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Abstract

We consider the problem of robust estimation of the scatter matrix of an elliptical dis-
tribution when observed data are corrupted in a cell-wise manner. The first half of the
thesis develops a framework for dealing with data subjected to independent cell-wise con-
tamination. Each data cell (as opposed to data case in traditional robustness) can be
contaminated independently of the rest of the case. Instead of downweighting the whole
case just because one or two components of it are contaminated we attempt to identify
those affected cells, remove the offending values and treat them as missing at random
for subsequent likelihood-based processing. We explore several variations of the detection
procedure that takes into account the multivariate structure of the data and end up with a
heuristic algorithm that can identify and remove a large proportion of dangerous indepen-
dent contamination. Although there are not many existing methods to measure against,
the proposed covariance estimate compares very favourably to näıve alternatives such as
pairwise estimates or simple univariate Winsorising.

The cell-wise data corruption mechanism that we deal with in the second half of this
thesis is missing data. Missing data on their own have been well studied and likelihood
methods are well developed. The new setting that we are interested in is when missing data
come together with the traditional case-wise contamination. Both issues have been studied
extensively over that last few decades but little attention has been paid to how to address
them both at the same time. We propose a modification of the S-estimate that allows
robust estimation of multivariate location and scatter matrix in the presence of missing
completely at random (MCAR) data. The method is based on the idea of the maximum
likelihood of the observed data and extends it into the world of S-estimates. The estimate
comes complete with the computation algorithm which is an adjusted version of the widely
used Fast-S procedure. Some simulation results and applications to real datasets confirm
the superiority of our method over available alternatives.

A quick investigation in the concluding chapter also suggests that combining the two
main ideas presented in this thesis can yield an estimate that is robust against both types
of contamination (case-wise and cell-wise) simultaneously.
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Chapter 1

Introduction

1.1 Robust estimates

Classical parametric estimates rely heavily on the distributional assumptions of the model
that data are assumed to be coming from. In the simpler case that we consider in this
thesis, they assume that the data are independent and identically distributed (i.i.d.) drawn
from a distribution parametrized by a vector of parameters. There are a number of ways
in which these assumptions can be violated. For example, it might happen that (a) data
are dependent; (b) the main distribution is not what it is assumed to be; or (c) data are
not identically distributed but instead comes from a mixture of distributions. Most of the
robust statistical theory focuses on the assumptions violation of the latter kind. We assume
that the observed data are a mixture of good data (or clean data) and contamination. The
distribution function of the observed data can be described as

F = (1− ε)F0(θ) + εG, (1.1)

where F0(θ) is the distribution of the clean data parametrized by the parameter of inter-
est θ, G is an arbitrary contaminating distribution that we do not have much interest in,
and ε ≥ 0 is the proportion of data cases affected by the contamination. Both G and ε are
unknown but we have little interest in estimating them, at least at first. We will call the
model in (1.1) the classical contamination model. This way of thinking about robustness
was introduced by Tukey (1960).

The crucial assumption above is that there is a clear distinction between clean data
cases and contaminated ones. We can model this mixture by introducing a Bernoulli
random variable B with P{B = 1} = ε. The observed random vector X ∼ F is then
given by

X = (1−B)X0 +BXG, (1.2)

where X0 ∼ F0, XG ∼ G and B is independent from both of them. The indicator B
can be seen as a latent variable that, albeit unobserved, has realized into 0 or 1 for each
data case. Most robust estimates try, directly or otherwise, to guess what the value of B
is for each case and include or exclude the observation into the analysis accordingly. It
is important that there are enough good data to let the estimate decide which cases are
clean and which are contaminated. The maximum fraction ε under which the estimate
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can still estimate parameters of F0(θ) instead of being misled by G is called its breakdown
point. The best possible breakdown point is equal to 0.5 but not all estimates achieve it.

Robust data analysis does not necessarily try to completely eliminate cases coming
from G and forget about them. On the contrary, by acknowledging that the observed
data come from the mixture of two distributions, we can better estimate parameters of
the core of the data, which will give us more power in identifying outlying cases coming
from G. As a byproduct of robust estimation one can get more reliable information about
the contamination indicator B. A standard example to illustrate this point proceeds by
considering a univariate sample with a couple of large outliers. The usual technique for
identifying outliers is to consider their z- or t-scores zi = (xi − m̂)/ŝ, where m̂ and ŝ

are the estimated center and scale of the data. With suitably large outlying values the
sample mean m̂ and variance estimate ŝ2 will be so much inflated that z-scores will remain
relatively small even for the contaminated values. But if one were to use robust estimates
for the mean and variance of the underlying population then the estimates m̂rob and ŝ2rob

would be in the vicinity of their true values and the z-scores for the contaminated value
would be large due to the large numerator and regular size denominator. Numerically it
has been illustrated numerous times elsewhere (e.g. Maronna et al. (2006), p. 6) so we will
not go into details.

An important property of the classical contamination model is that if a random vari-
able X follows it then any transformation g(X) will follow it as well (with different F0

and G if the transformation g is non-trivial). A particularly important special case of
such transformations are affine transformations such as AX + b so we can say that the
contamination model is affine invariant. If B = 1 for some cases of X then the same cases
of g(X) will be contaminated.

1.2 Independent contamination

A step away from the traditional robust thinking that we are taking in this thesis is to
relax the assumption that each observed data case is either clean or contaminated without
any intermediate possibilities. Multivariate datasets are often collected from different
sources and later joined together to form a data table with one row per subject. Data
values within one case can be of very different nature, e.g. chemical measurements for some
variables and questionnaire instruments for other, and they can be erroneously measured
or entered completely independently from each other. It might very well be the case
that 99 values out of a hundred measurements for a patient are good and just one has
been corrupted during data entry process. The classical contamination model will treat
such a case as contaminated and will attempt to eliminate its influence on the estimate.
Even if it succeeds in doing so, this obviously is a waste of data. When dimension is
large and variables are contaminated independently with positive probability, the chances
of having at least one bad data cell per case may easily exceed the breakdown point of
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traditional robust estimates rendering them next to useless in such a situation. These
types of contamination models have been defined and studied by Alqallaf et al. (2009) and
we provide a formal definition in section 2.1.1. The main idea, however, is that we do not
classify cases as clean or contaminated anymore — instead we classify data cells. Each
cell will have its own unobserved indicator variable B. We will talk about the proportion ε
of contaminated cells.

One substantial distinction of the independent contamination model from its classical
counterpart is that it is not invariant to multivariate transformations of data anymore.
Seemingly invertible transformations, such as affine transformation with non-singular A

can spread contamination from one bad value to the whole case. Affine equivariance, which
is a property of estimates to behave in a predictable fashion when data are subjected to an
affine transformation, is generally considered to be a desirable and important characteris-
tic for multivariate location-scatter and regression estimates (both robust and classical).
Unfortunately, this property does not mix well with the lack of affine invariance of the in-
dependent contamination model. An affine-equivariant location-scatter estimate performs
just as poorly on a dataset with only fraction ε of contaminated cells as it would on the
same dataset subjected to an affine transformation with the contamination spread across
the majority of the cells. This is obviously undesirable and prompts us to give up affine
equivariance of estimates in hopes of improving their performance under the independent
contamination model. This point is numerically illustrated in section 2.1.4.2. Chapter 2 of
this thesis discusses various approaches to dealing with independent contamination which
are all based on the common idea: identify the cells that are likely to be contaminated
and remove them from the analysis.

Another aspect of poor data quality that can affect individual cells in the data matrix
is missing data. Missing data can be seen as a special kind of contamination for which
the information about the indicator B is known. If B is independent of the rest of the
data, which is a typical assumption in robust theory, then we say that the data are missing
completely at random (MCAR). See Little and Rubin (2002) for more details on other types
of missing data. When missing data is the only problem with a dataset, and especially if
the MCAR assumption holds, Maximum Likelihood methods are well developed allowing
us to estimate parameters of interest. This scenario is too easy and does not warrant
a robust approach because the information on what cells are “contaminated” is given
to us upfront. In Chapter 3 we propose an estimate for the location-scatter parameters
of multivariate data subjected to two of the data corruption mechanisms at the same
time: classical contamination (by case) and missing data (by cell). The addition of the
cell-specific missing data to the classical contamination puts us the realm of non-affine
equivariant data models and estimates.

Finally, in Chapter 4 we will consider how well our estimates can cope with the situation
when all three of the data corrupting mechanisms are present: structurally contaminated
cases, independently contaminated cells and missing data cells. There we will also outline
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the future developments of this work that we hope to pursue in the future.

1.3 Mahalanobis distances

In this thesis we will focus on the problem of estimating scatter matrices of elliptical
distributions. These distributions can be parametrized by their location vector m and
scatter matrix Σ so that their probability density function is expressed as

f(x) = det(Σ)−
1
2 h

(
(x−m)′Σ−1(x−m)

)
, (1.3)

where h(·) is an appropriately scaled non-increasing integrable function on [0,+∞]. The
density of such a variable only depends on x through its so called Mahalanobis distance:

MD2(x; m,Σ) = (x−m)′Σ−1(x−m). (1.4)

We call it the squared Mahalanobis distance from x to m using covariance matrix Σ.
This can be seen as a generalization of the Euclidean distance adjusted for the fact that
data variations in some directions are deemed to be less important than in others. Isolines
of Mahalanobis distances and therefore of the density f(x) look like concentric ellipsoids
with axes parallel to the eigenvectors of Σ and radii proportional to the corresponding
eigenvalues. Squared Mahalanobis distance can be seen as a measure of outlierness of the
data case. Small distances correspond to more likely outcomes and vice versa.

The most common family among elliptical distributions is the multivariate normal with

hN (d) = (2π)−p/2 exp(−d/2), for any d ≥ 0. (1.5)

The lack of robustness of the Gaussian Maximum Likelihood Estimate (MLE) comes from
the fact that − log(hN (d)) is unbounded and increases too fast when d→∞ and thus gives
too much leverage to outliers with large Mahalanobis distances. Most robust methods for
elliptical data rely on Mahalanobis distances in one form or another and many use them
directly to downweight potentially contaminated data points.

The main character of this thesis will be the concept of partial Mahalanobis distance.
This is a Mahalanobis distance of a sub-vector of x with one or more components removed.
If X follows an elliptical distribution centered at m with scatter matrix Σ then a sub-
vector X−{j1,...,jm} with m components removed will follow the elliptical distribution from
the same family centered around m−{j1,...,jm} with scatter matrix Σ−[j1,...,jm]. The latter
matrix is a sub-matrix of Σ from which columns and rows indexed j1, . . . , jm are removed.
The partial Mahalanobis distance is then defined as

MD2
j1,...,jm

(x) = MD2
(
x−{j1,...,jm}; m−{j1,...,jm},Σ−[j1,...,jm]

)
. (1.6)
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The idea of calculating Mahalanobis distances of a subvector of a data case for the
purpose of computing robust estimates has been used before at least by Little and Smith
(1987) and Cheng and Victoria-Feser (2002). To the best of our knowledge, the term
“partial Mahalanobis distance” has not been used in statistical literature and we have not
been able to find any results regarding its properties (such as our Lemma A.2).

In Chapter 3, partial Mahalanobis distances will be used as a proxy for the full distances
which cannot be computed due to the presence of the missing data. In Chapter 2, partial
Mahalanobis distances corresponding to a set of variables are used to assess whether there
is a contaminated value among them.

When X ∼ Np(m,Σ) the squared Mahalanobis distances MD2(X;m,Σ) to the true
center with the true covariance matrix are distributed as χ2

p. Partial Mahalanobis distances
are thus distributed as χ2

q , where q is the number of variables included in the sub-vector.
Clean-data distributions of partial Mahalanobis distances in different dimensions will obvi-
ously have different magnitudes (E

[
χ2

q

]
= q) but also slightly different shapes (converging

to normal for large q) and coefficients of variation (sd
[
χ2

q

]
/E

[
χ2

q

]
=

√
2/q → 0, as q →∞).

All these issues will affect the construction of the estimates of Σ in both Chapters 2 and 3.
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Chapter 2

Filtering approach to independent

contamination

2.1 Introduction

2.1.1 General contamination model

For multivariate data, the classical contamination model assumes that each case (which
we will also call data point) either comes from the population of interest or is completely
erroneous and contains no useful information at all. For most standard robust procedures it
is necessary that at least half of the points are clean because otherwise there is a possibility
that the estimate will focus on estimating the contaminating distribution instead of the
distribution of interest. In reality, however, it is often the case that different variables in
the dataset are measured by different devices, recorded by different people and therefore
may be contaminated by themselves independently of other measurements in the same
row/case/subject. Typically there will be groups of variables that are either clean or
contaminated together but a variety of configurations is possible. These contamination
models have been formalized by Alqallaf et al. (2009) and formally we can express the
observed random p× 1 vector X as

X = (1−B)X0 + BX∗, (2.1)

where X0 is a random vector following the distribution of interest, X∗ is the contaminating
distribution and B is a random diagonal matrix consisting of Bernoulli random variables
with probabilities εj , for j = 1, . . . , p. The dependence structure of diag(B), in the general
case, can be arbitrary. Model (2.1) encompasses a broad range of contaminating scenarios
and includes the classical contamination model when all elements of diag(B) are replicates
of the same random indicator, e.i. B = BIp, with B following a Bernoulli distribution.

2.1.2 Independent contamination model

Although certain aspects of the general model (2.1) can and have been studied by Alqallaf
et al. (2009) it is undeniably complex and little can be done to solve it in its entirety.
In this paper we will restrict attention to one special case that lies on the opposite end
from the classical contamination model: the independent contamination (IC) model. It
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assumes that all elements of diag(B) are mutually independent and so are the elements
of X∗. It means that every component of every realization of X comes either from X0 or
from X∗ independently from the remaining p− 1 components. Under this contamination
model, instead of contaminated data cases we will deal with contaminated data values (or
data cells). Alternatively, this can be called univariate contamination to contrast it with
the multivariate structural contamination of the classical robustness. It is possible that
different variables have different probabilities of being contaminated but for simplicity we
will often assume that they are all equal to a common ε > 0.

One of the most important distinctions between the classical and the independent
contamination models is the interpretation of ε. An important quantity that is most
directly affected by it is the number of clean data points available for analysis. In the
former, a contaminated dataset will have proportion (1− ε) of completely clean cases that
can be used for estimation after discarding/downweighting the erroneous ε fraction. In
the latter, however, on average only (1−ε)p of cases are entirely from X0. For larger p this
number maybe be very small or even result in not having clean cases at all which rules out
the possibility of simply discarding/downweighting all contaminated cases altogether. This
means that classical robust methods are not well suited for estimation on independently
contaminated data and new specialized methods are required. Alqallaf et al. (2009) have
quantified this statement and we will return to it later in this section.

2.1.3 Effect of independent contamination on classical estimates

The negative effect of independent contamination on non-robust scatter estimates can be
seen from two sides: (a) asymptotic or distributional point of view; and (b) its effect on
finite samples.

The former is relatively easy to describe. The Gaussian MLE of the scatter matrix
is the sample covariance matrix which treats multivariate data in a pairwise fashion. To
understand the effect of contamination on such an estimate we only need to consider two
independently contaminated variables X1 and X2 and investigate how their variances and
covariances compare to the corresponding moments of clean X01 and X02. As can be
seen from the algebraic manipulations shown in Appendix A.1 the effect of independent
contamination is the following:

1. Variances VarXj overestimate true variances VarX0j depending on the magni-
tude (second non-central moment) of X∗. For typical contaminating distributions
they overestimate the clean variances but can also slightly underestimate them if
the contamination is, in fact, inlying instead of outlying. The bias in the variance
estimates is unbounded.

2. Covariances Cov(X1, X2) underestimate true covariances Cov(X01, X02) in absolute
terms:

Cov(X1, X2) = (1− ε)2Cov(X01, X02)
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and the size of the effect does not depend on the distribution of X∗ but only on the
proportion of contaminated cells. It is the destroyed relationship between the two
variables that matters but not the exact form of the disturbance.

3. Correlations are also guaranteed to get closer to zero but since they are affected by
the estimated variances the effect depends on the magnitude of the contamination:
large values of X∗ will push estimated correlations closer to zero.

Although a little more algebraically involved, expected values of covariance estimates
on finite samples under IC are similar to the asymptotic effects described above. The
bias (to the covariance estimates) does not appear to be gross regardless of the value of
contamination and one may even think that classical estimates of covariances are relatively
robust under the independent contamination model. It seems obvious, however, that even
only a pair of large erroneous values can completely destroy the estimate on a finite sample.
The easiest way to describe this lack of robustness is by looking at the sample variance of
the estimate when data are independently contaminated by large values.

The closed form algebra of dealing with fourth order moments (variances of variances)
is not enlightening, so we show, in Table 2.1, some numerical results illustrating the dan-
gers that untreated independent contamination poses to finite sample estimates. We have
generated bivariate normal datasets of n = 100 centered at 0 with unit variances and
correlation of 0.5. Then we contaminated them with a variety of point-mass independent
contamination located at the values ranging from 1 (inlying) to 40 (grossly outlying) and
the proportion of contamination ranging from 0 (clean data) to 20%. As contamination
gets further away from the center, the sampling standard deviation of the covariance esti-
mate increases quadratically and has no bound even when the fraction of contamination
is small. Estimating a parameter with true value of 0.5 using an estimate with sampling
standard deviation of 25 (or more), is useless for all practical purposes. This illustrates
the importance of developing robust methods capable of dealing with this kind of contam-
ination.

Value of contamination
ε 1.00 2.00 5.00 10.00 20.00 40.00
0 0.11 0.11 0.11 0.11 0.11 0.11

0.05 0.11 0.12 0.22 0.56 1.94 7.44
0.1 0.11 0.14 0.32 0.99 3.67 14.39
0.2 0.11 0.16 0.50 1.70 6.53 25.82

Table 2.1. Sampling standard deviations of pairwise covariance estimates based on indepen-
dently contaminated sample of size 100. The true covariance is equal to 0.5.

Although we will only study multivariate scatter estimates, similar observations can
be made for the linear regression problem. On average, independent contamination will
result in OLS regression coefficients being pulled closer to zero or, in other words, weaker
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estimated relationship between the response and predictor variables. On finite samples,
however, behaviour can be erratic and very unstable if the contamination is far from the
center of the data.

2.1.4 Affine-equivariant robust estimates

2.1.4.1 Lack of affine-equivariance

Affine equivariance is an important and often desirable property of statistical estimates.
It guarantees that the estimate will behave in an easily predictable deterministic way if
the data were subjected to an affine transformation. More specifically, a location estimate
T (X) and a scatter estimate Σ(X) are called affine equivariant if, for any vector a and a
non-singular square matrix B,

T (a + BX) = a + BT (X) (2.2)

Σ(a + BX) = B′ΣB, (2.3)

where X is a p× n data matrix.
The concept of affine equivariance is, however, quite alien to the independent contam-

ination model we are considering in this work. Non-trivial linear transformations will mix
clean data cells with contaminated ones yielding a case with every single value having
some contamination in it. If the transformation is well mixing and the dimension of the
data is relatively high then even a relatively small fraction of independent contamination
in the original data may yield a transformed data set with no clean cases at all.

This phenomenon of propagation of outliers has been well studied by Alqallaf et al.
(2009) who showed that affine equivariant estimates (which is to say almost all stan-
dard robust procedures) of location and scatter do not perform well under independent
contamination. They have proven that all reasonably behaved (i.e. δ-consistent, see the
original paper for definition) location estimates that are affine equivariant will have a low
breakdown point of, at maximum, 1 − 0.51/p, which approaches zero as the dimension p

increases.
The conceptual problem with such estimates is that they require a certain propor-

tion (at least 50%) of data, that is cases, to be sampled from the uncontaminated distri-
bution of interest. Under the independent contamination model the majority of cases will
have at least some components contaminated and therefore won’t satisfy this requirement.

2.1.4.2 Breakdown of scatter matrices

The theorem and the concept of δ-consistency in Alqallaf et al. (2009) is only formulated
for location estimates but scatter matrices can be affected by independent contamina-
tion just as severely. We have conducted a simple simulation experiment to demonstrate
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ε log Condition Number log Determinant
MCD S-est MLE wins MCD S-est MLE wins

0 0.80 0.75 0.73 0.71 −0.64 −0.14 −0.13 −0.34
0.01 0.81 0.79 1.36 0.72 −0.50 1.35 229.03 0.22
0.02 0.82 0.81 1.08 0.71 −0.41 3.11 236.44 0.74
0.03 0.85 0.84 0.98 0.72 −0.30 5.36 240.59 1.28
0.04 0.87 0.87 0.88 0.72 −0.25 8.43 243.44 1.79
0.05 0.92 24.71 0.88 0.72 −0.22 34.13 245.60 2.31
0.06 0.94 25.16 0.83 0.73 −0.21 59.44 247.34 2.80
0.07 25.39 25.52 0.81 0.71 24.72 69.05 248.81 3.30
0.08 25.72 25.79 0.80 0.73 49.97 91.80 250.05 3.80
0.09 25.91 25.94 0.79 0.71 75.33 114.85 251.13 4.29
0.1 26.07 26.09 0.78 0.72 100.65 126.96 252.08 4.78

Table 2.2. Breaking down (boldface) of affine equivariant estimates of multivariate scatter.
Fraction ε of contamination (with value 106) was placed independently on each of the 10
variables in the dataset.

this phenomenon. We generated 200 datasets of size 500 drawn from N (0, I10) and con-
taminated them with various amounts of point-mass independent contamination ranging
from ε = 0.01 to ε = 0.10. The point mass was put at the large value of 106 to make the
breakdown more obvious.

To assess the performance of the estimates we used the logarithm of the condition
number of the estimated covariance matrix. This is a widely used quantity to evaluate
deviations in the shape of the scatter estimate. It is recommended by Maronna et al.
(2006) and we will use it extensively throughout this thesis. For these simulations we also
report the logarithm of the determinant of the estimated matrix which naturally measures
how well the scale of the matrix is estimated. It can be seen as a complementary measure
to the condition number which effectively factors the scale out. Note that both logarithmic
measures would be equal to 0 if applied to the true scatter matrix I10. For each value of ε
the data generation and estimation was repeated 200 times and medians are reported.

The first thing one might wonder when looking at Table 2.2 is why the first line
corresponding to ε = 0 does not consist of all zeros. The reason is that the numbers
shown represent the expected values of the statistics computed on a finite (n = 500) data
set. Although these statistics are asymptotically unbiased, they are not unbiased when
the sample size is finite. Even when data are completely clean and the most efficient
estimate (MLE) is used, the estimated covariance matrix is expected to have slightly
smaller determinant and somewhat larger Condition Number. The expected value of the
former is n!/(np(n−p)!) < 1, as shown, for example, in Goodman (1963). And the latter is
very natural because the Condition Number is restricted to be larger than one by definition
and therefore it can only have expected value equal to one if it has no variability at all,
which, obviously, is not the case on finite data. In light of this, we will simply consider
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the line ε = 0 as the benchmark to compare against.
As shown in Table 2.2, the Minimum Covariance Determinant (MCD) scatter esti-

mate (computed with Fast-MCD algorithm by Rousseeuw and Van Driessen (1999)) has
no difficulties dealing with contamination up to ε = 0.06, but at ε = 0.07 it breaks down
and grossly overestimates both the condition number and the determinant. Note that with
ε = 0.07 the average proportion of completely clean cases in a 10-dimensional data set is
(1 − ε)p = (1 − 0.07)10 = 0.48, which is just under 50%. With MCD, the reason for this
breakdown is really simple: the estimate is equal to the sample covariance matrix of the
subset (of size n/2) of the data that minimizes its determinant. But now all subsets of size
more than n(1 − ε)p contain at least some contaminated cases that cause the covariance
matrix to explode. The breaking down of the condition number is less intuitive and is due
to the optimization part of the MCD — it chooses a subset that has as many variables
uncontaminated as possible to minimize the determinant, which is approximately equal to
the product of the diagonal elements in this uncorrelated case.

Similar things happen to the S-estimate except that it breaks down even earlier at
ε = 0.05 which yields n(1 − 0.05)10 = 0.6n completely clean cases on average. Since the
breakdown point of S-estimates is known to be 50% this early failure is likely due to the
insufficient search in the numerical algorithm (Fast-S).

For comparison we also show the results for the sample covariance, which explodes in
size as soon as any contamination is introduced but seemingly preserves its perfectly round
shape. The apparently good performance of the MLE in terms of condition numbers is
solely due to the fact that the true covariance matrix in this experiment was identity and
that the contamination was placed equally on all variables. Had any of these two conditions
been violated, the shape of the MLE covariance would have been affected dramatically by
the contamination.

On the other hand, this gross contamination can easily be dealt with by employing one
of the simplest non-affine equivariant estimates — the Winsorised covariance. For each
variable j = 1, . . . , p, estimate its center m̂j with median, and its standard deviation ŝj

with Median Absolute Deviation (MAD). Then replace each univariate value x in the jth
variable by xwins = m̂j + sign(x − m̂j)min

(
2.5, |x−m̂j |

ŝj

)
ŝj . After all variables have been

independently Winsorised, compute the sample covariance matrix of the modified dataset.
The last column in Table 2.2 shows that the determinant of the Winsorised estimate is
affected by the contamination but no abrupt breaking down takes place. Such a crude
estimate performs reasonably well when the true covariance matrix is diagonal, i.e. the
data have no structure, but in most practical situations it is far from being the best.
In this paper we will review, propose and compare several approaches for dealing with
independent contamination.
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2.1.4.3 Practical difficulties

Dealing with non-affine equivariant models and estimates has one major inconvenience:
there is a continuum of different data configurations (covariance structures) that cannot be
reduced to one standardized scenario (e.g. identity covariance) without loss of generality.
If we can fully study and understand how an affine-equivariant location-scatter estimate
behaves under spherical data then we can easily deduce its properties under any elliptical
distribution from the same family. This, unfortunately, is not the case with independent
contamination and non-affine equivariant estimates. For example, as we showed before,
the IC can only make estimated correlations closer to zero if an OLS estimate is used
and therefore poses little threat to the shape estimates when true correlations are already
equal to zero. Strong relationships in a highly correlated data can be completely destroyed
by IC and the estimated shape may be very different from the true one.

One thing that will make our studies easier is the fact that independent contamination
is invariant to non-mixing transformations of data which include translations and scaling.
Whether a value is contaminated or clean, the addition or multiplication of it by any-
thing (but 0) will preserve its status. Having this in mind, we will make sure that all our
estimates are translation and scale equivariant, which, in turn, allows us to focus on data
centered around zero with unit variances.

Understanding that the “degree of dependence” in the data is the key factor affecting
the amount of damage that can be done by IC, in all our exploratory simulation studies
we will focus on three typical scenarios that we will call “low”, “medium” and “high”
correlation. We have chosen and fixed three matrices for each dimension p in the following
manner. First, generate an i.i.d. sample of size n from Np(0, I) with values of n depending
on the desired degree of dependence. Then let the covariance matrix of future Monte
Carlo data to be the sample covariance of this small sample. We used n = p+ 1 to obtain
“highly” correlated data, n = p + 5 for “medium” correlation and n = 10p for “low”.
Of course, these matrices would be different every time a new sample is generated so we
produced them once and saved for future use throughout the paper. Table 2.3 shows some
characteristics of the pre-chosen simulation matrices for several typical dimensions.

Another compromise that needs to be made is the way in which we evaluate the
performance of matrix estimates. We are faced by two problems: (a) the lack of affine-
equivariance forces us to use various data scenarios but we would like to have performance
measures comparable across them; (b) matrices are complicated and multidimensional but
we would like to have a simple scalar measure evaluating their performance.

The first issue is addressed by standardizing covariance estimates Σ̂ using the known
target value of Σ. When estimates are fully affine equivariant this step guarantees that our
performance measure is affine invariant. In our case, however, it is impossible to have a
fully affine invariant measure and this step will only make the numbers comparable across
different covariance scenarios. The natural standardization implied by affine invariance
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max EV min EV det1/p avg cor max cor
low 1.3 0.72 0.98 0.099 0.19

p = 4 med 2.4 0.15 0.63 0.41 0.76
high 2.3 0.036 0.47 0.42 0.77
low 1.5 0.57 0.96 0.069 0.19

p = 10 med 2.5 0.045 0.61 0.23 0.56
high 3.2 0.00068 0.22 0.3 0.76
low 1.6 0.50 0.95 0.055 0.19

p = 20 med 2.8 0.0042 0.53 0.143 0.59
high 3.6 0.0013 0.37 0.167 0.66

Table 2.3. Summary of the selected covariance matrices used in all further simulations.
Maximum and minimum eigenvalues, a power of the determinant and average and maximum
absolute correlations are shown.

considerations is given by the sandwich formula:

std∗(Σ̂) = (A−1)′Σ̂A−1, (2.4)

where A is the matrix used to linearly transform spherical data into elliptical. In partic-
ular, A′A = Σ. One problem is that when only Σ is known then its square root, that
is matrix A, is not fully defined. For any A such that A′A = Σ, and any orthogonal
matrix R, their superposition RA is also a square root of Σ because (RA)′(RA) =
A′(R′R)A = A′A = Σ. This means that standardizing operation is not fully defined
in (2.4) as a function of Σ. Requiring the square root matrix A to be symmetric is a com-
mon remedy to this problem. Although it makes the procedure well defined, it remains
somewhat arbitrary in the sense that the symmetric square root matrix is not necessar-
ily the same as the matrix that was originally used to transform the spherical data into
elliptical. Another problem with using the obvious standardization in (2.4) is that it
puts a little bit of extra computational burden on us. Instead, we will use the simplified
standardization formula:

stdΣ(Σ̂) = Σ−1Σ̂. (2.5)

It can easily be seen that eigenvalues of matrices in expressions (2.4) and (2.5) are the
same. As will be explained in the next paragraph, our performance scalar measure is
solely based on eigenvalues of the estimated matrix and therefore both standardizations
are equivalent for our purposes. The latter, however, does not involve picking an arbitrary
square root of Σ and takes one matrix multiplication less than the former.

Once we have the standardized estimate Σ̂0 = stdΣ(Σ̂) we want to describe how much
it deviates from its target value, the identity matrix, by a single scalar value. There
are many ways to that. For example: (a) log det

(
Σ̂0

)
, the logarithm of the generalized

variance, which is equal to zero when Σ̂0 = I and the sign indicates if the variance
is under- or over-estimated; (b) log(cond(Σ̂0)), the logarithm of the condition number,
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which ignores the scale and focuses on the shape of the covariance matrix; (c) ‖Σ̂0 − I‖2,
Frobenius norm of the difference between matrices; and there probably exist many others.
For this paper we choose just one measure and use it repeatedly. The measure we employ
has a reasonable statistical interpretation and therefore seems to be a decent candidate.
It is defined as

dLRT(Σ̂0) = tr Σ̂0 − log det
(
Σ̂0

)
− p. (2.6)

In order to understand it, consider testing H0 : Σ = I vs HA : Σ 6= I based on a sample
of size n from Np(0,Σ) such that its sample covariance matrix is equal to Σ̂0. Then it is
easy to show (Seber, 2004, p.93) that the Likelihood Ratio Test (LRT) statistic is equal
to n × dLRT(Σ̂0). Obviously, dLRT(Σ̂0) = 0 when Σ̂0 = I and since the LRT statistic
achieves its minimum value when Σ̂0 = I, we can conclude that dLRT(Σ̂0) ≥ 0 for any
Σ̂0 ∈ SPD(p). Additionally, we can see that dLRT(Σ̂0) can be expressed as a function
of {λi}, the eigenvalues of Σ̂0, as

dLRT(Σ̂0) =
p∑

i=1

(λi − log λi)− p, (2.7)

justifying the simplified standardization in (2.5).
We will usually consider the average of dLRT(Σ̂0) over a number of replications as the

reciprocal of the measure of performance. Since the quantity is always positive, it is an
alternative to Mean Squared Error (MSE) rather than bias. Like any MSE-type measure,
it is also non-descriptive: it tells us how different the matrices are but does not explain in
which way.

2.1.5 Existing robust methods

When the proportion of contamination is not large, the most popular is case-wise down-
weighting/deletion, that is removal of every data line that has at least one value suspected
to be an outlier. It works fine when there is enough completely clean cases but is obviously
inefficient if one believes that the contamination model is truly independent.

In a recent paper Van Aelst et al. (2009) propose a method to assign weights to
individual cells in a dataset. They consider all cases that receive small weights from
the Stahel–Donoho projection pursuit procedure (Donoho (1982) and Stahel (1981)) and
attempt to restore weights for those cells that “do not contribute” much to the Stahel–
Donoho outlierness. They propose that the location and scatter estimates µ̂ and Σ̂w can
then be computed as

µ̂a =
∑n

i=1wiaxia∑n
i=1wia

, for a = 1, . . . , p, and

(Σ̂w)ab =
∑n

i=1

√
wia

√
wib(xia − µ̂a)(xib − µ̂b)∑n

i=1

√
wia

√
wib

, for a, b = 1, . . . , p,
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where wij is the weight for the jth variable in the ith case. The paper focuses on the
weight assignment procedure and the performance of the location estimate µ̂ but pays
little attention to the scatter estimate Σ̂w. In our work the scatter matrix estimate is of
primary interest.

2.1.5.1 Winsorising and Huberising

Winsorising that we already mentioned above is arguably the next easiest way to proceed.
It acknowledges the nature of the independent contamination and deals with data on a
cell-by-cell — as opposed to case-by-case — basis. This simple method is not without
merit and the biggest conceptual problem with it is that it effectively makes up data that
are not observed. One immediate implication is that, even when there is no contamination
at all, the estimate will have intrinsic bias — an asymptotic bias caused by such systematic
but arbitrary (from the point of view of covariance matrix) modifications. The smaller the
value of the Winsorising constant is, the larger the intrinsic bias it will produce. Large
Winsorising constants, on the other hand, will offer less protection against the influence
of outliers.

Huberised correlation, which is defined as a regular Pearson correlation after applying
xhub = ψ((x − m̂j)/ŝj) transformation, is a generalization of Winsorised estimates. The
function ψ(·) can be any odd, bounded and non-decreasing. Winsorising is a special case
when ψ(x) = min(x, k) for x > 0, with k being the Winsorising constant. Huberising
gives more flexibility but does not address the fundamental problem of the intrinsic bias.
Huberised estimates of scatter matrices and some approaches to eliminate intrinsic bias
have been studied by Alqallaf (2003).

A step further in this direction is the approach suggested by Little and Smith (1987)
that completely removes suspicious data cells from the analysis by marking them as missing
values and computing the Maximum Likelihood (ML) covariance estimate on the incom-
plete data. It does not eliminate intrinsic bias either. We will study these estimates in a
more systematic fashion in Section 2.2.

2.1.5.2 Pairwise estimates

To approach the problem of independent contamination from a completely different angle it
has been suggested that pairwise estimates can be of use (e.g. Rousseeuw and Molenberghs
(1993) discussed this in other contexts). Recall that the main reason why standard (affine-
equivariant) robust estimates cannot be used is that the proportion of completely clean
cases (1 − ε)p may drop below 50% when the dimension p is large. Therefore it seems
reasonable that we can compute each element of the scatter matrix by considering only
two variables at a time. If the bivariate covariance estimate is robust with breakdown
point of 50% then we can allow ε as large as 1−√0.5 = 0.29 and still have a reasonable
estimate of the scatter matrix. After all, the usual sample covariance matrix is just a
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collection of bivariate covariances. If each bivariate estimate is unbiased or consistent
then the resulting matrix estimate is naturally unbiased or consistent by construction as
well.

Difficulties arise when such estimates are computed on finite samples. The immediate
problem that one runs into when attempting to implement this idea is that, unlike its
non-robust counterpart, the resulting matrix is not guaranteed to be semi positive defi-
nite (SPD), which is a necessary property if it is intended to be used in any kind of spectral
analysis. Methods have been proposed to deal with this problem and to force positive def-
initeness onto the estimated scatter matrix (see the previous reference or Maronna and
Zamar (2002), for example). What this correction fails to address, however, is that the
finite sample pairwise estimate, even if positive definite, does not capture the multivariate
spectral structure of the scatter matrix well. This, of course, is more pronounced when
there is some non-trivial structure in the true scatter to begin with. Matrices with weak
correlations, especially in low dimensions, can be estimated reasonably well by pairwise
estimates.

Looking back at the Winsorised/Huberised estimates one may think that the intrinsic
bias can be corrected by adjusting the estimated pairwise covariances using the knowl-
edge of the ψ-function and assuming multivariate normal distribution of the data. Such
corrections, indeed, can be made, producing an estimate which is unbiased under no-
contamination model but they will disturb the spectral structure and may even result in
non-SPD results. Such a method would be pairwise in nature and share all the deficiencies
that we have described above.

See Alqallaf (2003) for more elaborate comparison of Huberised correlation estimates
with pairwise quadrant correlations. We will largely ignore pairwise estimates and focus
on those that attempt to capture the fine structure of the data.

2.2 General approach to independent contamination

2.2.1 Basic idea

In this paper we will focus on methods of dealing with independent contamination that
can be described as a three-stage process: (a) detect contamination; (b) process it in
some way; (c) apply a standard (e.g. maximum likelihood) estimate of location-scatter
to the processed data. The last step is largely determined by the first two which vary
depending on the specific method being used. In this section we will discuss what options
are available and elaborate on some of them. Section 2.3 will describe outlier detection in
more detail.
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2.2.2 Detection of contamination

Identifying which data cells might not be coming from the distribution of interest is the
first and arguably the most important step of analyzing contaminated data. Note that we
will be focusing on data cells rather than data cases which were the primary unit of interest
for affine equivariant robust estimates. We can crudely classify all detection techniques
into univariate and multivariate. The former will treat each variable independently from
all others and will only use information within this one variable to decide which cases are
likely to be contaminated. The latter will try to use assumed relationships in the clean
data to flag data values that do not fit them very well. We will discuss both strategies
later in this subsection.

What is common between all detection strategies is that they try to maximize recall,
i.e. the proportion of contaminated values that are identified as such, and precision, i.e. the
proportion of tagged values that are indeed contaminated, and to find the optimal balance
between them. We want to detect as much real contamination as possible while minimizing
the number of false positives, i.e. clean data cells mistakenly labelled as contaminated. The
exact price of mistakes of both kinds depends on the subsequent processing but whatever
is being done there are some commonalities worth mentioning. Letting contamination go
undetected will cause larger contamination induced bias. If the detection method allows
large contamination to slip through then the damage can be quite dramatic. Filtering
out too much of the good data has three negative effects: (a) when data are clean the
resulting estimate may acquire intrinsic bias; (b) reduced amount of good data may lead
to the loss of efficiency of the resulting estimate; (c) less good data to counterweight
contamination may cause higher contamination-induced bias. Most detection methods
have a cutoff constant that allows fine tuning of this balance.

2.2.2.1 Univariate detection

This is the simplest mechanism widely used in practice even when users are unaware
that they are dealing with independent contamination. It proceeds by computing robust
estimates of location m̂j and scatter ŝj for each variable Xj , computing z-scores

∣∣∣xij−m̂j

ŝj

∣∣∣
for each data value xij and comparing it to a fixed threshold. Any value above the
cutoff is flagged as potential outlier. When the clean data are assumed to follow a normal
distribution the cutoffs are usually chosen somewhere between 1.5 and 3.5. Anything larger
than 3.5 guarantees that the number of false positives is very close to zero and therefore
there is little need to chose it much larger than 3.5. Going below the value of 1.5, on the
other hand, would filter out too much good data (13%) and is typically deemed as too
much sacrifice. Outliers normally cause ŝj to overestimate the true standard deviation
and the detection won’t be as harsh as it may seem assuming that the scale is known.

Instead of comparing z-values to a fixed cutoff it is also possible to do trimming, that is
to label the [αn] largest as well as [αn] smallest values for each variable as outliers. Other
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ad-hoc approaches to univariate contamination detection can be imagined but we do not
attempt to create a comprehensive list here. We also do not compare these approaches
to each other and will always use the z-score method with an appropriate cutoff when
referring to univariate detection.

These methods work great for detecting truly gross contamination and even by them-
selves are capable of preventing an estimate from premature breakdown. The problem is
that they allow moderate contamination (with z-values around and under the cutoff) go
unnoticed, which, depending on the true covariance structure, can still cause serious bias.

2.2.2.2 Multivariate detection

When the true covariance matrix is not diagonal and the variables are correlated then each
data value in the data set carries some information about the values of other variables in
the same case. Likewise, knowing (p − 1) components of a random p-vector may give us
a good idea what the remaining value should be, provided that we know the true scatter
matrix and the distribution family which the data come from. One can imagine a variety
of methods that exploit this relationship to detect contaminated values. One such method
was proposed by Little and Smith (1987) and compares the Mahalanobis distance (to the
estimated center) of a full case to the Mahalanobis distance of a leave-one-out (p−1)-tuple.
Generally speaking this is a step forward from the univariate approach as it uses more
information available in the data. The problem, however, is that the true scatter matrix
is usually not known because it is the very thing that we are trying to estimate.

There are a number of open questions with this approach and we have some ideas
and modifications for it that we will discuss in Section 2.3 together with some numerical
simulation results comparing the performance of various detection methods.

2.2.3 Processing of contamination

2.2.3.1 Overview of various methods

Once the contaminated data cells have been detected, an action needs to be taken to
eliminate or, at least, reduce their negative influence on the estimate. We will describe
three general approaches in this section.

Winsorising is the simplest procedure. When a data value is too large to be plausible
under a given model it can simply be pulled closer to the assumed center until the value is
believable. If a cutoff for z-score has been used then Winsorised values are taken according
to the following rule:

xwins =





x if |x− m̂j | ≤ cwinsŝj

m̂j + cwinsŝj if x > m̂j + cwinsŝj

m̂j − cwinsŝj if x < m̂j − cwinsŝj ,
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where cwins is the cutoff from the univariate detection process. Winsorising can also be
used with multivariate detection procedures but we will discuss it in Section 2.3.

This contamination processing method is very simple and does not require any spe-
cialized maximum likelihood procedure to compute the estimate afterwards as the sample
covariance can be computed on the Winsorised data set. It is relatively good at preserving
the information in clean data that was mistakenly classified as contamination. Even after
Winsorising, the information that a relatively large value on the given side of the center
has been observed is still available in the modified data set. The price for this is the fact
that outliers will still have their direct say in the final estimate. Their influence will be
reduced to an acceptable level but not completely eliminated. A side effect is that most
univariate outliers become equally dangerous as all of them get pulled down to the same
value.

As we mentioned in the introduction, despite being relatively harmless to good data,
Winsorising still has intrinsic bias when some of the good data are labelled as contamina-
tion. Combined with incomplete elimination of outliers’ influence it makes this approach
suboptimal if performance is valued higher than simplicity.

If the whole estimation problem was univariate then Winsorising could be seen as
assigning a weight to large values that is inversely proportional to the value itself. But
when the observed value is very large and it is certain that it does not come from the
distribution of interest, we would often like to completely eliminate such a value from the
analysis. In traditional robust estimates it is done by assigning a zero (or at least o(x))
weight to such observations. At the moment we have not yet figured out a way to assign
an arbitrary weight to a data cell1 but a zero weight can be achieved by removing the
offending value from the data set and marking its spot as missing at random (MAR). This
has been proposed by Little and Smith (1987) in the context of survey questionnaires where
they believed that unusual responses to one question can be removed without discarding
all of the respondent’s data.

After missing values have been introduced the covariance matrix can be estimated
using an appropriate EM-algorithm, which is particularly efficient and straightforward to
implement if the data are assumed to be multivariate normal.

The major advantage of this approach is that gross contamination gets completely
wiped out. If the contaminating mechanism is independent of the clean data then the
removed truly contaminated values are genuinely missing at random. With regards to
good data, however, it still causes some intrinsic bias. If a genuine good data value gets
classified as an outlier and subsequently removed from the data set then it is obviously
not missing at random. The fact that it is missing is directly related to the fact that the
observed value was far from where it was expected to be. One may think that completely
removing a data value is less harmful than changing it to an arbitrary smaller number but

1Of course, we could assign an arbitrary weight to any data cell but we do not have an appropriate
estimation procedure to make use of such an assignment.
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this is not necessarily the case. Winsorising preserves the information that a large value
has been observed while marking it as MAR completely eliminates it, which contributes
to the bias.

To attempt to combine the best of both worlds we propose a method that will not
create arbitrary data values but at the same time will preserve some information about
large values being observed. Instead of completely removing a suspected outlying value
we can artificially censor it. We will record that a large value has been observed —
together with the censoring cutoff and on which side of the center the value appeared —
but will discard the actual value. This censoring information can be incorporated into
the maximum likelihood analysis to be performed on the cleaned data set. The major
advantage is that this method will not have intrinsic bias when data are uncontaminated
and follow the distribution assumed in the MLE because the possibility of false positives
is already incorporated into the analysis. This allows the user to take smaller cutoff
values without the risk of introducing too much intrinsic bias. On the negative side we
can mention that (a) it is harder to implement the censored ML procedure; (b) the true
contamination will still have its influence and affect the estimate in a similar way to what
it does to Winsorised estimates. We will continue the discussion of this method and its
implementation in section 2.2.3.2.

2.2.3.2 Implementation of the censored estimate

The EM-algorithm popularized by Dempster et al. (1977) can be used to obtain the MLE
in this situation. The usual multivariate Gaussian EM-algorithm for MAR data is easy
to implement and is well described in the literature (see, for example, Little and Rubin
(2002)). The modifications to accommodate censored data are relatively straightforward
and we describe them below along with some computational challenges encountered while
implementing them.

The standard EM-algorithm for the multivariate Gaussian data is an iterative pro-
cedure that starts with some (m(0),Σ(0)) and then, at the iteration step t = 0, 1, 2, . . . ,
updates the parameters (m(t),Σ(t)) according to the following rules. First, for each partly
observed case xi, i = 1, . . . , n we define a random variable Xcond

i by conditioning the
multivariate N (m(t),Σ(t)) on the observed part of xi such that Xcond

[i] = x[i]. Then the
estimates are updated as follows:

m(t+1) =
n∑

i=1

EXcond
i , and Σ(t+1) =

n∑

i=1

{
(EXcond

i )(EXcond
i )′ + Cov(Xcond

i )
}
. (2.8)

The distribution for the components of Xcond
i corresponding to the missing parts of xi is
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well known and is multivariate normal itself with parameters given by

(EXcond
i )[−i] = m

(t)
[−i] + Σ(t)

[−i,i]

(
Σ(t)

[i,i]

)−1
(x[i] −m

(t)
[i] ) (2.9)

(Cov(Xcond
i ))[−i,−i] = Σ(t)

[−i,−i] −Σ(t)
[−i,i]

(
Σ(t)

[i]

)−1
Σ(t)

[i,−i]. (2.10)

We use subscript [i] to denote the sub-vector corresponding to the components observed
in the ith case. Similarly [−i] corresponds to all missing components of the ith case.
Submatrices are also indexed in this fashion. The rows and columns of Cov(Xcond

i )
corresponding to the observed values in xi are all equal to zero because of the conditioning.

With censored data there are three types of values in the dataset: (a) observed; (b) left
censored; (c) right censored. It is also possible to have completely missing cases (assumed
to be MAR) but they can be considered as a special case of left-censoring at negative
infinity. For each case xi, we will denote its observed values as x[i], its left censored values
as x[−l(i)], and right censored as x[−r(i)]. In the most general situation each case can have
its own set of censoring values. Let us assume that for each xi we have a corresponding
vector γi of such values. Using censoring information means conditioning our likelihood
inference on the fact that x[−l(i)] > γ[−l(i)] and x[−r(i)] < γ[−r(i)], where vector inequalities
are to be understood as “all components must satisfy”. Components of γi corresponding
to x[i] are ignored.

With censored data, the updating expressions in (2.8) change to

m(t+1) =
n∑

i=1

x̂i, and Σ(t+1) =
n∑

i=1

x̂ix̂
′
i + Ĉi, (2.11)

where

x̂i = E
[
X ∼ Np(m(t),Σ(t))

∣∣∣X [i] = x[i],X [−l(i)] > γ[−l(i)],X [−r(i)] < γ[−r(i)]

]
, and

(2.12)

Ĉi = Cov(X|the same conditions as above). (2.13)

Quantities (2.12) and (2.13) are conceptually simple but unfortunately there are no
closed form expressions similar to (2.9) and (2.10) available in this case. We will eval-
uate them using Monte Carlo methods by taking samples from the conditional distri-
bution. To sample from the conditional distribution in (2.12) and (2.13) we will first
condition N (m(t),Σ(t)) on fully observed values x[i] using expressions (2.9) and (2.10)
and then condition again on the censoring information using Monte Carlo methods. So
in the end the problem reduces to sampling from a non-central octant (defined by γ[−l(i)]

and γ[−r(i)]) of another multivariate normal (which is a conditional itself). The whole
estimation algorithm is outlined below.
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Overview of the algorithm:

(variables in square brackets on the left indicate the depth of nested looping)

• [∅] The outermost is the EM-loop over t: on each step we go from (m(t),Σ(t)) to
(m(t+1),Σ(t+1)) by using expression (2.11). Iterate until some convergence criterion
is reached.

• [t] For each case i, we need to compute its x̂i and Ĉi which are the first and second
moments of a conditional distribution specified in (2.12). The rest of the algorithm
explains how to do this.

• [t, i] Use Monte Carlo to compute the moments. Need to sample from the conditional
distribution Np(m(t),Σ(t)) given X [i] = x[i],X [−l(i)] > γ[−l(i)],X [−r(i)] < γ[−r(i)].

The rest of the algorithm explains how to sample from it.

• [t, i] Condition Np(m(t),Σ(t)) on fully observed values x[i] first: the distribution is
the multivariate normal with parameters given by (2.9) and (2.10). Let us call these
parameters mc and Σc, where “c” stands for conditional and subscripts t and i are
omitted for brevity. Dimension of this conditional distribution is qi, the number of
censored values in the ith case.

• [t, i] Sample from Y ∼ Nqi(mc,Σc) conditional on the censoring information which
we can re-index as Yj > γj for j = 1, . . . , qi. Without loss of generality we can
assume that all censoring is done on the left — otherwise just multiply both Yj

and γj by negative one. The rest of the algorithm explains how to sample from the
censored distribution.

• [t, i] Use Gibbs sampler (e.g. Casella and George (1992)) to sample one variable at
a time, conditioning on the rest of the case. Iterate through variables j = 1, . . . , qi
in a loop for NB +NG full circles to obtain NG samples and discard the first NB as
burn-in. The rest of the algorithm gives details of the Gibbs sampling.

• [t, i] Initiate y with yj = max(γj , (mc)j), for j = 1, . . . , qi.

• [t, i, j] Conditional distribution of the jth variable given Y−j = y−j is a trun-
cated (Yj > γj) univariate normal with parameters m̃j and σ̃2

j which can be com-
puted using the same formulae as in (2.9) and (2.10):

m̃j = (mc)j + (y−j − (mc)−j)((Σc)−j,−j)−1(Σc)−j,j

σ̃2
j = (Σc)j,j − (Σc)j,−j((Σc)−j,−j)−1(Σc)−j,j .

• [t, i, j] To get one sample from the truncated multivariate normal, take

yj = m̃j + σ̃2
j Φ

−1(U), where U ∼ Uniform
(

Φ
(
γj − m̃j

σ̃j

)
, 1

)
. (2.14)
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This idea was discussed in Robert (1995). The paper also offers improved methods
of sampling from truncated distributions but we decided to use this simple method
for our estimate.

The number of samples NG that we obtain using the Gibbs sampler to compute ex-
pectations x̂i and Ĉi is a performance tuning parameter. In the ideal world without time
limitations, we would take NG = ∞ and that would give us exact values for the inte-
grals. In practice, however, we use the Gibbs sampling as an intermediate step of the
EM-algorithm, and it may not be worth our time to compute the integrals precisely when
(m(t),Σ(t)) are still far from their limiting value. Therefore we propose to increase NG as
EM-iterations progress. In our implementation we started with NG = 100 and doubled it
every time the following condition hold true:

δ(Σ(t+1),Σ(t)) > δ(Σ(t),Σ(t−1)), with δ(Σ1,Σ2) =
∑p

a=1

∑p
b=1 |Σ1ab −Σ2ab|

trΣ1
. (2.15)

This is based on the understanding that if {Σ(t)} is on its way to convergence then the
consecutive improvements will be smaller and smaller. But once the error in x̂i and Ĉi

due to insufficient NG is comparable to the variation from one step of EM to another, the
pattern will not have to hold anymore and the condition (2.15) be satisfied eventually.

2.2.3.3 Numerical comparison of the three methods

To shed some light on the relative performance of the methods described above (MAR,
Winsorising and censoring) we conduct a simple simulation study.

Clean data are generated from the 20-variate normal distribution with high correla-
tions (see section 2.1.4.3); sample size n = 200. Once clean data are generated we inject
a certain fraction ε of univariate point mass contamination in each of the 20 variables
independently. The contamination is located at value k that varies from 0 to 5; once
k > 5 (and probably even earlier) the contamination will be detected with 100% certainty
and thus the performance of the methods will not depend on k anymore. We consider
two different scenarios: (a) ε = 0.005, which is a very small proportion of contamination;
(b) and ε = 0.05 which represent a significant amount of contamination. Remember that,
on average, proportion 1− (1 − ε)p ≈ p × ε of all cases will be at least partially affected
by such contamination: that is 9.5% and 64% respectively.

Univariate detection is then applied to each dataset. We used two different cutoffs:
2.0 and 2.5 to demonstrate what effect this choice has on the final estimates. After that,
the three estimates, are computed on the datasets: (a) one will mark all suspect values as
MAR and then compute the MLE; (b) Winsorising will bring larger (in absolute value)
values down to the cutoff and compute the sample covariance matrix of modified data;
(c) and censoring estimate will also bring larger values down to the cutoff but treat them as
censored while computing the MLE (see section 2.2.3.2 for the details of implementation).
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Once the estimate Σ̂ is computed we standardize it using the true known covariance
matrix: stdΣh

(Σ̂) = Σ−1
h Σ̂, and assess its deviation from the identity matrix I by using

the LRT-type statistic dLRT(stdΣh
(Σ̂)), described in section 2.1.4.3. We focus on the

performance of the covariance estimates.
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(d) ε = 0.05, cutoff= 2.5

Figure 2.1. Comparison of the three ways of processing contaminated values. See entire
section 2.2.3.3 for discussion.

The whole process is replicated 500 times and the average of the dLRT(stdΣh
(Σ̂)) scores

is computed for all 2(values of ε)×2(cutoffs)×3(estimates)×(various values of k) scenar-
ios. To simplify our language we will call this MSE-LRT-type quantity bias throughout
this section but, in fact, it is closer to the MSE as it combines actual bias with the finite
sample variability. The results, as functions of k, are shown on the four panels in Fig-
ure 2.1.

The general trend in all four scenarios is what one would expect: the bias increases as
contamination moves away from the center until it is detectable by the given cutoff. Once
contamination is detected, it does not matter anymore how gross it was. The censored
and Winsorised estimates will remain constant and the bias of the MAR estimate will
drop down to almost zero. This makes a strong case for using MAR approach when
contamination is expected to be large.

Comparing panels 2.1(a) and 2.1(b), which differ in the value of the cutoff used for
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detection, we can see two distinct phenomena happening. First, with larger cutoff, the
worst possible bias, achieved near the cutoff value, is higher. This is no surprise because
we allow larger contamination to go unnoticed and affect the estimate. The same can be
said when ε = 0.05 in figures 2.1(c) vs 2.1(d). Second, with smaller cutoff, the discrep-
ancy between Winsorised and censored estimates is more pronounced. As the fraction of
contamination is very small here (only 0.5%), this is almost the ideal scenario for which
censored estimate is designed. It makes the best use of the clean data and would be com-
pletely unbiased if there was no contamination at all. The other two estimates modify
clean data which results in some distortion of estimates. With larger cutoff, such as 2.5,
only 1.2% of clean data are affected and is not of much importance. When cutoff is equal
to 2.0, a whole 5% of clean data are being modified by the MAR and Winsorised estimates
and we can see that the censored estimate has the lowest bias.

Another interesting comparison is across different levels of contamination, or rows in
Figure 2.1. Obviously, the overall level of bias is much higher when more contamination
is present. Other than that, we can also see that for gross, and hence fully detected,
contamination, censored estimate appears to be better than Winsorised when ε = 0.005,
but the reverse holds when ε goes up to 0.05. As mentioned before, the former is due to
the superior handling of clean data by the censored estimate. For larger ε, however, con-
tamination plays the more important role and overrules the small improvement achieved
by handling clean data with care. The censored estimate appears to have larger worst bias
than Winsorised because of the way the detected contamination is handled. Simplifying
things a little bit, we can say that censored ML estimate treats censored values as if they
were equal to EN[X|X > cutoff] which is always larger than the cutoff value itself. This
produces larger bias than that of Winsorised estimate. This is not to be considered a
drawback of censored estimates as their cutoff can be taken smaller without inducing too
much intrinsic bias due to modifying clean data.

To summarize our understanding of the three estimates we do a quick bullet-point
summary of pairwise differences between them. We start with the comparison of Censored
vs Winsorised estimate:

• The two estimates are very similar from the point of view of performance.

• Censoring offers better treatment of clean data. It is more conceptually sound be-
cause no data are being modified. But the numerical difference when estimating
covariance matrices is fairly small and may be lost or obscured if non-negligible
fraction of contamination is present.

• Censoring also treats outliers somewhat better. Censoring does not fix suspected
data at a particular value but rather specifies an interval where it is allowed to be
placed in an attempt to maximize the likelihood function. This slightly reduces the
influence the contaminated value has on the estimate. It must be noted that both
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censoring and Winsorising treat truly contaminated data in a suboptimal way. The
difference between this bad and that bad is very subtle and can hardly be observed
in simulations or actual data analysis.

• Censoring is slower to compute and conceptually more complicated. This seems to
be the only drawback of the method compared to Winsorisation and if one were not
under any time performance constraints then censoring should always be preferred.
Note that cutoffs should be lowered accordingly to avoid extra bias as shown in
Figures 2.1(c) or 2.1(d).

Comparing Censoring vs Marking-as-MAR approaches we can say the following about
censoring:

• Censoring provides better treatment of clean data. Systematic elimination of large
data values as done by MAR-treatment causes intrinsic bias. This improvement
is noticeable when very little contamination is present but otherwise is of little
importance.

• Censoring is much worse with respect to how it deals with true contamination.
Outliers still do have an impact on the estimate instead of being completely removed
from the analysis. This can become very important if many gross (i.e. larger than
the cutoff) outliers are observed.

• Implementation of the censored MLE is considerably slower than the MLE assuming
MAR. The EM-algorithm implementation of the latter is very simple and compu-
tationally efficient. Adding censored observations into the process makes it slower
because closed form E-step is not possible anymore (see section 2.2.3.2).

• It is harder to combine censoring with multivariate detection. Although it appears
to be possible to use censored estimates based on results of multivariate detection,
we have not implemented it in this thesis. Because of this limitation we have not
been able to compute the combined estimate that seems to be the natural conclusion
from all the above: high-cutoff multivariate detection to mark definite outliers and
low-cutoff multivariate detection to censor values that are only suspicious, followed
by an MLE using all the detection results.

And finally Winsorising vs Marking-as-MAR:

• Everything that was just said above about censoring and Marking-as-MAR applies
to the Winsorising except the comment about computational efficiency. MAR-
approach, even with Gaussian EM-algorithm, is computationally more complex than
the sample covariance used in Winsorising.

Based on the results of this section we have chosen MAR-approach as our preferred es-
timate and will consequently use it in conjunction with various multivariate detection
techniques described in section 2.3.
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2.3 Multivariate detection of independent contamination

2.3.1 Basic principle: sharing information between variables

We may say that the univariate detection method judges individual data values based on
how well they fit with the rest of the data from the same column. If a value falls too far
from its expected value as measured by its estimated standard deviation then we have
reasonable ground to believe that it does not come from the same distribution as the rest
of this variable and therefore can be labelled as outlier.

When data are multivariate and have non-trivial dependence structure this thinking
can be extended to utilize more information to judge individual data values. If variables
are dependent then they carry some information about each other and therefore can be
used to help and cross-judge each other. The plausibility of each data value can now be
assessed based on how well it fits with the rest of the case (as well as the column).

There are two additional pieces of information needed to take advantage of this de-
pendence. First, stronger distributional assumptions are required: at the very least the
distribution has to be elliptical so that we can assume that outlierness is a monotone func-
tion of Mahalanobis distances. Additionally, in order to use standardized cutoffs to judge
outlierness, we will assume that the distribution of the clean data is multivariate normal.
Second, and most unfortunate requirement, is that we need to know the covariance matrix
of the true distribution we are trying to estimate. When working with real data we will
get a rough estimate of covariance matrix to do a rough detection and filtering first and
then will try to improve it iteratively; see Section 2.3.7 for more details. To highlight the
main idea, for the time being, we assume that the true center m and covariance matrix Σ

are already known and we only need to detect contaminated values.
Univariate detection uses the language of z-values that can be generalized to Maha-

lanobis distances in case of multivariate elliptical data. Mahalanobis distances to the
center are a great and widely used tool for the detection of outlying cases of data. Under
independent contamination model many cases will be partially contaminated and there-
fore the full Mahalanobis distances, computed using the whole p-dimensional data points,
can only be used for initial screening to help us focus our attention on the cases that are
likely to contain contaminated cells. Cases with reasonably small Mahalanobis distances
will be assumed to be clean and not considered further in this section.

2.3.2 Partial Mahalanobis distances (P-approach)

Let x be a contaminated data case. It corresponds to a certain xi = x in the dataset
but we omit the index i for clarity because we only consider one case at a time. Being
contaminated means that the full squared Mahalanobis distance of x to the assumed center
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of the data is larger than a pre-specified cutoff value:

MD2(full) = MD2(x; m,Σ) > Cp = (χ2
p)
−1(1− pcutoff), (2.16)

where pcutoff is a small number controlling the rate of false positives.
Under the independent contamination model and reasonably small ε only a relatively

small number ε × p out of p cells are expected to be contaminated. We will try to find
out which ones. First, let us assume a working hypothesis that only one cell out of p
is contaminated. If we can identify and remove this value then the rest of the case will
be clean and coming from the assumed multivariate normal distribution projected on the
corresponding (p− 1) dimensions. Therefore the squared partial Mahalanobis distance of
the case with the contaminated cell removed will follow a χ2

p−1 distribution:

MD2
j = MD2(x−j ; m−j ,Σ[−j]) ∼ χ2

p−1, (2.17)

when xj is the only contaminated cell in x.
Going through all j = 1, . . . , p and looking for the one that brings MD2

j down to
the range of χ2

p−1 can be used to detect the contaminated value. The cutoff Cp−1 =
(χ2

p−1)
−1(1− pcutoff) used to judge whether MD2

j is trustworthy is a little bit smaller than
the Cp that was used for complete cases. Three distinct outcomes are possible depending
on the number of MD2

j that pass the test (see Figure 2.2 for an illustration when p = 2):

1. #
{
j | MD2

j ≤ Cp−1

}
= 1 and let us denote it j∗. This is the perfect result. It

means that the presence of the j∗th variable makes the case outlying while the
absence of it brings it back within the acceptable range. This is a clear indication
that variable j∗ (and only j∗ as far as we know) is contaminated and should be
removed. Detection process may stop here for this case once this one variable has
been identified and acted upon.

2. #
{
j | MD2

j ≤ Cp−1

}
= s ≥ 2. This situation is conceptually confusing but arises

in practice fairly often. Removal of any one of the s variables can make the overall
outlying case look normal. Therefore all s variables are suspected to be contaminated
but there is no evidence suggesting that more than one actually is. This is the end
of the detection process for this case but the decision on which variable is the actual
contaminator is still to be made. See the next subsection 2.3.3 for our approach to
answering this question.

3. #
{
j | MD2

j ≤ Cp−1

}
= 0. This means that the removal of any single variable is not

enough to make this case clean. It is an indication that more than one variable is
contaminated and we need to go deeper into the detection process. At this stage
no decisions, or even guesses, about which variable is contaminated are made. At
the next level, all pairs of variables will be considered and partial Mahalanobis
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distances MD2
j1,j2 computed by removing one pair at a time. The whole process

is repeated exactly the same except that pairs of variables play the role of single
variables. Again three possible outcomes are possible and the whole process can
go deeper and deeper until at least one of the partial Mahalanobis distances is
sufficiently small (i.e. less than Cp−k). Computational complexity naturally increases
as we go deeper because

(
p
k

)
combinations of variables need to be considered at level k.
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Figure 2.2. Illustration of the three possibilities in P-approach for 2-dimensional data. 95% el-
lipsoid and 95% univariate ranges are shown in bold. See description on page 28.

It should be noted that our belief that clean partial Mahalanobis distances follow a
χ2 distribution (with appropriate degrees of freedom) is based on the assumption that
the removed values were indeed contaminated and therefore chosen at random from the
point of view of the clean-data generating mechanism. Otherwise, removing the largest
component of a clean case would bias the partial Mahalanobis distances downward. But
even if this happens and we remove a clean component from a clean case, the process is
likely to stop at the next step because the remaining partial Mahalanobis distance is even
more likely to satisfy the constraint of being smaller than Cp−k. Therefore there is no need
to adjust the assumed distribution of the partial Mahalanobis distances to accommodate
the possibility of false positives.

2.3.3 Resolving “ties”

Suppose that after considering all possible MD2
j , j = 1, . . . , p we have found that both MD2

j1

and MD2
j2 , for some j1 6= j2, fall within the acceptable range of χ2

p−1. What it tells us
is that both (p − 1)-tuples obtained by removing either j1st or j2nd variable from the
case under consideration have passed the plausibility test and could be coming from the
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assumed multivariate normal distribution.
Both variables j1 and j2 are suspected to be contaminated and the rest are believed

to be clean based on available evidence so far. We envision two distinct ways to proceed
in such a situation:

• Conservative. Remove both variables j1 and j2 from this case as both of them are
suspected. This will reduce the probability of contaminated values passing through
the detection process unnoticed (better recall). On the other hand, it is likely that
many clean values will be removed mistakenly producing a higher rate of false pos-
itives and associated with it loss of efficiency and intrinsic bias. This might be an
acceptable solution if only few (e.g. two) variables are suspected out of many. But
if this happens at level k À 1 and s À 2 then it might lead to eliminating a large
proportion of the data case.

• Greedy. Identify the variable (or set of variables if k ≥ 2) which is the most likely
to be contaminated and remove it from the case. This allows us to preserve as
much clean data as possible while still having a cleaned data case as the result.
Realistically we do not have any strong evidence against either one of the suspected
values in particular and any decision we make is going to be a “best bet”, assuming
we do not find any other more conclusive evidence. To make the bet more likely
to succeed we will compare what we have against both variables and pick the one
that appears more suspicious. Here again we see two possible ways to decide which
values are the most likely to be contaminated based on (a) implausibility of the
suspected values; or (b) plausibility of the rest of the case after the suspected values
are removed. We discuss both alternatives below.

Implausibility of the suspected values. Consider the easiest scenario: we have
two variables j1 and j2 such that both MD2

j1 < Cp−1 and MD2
j2 < Cp−1, while the full

Mahalanobis distance MD(full) > Cp. We need to decide which of the two variables is the
most improbable to have come from the assumed distribution and therefore is the most
likely to be the contaminated value. In order to do this we attempt to use all available
information about the assumed distribution that might have generated xj1 and xj2 . This
includes the parameters of the p-variate normal distribution but also the information
contained in this particular data case itself. When two values are suspected we want to
exclude them from influencing our decision about each other. To do so we suggest to
consider the conditional distribution of each of the two variables given all the values in
this case that are deemed trustworthy at the moment — that is all other values except xj1

and xj2 . Assuming multivariate normality, these distributions would be normal and the
parameters are easy to compute.

We can consider conditional z-values given the trustworthy data as a measure of im-
plausibility of the suspected values — the larger their absolute value the less likely it is to
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be coming from the assumed distribution. We will consider squared conditional z-values
because they generalize easily to conditional Mahalanobis distances when k ≥ 2. Compare

(
xj1 − E

[
Xj1 |X−{j1,j2}

]

sd
[
Xj1 |X−{j1,j2}

]
)2

vs

(
xj2 − E

[
Xj2 |X−{j1,j2}

]

sd
[
Xj2 |X−{j1,j2}

]
)2

, (2.18)

and tag the xj with the largest result. In principle, both conditional squared z-scores
might be well within the range of χ2

1 but we still need to remove at least one variable to
make the partial Mahalanobis distance acceptable. The cost of mistake in this somewhat
arbitrary betting is not likely to be very high. Even if we let the contaminated variable
slip through the detection process we have already made sure that it won’t have significant
influence on the estimate because the Mahalanobis distance of the remaining tuple is well
under control. In other words, what remains of the case won’t be an outlier anymore
although it might still be contaminated.

When three or more variables are tied during the k = 1 stage, that is s ≥ 3, then we
simply need to consider s squared conditional z-scores instead of two, and each of them
should be conditioned on p− s trustworthy values.

When k ≥ 2, ties can happen between subsets of variables instead of single variables.
The strategy to find the subset that has the highest chance of being actually contami-
nated is exactly the same as in the one-variable-at-a-time situation. We can consider the
plausibility of the subset of values given all trustworthy values in the case, which would
be all values not involved in any of the suspected subsets. Suppose that s subsets of vari-
ables S1, . . . , Ss result in reasonably small Mahalanobis distances MD2

S1
, . . . ,MD2

Ss
when

removed from the case. What we want to look at are the following conditional Mahalanobis
distances:

(xSl
− X̂Sl

)′ [Cov(XSl
|X−Sall

)]−1 (xSl
− X̂Sl

), for l = 1, . . . , s, (2.19)

where Sall =
⋃s

l=1 Sl and X̂Sl
= E[XSl

|X−Sall
] and choose the largest of them. We show in

Appendix A.2 that this conditional Mahalanobis distances can be represented as differences
of two partial Mahalanobis distances with nested sets of variables. The expression in (2.19)
is then equal to

MD2
Sall\Sl

−MD2
Sall
, for l = 1, . . . , s, (2.20)

where the first of the two terms above is the Mahalanobis distance of the case with all
suspicious variables removed except those involved in Sl. Expression (2.20) looks cleaner
than (2.19) but they have the same computational complexity. Depending on the situation
one of the two might be easier to interpret than the other. In general we find that (2.19)
is preferable when thinking about concepts, and (2.20) when dealing with computations.

Plausibility of the remaining values. Instead of evaluating how unlikely the po-
tentially contaminated values are, we can instead consider how likely the remaining values
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in the case appear under the assumed distribution. When dealing with outliers, smaller
Mahalanobis distances correspond to more likely outcomes. Thus the smallest of the
partial Mahalanobis distances MDj will correspond to the most plausible combination of
variables. The same is true when k > 1 — the smallest MDSl

corresponds to the most
likely x−Sl

. Because partial Mahalanobis distances are already computed, this requires no
additional computations to resolve the “tie” between the suspected sets which makes this
approach computationally attractive.

When k = 1 and s = 2, this way of thinking actually leads us to the same conclusions
as the implausibility approach described above. The largest squared conditional z-score
corresponds to the largest of the two differences MD2

j2 − MDj1,j2 and MD2
j1 − MDj1,j2 .

Suppose that the first difference is larger and thus variable j1 is tagged based on the
implausibility thinking. Then MD2

j2 > MD2
j1 , which means that the partial Mahalanobis

distance by removing j1st variable is smaller and therefore it should be chosen based on
the plausibility as well. So the two approaches are equivalent in this simple case. It is also
equivalent to the implicit selection done by the D-approach described in section 2.3.5.

We show some numerical simulation results comparing the three methods (one conser-
vative and two greedy) along with another approach in section 2.3.6.

2.3.4 Computational considerations

2.3.4.1 Inverses of submatrices

In terms of CPU time, the most demanding part of the procedure described in section 2.3.2
is the loop through all variables and combinations of variables looking for the one that
produces the smallest partial Mahalanobis distance. If we are focusing on one case at
a time then for each candidate variable two operations need to be done: (a) invert the
corresponding submatrix of Σ; (b) compute the Mahalanobis distance with it.

When dimension p is large, inverting a large number of large matrices can be a compu-
tationally intensive task. A matrix can be inverted by Gaussian elimination in O(p3) steps
or by Strassen’s algorithm inO(p2.8) and it needs to be done for

(
p
k

)
matrices at level k. For-

tunately, however, inverses of large submatrices can be more efficiently deduced from the

inverse of the whole matrix. Suppose that the inverse of a block matrix Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,

where Σ11 is p1 × p1 and Σ22 is p2 × p2, is known and we are interested in the inverse
of its submatrix Σ2. Recall the following expression for the inverse of a block matrix
from Petersen and Pedersen (2008):

A−1 =

(
A11 A12

A21 A22

)−1

=

(
C−1

1 −A−1
11 A12C

−1
2

−C−1
2 A21A

−1
11 C−1

2

)
, (2.21)

where C1 = A11 −A12A
−1
22 A21 and C2 = A22 −A21A

−1
11 A12 are the Schur complements
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of A. Apply equation (2.21) to A = Σ−1 and look at the bottom right corner submatrix.
Then Σ22 = C−1

2 and thus

Σ−1
22 = C2 = (Σ−1)22 − (Σ−1)21

(
(Σ−1)11

)−1 (Σ−1)12. (2.22)

It is easy to see that computing this inverse only requires O(pp2p1) operations plus
those needed to invert the whole Σ and (Σ−1)11. The overall inverse only needs to be
computed once per dataset and can easily be done in O(p3). Inverting (Σ−1)11 takes O(p3

1)
and is negligible if p1 does not grow with p. In fact, if storage space is not an issue and
we can save all

(
p
k

)
inverses from step k, then we only need to apply this inversion rule

sequentially with p1 = 1 when going to the next level. So the computing time necessary
for one inversion procedure is of order O(p2) which is a good improvement over O(p2.8).

Computing Mahalanobis distance of a p dimensional case once the inverse of the co-
variance is known also takes O(p2) steps which is the same complexity as inverting the
matrix. In particular it means that we cannot save much computational time (at least not
an order of magnitude) by reusing the covariance inverses from case to case because com-
puting Mahalanobis distances is just as slow as inverting submatrices of Σ. In practice,
we will, of course, reuse the inverted submatrices when convenient in order to save finite
computational time.

2.3.4.2 Limiting the depth of search

The price to pay for the ability of P-approach to detect obscured combinations of univariate
contamination is its computational complexity. At level k, the number of inversions is

(
p
k

)

and the number of Mahalanobis distances needed to be computed is nk

(
p
k

)
, where nk is

the number of cases that we have not been able to clean by removing k − 1 variables at a
time. Therefore the whole screening procedure takes an order O(nkp

2+k) basic operations
to complete the kth level.

Under independent contamination model, for small fractions ε of contaminated data
that we expect to see in a typical dataset, majority of cases will not have many vari-
ables contaminated. The distribution of the number of contaminated values per case
is Binom(p, ε). Each new level requires looking through more and more combinations of
variables, but once k becomes larger than ε× p, the number of cases that have that many
variables contaminated is getting smaller and smaller. It means that more work is required
to clean up fewer cases and may become very “inefficient” at some point.

To make the detection algorithm computationally feasible we suggest to limit the
number of levels that it is allowed to dig into the data. All cases that are not cleaned (all
partial MDs are larger than Cp−k) can be declared fully contaminated and removed from
further analysis. Elimination of complete cases is a relatively safe process from the intrinsic
bias point of view because, assuming IC model, the number of contaminated variables is
independent of the clean case before contamination. The worst consequence of this early
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stopping is the reduced efficiency due to the loss of potentially useful data. To control this
effect the stopping rule can be based on the proportion of uncleaned cases nk/n rather
than k itself.

If computational time is of no concern or if the dimension p is low then, of course, the
full detection until nk = 0 can be performed. In our simulations, because of the repetitive
nature of the process, we are concerned with computational time and will routinely use
nk/n < 0.25 as the stopping rule for detection.

2.3.5 Differences of Mahalanobis distances (D-approach)

2.3.5.1 Contributions to Mahalanobis distances

As explained in section 2.3.4.2, looking through all subsets of size k out p variables can be
a time consuming operation as k grows large. One possible way to reduce computational
demands is to use stepwise detection by choosing one most contaminated variable at a
time and keeping it out of consideration for all consequent levels.

The basic premise of this approach is that individual variables in each case contribute
to the full Mahalanobis distance. If the full distance is large and we can single out the
variable that contributes the most to it then we have reasonable evidence to believe that
this variable is contaminated. The contribution of the jth variable can be measured by
the difference between the full Mahalanobis distance for the case and the partial distance
with that variable removed:

Dj = MD2(full)−MD2
j = MD2(x; m,Σ)−MD2(x−j ; m−j ,Σ[−j]).

After computingDj for all j = 1, . . . , p, variable j1 = arg maxj Dj is declared contaminated
and is to be removed from further analysis. If MD2

j1 is in accordance with χ2
p−1 distribution,

i.e. smaller than Cp−1, then we can declare this case decontaminated and proceed to
the next case. If the partial Mahalanobis distance is still large then more values must
be contaminated within this case and the procedure can be repeated by considering all
differences

Dj1,j = MD2
j1 −MD2

j1,j = MD2
j1 −MD2(x−{j1,j}; m−{j1,j},Σ−[j1,j]), for j 6= j1.

and declaring variable j2 = arg maxj Dj1,j as contaminated. This process should be re-
peated until the remaining partial Mahalanobis distance with some k variables removed
is small enough to be believed to have come from χ2

p−k.
This method of detecting independent contamination was proposed by Little and Smith

(1987) in the context of analyzing survey data. They however neither defined the contam-
ination model nor studied the properties of the suggested method. However, they gave a
thorough hands-on illustration of how it can be applied in practice and a motivation for
why such a method might be useful.
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The major advantage of this approach over the P-approach of section 2.3.2 is that it
only takes (p − k) inverses and n∗k(p − k) computations of Mahalanobis at level k; which
do not increase with k.

On the other hand, we can see two potential problems with this approach that we will
discuss in more details in the next two subsections. First, to be discussed in section 2.3.5.2,
is that the conceptual foundation for deciding which variable is contaminated is flawed.
Second, more practical and illustrated in section 2.3.5.3, is the usual drawback of stepwise
procedures compared to full searches: it can fail to correctly identify contamination if
more than one variable is involved.

2.3.5.2 Distribution of Dj

One major problem with D-approach is that we deal with quantities whose distribution we
know very little about. When the case is contaminated then everyDj , for all i, j = 1, . . . , p,
contains at least one contaminated value and therefore their distribution is completely
unknown and depends heavily on the contamination. We choose to label the variable that
produces the largest Dj as contaminated but this approach — formulated this way — is
completely ad hoc and has no distributional background to back it up.

When k = 1 this method is equivalent to the first level of D-approach when the sim-
plified rule of resolving ties is applied. As MD2(full) is fixed for a given case, choosing
the largest difference Dj is equivalent to choosing the smallest partial Mahalanobis dis-
tance MD2

j . The D-approach looks for a variable j that maximizes its contribution to the
Mahalanobis distance and thus might seem more intuitive than the method that minimizes
Mahalanobis distance of the rest of the case. This intuitiveness, however, is misleading
because the former method chooses the worst value out of a collection of bad values and
therefore we know little about what to expect from it. When doing the latter, on the other
hand, we have some solid ground to stand on: if the contaminated variable is removed
then the remaining (p − 1)-Mahalanobis distance is distributed as χ2

p−1. The distinction
becomes more apparent as we proceed to detect more than one contaminated variable per
case.

The lemma in Appendix A.2, applied with p1 = 1, provides a good interpretation for
the differences Dj . Under multivariate normal uncontaminated data they can be seen as
squared conditional z-scores for each value given the remaining of the case and are dis-
tributed as χ2

1. This is parallel to the univariate detection except that now the information
from the same data case is used to enhance the expected value and the standard deviation
for each cell.

When at least one value in x is contaminated then for every variable j necessarily
either xj or x−j (or both) is contaminated and therefore the distribution of the squared
conditional z-score is not χ2

1 anymore and is affected by the contamination. Therefore
none of the differences Dj will be following χ2

1 for any data case that we are interested in
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cleaning.
If the process of removing one variable at a time is repeated until all p variables are used

then the full Mahalanobis distance can be decomposed into p incremental terms. When
the case is completely clean and comes from N (m,Σ) these p terms are independent and
distributed as χ2

1 each (if we assume that the ordering of the variables was arbitrary and
forget that the largest difference is chosen at each step). This is a meaningful construct
and this is what makes the D-approach appealing: each variable independently contributes
something to the full Mahalanobis distance of the case and we want to detect and disarm
the largest contributor. The moment at least one component of the case gets contaminated,
the independence and the χ2

1 distributional claims do not hold anymore and all differences
get tied together and interconnected in an unpredictable way through the non-gaussian
contaminated data.

2.3.5.3 Example: failure of stepwise D-approach

As we have mentioned above, besides the conceptual difference between P- and D-approaches,
the largest computational distinction is that the D-approach attacks the problem of finding
contaminated values in a stepwise manner instead of the full search through all combina-
tions of variables. While being obviously faster at levels k ≥ 2, this poses a significant risk
of missing contamination that would be very obvious if an appropriate method were used.
The D-approach looks (intentionally or not) at the difference between the observed value
of each variable and its expected value given all other variables in the same case. When
more than one variable is contaminated it is possible that masking will occur: a contam-
inated value may look plausible given another contaminated value while good values will
have unusually large z-scores when conditioned on all the contaminated variables.

j = 1 j = 2 j = 3 j = 4 j = 5 MD(rem)
xclean −1.8 0.2 0.0 −1.4 −1.8 5.8
xcont −1.8 6.0 6.0 −1.4 −1.8 176.3
Dj 0.35 122.0 94.6 132.0 82.7 176.3
D4,j 1.85 0.54 1.48 — 0.62 44.2
D4,1,j — 2.70 0.35 — 5.13 42.4
D4,1,5,j — 1.26 1.26 — — 37.3

Table 2.4. Failure of the D-approach to identify contamination that is masking one another.

Consider the following example summarized in Table 2.4. A 5-dimensional high-
correlation covariance matrix (see Section 2.1.4.3) is used. We start with a typical random
value xclean drawn from the multivariate normal distribution with mean zero and said co-
variance matrix. Variables 2 and 3 are severely contaminated by values of 6.0 to produce
a contaminated vector xcont that all further analysis will be based on. Mahalanobis dis-
tance goes up from a typical 5.8 to a very outstanding 176.3 that calls for a cleaning
procedure to be applied. If we were to use the D-approach and decide which values are
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contaminated based on the corresponding values of Dj = MD2(full)−MD2
j , by removing

one variable at a time, then the innocent variable number 4 would be singled out based
on the D4 = 132.0. Mahalanobis distance of the remaining tuple is still 44.2 that justifies
further cleaning. The next variable to go at the k = 2 step is number 1 with the not-so-
large value of D4,1 = 1.85 which does not improve the overall Mahalanobis distance much
either. Finally, going even deeper, variable number 5 is removed by the “cleaning” pro-
cess, leaving us with a completely contaminated 2-tuple. This is obviously a total failure
on the part of the cleaning mechanism because it removes all the good values until only
contamination is left intact. Fortunately, the D-approach would not stop at k = 3 as the
Mahalanobis distance is still large and would proceed to remove both contaminated values
one after the other, leaving us with an empty case. Nevertheless, this example clearly
illustrates the deficiencies of the stepwise approach to cleaning.

On the other hand, if P-approach is used it will yield much more satisfactory results.
At level 1, the minimal partial Mahalanobis distance is MD2

4 = 176.3−132.0 = 44.2 À C4

indicating that removing one value is not enough to make this case clean. Then P-approach
proceeds to compute

(
5
2

)
= 10 partial distances by removing 2 variables at a time. They

can be easily divided into two unequal groups: 9 very large (with minimal value 42.4) and
one value MD2

2,3 = 4.98. This is the perfect outcome number 1 as discussed in section 2.3.2
which means that variables 2 and 3 are to be called contaminated and the rest of the case
can be assumed to be clean.

2.3.6 Numerical comparison of detection methods using known

covariance

To compare the several approaches to multivariate contamination detection described
earlier in this section we conduct a Monte Carlo simulation study. We assume that the
true location and scatter is known. Section 2.3.9 at the end of this chapter will have some
results for when the true parameters are unknown and have to be estimated.

These simulations are similar to those in section 2.2.3.3. We generate independent
samples from N20(0,Σm), where Σm is a covariance matrix with moderate correlation (as
per section 2.1.4.3). The samples are subjected to the point mass independent contamina-
tion at value k with cell-probability ε = 0.10. We vary the value of k in the interval [0, 4].
To each contaminated sample we apply four detection algorithms:

1. P-approach with Implausibility tie-breaking (based on conditional Mahalanobis dis-
tances given all unsuspected values). We will refer to it as “P.full”.

2. P-approach with Plausibility tie-breaking (based on the smallest partial Mahalanobis
distance). We will refer to it as “P.fast”.

3. P-approach with Conservative tie-handling (remove all suspected values). We will
refer to it as “P.all”.
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4. D-approach (stepwise). We will refer to it simply as “D”.

Cutoff p-value of pcutoff = 0.05 was used for all four detection methods. For each case, the
fraction of contaminated cells that has been correctly identified (recall) and the proportion
of tagged cells that were truly contaminated (precision) is recorded. The whole procedure
is repeated Nrep = 20,000 times and the average recall and precision are reported in
Figure 2.3.
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Figure 2.3. Recall/precision performance of the four multivariate detection methods when
the true covariance structure is known.

Looking at the graph a number of observations can be made:

1. Not surprisingly, contamination which is farther from the center is easier to detect
for all methods.

2. Precision of the conservative tie resolution (P.all, dash-dotted line) is fairly low and
is unlikely to be justified even by the somewhat better recall rate.

3. Plausibility-based tie resolution in P-approach (P.fast, solid line) actually works
better than the more complicated implausibility approach (P.full, dotted line). Our
understanding is that some potentially useful information is lost when we condition
the suspected values only on those that do not appear in any of the suspected sets,
which makes the decision process more arbitrary.

4. P-approach with fast tie resolution (solid line) does indeed perform better than D-
approach (dashed line). The difference is less obvious in terms of recall because
both approaches proceed removing values from a data case until it appears to have
reasonably small Mahalanobis distance. The problem is that D-approach takes more
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unnecessary steps by removing clean values to get there. This is reflected in its lower
precision rate.

We have also run these simulations on data with high correlation (instead of moderate)
and, although the overall detection rate is non-surprisingly higher, the trends are the same
as discussed above. This makes us believe that the results should be generalizable to a
variety of data configurations.

To investigate the importance of the precision loss of D-approach and P-approach with
conservative tie resolution we go one step further and compute the MLE of the covariance
matrix using the detection information from the four methods. We have 20,000 individual
samples at our disposal and we use them in two different ways to learn more about the
performance of the estimates:

1. Compute MLE based on one large sample of size 20,000 for each of the four methods
and each value of k. This will describe the asymptotic bias of the estimates based
on the four detection methods. Results are shown in Figure 2.4(a).

2. Divide available cases into 100 samples of size 10p = 200; then compute the MLE of
covariance based on each smaller sample independently. This will describe the finite
sample MSE performance of the estimates. Results are shown in Figure 2.4(b).
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(a) Asymptotic bias: one sample of size 20,000

1.0 1.5 2.0 2.5 3.0 3.5 4.0

2.
4

2.
6

2.
8

3.
0

3.
2

location of contamination(k)

LR
T

−
M

S
E

(b) MSE: average over 100 samples of size 200

Figure 2.4. Performance of the estimates of covariance based on the four multivariate detec-
tion methods when the true covariance structure is assumed to be known.

By analogy to section 2.2.3.3, after computing each estimate we standardize it using
the true value Σm and compute the LRT-statistic based on it. In Figure 2.4(a), the LRT
statistic itself is reported. In Figure 2.4(b), the average of 100 replicates of the LRT
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statistic is shown. We can clearly see that P.full (dotted line) and P.all (dash-dotted
line) perform significantly worse than the other two estimates. In particular, we can see
that the slightly better recall for the price of significantly reduced precision of the the
conservative tie resolution in P-approach (dash-dotted line) did not pay for itself even in
terms of asymptotic bias and even more so in terms of finite sample MSE. D-approach and
P-approach with plausibility-based tie resolution perform much better, with P-approach
being the best of the four. We will use this detection method as default in the next section
where we consider how the covariance matrix can be estimated when it is unknown.

2.3.7 Unknown true covariance matrix

2.3.7.1 Iterative estimation and detection

The covariance matrix needs to be estimated in order to detect contaminated values using
multivariate methods discussed in this section. The situation is intrinsically circular:
a covariance estimate is required in order to compute a covariance estimate. This is not
unlike re-weighted robust estimates when a set of weights is required to compute a weighted
estimate that can, in turn, be used to compute a new set of weights. We propose a similar
procedure to be used regarding our covariance estimates. First, get a rough covariance
estimate and use it to detect the first batch of contaminated values. Then use the filtered
data to obtain a covariance estimate with one of the methods mentioned in section 2.2.3.
This new estimate is expected to be better than the initial one and therefore we can use
it to improve the contamination detection. This process can be repeated several times for
best results.

The iterative procedure described in this subsection is only a general framework rather
than a complete algorithm. In order to make use of it one will need to choose three core
components:

1. Initial estimate of covariance. We suggest using univariate detection (followed by
an MLE) as step 0 for reasons described in section 2.3.8. Moreover, values detected
as contaminated using a conservative univariate method are to be remembered and
treated as missing throughout the estimation process.

2. The detection process for identifying outliers given a covariance matrix. We will use
the P-approach as we consider it to be the most conceptually sound.

3. The processing step: Winsorised, censored, ML assuming MAR, or a combination
of them to estimate covariance matrix given the results of the detection process. We
will use the Marking-as-MAR approach because of its strong ability to eliminate all
negative influence of outliers.

One other question that needs to be answered before one can have a working algo-
rithm is how to update the information regarding which values are contaminated from
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one iteration step to another. Two basic options can be thought of: (a) retain the list of
contaminated values from previous steps, use it during the detection process (i.e. not use
previously suspected values in conditional quantities), and only expand the list at each
iteration; (b) forget about old suspected values as soon as a new covariance estimate is
computed and create a new list from scratch with the help of the new estimate. The
former approach may lead to an increasingly large list of suspected values that will result
in increasingly ill conditioned estimates. We advocate the use of the second approach with
one exception that the information from the univariate step 0 is preserved throughout the
process (because of its conservatism).

Finally, a stopping rule for the iteration process has to be agreed on. There are two
major entities that change from one step to another and they are closely related: the set
of detected contaminated values and the estimated covariance matrix. Ideally, the process
will converge and the set of detected values will remain constant from one iteration to the
next. In practice, however, it is common that the process enters a cycle with a period of
two or more iterations and keeps going trough the same set of states over and over again.
The iteration procedure is a Markov process by nature: all future iterations depend solely
on the current configuration. The set of all possible configurations is finite and only few
of them have reasonable probabilities of being visited. Therefore we can keep a record of
all visited states and as soon as any state is revisited the iterations can be stopped. A
maximum number of iteration will be imposed to make sure the process does not run out
of control.

2.3.7.2 Adjustable cutoff values

One inherent drawback of the described iterative procedure is that undetected contamina-
tion at step i will affect the subsequent covariance estimate which, in turn, can make the
contamination undetectable at step i+ 1. Bias induced to the covariance matrix by inde-
pendent contamination, as discussed in section 2.1.3, generally makes the detection process
less sensitive (overestimated variances, underestimated off-diagonal elements). This can
go on forever and the contamination never becomes detected even though it could be easily
identified had the true covariance been known.

It is unlikely that this problem can be solved completely but we propose an adjustment
that will help detect borderline contamination at least in some situations. After conducting
a series of experiments, and relying on algebraic findings of section 2.1.3, we have concluded
that the quantities which are affected the most by unfiltered independent contamination
are the estimates of individual variances, i.e. the diagonal of the covariance matrix. We
propose to compare these estimated variances to something solid and reliable in order to
evaluate whether filtering was sufficiently thorough or not.

There exist several reliable and commonly used robust estimates of univariate variance
but, in order to fix ideas, we will consider squared Median Absolute Deviation (sMAD)
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as the one-dimensional variance estimate and denote it ŝ2j for the jth variable. The main
advantage of these estimates is that they are truly robust and do not depend on any tuning
parameters. On the other hand they are very simple and do not share potentially useful
information between variables. It is possible that a sophisticated method will perform
better than this simple alternative but the reverse is extremely undesirable. Most danger-
ous contamination comes in the form of outliers and therefore it will cause the variance to
be overestimated. Therefore, better can be interpreted as smaller (within limits). In par-
ticular, we may want to require that the diagonal elements of our multivariate covariance
estimate be at least as small as the sMADs.

If multivariately estimated variances are larger than sMADs it means that not all
contamination has been detected and filtered, which calls for increased sensitivity of the
detection mechanism. Aside from the covariance matrix itself, it is the cutoff value (ex-
pressed as p-value because dimensionality varies between levels) that is responsible for the
sensitivity of the process. If estimated variances are too large (compared to sMADs) then
the cutoff p-value needs to be increased (smaller cutoffs).

A decision rule needs to be set up describing when estimated variances are considered
to be too large. The simplest method, that we employed in our simulations, is to compare
the two average variances and if the “multivariate” average is larger than sMAD’s then
the cutoff p-value is to be increased. As the process is already iterative we suggest that
adjustments to the cutoff are made in small increments. For example, p-value can be
multiplied by a fixed factor slightly larger than one. In summary: on each iteration, after
obtaining a new covariance estimate the following check should be done:

if ave
j

(diag(Σ̂)) > ave
j

(ŝ2j ) then pcutoff = min{1.01× pcutoff , pmax},

where pcutoff is the p-value used to obtain cutoff values Ck = (χ2
k)
−1(1− pcutoff). This rule

should not be invoked until after several initial iterations allowing the system to settle to
a near-stable state. The upper bound pmax for pcutoff is set as a precaution to safeguard
against filtering out all data if something goes unexpectedly wrong. If contamination
cannot be detected with these relatively small cutoffs (large p-value) then it could be
declared undetectable and perhaps a flag should be raised warning that the estimate is
unreliable. A reasonable value could be pmax = 0.1.

Stopping rule for the iterative process has to be modified to accommodate the adjust-
ments of cutoffs. Now we only want to stop if, in addition to running into a previously vis-
ited state, one of the following two conditions are true: (a) current estimate already agrees
with sMADs, i.e. avej(diag(Σ̂)) ≤ avej(ŝ2j ); or (b) contamination seems undetectable and
we have given up, i.e. current pcutoff ≥ pmax.

Figure 2.5 shows a typical run through iterations for a 10-dimensional dataset of
size 200 with medium covariance structure and 10% contamination placed at 2.5 stan-
dard deviations from the center. The first plot shows recall of the detection process,
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Figure 2.5. Positive effect of adjusting cutoff p-value during iterations (a typical run).

i.e. the proportion of contamination that has been correctly identified: large values cor-
respond to better performance. The second plot shows the LRT-measure (described in
section 2.1.4.3) of the standardized covariance estimate (Σ−1Σ̂) after removing (marking
as MAR) the detected contamination: the closer it is to zero, the better the estimate
is. Solid lines correspond to iterations with cutoff values adjusted as described above,
dashed lines — to unadjusted cutoff p-value of 0.05, and dotted lines indicate what could
be achieved if the true covariance matrix was used for detection instead of the estimates.
Dash-dotted line in the first plot shows (on a different scale given on the right) how the
cutoff p-value was increasing during the iterations; it is not a performance measure but
simply a monitoring tool. It can be seen that after a dozen of iterations with fixed cut-
offs (dashed lines), the system fully stabilizes (the set of detected values does not change
from one iteration to another) but the performance is still relatively poor. Allowing the
cutoff p-value to gradually increase to 0.087 helps detect as much contamination as can
be detected if the true covariance was known (with pcutoff = 0.05) without jeopardizing
precision too much. Precision is not shown on the graph but it floats within (0.8, 0.9)
interval and even improves slightly due to the adjustments of the cutoff p-values.

Note that this is a typical scenario for moderate correlation structure and borderline
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contamination. If the correlation structure is stronger or the contamination is more out-
lying then no adjustments of cutoff values might be necessary in order to detect it. If the
correlation structure is weaker then it might very well be possible that such borderline
contamination cannot even be detected even with the true covariance matrix, making it
futile trying to detect it with estimated matrices.

2.3.8 Combination with univariate filtering

2.3.8.1 Univariate vs multivariate detection

In Section 2.2.2 we described univariate and multivariate methods as two distinct ap-
proaches to independent contamination detection. In reality, however, the two approaches
are related but the relationship is not entirely straightforward.

The strongest parallels can be drawn when the assumed covariance structure is diago-
nal. As we have shown in section 2.3.5.2 the differences Dj of Mahalanobis distances can
be seen as squares of conditional z-values given the rest of the values in the same case.
Assuming independence of variables, conditional z-scores are equal to the correspond-
ing marginal z-scores, which are the primary tool of univariate detection. This algebraic
equality is the similarity between the two approaches.

The differences arise from the way we analyze the Mahalanobis distances. To begin
with, univariate detection looks at all n × p marginal z-scores and highlights those that
exceed a certain threshold. Multivariate methods only look at those cases that have un-
usually large full Mahalanobis distances. And once a case is suspected, the multivariate
methods will end up declaring at least one value contaminated. It means that the decision
of whether contamination is present or not is based on the full Mahalanobis distances and
not on the partial distances that only affect decisions about which variables are contami-
nated.

First, consider a rather typical scenario when multivariate detection is more sensitive.
This happens when contaminating value is moderate (i.e. not large) and the covariance
matrix has enough structure so that the conditional variance of each value given the rest
is much smaller than the marginal. Then the marginal z-value is not large enough to raise
an alarm but the conditional z-value might be much larger because it involves reciprocal
of a small conditional standard deviation. Large conditional z-value inevitably contributes
to the full Mahalanobis distance and the case goes on the suspect list.

Example 1. Consider a five dimensional high-correlation covariance matrix Σ as de-
scribed in section 2.1.4.3. Take a typical observation xclean = (−0.3,−1.3,−1.7,−0.4, 0.8)′

from N (0,Σ). Contaminate the second variable with a moderate value of 1.8, resulting
in the observed case xcont = (−0.3,1.8,−1.7,−0.4, 0.8)′. Just by looking at this case one
value at a time nothing is suspected to be contaminated as all five values are typical of the
standard normal distribution. However, the full Mahalanobis distance MD2(xcont) = 885.8
positively indicates contamination. P-approach then considers five partial Mahalanobis

44



distances by removing one variable at a time: 797.1, 4.1, 13.3, 116.1, 330.0 and easily
identifies that the second value is contaminated. Cases like this are the reason why mul-
tivariate detection methods are preferred to univariate alternatives. Of course, not every
case is as extreme as this one but the general tendency is illustrated.

Unfortunately, however, there are situations when multivariate methods fail to detect
obvious univariate contamination. The primary reason are the thresholds used to identify
contaminated cases which increase with dimension (degrees of freedom of χ2). It is possible
for the full Mahalanobis distance to be less than Cp while some individual value yields a
squared z-value in excess of C1. This is typical for covariance matrices with low correlation
structure.

Example 2. Consider a no-correlation identity covariance matrix Σ = I20. Let xclean

be a sample from near the center of N (0, I20) such that (xclean)1 = −1.3 and the sum of
squares of the remaining 19 coordinates is 6.29 (we are not showing all 20 dimensions purely
for the sake of conciseness). Suppose that the first coordinate of xclean is contaminated by
a large value of 5, yielding an obviously contaminated case xcont. A univariate detection
method will have no problem identifying the first value as contaminated because the p-
value corresponding to the z-score of the first variable is a minuscule 5.7 × 10−7. Even
with Bonferoni correction for the multiple testing of 20 variables it will still be detected as
outlier at any reasonable level of significance. A multivariate method starts by computing
the full Mahalanobis distance MD2(xcont) = 52 + 6.29 = 31.29 which yields a p-value
of 0.051 (based on χ2

20) that would not raise an alarm at any significance level smaller
than 0.05. Although (xcont)21 = 25 is a very unusual value for χ2

1, when combined with
relatively small values of the rest of the variables which contribute almost nothing to the
full Mahalanobis distance, it is still quite typical for χ2

20.
The root of the problem is that the range of χ2 distribution increases with the degrees

of freedom. Increase of only 6.18 square units is required to bring a typical (median) χ2
1

observation to the top 1% tail. For χ2
20, for example, an equivalent perturbation (from

median to 99th percentile) requires an increase of 18.23 square units. When covariance
structure is weak and variables contribute to the full Mahalanobis distance more or less
independently, it requires a larger contamination to set off a 20 dimensional filter than it
does for univariate detection.

p Range Rel Range Bonf RR
1 6.18 1.00 1.00
5 10.73 1.74 1.18

10 13.87 2.24 1.34
20 18.23 2.95 1.56
50 26.82 4.34 2.00

100 36.47 5.90 2.48
200 50.11 8.11 3.13

Table 2.5. Range (χ2
p)
−1
0.99 − (χ2

p)
−1
0.5 as function of dimension.
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Table 2.5 summarizes the ranges of χ2 distribution for a variety of dimensions. The first
column is the range itself showing how much a median observation needs to be increased in
order to become a 99th percentile outlier. Second column is the ratio of this range for the
given dimension to the same range of χ2

1. It illustrates how much larger (in square terms)
a univariate outlier should be in order to be detected by a p-dimensional methods when
covariance matrix is diagonal. To show that this problem is deeper than just multiple
testing issues, the third column shows the same range as the second but assumes that the
significance level in p = 1 has been Bonferoni corrected:

(Bonf RR)p =
(χ2

p)
−1
0.99 − (χ2

p)
−1
0.5

(χ2
1)
−1
1−0.01/p − (χ2

1)
−1
0.5

This obscuration of contamination is an inherent property of Mahalanobis distances
and is not necessarily a weakness of our approach. It is just another manifestation of
the curse of dimensionality and should be recognized as such. With strong correlation
structure multivariate methods are likely to be more sensitive but when covariance matrix
is nearly diagonal they may (or may not) merely obscure individual contaminated values
by mixing them with other uncontaminated values in the same case. The conclusion is
that both univariate and multivariate detection methods must have their place in the
estimation process.

We suggest that every multivariate detection process is preceded by a round of univari-
ate detection with a large conservative cutoff. It will ensure that contamination described
in Example 2 does not go undetected. Keeping the cutoff value large will ensure that
the number of false positives is negligible and no unnecessary intrinsic bias is introduced.
Simulations in section 2.3.9 illustrate this danger numerically. The computational cost of
univariate detection is also negligible compared to the multivariate methods. It is best
seen as a precautionary safeguard and may not yield any significant improvements in per-
formance in most situations. One example when the addition of univariate detection does
result in a better estimate is shown in the next sub-section.

2.3.8.2 Numerical illustration

To illustrate the potential benefits of using univariate detection to complement multi-
variate procedures we conduct a simple simulation study. Samples of size n = 200 from
multivariate normal distribution with p = 20 and low correlation structure (as described
in section 2.1.4.3) are generated. Univariate contamination at 5% level is introduced ran-
domly and independently into all 20 variables. All contaminated values are set to be
equal to k, which we vary from 0 to 6. We compute three scatter estimates (assum-
ing the true covariance is unknown) using different detection procedures: (a) univariate
detection at 0.999 level (cutoff at 3.29); (b) multivariate detection at 0.95 level using
iterative procedure outlined in section 2.3.7; (c) both of them combined. Estimates are
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computed using EM-algorithm on the datasets with induced missingness. As an additional
reference, we also computed Winsorised sample covariance for each contaminated sample.
Estimates are standardized, dLRT is computed (see section 2.1.4.3) and the whole process
is repeated 600 times to get the average measure of how much the estimates deviate from
their target value.
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Figure 2.6. Advantages of univariate detection for high-dimensional data (p = 20) with weak
correlation structure.

Simulation results are shown in Figure 2.6. In addition to the average LRT score we
show the average recall and precision rates. The main observation that can be made from
these plots is that the pure multivariate estimate (bold dashed line) can be improved by
incorporating (bold solid line) univariate detection information into the estimate. When k
is between approximately 3 and 5 all three graphs show an improvement: lower LRT in
the first and higher rates in the other two. The region k ∈ (3, 5) is when the conservative
univariate detection starts identifying outliers as such but they are still not large enough to
put the whole case on the suspect list because of the wider spread of χ2

20. This is a typical
scenario when true correlation structure is close to identity: sharing information between
variables does not significantly help improve the detection of outliers. Even apparently
higher recall and precision rates of multivariate detection compared to univariate are
likely due to the lower multivariate cutoff. An illustration of the benefits of multivariate
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detection when true correlation is moderate is given in section 2.3.9.

2.3.9 Simulation study with unknown covariance

To demonstrate the advantages of multivariate outlier detection (P-approach) over univari-
ate detection as well as over other more traditional approaches, we conduct a simulation
study in the same manner as described in section 2.3.8.2. Now we will generate clean
data with “moderate” correlation structure (as per section 2.1.4.3) because some degree
of dependency is required to make multivariate approach beneficial. The results we are
showing have been obtained with p = 20, moderate correlation, sample size n = 200, and
proportion of contamination ε = 0.05. We have also tried running the simulations with
several different dimensions, sample sizes as well as “high” correlation structure. Differ-
ent numbers but similar trends can be observed with minor common-sense variations but
we do not show them for the sake of brevity. This makes us believe that the behaviour
reported in this section is typical for any elliptical data with non-independent correlation
structure.

In this set of simulations we have used a lower univariate cutoff value (based on the
95th percentile as opposed to the 99.9th before) than in section 2.3.8.2 for the following
reason. When variables are sufficiently correlated, as in our setup, univariate detection
does not produce any significant improvement over multivariate detection. When used
with a conservative large cutoff it affects only a negligible proportion of clean data and
thus does not harm the performance of the multivariate-only estimate. Therefore a proper
combination of multivariate detection with a large-cutoff univariate (the estimate we rec-
ommend) produces the same results as multivariate-only detection in this scenario. On the
other hand, using a lower univariate cutoff (a) gives more chance to traditional Winsorised
approaches; (b) allows us to demonstrate dangers of using a univariate cutoff which is too
low.

Simulation results, namely the LRT-measure, precision and recall as functions of the
contamination location k, are shown in Figure 2.7. In addition to the estimates showed
in section 2.3.8.2 we also computed an S-estimate of the covariance matrix based on
univariately Winsorised data (light dotted line). Most importantly, it can be seen that
the multivariate detection (bold solid) yields the best results: uniformly (over k) lowest
LRT-measure and highest recall and precision.

Both Winsorised estimates, based on sample covariance and S-estimate, suffer from one
problem — the bias remains flat and high even after the contamination is easily detectable.
For the Winsorised covariance the problem can be easily fixed by the univariate detection
followed by the MLE estimate (bold dashed line). We will comment on how a similar
approach can be used with S-estimate in Chapter 4.

An interesting phenomenon to observe is the difference between the multivariate es-
timate and its combination with univariate (bold dotted). Relatively high rate of false
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Figure 2.7. Performance of multivariate detection compared to alternative methods under
“moderately” correlated data with p = 20. Vertical dotted line shows an aggressive (95th
percentile) univariate cutoff at 1.94 used in these simulations. Multivariate detection was also
done with the initial pcutoff = 0.05.

positives in univariate detection (5% of good data) causes higher bias. This can also
be seen by comparing Winsorised (regular dashed) and univariately filtered MLE (bold
dashed) estimates. Winsorising preserves some information from the tails of good data
and thus is a less harmful to the estimate than completely eliminating them. The negative
effect of harsh univariate filtering is most pronounced for smaller, still undetected, values
of k. Our interpretation is that reducing the amount of good data, is more damaging in
the presence of outliers.

Additionally, the following estimates were computed but not graphed in order not to
overload the figure.

• Sample covariance graph proceeds just under the Winsorised covariance for up to k =
2, at which point it continues to grow quadratically to infinity.
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• Likewise, S-estimate of covariance follows the curve of the Winsorised S-estimate
but continues to grow to infinity as k increases. In smaller dimensions, when overall
fraction of contaminated cases does not exceed 50%, it continues growing beyond
the univariate cutoff value but will eventually stabilize and not breakdown.

• Pairwise S-estimate corrected for positive-definiteness discussed in section 2.1.5.2
was also considered and we have observed that, as expected, it behaves quite poorly.
It starts off at the average LRT-score of 52 when k is small and becomes increas-
ingly bad as the contamination moves away from the centre (96 at k = 4). As the
correction procedure uses linear combinations of variables, it is only natural that
it will not perform well under independent contamination. To separate the poor
performance of the estimate itself from the problems of the correction procedure,
we have tried using the clean dataset (before contamination is introduced) to do the
correction. The assisted “estimate” starts at the average LRT-score of 51 for small k
and stabilizes at 40 for more obvious contamination (or when no contamination is
present at all). This is still a very poor result compared to those shown in Figure 2.7.

We have also computed MLE estimates after detecting contamination using the known
covariance structure of the data. The performance of univariate-detection estimate is
comparable to that of its counterpart with estimated scales. The multivariate detection,
however, can be very considerably improved if the true covariance structure is known. The
average-LRT was between values 1 and 2 which would result in a horizontal line in the
scale of Figure 2.7(a).

It must be noted that the apparent uniform superiority of the combined (multivariate
with high-cutoff univariate) is only uniform over k but will vary depending on data con-
figuration. As we have seen in Figure 2.6, when data does not have enough correlation
structure to support multivariate detection, it results in higher false-positive rate than
univariate and the overall estimate performance is slightly deteriorated. It nevertheless
appears to be a reasonable compromise because the loss of performance in no-correlation
case is relatively small but the benefits that can be gained by removing contaminated
values to preserve existing structure are substantial.
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Chapter 3

S-estimate of multivariate location

and scatter in the presence of

missing data

3.1 Introduction

Data of poor quality are very common in statistical applications. Robust statistical meth-
ods approach the problem of estimating distribution parameters when available data are
not clean enough to satisfy strict distributional assumptions of classical methods. There
are many reasons why data can be regarded as having poor quality, but the two most
obvious and common are contamination and incompleteness.

Data contamination, often manifested by outliers, occurs when instead of observ-
ing the data from the population (or distribution) of interest, we observe a mixture of
good data with data from some arbitrary erroneous distribution. In terms of distribution
functions, the contamination model can be written as

F = (1− ε)F0 + εG, (3.1)

where F is the cdf of the observed data, F0 is the cdf of the good part of the data
that we are interested in estimating, G is an arbitrary contaminating distribution and
finally ε ∈ (0, 1) is the proportion of contaminated cases. In this chapter we consider
traditional contamination model where the mixing happens on the level of data cases as
opposed to data cells as considered in Chapter 2.

Missing data occur when some values in the data set cannot be observed for some
reason. For instance, they may have been impossible to measure or have been lost during
data manipulation. Unlike contamination, which affects whole observations, missingness
affects individual components of data cases. Observations that are fully missing can be
discarded from the beginning as they contain no useful information for estimating the dis-
tribution parameters. There are many mechanisms that can generate missing data but in
this paper we will only deal with data which are Missing Completely at Random (MCAR).
This assumption means that the probability of a particular value being missing does not
depend on either observed or missing data.

There is a variety of robust methods to estimate the parameters of F0 when the ob-
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served data follow model (3.1). For instance, Minimum Covariance Determinants (MCD) (Rousseeuw,
1985) and more generally S-estimates (Davies, 1987) are common choices for the estimation
of multivariate location and scatter parameters when F0 is an elliptical distribution.

The problem of missing data has also been well studied during the past three decades.
The two most widely accepted and used approaches are the Maximum Likelihood (MLE)
of the observed data, typically computed with the EM-algorithm (Dempster et al., 1977),
and the multiple imputation of the missing values (Rubin, 1987). Both methods, however,
rely heavily on distributional assumptions about the data and therefore are not generally
well equipped to handle contamination such as in (3.1).

Although the two problems with data seem to be fundamental, extremely common and
well studied by themselves, little work has been done on how to address both of them at
once. To estimate multivariate location and scatter robustly in the presence of missing
data, Little and Smith (1987) proposed an ER-algorithm, a modified version of the EM-
algorithm with the maximization step replaced by its weighted analog. The weights are
based on the Mahalanobis distances — to the current center using the current covariance
— of the observed part of each observation. They did a simulation study to show that
the ER-algorithm is superior to the EM-algorithm in the presence of outliers but did
not attempt to build any theory or investigate any properties of it. Further, Cheng and
Victoria-Feser (2002) picked up the idea of Little and Smith (1987), modified the way the
weights are applied to the data and the way they are computed (using Translated Biweight
S-estimate (TBS) of Rocke (1996)). They notice that the estimates computed using the
ER-algorithm can lose their robustness if the fraction of contamination exceeds 1/(p+ 1)
and remedied it by using an MCD estimate on missing data — which they developed for
the purpose — as a high-breakdown starting value. Finally, they brought the idea that
the limit of the iterative procedure in the ER-algorithm can be seen as an S-estimate of
multivariate location and scatter but did not define such estimator on missing data.

Multiple Imputation (Rubin (2004)) is a paradigm which is often used as an alternative
to model-based approaches for dealing with challenges imposed by missing data. However
we have not been able to locate any literature on the application of these ideas to robust
estimators. For the reasons discussed below it appears to be a challenging problem that
cannot be solved by simply combining existing procedures and thus requires more thorough
development which is beyond the scope of this paper. In order to do proper multiple
imputation (Wu, 2010, p.119) by averaging the predictive distribution for missing data
over the posterior distribution of parameter (given the observed), one needs to have a
robust way of computing the posterior, that is a robust Bayesian estimate, which is not
available in the literature at the moment. In order to do improper (or naive) imputation
one still needs a good estimate of the parameter to base the predictive distribution on.
The estimate has to be robust and computable on partially missing data which leads
to a circular dependence. A common approach to breaking such self-dependencies is to
start with a simple (but robust) initial estimate and iteratively do (naive) imputation
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and estimation until some convergence criterion is satisfied. In highly structured data,
however, imputing missing values using imprecise estimates of the parameter will often
lead to the generation of outliers. If the proportion of partially missing cases is high then
even a robust estimator (computed on the imputed dataset) may not be able to deal with
the many newborn outliers and obtain the next value of the parameter which is good
enough to make progress.2 In addition to conceptual challenges, multiple imputations is
also computationally challenging because it requires computing slow robust estimates a
large number of times.

In practice, some simple ad-hoc approaches are most commonly used to deal with
missing data. One such approach, the complete cases analysis, is to remove all cases
containing missing values and apply a traditional robust estimate to the remaining data.
Naturally, it leads to loss of information and consequently to reduced statistical efficiency
or even, when the proportion of missing data or the dimension is large, to the inability to
compute the estimate at all.

In this paper we propose a robust method to estimate location and scatter parameters
of an elliptical distribution when part of the data is missing. It is an extension of the
S-estimate and employs ideas similar to the ML-of-the-observed-data approach. Unlike
Little and Smith (1987) and Cheng and Victoria-Feser (2002), our approach derives from
a proper definition of S-estimate on missing data. We can also show that our estimate is
asymptotically unbiased while the previously defined estimates have intrinsic bias which
does not go away as the sample size goes to infinity. In Section 3.3 we describe the theo-
retical generalization of the S-estimate to handle missing values. In Section 3.4 we explain
how the estimate can be computed using a modification of the Fast-S algorithm (Salibian-
Barrera and Yohai, 2006) and what important adjustments need to be made. The com-
parison of our estimate with the ER-algorithm and the ERTBS estimate is presented in
Section 3.4.3. We run several simulations studies and describe some of the properties
that the extended S-estimate possesses in Section 3.5. In particular, in Section 3.5.3 the
estimate is applied to real non-normal data with artificially introduced missingness. We
conclude that the new method compares favourably with all known alternatives.

3.2 Example

In order to illustrate the importance of having an estimation method that is both robust
and can handle missing data, we consider a longitudinal dataset called nursing analysed

2We have tried this numerically on datasets with p = 10, n = 100, 10% of MCAR data, “high”
correlation of the clean part of the data and 10% of strategically placed contamination. We have used
two initial robust estimates: (a) diagonal matrix with univariate squared MAD estimates of variances;
and (b) pairwise matrix of bivariate S-estimates. For both initial estimates, in a large proportion of the
Monte Carlo sampled datasets, the procedure is unable to overcome the problem caused by the imputed
outliers and yields estimates that are two orders of magnitude worse than can be achieved by the extended
S-estimate proposed in this paper.
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in Murphy et al. (1999). The dataset deals with the distress that parents experience after
a violent death of their child. It contains measurements for 21 psychological characteris-
tics (e.g. BSI:Depression, Active Coping subscale of COPE, etc.) taken at 5 time points
after the death of the child. The data are available for 271 individuals. As it is common in
longitudinal studies, observations at some time points for some people are not available,
resulting in 23% of all data being missing.

To take advantage of these data, we assume that we are interested in estimating the
covariance matrix of the whole dataset. It can be of interest on its own, for example, to
explore the correlations between variables, or as a building block in other multivariate
analysis such as PCA or multiple regression. For simplicity, we restrict our attention to
17 out of 21 characteristics3 and only consider three measurements (first, middle and the
last) for each of them. This gives us a sub-dataset with 51 variables, 267 cases and 18.6%
missing data.

When presented with such a dataset, one may take several approaches to analyze
it. One is to compute Maximum Likelihood estimates (MLE) of the location and
covariance matrix using, for example, the EM algorithm. When suspecting that outliers
might be present in the data, another possible approach would be to remove all cases
containing missing values and compute a robust estimate for the covariance matrix based
on complete cases only. Alternatively, one may try use the pairwise approach: robustly
estimate each element of the covariance matrix based on all observations that do not have
missing values in the corresponding pair of coordinates. Optionally, if it is important to
have a positive-definite scatter estimate, it can be corrected using a version4 of the data-
dependent method described in Maronna and Zamar (2002). In this section, we compute
all the above and also our new extended S-estimate on the nursing dataset, and show
that some new features can be found in the data that could not be seen with the three
conventional methods. We will also speculate up to why other estimates perform poorly
in this case.

As we mentioned before, the dimensionality of these estimates is fairly high so we will
not show the actual estimates here but will rather explore what conclusions can be made
based on them. In order to identify outliers, we want to analyze Mahalanobis distances for
all 267 observations. In order to do that, we need to extend the definition of Mahalanobis
distance to accommodate the possibility of having missing values in the data. We do this
in the spirit of the method that we are proposing: for each case, compute Mahalanobis
distance for the observed components and scale it up according to the dimension. The
scaling is necessary to make distances from different dimensions comparable to each other.
If data were multivariate normal the squared partial Mahalanobis distances would be

3We focused on 51 variables in total partly due to the limitations of the computer code for ERTBS
estimate that was available to us.

4The procedure of Maronna and Zamar (2002) relies on data without missing values as it makes use of
robust scales of linear combinations of variables. To overcome this limitation we take the easy route and
simply impute variable-wise medians when a missing value is involved in such a linear combination.
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distributed as χ2 with as many degrees of freedom as there are observed components. We
use this property to convert observed distances to the Uniform[0, 1] distribution and then
transform the scores back to some standardized distribution that we choose to be χ2

p, the
distribution of distances for the complete cases. Corrected Mahalanobis distances are

MD∗(x; m,Σ) = q
(
MD

(
xobs; mobs(x),Σobs(x),obs(x)

)
; |obs(x)|, p

)
,

where
MD(v; m,Σ) =

√
(v −m)′Σ−1(v −m)

denotes the usual Mahalanobis distance of vector v to center m using covariance matrix Σ,

q(y; p1, p2) =
√
F−1

χ2
p2

(Fχ2
p1

(y2)) (3.2)

is the scaling function based on the quantiles of χ2 distribution, and obs(x) denotes the
set of indices of x corresponding to the non-missing components. This way the corrected
Mahalanobis distances will follow the χ2

p distribution assuming that the original data are
drawn from the p-variate normal distribution with mean m and covariance Σ.

In Figure 3.1 we display (corrected) Mahalanobis distances computed using several
location and covariance estimates. They are shown as scatter plots against the Maha-
lanobis distances computed using the new proposed S-estimate in order to illustrate the
differences between the estimates. The dashed lines show our outlier cutoff points. They
are chosen such that, under the multivariate normal assumption, there is only 1% chance
of the maximum Mahalanobis distance (out of n = 267) exceeding it. More specifically, c∗

is such that

P{ max
k=1,...,n

Xk > (c∗)2} = 0.01, where Xk
iid∼ χ2

p, with n = 267 and p = 51. (3.3)

Looking at Figure 3.1(a), we can see that the extended S-estimate (horizontal axis)
allows us to identify 5 obvious outliers (marked with asterisks) and another 11 points that
exceed the formal cutoff value (marked with solid squares). The ML estimate computed
using the EM-algorithm (vertical axis), however, identifies only 2 points that are above
the cutoff and separated from the rest of the data. This suggests that masking of outliers
is taking place in this dataset and that a robust method, such as the extended S-estimate,
is necessary to unveil them. In Figure 3.1(b) we removed the 16 outliers (identified with
the S-estimate) from the dataset and recomputed the ML estimate using the remaining
252 cases. After that we used the “cleaned” ML estimate to compute Mahalanobis
distances for all 267 cases. Now we can see that they agree well with the robust Maha-
lanobis distances, which confirms our fears about masking of outliers and reinforces our
belief of the importance of robust estimation in the case of this dataset.

The S-estimate based on complete cases (132 in this dataset), shown in Figure 3.1(c),
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(b) S-est (16) vs MLE on cleaned data (16)
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(d) S-est (16) vs pairwise S-est (79)

Figure 3.1. Mahalanobis distances for the nursing dataset. The dashed lines are the outlier
cutoff points at c∗ ≈ 10.05. Numbers in parentheses indicate the number of outliers identified
using the corresponding estimate.

exhibit a different problem: it identifies too many (43 in this case) outliers. It is well
known that when the sample size is relatively small and the dimension of the data is
large, estimates of the covariance matrix tend to become more singular (see, for example,
Goodman (1963)). This is true for regular sample covariance matrices and even more so
for robust estimates. When this happens, the covariance matrix describes the data as
being mostly on a hyperplane in the original Rp space. All points that do not belong to
that hyperplane will thus have large Mahalanobis distances w.r.t. that covariance matrix
and will be labeled as outliers. Based on only half of the available data, the complete-cases
estimate lacks efficiency which contributes to misclassifying some points as outliers. In this
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example, we have det(ΣCC)1/p = 0.45 which is noticeably smaller than det(ΣS)1/p = 0.50,
where ΣCC is the complete cases estimate and ΣS is the S-estimate. It should also be
noted that if the proportion of missing values was even higher, then it would be likely that
the number of complete cases would become smaller than the dimension of the data and
then no estimate could be computed at all.

Finally, the plot in Figure 3.1(d) demonstrates the poor performance of the pairwise

S-estimate. It highlights even more (79 to be exact) outliers than the complete-cases
estimate. Also, the cloud of points in the scatter plot becomes very blurred which means
that the order (or degree of outlierness) is barely preserved when compared with the one
suggested by the extended S-estimate. This is happening because the pairwise estimate
fails to capture any data structures of dimension more than two. Therefore, Mahalanobis
distances — which rely on the fine structure of multivariate data — become very erratic.

To complete the list of possible methods to analyze this dataset we have also computed
the ERTBS estimate by Copt and Victoria-Feser (2003). We have had to modify the com-
puter code provided by the authors as the dimension of the data exceeds their upper limit
of 50 variables. The method highlights 79 possible outliers. A closer look at the “out-
liers”, however, reveals that most of them have none or only few components missing. To
quantify this statement we have computed the average squared Mahalanobis distance for
the 135 complete cases and compared it with the average dimension-corrected Mahalanobis
distance for the 132 partly missing observations. See boxplots in Figure 3.2(a) comparing
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(a) ERTBS: average 184.4 vs
89.6
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20
50

10
0

20
0

(b) Ext S-est: average 56.0 vs
57.9

Figure 3.2. Estimated squared Mahalanobis distances for complete vs incomplete cases based
on ERTBS and extended-S estimates. The boxplots are on the log scale.

squared Mahalanobis distances (using ERTBS estimate) between the two groups of obser-
vations. The distributions are obviously not identical. While realizing that one can only
speculate on the nature of this phenomenon we attribute it to the fact that the ERTBS
method more severely penalizes fully observed cases. On the other hand, our extended
S-estimate does not suffer from this phenomenon and its Mahalanobis distances are inde-
pendent from the number of observed variables as evidenced by nearly identical boxplots
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in Figure 3.2(b).
Overall, we can say that the proposed extended S-estimate allows us to identify outliers

in the data that would otherwise be hard or impossible to identify using currently available
methods. Those 16 data points may be of interest on their own or can just be of help in
getting a better estimate for the covariance structure of the rest of the data.

In the next section we show how to modify the definition of S-estimates so that they
can handle missing data.

3.3 Adapting robust estimates to missing values

3.3.1 Motivation

Let X = {x1, . . . ,xn} be an i.i.d. sample of a p × 1 random vector X following the
contamination model (3.1), where F0 is an elliptical distribution with location and scale
parameters (m,Σ). Suppose that the sample we observe is incomplete and assume here
and in the rest of the paper that the data are missing completely at random (MCAR).
Our goal is to estimate the parameters (m,Σ) of the “core” distribution F0.

If the data were fully observed then the S-estimate of multivariate location and scatter
would be a possible approach. On the other hand, if the data come from the distribution
F0, instead of the mixture F , then the MLE on the observed data would be appropriate.
Later in this section we show how to combine these two approaches to solve the problem
at hand.

Let L(m,Σ; x) be the likelihood function for a single point. For an i.i.d. sample X the
likelihood function Lcmpl(m,Σ;X) is simply a product of the likelihoods for the individual
cases:

Lcmpl(m,Σ;X) =
n∏

i=1

L(m,Σ; xi). (3.4)

In order to get the likelihood function for the observed data when some values are missing,
one can integrate (3.4) over the unobserved values

Lobs(m,Σ;X) =
∫
Lcmpl(m,Σ;Xobs, Xmis)dXmis =

n∏

i=1

[∫
L(m,Σ; xobs

i ,xmis
i )dxmis

i

]
=

n∏

i=1

L̃i(m,Σ;xobs
i ), (3.5)

where L̃(·; xobs
i ) is the part of the likelihood function that only depends on the observed

components of xi. In case of elliptical distributions, when the p.d.f. of X can be expressed
as

fX(x) = det(Σ)−
1
2 h((x−m)′Σ−1(x−m)),

it can be shown(Lemma 2 in the Appendix B.1) that the likelihood of the observed part

58



of X takes the following form

L̃i(m,Σ; xobs
i ) = det

(
Σ[i]

)− 1
2 h̃pi

(
(xobs

i −m[i])
′Σ−1

[i] (xobs
i −m[i])

)
, (3.6)

where m[i] is a pi × 1 sub-vector of m with components corresponding to the observed
components of xi and Σ[i] is a pi×pi sub-matrix of Σ with rows and columns corresponding
to the observed components of xi. The functions h̃pi(·) depend on the function h(·) and
on the number of observed components in xi but they do not depend on the parameters m

or Σ. For each case, the argument of h̃pi(·) is the squared Mahalanobis distance of the
observed components of xi. As we usually maximize the log-likelihood function instead of
the likelihood itself, let us take note of the logarithm of (3.5) taking (3.6) into account:

˜̀obs(m,Σ;X) = −1
2

n∑

i=1

log det
(
Σ[i]

)
+

n∑

i=1

log h̃pi

(
(xobs

i −m[i])
′Σ−1

[i] (xobs
i −m[i])

)
. (3.7)

In the classical analysis of missing data this expression is usually optimized using the
EM-algorithm of Dempster et al. (1977).

Note that the ML approach makes no allegations regarding the missing values other
than assuming that they are missing completely at random. In particular, it is not trying
to impute or predict them. It simply takes into account the observed data as if we were not
even planning on collecting the missing part. Moreover, the observed data is summarized
with only their Mahalanobis distances w.r.t. the appropriate sub-vectors and the sub-
matrices of the estimation parameters. We borrow this idea from the ML paradigm and
carry it forward to the S-estimates.

S-estimates of multivariate location and scatter on complete data were defined by Davies
(1987) as (m̂, Σ̂) that minimize det(Σ) subject to

1
n

n∑

i=1

ρc

(
MD2(xi; m,Σ)

)
= b, (3.8)

where ρc(d) = ρ(d/c) and ρ : R+ → R+ is a non-decreasing continuous function such that
ρ(0) = 0 and ρ(∞) = 1. The constant b needs to be in the interval (0, 1) in order for (3.8)
to have a solution. To simplify the numerical solution of this optimization problem, we
can equivalently reformulate it as follows. First, note that any scatter matrix Σ can
be represented as Σ = σ(Σ)Σ0, where det(Σ0) = 1 and σ(Σ) = det(Σ)1/p. Then the
Mahalanobis distance in (3.8) becomes

MD2(xi; m,Σ) = (xi −m)′Σ−1(xi −m) = (xi −m)′
Σ−1

0

σ(Σ)
(xi −m) =

MD2(xi;m,Σ0)
σ(Σ)

,

(3.9)
and det(Σ) = σ(Σ)p, which is a monotone increasing function of σ(Σ). For any vector m

and matrix Σ0 with det(Σ0) = 1, it is possible to find a scalar s = s(m,Σ0), such that
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(m, sΣ0) satisfies (3.8), or, in other words,

1
n

n∑

i=1

ρc

(
MD2(xi; m,Σ0)

s

)
= b. (3.10)

The unique solution exists because the left-hand-side is a continuous monotonely non-
increasing function of s that is equal to ρc(∞) at s = 0, and 0 at s = +∞. Note that σ(Σ)
and s(m,Σ0) are essentially the same thing in a sense that σ(Σ) = s(m, det(Σ)−1/p Σ),
for any (m,Σ) satisfying (3.8). Therefore, minimizing the det(Σ) over all (m,Σ) satisfy-
ing (3.8) is equivalent to minimizing s(m,Σ0), that solves (3.10), over all positive-definite
matrices with

det(Σ0) = 1. (3.11)

Throughout this paper we will use Tukey’s bisquare5 ρ-function of the form

ρc(d) = ρ(d/c) = min{1− (1− (d/c))3, 1}, for any d, c ≥ 0, (3.12)

but any other ρ-function can be used with minimal modifications. Rocke’s biflat ρ-function
appears to be a promising alternative for high-dimensional data but we have chosen to
restrict our attention to Tukey’s bisquare function in this thesis. Refer to Appendix B.2
for further discussion concerning this choice.

The constant b in (3.10) controls the breakdown properties of the estimator, such that
the breakdown point is equal to min{b, 1 − b}. The constants c and b are usually chosen
jointly so that the estimator is Fisher-consistent when the data follow uncontaminated
normal distribution. This can be achieved by choosing c and b such that

E
[
ρc

(
MD2(X;0p, Ip×p)

)]
= b, when X ∼ Np(0, I). (3.13)

As ρc(d) is a non-increasing function of c, it is easy to see that larger values of b correspond
to smaller values of c and vice versa. In the limit, if b→ 0 then c→∞ and the S-estimate
will become equivalent to the Gaussian MLE.

3.3.2 Definition

For the case when observations xi are partly missing, we propose the following extended
S-estimate. Later we will discuss the required changes and our motivation for making
them.

Definition 1. The extended S-estimate of multivariate location and scatter is defined
as (m̂, ŝΣ̂) where ŝ = s(m̂, Σ̂), and (m̂, Σ̂) minimizes the scale s(m,Σ), which is the
solution s of

1
n

n∑

i=1

ρ̃i

(
MD2

i (x
obs
i ; m,Σ)
s

)
= b, (3.14)

5The name is due to the corresponding ψ-function which is the derivative of ρ(·).
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subject to
n∑

i=1

log
(
det

(
Σ[i]

))
= 0, (3.15)

where

MD2
i (xi; m,Σ) = MD2(xobs

i ; m[i],Σ[i]) = (xobs
i −m[i])

′Σ−1
[i] (xobs

i −m[i]), (3.16)

are the Mahalanobis distances of the observed data, and

ρ̃i(d) =
ciki

n−1
∑
cjkj

ρci(d), (3.17)

with constants ci and ki such that

E
[
ρci

(
X2

1 + · · ·+X2
pi

)]
= b, and (3.18)

ki =
{
E
[
ciρ

′
ci

(
X2

1 + · · ·+X2
pi

)
X2

1

]}−1
. (3.19)

Here pi is the number of observed components of xi, and Xj
iid∼N (0, 1), for j = 1, . . . , p.

Note that ci and ki only depend on i through pi.

As it is easy to see, the modifications are threefold: the argument of the ρ-function,
the scaling of it and the optimization constraint on Σ.

Inside the ρ-function we now have the Mahalanobis distance of the observed part of
each data point. The distance is computed to the corresponding subvector of the location
vector m and is normalized with the submatrix Σ[i] of the overall covariance matrix Σ.
This is analogous to what we saw in the likelihood expression for the elliptical distributions
in equations (3.6) and (3.7).

The role of c in ρc(·) is to decide which points are outliers based on their squared
Mahalanobis distance to the center. If the distance (relative to c) is small then the point
is given a large weight, but if MD2 ≥ c then the point is treated as outlier. To recognize
the fact that Mahalanobis distances in larger dimensions tend to be larger, we use ρci(d) =
ρ(d/ci) in (3.17). By (3.18), the constants ci tend to be bigger in higher dimensions and
so the Mahalanobis distances are scaled appropriately.

The three scaling factors in front of the ρci(d) in (3.17) all have their respective
purposes.

1. ci ensures that the extended S-estimate reduces to the Gaussian MLE of the observed
data when the constant b, responsible for the breakdown point, is chosen to be
small. As b → 0, all ci → ∞ and therefore ρ′ci

(d) = 3/ci + o(d/c2i ), so that all
ki →

{
E
[
3×X2

1

]}−1 = 1/3. Then the ρ-functions become

ρ̃i(d) ≈ ci
n−1

∑
cj
ρci(d) ≈

ci
n−1

∑
cj

d

ci
=

n∑
cj
d,
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because ρci(t) = t/ci + o(c−1
i ), when ci → ∞. So the optimization problem (3.14)

turns into minimizing

s(m,Σ) =
n

b
∑
cj

n∑

i=1

MD2
i (xi; m,Σ),

under the constraint
∑n

i=1 log
(
det

(
Σ[i]

))
= 0. Which, in turn, is equivalent to maxi-

mizing the Gaussian likelihood of the observed data (see Lemma 3 in Appendix B.3).

2. ki is necessary for the estimate to be Fisher-consistent. It guarantees that data of
varying dimensions are combined properly. See Section 3.3.3 and the proof of The-
orem 1 in Appendix B.4 for the discussion of the Fisher-consistency of the estimate
and the role of ki.

3. Finally, the normalizing average of cjkj over j = 1, . . . , n in the denominator of (3.17)
guarantees that the expectation of the left hand side of (3.14) under independent
Gaussian data is equal to its right hand side (i.e. to b). Namely

E

[
n−1

n∑

i=1

ρ̃i

(
MD2(Xi;0pi , Ipi×pi)

)
]

= n−1
n∑

i=1

cikj

n−1
∑
cjkj

b = b. (3.20)

This is also a necessary condition for the estimate to be Fisher-consistent.

The modified constraint in (3.15) reflects the changes in the determinant part of
the expression (3.7) as compared with the usual log-likelihood function of complete data.
Instead of fixing the determinant of the scatter matrix, we constraint the average of the
log of the determinants of the submatrices of Σ. As we have seen above, this modified
constraint is necessary for the extended S-estimate to be a generalization of the Gaussian
MLE when b ≈ 0.

Note that this new constraint is still about the scale of Σ. Namely, for any positive-
definite matrix Σ there exists a matrix aΣ satisfying (3.15). It is easy to find such a > 0
once we notice that

n∑

i=1

log
(
det

(
aΣ[i]

))
=

n∑

i=1

log
(
api det

(
Σ[i]

))

=
n∑

i=1

[
pi log a+ log

(
det

(
Σ[i]

))]
= log a

n∑

i=1

pi +
n∑

i=1

log
(
det

(
Σ[i]

))
, (3.21)

and therefore the desired

a = exp

(
−

∑n
i=1 log

(
det

(
Σ[i]

))
∑n

i=1 pi

)
. (3.22)

One more important property of the extended S-estimate is that it is a generaliza-
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tion of the usual S-estimate and reduces to the latter when no missing data are present.
Equation (3.14), having all Mahalanobis distances computed using the full covariance,
reduces to (3.8). In constraint (3.15) every term of the summation is equal to log det(Σ)
and therefore the constraint reduces to log det(Σ) = 0 which is equivalent to det(Σ) = 1
required by (3.11). Constants ki1 = ki2 and ci1 = ci2 = c, for all 1 ≤ i1, i2 ≤ n, because
they only depend on the number of observed components which is now equal to p for all
cases. Therefore function ρ̃i defined in (3.17) is equal to ρci = ρc.

3.3.3 Fisher-consistency

As mentioned above, an effort has been made to ensure that the estimate is asymptotically
unbiased. The agreement between the constants ci and b ensures that the scale is estimated
correctly. The constants ki are chosen so that the covariance submatrices of different
dimensions are all on the same scale and can be combined to form an asymptotically
unbiased estimate of the covariance structure. We have the following result:

Theorem 1. The extended S-estimate is locally Fisher-consistent under multivariate nor-
mal data even in the presence of missing data.

Local Fisher-consistency here means that the true values of m and Σ locally minimize
the functional value of s(m,Σ). See Appendix B.4 for the definition of the asymptotic
functional s(m,Σ) and for the proof of this theorem. Simulation study in section 3.5.2
indicates that our estimate is in fact consistent and asymptotically normal at the usual√
n - rate.

Multivariate normality is not a restrictive assumption here. If data are believed to
follow another family of elliptical distributions then the Definition 1 can be modified so
that the estimate is still Fisher consistent. To achieve that, the expectations in (3.18)
and (3.19) should be computed with respect to the distribution of choice instead of the
standard normal. See proof of Theorem 1 in Appendix B.4 for more details.

3.3.4 Scale and location equivariance

Affine equivariance is often viewed as a desirable property for statistical estimates. When
no missing data are present, an affine equivariant location-scatter estimate is such that

Σ̂(Y ) = AΣ̂(X)A′, and m̂(Y ) = Am̂(X) + b, (3.23)

where Y = XA + b is an affinely transformed version of the data matrix X, with a non-
singular square matrix A. Note, that it is crucial for the equivariance property that the
matrix A is invertible.

In order to define affine transformations on data with missing values, the arithmetic
needs to be expanded a bit. We will assume that any arithmetic operation applied to a
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missing value results in a missing value, unless it was a multiplication by zero, in which
case the result is also a zero. Under these rules, only a limited number of very specific
affine transformations can be inverted so that the notion of affine equivariance can even
be applied. In particular, any transformation that attempts to “mix” missing values with
observed data is not invertible and therefore the concept of affine equivariance is not
applicable. A small class of invertible affine transformations that can always be applied to
partly missing data consists of location shifts and changes of scale of individual variables.
In terms of equation (3.23), it means that A is a diagonal matrix. We will call them location
and scale transformations. For some datasets where not every variable has missing values,
some other matrices A may result in an invertible transformation, but we will not study
them because they depend heavily on the missingness pattern of a particular dataset.

Theorem 2. The extended S-estimate is equivariant under location and scale transforma-
tions.

Proof. See Appendix B.5.

Definition 1 describes the extended S-estimate (m̂, ŝΣ̂) but provides little, if any,
insight into how to compute it. In Section 3.4 we propose a set of modifications to the
Fast-S algorithm, originally described by Salibian-Barrera and Yohai (2006), that allows
us to compute the extended S-estimate on partly missing data.

3.4 Computational aspects of S-estimate with missing

values

3.4.1 Modified Fast-S algorithm

In Section 3.3 we described how the S-estimate can be defined in the presence of missing
data. But the optimization problem in (3.14), even for the usual S-estimate as in (3.10),
is complex. The estimates m̂ and Σ̂ optimize the scale s(m̂, Σ̂) which is the solution to a
non-linear data-dependent equation, Σ̂ is generally highly multi-dimensional and, above
all, it is constrained to being positive-definite and to satisfy (3.15).

One possible solution, in the case of the usual S-estimate, is to employ the approxi-
mate subsampling- and reweighting-based Fast-S algorithm of Salibian-Barrera and Yohai
(2006). They describe the algorithm for regression S-estimates but the adaptation to
multivariate location and scatter estimates is straightforward. In this section, we briefly
mention the basic algorithm but the focus is on the changes that need to be made in order
to accommodate missing values and compute the estimate as defined by (3.14) and (3.15).

Algorithms 1 and 2 — the latter being a subroutine called by the former — describe
the extended Fast-S algorithm for partly missing data. The general structure is similar
to that of the usual Fast-S algorithm. The lines that require modification are marked
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with asterisks on the right margin and further explained in this section. To implement
the algorithm in R, we modified the code for Fast-S estimate of multivariate location and
scatter published by Joossens and Roelant (2007).

Algorithm 1 Fast-S algorithm
1: initialize s∗t = ∞, for t = 1, . . . , Nb(small) — the list of best (smallest) scales
2: for j = 1 to Ns(large) do
3: take a random subsample X(j) of size ns(small) ∗
4: compute its average m0 = m0(X(j)) and covariance Σ0 = Σ0(X(j)) ∗
5: rescale Σ0 := aΣ0, such that constraint (3.15) holds ∗
6: iterate small number r of times: (mw,Σw) = iter.rew (m0,Σ0; r) (see Algorithm 2)

7: compute Mahalanobis distances di = di(xi;mw,Σw), for all i (same as line 6 in Alg 2)

8: find scale s(j) solving equation (3.14) (same as line 7 in Alg 2)

9: if s(j) < s∗Nb
then

10: update {s∗t }Nb
t=1: save s(j) as s∗t , for some t, keep the list ordered

11: save mw as m∗
t and Σw as Σ∗

t

12: end if
13: end for
14: initialize sbest = ∞
15: for t = 1 to Nb do
16: iterate utill convergence: (m∗∗

t ,Σ
∗∗
t ) = iter.rew (m∗

t ,Σ
∗
t ; converge) (see Algorithm 2)

17: Mahalanobis distances di = di(xi; m∗∗
t ,Σ

∗∗
t ), for i = 1, . . . , n (same as line 6 in Alg 2)

18: find scale s∗∗t solving equation (3.14) (same as line 7 in Alg 2)

19: if s∗∗t < sbest then
20: sbest = s∗∗t
21: mbest = m∗∗

t and Σbest = Σ∗∗
t

22: end if
23: end for
24: (optional) refine (mbest,Σbest) = iter.rew (mbest,Σbest; converge) with the exact

reweighting as in eqns. (3.27)–(3.28) instead of approximate
25: return (mbest, sbestΣbest)

The algorithm proceeds by taking a large numberNs of small subsamples of size ns (line 3),
computing their means and covariance matrices and reiterating from there. The subsam-

ple size ns needs to be small enough to ensure the diversity of subsamples, but large
enough to produce non-degenerate covariance estimates. For complete data, it is usually
taken to be ns = p+ 1, which would be insufficient when some of the values are missing.
We take

ns = dp/(1− fmis)e+ 1,

where fmis is the overall fraction of missing values in the dataset and dxe denotes the
smallest integer number larger than x.

Once a properly sized subsample is taken, its location and covariance estimates

need to be computed (line 4). With complete data, the sample mean and the sample
covariance can be used. With incomplete data, for the location estimate, we have chosen
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Algorithm 2 iter.rew (m0,Σ0, r) — Iterative reweighting (called from Algorithm 1)
1: if r = converge then
2: set r := some big number
3: end if
4: initialize converged := FALSE and k := 1
5: while (k ≤ r) & (NOT converged) do
6: compute Mahalanobis distances di := di(xi; mk−1,Σk−1), for all i = 1 ∗
7: find scale sk solving equation (3.14) ∗
8: compute weights wi := wi(di/sk), for i = 1, . . . , n ∗
9: mk := mw(X, {wi}), approximate weighted estimate of location ∗

10: Σk := Σw(X, {wi}), approximate weighted estimate of scatter ∗
11: rescale Σk := cΣk, such that (3.15) holds (same as line 5 in Alg 1)

12: converged := (||mk −mk−1||2/||mk||2 < some small number)
13: end while
14: return (mr,Σr)

to use coordinate-wise means using only observed data. And the subsample covariance
is estimated by first imputing coordinate-wise medians of the whole dataset in place of
missing values in the subsample, and then computing the usual sample covariance matrix.

An alternative way to get initial estimates could be to compute MLE estimates under
the normal model using the EM algorithm. However, the EM algorithm does not con-
verge well when sample sizes are just slightly greater than the dimension and thus it was
discarded. A modification of the EM algorithm is used, however, later on to compute
weighted estimates of multivariate location and scatter.

Rescaling of Σ0 in line 5 is straightforward and can be done using the expression
in (3.22). Note, however, that in actual computations we do not compute the sub-matrix
determinants n times, but rather group the data according to their missingness patterns
and compute the determinant for each pattern.

The next step is to do a small number r of iterations of reweighting using (m0,Σ0)
as the starting point. Algorithm 2 describes how this is done. In line 6 we compute
Mahalanobis distances for all the data points using the current values of m and Σ. Index i
on function di(·) indicates that the distance should be computed in the subspace of Rp

corresponding to the observed components of xi, as described in (3.16).
The scale sk computed in line 7 is necessary for proper scaling of Mahalanobis dis-

tances di when using them to compute weights in line 8. The process of solving equa-
tion (3.14) is essentially the same as solving equation (3.10) of the complete data. The
only difference is that the functions ρ̃i(·) now depend on the dimension of the observed
part of xi. The left-hand side of both equations is a non-increasing function of s and
therefore they can easily be solved by iteratively computing

s(j+1) = s(j)
1
b

1
n

n∑

i=1

ρ̃i

(
di(xobs

i ;m,Σ)
s(j)

)
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until some convergence criterion is reached.
The weight function wi(·) should agree with the ρ-function ρ̃i(·) to ensure the best

convergence while iteratively reweighting. It can be shown (Maronna et al., 2006, p.220)
that a traditional S-estimate can be represented as a weighted average and a weighted
covariance matrix of the observations with weights equal to the derivative of the ρ-function
applied to the Mahalanobis distances computed using the estimate itself. Therefore using
the derivative of the ρ-function as the weight function for the iterative process is the
natural choice. In our case of ρ-function varying from case to case we use

wi(d) = ρ̃′i(d) =
ciki

n−1
∑
cjkj

ρ′ci
(d) =

3ki

n−1
∑
cjkj

(
1− d

ci

)2

if d < ci, and 0 otherwise.

(3.24)
We consider the approximate weighted estimate of location and scatter employed

in lines 9 and 10 of Algorithm 2 to be an important contribution and will discuss it more
detail in the next section.

3.4.2 Weighted estimate of multivariate location and scatter

Once weights are calculated, a weighted estimate of location and scatter for the whole
dataset needs to be computed (lines 9 and 10 in Algorithm 2).

When data are complete, these weighted estimates are equal to

m̂w = mw(X, {wi}) =
∑n

i=1wixi∑n
i=1wi

, and (3.25)

Σ̂w(X, {wi}) =
∑n

i=1wi(xi − m̂w)(xi − m̂w)′∑n
i=1wi

, (3.26)

and it is justified by the proof from (Maronna et al., 2006, p.220) which considers the
derivatives ∂s

∂m and ∂s
∂Σ in the constrained optimization problem with det(Σ) = 1.

When some data are missing, a similar derivation can be done considering the La-
grangian for the constrained optimization problem in Definition 1. There are two major
differences compared with the complete data situation. First, all Mahalanobis distances
are computed based on the observed components only and therefore use different sub-
matrices of Σ. Second, the constraint (3.15) now involves the determinants of various
submatrices of Σ. This yields us the following two equations defining the reweighted
estimates m̂w and Σ̂w

n∑

i=1

wi〈Σ̂−1
w[i](x

obs
i − m̂w[i])〉 = 0 (3.27)

n∑

i=1

wi〈Σ̂−1
w[i](x

obs
i − m̂w[i])(x

obs
i − m̂w[i])

′Σ̂
−1
w[i]〉 = const×

n∑

i=1

〈Σ̂−1
w[i]〉, (3.28)
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with the exact value of const in (3.28) being not important because it only affects Σ̂w as
a multiplicative factor that goes away when we rescale Σ using (3.22). Angle brackets 〈·〉
indicate that the vectors and matrices in dimensions less than p need to be expanded to
size p with the gaps filled with zeros. For example, if p = 4 and some x = (x1,NA, x3,NA)′

then xobs = (x1, x3)′ ∈ R2 but 〈xobs〉 = (x1, 0, x3, 0)′ ∈ R4.
Unfortunately, the solutions m̂w and Σ̂w to (3.27)–(3.28) are not easy to compute.

A numerical algorithm such as Newton-Raphson can be used to solve them but, since
the whole procedure needs to be repeated numerous times, it is unacceptably slow. The
problem is also complicated by the fact that the solution is required to satisfy (3.15) and to
be positive-definite, so that an alternative parametrization of Σ̂w such as those described
in Pinheiro and Bates (1996) needs to be used. It makes closed form expressions for the
gradient and Hessian matrix of (3.27)–(3.28) unfeasible and the brute force optimization
slow. We will refer to the solutions of (3.27)–(3.28) as the exact weighted mean and scatter
and will use them only as a final tuning step once we get close to the S-estimate using an
approximate reweighting described below.

Equations (3.27)–(3.28) resemble two other objects that we are familiar with. First, if
there were no weights on the left hand side then they would be the ML equations for the
multivariate normal data. On the other hand, if the weights were present on the both sides
of (3.28) then the equations would define the MLE for the weighted sample (i.e. where the
weight of each observation is taken to be wi instead of 1/n). In both cases, such equations
could be efficiently solved by the EM algorithm: the regular EM in the first case, and the
EM where every summation term corresponding to xi is multiplied by wi in the second.
Our equations, however, do not correspond to any likelihood function and therefore cannot
be solved by the un-modified EM-algorithm.

To compute an approximate weighted estimate we will use the ER-algorithm of Little
and Smith (1987) with fixed weights. Our goal is to compute a reweighted estimate given
the weights and therefore we are not going to recompute them on each iteration as it is
done in the original paper. We compute the next iteration as

m(t+1) =

(
n∑

i=1

wix̂
(t)
i

)
/

(
n∑

i=1

wi

)
(3.29)

Σ(t+1) =
n∑

i=1

{
wi(x̂

(t)
i −m(t))(x̂(t)

i −m(t))′ + C
(t)
i

}
, (3.30)

where

x̂
(t)
i = E

[
X

∣∣∣X [i] = xobs
i ,m(t),Σ(t)

]
and (3.31)

C
(t)
i = Cov

[
X

∣∣∣X [i] = xobs
i ,m(t),Σ(t)

]
. (3.32)

Closed form expressions for x̂
(t)
i and C

(t)
i (conditional distribution of a sub-vector of a
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gaussian random vector given the remaining components) are well known and given below:

(x̂(t)
i )[i] = xobs

i , (x̂(t)
i )[−i] = m

(t)
[−i] + Σ(t)

[−i,i]

(
Σ(t)

[i]

)−1
(xobs

i −m
(t)
[i] ) (3.33)

(C(t)
i )[−i,−i] = Σ(t)

[−i,−i] −Σ(t)
[−i,i]

(
Σ(t)

[i]

)−1
Σ(t)

[i,−i], and zeros elsewhere. (3.34)

They can be efficiently computed using Gauss–Jordan sweep (SWP) operator. Subscripts
[−i] indicate that only the variables corresponding to the missing components of the ith
case need to be considered. Note that the weight in (3.30) only multiplies the part that
depends on the data but not the C(t)

i . This directly corresponds to what we saw in (3.28)
where the right hand side does not depend on xi and does not carry weights.

For a given set of weights the iterative procedure in (3.29)–(3.32) is repeated until
some convergence criterion is reached yielding us the final m̂aw and Σ̂aw that we consider
to be good enough approximations of m̂w and Σ̂w given by (3.27)–(3.28).

After preliminary subsampling and more thorough iterations through the Nb best sub-
samples are done, the iterative reweighting can be performed on (mbest,Σbest) with the
slow exact weighting step (at lines 9 and 10 in Algorithm 2) to refine the final estimate
and to ensure that it satisfies Definition 1 exactly. In practice, however, we have noticed
that the faster approximate ER-based weighting performs just as well as the slow exact
procedure.

3.4.3 Comparison with the ER-algorithm and the ERTBS estimate

In this section we describe the differences between the extended S-estimate, ER-algorithm
and ERTBS.

The main conceptual difference is that in this paper we provide a definition of the
estimate together with an algorithm that attempts to compute it. The extended S-estimate
is defined as a pair (m,Σ) that minimizes a robust scale s(m,Σ) defined in (3.14). On the
other hand, both the ER-algorithm and ERTBS describe just an algorithm rather than
an estimate per se. Having a proper definition allows us to study the properties of the
estimate and to fine tune the corresponding computational algorithm.

This fundamental distinction also affects the actual algorithm that is used to compute
the estimate. Little and Smith (1987) propose that the ER-algorithm starts iterating from
the MLE of the location-scatter that can be found using the EM-algorithm. As duly noted
by Cheng and Victoria-Feser (2002) this approach has a low breakdown point. The starting
value can be so badly affected by outliers that the ER-algorithm will have no chance to
downweight the contamination properly and will converge to a value far away from the
truth. Copt and Victoria-Feser (2003) suggest to remedy this problem by starting the
iterations from a location-scatter estimate that is already robust and has high breakdown
point. For this purpose they develop modifications to the Fast-MCD of Rousseeuw and
Van Driessen (1999) and OGK pairwise covariance estimate of Maronna and Zamar (2002)
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that make them capable of analyzing incomplete data. Once the starting value is chosen
the ERTBS algorithm iterates to convergence and the limiting value is returned as the
estimate. The extended S-estimate, however, has an objective function to optimize and the
algorithm is designed with that in mind. Iterative reweighting is done because it improves
the scale: we observed in simulations that the exact weighted estimate consistently reduces
the scale on each step. The approximate weighted estimate, unfortunately, does not have
this exact property but it reduces the scale most of the time. Multiple initial subsamples
are taken and several best of them are chosen based on the scale that can be achieved
starting from them.

Another difference arises from the way we see the reweighting step. For the extended S-
estimate, the approximate weighted covariance, which closely resembles the ER-algorithm,
is only a computationally cheaper version of the exact weighted covariance. Therefore
updating the weights while iterating between E- and R-steps would be inappropriate.
Both ER-algorithm by Little and Smith (1987) and ERTBS do update weights on every
step of their iterations.

Going into more technical but nevertheless important details, let us consider how an
individual step of the ER-algorithm is performed. When updating Σ in (3.30), only the
part depending on the data is multiplied by the weight but not the Ci. This is also the
case in Little and Smith (1987). If both terms were downweighted, as done by Cheng and
Victoria-Feser (2002), then the iterative algorithm would become equivalent to the EM-
algorithm performed on the weighted sample which will find the MLE for the weighted
sample. When weights are based on the data, and especially on the incomplete data, this
is undesirable as it will lead to a biased estimate even when there is no contamination
in the data. Such a procedure does not estimate the parameters of the distribution of
interest but rather the parameters of the weighted distribution where points with large
Mahalanobis distances have smaller weights than in the original distribution. When data
are complete and the weights are based on the full Mahalanobis distances this only leads
to the underestimation of variances but the correlation structure remains unbiased — this
is why the weighted covariance matrix (which can also be seen as the MLE of the weighted
sample) is adequate in the complete-data scenario. When some of the data are missing and
the weights are based on partial Mahalanobis distances the bias becomes more dangerous:
not only the variances are underestimated but also the relationships between variables are
distorted.

Although we use the slightly modified ER-algorithm to compute the approximate
weighted mean and covariance, the most importance difference is the weights involved.
The ones used in the original ER-algorithm put the x-part and the Ci part of (3.30) on
two different scales. If we consider the unconditional expected value of one term in (3.30)
assuming that m(t) and Σ(t) are already equal to the true values of the parameters, we
would like the expectation to be equal to the true Σ as well. In other words, once we
have come close to the true m and Σ we do not want to go away. With the weights
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used by Little and Smith (1987), however, the part of the matrix corresponding to the
observed components is going to be downweighted and the part corresponding to the miss-
ing variables will enter with weight one which will cause the combination of them to be
biased. Our weights are scaled up (by means of the constants ki in front of the ρ-function)
to ensure that everything is on the same scale regardless of how many components of a
given observation are missing. It is confirmed further in simulations that the extended
S-estimate is unbiased when sample size is medium to large and the data are coming from
the multivariate normal distribution with missing values.

The last little difference between (3.29) and the updating of the location vector in the
ER-algorithm is that we use the same weights for the mean vector as for the covariance
matrix. Little and Smith (1987) chose to use the square roots of the covariance weights
following what was done by Campbell (1980).

This concludes the definition of the extended S-estimator and we move on to the
empirical assessment of its performance in the next section.

3.5 Simulations results and numerical evaluation

3.5.1 Monte Carlo study

In order to evaluate the performance of the new method we conduct a simulation study.
Our main goal is to assess how well the new extended S-estimate can handle missing values
and compare it with the S-estimate on the full data without missing values and with the
conventional alternatives discussed in Section 3.2.

To make the simulations setup representative of the problems encountered in real
scientific research, we used the correlation structure of the data from the Palomar Digital
Sky Survey (DPOSS) (Djorgovski et al., 1998). As noted in Theorem 2, our estimate
is location and scale equivariant and therefore we can consider data that are centered
at zero and have unit variances without loss of generality. We estimated the correlation
matrix of the full DPOSS dataset (27 variables, 132,402 cases) using the S-estimate and
saved it as Σ̃. “Clean data” in our simulations are drawn from the multivariate normal
distribution with mean zero and covariance matrix Σ̃. The data in the DPOSS dataset are
highly correlated (the condition number of Σ̃ is approximately 5,000) presenting us with a
challenging estimation problem. To further emulate the real world, we also draw “outliers”
from the DPOSS dataset to add to the randomly generated clean data. We consider three
different levels of contamination in this simulation study: 0%(clean data), 5% and 10%.

The procedure described below is repeated N = 2,000 times so that we are able to
estimate the expected value of the estimates as well as their sampling variances.

1. Data generation:

(a) generate a sample Xclean of size n = 1,000 from N (027, Σ̃);
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(b) obtain Xcont5 (and Xcont10) by replacing a fraction εcont = 0.05(or 0.10) of cases
of Xclean with cases randomly drawn from the pool of outliers in the original
DPOSS dataset (top 20% of Mahalanobis distances); since our simulated data
have zero mean and unit variances, the outliers are also standardized using
robust univariate estimates of location and scale based on the whole dataset

(c) randomly choose which cells are going to be missing; they are uniformly dis-
tributed over all cases and variables, with the total fraction fixed at εmis = 0.1

• obtain Xmis by introducing missing values to Xclean

• obtainXcont5,mis (andXcont10,mis) by introducing missing values toXcont5 (or
Xcont10)

2. Compute estimates on incomplete data. Calculate the following five estimates on
each of Xmis, Xcont5,mis and Xcont10,mis

(a) extended S-estimate; this is our main interest

(b) ERTBS6 covariance estimate of Copt and Victoria-Feser (2003); this is our main
competitor

(c) S-estimate7 on only complete cases; this is reasonable alternative when εmis and
dimension are not very large

(d) matrix of pairwise S-estimates; this estimate is likely to fail due to its inability
to recognize multidimensional structures

(e) Gaussian MLE by means of the EM-algorithm; on clean data it will serve as
a gold standard, and on contaminated data it will give an indication of the
severity of contamination.

3. Compute estimates on complete data which we will use as baseline. We only compute

(a) S-estimate; and

(b) sample covariance (MLE),

because ERTBS reduces to a form of S-estimate when no data are missing and so
does the complete cases S-estimate.

Note that all S-estimates here and in the following sections, as well as the example
in Section 3.2, have been computed with the value b = 0.5 that ensures the maximum
possible breakdown point. Additionally, the following values of the tuning parameters
were used for the Fast-S algorithm (both original and extended): Ns = 100, Nb = 5 and
r = 5 (see Algorithm 1 for their meanings).

To make our evaluation criteria more invariant to the correlation structure of the data,
we transform all covariance estimates using the true covariance matrix Σ̃, so that our target

6The R and Fortran code was kindly provided by the authors.
7In addition to the S-estimate we also computed the MCD covariance estimate based on complete cases,

but its performance was even worse than that of Σ̂cc and therefore the numerical results are not reported.
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complete data with 10% missing data
εcont ↓ S MLE ext S ERTBS S cc only S pw MLE via EM
clean 0.78 0.76 0.97 1.70 14.23 1,292 0.94
5% 0.98 7.85 1.19 1.71 17.00 1,563 8.24
10% 1.48 24.82 1.69 1.75 21.23 1,912 25.52

Table 3.1. Simulation results showing mean squared errors (i.e. average L2-distances to the
identity matrix) for the standardized covariance estimates. “ext S” is the extended S-estimate;
“S cc only” is the S-estimate on complete cases; and “S pw” is the pairwise S-estimate.

is now the identity matrix. We call this standardization of the covariance estimates:

stdeΣ(Σ̂) = (Σ̃
− 1

2 )′Σ̂Σ̃
− 1

2 , (3.35)

where Σ̂ is any of the covariance estimates described above. Note that this standardization
is invariant to scaling transformations of the data and therefore our choice of data with
unit variances maintains its generality.

The estimates that we compute are highly multidimensional and therefore, in order to
be able to evaluate their performance, we need to choose some appropriate distances in
the space of 27-dimensional positive definite matrices. The first measure that we use is
simply the L2-norm (Frobenius norm) between the standardized covariance estimate and
the identity matrix

d1(Σ̂) = ||stdeΣ(Σ̂)− I||22. (3.36)

For the N replicates, we compute the average N−1
∑N

i=1 d1(Σ̂i), and it is, in effect, the
mean squared error (MSE) for the chosen estimator. Table 3.1 summarizes them for the
estimators mentioned above. A number of observations can be made based on the results
of these simulations:

1. The extended S-estimate compares favourably with the competitors both in the
presence of outliers and without them. The runner up (ERTBS estimate) has MSE
at least 40% larger.

2. Although not shown in the table, by decomposing the MSE into the squared bias
and the variance, we can see that the extended S estimate has no bias with the clean
data and under 5% contamination the bias is responsible for the 8% of the MSE.

3. On the other hand, the ERTBS estimate has some intrinsic bias constituting about
25% of the MSE even when computed on the data with no contamination (but with
10% missing values). Its variance is also larger than that of our estimate (1.3 squared
units vs 1.1).

4. When 10% of missing data is introduced, the MSE of the extended S-estimate goes
up by approximately 20%. This may seem extensive at first, considering that the
amount of data was only reduced by ten per cent, but we can see that it is on par
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with the efficiency loss of the ML estimate under the same missingness scenario.
More on this in Section 3.5.2.

5. When data are clean, the S-estimate is almost as efficient as the Gaussian ML esti-
mate of covariance. This is well known for the regular S-estimates in higher dimen-
sions and we confirm that this is also true for the extended S-estimate.

6. Outliers (at least those used in these simulations) have their moderate negative
influence on the S-estimates but the effect is about the same in the presence of
missing data as it is under the complete data scenario. Therefore we conjecture that
the extended S-estimate inherits the good robustness properties of the traditional
S-estimate.

7. Both pairwise and the complete-cases approaches are hardly an alternative to a
specialized method such as the extended S-estimate or ERTBS. The average number
of complete cases in this scenario is only n(1− εmis)p = 1,000× 0.927 ≈ 58 which is
hardly enough to obtain a reasonable estimate of covariance matrix in dimension p =
27. The problem of the pairwise estimate is that it completely misses the multivariate
structure of the data. If the Frobenius norm was computed directly on the estimated
matrix (without standardization) then it would likely perform on par with other
estimates, but the standardization step exposes the lack of multivariate coherency
in it.

We also employ another measure of quality to investigate how well the multivariate
structure of the covariance matrix is estimated. This time we look at the condition numbers
of the standardized covariance estimates:

d2(Σ̂) =
v1(stdeΣ(Σ̂))

vp(stdeΣ(Σ̂))
,

where v1 and vp are the largest and smallest eigenvalues of the given matrix respectively.
Note that d2(Σ) ≥ 1 for any Σ, and d2(Σ) = 1 whenever Σ = Σ̃. This measure is by no
means an absolute description of the shape of the estimated matrix but it is rather just
one of many possible characteristics and many researches find it useful; in particular, this
measure is used in Maronna et al. (2006).

Table 3.2 shows the averages and standard deviations of d2(Σ̂i) over i = 1, . . . , N .
The closer the expected value is to 1 or, in other words, the smaller it is, the better the
estimate. The ML estimate in the “complete and clean data” corner of the table gives us
an idea of what is the best performance that we may hope to achieve for the given data
setup.

Because pairwise estimates Σ̂pw may or may not be positive-definite, rendering the
computation of condition numbers meaningless, we will apply the correcting procedure
outlined by Maronna and Zamar (2002) to enforce positive-definiteness. We have also
tried using the corrected pairwise estimates to compute the values in Table 3.1 but it
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complete data with 10% missing data
εcont ↓ S MLE ext S ERTBS S cc only S pw MLE via EM
clean 1.86 1.85 2.02 3.10 25.9 261.7 2.00

(0.08) (0.06) (0.08) (0.4) (11.9) (675.3) (0.08)
5% 1.89 4.08 2.04 3.12 35.7 764.7 4.31

(0.06) (1.10) (0.08) (0.4) (33.9) (3,445) (1.18)
10% 1.96 6.22 2.11 3.14 44.3 720.9 6.55

(0.08) (1.54) (0.09) (0.4) (159.1) (2,357) (1.65)

Table 3.2. Simulation results showing expected values and sampling standard deviations of
the condition numbers of standardized covariance estimates.

turns out that the un-corrected estimates perform an order of magnitude better from the
L2 point view. This is natural considering that the L2-norm is pairwise in nature and the
cost of the forced positive-definiteness is the disturbance to individual components of the
covariance matrix resulting in increased variance and even bias. One may argue that a
matrix which is not semi-positive definite cannot be called an estimate of the covariance
matrix, to which we say that then the pairwise numbers in Table 3.1 should simply be
seen as a lower bound for the MSE of the corrected pairwise estimate (and they are
large enough to not consider the pairwise estimate as a competitor). When comparing
condition numbers, however, the correcting procedure must be applied to ensure that they
are positive.

Table 3.2 shows about the same tendencies as Table 3.1. Outliers and the presence
of missing data have some negative effect on the S-estimates but it is well under con-
trol. ERTBS performs relatively well but not as well as the extended S-estimate. The
alternatives, however, perform even worse in terms of estimating the condition number
than they did in the L2-norm. For the complete-cases S-estimate, this can probably be
attributed to the fact that the reduced sample size (due to removing all cases with at least
one value missing) causes the estimates to become more singular and therefore have much
larger condition number. The problem with the pairwise estimate is that it is incapable
of capturing any multivariate structure of the data and thus the eigen-structure estimated
by the pairwise estimates is more or less arbitrary.

3.5.2 Performance on clean data

Objective. In this subsection we conduct another simulation study to explore the be-
haviour of the extended S-estimate under clean but partially missing multivariate nor-
mal data. The following properties will be discussed further in this section: bias (finite
sample and asymptotic), consistency and the rate of convergence, asymptotic normality,
and the asymptotic loss of efficiency due to missing values. Covariance estimates Σ̂ are
multi-dimensional structures consisting of p(p + 1)/2 univariate parameters. A proper
theory should handle them as one unit and consider multi-dimensional deviations from
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the true value (bias as vector, sampling variance-covariance as matrix). To simplify
things in our Monte Carlo exploratory study we will treat the p(p + 1)/2 parameter
estimates Σ̂ab, 1 ≤ a ≤ b ≤ p, completely separately from each other. We will focus
on the univariate bias EΣ̂ab − Σab, sampling variance VarΣ̂ab and Mean Squared Er-
ror MSE(Σ̂ab) = E(Σ̂ab −Σab)2, for all pairs of a and b. Due to the limited space we will
report numerical results for one or two representative combinations of (a, b) in some detail
and briefly verify that the findings hold true for all other elements of Σ̂.

Simulation setup. This time we use dimensions p1 = 5 and p2 = 10 and the true
covariance matrix Σ with moderate correlations. Half of the diagonal of Σ is equal
to 1, the other half is equal to 2 and all off-diagonal elements are equal to 0.5 (so
that cond(Σ(5)) = 7.4, cond(Σ(10)) = 12.1). We generate random samples from a mul-
tivariate normal distribution with location zero and covariance Σ and introduce random
missingness (uniformly over all variables and cases) such that the total fraction of missing
data is 0%(fully observed), 5%, 10%, 20% or 40%. To explore the trends as the sample
size increases, we run N = 1,000 replicates for each of the various sample sizes n ranging
from 20 to 10,000. We consider the fully observed case as a reference as we know that the
traditional S-estimate is asymptotically normal on complete data (Davies, 1987).

3.5.2.1 Bias

Recall that our choice of scaling constants ki in front of the ρ-function (and therefore
weights) was motivated by the desire to make the extended S-estimate at least asymp-
totically unbiased. It was supported by Theorem 1 which guarantees that the extended
S-estimate is at least “locally” Fisher-consistent. In this set of simulations we attempt to
investigate whether the asymptotic result is transferable to finite sample sizes.

To investigate the bias we focus on the estimated expected value for each of the p(p+
1)/2 elements of Σ̂ based on the N = 1,000 replicates:

ÊΣ̂ab =
1
N

N∑

i=1

Σ(i)
ab .

An illustration of how these values typically vary depending on n and εmis is given in Ta-
ble 3.3 using two elements of Σ̂ as examples. In the left half of the table corresponding
to Σ11 the target value is the variance of the first variable and is equal to 1; on the right,
it is a covariance element Σ12 = 0.5. Being Monte Carlo quantities, these expected val-
ues have a certain amount of random error in them which can be characterized by their
estimated standard errors

ŝe(Σ̂ab) =
1
N

1
N − 1

N∑

i=1

(
Σ̂

(i)
ab − ÊΣ̂ab

)2

.
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Σ11 = 1 Σ12 = 0.5
εmis → 0 0.05 0.1 0.2 0.4 0 0.05 0.1 0.2 0.4
n = 20 1.09 1.13 1.22 1.31 1.31 0.53 0.55 0.57 0.58 0.49
n = 50 0.98 0.99 0.99 1.02 1.15 0.49 0.49 0.49 0.50 0.54
n = 100 1.00 1.00 1.00 1.00 1.04 0.50 0.50 0.50 0.50 0.51
n = 200 1.00 1.00 1.00 0.99 1.00 0.49 0.49 0.50 0.50 0.50
n ≥ 500 1.00 1.00 1.00 1.00 1.00 0.50 0.50 0.50 0.50 0.50

Table 3.3. Estimated expected values of Σ̂11 and Σ̂12 in p = 5 for a variety of sample sizes
and proportions of missingness. Compare to the true values Σ11 = 1 and Σ12 = 0.5 for the
assessment of bias. Elements shown in boldface have estimated bias in excess of 3 estimated
standard errors and therefore are deemed to be biased. Italicized area is where no bias has been
detected for any elements of Σ̂ (not only these two). Results for p = 10 are very similar (not
shown).

Values in Table 3.3 that differ from their corresponding true values by more than three
times their estimated standard errors are shown in boldface because it is likely that the
estimate is biased under such configurations of n and εmis. For these two elements of Σ̂ we
can say with enough certainty that the estimates become unbiased (at least for practical
purposes) as soon as n is larger than 200 or even 100.

We have computed the quantities described above for all elements of Σ̂ and performed
formal t-tests on all of them to check whether the averages differ significantly from the
corresponding true values of Σ. When sample size is 200 or more we have been unable to
detect any bias for any elements of Σ. The same is true for the sample size of 100 and the
proportion of missingness of 20% or less. This region is shown in italic in Table 3.3. The
results for the smaller sample sizes (20 and 50) or higher proportions of missingness (40%
on sample size 100) are relatively unstable and suggest that there might be some small
bias. We have not been able to characterize it or eliminate its source.

εmis → 0 0.05 0.1 0.2
Σ11 = 1.0 1 0.97 0.94 0.90
Σ44 = 2.0 1 0.97 0.93 0.87
Σ12 = 0.5 1 1.01 1.02 1.07

Table 3.4. Asymptotic multiplicative bias of ERTBS estimate: Ê(Σ̂ab)/Σab for three repre-
sentative elements of Σ̂. Results shown are for p = 5. Bias for p = 10 is similar.

A similar set of simulations for ERTBS reveals that it has a persistent bias even
with a larger sample size of 1,000 and smaller proportion of missing data such as 5%.
For our covariance structure the ERTBS underestimates diagonal elements (variances)
and overestimates the rest (covariances) as shown in Table 3.4. We could not study the
performance of ERTBS for n > 1,000 or proportion of missingness exceeding 20% because
the computer code became unstable for larger values of these parameters. Note that
a corresponding table for the extended S-estimate would consist of all 1’s because the
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estimate has no detectable bias for larger sample sizes.

3.5.2.2 Consistency and rate of convergence

In this subsection the size n of the sample on which the estimate Σ̂ is computed becomes
of more importance so we introduce new notation to address this dependence: Σ̂ab|n will
stand for an estimate for Σab based on a sample of size n. To investigate whether the
estimates Σ̂ab|n are consistent as n→∞ we consider their estimated mean squared error
for all values of n and will observe that it converges to 0, which implies the convergence
in probability to the true parameter because, for any ε > 0, using Markov’s inequality it
we get

P
[∣∣∣Σ̂ab|n −Σab

∣∣∣ < ε
]

= P
[(

Σ̂ab|n −Σab

)2
< ε2

]
<

E
[(

Σ̂ab|n −Σab

)2
]

ε2
→ 0, as n→∞.

We conjecture that MSE(Σ̂ab|n) not only converges to zero but does so at the usual
rate of 1/n, i.e. that MSE(Σ̂ab|n) = O(1/n). To check this (and the fact that they converge
at all) we consider values of n× M̂SE(Σ̂ab|n) that are expected to be of order O(1) if the
rate of convergence is indeed 1/n. These quantities for one diagonal and one off-diagonal
element of Σ̂ (in dimension p = 5) are shown in Table 3.5 for all five levels of missingness.
Looking at this table one line at a time, we can see that the variation between numbers

n→ 20 50 100 200 500 1,000 2,000 5,000 10,000
εmis = 0 4.07 2.53 2.70 2.35 2.66 2.41 2.60 2.55 2.57
εmis = 0.05 4.97 2.69 2.91 2.54 2.90 2.62 2.78 2.71 2.72

Σ11 εmis = 0.10 9.57 3.03 3.03 2.69 3.09 2.75 3.01 2.94 3.01
εmis = 0.20 16.78 3.80 3.79 3.35 3.62 3.51 3.44 3.63 3.56
εmis = 0.40 30.08 12.49 8.18 5.69 6.20 5.34 5.78 5.25 5.98
εmis = 0 2.40 1.69 1.79 1.53 1.56 1.60 1.59 1.65 1.63
εmis = 0.05 2.91 1.85 1.93 1.63 1.70 1.71 1.72 1.79 1.76

Σ12 εmis = 0.10 4.46 2.04 2.10 1.91 1.84 1.88 1.93 1.94 1.96
εmis = 0.20 5.55 2.87 2.59 2.25 2.31 2.21 2.23 2.41 2.17
εmis = 0.40 11.21 8.63 5.51 4.14 3.91 3.87 3.76 3.79 4.02

Table 3.5. Values of n × M̂SE(Σ̂ab) to show that the rate of convergence of individual
elements of Σ is 1/n. Numbers within each line are stable, or at least stabilize as n becomes
larger, suggesting that MSE(Σ̂ab) = O(1/n) for all values of εmis. Other elements of Σ̂
exhibit similar behaviour. Results shown are for p = 5.

becomes smaller as n gets bigger and can be seen as converging to a constant or, in other
words, behaving as O(1). In particular, the numbers do not increase, which implies that
the MSE’s are indeed converging to zero, validating our consistency claim. Additionally,
if we consider one column at a time, this table gives us an idea of how the variance of
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individual estimates increases when the proportion of missing data becomes larger; we will
summarize this in a more condensed form in section 3.5.2.4.

As usual, we have looked at other 13 elements of Σ̂ as well as all 55 elements of Σ̂

when p = 10, and believe that consistency holds in all situations. We can also consider
a combined MSE for the whole matrix estimate by adding up individual MSE’s for all
elements of Σ. The resulting overall estimated MSE also converges to zero at the 1/n
rate.

3.5.2.3 Asymptotic normality

To evaluate whether estimates Σ̂ab|n are (univariately) asymptotically normal we perform

a test of normality on each collection (of size N = 1,000) of estimates {Σ̂(i)
ab|n}N

i=1 for all
combinations of (a, b) and various values of n. We will only consider the situation εmis = 0.4
as it is the most extreme and thus the estimate is the most likely to deviate from good
behaviour. If it appears to be normal under these conditions, it is most likely to be normal
when the proportion of missingness is lower.

For each collection of Monte Carlo replicates of estimates {Σ̂(i)
ab|n}N

i=1 we conducted
six tests of normality available in nortest package in R: Anderson–Darling, Cramer–
von Mises, Kolmogorov–Smirnov, Pearson χ2, Shapiro–Francia and Shapiro–Wilk’s (e.g. Th-
ode (2002)), and obtained p-values for them. Then we chose the median of the six p-values
to be our aggregated p-value for the normality test of this sample. For each sample
size n (and εmis which is fixed) we have p(p − 1)/2 of these p-values which are subject
to multiple comparison problems and therefore the smallest of them is likely to be fairly
small even when data (i.e. estimate values) are indeed normal. To assess whether it is
plausible that the observed p-values come from the Uniform[0, 1] distribution, i.e. that the
estimates follow normal distribution, we look at several smallest p-values from each batch
of p(p + 1)/2 aggregated p-values. Denote them π(1), π(2), . . . , π(7) (seven is an arbitrary
number) and compare to their expected values based on the first seven order statistics of
a sample of size p(p+ 1)/2 from the Uniform[0, 1] distribution. The results are shown in
Table 3.6. The last line is the benchmark we compare all other lines to. If observed values
are much smaller than their expected values than we can rejectH0 that the estimate values
are normally distributed. The numbers suggest that the estimates are definitely not nor-
mal for n ≤ 200, probably not normal for n = 500 (for the large proportion of missingness
εmis = 0.4) and are likely to be approximately normal for n ≥ 1,000. Therefore we can
say that our simulation study suggests that the extended S-estimates are asymptotically
(univariately) normal.

3.5.2.4 Efficiency

Once it is known that the variance of the estimate converges to zero at the usual 1/n rate,
an interesting question to ask is what is the efficiency loss associated with the missingness
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n ↓ π(1) π(2) π(3) π(4) π(5) π(6) π(7)

≤ 100 0.000 0.000 0.000 0.000 0.000 0.000 0.000
200 0.000 0.001 0.001 0.003 0.004 0.009 0.013
500 0.001 0.002 0.048 0.051 0.053 0.079 0.095

1,000 0.041 0.047 0.065 0.135 0.158 0.198 0.207
2,000 0.048 0.065 0.072 0.087 0.103 0.137 0.158
5,000 0.051 0.084 0.114 0.139 0.186 0.199 0.249

10,000 0.020 0.059 0.060 0.064 0.079 0.086 0.113
expected H0 0.018 0.036 0.054 0.072 0.090 0.108 0.126

Table 3.6. Several (seven) most extreme (among all p(p + 1)/2 elements of Σ̂) p-values
from univariate normality tests. “Expected” is computed under H0 that data are normal and
considering the p(p+ 1)/2 tests as independent. When n ≥ 1,000, the observed p-values are
in agreement with their expected values so we can conclude that all their distributions are
approximately normal. Results shown are for p = 10.

of the data. We already mentioned this issue briefly in sections 3.5.1 and 3.5.2.2 but now
we can provide more complete answers. It turns out that the efficiency loss only mildly
depends on the dimension of the data. We have also run an identical set of simulations
for the Maximum Likelihood estimator (using EM algorithm) which we can use as a gold
standard. Table 3.7 shows the average efficiency loss relative to the fully observed data:

1
p(p+ 1)/2

p∑

a=1

p∑

b=a

V̂ar
[
Σ̂ab|n(partly missing data)

]

V̂ar
[
Σ̂ab|n(complete data)

] .

Note that the sample size in the numerator and denominator are taken to be the same

εmis → 0.05 0.1 0.2 0.4
ext S, p = 5 1.08 1.19 1.45 2.54
ext S, p = 5 1.07 1.15 1.35 2.16
MLE, p = 5 1.07 1.14 1.34 2.02
MLE, p = 10 1.06 1.13 1.31 1.95
imaginary best 1.05 1.11 1.25 1.67

Table 3.7. Efficiency loss due to missing values. Simulation results for moderate to weak
correlation structure.

but the ratio itself does not depend on n as long as n is sufficiently large (n ≥ 500 is
this example); for smaller n the efficiency deteriorates a little faster. The last line is the
imaginary best case scenario where we assume that all missing values were concentrated on
as few cases as possible instead of being spread all over the dataset. It would completely
eliminate n × εmis cases and the efficiency loss (of a fully efficient estimate) due to the
reduced sample size would be (1− εmis)−1.

In these simulations, for clean data with εmis = 0 (i.e. the baseline for Table 3.7),
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the asymptotic relative efficiency of the S-estimate w.r.t. the Maximum Likelihood esti-
mate (i.e. sample covariance) was 0.79 for p = 5 and 0.91 for p = 10. These numbers are
provided to give an idea of the relative efficiencies between the lines in Table 3.7.

Note that all the above results are only valid for the parameter values used in these
simulations. The lack of affine equivariance makes it difficult or impossible to generalize
results and the best we can do is to consider different typical scenarios. We have made an
attempt to diversify over different types of data in the several examples/simulations that
we present in this paper.

3.5.3 Performance on real data

In order to assess how the extended S-estimate performs on real data, we consider the
ionosphere dataset from the UCI repository (Asuncion and Newman, 2007). The dataset
contains 225 “informative” complex-valued measurements from 16 radar antennas (total
p = 32) located in Goose Bay, Labrador measuring free electrons in the ionosphere.

The dataset does not have missing data, so we introduce some artificial random miss-
ingness and see how the new S-estimate performs compared with other alternatives. To
establish the “gold standard” we compute the traditional S-estimate (m̂c, Σ̂c) of location
and scatter on the full complete dataset. Corresponding Mahalanobis distances, shown in
Figure 3.3, reveal that 75 out of 225 data points can be considered outliers w.r.t. the cutoff
value c∗ = 8.56 chosen according to (3.3). This justifies the need for a robust estimate
when estimating location and scatter parameters for this dataset.
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Figure 3.3. Robust Mahalanobis distances for ionosphere data.

To account for the effect of randomness when generating missingness structure, we
conduct a bootstrap-like simulation where we generate 200 different random missingness
patterns for each level of εmis = 0.03; 0.05; 0.1; 0.2. We control the proportion of miss-
ing data for each variable in the dataset to be exactly εmis. For each of the resulting
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datasets (that only differ in what values are considered missing) we compute (1) the ex-
tended S-estimate; (2) ERTBS estimate; (3) the S-estimate based on complete cases; and
(4) the pairwise S-estimate (corrected for positive-definiteness when necessary).

The expected number of complete cases for the four chosen levels of missingness are
84.9, 43.6, 7.7 and 0.18. Therefore the complete-cases analysis cannot be conducted for
εmis > 0.05 because the dimension of the data would exceed the number of available data
points. Additionally, although we can see no theoretical reason for it, ERTBS also fails to
compute for proportions of missingness of 10% or more. For these two types of estimates
we will only report the results for 3% and 5% of missing data.

As in Section 3.5.1, the covariance estimates are 32 × 32 matrices with non-trivial
correlation structure and as such they require some adequate distance measure to summa-
rize their performance. We use four different criteria (distances) and show that the new
S-estimate compares favourably with the alternatives in all four of them. Let (m̂, Σ̂) be
some estimate of the multivariate location-scatter computed on the data with a fraction
of observations regarded as missing.

The first two measures are the same distances used in Section 3.5.1:

d1(Σ̂) = ||stdΣ̂c
(Σ̂)− I||2 and d2(Σ̂) =

v1(stdΣ̂c
(Σ̂))

vp(stdΣ̂c
(Σ̂))

.

To add another dimension to the evaluation of the eigen-structure of the covariance esti-
mates, we also computed determinants of the standardized matrices. Note that the target
value for the determinants is 1 and the estimates can be both larger or smaller than
that. To make the assessment easier we consider absolute values of the logarithms of the
determinants:

d3(Σ̂) =
∣∣∣log

(
det

(
stdΣ̂c

(Σ̂)
))∣∣∣ ,

so that smaller values of d3(·) correspond to better estimates.
The last measure that we use is simply the L2-distance between the estimated corre-

lation matrix and the true one:

d4(Σ̂) = ||Corr(Σ̂)− Corr(Σ̂c)||2, (3.37)

where Corr(·) denotes the correlation matrix corresponding to the given covariance matrix.
We chose to work with correlation matrices instead of the covariance in order to equalize
the effects that variables with different variances will have on this criterion.

As in Section 3.5.1 we selectively correct pairwise estimates for positive-definiteness
using the procedure from Maronna and Zamar (2002). For the d1-criterion the estimates
were left un-corrected because this produced slightly better results. For d4, however, the
correction improved the performance of the pairwise estimate so we report it that way.
Criteria d2 and d3 require correction because they lose their meaning if the matrix is not
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Figure 3.4. Boxplots for the four estimates with different levels of missingness and four
criteria to evaluate their quality. Bold solid lines are our S-estimates, dotted lines are ERTBS
estimates, dashed lines are complete-cases S-estimates, and dash-dot lines are the pairwise
S-estimates. All graphs are shown on the log-scale except the log-determinant which is a
logarithm itself.

positive-definite.
Figure 3.4 summarizes the results of the simulation study on the ionosphere data. Four

panels correspond to the four criteria described above and all of them are shown on the
logarithmic scale (except d3 which is already a logarithm itself). Each panel shows the
behaviour of the four estimates over the four missingness levels. Note that for εmis = 0.1
and εmis = 0.2 we do not have results for ERTBS and the complete-cases S-estimate
because they could not be computed due excessive amount of missing values or insufficient
amounts of data respectively.
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Each graph consists of a series of four boxplots connected with lines to ease identifica-
tion. The horizontal axis is ordinal and is not drawn to scale. The results for the extended
S-estimate (connected with solid bold lines) are almost uniformly better than those for
the competitors. If we look at the worst (i.e. largest) result out of the 200 runs for the
S-estimate (for each criterion and each missingness level) they are still better (i.e. lower)
than the best result for the competitors. This demonstrates that we have achieved a no-
ticeable improvement over available methods and, in some cases, we can do estimation
when no reasonable alternative (other than pairwise methods) was available.

In principle, the poor performance of ERTBS might be attributed to the unfair choice
of gold standard. To address this issue we have tried to compute the deviations of ERTBS
from the same estimate computed on the complete data. Unfortunately, the computer
code for ERTBS doesn’t run on complete data. To remedy this problem we introduced
one single missing value at a random location in the data. It turned out that the estimate
varies a lot depending on the location of the missing cell (standard deviations are 30 times
bigger than the corresponding quantities for the extended S-estimate). So we decided to
average the covariance estimate over all possible locations of the missing cell and used that
average as “gold standard” for ERTBS. Only d3 improved slightly but was still significantly
worse than that of the extended S-estimate. The other three distances deteriorated even
more.

3.6 Conclusions

We have defined an estimate that can robustly estimate multivariate location and scatter in
the presence of missing data. Our method applies the idea of the likelihood of the observed
data to the S-estimate proposed by Davies (1987). The main innovation is the definition
of the extended S-estimate on incomplete data that involves Mahalanobis distances of
the observed part of each observation and the modified ρ-function that varies from one
observation to another depending on the number of observed variables in each case. A
special scaling is applied to the ρ-function to ensure that the estimate has no asymptotic
bias (which is a non-trivial achievement in the presence of missing data).

We have also modified the Fast-S algorithm of Salibian-Barrera and Yohai (2006) to
be able to compute the newly defined extended S-estimates. A number of changes had to
be made but the most important is the extension of the weighted average and weighted
sample covariance matrix to datasets with missing values.

We have applied the algorithm to real as well as randomly generated data and showed
that it performs noticeably better than ERTBS of Cheng and Victoria-Feser (2002) and
an order of magnitude better than impromptu methods such as complete-cases analysis or
pairwise robust covariance matrix estimates with levels of missingness as high as 20% (and
potentially higher). Simulations also suggest that when applied to clean multivariate
normal data with missing values, the estimate is

√
n-consistent, asymptotically normal

and is comparable with MLE in its response to missingness.
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Chapter 4

Final discussion

4.1 Combined robust estimate

In Chapter 2 we discussed scatter estimates that are robust under independent contam-
ination: individually contaminated cells spread all around the dataset. An important
assumption, however, was that it was the only type of contamination and no case-wise
outliers were considered. A natural extension of Chapter 2 would be to allow both types of
contamination to be present at the same time: most cases have one or two contaminated
cells but on top of that there is a certain proportion of completely contaminated cases.

Assuming that we only want to focus on point-mass contamination, the task of looking
for the worst possible contamination was relatively simple in the independent contamina-
tion situation — the only parameter to vary was the magnitude (distance from origin) of
contamination that we denoted k. With case-wise contamination, we also need to worry
about the direction in which the contamination is located in addition to its magnitude.

In this section we will explain a possible approach to treating both types of contam-
ination simultaneously and try to give motivation for why we think it might work. The
discussion will be illustrated by simple numerical examples which are not meant to be
all-encompassing. We do, however, believe that the general ideas hold in most scenarios
and are not limited to the specific examples shown here.

A Conjecture. Detection methods for independent contamination can be used to
disarm case-wise outliers if the covariance structure is known well enough to identify
them. If we remove several cells from a case-wise outlier8 so that the remaining sub-vector
is not outlying anymore, its influence on the covariance estimate is significantly reduced
and can be tolerated.

This can be illustrated with an example. Consider a large, n = 500, dataset from
multivariate normal distribution of p = 10 with highly correlated covariance matrix Σh (as
per section 2.1.4.3). We independently contaminate it with probability εind = 0.05 at
value k = 2.5. On top of that we add εstr = 0.1 fraction of case-wise contamination at
location xc. Then we apply P-approach detection (with pcutoff = 0.05) using the true
covariance matrix Σh and mark suspected values as missing to compute the MLE of
covariance using the EM-algorithm. This pseudo-estimate is then standardized and the
LRT-statistic (see section 2.1.4.3) is computed. It will be used as the main assessment tool

8By outlier here we mean a case with a large Mahalanobis distance with respect to the true covariance
structure
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in this section. We have tried a variety of locations for xc (by randomly sampling directions
on a sphere and trying different magnitudes for each of them) and not-surprisingly have
found that the worst LRT-bias is produced by contamination located along the eigenvector
of Σh corresponding to its smallest eigenvalue, xc = mv10, with some m ∈ R. We will
use case-wise contamination of this form throughout the section. If the value of m is
too large than the contamination is detectable and the bias is small. If the value of m
is too small than the contamination does not do as much damage as it possibly could.
The trend is shown in Figure 4.1 and we can see that the most dangerous value of m is
such that MD(xc;0,Σh) = m/(

√
λ10||v10||2) = 4.2 and worst value of the LRT-bias is

approximately 1.2. To get an idea of whether 1.2 is a small number or large, we have
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Figure 4.1. LRT-bias of the ML pseudo-estimate of covariance after performing P-approach
outlier detection with known covariance matrix. For a sense of scale compare to the numbers
in Table 4.1.

computed the amount of LRT-bias than can be observed if no filtering is performed at all.
To see the really dangerous effect of contamination, xc has to be placed further away from
the origin. The curve in Figure 4.1 remains flat at 0.14 for such magnitudes of xc. Sample
covariance matrix (with no filtering) was computed and the results are shown in Table 4.1.
To illustrate the relative bias coming from the two types of contamination we provide
the numbers for two scenarios: (a) only case-wise contamination at xc; (b) independent
contamination plus case-wise (the same scenario as in Fugure 4.1 above). We can see

MD(xc) 4.2 5 10 50 100 500
Case + Cell-wise 466.9 466.8 469.0 648.6 1278.2 22534.2
Case-wise only 0.685 1.115 6.745 220.0 894.4 22514.2

Table 4.1. LRT-bias of sample covariance without outlier detection against the magnitude of
case-wise contamination. Compare these numbers to those in Figure 4.1.
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that for some values of xc the filtering (with known covariance) reduces the amount of
bias dramatically and conclude that the problem of dual contamination can be solved if
only we can obtain a reasonably good estimate to perform the detection with. Thus the
conjecture is plausible.

The Problem. The true covariance matrix is not known and needs to be estimated.
The iterative estimate in Section 2.3.7 is not robust against structural9 contamination.
The lack of robustness is due to the MLE estimate which is used on every step of the
iterative procedure to update the covariance structure after new filtering information be-
comes available. This is the usual chicken-and-egg problem of using non-robust estimates
to perform outlier detection: the outliers affect the estimates and thus mask themselves
from being detected. No matter how many times the procedure is repeated the outliers
may never get discovered.

To illustrate this problem we continue the example described above and attempt to
filter out the structural contamination with the iterative detection procedure without
using the knowledge of the true covariance structure. We compute the MLE covariance
estimates, which are now true estimates because no information about the data generating
distribution has been used to produce them, and their standardized LRT-scores as before.
Results for several values of MD(xc) are shown in Table 4.2 which has the same structure as
Table 4.1 above. The bias increases up to very large numbers as contamination moves away

MD(xc) 4.2 5 10 50 100 500
Case+Cell + Detection 1.32 2.08 9.99 256.5 957.6 0.82

Table 4.2. LRT-bias with MLE-based iterative detection against the magnitude of structural
contamination.

from the center. The apparent drop at MD(xc) = 500 is due to the univariate filtering
finally being able to detect some components of the contamination. But multivariate
detection methods with the MLE-based updating alone are incapable of detecting the
contamination and therefore cannot be considered robust under this scenario.

The Solution. If the conjecture above is true then all that is needed to make the esti-
mate of section 2.3.7 robust to case-wise contamination is to replace the non-robust MLE
step by a robust method that can estimate covariance matrix in the presence of missing
data and structural outliers. Such an estimate has been constructed in Chapter 3. The
new iterative algorithm can be schematically described by the following steps (omitting
location estimate for clarity):

1. compute some initial estimate Σ(0) on dataset X; set i = 0

2. detect contaminated values in X with P-approach using Σ(i) as the assumed covari-
ance structure; denote filtered dataset as X(i+1)

9By structural here we understand a case-wise contamination that cannot be detected using simple
univariate detection methods.

87



3. compute Σ(i+1), an extended S-estimate of covariance based on X(i+1); set i = i+1;
go to step 2.

To demonstrate that such an estimate has desired robustness properties we continue
the example studied above. We follow the same strategy: add fraction εstr = 0.1 of
contamination of the form xc = mv10 with different values of m to a dataset which
already has εind = 0.05 of independent contamination at k = 2.5 in it. The LRT-score
of standardized estimates is shown in Figure 4.2 and it can be seen that the worst value
is only 3.0 and is achieved at MD(xc) = 5.7. Any contamination further away from the
origin is detected, partially eliminated and does not inflict much damage on the estimate.
The worst case bias is larger but still on the same scale as what could be achieved had the
true covariance matrix been known (reproduced as the dashed line in the same graph). On
the other hand, it is many orders of magnitude smaller than that of the pure MLE-based
procedure of Section 2.3.7 shown in Table 4.2.
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Figure 4.2. LRT-bias of iterative detection procedure based on the extended S-estimate of
covariance. Dashed line for the pseudo-estimate with known covariance is the same as the
solid line in Figure 4.1 and is reproduced here for the ease of comparison.

While not being fully general, this example suggests that combining the results of
Chapters 2 and 3 has a potential for an estimate robust against both types of contamina-
tion. The ability to process data with missing values is also automatically built into the
estimates.

Difficulties. Although the combined procedure described above is promising in terms
of robustness, there are several concerns that need to be taken into account and resolved
in the future.

• Computational efficiency. The extended S-estimate is an iterative procedure (reweight-
ing) relying on an iterative procedure (EM-algorithm). Incorporating this structure
into another iterative procedure (detection-estimation) yields an estimate that is
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fairly slow even in dimension p = 10 and currently is prohibitively slow for p = 20.
Mixing the two iteration loops into one by updating weights and the set of contam-
inated values at the same time might be an option. Computing “quick and dirty”
version of S-estimate instead of completing full iterations until convergence is an-
other. Tradeoffs need to be studied to evaluate where time can be saved for the
smallest loss of precision.

• Efficiency of outlier detection. When no case-wise contamination is present the sta-
tistical efficiency of the extended S-estimate is worse than that of the MLE. This
leads to the covariance estimates that are less effective in identifying independent
contamination. The extended S-estimate has nothing to offer dealing with indepen-
dent contamination because the proportion of contaminated cases is too high. Thus
using the extended S-estimate on data that only has independent contamination is
pure loss compared to using the MLE. This is not just a loss of efficiency as is typ-
ical for robust estimates — here the loss of precision in covariance estimates leads
to more contaminated cells being undetected and therefore higher bias. Again, the
tradeoffs need to be studied before any recommendations are made.

4.2 Other directions of future work

In addition to merging the results of Chapter 2 and 3, we see a number of other directions
in which the work done in this thesis can be continued. With respect to Chapter 2, below
are a few topics that we consider important and intriguing.

• Definition of the estimate as an estimating equation or optimization problem. Cur-
rently we have only defined the estimate in section 2.3.7 as a heuristic iterative
algorithm. In order to be able to study its statistical properties we will likely need
a more solid definition similar to how the extended S-estimate is defined in (3.14).
The iterative procedure could then we viewed as one possible way of computing such
an estimate. One possible way to tackle this problem can be to change the contami-
nation model (2.1) into fully parametric model by assuming that the contaminating
distribution G is known (e.g. a heavy-tailed family such as t-distributions) and then
find what the maximum likelihood estimate would be in such scenario.

• Non-zero weights for cells. As a result of multivariate detection in Chapter 2 we
declare each cell as either clean or contaminated. This is parallel to completely
removing a data case from analysis in traditional robustness. Most optimal robust
methods however do not completely discard suspicious cases but rather downweight
them with a weight somewhere between zero and one. We imagine that a similar
strategy would also be preferable for dealing with contaminated cells (not only cases)
but a method for incorporating cell-weight information into the covariance estimates
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is still to be devised. Censoring suspicious values instead of marking them as MAR
is already a step in that direction, but more control over the weights is still desirable.

• Affine-equivariance and covariance estimation. We would like to extend the δ-
consistency theory of Alqallaf et al. (2009) from location estimates to scatter matri-
ces. In other words, we aim to prove mathematically what has been shown numeri-
cally in section 2.1.4.2.

• Conditional censoring and Winsorising. Univariate censoring is done by estimating
the expected value m̂ and standard deviation ŝ of a data cell and if the observed
value exceeds m̂ + aŝ for some a > 0 then the value is removed and the MLE is
computed conditional on the fact that the value was larger than m̂ + aŝ. Similarly
when the observed value is less m̂−aŝ. Armed with multivariate detection methods,
once suspicious values within a data case have been identified, we can compute the
conditional expected value m̂c and standard deviation ŝc given all trustworthy values
in the case. Then we can use m̂c ± aŝc as the censoring constant for the particular
data cell. Same reasoning can be applied to Winsorising: replace a large value
by m̂c ± aŝc instead of its unconditional counterpart.

• Outlier detection in different dimensions. In section 2.3.8 we saw that univariate
detection may be in contradiction with multivariate screening: what appears to be an
outlier in one dimension (because it exceeds a cutoff value based on χ2

1 distribution)
might not be detected by considering its full Mahalanobis distance and comparing
it to the corresponding quantile of χ2

p. We feel that this problem of what is and
what is not an outlier should be studied in more detail. Initial questions that we
can focus on are: (a) How common is it that a univariate outlier does not push
the full Mahalanobis distance above the cutoff? (b) How dangerous are they? If
such an outlier slips through the detection process, how much bias will it produce
in the covariance estimate? The difference between dimensions does not have to be
as extreme as 1 against p. For example, we may want to explore the differences
in outlier detection based on full Mahalanobis distances of dimension p and partial
distances of dimension p− 1.

Regarding the extended S-estimate defined and studied in Chapter 3, the following theo-
retical questions appear to be of relatively high importance.

• Uniqueness of the solution to the optimization problem defining the estimate. In
particular, what are the assumptions about the configuration of missing values that
will ensure that the solution exists and is unique.

• Asymptotic normality has been conjectured but not proven yet. Influence Func-
tion and Asymptotic variance are likely possible to be computed by differentiating
estimating equations for the extended S-estimate.
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• Breakdown point. We expect that the presence of missing data, and therefore the
reduced amount of information about the clean distribution, will have a negative
effect on the breakdown point of S-estimates. This should be studied and quantified.
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Appendix A

Supplementary material for

chapter 2

A.1 Asymptotic effect of independent contamination

Consider two random variables X and Y and their independently contaminated versions
X̃ = (1−bX)X+bXX∗ and Ỹ = (1−bY )Y +bY Y ∗, where bX and bX are Bernoulli random
variables with probabilities of success εX and εY respectively. Random variables X∗ and
Y ∗ represent an arbitrary contamination. Following the independent contamination model
we assume that all random variables except the pair (X,Y ) are mutually independent.

Without loss of generality, we assume that E[X] = E[Y ] = 0.
Expectations are the easiest: E

[
X̃

]
= εXE[X∗] and E

[
Ỹ

]
= εY E[Y ∗]. The effect of

the contamination will be linearly proportional to the proportion and the magnitude of
the contamination.

Then proceed with the variances: E
[
X̃2

]
= (1−εX)E

[
X2

]
+εXE

[
(X∗)2

]
and therefore

VarX̃ = E
[
X̃2

]
− (EX̃)2 = (1− εX)E

[
X2

]
+ εXE

[
(X∗)2

]− ε2X(E[X∗])2 =

(1− εX)VarX + εx(1− εX)E
[
(X∗)2

]
+ ε2XVar(X∗), (A.1)

which is guaranteed to be larger than VarX provided that E
[
(X∗)2

]
> (1− εX)−1VarX.

The corresponding is, of course, true for VarỸ .
Covariance is follows:

Cov(X̃, Ỹ ) = E
[
X̃Ỹ

]
−E

[
X̃

]
E
[
Ỹ

]
= (1−εX)(1−εY )E[XY ]+εXεY E[X∗Y ∗]−εXE[X∗] εY E[Y ∗] =

(1− εX)(1− εY )E[XY ] + εXεY (EX∗Y ∗ − E[X∗]E[Y ∗]) =

(1− εX)(1− εY )Cov(X,Y ) + εXεY Cov(X∗, Y ∗) = (1− εX)(1− εY )Cov(X,Y ), (A.2)

which is clearly smaller than Cov(X,Y ) provided that the contamination is indeed in-
dependent. Another interesting observation is that the bias in the covariance does not
depend on the distribution of the contamination but only on the amount of it.

Despite the fact that variances can be reduced by special types of independent con-
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tamination (inliers), the correlations can be shown to be always reduced in absolute value:

∣∣∣Cor(X̃, Ỹ )
∣∣∣ =

∣∣∣∣∣
Cov(X̃, Ỹ )√
VarX̃VarỸ

∣∣∣∣∣ ≤
∣∣∣∣∣

(1− εX)(1− εY )Cov(X,Y )√
(1− εX)VarX(1− εY )VarY

∣∣∣∣∣ =
√

(1− εX)(1− εY )
∣∣∣Cor(X,Y )

∣∣∣. (A.3)

Note, however, that this is a very rough upper bound because typically the variances will
be dominated by the term corresponding to the magnitude of the contamination such as
εx(1− εX)E

[
(X∗)2

]
.

Conclusions from this basic math:

• Covariances and correlations are reduced in absolute value by the independent con-
tamination

• Covariances only depend on the proportions of contamination

• Variances also depend on the magnitude of the contamination

• Variances are usually increased but can be slightly reduced by inliers.

A.2 Proof: differences of Mahalanobis distances

Lemma 1. Let x =

(
x1

x2

)
∈ Rp, m =

(
m1

m2

)
∈ Rp and Σ =

(
Σ11 Σ12

Σ21 Σ22

)
∈ SPD(p),

with x1 ∈ Rp1, m1 ∈ Rp1 and Σ11 ∈ SPD(p1). Then the difference of squared Mahalanobis
distances can be seen as a conditional squared Mahalanobis distance assuming x is a
realization of X ∼ Np(m,Σ) given X2 = x2

MD2(x; m,Σ)−MD2(x2; m2,Σ22) = MD2(x1; x̂1, Σ̂11), (A.4)

where Σ̂11 = (Σ11 − Σ12Σ−1
22 Σ21)−1 and x̂1 = Σ12Σ−1

22 x2. Additionally, if we consider
random vector X ∼ Np(m,Σ) instead of x then MD2(X;m,Σ)−MD2(X2; m2,Σ22) ∼
χ2

p1
and is independent of MD2(X2; m2,Σ22).

Proof. Without loss of generality assume m = 0. The inverse of Σ can be written using
an expression for the inverse of a block matrix from Petersen and Pedersen (2008):

Σ−1 = ABA′, with

A =

(
I 0

−Σ−1
22 Σ21 I

)
, and B =

(
(Σ11 −Σ12Σ−1

22 Σ21)−1 0

0 Σ−1
22

)
=

(
Σ̂11 0
0 Σ22

)
.

(A.5)
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The full Mahalanobis distance can then be written as

MD2(x;0,Σ) = x′Σ−1x = (x′A)B(x′A)′. (A.6)

Consider that

x′A = (x′1,x
′
2)

(
I 0

−Σ−1
22 Σ21 I

)
= (x′1 − x′2Σ

−1
22 Σ21,x

′
2) =

(
(x1 − x̂1)′,x′2

)
,

Expression in (A.6) can then be continued as

MD2(x;0,Σ) = (x1 − x̂1)′Σ̂
−1
11 (x1 − x̂1) + x′2Σ

−1
22 x2 =

MD2(x1 − x̂1;0, Σ̂11) + MD2(x2;0,Σ22). (A.7)

Therefore the difference between the full and partial Mahalanobis distances is a conditional
Mahalanobis distance itself:

MD2(x;m,Σ)−MD2(x2;m,Σ22) = MD2(x1 − x̂1;0, Σ̂11) = MD2(x1; x̂1, Σ̂11). (A.8)

This is the difference between the observed value of x1 and its conditional expectation
given the rest of x using the corresponding conditional variance-covariance matrix. Note
that the algebraic derivations are valid regardless of the actual distribution of x and the
multivariate normality is only required for the conditional interpretation.

Being a Mahalanobis distance itself, the difference in (A.8) is distributed as χ2
p1

when X ∼ N (m,Σ) is put in place of x. It can most easily be shown by considering
a random variable X1− X̂1 which (a) is multivariate normal as it is a linear combination
of such; (b) has marginal expectation 0; and (c) has marginal variance-covariance matrix
Σ̂11. Therefore the middle term in (A.8) is indeed distributed as χ2

p1
.

Independence of MD2(X1− X̂1;0, Σ̂11) and MD2(X2; m,Σ22) follows from the inde-
pendence of X1− X̂1 and X2 which can be easily verified by considering their covariance
matrix:

Cov(X1 − X̂1,X2) = Cov(X1 −Σ12Σ−1
22 X2,X2)

= Cov(X1,X2)−Cov(Σ12Σ−1
22 X2,X2)

= Σ12 −Σ12Σ−1
22 Cov(X2,X2) = Σ12 −Σ12Σ−1

22 Σ22 = 0. (A.9)
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Appendix B

Supplementary material for

chapter 3

B.1 Proof: marginal distribution of an elliptical r.v.

The following result is quite basic but we were unable to find it in the literature so we
decided to include the proof.

Lemma 2. Let X follow an elliptical p-dimensional distribution with location vector m

and scatter matrix Σ:

f(x) = det(Σ)−
1
2 h((x−m)′Σ−1(x−m)). (B.1)

Consider a q-dimensional subvector X̃ = Xi1,...,iq , for some 1 ≤ i1 < · · · < iq ≤ p. Then
the marginal distribution of X̃ is also elliptical with parameters that are corresponding
subvector and submatrix of m and Σ respectively:

fX̃(x̃) = det
(
Σ̃

)− 1
2
h̃((x̃− m̃)′Σ̃

−1
(x̃− m̃)), (B.2)

with m̃ = mi1,...,iq and Σ̃ = Σ(i1,...,iq):(i1,...,iq). The function h̃(·) only depends on h(·) and
the dimension q, but not on m or Σ.

Proof. Without loss of generality, we assume that ij = j for all j = 1, . . . , q. Also, to
simplify notation, lets assume that the location vector m = 0.

Then the matrix Σ can be partitioned as

Σ =

(
Σ̃ B

B′ C

)
, (B.3)

and thus its inverse is

Σ−1 =

(
Σ̃
−1

+ Σ̃
−1

BMB′Σ̃
−1 −Σ̃

−1
BM

−MB′Σ̃
−1

M

)
, (B.4)

where M = (C −B′Σ̃
−1

B)−1.
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Partition vector x′ as (x̃′,x′m) and then the density of X is

f(x) = det(Σ)−
1
2 h

(
(x̃′,x′m)

(
Σ̃
−1

+ Σ̃
−1

BMB′Σ̃
−1 −Σ̃

−1
BM

−MB′Σ̃
−1

M

)(
x̃

xm

))

= det(Σ)−
1
2 h

(
x̃′Σ̃

−1
x̃ + x̃′Σ̃

−1
BMB′Σ̃

−1
x̃− 2x′mMB′Σ̃

−1
x̃ + x′mMxm

)

= det(Σ)−
1
2 h

(
x̃′Σ̃

−1
x̃ +

(
M

1
2 xm −M

1
2 B′Σ̃

−1
x̃
)′ (

M
1
2 xm −M

1
2 B′Σ̃

−1
x̃
))

.

(B.5)

The marginal density for X̃ is the integral of f((x̃′,x′m)′) over xm, and, by changing the
integration variable to z = M

1
2 xm −M

1
2 B′Σ̃

−1
x̃, we get

fX̃(x̃) =
∫
f

(
(x̃′,x′m)′

)
dxm = det(Σ)−

1
2

∫
h

(
x̃′Σ̃

−1
x̃ + z′z

)
det(M)−

1
2 dz

= (det(Σ)× det(M))−
1
2

∫
h

(
x̃′Σ̃

−1
x̃ + z′z

)
dz

=
(
det

(
Σ̃

)
× det(M)−1 | × det(M)

)− 1
2

∫
h

(
x̃′Σ̃

−1
x̃ + z′z

)
dz

= det
(
Σ̃

)−1/2
h̃(x̃′Σ̃

−1
x̃), (B.6)

and the Lemma is proven.

B.2 Our choice of ρ-function: Tukey’s bisquare

Tukey’s bisquare ρ-function, shown in equation (3.12), has been widely used in robust
estimates for many years and has been an accepted standard for univariate and low-
dimensional estimates. Rocke (1996) argued, however, that S-estimates of multivariate
location and scatter based on Tukey’s bisquare ρ-function fail to maintain practical ro-
bustness when dimension p of the data is large (e.g. p > 10). The reason is that the
cutoff value for mahalanobis distances, above which data points are treated as outliers,
dictated by the bisquare function is too large and only tremendously gross outliers are fil-
tered out. This results in (1) larger-than-necessary bias from large but not gross outliers;
(2) asymptotic efficiency as good as sample covariance, which is associated with the lack
of robustness.

Dotted line in Figure B.1 shows the weights assigned to observations (p = 20) by
Tukey’s ρ-function as function of their Mahalanobis distances. Solid line on the same plot
is the p.d.f. of χ2

20 distribution which those Mahalanobis distances follow when there is no
contamination in the data. We can see that the weights remain positive even when Maha-
lanobis distances are so large that they are absolutely improbable under χ2

20 distribution.
This means that outliers located (80 − 20)/

√
20 ≈ 13 standard deviations (in terms of
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Figure B.1. Tukey’s and Rocke’s weight functions. Rocke’s function is positive approximately
where Mahalanobis distances of clean data are concentrated and zero outside.

Mahalanobis distances) from the center will still have positive weights and their chance
to disturb the estimate. This outlier-blindness of Tukey’s ρ-function becomes even more
pronounced as dimension of the data increases.

The problem stems from the simplistic procedure used to coordinate Tukey’s ρ-function
between different dimensions:

ρp(d) = ρ(d/cp), where cp is such that Eχ2
p
[ρ(D/cp)] = 0.5.

The assumption being used is that in larger dimensions Mahalanobis distances become pro-
portionally larger and therefore all that is required to do to keep ρ-functions “consistent”
across dimensions is to scale the distances accordingly. In reality, however, the distribu-
tion growth is not nearly proportional: the mean of χ2

p is equal to p, but its standard
deviation is only

√
2p. The distribution becomes more concentrated than what is assumed

by the scaling mechanism, which results in very outlying Mahalanobis distances (in terms
of actual distribution) being accepted as clean.

The solution proposed by Rocke (1996) is to recognize the fact that the shape of the dis-
tribution is changing and choose the ρ- and the weight functions accordingly. He suggests
centering the weight function around the expected value of Mahalanobis distances (assum-
ing clean data) and fixing the fraction of clean data that we are willing to downweight in
order to combat outliers. The latter is being referred to as Asymptotic Rejection Proba-
bility (ARP) and we will denote it 2α throughout this section. Following Maronna et al.
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(2006), the ρ-function can then be written as

ρ(d) =





0 for 0 ≤ d ≤ 1− γp(
d−1
4γp

) [
3−

(
d−1
γp

)2
]

+ 1
2 for 1− γp < d < 1 + γp

1 for d ≥ 1 + γp,

where γp = min
(
χ2

p(1− α)/p− 1, 1
)
. A properly scaled version of Rocke’s weight func-

tion (with α = 0.05) is shown as dashed line in Figure B.1. It is easy to see how it focuses
on the same area as the χ2

20 distribution and aggressively rejects everything on the tails.
If the true value of the scatter matrix were known and the majority of the data were

following the multivariate normal distribution then this weighting method would be un-
questionably superior to the “flawed” Tukey’s ρ-function.
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Figure B.2. RMSE of the covariance estimate against the location of 10% contamination.
The plots closely resemble Figure 6.10 in Maronna et al. (2006) for the RMSE of the location
estimate.

Maronna et al. (2006), in Section 6.8, conduct a small simulation study and conclude
that Rocke’s function should be recommended when dimension of data is greater than 10.
In the study, multivariate normal data with identity covariance matrix are generated
and 10% of them are replaced by point mass contamination located at (k, 0, . . . , 0), with k
varying from 1 to 14. Affine-equivariance of all methods allows the authors to only consider
this one covariance structure and this one specific location of contamination without loss
of generality. Figure 6.10 (in the book) clearly shows that Rocke’s estimate with α = 0.05
is the obvious winner (for p = 20) when Root Mean Squared Error (RMSE) of the location
estimate used as the performance gauge.

In this thesis we are more concerned with estimates of the scatter rather than the
location, and so, in an attempt to compare performance of Rocke’s and Tukey’s estimates,
we replicated the simulations from Maronna et al. (2006) and had a closer look at the
performance of scatter matrix estimates when p = 20.
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Figure B.2 shows the RMSE of the scatter matrix estimate and it is remarkably similar
to the plot for RMSE of location shown in Maronna et al. (2006). Although it can conceiv-
ably be of interest to some researchers, RMSE is not generally considered an appropriate
measure of performance for scatter matrix estimates. Its component-wise nature precludes
it from evaluating how well the shape of the data (defined by eigenvectors and eigenvalues)
has been estimated.
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(a) n1 = 5p, Condition Number
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(b) n2 = 10p, Condition Number
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(c) n1 = 5p, Determinant
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(d) n2 = 10p, Determinant

Figure B.3. Comparing Rocke’s and Tukey’s estimates of multivariate scatter. With finite
sample sizes no clear winner can be named and Tukey’s estimate is clearly better in terms of
determinant. As sample sizes increases, and bias takes over variability, Rocke’s estimate starts
to appear more advantageous.

Two primary measures that we use to evaluate scatter matrix estimates in this thesis
are (1) logarithm of Condition Number; (2) absolute logarithm of Determinant. If the
target scatter matrix is not identity (as might be the case when dealing with non-affine
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equivariant estimates, such as estimates on incomplete data) then the estimates also need
to be standardized before eigenvalues are computed, but we do not need to worry about
this in these simulations. Figure B.3 shows the averages (over 2,000 replications) of these
two measures against k in the same way as it was done for RMSE before. We consider two
sample sizes n1 = 5p = 100 and n2 = 10p = 200 to illustrate what happens when more (or
less) data are available.

Start with the performance of the determinant as it is easier to characterize. For small
sample size, n1 = 5p, Tukey’s estimate is clearly better than Rocke’s for all values of k.
For larger sample size, the two lines get closer and Tukey’s determinant is only marginally
better than Rocke’s. Two immediate observations can be made: (1) determinant perfor-
mance for finite sample sizes is opposite to what is suggested by RMSE; (2) as sample size
increases, Rocke’s estimate is getting closer to Tukey’s and it is entirely possible that it
will out perform it asymptotically as all sample variability disappears.

With respect to the condition number, it is hard to name a winner for n1 = 5p,
but Tukey’s estimate is probably marginally better than Rocke’s. For larger sample size
n2 = 10p, for most values of k, Tukey’s still performs slightly better but has a large peak
near k = 8 which might be considered undesirable by many. Whatever side one chooses
in this competition, it can be seen from these plots that the decision to use Tukey’s or
Rocke’s estimate on finite dataset is not as clear cut as RMSE performance would make
them believe.

Our understanding is that most of the performance loss by Rocke’s estimate is due
to increased variability. The weight function is very selective which makes the estimate
unstable. The window of positive weights is narrow and a good initial estimate is required
in order to make it cover the exactly correct subset of clean data. Once the good window
has been found the filtering of outliers will be very precise; but it is hard to find it in the
first place.

In fact, by looking deeper into the variability of Rocke’s estimate we have noticed
that for the most part it is not even sampling variability but rather the variability of the
algorithm itself. When repeatedly applied to exactly same dataset, the estimate yields
different answers depending on the value of the random seed. If one if interested in
the estimated shape of the distribution (e.g. condition number), this variability is rather
significant. The implementation of Rocke’s S-estimate that we used in this investigation
is different from the Fast-S algorithm we use for the extended S-estimate throughout
the thesis: it uses subsampling (the source of randomness) to find MVE location-scatter
estimate and then proceeds with iterative reweighting from this “good” starting point.
MVE is known to be robust but non-efficient and it appears that part of this inefficiency
is passed to the Rocke’s estimate due to its strong dependence on the starting value.

In this thesis we are faced with additional variability caused by incomplete data. To
make our investigation more consistent and to be able to focus on important aspects of
extending S-estimates (rather than their behaviour on complete data) we have chosen the
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more computationally stable Tukey’s ρ-function throughout the exposition and simulations
in this thesis. The extended S-estimate can be modified to work with Rocke’s ρ-function
but one must be prepared to encounter computational instability when dealing with finite
data; at least until a more stable method of computing S-estimates with very selective
weighting is found.

B.3 Proof: MLE and constraint optimization

Lemma 3. Maximizing the Gaussian log-likelihood of the observed data L(X; m,Σ) =
−1

2L1(X;Σ)−1
2L2(X; m,Σ), where L1(X;Σ) =

∑n
i=1 log det

(
Σ[i]

)
and L2 =

∑n
i=1 MD2

i (X; m,Σ),
is equivalent to minimizing L2(X; m,Σ) under the constraint L1(X;Σ) = 0 and then scal-
ing the covariance matrix appropriately.

Proof. Suppose that (m0,Σ0) is the solution to the second problem. Let us consider any
arbitrary (m1,Σ1) and will show that L(X;m1,Σ1) ≤ L(X;m0, s0Σ0) for some s0 > 0.

In addition to (3.21) that states that for any m ∈ Rp, Σ ∈ SPD(p) and a > 0,

L1(X; aΣ) = log(a)
n∑

i=1

pi + L1(X;Σ), (B.7)

let us note that L2 is also scale equivariant in a sense that

L2(X; m, aΣ) = a−1L2(X; m,Σ). (B.8)

Let a1 be such that L1(X; a1Σ1) = 0 according to (3.22). Then L2(X;m1, a1Σ1) ≥
L2(X; m0,Σ0) because a1Σ1 satisfies the constraint L1(a1Σ1) = 0 and Σ0 is known to
minimize L2(·) among such matrices. Therefore, using (B.8) twice, we have

L2(X; m1,Σ1) = a1L2(X; m1, a1Σ1) ≥ a1L2(X; m0,Σ0) = L2(X;m0, a
−1
1 Σ0). (B.9)

Additionally, we can see that L1(X;Σ1) = L1(X; a−1
1 Σ0) because both of them are equal

to − log(a1)
∑n

i=1 pi according to (B.7) and because L1(X; a1Σ1) = 0.
Putting these two facts together and recalling that L = −(L1 + L2)/2 we get

L(X; m1,Σ1) ≤ L(X; m0, a
−1
1 Σ0),

which proves that (m1,Σ1) does not maximize L(·).

B.4 Fisher-consistency and the choice of ki

To discuss the Fisher-consistency of our estimate we must first define its asymptotic func-
tional version. At this point we need to pay closer attention to the mechanism generating
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missing data. We will assume that missingness is completely independent from the actual
data (both observed and missing) and that various missingness patterns have well-defined
probabilities of occurring. The distribution of our data can be seen as a mixture of distribu-
tions on different coordinate subspaces of Rp. It can be fully described by F , the distribu-
tion of full data on Rp, and a collection of probabilities πκ of various missingness patterns
enumerated by κ = {observed,missing}p. We will denote this set {observed,missing}p of
all possible missingness patterns as P.

For each κ ∈ P, we define |κ| to be the number of observed variables in κ, and for
any vector m and matrix Σ, let m[κ] and Σ[κ] be the subvector of m and submatrix of
Σ corresponding to the observed components of κ.

We define the population version of the extended S-estimate analogously to its finite
sample version presented in Definition 1.

Definition 2. The asymptotic extended S-estimate of multivariate location and scatter is
defined as (m̂, ŝΣ̂) where (m̂, Σ̂) minimizes the scale s(m,Σ), which is the solution of

∑

κ∈P
πκEF

[
ρ̃|κ|

(
MD2(X [κ]; m[κ],Σ[κ])

s(m,Σ)

)]
= b, (B.10)

subject to ∑

κ∈P
πκ log

(
det

(
Σ[κ]

))
= 0. (B.11)

The function ρ̃|κ|(·) depends on the dimension of κ

ρ̃|κ|(d) =
c|κ|k|κ|∑

κ∗ πκ∗c|κ∗|k|κ∗|
ρc|κ|(d), (B.12)

with constants c|κ| and k|κ| such that

E
[
ρc|κ|

(
X2

1 + · · ·+X2
|κ|

)]
= b, and (B.13)

k|κ| =
{
E
[
c|κ|ρ′c|κ|

(
X2

1 + · · ·+X2
|κ|

)
X2

1

]}−1
. (B.14)

Expectations in (B.13) and (B.14) are computed over Xj
iid∼N (0, 1), for j = 1, . . . , p.

Proof of Theorem 1. Let the distribution F of the complete data be multivariate normal
with mean m0 and covariance Σ0. Then we will show that the scale s(m,Σ) is locally
minimized by (m0, a(Σ0)Σ0) where a(Σ0) is a standardizing constant computed in (3.22)
to make a(Σ0)Σ0 satisfy constraint (B.11). Denote a0 = a(Σ0).

The extended S-estimate is location equivariant and therefore we can assume without
loss of generality that m0 = 0.

Since the condition in (B.11) is solely multiplicative, we can see the constrained op-
timization problem in Definiton 2 from a different, unconstrained, point of view. For
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any Σ ∈ SPD(p) and m ∈ Rp, we can compute the scale s∗(m,Σ) = s(m, a(Σ)Σ) and
attempt to minimize it.

It is easy to see that s∗T = s(0, a0Σ0) = a−1
0 . Mahalanobis distances MD2(X[κ];0[κ], a0Σ0[κ])

are distributed as a−1
0 χ2

|κ| and therefore if s(0, a0Σ0) > a−1
0 then all individual ex-

pectation in (B.10) are smaller than b
c|κ|k|κ|P

κ∗ πκ∗c|κ∗|k|κ∗|
because constants c|κ| are tuned

to satisfy (B.13). Thus the summation in (B.10) is smaller than b. Analogously, if
s(0, a0Σ0) < a−1

0 than the summation is larger than b. Therefore they must be equal.
Also, note the following. Suppose we have two pairs of candidate estimates (m1,Σ1)

and (m2,Σ2) that generate scales s∗1 and s∗2 respectively. Denote the left hand side of
the expression in (B.10) by G(m,Σ, s). If G(m1, a(Σ1)Σ1, s

∗
2) ≥ b = G(m1, a(Σ1)Σ1, s

∗
1)

then s∗1 ≥ s∗2 because G is a monotonely non-decreasing function of s. Therefore, if we
could prove that H(m,Σ) = G(m, a(Σ)Σ, s∗T ) is minimized by (0,Σ0), at which it is
equal to b, we would have proven that the scale s∗(m,Σ) is also minimized by that same
pair.

We will take the derivatives of H w.r.t. m and Σ and verify that they are equal to
zero at (0,Σ0).

∂H

∂m
(0,Σ0) =

∂G

∂m
(0, a(Σ0)Σ0, s

∗
T ) =

∑

κ∈P
πκ

〈
E

[
ρ̃′|κ|(MD2/s∗T )

−2Σ0
−1
[κ]X [κ]

s∗T

]〉

= − 2
s∗T

∑

κ∈P
πκ

〈
Σ0

−1
[κ]E

[
ρ̃′|κ|(MD2/s∗T )X [κ]

]〉
= 0,

because the distribution of X is symmetric around m0 = 0 and therefore the expectations
are equal to zero. The angle brackets 〈·〉 in the expression above mean that the |κ|-vectors
need to be expanded to p-vectors by filling the empty cells with zeros.

The derivative w.r.t. Σ requires slightly more work. Before we proceed with our proof
let us recall two useful expressions (number 48 and 52, respectively) from Petersen and
Pedersen (2008) for future use:

∂ log | det(M) |
∂M

= (M−1)′ = (M ′)−1, (B.15)

∂ a′M−1b

∂M
= −M−1ab′M−1, (B.16)

where M is a square matrix, while a and b are vectors of the same dimension.
Now note that

∂H

∂Σ
(0,Σ0) =

∂G

∂Σ
(0, a0Σ0, s

∗
T )

(
∂a

∂Σ
(Σ0)Σ0 + a0Ip

)
. (B.17)

Then denote the left hand side of the constraint (B.11) as F (Σ). Normalizing constant
a(Σ) is chosen such that F (a(Σ)Σ) = 0 for all Σ. Therefore the derivative of it w.r.t. Σ
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is also equal to zero:

∂F (a(Σ)Σ)
∂Σ

(Σ0) =
∂F

∂Σ
(a0Σ0)

{
∂a

∂Σ
(Σ0)Σ0 + a0Ip

}
= 0.

Note that both terms in the product above are matrices so it is not necessary for one
of them to be equal to zero in order for the product to be zero. If we can show that
∂G
∂Σ(0, a0Σ0, s

∗
T ) in (B.17) is proportional (as matrix) to ∂F

∂Σ(a0Σ0) above then we would
have proven that the left hand side in (B.17) is equal to zero because the second terms in
both expressions are identical. Now have a closer look at them:

∂F

∂Σ
(a0Σ0) =

∑

κ∈P
πκ
∂ log det

(
Σ[κ]

)

∂Σ
(a0Σ0) = a−1

0

∑

κ∈P
πκ

〈
Σ0

−1
[κ]

〉
, (B.18)

where we used expression (B.15). Angle brackets now mean that the |κ|×|κ|matrices need
to be expanded to size p×p the same way as it was done with vectors above. Using (B.16),
we obtain

∂G

∂Σ
(0, a0Σ0, s

∗
T )

=
∑

κ∈P
πκE

[
ρ̃′|κ|

(
MD2(X [κ];0[κ], a0Σ0[κ])

s∗T

)
∂MD2(X [κ]; m[κ],Σ[κ])

∂Σ
(0, a0Σ0)

1
s∗T

]

=
1
s∗T

∑

κ∈P
πκE

[
ρ̃′|κ|

(
a−1

0 MD2(X [κ];0[κ],Σ0[κ])

a−1
0

)〈
a−2

0 Σ0
−1
[κ](X [κ]X

′
[κ])Σ0

−1
[κ]

〉]

=
1

(s∗T )3
∑

κ∈P
πκ

〈
Σ0

−1/2
[κ] E

[
ρ̃′|κ|

(
X ′

[κ]Σ0
−1
[κ]X [κ])

)
(Σ0

−1/2
[κ] X [κ])(Σ0

−1/2
[κ] X [κ])

′
]
Σ0

−1/2
[κ]

〉

=
1

(s∗T )3
∑

κ∈P
πκ

〈
Σ0

−1/2
[κ] (kI|κ|)Σ0

−1/2
[κ]

〉
=

k

(s∗T )3
∑

κ∈P
πκ

〈
Σ0

−1
[κ]

〉
, (B.19)

where k = (
∑
κ∈P πκc|κ|k|κ|)

−1 as in (B.12). The most important part of the derivation
above is the fact that all expectations (for all κ) are equal to kI|κ|. They have different
dimensions but all diagonal element are the same. All expectation matrices are diagonal
simply because Σ0

−1/2
[κ] X [κ] has a spherical distribution and therefore all off-diagonal cross-

products are equal to zero due to symmetry. Diagonal elements, however, are equalized
due to the specific choice of constants k|κ| in (B.14). This is the most important reason
for taking ki in (3.19) the way we did — to counterbalance the discrepancies in these
expectations across different dimensions.

Comparing (B.19) and (B.18) we can see that they are indeed proportional to each
other and therefore the gradient ∂H

∂Σ (0,Σ0) is equal to zero.

Remark 1. Note that the proof only uses the fact that F is multivariate normal to
compute expectations in (B.13) and (B.14). Everything else will hold for any elliptical
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distribution with scatter matrix Σ0 and location m0. Therefore, if the data come from
another elliptical family, then Definition 2 and, accordingly, Definition 1 can be modified
so that the estimate is Fisher-consistent under that family. The only required change is
to replace the distribution in the expressions defining c|κ| and k|κ| (or ci and ki in terms
of the definition for finite samples).

Remark 2. In order to have Fisher-consistency, probabilities {πκ} must be such that,
for each pair of variables, the probability of observing them together is greater than zero.
Otherwise the element of the covariance matrix that corresponds to the completely missing
pair is unidentifiable. The same is true for the finite sample data. If there is a pair of
variables that is never observed together then the corresponding element of the covariance
matrix cannot be estimated.

B.5 Proof of theorem 2

Proof. Let Y be the transformed version of X such that yi = Dxi + b, where D is a non-
singular diagonal matrix. Let (mx, sxΣx) be the estimate based on the original x-data
and then we will show that (Dmx + b,D(sxΣx)D′) is the estimate based on the y-data.

First, look at the dimension-specific Mahalanobis distances in (3.14). Since D is
diagonal, missing values do not propagate and, since all factors are different from zeros,
they do not disappear under the transformation — missingness pattern remains the same.
Note that yobs

i = D[i]x
obs
i + b[i] and therefore, for any p-vector m, p × p matrix Σ and

a ∈ R,

MD2
i (y

obs
i ; Dm + b, aDΣD′) =

1
a
MD2

i (x
obs
i ; m,Σ). (B.20)

Consequently, the scale s, the solution to (3.14) for a given (m,Σ), is such that

sy(Dm + b, aDΣD′) =
1
a
sx(m,Σ). (B.21)

Let us define

aD = exp

(
−2

∑n
i=1 log(det

(
D[i]

)
)∑n

i=1 pi

)
, (B.22)

such that constraint (3.15) is satisfied simultaneously for Σ and aDDΣD′. This concludes
the part of the proof that is specific to the extended version of the estimate that we defined
in this paper — the rest is generic and would work for any non-singular D if there were
no missing values in the data.

Consider arbitrary pair (m̃, Σ̃) satisfying constraint (3.15) and look at the scale they
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generate if used with the y-data:

sy(m̃, Σ̃) =
1
aD

sx(D−1(m̃− b),
1
aD

D−1Σ̃(D′)−1)

≥ 1
aD

sx(mx,Σx) = sy(Dmx + b, aDDΣxD), (B.23)

which proves that sy() achieves its minimum at (Dmx + b, aDDΣxD). Therefore the
extended S-estimate computed on y-data is

(Dmx + b,
1
aD

sx(mx,Σx)aDDΣD) = (Dmx + b, sxDΣxD). (B.24)
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