance the axial stress resultant of a bulk 
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element at either ends of the beam. In our one-dimensional beam model we avoid this by 

ensuring that there is no net axial force acting on a cross section. We found that the 

surface residual stress does influence the first natural frequency.  Our approximate 

engineering beam model is consistent with the results of Wang et al. [31]. They presented 

a rigorous 3-D elasticity model to investigate the effects of surface elasticity and surface 

residual stress on the elastic properties of nanoscale structures. They found that besides 

surface elasticity, the surface residual stress also affects the effective Young’s modulus of 

nanoscale structures.  Thus the first natural frequency is influenced by surface residual 

stress in our model and that of Wang et al. [31].  
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Chapter 4 

 
FINITE ELEMENT ANALYSIS OF NANOSCALE BEAMS 
 

4.1 Finite Element Formulation 

Analytical models can be used for simple geometries and boundary conditions. 

For the analysis of complex geometries and boundary conditions such as those 

encountered in NEMS and other nanotechnology applications, versatile numerical models 

such as the finite element method (FEM) need to be developed. The conventional FEM 

cannot characterize the size-dependent behavior. In this chapter, new finite element 

models based on the beam theories presented in Chapters 2 and 3 are developed to 

incorporate the surface effects into the classical FEM. A detailed derivation of the finite 

element formulation by using Galerkin’s method is presented. Thereafter, the finite 

element scheme is applied to study static and dynamic response of thin and thick beam 

under different loading and boundary conditions. A comparison with the analytical 

solutions given in Chapter 2 and 3 is also presented to confirm the accuracy and 

convergence of the finite element solutions.  

 

4.1.1 Thin Beam Static Bending 

For thin beams under a static transverse loading and an axial compression, the 

governing equation of thin beams has been derived in Section 2.4 as shown in equation 

(2.59) as, 

4 2
*0

0 0 04 2

2
[ (2 ) ] ( ) ( ) 0

I w w
EI I F s q x

H x x

ν τµ λ τ∗ ∂ ∂+ + − + − + =
∂ ∂

                                            (4.1) 

 One of the weighted residual methods, Galerkin’s method, is applied to develop 

the finite element formulation and the corresponding matrix equations. 

The weighted residual statement of equation (4.1) can be written as, 

4 2
*0

0 0 04 20

2
[ (2 ) ] ( ) ( ) 0

L I d w d w
EI I F s q x wdx

H dx dx

ν τψ µ λ τ∗ 
= + + − + − + = 

 
∫       (4.2) 

where L  is the length of the beam and w  is the weighting function. Integrating equation 

(4.2) by part, the weak formulation of equation (4.2) is obtained as, 
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2 2
*0

0 0 02 20

2
[ (2 ) ] ( )

L I d w d w dw dw
EI I F s qw dx

H dx dx dx dx

ν τψ µ λ τ∗ 
= + + − − − + 

 
∫  

             
0

( ) 0
L

dw
M Qw

dx
+ − =                                                                                 (4.3)                                          

where
2

0
0 0 2

2
[ (2 ) ]

I d w
M EI I

H dx

ν τµ λ ∗= − + + −  and 
3

*0
0 0 03

2
[ (2 ) ] ( )

I d w dw
Q EI I F s

H dx dx

ν τµ λ τ∗= − + + − − −  

are the bending moment and shear force respectively. 

 

 

Figure 4.1 Two node beam element for thin beam 

 

Consider a 2-node finite element with two nodal degrees of freedom per node, 

i.e., w and 
dw

dx
θ = , as shown in Figure 4.1. The element nodal displacement vector is,  

[ ]1 1 2 2
ew w wθ θ=                                                                                       (4.4) 

The transverse displacement w is interpolated by using Hermitian shape functions 

as, 

( ) ew N x w=                                                                                                         (4.5)             

where the shape functions are given as, 

2 3

1 2 3

3 2
( ) 1

x x
N x

l l
= − + , 

2 3

2 2

2
( )

x x
N x x

l l
= − +  

2 3

3 2 3

3 2
( )

x x
N x

l l
= − ,  

2 3

4 2
( )

x x
N x

l l
= − +                                                             (4.6) 

Substitution of equation (4.5) into equation (4.3) yields, 

*0
0 0 00 0

2
[ (2 ) ] ( )

l lT T T eI
EI I N N FN N s N N w dx q x Ndx

H

ν τµ λ τ∗ ′′ ′′ ′ ′ ′ ′+ + − − + = − 
 

∫ ∫     (4.7) 

1w
2w

1θ
x

z

1 0x = 2x l=

2θ



56 

Therefore, the element stiffness matrix is obtained as, 

*0
0 0 00

2
[ (2 ) ]

le T T TI
K EI I N N FN N s N N dx

H

ν τµ λ τ∗ ′′ ′′ ′ ′ ′ ′  = + + − − +  
 

∫                

0
2 20 0

3

2 2

12 6 12 62
[ (2 ) ] 6 4 6 2

12 6 12 6

6 2 6 4

l lI
EI I l l l lH

l ll

l l l l

ν τµ λ ∗
− 

 + + − − =
 − − −
 − 

 

          
2 2*

0

2 2

36 3 36 3

3 4 3( )

36 3 36 330

3 3 4

l l

l l l lF s

l ll

l l l l

τ
− 

 − −−  −
 − − −
 − − 

                                                       (4.8) 

The element force vector is defined as, 

{ }
0

( )
leR q x Ndx= −∫                                                                                            (4.9) 

If the element is subjected to a uniform pressure0q , the force vector becomes  

{ } 2 20 6 6
12

Te q
R l l l l = − −                                                                         (4.10)        

In the case of concentrated force within the beam element, the force vector is 

{ } 00
( )

leR P x x Ndxδ= − −∫  

[ ]1 0 2 0 3 0 4 0( ) ( ) ( ) ( )
T

P N x N x N x N x= −                                             (4.11) 

where P  is the concentrated force applied at point 0x x= . 

The assembly of element stiffness matrices and nodal force vectors yield the 

global equilibrium equations as,  

[ ]{ } { }K r R=                                                                                                     (4.12)  

where [ ]K  is the global stiffness matrix and{ }R is the global force vector.  
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4.1.2 Thin Beam Free Vibration 

For dynamic analysis, the inertial forces on the right hand side of thin beam 

governing equation (2.23) are included in the finite element formulation and these terms 

correspond to the element mass matrix. The transverse deflection is a function of x  andt . 

The deflection is interpolated within the beam element as, 

( , ) ( ) ( )ew x t N x w t=                                                                                   (4.13) 

The same interpolation functions are used to obtain a ‘consistent’ mass matrix. 

Substitution of equation (4.13) into the inertial force terms yields, 

* 0
00

2
( ) ( )

l T T eI
A s N N N N w t dx

H

ν ρρ ρ ′ ′+ − 
 

∫ ɺɺ                                                 (4.14) 

where superimposed dot denotes temporal derivative. From equation (4.14), the element 

mass matrix becomes, 

* 0
00

2
( )

le T TI
m A s N N N N dx

H

ν ρρ ρ ′ ′  = + −  
 

∫  

2 2 2 2*
0 0

2 2 2

156 22 54 13 36 3 36 3

22 4 13 3 3 4 3( )

54 13 156 22 36 3 36 3420 15

13 3 22 3 3 3 4

l l l l

l l l l l l l lA s l I

l l l lHl

l l l l l l l l

ρ ρ ν ρ
− −   

   − − −+    = −
   − − − −
   − − − − −   

  (4.15) 

Thus, the global matrix equation for dynamic beam analysis is obtained after 

assembly of element matrices and vectors, 

[ ]{ } [ ]{ } { }( )M r K r R t+ =ɺɺ                                                                                 (4.16) 

where [ ]M is the global mass matrix. In the case of free vibration 

problems, ( )e i t ew t e wω= , it becomes an eigenvalue problem, 

[ ] [ ] { }2( ) 0K M rω− =                                                                                      (4.17)    

where ω  is the angular frequency of vibration in rad/s. { }r is the mode shape. 

 

4.1.3 Thick Beam Static Bending 

In the case of thick beams under static transverse loading and uniaxial 

compressive force, a term 
dw

F
dx

−  corresponding to the presence of compressive force 



58 

needs to be added to the moment equilibrium of equation (2.19). Therefore, the governing 

equations for thick beam are modified as, 

2 2 2
* *

0 02 2 2
( ) ( ) ( )

w w w
G A s q x A s

x x x t

φκ τ ρ ρ∂ ∂ ∂ ∂+ + − = +
∂ ∂ ∂ ∂

                                     (4.17)    

2 3
0

0 0 2 3

2
[ (2 ) ] ( )

I w w w
EI I F G A

x H x x x

ν τφµ λ κ φ∗ ∂ ∂ ∂ ∂+ + + − − +
∂ ∂ ∂ ∂
2 3

0
0 2 2

2
( )

I w
I I

t H x t

ν ρφρ ρ ∗ ∂ ∂= + +
∂ ∂ ∂

                                                               (4.18) 

In the same procedure, applying Galerkin’s method again leads to the following 

weighted residual statement. 

2 2
*

02 20
{( ( ) ( ))

L d w d d w
G A s q x w

dx dx dx

φψ κ τ= + + −∫  

2 3
0

0 0 2 3

2
([ (2 ) ] ( )) } 0

Id d w dw dw
EI I F G A dx

dx H dx dx dx

ν τφµ λ κ φ φ∗+ + + + − − + =       (4.19) 

where 
w

φ

  
 
  

 is the weight function. 

Integrating equation (4.19) by part yields the week formulation as, 

*
0 00

{ ( )( ) [ (2 ) ]
L dw d w d d

G A EI I
dx dx dx dx

φ φκ φ φ µ λ+ + + + +∫
2

*0
0 02

2
( ) } ( ) 0LI d w d dw dw d w

F s q x w dx Qw M
H dx dx dx dx dx

ν τ φ φ τ φ+ + + + − + =   (4.20) 

To derive the stiffness matrix for a thick beam, the element generalized 

displacements w  and φ  need to be interpolated within each element. As the transverse 

deflection w  and the angular displacement φ  are independent variables for a thick beam, 

they can be interpolated independently using proper shape functions. Due to the presence 

of second derivative of w in the equation (4.20), 0C continuous shape functions which are 

normally used in classical thick beam cannot be applied in the present case. To satisfy the 

continuity between the neighboring elements, 1C  shape functions can be used for the new 

thick beam element. As a result, a 3-node beam element with two degrees of freedom per 

node (w andφ  ) shown in Figure 4.2 is used for both variables in this study. 
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Figure 4.2 Three node beam element for thick beam 

 

The displacements are interpolated as, 

1

1

1 2 3 2

1 2 3 2

3

3

0 0 0

0 0 0

w

N N N ww

N N N

w

φ

φφ

φ

 
 
 
     =    

     
 
 
  

                                                    (4.21) 

where ( 1,2,3)iN i = are shape functions given as, 
2

1 2

2 3
1

x x
N

l l
= − +  

2

2 2

4 4x x
N

l l
= − +  

2

3 2

2x x
N

l l
= − .                                                                                                  (4.22) 

Using equation (4.22) and (4.21) along with equation (4.20) yields the following 

stiffness matrix for thick beam. 

1 2 3 4 5
e e e e e eK K K K K K           = + + + +                                                                (4.23) 

where  

2 2 2

2 2 2

1

2 2 2

14 3 1 16 3 4 3 2 3 1 3

1 2 9 4 3 2 9 1 3 1 9

16 3 4 3 32 3 0 16 3 4 3

2 4 3 2 9 0 8 9 4 3 2 9

2 3 1 3 16 3 4 3 14 3 1

1 3 1 9 4 3 2 9 1 2 9

e

l l l l l l

l l l

l l l l lG Al
K

l l

l l l l l l

l l l

κ

 − − −
 − − − 
 − − −

  =    − 
 − −
 

− −  

 

1w 2w

2φ1φ

x

z

3w

3φ

2l 2l
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0 1 6 0 2 3 0 1/ 2
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− 

                                (4.24) 

Exact integration is performed to obtain the stiffness matrices 2[ ]eK , 3[ ]eK , 

4[ ]eK and 5[ ]eK , while reduced-integration technique [57] is used to calculate the shear 

stiffness term 1[ ]eK  in order to avoid shear locking [58]. That is, beam elements can have 

3 or higher number of nodes. For each case, the shear stiffness matrix needs to be under-

integrated consistently. The order of integration for shear stiffness matrix is one less than 

what is required for exact integration. For example, in the present case the expression of 

1[ ]eK  is a third order polynomial so that the 3-point Gauss quadrature can evaluate the 
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integration exactly. For under-integration, 2-point Gauss quadrature is used to 

obtain 1[ ]eK . 

For an element subjected to a uniformly distributed load 0q , the force vector can 

be derived as, 

{ } [ ]0 1 0 4 0 1 0
6

Te q l
R = −                                                                    (4.25) 

 

4.1.4 Thick Beam Free Vibration 

In the dynamic analysis, the consistent element mass matrix can be computed 

from the inertial forces on the right hand side of equation (4.17) and (4.18). 

 

[ ] 1 2 3
e e em m m m     = + +                                                                                      (4.26) 

where   
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 +
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*
0

2

0 0 0 0 0 0

0 4 15 0 2 15 0 1 15

0 0 0 0 0 0( )

0 2 15 0 16 15 0 2 152

0 0 0 0 0 0

0 1 15 0 2 15 0 4 15

e I I l
m

ρ ρ

 
 − 
 +

  =   
 
 
 

− 

 

0
3

0 1 0 4 3 0 1 3

1 0 4 3 0 1 3 0

0 4 3 0 0 0 8 3
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4.2 Finite Element Simulation of Nanoscale Beam Static and Dynamic Response 

To assess the accuracy of the proposed finite element formulation, static bending 

buckling and free vibration problems of selected thin and thick beams are computed and 

compared with the analytical results obtained from Chapter 2 and 3.  The materials used 

in the simulation are Si and Al, the bulk material properties and surface properties for a 

[1 0 0] surface of which can be found in Table 2.1. The dimensions for thin beams 

are 200L nm= , 2 10H h nm= =  and 10b nm= , and those for thick beams 

are 60L nm= , 2 10H h nm= =  and 10b nm=  in all the calculations. 

In the nanoscale beam static analysis, normalized deflections of thin and thick 

beams under different boundary conditions (simply supported, cantilever and clamped-

clamped ends) and loadings (uniformly distributed load 0q or mid-point load P for SS 

and CC, tip load P for C) are plotted using FEM and analytical model. It can be seen in 

Figure 4.3 that the numerical results from the FEM are in good agreement with the 

analytical solutions, which speaks well of the validity of the new FEM. In each 

simulation 5 elements are used. As we can see from Figure 4.4, for static deflection the 

variation is not much once the number of elements reaches certain amount, in this case 

the results converge very fast after 5 elements.  

 

 

 

 

 

 

 

 

 



63 

0 0.1 0.2 0.3 0.4 0.5
-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

x/L

W
qE

  W
PE

 (
m

/N
)

 

 

distributed load
point load
FEM

  
0 0.1 0.2 0.3 0.4 0.5

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

x/L

W
qT

  W
PT

 (
m

/N
)

 

 

 distributed load
point load
FEM

 
                             (a)                                                              (d) 

0 0.2 0.4 0.6 0.8 1
-10

-8

-6

-4

-2

0

x/L

W
qE

  W
PE
 (

m
/N

)

 

 

distributed load
point load
FEM

    0 0.2 0.4 0.6 0.8 1
-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

x/L

W
qT
  W

PT
 (

m
/N

)

 

 

distributed load
point load
FEM

 
                             (b)                                                              (e) 

0 0.1 0.2 0.3 0.4 0.5
-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

x/L

W
qE

  W
PE

 (
m

/N
)

 

 

distributed load
point load
FEM

    0 0.1 0.2 0.3 0.4 0.5
-0.018

-0.016

-0.014

-0.012

-0.01

-0.008

-0.006

-0.004

-0.002

0

x/L

W
q
 T

 W
PT

 (
m

/N
)

 

 

distributed load
point load
FEM

 
(c)       (f) 

Figure 4.3 Normalized deflections of Si beams under distributed loading and point 
loading using FEM and analytical model. (a) thin simply supported (b) thin cantilever (c) 
thin clamped-clamped ends (d) thick simply supported (e) thick cantilever (f) thick 
clamped-clamped ends 
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Figure 4.4 Normalized deflections of half Si thin clamped-clamped ends beam under 

point loadP  with varied element numbers. 

 

The natural frequencies of beams with above mentioned dimensions are also 

computed using 20 elements and the first 4 natural frequencies for each case are listed in 

Table 4.1. The analytical results obtained by solving the characteristic equations of the 

surface elastic model in Chapter 3 are presented in parenthesis, followed by the results 

using classical theory in square brackets. The natural frequencies using FEM are slightly 

higher than the analytical result, which agrees with the principle that FE representation is 

stiffer than the true continuum. By comparing with the analytical results, the error is 

within 3%. Such accuracy is adequate for most practical design of NEMS devices. 

Therefore, we can extend our model to beams with more complicated geometry, loading 

and boundary conditions confidently. It is found that the mode shapes converge fast after 

20 elements. The fourth mode shape of a simply supported beam is plotted using 40 

elements as shown in Figure 4.5. The instability of the mode shapes is observed when the 

element number increases to a high value. A further investigation shows that the reason 

for the instability is the second term of local mass matrix in equation (4.15) increases 

dramatically with the decreasing of element lengthl ; therefore, the mass matrix cannot 

remain positive definite. However, numerical study in Chapter 3 shows that the influence 
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of this term is very small on beam vibrations, therefore it can be neglected in order to 

avoid the instability in the FE simulations. 

 

Table 4.1 Natural frequencies of Si thin and thick beams under different boundary 

conditions using FEM, analytical solution are in parenthesis and classical solution in 

square bracket.  

Thin beam 
 

 
 

 
 

 
 
Thick beam 
 

 
 

 
 

 

     1st
  ( )GHz  

 
0.92 (0.92) [0.77] 

 
0.45(0.45)[0.27] 

 
1.77 (1.77)[1.74] 

 
 
 
 

8.05(7.96)[8.16] 
 

3.09(3.09)[2.98] 
 

15.88(15.85)[16.42] 

    2nd
  ( )GHz  

 
3.13(3.13)[3.07] 

 
1.92(1.92)[1.72] 

 
4.72(4.71)[4.80] 

 
 
 
 

28.40(28.14)[29.28] 
 

16.21(16.17)[16.63] 
 

37.86(37.60)[38.83] 

      3rd
  ( )GHz  

 
6.78(6.77)[6.91] 

 
4.83(4.82)[4.80] 

 
9.12(9.10)[9.41] 

 
 
 
 

55.87(55.36)[57.30] 
 

39.68(39.33)[ 40.74] 
 

64.49(64.01)[66.05] 

     4th
  ( )GHz  

 
11.90(11.88)[12.29] 

 
9.19(9.18)[9.40] 

 
 14.99(14.96)[15.56] 

 
 
 
 

86.93(85.94)[89.13] 
 

67.54(66.85)[69.23] 
 

93.69(92.84)[95.49] 
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Figure 4.5 Mode shape of a Si simply supported beam using 40 elements 

 

Table 4.2 shows the critical loads of Al and Si beams under aforementioned 

restrains with dimensions b = 10 nm, 2h = 10 nm and L = 200nm. It can be seen that the 

critical loads could be changed significantly by the presence of surface effects. The FEM 

gives a very good prediction compared to the analytical solution.  
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Table 4.2 Critical loads for beams under different restrains using FEM, analytical 

solution in parenthesis and classical solution in square bracket. 

Critical load (nN ) 
 

Beam type 
 
 

 
 

 
 

 
 

Al 
28.67(28.67) [18.51] 

 
15.70  (15.70)  [4.63] 

 
80.55(80.53) [74.02] 
 

Si 
32.45(32.45)[22.00] 
 
17.20(17.20)[5.50] 
 
93.49(93.47)[88.00] 
 

 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 
 
 
 
 
 
 
 



67 

 
Chapter 5 

 
SUMMARY AND CONCLUSION 

 
 

5.1 Summary of Present Work and Major Findings 

The main purpose of this thesis is to develop a continuum beam model accounting 

for surface energy effects based on Gurtin-Murdoch elasticity theory to analyze the static 

and dynamic responses of nanoscale beams. The model is applied specifically to study 

the static bending, vibration and buckling loads of thick and thin nanoscale beams. 

Selected numerical results are presented to demonstrate the salient features of the 

response and to assess the influence of surface energy effects. A new finite element 

formulation is derived from weighted residual method to analyze complex beam 

problems. The conclusions of current study are given below. 

 
(1) The governing equations are developed for thin and thick beams with an 

arbitrary cross-section. Closed-form analytical solutions can be derived for the static 

deflections of thin and thick beam subjected to uniformly distributed loading and 

concentrated loads for several common boundary conditions (simply supported, 

cantilever, both ends clamped). The buckling of nanoscale beams under uniaxial 

compression is also analyzed and the critical loads under various restraints are derived. 

The present formulation shows that the surface elastic properties can make the material 

stiffer or softer than the classical case due to the sign of the surface elastic constants and 

surface residual stress, and this effect will become more pronounced with the decreasing 

size. The difference of the results predicted from surface elasticity and classical models 

relies on the magnitudes of the surface properties. An intrinsic length parameter, 

controlled by both surface elastic properties and bulk properties can be established to 

characterize the surface energy effects for beam bending problems. As the height of beam 

becomes comparable to the intrinsic length, the surface energy effects become important. 

Selected numerical results show that Al and Si thin beam deflections as well as the 

critical loads are significantly influenced by surface energy effects. The numerical study 

demonstrates that large absolute value of negative surface elastic properties at small 
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dimensions could result in negative bK ( sK for thick beam), which may consequently lead 

to deflection instability as well as complex natural frequencies. The reason for this 

phenomenon is that the non-positive definiteness of surface elastic energy will dominate 

over the bulk strain energy at small dimensions. In this case, the Gurtin-Murdoch theory 

essentially breaks down and other atomistic models need to be chosen. Our model is 

applicable only when the bulk is still the dominant part although the surface contribution 

is prominent. 

 (2) The surface energy effects on free vibration of nanoscale beams are 

investigated and the characteristic equations to determine the natural frequencies are 

presented. The numerical solutions indicate that the natural frequencies are affected by 

both surface elastic properties and surface density. The effect of surface residual stress on 

natural frequencies will decrease with the increase of wave number for higher modes. 

The impact of surface energy also depends on the beam boundary conditions. The highest 

influence is observed for cantilever beams followed by simply supported and clamped-

clamped beams. Rayleigh quotient is adopted to derive the closed-form analytical 

solution for natural frequency with surface energy effects. A method to determine the 

material elastic constants by measuring natural frequencies is thereafter proposed. 

(3) A new finite element formulation taking into account surface energy effects 

has been derived from weighted residual method. It is found that the effect of the surface 

on the finite element formulation is to change the stiffness and mass matrices of the 

elements, which consequently change the mechanical behaviour significantly. As a result, 

the conventional beam theories are inadequate to predict the responses of nanoscale 

beams. The new finite element scheme is applied to analyze the thin and thick beam static 

bending and vibration responses as well as thin beam buckling problems; by comparing 

with the analytical results, the error is within 3%. Such accuracy is adequate for most 

practical design of NEMS devices. The FEM model developed in this thesis provide an 

efficient tool for NEMS designers to investigate the component structures in device 

design. 

 

 

 



69 

 

5.2 Suggestions for Future Work 

Based on the findings of the thesis, it is recommended that the following studies 

be undertaken to further understand the mechanics of nanoscale structures; 

(1) In the present work, the beam models are built based on the classical 

assumption of small strains and small displacements. This is sufficient to analyze static 

and dynamic behavior of a beam within small deflections. In many practical cases, the 

structures can undergo large scale elastic deflection; therefore it is useful to examine the 

surface energy effects on large-deflection (elastica) based problems. 

(2) Finite element study is conducted to study the static and dynamic response of 

nanoscale beams. The transient analysis is also suggested to be implemented into the 

current finite element scheme. 

(3) The thesis proposed an energy method based on Rayleigh quotient to predict 

the natural frequency of beam and the material properties, provided that an appropriate 

trial function is adopted to approximate the beam true mode shape. The selection of the 

trial function needs to be further investigated in order to obtain accurate solution. 

(4) Current study shows that the static and dynamic response of nanoscale beams 

are significantly dependent on the surface elastic properties. Therefore, precise 

measurement technique or efficient atomistic computational means are required to extract 

those properties. Meanwhile, experimental studies and atomistic simulations are also 

recommended for validation and further extension of our surface elastic model and finite 

element scheme presented in this work. 

(5) The beam theories developed in this work are based on simplified state of 

stress of the three-dimensional elastic solid.  In the spirit of engineering beam theory we 

introduced surface elasticity effects. It is also possible to solve the complete three-

dimensional elasticity problem using appropriate stress functions. This may provide an 

alternate route to validate the modified engineering beam theories proposed in this work. 

(6) In classical elasticity and beam theories we invoke Saint Venant’s principle to 

study the influence of boundaries, or sudden changes in cross section. The scaling of 

Saint Venant elastic boundary layer thickness in small scale system remains an open 

problem.  
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