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Abstract 
RNA transcripts are expressed from tens of thousands of loci across the human 

genome.  Several studies have suggested that many genes are alternatively expressed 

to produced multiple mRNA isoforms and many of these remain undiscovered.  

Identifying specific isoforms associated with human diseases such as cancer has 

potential to lead to improved treatments.  The scale and complexity of the transcriptome 

present significant barriers to (1) identifying isoforms and (2) applying knowledge to 

human disease research.  Recent advances in genome-wide microarray and 

sequencing platforms have begun to provide the capacity and resolution to address 

these challenges.  The goal of this thesis was to develop novel methods that allow 

genome-wide identification and quantification of mRNA isoforms.  I first approached this 

problem by creating a microarray design platform for alternative expression analysis 

called 'ALEXA-array' (www.AlexaPlatform.org).  To evaluate the ALEXA-array approach 

I used it to generate a microarray design that I then used to measure differential 

expression of mRNA isoforms in 5-fluorouracil (5-FU) sensitive and resistant colorectal 

cancer cell lines.  This approach identified several isoforms potentially involved in 5-FU 

resistance.  While the ALEXA-array approach was successful, I identified several 

limitations of the method.  For example, the approach was insensitive to isoforms with 

small differences in sequence content and limited by both the transcriptome annotations 

and the number of microarray features available at design time.  I developed a second 

method, ‘ALEXA-seq’, to take advantage of advances in massively parallel sequencing.  

Applying this method to the same cell lines I showed that the approach was able to 

overcome many limitations of the microarray approach.  Several additional candidate 5-

FU resistance isoforms were identified.  Both the ALEXA-array and ALEXA-seq 

approaches identified expression of an aberrant isoform of the uridine monophosphate 

synthetase as a top candidate.  Interestingly, this gene was suspected to function in the 

conversion of 5-FU to active anti-cancer metabolites.  Additional characterization was 

performed to elucidate the expression pattern, transcript diversity and sequence 

variation of this gene in a panel of cell lines and tumours.  The methods presented here 

should help to identify mRNA isoforms with potential utility as therapeutic targets or as 

prognostic or diagnostic markers. 

 



 iii

Table of contents 
 
Abstract............................................................................................................................ ii 
Table of contents ............................................................................................................ iii 
List of tables....................................................................................................................vi 
List of figures ................................................................................................................. vii 
List of equations.............................................................................................................. ix 
Acknowledgements..........................................................................................................x 
Co-authorship statement.................................................................................................xi 
1. Alternative expression analysis: experimental and bioinformatic approaches for the 
analysis of transcript diversity ......................................................................................... 1 

1.1. Introduction........................................................................................................... 1 
1.2. Thesis overview.................................................................................................... 1 
1.3. Gene expression, alternative expression, and its regulation ................................ 2 
1.4. Genomic approaches for the study of transcript diversity ..................................... 5 

1.4.1. In silico methods .............................................................................................6 
1.4.2. Microarray methods ........................................................................................8 

1.4.2.1. ‘First generation’ expression arrays......................................................... 9 
1.4.2.2. Whole genome and exon tiling arrays ..................................................... 9 
1.4.2.3. Splicing arrays....................................................................................... 11 

1.4.3. Library construction and sequencing methods..............................................15 
1.4.3.1. EST sequencing of cDNA libraries ........................................................ 15 
1.4.3.2. Full-length sequencing of cDNA libraries .............................................. 17 
1.4.3.3. Sequence-tag based methods .............................................................. 21 
1.4.3.4. Massively parallel sequencing methods ................................................ 23 

1.4.4. Limitations of transcriptome analysis methods .............................................26 
1.4.4.1. Limitations of microarray approaches.................................................... 26 
1.4.4.2. Limitations of sequencing approaches .................................................. 27 

1.4.5. Functional characterization of mRNA isoforms .............................................28 
1.5. Functional significance of alternative expression ............................................... 30 

1.5.1. How much alternative expression is functional? ...........................................30 
1.5.2. How does alternative expression influence the proteome?...........................32 
1.5.3. Implications of alternative expression for the study of disease .....................34 

1.6. Cancer................................................................................................................ 38 
1.6.1. Colorectal cancer..........................................................................................39 
1.6.2. Chemotherapy resistance .............................................................................40 

1.7. Thesis objectives and chapter summaries.......................................................... 41 
References................................................................................................................ 54 

2. ALEXA: A microarray design platform for alternative expression analysis................ 67 
2.1. Introduction......................................................................................................... 67 
2.2. Results ............................................................................................................... 69 

2.2.1. Pre-computed microarray designs ................................................................70 
2.2.2. Validation - cross platform analysis ..............................................................71 
2.2.3. Differentially expressed genes and mRNA isoforms associated with 5-FU 
resistance ...............................................................................................................73 

2.3. Discussion .......................................................................................................... 75 
2.4. Methods.............................................................................................................. 78 

2.4.1. Probe extraction and filtering for array designs.............................................78 
2.4.2. Creation of a validation array design ............................................................79 



 iv

2.4.3. Tissue culture ...............................................................................................80 
2.4.4. RNA isolation, labeling and hybridizations ....................................................80 
2.4.5. Data processing............................................................................................81 
2.4.6. Platform comparisons ...................................................................................81 
2.4.7. Visualization..................................................................................................82 
2.4.8. Identification of significant differential expression events..............................82 
2.4.9. Gene ontology analysis.................................................................................83 
2.4.10. Identification of putative alternative expression events...............................83 
2.4.11. Statistical analysis ......................................................................................84 

References.............................................................................................................. 104 
3. Alternative expression analysis by RNA sequencing .............................................. 106 

3.1. Introduction....................................................................................................... 106 
3.2. Results ............................................................................................................. 108 

3.2.1. Whole transcriptome shotgun sequencing (WTSS) ....................................108 
3.2.2. Annotation of features and read mapping...................................................109 
3.2.3. Comparison of Illumina WTSS expression data to Affymetrix and ALEXA 
microarray expression data...................................................................................110 
3.2.4. Expression of canonical and alternative sequence features .......................112 
3.2.5. Differential expression analysis ..................................................................115 
3.2.6. Alternative expression analysis...................................................................116 
3.2.7. Global disruption of splicing ........................................................................119 
3.2.8. Aberrant expression of candidate 5-FU resistance genes ..........................120 

3.3. Discussion ........................................................................................................ 121 
3.4. Methods............................................................................................................ 124 

3.4.1. Tissue culture and RNA preparation...........................................................124 
3.4.2. Illumina library construction and sequencing ..............................................124 
3.4.3. Data pre-processing....................................................................................125 
3.4.4. Source of gene models ...............................................................................125 
3.4.5. Creation and annotation of an alternative expression database .................126 
3.4.6. Alignment strategy and assignment of reads to features ............................128 
3.4.7. Cross-platform comparison of expression and differential expression 
estimates ..............................................................................................................130 
3.4.8. Calculation of feature expression values ....................................................130 
3.4.9. Library depth and feature discovery............................................................132 
3.4.10. Determining expression above background..............................................132 
3.4.11. Estimating the total copy number of genes expressed in a cell ................134 
3.4.12. Differential expression analysis ................................................................134 
3.4.13. Alternative expression analysis.................................................................135 
3.4.14. Pathway analysis ......................................................................................136 
3.4.15. Software implementation and availability ..................................................136 
3.4.16. Statistics and data visualization ................................................................137 

References.............................................................................................................. 176 
4. Genomic analysis of uridine monophosphate synthetase reveals novel mRNA 
isoforms and mutations associated with fluorouracil resistance in colorectal cancer .. 179 

4.1. Introduction....................................................................................................... 179 
4.2. Results ............................................................................................................. 181 

4.2.1. Differential expression analysis of UMPS isoforms in 5-FU sensitive and 
resistant cell lines. ................................................................................................181 
4.2.2. Characterization of UMPS transcript structural diversity .............................182 



 v

4.2.3. UMPS protein expression ...........................................................................184 
4.2.4. Survey of UMPS isoform expression in treatment naïve colorectal tumor 
samples ................................................................................................................184 
4.2.5. Sequencing of UMPS in 5-FU sensitive and resistant cell lines..................185 
4.2.6. Sequencing of UMPS in colorectal cancer samples ...................................187 

4.3. Discussion ........................................................................................................ 189 
4.4. Methods............................................................................................................ 192 

4.4.1. Cell lines .....................................................................................................192 
4.4.2. Clinical samples..........................................................................................192 
4.4.3. RNA Isolation..............................................................................................193 
4.4.4. Genomic DNA isolation...............................................................................193 
4.4.5. Splicing microarray analysis .......................................................................194 
4.4.6. Whole transcriptome shotgun sequencing and analysis .............................194 
4.4.7. RT-PCR and semi-quantitative RT-PCR validation of UMPS isoform 
expression ............................................................................................................194 
4.4.8. Quantitative real time RT-PCR ...................................................................194 
4.4.9. Cloning & sequence validation of UMPS mRNA isoforms ..........................195 
4.4.10. Splice site analysis ...................................................................................195 
4.4.11. Western analysis ......................................................................................196 
4.4.12. PCR and sequencing the UMPS locus .....................................................197 

References.............................................................................................................. 213 
5. Conclusions ............................................................................................................ 216 

5.1. Summary.......................................................................................................... 216 
5.2. Strengths and limitations .................................................................................. 217 
5.3. Current status, significance and contribution to field of study........................... 219 
5.4. Potential applications and future directions ...................................................... 221 
References.............................................................................................................. 225 

Appendices ................................................................................................................. 227 
Appendix A .  Description of 5-FU and related drugs (analogs, pro-drugs, 5-FU 
combination therapies, etc.) .................................................................................... 227 

References ...........................................................................................................230 
Appendix B . Primer sequences used for UMPS analysis ....................................... 231 
Appendix C . Ethics approval certificates ................................................................ 233 

Appendix C1. Ethics certificate for samples obtained from the Ontario Institute for 
Cancer Research (Ontario Tumour Bank) ............................................................233 
Appendix C2. Ethics certificate for samples obtained from the British Columbia  
Cancer Agency .....................................................................................................234 
Appendix C3. Ethics certificate for samples obtained from St. Paul’s Hospital .....235 

 
 
 
 
 
 
 
 
 
 



 vi

List of tables 
 
Table 1.1. Summary of methods for studying transcript diversity.................................. 50 
Table 1.2. Alternative expression resources ................................................................. 52 
Table 2.1. Summary of pre-computed ALEXA designs................................................. 98 
Table 2.2. Within platform reproducibility for biological replicates................................. 99 
Table 2.3. Summary of differential expression events for genes profiled by the 
Affymetrix and ALEXA array platforms.......................................................................... 99 
Table 2.4. Candidate differential gene expression events associated with 5-FU 
resistance ................................................................................................................... 100 
Table 2.5. Candidate differential isoform expression events associated with 5-FU 
resistance ................................................................................................................... 102 
Table 3.1. Summary of alternative expression annotation databases for seven species
.................................................................................................................................... 164 
Table 3.2. Summary of read data, gene model sources and features defined for 
alternative expression analysis ................................................................................... 165 
Table 3.3. Top 20 differentially expressed (DE) genes from three gene expression 
platforms ..................................................................................................................... 166 
Table 3.4. Comparison of dynamic range, signal-to-noise, sensitivity and specificity for 
Affymetrix, NimbleGen and Illumina platforms based on an analysis of expression 
estimates for the exons and introns of 100 housekeeping genes ............................... 167 
Table 3.5. Comparison of UMPS A/B isoform expression ratios from four different 
platforms capable of measuring alternative isoforms.................................................. 168 
Table 3.6. Summary of feature expression, differential expression, and alternative 
expression .................................................................................................................. 169 
Table 3.7. Summary of novel expressed exon-exon junctions and alternative exon 
boundaries .................................................................................................................. 170 
Table 3.8. Top 50 differential or alternative expression events................................... 171 
Table 3.9. Statistically enriched functional categories identified by pathway analysis 175 
Table 4.1. Quantification of UMPS isoform A and B and the A/B ratio determined using 
four gene expression platforms................................................................................... 208 
Table 4.2. Differential expression values for UMPS isoform A and B ......................... 209 
Table 4.3. Summary of alternative isoforms observed as clones................................ 210 
Table 4.4.  Summary of putative mutations................................................................. 212 
 
 
 
 
 
 
 
 
 
 
 
 



 vii

List of figures 
 
Figure 1.1. Gene expression (transcription and RNA processing) ................................ 45 
Figure 1.2. Types of alternative expression (AE) .......................................................... 46 
Figure 1.3.  Splicing acceptor, donor and branch point sequences .............................. 47 
Figure 1.4. Identification of an alternative exon with application to cancer medicine .... 47 
Figure 1.5. Microarray based method for profiling transcript diversity........................... 48 
Figure 1.6. Sequence-based methods for profiling transcript diversity.......................... 49 
Figure 2.1. Types of alternative expression and corresponding microarray probe design 
strategies ...................................................................................................................... 85 
Figure 2.2. ROC curves for ALEXA and Affymetrix control probes ............................... 86 
Figure 2.3. Correlation of ALEXA and Affymetrix gene differential expression values .. 87 
Figure 2.4. Correlation of ALEXA and Affymetrix exon differential expression values .. 88 
Figure 2.5. Overlap between Affymetrix and ALEXA gene and exon differential 
expression events ......................................................................................................... 89 
Figure 2.6. Exons identified as differentially expressed by ALEXA but not Affymetrix are 
biased towards low levels of detected expression in the Affymetrix data...................... 90 
Figure 2.7. Absolute gene expression values in ALEXA and Affymetrix data ............... 91 
Figure 2.8. Absolute exon expression values in ALEXA and Affymetrix data ............... 92 
Figure 2.9. The OLR1/c12orf59 locus is differentially expressed between sensitive and 
resistant cells ................................................................................................................ 93 
Figure 2.10. A known isoform of LAMA3 is over-expressed in 5-FU resistant cells ...... 94 
Figure 2.11. The last 5 exons of EPB41L3 are over-expressed in 5-FU resistant cells 95 
Figure 2.12. The last 9 exons of the predicted protein c12orf63 are over-expressed in 
resistant cells ................................................................................................................ 96 
Figure 2.13. Reciprocal DE of UMPS isoforms ............................................................. 97 
Figure 3.1. Annotation of sequence features .............................................................. 140 
Figure 3.2. Illustration of read data generation ........................................................... 141 
Figure 3.3. Overview of alternative expression analysis ............................................. 142 
Figure 3.4. Distribution of fragment sizes.................................................................... 143 
Figure 3.5. Distribution of average Illumina read qualities .......................................... 144 
Figure 3.6. Distribution of read alignment lengths....................................................... 145 
Figure 3.7. Position bias by transcript size.................................................................. 146 
Figure 3.8. Read mapping summary........................................................................... 147 
Figure 3.9. Comparison of expression estimates from three expression platforms..... 148 
Figure 3.10. Comparison of differential expression from three expression platforms . 149 
Figure 3.11. Comparison of expression estimates for the exons and introns of 100 
housekeeping genes derived from three expression platforms................................... 150 
Figure 3.12. ROC curves comparing sensitivity and specificity between three expression 
platforms ..................................................................................................................... 151 
Figure 3.13. Distribution of percent gene coverage at increasing minimum coverage 
cutoffs ......................................................................................................................... 152 
Figure 3.14. Coverage of expressed features as a function of library depth ............... 153 
Figure 3.15. Change in percent discovery rate with increasing library depth .............. 154 
Figure 3.16. Coverage of exon base positions as a function of increasing library depth at 
varying minimum depth requirements ......................................................................... 155 
Figure 3.17. Relationship between gene and intron expression estimates ................. 156 
Figure 3.18. Expression distribution for all sequence feature types............................ 157 



 viii

Figure 3.19. Expression of exon regions contrasted with intronic and intergenic regions
.................................................................................................................................... 158 
Figure 3.20. Example of a transcript, H19 that is much less abundant in 5-FU resistant 
cells compared to sensitive cells................................................................................. 159 
Figure 3.21. The gene KRT20 is up-regulated in 5-FU resistant cells compared to 
sensitive cells.............................................................................................................. 159 
Figure 3.22. Percentage of exon-skipping junctions with a particular number of exons 
skipped for known and observed (i.e. expressed) exon junctions............................... 160 
Figure 3.23. The UMPS gene exhibits reciprocal differential expression of two isoforms
.................................................................................................................................... 161 
Figure 3.24. Example of gene locus, OCIAD1 with over-expression of several novel 
exon-skipping isoforms ............................................................................................... 162 
Figure 3.25.  Proportion of expressed features observed in sensitive versus resistant 
cells............................................................................................................................. 163 
Figure 4.1. Simplified 5-FU metabolism pathway........................................................ 198 
Figure 4.2. Differential expression of alternative UMPS isoforms in 5-FU sensitive and 
resistant cells .............................................................................................................. 199 
Figure 4.3. Whole transcriptome shotgun sequence data corresponding to the UMPS 
locus ........................................................................................................................... 200 
Figure 4.4. RT-PCR detection of UMPS isoforms in six 5-FU sensitive and resistant 
colorectal cancer cell lines .......................................................................................... 201 
Figure 4.5. Full-ORF cloning of alternative UMPS isoforms........................................ 202 
Figure 4.6. Sequencing of 96 clones isolated from distinct PCR bands...................... 203 
Figure 4.7. Western detection of UMPS protein in six 5-FU sensitive or resistant 
colorectal cancer cell lines .......................................................................................... 204 
Figure 4.8. RT-PCR detection of UMPS isoforms A and B in a cohort of fresh frozen 
colorectal cancer tumours........................................................................................... 205 
Figure 4.9. Real-time quantitative RT-PCR of UMPS isoform A and B expression in a 
cohort of colorectal cancer tumours ............................................................................ 206 
Figure 4.10. Overview of SNPs and mutations found by genomic sequencing........... 207 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 ix

List of equations 
 
Equation 3.1. Average coverage (AC) ........................................................................ 138 
Equation 3.2. Normalized average coverage (NAC) ................................................... 138 
Equation 3.3. Splicing index (SI) ................................................................................. 138 
Equation 3.4. Reciprocity index (RI)............................................................................ 139 
Equation 3.5. Percent feature contribution (PFC) ....................................................... 139 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 x

Acknowledgements 
I would like to thank my thesis graduate supervisor Dr. Marco Marra for his guidance 

and support.  He was a true inspiration and an unfailing advocate of my training, 

education, and research.  The importance of having him in my corner was 

immeasurable.  I would also like to thank Lulu Crisostomo who helped me in more ways 

than I could ever list here.  For scientific guidance and support I am grateful to my 

supervisory committee of Joseph Connors, Stephane Flibotte, Steven Jones and Gregg 

Morin.  I am also grateful for support from Susan O’reilly and clinical collaborations with 

Sharlene Gill, David Owens and Carl Brown.  I am grateful for salary and travel funding 

from the Natural Sciences and Engineering Council, the Michael Smith Foundation for 

Health Research, the National Cancer Institute of Canada, the University of British 

Columbia (Faculty of Medicine and Department of Medical Genetics), the John Bosdet 

Memorial Fund, Genome Canada, Genome British Columbia, the British Columbia 

Clinical Genomics Network, and the British Columbia Cancer Foundation.  I have 

enjoyed the support of many fellow graduate students and other peers including Carri-

Lyn Mead, Ben Good, Sorana Morrissy, Kim Wong, Noushin Farnoud, George Yang, 

Claire Hou, Jaswinder Khattra, Monica Sleumer, Erin Pleasance, George Yang, Dan 

Fornika, Ryan Morin, Trevor Pugh and Obi Griffith.  The laboratory work described in 

this thesis would not have been possible without the help of co-op and volunteer 

students, especially, Jessica Paul, Pierre Cheung, Alison Lee, Lisa Miao, and Shaun 

Drummond.  In the lab I am indebted to the production sequencing and microarray 

groups who make large-scale data generation a reality and to Tesa Severson who kept 

the Marra lab running like a machine.  Thanks also to all the members of the Genome 

Sciences Centre who I do not mention by name but who helped me by creating an open 

and exciting atmosphere of scientific collaboration.  On a personal level, I would like to 

thank my Grandma and Grandpa, brothers Obi and Alex, sister Olivia, and aunts and 

uncles for their support and patience.  I have been lucky to have wonderful parent-

figures in Werner, Dan and Veronica who were source of calm and perspective along 

the way.  Penultimately, to my father Ron, to whom I owe my ambition and inquisitive 

spirit.  And finally to my mother, Rhéa to whom I owe my passion, motivation and so 

much more.  This work and my commitment to cancer research are dedicated to her 

memory. 

 



 xi

Co-authorship statement 
Together with my supervisor Dr. Marco Marra, I was responsible for the 

conceptualization, design and implementation of the research activities described in this 

thesis.  I was primarily responsible for performing the experimental design, laboratory 

work and data analysis.  Chapters 1-4 correspond to multi-author collaborations.  

These authors contributed to the laboratory work and analyses.  I created all the figures 

and wrote each manuscript in its entirety with the following exceptions.  The Illumina 

library construction description in Chapter 3 was provided by Yongjun Zhao and Figure 

4.7 was created in part by Ying-Chen Hou.  Furthermore, the co-authors provided 

valuable scientific and editorial contributions throughout the thesis Chapters 2, 3 and  

4.  I have included the complete author list for each manuscript as a footnote at the 

beginning of each chapter.  Their specific contributions are summarized briefly here.  

Marco Marra contributed study designs, concepts, editorial suggestions, funding and 

supervision for all chapters.  Isabella Tai provided cell lines, tissue culture materials, 

training, concepts and experimental designs (Chapters 2-4).  Steven Jones, Gregg 

Morin and Stephane Flibotte contributed concepts and experimental designs (Chapters 

2-4).  Michelle Tang provided guidance for tissue culturing and other laboratory 

activities (Chapters 2-4).  Susanna Chan, Jennifer Asano, Adrian Ally, and Agnes 

Baross generated the Affymetrix exon array data (Chapter 2) and assisted with cDNA 

cloning (Chapter 4).  Martin Hirst, Richard Moore, Thomas Zeng, Yongjun Zhao and 

Helen McDonald generated Illumina sequencing libraries and sequence data (Chapter 

3).  Obi Griffith, Ryan Morin, Allen Delaney, Kevin Teague, Rodrigo Goya and Irene Li 

provided programming, statistical and other advice for bioinformatic analyses (Chapters 

2-4).  Greg Taylor assisted in sequence assembly of cDNA clones (Chapter 4).  Trevor 

Pugh and Tesa Severson provided advice for various laboratory activities (Chapters 3-

4).  Ying-Chen Hou and Grace Cheng assisted with the Western analysis (Chapter 4).  

Jessica Paul, Alison Lee, Pierre Cheung, Shaun Drummond, and Lisa Miao assisted in 

genomic DNA isolation, total RNA isolation, PCR and sequencing (Chapter 4).  Karen 

Novik assisted in sample acquisition and ethics applications (Chapter 4).  Sharlene Gill 

and Carl Brown assisted in the identification and retrieval of patient samples (Chapter 

4).  David Owen performed pathology review of archival patient samples. 

 



 1

1. Alternative expression analysis: experimental and 
bioinformatic approaches for the analysis of transcript 
diversity1 

1.1. Introduction 

The human genome contains approximately 30,000 genes1, 2.  These loci generate the 

functional components of the cell but represent only ~1-2% of the entire genome 

sequence3.  Although the human genome sequence itself provides a crucial framework 

for the study of biology, understanding the function of genes requires analysis of the 

‘transcriptome’ encoded by the genome and the ‘proteome’ it gives rise to.  As our 

knowledge of the genome has increased so too has the realization that gene expression 

from most of these loci produces a myriad of distinct alternative isoforms with potentially 

distinct functions.  While the regulation of this process and precise number of functional 

transcripts generated remains to be determined, it is clear that there may be many times 

more transcripts than genes contained within the human genome.  The proteins 

encoded by these transcripts represent the building blocks and functional components 

of the cell.  Identifying and categorizing the structure of these transcripts is therefore 

fundamental to our attempt to explain biological processes and bring genomics data to 

bear on the study of human diseases such as cancer.  Furthermore, specific transcripts 

may represent targets for the development of novel therapies or act as diagnostic and 

prognostic markers of disease. 

1.2. Thesis overview 

A principle aim of this thesis was to develop methods for identifying changes in the 

expression of mRNA isoforms in human disease and implement these methods to 

improve our understanding of a specific cancer treatment problem.  Recent 

improvements in genome-wide techniques for detecting and measuring the expression 

of isoforms, particularly microarray hybridization and massively parallel sequencing 

platforms, now allow researchers to rapidly create an inventory of the mRNA isoforms 

present in a sample.  Preliminary reports describing the use of these technologies have 

led to an increased appreciation for the prevalence and diversity of mRNA isoforms 
                                            
1 A version of this chapter has been published.  Griffith M and Marra MA.  Alternative expression analysis: 
experimental and bioinformatic approaches for the analysis of transcript diversity.  2007.  Chapter 12.  
Genes Genomes and Genomics, Volume 2.  p201-242.  Regency Publications.  New Delhi. 
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expressed in human tissues.  The potential usefulness of these mRNA isoforms as 

novel diagnostic and prognostic disease markers as well as their potential as targets of 

novel therapies has also become apparent.  While improved microarray and sequencing 

platforms make identifying these markers fundamentally possible, bioinformatic 

methods to assist the process of biomarker identification are lacking.  Interpreting the 

increasingly large and complex datasets and identifying evidence for important markers 

in these massive datasets remains a particularly daunting challenge.  I approached this 

challenge by developing novel methods to (1) design and analyze custom microarrays 

specifically tailored to the identification and quantification of mRNA isoforms in human, 

(2) create a comparable analytical approach that relied on millions of short RNA 

sequence reads instead of microarrays, (3) illustrate the utility of both of these methods 

by applying them to a cell line model of chemotherapy resistance in colorectal cancer 

and (4) characterize a promising alternative expression event potentially relevant to the 

problem of cancer treatment resistance that was identified by both methods.  This 

process required the creation of bioinformatic tools, generation of genome-wide 

datasets to validate each approach and analysis of the output to assess the 

performance of these approaches by comparison to data from complementary 

platforms.  Finally by developing custom algorithms for processing these novel data I 

generated lists of candidate markers of drug resistance and performed additional 

experiments to begin to assess the potential clinical utility of a particularly promising 

candidate mRNA isoform potentially relevant to 5-FU resistance in colorectal cancer. 

1.3. Gene expression, alternative expression, and its regulation   

The term ‘gene expression’ broadly encompasses the processes of gene transcription, 

post-transcriptional processing, translation to a protein product and post-translational 

modification.  This thesis is primarily focused on studying the structure of messenger 

RNAs (mRNAs) that are the result of gene transcription and post-transcriptional 

processing.  Each gene locus consists of discrete regions of sequence called ‘exons’ 

that will become part of a transcript, separated by regions called ‘introns’ that must be 

removed to yield a mature mRNA transcript (Figure 1.1).  Transcription of protein 

coding genes occurs in the nucleus followed by capping, RNA splicing, polyadenylation 

and export of the mature messenger RNA to the cytoplasm where translation of proteins 

occurs.  Transcription thus involves three related processes which collectively define the 



 3

exon and intron boundaries of a gene and thus the ultimate sequence content of each 

transcript.  First, an RNA polymerase binds to a transcriptionally competent ‘unwound’ 

region of genomic DNA template and results in the synthesis of a pre-mRNA molecule 

in the 5′-to-3′ direction.  RNA polymerase II transcribes most human genes and initiates 

transcription at specific positions in the genome called transcription initiation sites that 

are found near promoter elements recognized by transcription factors.  The initiation site 

chosen by the polymerase defines the 5′ end of the resulting transcript (i.e. the 

beginning of the first exon).  Second, RNA splicing results in the removal of most of the 

nucleotides of the pre-mRNA transcript.  Splicing involves the recognition of splice sites, 

removal of introns from a pre-mRNA transcript and joining of adjacent exons (Figure 

1.1).  The splicing process is mediated by a series of protein-protein, RNA-protein, and 

RNA-RNA interactions involving a number of sequence motifs in addition to the actual 

splice sites4.  The splice sites chosen during this process define the primary structure of 

the resulting transcript.  Finally, the 3′ end of the transcript (i.e. the end of the last exon) 

is defined by a protein complex consisting of polyA polymerase and cleavage factors 

that cleaves the transcript and adds a poly-A tail 10 to 30 nucleotides downstream from 

a recognition site in the RNA transcript.  Following the discovery of RNA splicing, these 

three processes were thought to occur in a single prescribed way for each gene and 

deviations from the ‘one-gene-one-product’ model were considered rare5. 

A major challenge in decoding the information content of the human genome is 

presented by the processes of alternative expression (AE), which can produce from a 

single locus distinct transcripts with different combinations of exons.  More precisely, 

alternate transcripts may arise from a single locus by the use of alternative transcript 

initiation (ATI), alternative splicing (AS) and alternative polyadenylation (AP) sites.  The 

mechanisms by which these sites are selected by the transcription machinery are tightly 

coupled to each other6-8, involving many of the same protein and RNA factors and will 

be considered collectively as facets of the same biological phenomenon throughout this 

chapter.  The idea that alternative expression dramatically increases the functional 

diversity of the proteome has gained general acceptance in recent years9-12.  Based on 

an analysis of ~1.4 million sequenced human cDNA clones it was estimated that 

approximately 52% of human genes utilize alternate transcription initiation sites13.  

Similarly, recent estimates suggest that as many as ~94-95% of human genes undergo 

alternative splicing, a process which can produce multiple transcripts with different 
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combinations of exons from a single gene locus14, 15.  Alternative splicing produces 

distinct isoforms by several modes including: exon skipping, use of alternate mutually 

exclusive exons, use of alternate 5' or 3' splice sites and the retention of intronic 

sequences (Figure 1.1 and Figure 1.2)16.  Recognition of a particular exon by the 

splicing machinery is mediated by splicing acceptor and donor sites which define the 

boundaries of each exon as well as by exonic and intronic splicing enhancers and 

silencers4, 17.  Finally, a recent annotation of the transcripts for ~8,000 human genes in 

the ‘AltTrans’ database suggests that ~60% of human genes utilize alternate 

polyadenylation sites18.  Figures 1.1–1.3 summarize the types of alternative expression 

sites and some of the surrounding motifs which influence their selection by the 

transcriptional machinery.  Current challenges of genome research are to catalogue all 

possible transcriptional outcomes for every gene; to define the pattern of expression of 

these transcripts associated with development, tissue and disease states; and to 

determine the regulatory networks which control these patterns.  A detailed description 

of the regulation of these processes is beyond the scope of this thesis, but excellent 

reviews on the mechanisms of regulation and the experimental methods used to study 

them are available4, 19-22.  

Based on the apparent prevalence of alternate transcript initiation sites, splice sites, 

and polyadenylation sites, the number of proteins encoded by the human genome is 

likely to be much greater than the number of gene loci and has been estimated to be as 

high as 100,00023, 24.  The biological consequences of this observation are significant.  

AE appears to be an important mechanism for encoding a diversity of functions at a 

single genomic locus and this diversity may be realized in part through alterations in 

protein-protein interactions and subcellular localization.  Mutations or polymorphisms in 

the genes responsible for transcription initiation, splicing and polyadenylation may affect 

the transcriptional outcome of many genes and contribute to disease (‘trans-acting’ 

effects)25.  Similarly, inherited or acquired mutations and common polymorphisms within 

the sequence motifs which regulate these processes for each individual gene could also 

contribute to disease (‘cis-acting’ effects).  A recent analysis of common genetic 

variation contributing to gene expression differences in the CEU HapMap population 

found that only 39% of SNPs associated with gene expression corresponded to 

changes in whole gene expression compared to 55% that resulted in isoform specific 

changes26.  Thus, to effectively characterize the human transcriptome and apply 
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knowledge of whole gene and transcript expression patterns to problems of medical 

significance, it is necessary to document the prevalence of AE and consider the 

biological roles of proteins encoded by alternative transcripts.   

Until recently it was not possible to measure the prevalence of AE or detect 

comprehensively the diverse transcripts produced by it.  With the availability of high-

density microarrays and the advent of next-generation sequencing technologies, there 

are now opportunities to study AE on a genome-wide scale.  The implications of these 

technical developments and their application to the study of AE are substantial, for up 

until this time measurements of gene expression relied largely on the detection of a 

single transcript for each gene.  Microarrays designed to detect differential AE will drive 

the discovery of transcripts with novel, functionally relevant exon combinations, and 

such discoveries will inform on the protein coding potential of metazoan genomes.  

Similarly, ready access to sequence data for multiple transcripts from a single locus will 

provide invaluable validation of their precise sequence content.  In addition to fueling 

basic research questions, it is easy to imagine how knowledge of the transcripts and 

proteins produced by AE could lead to medically relevant discoveries.  For example, 

novel exon combinations expressed in disease states might yield excellent candidates 

for development of new diagnostic tools and therapies (see Figure 1.4 for an example). 

Having introduced what is meant by the term ‘alternative expression’ and described 

how a single locus can produce multiple distinct transcripts, the remainder of this 

chapter will provide background material for Chapters 2-4 by addressing the following 

areas: (1) the experimental and bioinformatic approaches currently available to profile 

transcript diversity and what these methods have revealed about the prevalence and 

nature of AE, (2) the functional significance of AE (3) the implications of AE for the study 

of disease, and (4) a brief introduction to cancer, colorectal cancer and chemotherapy 

resistance. 

1.4. Genomic approaches for the study of transcript diversity 

The prevalence and perceived importance of AE has increased dramatically over the 

last two decades.  For example, early estimates suggested that alternative splicing was 

a relatively unusual event occurring in approximately 5% of all genes5.  The advent of 

genome-wide studies of transcript diversity, involving the analysis of short expressed 

sequence tags (ESTs) by alignment to the genome and annotation of the exons 



 6

revealed by such alignments resulted in predictions that at least 42% of human genes 

exhibit AS27.  Such studies have also resulted in the creation of several databases of 

observed alternative initiation, alternative splicing, and alternative polyadenylation 

events as well as the identification of AE regulatory motifs for a number of species 

(Table 1.1).  More recently, exon-junction microarray experiments used to survey 

splicing events in 52 human tissues and cell lines found that as many as 74% of all 

human genes are alternatively spliced28.  One rationale for identifying the full spectrum 

of alternative expression is that the determination of gene function and identification of 

therapeutic targets can be improved by first cataloguing the subset of genes and 

isoforms which are actually expressed in relevant tissues and disease states.  

Preliminary experiments suggest that AE occurs most frequently in tissues with diverse 

cell types such as brain, metabolically active tissues such as testis and liver and cell 

types with highly diversified functions such as immune cells29-32.  The following sections 

will describe the computational and experimental ways in which transcript diversity can 

be studied by examining genomic DNA sequence, full-length cDNA library sequencing, 

microarray approaches, tag-based or massively parallel short-read cDNA library 

sequencing, and finally methods for the visualization and functional validation of 

alternative transcripts.  The advantages and disadvantages of each of these 

approaches are summarized in Table 1.1.  Each method is depicted in Figure 1.5 and 

Figure 1.6. 

1.4.1. In silico methods 

One starting point for the analysis of a species’ transcriptional units and often one of the 

first large sources of data with relevance to analysis of alternative expression is the 

genome sequence itself.  Perhaps the most important issue faced in analyzing the 

transcript diversity generated by a particular genome is the problem of accurate and 

reliable annotation of the genes present.  Several algorithms which attempt to annotate 

the genome by predicting gene structure have been described33.  Generally these 

predict a single transcript per gene but some have been adapted to consider the 

occurrence of multiple alternative transcripts generated from a single locus.  A few 

computational methods have also been recently developed specifically to predict AE 

directly from genomic sequences without the use of experimentally derived expression 

data.  For example, methods have been developed for the prediction of exon skipping 
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events by considering only the genomic sequence of an exon in the human genome and 

its orthologous sequence in another species such as mouse34-36.   This approach is 

aided by the fact that the sequence of alternative exons and the flanking intronic 

sequence exhibit generally higher levels of conservation between related species than 

the sequence of ‘constitutive’ exons (those found in every transcript)37, 38.  Each of these 

methods generally requires a training set of a few thousand known exon skipping 

events that are conserved between human and mouse.  Although these methods are 

capable of predicting exon skipping events based solely on the genomic sequence of 

human and mouse, the data sets used to train them are derived from previously 

observed expressed sequence tags (ESTs).  The training set is used to develop a 

model by which a ‘signature’ or classifier is created to enable prediction of skipped 

exons across the entire genome.  Experimental validations of the predictions of these 

methods have revealed a sensitivity value as high as 73% at 64% specificity34.  Based 

on the assumption that alternatively transcribed exons will be highly conserved and 

surrounded by highly conserved intronic sequences, it is also possible to accurately 

predict such events based solely on the genomic sequence of related species without 

use of an EST training set.  Philipps et al.39 used this approach to identify alternative 

exons representing all of the major classes of AS (Figure 1.2) in Drosophila by 

comparing the genomic sequence of D. melanogaster and D. pseudoobscura.  The 

authors were able to confirm AS in 25% of the predicted alternatively spliced exons 

generated from this approach by RT-PCR whereas only 3% of randomly selected exons 

were found to be alternatively spliced.  The pool of alternative exons that were 

confirmed in this experiment was found to be enriched for exons that preserve the 

reading frame of the predicted protein and the extent of highly conserved intronic 

sequence surrounding these exons was found to be larger than in constitutive exons.  

Since these initial reports, more sophisticated methods for distinguishing alternative 

exons from constitutive exons have emerged.  For example, a support vector machine 

(SVM) learning procedure was used to develop a classifier for identification of 

alternative exons based on seven major exon attributes (exon size, divisibility of exon 

size by 3, conservation, splice site strength, etc.) and several additional minor 

attributes40.  This approach achieved a sensitivity of 50% with a corresponding 

specificity of 99.5% for human exons.  Methods that are conceptually similar to this 

approach but use a hidden Markov model (HMM) instead of an SVM to identify 
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alternative exons have also been described41, 42.  One of the problems faced by all 

conservation based AE prediction approaches is that they are difficult to implement for 

small exons and they are incapable of predicting species-specific events.   

An algorithm called ‘AUGUSTUS’ was proposed as the first purely ab initio method 

for gene prediction.  This method is capable of predicting multiple transcripts for a gene 

from the sequence features of a single underlying genomic sequence without using 

conservation between sequences or expression data43.  Xia et al.44 also recently 

described an ab initio method for identifying alternative splice sites which uses a model 

of predicted competition between neighboring splice sites to classify exons as either 

constitutive or alternative based on their genomic sequence alone.  Although these 

approaches may be useful for analysis of species where very little expression data or 

suitable comparative genomes are available, in general such methods perform poorly 

compared to those that can incorporate comparative genomics and alignment of ESTs 

or full-length transcripts43. 

1.4.2. Microarray methods 

Microarrays consisting of spotted cDNAs or short (25 to 60-mer) oligonucleotides have 

been used extensively to rapidly and simultaneously determine the overall level of 

mRNA expression of thousands of genes in a single sample.  Briefly, a microarray is a 

small ordered grid of ‘spots’ (probes) each consisting of many copies of a single-

stranded DNA sequence complementary to a small portion of a target gene.  A 

microarray experiment involves extracting RNA from cells, converting the RNA to cDNA, 

labeling the cDNA molecules with a fluorescent dye, and hybridizing the labeled sample 

to an array.  Each probe spot forms hybrids with copies of its target sequence and the 

degree of hybridization is measured by scanning the array and recording fluorescence 

intensities.  The magnitude of the intensity observed at each spot is thus a 

representation of the amount of probe-target hybridization and therefore an estimate of 

the number of copies of each target in the sample.  Each probe on the array acts as a 

quantitative detector for a particular RNA sequence.  Choosing the size and position of 

the sequence to target with each probe is an area of active development and is critical 

to the results of a microarray experiment.  The general design and use of microarrays to 

detect gene expression has been reviewed extensively45 and each of the following 

microarray strategies are summarized in Table 1.1 and depicted in Figure 1.5. 
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1.4.2.1. ‘First generation’ expression arrays 

Despite the heavy use of microarrays for measuring gene expression, the use of these 

arrays to distinguish alternative transcripts has been limited.  Spotted cDNA arrays use 

probes consisting of copies of entire cDNA transcripts or relatively large portions of 

them and are therefore unsuitable for the detection of alternative transcripts which have 

subtle differences involving only a small percentage of their total sequence content.  

Commercially available oligonucleotide microarrays such as those offered by Affymetrix 

Inc., NimbleGen Inc., Agilent Inc. and others are composed of sets of 10-20 short probe 

sequences per gene and therefore have higher resolution for detecting transcription 

(Figure 1.5).  However, these designs and corresponding oligo d(T) based labeling 

procedures have heavily biased detection towards the 3′ end of transcripts (often 

confined to the UTR), limiting their ability to detect many alternative transcripts.  Despite 

the limitations of these designs, the use of the raw probe values generated from these 

platforms to predict differential expression of alternate transcripts with variable exons at 

their 3′ end has been described46, 47. 

1.4.2.2. Whole genome and exon tiling arrays 

Whole genome tiling arrays have emerged as a method of profiling transcription across 

large portions of the genome.  These arrays consist of probes representing every non-

repetitive base of a genome at 5-35 bp intervals (Figure 1.5).  Because of this 

comprehensive approach, these arrays are not limited by the accuracy of gene 

annotations at the time of array design, but rather the completeness and accuracy of the 

genome sequence itself.  Whole genome tiling arrays are theoretically capable of 

simultaneously determining the approximate exon-intron boundaries of all genes 

regardless of their current annotation status and also provide a quantitative measure of 

expression at every exon of every locus.  Due to the size of the human genome, initial 

experiments focused on the smallest human chromosomes only (20, 21 and 22)48-50.  

Arrays of 25- or 60-mer oligonucleotides were designed to tile across non-repetitive 

genomic sequence at 30-35 bp intervals and these arrays were hybridized with 

cytoplasmic polyA+ RNAs isolated from a variety of cell lines and tissues.  These and 

subsequent experiments covering 10 human chromosomes at 5 bp resolution51 and the 

entire human genome at ~50 bp resolution52 have revealed considerable evidence for 

previously unannotated expression throughout the genome.  Despite advances in 
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microarray technology, the resources required to conduct such experiments are still 

daunting.  For example, achieving ~50 bp resolution on both strands of the entire 

human genome required ~52 million probes distributed across 134 microarrays each of 

which was only hybridized with a single polyA+ RNA sample isolated from human liver 

tissue52.  In other words, an extremely large number of probes were used to measure 

transcription of select regions of the genome (those that are actually expressed) from 

only a single tissue.  Furthermore, despite the scale of this approach these arrays were 

not designed to allow inference of the connectivity of exons.  Because of the 

comprehensive probe design strategy used in these arrays they are adept for detecting 

novel genes, novel alternative exons within the introns of known genes and novel 

alternative exon boundaries.  However, as the quality of gene annotation improves for 

the genome of interest, the value of using such a large number of speculative probes is 

reduced and space on the array can be reclaimed to be used more efficiently.  Just as 

large scale sequencing efforts have revealed an unexpected level of transcript diversity 

at most loci, whole genome tiling array experiments have challenged accepted notions 

of the percentage of the genome that is actually transcribed, with indications that the 

transcribed portion of the genome might be much larger than previously suspected53.  

Whole genome tiling arrays are likely to play an important role in continuing annotation 

efforts but currently have limited feasibility for profiling transcript diversity. 

Affymetrix now offers exon tiling arrays which attempt to use array space more 

judiciously by designing probes for only those regions which are known to be expressed 

or predicted to be expressed by gene finding algorithms.  Affymetrix’s exon tiling arrays 

are created with a photolithographic in situ oligonucleotide synthesis platform and for 

the human exome, the design consists of a single array with ~5.5 million features 

corresponding to ~1.2 million known or predicted exons.  This capacity allows each 

human exon to be covered by an average of 4 probes.  This is by far the highest density 

array currently available but the oligo length is limited to 25-mers and medium to small 

scale custom designs are costly.  The design strategy successfully overcomes some of 

the limitations of previous Affymetrix gene expression designs (such as the focus on 

measuring the 3′ end of each gene), but these arrays are still unable to elucidate the 

connectivity of exons and may yield uninformative results when multiple isoforms are 

present in the same sample (Figure 1.5).  Furthermore, Affymetrix currently only offers 

designs for the human, mouse and rat genomes.  For researchers who do not wish to 
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be limited to probes that only interrogate the exons of each gene or who wish to study 

AE in additional species, a number of options are available for printed or bead based 

custom designs of 150 thousand to 1 million features (Agilent, Illumina and others).  The 

maskless photolithography procedure of NimbleGen remains the highest density custom 

array option allowing 385 thousand to 2.1 million features and additional advantages 

such as the ability to create probes up to 60 nucleotides in length as well as variable 

length ‘isothermal’ designs54. 

1.4.2.3. Splicing arrays 

As discussed, ‘traditional’ microarrays have been designed to measure the expression 

of only a single canonical transcript of each gene and do not account for the existence 

of alternate isoforms.  The idea of using ‘splicing’ microarrays consisting of exon-

junction and other probe configurations to detect AS events was first suggested by 

Douglas Black9.  Since 2002, a number of groups have begun to experiment with 

measuring expression in the context of AE by using such modifications of existing 

microarray technology (early efforts were reviewed in55).  ExonHit Therapeutics offers a 

commercial service for detection of AS in selected therapeutic targets56, 57.  Jivan 

Biologics offers the ‘TransExpress™ Whole Spliceome’ array which includes probes for 

~135,000 alternately spliced sites corresponding to ~23,000 human genes.  The splice 

events selected for this array were identified by bioinformatic analysis of existing EST 

data.  In addition to these commercial options, several groups have described the 

development of custom splicing arrays using commercially available in situ 

oligonucleotide synthesis or printing platforms. 

A number of studies have specifically addressed the theoretical and practical issues 

of designing custom splicing microarrays to detect AE events by conducting proof-of-

principle experiments in several metazoan species28, 58-62.  Issues addressed by these 

experiments include the following.  (1) Accurately annotating gene models to assist in 

the selection of oligonucleotides.  Annotation involves the identification of all exons for 

every gene, the precise boundaries of each exon, and the putative connections of these 

exons to each other.  The utility of a splicing microarray is fundamentally limited by the 

accuracy and comprehensiveness of this annotation process.  Defining exon regions as 

either ‘constitutive’ or ‘alternative’ by examining existing expression data is also 

desirable to distinguish between whole-gene expression and alternative gene 
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expression.  (2) Storing gene models and annotations of splicing events in a computer 

interpretable format such as “splicing graphs”63. (3) Selecting the number and types of 

AS events to profile.  For example, one may wish to target only sequences within exon 

boundaries.  If the identification of complicated splicing patterns is desired it may be 

prudent to target exon boundaries, exon junctions, and introns as well (Figure 1.5).  

Each of the array design strategies used to date falls into one of two general categories.  

In one case, transcript annotations based on existing expression data (ESTs, cDNAs, 

etc.) are assumed to be an acceptable representation of the transcript diversity in the 

genome and used to identify known AE events which are then specifically targeted by 

the array.  In the second case, the array design attempts to comprehensively profile all 

exons and splicing events regardless of existing expression evidence.  This approach 

requires considerably more probes but it has the potential to identify the expression of 

novel expression events. (4) Optimizing the specificity and thermodynamic properties of 

probes to improve the ability of each probe to accurately and reliably predict the 

presence of their target during hybridization.  A uniformity of probe melting temperature 

(Tm) and length across the array is desirable.  Furthermore, probes that form secondary 

structures, have low-complexity regions, match repetitive elements, or correspond to 

expressed sequences from multiple regions of the genome should be avoided.  For 

members of gene families or genes with pseudogenes, it may not be possible to select 

specific probes.  Furthermore, when targeting large exons and introns, choosing an 

‘optimal’ probe is often straightforward, but when the target sequence is constrained to 

a small exon or a specific exon junction or boundary this may not be possible.  (5) 

Reducing ‘half-junction crosstalk’59.  This term refers to a problem related to the use of 

exon junction probes such that each probe hybridizes over each half of its length to 

targets containing the same exon sequences in combinations other than those 

specifically targeted by the junction probe.  For example, a probe designed to detect the 

juxtaposition of exon 1 with exon 3 (e1^e3) will hybridize on each half to RNAs 

containing e1^e2 and e2^e3.  This crosstalk effect increases as the length of a probe is 

increased or hybridization stringency is reduced.  The junction probe length that 

maximizes sensitivity and specificity has been empirically determined as 35-45 

nucleotides in length58-60.  Crosstalk can theoretically be reduced by offsetting the probe 

position on the exon junction or allowing the two halves to differ in length such that the 

difference in Tm between the two halves is minimized.  The proof-of-principle 
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experiments that have helped to resolve these five issues provide invaluable guidance 

for researchers wishing to create custom splicing arrays without spending considerable 

time and resources conducting optimization experiments.  Furthermore, their results 

provide general evidence that the splicing microarray approach is feasible.  For 

example, experiments using samples spiked with different mixtures of cloned human 

and Drosophila transcripts showed that an alternate isoform making up as little as 20% 

of a mixture of two isoforms could be detected by junction probes (observed fold 

differences were highly correlated with expected values over a range of 0.25 to 12)59, 64. 

The first three large scale experiments with splicing microarrays were conducted in 

human, mouse and Drosophila28, 61, 62.  Johnson et al.28 conducted a genome-wide 

survey of AS in 52 human tissues using a total of 125,000 exon junction probes 

corresponding to the expected canonical junctions of 10,000 multi-exon genes.  The 

authors observed that similar tissues tend to have similar AS patterns and cell lines 

have their own distinct patterns, in particular exhibiting the expression of fewer genes 

but more variants of those genes.  By extrapolating from their results and comparing to 

EST data the authors predicted that 74% of all human genes are alternatively spliced.  

Pan et al.62 used a similar approach to analyze ~3,000 previously observed AS events 

in 10 mouse tissues.  Based on RT-PCR validations of the predictions of their splicing 

microarray the authors determined that the array could predict differential expression of 

isoforms between tissues with a specificity of approximately 80%.  The data described 

in this initial experiment has recently been analyzed to show that exons that have 

varying expression levels across mouse tissues are more likely to be a multiple of 3 in 

length (perhaps indicating a selection for maintenance of reading frame) and are highly 

conserved relative to constitutively spliced exons65.  These data have also been used to 

investigate the potential coupling of AS and nonsense-mediated mRNA decay as a 

global means of controlling transcript abundance66. 

As the number of published splicing microarray experiments has increased, the 

variety of analysis methods has also increased67.  Nevertheless, the availability of 

suitable analysis methods with open source software implementations remains a 

challenge to researchers who wish to conduct their own splicing microarray 

experiments.  Standard methods for normalization, background correction and 

summarizing multiple probe values into a single gene- or exon-level expression 

estimate may be used 68-70 but methods which specifically address the identification of 
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differences at the level of alternative transcripts are still required.  To date, at least 

seven distinct analytical methods for identifying differences in isoform expression from 

splicing microarray data have been proposed: (1) Splicing index values58, 60, 71, (2) 

detecting systematic anti-correlation between the log-ratios of two different samples 

versus a pool containing both samples72, (3) splice and neighborhood algorithms46, 47, 

(4) analysis of splice variation (ANOSVA)73, (5) sequence based splice variant 

deconvolution74, (6) inferring global levels of alternative splicing isoforms using a 

generative model75 and (7) microarray detection of alternative splicing (MIDAS)76.  

Although each of these methods uses different mathematical and statistical techniques, 

the general goal of each is to identify alternative exons, junctions, or whole transcripts 

that are differentially expressed between two samples.  Identifying such events 

invariably involves some attempt to account for changes in expression at the gene level.  

For example, the work by Clark et al.60 was the first to propose the use of a ‘splicing 

index’ calculation to identify AS events and several studies since have used it including 

those described in Chapter 2 and Chapter 3 of this thesis.  A splicing index is 

determined by first comparing the expression of each exon to the expression value for 

the entire gene within a single sample.  This results in a ‘within-gene’ normalized value 

for each exon which can then be compared across sample pairs to create the splicing 

index.  Statistical methods such as MIDAS also use within-gene normalized values but 

attempt to identify significant differentially spliced exons by considering the magnitude 

and variability of exon expression within grouped samples compared to across sample 

groups (e.g. ten normal versus ten cancer samples). 

Using the developments in splicing microarray design and analysis described above, 

several research groups have applied these arrays to the study of specific biological 

problems.  These include estimating the global prevalence of AE in tissues and 

throughout development, assessing the implications of AE for protein diversity, studying 

splicing regulation at the level of trans-acting factors, defining novel cis-acting splicing 

motifs, and identifying isoforms with disease relevance.   

Relogio et al.77 was among the first to publish results obtained using microarray 

technology to specifically address the role of AS in a cancer model.  This group 

designed a custom array to measure the expression of 86 splicing-related genes and 

known splicing events in 10 cancer genes and applied their array to RNAs derived from 

four cell lines representing different stages of Hodgkin lymphoma tumors.  Clustering of 
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the microarray results for 100 splicing events revealed distinct patterns for each of the 

four tumor stages.  Li et al.71 recently used splicing microarrays to identify differential 

expression of alternative isoforms between estrogen receptor positive and negative 

breast cancer cell lines.  Zhang et al.78 predicted that profiling expression at the level of 

individual exons and AE events with a splicing microarray would improve the accuracy 

of expression based cancer classification compared to using overall mRNA expression 

levels.  They demonstrated this by conducting a classification of 38 cancer and normal 

prostate tissues by measuring the expression of 464 isoforms of ~200 genes and 

concluded that profiling the expression of alternative transcripts increased the 

information content by at least 30% compared to conventional microarray data.  In 

addition to studying human disease, splicing microarrays have also been shown to have 

great potential for defining a global ‘splicing code’ by studying the expression of 

thousands of exons and identifying novel sequence motifs as well as how the 

arrangement of these motifs and their interaction with particular trans-acting factors 

influences the splicing of specific exons in a tissue dependent manor79-82.  For example, 

Blanchette et al.81 used a splicing microarray to study the global effects of RNAi 

knockdowns of four splicing regulators (two hnRNPs and two SR proteins) in 

Drosophila.  Knocking down each of these four proteins affected a variable number of 

splicing events, ranging from ~50 to more than 300.  Since their array design was 

limited to only those events that had been previously observed (~8,000 events observed 

for ~3,000 genes in EST/mRNA data), these are likely to be underestimates.  A similar 

experiment which involved a knock-down of factors involved in nonsense mediated 

decay (NMD) successfully identified showed that alternative splicing may function as a 

means of controlling gene regulation via NMD in Drosophila83.  Perhaps the most 

comprehensive application of splicing sensitive microarrays used the approach I 

describe in this thesis (Chapter 2) to create an alternative splicing compendium by 

profiling ~25,000 splicing events across 48 tissues and cell lines84. 

1.4.3. Library construction and sequencing methods  

1.4.3.1. EST sequencing of cDNA libraries 

The earliest large repositories of data on transcript diversity consisted of expressed 

sequence tags (ESTs) generated by single sequence reads from systematically 

selected cDNA clones.  Construction of a cDNA library commonly involves extraction of 
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total RNA from cells, purification of polyA+ mRNAs, RT-PCR with an oligo d(T) primer 

and cloning into a convenient vector.  The rapid generation and sequencing of these 

libraries from specific human tissues became common in the early 1990’s and rapidly 

accelerated the discovery and annotation of novel genes85, 86.  EST libraries are 

generally derived from a single normal or diseased tissue sample or a small pool of 

tissue samples.  Most EST records deposited in public databases contain information 

on the tissue source and disease status of the sample from which they were derived.  

Typically each EST represents either the 5′ or 3′ end of a clone and initially the lengths 

of these reads were 300-500 nucleotides (Figure 1.6).  Although improvements in 

Sanger sequencing have approximately doubled this read length, the majority of all 

ESTs do not represent a complete cDNA sequence and the overall coverage of EST 

data is heavily biased towards the 3′ end of transcripts87.  The completion of the human 

genome, the comprehensive sequencing of EST libraries from a variety of tissues, and 

the continuing development of algorithms for ‘spliced’ alignments such as Blat, Spidey 

and Sim4 has allowed a first comprehensive assessment of the diversity of transcription 

(refer to Table 1.2 for a list of spliced alignment algorithms).  EST sequences can be 

rapidly generated and aligned to a reference genome allowing the annotation of exon-

intron boundaries and the inference of underlying transcript isoforms88, 89.  Protein 

coding information may also be incorporated into predictions by performing 6-frame 

translations.  The size of an EST library has been historically as small as a few hundred 

sequences or as large as tens of thousands and in rare cases even larger.  Since a 

single cell type is likely to express 10,000 to 30,000 genes with a total of approximately 

300k to 500k mRNA molecules per cell, the coverage of these EST libraries is not likely 

to provide an accurate quantitative measure for the expression of genes in a bulk tissue 

sample, especially given the fact that a majority of all transcripts will be derived from a 

minority of loci90.  The problem of over-representation of highly expressed genes can be 

addressed by applying normalization techniques during the library construction phase91, 

92.  Such techniques enhance the rate of gene discovery but reduce the quantitative 

value of the data generated from such libraries.  Library normalization techniques can 

also have the side effect of reducing the presence of transcript variants with subtle but 

potentially important variations and estimates of AE prevalence in the genome are likely 

to be underestimates as a result.  Approximately 62 million EST sequences have been 

deposited in the public repository dbEST, of which 8.3 million were generated from 
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human samples (www.ncbi.nlm.nih.gov/dbEST/)93.  This collection represents an 

incredible source of independent transcription observations from a wide variety of 

tissues and it has been used to identify differentially expressed genes specifically 

associated with particular tissues or disease states90.  Perhaps the most prominent 

examples of the use of EST sequencing are the Cancer Genome Anatomy Project, 

which has attempted to create a complete catalogue of genes expressed in normal and 

cancerous tissues, and Unigene, which attempts to group all such sequences into 

clusters of sequences expressed from a single locus94.     

Analysis of ESTs has proved to be a rich source for discovery of novel genes and 

transcript diversity and has led to a number of interesting observations about 

transcription.  Early analyses suggested that most AS events affect the 5′ UTR of 

genes, occur in at least 35% to 42% of all genes29, 95, and seem to be more prevalent in 

humans than in other species considered to date96.  Furthermore, within humans, the 

prevalence of AE varies dramatically between tissues.  Brain and testis have the most 

exon-skipping events and liver has the most alternate splice site usage but one of the 

lowest rates of exon skipping30.  Certain protein domains seem to be preferentially 

affected by AE and more than 50 domains that are commonly removed by AE have 

been identified97.  Analysis of these domains indicates that one of the central roles of 

AE may be to modulate protein-protein interactions.  A number of groups have used 

ESTs to create databases of annotated AE events and characterize some of the general 

features of transcript diversity in metazoan species (refer to Table 1.2 for a complete 

list).  Among the results of these studies were the observations that skipped exons tend 

to be shorter than constitutively spliced exons, retained introns are generally shorter 

than those that are constitutively spliced, the introns flanking skipped exons tend to be 

longer, skipped exons are more likely than constitutively spliced exons to have a length 

that is a multiple of three, splice sites corresponding to constitutively spliced events tend 

to more closely resemble the consensus sequence than those involved in AS events, 

and the average sequence conservation between human and mouse is greater for 

alternatively spliced exons than constitutively spliced exons.   

1.4.3.2. Full-length sequencing of cDNA libraries 

As the cost of Sanger sequencing and primer synthesis has gone down it has become 

more practical to conduct full length sequencing of cDNA clones representing complete 



 18

transcripts (Figure 1.6).  This is conceptually the simplest approach to study transcript 

diversity because it involves the capture and complete sequencing of single cDNAs.  

The complete structure of the transcript including the presence of alternative exons is 

thus determined.  Large scale cDNA sequencing projects such as those associated with 

the Mammalian Gene Collection (MGC) and Full-length Long Japan (FLJ) projects are 

at various stages of completion for human, mouse and other species98-100.  The cDNA 

libraries for these efforts are generated in ways similar to those employed for EST 

sequencing but additional emphasis is placed on the generation of ‘full-ORF’ cDNAs.  

Sequencing of these cDNA clones involves generating EST end reads followed by 

sequencing of the remainder of the cDNA insert using primer walking, transposon 

mediated sequencing, or cDNA concatenation101-103.  The resulting reads are then 

assembled into a contiguous sequence representing the entire mRNA.  Initially, clones 

were selected for full-length sequencing by first generating EST end reads and 

identifying a subset of non-redundant clones.  Although the primary goal of the MGC 

was to create a physical resource of cDNA clones for the analysis of gene function, the 

process of rescuing and sequencing these clones has led to the discovery of 

considerable transcript diversity.  The random clone sequencing approach initially used 

by the MGC effort was replaced by an RT-PCR targeted approach in which amplicons 

for a known target gene were generated, cloned and sequenced104.  The random clone 

sequencing approach has the potential to identify transcripts that differ in their 

transcription initiation, polyadenylation, and splicing.  Because the targeted approach 

pre-defines the expected ends of the transcript it is only capable of detecting splice 

variation that occurs within these boundaries.  However, since the cloning and rescue 

process generates many clones per target sequence, novel transcript variants of this 

type are routinely observed (Figure 1.6).  The MGC collection currently contains clones 

for ~17,500 human genes generated from more than one hundred tissue libraries.  A 

recent study of ~56,000 full-length human clone sequences from the ‘H-invitational 

human transcriptome’ annotation meeting105 found that these clones could be mapped 

to ~24,000 loci and 41% of these loci were represented by multiple cDNAs87.  Of these 

loci, where at least a preliminary assessment of transcript diversity was possible, 68% 

showed evidence of AE with an average of approximately three unique transcripts per 

locus.  Of these transcripts, 45% exhibited exon skipping events, 52% used at least one 

alternate 5′ or 3′ splice site, 15% had retained introns, and 3% used one of a series of 
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mutually exclusive exons.  Only 14% of the intron retention events were predicted to 

result in a transcript possibly subject to nonsense mediated decay (NMD).  The majority 

(73%) of alternate transcripts exhibited a splicing event within the CDS of the predicted 

protein but 26% had events confined to the 5′ UTR and 6% had events confined to the 

3′ UTR.  Furthermore, if the rate of each type of event relative to the number of exons in 

each of these regions is calculated, events affecting the 5′ UTR have the highest 

frequency.  Of all genes with observed AE events, 44% had events which occurred 

within a known protein motif, 44% were predicted to affect subcellular localization, and 

20% were predicted to affect a transmembrane domain.  Although many human gene 

loci are still represented by only a single clone sequence (59% in the study above), this 

initial data will act as a foundation for future studies of the diversity of transcripts 

generated from these loci (in EnsEMBL version 53, 48% of protein coding genes still 

have only one transcript).  Analysis of almost 200,000 publicly available full length clone 

sequences derived from ~200 mouse tissues have resulted in similar findings to those 

observed in human.  At least 40-70% of mouse genes have evidence for AE87, 99, 106, 107 

and an estimated 78,000 distinct proteins are transcribed from only ~20,000 loci108.   As 

described for the analysis of large EST datasets, these studies are invaluable for 

identifying the types of alternative transcripts that occur, revealing patterns in the size 

distribution, sequence composition and conservation of alternatively transcribed exons 

themselves and predicting their effect on resulting proteins107, 109. 

The complexity of the mammalian transcriptome generated by AE has been 

accepted as an outstanding challenge and was specifically discussed at the outset of 

the Mammalian Gene Collection project which has focused on the goal of acquiring a 

single ‘representative’ transcript for each known gene102.  Creating a comprehensive 

annotation of the complete mammalian transcriptome remains a significant challenge as 

does obtaining a cDNA clone representing every transcript variant of every gene.  

Although methods that involve RT-PCR, cloning and sequencing of alternate transcripts 

can be accurate and reveal much about the structural differences of alternate isoforms, 

they are costly and difficult to scale.  Most analysis of EST and cDNA sequence data 

has focused on gene annotation and transcript variant discovery rather than quantitative 

profiling of transcript expression levels.  The limited sampling depth generated by EST 

or full-length cDNA sequencing is insufficient to provide robust identification and 

quantification of alternatively spliced variants across samples representing comparisons 
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of large number of tissues, patients or disease states.  Bioinformatic analyses of all 

publicly available EST data are more comprehensive but are limited by the coverage of 

existing libraries and other problems such as end bias.  The EST and cDNA libraries 

that are publicly available were not specifically intended to provide an accurate and 

consistent comparison of tissues or the progression of disease states, and often 

represent pools of individuals or cell types.  Furthermore, although the use of EST and 

cDNA data to study splicing can be effective and has led to significant advances in our 

knowledge of AE it remains expensive and time consuming to create and sequence 

libraries of sufficient depth to quantitatively survey the transcripts present in samples 

representing several conditions.   

Experimental approaches have recently been developed to specifically enrich 

libraries for alternative transcripts and thus increase the discovery of novel transcripts.  

One approach involves the construction of alternative splicing libraries (ASLs) 

representing differentially expressed exons from pairs of biological samples110.  Briefly, 

this protocol involves creating two cDNA libraries from cytoplasmic RNA, one from each 

of the samples to be compared.  These two libraries are then processed such that 

single stranded sense DNA molecules are generated from one library and single 

stranded antisense DNA molecules are generated from the second library.  The two 

libraries are then mixed to allow hybridization and formation of heteroduplex or ‘loop’ 

structures.  This can occur in the event that a transcript from one library contains exon 

content not found in the corresponding transcript present in the second library.  Hybrid 

molecules containing these loop structures are then selectively captured with biotin 

labeled random 25-mers which are purified on streptavidin conjugated magnetic beads 

and the resulting alternative transcript enriched cDNA population is cloned and 

sequenced.  Use of this approach to compare melanocyte and melanoma cell lines 

identified 662 AS events representing all of the major categories of AS and differential 

splicing between the two cell lines was confirmed by RT-PCR for 73% of candidate 

exons.  A comparison of this library construction approach to one without the splicing 

selection step suggested a ~40-fold enrichment for AS events.  Thill et al.111 recently 

described a similar method, ‘ASEtrap’ for the construction of libraries enriched for 

alternative splicing events from a single RNA sample (rather than from a comparison of 

two samples).  This method also utilizes the formation of loop structures in cDNA 

heteroduplexes caused by alternative transcripts of a single gene within the sample.  



 21

These loops are captured by a recombinant Escherichia coli single-stranded DNA 

binding protein and then cloned and sequenced.  Comparison of ~10,000 sequences 

generated from either an ASEtrap library or a control library revealed a ~10-fold 

enrichment for AS events in the ASEtrap library.  A third approach for enrichment of AS 

isoforms (EASI) was recently proposed as a simpler version of the ASEtrap method 

which can be rapidly employed to comprehensively profile all of the isoforms of a single 

target gene112.                   

1.4.3.3. Sequence-tag based methods 

The simplest way to overcome the issues of poor representation of rare transcripts and 

lack of quantitative power in sequence based methods such as EST and full-length 

cDNA sequencing is to increase the number of sequences available for analysis.  Serial 

analysis of gene expression (SAGE)113, 114 has been used as an alternative to EST 

sequencing and libraries as large as several hundred thousand 115, 116 or millions117 of 

tags have been reported.  SAGE involves double stranded cDNA synthesis with an 

oligo(dT) primer, followed by digestion of the resulting cDNA with a restriction enzyme 

predicted to result in at least one cleavage per transcript (typically NlaIII).  The resulting 

fragments are captured at the 3′ end by oligo(dT) primers coupled to streptavidin beads, 

and a type II restriction enzyme (e.g. MmeI) which cuts outside its recognition 

sequence, is used to create fragments of a fixed length (up to 21 bp) which are 

concatenated, cloned into a vector and sequenced.  Each sequence read thus produces 

30-45 tags corresponding to the 3′ most NlaIII site of transcripts from which they were 

derived (Figure 1.6).  By generating sufficiently large numbers of these reads, a 

quantitative and digital form of expression data is produced with the number of tags 

mapped to each genomic locus representing the expression level of that gene.  This 

form of data has been shown to have a moderate correlation (r = 0.5 – 0.8) of 

expression values when compared to microarray-based approaches118, 119.  Two of the 

largest initiatives to make use of this technology are the Cancer Genome Anatomy 

Project115 and the Mouse Atlas of Gene Expression Project116, each producing several 

million tags from a wide range of cell types for human and mouse respectively.  Analysis 

of these large datasets has resulted in the identification of differentially expressed 

genes associated with disease, development or a specific tissue as well as the 

discovery of novel genes and transcript variants.  An analysis of the SAGE tags 
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mapping to ~13,000 EnsEMBL genes produced a prediction that 64% of genes exhibit 

AE and many of the variants observed were significantly differentially expressed in 

specific tissues or developmental stages in mouse116.  Several bioinformatic tools to 

assist in the analysis and visualization of SAGE data have been developed115, 120.  Of 

these, only ‘SAGE2Splice’ was specifically designed to identify novel splice junctions in 

SAGE tags but is limited in its ability to profile exon connections by the fact that only 5-

6% of tags span a splice site121.  The disadvantages of SAGE include the theoretical 

occurrence of multiple tags per gene from incomplete digestion and the short length of 

each tag, both of which complicate the process of mapping tags to the gene from which 

they were expressed.  Distinguishing tag artifacts created by mis-priming during library 

creation from tags derived from the use of alternative polyadenylation sites, alternative 

splicing or polymorphisms in restriction enzyme sites is also potentially problematic.  

Finally, because SAGE library construction involves the capture of tags corresponding 

to restriction enzymes sites closest to the 3′ end of each transcript, any variation 

observed is heavily biased towards the 3′ end of genes. 

A complementary approach to SAGE, cap analysis of gene expression (CAGE), is 

used in a way similar to SAGE to profile the 5′ end of transcripts and thereby can be 

used as a means of identifying alternate promoter usage122.  Briefly, transcripts are 

captured by their 5′ cap (a modified guanosine nucleotide) and used to generate DNA 

tags of 20 nucleotides in length which are concatenated, cloned and sequenced.  Each 

sequenced tag corresponds to the 5′ end of a single mRNA transcript and as with 

SAGE, the short length of each tag allows an increase in throughput and therefore 

depth of sampling and corresponding reduction in cost.  By capturing many tags from a 

single gene the use of alternate transcription initiation (ATI) sites and their 

corresponding promoters can be catalogued.  Generally 55 - 65% of sequenced tags 

can be unambiguously mapped to the genome122.  Analysis of 7.2 and 5.3 million CAGE 

tags generated from ~200 human and mouse tissues respectively suggests that the use 

of ATI sites is a common feature of protein coding genes and often results in modified N 

termini with potentially distinct functions123.  In both human and mouse, these tags form 

approximately 200,000 tag clusters which map to ~35,000 loci and ~80% of known 

protein coding loci are covered by at least one tag cluster.  When only protein coding 

genes were considered, 58% were found to make use of alternative promoters and 93% 

of these were predicted to result in the use of distinct start codons which for some 
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genes occurred in a tissue specific manner.  Hierarchical clustering of expression levels 

for all tag clusters revealed distinct global patterns of promoter usage associated with 

specific tissues, particularly lung, brain and liver. 

Experiments that use both SAGE and CAGE have been proposed to allow 

independent profiling of the 5′ and 3′ ends of transcripts expressed in a single tissue 

sample124.  An interesting extension of the 3′ profiling of SAGE and 5′ profiling of CAGE 

described above has been reported by Ng et al.125 who developed ‘gene identification 

signature’ (GIS) analysis.  This approach allows the simultaneous profiling of the 5′ and 

3′ end of a transcript by generating paired-end-tags (PETs) from random cDNAs 

followed by tag concatenation and sequencing.  The advantage of this method over 

combining SAGE and CAGE is that each PET sequence represents a linked 

transcription start and end position from a single mRNA rather than two independent 

pools of tags representing start and end positions.     

1.4.3.4. Massively parallel sequencing methods 

The emergence of ‘next generation’, massively parallel sequencing technologies126 has 

enhanced the potential of sequence based approaches for profiling transcript diversity.  

The parallel sequencing of many templates on a single compact array was first 

published in 2000 by a group at Lynx Therapeutics Inc.127.  This approach, described as 

massively parallel signature sequencing (MPSS) involved the creation of an array of 

microbeads, each coupled to a single DNA template, which were used for a ligation-

based sequencing protocol involving fluorescently labeled adaptors.  Monitoring of 

fluorescent signals as the sequencing reaction progresses was accomplished by a 

charge-coupled device (CCD) detector and image analysis, resulting in the 

simultaneous generation of millions of short sequences.  This entire process took place 

in a flow cell with the array of microbeads remaining in a dense monolayer and reagents 

flowing past.  The accuracy of this platform for profiling gene expression was first 

assessed by generating ~1.6 million sequences from cDNAs derived from a human cell 

line and comparing these to EST sequences generated by conventional Sanger 

sequencing.  The resulting qualitative comparison of the most highly expressed genes 

seemed promising but far from definitive and early MPSS experiments identified strong 

biases related to the GC content of expressed sequences128.  Lynx Therapeutics Inc. 

has since been acquired by Solexa Inc., which in turn has been acquired by Illumina 
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Inc.  The Solexa/Illumina platform has seen rapid and continuous improvements in read 

quality, length and throughput and has resulted in several publications (some of which 

are discussed below). 

A competing platform that may also be described as a massively parallel sequencing 

approach has been developed by Roche/454 Life Sciences Inc.129-131.  This platform, 

performs sequencing-by-synthesis using a fiber-optic slide with approximately 1.6 

million wells (each 44 µm in diameter).  The sequencing reaction itself is referred to as 

‘pyrosequencing’, in which fluorescently labeled nucleotides are sequentially washed 

over the slide and incorporation of each base into a growing complementary strand of a 

single stranded template DNA is simultaneously observed for all wells by a CCD 

detector.  Homopolymeric sequences in the template DNA result in the incorporation of 

multiple nucleotides in a single cycle and must be resolved by analyzing the magnitude 

of fluorescence for each well. 

A third platform, referred to as ‘SOLiD’ offered by Applied Biosystems Inc., became 

available more recently and initial reports suggest that its ability to profile transcriptomes 

is comparable to that of the Solexa and 454 platforms132, 133.  To generate sufficient 

template for DNA sequencing, this platform uses emulsion PCR amplification of single 

DNA molecules on beads, which are then deposited on a slide surface.  The 

sequencing reaction then proceeds by repeated ligation of fluorescently labeled di-base 

probes (e.g. C-A, C-T, etc.) in such a way that each position is interrogated by two 

independent ligation reactions.  

Each of these three ‘next generation’ sequencing platforms, have achieved dramatic 

improvements in read length (36-500 bp are now possible depending on the platform) 

throughput (0.5 - 20 Gb of sequence data per run), and quality.  Additional 

improvements in flexibility have been provided by the adoption of ‘paired-end’ reads, 

bar-coding to allow multiplexed analysis of multiple samples within a single sequencing 

library, and improved library construction protocols to allow analysis of small quantities 

of nucleic acid. 

Several groups have used these sequencing platforms to sequence SAGE-like 

libraries consisting of tags representing transcript ends or PETs117, 134-136.  These 

experiments are conceptually similar to SAGE but are able to produce increased tag 

counts at reduced cost and have been found to produce gene expression estimates that 

are similar to longSAGE data (R2 = 0.96)136.  Gowda et al.134 used the approach to 
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profile the 5′ ends of Maize transcripts and described a considerable potential for 

identifying alternate transcript initiation sites.  Ng et al.135 used a combination of PET 

library construction and 454 sequencing to generate over 450,000 PETs from the 

human breast cancer cell line, MCF7.  Of these, ~136,000 could be mapped 

unambiguously to ~21,000 unique loci, and 25% of these represented candidate novel 

alternative transcript initiation sites or alternative polyadenylation sites.  An experiment 

described by Bainbridge et al.131 used Roche/454 sequencing to profile full-length 

transcripts expressed in polyA+ purified RNA from the LnCAP prostate cancer cell line.  

This direct sequencing of full-length transcripts avoids the artifacts associated with 

library construction and cloning and does not limit the resulting ESTs to the ends of 

transcripts.  The approach was successful in identifying 25 novel AS events involving 

known exons but the short read lengths (average of ~100 bp), overrepresentation of a 

small number of highly expressed genes, and unexpected bias towards transcript ends 

limited the number of reads which were informative of splice site selection. 

More recent reports have described the application of massively parallel RNA 

sequencing (known as ‘RNA-Seq’ and whole transcriptome shotgun sequencing or 

‘WTSS’) using the 454, Solexa and SOLID platforms to perform ab initio gene 

annotation137, 138 and survey transcript diversity across various diverse tissues in 

human14, 15 and mouse139, human embryonic kidney and B cell lines140, a prostate 

cancer cell line141, a cervical cancer cell line142, undifferentiated mouse embryonic stem 

cells and embryoid bodies132 and mouse blastomeres133.  Analysis of RNA-seq data 

revealed that 92-95% of multi-exon genes were alternatively spliced in at least one of 15 

tissues and cell lines (where the minor isoform had an expression level of at least 15% 

of the major isoform)15.  Variation in splicing was found to be more prevalent between 

tissues than within the same tissue from different individuals14, 15.  While many isoforms 

might represent tissue- or stage- specific markers, transcriptome analysis of a single 

mouse blastomere still revealed hundreds of genes that expressed at least two 

isoforms133.  A comparison of mouse tissues similarly found that the majority (93%) of 

isoform pairs were found to be co-expressed in the same tissue rather than each being 

distinct to different tissues139.  It was also noted that when expression of a particular 

isoform ‘switched’ predominantly from one isoform to another between tissues, the 

result was often the expression of a modified ‘full-length’ protein, as opposed to a 

truncated protein or a transcript that would be subject to NMD15.  This observation, and 
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the enhanced level of cross-species conservation for exons involved in these tissue-

regulated isoforms, provide evidence for the hypothesis that alternative expression 

increases the cell’s repertoire of functionally distinct proteins.  While it is likely that many 

AE events generate functionally distinct proteins, AE is also a mechanism for modifying 

the level of gene expression.  While gene expression is traditionally thought to be 

controlled by factors that initiate or maintain transcription, AE may provide an additional 

layer of regulation whereby a gene may be inactivated by switching to a truncated or 

NMD form without actually decreasing the rate of transcription from the locus.    

1.4.4. Limitations of transcriptome analysis methods 

1.4.4.1. Limitations of microarray approaches 

Many of the technical limitations of microarray analysis stem from the physical 

limitations of hybridization reactions.  For example, the length of oligonucleotide probes 

used on the array must be optimized in conjunction with the hybridization conditions and 

must be long enough to ensure sequence specificity (i.e. short sequences are more 

likely to be redundant to multiple genes).  One consequence of this is that short regions, 

such as those corresponding to small exons, may not be effectively targeted by an 

oligonucleotide.  Another consequence of the physical nature of microarray 

hybridizations is that they typically require large amounts of RNA (> 5-10 µg), 

necessitating either large sample inputs or sample amplification.  Furthermore, isoforms 

with low levels of expression may be difficult to distinguish from the levels of 

background ‘noise’ common to microarray hybridization.  Much of this noise may be 

attributed to cross-hybridization between the probe and sequences from several genes, 

particularly members of gene families.  Similarly, isoforms with small differences in 

sequence content such as minor shifts in donor or acceptor site usage or 

inclusion/exclusion of small exons may be difficult or impossible to detect using 

microarrays due to the high degree of cross-hybridization expected for sequences with 

only minor differences.  Cross-hybridization is also problematic when profiling exon-

exon junctions, as multiple exon junctions representing isoforms from a single locus will 

by definition share at least ½ of their sequence.  Finally, of particular relevance to the 

study of alternative isoforms is the fact that design of a microarray to detect splicing 

events is largely dependent on existing gene annotations and the accuracy of exon 

boundaries present in those gene models. 
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1.4.4.2. Limitations of sequencing approaches 

Although sequencing approaches successfully address many of the challenges 

encountered with the use of microarrays for AE analysis, they too suffer from limitations.  

The primary limitation of sequencing approaches for transcriptome analysis relates to 

their reliance on random sampling of transcriptome space.  Only 3-5% of the transcripts 

in a cell are mRNA molecules, with the remaining transcripts representing a few highly 

expressed ribosomal RNA (rRNA) species.  The majority of rRNA transcripts can be 

removed by positively selecting for polyA+ sequences or less efficiently by post-

sequence computational filtering of rRNA species.  Assuming efficient removal of rRNA 

transcripts, the remaining mRNAs consist of thousands of unique transcripts (at least 

10,000) with a large difference in expression level between the least and most abundant 

mRNA transcripts (at least 105) 14, 15, 140.  The high degree of transcript diversity and 

large dynamic range of expression present a significant challenge for sequencing 

methods that involve random sampling of a cDNA library.  For example, among the 

mRNA transcripts remaining after rRNA removal, it is estimated that as much as 55% of 

these are redundant copies of the same mRNAs derived from only 4% of all protein 

coding loci143.  Thus, even if a large number of tags can be produced efficiently, 

sequence based approaches are still faced with the problem of sequencing many 

transcripts from a few loci at the cost of failing to sample many other loci.  For example 

in a test of Roche/454 Life Sciences GS20 sequencing for the profiling of a cDNA 

library, we found that ~110,000 reads could be mapped unambiguously to ~8,000 

EnsEMBL loci but 39% of these corresponded to only 20 loci131.  In the analysis 

described in Chapter 3, I found that 50% of all reads correspond to the top 5% of 

protein coding loci.  In addition to this issue of transcript redundancy, because of the 

complexity of mammalian biology, creating even a snapshot of the human transcriptome 

remains a daunting challenge.  Assuming an average transcript size of ~2000 bp and an 

average of 300-500k transcripts per cell, sequencing of a single cell type representing 

just one of hundreds of possible cell types to an average depth of 1X would theoretically 

require at least ~1 billion bp of sequence144.  Continued improvements in massively 

parallel sequencing technologies have largely overcome these sampling limitations and 

are proving invaluable in characterizing even infrequently expressed transcripts.  

Furthermore, the combination of sequencing technologies with library normalization 

strategies such as ‘deep well’ pooling to ensure equal representation of isoforms and 
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maximize isoform discovery has been successful in avoiding the sampling bias issue, 

albeit at the cost of complicating library construction145.   

One limitation of both splicing microarrays and massively parallel RNA sequencing is 

that determining the connection of exons is limited to neighboring exon pairs and the 

complete connectivity of the exons of a transcript must be inferred from these pairings.  

Cloning and full-length sequencing remains the best way to unambiguously determine 

the complete structure of individual transcripts.  Improvements in sequencing platforms 

that allow sequencing of complete cDNA sequences rather than short fragments may 

overcome this limitation in the future.  

An additional limitation of some sequence based approaches is the bias introduced 

by bacterial cloning constraints in the construction of EST or full-length cDNA libraries.  

Certain sequences are not well tolerated by bacteria and therefore these sequences are 

under-represented in sequence libraries.  However, massively parallel sequencing 

platforms do not rely on bacterial cloning for library construction, and thereby avoid such 

bias.   

One approach to overcoming the disadvantages and biases (summarized in Table 

1.1) inherent to both sequencing and microarray approaches for profiling transcript 

diversity has been to combine complementary computational and experimental 

approaches146.  As a result of these efforts and the continued compilation and synthesis 

of disparate genome-scale expression data sets in resources such as the UCSC147 and 

EnsEMBL148 genome browsers, researchers now have access to a highly detailed 

survey of the diversity of transcripts expressed from many loci of many eukaryotic 

species. 

1.4.5. Functional characterization of mRNA isoforms 

Due to methodological advances and increases in information as described above, 

researchers are now increasingly able to identify the complex pattern of alternative 

transcripts generated by the genes under study in their laboratory.  It is therefore 

becoming increasingly important to have a wide range of tools and protocols to verify 

expression measurements from high-throughput microarray for sequencing assays and 

characterize the function of specific isoforms. 

Verifying the relative mRNA expression of known or predicted isoforms of a single 

gene in a tissue of interest is typically accomplished by Northern blot analysis or by 
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semi-quantitative or quantitative RT-PCR.  Similarly, protein-level expression of 

isoforms with significantly different masses can be confirmed by SDS-PAGE and 

Western blot analysis with an antibody that recognizes a constitutive portion of the 

gene.  Visualizing the spatial expression of isoforms at the mRNA level can be 

accomplished by in situ hybridization with digoxigenin labeled riboprobes specific to 

each isoform149.  Visualizing spatial expression of isoforms at the protein level by 

immunohistochemistry is limited by the availability of antibodies specific to the isoforms 

of interest and the labor-intensive, time-consuming nature of raising novel antibodies to 

specific isoforms.  Although databases of antibodies have been described, considerable 

effort may still be required to determine which, if any available antibodies will distinguish 

between the isoforms of interest150.  In vivo methods of visualizing alternate isoforms 

have been described for model organisms such as C. elegans151 and mouse152. 

Functional characterization of particular isoforms can be performed in a number of 

ways.  Many studies have attempted to infer the function of isoforms by observing 

differences in expression level, subcellular localization, post-translational modifications 

and other modifications in cells where the gene of interest is thought to play some 

role153, 154.  Examples of direct manipulation of the expression of an isoform are less 

common.  In principle an RNA interference based approach should be able to 

specifically ‘knock down’ an isoform of interest in cell culture and considerable 

resources exist to facilitate these kinds of experiments155.  Resources to facilitate over-

expression of specific isoforms by transfection of open reading frame containing 

expression vectors into suitable cell lines have also been reported156, 157.  Creation of 

transgenic mice expressing a particular isoform has also been widely reported158, 159.  

Altering expression of an isoform can be used in conjunction with studies of particular 

functions of interest such as apoptosis or cell survival assays.  Differences in the 

protein-protein interactions of alternate isoforms can be studied by methods such as co-

immunoprecipitation of expected partners or immunoprecipitation of tagged isoforms 

followed by HPLC-MS to identify interacting partners160.  Studying multiple isoforms in 

these kinds of experiments, although more labor intensive, will become increasingly 

common as researchers become aware of the transcriptional diversity generated by 

genes of interest. 
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1.5. Functional significance of alternative expression 

As large scale experimental and bioinformatic approaches have begun to identify the 

diversity of gene expression across the genomes of several species, parallel efforts to 

study the functional significance of this diversity have also been reported.  One area of 

intense debate has been the effort to estimate the proportion of AE events that are 

functional compared to that which represents ‘transcription noise’.  Other areas which 

have generated several publications include the effort to identify general themes by 

which AE influences cellular biology, the study of particular functional classes of genes 

that are affected by AE and its potential role as a means of globally regulating gene 

expression.  Finally, the implications of AE for the study of human disease has received 

increasing attention in recent years.  For example, the emergence of an ‘alternative 

expression code’ has implications for the identification of potential disease mutations; 

increased knowledge of transcriptome complexity will influence strategies for identifying 

therapeutic targets; and the mechanisms of RNA processing itself are being considered 

as a means of directly modulating disease states.  The functional significance of 

alternative expression is discussed in detail in the following sections. 

1.5.1. How much alternative expression is functional? 

The percentage of alternative transcripts with biologically relevant functions remains a 

topic of debate.  Detailed studies of single genes or pathways have identified differing 

functions for alternate isoforms.  Although these single gene studies hint at the 

mechanisms by which AE allows a diversity of functions to be encoded from a single 

locus, they do not confirm the role of AE as a global means of generating biologically 

relevant diversity in the proteome.  To address this outstanding question, a number of 

studies have attempted to use conservation of AE events between species to infer the 

fraction of all events that are functionally significant as opposed to transcription ‘noise’ 

caused by random splicing errors or observations of immature transcripts derived from 

the nucleus.  The resulting estimates for the percentage of alternative events 

represented in EST data that are conserved between human and mouse range from 11 

to 61%.  To estimate the subset of alternatively spliced exons that are functional, one 

group used ESTs to identify exon skipping events which occur in both humans and 

mouse38.  Of a total of 980 exons identified as alternatively skipped in humans, 25% 

were also skipped in mouse.  The characteristics of the conserved subset of alternate 
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exons were found to be distinct from those of the non-conserved exons and suggested 

that the majority of non-conserved events are non-functional.  Another study observed 

AS events in 2,603 human genes and their mouse orthologs62.  The authors found that 

of all the orthologous exons that are alternatively spliced in human or mouse, 16% are 

alternatively spliced in both species, and the remaining 84% represent species-specific 

events.  By considering events represented in multiple transcripts from multiple tissues 

for both human and mouse, the authors estimated that at least 24% of these events 

represent true examples of species-specific AS.  Thanaraj et al.161 argued that studies 

which utilize EST data will underestimate the conservation of AS between mouse and 

human because they rely heavily on the level of transcript coverage.  In other words, 

conservation of a splicing event observed in human is often not observed in mouse 

simply because the EST sampling depth is too low and by chance it has not been 

observed.  These authors conducted a conservation study similar to those previously 

described but also developed a statistical model to estimate the ‘true’ level of 

conservation by extrapolating from existing levels of transcript support.  Using this 

model, they estimated that 61% of alternatively spliced junctions are conserved 

between mouse and human.  In contrast, Yeo et al.35 estimated that only 11% of the 

alternatively spliced exons in humans are conserved in mouse and suggested that the 

majority of AS events seen in EST/cDNA data represent aberrant splicing, disease-

specific splicing or events that are functionally relevant but specific to humans.  One 

theme that emerges from these works is the considerable disagreement in the literature 

as to what percentage of AE is truly conserved and indeed what percentage of non-

conserved events might be functional but species-specific events that emerged since 

the divergence of human and mouse 85 million years ago.  AE events that are not 

conserved between human and mouse tend to be expressed at lower levels and may 

serve as an evolutionary mechanism for testing novel proteins without disrupting the 

function of the canonical isoform and interfering with the normal functions of the cell62, 

162.  The ‘lesser’ form is thus unlikely to be detrimental, is relatively free of constraints, 

can evolve rapidly and in some cases gain a function that is driven by positive selective 

pressure.  It has been suggested that incorporation of novel exons or boundaries in this 

way represents a major form of gene evolution which is distinct from evolution by gene 

duplication.  This hypothesis is based on the observation that genes which are part of 
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gene families that have arisen by duplication generally have few alternate transcripts, 

whereas ‘singleton’ genes have high rates of AE163, 164. 

It is reasonable to assume that most deeply conserved AE events are functional, 

that some as yet unknown fraction of non-conserved events are also functional and the 

remaining fraction are not functional.  Although the percentage of events falling into 

each of these categories remains an area of active debate, any study of AE will certainly 

be complicated by some level of expression ‘noise’ with unknown functional relevance. 

1.5.2. How does alternative expression influence the proteome? 

The number of AE events that result in a protein with a modified biological function is 

currently a topic of debate.  The concept that this subset of AE events could increase 

the functional diversity of the human genome by generating a combinatorial output of 

proteins from a genome of perhaps less than 30,000 genes has gained acceptance in 

recent years9, 11, 12.  AE of specific genes has been shown to regulate transcript 

abundance via nonsense mediated decay, alter the subcellular localization of proteins, 

influence enzymatic activity, modify protein stability, and alter posttranslational 

modifications (Reviewed in 165).  One of the most striking examples of AE producing 

diverse products from a single gene locus was observed for the Drosophila 

melanogaster DSCAM gene166.  When transcribed, this gene’s exons are selected from 

a set of mutually exclusive alternate exons at four positions.  Specifically, exons 4, 6, 9 

and 17 in each transcript are selected from 12, 48, 33, and 2 possible alternatives 

respectively.  This remarkable arrangement is capable of producing 38,016 possible 

unique DSCAM transcripts.  Cloning and sequencing a sample of 50 random cDNAs for 

this gene yielded 49 unique transcripts which result in distinct proteins with differing 

abilities to form neuronal connections.  A comparably dramatic level of diversity was 

recently described for the human basonuclin 2 (BNC2) locus, a zinc finger protein which 

is expressed ubiquitously and thought to function in RNA processing167.  All 23 exons of 

this gene are alternatively used and each transcript independently uses one of six 

promoters and four polyadenylation sites.  To date more than 100 distinct BN2 mRNA 

isoforms have been produced, but a staggering ~90,000 are possible. 

AE may result in the production of protein isoforms that are functionally distinct in a 

number of ways.  It has been suggested that this diversity is realized in part through 

alterations in protein-protein interactions.  Specific examples of genes such as SMRT 
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which produces isoforms differing in their interaction with thyroid hormone receptors 

have been studied in detail168.  Furthermore, global analysis of EST data has shown 

that AE events disproportionately affect domains involved in protein-protein 

interactions97.  Although only 10% of AS events can be shown to completely remove or 

insert a known functional domain, Wang et al.169 found that many of the remaining 90% 

of AS events are predicted to effect loop structures in proteins which are thought to 

mediate protein-protein interactions.  Yura et al.170 also found that the majority of 

changes observed in isoforms do not affect complete protein domains and based on an 

analysis of the 3D structures of alternative isoforms concluded that AE modulates the 

activity of protein networks and associated signaling pathways indirectly by altering the 

structural core and resulting stability of proteins.  For example, replacing a stable 

domain with an unstable domain in a protein could alter the spatial orientation of other 

domains resulting in a protein with a distinct conformation and affinity for interaction 

partners.  These observations have led to the general speculation that AE outcomes 

profoundly influence the protein interaction network of a cell.  Supporting this hypothesis 

is the observation that genes with large numbers of isoforms tend to have many 

interactions and represent central nodes in protein-protein interaction networks (Hughes 

and Friedman, 2005).  In addition to modifying protein interactions, another common 

effect of AE is the modification of subcellular localization in which alternative isoforms 

differ in their signal peptides and/or transmembrane domains171, 172.  Such modifications 

can result in post-translational transport to different cellular compartments or the 

production of a soluble protein rather than a membrane bound one. 

As discussed, AE can presumably influence protein interactions, protein stability and 

subcellular localization and through each of these types of effects has the potential to 

influence signaling pathways.  These observations suggest some of the general modes 

by which AE influences the function of any protein.  Efforts to identify whether genes of 

particular functional classes are more likely to be modulated by AE have also been 

reported.  For example, Takeda et al.87 used a comprehensive analysis of 55,000 

cDNAs to determine that the gene classes (according to Gene Ontology terms) which 

are most affected by AE are: nucleic acid binding, transcription factor activity, DNA-

binding, protein tyrosine kinase activity, transporter activity, zinc ion binding, insulin-like 

growth factor-binding, ATP binding, catalytic activity, and oxidoreductase activity.  

Analysis of cDNA, EST and MPSS data in mouse found that 75% of all kinases and 
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phosphatases have alternate isoforms and analysis of these variants revealed several 

tethered, soluble, and secreted isoforms which were predicted to be catalytically 

inactive and therefore might act as dominant negative forms by competing with other 

isoforms for ligands and substrates173.  Similar studies have demonstrated the 

prevalence of functional isoforms within the G protein coupled receptor family174, zinc-

finger-containing proteins175 and apoptosis genes176.    

Finally, it is important to note that production of a transcript variant which does not 

seem to produce a functionally distinct protein may still have functional consequences 

for the cell by altering the level of gene expression.  For example, AS is speculated to 

act as a gene expression ‘switch’ whereby genes are effectively turned off by changes 

in the expression of a splicing factor which disrupts their normal splicing and silences 

their expression by triggering nonsense mediated decay (NMD).  NMD targets 

transcripts with premature termination codons, which are recognized by the transcription 

machinery and degraded rather than producing a potentially detrimental protein product.  

In this system, transcription of a gene may still occur at the same rate but since the 

mRNA products are quickly degraded the gene’s function is essentially silenced.  

Recent studies have suggested that coupling of NMD and AS is an important but 

overlooked mechanism of regulating gene expression177-179.  In addition to NMD, which 

is triggered by events within the coding region of a transcript, AE within UTRs may also 

act as a global means of controlling gene expression by altering mRNA stability and 

translational efficiency in a tissue specific manner180.  In this case a valid mRNA is 

produced and would seem to result in production of a normal protein but due to 

sequence modifications outside the coding region, the stability of the transcript or its 

rate of translation is modified. 

1.5.3. Implications of alternative expression for the study of disease 

The role of AE in human disease has received increasing attention in recent years181-184.  

In particular, the apparent existence of a defined ‘expression code’ has implications for 

the identification of potential disease-causing genomic variants (e.g. point mutations, 

insertions, deletions).  This code can be considered as the combination of (1) regulatory 

sequence motifs of a transcribed region and (2) RNA and protein factors which 

comprise the machinery responsible for correct transcription initiation, splicing and 

polyadenylation.  Genetic changes that have the potential to alter normal expression 



 35

and contribute to human disease can thus be classified into two groups, ‘cis-acting’ 

variants which affect sequence motifs within each gene locus and ‘trans-acting’ variants 

which affect components of the transcriptional machinery itself.  Examples of human 

disease involving both of these classes of variants have been reviewed in the context of 

neurological disorders and cancer25, 185. 

Disease associated transcripts may arise by the occurrence of cis-acting mutations 

within the expression regulatory elements of a single gene (Figure 1.1) and many 

examples of heritable diseases have been shown to result from point mutations leading 

to aberrant splicing of a gene.  Such mutations may result in aberrant skipping of a 

canonical isoform, inclusion of a ‘cryptic’ exon that is not normally used or simply an 

alteration of the ratio of alternative isoforms normally expressed186.  According to the 

Human Gene Mutation Database, ~10% of all disease associated mutations involve 

splice sites187.  In addition to splice site mutations, many other mutations may affect 

splicing regulatory sequences such as exonic and intronic splicing enhancers and 

silencers188.  For example, analysis of the effects of mutations in the well studied human 

disease genes ATM (ataxia-telengiectasia, OMIM #208900) and NF1 

(Neurofibromatosis type I, OMIM #162200) suggests that as many as 50% of all exonic 

mutations, silent or otherwise, exert their influence by causing splicing defects189, 190.  

Many of these mutations are at splicing regulatory sites, not the actual splice sites.  Until 

recently the only mutations associated with disease that were predicted to affect splicing 

of a gene product were those associated with the splice acceptor and donor sites 

specifically.  Increasing knowledge of the additional motifs which influence AE has 

expanded the number of mutations which are predicted to affect transcription.  Many 

non-synonymous mutations may have a more pronounced effect than causing a single 

amino acid change by influencing the inclusion or exclusion of entire exons.  Similarly, 

many synonymous mutations or mutations outside of the coding sequence may 

influence exon content.  A number of studies have recently begun to investigate the 

effects of mutations in known disease genes at positions other than the actual splice 

sites and preliminary attempts to predict and validate the effect of point mutations on AS 

in splicing regulatory motifs such as exonic splicing enhancers (ESEs) have been 

reported191-194.  Some of these studies rely on the observation of mutations and their 

effect on the splicing of specific genes191.  Others attempt to computationally predict the 

effect of mutations occurring within exons or introns on the splicing outcome of a 
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gene192-194.  Similar efforts are needed to understand the true implication of mutations 

on the use of alternate transcription initiation sites and polyadenylation sites.  In other 

words, although it has been accepted that polymorphisms or mutations affecting 

‘regulatory’ sequences may affect the tissue- or developmental-specific expression level 

of a gene, it is now becoming clear that an entirely additional set of ‘regulatory’ changes 

act by influencing AE without necessarily changing the level of expression. 

Reports documenting disease associated mutations that occur in trans-acting factors 

of the splicing machinery and that result in the aberrant processing of several genes are 

less common than those involving cis-acting mutations but a few examples are well 

documented.  Two forms of the familial disease Retinitis pigmentosa, RP18 and RP13 

are caused by mutations in precursor mRNA processing factors 3 and 8 respectively 

(OMIM #601414 and #600059).  For some diseases associated with aberrant splicing 

such as certain cancers, it is often not known whether a cancer-associated AE event 

arises because of acquired or inherited mutations in cis-acting transcription regulatory 

motifs195 or changes in the expression of trans-acting splicing factors196, 197.  However, 

in some cancers such as chronic myeloid leukemia (CML) the evidence for involvement 

of splicing factors is becoming more convincing.  The Bcr-Abl fusion product of CML has 

been shown to cause changes in the expression of genes involved in pre-mRNA 

splicing, resulting in the aberrant splicing of a cascade of other genes which in turn 

contributes to pathogenesis198.  Bcr-Abl dependent over-expression of the splicing gene 

SR Protein Kinase 1 (SRPK1) was observed in CD34+ blood cells and this over-

expression was associated with aberrant splicing of apoptosis and differentiation genes 

such as Pyk2, SLP65, BTK and Ikaros.  Both the expression of Bcr-Abl and the aberrant 

splicing of Pyk2 were partially reversed by treatment with the kinase inhibitor STI571 

(Imatinib/Gleevec®). 

Regardless of whether the effect is via a cis- or trans-acting effect, the general 

potential for splice variants to act as diagnostic or prognostic markers or novel 

therapeutic targets for complex diseases such as cancer seems promising199.  The 

observation that the genome is capable of producing a dramatic diversity of products 

from a relatively small number of loci has already begun to influence strategies for 

identifying therapeutic targets.  For example, a number of studies have used 

bioinformatic approaches to identify cancer-specific splice variants by analyzing the 

content of human EST, SAGE and microarray repositories200-203.  Increasing the 
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resolution of gene expression screens for therapeutic targets to profile individual exons 

and AE events has the potential to identify previously unobserved and potentially more 

definitive events specific to disease states.  While ‘classic’ differential gene expression 

studies have resulted in useful observations, recent studies have found that differential 

expression of isoforms may be more prevalent in tissue comparisons than whole gene 

differential expression26 and these two groups have limited overlap84.  Thus, the 

application of alternative expression microarrays and deep sequencing platforms to the 

comparison of normal versus diseased tissues, drug responders versus non-responders 

and other relevant comparisons seems certain to yield novel biomarkers which would 

have been previously impractical to detect.  Since AE can create functionally significant 

variants, searching for these variants in target discovery efforts should result in the 

identification of distinct protein isoforms associated with disease which may be more 

useful targets than proteins that are simply up- or down-regulated in disease.  For 

example, the Bcl-x gene is alternatively spliced to form a long isoform which is anti-

apoptotic (Bcl-xL) and a short isoform which is pro-apoptotic (Bcl-xS) and targeting this 

locus by inactivating one isoform or simply shifting the ratio of isoforms has been 

proposed as a cancer treatment57.  Many targets may have evaded detection in 

previous gene-expression studies of disease because of a technological inability to 

profile this kind of transcript diversity from each locus.  The identification of targets for 

the development of small molecule drugs and therapeutic antibodies204 will thus be 

greatly enhanced by considering alternate isoforms and their subtle differences in amino 

acid content.  In addition to the identification of drug targets, AE also has implications 

for pharmacogenomics and there is evidence that polymorphisms which alter splicing 

may underlie differences in drug efficacy and toxicity between patients.  For example, 

the most common polymorphism of CYP2D6, a gene which is responsible for the 

metabolism of at least 40 drugs, results in the aberrant splicing and production of a non-

functional protein from this gene205.   

Targeting specific isoforms with small molecule or antibody therapies is a logical 

extension of current drug design efforts but targeting the transcriptional machinery itself 

has also been proposed as a means of altering gene expression and treating disease.  

Proof-of-principle experiments describing the screening of drugs that target splicing 

factors such as SR-proteins to inhibit aberrant splicing or produce a desired splicing 

outcome have been reported206.  Antisense oligonucleotide therapies to directly 
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manipulate the splicing patterns of specific disease genes have also been described207.  

These molecules can be used to influence splicing in many ways such as preventing the 

inclusion of an aberrant exon by masking a cryptic splice site, or forcing an exon-

skipping event to allow nonsense or frameshift mutations to be by-passed208.  Current 

studies have only begun to address the ways in which an understanding of AE can 

influence the study of human disease by enhancing the identification of therapeutic 

targets, allowing the design of novel types of therapies and predicting the efficacy and 

toxicity of drugs for individual patients. 

1.6. Cancer 

Cancer is a disease in which cells of essentially any tissue become unregulated in their 

cell division and gain the ability to invade other tissues.  The hallmarks of a population 

of cells representing a cancer include: self-sufficiency in growth signals, insensitivity to 

anti-growth signals, unlimited potential for replication, the ability to avoid programmed 

cell death (apoptosis), sustained angiogenesis, and the ability to invade neighboring 

tissues and metastasize to remote locations209.     

In the late 1990’s, cancer overtook heart disease as the number one cause of death 

in Canada, with 1 of every 4 Canadians dying of the disease (Statistics Canada; 1997).  

While overall survival has increased and mortality has decreased for most cancers in 

the past 30 years, it remains a significant cause of morbidity and mortality and therefore 

an active area of health research.  As the occurrence and morbidity associated with 

cancer increases in proportion relative to other diseases, this has important implications 

for cost-control and places great emphasis on the need to improve the efficacy of 

expensive cancer therapies.  Improving cancer outcomes is a multifaceted problem but 

can broadly be summarized as encompassing: prevention, screening to detect cancers 

early, and treatment involving some combination of surgery, radiation therapy and 

chemotherapy.  While each of these are active areas of research, the development and 

optimization of cytotoxic chemotherapies and more recently novel biologic agents are 

most relevant to this thesis.  A concerted application of modern genetics, molecular 

biology, genomics, informatics and other disciplines has lead to the identification of 

novel molecular targets allowing rational design of biologic agents able to attack cancer 

cells with an unprecedented level of specificity (see Figure 1.4 for example). 
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1.6.1. Colorectal cancer 

Colorectal cancer (CRC) is the fourth most common cancer diagnosis but the second 

most common cause of cancer related death (National Cancer Institute of Canada, 

2009).  Screening has proven useful in detecting pre-cancerous polyps that can be 

surgically removed before malignant CRC occurs.  If a patient presents with CRC, 

treatment also typically begins with surgical resection.  Surgery alone is often 

successful in curing patients with stage I and II disease (60-95% five year survival)210.  

Stage I and II CRC is characterized by small minimally invasive to large invasive 

tumours (T1-4) with no nodal involvement (N0) and no metastasis (M0).  Unfortunately, 

58% of patients diagnosed with CRC have stage III disease characterized by nodal 

involvement (T1-4, N1-3, M0) or stage IV characterized by distant metastasis, often to 

liver (T1-4, NX, M1).  For these patients with advanced CRC, the prognosis is 

comparatively poor (25-60% for stage III and <5% for stage IV)210.  These patients 

therefore represent the primary potential beneficiaries of improved therapies.  Currently, 

surgery, including resection of liver metastases is still a common strategy for these 

patients and is often coupled with adjuvant chemotherapy or chemoradiation.  The first 

drug to be used widely in CRC was fluorouracil (5-FU), a cytotoxic nucleotide analog 

that results in RNA and DNA damage that triggers apoptosis (discussed in detail in 

Chapter 4).  For both chemotherapy and chemoradiation, 5-FU remains the core drug 

of choice.  For example, in my own survey of patient records for 279 CRC cases from 

the BC Cancer Agency and Ontario Tumour Bank, 223 (80%) received 5-FU, in a neo-

adjuvant, adjuvant or palliative context (but mostly adjuvant).  The introduction of this 

drug was successful in doubling the median survival of patients with advanced CRC.  

During the 1980’s, 1990’s and 2000’s 5-FU biomodulation (5-FU + leucovorin), 

Irinotecan (a topoisomerase inhibitor), Oxaliplatin (the platinum based DNA cross-

linking), Bevacizumab (VEGF antibody) and Cetuximab and Panitumumab (EGFR 

antibodies) were added to the oncologist’s toolbox.  These additions allowed a further 

doubling of median overall survival210.  While an overall quadrupling of median survival 

is certainly encouraging, this corresponds to an improvement in median survival from ~5 

months to ~20 months for patients with advanced CRC.  In other words, there is 

considerable need for further research to improve existing therapeutic strategies and 

develop novel treatments. 
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1.6.2. Chemotherapy resistance 

Chemotherapy resistance is a common challenge in the treatment of many cancers.  

Resistance simply refers to the failure of a drug to halt tumour growth or kill tumour 

cells.  This resistance may correspond to a sub-population of tumour cells present 

before treatment (intrinsic resistance) or more commonly arises after exposure to the 

drug (acquired resistance)211.  Several mechanisms of drug resistance have been 

proposed.  These mechanisms may apply to all drugs, a class of drugs (e.g. nucleotide 

antagonists), or a specific drug.  In order for any drug to be effective, the drug must be 

successfully delivered to the tumour site, enter tumour cells, remain extant for a 

sufficient period of time to be effective and arrest cell growth or preferably induce cell 

death.  Many drugs also need to be converted from a pro-drug to an anti-tumour form.  

Furthermore, many drugs are toxic to all cells and capable of significant side effects 

which vary by individual according to the effective dose delivered and drug half-life.  A 

major mechanism that influences both resistance and toxicity is metabolism.  A tumour 

may be resistant simply by virtue of an overly active metabolism of the drug that rapidly 

removes or inactivates the drug.  For example, the cytochrome p450 family of enzymes 

are involved in the catabolism and clearance of many drugs211 (often in the liver).  

Assuming a drug does reach tumour cells, the next requirement is to cross the cellular 

membrane.  Some drugs may enter the cell passively while others utilize active 

mechanisms or a combination of both.  For example, nucleotide analogs may utilize 

nucleotide transporters to enter the cell and reduced expression or mutation of these 

genes may confer resistance to the drug.  Once inside the cell, a drug is subject to 

numerous drug efflux pumps.  Increased expression of genes such as MDR1 (P-gp) a 

member of the ABC transporter family can confer multi-drug resistance by pumping out 

a remarkable array of substrates.  Other members of the ABC family are more specific 

in their recognition of substrates but nevertheless resistance to most if not all drugs can 

be conferred by abundant expression of one or more of these genes.  Assuming the 

equilibrium between drug entry and efflux allows some exposure of the cell to a drug, 

the next requirement is often activation of the drug from an inactive- to active- form.  For 

example, drugs belonging to the purine/pyrimidine analog class are converted by 

nucleotide metabolism enzymes to active anti-tumour metabolites.  Reduced expression 

or mutation of these genes can therefore confer resistance.  Assuming entry and 

activation of sufficient quantities of a drug, the next requirement for many drugs is that 
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they interact successfully with a target gene product, often an enzyme.  Drugs which 

target an enzyme required by the cell for survival can be rendered ineffective by 

mutations in the target enzyme that retain enzyme function while preventing binding of 

the drug thereby conferring drug resistance.  In contrast to enzyme targeting drugs, 

many chemotherapies function by causing DNA damage.  Resistance to these drugs 

may involve modifications to DNA repair pathways.  For example, both enhanced DNA 

repair and increased tolerance of DNA damage by the cell’s surveillance systems can 

confer resistance to these types of drugs.  Finally, since the ultimate goal of all  

chemotherapies is to induce cell death, defects in apoptosis pathways represent a 

major potential drug resistance mechanism.   

Considerable research has begun to elucidate the mechanisms of resistance but this 

problem remains an active area of study.  In particular, determining the dominant 

mechanisms and associated genes that confer resistance to specific drugs in specific 

cancers remains a daunting task.  Cases where this information has been used 

successfully to overcome drug resistance are rare but with continued effort remain a 

promising avenue for future improvements to cancer treatment.      

1.7. Thesis objectives and chapter summaries 

The human transcriptome is complex and understanding this complexity is critical to our 

understanding of molecular biology and the application of genomics to improve 

treatment of human disease.  The general aim of this thesis was to develop new 

computational methods to interpret massive transcriptome profiling datasets.  I focused 

on developing methods that facilitate the identification of novel mRNA isoforms and 

changes in the expression level of those isoforms associated with cancer progression.  

Based on the analysis of full-length cDNA sequencing reported in the literature98, 99, 104 

that identified multiple distinct isoforms for many genes, I hypothesized that the current 

estimate of transcript diversity at the typical gene locus was an underestimate.  While 

yielding high quality data, the methods described in these reports were too expensive 

and time consuming to apply to the entire genome.  To address this challenge I took 

advantage of emerging developments in microarray and massively parallel sequencing 

technology to develop novel methods for alternative expression analysis and apply 

these to a study of 5-FU resistant colorectal cancer.  Using these methods my hope was 

to allow the simultaneous examination of the alternative mRNA isoforms from 
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thousands or tens of thousands of gene loci.  A brief summary of the methods I 

developed to achieve this goal (Chapter 2 & 3) and an example of their application to a 

model of drug resistance in cancer (Chapter 4) is provided below. 

The main hypotheses of this thesis were as follows: (1) the number of alternative 

isoforms represented in current transcriptome annotation efforts (e.g. EnsEMBL) is 

greatly underestimated, (2) technological advancements in both microarrays and 

massively parallel sequencing will allow reliable identification and quantification of both 

known and novel isoforms, and (3) the transition from 5-FU sensitivity to resistance will 

be associated with differential expression of entire genes as well as specific isoforms for 

which the overall total change in gene expression might be negligible.  In Chapter 4, I 

describe a detailed characterization of one such event that was identified as a top 5-FU 

resistance candidate in both Chapter 2 and 3.  Specifically, both ALEXA-array and 

ALEXA-Seq analysis identified abundant expression of a novel exon-skipping isoform of 

the gene, uridine monophosphate synthetase (UMPS) in 5-FU resistant cell lines.  A 

concomitant decrease in the abundance of full-length UMPS was also observed in 

resistant cells.  Upon review of a 5-FU pathway from the Pharmacogenomics 

Knowledge Base (http://www.pharmgkb.org/), I noted that this gene is involved in the 

conversion of 5-FU from an inactive form to active anti-tumour metabolites.  By 

sequencing of the entire genomic region of UMPS near the exon skipping event I 

determined that the likely cause for the expression of the novel isoform is a 

heterozygous splice site mutation acquired in 5-FU resistant cells.  I then went on to 

generate 96 full-length sequenced UMPS cDNA clones, representing the canonical 

isoform, the novel isoform identified in Chapters 2 and 3, and eight additional isoforms.  

These isoforms were characterized using bioinformatic techniques and the two most 

abundant isoforms were profiled in a panel of additional cell lines and colorectal cancer 

patient samples.  Additional mutation analysis was also performed.  UMPS was found to 

be recurrently mutated, aberrantly spliced, or under-expressed in 5-FU resistant 

colorectal cancer cell lines. 

In Chapter 2, I describe the development of a tool to allow the generation of custom 

microarrays capable of detecting and measuring the level of specific alternative 

isoforms without necessarily knowing their identity in advance.  This tool, called 

‘ALEXA-array’ (ALternative EXpression Analysis by microarrays) used existing 

transcriptome and genome resources to extract probe sequences corresponding to the 
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individual exons, exon-exon junctions, exon boundaries, and introns of every human 

gene.  Probes were filtered and scored according to melting Tm, folding potential, 

sequence specificity and so on.  Using the ALEXA-array tool, I created a prototype array 

and used it to test a series of hybridization conditions using RNA isolated from brain 

tissue and a single cell line (hybridizations were performed by NimbleGen Inc.).  Based 

on an analysis of these data, I identified the best hybridization parameters offered by 

NimbleGen and proceeded to create a second custom array to compare 5-FU sensitive 

and resistant colorectal cancer cell lines.  The selection of genes for this array was 

based on preliminary analysis of Affymetrix exon array data generated for the same cell 

lines.  Extensive validation of this experiment was conducted by comparison of 

Affymetrix exon arrays and predictions from publicly available expressed sequence 

databases.  I identified a set of candidate alternative mRNA isoforms whose expression 

level was significantly altered between 5-FU sensitive and resistance cells.  I also made 

the ALEXA tool and related databases publicly available by creating a website 

(www.AlexaPlatform.org). 

In Chapter 3, I describe the creation of a method that is conceptually similar to that 

in Chapter 2.  While building on my experience with microarrays, the analysis required 

a novel implementation to accommodate a different data type.  Specifically, instead of 

relying on microarray signal intensities corresponding to hybridization spots on a custom 

designed array, it relied on randomly sampled reads generated from a fragmented 

cDNA library.  I addressed the challenge of trying to synthesize these massive 

sequence data sets by developing a pipeline called ‘ALEXA-Seq’ to obtain expression 

and differential expression information for specific mRNA isoforms.  To assess the 

output of my pipeline I conducted extensive comparisons to both Affymetrix exon array 

data, the ALEXA-array data presented in Chapter 2, and publicly available expressed 

sequence and conservation data.  I also created novel metrics for identifying interesting 

alternative expression events and tools for visualizing and interpreting these findings.  

As in Chapter 2, I generated a list of candidate isoforms that were differentially or 

alternatively expressed between 5-FU sensitive and resistant cells.  I made the 

sequence analysis pipeline, complete analysis and visualization tools available on my 

website (www.AlexaPlatform.org). 

In addition to the work described in this thesis I have been involved in several 

collaborative projects at the Genome Sciences Centre (GSC) which have resulted in 
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publications or accepted manuscripts.  I modified my microarray design platform 

(Chapter 2) to create a custom array for copy number variant analysis which is currently 

being applied to the analysis of ~100 mental retardation trios (affected child, unaffected 

parents) in collaboration with Dr. Jan Freidman at the BC Children & Women’s Hospital.    

More recently, I modified this platform to produce a custom microarray for target array 

capture experiments similar to those described in [212].  My work at the GSC was initially 

focused on analysis of full-ORF cDNA sequences generated for targeted reference 

mRNA sequences as part of the Mammalian Gene Collection effort98, 104, 213.  This work 

was partially responsible for my interest in transcript diversity and influential in the 

development of the sequence based method for transcriptome analysis I describe in 

Chapter 3.  The ‘ALEXA’ database which forms the bases for my microarray design 

platform was also used for bioinformatic analysis in microRNA profiling studies 

performed by Ryan Morin214 and Florian Kuchenbauer215.  I assisted in the bioinformatic 

analysis of copy number variation,  SAGE, and 454 gene expression datasets 

performed by Trevor Pugh216, Asim Siddiqui128, and Mathew Bainbridge131 respectively.  

I contributed bioinformatic support for the integration of publicly available databases into 

the open-access regulatory annotation project ‘ORegAnno’217.   Finally I have 

collaborated with Dr. Sharlene Gill, Dr. David Owen, and Dr. Carl Brown in acquiring 

~120 patient samples as an ongoing validation of the clinical utility of the findings of 

Chapter 4. 
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Figure 1.1. Gene expression (transcription and RNA processing) 
Expression of typical protein-coding genes involves: gene transcription, pre-mRNA 
processing and polyadenylation. Each of these processes is regulated by components 
of the transcription machinery which recognize sequence motifs in the DNA template 
and pre-mRNA molecule. After pre-mRNA processing, mRNAs are exported to the 
cytoplasm where ribosomes translate them into proteins. Abbreviations: (UTR) 
untranslated region; (D) donor site; (A) acceptor site; (SS) splice site; (ESE) exonic 
splicing enhancer; (ESS) exonic splicing silencer; (ISE) intronic splicing enhancer; (ISS) 
intronic splicing silencer. 
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Figure 1.2. Types of alternative expression (AE) 
Gene models are depicted as exons (colored rectangles) connected by introns (black 
lines). Green arrows indicate transcription initiation sites, dotted lines indicate splicing 
patterns and polyadenylation sites are denoted as ‘poly (A)’. The mRNA products 
generated by each type of AE are shown to the right of each gene model. Simple 
transcription is contrasted with alternative transcript initiation, the five major classes of 
alternative splicing, and alternative polyadenylation. In each model, yellow exons are 
constitutive and blue exons are alternative. 
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Figure 1.3.  Splicing acceptor, donor and branch point sequences 
‘SeqLogos’ showing DNA motifs for human splice acceptor, donor and branch sites 218. 
 

 
 
 
Figure 1.4. Identification of an alternative exon with application to cancer 
medicine  
An alternative exon (‘v6’) of the hyaluronate receptor CD44 (colored red) was 
discovered to be preferentially expressed in head and neck, breast and lung cancers219.  
Based on this observation, an antibody, ‘bivatuzumab’ was raised against the amino 
acid sequence encoded by the ‘v6’ exon.  In order to test the efficacy of this antibody in 
treating cancer, it is was coupled to a radioactive isotope (186Re-bivatuzumab) as well 
as to the cytotoxic agent known as maytansinoid mertansine or ‘DM1’ (bivatuzumab-
mertansine).  Both of these configurations exhibited promising anti-cancer effects in 
CD44-v6 expressing tumours, although the latter was withdrawn due to skin toxicity in 
phase I clinical trials220.  The image below shows a cartoon depiction of delivery of 
186Re-bivatuzumab to a patient with head and next cancer221. 
 

 



 48

Figure 1.5. Microarray based method for profiling transcript diversity 
Gene models are depicted as exons (colored rectangles) connected by introns (black 
lines). Hypothetical differences in mRNA products which can be detected by each array 
method are depicted to the right of each gene model. In each model, yellow exons are 
constitutive and blue exons are alternative. Differences in array design strategy, 
particularly the position and types of oligonucleotide probes used are shown above 
each gene model as colored horizontal lines. 
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Figure 1.6. Sequence-based methods for profiling transcript diversity 
Hypothetical transcript sequences consisting of exons (green rectangles) with 
intervening introns (black lines) are depicted as gapped alignments to a reference 
genome. The following tracks represent sequences generated by each sequence-based 
method.  The methods are displayed in order of least to most quantitative. 
Abbreviations: (EST) expressed sequence tag; (SAGE) serial analysis of gene 
expression; (CAGE) capped analysis of gene expression; (GIS) gene identification 
signature. 
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Table 1.1. Summary of methods for studying transcript diversity 
Computational methods involve predicting transcription events from genomic sequence 
without using expression data.  Microarray-based methods involve fluorescently labeling 
RNA and hybridizing it to an array of ‘spots’ each representing content from a reference 
genome.  All array methods are subject to cross-hybridization between related 
sequences.  Sequence-based methods involve generating expressed sequence data 
from RNA, aligning it to a reference genome and annotating transcription events.  These 
methods do not rely on pre-existing gene annotations and they are capable of providing 
exon boundary/connectivity information as well as novel gene discovery. 
  
Abbreviations: (ATI) alternative transcript initiation; (AS) alternative splicing; (AP) 
alternative polyadenylation; (SBS) sequence by synthesis; (†) limited applicability or 
supporting evidence. 
 
Method Events  

detected 
Description (strengths/limitations) 

 
Computational methods 
Ab initio  
 

ATI, AS, 
AP 

Predictions based on a single reference genome. 
Not quantitative. Low sensitivity/specificity 
compared to methods that use expression data. 

Comparative 
genomic 

ATI, AS, 
AP 

Predictions rely on existence of suitable 
comparative genomes. Not quantitative. Medium 
sensitivity/specificity compared to methods that use 
expression data.  

 
Microarray-based methods 
Spotted cDNA None Limited to composition of cDNA library. Not capable 

of distinguishing transcript variants. Low cost, high 
throughput. Quantitative. 

3′ Expression AS†, AP† 3′ end bias. Limited by pre-existing gene 
annotations. Low cost, high throughput. 
Quantitative. 

Whole genome tiling ATI†, AS†, 
AP† 

Not limited by pre-existing gene annotations. 
Potential for gene discovery. High cost. 
Quantitative. 

Exon tiling ATI†, AS†, 
AP† 

Limited by pre-existing gene annotations. Low cost, 
high throughput. Quantitative. 

Splicing arrays ATI, AS, 
AP 

Limited by pre-existing gene annotations. Provides 
exon boundary/connectivity information. Medium 
cost, medium throughput. Quantitative. 

 
Sequence-based methods 
EST cDNA ATI†, AS†, 

AP 
End bias. Partial transcripts (300-1000 bp reads). 
High cost, medium throughput. Limited quantitative 
value. 

FL-cDNA ATI, AS, 
AP 

Complete transcripts. High cost, low throughput. 
Results in a physical copy of transcript. Not 
quantitative. 
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Method Events  
detected 

Description (strengths/limitations) 

Targeted FL-cDNA AS Near complete transcripts. High cost, low 
throughput. Results in a physical copy of transcript. 
Not quantitative. 

SAGE AS†, AP 3′ end bias. Short tags (17-21 bp). Medium cost, 
medium throughput. Quantitative. 

CAGE ATI 5′ end bias. Short tags (20 bp). Medium cost, 
medium throughput. Quantitative. 

GIS ATI, AP End bias. Short tags (40 bp paired end tags). 
Medium cost, medium throughput. Quantitative. 

Illumina/Solexa SBS ATI, AS, 
AP 

Short tags (25-150 bp). Low cost, high throughput. 
Quantitative. 

Roche/454 SBS ATI, AS, 
AP 

Medium tags (~100-400 bp). Low cost, high 
throughput. Quantitative. 

ABI/SOLID SBS ATI, AS, 
AP 

Short tags (~100 bp). Low cost, high throughput. 
Quantitative. 
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Table 1.2. Alternative expression resources 
Abbreviations: (ATI) alternative transcript initiation; (AS) alternative splicing; (AP) 
alternative polyadenylation; (ESE) exonic splicing enhancer; (Hs) Homo sapiens; (Mm) 
Mus musculus; (Rn) Rattus norvegicus. 
 
Resource name Description (applicable species) Ref. 
 
Ab initio/de novo alternative transcript discovery/prediction/characterization 
ABySS De novo assembly of short reads 222, 223 
AStalavista Automatic classification and naming of AS events  218 
AUGUSTUS Prediction of ATI, AS, and AP using only human genome 

sequence 
43 

EasyCluster Assembly of gene models from transcriptome data 224 
FindPeaks Identify regions of expression directly from read density 

data 
225 

MARS Human AS transcript prediction from pairwise alignments 
of mouse, rat, dog, opossum and frog genomes 

36 

 
Spliced alignment algorithms 226 
BLAT, 
est2genome, 
Exonerate, SIM4, 
SPA, SPIDEY, 
SplicePredictor, 
Splign, QPALMA, 
TAP, WebGMAP 

Identification of splice sites and gapped alignment of 
mRNAs to a reference genome 

227-236 

 
Databases of transcript diversity derived from EST/mRNA sequences 
AltTrans Annotation and visualization of AS and AP (Hs, Mm) 18 
AS-ALPS Effect of AS on 3D structure of proteins (Hs, Mm) 237 
ASAP II Annotation and visualization of AS (15 species) 238 
ASD Annotation and visualization of AS  (Hs, Mm) 239 
AspAlt Annotation and visualization of ATI, AS and AP (46 

species) 
240 

ASPIC Annotation and visualization of AS (Hs, Mm, +15 others) 241 
ATID Manual and computational annotation of ATI (Hs, Mm 

and 32 other species) 
242 

AVATAR Annotation of splice sites supported by mRNA and EST 
data (Hs and 5 other species) 

243 

BIPASS Annotation and visualization of AS  (Hs and 3 other 
species) 

244 

DBTSS Database of ATI (Hs, Mm, zebrafish, etc.) 13 
ECgene Functional annotation of AS (Hs, Mm, Rn, etc.) 245 
G-Mo.R-Se De novo annotation of genomes by analysis of short read 

sequences 
137 

H-DBAS Database of ~40k cDNA clones of representative 
alternative splicing variants (Hs) 

246 

Hollywood Annotation and visualization of AS (Hs, Mm) 247 
LSAT ATI, AS, and AP extracted from literature by text mining  248 
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Resource name Description (applicable species) Ref. 
MAASE Manual annotation of AS (Hs, Mm) 249 
PolyA_DB Annotation and visualization of AP (Hs, Mm) 250 
SpliceCenter Evaluate effect of AS on RT-PCR, RNAi, microarray and 

peptide studies (9 species) 
251 

SpliceInfo Annotation and visualization of AS (Hs) 252 
SpliceMiner Database of splice variant data based on NCBI evidence 

viewer (Hs) 
253 

TISA Annotation of tissue specific transcripts (Hs, Mm) 32 
T-STAG Annotation of tissue specific transcripts (Hs, Mm) 254 
 
Alternative expression regulatory element prediction 255 
ESEfinder Identification of ESE sites and predicted effect of 

mutations within them 
256 

GRSDB Identification of G-rich (GRS) processing motifs 257 
RegRNA Identification of transcription and splicing regulatory 

sequences within RNAs 
258 

RESCUE-ESE ESE annotation tool (Hs, Mm, zebrafish, pufferfish) 259 
Splicing Factor 
Finder 

Identify splicing factor binding sites by combining splicing 
motif info with conservation data 

260 

Splicing Modeler Uses microarray expression data from multiple tissues to 
predict splicing regulatory sequences 

261 

TassDB Collection of tandem splice sites (human, mouse, etc.) 262 
 
Alternative expression analysis 
ALEXA-array Design and analysis of splicing alternative expression 

microarrays 
263 

easyExon Processing and visualization of Affymetrix exon array 
data 

264 

FIRMAGene RMA based analysis of Affymetrix exon array data 265 
MiDAS ANOVA based method of detecting alternative 

expression in microarray data 
76 

REMAS Regression base method of identifying alternative 
expression in microarray data 

266 

SI-Limma Identify differential exon splicing in microarray data 267 
SPACE Uses alternative expression array data to predict 

transcripts expressed in a sample (including novel 
isoforms) 

268 

 
Validation/Visualization Tools 
ASePCR Electronic PCR utility for validation of alternate isoforms 269 
ASGS Web based tool for AS graphs 270 
ASTRA Visualization and classification of transcription patterns 271 
VISTA, UCSC, 
EnsEMBL 

Generic browsers for visualization of expression data 
and comparative genomics 

147, 148, 

272 
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2. ALEXA: A microarray design platform for alternative 
expression analysis2 

2.1. Introduction 

Eukaryotic genomes are predicted to contain ~7,000 to ~30,000 genes1. Each of these 

genes may be alternatively processed to produce multiple distinct mRNAs by alternative 

transcript initiation, splicing and poly-adenylation (collectively referred to as alternative 

expression). Although analysis of available transcript resources indicates that up to 

~75% of genes are alternatively processed, most microarray expression platforms 

cannot detect alternative transcripts2. 

Proof-of-principle experiments have described the use of oligonucleotide 

microarrays to profile transcript isoforms generated by alternative expression but 

resources to allow the creation of such arrays are lacking3, 4. To address this limitation 

we created a microarray design platform for ‘alternative expression analysis’ (‘ALEXA’), 

which is capable of designing arrays that can detect all of the major categories of 

alternative expression. The ALEXA platform facilitates the selection and annotation of 

oligonucleotide probes representing alternative expression events for any species 

residing in the EnsEMBL database1. For each target gene, probes are selected within 

every exon, intron, exon junction and exon boundary. This approach allows the 

detection of constitutive and alternative exons, canonical exon junctions, the junctions of 

known or novel exon skipping events, alternative exon boundaries and retained introns 

(Figure 2.1). We designed the platform to be flexible to the user’s experimental 

interests and preferred array manufacturer. The user may limit probe selection to known 

alternative expression events or include all possible exon junctions and boundaries to 

drive the discovery of novel transcripts. Probes may be designed for an arbitrary subset 

of genes or for all genes. Most technical parameters of the design can be modified by 

the user, including: the amount and types of control probes; the use of varying or fixed 

probe length; and the thresholds for filtering of probe sequences. The probe design 

process begins with retrieval of genomic sequences from EnsEMBL, removal of 

pseudogenes, masking of repeat elements and extraction of probe sequences. Random 

                                            
2 A version of this chapter has been published.  Griffith M, Tang MJ, Griffith OL, Morin RD, Chan SY, 
Asano JK, Zeng T, Flibotte S, Ally A, Baross A, Hirst M, Jones SJM, Morin GB, Tai IT and Marra MA.  
ALEXA – A microarray design platform for alternative expression analysis.  Nature Methods. 2008 Feb. 
5(2):118. 
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probe sequences are generated to uniformly represent the melting temperature and 

length of all experimental probes. Extracted and randomly generated probes are scored 

according to their melting temperature, folding potential, complexity, and specificity 

(Methods). 

Proof-of-principle experiments have described the use of oligonucleotide 

microarrays to measure expression of individual exons, exon junctions and exon 

boundaries3-7.  The focus of these experiments has been to optimize design parameters 

such as probe selection and hybridization conditions.  Commercial arrays implementing 

some of these findings have been developed by Affymetrix8, Exon Hit Therapeutics9 and 

Jivan Biologics10, but these are limited to particular gene families or a subset of 

alternative expression events and are only available for the human, mouse and rat 

genomes.  Although several publications have described using ‘splicing microarrays’ to 

study the genomes of model organisms5, 7, 11, survey tissues6 and address specific 

biological questions12-17, ours is the first report of a resource that makes such designs 

readily available.  Furthermore, our platform represents the first open-source method for 

the generation of alternative expression (AE) microarrays for any EnsEMBL annotated 

species.  We used the ALEXA platform to generate AE microarray designs for the 

human, mouse, rat, fly, and budding yeast genomes as well as the first designs for 

chimp, dog, chicken, zebrafish and Caenorhabditis elegans (Table 2.1). 

We assessed the ALEXA approach by using a prototype human array to profile the 

expression of alternative mRNA isoforms in 5-fluourouracil (5-FU) sensitive and 

resistant colorectal cancer cell lines18 and comparing the results to those from 

Affymetrix’s ‘GeneChip® Human Exon 1.0 ST’ array (Figure 2.2 - Figure 2.8 and Table 

2.2). Genes and exons differentially expressed between 5-FU sensitive and resistant 

cells were identified by both platforms (with significant overlap), but ALEXA arrays 

provided additional information on the connectivity and boundaries of exons (Table 2.3).  

Furthermore, alternative expression events identified by ALEXA were significantly 

enriched for known alternative expression events represented in publicly available 

mRNA and EST databases. Finally, we demonstrated the advantage of the ALEXA 

approach by identifying several differentially expressed known and predicted isoforms 

with potential relevance to 5-FU resistance (Figure 2.9 - Figure 2.13 and Table 2.4 - 

Table 2.5).  Although we compare the output of analytical approaches involving two 

microarray platforms, due to differences in the array platforms themselves, this work is 
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not meant to represent a head-to-head comparison of the oligonucleotide probe 

performance of the respective microarray platforms.  

The approach and resources described in this work have considerable potential to 

advance studies of gene regulation, transcript processing, human disease and 

evolutionary biology. The source code, pre-computed array designs and related 

materials to assist in the creation of custom alternative expression microarrays are 

provided on the ALEXA website (www.AlexaPlatform.org). 

2.2. Results 

To illustrate the utility of our design strategy we created a prototype array to profile 

genes expressed in a 5-fluorouracil (5-FU) sensitive human colorectal cancer cell line, 

MIP10119 and in its drug resistant derivative, MIP/5FU18.  Although the goal of these 

experiments was to assess the performance of ALEXA arrays we also identified 

differentially expressed (DE) mRNA isoforms associated with acquired 5-FU resistance.  

RNA samples isolated in triplicate from each cell line were profiled on Affymetrix’s 

‘GeneChip® Human Exon 1.0 ST’ array (hereafter referred to as the ‘Affymetrix exon 

array’), which was designed to measure the expression of ~1.4 million known and 

predicted exons.  A custom ALEXA design consisting of 385,000 features was then 

created, synthesized by NimbleGen Systems Inc. and used to profile the same RNA 

samples.  Although our prototype arrays were synthesized by NimbleGen, no elements 

of the ALEXA platform are specific to this manufacturer.  Validation of the ALEXA 

platform consisted of comparison to Affymetrix results as well as to mRNA and EST 

sequence databases.  To our knowledge, this is the first reported comparison of two 

different microarray expression platforms measuring DE of individual exons for the 

same set of samples.  We describe the level of concordance between these platforms 

for measuring expression at the level of both genes and exons and highlight the exon 

connectivity and boundary information provided by ALEXA arrays. 

The ALEXA platform was written in Perl and utilizes a MySQL relational database 

(Methods).  This database stores information on oligonucleotide probes and associated 

gene, transcript, exon and protein features.  The design platform allows the selection of 

probes representing AE events for any species with EnsEMBL annotations1 (35 species 

as of EnsEMBL version 45).  Probes are selected within every exon and intron as well 

as across every exon junction and boundary.  This approach has the potential to detect 



 70

expression of constitutive and alternative exons, canonical exon junctions, the junctions 

of known or novel exon skipping events, alternative exon boundaries and retained 

introns (Figure 2.1 compares Affymetrix and ALEXA probe selection strategies).  The 

ALEXA platform was designed to be flexible to the user’s design interests.  The user 

may limit probe selection to AE events predicted by ESTs, but to drive the discovery of 

novel transcripts the option of interrogating all possible exon junctions and boundaries is 

also available.  Probes may be designed for a single gene, all genes, or an arbitrary 

subset of genes.  A variety of technical elements of the design can be controlled by the 

user.  For example, the amount and types of control probes, the use of varying or fixed 

probe length, and the thresholds used for the filtering of probe sequences according to 

melting temperature (Tm), sequence complexity, secondary structure and sequence 

specificity can be modified.  The probe design process begins with retrieval of genomic 

sequences from EnsEMBL, removal of pseudogenes, masking of repeat elements and 

extraction of probe sequences.  Random probe sequences are generated to uniformly 

represent the Tm and length of all experimental probes.  Extracted and randomly 

generated probes are scored according to their Tm, hairpin or dimerization potential, 

presence of low complexity elements, specificity of each probe by comparison to all 

available ESTs, mRNAs and EnsEMBL transcripts, and the specificity of each probe 

within the total population of probes.  All extracted probes are stored but a filtered set is 

defined to remove probes with sub-optimal specificity and thermodynamic properties 

(Methods). The ‘best’ exon and intron probes are chosen from probes tiled across 

these regions at 5 bp intervals. 

2.2.1. Pre-computed microarray designs 

Using the approach described above, pre-computed designs consisting of ~100 million 

probe sequences for ten EnsEMBL genomes were generated (Table 2.1).  All pre-

computed array designs, source code, database schemas and user manuals are 

provided on the ALEXA website (www.AlexaPlatform.org).  Source code can be 

downloaded and installed by the user, and the platform is also available for use on 

Linux, Mac and Windows operating systems as a preconfigured ‘virtual machine 

appliance’20. 
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2.2.2. Validation - cross platform analysis 

Total RNA was isolated from biological triplicates of the colorectal cancer cell line 

MIP10119 and a derivative 5-FU resistant cell line, MIP/5FU18.  This RNA was processed 

and hybridized to Affymetrix exon arrays (Methods).  The quality of data resulting from 

these 6 array hybridizations was assessed by comparison to data from 10 Affymetrix 

exon array experiments also performed in our lab and to publicly available exon array 

data from 20 assays performed at Affymetrix21.  A ‘receiver operator characteristic - 

area under the curve’ (‘ROC AUC’) score for all 36 arrays was calculated using 

Affymetrix’s ExACT software8.  ROC AUC scores are a measure of overall sensitivity 

and specificity.  In this approach a true positive is an exon of a housekeeping gene that 

is determined to be expressed and a true negative is an intron of a housekeeping gene 

that is determined to be not expressed.  Data from the 6 hybridizations of MIP101 and 

MIP/5FU samples had the 6 highest scores overall (0.912-0.918 compared to 0.732-

0.897 for all other array hybridizations).   

Affymetrix exon expression data was used to identify  ~2,000 genes with evidence 

for DE of one or more exons between sensitive and resistant cells.  A custom ALEXA 

array design consisting of 385,000 oligonucleotide probes was then designed and 

manufactured to represent these genes as well as ~500 additional genes with potential 

relevance to drug resistance (Methods).  PolyA+ RNA was isolated from the same total 

RNA samples used for Affymetrix experiments and processed and hybridized to ALEXA 

arrays synthesized by NimbleGen.  Although all of our arrays were synthesized by 

NimbleGen, ALEXA oligonucleotides may be synthesized by any custom 

oligonucleotide array manufacturer. 

Sensitivity and specificity of the Affymetrix and ALEXA arrays were compared by 

examining data for 97 housekeeping genes that were defined by Affymetrix and were 

also represented by ALEXA oligonucleotides.  This allowed a direct comparison of 

values for genes and exons with a high likelihood of expression.  For each of these 

genes, probes were selected for exons (4,702 in Affymetrix and 1,719 in ALEXA) and 

introns (14,551 in Affymetrix and 1,738 in ALEXA).  For these probesets the overall 

signal-to-noise ratio (mean exon/intron) on each platform was higher in the ALEXA data 

(56.0+/-2.3 s.d.) than in Affymetrix (20.9+/-0.42 s.d.) and this difference was significant 

(Wilcoxon P = 0.0022, n=12).  Housekeeping intron and exon probesets were also used 

to calculate ROC AUC scores to estimate the rate of false positive and false negative 
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detection of expression for each platform (Methods).  The resulting AUC scores were 

0.952 for ALEXA and 0.913 for Affymetrix (Figure 2.2).  The ALEXA data achieved a 

maximum specificity of 94.8% at 87.9% sensitivity and the Affymetrix data achieved a 

maximum specificity of 85.8% at 84.2% sensitivity.  Some of the caveats of these cross-

platform comparisons are addressed below (Discussion). 

The reproducibility of expression and DE estimates for both genes and exons within 

each set of biological replicates was consistently higher in the ALEXA data (Table 2.2).  

The ability of ALEXA and Affymetrix platforms to detect expression and DE of individual 

genes and exons was compared directly for all features profiled by both platforms.  

2,507 genes and 31,368 EnsEMBL exons were interrogated by at least one probe in 

both platforms.  The ‘probesets’ corresponding to each EnsEMBL exon generally 

consisted of 3 probes in ALEXA and 4 probes in Affymetrix.  The number of probes for 

any particular gene depended on the number of exons in the gene.  Ranked absolute 

expression values were compared between platforms and resulted in Spearman 

correlation coefficients of 0.88 for genes and 0.74 for exons.  Mean DE estimates from 

each platform were also plotted against each other for both genes and exons (Figure 

2.3 - Figure 2.4).  Cross-platform comparison of DE values resulted in Pearson 

correlations of 0.87 and 0.67 across all genes and exons respectively.  At the gene-

level, this is a high level of correlation compared to previously published cross-platform 

comparisons22.  To our knowledge a cross-platform correlation of expression at the 

exon-level has not been previously reported.   

The subset of genes and exons with statistically significant DE (and no fold-change 

cutoff) was identified for each platform and the overlap determined (Methods).  Of the 

667 genes identified as DE by ALEXA, and the 650 by Affymetrix, 482 were identified by 

both platforms (58%) (Figure 2.5).  The ALEXA platform identified approximately 3 

times as many DE exons as Affymetrix (2,927 compared to 956) with the overlap 

between platforms at 516 (15%) (Figure 2.5).  The 2,411 exons detected as 

differentially expressed by ALEXA but not by Affymetrix were found to have lower 

overall expression in the Affymetrix data, suggesting a reduced ability to adequately 

detect these exons compared to ALEXA (Figure 2.6).  A similar effect was observed for 

exons detected as DE by Affymetrix but not ALEXA, but the size of this set was 

considerably smaller (440 exons).  The dynamic range of expression values for both 

genes and exons was larger in the ALEXA data (Figure 2.7 - Figure 2.8). 
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2.2.3. Differentially expressed genes and mRNA isoforms associated with 5-FU 

resistance 

We summarized the total numbers of each type of expression event profiled by both the 

Affymetrix exon array and ALEXA array, as well as those events identified as 

differentially expressed between 5-FU sensitive and resistant states (Table 2.3; 

significant p-value after multiple testing correction and fold-change > 2; see Methods).  

The number of differentially expressed genes was 78 and 233 for Affymetrix and 

ALEXA, respectively.  46 genes had significant p-values and a fold-change value 

greater than 4 in one or both expression platforms (Table 2.4).  Within this list, a 

number of interesting genes with high expression fold-change values and agreement 

between the platforms emerged.  For example, the top two differentially expressed 

genes, ‘C12orf59’ and ‘OLR1’ are expressed from the same locus in a head-to-head 

arrangement and were down-regulated by ~50 and ~33-fold in 5-FU resistant cells, 

respectively (Table 2.4 and Figure 2.9). 

Although the differentially expressed genes identified in this work have potential 

relevance to the mechanism(s) of 5-FU resistance, the novelty of Affymetrix exon and 

ALEXA arrays is their potential to identify discrete expression events corresponding to 

single exons or introns and in the case of the ALEXA arrays to identify DE of exon 

junctions and boundaries.  For the genes targeted by both platforms, the total number of 

such events profiled was ~118,000 for the Affymetrix array and ~184,000 for the ALEXA 

array (Table 2.3).  The number of these events which were found to be significantly DE 

between sensitive and resistant cells, the number predicted to affect the open reading 

frame (ORF) of a protein and the number overlapping a known protein feature are 

reported in Table 2.3.  The majority (~98%) of events identified by Affymetrix exon 

arrays corresponded to exons and only 25 corresponded to introns.  Manual inspection 

of these intronic probesets suggested that these were cryptic or misannotated exons 

with mRNA and/or EST support that were not correctly identified in EnsEMBL.  The 

ALEXA platform identified almost as many DE events corresponding to canonical exon 

junctions as those belonging to the exon category.  Furthermore, within the DE dataset 

the ALEXA analysis identified 440 potential alternative expression (AE) events 

corresponding to 191 exon skips and 253 alternate exon boundaries.  Many of these 

were supported by EST and mRNA data.  Specifically, 34.0% of AE events which 

reached significance were supported by a known mRNA, whereas only 5.9% of all AE 
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events on the ALEXA array had a corresponding mRNA (Fisher’s Exact P = 2.2×10-16).  

Similarly, 49.8% of AE events which reached significance were supported by an EST, 

whereas only 12.8% of all AE events profiled had a corresponding EST (Fisher’s Exact 

P = 2.2×10-16). 

In the ALEXA data, there is a small but statistically significant enrichment for DE 

events that occur within ORFs over those occurring in 5′ UTR or 3′ UTRs (Chi-Squared 

P = 1.012×10-14).  The significant DE events were tested for enrichment of probesets 

within signal peptide motifs, coiled-coil domains, transmembrane domains, and protein 

family motifs.  There was a significant enrichment for events within transmembrane 

domains in the population of differentially expressed probesets (~20% more than 

expected by chance, Fisher’s Exact P = 9.93×10-9). 

The majority of exon and canonical junction probesets with evidence for DE likely 

reflect the DE of entire genes and only a subset of these are expected to correspond to 

DE of specific isoforms.  A subset of cases were therefore identified by calculating 

‘splicing index’ values5 in an attempt to identify exons, junctions or boundaries that were 

differentially expressed relative to changes in expression at the level of the entire gene 

(Methods).  A list of the top 25 candidate loci with apparent DE of isoforms and 

corresponding fold-change values is provided as Table 2.5.  19 of these had mRNA 

and/or EST support, 11 were supported by the Affymetrix data, and 6 could not have 

been detected by the Affymetrix platform due to a lack of the necessary probes.  The 

data for each of these loci were manually examined by generating custom UCSC 

genome browser tracks to represent expression data as well as display the position of 

mRNAs, ESTs, ORFs, and protein features relative to the position of each probe 

(Methods).  Using these displays and other bioinformatic resources, each of these 

genes was manually annotated to describe the DE event, the potential relevance of the 

gene to 5-FU resistance, the availability of supporting ESTs and mRNAs, the sub-

cellular localization of the predicted protein, and the level of agreement between the 

expression platforms (Table 2.4 - Table 2.5).  Candidate DE isoforms ranged from 

those involving a large number of exons to those with relatively subtle differences 

involving a single exon skip or alternative exon boundary.  For example, alternative 

transcript initiation or polyadenylation appeared to result in the up-regulation of a known 

isoform of LAMA3 and putative novel isoforms of EPB41L3 and c12orf63 in resistant 

cells (Figure 2.10 - Figure 2.12).  Another interesting example illustrating the 
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advantages of the ALEXA approach was the observation of reciprocal expression 

between 5-FU sensitive and resistant cells of two isoforms of the gene UMPS which 

differ by a single exon (Figure 2.13).  The expression of UMPS isoform A was ~5-fold 

lower in resistant cells than sensitive cells.  Conversely, the expression of isoform B 

was ~6-fold higher in resistant cells than sensitive cells (Figure 2.13).  The Affymetrix 

array reported the DE of UMPS exon 2 as ~5-fold but did not identify reciprocal 

expression of the two isoforms because it lacked the exon-junction probes required to 

measure both isoforms (Figure 2.13).  It was not identified as a prominent candidate 

until the ALEXA data were examined, where it is was ranked 4th among reciprocal 

isoform expression events. 

2.3. Discussion 

Although a number of groups have reported the use of microarrays to profile alternative 

expression events, resources that facilitate the design of such arrays are not readily 

available.  This study describes the first platform for the design of AE microarrays which 

is open source, flexible to the needs of the user and applicable to any species 

annotated in EnsEMBL.  We determined the effectiveness of this platform by using it to 

generate a human microarray design and comparing its ability to profile exons to that of 

the Affymetrix GeneChip® exon array platform.  The performance of our ALEXA arrays 

was comparable or superior to the Affymetrix arrays in every metric examined.  A 

number of differences in array design and experimental protocols complicate the 

interpretation of comparisons between these two array platforms.  For example, the 

Affymetrix and ALEXA array experiments differed in the following ways: (1) the length of 

oligonucleotide probes selected (25-mers versus 26- to 46-mers in ALEXA 

experiments), (2) the preparation of RNA input (total RNA subjected to riboMinus 

reduction versus total RNA that has been polyA+ purified in ALEXA experiments), (3) 

the use of a target amplification step (linear IVT amplified target versus unamplified 

target in ALEXA experiments), (4) the molecular type of the target (cRNA versus ds-

DNA in ALEXA experiments), and many other potentially significant differences (see 

Methods for further details).  Due to the number and diversity of these experimental 

differences and the uncertainty of their effect on the resulting hybridization data, it was 

difficult to identify the source of performance differences between the two approaches.  

The intention of our cross-platform comparison was therefore not to suggest that our 
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probe selection strategy is fundamentally superior to that of Affymetrix but rather to use 

the high level of agreement between these two approaches in the areas where they 

provide the same information as a validation.  Furthermore, it was our hope that this 

validation exercise would lend credibility to the predictions of the ALEXA approach in 

cases where was it designed to provide information that the Affymetrix arrays could not 

provide (such as exon skipping events).  We believe that despite the caveats discussed 

we have shown that Affymetrix exon arrays and ALEXA arrays were similar in their 

ability to detect the expression of exon features but the ALEXA approach provided 

additional information on the connectivity and boundaries of those exons.  The 

alternative exon junctions and boundaries which were found to be differentially 

expressed but did not correspond to known EnsEMBL transcripts were highly enriched 

for EST supported sequences relative to all junctions and boundaries profiled.  This 

suggests that the ALEXA approach has considerable potential for the identification of 

novel expressed transcripts generated by alternative expression.  Currently the primary 

limitation of the ALEXA approach is the inability of current custom microarray densities 

(maximum of 385,000 features) to accommodate genome-wide designs due to the large 

number of probes required to cover all exons, junctions and boundaries (Table 2.1 and 

Table 2.3).  At least two array manufacturers are currently developing arrays with 

sufficient density (2-3 million features) to eliminate this limitation23, 24. 

In addition to showing the general utility of the ALEXA approach by comparison to 

Affymetrix exon expression data, our analysis of colorectal cancer cell lines identified 

DE of known and putative novel isoforms associated with acquired resistance to the 

widely used chemotherapy drug 5-FU.  This drug is a uracil analog which was designed 

to exploit the observation that tumor cells preferentially utilize uracil (as opposed to 

thymidine) for RNA and DNA synthesis25.  The differential expression events observed 

in our analysis ranged from those involving entire genes to those involving specific 

isoforms with subtle differences in exon content.  Several of the genes and isoforms we 

identified have unknown function and represent candidate novel chemotherapy 

resistance genes.  Other examples, such as the differential expression of UMPS 

isoforms, have a clear potential relevance to 5-FU resistance.  This gene is known to 

function in pyrimidine biosynthesis and is involved in the activation of 5-FU26 by the 

uridine biosynthesis pathway.  UMPS encodes two enzymes that facilitate the last two 

steps in this pathway: EC 2.4.2.10 (Orotate phosphoribosyl-transferase) and EC 
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4.1.1.23 (Orotidine 5'-phosphate decarboxylase)27.  UMPS isoform A and B differ by the 

inclusion or exclusion of exon 2, which is predicted to result in use of an alternate start 

codon in the 3rd exon (Figure 2.13).  Without the Phosphoribosyltransferase domain of 

UMPS (i.e. isoform B), 5-FU would not be transferred to ribose and would not be 

incorporated into DNA/RNA where it normally slows tumor growth by inhibiting DNA 

synthesis and the synthesis, processing, and translation of mRNA28.  A shift in the 

expression of UMPS isoforms may therefore influence the activation rate and efficacy of 

5-FU.  Several groups have previously examined the potential role of UMPS expression 

in mediating 5-FU efficacy using clinical specimens or cell lines, but their selection of 

PCR primers for expression assays and cDNAs for over-expression experiments did not 

account for the existence of multiple isoforms25, 28, 29.  Although the existence of an 

UMPS isoform30 has been known since 1999, to our knowledge no study has 

considered the functional significance of their relative ratios in uracil or 5-FU 

metabolism. 

We believe that widespread adoption of microarray experiments capable of detecting 

alternative expression events will advance studies of gene regulation, transcript 

processing, human disease and evolutionary biology.  For example, a recent study 

based on analysis of mRNAs and ESTs for eight organisms suggested that vertebrates 

have a higher rate of alternatively spliced exons and genes than invertebrates31.  One 

finding was the unusually high frequency of alternative splicing in chicken.  Our chicken 

array design could be used to validate this observation.  Similarly, array designs for 

human, chimp, dog, zebrafish and other genomes might be used to address the 

evolutionary significance of alternative expression in eukaryotes.  Furthermore, we 

anticipate that the application of microarrays to genome scale studies of alternative 

expression will help to develop a better understanding of the role alternative expression 

may play in health and disease states and improve identification of therapeutic and 

diagnostic targets.  We have demonstrated this potential by identifying differential 

expression of known and novel alternative transcripts associated with 5-FU resistance 

in a human colorectal cancer cell line. 
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2.4. Methods 

2.4.1. Probe extraction and filtering for array designs 

EnsEMBL gene models, their corresponding genomic sequence and related information 

were downloaded via the EnsEMBL API1 and imported into a MySQL database for each 

species (schema available at www.AlexaPlatform.org).  Probes were extracted from a 

repeat masked32 genomic sequence of each gene model.  Exon and intron probes were 

extracted at 5 bp intervals.  Exon-exon junction probes were extracted to represent 

every possible valid combination of two exons for each gene.  A gene with n exons has 

(n!/(2![n-2]!)) possible  junctions.  Exon-intron junction probes were extracted to span 

every unique exon boundary in the gene.  Exon-exon and exon-intron probes were 

extracted such that the sequence was centered on the junction.  The length of all 

probes was varied by up to 10 bp from a desired length of 36 bp to achieve a target Tm 

of 67ºC (see Table 2.1 for species specific details).  For junction probes, the three 

lengths which produced the closest Tm to the target were stored.  For exon and intron 

probes only the probe with the closest Tm at each 5 bp position was stored.  Finally, 1.5 

million random probe sequences (negative controls) were generated to uniformly 

represent the range of probe Tm and length observed for all exon, intron and junction 

probes. 

Probe sequences were scored according to their thermodynamic properties and 

specificity.  Tm was calculated by a nearest neighbor approach33, 34 implemented in 

Perl.  The strength of hairpin and dimer formation was determined by ‘simfold’ and 

‘pairfold’ respectively35.  Low complexity elements were identified by ‘mdust’36.  

Sequence specificity was determined by ‘blastn’ of probe sequences against databases 

containing all EnsEMBL transcripts, mRNAs, ESTs, all probe sequences, and the entire 

genome (for random probes only).  The entire probe population was then filtered so that 

a probe was marked as unsuitable unless it had: a Tm within 3.0ºC of the target Tm; no 

low complexity regions of 6 nucleotides or longer; a free-energy of hairpin folding 

greater than -8.0 kcal/mol; a free energy of dimerization greater than -20.0 kcal/mol; no 

alignments of 67.5% of the length of the probe or greater to any mRNA or EnsEMBL 

transcript; and no alignments of 80% of the length of the probe or greater to another 

probe in the design.  Multiple probes (comprising a ‘probe set’) were selected to 

represent each exon, intron, boundary or junction to increase the accuracy of 
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expression estimates and statistical tests for each region and to compensate for probes 

with poor hybridization characteristics that were not successfully removed by the 

filtering process.  

2.4.2. Creation of a validation array design 

Before proceeding with the validation experiments described in this study, initial 

experiments using a prototype design (synthesized by NimbleGen Systems Inc., 

Madison, WI) and reference RNAs were conducted to optimize probe selection 

parameters, use of control probes and hybridization conditions (data not shown). 

Creation of the validation array first involved identifying genes of interest.  Due to the 

combinatorial nature of the design strategy, the large number of resulting probes per 

gene and the custom array densities available at the time, a genome-wide design was 

not possible.  Approximately 3 million feature spots would be required to accommodate 

a genome-wide human design and the maximum density available was 385,000.  

Potential genes for the array were selected by identifying all genes with 2-fold or greater 

DE of one or more of their exons according to ‘Affymetrix GeneChip Human Exon 1.0 

ST’ arrays (Affymetrix Inc. Santa Clara, CA).  Approximately 100 genes defined as 

housekeeping controls on the Affymetrix exon array were also selected.  Unlike most 

genes on the array, these were targeted by intron as well as exon probes.  An additional 

~400 genes were selected for their potential relevance to cancer biology or drug 

resistance.  Specifically, this included genes of the ABC drug transport family, genes 

with known cancer related isoforms identified in the literature, genes from the cancer 

gene census37, and genes associated with the gene ontology38 terms: ‘drug transporter 

activity’, ‘response to drug’, ‘drug metabolism’, ‘drug catabolism’ and ‘drug binding’. 

The ALEXA validation design was generated by selecting probes corresponding to 

those genes described above.  Only probes which passed all filtering steps were 

allowed.  If less than 67.5% of the probes extracted for a particular gene remained after 

filtering, the gene was excluded.  The final prototype design consisted of 385,000 

probes of 26-46 bp in length corresponding to ~2,511 genes.  Each exon, intron or 

junction was represented by 2-4 probes.  Exon-exon junction probes were excluded if 

they represented an event where more than 3 exons would be skipped.  The array was 

composed of probes representing ~31,000 exons, ~93,000 exon-exon junctions, 

~50,000 exon-intron junctions, ~500 introns and ~4,500 random sequences.  Random 
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probes were used to estimate false positives and for background correction according to 

the Tm of each probe.  This array design was submitted to NimbleGen Systems Inc. for 

synthesis.  The complete design files and accompanying annotation of features are 

available online (www.AlexaPlatform.org). 

2.4.3. Tissue culture 

The colorectal cancer cell line, ‘MIP101’19 and a previously generated 5-FU resistant 

derivative, ‘MIP/5FU’18 were maintained in Dulbecco’s Modified Eagle Medium 

(Invitrogen Inc., Burlington, ON) supplemented with 10% new born calf serum 

(Invitrogen), 1% kanamycin (Invitrogen) and 1% penicillin/streptomycin (Invitrogen) at 

37ºC and a humidified environment of 5% CO2. 

2.4.4. RNA isolation, labeling and hybridizations 

Total RNA was extracted from cultures grown to 75% confluence using Trizol reagent 

(Invitrogen).  Total RNA was DNaseI treated with an RNase free DNase set followed by 

cleanup on RNeasy columns (Qiagen Inc. Mississauga, ON).  RNA was quantified and 

tested for degradation using an Agilent 2100 Bioanalyzer.  Total RNA was used for 

hybridizations with the Affymetrix exon array platform and processed according to 

Affymetrix’s recommendations as described in the ‘GeneChip Whole Transcript Sense 

Target Labeling Assay Manual’ (Affymetrix Inc. Santa Clara, CA).  Briefly, this 

procedure consists of  ribosomal RNA reduction, 1st cycle double stranded cDNA 

synthesis, linear amplification by in vitro transcription, 2nd cycle single stranded cDNA 

synthesis, enzymatic fragmentation, terminal labeling of fragments, hybridization, 

washing, staining and scanning.     

  To prepare samples for hybridizations to the validation ALEXA arrays, polyA+ RNA 

was isolated from total RNA with a µMACS mRNA isolation kit (Miltenyi Biotec, 

Gladbach, Germany) followed by double stranded cDNA synthesis with a ‘Superscript 

Choice System’ for cDNA Synthesis using random hexamers (Invitrogen).  5 µg of each 

cDNA sample was shipped to NimbleGen.  Labeling, hybridization and scanning was 

conducted by NimbleGen using their ‘ChIP-chip’ protocol (optimized for 50-mers) and 

raw data was returned to us. 
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2.4.5. Data processing 

Raw Affymetrix probe intensity values were extracted from .CEL files using Affymetrix’s 

‘Exact-Probe-Intensity-Extraction’ tool.  Raw probe values for ALEXA arrays were 

provided directly by NimbleGen.  The ALEXA design contained ~4,300 randomly 

generated probe sequences and the Affymetrix design contained ~17,000 ‘anti-genomic’ 

probes.  In both platforms these probes were selected to uniformly represent the Tm of 

all experimental probes.  For each array hybridization on both platforms, a loess 

model39 was fit to a plot of probe intensity versus Tm for all random probes.  A Tm-

specific estimate of background hybridization was then estimated for every probe on the 

array by interpolating from the loess model fit.  This value was subtracted from the 

observed intensity and an arbitrary value of 16 was added according to Affymetrix’s 

recommendations for stabilizing variance.  The data were then normalized across the 

arrays within each platform by quantiles normalization40.  Differential expression (DE) or 

‘fold-change’ values for probesets (each corresponding to an exon, intron or junction) 

were calculated by taking the mean of individual probe intensities for each probeset, 

taking the mean of the probeset means across biological triplicates, transforming to a 

log2 scale and calculating the log2 difference between 5-FU sensitive and resistant cells 

(sensitive minus resistant).  DE values for entire genes were calculated in a similar 

fashion by combining the probe intensities for all exons of each gene.  For the ALEXA 

platform, both exon and canonical junction probes were considered when estimating 

expression of the entire gene. 

2.4.6. Platform comparisons 

The ability of ALEXA and Affymetrix arrays to measure the expression of individual 

exons and genes was compared and the potential for the ALEXA approach to provide 

additional information on the connectivity and boundaries of exons was examined. 

Receiver operator characteristic (ROC) curves were generated to compare the 

sensitivity and specificity of each platform for correctly classifying exons and introns 

corresponding to ~100 housekeeping genes profiled on both platforms.  ROC curves 

were generated by applying an expression level cutoff and determining the proportion of 

exon probes correctly identified as expressed (sensitivity) and the proportion of intron 

probes correctly identified as not expressed (specificity).  1000 such cutoffs were 

chosen across the range of expression observed for each platform and the resulting 
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sensitivity and specificity values were used to generate ROC curves.  The area under 

each curve was calculated by trapezoid rule integration. 

To allow comparisons of expression and DE values for all exons represented on the 

ALEXA array, common probesets were first identified by mapping probes from both 

platforms to EnsEMBL exons (version 35).  Only those exons with at least one probe in 

both platforms were compared.  Each exon typically had three probes in ALEXA and 

four in Affymetrix.  The resulting common probesets were used to compare absolute 

and differential expression values.  The overlap between platforms for exons and genes 

identified as significantly DE was also determined. 

2.4.7. Visualization 

To facilitate manual examination of expression and DE, values for all probes were 

divided into 20 quantile bins and plotted as individual custom UCSC tracks41 (See 

Figure 2.9 - Figure 2.13 for examples).  Expression or differential expression values 

are displayed on a log2 scale and positioned and shaded according to their magnitude.  

The top of each set of tracks displays the gene model which is also shaded according to 

the expression or DE value of the entire gene.  The genomic position of predicted ORFs 

and protein features such as signal peptides, transmembrane domains, coiled coils, and 

protein family motifs were also added for reference.  Custom tracks representing 

replicate and mean data were generated for every EnsEMBL gene profiled 

(www.AlexaPlatform.org). 

2.4.8. Identification of significant differential expression events 

Significant DE events were identified by comparing the population of individual probes 

of each probeset (exon, intron or junction) between biological triplicates of 5-FU 

sensitive and resistant cells (typically 3 probes × 3 replicates or 9 values for each 

condition).  P-values were calculated by a Wilcoxon rank sum test.  The probability of an 

event being DE between conditions was expected to depend on the probe type.  For 

example, many exon-exon junction probes are only predicted sequences which may or 

may not occur in the transcriptome and therefore may not be expressed in either 

condition.  For this reason, DE events were summarized separately for each probe type 

(Table 2.3).  Probes without evidence of expression in one or both conditions were 

filtered before statistical testing.  Specifically, a probeset was required to have a mean 
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log2 expression value greater than the 97.5th percentile of all negative control probes 

(~8) in either 5-FU sensitive or resistant cells.  Multiple testing problem (MTP) correction 

was applied to the filtered list.  Events with a fold-change of two or greater and a MTP 

corrected p-value < 0.05 were considered significant (see below for details). 

 

2.4.9. Gene ontology analysis 

Tests for statistical enrichment of particular Gene Ontology terms associated with the 

list of genes identified as DE were conducted with GOstat42. 

2.4.10. Identification of putative alternative expression events 

To identify events potentially indicating differential expression of specific isoforms, 

probesets were filtered as above to eliminate those with low expression.  A splicing 

index value was then calculated to estimate the differential expression of each probeset 

after normalization to account for DE of the entire gene.  The splicing index was 

calculated as: SIi = log2((eSi/gSj)/(eRi/gRj)), for the i-th exon (e) of the j-th gene (g) in 5-

FU sensitive (S) and resistant (R) samples.  A Wilcoxon test was then applied to test for 

differences in the SI values for a particular probeset between sensitive and resistant 

cells (all probes across all replicates).  Probesets with a significant Wilcoxon p-value (< 

0.05), an SI value > 1 and an absolute difference between their SI and gene level DE  > 

1.56 (abs(SI - DE)) were selected as putative differential alternative expression events.  

The resulting list was ranked according to abs(SI-DE) to identify possible cases of 

reciprocally expressed isoforms.  The list of ‘top’ candidate isoforms was selected from 

this list by manual examination of data displayed in custom UCSC tracks corresponding 

to the genomic loci implicated.  Each event was classified as ‘alternative TSS/polyA’, 

‘alternative exon boundary’, ‘intron retention’, ‘exon skipping’ and ‘complex’ (a 

combination of the other classes).  EST and mRNA support was determined by BLAST 

of all probe sequences to ESTs and mRNAs that map within the target locus of the 

probe sequence according to UCSC’s human ‘all_est’ and ‘all_mrna’ SQL tables41.  Hits 

of 95% of the length of the probe or greater were considered to be a supporting match.  

EST and mRNA support was also visually confirmed using custom tracks of expression 

data in the UCSC browser.  Cross-platform validation of an alternative expression event 

was also determined by manual examination of data from both platforms.  In some 
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cases the necessary probes to allow cross-platform comparison were not available on 

the Affymetrix array.  The fold-change values of putative alternate isoforms (described 

as fold-change ‘isoform A’ and ‘isoform B’ in Table 2.5) were determined by manually 

grouping all probes which correspond to each putative isoform. 

   

2.4.11. Statistical analysis 

Correlations and statistical tests were conducted with the programming language R43 

and ‘Bioconductor’44.  All statistical tests were two-tailed.  When comparing absolute 

expression values between platforms or within replicates of a platform, Spearman’s rank 

correlation coefficients were determined.  When comparing differential expression 

values, Pearson correlation coefficients were reported.  Comparisons of population 

means were conducted by a Student’s t-test only when the assumption of normality 

could be satisfied by visual examination of Q-Q plots and the Anderson-Darling45 test for 

normality.  Otherwise, a non-parametric Wilcoxon rank sum test was used.  When 

identifying significant differential expression events, the sample size for each event 

often consisted of 6-12 observations for each condition (sensitive and resistant).   

Reliable demonstration of normality was not possible with samples of this size and 

therefore the Wilcoxon test was always used for these comparisons.  MTP correction 

was accomplished by Benjamini and Hochberg’s step-up false discovery rate controlling 

procedure46 using the ‘multtest’ package of R.  An MTP corrected p-value < 0.05 was 

considered significant.  To test for enrichment of particular types of annotations (protein 

features, etc.) in the group of events identified as significantly DE compared to the total 

population of events, a Chi-Squared test was used if the assumption of normality could 

be verified, otherwise a Fisher’s Exact test was used. 
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Figure 2.1. Types of alternative expression and corresponding microarray probe 
design strategies 
(a)  Alternative expression (alternative transcript initiation, splicing, and 
polyadenylation).  A hypothetical gene locus with four annotated exons (colored 
rectangles; E1-E4) and three introns (connecting lines; I1-I3) is depicted.  Green arrows 
indicate alternate transcript start sites (TSS).  Alternate polyadenylation (polyA) sites 
are shown in red.  Alternative exon boundary usage, exon skipping and intron retention 
are depicted with black dotted lines.  (b) Affymetrix array design.  Affymetrix exon arrays 
use multiple sources of gene annotation and prediction in an attempt to measure 
expression of every known or predicted expressed region of the genome.  The resulting 
design consists of sets of 4 oligonucleotide probes per exon representing most known 
and predicted exons.  (c) ALEXA array design.  The ALEXA approach attempts to 
profile exon skipping, alternative exon boundary usage, and intron retentions by 
selecting probes to represent every exon, intron, exon-exon junction and exon-intron 
boundary.  The positions of exon junctions are depicted over the hypothetical processed 
mRNAs they represent. 
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Figure 2.2. ROC curves for ALEXA and Affymetrix control probes 
Receiver operator characteristic (ROC) curves describing the sensitivity and specificity 
of Affymetrix and ALEXA platforms.  ROC curves were generated by examining data for 
~100 housekeeping genes targeted by both platforms.  Probes were designed for all 
exons (+ve controls) and introns (-ve controls) of these genes.  The intensities observed 
for these control probes were used to calculate sensitivity and specificity scores (see 
Methods).  The standard deviation of these scores across six array hybridizations are 
indicated by dotted lines.  The data for each platform were subjected to quantiles 
normalization before conducting this analysis. 
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Figure 2.3. Correlation of ALEXA and Affymetrix gene differential expression 
values 
A density plot of differential gene expression values for 2,507 genes from the ALEXA 
and Affymetrix platforms.  Gene expression estimates are derived by calculating the 
mean expression of all exons of the gene across three biological replicates.  Differential 
expression is the observed log2 gene expression value in 5-FU sensitive cells minus 
that in 5-FU resistant cells.  Positive values indicate over-expression in 5-FU sensitive 
cells and negative values indicate over-expression in 5-FU resistant cells.  The Pearson 
correlation coefficient between the two platforms is 0.87. 
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Figure 2.4. Correlation of ALEXA and Affymetrix exon differential expression 
values 
A density plot of differential exon expression values for 31,368 exons from the ALEXA 
and Affymetrix platforms.  The Pearson correlation coefficient for this comparison is 
0.67.  Positive values indicate over-expression in 5-FU sensitive cells.  Negative values 
indicate over-expression in 5-FU resistant cells. 
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Figure 2.5. Overlap between Affymetrix and ALEXA gene and exon differential 
expression events 
Comparison of ALEXA and Affymetrix expression profiling results. (a) Overlap between 
genes identified as differentially expressed (DE) using the ALEXA and Affymetrix 
platforms. This analysis was limited to the 2,507 genes covered by both platforms.  835 
(33%) of these genes were identified as significantly DE in at least one of the two 
platforms.  The observed overlap of 482 genes is statistically significant (P < 1×10-5 by 
permutation test; overlap of 175 is expected by chance). (b) Overlap between exons 
identified as DE in ALEXA and Affymetrix platforms.  This analysis was limited to only 
those 31,368 EnsEMBL exons that were represented by at least 1 probe in both 
platforms.  3,367 (~11%) of these exons were identified as significantly DE in at least 
one of the two platforms. The observed overlap of 516 exons is statistically significant 
(P < 1×10-5 by permutation test; an overlap of 90 is expected by chance).  These exons 
correspond to 213 genes. 
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Figure 2.6. Exons identified as differentially expressed by ALEXA but not 
Affymetrix are biased towards low levels of detected expression in the Affymetrix 
data 
Box plots of the observed expression level in Affymetrix data for exons identified as 
significant by the ALEXA platform only, by both platforms, or by the Affymetrix platform 
only.  Note that those exons identified as significant by the ALEXA platform only, have 
low expression values in the Affymetrix data.  This poor detection level is likely why 
these exons were not identified as significantly DE in the Affymetrix data.  The 
expression values of exons identified as DE by ALEXA but not Affymetrix are 
significantly different from those identified by Affymetrix only (p-value = 1.143×10-13 by 
Wilcoxon rank sum test).  It is not surprising that each platform has some difficulty in 
detecting some exons, but our analysis suggested that the ALEXA data detected ~3 
times as many DE exons while also having a higher specificity (i.e. a lower false positive 
rate, according to the detection of introns for housekeeping genes). 
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Figure 2.7. Absolute gene expression values in ALEXA and Affymetrix data 
A density plot comparing expression estimates between Affymetrix and ALEXA data for 
2,507 genes.  The mean expression value for most genes is higher in ALEXA compared 
to Affymetrix.  The range of expression values is also wider for the ALEXA data (~4 to 
~16 for ALEXA and ~4.5 to ~14 for Affymetrix).  The overall trend of the data is 
represented by a ‘lowess’ fitted line (red dotted line).  Due to the number of technical 
differences between ALEXA and Affymetrix experiments it is difficult to attribute this 
difference in dynamic range to any one parameter (see Methods).  Some of the 
possible explanations for the observed difference include: the increased length of 
oligonucleotides used in ALEXA microarrays (36 +/- 10 nucleotides) compared to 
Affymetrix microarrays (25 nucleotides); the use of poly-A purified RNA in ALEXA 
hybridizations compared to total RNA in Affymetrix; and the use of unamplified samples 
in ALEXA hybridizations compared to the use of samples amplified by in vitro 
transcription for Affymetrix hybridizations. 
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Figure 2.8. Absolute exon expression values in ALEXA and Affymetrix data 
A density plot comparing expression estimates between Affymetrix and ALEXA data for 
31,368 exons.  The mean expression value for most exons is higher in ALEXA 
compared to Affymetrix.  The range of expression values is also wider for the ALEXA 
data (~4 to ~16 for ALEXA and ~4 to ~14 for Affymetrix).  The overall trend of the data 
is represented by ‘lowess’ fitted line (red dotted line). 
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Figure 2.9. The OLR1/c12orf59 locus is differentially expressed between sensitive 
and resistant cells 
Differential expression† of OLR1 and c12orf59.  (a)  These genes are expressed in a 
‘head-to-head’ fashion and their transcription start sites are separated by ~7,500 bp.  
OLR1 is a putative apoptosis gene and c12orf59 has unknown function (see Table 2.4 
for details).  (b) DE values for each exon and canonical junction probeset are positioned 
and colored according to their magnitude on a log2 scale (to simplify this figure other 
probeset types are not depicted).  The red dotted line indicates a fold-change of 0.  
OLR1 and c12orf59 were over-expressed in 5-FU sensitive cells relative to resistant 
cells with an average fold change of ~40 and fold-changes ranging from ~8 to ~300 for 
individual probesets.  (c) The position of predicted open reading frames (ORF), 
transmembrane domains (TMD), coiled-coil domains (CC) and transcription factor 
binding sites (GFI1, Oct1 and GATA1) are depicted (position of binding sites was 
obtained from the UCSC genome browser track displaying data from the Transfac 
Matrix Database). 
 
† Data shown are from the ALEXA platform only. 
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Figure 2.10. A known isoform of LAMA3 is over-expressed in 5-FU resistant cells 
Differential expression† of LAMA3.  (a) LAMA3 (also known as laminin, alpha 3) is a 
gene that is thought to be involved in cell adhesion, signal transduction and 
differentiation (see Table 2.5 for details).  (b) DE values for each exon and canonical 
junction probeset are positioned and colored according to their magnitude on a log2 
scale (to simplify this figure other probeset types are not depicted).  The red dotted line 
indicates a fold-change of 0.  DE of a known isoform of LAMA3 was observed.  
Although exons representing both known isoforms showed evidence of expression in 
both sensitive and resistant cells, only those exons corresponding to the short isoform 
were over-expressed in resistant cells (indicated by a dotted blue box).  This suggests 
the possibility that only the transcript initiated at the second known promoter site of 
LAMA3 is up-regulated in 5-FU resistant cells.  (c) The position of known alternative 
transcript sequences are indicated (RefSeq mRNAs).   
 
† Data shown are from the ALEXA platform only. 
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Figure 2.11. The last 5 exons of EPB41L3 are over-expressed in 5-FU resistant 
cells 
Differential expression† of EPB41L3.  (a) EPB41L3 (also known as Dal1), a gene 
consisting of 22 exons, is thought to be involved in cell adhesion and cancer 
progression (see Table 2.5 for details).  (b) DE values for each exon and canonical 
junction probeset are positioned and colored according to their magnitude on a log2 
scale (to simplify this figure other probeset types are not depicted).  The red dotted line 
indicates a fold-change of 0.  DE of a candidate novel isoform of EPB41L3 is predicted.  
Most exons are not DE between sensitive and resistant cells.  The last 5 exons 
(indicated by a dotted blue box) are ~16-fold up-regulated in resistant cells relative to 
sensitive cells.  The remaining exons of this locus are not highly expressed in either cell 
line.  This suggests the possibility that a previously unknown transcript consisting of the 
last 5 exons of EPB41L3 is up-regulated in 5-FU resistant cells.  Possible mechanisms 
which could underlie this event include use of an alternate transcription start site or 
polyadenylation site, deletion, amplification, rearrangement, etc.  (c) The position of 
predicted ORFs (green) and known alternative transcripts (red) are indicated.   
 
† Data shown are from the ALEXA platform only. 
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Figure 2.12. The last 9 exons of the predicted protein c12orf63 are over-expressed 
in resistant cells 
Differential expression† of c12orf63.  (a) c12orf63, a gene consisting of 26 exons with 
unknown function (see Table 2.5 for details).  (b) DE values for each exon and 
canonical junction probeset are positioned and colored according to their magnitude on 
a log2 scale (to simplify this figure other probeset types are not depicted).  The red 
dotted line indicates a fold-change of 0.  DE of a candidate novel isoform of c12orf63 is 
predicted.  Most exons are not DE between sensitive and resistant cells.  The last 9 
exons (indicated by a dotted blue box) are ~16-fold up-regulated in resistant cells 
relative to sensitive cells.  The remaining exons of this locus are not highly expressed in 
either cell line.  This suggests the possibility that a previously unknown transcript 
consisting of the last 9 exons of c12orf63 is up-regulated in 5-FU resistant cells.  
Possible mechanisms which could underlie this event include use of an alternate 
transcription start site or polyadenylation site, deletion, amplification, rearrangement, 
etc.  (c) The position of the predicted ORF (green) is indicated.  Position of a coiled-coil 
domain is indicated (purple).  
 
† Data shown are from the ALEXA platform only. 
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Figure 2.13. Reciprocal DE of UMPS isoforms  
(a) The positions of ALEXA probesets (each consisting of 2-4 oligonucleotide probes) 
specific to each of the two UMPS isoforms are depicted.  Probes are labeled according 
to the exons or junctions they profile (e.g. E1-E3 detects the connection of exon 1 to 
exon 3).  Black arrows indicate the effect of exon skipping on the predicted ORF and the 
position of known protein domains is indicated.  (b) ALEXA log2 expression values for 
the probes specific to each isoform from triplicate samples of each cell line are shown 
as box plots.  The median log2 expression value of all exons (blue dotted line) and all 
negative controls (red dotted line) on the ALEXA microarray are also shown.  Isoform A 
was ~5-fold over-expressed in 5-FU sensitive cells relative to resistant cells.  Isoform B 
was ~6-fold over-expressed in 5-FU resistant cells relative to sensitive cells.  (c) 
Affymetrix log2 expression values for the probes specific to Isoform A from the same 
triplicate samples.  The Affymetrix design did not contain exon junction probes specific 
to either isoform and therefore could not detect Isoform B. 
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Table 2.1. Summary of pre-computed ALEXA designs. 
Summary statistics for ten pre-computed ALEXA designs.  Additional information is 
available for each of these designs on the ALEXA website (www.AlexaPlatform.org). 
Abbreviations: Exon-Junction (EJ); Exon-Boundary (EB); Exon (E); Intron (I).  †Filtering 
as described in the Methods followed by selection of 3 probes per exon and only exon-
junction probes representing 3 exons skipped or less.  Intron probes were only selected 
for a set of ~100 housekeeping genes. 
 

Species # Genes 
targeted 

# Probes # Probes 
after 

filtering / 

selection
†
 

Probe 
length 

(bp) 

Target 
Probe 

Tm 
(ºC) 

Distribution of 
Probe types 

Canis familiaris 14,121 8,340,667 2,109,103 38 +/- 10 67.9 54.2% EJ,  29.7% 
EB, 15.9% E, 0.1% I 

Caenorhabditis 
elegans 

20,049 6,063,626 1,556,131 42 +/- 10 67.9 48.2% EJ, 29.9% EB, 
21.8% E, 0.1% I 

Drosophila 
melanogaster 

14,649 5,615,401 700,640 36 +/- 10 67.3 45.8% EJ, 33.2% EB, 
20.7% E, 0.3% I 

Danio rerio 16,304 8,116,906 1,752,876 38 +/- 10 67.5 52.1% EJ, 31.3% EB, 
16.4% E, 0.2% I 

Gallus gallus 17,262 10,077,586 2,341,085 38 +/- 10 67.1 54.0% EJ, 30.9% EB, 
14.9% E, 0.2% I 

Homo sapiens 22,687 15,621,632 3,071,445 38 +/- 10 68.1 52.5% EJ, 29.2% EB, 
18.2% E, 0.1% I 

Mus musculus 22,283 13,995,763 2,998,157 36 +/- 10 67.3 52.5% EJ, 29.9% EB, 
17.5% E, 0.1% I 

Pan troglodytes 24,482 13,431,332 2,912,409 38 +/- 10 67.9 53.1% EJ, 28.9% EB, 
17.9% E, 0.1% I 

Rattus 
norvegicus 

18,799 11,939,250 2,818,987 36 +/- 10 67.2 52.2% EJ, 30.5% EB, 
17.2% E, 0.1% I 

Saccharomyces 
cerevisiae 

6,678 1,527,330 25,926 42 +/- 10 66.6 1.1% EJ, 2.6% EB, 
93.0% E, 3.3% I 
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Table 2.2. Within platform reproducibility for biological replicates 
Mean correlation coefficients representing the reproducibility of biological replicates for 
expression and DE values are reported for genes and exons.  For each platform, the 
correlation coefficient for pairwise comparisons of three 5-FU sensitive replicates and 
three 5-FU resistant replicates were calculated.  The values reported in the table below 
are the mean of these coefficients +/- standard deviation.  P-values correspond to a 
two-tailed Wilcoxon rank sum test of the difference between the correlation coefficients 
determined for ALEXA and Affymetrix platforms.  Spearman’s rank correlation 
coefficients are reported for absolute expression values and Pearson correlation 
coefficients are reported for DE values. 
 

Data Type 
ALEXA 

Platform 
Affymetrix 
Platform 

P-value 

Gene Expression 0.9904+/-0.0020 0.9732+/-0.0142 0.002165 
Gene DE 0.8451+/-0.0058 0.8020+/-0.0519 0.7 
Exon Expression 0.9770+/-0.0078 0.9544+/-0.0164 0.004329 
Exon DE 0.5936+/-0.0190 0.5554+/-0.0718 0.7 
 
 
 
 
Table 2.3. Summary of differential expression events for genes profiled by the 
Affymetrix and ALEXA array platforms 
Significant events had a multiple testing corrected p-value < 0.05 and a fold-change > 2.  
‘Canonical junction’ refers to the connection of adjacent exons. 
 
 DE event 

type 
Total # 
events 
profiled 

# Significant DE 
events 

# Within 
ORF 

# Affecting 
known feature 
(domain, signal 

peptide, etc.) 
Affymetrix Gene-level 2,507 78 N/A N/A 
 Exon 49,681 1,117 978 589 
 Intron 65,327 25 20 0 
 Total 117,515 1,220 998 589 
ALEXA Gene-level 2,507 233 N/A N/A 
 Exon 32,164 2,703 2,537 1,544 
 Canonical 

junction 
27,046 2,310 2,260 1,277 

 Exon skip 69,761 191 180 103 
 Exon 

boundary 
52,402 253 219 100 

 Intron 472 0 0 0 
 Total 184,354 5,690 5,196 3,024 
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Table 2.4. Candidate differential gene expression events associated with 5-FU 
resistance 
The top 46 candidate differential gene expression events associated with 5-FU 
resistance are reported.  Genes selected for this table had a significant p-value for 
differential expression (multiple testing corrected p-value < 0.05) and a fold-change of 4 
or greater in either ALEXA or Affymetrix data.  Positive values indicate over-expression 
in 5-FU sensitive cells.  Negative values indicate over-expression in 5-FU resistant cells.  
Additional information for each event listed below is available online 
(www.AlexaPlatform.org). 
 

Rank 
Gene 

Symbol 

Fold 
Change 
(ALEXA) 

Fold 
Change 
(Affy) 

Gene name 

1 C12orf59 50.5 24.8 Chromosome 12 open reading frame 59 

2 OLR1 33.3 10.1 Oxidized low density lipoprotein (lectin-like) receptor 1 

3 PDZK1 21.7 4.1 PDZ domain containing 1 

4 ASRGL1 -18.9 -7.4 Asparaginase like 1 

5 KRT20 -12.9 -3.4 Keratin 20 

6 IGF2BP3 -12.3 -4.1 Insulin-like growth factor 2 mRNA binding protein 3 

7 GIPC2 -12.0 -9.1 GIPC PDZ domain containing family, member 2 

8 ATOH8 -11.9 -4.4 Atonal homolog 8 (Drosophila) 

9 PRF1 10.9 6.1 Perforin 1 (pore forming protein) 

10 FUT3 10.7 11.7 
Fucosyltransferase 3 (galactoside 3(4)-L-fucosyltransferase, Lewis 
blood group) 

11 SLAMF6 -9.5 -4.7 SLAM family member 6 

12 ACSL4 -8.2 -8.5 Acyl-CoA synthetase long-chain family member 4 

13 ARSE 7.8 3.7 Arylsulfatase E (chondrodysplasia punctata 1) 

14 LAPTM4B 7.2 8.1 Lysosomal associated protein transmembrane 4 beta 

15 C1orf25 -7.1 -5.2 Chromosome 1 open reading frame 25 

16 PON3 7.1 7.1 Paraoxonase 3 

17 MYEOV 6.1 1.5 
Myeloma overexpressed gene (in a subset of t(11;14) positive 
multiple myelomas) 

18 FBP1 5.8 4.2 Fructose-1,6-bisphosphatase 1 

19 MALL -5.7 -1.9 Mal, T-cell differentiation protein-like 

20 MR1 5.4 3.7 Major histocompatibility complex, class I-related 

21 TCF7L1 5.4 1.3 Transcription factor 7-like 1 (T-cell specific, HMG-box) 

22 EPS8L3 5.4 1.5 EPS8-like 3 

23 LRIG1 -5.3 -3.0 Leucine-rich repeats and immunoglobulin-like domains 1 

24 PYGL 5.2 4.1 
Phosphorylase, glycogen; liver (Hers disease, glycogen storage 
disease type VI) 

25 H19 5.1 15.5 H19, imprinted maternally expressed untranslated mRNA 

26 PHLDB2 4.9 3.1 Pleckstrin homology-like domain, family B, member 2 

27 HHIP 4.9 4.8 Hedgehog interacting protein 

28 SLC7A7 4.8 6.0 
Solute carrier family 7 (cationic amino acid transporter, y+ 
system), member 7 

29 TNS4 4.7 2.5 Tensin 4 

30 LXN 4.6 3.2 Latexin 

31 RTN2 -4.6 -2.6 Reticulon 2 

32 MLPH -4.6 -3.5 Melanophilin 

33 SPTLC3 4.6 4.1 Serine palmitoyltransferase, long chain base subunit 3 

34 TTC14 -4.5 -3.8 Tetratricopeptide repeat domain 14 

35 KLK6 4.4 3.4 Kallikrein-related peptidase 6 

36 PTP4A3 -4.4 -1.5 Protein tyrosine phosphatase type IVA, member 3 
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Rank 
Gene 

Symbol 

Fold 
Change 
(ALEXA) 

Fold 
Change 
(Affy) 

Gene name 

37 IRF8 -4.3 -3.1 Interferon regulatory factor 8 

38 TMOD2 -4.3 -2.6 Tropomodulin 2 (neuronal) 

39 PIK3AP1 4.2 1.3 Phosphoinositide-3-kinase adaptor protein 1 

40 HSD3B1 4.1 1.7 
Hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-
isomerase 1 

41 TMEM171 -4.1 -3.4 Transmembrane protein 171 

42 CACNG4 -4.1 -1.3 Calcium channel, voltage-dependent, gamma subunit 4 

43 COL4A1 4.1 1.4 Collagen, type IV, alpha 1 

44 GRIN2B 4.1 2.5 glutamate receptor, ionotropic, N-methyl D-aspartate 2B 

45 NDP -4.0 -2.6 Norrie disease (pseudoglioma) 

46 ABCA3 -4.0 -1.8 ATP-binding cassette, sub-family A (ABC1), member 3 
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Table 2.5. Candidate differential isoform expression events associated with 5-FU 
resistance 
The top 25 candidate differential isoform expression events associated with 5-FU 
resistance are reported (listed alphabetically).  These events were selected by applying 
a series of filters to identify events that were likely to involve differential expression 
(reciprocal expression in most cases) of specific isoforms as opposed to the entire 
gene.  Fold change ‘A’ and ‘B’ refer to values for probes capable of distinguishing 
expression of putative alternative isoforms (see Methods).  Positive values indicate 
over-expression in 5-FU sensitive cells.  Negative values indicate over-expression in 5-
FU resistant cells.  TSS refers to ‘transcription start site’.  Fold-change values for 
‘complex’ events are listed as ‘N/A’ because the number of potential isoforms is too 
large to assign particular probes to particular isoforms.  Additional information for each 
event listed below is available online (www.AlexaPlatform.org). 
 

Gene 
Symbol 

Gene name Event type 
Fold 

change 
(Isoform A) 

Fold 
change 

(Isoform B) 

# and type of sequences 
supporting alternative 

expression event 

AKAP7 
A kinase (PRKA) 
anchor protein 7 

Alternative 
TSS/polyA 

-3.07 1.01 Multiple mRNAs 

APLP1 
Amyloid beta (A4) 
precursor-like protein 
1 

Complex N/A N/A 
mRNA and EST evidence 
indicates several AS events 
similar to those observed 

ATP6AP1 

ATPase, H+ 
transporting, 
lysosomal accessory 
protein 1 

Alternative 
exon 

boundary 
2.85 -1.67 Multiple ESTs 

C12orf63 
Chromosome 12 open 
reading frame 63 

Alternative 
TSS/polyA 

-21.17 1.23 None 

C5 
Complement 
component 5 

Alternative 
TSS/polyA 

13.22 -1.75 None 

CDC25B 
Cell division cycle 25 
homolog B 

Alternative 
TSS/polyA 

6.31 1.00 
Multiple mRNAs and ESTs 
support the use of 
alternative 5' exons 

COL21A1 
Collagen, type XXI, 
alpha 1 

Intron 
retention 

2.72 -3.10 Single EST 

DIS3 
DIS3 mitotic control 
homolog (S. 
cerevisiae) 

Exon 
skipping 

-3.44 1.02 Single mRNA and ~50 ESTs 

EIF4A2 
Eukaryotic translation 
initiation factor 4A, 
isoform 2 

Alternative 
exon 

boundary 
3.07 -1.20 Multiple ESTs. 

ENO2 
Enolase 2 (gamma, 
neuronal) 

Intron 
retention 

2.22 -3.44 
Single EST (cloned from 
Cerebellum) 

EPB41L3 
Erythrocyte membrane 
protein band 4.1-like 3 

Alternative 
TSS/polyA 

-9.27 1.08 None 

FGD5 
FYVE, RhoGEF and 
PH domain containing 
5 

Alternative 
TSS/polyA 

3.33 1.08 Single mRNA 

HHIP 
Hedgehog interacting 
protein 

Alternative 
TSS/polyA 

8.08 1.10 Single mRNA 

IL10RB 
Interleukin 10 
receptor, beta 

Exon 
skipping 

4.69 -2.55 None 

KLK6 
Kallikrein-related 
peptidase 6 

Complex N/A N/A 
Multiple mRNAs which could 
contribute to observed 
expression 

LAMA3 Laminin, alpha 3 
Alternative 
TSS/polyA 

-3.83 1.28 Two mRNAs 

MLPH Melanophilin 
Exon 

skipping 
2.02 -4.59 

Multiple mRNAs and ESTs 
indicate skipping of this exon 
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Gene 
Symbol 

Gene name Event type 
Fold 

change 
(Isoform A) 

Fold 
change 

(Isoform B) 

# and type of sequences 
supporting alternative 

expression event 

MYT1 
Myelin transcription 
factor 1 

Complex N/A N/A 
Multiple mRNAs which could 
contribute to observed 
expression 

PLCB4 
Phospholipase C, beta 
4 

Exon 
skipping 

-5.03 -1.20 Two mRNAs and two ESTs 

PPP2R1B 
Protein phosphatase 
2, regulatory subunit 
A, beta isoform 

Exon 
skipping 

-3.40 1.14 Single mRNA and ~10 ESTs 

RC74 
Integrator complex 
subunit 9 

Exon 
skipping 

-12.66 1.06 
Single EST (cloned from 
hepatocellular carcinoma 
cell line). 

RCC1 Melanophilin 
Alternative 
TSS/polyA 

-3.72 -1.10 
None (some mRNA support 
for similar alternate TSS 
usage) 

SSBP2 
Single-stranded DNA 
binding protein 2 

Alternative 
exon 

boundary 
3.11 -3.21 None 

TPST1 
Tyrosylprotein 
sulfotransferase 1 

Exon 
skipping 

5.25 1.10 Multiple ESTs 

UMPS 
Uridine 
monophosphate 
synthetase 

Exon 
skipping 

-5.77 5.21 
Multiple mRNAs and ESTs 
in human, mouse and rat 

ZNF185 
Zinc finger protein 185 
(LIM domain) 

Exon 
skipping 

2.78 -3.97 None 
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3. Alternative expression analysis by RNA sequencing3 

3.1. Introduction 

Expression of multiple distinct mRNA transcripts from a single gene locus by alternative 

transcript initiation, alternative splicing and alternative poly-adenylation (hereafter 

collectively referred to as ‘alternative expression’) is widely recognized as a source of 

proteome diversity in eukaryotic species1.  PCR, microarray, and sequencing 

technologies have been applied to the study of transcript diversity generated by 

alternative expression with increasing success in recent years1.  As sensitive genome-

wide methods have become available1, the prevalence and diversity of alternative 

expression has become increasingly apparent.  Microarrays sensitive to alternative 

splicing, such as those developed in our group2 and by others3, 4, have made it possible 

to comprehensively detect and measure the abundance of known and predicted mRNA 

isoforms.  More recently, massively parallel RNA sequencing, known as ‘RNA-Seq’5 or 

whole transcriptome shotgun sequencing (‘WTSS’)6, has been proposed as a method 

with a number of potential advantages over microarray-based methods.  Proof-of-

principle experiments conducted in yeast, human and mouse have been reported by 

several groups.  These reports described the use of RNA-Seq to perform de novo 

transcriptome annotation7, estimate expression of specific isoforms8, compare gene 

expression between a pair of contrasting conditions9-11, comprehensively identify the 

expression of exons and exon-junctions within a single cell type6, 12, and catalogue the 

diversity of known and novel transcripts across a range of tissues and individuals5, 13, 14.  

While these reports illustrated the utility of RNA sequencing for profiling the 

transcriptome, there remains a lack of methods to identify differences in mRNA isoforms 

in comparisons of samples.  

In this work, we describe a novel method of analyzing WTSS data to allow 

assessment of the expression, differential expression and alternative expression of 

known and predicted mRNA isoforms including metrics for identifying reciprocal 

expression of alternative isoforms.  Briefly, the approach consists of the following steps: 

(1) creation of a database of expression and alternative expression ‘features’ (Figure 

3.1), (2) mapping of short paired-end sequence reads (generated by massively parallel 

                                            
3 A version of this chapter has been submitted.  Griffith M, Griffith OL, Morin RD, Tang MJ, Pugh TJ, Ally 
A, Asano JK, Chan SY, Li HI, McDonald H, Teague K, Zhao Y, Zeng T, Delaney AD, Hirst M, Morin GB, 
Jones SJM, Tai IT, Marra MA.  Alternative expression analysis by RNA sequencing 
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RNA sequencing) to these features (Figure 3.2), (3) identification of features that are 

expressed above the level of background noise while taking into account locus-by-locus 

noise levels (Figure 3.3), (4) identification of features that are differentially expressed 

between two disease states (Figure 3.3), (5) identification of the subset of differentially 

expressed features that correspond to alternative expression of mRNA isoforms (Figure 

3.3), and (6) visualization of the outcome of these analyses.  For the first time, we make 

available databases of sequence features and an associated visualization tool 

specifically tailored to the analysis of alternative isoforms by WTSS including supporting 

information from additional sequence resources (e.g. ESTs), cross-species sequence 

conservation and protein coding effect of each feature. 

As proof-of-concept, the approach was applied to a comparison of fluorouracil (5-

FU) responsive and non-responsive colorectal cancer cell lines.  The drug 5-FU is an 

anti-metabolite chemotherapy agent commonly used in the treatment of several cancer 

types including head and neck, pancreatic, breast, stomach, and especially colorectal15, 

16.  We sequenced Illumina paired-end WTSS libraries constructed from polyA+ RNA 

isolated from 5-FU sensitive and resistant colorectal cancer cell lines (see Methods).  

To derive these lines, a cell line sensitive to 5-FU (MIP101) was passaged in the 

presence of increasing concentrations of 5-FU resulting in selection of a clone resistant 

to the drug (MIP/5FU)17.  The resulting cells were profiled to test the utility of our method 

in detecting alternative expression events.  The resistant cell line exhibited a 10-fold 

increase in the IC50 for 5-FU and as a clonal derivative of the sensitive cell line was 

expected to be highly related except for polymorphisms arising during exposure to 5-

FU.  Based on these characteristics we also sought to study the evolution of drug 

resistant disease and identify candidate 5-FU resistance genes or specific isoforms.  

The sequencing libraries consisted of 262 million paired-end reads and approximately 

21.5 billion bases of sequence data.  We present a detailed analysis of these data with 

particular emphasis on discriminating expressed features from background noise and 

identification of events that correspond not just to changes in gene expression but also 

to changes in the expression of specific mRNA isoforms.  Comparison of the 5-FU 

sensitive state to the 5-FU resistant state revealed a global disruption in splicing 

characterized by increased expression of alternative mRNA isoforms, many of which 

were previously unreported in the UCSC and EnsEMBL transcript databases.  Several 

promising candidate events emerged that included differential expression across entire 
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gene loci as well as loci that were not differentially expressed overall but exhibited a 

shift in isoform expression patterns.  Among the list of candidate resistance loci 

exhibiting alternative expression, we observed an over-representation of genes with 

known or suspected roles in 5-FU metabolism and other genes whose disruption is 

consistent with other drug resistance mechanisms, particularly drug efflux. 

The data we used to validate our method relates to a specific area of cancer biology 

research (5-FU resistance) but we believe that this work represents a general model for 

the study of diseases such as cancer where comparing the expression of mRNA 

isoforms between malignant and normal tissue, pre- and post-treatment biopsies, and 

other contrasting disease states can lead to important biological insights.  Sequence 

data, alternative expression annotation databases for seven species (Table 3.1), 

candidate gene and isoform lists, source code, user manuals, a data viewer and other 

resources to facilitate alternative expression analysis by WTSS are available at our 

website: www.AlexaPlatform.org. 

3.2. Results 

3.2.1. Whole transcriptome shotgun sequencing (WTSS) 
Analysis of paired 36- and 42-mer sequencing reads generated from sequencing 

libraries revealed that the observed median fragment size, inferred by mapping paired 

reads to known and predicted transcripts was 227 bp (Figure 3.4).  The data described 

in this work correspond to a total of 262 million paired-end reads and 21.5 billion bases 

of sequence, generated on Illumina GAII sequencing devices (see Methods).  The 

quality scores for all reads were examined.  Quality values decreased substantially from 

the beginning to the end of the read for both read 1 and read 2 of a read pair (Figure 

3.5).  Despite this decrease in read quality from the beginning of the read to the end, the 

majority of reads mapping to known or predicted transcripts did so over their complete 

length (Figure 3.6).  Lane-by-lane analysis did not identify any lanes with qualities or 

mapping rates low enough to warrant discarding the lane.  Of the ~21 billion bases of 

sequence data generated, 1.2% were considered ambiguous during base calling (i.e. 

N’s).  Reads were removed at the outset of the analysis if they contained more than 1 

ambiguous base (1.7% of all reads), or if more than 2/3 of their bases were identified as 

low complexity by mdust (0.5% of reads) of which the majority (61%) were polyA/T 

stretches, presumably corresponding to mRNA tails.  An additional 0.02% of all reads 
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were removed because both read 1 and 2 of a pair were identical and might represent 

artifacts of library construction. 

During library construction, polyA+ selection was performed to reduce the 

presence of highly expressed ribosomal RNAs and enrich for mRNA species.  Although 

we found little evidence of RNA degradation (see Methods), even small amounts of 

degradation could introduce an over-representation of 3′ ends (i.e. 3′ end bias) in the 

sequence data because the polyA+ selection captures transcripts by their 3′ end.  

Significant end bias would diminish our ability to detect alternative expression.  To 

investigate the possible presence of end bias in the data we plotted the location of the 

mapped reads on their cognate transcripts, and expressed this location as a percentage 

of transcript length with 0% denoting the 5′ end of a transcript and 100% denoting the 3′ 

end.  These percentage values were then divided into bins according to the size of 

transcripts they were mapped to.  The distribution of reads was generally reduced at 

both the 5′ and 3′ ends of each transcript but enrichment at the 3′ end was only 

apparent for transcripts larger than 10,000 bp (~1% of all transcripts) (Figure 3.7).   

3.2.2. Annotation of features and read mapping 

To assess differences in alternative expression between drug sensitive and resistant 

cells, we developed an alternative expression annotation database (see Methods).  

Briefly, this database defines expression ‘features’ that can be informative of alternative 

expression events such as exon skipping, alternative exon boundary usage, inclusion of 

cryptic exons, intron retention, etc. (see Figure 3.1).  A total of 3.8 million such features 

were defined.  Each feature was annotated with information describing its size, genomic 

repeat content, protein coding content, cross-species sequence conservation, 

mRNA/EST sequence support, etc., and assigned a descriptive feature name (see 

Methods).  16% of these features correspond to known EnsEMBL transcripts, 11% are 

not known to EnsEMBL but have some EST or mRNA support and 73% represent 

hypothetical events defined in our database but not currently supported by an EnsEMBL 

transcript, EST or mRNA (Table 3.2).   

After quality filtering (Methods) of 262 million paired reads, the remaining 257 

million reads (97.8%) were mapped to the database of sequences encompassing all of 

the features described above as well as all human and ancestral repeat elements.  

Briefly, 2.3% of these reads mapped unambiguously to known human or ancestral 
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repeat elements, 59% to known or predicted transcripts, 0.23% to novel junctions or 

novel boundaries of known exons, 5.2% to introns and 2.8% to intergenic sequence.  

5.2% mapped to more than one sequence feature (i.e. ambiguous origin). 10% had 

similarity to human sequences but didn’t meet our alignment thresholds (too many gaps 

or mismatches in the alignments) (see Methods) and the remaining 13% could not be 

assigned with high confidence to a human sequence (see Figure 3.8).  Some of these 

unmapped reads may represent low-level contamination within our cell cultures or 

contamination from non-human libraries sequenced at our facility.  Based on an 

analysis of mitochondrial sequences, we estimate that no more than 0.3% of all reads 

map unambiguously to non-human sequences (a rate within the normal range for 

libraries generated in our laboratory).  The remaining unmapped reads may correspond 

to library sequencing or data extraction artifacts but they might also correspond to novel 

exon-exon junctions, not represented in our sequence database.  These could 

theoretically be recovered by mapping directly to the genome with a splicing-aware 

aligner such as BLAT.  Unfortunately, BLAT is not recommended unless both sides of a 

gapped alignment match perfect over at least 20 bp18.  Since reads typically consist of 

two discontinuous 42-mers, either of which may poorly centered on an exon-exon 

junction, BLAT will often fail to align such reads.  An alternative approach would be to 

use de novo assembly or ‘peak finding’ to identify novel exons and exon-exon junctions.  

Although de novo assemblers such as Velvet19 and ABySS20 and peak identification 

algorithms such as FindPeaks21 have recently been developed, their use in assembling 

RNA sequence data remains preliminary22, 23. 

In summary, 203 million reads (77% of all reads) mapped with high confidence to 

human sequences and for 98.1% of read pairs with similarity to known or predicted 

transcripts, both reads were mapped as a pair to a transcript of a single gene locus (i.e. 

both reads of a pair map to the same gene).  Additional read statistics summarized 

individually for each cell line are provided at our website: www.AlexaPlatform.org.  

3.2.3. Comparison of Illumina WTSS expression data to Affymetrix and ALEXA 

microarray expression data 

The method of alternative expression analysis we developed relies on accurate 

expression measurements for whole genes as well as individual features of those genes 

such as exons and exon junctions.  To obtain a preliminary assessment of the utility of 
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WTSS data for alternative expression analysis we compared expression measurements 

derived from our Illumina data to measurements from the Affymetrix exon array and 

ALEXA2 platforms generated with the same input RNAs (see Methods).  Expression 

measurements as well as differential expression measurements were highly concordant 

between Illumina transcriptome sequencing data, Affymetrix exon arrays and ALEXA 

arrays fabricated by NimbleGen2.  For log2 expression estimates the Spearman 

correlations between these data types were 0.70 to 0.88 (Figure 3.9).  The sequencing-

based method produced comparable correlations to arrays as did the array-based 

methods to each other.  Similarly, differential expression measurements derived from 

each platform were compared and produced correlation values of 0.72 to 0.79 (Figure 

3.10).  The overlap between genes identified as differentially expressed to a level of 2-

fold or greater (and p-value < 0.05) was significant and 56% of all differentially 

expressed genes were detected by two or three of the platforms.  19 of the top 20 

differentially expressed genes identified by WTSS exhibited 2-fold or greater differential 

expression in the other two platforms (Table 3.3).   

The signal-to-noise ratio of each platform was estimated by examining the 

expression estimates for exons (signal) and comparing these to expression estimates 

for introns, intergenic regions and random sequences (noise).  This analysis was limited 

to a list of 100 housekeeping genes defined by Affymetrix and represented on both the 

Affymetrix Exon microarrays and custom NimbleGen ALEXA microarrays.  Based on 

these features, the signal-to-noise ratios were 20.8 ± 0.42 (Affymetrix), 56.5 ± 2.5 

(NimbleGen) and 381.1 ± 44.7 (Illumina).  Thus, the signal-to-noise ratio for WTSS data 

was ~18 and ~7 times higher than the Affymetrix and NimbleGen arrays, respectively.  

While the ability to estimate the exon to intron expression ratio in microarray expression 

data is theoretically limited by physical parameters (such as hybridization stringency, 

fluorophore performance, detector dynamic range, etc.), the digital expression estimates 

generated by WTSS are primarily limited by sequencing depth.  The greater the 

sequencing depth available, the greater the ability to detect transcripts with low 

expression levels and estimate the expression level difference between the least and 

most abundant transcripts.  The observed distribution of exon, intron and random or 

intergenic sequence expression measurements were compared between Illumina, 

Affymetrix and NimbleGen data (Figure 3.11).  The ability of each platform to correctly 

identify exons as expressed (a measure of sensitivity) and introns as not expressed (a 
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measure of specificity) was examined by creating receiver operating characteristic 

(ROC) curves and calculating signal-to-noise, specificity and sensitivity values (Figure 

3.12 & Table 3.4).  The exon microarray data achieved a maximum specificity of 86.5% 

at 83.5% sensitivity compared to 95.8% specificity at 86.9% sensitivity for splicing 

sensitive microarrays and 99.0% specificity at 92.6% sensitivity for WTSS (these values 

correspond to the ‘stationary point’ of the ROC curve, equivalent to the global maximum 

of sensitivity plus specificity values). 

We compared the ability of WTSS, splicing sensitive microarrays, semi-quantitative 

RT-PCR, and-real time quantitative RT-PCR to measure the ratio of two alternatively 

spliced isoforms of the gene uridine monophosphate synthetase (UMPS; the canonical 

isoform ‘A’ contains exon 2 and isoform ‘B’ skips exon 2) (Table 3.5).  While each 

technology produced similar estimates, the WTSS results predicted the largest 

difference between the expression of UMPS isoforms A and B, suggesting that the 

dynamic range of this approach may exceed that of microarray and PCR based 

expression platforms.  Indeed since dynamic range is limited primarily by sequencing 

depth in digital gene expression platforms such as WTSS, improved dynamic range will 

be obtained as long as sequencing depth is sufficient.  In our libraries, more than 

20,000 reads mapped to UMPS exons and junctions. 

3.2.4. Expression of canonical and alternative sequence features 

The number of reads corresponding to a single gene in our libraries ranged from 1 to 

2.16 million (the gene, H19).  In each library ~25,000 genes were detected by 1 or more 

reads and ~20,000 by 10 or more reads.  In order to be informative of alternative 

expression, it was desirable that each gene be sequenced across the majority of exon 

bases.  In each library, ~15,000 genes were sequenced to a depth of 1X or greater over 

75% or more of their exonic bases.  At a minimum depth of 10X this drops to ~8,000 

genes and at a minimum of 100X it drops to ~2,000 genes (Figure 3.13).  To further 

assess the degree to which the transcriptome had been comprehensively sequenced 

(and therefore the potential to measure alternative expression), the identification of 

transcriptome features within the data was plotted as a function of increasing read 

depth.  The percentage of all possible genes and exon junctions as well as individual 

exon, intron and intergenic base positions of the EnsEMBL annotated genome detected 

at a level of 10 or more observations increased rapidly as library depth was increased 
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from 0% to 20% of all reads (Figure 3.14).  The shapes of the curves depicted in 

Figure 3.14 suggest that for genes, exon junctions and exon base positions, saturation 

was approached with increasing read depth and that after the first 20-40% of the data 

were analyzed (60-100 million reads), additional depth resulted in a rapidly diminishing 

rate of discovery of these features.  In contrast, the curves representing intron and 

intergenic sequence do not show a pattern of saturation.  This is not surprising, given 

that the library represents a polyA+ RNA input and the majority of sequence is therefore 

expected to correspond to exonic bases of the genome (~2% of the entire genome)24.  

When examined more closely, the intron and intergenic sequence appears to be 

randomly sampled from across the genome and shows no signs of saturation (i.e. 

increased depth continues to yield mostly unobserved sequence) in contrast to the 

reads mapping to exon content.  We performed DNaseI treatment and polyA selection 

of our RNAs, but it is still possible that these sequences represent low-level 

contamination of the mature mRNA with un-processed RNA (heteronuclear RNA or 

‘hnRNA’) or genomic DNA.  They might also represent random transcriptional noise25 

from non-specific transcript initiation events.  Expression of these sequences are 

hereafter referred to as intragenic and intergenic noise for sequences that map within or 

between the boundaries of known genes respectively.  While the saturation curves for 

exon bases and exon-junctions suggested diminishing returns, a true plateau (slope = 

0) was not achieved even at 100% of library depth.  To our knowledge the MIP101 

library, consisting of ~334 million reads (~167 million paired reads), is the deepest 

WTSS library produced to date for a single RNA sample (previous experiments reported 

8 - 95 million reads5-7, 9-14).  Despite this, based on extrapolation of these curves we 

predict that the percent discovery rate of exon bases would not converge with the level 

of discovery expected from intergenic noise alone until library depth reached 1 billion 

reads (Figure 3.15).  We also showed that the degree of ‘saturation’ was highly 

dependent on the minimum coverage cutoff threshold required for a feature to be 

considered detected (Figure 3.16).  

In order to identify alternatively expressed features, we first identified all those 

known and predicted features that were detected in our sequence data and expressed 

above the level of background noise (Figure 3.3).  To differentiate between true 

expression and background noise we estimated the level of signal likely to be derived 

from intergenic and intragenic sources (see Methods) and used these estimates to 
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assess ‘expression above background’ for every feature.  This resulted in a significant 

difference between the number of genes detected by 1 or more reads (~25,000) and 

those expressed above the level of intergenic and intragenic noise (~12,500).  For the 

~12,500 genes detected as transcribed we estimated that if the lowest expressed gene 

represents a minimum copy number of 1 per cell, then the dynamic range of expression 

is estimated to be 1 to ~6200.  Based on this observed dynamic range we estimated the 

cumulative mRNA copy number of each MIP101 cell to be ~450,000 transcripts (see 

Methods for details).  This estimate is consistent with previously published estimates of 

100,000 to 700,000 mRNA transcripts per cell depending on cell type and method of 

estimation26-28. 

Because of the substantial depth of our libraries, in addition to the inability to 

completely remove all potential sources of noise such as genomic DNA and random 

transcription events25, sequence from any gene may be detected even if it not 

expressed via a regulated transcription event.  Supporting this assertion is the 

observation that the pool of genes classified as expressed is composed of only 5% 

pseudogenes, while the remaining genes which are not classified as expressed but 

have one or more reads are 33% pseudogenes (~7 times enriched for pseudogenes).  

Similarly, due to the presence of un-processed RNA contamination and random splicing 

events, the observation of sequences representing a skipped exon, alternative exon 

boundary or intron retention does not necessarily imply biologically significant 

alternative expression.  Stochastic output from the splicing machinery has been shown 

to be prevalent, a function of the expression level and intron count of a gene, and result 

in primarily non-functional products29, 30.  Consistent with this, the number of novel exon 

junctions identified as expressed above background did not appear to be correlated with 

either the expression level or intron count of their corresponding gene (Spearman 

correlations of 0.006 and 0.140 respectively).  Since our evaluation of expression 

incorporates a gene-by-gene estimate of noise (Methods), the majority of spurious 

stochastic splicing events should be filtered in our analysis (Figure 3.17).  Finally, since 

our primary focus is on the change in alternative expression between contrasting states, 

any isoforms which emerge as significantly different between two conditions are less 

likely to be a product of random splicing errors. 

In the MIP101 library, a total of 12,398 genes were expressed above background.  

Of these, 11,388 (91.9%) were protein coding genes, 700 (5.6%) were pseudogenes, 
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167 (1.3%) were snoRNAs, 81 (0.7%) were miRNAs, and the remaining 60 (0.5%) 

belonged to various miscellaneous classes.  Although only 33.5% of all EnsEMBL 

genes were detected as expressed, this included 54.0% of all protein coding genes.     

Another measure of the comprehensiveness of the expression data is the degree to 

which we detect the expression of the annotated transcript features of EnsEMBL 

(known exons and exon junctions).  For example, we observed expression for 88.3% of 

the individual exons and 83.0% of the canonical exon-exon junctions of the 12,398 

genes detected as expressed in the MIP101 library.  While these observations indicate 

the sensitivity in detecting the exons and junctions of expressed genes, the fact that 

only 3.2% of the introns and 0.2% of the non-canonical exon-exon junctions of these 

same genes were detected as expressed suggests that the specificity is also high. 

We summarized the total number of genes, transcripts, exon regions, junctions, 

alternative boundaries, introns and intergenic regions found to be expressed in each 

library (Table 3.6).  Junctions and alternative exon boundaries were further classified as 

either known or novel according to EnsEMBL transcripts (see Methods).  Introns and 

intergenic regions were also divided into putative ‘active’ and ‘silent’ regions using the 

coordinates from alignments of all human mRNAs and ESTs.  The distribution of 

expression levels for exon regions and exon-exon junctions were very similar and the 

expression of alternative exon boundaries, introns and intergenic regions followed the 

expected pattern of decreasing read support (Figure 3.18).  The majority of exons were 

expressed above the 95th percentile of both ‘silent’ intron and intergenic region 

estimates (Figure 3.19).  In the MIP101 library the overall median coverage of all exon 

regions was 114.5 compared to 0.64 and 0.14 for silent intron and intergenic regions 

respectively. 

3.2.5. Differential expression analysis 

Having identified all features expressed above background, we next calculated the 

differential expression value for each feature (Figure 3.3).  We identified 7,198 features 

that were significantly differentially expressed between 5-FU sensitive and resistant 

cells (Table 3.6).  These features corresponded to 1,479 distinct genes.  Many of these 

features were differentially expressed exons and canonical exon junctions belonging to 

loci that were differentially expressed across their entire length (i.e. all canonical exons 

and junctions) and were not considered to be alternatively expressed.  These changes 
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in gene expression level are presumably caused by regulatory changes (genetic or 

epigenetic) accrued during the transition from 5-FU sensitivity to resistance.  Possible 

modifications that might affect the expression level of an entire gene include deletions, 

amplifications, mutation of enhancers, and hyper- or hypo-methylation of promoters 

sites.  The most highly differentially expressed gene, H19, exhibited 1/100th the 

abundance in resistant cells relative to sensitive cells (H19 was ranked #5 in abundance 

level in MIP101 and #1 for differential expression between MIP101 and MIP/5FU). This 

gene functions in tandem with its neighbor, IGF2, as a regulator of cellular growth.  H19 

and IGF2 are known for being maternally and paternally imprinted31, respectively, and 

for their association with Beckwith-Wiedemann syndrome31.  Interestingly, IGF2 was not 

detected above background in either cell line.  The expression pattern of all individual 

features of H19, IGF2 and all other genes can be viewed using the ‘ALEXA-Seq’ data 

viewer at our website (www.AlexaPlatform.org).   Figure 3.20 shows a screenshot for 

H19 illustrating the loss of expression at all exons and canonical junctions of this locus.   

The gene with the greatest increase in abundance in resistant cells relative to 

sensitive cells was KRT20 (aka CD20), which has been proposed as a prognostic 

marker for colorectal cancer32.  The pattern of differential expression was consistent 

across the 8 exons and 7 canonical junctions of KRT20 (Figure 3.21).  No intronic, 

alternative exon boundary or exon-skipping features for this gene were expressed in 

either condition.  While this gene is not the only example with a simple gene-wide 

change in expression, there were many genes that exhibited a pattern of alternative  

expression.  These events would be missed by expression analysis that treats each 

gene model as a single expression unit.  Illustrating this point is the observation that 

only 27 of the top 50 differentially abundant transcripts identified corresponded to 

differential gene expression events such as those observed for H19 and KRT20 (Table 

3.8). 

3.2.6. Alternative expression analysis 

Having identified those features expressed above background and differentially 

expressed between 5-FU sensitive and resistant cells we next sought to identify the 

subset of expression events representing alternative expression of mRNA isoforms 

(Figure 3.3).  Calculating expression of specific known alternative transcripts was 

possible for 10,151 multi-transcript genes (genes with multiple transcripts where the 
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sequence features unique to each transcript were identified).  Of these multi-transcript 

genes, 5,389 genes had evidence for at least one isoform being expressed and 1,975 

(37%) had evidence for expression of multiple known isoforms within the MIP101 cell 

line.  An additional 5,862 loci had evidence for expression of novel isoforms (1,372 with 

novel junctions and 4,490 with novel alternative boundaries, novel exons or intron 

retentions).  The known and novel transcripts and other features that were expressed in 

each library and differentially expressed between libraries are enumerated in Table 3.6.  

The number of expressed novel features enumerated in this table suggests that the 

annotation of alternative transcripts within EnsEMBL incomplete.  Alternative expression 

is predicted to influence protein coding potential in 90% of alternative expression events 

involving exons and 98% of events affecting exon junctions (Table 3.2).  A total of 68% 

of all multi-exon expressed genes showed evidence for expression of multiple isoforms 

in our data.  While recent studies have predicted that 90-95% of human genes undergo 

alternative splicing13, 14 these studies assessed these statistics across a variety of 

diverse cell types, whereas our estimate corresponds to clonally related cell lines of 

colorectal cancer origin17, 33. 

The pattern of observed number of exons skipped in expressed exon-exon junctions 

is revealing.  Our exon junction database consisted of ~2.2 million known and 

hypothetical junctions.  215,743 of these junctions were supported by at least one 

EnsEMBL transcript, and 203,600 and 194,711 junctions were supported by one or 

more mRNA and EST sequences respectively.  Of 215,743 known junctions, 16,163 

correspond to a known exon-skipping event, the remainder representing connections of 

adjacent exons.  Known exon-skipping events involve anywhere from 1 to 151 

consecutive exons being skipped but 84% involve only a single skipped exon and 95% 

involve 5 or fewer skipped exons.  In contrast, the number of exons skipped by all 

possible exon junctions ranges from 1 to 354 and only 8% involve a single exon being 

skipped.  The numbers of exons skipped among the expressed exon junctions matched 

the percentage of known junctions with these numbers of exons skipped (Figure 3.22).  

If this analysis is limited to only the novel expressed exon junctions, we observe heavy 

bias towards small numbers of exons skipped (72% have 1 exon skipped and 98% have 

5 or less) again following the pattern of known exon skipping events.  No such bias is 

observed if we randomly sample junctions from the database of all possible exon 

junctions (Figure 3.22).  These observations support the possibility that these are real 
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exon-skipping events that simply have not been captured by the EnsEMBL annotation 

process.  Further evidence is supplied by the observation that the pool of putative novel 

exon-skipping events, although not represented by known EnsEMBL transcripts, are 

statistically enriched for those with EST support.  While 9.7% of all ~2.2 million possible 

exon junctions have EST support, 57.6% of the 3,802 novel junctions observed in either 

library have EST support (p-value < 1.0×10-300 by two-tailed Fisher’s exact test) (Table 

3.7).  The pool of expressed novel alternative boundaries is similarly enriched for those 

events with EST support.  We also found that these novel events tended to exhibit 

cross-species conservation with at least one mRNA or EST expressed in at least one 

additional species exhibiting the same exon-exon junction or alternative exon boundary 

(p-value < 1.0×10-159) (Table 3.7).  Interestingly, we found that although the number of 

novel exon-exon junctions predicted to alter the open reading frame of a transcript was 

high (93.7%), this was less than would be expected by chance (97.0%) (Table 3.7).  

This suggests that alternative splicing may play a significant role in modifying regulatory 

sequences present in the un-translated regions (UTRs) of transcripts (such as miRNA 

target sites)  

In addition to expressed and differentially expressed features described in Table 3.6, 

the subset of differential expression events that correspond to alternative expression 

are also summarized in the last column.  These correspond to cases where specific 

features such as exons or exon-skipping junctions are differentially expressed but the 

level of expression of the gene they belong to is not significantly changed between the 

two libraries (or the change is in the opposite direction).  Such events may indicate 

differential expression of a single isoform at a locus that expresses multiple isoforms.  

The top 50 differentially or alternatively expressed genes identified in our pair-wise 

comparison of the MIP101 and MIP/5FU WTSS libraries were examined in our ‘ALEXA-

Seq’ viewer and summarized (Table 3.8).  23 of these events consist of exon-skipping, 

alternative transcript initiation or poly-adenylation, alternative 5′ or 3′ splice site usage, 

or intron retentions.  While only 23 are shown in this table, a total of 306 genes with 

these kinds of events were identified by combining differential expression (DE) analysis 

with use of a ‘splicing index’ (SI)2 (see Methods).  We further refined this approach by 

developing ‘reciprocity index’ (RI) and ‘percent feature contribution’ (PFC) calculations 

to help identify cases where multiple isoforms were reciprocally differentially expressed 

with respect to overall gene expression or where a single isoform appeared to be 
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differentially expressed while the overall expression of the gene was constant.  The 

results of scoring and statistical analysis based on DE, SI, RI, and PFC scores were 

summarized (Table 3.6) and can be visualized in the ‘ALEXA-Seq’ data viewer available 

at our website (www.AlexaPlatform.org).  Using this viewer, we manually examined 

candidate alternative expression events of many types including differential expression 

of known alternative isoforms (e.g. SCL24A1), novel exon skipping events (e.g. UMPS; 

Figure 3.23; and OCIAD1, Figure 3.24), use of an alternative first exon (e.g. MAD1L1, 

IGFL2, NKIRAS2), inclusion of a cryptic exon (e.g. ATP8A1), alternative exon boundary 

usage (e.g. NFIB), intron retentions (e.g. IQGAP3, SLC12A7), and use of alternative 

transcript initiation sites (e.g. LAMA3, c12orf63). 

3.2.7. Global disruption of splicing 

The total number of features expressed above background was determined for the 

MIP101 (5-FU sensitive) and MIP/5FU (resistant) libraries.  Although the MIP101 library 

was approximately twice the size of the MIP/5FU library (167 million paired reads 

compared to 95 million), this translated into only a small difference in the number of 

genes, transcripts, exons, and known exon junctions being identified as expressed (see 

Table 3.6).  Specifically, while the MIP/5FU library had ~57% of the depth of the 

MIP101 library, on average 98.5% of the features were detected (i.e. only 1.5% fewer 

genes, transcripts, exons and junctions).  The same slight drop was also observed for 

‘silent’ intergenic regions (no mRNA/EST evidence for expression).  These findings are 

consistent with the observation that these libraries had effectively reached a point of 

saturation where additional depth resulted in diminishing discovery of expressed 

features (Figure 3.14).  For genes that were differentially expressed between sensitive 

and resistant cells, there was a trend towards loss of expression in resistant cells with 

twice as many under-expressed genes in resistance compared to over-expressed (171 

under-expressed, 81 over-expressed).  A similar bias towards loss of expression in 

resistant cells was observed for known exons and known exon junctions.  Interestingly, 

for all feature types indicative of possible expression of novel transcripts (novel 

junctions, alternative exon boundaries, cryptic exons and intron retentions) the number 

of such events detected was actually higher in the smaller library (Figure 3.25).  For 

example, the MIP/5FU library had 31.3% more novel exon junctions, 31.9% more novel 

exon boundaries, and 37.9% more intron retentions than MIP101.  One possible 
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explanation for this observation is that the level of genomic DNA and/or un-processed 

RNA contamination was elevated in the MIP/5FU library.  However, the comparable 

detection of intergenic elements in both libraries (Table 3.6) suggests that the level of 

intergenic background noise was not substantially different between the two libraries.  

Furthermore, increased contamination would not account for the increased expression 

of novel exon-exon junctions as these sequences occur in mature (spliced) mRNAs but 

do not generally occur in either the genome or un-processed RNA.  If we consider the 

3,802 expressed novel exon-skipping junctions observed in either library and eliminate 

those that were present in both libraries, 1,713 remain and 75% of these were observed 

only in the MIP/5FU library.  In other words, despite fewer sequences we observed 

expression of approximately three times as many novel exon skipping isoforms in the 

resistant cells (533 in MIP101 only versus 1,556 in MIP/5FU only).  The same trend was 

observed for alternative exon boundaries and intron retentions (Table 3.6). 

We hypothesized that the increase in expression of sequence features representing 

putative novel transcripts might be a consequence of (1) locus specific events acquired 

in the resistant cell line and (2) changes in the regulation of splicing.  In the first 

scenario, some of the novel isoforms might correspond to mutations acquired at splice 

sites or within other splicing regulatory sequences.  For example, we confirmed by 

Sanger sequencing the presence of a heterozygous splice site mutation at the acceptor 

site of exon 2 of UMPS which corresponded to increased skipping of this exon in 

MIP/5FU cells.  In the second scenario, the increase in novel isoforms might be caused 

by differential expression of components of the splicing machinery itself.  For example, 

we observed a loss of expression of U2 snRNA (2-fold down-regulated) in resistant cells 

as well as a gain of E3 snRNA (2-fold up-regulated).  Both of these genes are known to 

participate in RNA splicing.  Pathway analysis (see Methods) did not reveal any 

additional splicing related genes that were differentially or alternatively expressed. 

3.2.8. Aberrant expression of candidate 5-FU resistance genes   

To identify genes whose disruption might be expected to confer resistance to the drug 

5-FU we performed pathway analysis with the Ingenuity Pathway Analysis software 

package (see Methods).  The top functional categories identified as significantly 

enriched in our candidate differentially and alternatively expressed genes are listed in 

Table 3.9.  Because this software has limited information on pathways specifically 
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related to 5-FU resistance we also examined the manually annotated 5-FU pathway 

from PharmGKB (see Methods).  Of particular relevance was an observed down-

regulation of the canonical isoform of uridine monophosphate synthetase (UMPS) and 

up-regulation of a novel exon-skipping isoform (skipping of exon 2) (see Figure 4.2 -

4.3).  UMPS is a member of the pyrimidine metabolism pathway and is thought to be 

involved in the activation and anti-tumour action of 5-FU34.  Skipping of exon 2 is 

predicted to result in use of a second start codon, that would produce a truncated 

protein missing the orotate phosphoribosyltransferase domain of UMPS (considerable 

details describing this event are presented in Chapter 4).  Interestingly, uridine 

monophosphokinase 2 (UCK2), another gene involved in pyrimidine metabolism also 

shows an up-regulation of a novel exon-skipping event (skipping exon 6).  In addition to 

UMPS and UCK2, several other candidate genes with known or suspected roles in 5-FU 

action or multi-drug resistance appeared to be differentially expressed or spliced 

between 5-FU sensitive and resistant cells.  Specifically, 9 of 52 known 5-FU pathway 

genes (CDKN1A, ERCC2, FDXR, NFKB1, UCK2, UGT1A8, UMPS, TPMT, and TYMS) 

were in the pool of candidate genes.  This represents a statistically significant over-

representation compared to expectations by chance (p-value = 2.00×10-4 by two-tailed 

Fisher’s exact test).  Additional genes with suspected functions that are mechanistically 

consistent with 5-FU or multi-drug resistance were identified.  For example, ABCA3, a 

drug transporter previously reported as having a role in multi-drug resistance to 

cytostatic chemotherapies35, 36 was up-regulated by ~4-fold.  Similarly, four of six drug 

transporters thought to be involved in 5-FU efflux or reuptake were over-expressed 

(ABCC5), under-expressed (ABCG2) or exhibited over-expression of novel exon-exon 

skipping isoforms (ABCC3 and ABCC4) in resistant cells37.  The effect of disruptions to 

genes involved in 5-FU metabolism and drug efflux, may collectively contribute to 

reduced exposure to and activity of 5-FU within MIP/5FU cells and thereby confer 

resistance in these cells. 

3.3. Discussion 

We have described the creation and use of novel methods and resources for alternative 

expression analysis that leverages the depth and base-level resolution afforded by 

massively parallel RNA sequencing.  By analyzing these data in the context of known 

annotations and correlation with existing expression platforms we have shown that they 
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provide a comprehensive, sensitive and specific digital representation of expressed 

transcriptomes.  We have shown that the quality of these data are primarily limited by 

sequencing depth and that the expressed features inferred from these data contain a 

wealth of details on the structure and complexity of mRNA transcripts generated from 

each gene locus. 

A recent publication suggested that “… RT-PCR remains the only sensitive high-

throughput method for validation of alternative splicing candidates from genome-wide 

studies, particularly for low-abundance transcripts” 38.  The authors then described a 

comprehensive survey of cancer associated AS events by genome-wide application of 

RT-PCR.  For the ~1,600 gene loci examined in their study we examined our own data 

to assess the degree to which we could profile expression from these loci.  In the 

MIP101 library, we obtained ~881 million bases of sequence for these genes, an 

average of 13,985 reads per locus, an average coverage of 220X, and on average 64% 

of the exon bases of each locus were sequenced to a depth of 10X or greater.  Thus, 

we believe that with sufficient depth, the massively parallel RNA sequencing approach 

described in this work now represents a feasible alternative to this RT-PCR based 

approach.  Furthermore, it has the advantage of not requiring any pre-selection of target 

genes or transcripts whether they are known or predicted events, thus allowing a 

relatively un-biased assessment of the transcript isoforms expressed from each locus.  

In contrast to both splicing microarrays and RT-PCR the data generated are not limited 

by our knowledge of the transcriptome at the time of data generation.  Also in contrast 

to microarrays, the WTSS data allows base level resolution and mutation detection.  

Both microarrays and RT-PCR experiments require design of oligonucleotides based on 

specific known or predicted gene models.  As annotations improve or new predictions 

are made, WTSS data can simply be re-analyzed to accommodate the changing 

knowledge landscape.  Profiling millions of known and predicted exon-exon connections 

as we describe here is simply not practical by RT-PCR.  The sensitivity of WTSS to 

genes with low expression levels is dependent upon sufficient depth, but with the depth 

reported in our experiments we achieved detection of ~25,000 genes, half of which were 

detected above the level of background noise.  Included among our expressed genes 

were well known low copy genes such as telomerase reverse transcriptase (sequenced 

to an average coverage of 5.5X) for which we detected a novel retention of intron 11.  

We also detected 72% of a test set of genes recently used in the optimization of long 
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oligonucleotide arrays that were considered ‘low’ expression or ‘undetectable’39.  In the 

MIP101 library, we observed expression of these genes at an average coverage of 95X, 

well above our estimate of background noise (~3.4X; Figure 3.19). 

While WTSS data is not fundamentally limited by the quality or completeness of the 

genome annotation, interpretation of the WTSS data in the context of alternative 

expression is facilitated by the availability of accurate gene models.  For this reason, our 

analysis placed emphasis on supplementing and tailoring existing gene annotations to 

allow a more comprehensive characterization of alternative expression.  In addition, we 

believe that an annotation, alignment and expression strategy that combines both 

genome and transcriptome resources is desirable for RNA sequence data.  We propose 

that one area of future work is to couple annotation from existing databases with entirely 

de novo annotation driven by the sequence data itself.  Preliminary work in this area 

using de novo transcript assembly 22 seems promising and it should be possible to 

incorporate these methods in the near future to further enhance the comprehensiveness 

of our approach. 

By generating WTSS libraries representing contrasting conditions we showed that it 

is also possible to elucidate changes in the expression of entire transcripts, subtle shifts 

in the ratio of expressed isoforms, and entirely novel transcripts.  We found that the 

alternative expression analysis described here allowed the identification of potentially 

important events that would have been missed if we relied on differential gene 

expression analysis.  For example, if we had considered only differential gene 

expression we would have identified a total of 259 genes (such as H19 and KRT20 

discussed above) whose expression was altered between chemotherapy sensitive and 

resistant cells.  By defining distinct known and hypothetical expression features such as 

exon regions, exon junctions, alternative exon boundaries, etc. and using these features 

to identify genes that are differentially spliced, an additional 306 genes were identified, 

including relevant 5-FU resistance candidates UMPS and UCK2.  Both the number of 

differentially expressed genes as well as differentially spliced genes might be increased 

by increasing library sequence depth (especially for genes that are expressed at low 

levels). 

Alternative expression analysis by WTSS will be useful not just in paired 

comparisons of disease states, tissue types, etc. but can be easily applied to more 

global analyses such as disease classification and should be more robust than simple 
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gene expression estimates typically used for these analyses to date.  It is reassuring to 

note that the analytical approach we describe readily detected a global pattern of 

aberrant splicing (Figure 3.25) as well as specific candidate isoform markers of 

resistance (Table 3.8).  Profiling the global regulation of splicing and identifying specific 

isoforms to be used in a diagnostic, prognostic, or therapeutic context is increasingly 

cited as an important area of disease research, particularly in cancer 38, 40, 41. 

3.4. Methods 

3.4.1. Tissue culture and RNA preparation 

The colorectal cancer cell line, MIP10133
 and a previously generated 5-FU resistant 

derivative, MIP/5FU17
 were maintained in Dulbecco’s Modified Eagle Medium (Invitrogen 

Inc., Burlington, ON) supplemented with 10% new born calf serum (Invitrogen), 1% 

kanamycin (Invitrogen) and 1% penicillin/streptomycin (Invitrogen) at 37ºC in a 

humidified environment of 5% CO2.  The media for MIP/5FU cultures were 

supplemented with the chemotherapy drug 5-fluorouracil (5-FU) to a final concentration 

of 5 µM to maintain resistance.  Cultures used for RNA isolation were seeded at a 

density of 10-30% and grown in media without drug or antibiotics for ~48 hours.  Total 

RNA was isolated using an ‘RNeasy’ kit (Qiagen, Mississauga, ON.).  Total RNA was 

DNAseI (Qiagen) treated during RNA isolation according to Qiagen’s instructions.  RNA 

was quantified and assessed for degradation using an Agilent RNA 6000 Nano assay 

and was not used for library construction if it had an RNA integrity score less than 9 out 

of 10.  For each sample, polyadenylated RNA was purified from 16.8 µg of DNAseI 

treated total RNA using the MACS™ mRNA Isolation Kit (Miltenyi Biotec, Germany). 

3.4.2. Illumina library construction and sequencing 

PolyA+ RNA was purified from total RNA isolated from cell lines (see above) and used 

for cDNA synthesis followed by fragmentation into 190-210 bp fragments and 

generation of whole transcriptome shotgun sequencing (WTSS) libraries as follows.  

Double-stranded cDNA was synthesized from purified polyA+ RNA using a 

Superscript™ Double-Stranded cDNA Synthesis kit (Invitrogen, Carlsbad, CA) and 

random hexamer primers (Invitrogen) at a concentration of 5µM. The resulting cDNA 

was sheared using a Sonic Dismembrator 550 for 5 minutes at amplitude setting ‘7’ 

(Fisher  Scientific, Canada) and size separated by PAGE (8%). The 190-210bp DNA 
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fraction was excised, eluted overnight at 4°C in 300 μl of elution buffer (5:1, LoTE buffer 

(3 mM Tris- Cl, pH 7.5, 0.2 mM EDTA)-7.5 M ammonium acetate) and purified using a 

QIAquick purification kit (Qiagen). The sequencing library was prepared following the 

Illumina Genome Analyzer paired end library protocol (Illumina Inc., Hayward, CA) with 

10 cycles of PCR amplification. PCR products were purified on QIAquick MinElute 

columns (Qiagen) and assessed and quantified using an Agilent DNA 1000 series II 

assay and Qubit fluorometer (Invitrogen, Carlsbad, CA) respectively. The resulting 

libraries were sequenced on an Illumina Genome Analyzer II following the 

manufacturer’s instructions.  

3.4.3. Data pre-processing 

Image analysis and basecalling was performed by the GA pipeline v1.0 (Illumina Inc., 

Hayward, CA) using phasing and matrix values calculated from a control phiX174 library 

run on each flowcell. Raw Quality scores were calibrated by alignment to the reference 

human genome (NCBI build 36.1, hg18) using ELAND (Illumina Inc., Hayward, CA). 

Illumina paired-end sequencing produces paired reads from opposite strands of the 

ends of double-stranded cDNA fragments (i.e. +/- or -/+ orientations).  At the outset of 

our analysis, the second read of each pair was reverse-complemented (resulting in +/+ 

or -/- orientations).  Since double-stranded cDNA was sequenced, the source strand 

information of RNAs converted to cDNAs was lost in this approach and we expected an 

equal representation of both strands in our sequence alignments.  In our alignments to 

known transcripts, 98% of all read paired exhibited the expected strand orientation (+/+ 

or -/-).  There was no apparent bias towards one strand or the other (49.3% of read 

pairs were +/+ and 49.1% were -/-). 

Before further analysis, reads were first filtered on the following basic criteria: (1) 

poor quality (arbitrarily defined as more than 1 ambiguous base call); (2) low complexity 

(2/3 or more bases of a read identified as low complexity by mdust42 using default 

parameters) and (3) duplicate reads of a pair (read 1 and read 2 of a pair are identical 

or a reverse complement of each other). 

3.4.4. Source of gene models 

Annotated transcripts and exons of EnsEMBL version 53 were used for the analysis 

described in this work (Table 3.2).  Gene, transcript and exon coordinates as well as 
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associated descriptive information were retrieved from EnsEMBL by use of the 

EnsEMBL Application Program Interface 24 (http://www.ensembl.org/info/data/api.html).  

This dataset consisted of 36,953 genes with 62,371 transcripts and 273,464 non-

redundant exons.  Genes ranged in size from 8 to ~114,339 bases with a median size of 

1,151 bases.  70% of these genes were ‘known’ and 30% were classified as ‘predicted’ 

in the EnsEMBL database.  Exons ranged in size from 1 to ~17,546 bases with a 

median size of 125 bases.  The number of exons per gene ranged from 1 to 360 with a 

median of 3 and an average of 7.5.  Gene models from EnsEMBL were supplemented 

by incorporation of mRNA and EST sequence alignments from the UCSC genome 

annotation database43 (http://hgdownload.cse.ucsc.edu/goldenPath/hg18/database/). 

3.4.5. Creation and annotation of an alternative expression database 

To facilitate interpretation of WTSS data in the context of alternative expression, we 

created a tailored annotation database to define and characterize sequences 

representing expression events for each locus.  This database seeks to describe the 

characteristics of all known and predicted transcripts, exon regions, exon junctions, 

alternative exon boundaries, introns, and intergenic regions associated with every gene 

in a genome.  These sequences are collectively referred to as sequence ‘features’ 

throughout this work (see Figure 3.1 for an illustration).  To create these databases we 

first retrieved gene, transcript and exon sequences and coordinates from EnsEMBL.  

We then defined regions of each type and used existing mRNA and EST sequence data 

to supplement the information in EnsEMBL.  Each feature was defined as ‘known’ or 

‘novel’ relative to EnsEMBL.  For each feature, the number of supporting mRNAs and 

ESTs was also determined.  This sequence support was assessed for the target 

species and then for all other species to assess conservation of each feature.  In 

addition to storing the number of EST and mRNA sequences supporting each feature, 

the number of species with a supporting sequence was also noted.  For all feature 

types, the size of the feature was noted as well as the number of these bases that 

correspond to repeat masked positions according to EnsEMBL (all bases identified by 

mdust, RepeatMasker and tandem repeat finder)24.  Whenever the number of bases 

was needed to perform a calculation for a feature, such as determining average read 

coverage, the number of unmasked bases was used.   
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Exon regions were defined by identifying clusters of overlapping exons to create a 

‘block’ of exon content.  This block was then divided into ‘exon regions’ using the 

boundaries of all exons within the cluster.  This approach divides overlapping exons into 

pieces that are often specific to particular isoforms.  Exon regions were then labeled 

from 5′ to 3′ starting at 1 and ending at N (where N is the number of exon clusters for 

the gene).  In the case of overlapping exons resulting in multiple exon regions, these 

were labeled ‘a … z’.  For example, a gene with three exons and two known transcripts 

with an alternate exon 2 boundary might have exon regions defined as: ‘ER1’, ‘ER2a’, 

‘ER2b’, ‘ER3’ (Figure 3.1). 

Exon-exon junctions were defined by identifying all exon boundaries within a gene 

and generating all possible pair-wise connections of these exons that could theoretically 

result from alternative splicing of an exon donor site to an exon acceptor site. A gene 

with n exons has (n!/(2![n-2]!)) possible junctions.  In the case of overlapping exons, 

multiple acceptor or donor sites within an exon cluster were labeled ‘a … z’ and the 

resulting junction name consisted of the exon numbers of two connected exons as well 

as the donor and acceptor site involved (for example, ‘E3a-E4b’ represents the 

connection of exon 3 and 4 using the 3′ most donor site of exon 3 and the second 

acceptor site of exon 4).  The size of exon-exon features was chosen to be 62 bases to 

accommodate the length of our sequence reads (42-mers).  This length was chosen so 

that a read aligning across its full length would overlap the centre of the junction by at 

least 10 bases. 

Alternative exon boundary features were defined and named in a similar way to that 

employed for exon-exon junctions.  An alternative exon boundary feature was defined 

for every exon splice acceptor or donor site annotated in EnsEMBL.  The size of these 

features was the same as for exon junctions (62-mers).  An alternative exon boundary 

corresponding to a cluster of overlapping exons was named according to the exon 

number from 5′ to 3′ and multiple splice donor or acceptor sites were labeled ‘a … z’.  

For example, ‘E3_Da’ refers to a feature spanning from the 5′ end of exon 3 into the 

downstream intron at the 3′ most donor site of exon 3. 

All introns and intergenic regions were simply defined as those portions of the 

genome not corresponding to EnsEMBL exons.  Introns are those regions between 

known EnsEMBL exons and were numbered from 5′ to 3′ within each gene.  Intergenic 

regions were defined across each chromosome and labeled as such, and the identity of 
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genes flanking each intergenic region were stored.  For both, introns and intergenic 

regions, alignments of mRNAs and ESTs were used to supplement the EnsEMBL gene 

annotations.  Specifically, alignments of these sequences to the genome were used to 

define ‘active’ portions of each intron or intergenic region (‘active intron regions’ and 

‘active intergenic regions’).  Messenger RNA or EST alignments were only considered if 

they had more than 300 matching bases less than 5 mismatches or gaps and less than 

2 ambiguous bases.  Regions that did not exhibit any such evidence of expression from 

mRNAs or ESTs were defined as ‘silent’ portions of each intron or intergenic region 

(‘silent intron regions’ and ‘silent intergenic regions’). 

Finally, although transcript features were already defined in EnsEMBL, for each of 

these transcripts we further identified those exon regions and exon-exon junctions that 

were specific to each transcript (where possible).  The feature collection defining each 

transcript was used to calculate expression for that transcript. 

All features were assigned unique feature IDs and stored in a standardized format 

including the following characteristics for each feature: source gene id, gene name, 

feature name, chromosome, strand, coordinates relative to the source gene (in 5′ to 3′ 

orientation), chromosome coordinates, feature size, number of unmasked bases, 

number of protein coding bases, number of supporting EnsEMBL transcripts, mRNAs 

and ESTs (for both the target species and all other species), and if applicable the ID of 

the transcript this feature was unique to.  Exon junction features also indicate the 

number of exons skipped.  Currently, ALEXA annotation databases as described here 

have been generated for the human genome (used in this analysis) as wells as chimp, 

mouse, rat, fruit fly and yeast (Table 3.1).  Additional annotation databases can be 

generated to accommodate any species annotated by EnsEMBL upon request.  

Annotation databases, including fasta files representing all sequences can be 

downloaded from www.AlexaPlatform.org. 

3.4.6. Alignment strategy and assignment of reads to features 

Our transcriptome analysis strategy involved alignment to a combination of genomic as 

well as known and predicted transcript sequences.  Using the BLAST alignment 

algorithm44 we obtained alignments containing both mismatches and gaps.  With a word 

size of 11, it was possible to obtain alignments of 42-mer reads with up to 6 mismatches 

and 2 gaps, however we pre-filtered alignments to remove those with a bit score less 
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than 48.1.  This resulted in alignments with no more than 4 mismatches and 2 gaps.  

Using BLAST also allowed us to generate sub-sequence (partial) alignments.  For 

example if the first 25 bases of a read were of high quality and the remainder of the 

sequence failed to match, an alignment was still returned (some short read aligners 

such as Eland do not return such alignments).  In our data, read alignments for 42-mer 

reads ranged in size from 20 to 49 bases (Figure 3.6). We were also able to learn the 

identity of an arbitrary number of multiple matches in the genome, allowing us to gauge 

the degree of ambiguity in the mapping of each read.  At the time of analysis, aligners 

such as Eland and Maq noted mismatches but not the number of ambiguous mapping 

positions.  Similar to the strategy employed by Maq we used read pairing information to 

resolve mapping ambiguities where possible.  Specifically, the combined alignment 

score was used to assign reads to targets where possible and in cases where one read 

of a read pair aligned ambiguously, it was often possible to resolve this ambiguity by 

considering the paired read.  In cases where one read of a pair could not be aligned, the 

other read was still assigned to a feature as a single-end read.  The advantages of 

BLAST over other aligners were accepted at the cost of computation time and disk 

storage space required for the resulting alignment records.  Furthermore, some of the 

advantages of BLAST as described above have been incorporated into short read 

aligners such as Maq45, NovoAlign (www.novocraft.com), Shrimp46, SOAP47 and 

BWA48.  The approach described in this work should not be fundamentally affected by 

the use of these or other short read aligners. 

Reads that remained after quality filtering (see data pre-processing) were mapped 

as described above to a database of sequence features of the following types: (1) 

repeat elements obtained from RepBase49, including all human and ancestral repeats, 

(2) known transcripts as defined by EnsEMBL (version 53), (3) all possible 62-mer 

exon-exon junctions, (4) alternative exon boundaries,  (5) introns and (6) intergenic 

regions (all sequence not covered by the previous categories).  Reads were assigned to 

one of these classes if they had a perfect or near perfect match and the match was non-

ambiguous.  Ambiguously mapping reads (4.9% of all reads) were noted and their 

alignments were stored but they were not used for further analysis.  Reads that 

matched repeat elements were flagged at the outset, were not used to calculate 

expression of any feature, and the effective size of each feature was adjusted to 

account for the number of repeat-masked (and therefore un-‘mappable’) bases. 
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3.4.7. Cross-platform comparison of expression and differential expression 

estimates 

Expression estimates for genes, exons and introns derived from Illumina (WTSS) 

libraries were compared to previously generated microarray data for the same RNAs.  

Specifically, we generated Affymetrix GeneChip microarray data (Human Exon 1.0 ST 

arrays) and custom NimbleGen microarray data (alternative expression analysis 

arrays)2.  For direct comparison of expression estimates, gene and exon expression 

values were calculated for Affymetrix data according to Affymetrix’s recommendations 

using Expression Console and the PLIER algorithm.  Custom NimbleGen array data 

were processed in a similar way.  Detailed descriptions of array data processing for both 

array platforms were previously reported2.  The WTSS expression estimates were 

derived as described above.  For all three platforms, a value of 1 was added before 

converting to log2 scale.  Scatter plots comparing expression and differential expression 

data (Figure 3.9 and Figure 3.10) correspond to only those ~2,500 genes profiled by all 

three platforms (primarily limited by the custom NimbleGen array data).  The correlation 

coefficient for each scatter plot was determined by both the Pearson and Spearman 

methods.  To compare the dynamic range, signal-to-noise ratio, sensitivity and 

specificity of the three platforms, the analysis was further limited to the introns and 

exons of ~100 housekeeping genes routinely used by Affymetrix in their array designs.  

This list of housekeeping genes is available at our website (www.AlexaPlatform.org).   

For both array platforms, random hybridization signal was estimated by examining a 

pool of random sequence probe spots included in each array design.  Since there is not 

an analogous data type in WTSS we used the expression estimates for putatively silent 

intergenic regions as an estimate of background signal.  All plots and correlations were 

performed in R, using the ‘geneplotter’ package. 

3.4.8. Calculation of feature expression values 

Expression estimates for genes as well as individual exon, intron and intergenic 

features were determined by mapping of reads to transcript or genomic sequences and 

then calculating the observed average coverage (AC) of mapped reads across the base 

positions of the feature coordinates (see Equation 3.1).  These estimates were then 

adjusted to account for varying depth between libraries, resulting in a normalized 
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average coverage (NAC) (see Equation 3.2).  The following describes the strategy for 

specific feature types.   

Exon junction and boundary expression estimates were determined by mapping 

reads to discrete N-mer sequences generated from EnsEMBL annotations.  This 

resulted in a systematic bias towards lower expression estimates for exon junctions and 

boundaries.  This is expected because, while a particular 62-mer junction sequence 

covered by all theoretically possible 42-mer reads has a coverage potential of 923 

sequences bases (cumulative coverage of all possible distinct reads corresponding to 

the junction sequence), an exon of the same size within the bounds of a transcript can 

have up to 2,604 bases of potential coverage (i.e. ~2.8 times).  This assumes that we 

require perfect read matching and that the exon region is within a transcript large 

enough to allow all possible overlapping 42-mers from both sides.  Neither of these 

assumptions were entirely true in our analysis so we used the data to empirically 

measure the bias between exon and junction expression values.  Specifically we used 

the exon and canonical exon junction expression estimates for genes expressed above 

background to estimate the observed bias.  The median expression estimate for exons 

was ~2.2 times that of exon junctions.  When displaying or summarizing exon junction 

values, they were corrected by this factor to make them more directly comparable to 

exon expression estimates. 

To estimate the expression for an entire gene locus, all of the non-redundant exon 

base positions within the bounds of the EnsEMBL gene were considered.  In contrast, 

transcript specific expression was calculated by taking the average of exon region and 

exon-exon junction expression estimates identified as unique to a particular transcript.  

In EnsEMBL (version 53), there are 36,953 genes with 62,371 total transcripts.  25,879 

of these genes have only a single transcript and for these transcripts, calculating the 

expression simply utilizes all exon regions and junctions.  However, 36,492 transcripts 

are distributed among the remaining 11,074 multi-transcript genes and expression could 

be individually assessed for 28,636 (78.5%) of them.  Transcript-specific exon regions 

and exon-exon junctions are close to equally represented in the pool of features used 

for these measurements (62% of the transcripts had a specific exon region and 59% 

had a specific exon-exon junction). 
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3.4.9. Library depth and feature discovery 

The relationship between library depth and feature discovery or ‘saturation’ was 

examined by sampling reads (without replacement) from the entire data set and after 

every 100,000 reads the number of events detected above a particular minimum cutoff 

level was recorded.  The cutoffs examined were arbitrarily chosen as 1X, 5X, 10X, 50X, 

100X and 500X.  The number of events detected at each cutoff was determined for 

genes and known exon-exon junctions as well as individual exon, intron and intergenic 

base positions.  For genes, and exons, the average coverage value (see Equation 3.1) 

had to exceed the cutoff level.  For individual base positions, the position had to be 

covered by reads in excess of the specified cutoff.  In each plot describing library depth 

and feature discovery, the x-axis corresponds to library depth expressed as a 

percentage of the total library depth (from 0% of reads sampled to 100%).  Feature 

discovery was expressed as either the cumulative percent of all possible features 

discovered or the change in this percent relative to the previous sampling iteration.  In 

other words, the percent of features discovered was simply the cumulative number of 

genes, exons, exon bases, intron bases, and intergenic bases exceeding the cutoff 

divided by the total number of features of that type (i.e. ~37k genes, ~218k known 

junctions, ~70 million exon bases, ~594 million intron bases and ~783 million intergenic 

bases).  As discussed previously, only non-repetitive portions of the genome were 

considered.  Plots of percent library depth versus percent of features discovered were 

generated in R.  Power curves of the form Y = aXb were fit by non-linear least squares 

estimation.  R2 values were calculated as a Pearson correlation of the fitted Y values 

from the model fit versus the actual Y values and then raised to the power 2. 

3.4.10. Determining expression above background 

The goal of evaluating whether a feature is expressed above ‘background’ was two-fold: 

(1) to reduce the possibility of false positive expression events that correspond to 

mapping, PCR amplification, library construction or other artifacts and (2) to distinguish 

between sequence observations that represent true mRNA expression versus those 

that correspond to genomic DNA or un-processed RNA contamination and random 

transcription events.  To estimate the level of genomic DNA contamination and random 

transcription noise25 contributing to expression estimates, the distribution of expression 

estimates for all ‘silent’ intergenic regions was plotted (Figure 3.18).  While it is likely 



 133

that these regions have a low probability of biologically meaningful expression, it is 

possible that they contain a small number of genes not currently annotated in EnsEMBL 

and never previously encountered in an mRNA or EST library.  For this reason the 95th 

percentile was chosen as an upper estimate of the level of intergenic noise (hereafter 

referred to as the intergenic expression cutoff).  In addition to intergenic noise, which 

leads to random low-level background expression signal across the genome, additional 

noise was expected within the boundaries of known genes from unprocessed RNA 

contamination (i.e. RNA that has not completed the process of splicing, poly-adenylation 

and export from the nucleus to the cytoplasm).  Unlike the intergenic noise, this source 

of noise was expected to be positively correlated with gene expression level.  To 

illustrate this, we plotted the expression estimates of all ‘silent’ intron regions against the 

expression estimate for the gene locus they corresponded to (Figure 3.17).  Despite the 

low expectation of any expression from silent intron regions, the expression estimates 

for these regions were moderately correlated with gene expression level (Spearman 

correlation coefficient of 0.52).  To derive an estimate for the level of expression signal 

which can be potentially attributed to the intragenic noise, we used this correlation to 

derive gene-by-gene expression cutoffs (hereafter referred to as the intragenic 

expression cutoff).  Specifically we generated a scatter plot of gene and intron 

expression values and fit a linear model corresponding to the 95th percentile (depicted 

as a dotted line in Figure 3.17).  The coefficients of the 95th percentile fit were used to 

estimate the upper limit of intragenic contamination for each gene.  The final cutoff used 

was either the intergenic or intragenic cutoff, whichever was higher.  Both the intergenic 

and intragenic cutoffs were assessed independently for each library to control for 

differences in contamination between libraries. 

For all feature types, in order for the feature to be considered expressed, it had to 

exceed the expression level cutoffs as described above, but also had to be covered at 

1X or greater depth over, 75% or more of the base positions of the feature.  The 

purpose of this criterion is to prevent features that are covered at only a single position 

(possibly corresponding to a mapping or PCR amplification artifact).  This ensures that 

all expressed features are covered by multiple independent read sequences and never 

simply a large number of the same sequence resulting in an average coverage value 

high enough to exceed the expression level cutoff.  We believe that the approach 

described here should largely eliminate sequence artifacts from the expressed feature 
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lists and result in a false discovery rate of at most 5% among features called as 

expressed. 

3.4.11. Estimating the total copy number of genes expressed in a cell 

Traditionally, the number of mRNA transcripts present in a cell has been estimated by 

comparing the RNA/DNA ratio, the weight of RNA that can be obtained from an 

estimated number of cells and an estimate of the average molecular mass of an mRNA 

molecule28.  We estimated the cumulative copy number of genes expressed in a single 

cell directly from the expression data for the MIP101 library by making a number of 

simple assumptions as follows: (1) a cell is a self contained unit, that expresses all 

genes for its maintenance and growth; (2) the minimum copy number of a gene is 1 

copy per cell; (3) each gene expresses only a single transcript (4) our data correctly 

identified all expressed genes; and (5) our data provides an accurate estimation of the 

relative difference in expression level between the least and most abundant gene.  This 

last assumption assumes that increased library depth would not increase the observed 

dynamic range.  These are simplifying assumptions that are not necessarily true, but 

are adequate for first approximations.  Starting with these assumptions we obtained the 

expression values (raw average coverage) for all 12,396 genes classified as expressed 

above background.  This value was 7.6 for the least abundant gene and 47,372 for the 

most abundant gene.  We then set the estimated ‘copy number’ of the least abundant 

gene to be 1.  All other expression values were then scaled relative to the expression 

value of this gene.  For example, a gene with an expression value of 15.2 would be 

assigned a copy number of 2 and so on.  Estimated copy numbers generated by this 

approach ranged from 1 to 6,242.  We then calculated the cumulative copy number of 

all genes by adding these scaled copy number values, resulting in a grand total 

estimate of ~460,000 copies.  Due to assumptions 3, 4 and 5, this is likely to be an 

underestimate. 

3.4.12. Differential expression analysis 

Differential expression (DE) values were determined as the log2 difference in 

normalized average coverage values (see Equation 3.2) between 5-FU sensitive and 

resistant cells for all feature types.  Before calculating differential expression values, all 

features that were not expressed above background in at least one library were 
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removed.  A value of 1 was then added to normalized average coverage values before 

converting to log2 scale (to stabilize variance).  The log2 difference was converted to a 

more intuitive fold-change value by raising the log2 difference to the power of 2.  The 

MIP/5FU library was chosen as a reference for differential expression values such that a 

negative value implies loss of expression in 5-FU resistant cells relative to sensitive and 

a positive value implies a gain of expression in resistant cells.  A two-sided Fisher’s 

exact test was used to calculate a p-value for the difference in feature expression 

between two libraries.  Since this test accounts for differences in counts between 

libraries, raw average coverage values were used when calculating p-values.  The 

resulting p-values were adjusted to account for multiple testing by using the Benjamini 

and Hochberg method50 implemented in the ‘multtest’ package of R (www.R-

project.org).  Features were considered to be differentially expressed if their fold-change 

exceeded two-fold and their corrected p-value was less than 0.05. 

3.4.13. Alternative expression analysis 

Alternative expression analysis was performed as an extension to the differential 

expression analysis described above.  The purpose of this analysis was to identify 

genes exhibiting differential expression of features that might be indicative of a shift in 

splicing, transcript initiation or poly-adenylation of a specific isoform rather than a shift in 

expression across the entire locus.  Candidate differential splicing events were 

assessed by calculating a ‘splicing index’ (SI) value for each feature (see Equation 3.3 

for details).  Briefly, this value provides a measure of the change in expression of a 

feature between two conditions relative to the change in expression of the entire gene 

locus between the two conditions (5-FU sensitive and resistant cells in this case).  SI 

values were only calculated for a feature if the feature and the gene it corresponded to 

were expressed above background in at least one of the two conditions being 

compared.  In addition to the SI value, for each feature we also calculated a ‘reciprocity 

index’ (RI) and ‘percent feature contribution’ (PFC) value (see Equation 3.4 and 

Equation 3.5 for details).  The purpose of the RI value was to identify those cases 

where the change in expression of a feature was consistent with reciprocal differential 

expression of an isoform relative to the gene locus.  In other words if a gene was up-

regulated overall between 5-FU sensitive and resistant cells while a particular feature 

such as an exon-skipping junction was down-regulated, a high RI value would be 
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produced.  Similarly, the PFC value gauges the magnitude of differential expression of a 

feature relative to the differential expression of the locus.  For example, if the 

expression level of a gene is unchanged overall, but an individual feature such as a 

single exon is changing dramatically, this will result in a large PFC (approaching 100% if 

the overall gene expression is completely unchanged).  Features considered to be 

candidate differential splicing events were defined as those features having an SI value 

of at least 1, a significant DE value (p-value < 0.05 after multiple testing correction), and 

a PFC value of at least 50.  The candidate differential expression and alternative 

expression gene lists were combined and ranked according to the maximum DE or SI 

value for all features of each gene.  The top 50 genes from this list are shown in Table 

3.8 and the complete list is available online (www.AlexaPlatform.org).  

3.4.14. Pathway analysis 

Analysis of differentially or alternatively expressed genes with respect to pathways was 

performed using the Ingenuity Pathway Analysis Software (www.ingenuity.com; 

Ingenuity Systems. Redwood City, CA.).  Starting with a list of 1,478 genes with one or 

more significant differentially expressed features, this software was used to identify 

statistically significant enrichment for particular gene interaction networks and annotated 

biological functions or pathways.  It was also used to visualize differential expression in 

the context of specific pathways with known relevance to 5-FU action or general drug 

resistance mechanisms. 

3.4.15. Software implementation and availability 

All database annotation, read mapping, expression analysis and alternative expression 

event discovery was developed in a Linux environment using our previously published 

ALEXA platform2 as starting point.  The computational platform consists primarily of Perl 

scripts which interact with mySQL (http://www.mysql.com/) and Berkeley DB 

(http://freshmeat.net/projects/berkeleydb/) Databases.  A Beowulf style cluster 

consisting of approximately 1500 CPUs was used for database annotation, read 

mapping and generation of expression estimates.  This cluster is managed by the open 

source cluster application resources (OSCAR) management system 

(http://oscar.openclustergroup.org).  All source code, user manuals, supplementary 
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methods, data visualizations, etc. are available from the ALEXA website, 

www.AlexaPlatform.org. 

3.4.16. Statistics and data visualization 

Generation of all statistics, figures and graphs was performed in R using the ‘Base’, 

‘caTools’, ‘gcrma’, ‘geneplotter’, ‘multtest’, ‘nortest’, ‘RColorBrewer’, and Bioconductor51 

packages.   

In each box plot, the box portion displays the median of the distribution flanked by 

the lower and upper quartiles (i.e. the 25th and 75th percentiles respectively).  The 

whisker portions of each box plot indicate the median plus or minus 1.5 times the 

interquartile range.  If no observed values exceed the interquartile range, then the 

whisker is set to the largest or smallest observed value.  Values which exceed 1.5 times 

the interquartile range are indicated by dots. 

A web accessible data viewer, ‘ALEXA-Seq’ was created to display expression data 

for all genes.  Summaries of the top expression events as well as all significant 

differential expression and splicing events are provided as well as search functionality to 

find specific genes.  Indexing of all data to allow searching was accomplished by the 

open source search engine library, ‘Xapian’ (http://www.xapian.org/) and the web 

search package ‘Omega’.  Plots displaying the expression of each gene and the 

expression and differential expression of every feature of every gene across libraries 

were generated in R using the scalable vector graphics (SVG) module of the Cairo 

package (http://cairographics.org/).  Additional visualization of the annotation, 

expression and differential expression of every feature of every gene is provided by 

links to the UCSC genome browser which automatically load custom track files 

containing our data in ‘gene feature’ (GFF) and ‘wiggle’ formats 43.  
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Equation 3.1. Average coverage (AC) 
The expression level of an entire gene, transcript, exon region or other feature is 
determined by considering the cumulative base coverage of that feature by reads that 
have been mapped to the corresponding segment of the genome or exon-exon junction 
sequence.  Since expression is determined by counting of reads generated by random 
sampling of cDNA fragments representing RNAs, larger RNAs will tend to produce more 
reads irrespective of their expression level.  To correct for this bias, expression of any 
feature is normalized to the size of that feature and expressed as an average coverage 
(AC), where the cumulative base coverage ‘N’ of the ith feature is divided by its base 
count ‘S’.  The cumulative base coverage ‘N’ refers to the total count of bases from 
sequence reads aligning within the coordinates of the feature.  The base count ‘S’ refers 
to the annotated length of the feature (i.e. transcript length, exon length, etc.).    
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Equation 3.2. Normalized average coverage (NAC) 
To allow direct comparisons between libraries of different depth an average coverage 
value normalized to an arbitrary library size of 10 billion bases for the ith feature of each 
library was calculated for a library with X successfully mapped bases of sequence  as 
follows. 
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Equation 3.3. Splicing index (SI) 
The splicing index (SI)52 for a sequence feature whose expression is compared between 
two libraries, ‘A’ and ‘B’, is calculated for the jth feature of the ith gene as shown below.  
Essentially, the expression of each feature is normalized to the expression level of the 
gene to which it belongs before comparison between two libraries.  The term ‘feature’ 
refers to every transcript, exon, exon-exon junction, alternative exon boundary or intron 
of a particular gene model. 
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Equation 3.4. Reciprocity index (RI) 
The reciprocity index (RI) is inspired by the SI calculation and is applied when a putative 
alternative isoform is differentially expressed in the opposite direction to that of the gene 
locus and assesses the degree to which this occurs in a ‘balanced’ fashion.  The more 
balanced, the higher the score.  For example, if a novel exon-skipping isoform is up-
regulated by 4-fold while the exon-containing isoform is down-regulated by close to 4-
fold as well, this will result in a high RI score.  Similar to the SI score, the RI for a 
sequence feature, compared between two libraries, ‘A’ and ‘B’ is calculated for the jth 
feature of the ith gene as shown below.   
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Equation 3.5. Percent feature contribution (PFC) 
The percent feature contribution (PCF) calculation in contrast to the RI seeks to identify 
cases where the observed change in a feature’s expression between two conditions is 
large relative to the change in expression at the locus overall and the change can be 
attributed to the expression of the feature itself.  An SI value can be large in cases 
where a sequence feature such as an exon is unchanged between two conditions but 
the entire gene is differentially expressed.  These sometimes correspond to annotation 
artifacts where the feature in question is not really expressed at all.  The PFC can be 
used to filter a list of events with high SI values to eliminate these spurious cases.  
Similar to the SI score, the PFC for a feature, compared between two libraries, ‘A’ and 
‘B’ is calculated for the jth feature of the ith gene as depicted below.  
 
 

100
)(2log)(2log

)(2log



















ii
jj

jji
j

ABAB

AB
PFC  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 140

Figure 3.1. Annotation of sequence features 
A hypothetical region of the genome containing two gene loci (green and yellow) 
illustrates: (1) the source of gene models used for annotation, (2) how these models are 
supplemented by additional data from mRNA and EST alignments, (3) how features are 
defined by combining gene models and expressed sequence data, and (4) how features 
are named as used in this report.  The term ‘novel’, as applied to exon-junctions and 
alternative exon boundaries indicates a feature not currently represented in an 
EnsEMBL transcript.  The term ‘active’ as applied to intron and intergenic regions 
describes a portion of an EnsEMBL intron/intergenic region that has EST or mRNA 
evidence for the existence of a putative exon not currently annotated in EnsEMBL.  A 
novel exon boundary corresponds to a hypothetical alternative exon donor or acceptor 
site which results in the incorporation of intronic sequence flanking a known exon.  
Feature naming conventions: Exon region (ER). ‘ER1a’ and ‘ER1b’ describe exon 
region 1, with two parts corresponding to the boundaries of overlapping exons.  ‘E1-Da’ 
describes exon 1, donor site ‘a’.  ‘I1’ refers to intron 1.  ‘I1-AR1’ and ‘I1-SR1’ refers to  
‘active’ and ‘silent’ regions within intron 1 defined by EST alignments.  ‘IG’ refers to an 
intergenic region.  ‘ER2-ER3’ refers to an exon-exon junction consisting of the 
connection of the donor site of exon 2 and the acceptor site of exon 3. 
     

 



 141

Figure 3.2. Illustration of read data generation  
Total RNA was isolated from 5-FU sensitive and resistant colorectal cancer cell lines 
(images of cultures at 100X magnification).  Messenger RNA (depicted in yellow) was 
purified by polyA+ selection, followed by cDNA generation with random hexamers, 
fragmentation by sonication, selection of 190-210 bp fragments using gel 
electrophoresis, ligation of sequencing linkers and sequencing of the ends of 106-107 

such fragments with an Illumina GAII sequencing device.  End reads are depicted as 
two black segments connected by dotted lines.  The resulting reads were then mapped 
to a database consisting of genome, transcript, and exon junction sequences.  The 
coordinates of mapped reads were then used to estimate the expression, differential 
expression and alternative expression of ~4 million sequence features (Figure 3.1).  
Refer to the Methods for additional details. 
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Figure 3.3. Overview of alternative expression analysis 
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Figure 3.4. Distribution of fragment sizes 
A histogram showing the distribution of fragment sizes inferred by mapping paired reads 
from the MIP101 and MIP/5FU libraries (see Figure 3.2) to known transcripts and then 
calculating the number of bases between the outer coordinates of the mapped reads 
within the transcript.  Only those fragment sizes up to the 95th percentile of all fragment 
sizes (305 bp) are depicted here.  Thus, 5% of all fragment sizes were greater than 305 
bp.  The minimum, median, mean and maximum fragment sizes of this distribution are 
provided in the legend. 
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Figure 3.5. Distribution of average Illumina read qualities 
The sequence quality values generated by an Illumina GAII sequencing platform (see 
Methods for details) for all positions of paired 36- and 42-mer reads were binned 
according to their source lane and position within paired reads.  The average quality for 
all qualities of a lane was then calculated for each lane for each read position bin.  The 
averages for 39 flowcell lanes at each read position were then plotted as box plots.  The 
resulting graph shows the distribution of average quality scores across all 39 lanes of 
data at each read position.  Position 1-42 (green) correspond to read 1 of a pair and 
positions 43-84 (light blue) correspond to read 2 of a pair.  Since the data correspond to 
a pool of 36- and 42-mer reads, positions 37-42 and 79-84 correspond to 42-mers only, 
and all other position correspond to both 36- and 42-mers. 
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Figure 3.6. Distribution of read alignment lengths 
262 million paired 36- and 42-mer reads from the MIP101 and MIP/5FU libraries (i.e. 
524 million individual reads) were aligned to a database of known EnsEMBL transcripts.  
In this analysis read 1 and read 2 of each pair were considered separately.  The 
distribution of alignment lengths for the resulting ~375 million read-to-transcript 
alignments are displayed as a histogram.  The majority of 36- and 42-mer reads aligned 
over their complete length.  The distribution reflects the fact that this library consisted 
mostly of 42-mers (83%) and a much smaller number of 36-mers (17%).  Alignments 
greater that 42 bases in length suggest the occurrence of gaps relative to the database, 
while short alignments correspond to sub-sequence alignments (i.e. only a portion of a 
read aligns).   
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Figure 3.7. Position bias by transcript size 
The relative position of a read within a transcript was calculated by determining the 
centre position of each read mapped to a transcript, dividing this position value by 
transcript length and multiplying by 100.  Thus reads mapping to the 5′ end of a 
transcript produce values approaching 0, reads mapping to the centre of a transcript 
produce values near 50, and reads mapping to the 5′ end of a transcript produce values 
approaching 100.  The distribution of these relative position values was plotted as a 
series of box plots, each corresponding to reads mapping to a particular range of 
transcript sizes (0 - 500bp, 500 - 1,000bp, etc.).  Each box plot graphically displays the 
median, lower quartile (25th percentile), upper quartile (75th percentile), and the quartiles 
plus/minus 1.5 times the inter-quartile range.  The width of each box plot is drawn 
proportional to the square root of the number of observations comprising the group (i.e. 
proportional to the number of mapped reads corresponding to each range of transcript 
sizes).  Hence, a thick box indicates a larger number of reads than a thin box.  Each of 
the 9 distributions below was compared to the distribution for transcripts of 2,500-3,000 
(light green box plot, with a median read position of 50.1) by two-sample, two-tailed, 
Kolmogorov-Smirnov test.  P-values (P) are reported for each of these comparisons.  
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Figure 3.8. Read mapping summary 
The pie chart depicts the percentage of ~262 million paired-end reads from the MIP101 
and MIP/5FU libraries aligning to each feature type and reads that were filtered due to 
low complexity sequences, ambiguous bases (i.e. ‘N’s) and reads where both read 1 
and 2 were duplicates.  ~26 million reads (10%) had homology to human a transcript, 
but had an alignment score below our required threshold and an additional ~34 million 
reads (13%) did not map to any sequence in our database.  If both reads of a read pair 
were identical or a perfect reverse complement of each other, the read was classified as 
a duplicate.  Low complexity reads were identified by mdust (see Methods for additional 
details on read filtering and assignment to feature each type).    
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Figure 3.9. Comparison of expression estimates from three expression platforms 
Log2 gene expression estimates were generated from the Illumina (WTSS), Affymetrix 
(exon microarray) and NimbleGen (splicing microarray) expression platforms using the 
same input RNAs (see Methods).  The following figures represent data for only the 
intersection of genes profiled by all three expression platforms: Affymetrix exon arrays, 
custom NimbleGen splicing arrays2 and Illumina WTSS (2,434 genes).  Two-way 
comparisons (panels A, B and C) of these data were plotted as density plots using ‘R’.  
The inset table (panel D) shows the Spearman correlation values for all three 
comparisons. 
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Figure 3.10. Comparison of differential expression from three expression 
platforms 
Log2 differential gene expression estimates were generated for 2,434 genes profiled by 
the Illumina (WTSS), Affymetrix (exon microarray) and NimbleGen (splicing microarray) 
expression platforms (panels A, B and C).  Panel D illustrates the overlap in the list of 
differentially expressed genes (>= 2-fold change) as a Venn diagram created with 
BioVenn53. 
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Figure 3.11. Comparison of expression estimates for the exons and introns of 100 
housekeeping genes derived from three expression platforms 
The log2 expression values of exons and introns for 100 housekeeping genes were 
plotted as box plots for three expression platforms (see Methods).  Expression 
estimates were generated with the Illumina (WTSS), Affymetrix (exon microarray) and 
NimbleGen (splicing microarray) expression platforms.  Note that, for display purposes 
a value of 1 was added to all expression estimates before converting to log2 scale.  This 
reduces the dynamic range of the Illumina data while having little effect on the array 
data.  See Table 3.4 for the unadjusted dynamic range.  ‘Random’ refers to random 
sequence oligonucleotides designed for estimation of background noise in microarrays. 
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Figure 3.12. ROC curves comparing sensitivity and specificity between three 
expression platforms 
Receiver operator characteristic (ROC) curves were plotted by calculating the sensitivity 
and specificity for three expression platforms with respect to the ability to correctly 
identify the exons of 100 housekeeping genes as expressed while at the same time 
correctly identifying the introns of these genes as not expressed.  The three expression 
platforms consisted of Illumina (WTSS), Affymetrix (exon microarray) and NimbleGen 
(ALEXA splicing microarray).  The Illumina platform achieved the highest ROC area 
under the curve (an indicator of sensitivity and specificity) followed by NimbleGen and 
Affymetrix. 
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Figure 3.13. Distribution of percent gene coverage at increasing minimum 
coverage cutoffs 
Box plots depict the distribution of percent gene coverage values (i.e. percent of exon 
bases of a gene covered by reads) at a particular minimum coverage cutoff (X) in the 
MIP101 library.  25,519 genes were detected by one or more reads in the MIP101 
sequence library, but only the 12,396 genes determined to be expressed above 
background were used to generate the following box plots (see Methods).  The red box 
plot shows that the median percent gene coverage for all genes was 99.8% if we 
required each base position to be covered at 1X depth or greater.  When the coverage 
cutoff requirement was increased to 10X, the median percent gene coverage dropped to 
~94.7%.  5,750 genes were covered over 50% or more of their bases at a minimum 
coverage of 100X.   
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Figure 3.14. Coverage of expressed features as a function of library depth 
The number of features (genes, exon junctions, and individual exon, intron and 
intergenic base positions) detected by 10 or more reads in the MIP101 library was 
expressed as a percentage of all possible features of each type (e.g. observed genes 
divided by the ~36,000 genes with annotations in EnsEMBL).  Reads were sampled 
without replacement in blocks of 100,000 mapped reads and after each sampling the 
percentage of possible features detected was recorded.  As library depth increased the 
number of detected features increased.  Sampling was continued in 100,000 read 
blocks until 100% of the library had been incorporated.  The following plot shows the 
relationship between percent library depth and percent of possible features detected at 
the 10X threshold.  Each colored line represents percentages for a single event type: 
genes (blue), exon-junctions (green), exon base positions (red), intron base positions 
(black) and intergenic base positions (grey).  Note that, even at 100% library depth, the 
rate of discovery of exon bases is still greater than that for intergenic bases indicating 
that exons expressed above background are still being discovered.  Figure 3.15 
illustrates the change in discovery rate. 
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Figure 3.15. Change in percent discovery rate with increasing library depth 
The discovery rate of exon and intergenic bases (at 10X or greater depth) in the MIP101 
library was calculated after each iteration of read sampling from 0% of library depth to 
100% (sampled in blocks of 100,000 reads without replacement).  The ‘discovery rate’ is 
the change in the percent of all possible exon and intergenic bases discovered at each 
iteration of sampling.  For both data types, a power curve was fit to the data (dotted 
lines).  For this library, 100% (*) of library depth corresponded to ~384 million single-end 
reads or ~167 paired reads.  By extrapolating from the fitted power curves, the rates of 
discovery for exon and intergenic bases were projected to converge at 308% (**) of our 
library depth (i.e. ~1 billion single-end reads or ~500 million paired reads).  This point of 
convergence (indicated with a black dot) is not the point at which discovery reaches 0, 
but rather the point at which the rate of discovery of exon bases reaches the level of 
discovery of intergenic bases (i.e. the point at which all new observations could be 
explained by intergenic noise alone).  Refer to the Methods for details of curve fitting 
and R2 calculations. 
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Figure 3.16. Coverage of exon base positions as a function of increasing library 
depth at varying minimum depth requirements 
As in the previous figure, the percentage of all possible exon base positions covered 
with increasing library depth is reported.  In this figure the percentage is shown at 
increasing expression level cutoffs.  The number of bases observed at a minimum cutoff 
of 1X, 5X, 10X, 50X, 100X and 500X are plotted against the percent of library depth 
used in the analysis.  As library depth increased the number of bases observed 
increased but the rate of increase was highly dependent on the level of depth required 
to consider a base observed (i.e. from 1X to 500X).  While at 10X depth, the shape of 
the curve and the slope reported in the legend suggest that saturation is being 
achieved, a much greater library size would be required to achieve the same level of 
saturation at 50X or 100X depth.  The slope was calculated for the tail of the distribution 
only (i.e. the data points corresponding to 50-100% library depth) 
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Figure 3.17. Relationship between gene and intron expression estimates 
The expression value of every ‘silent’ intron region was plotted against the expression 
value for the gene to which they belong.  Gene expression values were derived from the 
observed coverage of the exon base positions of the gene.  The expression level of 
‘silent’ intron regions (which generally should not be detected in mRNA expression 
profiling) was found to be correlated with gene expression level (Spearman correlation = 
0.52).  This suggests that un-processed RNA contamination (which would be expected 
to correlate with gene expression level) is present in addition to sources of intergenic 
sources of noise (such as genomic DNA contamination or random transcript noise).  We 
fit a linear model to the 95th percentile of this correlation and used the coefficients of this 
fit to derive gene-by-gene estimates of background expression level.  Features (exons, 
exon junctions, etc.) defined within each gene had to exceed this cutoff in order to be 
considered expressed (see Methods). 
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Figure 3.18. Expression distribution for all sequence feature types 
The distribution of expression values expressed as average coverage values on a log2 
scale are depicted as box plots for 15 feature types (Methods).  Each feature type is 
color coded according to its feature type.  Multiple box plots of the same color indicate 
sub-types.  The 95th percentile of ‘silent’ intergenic regions is depicted as a dotted line.  
This value corresponds to the expression estimates for intergenic regions with no 
previous evidence for expression in EnsEMBL or sequence databases.  We used this 
value as a conservative estimate of the level of intergenic noise.  One consequence of 
this contamination is that with sufficient sequencing depth, known or hypothetical exons 
will eventually be observed in the sequence data whether they are expressed or not.  
However, since the expression level of exons has limited overlap with that of ‘silent’ 
intron and intergenic regions we can effectively filter out this noise.  There are 14,088 
single exon transcripts and genes, of which, 90% are pseudogenes and micro RNAs 
that were not detected as expressed above background (red and yellow box plots).  
These non-detected, single exon genes make up ~40% of all genes but only 5% of all 
exons resulting in the apparent discrepancy between the gene/transcript box plots 
compared to those for known exons and junctions. 
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Figure 3.19. Expression of exon regions contrasted with intronic and intergenic 
regions 
The percentiles of expression values for exon regions, silent intron regions and silent 
intergenic regions were plotted against the corresponding expression values.  This 
shows that approximately 75% of exon expression values exceed the 95th percentile of 
silent intergenic regions (an expression value of 1.75 on a log2 scale). 
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Figure 3.20. Example of a transcript, H19 that is much less abundant in 5-FU 
resistant cells compared to sensitive cells 
A screen shot taken from the ALEXA-Seq data viewer depicting the expression of all 
exon and exon junction features at the ‘H19’ locus for both MIP101 and MIP/5FU cells.  
Expression is displayed on a log2 scale as colored lines (see Methods for details).  
Note the difference in expression levels between MIP101 and MIP/5FU cells.  
Expression values differ by as much as 7 on a log2 scale between the two libraries (i.e. 
up to 128-fold decrease in expression) (Table 3.8). 
 

 
 
 
 
Figure 3.21. The gene KRT20 is up-regulated in 5-FU resistant cells compared to 
sensitive cells 
A screen shot taken from the ALEXA-Seq data viewer depicting the expression of all 
features of the locus, ‘KRT20’, for both MIP101 and MIP/5FU cells.  Refer to legend of 
Figure 3.20 for a brief description of the display.  In this gene, only the known exons 
and canonical junctions were detected as expressed in either condition.  The expression 
level of these exons and exon junctions is highly consistent across the gene within each 
sample but the gene is over-expressed in resistant cells compared to sensitive cells by 
~14-fold (Table 3.8). 
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Figure 3.22. Percentage of exon-skipping junctions with a particular number of 
exons skipped for known and observed (i.e. expressed) exon junctions 
The percentage of exon-skipping junctions relative to all exon-skipping junctions was 
calculated for 1 exon-skips, 2 exon-skips, etc.  This calculation was performed for all 
known exon-skipping junctions (green line; n = 17,287), only those exon-skipping 
junctions actually detected as expressed (blue line; n = 6,280), only those exon-skipping 
junctions that were both expressed and novel (magenta line; n = 1,232), and a random 
sampling of junctions equal in size to the total number of known junctions (red line).  In 
all three cases, the majority (60-70%) of exon-skipping events involved only a single 
exon being skipped.  ~20% involved 2 exons skipped and the occurrence of greater 
numbers of exons skipped by a splicing event decreased steadily from there.  Only 8% 
of the entire database of ~2.2 million junctions profiled in our analysis involved a single 
exon being skipped but the expressed junctions were highly biased towards a single 
exon skipped.  The high agreement in this pattern between expressed junctions, novel 
expressed junctions and all known junctions supports the prediction that these are true 
novel splicing events and not random false positives.  The random data line illustrates 
that a random selection of junctions does not hold to this pattern. 
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Figure 3.23. The UMPS gene exhibits reciprocal differential expression of two 
isoforms  
A screen shot taken from the ALEXA-Seq data viewer depicting the expression of all 
features of UMPS, for both MIP101 and MIP/5FU cells.  Refer to legend of Figure 3.20 
for a brief description of the display.  Note that while this gene is ~2-fold down-regulated 
overall from 5-FU sensitive to resistant cells, a novel exon-skipping isoform (skipping 
exon 2) is up-regulated by ~15-fold (light blue bar labeled ‘E1a-E3a’ and marked with a 
star) (Table 3.8).  The intragenic and intergenic expression cutoff levels are depicted as 
the upper and lower dashed lines respectively (see Methods for details). 
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Figure 3.24. Example of gene locus, OCIAD1 with over-expression of several 
novel exon-skipping isoforms 
A screen shot taken from the ALEXA-Seq data viewer depicting the expression of all 
features of the locus, ‘OCIAD1’, for both MIP101 and MIP/5FU cells.  Refer to legend of 
Figure 3.20 for a brief description of the display.  Note that while this gene is ~2-fold 
down-regulated overall from 5-FU sensitive to resistant cells, splicing at the donor site of 
exon 4 of OCIAD1 appears to be disrupted, resulting in the up-regulation of three novel 
exon-skipping isoforms (three light blue bars, each marked with a star).  In the sensitive 
cells, exon 4 is only connected to its canonical partner exon 5.  In the resistant cells 
however, exon 4 is connected to exons 5, 6, 8 and 9.  The intragenic and intergenic 
expression cutoff levels are depicted as the upper and lower dashed lines respectively 
(see Methods for details). 
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Figure 3.25.  Proportion of expressed features observed in sensitive versus 
resistant cells 
The proportion of all expressed features identified as expressed in MIP101 (red bars) 
and MIP/5FU (blue bars) cells was summarized for feature types corresponding to 
known isoforms (left side) and predicted novel isoforms (right side).  The proportion is 
the number of expressed features observed in one cell line divided by the number of 
features expressed in either cell line.  For features corresponding to known isoforms  
(known exons and junctions), the majority were observed in both cell lines.  For 
example, the proportion of expressed known exons is close to 1 for both cell lines 
indicating that almost all known exons detected were expressed in both cell lines.  
However, for features corresponding to novel isoforms the proportion of such events 
was higher in MIP/5FU than MIP101.  Specifically, the proportions of exon skipping 
events (novel exon junctions), alternative exon boundary usage, cryptic exons (active 
regions with introns), and retained introns (entire introns) were all higher in MIP/5FU 
than MIP101.  The numbers for these events are provided in Table 3.6.  
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Table 3.1. Summary of alternative expression annotation databases for seven 
species 
A brief summary of databases of alternative expression features we defined for seven 
species is provided below.  Features were defined by analysis of EnsEMBL and 
mRNA/EST sequence databases (see Figure 3.1 and Methods for details).  For further 
details on the human database used for the data analysis described in the text, refer to 
Table 3.2.  A feature was considered to be ‘known’ if it was represented by one or more 
EnsEMBL transcripts.  All other features were predicted by our annotation pipeline.  
Abbreviations for features: Gene (G); Transcript (T), Exon region (ER); Exon junction 
(EJ); alternative exon boundary (EB); Silent intron region (SI); Active intron region (AI); 
Silent intergenic region (SIG); Active intergenic region (AIG). 
   
Each database can be dowloaded from: www.AlexaPlatform.org  
 
Species (Genome Build) Features defined and 

basic statistics 
Distribution of feature 
types 

Drosophila melanogaster 
(EnsEMBL version 54; FlyBase 
release 5.4) 

534,061 (23% known, 77% 
predicted, 20% EST/mRNA 
supported, 1% conserved) 

2.8% G, 4.1% T, 13.0% ER, 
43.3% EJ, 18.7% EB, 9.2% SI, 
2.7% AI, 3.4% SIG, 2.7% AIG 

Gallus gallus  
(EnsEMBL version 54; 
Chicken genome 2.1) 

2,392,504 (14% known, 86% 
predicted, 9% EST/mRNA 
supported, 6% conserved) 

0.8% G, 0.9% T, 7.6% ER, 
65.1% EJ, 12.5% EB, 6.8% SI, 
2.1% AI, 1.8% SIG, 2.5% AIG 

Homo sapiens  
(EnsEMBL version 53; 
Human NCBI 36 assembly) 

3,814,043 (14% known, 86% 
predicted, 16% EST/mRNA 
supported, 9% conserved) 

1.0% G, 1.6% T, 7.3% ER, 
58.0% EJ, 11.3% EB, 8.2% SI, 
6.6% AI, 2.9% SIG, 3.2% AIG 

Homo sapiens  
(EnsEMBL version 55; 
Human Genome Reference 
Consortium, Feb. 2009) 

4,639,589 (15% known, 85% 
predicted, 16% EST/mRNA 
supported, 8% conserved) 

1.0% G, 2.2% T, 8.0% ER, 
60.5% EJ, 11.6% EB, 7.4% SI, 
5.4% AI, 1.9% SIG, 2.0% AIG 

Mus musculus   
(EnsEMBL version 54; 
Mouse NCBI m37) 

3,313,018 (14% known, 86% 
predicted, 17% EST/mRNA 
supported, 7.6% conserved) 

1.0% G, 1.5% T, 7.6% ER, 
61.3% EJ, 12.0% EB, 7.6% SI, 
4.5% AI, 2.2% SIG, 2.4% AIG 

Pan troglodytes  
(EnsEMBL version 54; 
Chimpanzee 2.1) 

3,141,903 (14% known, 86% 
predicted, 15% EST/mRNA 
supported, 8% conserved) 

0.8% G, 1.3% T, 7.3% ER, 
61.9% EJ, 11.6% EB, 7.8% SI, 
4.3% AI, 2.4% SIG, 2.7% AIG 

Rattus norvegicus  
(EnsEMBL version 54; 
Rat 3.4) 

3,203,902 (14% known, 86% 
predicted, 10% EST/mRNA 
supported, 10% conserved) 

0.9% G, 1.2% T, 7.7% ER, 
64.9% EJ, 12.1% EB, 6.6% SI, 
2.5% AI, 2.0% SIG, 2.3% AIG 

Saccharomyces cerevisiae  
(EnsEMBL version 54; 
Yeast, Saccharomyces Genome 
Database) 

29,361 (26% known, 74% 
predicted, 0% EST/mRNA 
supported, 0% conserved) 

24.3% G, 24.3% T, 25.7% ER, 
1.1% EJ, 2.4% EB, 1.0% SI, 
0.0% AI, 21.3% SIG, 0.0% AIG 
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Table 3.2. Summary of read data, gene model sources and features defined for 
alternative expression analysis  
Features were defined as ‘known’ if they corresponded to a transcript in the EnsEMBL 
database.  A feature was considered to be supported by an mRNA/EST if the 
chromosome coordinates of the feature corresponded to an mRNA/EST alignment from 
UCSC (see Methods for details).  Conservation was similarly assessed by examining  
alignments of non-human ESTs and mRNAs (also from UCSC).  The total cumulative 
number of base positions for all of the features of each type are reported as well as the 
subset of these that were not masked according to EnsEMBL (see Methods for details) 
and the subset of bases corresponding to coding (translated) position of one or more 
EnsEMBL transcripts.  Note that ‘% conserved’ values were not assessed for genes and 
transcripts because mRNA and EST alignments from non-human species were 
generally too short to assess the structure of complete gene models and transcripts. 
 
Sequence data  
Number of reads (paired 36- and 42-mers) 262 million (524 million single-end reads) 
Bases of sequence 21.5 billion 
Known exon bases covered at >= 1x depth 46.6 million (73.1% of transcriptome) 
Bases of the genome covered at >= 1x depth 
 

242.6 million (7.8% of genome) 

Gene model sources  
EnsEMBL known transcripts 62,371 (EnsEMBL version 53) 

Human mRNA sequence alignments 256,678 (UCSC hg18) 

Non-human mRNA sequence alignments 817,042 (UCSC hg18) 

Human EST sequence alignments 7,950,883 (UCSC hg18) 

Non-human EST sequence alignments 45,745,393 (UCSC hg18) 

  
Feature annotations 
imported or defined from the 
gene model sources 

Total 
% 

mRNA/EST 
supported 

% 
Conserved

Total bases 
(% unmasked, % coding) 

     
Gene 36,953 72.3% - 70.7 Mb (90.2%, 54.7%) 
Transcript 62,371 83.6% - 46.3 Mb (88.4%, 50.7%) 
Exon 273,464    

Exon regions 277,805 76.4% 63.5% 70.7 Mb (90.2%, 54.7%) 
Exon-exon junctions     

Known 218,463 91.9% 39.4% 13.5 Mb (97.4%, 90.9%) 
Novel 1,992,797 0.7% 1.2% 123.5 Mb (97.9%, 95.2%) 

Alternative exon boundaries 
 i.e. acceptor/donor sites 

    

Known 21,431 90.8% 53.0% 1.3 Mb (91.3%, 55.7%) 
Novel 407,580 13.1% 8.9% 25.2 Mb (95.6%, 46.0%) 

Introns     
‘Silent’ intron regions  312,429 1.1% 0.9% 1,009.7 Mb (52.3%, 0%) 
‘Active’ intron regions 250,526 28.6% 3.5% 79.5 Mb (81.7%, 0%) 

Intergenic regions     
‘Silent’ intergenic regions 107,912 1.2% 1.0% 1,809.6 Mb (41.0%, 0%) 
‘Active’ intergenic regions 120,066 39.4% 5.6% 43.1Mb (80.5%, 0%) 

Total features (non-
redundant) 

3,808,333   3,013.4 Mb (47.8%, 1.2%) 
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Table 3.3. Top 20 differentially expressed (DE) genes from three gene expression 
platforms 
 
Red values indicate expression was lost in resistant cells compared to sensitive and 
blue values indicate a gain of expression in 5-FU resistant cell relative to sensitive.  A 
log2 DE value of 1 corresponds to a fold change of 2. 
 

Gene 
Name 

Mean 
Affymetrix 

PLIER Log2 
DE 

Mean 
ALEXA 

Log2 DE 

Illumina 
WTSS  Log2 

DE 

Max FOLD 
CHANGE 

observed for 
any platform 

C12orf59 -5.968 -7.868 -4.902 233.6 
OLR1 -5.598 -6.962 -4.429 124.6 
H19 -3.074 -2.376 -6.450 87.4 

PDZK1 -2.863 -6.021 -1.548 64.9 
FUT3 -5.887 -4.007 -4.290 59.2 

ASRGL1 4.414 5.494 3.843 45.1 
C12orf63 5.363 2.416 2.098 41.2 

PRF1 -3.754 -5.314 -3.211 39.8 
GIPC2 5.131 4.975 2.825 35.0 
PON3 -3.509 -4.850 -2.773 28.8 

ATOH8 2.999 4.635 3.269 24.9 
COL4A1 -4.491 -3.676 -3.199 22.5 
ACSL4 4.144 3.187 2.707 17.7 
FBP1 -3.175 -4.013 -2.700 16.1 

MYEOV -0.767 -3.955 -1.262 15.5 
GSPT2 -2.082 -3.890 -3.455 14.8 

IGF2BP3 3.251 3.880 2.381 14.7 
KRT20 2.581 3.859 2.602 14.5 
ARSE -3.836 -3.824 -3.339 14.3 

SLAMF6 2.721 3.821 1.487 14.1 
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Table 3.4. Comparison of dynamic range, signal-to-noise, sensitivity and 
specificity for Affymetrix, NimbleGen and Illumina platforms based on an analysis 
of expression estimates for the exons and introns of 100 housekeeping genes 
Since both the Affymetrix and NimbleGen platforms use 16-bit scanners to extract 
hybridization intensities during scanning of their arrays, the theoretical dynamic range of 
these platforms is 16 (on a log2 scale).  In practice, due to non-specific hybridization 
and other sources of signal noise, the lower limit is not achieved, although with proper 
calibration of the scanner, the upper limit can be achieved.  Since massively parallel 
sequencing approaches use random sampling of transcriptome space and produce a 
digital output (read counts), their dynamic range is limited only by the number of data 
points generated (i.e. library depth).  This allows for improved dynamic range, signal-to-
noise ratio, sensitivity and specificity, which we illustrated by examination of a set of 100 
housekeeping genes routinely used on Affymetrix microarray designs and mimicked on 
our own custom NimbleGen array designs.  Note that the dynamic range reported in this 
table differs from that displayed in Figure 3.11 because raw data were used in this 
calculation.  Instead of adding 1 before converting to log2 scale, features with an 
expression value of 0 were simply removed from the Illumina data. Zero values do not 
occur in the microarray data.  Also note that the sensitivity and specificity reported in 
this table correspond to the point at which the sum of sensitivity and specificity was 
maximized (see Figure 3.12). 
 

 
Affymetrix exon 

arrays 
NimbleGen 

ALEXA arrays 
Illumina WTSS 

Theoretical 
dynamic range 

(log2 scale) 
16 16 Unlimited 

Observed 
dynamic range 

(log2 scale) 
 8.5 9.2 30.1 

Signal-to-Noise 
Ratio 

20.8 ± 0.42 56.5 ± 2.5 381.1 ± 44.7 

Specificity 86.5% 95.8% 99.0% 
Sensitivity 83.5% 86.9% 92.6% 
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Table 3.5. Comparison of UMPS A/B isoform expression ratios from four different 
platforms capable of measuring alternative isoforms 
Expression values for two isoforms of the gene UMPS were derived by four mRNA 
expression platforms and used to estimate the ratio of UMPS isoform A compared to B 
in both MIP101 and MIP/5FU cells.  The Illumina platform estimates the greatest 
difference between isoform A and B in sensitive cells, while all four platforms indicate a 
ratio of the two isoforms of nearly 1:1 or lower in MIP/5FU cells (ratio from 0.24 – 1.03). 
 
Platform UMPS A/B isoform ratio 

(MIP101 cells)  
UMPS A/B isoform ratio 
(MIP/5FU cells) 

ALEXA/NimbleGen 
splicing microarray 

25.62 ± 0.56 0.85 ± 0.13 

Semi-quantitative RT-
PCR 

27.36 ± 9.94 0.24 ± 0.01 

Real-time quantitative 
RT-PCR 

22.97 ± 2.64 1.03 ± 1.56 

Illumina WTSS 51.4 0.80 
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Table 3.6. Summary of feature expression, differential expression, and alternative 
expression 
The total number of features of each type in our human sequence annotation database 
is listed below.  This is followed by the number of features expressed above background 
in each sample (see Methods) and the number that were significantly differentially 
expressed (DE) between the two libraries.  Note that the MIP101 library consisted of 
167 million paired reads and MIP/5FU consisted of 95 million paired reads.  Text is blue 
if the number of features of a particular type was higher in sensitive than resistant cells 
and red for the opposite comparison.  The DE (differential expression) column 
represents the number of features of each type that were significantly DE between 
MIP101 and MIP/5FU (fold-change > 2 and p-value < 0.05 after correction for multiple 
testing).  The ‘AE’ (alternative expression) column represents the subset of those 
events in the DE column that are also candidate alternative expression events (see 
Methods for details).  Note that for transcripts, only those corresponding to single 
transcript genes or transcripts that can be measured by unique exon junctions or 
regions are included (87% of all known transcripts). 
 
 

Feature Type 
# 

Features 
# Expressed 

(MIP101) 
# Expressed 

(MIP/5FU) 
# DE # AE 

Gene 36,953 12,396 (33.54%) 12,004 (32.48%) 259 n/a 
Transcript 54,515 12,857 (23.61%) 12,719 (23.33%) 251 15 
Exon Region 277,804 144,737 (52.10%) 142,657 (51.35%) 4,040 218 
Exon Junction 2,211,260 114,994 (5.20%) 114,613 (5.18%) 2,287 149 
   Known 218,463 112,748 (51.61%) 111,344 (50.97%) 2,242 114 
   Novel 1,992,797 2,246 (0.11%) 3,269 (0.16%) 30 21 
Alternative 
Boundary 

429,011 34,439 (8.03%) 46,205 (10.77%) 269 63 

  Known 21,431 9,505 (44.35%) 9,611 (44.84%) 155 26 
  Novel 407,580 24,934 (6.12%) 36,594 (8.98%) 112 33 
Intron 204,177 7,559 (3.70%) 12,178 (5.96%) 47 15 
   ‘Silent’ region 312,429 5,358 (1.71%) 10,007 (3.20%) 22 11 
   ‘Active’ region 250,526 12,343 (4.93%) 19,357 (7.73%) 88 28 
Intergenic 27,647 1,272 (4.60%) 1,151 (4.16%) 11 n/a 
  ‘Silent’ region 107,912 2,860 (2.65%) 2,639 (2.45%) 37 n/a 
  ‘Active’ region 120,066 8,203 (6.83%) 7,617 (6.34%) 116 n/a 
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Table 3.7. Summary of novel expressed exon-exon junctions and alternative exon 
boundaries 
We summarized the non-redundant, novel (i.e. do not correspond to an EnsEMBL 
transcript) expressed exon junctions or boundaries observed in either the MIP101 or 
MIP/5FU library.  Expressed exon junctions and alternative boundaries were examined 
with respect to mRNA/EST support, cross-species conservation, and protein coding 
affect.  Protein coding affect refers to whether the use of each novel exon junction or 
alternative boundary is predicted to alter the known ORF.  Possible over- or under- 
representation within the novel, expressed features relative to all features was assessed 
for mRNA/EST support, conservation and protein coding affect (by Fisher’s exact test).  
For example, we found that the percentage of mRNA/EST supported sequences was 
higher than expected by chance in the expressed, novel exon-exon junctions relative to 
the total number of exon-exon junctions with EST/mRNA support.   
 
Feature Type Count % 

mRNA/EST 
Supported 

% 
Conserved 

% Protein 
Coding 

Exon-exon junctions     

  Novel expressed 3,802 57.6% 20.2% 93.7% 

  All  2,211,260 9.7% 5.0% 97.0% 

  p-value  < 1.0×10-300 8.7×10-159 5.3×10-24 

     

Alternative Boundary     

  Novel expressed 41,076 43.3% 22.2% 87.5% 

  All 429,011 17.0% 11.1% 87.2% 

  p-value  < 1.0×10-300 4.2×10-282 0.19 
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Table 3.8. Top 50 differential or alternative expression events 
The following table summarizes the top differential and alternative gene expression 
events observed between 5-FU sensitive and resistant cells.  ‘Down-regulated’ means 
that expression of a feature is reduced in resistant cells relative to sensitive (indicated 
as –ve values in red).  ‘Up-regulated’ means a gain of expression was observed in 
resistant cells relative to sensitive (indicated as +ve values in blue).  In the case of 
multiple mutually exclusive isoforms being differentially expressed, the largest 
magnitude fold-change is displayed.  Visualization of the expression pattern for these 
genes (and all other genes) can be accessed with the ALEXA-Seq data viewer at our 
website (www.AlexaPlatform.org).  Gene names marked with an ‘*’ were chosen to 
illustrate visualizations from this viewer (see Figures 20, 21, 23 & 24).  Abbreviations.  
Differential expression (DE). Splicing index (SI).  Transcription start site (TSS). 
 

Rank 
Gene 
Name 

Event 
Type 

Fold 
Change 
(by DE 
or SI) 

Description of event 

1 H19* Gene DE -113.2 

Expression of an intron 1 retaining 
isoform of H19 is down-regulated in 5-FU 
resistant cells.  Isoforms exhibiting both 
retention and splicing of intron 1 are 
observed. 

2 OCIAD1* 
Exon 

skipping 
103.6 

Normal splicing is disrupted at the donor 
site of exon 4 resulting in an up-regulation 
of novel isoforms containing E4-E8, E4-
E6 and E4-E9.  Overall gene expression 
is 2-fold down-regulated.   

3 C12orf59 Gene DE -78.3 
Expression of entire locus is essentially 
lost, suggesting a possible deletion. 

4 EIF4A2 
Exon 

skipping 
-61.4 

Expression of putative novel exon 10 
skipping isoform (i.e. E9-E11) is down-
regulated.  

5 FUT3 Gene DE -44.4 
Expression of entire locus is essentially 
lost, suggesting a possible deletion. 

6 OLR1 Gene DE -43.6 
Expression of entire locus is essentially 
lost, suggesting a possible deletion. 

7 UBE2M 
Exon 

skipping 
39.4 

Expression of a putative novel exon 5 
skipping isoform (i.e. E4-E6) is up-
regulated.  Overall gene expression is 
unchanged. 

8 C1orf2 
Exon 

skipping 
-35.3 

Five known transcripts at the locus can 
be measured.  In sensitive cells 3 are 
expressed.  In resistant cells the isoform 
containing E7-E8 is lost but the other two 
remain.  
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Rank 
Gene 
Name 

Event 
Type 

Fold 
Change 
(by DE 
or SI) 

Description of event 

9 BUD31 
Exon 

skipping 
33.1 

This gene has two known transcripts with 
mutually exclusive exon 1 (E1a and E1b).  
Up-regulation of two putative novel 
isoforms is observed, both involving 
skipping of exon 2 (i.e. E1a-E3 and E1b-
E3). The canonical junctions are still 
observed.  Could be caused by a 
heterozygous mutation at the exon 2 
acceptor site. 

10 UBE2K 
Exon 

skipping 
-30.9 

Expression of a known exon 3 skipping 
isoform (i.e. E2-E4) is down-regulated  

11 AP2B1 
Exon 

skipping 
30.7 

Expression of a putative novel exon 21 
skipping isoform (i.e. E20-E22) is up-
regulated.  Overall gene expression is 
unchanged. 

12 ASRGL1 Gene DE 30.6 
Gene is not expressed above background 
in sensitive cells but is significantly up-
regulated in resistant cells  

13 EPS8L3 Gene DE -27.6 
Expression of entire locus is down-
regulated 

14 ALPP Gene DE -24.9 
Expression of entire locus is down-
regulated 

15 FAU 
Exon 

skipping 
-24.5 

Expression of a novel (but mRNA 
supported) exon 5 skipping isoform (i.e. 
E4-E6) is down-regulated.  Overall gene 
expression is unchanged. 

16 FOLR1 Gene DE -23.8 

Expression of entire locus (4 known 
isoforms) is down-regulated.  In sensitive 
cells, 3 of 4 isoforms are detected.  In 
resistant only a small amount of 1 isoform 
is expressed. 

17 ZNF702 Gene DE -22.3 
Expression of entire locus is down-
regulated 

18 LAPTM4B Gene DE -21.6 
Expression of entire locus is down-
regulated 

19 C15orf48 Gene DE -20.8 

Expression of entire locus is down-
regulated.  Only 1 of 2 isoforms is 
expressed in sensitive cells and neither 
are expressed in resistant 

20 SLC7A7 Gene DE -18.8 
Expression of entire locus is down-
regulated 

21 RAB22A 
Exon 

skipping 
-18.0 

Expression of a novel (but mRNA 
supported) exon 4 skipping isoform (i.e. 
E3-E5) is down-regulated.  Overall gene 
expression is unchanged. 
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Rank 
Gene 
Name 

Event 
Type 

Fold 
Change 
(by DE 
or SI) 

Description of event 

22 SPTLC2L Gene DE -17.9 
Expression of entire locus is down-
regulated 

23 FNDC3A 
Intron 

retention 
-16.0 

Expression of the gene is up-regulated 
overall except for intron 15 which is 
down-regulated  

24 HHIP 
Alternative 

TSS 
-15.9 

In sensitive cells a novel transcript 
starting at exon 4 is expressed.  In 
resistant cells this isoform is down-
regulated. 

25 UMPS* 
Exon 

skipping 
15.4 

A novel exon 2 skipping isoform is up-
regulated while the canonical isoform is 
down-regulated 

26 CST1 Gene DE -15.0 
Expression of entire locus is down-
regulated.  Only 1 of 2 known transcripts 
is expressed 

27 AIM1 
Exon 

skipping 
14.2 

Normal splicing is disrupted at the donor 
site of exon 17 resulting in an up-
regulation of novel isoforms containing 
E17-E19, and E17-E21.  Overall gene 
expression is 3-fold down-regulated. 

28 MR1 Gene DE -14.1 
Expression of entire locus is down-
regulated. 

29 KRT20* Gene DE 14.0 
Expression of entire locus is up-
regulated. 

30 KTN1 
Intron 

retention 
13.8 

Expression of the gene is 2-fold down-
regulated overall except for intron 27 
which is up-regulated 

31 PYGL Gene DE -12.9 
Expression of entire locus is down-
regulated. 

32 ACSL4 
Alternative 

TSS 
12.9 

Expression of a novel transcript starting 
at exon 4 is up-regulated 

33 TTC7A 
Intron 

retention 
12.8 

Expression of the gene is 2-fold down-
regulated but retained introns 19 and 24 
are up-regulated  

34 PDCD6IP 
Alternative 

exon 
boundary 

12.7 
Expression of the gene is 3.5-fold down-
regulated but a variant using a novel exon 
14 donor site is up-regulated  

35 TNNI2 Gene DE -12.7 
Expression of entire locus is down-
regulated.  Retention of introns 3, 4 and 5 
(of 6 introns total) is observed. 

36 HLTF Gene DE -12.3 
Expression of entire locus is down-
regulated. 

37 PRF1 Gene DE -12.2 
Expression of entire locus is down-
regulated. 
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Rank 
Gene 
Name 

Event 
Type 

Fold 
Change 
(by DE 
or SI) 

Description of event 

38 GSPT2 Gene DE -12.2 
Expression of entire locus is down-
regulated. 

39 ATOH8 Gene DE 11.8 
Expression of entire locus is up-
regulated. 

40 INTS9 
Exon 

skipping 
11.6 

Expression of a novel (but EST 
supported) exon 9 skipping isoform (i.e. 
E8-E10) is up-regulated.  Overall gene 
expression is unchanged. 

41 KLK6 Gene DE -11.1 
Expression of entire locus is down-
regulated.  Expression of novel acceptor 
sites at exon 2 is also observed. 

42 C4orf27 Unknown -10.6 

Expression of the gene is 2-fold down-
regulated overall while a canonical exon-
junction (E1-E2) is 10.6-fold down-
regulated.    

43 DNTTIP1 
Exon-

skipping 
-10.5 

Expression of a novel exon 10 skipping 
isoform (i.e. E9-E11) is down-regulated.  
Overall gene expression is unchanged. 

44 ZNF185 Gene DE 10.4 
Expression of entire locus is up-
regulated. 

45 LAMA3 
Alternative 

TSS 
-10.3 

Expression of the full-length isoform is 
down-regulated while expression of a 
shorter isoform starting at exon region 40 
(of 77) is up-regulated.  Overall gene 
expression is unchanged. 

46 CCBL1 
Alternative 

exon 
boundary 

-10.3 
Expression of the gene is 2-fold up-
regulated but a variant using a novel exon 
6 acceptor site is down-regulated 

47 UGT1A8 
Alternative 

exon 
boundary 

-10.2 

Expression of the gene is 1.4-fold down-
regulated but a variant using a novel exon 
7 acceptor site is 10.2-fold down-
regulated 

48 PHLDB2 Gene DE -10.1 
Expression of entire locus is down-
regulated. 

49 TSPAN12 Gene DE -9.9 
Expression of entire locus is down-
regulated. 

50 TBC1D8B Gene DE -9.8 
Expression of entire locus is down-
regulated. 
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Table 3.9. Statistically enriched functional categories identified by pathway 
analysis 
Significant functions and diseases identified by Ingenuity Pathway Analysis are listed 
below along with the p-value and number of genes found in the specified functional 
category.  P-values were calculated by Fisher’s test and corrected by Benjamini and 
Hochberg.  Complete gene lists and sub-categories for each of these functional 
categories are available at our website (www.AlexaPlatform.org) 
 
Functional Category P-value Gene count 

Cancer 2.37×10-3 95 

Embryonic development 4.11×10-2 26 

Tissue development 4.11×10-2 17 

Cellular growth and 
proliferation 

4.11×10-2 59 

Dermatological diseases 
and conditions 

4.11×10-2 15 
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4. Genomic analysis of uridine monophosphate synthetase 
reveals novel mRNA isoforms and mutations associated with 
fluorouracil resistance in colorectal cancer4 

4.1. Introduction 

The drug fluorouracil (5-FU) is an anti-metabolite chemotherapy commonly used in 

the treatment of several cancer types including head and neck, pancreatic, breast, 

stomach and colorectal1, 2.  Analogs, pro-drugs and oral versions of 5-FU such as 

Capecitabine and Tegafur are also widely used (Appendix A).  Intrinsic or acquired 

resistance to 5-FU is a major limiting factor in the treatment of colorectal and other 

cancers.  Response rates for 5-FU vary from 6% to 53% depending on dose, schedule, 

combination with modifiers and disease characteristics3.  While 5-FU is now relatively 

inexpensive, new versions with improved response rates can cost thousands of dollars 

per month of therapy.  For example, in 2008, the BC Cancer Agency regional cancer 

centers treated 1,871 cancer patients (primarily gastrointestinal and breast) using 

chemotherapy protocols involving 5-FU and/or Capecitabine at a total cost of ~1.33 

million dollars.  Due to the high usage and low-to-moderate response rates for 5-FU, the 

cost associated with 5-FU resistance is considerable.  Developing methods to predict 

and ultimately overcome this resistance is therefore an important area of research. 

5-FU is a pyrimidine (uracil) analog developed in the 1950’s that is preferentially 

utilized by actively dividing tumor cells4, 5.  Although the precise mechanism of action is 

still a subject of debate in the literature, 5-FU is thought to act by at least three 

mechanisms, each requiring metabolic activation of 5-FU (Figure 4.1).  The most widely 

cited mechanism involves conversion of 5-FU to 5-fluoro-2'-deoxyuridine 5'-

monophosphate (FdUMP) which inhibits thymidylate synthetase (TYMS aka TS) leading 

to depletion of thymine, inhibition of DNA synthesis and DNA damage when uracil is 

subsequently incorporated into DNA6.  Alternative mechanisms involve conversion of 5-

FU into the fluorine-containing cytotoxic metabolites FUTP and FdUTP which are 

incorporated into RNA and DNA respectively7. Varying response to 5-FU is thought to 

be mediated primarily by differences in the metabolic pathways of 5-FU activation and 

                                            
4 A version of this chapter has been submitted.  Griffith M, Paul JE, Pugh TJ, Tang MJ, Morin RD, Asano 
JK, Ally A, Miao L, Cheung P, Lee A, Chan SY, Taylor G, Severson T, Cheng GSW, Novik K, Gill S, 
Owen D, Brown CJ, Morin GB, Tai IT & Marra MA.  Genomic analysis of uridine monophosphate 
synthetase reveals novel mRNA isoforms and mutations associated with fluorouracil resistance in 
colorectal cancer 



 180

degradation8 but may also be influenced by variation in apoptosis9, 10, nucleotide 

transport11, DNA repair12 and other mechanisms13. 

At least 13 genes including uridine monophosphate synthetase (UMPS aka OPRT), 

dihydropyrimidine dehydrogenase (DPYD aka DPD), thymidine phosphorylase (TYMP 

aka TP), uridine phosphorylase 1 (UPP1 aka UP), and thymidylate synthetase (TYMS 

aka TS) are known to be involved in the metabolism of 5-FU (Figure 4.1)14.  Mutations 

or epigenetic modifications which alter the structure or expression level of these genes 

and thereby affect the activity of the enzymes they encode may contribute to 5-FU 

resistance and poor outcome in some cancer patients.  One of the most studied genes 

related to 5-FU action is DPYD, for which a clinical test for 5-FU toxicity exists (Myriad 

Genetics Inc.15; DNAVision SA16; and GenPath Diagnostics Inc.17).  DPYD deficiency is 

associated with increased probability of severe adverse response to 5-FU including 

multi-organ toxicity, especially neurotoxicity18, 19.  Drugs such as S-1, Tegafur-Uracil 

(UFT) and Eniluracil have been developed to improve response to 5-FU primarily by 

inhibiting DPYD and thereby reducing catabolism of 5-FU in the liver and increasing the 

amount of drug reaching the tumor18 (Appendix A).  Although DPYD is believed to 

account for a large percentage (as much as 80%) of the catabolism of 5-FU in the 

liver18, expression of additional 5-FU metabolism genes (including UMPS) within the 

tumor is required for conversion of 5-FU to active anti-tumour metabolites (Figure 4.1)20, 

21. 

The UMPS protein contains two enzymatic domains, orotate 

phosphoribosyltransferase (OPRTase; EC 2.4.2.10) and orotidine-5'-phosphate 

decarboxylase (ODCase; EC 4.1.1.23).  In the synthesis of pyrimidines, the OPRTase 

domain functions by addition of a ribose group to orotate resulting in orotidine 

monophophate.  The ODCase domain removes a carboxyl group from this molecule 

resulting in uridine monophosphate.  In the metabolism of 5-FU, these two domains 

function by producing fluorinated versions of orotidine monophophate (FOMP) and 

uridine monophosphate (FUMP) (see Figure 4.1).  Fluorinated uridine molecules may 

inhibit RNA synthesis or upon incorporation into RNA may cause RNA damage and 

interfere with translation7.   

Recent studies have emphasized the potential role for UMPS in mediating 5-FU 

resistance22 and proposed that this gene may serve as a clinical biomarker of resistance 

in cancer patients, but there is considerable disagreement in the literature as to the 
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relative importance of genes predicted to be involved in 5-FU action23.  Determining 

those genes that are critical to this process and identifying gene variants that may 

confer drug resistance can be accomplished by genome-wide analyses that compare 

drug-sensitive and resistant cell populations.   

The use of genomic methods to identify the molecular causes of disease phenotypes 

is an area of rapid development24.  We recently developed two novel genome-wide 

analytical approaches to profile alternatively processed transcripts.  The first method 

uses splicing microarrays for ‘alternative expression analysis’ (ALEXA)25 and the 

second uses an Illumina DNA sequencer for whole transcriptome shotgun sequencing 

(WTSS)26.  We applied these methods to the study of 5-FU resistance in colorectal 

cancer cell lines.  Using these approaches we observed differential expression of UMPS 

isoforms in a cell line with acquired 5-FU resistance relative to the sensitive cell line 

from which it was derived.  We used RT-PCR and quantitative real-time RT-PCR to 

validate these differential expression observations and surveyed the expression of the 

two most abundant isoforms in additional sensitive/resistant cell lines and a panel of 26 

colorectal cancer tumour/normal pairs.  We catalogued the diversity of UMPS transcript 

variation in these cell lines by creation, sequencing and analysis of 293 UMPS cDNA 

clones.  We then performed genomic DNA sequencing of the UMPS locus to identify 

mutations that might account for differential expression of isoforms or affect UMPS 

function.  Finally, we performed mutation analysis of the exons and splice sites of 

UMPS using a panel of 91 pre- and post- treatment colorectal cancer patient cases. 

4.2. Results 

4.2.1. Differential expression analysis of UMPS isoforms in 5-FU sensitive and 

resistant cell lines. 

We previously applied custom designed alternative expression analysis (ALEXA) 

microarrays to profile polyA+ RNA isolated from MIP101 (5-FU sensitive) and MIP/5FU 

(5-FU resistant) colorectal cancer cell lines25.  Analysis of these data revealed an 

apparent reciprocal differential expression of two isoforms of UMPS, one containing six 

exons and essentially matching the reference sequence (NM_000373) and the other 

skipping exon 2 (Figure 4.2).  We subsequently observed differential expression of the 

same alternative isoforms by WTSS analysis of the same polyA+ RNAs (Figure 4.3).  In 
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the MIP101 WTSS library, mapped reads corresponded almost exclusively to the 

canonical UMPS isoform A (A/B ratio of 51.4).  In the MIP/5FU WTSS library an 

approximately equal ratio of reads supporting the exon-exon junctions of UMPS 

isoforms A and B were observed (A/B ratio of 0.8) (Figure 4.3).  RT-PCR, semi-

quantitative RT-PCR and real-time quantitative RT-PCR were used to profile the 

expression of UMPS isoform A and B in three 5-FU sensitive/resistant cell line pairs.  

Resistant derivatives of MIP101, RKO and HCT116 (MIP/5FU, RKO/5FU and HCT/5FU 

respectively) were created as previously described27.  Primers were designed to amplify 

bands corresponding to both isoform A and B or to specifically amplify one isoform and 

not the other.  Both isoforms could be detected in all six cell lines (Table 4.1).  All three 

resistant cell lines (MIP/5FU, RKO/5FU, and HCT/5FU) exhibited a significant down-

regulation of UMPS isoform A relative to the sensitive cell line from which they were 

derived (Table 4.2).  All three resistant cell lines also exhibited a significant up-

regulation of UMPS isoform B (Figure 4.4 and Table 4.2) although the finding for RKO 

was less convincing.  Isoform A was 5-fold less abundant in MIP/5FU cells relative to 

MIP101.  Isoform B was 20-fold more abundant in MIP/5FU and 5-fold more abundant 

in HCT/5FU cells relative to MIP101 and HCT116 respectively (Table 4.2).  The 

difference in abundance of each isoform between the RKO and RKO/5FU was small but 

statistically significant in the quantitative real-time RT-PCR results (Table 4.2). 

4.2.2. Characterization of UMPS transcript structural diversity 

We created 293 UMPS cDNA clones by RT-PCR of polyA+ RNA using an oligo-dT 

primer for ss-cDNA synthesis followed by amplification with primers designed to flank 

the UMPS ORF.  The resulting products were analyzed by gel electrophoresis (Figure 

4.5).  All six cell lines exhibited a band of the expected size for the canonical UMPS 

isoform A (~2,100 bp) and relatively smaller amounts of additional bands ranging in size 

from ~1,200bp to ~2,400 bp.  These additional bands were predicted to correspond to 

alternatively spliced mRNA isoforms.  All visible PCR products were gel purified and 

cloned by Topo-TA cloning.  Clones were verified for size and orientation by restriction 

enzyme digestion (see Methods) and 96 clones were selected for full-length 

sequencing.  Clone sequences were assembled (see Methods) and analyzed by BLAT 

alignment against the human genome (hg18).  95 of 96 clones mapped to the UMPS 

locus and appeared to correspond to either the canonical isoform or a novel isoform.  
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One clone appeared to represent a contaminating genomic DNA sequence from 

Ralstonia pickettii (99% BLAST identity over 1670 bp). 

We successfully generated clones representing both the ‘canonical’ UMPS isoform 

A, the predicted UMPS isoform B as well as 8 other novel isoforms.  Represented within 

our clone collection are a total of 10 distinct spliced UMPS isoforms, which we denoted 

A-J (Figure 4.6 & Table 4.3).  Only 4 of 10 alternative isoform sequences were 

supported by existing mRNAs or ESTs reported by the UCSC genome browser 

database28.  The exon sequences, exon junctions, splice sites, and predicted ORFs of 

all 10 isoforms were examined (Figure 4.6 & Table 4.3).  The genome coordinates of 

exon boundaries from BLAT alignments of each clone to the human genome were used 

to extract a full length sequence for each apparent alternative isoform using the 

EnsEMBL API29.  Each isoform sequence was represented by at least one fully 

sequenced clone and the sequences of these clones were submitted to GenBank (see 

Table 4.3 for GenBank identifiers).  These sequences were used to predict open 

reading frames for each clone using the NCBI ORF finder30.  Each sequence was 

examined to determine if it would be targeted by nonsense mediated decay (NMD) (See 

Table 4.3).  The predicted coding sequence used for this test was the largest ORF 

identified by the NCBI ORF finder.  A sequence was tagged as a NMD target if the 

predicted coding sequence terminated more than 50 bp upstream of a splice site (an 

empirically determined criterion used by the vertebrate genome annotation effort31 and 

others32).  Only isoform E was a candidate for NMD by this criterion.  Isoform E 

appeared to match UCSC known gene ‘uc003ehm.1’ (hg18) which is classified by 

UCSC as ‘nearCoding’ and a NMD target.  In addition to scanning for NMD candidates, 

all exon boundaries were examined to determine whether they appeared to be valid 

splice sites.  The genomic region of UMPS (+/- 1 kb of flank) was analyzed using four 

splice site prediction algorithms: ASSP33, GeneSplicer34, NetGene235, and 

NNSPLICE36.  Of a total of 19 observed splice sites, 14 of these appeared to be valid 

according to one or more of these algorithms.  The 5 non-canonical sites are noted in 

Figure 4.6.  7 of 10 isoforms contained only valid splice sites. The non-canonical 

splices sites observed in isoform C and isoform I affected only the 3’ UTR. 

The reading frames identified in all nine alternative isoforms retained the reading 

frame (at least partially) of the canonical isoform A.  Conservation of the protein 

sequence of isoforms B-J relative to the canonical isoform (A) ranged from 43.1% to 
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100% (Table 4.3).  Only isoform I was predicted to result in a protein identical to isoform 

A.  All other isoforms had some loss of amino acid content relative to isoform A and in 

all cases this affected one or both of the known enzymatic domains of UMPS; OPRTase 

and ODCase (Figure 4.6).  Furthermore, according to the conserved domain 

database37 and published reports examining the structure and function of UMPS in 

yeast, mouse and human, the ODCase domain of UMPS contains a dimer interface that 

results in dimerization of UMPS in vivo38.  18 residues involved in this dimerization have 

been annotated within the ODCase domain (in exons 3, 4, 5 and 6).  In addition to a 

loss of portions of the ODCase enzymatic domain, isoforms E, G and J were predicted 

to differ in their ability to dimerize. 

4.2.3. UMPS protein expression 

Western analysis of total protein lysate isolated from six 5-FU sensitive and resistant 

cell lines (MIP101, MIP/5FU, RKO, RKO/5FU, HCT116 and HCT/5FU) was performed 

with three UMPS antibodies (Methods).  A monoclonal mouse antibody (Abnova; 

H00007372-M06) raised against a partial recombinant protein (amino acids 381-480 of 

480 total) detected the presence of a band at the expected molecular weight (52 KDa) 

for UMPS isoform A in all six cell lines.  A loss of expression of UMPS isoform A from 

sensitive to resistant cells was apparent in each pair of cell lines (Figure 4.7a).   

Quantitative analysis in which loading amounts were normalized to Actin expression 

(Methods) confirmed the reduced abundance of UMPS isoform A protein in MIP/5FU 

lysate compared to MIP101 lysate (Figure 4.7b).  A band corresponding to the 

predicted molecular weight of isoform B (33 KDa) was not detected in any cell line.  Two 

additional antibodies, one a monoclonal mouse antibody raised against a partial 

recombinant UMPS peptide (Abnova; H00007372-M05) and the other a polyclonal 

mouse antibody raised against a full length UMPS (Abnova; H00007372-B01P) were 

tested.  These antibodies detected the purified immunogen purchased from the 

manufacturer but did not detect UMPS expression in any cell line lysate. 

4.2.4. Survey of UMPS isoform expression in treatment naïve colorectal tumor 

samples 

To determine the normal expression of alternative UMPS isoforms A and B in colorectal 

tumours we measured their expression using PCR (qualitative) and real-time RT-PCR 
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(quantitative) assays in 26 patient cases obtained from the Ontario Tumour Bank 

(Toronto, ON) that were mostly treatment naïve (80%) (Methods).  Each case consisted 

of a primary colon or rectal tumour and matched normal adjacent tissue that was fresh 

frozen at the time of surgical resection.  Isoform B was easily detectable in the majority 

of patients and its level was variable from patient to patient, but it represented the minor 

form compared to isoform A (Figure 4.8).  Quantitative real-time PCR confirmed that 

UMPS isoform B is a minor variant compared to isoform A in treatment naïve colorectal 

tumour tissue and matched adjacent normal (Figure 4.9).  However, the expression of 

both isoforms, but especially isoform A, was significantly higher in tumour than in 

normal tissue in this treatment naïve cohort.  No significant difference in the expression 

of either isoform was observed between survivor (n=16) versus non-survivor (n = 10) 

patient groups, between progressors (n = 9) and non-progressors (n = 13), or between 

pre-treatment (n = 5) and post-treatment tumours (n = 21) (Methods).   

Since the samples analyzed in these PCR assays were mostly treatment naïve, they 

would not be expected to reveal modifications of UMPS (such as aberrant splicing) 

associated with acquired resistance to 5-FU (i.e. that occurs upon exposure the drug).  

To further investigate the possible role of UMPS in 5-FU resistance we therefore sought 

to obtain patient samples that had been exposed to 5-FU.  The only samples of this type 

we could obtain were archival materials that had been formalin fixed and paraffin 

embedded.  Unfortunately, we were unable to reliably measure abundance of mRNA 

isoforms in these archival samples due to the severe RNA degradation resulting from 

the formalin fixing and long-term storage of the samples (Methods).  For this reason, 

we relied on mutation analysis to take advantage of the relative stability of genomic 

DNA compared to RNA.  We started by sequencing the exon and intron boundaries of 

UMPS using genomic DNA isolated from 5-FU sensitive and resistant cell lines and then 

proceeded to apply similar sequencing assays to a cohort of colorectal cancer patient 

samples. 

4.2.5. Sequencing of UMPS in 5-FU sensitive and resistant cell lines 

Although the reciprocal differential expression of UMPS isoforms A and B that we 

observed between 5-FU sensitive and resistant cells appeared to be the result of a 

change in splicing patterns, we sought to elucidate the underlying mechanism.  We 

hypothesized that one or more mutations were acquired at the UMPS locus during the 
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selection of 5-FU resistance and these were responsible for the altered splicing pattern.  

To investigate this hypothesis, we sequenced genomic DNA extracted from each of the 

5-FU sensitive/resistant cell line pairs as well as a commercially available genomic DNA 

sample.  We generated 22 PCR amplicons (with an average size of 710 bp) covering 

the genomic region of UMPS from 1 kb upstream of exon 1 to the end of exon 3 and 

sequenced each amplicon by direct end sequencing with M13 linkers added to each 

pair of primers (Figure 4.10) (see Appendix B for primer sequences).  The resulting 

genomic sequence captured all four splice sites involved in the splicing of exon 2.  For 

the MIP101 and MIP/5FU cell lines we also examined the Illumina WTSS data for 

evidence of mutations (Methods). 

Sequence discrepancies relative to the reference human genome within amplicon 

sequence data or WTSS data were identified and classified as known SNPs or putative 

novel mutations by comparison to dbSNP39.  A total of 33 variations relative to the 

human reference genome were identified.  28 of these were found to be known 

polymorphisms in dbSNP39.  Two variants were novel relative to dbSNP but found in 

both sensitive cells (RKO) and the resistant derivative (RKO/5FU).  Thus, three variants 

appeared to be mutations specific to a 5-FU resistant cell line (i.e. acquired in the 

resistant line in the process of making it resistant to 5-FU).  The first of these was a 

heterozygous splice site mutation at the acceptor splice site of exon 2 .  This mutation 

was present in the MIP/5FU (resistant) cell line but not the MIP101 (sensitive) cell line 

(position 5,727 in Figure 4.10 and Table 4.4).  This mutation suggests a mechanism for 

the difference in isoform expression ratios observed between the MIP101 and MIP/5FU 

cell lines.  In the MIP101 cells, both alleles of the UMPS locus will produce pre-mRNAs 

with a canonical splice site at exon 2.  The splicing machinery is predicted to recognize 

this splice site and include exon 2 in the mRNA, resulting in the long isoform (isoform 

A).  However, in MIP/5FU, one allele is wild type but the second allele is mutated at the 

acceptor splice site for exon 2.  For all pre-mRNAs generated from this allele, the 

splicing machinery is predicted to not recognize the mutated exon 2 acceptor site, 

resulting in splicing to yield isoform B transcripts.  Thus, the two alleles would together 

be expected to create an approximately equal mixture of the mRNAs for the two 

isoforms and this is what we observed in our data (Figure 4.2, Figure 4.3 & Figure 

4.4).  We speculated that the mutation might act as either (1) a loss-of-function mutation 

which confers resistance due to a gene dosage effect because the resistant cells have 
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one functional copy instead of two or (2) a dominant negative mutation in which the 

function of an aberrant isoform B actively antagonizes the function of isoform A.  The 

apparent lack of translation of isoform B intro protein as suggested by our Western 

analysis (Figure 4.7) supports the theory that this splice site mutation is a loss-of-

function mutation. 

A second novel mutation acquired in 5-FU resistant cells was observed in the 

RKO/5FU line.  This mutation is also heterozygous and predicted to result in an amino 

acid substitution within UMPS exon 2 (Pro→Ser) (position 5,809 in Figure 4.10 and 

Table 4.4). 

A third heterozygous coding mutation supported by ~20 reads for each allele in the 

Illumina data appears to have been acquired in 5-FU resistant MIP/5FU cells and is 

predicted to result in an amino acid substitution within UMPS exon 3 (Arg→Cys) 

(position 8,211 in Figure 4.10 and Table 4.4).  MIP101 had excellent Illumina WTSS 

sequencing coverage (298X) at this base position and showed no evidence for this 

mutation.  Sanger sequencing  confirmed this mutation as heterozygous in MIP/5FU 

and not present in MIP101 (amplicon 22 in Figure 4.10).  Several cDNA clones isolated 

from MIP/5FUR contained this mutation but none from MIP101 did.  Those cDNA clones 

from MIP/5FU containing this mutation also included exon 2 while those with skipping of 

exon 2 did not have the mutation suggesting that this mutation may exist on the allele 

without the splice site mutation described above.  Both of the amino acid changes 

observed in the resistant cell lines (Pro→Ser and Arg→Cys) were non-conservative with  

BLOSUM62 substitution matrix scores40, 41 of -1 and -3 respectively. 

Based on the observation, in 5-FU resistant cell lines, of a splice site mutation (in 

MIP/5FU) and additional mutations affecting the protein sequence of UMPS (in MIP/5FU 

and RKO/5FU) we next sought to determine whether these or other mutations occurred 

in colorectal cancer tumours, in particular, those isolated after the patient was exposed 

to 5-FU. 

4.2.6. Sequencing of UMPS in colorectal cancer samples 

In addition to 26 fresh frozen tumour/normal sample pairs from the Ontario Tumour 

Bank (discussed above) we obtained 44 archival samples from the BC Cancer Agency 

(Vancouver, BC) and 20 archival samples from St. Paul’s hospital (Vancouver, BC).  

These 90 cases consisted of 24 primary colon tumours, 22 primary rectal tumours and 
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44 liver metastases of colorectal cancer.  For 50 (55%) of these tumours we able to 

confirm some amount of exposure to 5-FU prior to resection (Methods).  We 

hypothesized that exposure to 5-FU might result in selection for mutations in UMPS 

such as those we observed in cell lines.   

To investigate this hypothesis, we sequenced genomic DNA extracted from each 

sample.  We generated 22 PCR amplicons (with an average size of 379 bp) covering 

the six exons of UMPS as well as an alternative exon 2 (‘2b’) (Figure 4.10).  Each 

amplicon was sequenced by direct end sequencing with M13 linkers added to each pair 

of primers (see Appendix B for primer sequences). 

A total of 40 variations relative to the human reference genome were identified.  27 

of these were found to be known polymorphisms in dbSNP39.  Of the 13 putative novel 

mutations identified, 5 were within an intron (but not close to a splice site), 1 was within 

exon 2b (Figure 4.6), 1 was at the -3 position of the acceptor splice site of exon 2, and 

the remaining 6 were coding mutations within exons 2, 3, 4 and 6.  All 6 putative coding 

mutations fell within either the OPRTase or ODCase enzymatic domains (2 within the 

OPRTase domain and 4 within ODCase domain).  All but two of the 13 mutations were 

heterozygous. 

Interestingly, the heterozygous splice site mutation (position 5,725 in Figure 4.10 

and Table 4.4) occurred very close to the splice site mutation observed in the MIP/5FU 

cell line.  Specifically, it occurred at the -3 position of the acceptor site compared to the -

1 position for the splice site mutation identified in MIP/5FU.  The patient (#14) harboring 

the -3 mutation of the exon 2 acceptor site had an unusually aggressive cancer.  The 

patient presented with stage 4 disease with multiple local and distant metastases 

(including metastases at 13 of 16 lymph nodes) and disease progression resulted in 

death within 3 months of the primary resection.  Patient 14 also had a heterozygous 

missense (Ala->Thr) mutation within exon 2 (position 5,731 in Figure 4.10 and Table 

4.4).  Examination of the matched normal sample for patient 14 revealed that both 

mutations were somatic.  Aberrant splicing of exon 2 as observed in the cell line 

MIP/5FU was not apparent by examination of Figure 4.8 or the quantitative RT-PCR 

data.  The remaining five putative coding mutations were identified in 5 separate 

patients (4 of 5 were post-treatment).  One of the mutations was silent and the rest were 

missense mutations although none of these were particularly radical amino acid 
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substitutions according to BLOSUM62 substitution matrix scores40, 41 (scores for these 

substitutions were >= 0; see Table 4.4 for details). 

The number of mutations observed in post-treatment samples compared to pre-

treatment samples was not significantly more than expected by chance (taking into 

account the size of the pre- and post- treatment groups) for either the entire set of 13 

mutations (p-value=0.0589; by two-sided Fisher’s exact test) or for the 6 mutations 

predicted to affect amino acid sequence (p-value=1).   

4.3. Discussion 

Resistance to 5-FU is hypothesized to arise by a number of mechanisms but 

previous studies have primarily focused on 5-FU metabolism genes and five genes in 

particular (DPYD, TYMP, TYMS, UPP1, and UMPS).  UMPS expression has been 

described as potentially critical to the response of a tumor to 5-FU and is widely cited as 

the primary means of activating the pro-drug 5-FU to active anti-tumour metabolites42, 43 

(Figure 4.1).  A number of previous studies have reported attempts to use UMPS 

expression as a predictor of drug response with varying degrees of success.  Some of 

these studies suggested that measuring UMPS expression is useful in predicting 5-FU 

response23, 44, 45 while others claimed that UMPS expression was not correlated with 5-

FU response46-49.  Many of these studies employed a strategy that involved measuring 

the expression of UMPS by use of probes targeting the 3′ end of the canonical UMPS 

transcript without regard to potential alternative isoforms.  Other studies employed 

biochemical assays of enzymatic activity which are desirable in that they do not rely on 

inference but are difficult to apply in a clinical setting and require large amounts of fresh 

tumour tissue.  To our knowledge no previous study examining UMPS mRNA 

expression has considered the presence of alternatively spliced or mutated variant 

isoforms or performed transcript re-sequencing to characterize their diversity. 

Using a combination of novel and conventional approaches we observed expression 

of a mutated or aberrantly spliced isoform in the 5-FU resistant derivatives of three cell 

lines: (1) significant over-expression of isoform B in MIP/5FU caused by a heterozygous 

splice site mutation, (2) mild over-expression of isoform B in HCT/5FU (via an unknown 

molecular mechanism) and (3) expression of a mutant isoform A with a protein coding 

change in RKO/5FU.  We showed that in pre-treatment colorectal tumours, UMPS 

isoform B mRNA was generally present but represented a minor form relative to isoform 
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A.  In addition to isoform B we identified 8 additional novel UMPS isoforms.  We 

examined the transcript structure and predicted protein content of these isoforms but 

further work is required to elucidate the general importance of alternative splicing of 

UMPS in 5-FU resistance and the specific activity of the individual isoforms we report.  

We also observed novel mutations in human colorectal cancer patient samples.  All 

eight of the coding or splice site point mutations we identified were heterozygous (Table 

4.4).  While these heterozygous mutations might confer a selective advantage in the 

presence of 5-FU by reducing the activation of 5-FU, homozygous mutations are 

perhaps unlikely to occur due to the apparent importance of UMPS in providing 

pyrimidines for the normal functioning of the cell.  Inherited deficiency of the enzymatic 

functions of UMPS is associated with the rare human disorder ‘Orotic Aciduria I’ (OMIM: 

258900), a disease that is fatal unless treated with large doses of uridine.  Inherited 

heterozygous UMPS loss-of-function point mutations in exons 2, 3 and 6 were reported 

as the likely cause of this disorder in humans50.  To our knowledge homozygous 

mutations of UMPS have not been reported in humans but homozygous UMPS 

deficiency caused by inheritance of a point mutation that introduced a premature stop 

codon in exon 5 has been shown to cause early embryonic death in cattle embryos51, 52.  

Based on the deleterious effect of UMPS deficiency, germline mutations that might 

cause intrinsic 5-FU resistance are expected to be rare.  However, somatic mutations 

such as those we report that are acquired during tumorigenesis or chemotherapy 

treatment may contribute to acquired 5-FU resistance in the treatment of colorectal 

cancer.  Homozygous somatic mutations of UMPS are perhaps still unlikely however, 

given the importance of pyrimidine metabolism in the actively dividing cells of a tumour. 

Since the treatment of colorectal cancer generally starts with surgical resection of 

the primary tumour, few post-treatment primary tumours could be obtained and those 

we could obtain were of insufficient quality to allow RNA analysis.  However, analysis of 

RNA from frozen post-treatment recurrences or metastases should be possible and will 

be required to determine whether selection of aberrantly spliced or mutated UMPS is a 

common feature of 5-FU resistant tumours.  Analysis of such a cohort with the assays 

we report should confirm their utility in predicting clinical response to 5-FU.  If aberrant 

splicing in particular proves to be an important mode by which UMPS activity is 

modulated to confer 5-FU resistance then it may be possible to reverse this resistance 
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by specifically targeting the splicing machinery with anti-sense oligonucleotides 

designed to shift the balance of expression to more active isoforms53. 

Based on our observations, the inconsistent correlation between UMPS expression 

and 5-FU response or patient outcomes previously reported might be due to the failure 

to consider transcript structure and mutational status of UMPS.  For example, a shift in 

the relative expression levels of UMPS isoforms A and B might have an effect on overall 

UMPS activity but would be undetectable by previously reported assays that measured 

the 3′ end of UMPS 45, 54.  Similarly, the expression level might remain unchanged but 

UMPS activity might be reduced by the presence of point mutations that affect the 

protein sequence.  Future studies of the role UMPS in 5-FU resistance should consider 

not just the level of UMPS mRNA abundance but also the expression of alternative 

UMPS isoforms as well as the mutational status of the gene.  Increased abundance of 

aberrant isoforms (such as isoform B) or mutated UMPS protein might be useful in 

predicting 5-FU response.  However, future studies will need to develop functional 

assays to assess the degree to which aberrantly spliced or mutated UMPS variants 

such as those we identified are sufficient to confer resistance (and if so, to what 

degree).  Evaluation of larger numbers of fresh frozen clinical samples with known 

exposure to 5-FU will also be required to determine to what degree the complexity of 

UMPS isoform expression pattern or presence of mutations within UMPS may 

contribute to 5-FU resistance in the patient population.  Information obtained from these 

studies will increase our understanding of the mechanisms of drug resistance and may 

be useful in the development of tests to assist in treatment optimization for individual 

patients.  Improved understanding of the mechanisms of 5-FU resistance will also drive 

the development of new treatments that avoid or overcome resistance.  Several 

examples of modified versions of 5-FU or combinations of 5-FU that take advantage of 

knowledge of drug resistance mechanisms have already been described (see 

Appendix A for details).  For example, the drug ‘S1’ combines 5-FU with 5-chloro-2,4-

dihydroxypyridine (CDHP), an inhibitor of DPYD, to reduce catabolism in the liver and 

thereby increase the effective dose that reaches the tumour.  A complementary strategy 

that was capable of restoring or increasing expression of a functional UMPS isoform in 

patients with UMPS mutations or aberrant splicing might improve the efficacy of 5-FU 

treatment in these patients. 
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4.4. Methods 

4.4.1. Cell lines 

The 5-FU sensitive cell lines MIP10155, HCT116 and RKO and 5-FU resistant cell lines 

MIP/5FU27, RKO/5FU, and HCT/5FU were maintained in DMEM media supplemented 

with 1% penicillin-streptomycin, 1% kanamycin (Invitrogen Inc. Burlington, ON., 

Canada) and 10% newborn calf serum at 37°C and 5% CO2
27.  For resistant cell lines, 

media were also supplemented as follows: MIP101 cells resistant to 5-FU (MIP/5FU), 

50µM 5-FU; HCT116 cells resistant to 5-FU (HCT/5FU), 10µM 5-FU; RKO cells 

resistant to 5-FU (RKO/5FU), 25µM 5-FU. 

4.4.2. Clinical samples 

Samples corresponding to colorectal cancer cases were obtained from the Ontario 

Tumour Bank (Ontario Institute for Cancer Research, Ontario, Canada), BC Cancer 

Agency (Vancouver, BC, Canada) and St. Paul’s Hospital (Vancouver, BC, Canada).  

Ethics approval for work with these sample was obtained from the BC Cancer Agency 

Research Ethics Board (see Appendix C for ethics certificates).  For all three sample 

sources, a review of each case was performed by a pathologist and if the sample was 

deemed to be less that 70% tumour content or found to contain significant signs of 

necrosis, the sample was excluded.  All patients received adjuvant or neo-adjuvant 

chemotherapy containing 5-FU.  No other inclusion or exclusion criteria were applied. 

Fresh frozen colorectal tumor samples with matched adjacent normal tissue were 

obtained for 26 patient cases from the Ontario Tumour Bank.  For each case, we 

received ~250 mg of frozen tissue that had been stored at -80°C for 13 to 46 months.  

These samples represented resections of primary tumours.  21 of these patients 

received adjuvant 5-FU and 5 received neo-adjuvant 5-FU (5 cases). 9 ‘responders’ 

were defined as patients with no progression reported (follow-up was 5 to 22 months).  

15 ‘non-responders’ were defined as those patients whose records noted one or more 

of the following criteria: local or distant recurrence; disease progression resulting in 

death; adverse drug response (e.g. neutropenia, neuropathy, etc.).   

44 samples representing liver metastases of colorectal adenocarcinoma were 

obtained from the BC Cancer Agency.  In these cases the patients presented with 

primary colorectal cancer which was resected and followed by adjuvant chemotherapy 
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treatment (including 5-FU).  Each of these patients was also diagnosed with a liver 

metastasis that was also resected.  The time between the resection of the primary 

tumour and metastasis ranged from 0 to 68 months, resulting in a varying degree of 

exposure to 5-FU prior to resection of the liver metastasis.  For 27 out of 44 of these 

cases we were able to confirm the patient’s exposure to 5-FU prior to resection of the 

metastasis.  For each of the 44 liver metastases, we obtained 10 scrolls (of 10 µM 

thickness each) from formalin fixed paraffin embedded (FFPE) blocks that had been 

stored for 33-88 months.    

20 samples representing primary rectal adenocarcinoma tumours were obtained 

from St. Paul’s Hospital.  In these cases, the patients presented with primary rectal 

cancer and were given neo-adjuvant chemotherapy in conjunction with radiation for six 

weeks prior to surgery.  18 of 20 of these patients received 5-FU or Capecitabine (oral 

5-FU) as their neo-adjuvant chemotherapy.  For each of these 20 primary tumours, we 

obtained 10 scrolls (of 10 µM thickness each) from FFPE blocks that had been stored 

for 3-38 months. 

4.4.3. RNA Isolation 

Total RNA was isolated from cells cultured to ~75% confluence using RNeasy columns 

(Qiagen, Mississauga, ON, Canada).  RNA was DNAseI treated using an RNAse free 

DNAseI kit (Invitrogen). RNA was quantified and tested for degradation using an Agilent 

2100 Bioanalyzer and RNA Nano Assay (Agilent, Santa Clara, CA, USA).  PolyA+ RNA 

was purified from total RNA using an oligoTex kit (Qiagen). 

4.4.4. Genomic DNA isolation 

Homogenization of tissues or cell lines was performed by two 30 second bursts with a 

hand held homogenizer (VWR. International. Mississauga, Ontario. Cat. No. 47747).  

Genomic DNA was isolated using a Gentra PureGene kit (Qiagen Inc.).  For cell lines, 

genomic DNA was isolated from cells grown to ~75% confluence.  A reference genomic 

DNA sample was obtained from ClonTech (Mountain View, CA., USA. Cat. #636401).  

For fresh frozen patient samples (52 total), genomic DNA was isolated from ~20 mg of 

frozen tissue.  For formalin fixed paraffin embedded (FFPE) samples (64 total), genomic 

DNA was isolated from two 10µM scrolls.  Yield of genomic DNA was determined by 

use of a Nanodrop ND-8000 spectrophotometer (Nanodrop, Wilmington, DE, USA) and 



 194

quality of genomic DNA was qualitatively assessed by gel electrophoresis using 0.7% 

agarose gels.   

4.4.5. Splicing microarray analysis 

Creation of custom ‘ALEXA’ splicing microarray designs, sample preparation, 

microarray hybridization and analysis of microarray data were performed as previously 

described25.  Additional details are provided online at www.AlexaPlatform.org.  

4.4.6. Whole transcriptome shotgun sequencing and analysis 

Library construction, Illumina sequencing, read mapping and analysis were as 

previously described26. 

4.4.7. RT-PCR and semi-quantitative RT-PCR validation of UMPS isoform 

expression 

Single stranded cDNA was generated from 500 ng of polyA+ RNA isolated from each 

cell line using SuperScript III reverse transcriptase and random hexamer primer 

(Invitrogen).  PCR primers were designed to flank exon 2 (see Appendix B for primer 

sequences).  PCR was performed with Invitrogen’s Platinum Pfx enzyme.  Semi-

quantitative detection of PCR products representing alternative UMPS isoforms was 

performed using a 2100 ‘lab-on-a-chip’ Bioanalyzer and DNA 7500 Assay (Agilent.  Cat. 

#5067-1506). 

4.4.8. Quantitative real time RT-PCR 

Single stranded cDNA was generated from total RNA isolated from cell lines or patient 

samples using SuperScript III reverse transcriptase and random hexamer primer 

(Invitrogen).  For cell lines and fresh frozen patient samples, 1µg of total RNA was used 

as input for cDNA synthesis with 50 ng of random hexamers.  For formalin fixed paraffin 

embedded patient samples, 5 µg of total RNA and 250 ng of random hexamers were 

used.  All other conditions for cDNA synthesis were according to the manufacturer’s 

recommendations for SuperScript III.  Quantitative PCR was performed on an Applied 

Biosystems 7900HT Fast Real-Time PCR System (Applied Biosystems, Foster City, 

CA, USA) using 20 µL reaction volumes in 384-well plate format.  Each reaction 

consisted of 50 ng of template cDNA, 0.4 µM final primer concentration and Power Sybr 

Green PCR Master Mix (Applied Biosystems).  A relative standard curve was created by 
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serial dilution of a pool of cDNAs from 25 patient cases.  The standard curve was 

applied to all primer sets.  Primers were selected to amplify UMPS isoform A, isoform B, 

both isoforms and a housekeeping gene (TBP).  Sensitivity and specificity of the UMPS 

A and B specific primers was verified by use of serial dilution of plasmid DNA from 

previously sequenced clones of each isoform.  Analysis was performed using the 

relative standard curve method and the comparative Ct method (see Applied 

Biosystems documentation).   

4.4.9. Cloning & sequence validation of UMPS mRNA isoforms 

Single stranded cDNA was generated from polyA+ RNA isolated from each cell line 

using SuperScript III reverse transcriptase and oligo(dT)20 primer (Invitrogen).  PCR 

primers were designed to cover the full UMPS open reading frame and most of the UTR 

(using the UMPS reference sequence, NM_000373) (see Appendix B for primer 

sequences).  PCR was performed with Invitrogen’s Platinum Taq High Fidelity enzyme.  

PCR products were separated by gel electrophoresis (1.5% agarose gel, 60V for 12 

hours at 4°C).  Distinct bands were gel purified using a gel purification kit (Qiagen).  

Clones were generated by TOPO TA cloning into the vector pCR4-TOPO (Invitrogen).  

293 clones were screened for correct insert size and forward orientation relative to the 

M13F site of the cloning vector by restriction enzyme digestion with EcoRI and 

NotI/XhoI (double digest) enzymes respectively.  The EcoRI and NotI restriction enzyme 

sites do not occur within the UMPS reference sequence NM_000373.  The XhoI site 

occurs once near the centre of exon 3 of the UMPS reference sequence NM_000373.  

The inserts of 96 clone fragments were fully sequenced by Sanger sequencing with an 

ABI 3730 device using M13F and M13R primers as well as custom primers.  Clone 

sequences were assembled by Phred/Phrap and manually checked for quality using 

Consed as previously described56.  Briefly, vector sequence was masked except for a 

short linker sequence at each end of each clone (5’-GAATTCGCCCTT-3’).  Each clone 

consensus sequence was derived from an average of 8.4 reads, had an average overall 

Phred score57, 58 of 89.0 and average minimum Phred score of 55.9.  

4.4.10. Splice site analysis 

The genomic sequence of UMPS (exons + introns + 1 kb flank at each end) was 

extracted from the human genome reference sequence using the UCSC genome 
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browser28 (UCSC version hg18).  The following splice site prediction algorithms were 

supplied this genomic sequence as input and using the default options for each: 

ASSP33, GeneSplicer34, NetGene235, and NNSPLICE36.  All UMPS clone sequences 

were aligned to the human genome by BLAT and the exon boundary coordinates from 

these alignments were compared to the position of splice sites predicted by the four 

splice site prediction algorithms.  In cases where no predicted splice site was found for 

an exon boundary, the boundary was examined manually for the two most common 

non-canonical splice sites ‘GC … AG’ and ‘AT … AC’59. 

4.4.11. Western analysis 

The following UMPS antibodies were purchased from Abnova (Walnut, CA, USA): two 

different clones of a mouse monoclonal antibody raised against a partial recombinant 

UMPS peptide (carboxy terminus; amino acids 381-480 of 480) (Cat. No. H00007372-

M05 & H00007372-M06) and a purified mouse polyclonal antibody raised against a full-

length UMPS protein (Cat. No. H00007372-B01P).  Protein lysates were obtained by 

repeated freezing/thawing in CHAPS lysis buffer (50mM Pipes/HCl, 2mM EDTA, 0.1% 

CHAPS, 20 ug/mL leupeptin, 10 ug/mL pepstatin A, 10 ug/mL aprotinin, 5mM DTT, 

1mM PMSF).  Protein concentrations were determined by BioRad Protein Assay 

reagent (aka BradFord reagent) using a standard curve created with Bovine Serum 

Albumin (BSA).  Each lane was loaded with 75 ug of total protein (determined by 

Bradford assay).  Ladders used were: SeeBlue Plus2 Pre-Stained Standard (Invitrogen; 

Cat. No. LC5925), Novex Sharp Protein Standard (Invitrogen; Cat. No. LC5800) or 

PageRuler Pre-Stained Protein Ladder (Fermentas; Cat. No. SM0671).  Samples were 

run on a 4-12% Bis Tris Gradient Gel (Invitrogen) for 90 minutes at 150 volts.  Proteins 

on the gel were transferred overnight to a Nitrocellulose membrane at 100 mA and the 

membrane was blocked with Odyssey blocking buffer (LI-COR Biosciences, Lincoln, 

NE, USA) for 2 hours followed by incubation with the antibody at 1:200 dilution (2.5 

ug/mL) in Odyssey blocking buffer for 2 hours.  The membrane was then washed 3 

times for 5 minutes with TBS-Tween (0.1% v/v) and was incubated with secondary 

antibody (IR700 anti-mouse secondary) for 1 hour.  Finally, the membrane was then 

washed 3 times for 5 minutes with TBS-Tween (0.1% v/v) and scanned with an 

Odyssey scanner (LI-COR Biosciences). 
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4.4.12. PCR and sequencing the UMPS locus 

The UMPS locus was sequenced by generating 44 amplicons covering all 6 exons and 

at least 50 bp of flanking intron sequence (Figure 4.10).  These amplicons were 

generated by PCR using genomic DNA template from six cell lines and 118 patient 

samples.  Each primer contained either an M13F or M13R linker that was used for direct 

sequencing of PCR products (see Appendix B for primer sequences).  PCR was 

performed with Platinum Taq High Fidelity enzyme (Invitrogen) and each amplicon was 

bead purified using Agencourt Ampure Beads from Beckman Coulter (Beverly, MA., 

USA) and Sanger sequenced with an ABI 3730 device using M13F and M13R primers.  

Reaction conditions were optimized for each primer pair.  The success rate for these 

PCRs (defined as a single visible band observed by gel electrophoresis) was 86% to 

100% for the 44 amplicons (mean of 95%).  Sequencing of the target amplicons was 

carried out by the BC Cancer Agency Genome Sciences Centre production sequencing 

group using previously published reaction chemistries60.  The mean number of 

sequence bases with a Phred quality57, 58 of 20 or higher ranged from 55% to 89% of the 

expected amplicon length across the 44 amplicons (overall mean was 79%).  Sequence 

analysis for identification of mutations was conducted with Mutation Surveyor 

(SoftGenetics). 
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Figure 4.1. Simplified 5-FU metabolism pathway 
Enzymes involved in the metabolism of 5-FU are indicated by blue shading*.  The two 
metabolic steps encoded by UMPS are shown separately.  Fluorine modified 
metabolites are indicated by green shading and outcomes are indicated by orange 
shading. 
 

 
 
 
*Relationships used to create this pathway were obtained from the Pharmacogenomics 
Knowledge Base14.  http://www.pharmgkb.org/search/pathway/5fu/5fu.jsp 
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Figure 4.2. Differential expression of alternative UMPS isoforms in 5-FU sensitive 
and resistant cells 
(A) The uridine monophosphate synthetase (UMPS) locus (3q13).  Observed alternative 
splicing of exon 2 is depicted by dotted lines.  (B) The positions of ALEXA splicing 
microarray probesets (each consisting of 2-4 oligonucleotide probes) specific to UMPS 
isoforms A and B are depicted.  Probes are labeled according to the exons or junctions 
they profile (e.g., E1-E3 detects the connection of exon 1 to exon 3). Black arrows 
indicate the start/stop position of the predicted open reading frame of each isoform and 
the position of protein domains is indicated beneath each isoform.  (C)  Box plots depict 
expression values for oligonucleotide probes from triplicate samples of MIP101 and 
MIP/5FU profiled on the ALEXA splicing microarray platform (Methods).  The median 
log2 expression value of all exons (blue dotted line) and all negative controls (red dotted 
line) in the array data are also shown.  Isoform A was ~5-fold more abundant in 5-FU 
sensitive cells than in resistant cells.  Isoform B was ~6-fold more abundant in 5-FU 
resistant cells than in sensitive cells.  The ratio of isoform A to B was 25.6 in MIP101 
cells and 0.85 in MIP/5FU cells. 
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Figure 4.3. Whole transcriptome shotgun sequence data corresponding to the 
UMPS locus 
Short read sequencing of polyA+ RNA isolated from MIP101 and MIP/5FU cells was 
performed with an Illumina GA2 DNA sequencer and the resulting reads (~334 million 
and ~191 million 42-mer reads respectively) were mapped to known and predicted 
EnsEMBL transcripts (Methods).  Sequence read coverage for the UMPS locus is 
shown.  The first panel shows the exon/intron structure of UMPS.  The second and third 
panel show the base-level coverage and exon junction read counts for Illumina reads 
mapped to UMPS for MIP101 and MIP/5FU respectively.  Black arrows indicate the 
start/stop position of the predicted open reading frame of each isoform.  A total of 
16,514 MIP101 reads and 4,662 MIP/5FU reads mapped to UMPS (Methods).  For 
MIP101, 98.2% of known exonic bases were covered by 10 or more reads (average 
coverage of 293X) and for MIP/5FU, 94.3% of known exonic bases were covered by 10 
or more reads (average coverage of 82X).  In both MIP101 and MIP/5FU a mixture of 
exon-exon junctions were observed indicating the presence of both isoform A and B.  In 
MIP101 the predicted ratio of A/B was 51.4 after normalizing for the number of junctions 
indicating each isoform and differences in library size.  In MIP/5FU the predicted ratio of 
A/B was 0.8.  In the figure, coverage values and exon junction read counts have been 
normalized to the size of the smaller library. 
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Figure 4.4. RT-PCR detection of UMPS isoforms in six 5-FU sensitive and 
resistant colorectal cancer cell lines 
(A) Test of RT-PCR primers using mixtures of plasmid DNA clones representing UMPS 
isoforms A & B.  These plasmids were mixed in the indicated molar ratios and used as 
templates for PCR reactions.  The expected product sizes for this primer pair are 1,107 
bp for isoform A and 953 bp for isoform B (missing exon 2).  (B) The same PCR primers 
were used to amplify UMPS isoforms from ss-cDNA generated from polyA+ RNA 
extracted from 5-FU sensitive and resistant colorectal cancer cell lines.  Both MIP101 
and HCT116 showed an increase in the presence of UMPS isoform B in the 5-FU 
resistant derivative compared to the sensitive line. 
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Figure 4.5. Full-ORF cloning of alternative UMPS isoforms 
Gel electrophoresis of UMPS RT-PCR products generated from six cell lines was 
performed using a 1.5% agarose gel (Methods).  21 distinct PCR bands were 
generated by RT-PCR using polyA+ RNA from six 5-FU sensitive and resistant 
colorectal cancer cell lines.  Each band was gel purified and used as input for TOPO-TA 
cloning reactions (Methods).  Bands isolated by gel purification are indicated with 
colored triangles.  Green triangles indicate bands at the expected size for UMPS 
isoform A.  Blue triangles indicate additional bands that were successfully cloned and 
yielded at least one sequenced clone.  Orange triangles indicate bands that did not yield 
sufficient DNA for cloning.  The –ve control lane shows the result of RT-PCR with H2O 
instead of cDNA template. 
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Figure 4.6. Sequencing of 96 clones isolated from distinct PCR bands 
Ten unique transcript structures (A-J) observed by sequencing of 96 UMPS cDNA  
clones are depicted (see Table 3 for further details).  Rectangles indicate the 
boundaries of exons.  Introns are indicated as black lines.  The predicted coding region 
of each putative UMPS isoform is indicated in green.  Unless otherwise indicated, all 
splice sites were canonical donor and acceptor sites (GT … AG).  The position of two 
known enzymatic domains of UMPS (OPRTase and ODCase) is depicted at the bottom 
of the panel in purple and orange respectively.  ‘Isoform A’ and ‘Isoform B’ in this figure 
correspond to isoforms A and B described throughout the text. 
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Figure 4.7. Western detection of UMPS protein in six 5-FU sensitive or resistant 
colorectal cancer cell lines 
(A) Western analysis using an UMPS monoclonal antibody raised against partial UMPS.  
The expected size of full length UMPS (isoform A) is ~52 kDa and ~33 kDA for isoform 
B.  (B) Quantitative western analysis of the MIP101 and MIP/5FU 52 KDa bands.  
Intensity values are reported beneath the UMPS bands.  These were determined as 
previously reported61 using the Odyssey software (Methods).  Intensity values were 
normalized to Actin and multiplied by 100.  (C)  The position of amino acids comprising 
the epitope used to raise the antibody are indicated beneath a diagram of the exons and 
introns of UMPS.  The antibody (AbNova Cat. No. H00007372-M06) was raised against 
a partial recombinant protein of UMPS consisting of the carboxy terminal end of the 
protein (amino acids 381-480 of 480).  These amino acids correspond to the end of 
exon 4 and the complete coding sequence of exons 5 and 6.  
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Figure 4.8. RT-PCR detection of UMPS isoforms A and B in a cohort of fresh 
frozen colorectal cancer tumours 
The expected product sizes for this PCR reaction are 720 bp for isoform A and 566 bp 
for isoform B (missing exon 2).  The PCR assay was applied to ss-cDNA generated 
from total RNA extracted from primary colorectal cancer tumour/normal sample pairs 
obtained from the Ontario Tumour Bank (Methods).  Total RNAs from the same 
sensitive (S) and resistant (R) cell lines depicted in Figure 4.4 were included in the 
assay as well as plasmid DNA corresponding to clones of UMPS isoforms A and B.  In 
all patient samples, UMPS isoform A appeared to be the dominant form and isoform B a 
minor variant.  It should be noted that most of these samples represent surgical 
resections prior to adjuvant treatment with 5-FU (i.e. they are treatment naïve).  The five 
post-treatment cases are indicated with a magenta star. 
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Figure 4.9. Real-time quantitative RT-PCR of UMPS isoform A and B expression in 
a cohort of colorectal cancer tumours  
The expression of UMPS isoform A and B was determined by quantitative real-time 
PCR for treatment naïve primary colorectal tumours and matched adjacent normal 
tissue in a panel of 26 colorectal cancer cases.  The expression level (delta Ct) of each 
isoform was calculated by normalizing the cycle threshold (Ct) reported by quantitative 
real time PCR to the Ct of an endogenous control gene (TBP).  The inverse of these 
values (1/delta Ct) were plotted as box plots for both tumour and normal tissue.  The 
statistical significance of the difference in UMPS isoform expression between the 
tumour and normal sample sets was tested using a Student’s t-test (two-sided, no 
assumption of equal variances, α = 0.05). 
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Figure 4.10. Overview of SNPs and mutations found by genomic sequencing 
In the following figure, the position of amplicons used for sequencing reactions as well 
as putative novel mutations are depicted in relation to the coordinates of UMPS exons 
(black boxes) and introns (connecting lines).  The position of each amplicon is depicted 
as a grey rectangle (see Appendix B for primer sequences).  Note that the coordinates 
displayed are relative to a fragment of UMPS genomic DNA with 1 kb of flank added 
(see Table 4.4 for corresponding chromosome coordinates).  Intronic mutations are 
indicated in magenta, splice site mutations in red and protein coding mutations in blue.  
Additional details on each putative mutation are provided in Table 4.4.  (A) 22 PCR 
amplicons (labeled A1 to A22) were generated from genomic DNA isolated from 6 cell 
lines (MIP101, MIP/5FU, RKO, RKO/5FU, HCT116, HCT/5FU) and 1 reference sample 
(Methods).  Sequencing of the genomic region of UMPS in these cell lines revealed a 
heterozygous splice site mutation (position 5,727 G/G→G/T; indicated in red) at the 
splice acceptor site of exon 2 which was present in MIP/5FU (5-FU resistant) but not in 
MIP101 (sensitive) cells.  This splice site mutation, acquired in the resistant cells is 
predicted to prevent pre-mRNA splicing of exon 2 and favor production of isoform B 
from the mutated allele.  4 additional mutations were observed (discussed in the text).  
(B) 22 PCR amplicons (labeled A23 to A44) were generated from genomic DNA 
isolated from 116 colorectal cancer patient samples (91 cases) (Methods).  12 putative 
mutations were identified, of which, 5 were intronic, 1 was close the same acceptor 
splice site mutation noted in panel A, and 6 were mutations within the open reading 
frame (discussed in the text). 
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Table 4.1. Quantification of UMPS isoform A and B and the A/B ratio determined 
using four gene expression platforms 
The expression of UMPS isoforms was determined by four platforms: custom 
NimbleGen splicing microarrays (‘ALEXA’), whole transcriptome shotgun sequencing on 
an Illumina GA2 sequencer (‘WTSS’), semi-quantitative RT-PCR using an Agilent 2100 
DNA 7500 assay (‘Agilent 2100’) and quantitative real-time RT-PCR (‘AB 7900HT’).  
Details of each of these platforms are provided in the Methods section.  The following 
log2 expression and isoform A/B ratios were generated by each of these platforms. 
 

Cell Line Platform 
Isoform A 

(log2) 
Isoform B 

(log2) 
Isoform A/B ratio 

MIP101 (sensitive) ALEXA 13.53 ± 0.23 8.85 ± 0.67 25.62 ± 0.56 
 WTSS 6.80 ± n/a 1.11 ± n/a 51.38 ± n/a 
 Agilent 2100 4.65 ± 0.30 -0.06 ± 0.24 27.36 ± 9.94 
 AB 7900HT 5.99 ± 3.37 1.76 ± -0.21 19.22 ± 2.09 
MIP/5FU ALEXA 11.15 ± 0.39 11.38 ± 0.24 0.85 ± 0.13 
 WTSS 4.43 ± n/a 4.81 ± n/a 0.77 ± n/a 
 Agilent 2100 2.42 ±  0.19 4.49 ± 0.17 0.24 ± 0.01 
 AB 7900HT 3.98 ± 0.73 4.93 ± 1.30 0.47 ± 0.18 
RKO (sensitive) Agilent 2100 5.16 ± 0.24 0 35.97 ± 5.75 
 AB 7900HT 5.83 ± 2.44 1.40 ± -1.74 21.49 ± 1.34 
RKO/5FU 
(resistant) 

Agilent 2100 5.35 ± 0.24 0.42 ± 0.37 31.28 ± 8.99 

 AB 7900HT 5.63 ± 2.88 1.87 ± -1.26 13.50 ± 1.18 
HCT116 (sensitive) Agilent 2100 5.26 ± 0.25 0.27 ± 0.36 31.91± 2.47 
 AB 7900HT 5.15 ± 1.55 1.07 ± -1.71 17.25 ± 3.08 
HCT/5FU 
(resistant) 

Agilent 2100 4.96 ± 0.04 2.92 ± 0.15 4.11 ± 0.35 

 AB 7900HT 4.99 ± 1.95 3.25 ± -0.49 3.34 ± 0.41 
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Table 4.2. Differential expression values for UMPS isoform A and B 
Log2 differential expression values were derived from each of the gene expression 
platforms described in the text.  Statistical significance of differential expression 
between sensitive and resistant cells was tested by a Student’s t-test (two-sided, no 
assumption of equal variances, α = 0.05).  ‘+/-‘ values indicate the standard deviation 
(where replicates were available).  The ‘ALEXA’ platform refers to a custom microarray 
design synthesized by NimbleGen, ‘WTSS’ refers to whole transcriptome shotgun 
sequencing data generated using an Illumina GAII sequencing device, Agilent 2100 
refers to analysis of RT-PCR products by quantitative capillary electrophoresis with an 
Agilent 2100 ‘lab-on-a-chip’ assay, and ‘AB 7900 HT’ refers to a quantitative real-time 
RT-PCR assay (see Methods for further details on each platform). 
 

Cell Line 
Comparison 

Platform 
Isoform A 

fold change 
p-value 

Isoform B 
fold change 

p-value 

MIP101 (sensitive) 
versus MIP/5FU 

(resistant) 
ALEXA -5.21 ± 1.27 2.20 × 10-16 5.77 ± 0.02 1.07 × 10-4 

 WTSS -5.17 ± n/a n/a 12.95 ± n/a n/a 

 
Agilent 
2100 

-4.72 ± 1.40 2.05 × 10-2 23.45 ± 1.05 4.37 × 10-3 

 
AB 

7900HT 
-3.92 ± 1.10 4.63 × 10-7 9.20 ± 1.20 3.20 × 10-11 

RKO (sensitive) 
versus RKO/5FU 

(resistant) 

Agilent 
2100 

1.14 ± 1.23 0.39 1.34 ± 1.29 0.19 

 
AB 

7900HT 
-1.15 ± 1.13 3.11 × 10-2 1.38 ± 1.11 3.18 × 10-5 

HCT116 (sensitive) 
versus HCT/5FU 

(resistant) 

Agilent 
2100 

-1.24 ± 1.20 0.19 6.27 ± 1.40 1.93 × 10-3 

 
AB 

7900HT 
-1.13 ± 1.19 2.97 × 10-2 4.56 ± 1.16 9.34 × 10-6 
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Table 4.3. Summary of alternative isoforms observed as clones 
Distinct UMPS isoforms were named isoform ‘A’ to ‘J’.  A fully sequenced clone 
representing each isoform was submitted to GenBank (identifiers provided in the first 
column).  The differences present in isoforms B-J relative to the UMPS Refseq record 
(NM_000373) are indicated as well as the number of times each was observed, whether 
it was supported by existing EST/mRNA sequence data and the effect on the ORF 
compared to the Refseq ORF.  See Figure 4.6 for a graphical depiction of each isoform. 
 

Isoform 
(GenBank ID) 

[ WTSS 
support? ] 

Structural 
differences 
relative to 

NM_000373 

Number of 
times 

observed 

mRNA/EST 
support 

Effect on ORF Comments 

Isoform A 
(EU921886) 

 
[WTSS 

supported] 

6 exons. 2136 
bp. Identical to 
NM_000373 
within the 
boundaries of our 
primers. 

37 total 
6 MIP101,  
5 MIP/5FU,  
7 RKO,  
7 RKO/5FU,  
6 HCT116,  
6 HCT/5FU 

Multiple 
mRNAs and 
ESTs for 
human and 
several other 
species 

Contains an 
OPRTase 
domain of 123 
aa, an ODCase 
domain of 214 aa 
with 11 known 
active sites, and 
a dimer interface 
with 18 
conserved 
residues.   

The 
‘canonical’ 
isoform. 

Isoform B 
(EU921887) 

 
[WTSS 

supported] 

5 exons. 1982 
bp. Skip of exon 
2 (154 bases). 

30 total 
6 MIP101,  
6 MIP/5FU,  
6 RKO,  
6 RKO/5FU,  
6 HCT/5FU 

At least 8 
human 
mRNAs and 
ESTs as well 
as  mouse 
mRNAs and 
ESTs. 

62.9% identity to 
UMPS A.  11 of 
11 ODCase 
active sites and 
18 of 18 dimer 
sites are 
conserved. 

Second most 
highly 
expressed 
and 
sequence 
supported 
alternative 
isoform 

Isoform C 
(EU921888) 

 
[WTSS 

supported] 

6 exons. 1847 
bp. Skip of exon2 
as well as a 135 
base deletion 
within exon 6. 

9 total  
6 MIP101, 
3 HCT116 

None 62.9% identity to 
UMPS A.  11 of 
11 ODCase 
active sites and 
18 of 18 dimer 
sites are 
conserved. 

 

Isoform D 
(EU921889) 

 
[No WTSS 
support] 

6 exons. 2081 
bp. Use of an 
alternative exon 
2b (of 99 bases) 
instead of the 
exon 2 (of 154 
bases) used by 
other isoforms. 

1 total 
1 MIP/5FU 

None 62.9% identity to 
UMPS A.  11 of 
11 ODCase 
active sites and 
18 of 18 dimer 
sites are 
conserved. 

Alternative 
exon 2b is 
not well 
conserved 
(only to 
Rhesus) 

Isoform E 
(EU921890) 

 
[No WTSS 
support] 

6 exons. 2340 
bp. Exon 3 uses 
an alternate 
splice donor site 
downstream of 
that normally 
used, resulting in 
an exon 3 that is 
876 instead of 
672 bases. 

3 total 
2 RKO 
1 RKO/5FU 

One human 
mRNA and 
one human 
EST 

Predicted target 
of Nonsense 
mediated decay. 
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Isoform 
(GenBank ID) 

[ WTSS 
support? ] 

Structural 
differences 
relative to 

NM_000373 

Number of 
times 

observed 

mRNA/EST 
support 

Effect on ORF Comments 

Isoform F 
(EU921891) 

 
[WTSS 

supported] 

7 exons. 2235 
bp. Contains both 
exon 2 (of 154 
bases) and an 
alternative exon 
2b (of 99 bases). 

4 total 
3 RKO 
1 RKO/5FU 

Four human 
ESTs 

80.8% identity to 
UMPS A.  11 of 
11 ODCase 
active sites and 
18 of 18 dimer 
sites are 
conserved. 

Alternative 
exon 2b is 
not well 
conserved 
(only to 
Rhesus) 

Isoform G 
(EU921892) 

 
[WTSS 

supported] 

6 exons, 1818 
bp. Exon 3 uses 
an alternate 
splice donor site 
resulting in an 
exon 3 that is 380 
bases instead of 
672.  Exon 4 also 
uses an alternate 
acceptor site 
changing its size 
from 176 bases 
to 150. 

3 total 
3 RKO 

None.  
Limited EST 
coverage for 
this region. 

78.5% identity to 
UMPS A.  5 of 11 
ODCase active 
sites and 7 of 18 
dimer sites are 
conserved. 

 

Isoform H 
(EU921893) 

 
[No WTSS 
support] 

6 exons. 1789 
bp. Exon 3 uses 
an alternate 
splice acceptor 
site downstream 
of that normally 
used, resulting in 
an exon 3 that is 
325 bases 
instead of 672 
bases. 

3 total 
3 RKO 

None.  
Limited EST 
coverage for 
this region. 

54.8% identity to 
UMPS A.  11 of 
11 ODCase 
active sites and 
18 of 18 dimer 
sites are 
conserved. 

 

Isoform I 
(EU921894) 

 
[WTSS 

supported] 

7 exons. 1624 
bp. Contains a 
512 base deletion 
within the 
boundaries of 
exon 6. 

3 total  
3 RKO 

None. 100.0% identity 
to UMPS A.   

 

Isoform J 
(EU921895) 

 
[WTSS 

supported] 

3 exons. 1691 
bp. Skipping of 
exon 2 (154 
bases), exon 4 
(176) and exon 5 
(115). 

2 total 
2 HCT/5FU 

None. 43.1% identity to 
UMPS A. 6 of 11 
ODCase active 
sites and 12 of 18 
dimer sites are 
conserved. 
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Table 4.4.  Summary of putative mutations 
18 putative mutations identified by sequencing the genomic DNA of colorectal cancer 
cell lines and patient samples are listed below.  All putative mutations identified were 
single base substitutions.  The positions relative to the UMPS locus (including 1,000 bp 
of flank) are listed in the first column.  Coordinates relative to chromosome 3 are 
provided in the second column as well as the location with respect to UMPS exon and 
intron boundaries.  The third column describes the mutation (G→G/A indicates a 
heterozygous mutation, G→A indicates a homozygous mutation).  The BLOSUM62 
substitution matrix score40, 41 for each amino acid change is provided in square 
brackets.  The fourth column describes the mutation type.  The final column lists the 
sample(s) that each mutation was observed in, followed by the 5-FU status.  ‘+’ 
indicates that the sample was exposed to 5-FU prior to isolation.  ‘-‘ indicates that the 
sample was treatment naïve.  Sample names: ‘T’ for tumour tissue; ‘N’ for matched 
normal; ‘M’ for metastasis.  Sample names end with the patient number. 
  

Pos Chromosome coordinates Mutation 
Mutation 

Type 
Samples  

(5-FU status) 

1,280 
chr3:125,932,182 

(Intron 1) 
G→G/A Intronic T85 (+) 

2,094 
chr3:125,932,996 

(Intron 1) 
T→T/C Intronic T80 (+) 

2,194 
chr3:125,933,096 

(Intron 1) 
C→C/T 

Intronic 
(exon 2b) 

M67 (+) 

5,445 
chr3:125,936,347 

(Intron 1) 
A→A/C Intronic T89 (+)  

5,485 
chr3:125,936,387 

(Intron 1) 
C→C/T Intronic 

RKO (-),  
RKO/5FU (+) 

5,504 
chr3:125,936,406 

(Intron 1) 
A→A/G Intronic 

RKO (-),  
RKO/5FU (+) 

5,533 
chr3:125,936,435 

(Intron 1) 
G→A Intronic M43 (+) 

5,688 
chr3:125,936,590 

(Intron 1) 
G→A Intronic M43 (+) 

5,725 
chr3:125,936,627 

(splice acceptor site of exon 2) 
C→C/T 

Splice site 
(-3 position) 

T14 (-) 

5,727 
chr3:125,936,629 

(splice acceptor site of exon 2) 
G→G/T 

Splice site 
(-1 position) 

MIP/5FU (+) 

5,731 
chr3:125,936,633 

(Exon 2) 
G→G/A 

(A54T) [0] 
Missense T14 (-) 

5,742 
chr3:125,936,644 

(Exon 2) 
A→C/T 

(L57F) [0] 
Missense M57 (+) 

5,809 
chr3:125,936,711 

(Exon 2) 
C→C/T 

(P78S) [-1] 
Missense RKO/5FU (+) 

8,211 
chr3:125,939,113  

(Exon 3) 
C→C/T 

(R107C) [-3] 
Missense MIP/5FU (+) 

8,747 
chr3:125,939,649 

(Exon 3) 
T→T/A 

(D285Q) [0] 
Missense T88 (+) 

10,739 
chr3:125,941,641 

(Exon 4) 
C→C/G 

(Q353E) [2] 
Missense T84 (+) 

14,635 
chr3:125,945,537 

(Exon 6) 
A→A/G 

(I453M) [1] 
Missense N12 (-), T12 (-) 

14,704 
chr3:125,945,606 

(Exon 6) 
T→T/C 

(S476S) [4] 
Silent M66 (+) 
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5. Conclusions 

5.1. Summary  

Since the completion of the first reference human genome sequences, the study of the 

transcriptome, particularly the identification, annotation and quantification of transcripts 

has remained an active area of research.  Efforts to profile the expression of genes 

across tissues and developmental stages, identify the regulatory elements which control 

gene expression and characterize the genomic variations between individuals that 

influence these patterns have been widely reported.  Identifying the transcripts 

expressed in a tissue and measuring differences in expression level between samples 

can provide valuable insight on the function of genes and may lead to the identification 

of disease markers and therapeutic targets.  The phenomenon of alternative expression 

described in this thesis has profound implications for these efforts because it can result 

in the generation of multiple distinct transcripts from each gene locus.  A major thrust of 

this thesis was to investigate the phenomenon of alternative expression, assess its role 

in generating multiple distinct transcripts from each gene locus and develop methods to 

characterize these transcripts.  In Chapter 1, I provided a review of past and present 

methods used to study the expression of genes with particular emphasis on alternative 

expression and its implications for the study of the human diseases such as cancer.  

Chapters 2 and 3 sought to elucidate the complexity of the transcriptome by the 

development of novel methods for the identification and quantification of mRNA 

isoforms.  Chapters 2 and 3 also described the application of these methods to a cell 

line model of chemotherapy resistance in colorectal cancer and Chapter 4 described 

the characterization of a single candidate alternative expression event which emerged 

from these analyses.   

In Chapter 2, I described a novel method of microarray design and analysis to allow 

microarray detection and quantification of both known and novel isoforms.  The method 

proved capable of detecting the expression of known splicing events and predicting the 

expression of novel isoforms differentially expressed between 5-FU sensitive and 

resistant colorectal cancer cells.  The sensitivity and specificity of the approach were 

found to be an improvement over Affymetrix exon arrays, the main commercially 

available microarray platform for alternative expression analysis.  In addition, the 

method was able to identify the connectivity of adjacent exons, a capability not available 
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in exon tiling microarrays.  Although our experiments with the method were largely 

successful, it remained insensitive to certain types of potentially important alternative 

expression events such as those involving small exons.  Furthermore, the number of 

alternative expression events that could be simultaneously measured was limited by the 

number of oligonucleotide features that could be synthesized on a single microarray.  

Each experiment was also limited by the quality and completeness of transcriptome 

annotations available at the time each microarray was designed.  In Chapter 3, I sought 

to address these limitations by developing a method that relied on recent technological 

advances in massively parallel sequencing.  During the development of this method, 

several reports were published describing the utility of whole transcriptome shotgun 

sequencing (WTSS) for profiling the transcriptome.  The reports of Wang et al [1] and 

Pan et al [2] in particular described the preliminary application of WTSS to the study of 

alternative mRNA isoforms.  Based on these reports and the findings presented in 

Chapter 3, it seems that this technology provides a snapshot of the transcriptome that 

is unprecedented in its resolution and comprehensiveness.  In particular it seems well 

suited to profiling alternative isoforms and offers a number of advantages over 

microarray approaches.  Finally in Chapter 4, I described a series of experiments aimed 

at characterization of an alternative expression event identified in 5-FU resistant cells by 

both the microarray and sequencing approaches described in Chapters 2 and 3.  A few 

studies have used genomics approaches to study 5-FU resistance in colorectal cancer3, 

4 but these studies lacked the ability to measure specific mRNA isoforms or mutation 

burden. 

In the remainder of this chapter I will discuss the strengths, limitations, and 

significance of the research reported in Chapters 2-4 and suggest areas for future 

research.   

5.2. Strengths and limitations 

The comparative advantages and disadvantages of microarray and sequencing 

approaches for alternative expression analysis were discussed in some detail in 

Chapters 2 and 3.  In general, the primary advantage of these methods compared to  

previously used methods is that they are more comprehensive.  They profile more 

completely the transcriptionally active regions of the genome and they have the ability to 

quantify isoforms with low expression or that represent a minor form in a mixture of two 
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or more isoforms.  Some of the limitations and caveats of these methods are 

enumerated below. (1) The increasing amount and complexity of data produced by 

these methods require increased computational resources.  Thus far, informatics and 

algorithmic developments have shown a remarkable ability to adapt to the changing 

data landscape.  (2) Complete exon connectivity for each transcript remains hidden 

because of the focused nature of the measurements (i.e. short oligonucleotide probes 

or short sequence reads).  The complete structure of an isoform can sometimes be 

inferred but secondary validations such as RT-PCR, Northern analysis, and cloning and 

sequencing are required to determine if the inference is correct.  This limitation will be 

difficult to address with microarrays but with sequencing approaches, increased read 

lengths and use of read-pairing information may be able to at least partially overcome 

this limitation.  (3) These methods still rely to some degree on existing gene and 

transcript annotations.  New approaches that utilize de novo transcriptome assembly 

may largely eliminate this limitation in the near future5, 6.  (4) Gene families that consist 

of groups of genes with high levels of sequence similarity will remain problematic for 

both microarray and sequence based approaches although longer reads and read-

pairing in the sequencing platforms will help to address this challenge.  (5) As with any 

use of transcriptome data, inferences regarding gene function based on observations at 

the transcript level may not be mirrored at the protein level.  Since many genes function 

as proteins, this is a major limitation.  Proteomic validation of findings made at the 

transcript level is therefore of paramount importance.  Furthermore, many functionally 

significant changes related to disease may occur post-translationally (phosphorylation, 

protein folding, etc.) and while some of these may be predicted computationally, many 

of these events may be missed by transcriptome analysis.  (6) The annotation of 

transcript functions has not kept up with the rate of transcript discovery and this may 

limit interpretation of the data.  Even so, large scale transcriptome profiling experiments 

often can contribute to our knowledge of function.  (7) The cost of performing splicing 

microarray and massively parallel RNA sequencing experiments is not yet low enough 

to allow use of these technologies to realize the goal of a personalized medicine 

strategy involving transcriptome profiling but this day is coming and recent experiments 

have shown the proof-of-principle (Jones et al, unpublished).   

A major limitation of the research as an attempt to identify candidate genes involved 

in 5-FU resistance in colorectal cancer is its reliance on a cell line model which in many 
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ways is not an ideal representation of drug resistance as it occurs in a patient.  For 

example, while colorectal cancer is a solid tumour, colorectal cancer cell lines are grown 

in a culture as a mono-layer.  It is difficult to image how mechanisms relating to 

angiogenesis or the tumour micro-environment could be effectively studied in this 

model.  Similarly, cell line models do not account for the role of the liver in mediating 

drug response.  The liver is the primary site of catabolism of many chemotherapies 

including 5-FU7.  In other words, cancer cells grown in culture are outside of the 

environment where drugs work in humans.  Furthermore, even if a cell line grown in 

culture was perfectly analogous to clinical disease, it would still represent only a single 

instance of drug resistance.  The study described in this thesis represents an example 

of how drug resistance may be studied by transcriptome analysis with microarrays and 

massively parallel sequencing and not a definitive characterization of the molecular 

mechanisms of 5-FU resistance.  A more comprehensive study of multiple resistant 

lines derived from a single parental line as well as derived from many different parental 

lines would have a greater chance of informing on the general mechanisms of acquired 

5-FU resistance.  Further studies of new cell lines established from primary tumours, 

metastases and drug refractory tumours, and patient samples isolated from treatment 

resistant tumours arising after chemotherapy exposure should also be conducted to 

begin to elucidate the major mechanism(s) of 5-FU resistance.  One advantage of this 

research is that is was not limited to a small handful of genes as many previous studies 

have been (reviewed in [8, 9]).  This allowed us to detect potentially novel genes 

associated with 5-FU resistance and in fact many of the genes in our candidate lists 

have not been previously identified as potentially involved in 5-FU resistance.  

Furthermore, examination of both whole gene differential expression as well as 

differential expression of specific isoforms allowed us to identify novel candidate 

isoforms which would have otherwise been missed in typical gene expression analysis 

approaches.  For example, the gene UMPS (Chapter 4) was ranked 255th in the 

differential gene expression list, but ranked 3rd in the list of novel differentially spliced 

isoforms reported in Chapter 3 (and online at www.AlexaPlatform.org). 

5.3. Current status, significance and contribution to field of study 

The initial hypothesis of this thesis, that the degree of alternative splicing in the human 

transcriptome was largely under-represented in existing annotation resources such as 
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EnsEMBL, was verified by this work and others1, 2, 10.  In a comparison of 5-FU sensitive 

and resistant cancer cell lines I identified thousands of previously un-annotated 

alternative expression events.  Our hope that developments in both microarray and 

sequencing technology would allow quantification of specific alternative isoforms was 

also realized.  Finally, the hypothesis that the transition from 5-FU sensitivity to 

resistance would be associated with differential expression of both entire genes as well 

as specific isoforms was also verified.  Genes such as H19 and KRT20 were found to 

be highly under- and over-abundant while other genes such UMPS, UCK2 and LAMA3 

exhibited over-abundance of specific alternative isoforms while the canonical isoform 

remained unchanged or was differentially expressed in the opposite direction.  Overall 

the ranked list of top 5-FU candidates contained almost as many alternative expression 

events as differential expression events (Chapter 3).  

In this report I described novel methods for assessing the expression, differential 

expression and alternative expression of known and predicted mRNA isoforms including 

metrics for identifying reciprocal expression of alternative isoforms.  I described novel 

methods for determining whether sequence features are expressed above the level of 

noise emanating from random transcription and possible genomic DNA or heteronuclear 

RNA contamination for both microarray and RNA sequence data.  I also made available 

to the public databases of sequence features and associated visualization tools tailored 

to the analysis of alternative isoforms by microarray and RNA sequence analysis along 

with information on the existence of mRNA or EST sequence support, conservation and 

the protein coding effect of known and hypothetical alternative expression events.  Pre-

computed microarray designs and sequence annotation databases for analysis of 

alternative expression using massively parallel sequencing were generated for ten 

species.  I also made available candidate gene lists, source code and user manuals.  To 

assist in the efficient dissemination and organization of these resources I created the 

website www.AlexaPlatform.org to supplement the manuscripts (see footnotes for each 

chapter).  Finally, I reported the first application of alternative expression microarray 

analysis and massively parallel sequencing to a model of chemotherapy resistance in 

colorectal cancer.  While this model system relates to a specific area of cancer biology 

research, I believe that this work represents a general model for comparison of relevant 

disease states such as cancer and normal tissue, pre- and post-treatment biopsies, and 

primary and metastatic tumours.  To my knowledge this work was the first genome-wide 
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effort resulting in the identification of a candidate gene that is aberrantly spliced in 5-FU 

resistant colorectal cancer cells (UMPS).  A recent study of the methotrexate 

metabolism gene, folylpolyglutamate synthetase (FPGS) found that acquired resistance 

to antifolates in leukemia cell lines was caused by aberrant splicing of the gene11.  

Additionally, aberrant splicing of the androgen receptor was reported as a possible 

cause of hormone refractory prostate cancer12, 13.  The UMPS observation, as well as 

candidate gene and isoform lists which include genes with suspected involvement in 5-

FU metabolism and drug efflux represent a substantial contribution to existing 5-FU 

resistance candidate lists3, 4.   

The methods I have described have considerable potential to advance studies of 

gene regulation, transcript processing, human disease and evolutionary biology.  For 

example, analysis of alternative expression by the microarray (Chapter 2) and 

massively parallel RNA sequencing (Chapter 3) approaches that I described should 

assist in the identification of developmental and tissue specific alternative isoforms.  

This may in turn elucidate some of the mechanisms which control their spatial and 

temporal expression patterns.  The microarray approach I described has since been 

used to address this area by comprehensive profiling of 48 human tissues and cell lines, 

resulting in the identification of regulatory sequences associated with alternatively 

spliced exons14.  The methods I described should also facilitate improved disease 

classification.  Recent studies have reported the use of candidate gene approaches to 

identify aberrant splicing of oncogenes and tumour suppressors in cancer15-17.  The 

methods I described should help to accelerate this process and lead to the identification 

of novel biomarkers and therapeutic targets for cancer and other diseases. 

5.4. Potential applications and future directions 

Integration of gene expression and alternative expression analysis with mutation 

analysis of both the transcriptome and the whole genome will be instrumental in 

understanding the mechanisms of alternative expression.  By coupling complete 

genome sequencing to transcriptome sequencing it may be possible to correlate many 

changes in exon expression and processing with nearby or distant polymorphisms and 

mutations that reside in splice sites and exonic and intronic splicing enhancers and 

silencers.  Similarly, transcriptome analysis in combination with systematic disruption of 

members of the transcriptional and splicing machinery (by over-expression and/or 
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siRNA knockdown for example) will help to unravel the complex code that controls 

expression and alternative expression.   

While the data described in Chapters 2 and 3 has provided rich information on 

alternative expression, analysis of these data to identify point mutations, gene fusions, 

RNA edits and allele specific expression may also be important in identifying novel 

disease markers.  Similarly, when comparing disease states, chromosome copy 

number, rearrangements, and epigenetic modifications should also be examined.  

Furthermore, the analysis approach I describe is primarily focused on a pair-wise 

comparison of samples.  This is broadly applicable to comparisons like disease versus 

matched normal tissue, pre-treated versus post-treatment tissue, unaffected parent 

versus affected child, and so on.  However, for certain efforts such as disease 

classification, studies of splicing regulation, and others, additional analysis approaches 

will need to be incorporated to deal with simultaneous analysis of isoform expression 

patterns across larger groups of samples.  These types of approaches have been 

reported in the analysis of microarray gene expression data sets using statistical 

approaches such as ANOVA18, linear and non-linear regression19, 20, and clustering14.  

One area of future research will be the modification of these approaches to facilitate 

their application to massively parallel RNA sequencing datasets.     

The kinds of analyses advocated in this thesis have potential to be incorporated into 

a new general approach to disease treatment in the future.  Using colorectal cancer as 

an example, there are already a number of known molecular markers of potential 

significance for selecting chemotherapy regimes for individual patients.  For example, 

patients that are deficient in the genes that monitor DNA damage are generally less 

responsive to 5-FU and other DNA damaging cytotoxic drugs21.  In Chapter 4, I 

describe a candidate gene that when mutated, under-expressed, or aberrantly spliced 

may result in reduced 5-FU efficacy.  Similarly, activating mutations in KRAS have been 

found to predict poor response to EGFR targeted antibody therapies22.  In addition to 

markers of efficacy, polymorphisms and mutations in DPYD and UGT1A1 are predictive 

of adverse responses to 5-FU and Irinotecan respectively22.  These observations could 

one day form the basis for a battery of clinical tests that would assess mutation status, 

expression level, isoform composition and other features of individual patients.  The 

output of these tests could serve as the input for an elaborate therapeutic decision tree.  

Thus, an oncologist’s job might increasingly come to involve navigating such decision 
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trees, customized for cancer type and stage, to create a unique personalized treatment 

strategy for each patient.  In a sense, cancer treatment already operates in this fashion 

to a limited degree but the current repertoire of molecular predictors and determinants 

of treatment outcome is likely still largely incomplete.  As it becomes more complete, 

this approach may prove increasingly successful.  It is possible that the current markers 

of 5-FU response represent only a small fraction of those that are relevant to individual 

patients.  Given the number of mechanisms thought to contribute to chemotherapy 

resistance it is possible that dozens or even hundreds of genes may be involved.  

Resistance in a single individual may be mediated by one or several small changes 

drawn from a large set of possible genes.  If true, this would place even more emphasis 

on a personalized approach to predicting resistance using data that is comprehensive. 

One of the interesting future applications of this research is not just the potential to 

identify alternatively spliced isoforms but also to target the splicing of these isoforms 

directly as a therapy.  A number of reports have described the potential for splicing 

modulation as a disease treatment (reviewed in [23-25]).  In this treatment modality, an 

alternative splicing event is identified and modulated by delivery of antisense 

oligonucleotides that prevent or encourage the expression of a particular isoform.  For 

example, oligonucleotides complementary to an aberrant exon-skipping junction can 

reduce the expression of isoforms containing that junction and push the balance of 

isoforms expressed back towards the normal isoform.  Similarly, oligonucleotides can 

be used to induce skipping of an exon that contains a mutation or to silence a gene 

entirely by inducing nonsense mediated decay.  Preliminary reports of the potential of 

these treatments have been reported for Duchene muscular dystrophy where exon-

skipping of the DMD gene was induced by treatment with cocktails of antisense 

oligonucleotides to effectively reverse frameshift and nonsense mutations in Duchene 

dystrophy dogs26.  Another report described shifting the balance of Mcl-1 isoform 

expression from the long (Mcl-1L) to short (Mcl-1S) isoform by delivery of antisense 

oligonucleotides in a gastric cancer cell line27.  Since Mcl-1L is anti-apoptotic and Mcl-

1S is pro-apoptotic, the effect of this treatment was to induce apoptosis.  Antisense-

mediated modification of alternative splicing may also serve as a powerful validation 

technique for events such as those identified in this thesis in the same way that over-

expression assays and siRNA knockdown have proved invaluable in validating findings 

from differential gene expression studies.  In order to develop therapeutic strategies 
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based on alternative isoforms representing disease markers, these isoforms must first 

be identified and characterized.  In this thesis I have presented a general approach and 

specific novel methods to help accomplish this goal. 
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Appendices 

Appendix A.  Description of 5-FU and related drugs (analogs, pro-
drugs, 5-FU combination therapies, etc.) 
 

Name Also known as 
Description and delivery 

method 

Structure 
(of 5-FU analog/pro-

drug) 

Fluorouracil 5-FU; 5FU; Adrucil; 
Efudex; Carac; 
Fluoroplex; 5-fluoro-
1H-pyrimidine-2,4-
dione. 

A uracil analog classified as an 
antimetabolite.  Developed in the 
1950’s1. Now administered to 
approximately 2 million people per 
year worldwide2.  Intravenous 
delivery for many solid tumours or as 
a topical cream in the treatment of 
skin cancer.  

C4H3FN2O2 

 

 
 

Fluoro-
deoxyuridine 

2'-Deoxy-5-
fluorouridine; FUDR; 
Floxuridine; 5-
Fluoro-1-[4-hydroxy-
5-
(hydroxymethyl)tetra
hydrofuran-2-yl]-1H-
pyrimidine-2,4-
dione; 

Intravenous delivery.  An analog of 
5-FU1. 

C9H11FN2O5 

 

 
 

S-1 TS-1 Oral delivery.  A fluorouracil anti-
tumor drug3-5 that combines three 
pharmacological agents: tegafur 
(FT), which is a prodrug of 5-
fluorouracil (5-FU); 5-chloro-2,4-
dihydroxypyridine (CDHP), which 
inhibits dihydropyrimidine 
dehydrogenase (DPYD) activity; and 
potassium oxonate (Oxo), which 
reduces gastrointestinal toxicity.  5-
FU is the neo-plastic agent, CDHP 
improves efficacy be inhibiting DPYD 
and reducing metabolism of 5-FU in 
the liver resulting in maintenance of 
high blood concentrations of 5-FU, 
and Oxo inhibits UMPS/OPRT 
resulting in reduced toxicity by 
reducing 5-FU activation 
preferentially in the small intestine 
while still allowing activation in the 
bone marrow and tumour regions6. 

Same as Tegafur but 
delivered along with 
CDHP and Oxo (see 
description).   
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Name Also known as 
Description and delivery 

method 

Structure 
(of 5-FU analog/pro-

drug) 

Capecitabine Xeloda;  pentyl[1-
(3,4-dihydroxy-5-
methyl-
tetrahydrofuran-2-
yl)- 5-fluoro-2-oxo-
1H-pyrimidin- 4-yl] 
aminomethanoate. 

Oral delivery.  A pro-drug of 5-FU7. C15H22FN3O6 

 

 

 

Tegafur-
uracil 

UFT; Uftoral; UFUR; 
Florafur; Fluorofur; 
5-fluoro-1-
(tetrahydro-2-
furanyl)-2,4-(1h,3h)-
pyrimidinedione. 

Oral delivery.  A pro-drug of 5-FU.  
Uracil is included as a competitive 
inhibitor of DPYD to reduce 
catabolism of 5-FU.  UFT is 
considered a DPYD Inhibitory 
Flouropyrimidine8, 9. 

C8H9FN2O3 

 

 
(Uracil not shown) 

Eniluracil Ethynyluracil; 5-
Ethynyl-2,4(1H,3H)-
pyrimidinedione. 

Oral delivery.  An inactivator of 
dihydropyrimidine dehydrogenase 
(DPYD) used in combination with 5-
FU 10.  Allows an effective dose for 
oral delivery of 5-FU.  The primary 
purpose of this combination is to 
reduce the probability of an adverse 
reaction to 5-FU and improve the 
effectiveness of 5-FU while lowering 
the effective dose. 

Delivered in combination 
with 5-FU (see above) 



 229

Name Also known as 
Description and delivery 

method 

Structure 
(of 5-FU analog/pro-

drug) 

BOF-A2 Emitefur; [6-
(benzoyloxy)-3-
cyanopyridin-2-yl] 
3-[3-(ethoxymethyl)-
5-fluoro-2,6-
dioxopyrimidine-1-
carbonyl]benzoate 

Oral delivery.  A derivative of 5-FU 
containing 1-ethoxymethyl-5-FU 
(EMFU), a masked form of 5-FU, and 
3-cyano-2,6-dihydroxypyridine 
(CNDP), an inhibitor of 5-FU 
degradation11. 

C28H19FN4O8 

 

 
 

Uracil Pyrimidine-
2,4(1H,3H)-dione; 
Uracil; 2-oxy-4-oxy 
pyrimidine; 
2,4(1H,3H)-
pyrimidinedione; 
2,4-
dihydroxypryimidine;
2,4-pyrimidinediol. 

Oral delivery.  The molecule which 5-
FU was originally designed to mimic. 
Sometimes delivered in combination 
with Tegafur.  Thought to reduce the 
side effects of Tegafur without 
reducing effectiveness. 

C4H4N2O2 
 

 

 
The structure diagrams displayed above were obtained from the NCBI PubChem 
(http://pubchem.ncbi.nlm.nih.gov/) via the National Library of Medicine (NLM) webpage. 
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Appendix B. Primer sequences used for UMPS analysis 
 
RT-PCR and semi-quantitative RT-PCR primers designed to produce separate 
products for UMPS isoforms A and B 

Amplicon 
Name 

Forward primer sequence  
(5′ → 3′) 

Reverse primer sequence  
(5′ → 3′) 

Expected 
amplicon 
size (s) 

F1/R1 TCTGCGGGGCATCGTGTCTC CGTGCGCCTGCAACTTGTCC 383 / 229 

F2/R2 AATGGCGGTCGCTCGTGCAG GATCCCGTGCGCCTGCAACT 505 / 351 

F3/R3 CGACAATGGCGGTCGCTCGT CTGGGTGGATCCTGGGCAGC 720 / 566 

F4/R4 GCATCGTGTCTCGACCGCGT CCGATGCAAAGGCAGGCCCA 965 / 811 

F5/R5 TGGGGCCATTGGTGACGGGT GGGAGCCGGTGGAGCTCATT 1107 / 953 

F6/R6 GGGCATCGTGTCTCGACCGC TGCTGCTTCCAGACGATCAGC 1267 / 1113 

 
Cloning primers used to generate full-ORF sequences for cloning by Topo-TA 
cloning 

Amplicon 
Name 

Forward primer sequence 
(5′ → 3′) 

Reverse primer sequence 
(5′ → 3′) 

Expected 
amplicon 
size (s) 

F3/R5 CAAACAGGCAGCGCGCGACA GCTGACTTTAGCCTCTTGGTGCCC 2136 

 
Sequencing primers used for clone finishing (designed using reference 
sequence, NM_000373) 

Primer 
Name 

Primer sequence (5′ → 3′) 

M13F TGTAAAACGACGGCCAGT 

M13R CAGGAAACAGCTATGAC 

F1 CATTGGTGACGGGTCTGT 

F2 CAAGGACAAGTTGCAGGC 

F3 GGGGGTGCCTCCTTATTG 

F4 AGCTGATCGTCTGGAAGC 

F5 GATGGAGTGCAGTGGTGA 

R1 CTCCTTCTGAAGAACCT 

R2 CAAGAACTCATGGCATT 

R3 CAAGCAGCTTTTCTGTA 

R4 TAGTCCCATGGAGAGAT 

R5 ACTTTGAGAGACTGAGG 

 
RT-PCR and semi-quantitative RT-PCR primers designed to produce separate 
products for UMPS isoforms A and B 

Amplicon 
Name 

Forward primer sequence 
(5′ → 3′) 

Reverse primer sequence 
(5′ → 3′) 

Expected 
amplicon 
size (s) 

TBP TCAGGGCTTGGCCTCCCCTC TGTGGGGTCAGTCCAGTGCCA 90 

UMPS_A GCATCGTGTCTCGACCGCGT GGCACTCCACACACGGTGTCA 100 

UMPS_B CTCCCTGGCCACTGGGGACT GGTTTCATGCTTACTCGGGAGCCA 105 

UMPS_AB ACCGCGTCTTCTGAGTCAGGAACTA GATCCCGTGCGCCTGCAACT 194 
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Genomic sequencing primers (M13F and M13R linker sequence not shown)  

Name 
Forward primer sequence 

(5′ → 3′) 
Reverse primer sequence 

(5′ → 3′) 
Size 

A1 TGTGTCCTTTAACCACCCCCTACCC AGCCAATGCCTTCTCGACTAGTTCT 757 

A2 ACTCCTCCAGGAAGCAGAGTACAGA GACCCGTCACCAATGGCCCC 624 

A3 CCCCAGCGACCCCATCCAGA GCGTTCCAAACTGGGTTTCCCGA 630 

A4 CGACAATGGCGGTCGCTCGT CACCTCAGCGTCCCAGGCGT 646 

A5 GGTGACAGGAGTTGGGCCGTG CCGGGGCTGCATAGGGGAGT 677 

A6 CGACAAGTGAGACCCTGCCCTC TTGAGACGAGCCTGGGCAGT 838 

A7 TGAGCACAGGGGCTCATGCC GCTTCTGGCCGCACAGTGCAA 706 

A8 CATGTGCCATCATGCCCACCA CGGCCCTCTACTCAGTGTGGTCT 613 

A9 TGCCTCAGCCTCTTCCTGTTAGGT AGTTAATGGTCCAAAGTACCGCAACC 604 

A10 TGCCAGCTGAAACTGCAGACCAC AGTGAGTTAATGCTACCTTTCCTCTCCA 722 

A11 TGGACCATTAACTTCTCACCATCCAGA TGGGTGCTGCCTCATGACCCT 637 

A12 TGGAGAGGAAAGGTAGCATTAACTCACT TTTCACTCCACTGTGTCCACAGAATTT 751 

A13 TCTTGGAAGTAAGGACCTGAGAGAGC AGGACGATCCCGACTTCCTGGT 730 

A14 CTCTTTAGAAGTACTGGTGTAAACCTATGATCT ATCTGCAACCTGTAAGAAAATGAACACAT 909 

A15 ACAATAGGCTGGGCGCAGTGG TGCTGATGAGGGAAGGGCTGGT 793 

A16 TGACACCGTGTGTGGAGTGCC ACGTTGCCAAAGCTGGTCTCAA 960 

A17 GGCAGGTGGATCACAAGGCCA GTGCACAGAAGCGGAAAAATTCTAAGAG 537 

A18 TGAAAATTGGCCAGGCACAGTGG AGAGTTTTCTTATGGGTAGGGATTCATACAGT 666 

A19 TTTTGTGGCGTAAGGGCAGTGT ACAGCAAGATCACCTAGATCAAGGAAAGTTA 671 

A20 CTGAAAATAGTCTAGTGGGATTTGGGTAGAGA AGTTCCTTCTACAAGACGCTTAGTTCCT 747 

A21 AGGAACTAAGCGTCTTGTAGAAGGAACTA TGCTAGCTGCAACAGCTCTCTGG 502 

A22 TCCTTGATCTAGGTGATCTTGCTGT CTGGGTGGATCCTGGGCAGC 893 

A23 CCCCAGCGACCCCATCCAGA ACGCGGTCGAGACACGATGC 365 

A24 CGACAATGGCGGTCGCTCGT TCGAGGAGCCCAACCCCTGG 342 

A25 TACTCCCCTATGCAGCCCCG GCCTCAGCCTCCCAAAGAAAGCC 319 

A26 TGACACCGTGTGTGGAGTGCC TGCTGATGAGGGAAGGGCTGGT 793 

A27 GGCAGGTGGATCACAAGGCCA GGCACTCCACACACGGTGTCA 372 

A28 GGCAGGTGGATCACAAGGCCA GTGCACAGAAGCGGAAAAATTCTAAGAG 537 

A29 TGACACCGTGTGTGGAGTGCC TCAATACAAAGCATTTCACCCCAAGTCT 301 

A30 TAGGCTGGACGTGGTGGCTC AGTTCCTTCTACAAGACGCTTAGTTCCT 474 

A31 TTCTAGGAACTAAGCGTCTTGTAGAAGGAA GATCCCGTGCGCCTGCAACT 200 

A32 AGGAACTAAGCGTCTTGTAGAAGGAACTA CTGGGTGGATCCTGGGCAGC 407 

A33 AAGTTGCAGGCGCACGGGAT TGCTAGCTGCAACAGCTCTCTGG 327 

A34 AGGAGAATGTCTTTGTGGCAGCGA TCCTATATCTGCAAACTTCCGGTCTTCA 353 

A35 TCTGGCAAAATGCCATGAGTTCTTGA TGCAGAGCAAATTGCCCAGGCT 379 

A36 TCACAGATGGAACCATGGGTCTGC CAGCATAGCAGCCCCTGCCC 396 

A37 TGCATCGGGGGTGCCTCCTT TCTGGGTCTCAAAGTTTCTCTTGGAGT 318 

A38 AGCATAAGCCAGGCATGGTGAC AGAGCCACGACCAGTGACCAGA 366 

A39 TCTGGCTCCCGAGTAAGCATGA GTGTTTACTCTGTGCCAAGACATTGTG 364 

A40 ACGCAGTTGCTGTACAAAAGGGGA GAAGCACTCAAACACCAAGTCTACTCA 318 

A41 GGTCGTGGCATAATCTCAGCAGC CCTAACCCAGACAGGACTGTGGC 363 

A42 CCTGCTTGGATTCTTCCACAGGGC CTGGAAGCTGAGGTGGGAGGAT 359 

A43 GGATCCTTCCTATCTCTCCATGGGACT GCTGACTTTAGCCTCTTGGTGCCC 391 

A44 GGCACCAAGAGGCTAAAGTCAGCA ACTGGTCCATAATTGCTGGCTAGGGG 301 
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Appendix C. Ethics approval certificates 

Appendix C1. Ethics certificate for samples obtained from the Ontario Institute for 
Cancer Research (Ontario Tumour Bank) 
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Appendix C2. Ethics certificate for samples obtained from the British Columbia  
Cancer Agency 
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Appendix C3. Ethics certificate for samples obtained from St. Paul’s Hospital 
 

 
 
 
 


