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Abstract 

The prediction of chatter instability in machining steel and thermal-resistant alloys at low 

cutting speeds has been difficult due to unknown process damping contributed by the 

contact mechanism between tool flank and wavy surface finish. This thesis presents 

modeling and measurement of process damping coefficients, and the prediction of chatter 

stability limits for turning and milling operations at low cutting speeds.  

The dynamic cutting forces are separated into regenerative and process damping 

components. The process damping force is expressed as a product of dynamic cutting 

force coefficient and the ratio of vibration and cutting velocities. It is demonstrated that 

the dynamic cutting coefficient itself is strongly affected by flank wear land. In 

measurement of dynamic cutting forces, the regenerative force is eliminated by keeping 

the inner and outer waves parallel to each other while the tool is oscillated using a piezo 

actuator during cutting.  

Classical chatter stability laws cannot be used in stability prediction for general turning 

with tools cutting along non-straight cutting edges; where the direction and magnitude of 

the dynamic forces become dependent on the depth of cut and feed-rate. A new dynamic 

cutting force model of regeneration of chip area and process damping, which considers 

tool nose radius, feed–rate, depth of cut, cutting speed and flank wear is presented. The 

chatter stability is predicted in the frequency domain using Nyquist stability criterion. 

The process damping is considered in a new dynamic milling model for tools having 

rotating but asymmetric dynamics. The flexibility of the workpiece is studied in a fixed 

coordinate system but the flexibility of the tool is studied in a rotating coordinate system. 
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The periodic directional coefficients are averaged, and the stability of the dynamic 

milling system is determined in the frequency domain using Nyquist stability criterion.  

The experimentally proven, proposed stability models are able to predict the critical 

depth of cut at both low and high cutting speeds.  

 

 



iv 

Table of Contents 

Abstract ............................................................................................................................... ii 

Table of Contents............................................................................................................... iv 

List of Tables .................................................................................................................... vii 

List of Figures .................................................................................................................. viii 

List of Symbols ................................................................................................................xiii 

Acknowledgment ............................................................................................................. xvi 

Chapter 1: Introduction ....................................................................................................... 1 

Chapter 2: Literature Survey............................................................................................... 4 

2.1 Overview............................................................................................................. 4 

2.2 Dynamics of Metal Cutting Process ................................................................... 4 

2.3 Process Damping ................................................................................................ 8 

2.4 Stability of Three Dimensional Turning ........................................................... 11 

2.5 Stability of Milling Operations ......................................................................... 13 

Chapter 3: Orthogonal Cutting with Process Damping .................................................... 15 

3.1 Overview........................................................................................................... 15 

3.2 Modeling of Process Damping Forces .............................................................. 15 

3.3 Identification of Process Damping Forces with Oscillation Cutting Tests....... 21 

3.4 Tool Wear and Process Damping Mechanism.................................................. 25 

3.5 Chatter Stability Diagrams................................................................................ 27 

3.6 Conclusion ........................................................................................................ 28 

Chapter 4: Stability of General Turning with Process Damping ...................................... 29 



v 

4.1 Introduction....................................................................................................... 29 

4.2 Cutting Force Nonlinearity ............................................................................... 29 

4.2.1 Cutting force prediction based on chip flow direction.............................. 30 

4.2.2 Cutting force prediction based on variable approach angle...................... 34 

4.3 Time Domain Simulation of Turning Process .................................................. 36 

4.3.1 State vector................................................................................................ 41 

4.3.2 Results of the time domain simulation...................................................... 42 

4.4 Analytical Model I: Regenerative Chip Model................................................. 43 

4.5 Analytical Model II:  Regenerative Chip Area and Chord Model.................... 47 

4.5.1 Modeling of dynamic cutting force gains in turning ................................ 48 

4.5.2 Process damping gains contributed by flank wear.................................... 54 

4.6 Simulations and Experimental Results ............................................................. 57 

4.6.1 Sensitivity analysis of stability models..................................................... 58 

4.6.2 Chatter tests with varying nose radius and feed rates ............................... 61 

4.6.3 Chatter tests with varying spindle speed................................................... 63 

4.7 Conclusion ........................................................................................................ 66 

Chapter 5: Stability of Milling at Process Damping Speeds............................................. 68 

5.1 Introduction....................................................................................................... 68 

5.2 Dynamic Cutting Force Model ......................................................................... 70 

5.3 Structural Dynamic Model................................................................................ 78 

5.4 Stability of the System...................................................................................... 79 

5.5 Simulation and Experimental Results............................................................... 81 

5.6 Conclusion ........................................................................................................ 88 



vi 

Chapter 6: Conclusion and the Future Works................................................................... 90 

6.1 Conclusions....................................................................................................... 90 

6.1.1 Process damping mechanism .................................................................... 90 

6.1.2 Stability of three dimensional turning....................................................... 91 

6.1.3 Stability of milling with rotating cutter dynamics at process damping 

speeds ................................................................................................................... 91 

6.2 Future Works .................................................................................................... 92 

Bibliography ..................................................................................................................... 94 

Appendix A: Nyquist Stability Criterion.................................................................. 100 

A.1 Application of Nyquist Stability Criterion in Chatter Problems..................... 100 

A.2 Numerical Evaluation of Stability .................................................................. 102 

Appendix B: Extraction of Dynamic Cutting Coefficients from Sampled Signals.. 104 

B.1 Discrete Time Fourier Transform (DTFT) ..................................................... 104 

B.2 Extraction of Signal Components at the Main Oscillation Frequency ........... 106 

B.3 Example .......................................................................................................... 107 

Appendix C: Averaging Dynamic Matrices in Milling............................................ 109 

C.1 Summation of Average Matrices .................................................................... 114 

C.1.1 Summation lemma .................................................................................. 114 

C.1.2 Average matrix for cutters having more than two teeth ......................... 116 

C.1.3 Average matrix for a tool with two teeth (N=2) ..................................... 118 

C.1.4 Average matrix for a single tooth tool (N=1) ......................................... 119 

C.2 Comparison with Classical Stability Prediction Method ................................ 121 



vii 

List of Tables 

Table  3-1: process damping coefficient determined with different theories .................... 21 

Table  4-1: Differentials of chord angle, length and area with respect to displacements in 

depth of cut and feed directions. ....................................................................................... 54 

Table  4-2: Modal Parameters of chatter test setup............................................................ 64 

Table  4-3: Cutting coefficients for AISI 1045 steel at different speeds; same tool is used 

as given in Figure 6........................................................................................................... 66 

Table  5-1: Parameters used in slot millin11g of AISI 1045 steel with R390-020A20L-11L 

tool holder having 2 R390-11 T302E-PM-4240 inserts. .................................................. 84 

Table  B-1: Cutting conditions and dynamic cutting coefficients in the sample dynamic 

cutting test ....................................................................................................................... 108 

 



viii 

List of Figures 

Figure  2-1: Cutting forces during chatter............................................................................ 5 

Figure  2-2: Photomicrograph of workpiece surface: (a) stable cutting,  (b) chatter, (c) 

vibration marks as seen by naked eyes ............................................................................... 5 

Figure  2-3: Chatter in orthogonal cutting with block diagram ........................................... 6 

Figure  2-4: Inner and outer waves on chips (a), (b) regular camera, (c) under a 

microscope .......................................................................................................................... 7 

Figure  2-5: Process-damping mechanism as suggested by Wallace and Andrew  [48] .... 10 

Figure  2-6: Photomicrograph of rake face of a turning tool; chip area has a lighter color 

due to the wear on rake face ............................................................................................. 11 

Figure  2-7: Three-dimensional flexibility in a turning operation ..................................... 12 

Figure  3-1: Regenerative orthogonal cutting process with the effect of vibration velocity

........................................................................................................................................... 16 

Figure  3-2: Work material compression under the cutting edge radius as a source of 

process damping force as described by Sisson and Kegg  [38] ......................................... 18 

Figure  3-3: Photomicrograph of tool wear land................................................................ 18 

Figure  3-4: Work material compression under the tool flank, as proposed by Wallace et al 

 [48].................................................................................................................................... 20 

Figure  3-5: Dynamic cutting force test rig........................................................................ 22 

Figure  3-6: Schematic of oscillation cutting tests............................................................. 23 

Figure  3-7: Sample measurements during dynamic plunge turning test. Work material: 

Stainless Steel SS304, Tool: Sandvik Coromant N123 H13A with 0 degree rake and 7 



ix 

degree clearance angle. The width of cut: 0.5 mm, feed: 0.050 mm/rev. spindle speed: 

2174 rev/min, tool oscillation frequency: 72.59 Hz (DC components are removed). ...... 23 

Figure  3-8: Process gain versus inverse wavelength with zero phase shift between inner 

and outer oscillations. Material: AISI1045, Cutting force coefficients: 2580 MPazK = , 

1384MPa
y

K = , 6 66.9 10 /(2 ) 1.1 10 N/m
y

C π= × = ×  and 6 56.2 10 /(2 ) 9.9 10 N/m
z

C π= × = × ....... 25 

Figure  3-9: The effect of tool wear on the stability lobes with experimental results. 

Material: Stainless steel SS304 shaft with 35 mm diameter. Feed rate: 0.050mm/rev. 

Structural parameters: 1.742Kgm = , 176.8 N/m/sC = , 7.92 MN/mK = . Cutting force 

Coefficients: 2068MPazK = , 2585MPayK =  New tool : 1.2MN/myC =  Worn tool with 

0.080 mm flank wear 4.9 MN/myC = ................................................................................. 26 

Figure  3-10: The relationship between the process damping coefficient and square of 

wear length........................................................................................................................ 27 

Figure  3-11: Stability lobes with and without process damping terms. Measured cutting 

forces during stable (n=500 rev/min, a=1 mm) and unstable (n=1500 rev/min, a=1mm) 

cutting tests. Material: AISI1045 with a diameter of 35 mm. 450.7Hznω =  

6
6.48 10 N/m= ×K , 145N/(m/s)c = , See Figure  3-8 for material properties. ......................... 27 

Figure  4-1: Comparison of force measurements and predictions assuming forces 

proportional to the uncut chip area. See section  4.2 for tool and material properties. ..... 30 

Figure  4-2: Three-dimensional cutting with a tool with a round nose.............................. 31 

Figure  4-3: Chip flow direction as suggested by Colwell  [12]......................................... 32 

Figure  4-4: Normal force (
n

F ) and side force (
r

F ) with respect to approximate edge.... 33 



x 

Figure  4-5: Prediction considering chip flow direction as suggested by Colwell  [12], see 

Figure  4-1 for tool and material properties. ...................................................................... 34 

Figure  4-6: Variable approach angle method.................................................................... 35 

Figure  4-7: Comparison of force prediction method based on Colwell's chip flow 

direction and varaible approach angle method ................................................................. 35 

Figure  4-8: Schematic of time domain Simulation........................................................... 36 

Figure  4-9: Chip area considering dynamic movements of tool in present and previous 

cuts .................................................................................................................................... 37 

Figure  4-10: Chip area with dynamic movements, only circular part of the cutting edge is 

engaged ............................................................................................................................. 40 

Figure  4-11: Results of time domain simulation ( 0.05, 600
k nk

Hzζ ω= = ); The modal 

stiffness values are given as 40xxk = , 100yyk = , 25
zz

k = , 70xy yxk k= = , 

25zx xzk k= = , 100 [N/µm]
yz zy

k k= = , and cutting coefficients: 0 39 nK = , 

0 146rK = − , [ ]0 3 NtK = − ; 75000nlK = , 90000rLK = , 73000 [N/m]tLK = , 

1065nAK = , 647rAK = , 2516 [MPa]tAK = ................................................................ 43 

Figure  4-12: Parameters of chip area (a): ( )1 cos ra rε κ> −  (b) ( )1 cos ra rε κ≤ − ......... 44 

Figure  4-13: Displacement of the cutting edge in the depth of cut direction 

(a) ( )1 cos ra rε κ> − , (b) ( )1 cos ra rε κ≤ − ...................................................................... 50 

Figure  4-14: Chip area with displacement in depth of cut direction in previous cut........ 51 

Figure  4-15: Chip area with displacement in depth of cut direction in previous.............. 53 

Figure  4-16: Equal displacements in feed direction for in present and previous cut........ 54 

Figure  4-17: Tool wear and process damping forces........................................................ 55 



xi 

Figure  4-18: Variable Approach Angle ............................................................................ 56 

Figure  4-19: Comparison of three stability prediction methods (a) stability chart for a tool 

0.8mmε =r , 60κ = °r  and 0.1mm/rev=c  (b) Effect of approach angle (c) Effect of nose 

radius; (d) Effect of feed. cutting coefficients: 0 39=nK , 0 146= −rK , [ ]0 3 N= −tK ; 

75000=nlK , 90000=rLK , 73000 [N/m]=tLK , 1065=nAK , 647=rAK , 

2516 [MPa]=tAK . .......................................................................................................... 59 

Figure  4-20: (a) Effect of nose radius and (b) effect of feed on stability limit.  Tool: 

Sandvik CNMA1204 KR 3205 series coated inserts on DLCNL holder with 6− °   rake, 

6− °  inclination, and 95
r

κ = °  approach angles, respectively.......................................... 62 

Figure  4-21: Comparison of predicted and experimentally observed chatter stability 

results for turning with sample vibration measurements at stable 

( 2.5 mm, 200 rev/mina n= = ) and unstable ( 2.5mm, 400rev/mina n= = ) cutting 

conditions. Feed rate 0.1mm/revc =   and nose radius 0.8mmrε = . See Table  4-2 and 

Table  4-3 for the modal parameters and cutting coefficients respectively. ...................... 65 

Figure  5-1: Milling of a flexible workpiece with a rotating and vibrating cutter. ............ 71 

Figure  5-2: Calculation of relationship between forces and vibrations ............................ 78 

Figure  5-3: Setup for milling stability test ........................................................................ 83 

Figure  5-4: Predicted and measured milling forces in slot milling of AISI1045 steel. 

Cutting conditions:  Spindle speed: 4297 rev/min, depth of cut: 0.25 mm, feed-rate= 0.1 

mm/flute, number of inserts=2. Cutting coefficients are given in Table  5-1.................... 83 

Figure  5-5: Predicted and measured chatter stability results in slot milling of AISI 1045 

steel with a two teeth cutter. Cutting conditions and parameters are given in Table  5-1 . 84 



xii 

Figure  5-6: Time domain verification of analytical stability for slot milling with two 

inserts. (Cutting coefficients: 1978MParcK = , 3242MPatcK = , 0.61N/µmrC = , 

0.18 N/µmtC = ; modal parameters: 15.7N/µm
u

k = , 1152Hz
nu

ω = , u 0.023ζ = ; 

5.22N/µm
v

k =  , 665Hz
nv

ω = , v 0.023ζ = )................................................................... 86 

Figure  5-7: Sensitivity of stability charts to structural dynamic parameters of the system.  

Simulation conditions are same as Figure  5-6 except the following modal parameters are 

used:  5.22N/µm, 2 655Hz, 0.023k ω π ζ= = × = ........................................................... 88 

Figure  A-1: Nyquist Contour .......................................................................................... 101 

Figure  A-2: Nyquist plot in stable and unstable cutting conditions................................ 102 

Figure  A-3: Approximate Crossing Point ....................................................................... 103 

Figure  B-1: Dynamic cutting test, AIS1045, width of cut a =0.5mm, carbide tool, 

orthogonal cutting, Spindle Speed: 300rpm, oscillation frequency: 120Hz. The phase 

between inner and outer wave is zero. ............................................................................ 108 

Figure  C-1: ( )jg φ  functions for a five flute cutter with 15
1800,c stφ φ π= = and 

80
180exφ π= ................................................................................................................... 109 

 



xiii 

List of Symbols 

lim,a a   Depth of cut, critical depth 

c  Feed-rate (mm/rev) 

pq
d  Directional coefficients ( { }, , ,p q x y z∈ ) 

( )j
g φ   Engagement pulse function (milling) 

cusp
h  Cusp height 

0,h h  Height of the approximate chord with and without vibrations 

c
h    Chip thickness normal to the chord 

j
h   Chip thickness for flute j  

h�   Vibration velocity normal to the cutting edge 

1i = −  Imaginary number  

j   Tooth index  

, ,
i i ni

k ζ ω  Stiffness, damping ratio and natural frequency of the mode i 

,
v u

k k , ,
v u

c c , ,
v u

m m  Stiffness, damping, and modal mass in v and u directions 

, ,n r t
�� �

 Force coordinate system, aligned with the cutting speed and the 

approximate chord 

w   Projection of approximate chord in feed direction 

, ,x y z  Machine coordinate system (turning) 

,x y  Fixed coordinate system (milling), displacements in the fixed coordinate 

system  



xiv 

,u v  Rotating coordinate system, displacements of the tool in rotating 

coordinate system 

,  y zC C  Process damping coefficients in feed and cutting speed directions 

,  
r t

C C  Radial and tangential process damping coefficients 

dpF  Differential damping force in p  direction { }, ,p x y z∈  

,d dzF F   Process damping and friction forces  

, ,n r tF F F  Cutting forces in , ,n r t
�� �

frame 

, ,,r j t jF F  Radial and tangential dynamic forces on flute j  

,
v u

F F   Dynamic cutting force components in the rotating coordinate system 

,x yF F   Dynamic cutting force components in the fixed coordinate system 

,
rc tc

K K  Radial and tangential cutting coefficients 

, ,
tA nA rA

K K K  Cutting force coefficients for chip area 

, ,
tL nL rL

K K K  Cutting force coefficients for chord length 

0 0 0, ,
t n r

K K K  Cutting force coefficient offsets 

spK    Contact force coefficient 

lim,L L   Length and critically stable length of the approximate chord 

wL    Flank wear length 

r
Lκ   Length of straight section of the cutting edge in cut 

N   Number of flutes 

c
V   Cutting speed 



xv 

m
V   Volume of compressed work material under the tool 

A , B , E , C , D , F  2x2 sub-matrices of 4x4 directional matrices in milling 

[ ]nmC   Transformation matrix from machine to the force coordinates  

{ }mF   Cutting force vector in machine coordinate system 

[ ] [ ] [ ], , vτJ J J  Direct, delayed displacement gain and process damping matrix, 

respectively  

[ ]
c

K   Cutting force coefficient matrix  

{ } { },Q S  Displacement vectors in machine and force coordinate systems 

( )tP , ( )tQ , ( )tJ  Time varying directional matrices of direct, delay and process 

damping gains 

, rrε κ   Nose radius and approach angle of the tool 

cµ   Coefficient of friction between the tool flank and the workpiece 

θ     Angle of the approximate chord with feed direction 

0Φ   Effective transfer function 

c
φ   Angle between the first flute and v  

stφ , exφ  Entry and exit angles of tooth from the cut 

φ   Rotation angle of the tool (angle between v  and x ) 

[ ]Φ    Three dimensional transfer function matrix of the structure 

[ ] [ ],
vu W

Φ Φ  Transfer function of the rotating tool/spindle and workpiece  



xvi 

Acknowledgment 

I would like to thank my supervisor, Professor Yusuf Altintas for accepting me in 

Manufacturing Automation Lab and for his guidance, help and support during my PhD 

research.  

I learned a lot from our visiting engineer Hideaki Onozuka from Hitachi, Japan. His hard 

work, smart ideas and approach to experiments were truly inspiring for me. 

I would also like to thank staff engineers and technicians of the department of mechanical 

engineering in UBC; especially Bernhard Nimmervoll and Glenn Jolly for their 

assistance in preparing experimental setups.  

Many thanks to my friends and colleagues in Manufacturing Automation Lab for their 

stimulating discussions and good suggestions during this project.  

Finally, I am thankful of my parents for their help, support and patience during my stay in 

Canada.  

 



   

1 

Chapter 1:  Introduction 

Machine tool vibrations are the fundamental obstacle for ensuring accuracy and productivity 

in machining industry. Unless avoided, they damage the machine tool and scrap the 

workpiece.  

The structural vibrations of a machine tool form a closed loop system with the cutting forces; 

Cutting forces create displacements between the tool and the workpiece during machining 

and in return, movements between the tool and the workpiece affect the cutting forces. 

Vibration marks left on the machined surface affect the cutting forces in the successive pass 

and would lead to increased vibrations of the system if the process is not intrinsically stable 

against the vibrations due to a large width of cut, large cutting coefficients, or flexible 

structure. Cutting forces depend on the tool geometry, material properties, feed rate and 

cutting speed. In an unstable process the amplitude of vibrations may grow exponentially 

until they become as large as chip thickness. This unstable vibration of the tool with respect 

to the workpiece is known as chatter, which creates large cutting forces that may damage the 

machine, cutting tool and the workpiece. 

The dynamics of the chatter system is described by delayed differential equations with 

constant or time varying periodic coefficients depending on the type of the machining 

operation. The parameters of the system are functions of work material properties, tool 

geometry, kinematics of machining operation, and structural dynamics of both machine and 

workpiece. 
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Significant research effort has been made in modeling and predicting the chatter stability of 

machining operations. The past methods enabled the industry to predict chatter free cutting 

conditions at high cutting speeds where the stabilizing effect of the contact between the flank 

face of the tool and wavy surface finish is negligibly small. Such high-speed cutting 

operations are mainly applied in milling aircraft parts made from aluminum alloys which are 

benefited from recent chatter stability theories significantly. The metal removal rates have 

been increased by several folds by selecting stable depth of cuts and high spindle speeds.  

However, the tool’s flank face rubbing against the wavy workpiece surface in low-speed 

machining, creates process induced damping which has not been modeled satisfactorily since 

it was noticed by Tobias  [46] in late 1950s. The process, which mainly occurs in low speed 

machining, is further complicated when the tool flank wear land is almost as large as the 

vibration wave length imprinted on the finish surface. There have been numerous attempts in 

modeling the time-varying contact mechanics between the wavy workpiece surface and flank 

face of the tool. However, there has not been a successful application of past models due to 

poor repeatability of experimental results, and complications that arise due to poor shearing 

of material at low cutting speeds. Furthermore, the low-speed cutting is mainly conducted in 

single point turning and boring operations where the depth of cut is small compared to the 

nose radius of the tool. The process force gains become nonlinear functions of operating 

conditions (i.e. feed, depth of cut) and tool geometry that further complicate the modeling of 

process dynamics for stability analysis.  

This thesis presents measurement and modeling of process damping mechanism in metal 

cutting at low cutting speeds. The process damping is incorporated into the dynamic models 

of turning and milling operations, and their chatter stability is predicted in the frequency 

domain. The process and chatter stability models are experimentally validated in turning and 

milling tests.  
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Henceforth, the thesis is organized as follows: The past research on modeling the dynamics 

of cutting process, process damping, and chatter stability in turning and milling is critically 

reviewed in Chapter 2. The modeling, measurement and identification of dynamic cutting 

force coefficients are presented in Chapter 3. Ideal dynamic cutting forces are created by 

adjusting the regenerative phase between successive spindle periods using a piezo-actuator-

driven fast tool servo in orthogonal cutting tests. The process damping coefficients are 

extracted by transforming measured time domain forces and vibration into the frequency 

domain. The dynamics of turning with tools having a nose radius are modeled in Chapter 4. 

The dynamic cutting force model considers the effects of nose radius, approach angle, feed-

rate, depth of cut, cutting speed, flank wear and structural dynamics of the system. A new 

three-dimensional dynamic cutting model which considers the regeneration of chip area and 

process damping caused by flank contact is proposed. The stability of the system is solved in 

the frequency domain using Nyquist stability criterion with experimental validation.  

A new dynamic milling model is introduced in Chapter 5. The model considers the 

asymmetric structural dynamics of the rotating tool, stationary dynamics of the workpiece 

and speed-dependent process damping coefficient. The system’s time varying periodic 

coefficients are averaged in rotating tool coordinates, and the stability of general milling 

system is solved using Nyquist stability criterion. The proposed stability solution is compared 

favorably against numerical simulation and milling test results. The thesis is concluded in 

Chapter 6 by summarizing the contributions to the stability of low speed turning and milling 

operations. The detailed mathematical derivation steps for some of the dynamic models are 

given in Appendices.  
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Chapter 2:  Literature Survey 

2.1 Overview 

The main aim of this thesis is to improve chatter stability prediction methods for turning 

and milling operations. Chatter stability limits are used to locate the stable metal removal 

conditions to maximize the productivity of machining operations. The stability prediction 

requires mathematical modeling of process mechanics and dynamics. The metal cutting is 

a large field with diverse applications and challenges. However, this thesis focuses on the 

modeling of three-dimensional mechanics and dynamics of turning and milling 

operations with process damping effects at low cutting speeds; hence, topics related to the 

research focus are surveyed in this chapter.  

The organization of this chapter is as follows: In section 2.2 the literature on the 

dynamics of orthogonal cutting and chatter stability is discussed. The previous theories 

on process damping are presented in section 2.3. In section 2.4, the literature on stability 

of three-dimensional turning is summarized. Finally, the literature on stability prediction 

in milling with process damping is discussed in section 2.5. 

2.2 Dynamics of Metal Cutting Process 

Chatter is the vibration instability of a machining system. It leads to destructive, 

oscillating cutting forces generating vibration marks on a machined surface, as shown in 

Figure  2-1 and Figure  2-2. The vibrating forces, which could reach magnitudes several 
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times larger than that of a stable cutting, decrease the life of the tool and the machine 

drastically, and may lead to tool breakage and premature wear of spindle bearings. 
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Figure  2-1: Cutting forces during chatter 

 

Figure  2-2: Photomicrograph of workpiece surface: (a) stable cutting,  (b) chatter, (c) vibration 

marks as seen by naked eyes  
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Figure  2-3: Chatter in orthogonal cutting with block diagram 

A simple tool with one degree of freedom is presented in Figure  2-3 along with a block 

diagram describing the system's dynamics in the Laplace domain. τ is the spindle period 

and the intended chip thickness is 0h , but vibration in the feed-force direction ( )y t , 

known as the inner modulation, decreases the dynamic chip thickness, shown as ( )h t , 
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while vibration mark's height left from the previous pass, ( )y t τ−  known as the outer 

modulation, increases the dynamic chip thickness; therefore,  

 ( ) ( ) ( )0h t h y t y tτ= + − −  ( 2-1) 

 

 

Figure  2-4: Inner and outer waves on chips (a), (b) regular camera, (c) under a microscope 

When there is a phase shift between (t)y  and ( )y t τ− , the dynamic chip thickness 

varies at the frequency of vibration (see samples in Figure  2-4) and creates a vibrating 

cutting force ( )yF t  which could amplify the vibration of the tool. This phenomenon only 

happens if the depth of cut (a ) and cutting coefficient in feed direction (
y

K ), which act 

as gains in the block diagram, are large enough compared to the stiffness ( K ) and 

damping ratio ( / 2ζ = c mK ) of the structure holding the tool. The oscillation energy in 

the structure is only dissipated by damping. If the energy diverted from the machining 



 Chapter 2: Literature Survey 

8 

process by chip thickness variations is larger than the vibration damping capacity of the 

structure, the amplitude of the vibrations will grow until the vibration amplitude is large 

enough to make the tool leave the workpiece and create zero chip thickness.  

In 1946 Arnold  [7] suggested that a decrease in cutting force due to the increase in the 

cutting speed leads to a negative damping effect and causes instability of a cutting 

process. Later Hahn  [17] demonstrated that such an effect is not strong enough as the sole 

reason for instability. Regeneration of undulations was first discovered by Doi and Kato; 

They showed that the regeneration of the chip thickness causes oscillating cutting forces, 

which in turn excites the vibrations of the structure  [14]. 

Tlusty et al.  [42] and Tobias et al.  [46] suggested the relationships for the prediction of 

threshold of stability considering regeneration. Later, Merritt [26] presented the same 

model as a closed loop system as shown in Figure  2-3 [26]. The stability of the system 

solved by Tlusty is given by: 

 

( )( )lim

1

2 .min Re
y

a
K jφ ω

= −
  

 ( 2-2) 

where ( ) ( )
1

2j K cj mφ ω ω ω
−

= + −  is the frequency response function of the structure 

between the tool and the workpiece.  

2.3 Process Damping 

When the ratio of the vibration frequency over cutting speed is very high, which occurs at 

low-speed milling and most turning and boring operations, the stable depth of cut 

increases. The increase of the stable depth of cut has been attributed to either the change 

in the direction of cutting speed hence the force  [13], or the friction between the 
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clearance face of the tool and wavy workpiece finish surface  [5] [38] [23] which is 

referred to as process damping mechanism as illustrated  in Figure  2-5. 

Albrecht  [1] modeled the ploughing between the clearance face and rounded cutting edge 

of the tool, and Sisson et al.  [38] showed the round cutting edge's effect on the damping 

of the cutting process. The mechanics of contact between a wavy surface and a tool’s 

clearance face as well as a cutting edge with a radius has been a challenging tribology 

problem. Montgomery and Altintas used indentation model of tool clearance face with 

the wavy surface finish in milling  [29] but further investigation with this method was 

impeded by numerical instability in their numerical simulation. Wallace and Andrew  [48] 

and later Chiou and Liang  [10] proposed an improved model of indentation with 

experimentally calibrated contact forces. They showed that the flank wear increases 

damping, especially at low cutting speeds. Clancy and Shin considered a turning tool 

with nose radius and flank wear  [11]. They considered the interference between the tool 

and wavy surface finish using the extended model of Chiou and Liang, and proposed a 

three-dimensional chatter stability usin g an eigenvalue solution method   [10]. Huang and 

Wang identified process damping coefficient from the measured cutting forces and 

vibrations in milling  [20]. They showed the presence of process damping forces in 

milling.  
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Figure  2-5: Process-damping mechanism as suggested by Wallace and Andrew  [48]  

The accurate modeling of contact forces as a function of vibration frequency, cutting 

speed, tool geometry and work material properties remain an academic challenge [5]. 

Tlusty reported experimental results from several leading research laboratories where a 

standard experimental set up is used to measure the dynamic cutting force coefficients 

which contain both the influence of vibration frequency and cutting speed dependent 

damping, as well as the damping contributed by ploughing of the clearance face of the 

tool  [41]. Although the set up and material were the same, the measured dynamic cutting 

force coefficient results varied among institutes, which was blamed to the difficulties in 

the measuring instrumentations available in 1970s  [34]. 

In chapter 3, a new dynamic cutting force measurement system is introduced. The results 

of dynamic cutting tests are used for direct stability prediction with process damping. 

Also, dynamic cutting tests with tools with different wear lands indicate the relationship 

between the tool wear and dynamic cutting forces.  
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2.4 Stability of Three Dimensional Turning 

In the early years of chatter research, studies were concentrated on cutting tools with a 

single-straight edge as shown in Figure  2-3. In practice, in a turning or boring operation, 

the chip is generated by a tool which is engaged in the workpiece with a straight cutting 

edge, a curved cutting edge and a minor straight cutting edge as shown in Figure  2-6. The 

radius of corner curvature in a turning tool is comparable to the axial depth of cut. A 

larger nose radius makes the tool stronger against breakage and provides a better surface 

finish. Modern medium-sized carbide tools usually have a nose radius ranging from 

0.8mm to 2.4 mm or more, and the nose radius area makes up a large portion of the chip 

area. The whole cut is in the nose radius area for small depth of cuts and in cutting 

operations with round inserts. 

 

Figure  2-6: Photomicrograph of rake face of a turning tool; chip area has a lighter color due to the 

wear on rake face 

There is a nonlinear relationship between the chip area and the cutting forces in the depth 

of cut and feed directions due to the nose radius of the tool. The nose radius makes the 
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coefficients of delayed differential equations dependent on the depth of cut and feed; but 

these coefficients are considered constant in the past stability prediction methods  [32]. 

φzz

φxx

φyy

xy

z

 

Figure  2-7: Three-dimensional flexibility in a turning operation 

Another aspect of the stability prediction in turning is that the vibrations are excited in 

multiple directions, depending on the tool geometry and flexibilities of the system. A 

sample turning tool is shown in Figure  2-7 where the cutting forces act in all three 

directions while the system has dynamic flexibilities. The chip area is dependent on 

vibrations in both depth of cut ( x ) and feed ( y ) directions. Oscillations in feed, depth of 

cut and cutting speed ( z ) directions are coupled due to coupling of the structure and 

cutting mechanism. Opitz developed a one-dimensional analysis by assuming a zero tool 

nose radius and developed the concept of directional transfer function which is a linear 

summation of weighted direct and coupled transfer functions due to their orientation with 

respect to the cutting forces  [32]. Rao et. Al developed an parallelogram approximation 

for chip area [35] while Reddy et. al. approximated the chip area with a triangle and 

obtained the stability for structural modes in one major flexible direction  [36]. Atabey 

and Lazoglu simulated the process in time domain for a boring tool with nose radius, and 

studied its stability  [8],  [24]. Ozlu and Budak  [33] improved the modeling of turning 
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dynamics by dividing the chip into discrete zones or small discrete force elements; 

however, this method is more accurate in stability prediction in the feed direction rather 

than the depth of cut direction. In chapter 4 of this thesis, cutting forces for tool with nose 

radius are predicted based on Colwell's chip flow direction theorem  [12], and a new 

stability prediction method is introduced by modeling the transfer matrix between the 

displacements and cutting forces. Process damping force is also included, and the 

stability prediction is analytically performed using Nyquist stability criterion. 

2.5 Stability of Milling Operations 

Turning, boring and drilling tools create continuous chips while milling tools produce 

crescent-shaped chips as their flutes engage in and disengage out of the workpiece 

material during rotation. Discontinuous cutting, combined with the rotation of the cutting 

edge, makes the study of chatter in milling more challenging. Tlusty et. al presented time 

domain, numerical simulations and considered process damping and nonlinearities  [45]. 

Sridhar et. al. proposed the concept of state transition matrix, calculated by time domain 

simulation. In this method, an eigenvalue of the state transition matrix outside of the unit 

circle indicates machining instability  [39]. Minis and Yanushevsky  [27] predicted chatter 

analytically using Nyquist stability criterion along with the concept of parametric transfer 

functions and Fourier analysis. Altintas and Budak  [3],  [9] developed single-frequency 

and multi-frequency matrix eigenvalue methods to calculate stability limits directly. 

Both Minis et. al and Altintas et. al considered dynamic variables represented in a fixed 

coordinate system. While it is convenient and acceptable to use a fixed coordinate system 

to study the dynamics of any axis-symmetric flexible tool/spindle, the dynamics of a 

system with tools of unequal orthogonal modes should be studied in a rotating coordinate 
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system. Rotating coordinate systems are employed in the study of dynamics of 

asymmetric rotors and the effects of dry friction between the components of a rotor  [30].  

In an earlier work, Li, Ulsoy and Endres  [25] studied the effects of flexible tool rotation 

on chatter stability for boring and predicted different stability limits for stationary boring 

bars compared to the rotating boring bars.  

The new model developed in chapter 5 of this thesis considers two additional dynamic 

variables for rotating spindle in addition to dynamic variables of non-rotating structure. 

Process damping effect, which arises in low cutting speeds, is also considered. The model 

predictions in different cutting conditions and structural dynamic configurations are 

compared with experiments and time domain simulations. 
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Chapter 3:  Orthogonal Cutting with Process Damping 

3.1 Overview 

Heat resistant and high strength alloys are machined at low cutting speeds where the 

chatter stability is still an unsolved phenomenon. This chapter presents a cutting force 

model which has dynamic cutting force coefficients related to regenerative chip thickness 

and vibration velocity respectively. The dynamic cutting force coefficients are identified 

from controlled orthogonal cutting tests with a fast tool servo oscillated at the desired 

frequency to create inner or outer modulations. The velocity term contributes to the 

damping in the process. It is shown that the process damping coefficient increases as the 

tool is worn, which increases the chatter stability limit in cutting. The chatter stability of 

the dynamic cutting process is predicted using Nyquist stability criterion, and compared 

against experimental results. Stability of the cutting process is predicted properly at low 

cutting speeds, provided that the dynamic cutting force coefficients governed by the 

contact between the wavy surface finish and tool flank are accurately identified.  

3.2 Modeling of Process Damping Forces 

Several experiments, such as those described in  [13] and  [48], show that a part of the 

force between the tool and workpiece is proportional to the speed of the tool vibration 

with respect to the workpiece and the slope of the waves left on the surface being cut. 

These forces add to the damping in the system and are known as process damping forces. 

Several explanations are proposed in literature for the origin of these forces  [41]. Das and 
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Tobias  [13] and Hoshi  [18] assume that the orientation of the cutting force is always at a 

constant inclination with respect to the instantaneous cutting speed as shown in Figure 

 3-1.  
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Figure  3-1: Regenerative orthogonal cutting process with the effect of vibration velocity 

The damping force dF  is calculated by Das and Tobias  [13] as: 

 

( ) ( )0 0 0 0

0 0

,

,

,

y y z z z y
c c

y y z z

d z dz y
c c

F t F F F t F F
V V

F K ac F K ac

y
F K ac F K ac

V V

y y

y

= − = +

= = ⇒

= − =
�

� �

�

 ( 3-1)

where 0yF  and 0zF are the cutting forces in normal and tangential directions during 

vibration-free cutting. The total dynamic cutting force ( ( )yF t ) at time t  is expressed 

with the velocity effect as:  

 ( ) ( ) ( )0y y z
c

y
F t K a h y t y t K ac

V
τ= − + − −  

�
 ( 3-2)

The dynamics of a single degree of freedom system is determined by: 

 ( )( ) ( ) ( ) ymy t Cy t Ky t F t+ + =�� �  ( 3-3)
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In these equations, ( )y t  and ( )y t τ− are the inner and outer vibrations, and yK and zK  

are the static cutting force coefficients in feed and cutting speed directions respectively. 

cV  is the cutting velocity, a is the width of cut, c  is the feed per revolution, and τ is the 

time delay between the inner and outer vibration waves. The velocity term ( / cy V− � ) 

introduced by Tobias increases the damping in the system ( /z cC K ac V+ ) at low cutting 

speeds  [13]: 

 

( ) ( )

( ) ( )

0

0

( ) ( ) ( )

( ) ( ) ( )

y z
c

z
y

c

y
my t Cy t Ky t K a h y t y t K ac

V

K ac
my t C y t Ky t K a h y t y t

V

τ

τ

+ + = − + − −  

 
⇒ + + + = − + −    

 

�
�� �

�� �

 ( 3-4)

While Tobias’s modified dynamic cutting process model leads to increased stability at 

low speeds, it fails to properly predict the stability limit and also explain the increased 

stability of worn tools. Sisson and Kegg  [23],  [38] proposed a theorem which considers 

the effect of tool wear on process damping as a worn tool is expected to have a larger 

cutting edge radius (shown as R  in Figure  3-2). Sisson and Kegg suggested that a part of 

chip thickness, proportional to the cutting edge radius ( R, 0.25b b ≅ ), is compressed 

under the edge radius instead of moving up the rake face and becoming a part of chip. 

The compressed material exerts a reaction force proportional to the material yield 

strength yσ  and inversely proportional to the clearance angle γ . During a vibration, the 

effective clearance angle γ  changes proportional to the vibration speed and this creates a 

dynamic force, proportional to the vibration speed and inversely proportional to the 

cutting speed. 
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Figure  3-2: Work material compression under the cutting edge radius as a source of process damping 

force as described by Sisson and Kegg  [38] 

The process damping force in this model is expressed as: 

 2

R
,d y dz d

c

b y
F a F F

V
σ µ

γ
= − =

�
 ( 3-5)

 

 

Figure  3-3: Photomicrograph of tool wear land 

An alternative explanation was proposed by Wallace and Andrew  [48], Wu  [49] and 

Chiou and Liang  [10]. This approach was different from Kegg and Sisson's due to its 

stress on the cutting edge wear length (
W

L , see Figure  3-3) instead of cutting edge radius 

and clearance angle as controlling parameters of the process damping force. They 
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explained process damping as the force generated when a volume of work martial is 

compressed under the tool wear land as shown in Figure  3-4. From this figure, mV  is 

calculated as: 

 
2

0 . .
2

w
m m

c

L y
V V a

V
= −

�
 ( 3-6)

where 0mV  is the volume of compressed material without vibration. The flank contact 

force is proportional to mV  with the material specific “contact force coefficient”, spK : 

 . ,d sp m dz dF K V F Fµ= =  ( 3-7)

In  [10], a tool penetration test is described for measuring spK of the work material. 

0.3µ =  is suggested for steel workpiece in  [50]. 

Dropping the constant 0mV  part in ( 3-6), the dynamic process damping force equation 

( 3-7) becomes: 

 
2 2

. . . , . . . .
2 2

w w
d sp dz sp

c c

L Ly y
F K a F K a

V V
µ= − = −

� �
 ( 3-8)
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Figure  3-4: Work material compression under the tool flank, as proposed by Wallace et al  [48] 

The relationship between the process damping force and vibration velocity could be 

written using the simplifying process damping coefficient yC  and zC which are defined 

as: 

 ,
( / ) ( / )

d dz
y z

c c

F F
C C

a y V a y V

− −
= =
� �

 ( 3-9)
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In Table  3-1, the process damping coefficients are represented per different process 

damping theories. Experimental results presented in the next section are in agreement 

with the process damping model proposed by Chio and Liang  [10], and Wallace and 

Andrew  [48]. 

Table  3-1: process damping coefficient determined with different theories  

 Das and Tobias  [13] Sisson and Kegg  [38] 
Wallace and Andrew  [48] 

/ Chio and Liang  [10] 

y
C  zK c  2

R
y

b
σ

γ
 

2

.
2

w
sp

L
K  

z
C  yK c−  yCµ  yCµ  

 

3.3 Identification of Process Damping Forces with Oscillation Cutting 

Tests 

While the static cutting force coefficients ( ,y zK K ) are identified from vibration-free 

orthogonal cutting tests by cutting at different feed-rates, the velocity-dependent cutting 

force coefficients ( ,y zC C ) could only be identified from a set of dynamic cutting tests. 

When a harmonic motion ( ( ) j t
y t Y e

ω= ) is applied to the cutting tool with a frequency 

ω  and amplitude Y , the dynamic cutting force equation becomes: 

 
( )

( )

1

1

yj t j
y y y

c

j t j z
z z z

c

C
F t K ac aY e K e j

V

C
F t K ac aY e K e j

V

ω ωτ

ω ωτ

ω

ω

−

−

 
 = + − − −  

 

  = + − − −   

 
( 3-10)
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The length of the vibration wave imprinted on the surface is 
2

cV
π

λ
ω

= , which leads to 

/ 2 /cVω π λ= . The modified dynamic cutting force expression for y  direction 

becomes: 

 
( ) ( )0

2
1j t j

y y y yF t K ah aY e K e j C
ω ωτ π

λ
− 

= + − −  
 ( 3-11)

which correlates the process damping forces to the vibration wave length ( λ ) or the ratio 

of vibration frequency over cutting speed ( / cVω ).  

The dynamic cutting force coefficients have been identified from a series of orthogonal 

plunge turning of cold-rolled AISI 1045 steel, stainless steel SS304 and Aluminum 7075 

bars on an instrumented CNC lathe as shown in Figure  3-5. A carbide grooving tool with 

2.4 mm edge width, zero degree rake and 7 degree clearance angle has been mounted on 

a piezo-actuator-driven fast tool servo.  

 

Figure  3-5: Dynamic cutting force test rig 
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An integrated laser sensor measures the displacement of the tool, and a three-component 

load cell fitted between the tool and the tool holder measures the dynamic cutting forces. 

The fast tool servo is mounted on the turret of the machine as rigidly as possible. While 

the CNC lathe provides the macro positioning and feed motion (c ), the fast tool servo is 

used to generate vibrations at the desired frequency and amplitude. 
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Figure  3-6: Schematic of oscillation cutting tests 
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Figure  3-7: Sample measurements during dynamic plunge turning test. Work material: Stainless 

Steel SS304, Tool: Sandvik Coromant N123 H13A with 0 degree rake and 7 degree clearance angle. 

The width of cut: 0.5 mm, feed: 0.050 mm/rev. spindle speed: 2174 rev/min, tool oscillation 

frequency: 72.59 Hz (DC components are removed).  
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The tool displacement and cutting forces are measured simultaneously during dynamic 

cutting tests as shown in Figure  3-6. A sample cutting force and displacement 

measurement is shown in Figure  3-7. The inner and outer waves are synchronized to be in 

phase (1 0j
e

ωτ−− = ) by generating integer number of vibration cycles per spindle 

revolution during the identification tests, i.e., 

 

( )

( )

( )

( )

( )

j t
y y y

j t
z z z

j t

F t K ac aY e jC
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y t Y e

ω

ω

ω

π

λ
π

λ

2
= + −

2
= + −

=

 ( 3-12)

Therefore, a Fourier analysis at frequency ω  results in: 
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2
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( 3-13)

The dynamic cutting force coefficient is extracted using the least squares method applied 

on the frequency domain representation of measured forces as shown in Figure  3-8. The 

diameter of the workpiece is 35 mm, the spindle speed is varied between 200 and 4000 

rev/min, and the piezo actuator delivered sinusoidal displacement between 10 to 120 Hz 

with 35 mµ  amplitude in constructing the results given in Figure  3-8. The imaginary 

part, or added damping to the process, corresponds to ( 2 /yC π λ− ) especially when the 

wave length is smaller than 10 mm in this particular test case. The positive sign for zC  

indicates that changes in the direction of cutting forces, as described by Das and Tobias, 

could not explain the process damping mechanism completely.  
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Figure  3-8: Process gain versus inverse wavelength with zero phase shift between inner and outer 

oscillations. Material: AISI1045, Cutting force coefficients: 2580 MPazK = , 1384MPayK = , 

6 66.9 10 /(2 ) 1.1 10 N/myC π= × = ×  and 6 56.2 10 /(2 ) 9.9 10 N/mzC π= × = ×  

3.4 Tool Wear and Process Damping Mechanism 

It is well known that the tool wear changes the cutting edge geometry and flank contact 

with the wavy surface finish  [48]. A series of dynamic cutting tests have been conducted 

on stainless steel by following the same procedure proposed in this chapter. Since 

stainless steel produces high heat, the tools were worn quickly. The dynamic cutting 

coefficients were identified using both sharp and worn tools. The corresponding stability 

limits are shown in Figure  3-9. The flank wear was about 80 mµ  measured under a 
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microscope. The stability with process damping moved from 1000 rev/min to 3000 

rev/min, and all the unstable cutting tests with sharp tool were observed to become stable 

when tested with the worn tool. Chatter occurred only at 3500 rev/min and 1.5 mm depth 

of cut with the worn tool.  
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Figure  3-9: The effect of tool wear on the stability lobes with experimental results. Material: Stainless 

steel SS304 shaft with 35 mm diameter. Feed rate: 0.050mm/rev. Structural parameters: 

1.742Kgm = , 176.8 N/m/sC = , 7.92 MN/mK = . Cutting force Coefficients: 2068MPazK = , 

2585MPayK =  New tool : 1.2MN/myC =  Worn tool with 0.080 mm flank wear 4.9 MN/myC =  

The process damping coefficient during cutting stainless steel (SS304) is measured with 

dynamic cutting tests while tool wear length was measured under instrumented 

microscope and the results are shown in Figure  3-10. There appears to be a linear 

relationship between the process damping parameter ( yC ) and square of wear land 

( 2
wL ). Such a relationship is in agreement with the theory suggested by Wallace and 

Andrew  [48], Wu  [49] and Chio and Liang  [10]. 
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Figure  3-10: The relationship between the process damping coefficient and square of wear length 

3.5 Chatter Stability Diagrams 

Two chatter stability diagrams generated with only regenerative term and with added 

velocity term are shown in Figure  3-11. The stability of the characteristic equation is 

investigated by Nyquist stability criterion ( [28], [26], [31]). 
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Figure  3-11: Stability lobes with and without process damping terms. Measured cutting forces during 

stable (n=500 rev/min, a=1 mm) and unstable (n=1500 rev/min, a=1mm) cutting tests. Material: 

AISI1045 with a diameter of 35 mm. 450.7Hznω =  6
6.48 10 N/m= ×K , 145N/(m/s)c = , See Figure 

 3-8 for material properties. 
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The classical chatter stability law with regenerative chip thickness, [ ( ) ( )]y t y t τ− − , is 

not velocity dependent at the low speeds where it gives a constant critical depth of cut of 

0.4mm. 

When the velocity, i.e. process damping term ( /y cC y V− � ,), is included, the stability 

starts increasing at speeds under 2000 (rev/min). A number of similar identification and 

chatter stability tests have been conducted on different materials. The process becomes 

infinitely stable with process damping term as the speed approaches to zero.  

3.6 Conclusion 

Accurate prediction of chatter stability at low speeds is dependent on the identification of 

dynamic cutting force coefficients. The dynamic cutting force coefficients are sensitive to 

the work material properties, cutting edge preparation, tool wear and cutting speed, 

contact mechanics between the wavy surface finish and flank face, as well as the time-

varying shearing process.  

This chapter presented a new dynamic cutting force model whose coefficients are 

identified from controlled oscillation tests with the aid of a fast tool servo. When the 

oscillating frequency and spindle speed are synchronized to achieve in-phase inner and 

outer modulations, the regenerative effect is eliminated and the process damping 

coefficients can be identified. The phase between inner and outer waves can be 

introduced with the proposed set up, and the influence of shear plane length and effective 

rake angle can also be investigated. The proposed method is experimentally illustrated in 

predicting the influence of wave length and tool wear on the chatter stability of metal 

cutting operations at low speeds. The proposed method will be extended to 3D turning 

operations and milling operations in subsequent chapters.  
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Chapter 4:  Stability of General Turning with Process 

Damping  

4.1 Introduction 

In this chapter a new stability prediction method for three-dimensional turning processes 

is introduced. It starts with an introduction of a cutting force model for three dimensional 

cutting. This cutting force model is used in a time domain simulation that compares the 

behaviours of stable and unstable systems. Two Analytical stability perdition methods are 

presented. First model approximates the 3D cutting process as cutting with a straight 

cutting edge. Second model starts with calculation of differentials of cutting forces with 

respect to the displacements in feed and depth of cut directions and it continues with 

development of a process damping matrix. At the end of the chapter, stability predictions 

are compared against experiments with different feed rates, tool nose radii and spindle 

speeds. 

4.2 Cutting Force Nonlinearity  

Figure  4-1 presents the cutting force measurements in the directions of depth of cut ( x ), 

feed ( y ) and cutting speed ( z ) as compared to the predictions of a model that assumes 

such forces to be proportional to the chip area ( . , . ,x x y yF K A F K A= = … ). The 

measurements are results of cutting tests at cutting speed of 270m/mincV =  with tools 

with different nose radii ( 0.4 2.4mmrε = � ) at various feeds ( 0.025 0.200mm/revc = … ) 
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and depth of cuts ( 0.5 2mma = … ). Sandvik CNMA1204 KR 3205 series coated inserts 

on DLCNL holder with 6− °  rake, 6− °  inclination, and 95rκ = °  approach angle are used 

for this test. The workpiece is AISI 1045 steel with Brinell hardness of 210. 

The prediction of forces in x  and y  directions have considerable errors as seen in 

Figure  4-1. This demonstrates the need for an improved cutting force prediction method 

which considers parameters other than chip area. 
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Figure  4-1: Comparison of force measurements and predictions assuming forces proportional to the 

uncut chip area. See section  4.2 for tool and material properties. 

4.2.1 Cutting force prediction based on chip flow direction 

Figure  4-2 shows a three-dimensional cutting operation with a tool with a round nose. 

The friction forces on the rake face are assumed to be in the same direction as chip flow. 

A better force prediction is expected if the cutting force model includes the effect of chip 

flow direction.  
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Figure  4-2: Three-dimensional cutting with a tool with a round nose 

Notable works in chip-flow direction prediction were conducted by Colwell  [12], Usui et. 

Al,  [47], Hu, Matthew and Oxley  [19] and a comprehensive review was also presented by 

Jawahir  [22]. Colwell  [12] proposed that the chip flow is normal to the chord which 

connects two ends of the cutting edge engaged with the cut, and makes an angle θ  with 

the feed direction as shown in Figure  4-3. 
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Figure  4-3: Chip flow direction as suggested by Colwell  [12] 

Normal force ( nF ) and side force ( rF ) act parallel and normal to the chip flow 

respectively as shown in Figure  4-4. The tangential force ( tF ) acts in the direction of 

cutting speed which is perpendicular to the plane defined by the side and normal forces. 

Independent of the shape of the chip area, nF , rF  and tF  are assumed to be proportional 

to the chip area ( A ) and the length of approximate chord ( L ) plus a residue. Therefore, 

the forces can be described as: 

 { } [ ]{ }0 0 0 1
T T

n r tF F F L A= cK  ( 4-1) 

The cutting force coefficient matrix [ ]cK  is defined as, 

 
[ ]

0

0

0

n nL nA

r rL rA

t tL tA

K K K

K K K

K K K

 
 =  
  

cK  ( 4-2)
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where elements are independent of chip shape and are identified experimentally. 

However, these coefficients are dependent on cutting speed for some materials (such as 

AISI1045 steel). 

θ

Fn

Fx

Fy

c

a
Fr

Approximate Edge

(Colwell's Theorem)

θ

 

Figure  4-4: Normal force (
n

F ) and side force (
r

F ) with respect to approximate edge 

The cutting forces in the direction of depth of cut ( x ), feed ( y ) and velocity ( z ) are 

evaluated from the chord angle (θ ) using the rotation matrix [ ]nmC  defined below: 

 

 

{ } [ ] { } [ ] [ ]{ }c 1
m n r z

F F F L A= =
T TT T

nm nm
F C C K  

[ ]
cos sin 0

sin cos 0

0 0 1

θ θ

θ θ

 
 = − 
  

mnC  
( 4-3) 

where { } { }
T

m x y zF F F=F  are the cutting force components expressed in 

measurement coordinate system. For the cutting tests described in Figure  4-1, the cutting 

coefficients are obtained from the least squares method: 

[ ]0 0 03, -24, -1 Nn r tK K K= = = , [ ]83,  26, 44 N/mm  nL rL zLK K K= = =  and 
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[ ]1544,  -124, 2881 MPanA rA tAK K K= = = . The predictions of the fitted model are 

close to the experiment measurements as shown in Figure  4-5. 
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Figure  4-5: Prediction considering chip flow direction as suggested by Colwell  [12], see Figure  4-1 for 

tool and material properties. 

4.2.2 Cutting force prediction based on variable approach angle  

An alternative force prediction method was employed by Ozlu and Budak  [33] in 

development of their chatter stability prediction algorithm. In that method, the emphasis 

is given to the approach angle of the cutting edge along the nose radius area, the chip area 

is divided into infinitesimal sections parallel to the feed direction. The cutting force in 

each section is assumed to be proportional to the area of that section, and its direction is 

determined by the approach angle of the cutting edge at that section as seen in Figure  4-6. 

The total cutting force is obtained through the summation of cutting forces in these 

sections. The original method presented in Ozlu and Budak’s paper requires a numerical 

integration over the cutting edge curve; however, analytical integration of the forces is 

also possible when the tool nose is a simple circular curve.  
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Figure  4-6: Variable approach angle method 
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Figure  4-7: Comparison of force prediction method based on Colwell's chip flow direction and 

varaible approach angle method 

The force predictions of variable approach method are compared to the force predictions 

of Colwell's chip flow direction in Figure  4-7. These force predictions have similar 



Chapter 4: Stability of General Turning with Process Damping 

36 

relative error levels. For the rest of the thesis, the force model based on Colwell's chip 

flow direction is adopted.  

4.3 Time Domain Simulation of Turning Process 

It is possible to simulate the machining process with a flexible tool/workpiece by using 

numerical solution of delay differential equations of machining. Time domain simulation 

method is schematically presented in Figure  4-8. The differentials of the state vector are 

calculated based on the structural accelerations due to cutting forces. Cutting forces are 

dependent on the instantaneous geometry of the chip cross section. If the force prediction 

method based on chip flow direction as presented in Section  4.2.1 is used, it will be 

necessary to calculate chip area A , approximate edge length L  and its angle θ  to 

calculate cutting forces.  

Chip area parameters ( A , L  and θ ) are calculated analytically for arbitrary state vector 

in time domain method.  

Chip Geometry
Cutting Forces

State Vector

Delay

 State Vector

Dynamics of the 

Structure
Derivative

of the State 

Vector

Runge Kutta

Integration

Initial

Conditions

memory

 

Figure  4-8: Schematic of time domain Simulation 

Chip geometry changes due to the movements of the tool in present and previous cuts. 

( ,x y ) and ( ,x yτ τ ) are the displacements in the directions of depth of cut and feed 

during the present and previous cut, respectively.  
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Figure  4-9: Chip area considering dynamic movements of tool in present and previous cuts 

The center of the tool nose circle, { }1 1 1, ,0x yC C C=
T

, is selected in a way that without 

dynamic vibrations, 1 1, 0x yC r Cε= = , and the center of the tool nose in the previous cut 

is at { }2 2 2, ,0x yC C C=
T

, 2 2,x yC r C cε= =  while with dynamic vibrations, the center 

of the cutting edge will change as (see Figure  4-9): 

 1 1

2 2

,

,

x y

x y

C x r C y

C x r C y

ε

τ ε τ

= + =

= + =
 ( 4-4) 

The point { }, ,0x yE E E=
T

 is the intersection of the round nose curves in the present 

and previous cuts. This point is obtained by letting 1 2C E C E rε= =  and defining β  as 

1 2C EC� ; its coordinates are obtained as: 
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 1 1

2 1

1 2

sin

cos

( arccos )
2

x x

x y

E C r

E C r

C C

r

ε

ε

ε

β

β

β

= −

= +

 
=  

 

 
( 4-5) 

The chip geometry is different if the straight part of the tool is engaged in cut (referred as 

case 1 below), or the cutting is only on the round nose region (case 2). Analytical 

relationships for calculating cutting forces are presented separately for each case.  

Case 1: ( )1 cos ra rε κ> −  

If the depth of cut is larger than the round nose region: ( ( )1 cos ra rε κ> − , Points 

{ }0x yF F F=
T

 and { }0x yD D D=
T

 are defined as the points of tangency of 

straight cutting edge on the nose circle in the present and previous cut: 

 1 1

2 2

cos , sin

cos , sin

x x r y y r

x x r y y r

F C r F C r

D C r D C r

ε ε

ε ε

κ κ

κ κ

= − = −

= − = −
 ( 4-6) 

and 

 
,

tan

,
tan

x
x y y

r

x
x y y

r

a F
A a A F

a D
B a B D

κ

κ

−
= = −

−
= = −

 ( 4-7) 

Point G is defined as the intersection of the straight lines 2C D  and 1C E . The 

coordinates of G are calculated using Cramer's rule. 

The angles 1θ  and 2θ  are used for the calculation of the area between the arcs �EF and C1 

and �ED and C2 respectively, they are calculated as:  
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1 1 2arcsin
2

EF
EC F

rε
θ

 
= =  

 
�  2 2 2arcsin

2

ED
EC D

rε
θ

 
= =  

 
�  ( 4-8) 

1S  is the area between arcs �ED , �EF and line FD  and it is calculated using the 

following relationships: 

 

2

2 3 2
2

r
S S ε θ+ =  

( )

2

2 1 4 1

2

1 1 2 3 4

2

2

r
S S S

r
S S S

ε

ε

θ

θ θ

+ + =

⇒ = − + −

 

( )

( )

3

4 1 1

ˆ
.

2

ˆ
.

2

= ×

= × + ×

���� ����

����� ����� ���� �����

k
S EG EC

k
S C G C F DF DG

 

( 4-9)

Therefore 1S  becomes: 

 
( ) ( )

2

1 1 2 1 1

ˆ
.

2 2

r k
S EG EC C G C F DF DGε θ θ= − + × − × − ×

���� ���� ����� ����� ���� �����
 ( 4-10) 

The area of tetragon ABFD is calculated as: 

 
( )

ˆ
.

2
ABFD

k
S DF DB AB AF= × + ×

���� ���� ���� ����
 ( 4-11) 

and 

 1ABFDArea S S= +  ( 4-12) 

The Approximate chord length is L AE= , and the Colwell's angle is obtained: 

 
arctan

2

x x
Colwell

y y

A E

E A

π
θ θ θ

 −  
= = −   −   

 ( 4-13) 
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Case 2: ( )1 cos ra rε κ≤ −  

When the depth of cut is larger than the round nose region: ( ( )1 cos ra rε κ≤ − ), the chip 

area is limited to the arcs�ED , �EF and line FD , as seen in Figure  4-10.  

 

 E

 C1
 C2

F
 D D D

 
G

S3

S1
S2

S4

y

x

 

Figure  4-10: Chip area with dynamic movements, only circular part of the cutting edge is engaged 

The points F  and D  are defined by the depth of cut, rather than the point of tangency of 

straight section of cutting edge: 

 
( )

( )

22
1 1

22
2 2

,

,

x y y x

x y y x

F a F C r C a

D a D C r C a

ε

ε

= = − − −

= = − − −

 ( 4-14) 

The rest of the relationships for finding 1S  are similar to the previous section. Again 

Point G  is defined as the intersection of 2C D  and 1C E .  

 2 2 2arcsin
2

ED
EC D

rε
θ

 
= =  

 
�  ( 4-15) 
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 1 1 2arcsin
2

EF
EC F

rε
θ

 
= =  

 
�  ( 4-16) 

 

 

 

1Area S=  

( ) ( )
2

1 1 2 1 1

ˆ
.

2 2

r k
S EG EC C G C F DF DGε θ θ= − + × − × − ×

���� ���� ����� ����� ���� �����
 

( 4-17) 

Approximating chord length as L FE= and the Colwell's angle becomes: 

 
arctan x x

Colwell
y y

F E

E F
θ θ

 −
= =  

 − 
 ( 4-18) 

4.3.1 State vector 

The structure is assumed to have coupled dynamics in all three directions, therefore, the 

displacements of x  and y  are the result of the response of the coupled modes to the 

cutting forces in all directions, as in Laplace domain: 

 
2 22

2 22

2 2 2
1 11

ζ ζ ζ

ω ωω ωωω

= + +
     

+ + + +     + +        

yx z

xx xy zx
xx zxxy

nxx nzxnxx nzxnxynxy

FF F
x

s s ss ssK KK
( 4-19)

A similar relationship holds for y . To model the dynamics of the system properly, three 

independent dynamic variables ( 1x , 2x  and 3x ) are introduced: 
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nxynxy
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nzxnzx

x x x x

F
x

s s
K

F
x

ss
K

F
x

s s
K

ζ

ωω

ζ

ωω

ζ

ωω
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=
 

+ +  
 

=
 
 + +
 
 

=
 

+ +  
 

 ( 4-20)

The state vector includes these three variables and their first time derivatives and similar 

components for the feed ( y ) direction; therefore, the state vector's size is12 1× : 

 { }1 1 2 2 3 3 1 1 2 2 3 3, , , , , , , , , , ,X x x x x x x y y y y y y=
T

� � � � � �  ( 4-21)

The state vector considers only one mode for each direct or coupled mode. While there 

would be dynamic displacements in the cutting speed direction ( z ), displacements in this 

direction do not affect the chip area and cutting forces and are not included in simulation. 

Additional natural modes are possible to model only with a larger state vector. 

4.3.2 Results of the time domain simulation 

A time domain simulation based on suggested model is performed. A non-zero initial 

history is selected for the delay differential equation. For a stable cutting condition, the 

nonzero initial condition reaches a stable steady state, while for an unstable system, it 

leads to vibrations with growing amplitude as shown in Figure  4-11. Time domain 

simulations are computationally costly compared to analytical stability predictions; 

therefore, two analytical stability prediction methods are developed and will be presented 

in following sections. 
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Figure  4-11: Results of time domain simulation ( 0.05, 600
k nk

Hzζ ω= = ); The modal stiffness 

values are given as 40xxk = , 100yyk = , 25
zz

k = , 70xy yxk k= = , 25zx xzk k= = , 

100 [N/µm]
yz zy

k k= = , and cutting coefficients: 0 39 nK = , 0 146rK = − , [ ]0 3 NtK = − ; 

75000nlK = , 90000rLK = , 73000 [N/m]tLK = , 1065nAK = , 647rAK = , 

2516 [MPa]tAK =  

4.4 Analytical Model I: Regenerative Chip Model 

The turning tool is assumed to cut along the equivalent chord and the cutting forces are 

assumed to have the following linear relationship with the equivalent chip thickness: 

 { } { }TT
n r z nA rA tA cF F F K K K Lh=  ( 4-22) 

where L  is the equivalent chip width or chord length, and ch is the equivalent chip 

thickness measured perpendicular to the chord (Figure  4-4) as suggested by Colwell  [12].  
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Figure  4-12: Parameters of chip area (a): ( )1 cos ra rε κ> −  (b) ( )1 cos ra rε κ≤ −  

The chord angle (θ ) and length ( L ) depend on the depth of cut (a ), feed (c ), nose 

radius ( εr ) and approach angle ( rκ ), shown in Figure  4-12 and they are calculated as 

such: 

 
( )

( )

( ) ( )

c
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κ κ
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κ
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             = − − = − − − − =                   

= − = −

 − −
+ + > −
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( ) 2 2n / ,w h L h w


















= + 

( 4-23)

where A  is the chip area and h  and w are the projections of the approximate chord in 

the depth of cut and feed directions respectively. The cutting forces are projected in three 

Cartesian directions where the structural dynamics of the machine are defined:  

 { } { }T[ ]
T T

x y z nm n r tF F F F F F= C  ( 4-24) 
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By projecting the vibrations perpendicular to the chord, the equivalent regenerative chip 

thickness can be approximated as: 

 [ ] [ ]{ }sin ( )cos ( )sin ( )cos ( )sinch c x t y t x t y tθ θ θ τ θ τ θ= − + − − + −  ( 4-25)

where ( )τ  is the spindle rotation period. The vibrations in the direction of cutting speed 

( )z  do not affect the chip thickness. The time independent, static chip load ( sinc θ ) is 

dropped from the equation since it does not affect the stability.  

The force-displacement relationship in the structure of the machine, tool and the 

workpiece is also assumed linear: 

 

( )

( )

( )

( )



xx xy xz x

yy yz y

zz z

m

x s F

y s F

z s sym F

s

φ φ φ

φ φ

φ

    
     

=    
    

   
FΦ

����
����

 
( 4-26)

Elements of ( )sΦ matrix are transfer functions in the Laplace domain, with ,pq jK , 

,pq jζ and ,pq jω as stiffness, damping ratio and natural frequency in mode j  where there 

are 
j

n modes in the structure: 

 ( )
( )2 2

1 , , , ,

1
, ( , , )

1 2 / /

jn

pq

j pq j pq j pq j pq j

s p q x y z
K s sζ ω ω=

= ∈
+ +

∑Φ  ( 4-27) 

From ( 4-25) the dynamics of the regenerative chip is reduced to: 
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The model in Eq. ( 4-28) gives an approximate single variable prediction of dynamic 

cutting forces and characteristic equation is obtained as:  

 ( ) ( )01 1 0s
e L s

τ−+ − Φ =  ( 4-29) 

The directional factors for oriented transfer function 0Φ  are derived as: 
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∑
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
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 ( 4-30)

For a known depth of cut, feed, nose radius, the effective transfer function 0Φ  is 

calculated and system's stability is investigated using Nyquist stability criterion for the 

characteristic equation. Unlike simple orthogonal cutting, it is not possible to calculate 

the threshold of instability directly because 0Φ varies as a function of the depth of cut.  
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4.5 Analytical Model II:  Regenerative Chip Area and Chord Model 

Cutting force changes due to displacements of the tool with respect to the workpiece in 

feed and depth of cut directions. In addition, the process will have additional damping 

when the cutting speed is low  [48]. The dynamic cutting force vector is proposed to be 

modeled as: 

 ( ) ( ) ( ) ( )[ ] [ ] [ ]m vt Q t Q t Q tτ τ= + − +F J J J �  ( 4-31)

where the regenerative delay τ  is equal to the spindle period, and the dynamic force 

( )m tF , displacement ( )Q t  and velocity ( )Q t�  vectors are:  

 

( ) { }

( ) { } ( ) { }

( )

( ) ( ) ( )

( ) ( ) ( ) ,    ( ) ( ) ( )

( ) ( ) ( )

τ τ τ τ

=

= − = − − −

 
=  
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�

T

m x y z

T T

T

t F t F t F t

Q t x t y t z t Q t x t y t z t

dx t dz t dz t
Q t

dt dt dt

F

 ( 4-32)

The gain matrices reflect the changes in the cutting forces due to the structural 

displacements and vibration velocities,  

 

[ ] ,  [ ]
τ τ τ

τ
 ∂ ∂ ∂ ∂ ∂ ∂ 

= =   ∂ ∂ ∂ ∂ ∂ ∂   

m m m m m m

x y z x y z

F F F F F F
J J , 

[ ]
∂ ∂ ∂ 

=  ∂ ∂ ∂ � � �
m m m

v
x y z

F F F
J  

( 4-33)

where J  and τJ  are the direct and delay process gain matrices respectively. vJ  is the 

velocity-dependent process damping gain matrix. The dynamics of the system is 

transformed into the Laplace domain as:  

 ( ){ } { } [ ]{ }

{ } [ ] [ ]( ){ }
3 33 1

( ) ( ) ( )

( ) ( )

s s
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s
v m

vs e s Q s e s s s
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τ τ
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− −

−
××

   = + + = + +
   

 = − + +
 

F J J J J J J Φ F

0 I J J J Φ F

 ( 4-34) 
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Since the process gain matrices ( J , τJ , vJ ) and delay τ( )  are dependent on cutting 

conditions such as depth of cut, speed and feed, the direct stability lobes of the turning 

system cannot be identified by the matrix eigenvalue method of Altintas and Budak  [3]. 

Instead, the critical stability limit is checked whether the system is stable or unstable at a 

given cutting condition. From Eq. ( 4-34) the characteristic equation is represented as: 

 ( )( )3 3det [ ] [ ( )] 0s
ve s s

τ
τ

−
×

 − + + =
 

I J J J Φ  ( 4-35) 

Presence of unstable poles of this characteristic equation is investigated using Nyquist 

stability criterion in the frequency domain ( s jω→ )  [28], [31]; Details of application of 

Nyqusit stability criterion are discussed in Appendix A. The stability of the turning 

system at specified cutting conditions is highly dependent on the modeling of process 

gain matrices which are derived in the following section.  

4.5.1  Modeling of dynamic cutting force gains in turning 

The process gain matrices ( J , τJ , vJ ) are modeled by evaluating the partial derivatives 

of the cutting force with respect to the variables as indicated in Eq.( 4-33). Considering 

the force model introduced in Eq.( 4-3):  

{ } ( ) { } ( ) [ ]{ }c 1m n r zF F F L Aθ θ= =      
T TT T

nm nmF C C K  

A , L  and θ  are not affected by displacements in cutting speed direction, therefore: 

 
m m

z zτ

∂ ∂
= =

∂ ∂

F F
0  ( 4-36)

Consequently, the third columns of J  and τJ  are zero. The first and second columns of 

these matrices are obtained by differentiation with respect to , ,x x yτ  and yτ  using a 

general variable u  ( , , ,u x y x yτ τ= ) 
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( 4-37)

The differentiation of transposed rotation matrix ( )θnmC  is obtained from ( 4-3) as: 
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 ( 4-38)

θ  and L  are functions of chip area width w  and height h  as described in ( 4-23): 
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( 4-39)
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Considering equations ( 4-33), it is necessary to find ,
w h

u u

∂ ∂

∂ ∂
 and 

A

u

∂

∂
 in order to obtain 

the first and second columns of J  and τJ . These differentials are calculated for the cases 

where , ,u x y xτ=  or yτ . 
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Figure  4-13: Displacement of the cutting edge in the depth of cut direction (a) ( )1 cos ra rε κ> − , 

(b) ( )1 cos ra rε κ≤ −  

Differentials with respect to vibrations in the depth of cut direction 

Let 0A , 0h , and 0w  be the vibration-free chip area, width and height respectively. If the 

tool vibrates in the x  direction (Figure  4-13), the change in the area of chip can be 

approximately expressed by:  

 
0 0 0.     cos

A
A A w x w L

x
θ

∂
≈ − → = − = −

∂
 ( 4-40) 

The differential of the length (
L

x

∂

∂
) is evaluated from the uncut chip area's height ( h ) and 

width (w ) as follows: 



Chapter 4: Stability of General Turning with Process Damping 

51 

 
0

0

1
                              

2 2

1 1
     

2 tan tan 2 tan tanr r

x h
h h

x

x x w
w w

xχ κ χ κ

∂
≈ − → = −

∂

∂
= − − → = − −

′ ′∂

 ( 4-41) 

where ( )arcsin / 2c rεχ =  is the intersection angle of the present and previous cut as 

shown in Figure  4-13 and the local approach angle rκ ′  is calculated depending on 

whether the depth of cut is less or greater than the nose radius: 
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r r
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a r
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 ( 4-42)

By substituting Eq. ( 4-41) into Eq. ( 4-40) , the derivative terms 
L

x

∂

∂
 and 

x

θ∂

∂
 are obtained 

as: 
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( 4-43) 
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Figure  4-14: Chip area with displacement in depth of cut direction in previous cut 
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Similarly, the derivatives with respect to the displacement during the previous revolution 

(
A

xτ

∂

∂
, 

L

xτ

∂

∂
, 

xτ

θ∂

∂
, see Figure  4-14) are evaluated as follows: 
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 ( 4-44)

By substituting 
h

xτ

∂

∂
 and 

w

xτ

∂

∂
 from Eq. ( 4-44) into Eq. ( 4-39), 

L

x

∂

∂
 and 

x
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∂
 are found: 
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 ( 4-45) 

Differentials with respect to vibrations in feed direction  

The vibrations in the direction of feed shifts the chip in ( y ) direction and affects the chip 

shape as follows: 
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Figure  4-15: Chip area with displacement in depth of cut direction in previous 

This leads to the identification of derivatives 
L

y

∂

∂
 and 

y

θ∂

∂
 from Eq. ( 4-39) as: 
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 ( 4-47)

If the normal displacements at the present and previous revolutions are equal at a cut 

( y yτ∆ = ∆ ), the chip area and other dependant variables ( A , L , or θ ) will not change 

( 0∆ =A , 0∆ =L , 0θ∆ =  see Figure  4-16 ),  

 
0     

A A A A
A y y

y y y y
τ

τ τ

∂ ∂ ∂ ∂
∆ = ∆ + ∆ = → = −

∂ ∂ ∂ ∂
 ( 4-48) 

Similarly 
L L

y yτ

∂ ∂
= −

∂ ∂
 and 

y yτ

θ θ∂ ∂
= −

∂ ∂
, the derivative of the chip area variables with 

respect to the vibrations in the feed direction during the previous spindle revolution will 

be identical to the equations given in ( 4-46) and ( 4-47) but with an opposite sign. 
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Figure  4-16: Equal displacements in feed direction for in present and previous cut 

The summary of results is given in Table  4-1. 

Table  4-1: Differentials of chord angle, length and area with respect to displacements in depth of cut 

and feed directions.   
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4.5.2  Process damping gains contributed by flank wear  

The process damping theory is employed to calculate vJ matrix. Wallace and Andrew 

 [48], Chiou and Liang  [10], Clancy and Shin  [11], and Wu  [49] presented dynamic 

cutting force models which consider the compression of the volume of the work material 

under the flank face of the cutting tool as discussed in the previous chapter.  
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Figure  4-17: Tool wear and process damping forces  

The normal ( dF ) and friction ( dzF ) forces caused by the contact are modeled as (Figure 

 4-17): 

 ,    d sp m dz c dF K V F Fµ= =  ( 4-49) 

where 
sp

K  is the experimentally identified contact force coefficient and 
c

µ is the 

coefficient of friction and assumed to be 0.3 for steel  [49]. As discussed in the previous 

chapter, Chiou and Liang  [10] approximated the compressed volume of the material 

( mV ) under the tool flank as: 

 
21

2
m c w

c

h
V L L

V
= −

�
 ( 4-50) 

where h�  is the vibration velocity in the direction normal to the plane defined by the 

cutting edge and cutting speed ( cV ), wL is the wear land, and cL  is the total length of 

cutting edge in cut. For a differential element of a curved cutting edge segment with 

length dL , the vibration velocity is: 

 cos sinn nh x yκ κ= +� � �  ( 4-51) 
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where nκ  is varying approach angle (see Figure  4-18).  
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Figure  4-18: Variable Approach Angle 

 

Substituting equations ( 4-50) and ( 4-51) into contact force (Eq. ( 4-49) ): 
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2 2

cos sin
2 2
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w sp w sp
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c c

dL L K dL L K
dF h x y

V V
 ( 4-52) 

and by projecting it in the x and y directions, leads to differential contact forces in three 

directions: 

 cos ,    sin ,    dx d n dy d n dz c ddF dF dF dF dF dFκ κ µ= = =  ( 4-53)

They are organized in the matrix form as: 
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( 4-54)

Assuming a constant flank wear ( wL ), the velocity-dependent process damping force 

acting on the structure is evaluated by integrating the differential forces along the cutting 

edge. By substituting 
( )1 cos

sinr

r

r

a r
L

ε
κ

κ

κ

− −
= , ndL r dε κ= ⋅  for the straight and curved 
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sections of the cutting edge, the process damping matrix ( vJ ) is obtained as a function of 

depth of cut: 
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( 1cos (1 / ) r a rεκ −′ = −  when ( )1 cos ra rε κ≤ −  ) 

( 4-55)

vJ  relates the vibration velocities in the ,x y  directions to the dynamic cutting forces. It 

must be noted that an effective process damping gain could be calculated in the direction 

normal to the approximate chord and considered in one dimensional analytical model 

(Model I, section  4.4) in addition to analytical Model II. 

4.6 Simulations and Experimental Results 

 Static Cutting Tests: The proposed cutting force model (Eq. ( 4-3) ) is experimentally 

validated by cylindrical turning of AISI 1045 steel bar as discussed earlier in  4.2. The 

cutting force coefficients are identified from chatter-free turning tests. The model is able 

to capture the influence of nose radius, depth of cut and feed with an acceptable accuracy 

as shown in Figure  4-5 where the tool geometry and evaluated cutting force coefficients 

are given.  
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4.6.1 Sensitivity analysis of stability models  

A general cylindrical turning process with flexibilities in all directions is simulated to 

compare the prediction sensitivities of different stability methods as shown in Figure 

 4-19. The structure is assumed to have equal damping ratio and natural frequencies in all 

directions ( 0.05, 600Hzk nkζ ω= = ); The modal stiffness values are given as 40xxk = , 

100yyk = , 25zzk =  and 70xy yxk k= = , 25zx xzk k= = , [ ]100 Nyz zyk k mµ= = . 

The cutting coefficients can be found in the caption of Figure  4-19. The system is 

considered to be more flexible in the direction of depth of cut like in single point boring 

operations. The stability analysis has been carried out using the proposed two models, 

and the effect of process damping is neglected.  
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Figure  4-19: Comparison of three stability prediction methods (a) stability chart for a tool 

0.8mmε =r , 60κ = °r  and 0.1mm/rev=c  (b) Effect of approach angle (c) Effect of nose 

radius; (d) Effect of feed. cutting coefficients: 0 39=nK , 0 146= −rK , [ ]0 3 N= −tK ; 

75000=nlK , 90000=rLK , 73000 [N/m]=tLK , 1065=nAK , 647=rAK , 

2516 [MPa]=tAK . 
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Model I: As presented in section  4.4, the approximate chord is used as the equivalent 

cutting edge and chip regeneration perpendicular to the chord is considered. Since the 

critical depth of cut and feed are not known a priori, they are recursively searched by 

evaluating the stability at each cutting condition using Nyquist stability criterion.   

Model II: The regeneration of chip area and chord length is considered as presented in 

Section  4.5. The dynamic cutting model is three dimensional, and threshold of instability 

is investigated using Nyquist stability criterion by recursively investigating the stability at 

each cutting condition. 

The predicted stability limits at different conditions are compared in Figure  4-19. In 

Figure  4-19a, the tool has a nose radius of 0.8ε =r mm and approach angle of 60κ = °r , 

and the feed rate is 0.1c = mm/rev. The spindle speed is kept constant at n=2000 rev/min 

while the approach angle varies in Figure  4-19b and the nose radius varies in Figure 

 4-19c. Models I and II give similar results since the equivalent chord handles the effect of 

approach angles and nose radius similarly when the feed rate is constant. Model I and II 

differ significantly when the feed rate varies as shown in Figure  4-19d. The validity of 

the approximations in evaluating regenerative gains is demonstrated with time domain 

simulations in Figure  4-19 which indicates the improved accuracy of Model II. The time 

domain model evaluates the chip area ( A ), chord angle (θ ) and length L  analytically by 

considering the exact geometry of the chip area. Larger feeds change the distribution of 

chip area and cause smaller overlaps in successive spindle periods; hence, they affect the 

gains in flexible directions. Ozlu and Budak also observed similar results by 

discretization the chip into small differential segments along the curved nose and straight 

section and applying the iterative eigenvalue solution derived from  [3]. Particularly, the 
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regeneration in the direction of depth of cut becomes very strong if the system is flexible 

in the same direction, which is the case in turning long, slender shafts.  

4.6.2 Chatter tests with varying nose radius and feed rates 

 A series of turning tests with various feeds and nose radii have been conducted on 

41.3mm in diameter and 235mm long AISI1045 steel bars. The bars are cantilevered at 

the chuck with an experimentally identified, single-degree of freedom dynamics at the 

free end where the cutting tests are conducted. The identified modal parameters in the 

radial and tangential directions are: 402 [Hz]
n

ω = , 0.026ζ =  and 5.301 [N/µm]
yy

k = . 

The shafts are rigid in the axial direction, and the tool is fed in the radial direction. The 

cutting force coefficients for this particular tool and work material are identified 

experimentally as: 0 3nK = , 0 24rK = − , 0 1[N]tK = − ; 83nLK = , 26rLK = , 

44 [N/mm]tLK = ; 1544nAK = , 124rAK = − , 22881[N/mm ]tAK = .  

The effect of nose radius is validated by keeping the spindle speed and feed rate constant 

at 2000rev/min and 0.1mm/rev respectively. The chatter test results are given in Figure 

 4-20. As elaborated in the sensitivity analysis (Figure  4-19), the predicted stability limits 

obtained from models I and II agree well with the experiments. It should be noted that the 

larger nose radius directs the cutting forces towards the rigid axial direction and provides 

a higher stability limit in this experimental set up. However, if the feed was along the 

shaft axis, a larger nose radius would direct the cutting forces towards the more flexible 

radial direction and decrease the stability limit. The models I and II are able to consider 

the effect of nose radius which shifts the orientation of the major force.  



Chapter 4: Stability of General Turning with Process Damping 

62 

0.00

0.25

0.50

0.75

1.00

0 0.4 0.8 1.2 1.6 2 2.4
Nose radius (mm)

D
e
p
th

 o
f 

C
u
t 

(m
m

)
D

e
p
th

 o
f 

C
u
t 

(m
m

)

0.00

0.20

0.40

0.60

0 0.05 0.10 0.15 0.20 0.25 0.30 0.35
feed (mm/rev)

Model-I

Model-II

Model-I

Model-II

(a)

(b)

stable chatter

 

Figure  4-20: (a) Effect of nose radius and (b) effect of feed on stability limit.  Tool: Sandvik 

CNMA1204 KR 3205 series coated inserts on DLCNL holder with 6− °   rake, 6− °  inclination, and 

95
r

κ = °  approach angles, respectively. 

The effect of feed rate is validated using the same experimental set up where the nose 

radius and spindle speed are kept constant at 0.8mm and 2000rev/min respectively. 

Although model II predicts the stability limit slightly more accurately than Model I in this 

particular set up, the discrepancy may be bigger depending on the direction of 

flexibilities.  
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4.6.3 Chatter tests with varying spindle speed 

The effect of process damping is validated by turning the same shaft material with the 

same tool but with a constant nose radius of 0.8ε =r mm and approach angle of 

95κ = �
r . However, the shaft is kept short, i.e. rigid, and the feed was along the rigid 

shaft axis. The flexibility originated from the tool holder fixture whose measured modal 

parameters are given in Table  4-2. The turret has dominant structural modes at 242 and 

340Hz with coupling terms which affect the regeneration in both feed (y) and radial depth 

of cut (x) directions.  

The contact force coefficient ( spK ) needed in the process damping matrix is obtained by 

forcing the tool flank, which had 130µmwL =  wear, to penetrate into the work material 

at a 5µm  interval. The contact force is measured by the tool dynamometer and the 

penetrations into the work material are controlled by CNC. The depth of cut is 2.0 mm, 

and the contact forces increase linearly with a slope of / 4.2 N µm=xF x  and 

/ 7.7 N µm=yF y , which led to a contact force coefficients of 13 34.7 10 N/mspK = × in 

x and 13 33.2 10 N/mspK = × in y directions. The tools have varying flank wear between 

0.075mm (fresh) and 0.175mm (worn) during tests. An average contact force coefficient 

of 13 34.0 10 N/mspK = ×  is used in calculating the stability limits shown in Figure  4-21. 

The onset of the chatter is detected by monitoring the sound pressure measured with a 

microphone and an accelerometer attached underneath the tool holder. When the 

frequency spectrum has significant strength around modal frequencies but not at the 

spindle’s rotational frequency accompanied by high pitch noise and poor surface finish, 
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the presence of chatter is assumed. Sample acceleration measurements and their spectra 

are shown for a stable (a=2.5mm, n=200rev/min) and unstable (a=2.5mm, n=400rev/min) 

cutting conditions. The chatter free cutting conditions at higher speeds above 

1500rev/min correspond to stability pockets. The experiments indicate an unexpected 

decrease in the stability at lower speeds, where the cutting process exhibited poor shear 

and surface finish even without chatter. The experimental evaluation of cutting force 

coefficients shown in Table  4-3 reveals that the magnitude starts to increase at cutting 

speeds under 100m/min, which causes chatter during experiments in smaller depth of 

cuts. However, the process damping also starts becoming most effective at this zone, 

leading to increased stability. Since the proposed model evaluates the stability at each 

cutting condition, speed-dependent cutting force coefficient, interpolated from data listed 

in Table  4-3, is used to calculate depth of cut and feed dependent process gains.   

 

Table  4-2: Modal Parameters of chatter test setup 

Directional Stiffness (N/µµµµm) Modes 

XX YY ZZ XY ZX YZ 

242
n

ω =  [Hz] 

ζ = 0.03 
125 91  -109   

340
n

ω =  [Hz] 

ζ = 0.04 
 59 185 735  133 
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Figure  4-21: Comparison of predicted and experimentally observed chatter stability results for 

turning with sample vibration measurements at stable ( 2.5 mm, 200 rev/mina n= = ) and 

unstable ( 2.5mm, 400rev/mina n= = ) cutting conditions. Feed rate 0.1mm/revc =   and nose 

radius 0.8mmrε = . See Table  4-2 and Table  4-3 for the modal parameters and cutting coefficients 

respectively. 

The stability of the process is predicted by the proposed Model I and II. The effect of 

nose radius and the depth of cut are considered using equivalent chord length, but the 

dynamic changes in the chip area and chord length are neglected in Model I (section  4.4). 

The proposed Model II (section  4.5) considers cutting conditions (depth of cut, feed and 

speed), tool geometry, and the regenerative displacements and their effects on the 



Chapter 4: Stability of General Turning with Process Damping 

66 

dynamic chip area and edge contact length. The penetration of tool flank into the finish 

surface at low speeds, which adds damping to the process, is considered only in Model II 

using the contact force model. The stability limit at high speeds is predicted similarly by 

both models, and the influence of process damping at low speeds is predicted by 

Model II.  

Table  4-3: Cutting coefficients for AISI 1045 steel at different speeds; same tool is used as given in 

Figure 6. 

n  
(rpm) 

c
V  

(m/min) 

nL
K  

(N/mm) 

nA
K  

(MPa) 

rL
K  

(N/mm) 

rA
K  

(MPa) 

tL
K  

(N/mm) 

tA
K  

(MPa) 

100 12 50 1816 10 -25 43 3512 

200 25 28 2458 0 -5 32 3776 

400 49 0 4359 -2 188 10 4811 

600 74 31 3364 -5 172 25 4152 

800 99 57 2509 10 53 37 3623 

1000 123 77 1937 23 -52 46 3235 

1250 154 79 1773 28 -81 46 3102 

1500 185 81 1639 26 -85 39 3294 

1750 216 81 1580 27 -115 44 2937 

2000 247 83 1544 26 -124 44 2881 

2250 278 81 1619 35 -219 41 2929 

2500 308 80 1698 44 -293 37 3042 

 

4.7 Conclusion 

This chapter proposes one and three-dimensional dynamic cutting models for the 

prediction of chatter stability in single point cutting operations. One-dimensional Model I 

is based on the equivalent chord and it considers the regeneration of the chip which is 

assumed to take place perpendicular to the chord drawn between the two ends of chip 

cross section. Model II, however, considers the changes in the chip area and equivalent 

chip contact length due to vibrations in depth of cut and feed directions. The contact 

between the tool flank and finish surface is included by predicting the amount of material 
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volume indented by the flank of the tool. The experimental results indicate that the 

accuracy of chatter stability prediction of both models is acceptable except the influence 

of feed rate is captured by Model II. The process damping model, which considers tool 

flank contact with the finish surface, predicts the increased stable depth of cut at low 

speeds.
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Chapter 5:  Stability of Milling at Process Damping 

Speeds 

5.1 Introduction 

As discussed in earlier chapters, while aluminum alloys are machined at high speeds, 

thermal-resistant and steel alloys are milled mostly at low speeds in aerospace and die 

and mold industries. High speed milling machines use high power electro-spindles with 

small shaft diameters. Machine tools dedicated to machining thermal-resistant and steel 

alloys use spindles with high torque and stiffness. One of the fundamental obstacles in 

improving the material removal rates in all milling operations is chatter, the instability 

caused by the relative vibrations between the tool and the workpiece. The rotating 

spindle, tool-holder and cutter are the most flexible parts of the machine; hence they are 

the main causes of chatter in milling. Vibrations create wavy chips, which in turn 

generates oscillating cutting forces at the same frequency of chatter vibrations. When the 

spindle speed (i.e. phase) and the depth of cut (i.e. gain) violate the chatter stability 

limits, exponentially growing unstable vibrations generate poor surface finish and may 

damage both the machine tool spindle and the workpiece. When the tooth passing 

frequency matches with the integer fraction of spindle speed, the phase between the outer 

and inner waves generated on the chips become minimum, which occurs at the first few 

stability pockets as discovered by Tobias  [46]. Smith and Tlusty used the high speed 

spindle technology to operate the machines in these stability pockets, and they 

demonstrated significant gains in metal removal rates  [40]. High speed machining led to 
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improved chatter stability laws which considered periodic, time-varying dynamics of 

milling. As discussed in Chapter 2, several stability prediction methods were proposed by 

Sridhar et. al.  [39], Minis and Yanushevsky [27], Altintas and Budak  [3] and Insperger et 

al.  [21]. Altintas and Weck summarized the state of dynamic cutting research, and 

indicated that speed-dependent process damping and structural dynamics of the machines 

were still the main obstacles in predicting chatter stability limits in metal cutting  [5].  

 

This chapter presents a new dynamic model of milling with process damping and a cutter 

having asymmetric structural dynamics. The previous studies assumed that the structural 

dynamics of the system remain stationary at fixed directions. Li et al.  [25] showed that 

when the structural dynamic system rotates, it has considerable effects in single-point 

boring systems which have time invariant directional factors. Schmitz et al. showed that 

the frequency response function of the spindle-tool holder assembly changes with speed 

 [37], which may be due to the gyroscopic effects and bearing preload adjustments as the 

speed increases  [37]. In addition, if a milling cutter has two teeth or uneven spacing 

between the teeth, the effective frequency response function of the tool varies as the 

cutter rotates due to asymmetric dynamics. Furthermore, the directional factors also vary 

with time due to milling process kinematics. A rotating coordinate system is attached to 

the cutter and a fixed coordinate system is used for the workpiece dynamics in this 

chapter. The proposed model is therefore applicable to all milling configurations with 

rotating and/or fixed structural dynamics. The process damping force has also been taken 

account of in the proposed dynamic milling model. The process damping coefficient is 

identified either experimentally  [41]  [20], or from contact mechanics models proposed in 
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the literature  [49] considering the tool wear and material penetration coefficient 

( spK )  [48]. Based on these work, in this chapter, the process damping force is considered 

to be proportional to the angle between the tool's wear land and the freshly cut workpiece 

during the vibration; this angle is proportional to the vibration speed divided by the 

cutting speed. The stability of the speed-dependent milling system is investigated using 

Nyquist stability criterion after averaging time-varying directional factors. The validity of 

the stability model is illustrated with numerical simulations and low/high speed milling 

experiments.  

Henceforth, the chapter is organized as follows: The mathematical model of dynamic 

milling process is presented in Section  5.2. The structural dynamics of the tool in rotating 

and the workpiece in fixed coordinate systems are presented in section  5.3. The 

characteristic equation for stability analysis of dynamic milling system is derived in 

section  5.4, followed by simulation and experimental results in section  5.5. The chapter is 

concluded in section  5.6 and derivations of directional factor matrices are given in the 

Appendix C.  

 

5.2 Dynamic Cutting Force Model 

A rotating end mill and a stationary workpiece couple have dynamic flexibilities in two 

orthogonal directions as shown in Figure  5-1. The dynamics of the end mill is modeled in 

rotating coordinate system in orthogonal (v ) and (u ) directions whereas the workpiece is 

modeled in a fixed Cartesian coordinate system with feed ( x ) and normal ( y ) 

directions. (v ) and (u ) are selected to be the principal directions of the tool's most 
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flexible vibration mode. This choice eliminates dynamic cross coupling between these 

two directions. 
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Figure  5-1: Milling of a flexible workpiece with a rotating and vibrating cutter. 
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When the vibrating part is fed linearly towards rotating and vibrating cutter, the dynamic 

chip thickness experienced by the tooth ( j ) is expressed as:  

 ( ) ( ) ( ) ( ) ( ) ( ){ }1 , 1sinj j j j wj w jh t c t v t v t v t v tφ τ τ− −   = − − − − − −     ( 5-1)

where c  is the feed per tooth, jφ  is the angular immersion of the tooth j ; and τ  is the 

tooth passing delay between teeth j  and 1j − . ( )jv t  and ( ),w jv t  are the vibrations of 

the tool and workpiece reflected on tooth j  in the radial direction respectively. 

The displacements of the tooth j  is related to two displacements in orthogonal ( ,v u ) 

system as, 

 
( )

( )

( )

( )

( ) ( )
( ) ( )

cos sin
,      0,1, , 1

sin cos

p c p cj

j j
j p c p c

j jv t v t
j N

u t u t j j

φ φ φ φ

φ φ φ φ

 + − +        = = = −   
 + +       

R R �  ( 5-2)

where 2 /p Nφ π=  is the pitch angle of the cutter with N  equally spaced teeth and 
c

φ  is 

the angle between the principal direction “v ” and the tooth zero ( 0j = ). The 

instantaneous angle of the rotating coordinate system is given by φ = Ωt , where 

Ω  (rad/s) is the angular spindle speed as seen in Figure  5-1. The angular position of flute 

j becomes: 

 j p cjφ φ φ φ= − −  ( 5-3)

The fixed workpiece vibrations in ( ),x y  directions are carried to the rotating coordinate 

system ( ,w wv u ) and to the tooth j  as: 
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 ( 5-4) 

The rigid body term ( ( )sin jc tφ ) is dropped from the dynamic chip load (Eq. ( 5-1)) for 

stability analysis since it works as a forced excitation which does not affect the stability 

of the linearized system. The resulting dynamic chip thickness generated by the 

vibrations is expressed as: 
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−

 −         = −  −       −      
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R R

R W R W

 ( 5-5)

The tangential ( ,t jF ) and radial ( ,r jF ) cutting forces have two parts: regenerative force 

proportional to the dynamic chip thickness ( ( )jh t ) and process damping effect which is 

proportional to the ratio of velocities of vibration ( /j wV ) and cutting speed ( cV ) or the 

slope change on the waves left on the cut surface: 

 ( ) ( )
, /

,

r j j wr r
j j

t tt j c

F VK C
g a h t

K CF V
φ

       
= −       

       
 ( 5-6)

The depth of cut is a  and the pairs, rK , tK  and rC , tC  are the static cutting force and 

the process damping coefficients respectively. In Equation ( 5-6), the helix angle of the 

tool is assumed zero to simplify the formulation. The unit step function ( )jg φ  is used to 

model whether the tooth is in or out of cut:  
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1 mod( , )

0 otherwise

st j ex
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φ φ π φ
φ
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= 


 ( 5-7)

The velocity of the workpiece vibration is transformed to the cutting edge j  from 

equations ( 5-2) and ( 5-4): 
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 ( 5-8)

The vector ˆ ˆP vv uu= +
�

 is the position of the centre of the tool. The velocity of this point 

is: 
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Therefore, the velocity of tip j in ,j jv u  coordinate system becomes:  
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The relative velocity of the tool penetrating into the workpiece ( /j wV ) is found from the 

vector summation of the velocities of the workpiece and the cutting edge in the fixed 

coordinate system: 
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 ( 5-11)

By substituting dynamic chip thickness (Eq.( 5-1) and tool penetration velocity 

(Eq.( 5-12)) into cutting force on tooth j  (Eq. ( 5-6)) , the following can be obtained: 
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( 5-12)

The corner radius of a tool generates a curved chip cross-section and affects the direction 

of cutting forces; in such case, the dynamic force model would be expressed using 

equivalent edge model of Colwell as shown in Chapter 4. The total dynamic cutting 

forces are evaluated by projecting all forces from individual flutes to the reference 

coordinate system and adding them together: 
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Taking ( 5-12) into consideration, Eq. ( 5-13) becomes: 
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( 5-14)

Therefore, the following equation would result: 
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The components of the dynamic cutting force acting on the fixed workpiece are obtained 

by projecting the forces from the rotating reference system to the feed ( x ) and normal 

( y ) directions:  
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 ( 5-16) 

The forces in rotational and fixed coordinates are expressed in a matrix form as linear 

functions of displacement vectors: 
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Calculation of the relationship between vibrations and dynamic forces are summarized in 

block diagram in Figure  5-2. Note that the sub-matrices ( ( ) ( )1
t t

−W C  and 

( ) ( )1
t t

−W F ), which relate the forces on the workpiece to the workpiece vibrations, are 

periodic at the tooth passing period.  

The remaining sub-matrices are periodic at the spindle; hence, the matrices ( )tP , ( )tQ  

and ( )J t  are periodic at spindle period ( N τ ) in time domain or 2π  intervals in angular 

domain.  
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Figure  5-2: Calculation of relationship between forces and vibrations 

5.3 Structural Dynamic Model 

The vibrations of the workpiece are expressed in the stationary Cartesian coordinate 

system as:  
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where the transfer functions are expressed in the form:  
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ζ ω ω=
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∑      { }, ,p q x y∈  ( 5-19)

The natural frequency ( nlω ), damping ratio ( lζ ) and stiffness ( lk ) of mode l in pq  

direction are identified experimentally from modal tests on the workpiece or non-rotating 

parts of the machine such as its column. 

The dynamic forces in the rotating coordinate system must include inertial forces due to 

the rotation of the non-inertial rotating coordinate system as:  
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where ( ,v um m ), ( , )v uk k  and ( , )v uc c  are equivalent lumped mass, stiffness and 

damping values in the principal dynamic directions ( ,v u ), respectively. The transfer 

function in the rotating coordinate system is obtained by using Laplace transformation 

and matrix inversion of Eq. ( 5-20):  
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( 5-21) 

The vibrations in the rotating and fixed coordinate systems are combined as: 
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5.4 Stability of the System  

The dynamic milling system expressed in Eq. ( 5-17) is simulated numerically in time 

domain as:  
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The vibration vector is calculated from Eq. ( 5-22) considering the transfer matrices and 

dynamic cutting forces in state space. The numerical solution considers the time-varying 

directional matrices ( ( )tP , ( )tQ , ( )tJ ). However, the numerical solution is not 

computationally efficient, thus analytical stability analysis is preferred either using the 

semi-discrete time domain solution method of Insperger and Stepan  [21], or the Nyquist 

stability criterion by averaging directional matrices similar to the stability law for the 

dynamic milling case presented by Altintas and Budak  [3]; the later approach is selected 

henceforth: 
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The averaging procedure approximates the dynamics of milling as a time invariant 

system and the P , Q  and J  matrices and their detailed derivations are discussed in the 

Appendix C. The resulting time invariant dynamic system is expressed in the Laplace 

domain as: 
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Transfer functions of the displacements are incorporated into the dynamic milling forces 

(Eq.( 5-25)) in the Laplace domain as: 
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Therefore, this system has the following characteristic equation: 

 ( ) ( )( )4 4det , 0τ−
× + − + Ω =sa e s sI P Q J Φ  ( 5-27)

Since the matrices in the characteristic equation depend on the tooth period (τ ) and 

cutting speed ( cV ), the stability of the system at a given spindle speed, and the axial and 

radial depth of cut is checked via Nyquist stability criterion in frequency domain by 

substituting cs i ω= , where cω  is a possible chatter frequency around the natural 

frequencies of the structure. By scanning the cutting conditions (i.e. speeds and depth of 

cuts), the chatter stability charts are constructed. If the structural dynamics of the rotating 

cutter and process damping terms are neglected, the Eq.( 5-27) is then reduced to the 

speed independent characteristic equation of stationary dynamic systems formulated by 

Budak and Altintas  [9] as proven in Appendix  C.2. 

5.5 Simulation and Experimental Results  

Sample numerical simulations and milling experiments were conducted to validate the 

proposed stability model. A carbide tipped end mill with two inserts was used to cut 

AISI1045 steel with 21 HRc hardness (Figure  5-3). The workpiece was attached to a 
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force dynamometer which was considerably more rigid than the rotating cutter; hence, its 

flexibility was ignored in the stability prediction. The structural dynamic parameters of 

the rotating cutter, cutting force and process damping coefficients of the tool-workpiece 

pair are given in Table  5-1. Cutting force coefficients were identified mechanistically 

from vibration free cutting tests as described in  [2] The measured and predicted cutting 

forces were in agreement as shown in Figure  5-4, which indicates the validity of cutting 

force coefficients used in the stability prediction. The process damping coefficients were 

obtained experimentally by indenting the insert to the work material as presented in  [15]. 

The chatter stability lobes were predicted and compared against slot milling experiments 

as shown in Figure  5-5. It must be noted that the process damping zone is highly sensitive 

to flank wear; therefore, an average measured flank wear of 130µm  was maintained in 

chatter tests. The critical axial depth of cut was limited to about only 0.25mm at spindle 

speeds beyond 1500rev/min, but it reached 2mm at low spindle speeds. The cutter has 

identical natural frequencies (665 Hz) in two principal directions but with different modal 

stiffness. Due to rotational dynamics, directional factors and process damping, the chatter 

occurred at 776Hz with a 0.5mm axial depth of cut and 3580rev/min spindle speed (i.e. 

tooth passing frequency of 112.7Hz) while the milling process was stable at a depth of 

cut of 2mm and 1250rev/min spindle speed. 



Chapter 5: Stability of Milling at Process Damping Speeds 

83 

 

Figure  5-3: Setup for milling stability test 
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Figure  5-4: Predicted and measured milling forces in slot milling of AISI1045 steel. Cutting 

conditions:  Spindle speed: 4297 rev/min, depth of cut: 0.25 mm, feed-rate= 0.1 mm/flute, number of 

inserts=2. Cutting coefficients are given in Table  5-1. 
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Figure  5-5: Predicted and measured chatter stability results in slot milling of AISI 1045 steel with a 

two teeth cutter. Cutting conditions and parameters are given in Table  5-1 

Table  5-1: Parameters used in slot millin11g of AISI 1045 steel with R390-020A20L-11L tool holder 

having 2 R390-11 T302E-PM-4240 inserts.  
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A numerical model of the proposed dynamic milling system was developed to study the 

stability of the system without the averaging of time varying directional factors as was 

done in analytical prediction. An asymmetric structure was selected in order to illustrate 

the effect of rotating dynamics on the stability of the system. The analytical stability 

charts predicted in rotating and fixed coordinate systems are shown in Figure  5-6. The 

dotted stability limit was obtained when the tool was assumed to be rigid, and the 

workpiece was assigned to have flexible modes in the fixed coordinate system. The same 

modal parameters were given to the tool in the rotating coordinate system while the 

workpiece was assumed to be rigid to obtain the stability limit shown by solid line. The 

analytical stability charts predicted in fixed and rotating coordinate systems give 

contradictory stability predictions. Time domain simulations of the system with flexible 

tool agree well with the rotating coordinate system based stability model. Two sample 

simulations are presented which show the presence of chatter at 4880rev/min and a stable 

milling process at 5500rev/min with axial depths of cuts 0.4mm and 0.5mm, respectively. 

These results indicate the importance of considering the rotating structural dynamics in 

the prediction model when the modes are not equal in the two principal directions.  
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Figure  5-6: Time domain verification of analytical stability for slot milling with two inserts. (Cutting 
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The stability of several cases with symmetric and non-symmetric structural dynamic 

characteristics was predicted analytically in stationary and rotating coordinate systems, as 

seen in Figure  5-7. When the system has symmetric dynamics ( ,u v u vk k ω ω= = ), the 

stability limit predictions are different for tools with one or two flutes, but both models 

give the same stability results for a five-flute tool. For an asymmetric tool with stiffness 

difference in u  and v  directions, the stability limits are predicted differently for tools 

with one or two flutes while they stay the same for the five-flute tool. When the number 
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of flutes increases, the effect of time-varying directional factors, which are more 

accurately considered in rotating coordinate system, diminishes. When the natural 

frequencies are different in the two principal ( ,u v ) directions and independent of the 

number of flutes, the predicted stability charts with rotating coordinate system and fixed 

coordinate system have peaks and valleys at different spindle speeds. This indicates the 

importance of using rotating coordinate system model in finding the stability lobes 

accurately, when the asymmetric rotating tool has different natural frequencies in 

orthogonal directions. 
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Figure  5-7: Sensitivity of stability charts to structural dynamic parameters of the system.  Simulation 

conditions are same as Figure  5-6 except the following modal parameters are used:  

5.22N/µm, 2 655Hz, 0.023k ω π ζ= = × =  

5.6 Conclusion 

Machine tools have both fixed and rotating structures which contribute to chatter during 

machining. The chapter presents a dynamic milling model which considers the structural 

dynamics of both rotating and fixed modes along with a process damping model based on 

the contact between the tool's flank and the wavy surface finish. The structural dynamics 

of the rotating systems are defined in two principal directions which rotate with the 
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cutter. A rotating coordinate frame attached to the cutter considers the changes in 

directional factors of both cutting forces and resulting vibrations as spindle rotates. The 

fixed coordinate system assumes that the direction of structural modes remains constant, 

which is applicable to the systems where the structure is fixed (i.e. machine tool body and 

workpiece) or the rotating system has symmetric dynamics. The proposed dynamic model 

can be extended to boring, reaming and mill-turn operations with asymmetric rotating 

structures. 
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Chapter 6:  Conclusion and the Future Works 

6.1 Conclusions 

The main objective of this thesis is to improve chatter stability limit prediction in turning 

and milling operations. The research started with the study of process damping 

mechanism in simple orthogonal cutting, then it was extended to the areas of three-

dimensional turning with tools having nose radii and milling with dynamically 

asymmetric rotating tools. In both milling and turning cases, process damping effect was 

considered. The contributions of this thesis are listed in the following three main 

categories: 

6.1.1 Process damping mechanism 

The physics of process damping has been debated among scientists and several theories 

have been suggested to explain the phenomenon in the past. The fundamental difficulty 

has been the separation of process damping effect from the regeneration of chip in 

measuring dynamic cutting forces. A new experimental approach has been introduced in 

this research to cancel the effect of regeneration by creating waves in phase in successive 

spindle rotations. The vibration is introduced via a piezo-driven fast tool servo 

synchronized with the integer multiples of spindle’s rotation frequency. The process 

damping force is extracted and the coefficient of damping contributed by wave cutting is 

identified in frequency domain. The relationship between the process damping effect and 

tool wear has been demonstrated with the experimental set up and the proposed model. 
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The scholarly contribution has been published in CIRP Annals, Manufacturing 

Technology  [4].  

6.1.2  Stability of three dimensional turning 

The rate of changes in the dynamic cutting forces with respect to displacements is only 

determined with a cutting coefficient and the width of cut in orthogonal cutting models. 

However, the nose radius, approach angle of the tool, and feed per revolution affect the 

process dynamics and stability of most turning operations. In addition, the structure could 

be flexible in several directions and create cross-coupling between depth of cut, feed and 

cutting speed directions. A new dynamic turning model and analytical stability limit 

prediction method are introduced in chapter 4. The proposed model is experimentally 

validated to demonstrate its capability of predicting chatter stability limits for turning 

tools having nose radius and arbitrary approach angle. Process damping effect is also 

included in the model by considering the contribution of differential lengths of cutting 

edges when the tool moves with respect to the workpiece and compresses work material 

under its worn flank. Stability limit predictions have been favourably compared with the 

experimental results conducted at low speed (  25m/min
c

V ≈ ) and high speed 

( 350m/min
c

V ≈ ) cutting tests. The scholarly contributions are published in the 

Transactions of ASME, Journal of Manufacturing Science and Technology  [15]. 

6.1.3 Stability of milling with rotating cutter dynamics at process damping 

speeds   

The milling stability prediction model of Altintas and Budak  [3] has been improved by 

including process damping effects and the effects of a rotating tool with asymmetric 
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dynamics in this thesis. While researchers were aware of process damping effects in 

milling  [20], there has not been a previous work for analytical prediction of stability limit 

in the presence of process damping. In addition, the effects of asymmetry on dynamics of 

a rotating tool were ignored; so its dynamics could be studied in a fixed coordinate 

system. In chapter 5, the general dynamics of milling with four degrees of freedom is 

introduced which considers process damping and both the dynamics of flexible and 

symmetric or asymmetric tools, as well as flexible work holding systems with stationary 

dynamics. It is shown that the effects of asymmetric modes are important in predicting 

the chatter limits. A paper summarizing the contributions in milling dynamics has been 

submitted for publication in August 2009 to ASME Journal of Manufacturing Science 

and Technology  [16].  

6.2 Future Works 

Process damping coefficient was extracted from oscillation test or indentation tests as 

suggested by previous researchers [49]; however, extraction of these coefficients from 

more basic material properties such as Young's modulus and Poisson's ratio would make 

application of process damping model more convenient for various materials.  Stability of 

three-dimensional turning was investigated in chapter 4 assuming a tool with a 

completely round nose section and negligible inclination and rake angles. As inclination 

angle would affect the direction of chip flow, a more sophisticated method may become 

necessary to predict stability limit with acceptable errors. An additional improvement 

could come from allowing more generalized cutting edge geometry, similar to those in 

wiper tools, which have complex cutting edge geometry to minimize machined surface's 
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roughness, rather than a simple circular arc connected to two straight lines as major and 

minor cutting edges.  

In case of milling, the industry uses tools with complex features, such as tapered 

geometry, round nose (ball end mills and bull end mills), non-constant pitch and 

serrations. It would be worthwhile to add the process damping effect to the mathematical 

models that are used for stability limit prediction in these tools. 
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APPENDICES 

Appendix A: Nyquist Stability Criterion 

A.1 Application of Nyquist Stability Criterion in Chatter Problems 

In this section, application of Nyquist stability criterion for stability analysis of a turning 

system with a characteristic equation of ( ) ( ) ( )det 0τ
τ

− = + + + =  
sCH s e s svI J J J Φ  

is presented. There is a similar approach for application of this method in the milling 

stability limit prediction. Poles of the characteristic equation ( )CH s  are the poles of the 

structure (Φ ) which are all stable. Any unstable zero of the characteristic equation 

( )CH s  creates a clockwise encirclement of the origin of complex plane by Nyquist 

mapping of the characteristic equation. Unstable zeros of the characteristic equation are 

unstable poles of the system, as the characteristic equation appears in the denominator of 

the input-output transfer functions in the closed loop system. 

Nyquist plot is the mapping of the Nyquist contour (Figure  A-1) by the characteristic 

equation onto a complex plane. The first part of the Nyquist contour starts from 0 i− ∞  to 

0 i+ ∞ . Since the characteristic equation is a pseudo-polynomial with real coefficients, 

the characteristic equation is symmetric with respect to the real axis:  

 
( ) ( )

( ) ( )

Re Re

Im Im

CH s CH s

CH s CH s

− =      

− = −      
 ( A-1)
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Figure  A-1: Nyquist Contour 

Because of this symmetry, the mapping of the only upper part of the imaginary axis is 

sufficient for stability prediction. On the other hand, while the highest order of s  in 

( )s
e s

τ
τ

−+ + vJ J J  is one, the lowest order in ( )sΦ  is 2
s

−  (second order structural 

dynamics); consequently, ( ) ( )
1

0s
e s s

s

τ
τ

−+ + → →vJ J J Φ  as s → ∞ , and 

( ) ( ) ( )det det 1se s sτ
τ

− + + + → =  vI J J J Φ I . This means that the semicircle part of the 

Nyquist contour will be mapped to the point 1+  on the real axis. Based on these 

observations, it is sufficient to count the encirclements for mapping of the positive 

imaginary axis. This is equivalent to replacing s  with jω  where ω  is a nonnegative real 

number.  

Nyquist plot of two stable and unstable time delay systems with similar transfer functions 

are plotted in Figure  A-2. For encirclement of the origin, a crossing of the negative real 

axis is necessary and would represent instability. 
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Figure  A-2: Nyquist plot in stable and unstable cutting conditions 

A.2 Numerical Evaluation of Stability 

Nyquist contour is a continuous path; however, on a digital computer, discrete 

frequencies are used for Nyquist mapping. In addition, frequency response function of the 

machining structure ( )ω  Φ , is measured as a set of complex numbers in discrete 

frequencies. Thus, Nyquist plot is obtained in the form of a set of points. The following 

algorithm is used to access stability of a system on a digital computer: 

1. Select a set of frequencies that cover the flexible modes 1, , , ,m kω ω ω� �   

2. set m =1 

3. Calculate ( )0 ω= mCH CH j   

4. While m  <k do the following steps: 

  - calculate ( )11 ω += mCH CH j  

• If 0CH  is in the third quadrant of the complex plane 

( ( ) ( )Re 0 0, Im 0 0CH CH< < ) and 1CH  is in the second quadrant, 
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( ) ( )Re 1 0, Im 1 0CH CH< ≥ , a crossing of the negative real axis has 

happened and the system is unstable. 

• If 0CH  is in the third quadrant and the 1CH  is in the first quadrant, 

( ( ) ( )Re 1 0, Im 1 0CH CH≥ ≥ ) calculate approximate intersection point 

with the real axis. A simple line interpolation method is shown to 

calculate the intersection point in Figure  A-3. If this point has negative 

real part, the system is unstable. If the system is unstable, go to the step 5. 

• If 1m k= −  then the system is stable; otherwise, increment m  and go to 

the step 4.  

5. End 
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Appendix B: Extraction of Dynamic Cutting Coefficients 

from Sampled Signals 

In chapter 3, oscillation cutting tests are described with the purpose of studying the nature 

of process damping forces. In this appendix, application of discrete time Fourier 

transform for extraction of dynamic cutting coefficients is discussed.  

B.1 Discrete Time Fourier Transform (DTFT) 

Cutting forces and tool's displacements are recorded as a series of discrete measurements. 

Frequency of oscillation, ( )rad/sω , is known in advance but the measured cutting forces 

and displacements contain noise and high frequency components which are generated due 

to the slip-stick mechanism in chip generation and electrical noise that affects the force 

measurement. Discrete Time Fourier Transform (DTFT) for an infinite series [ ]y n  , 

( ,n n∈ = −∞ ∞� � ), is defined as: 

 ( ) [ ] . . . si n T

n

Y y n e
ωω

∞
−

=−∞

= ∑  ( B-1)

where ( )rad/secω  is an arbitrary frequency and ( )sec/samplesT is the sampling period of 

the sequence. In oscillation cutting tests, forces and displacements form a discrete series 

of finite length L . The finite length Discrete Time Fourier transform for these signals are 

obtained as: 
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A sinusoidal displacement of the tool at the frequency ω  and amplitude cy  and the 

corresponding dynamic cutting forces with the dynamic cutting coefficients ( )yK ω  and 

( )zK ω  with a width of cut a  will be as described below: 
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Therefore, the DTFT of the displacement would be  

 

( )
1

. . . . . .

0

1
2

0

Re .

cos . . cos .sin
2

s s

L
i n T i n T

c

n

L
c

c s s s

n

Y y e e

Ly
y n T i n T n T

ω ωω

ω ω ω

−
−

=

−

=

 =
 

 = − ≈
 

∑

∑

 ( B-4)

Note that ( )
1

2

0

cos . .
2

L

s

n

L
n Tω

−

=

=∑  and ( ) ( )
1

0

sin . . .cos . . 0
L

s s

n

n T n Tω ω
−

=

=∑  if ω is an integer 

multiple of 
2

sLT

π
 (sampling frequency divided to the number of samples). Even if this is 

not the case, the relationships are approximately correct if sLT ω

π2
is a large number. 

( )yF ω , the DTFT of yF  at frequency ω  is calculated as: 
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( B-5)

Similarly,  

 ( ) ( )
. .

2

c
z z

a y L
F Kω ω≈  ( B-6)

Therefore, the dynamic cutting coefficients are calculated from DTFT's at the frequency 

of oscillation as: 
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= =  ( B-7)

B.2 Extraction of Signal Components at the Main Oscillation 

Frequency  

Inverse Discrete Time Fourier transform is used to extract the displacement signal and 

force signals at the frequency ω  shown as [ ]y nω  and [ ], [ ]y zF n F nω ω  here respectively: 
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Considering ( B-7): 
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and ( B-8): 
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After substituting ( B-8) and ( B-10) into ( B-9), the following relationship would result: 
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Similarly, forces in the tangential direction can be obtained as well: 

 [ ]
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Re[ ]. [ ] Im[ ].z z z

y n
F n a K y n K ω

ω ω ω

 
= + 

 
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 ( B-12)

B.3 Example 

An example of an oscillation test that involves cutting AISI1045 steel with an orthogonal 

carbide tool is shown in Figure  B-1. Displacement signal y has very little noise and it is 

almost identical to y ω ; the sinusoidal component of the signal is extracted using ( B-8). 

The cutting force signals contain more energy in frequencies other than ω . Also, the 

imaginary part of the cutting coefficients multiplied to the tool's penetration velocity y ω�  

at the frequency of the oscillation has a major contribution to the dynamic cutting forces 

in y and z directions. This means that the dynamic cutting forces are mainly created by 
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the process damping mechanism. The extracted dynamic cutting coefficients are 

presented in Table  B-1 along with the parameters used in DTFT calculation. 
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Figure  B-1: Dynamic cutting test, AIS1045, width of cut a =0.5mm, carbide tool, orthogonal cutting, 

Spindle Speed: 300rpm, oscillation frequency: 120Hz. The phase between inner and outer wave is 

zero. 

Table  B-1: Cutting conditions and dynamic cutting coefficients in the sample dynamic cutting test 

Width of cut [ ]30.5 10 ma
−= ×  

Number of samples 2250L =  

Sampling Period [ ]41.0 10 ssT
−= ×  

Oscillation Frequency [ ]120 2 rad/sω π= ×  

DTFT of displacement ( )  4569 24292[ m]Y iω µ= −  

DTFT of yF  ( ) [ ] 16292 12030 NyF iω = − −  

DTFT of zF  ( ) [ ]23050 18921 NzF iω = − −  

Dynamic cutting coefficient in y  direction at ω  ( ) [ ] 713 1475 MPayK iω = −  

Dynamic cutting coefficient in z  direction at ω  ( ) [ ] 1160 2116 MPazK iω = −  
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Appendix C: Averaging Dynamic Matrices in Milling 

The directional matrix elements in milling stability prediction are periodic at spindle 

periods, i.e. at 2π  in angular or /pτ π= 2 Ω  in time intervals. However, the directional 

factors are nonzero only when their corresponding tooth is in cut, 

( )mod , 2st j exφ φ π φ≤ ≤ . Since ( )j c pt jφ φ φ φ= − − , the pulse function ( )jg φ from Eq. 

( 5-7) is related to ( )tφ  as: 

 ( ) ( )
1 mod( , 2 )

0 otherwise

st p c ex p c
j j

j j
g g

φ φ φ φ π φ φ φ
φ φ

+ + ≤ ≤ + +
= = 


 ( C-1) 

The ( )jg φ  functions are periodic at π2  intervals as illustrated for a sample cutter with 

an engagement shown in Figure  C-1.  
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Figure  C-1: ( )jg φ  functions for a five flute cutter with 15
1800,c stφ φ π= = and 80

180exφ π=   
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Directional matrices are first analytically expressed as a function of angular position of 

the reference system as follows. As an example, the upper left 2x2 sub-matrix of ( )tP  is 

( )tA which is summation of time invariant jA matrices multiplied to time variant ( )jg φ  

functions: 
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 ( C-2)

The lower left sub-matrix is ( ) ( )1
t t

−W A : 

 ( ) ( ) ( ) ( ) ( ) ( )
1

1 1 1

0

N

j j

j

t t gφ φ φ φ
−

− − −

=

= =∑W A W A W A  ( C-3)

This matrix has time-varying elements such as tφ = Ω . These matrices are averaged to 

obtain time invariant characteristic equation of dynamic milling. Note that the elements 

are periodic at spindle rotation time ( pτ ) or angular ( 2pτ πΩ = ) intervals; hence, the 

averages are made in angular domain by change of variables as:  

 
1

t d dt dt dφ φ φ= Ω ⇒ = Ω ⇒ =
Ω

 ( C-4)

Let ( ) ( 2 )α φ α φ π= +  represent a periodic function with a 2π  period. α , the mean of 

this periodic function modulated by the unit pulse function ( )jg φ is evaluated as such: 
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( C-5)

Hence, the average of the sample sub-matrix ( ) ( )1
t t

−W A  is expressed as:  
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Similarly, the averages of all sub-matrices in characteristic equation (Eq. ( 5-27)) are 

evaluated.  
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( C-7)

The matrix elements which need averaging (the ( )φjH matrices) are as follows: 
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The averages ( jP , jQ , jJ  as defined in ( C-7) are calculated using the result in Eq. 

( C-6): 
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C.1 Summation of Average Matrices 

The average matrices, P , Q  and J , are summations of jP , jQ  and jJ  for 

0 1j N= −� . These summations are evaluated analytically using a simplifying lemma 

introduced in the next section. 

C.1.1 Summation lemma 

If  /  m N  is not an integer: 

 

1 1

0 0

2 2
cos . 0  and   sin . 0

N N

j j

m m
j j

N N

π π
θ θ

− −

= =

   
+ = + =   

   
∑ ∑  ( C-14)

Proof: 
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 
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∑ 0=
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(Here, j is an integer while 1= −i is the imaginary unit). 

 Considering the Euler's formula: 
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 
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If the sum of a series is zero, then its real and imaginary parts are zero, hence the lemma 

is valid. Note that if  
m

p
N

=  is an integer, the following would result: 
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These lemmas lead to following relations:  
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C.1.2 Average matrix for cutters having more than two teeth 

Using the summation lemmas, the average directional matrices become as follows for 

cutters having more than N>2 teeth.  
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C.1.3 Average matrix for a tool with two teeth (N=2) 
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 
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C.1.4 Average matrix for a single tooth tool (N=1) 

Since summation is not necessary for a single tooth tool and given that 0j ==P P , by using 

2
p

φ π= , the following would result: 
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01
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=

=
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 
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c ex st c ex st

c ex st c ex

φ φ

φ φ φ φ
φ φ φ φ φ φ φ φ

φ φ φ φ φ φ
φ φ φ φ φ φ

φ φ φ φ φ

−

− −
− − − − −

− − −
− − − − +
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 
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 
 
 
 
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 
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 
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C.2 Comparison with Classical Stability Prediction Method 

Altintas and Budak  [3] present an analytical stability limit prediction method for systems 

with dynamics described in inertial coordinate system without considering process 

damping. Ignoring process damping term ( J ) in Eq. ( 5-27) leads to the following 

characteristic equation: 

 ( ) ( )4 4det , 0sa e sτ−
×

 + − Ω =  
I P Q Φ  ( C-28)

and for a system with rigid tool/spindle,  

 

0 0 0 0

0 0 0 0

0 0

0 0

xx xy

xy yy

φ φ

φ φ

 
 
 =
 
 
  

Φ or ,
xx xy

ww
ww xy yy

φ φ

φ φ
× ×

×

  
= =   
    

2 2 2 2

2 2

0 0
Φ Φ

0 Φ
 ( C-29)

Let the elements of the 4x4 matrix of the product of ( )s
a e

τ−−P Q  be represented as 

, ,α β … : 

 ( )s
a e

τ

α β χ δ

ε φ γ η

ι ϕ κ λ

µ ν ξ θ

−

 
 
 − =
 
 
 

P Q  ( C-30)

The characteristic equation is calculated as:  
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     
     
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( C-31)

Therefore, only the 2x2 sub-matrix on the bottom right of process gain matrices, shown 

as ,ww wwP Q , affects the stability equation: 

 ,tt tw tt tw

wt ww wt ww

  
= =   
   

P P Q Q
P Q

P P Q Q
 ( C-32)

Referring to ( C-19) and ( C-20) , this leads to a characteristic equation in the form of: 

 ( )2 2det 0s
ww ww wwa e τ−

×
 + − =  
I P Q Φ  ( C-33)

from equations ( C-19) and ( C-20)  
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  
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  

 ( C-34)

Therefore, the characteristic equation ( C-28) becomes: 
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 ( )2 2det 1 0s
wwa e τ−

×
 + − Φ =  wwI P  ( C-35)

Altintas and Budak  [3] derived following characteristic equation for milling: 

 ( )[ ]2 2 0
1

det 1 0
2

s
t wwK a e Aτ−

×
 

− − Φ =  
I  ( C-36)

where, 
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( C-37)

( /
rr r t

K K K=  is the dimensionless radial cutting coefficient); Therefore, 
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+
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( C-38)

In other words, the characteristic equation in  [3] could be written as: 

 ( )( )

( )

2 2 ww

2 2 ww

det 1

det 1 0

s

ww

s

ww

a e

a e

τ

τ

−
×

−
×

 − − − Φ = 

 + − Φ = 

I P

I P
 ( C-39)

which is the same as the Eq.( C-35). 

 


