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Abstract

Lifetime maximization is a key challenge in the design of sensor-network-based track-

ing applications. In this dissertation, formation of optimal coalitions of nodes is

investigated for data acquisition in bearings-only target localization such that the

average sleep times allocated to the nodes are maximized. Targets are assumed to be

localized with a pre-defined accuracy where the determinant of the Bayesian Fisher

information matrix (B-FIM) is used as the metric for estimation accuracy. Coop-

erative game theory is utilized as a tool to devise a distributed dynamic coalition

formation algorithm in which nodes autonomously decide which coalition to join,

while maximizing their feasible sleep times. Nodes in the sleep mode do not record

any measurements; hence, save power in both sensing and transmitting the sensed

data. The proposed scheme reduces the number of sensor measurements by captur-

ing the spatio-temporal correlation of the information provided by the sensors from

one side and bounding the localization accuracy to the pre-defined value from the

other side. It is proved that if each node operates according to this algorithm, the

average sleep time for the entire network converges to its maximum feasible value.

In numerical examples, we illustrate the inherent trade-off between the localization

accuracy and the average sleep time allocated to the nodes and demonstrate the

superior performance of the proposed algorithm via Monte Carlo simulations.
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Chapter 1

Introduction

1.1 Energy Concerns in Wireless Sensor Networks

In recent years, wireless sensor networks (WSNs) have gained increasing attention

in a wide range of applications [1]. A WSN is a distributed embedded system

comprising a large number of low-cost, low-power and energy-constrained sensor

nodes. These sensors communicate over a wireless channel, performing distributed

sensing and collaborative data processing tasks for various vital military and civilian

applications. Typically, a power source supplies the energy required by the sensors

to perform the above tasks. This power source is often made up a battery with a

limited energy budget. Even though, in some applications, it might be possible to

scavenge energy from the environment (e.g., by using solar cells), external power

sources exhibit a non-continuous characteristic which mandates the need for having

power supplies such as batteries. In addition, since sensors may be deployed in

a hostile or unreachable environment, it could be inconvenient or impractical to

replace or recharge the batteries [2]. Hence, the crucial question that arises is:

“how to reduce energy consumption in WSNs so that the lifetime of the network is

prolonged?”

In general, energy expenditure in WSNs can be divided into three main com-

ponents: (i) data acquisition (sensing), (ii) data processing, and (iii) data trans-

mission. Experimental measurements have shown that data transmission consumes

significantly more energy that data processing [3]. However, in many real applica-

tions (e.g., [4–7]) the power needed by the sensors is comparable, or even greater
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1.2. Contributions and Results

than, the power consumption by the radio. Furthermore, in some applications (e.g.,

target detection, target localization, etc.), due to the dense deployment of sensor

nodes, sensor observations are highly correlated in the space domain. The nature

of the physical phenomenon also establishes the temporal correlation between the

consecutive measurements of the sensors in tracking applications [8]. This spatio-

temporal correlation results in unneeded sensed data (redundant information) which

is unnecessary to be transmitted to the sink. Hence, the benefits from developing

efficient data sensing protocols which captures this spatio-temporal correlations is

two-fold: (i) by taking less measurements, it reduces power consumption when the

sensor itself is power hungry, and (ii) it reduces the unneeded communications even

if the cost of sensing is negligible [2].

1.2 Contributions and Results

In this dissertation, the problem of power conservation for data acquisition is studied

in a WSN that is deployed to localize multiple targets based on noisy bearing (an-

gle) measurements at individual sensors. A novel distributed coalition formation and

sleep allocation scheme is proposed to reduce the number of sensor measurements by

keeping the localization accuracy within an acceptable level. Since estimating the

position of a target in two dimensions needs at least two angle measurements (to per-

form triangularization), it is natural for the sensors to form cooperative coalitions.

There exists an inherent trade off between battery power and sensing accuracy such

that if too few sensors form a coalition, the variance of their collaborative estimate

is high. On the other hand, if too many sensors form a coalition, excessive energy

is consumed. As an example, when two sensors lie on almost a straight line with

the target, they record almost the same bearing information about the target. This

redundant data can be avoided by putting one of the sensors in the sleep mode. Sen-

sor nodes in the sleep mode do not record observations, and as the result, conserve

2



1.2. Contributions and Results

energy both in data acquisition and transmitting the sensed data.

Given that target localization requires sensors cooperation, the main idea is

to develop a methodology for sensors to dynamically form optimal collaborative

coalitions in a distributive manner. The abstract formulation we consider is a non-

superadditive cooperative game. The term non-superadditive means that the grand

coalition (the coalition comprising all sensors) is not optimal. This is mainly due to

the trade off between battery life and the variance of estimates mentioned above.

The nodes in each coalition share measurements to localize a particular target, and

as a result, are rewarded with sleep times. Two questions that arise are: (i) What

are the optimal coalition structures for localizing multiple targets with a pre-defined

accuracy? (ii) How can nodes choose the optimal coalitions over time to ensure that

the average sleep times allocated to the nodes are maximized (and, hence, battery

life is prolonged)?

The above questions can be addressed nicely within the framework of coalition

formation in a cooperative game. Assuming that the true position of the target is

unknown, a lower bound can be derived for the covariance of the estimated target

position using the Cramér-Rao lower bound (CRLB), the inverse of which is known

as the Bayesian Fisher information matrix (B-FIM). As is commonly used in the

tracking literature (e.g., [9, 10]), determinant of the B-FIM is utilized as the met-

ric of estimation accuracy. Throughout, this measure is referred to as stochastic

observability.

Since stochastic observability depends on both the angle of measurements and

distances of sensors to the target, it is clear that the optimal coalition does not

necessarily comprise the nearest sensors to the target. The optimal coalition struc-

ture would typically have some sort of diversity amongst angle measurements of

the sensor nodes. Therefore, determining the optimal coalition structure for track-

ing multiple targets is a challenging task. Moreover, devising an algorithm that

each sensor deploys so that the entire network eventually converges to the optimal

3



1.2. Contributions and Results

coalition structure is of significant interest.

1.2.1 Why Cooperative Games?

Noncooperative game-theoretic methodologies have been developed for sensor acti-

vation in [11, 12]. These approaches are fundamentally different to the cooperative

game theoretic framework considered in this work. Cooperative game theory pro-

vides an expressive and flexible framework for modeling collaboration in multi-agent

systems. This is appropriate for bearings-only localization in which localization

is essentially achieved by triangularization as explained above. Non-superadditive

coalition formation games, as a main branch of cooperative games, study the com-

plex interactions among agents when the equilibrium state comprises several disjoint

coalitions. Hence, it conforms to the framework in multi-target tracking where the

optimal network structure comprises several coalitions of sensors, each localizing a

particular target. Considering the spatio-temporal correlation of the information

provided by the sensors, a cooperative game analysis allows us to optimize each of

these coalitions in terms of power consumption.

1.2.2 Main Contributions

The main contributions of the present work can be summarized as follows:

• Formulation of the network average lifetime maximization problem as a non-

superadditive coalition formation game: The power conservation problem is

formulated for data acquisition in two-dimensional bearings-only target local-

ization as a maximization problem for the average sleep time allocated to the

sensors. Each node shares its measurements with other nodes in the coalition

and, as the payoff, obtains a share from the total sleep time achievable by the

coalition under constraints on stochastic observability. In addition, a fairness

criteria is defined for the sleep times allocated to the individual sensors. This

problem is then formulated as a non-superadditive coalition formation game
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1.2. Contributions and Results

in which the characteristic function gives the maximum total sleep time that

can be allocated to each coalition of nodes such that the pre-defined accuracy

is satisfied for the corresponding target. The aforementioned fairness criteria

guarantees that this total sleep time is divided among the sensor nodes in a

fair fashion. We propose to use the modified core as the solution concept for

this cooperative game.

• The distributed dynamic coalition formation algorithm: In non-super-additive

TU games, finding the optimal coalition structure such that the sum of the

total payoffs gained by each coalition is maximized is an NP-hard problem.

The reason for this complexity is that one needs to search among all possible

coalition structures which is given by the N th Bell number [13] in an N-person

game. This motivates using randomized algorithms to solve the coalition for-

mation problem in non-superadditive games. In this work, a distributed dy-

namic coalition formation algorithm (Algorithm 4.1) is proposed in which each

sensor (as the player of the game) greedily maximizes its expected sleep time

(payoff) for the next period by choosing the optimal coalition whenever it

gets the opportunity to revise its strategy. In addition, sensors rarely choose

suboptimal coalitions whenever they are aware of a potential increase in their

allocated sleep times in future. It will be proved in Sec. 4.3 that if all the

sensors follow the proposed algorithm, the entire network eventually reaches

the maximum total feasible sleep time constrained on the required localization

accuracy which corresponds to the core of the defined non-superadditive coali-

tion formation game. Our work generalizes recent results in dynamic coalition

formation [14] in the sense that convergence to the core is proved when the full

set of blocked nodes is not available at each iteration. A randomized search

method (Algorithm 4.2) for the blocked sensors (players) is also combined with

the above algorithm to achieve a compromise between the computational cost

at each iteration and the convergence rate of the algorithm.
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The proposed algorithm can be applied to a large class of problems in which

“players” cooperate to achieve a common goal and the optimal structure com-

prises several disjoint coalitions of players (See Appendix B).

• Multiple target localization and tracking: Multiple target localization is achieved

by employing the proposed distributed dynamic coalition formation algorithm

in a sequential-Bayesian framework (Algorithm 4.3). In general, any Bayesian

estimator can be utilized; However, in this dissertation, the sequential Markov

chain Monte Carlo (particle filter) is selected due to its superior performance

in bearings-only localization and tracking [15]. In addition, a pre-processing al-

gorithm is proposed which addresses the redundant processing and data trans-

missions in WSNs monitoring a large geographical area. It will be proved that

the proposed algorithm guarantees reaching an absorbing state in the Markov

chain underlying the proposed distributed dynamic coalition formation algo-

rithm. This work also incorporates the implementation issues and required

network structure for a WSN operating to localize multiple targets using the

proposed distributed scheme and based on optimal bearing-measurements.

• Numerical examples: Numerical examples illustrate the behavior of the pro-

posed algorithm in different scenarios through which the structural results,

exploited to devise the pre-processing algorithm, are studied. These scenarios

include both target localization and tracking. The inherent trade-off between

the energy consumption and the localization accuracy is also demonstrated by

comparing the average sleep times required by the nodes to localize targets

through Monte Carlo simulations. In addition, the superior performance of

the proposed algorithm is demonstrated, in terms of the average sleep time

allocated to the nodes, over the heuristic range-based measurement allocation

method using Monte Carlo simulations.
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1.3. Background and Related Works

1.2.3 Related Publications

The main body of this dissertation is summarized in the following papers:

• O. Namvar Gharehshiran and V. Krishnamurthy, Dynamic Coalition Forma-

tion for Efficient Sleep Time Allocation in Wireless Sensor Networks Using

Cooperative Game Theory, in Proc. of 12th International Conference on In-

formation Fusion (ICIF), Seattle, WA, July 2009.

• O. Namvar Gharehshiran and V. Krishnamurthy, Dynamic Coalition Forma-

tion for Sleep Time Allocation in Bearings-only Target Localization Using

Wireless Sensor Networks, Submitted to IEEE Transactions on Signal Pro-

cessing, revised Nov. 2009.

• O. Namvar Gharehshiran, and V. Krishnamurthy, On Prolonging Life-time in

Wireless Sensor Networks With Application in Localization: A Coalitional-

Game Theoretic Approach, Accepted to the 35th IEEE International Con-

ference on Acoustics, Speech and Signal Processing (ICCASP), Dallas, TX,

March 2010.

The results appearing in Appendix B are summarized in the following paper:

• O. Namvar Gharehshiran, A. Attar, and V. Krishnamurthy, Dynamic Coali-

tion Formation for Resource Allocation in Cognitive Radio Networks, Accepted

to the IEEE International Conference on Communications (ICC), Cape Town,

South Africa, May 2010.

1.3 Background and Related Works

In the past decade, a great body of research has been developed focusing on how

to reduce energy consumption of the sensor nodes in WSNs such that the network

lifetime can be extended to reasonable times. At a very general level, [2] classifies the

7
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Energy Conservation 

Schemes

Duty Cycling Data-driven Mobility-based

Mobile-sinkMobile-relayEnergy-efficient 

Data Acquisition
Data ReductionTopology Control Sleep\Wakeup 

Protocols

Adaptive Sampling

Figure 1.1: Taxonomy of energy conservation schemes in WSNs.

main enabling techniques for energy conservation in WSNs as: duty cycling, mobility-

based, and data-driven. These approaches have to be exploited simultaneously to

achieve the maximal energy conservation. Fig. 1.1 shows the taxonomy of the power

conservation schemes in WSNs.

Duty cycling is primarily focused on the networking subsystem. Approaches

based on duty cycling propose protocols on how to put the radio transceiver of

the sensors in the sleep mode when there is no more data to send/receive, and are

commonly accompanied by a sleep/wakeup scheduling algorithm to coordinate the

nodes’ sleep/wakeup times. Indeed, duty cycling techniques exploit the network

redundancy to prolong the network lifetime by adaptively selecting only a minimal

subset of sensors to be in active mode such that the connectivity is maintained.

Examples of such techniques include: topology control protocols [16], sleep/wake up

protocols [17–19], and MAC protocols with low duty cycle [20, 21].

In mobility based techniques, particular nodes which are less energy constrained

(e.g., nodes whose battery can be recharged or replaced) are assigned to collect

data from the sensors. Hence, ordinary nodes save energy due to the reduction in

path length, contention and forwarding overhead. In addition, the nodes which are

located in more loaded paths or closer to the sink do not suffer premature power

8



1.3. Background and Related Works

depletion. These schemes can be classified as: mobile-sinks [22, 23] and mobile-

relays [24, 25]. Mobility plays a critical role in maintaining connectivity in an

initially connected network which turn into a set of disconnected subnetworks due

to the energy depletion.

Data driven techniques, in contrast to the duty cycling and mobility approaches

which focus on reducing power consumption in data transmission, are designed to

optimize the energy expenditure in both data transmission and sensing subsystems

by keeping the sensing accuracy within an acceptable level. In general, these ap-

proaches can be classified as: (i) data reduction techniques, and (ii) energy-efficient

data acquisition. As examples of data reduction schemes, we refer to: data aggre-

gation [26], data compression [27], and data prediction [28, 29]. Energy-efficient

data acquisition techniques concentrates on power conservation by decreasing the

number of data samples. Adaptive sampling schemes reduces the number of samples

by by exploiting spatio-temporal correlations between the information provided by

the sensors. The algorithms in this class are mostly application-tailored. As in-

stances, we refer to [30] and [31] which consider the adaptive sampling problem

in a flood warning system and environmental monitoring scenario, respectively. In

this dissertation, we focus on the a distributed game-theoretic adaptive sampling

scheme in bearings-only localization which, to the best of our knowledge, has not

been investigated in any previous study.

In literature, there exist only a few works investigating coalition formation as

a dynamical process. Among these works, [32–34] can be regarded as the most

relevant ones to the approach presented in this dissertation.

In [32], a dynamic social learning model is considered where each player observes

a random sample of demand vectors and adjusts his demand based on a best-reply

rule in each period. In addition, [32] introduces “mistakes” on the part of players

(analogous to the “experimentation” in [14]) and proves that the set of stochastically

stable states which can be reached is a subset of the set of the cores of the game.

9



1.3. Background and Related Works

The approach proposed here departs from [32] in several aspects. First, the re-

sults presented in [32] are restricted to supperadditive game. However, the work pre-

sented in this dissertation can be applied to both supperadditive and non-superadditive

games. Second, [32] completely abstracts from coalition formation and is focused on

allocations. However, the approach considered here explicitly investigates the coali-

tion formation process. Allowing players to choose their coalitions (to join) makes

this work invaluable for applications where distributed decision making is of interest.

Finally, the best-reply rule considered in [32] differs from the one considered here in

the sense that the players try to maximize their expected payoff, conditional on the

probability that their demands are feasible in a particular coalition.

In [33], players are considered to be farsighted and the transition probabilities

between different coalition structures follow a Markov chain. Given this Markov

chain, players try to maximize the present value of their future expected payoffs.

The transition probability from one state to another is positive only if there exists

a coalition in which all players achieve larger expected future payoffs. However, in

our model, players are myopic which corresponds to the special case of [33] with

a discount factor of 0. The main difference between these two works is that when

players are farsighted, the core will be reached only if it is the unique limit state

of the dynamic process. However, with bounded rationality, a core will be reached

even though the process contains several absorbing states which are not in the core.

In [34], a generic approach is proposed for coalition formation through simple

merge and split operations. These operations take place when they result in an

improvement with respect to some given comparison relation, e.g., utilitarian order.

Furthermore, conditions are introduced under which every iteration of the merge

and split operations yields a unique outcome, which led to a natural notion of

a stable partition. This approach, unlike the approach presented in [32], can be

utilized in both supperadditive and non-superadditive games. However, it departs

from the work presented here in the sense that it is focused on the coalition structure

10
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generation process and does not investigate the bargaining process.

The algorithm devised in this work is based on the approach presented in [14] and

focusses on both the allocations and coalition formation for both supperadditive and

non-superadditive games. Our work differs from [14] in the sense that we assume

not having full information about the set of blocked players at each period. It

will be proved that if each sensor (as the player of the game) follows the proposed

algorithm, the entire network reaches a point in the set of core states of the game

with probability one, in which the maximum average sleep time is achieved and the

total sleep time in each coalition is divided among the sensors in a fair fashion.

1.4 Thesis Organization

The rest of this dissertation is organized as follows. In Chapter 2, the power conser-

vation problem is formulated for data acquisition in bearings-only target localization

in two-dimensional space and the stochastic observability is introduced as the lo-

calization accuracy metric. This problem is interpreted as a non-supperadditive

cooperative game in Chapter 3, where the related concepts and definitions from

cooperative game theory are also provided. In Chapter 4, a distributed dynamic

coalition formation algorithm is introduced for multiple target localization which

converges to the solution to the power conservation problem. In addition, con-

vergence proofs are provided and implementation issues are discussed. Numerical

examples are provided in Chapter 5 to illustrate the behavior and performance of

the proposed solution. Finally, Chapter 6 concludes the thesis and enumerates some

possible future extensions. Derivation of the characteristic function is presented in

Appendix A and Appendix B demonstrates how the proposed distributed dynamic

coalition formation algorithm can be utilized to solve the load-balanced resource

allocation in cognitive radio networks (CRN).

11



Chapter 2

Power Conserved Target

Localization

In this chapter, the power conservation problem is formulated for data acquisition in

bearings-only target localization in two-dimensional space and in a scenario where

each target is expected to be localized with a pre-defined accuracy. Target local-

ization is formulated as a non-linear parameter estimation in a sequential Bayesian

framework where, in each period, the prior information about the position of the

target is updated using sensors’ bearing measurements (i.e. the posterior distribu-

tion) and is regarded as the prior for the next period. To measure the accuracy in

localizing targets, stochastic observability is introduced as the estimation accuracy

metric.

Notation and Terminology : Let N = {1, 2, · · · , N} denote the set of sensors.

Any subset S ⊆ N is called a coalition and can be identified with a vector S =

(s1, · · · , sN) ∈ {0, 1}N, where

si =





1 if i ∈ S
0 if i /∈ S

∀i ∈ N . (2.1)

Those subsets that only contain one node are called singleton coalitions, i.e. {i}. In

addition, the coalition containing all nodes (i.e. N ) is called the grand coalition. The

set of all coalitions which forms a partition on N is denoted by P and is called the

coalition structure. Further, the set of all possible coalition structures (i.e, the set

12



2.1. Network Average Lifetime Maximization Problem

of all partitions on N ) is denoted by C, the cardinality of which is given by the Nth

Bell number [13]. Finally, K = {1, · · · ,K} denotes the set of targets detected in the

network.

2.1 Network Average Lifetime Maximization Problem

Consider a scenario in which N sensors are to form coalitions to localize K targets in

two-dimensional space. Each target k is required to be localized with a pre-defined

accuracy denoted by Õk. Coalitions Sk, k = 1, · · · ,K will be formed, each localizing

a particular target k, and the sensors which are not assigned the localization task

will form singleton coalitions. All sensors in a particular coalition Sk share bearing

measurements to localize target k and as the reward receive some sleep time denoted

by ti∆. In this formulation, ti ∈ Z∩ [0, T ] and ∆ denotes the time required by each

sensor to record a single measurement. Therefore, T − ti determines the number

of measurements that each sensor i records from a maximum of T measurements.

Sensors seek to reduce their power consumption in data acquisition by maximiz-

ing ti’s. The aim is to determine the optimal coalition structure and sleep time

allocations such that the average sleep time of the sensors is maximized and, at the

same time, all the targets are localized with the pre-defined accuracy. In addition,

to prevent premature power depletion of the sensor nodes, each sensor is guaranteed

a minimum sleep time equal to τi measurements.

The coalition formation problem can be formulated as:

maximizet∈[0,T ]N

P∈C

∑
Sk∈P

(∑
i∈Sk

ti

)

N

(P1) subject to det (JB (Sk, t)) ≥ Õk ∀k ∈ K (C1)

ti ≥ τi ∀i ∈ N (C2)

where t = (t1, · · · , tN) denotes the sleep time allocation vector and det(JB(Sk, t))

13



2.1. Network Average Lifetime Maximization Problem

denotes the stochastic observability for a coalition Sk localizing target k which will

be defined in Sec. 2.3. In (P1), the objective function is defined as the average sleep

time allocated to the sensors which is aimed to be maximized over the set of all

possible coalition structures C. The constraints in (C1) guarantee that the required

accuracy is achieved for all the targets in the network. This formulation establishes

a trade-off between the localization accuracy for each target Õk and the average

sleep time allocated to the sensors in the localization task. In addition to (C1) and

(C2), we introduce the fairness constraints on the sleep time allocations as follows:

∑

i∈Sk

ti ≥ g∗ (Sk) ∀Sk ∈ 2N \∅, ∀k ∈ K, (2.2)

where

g∗ (Sk) = max
{ti; i∈Sk}

∑

i∈Sk

ti (2.3)

subject to det (JB (Sk, t)) ≥ Õk.

Intuitively, g∗ (Sk) gives the maximum total sleep time achievable in a coalition Sk

such that the pre-defined localization accuracy is satisfied. We set g∗ (Sk) = 0

if the feasible set in (2.3) is empty. The set of K(2N − 1) constraints in (B.6)

defines a fairness criteria on the sleep times allocated to the sensor nodes in the

sense that the sleep times allocated to the nodes cannot be further improved by

forming a new coalition Sk. Therefore, although the sum of the total sleep times

for all coalitions
∑
Sk∈P

(∑
i∈Sk

ti
)

is maximized, the total sleep time achievable

by each coalition is divided fairly among the sensors in that coalition. In tracking

applications, as the target moves, the optimum coalition structure and sleep time

allocations evolve over time. Hence, the above optimization problem should be

solved repeatedly.

To solve the combinatorial optimization problem in (P1), one has to search

14



2.1. Network Average Lifetime Maximization Problem

among all possible coalition structures C which is an NP-hard problem (|C| is given

by the N th Bell number). In addition, the feasible values for the vector t has to

be found such that the constraints (C1)-(C3) are satisfied. These tasks incur an

immense computational overhead which have to be accomplished in a centralized

fashion considering the limited power and computational resources of the sensors in

WSNs.

Outline of Main Result: In this dissertation, the above problem is interpreted as

a non-superadditive coalition formation game with N constituting the set of players.

The characteristic function1 v (S) for this game gives the total sleep time that can

be achieved by a particular coalition S such that the following relaxed version of

(C1) is satisfied:

L (log (det (JB (Sk, t)))) ≥ log
(
Õk

)
∀k ∈ K. (2.4)

Here, L (·) denotes the lower bound as an operator. We propose a distributed dy-

namic coalition formation algorithm in Sec. 4.2 in which, in each iteration, each

sensor as a myopic optimizer chooses between the existing coalitions to greedily

maximize its expected sleep time as follows:

Si (ω) =





argmaxSk∈P
{

v (Sk ∪ {i})−
∑

j∈Sk\{i} tj

}
with probability 1− εi

Uniform(P) with probability εi

(2.5)

where ω = (P, t) and Uniform(·) denote the state of the network and discrete

uniform distribution, respectively. In addition, εi = ε > 0 only when there exists a

coalition S ′k comprising sensor i for which
∑

i∈S′
k
ti < v (S ′k). As it will be explained

in Sec. 4.1, the randomization among the existing coalitions that happens with
1The term characteristic function is as used in cooperative games (see Sec. 3.1) and is completely

unrelated to characteristic functions in probability theory.
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2.2. Non-linear Parameter Estimation in Noise

probability ε prevents the nodes being stuck in non-optimal coalition structures. It

will be proved in Theorem 4.3.1 that if each sensor follows (2.5), iterations of the

above algorithm eventually converges to the solution of the problem resulted from

substituting (2.4) in both (C1) and (2.3). Hence, the optimal coalition structure and

sleep time allocations are achieved such that the average sleep time for the sensors in

the network is maximized. This approach brings about two main advantages: (i) it

is performed distributively among the sensors and eliminates the need for a central

decision making device, and (ii) in each iteration, unlike the NP-hard problem in

(P1), sensors have to solve the non-combinatorial optimization problem in (2.5) for

which the computational cost is linear in the number of coalitions (i.e. the number

of targets K).

2.2 Non-linear Parameter Estimation in Noise

In this section, we start with an abstract measurement model. Later in Sec. 2.3, this

abstract formulation is explained in terms of localization in two-dimensional space,

based on which stochastic observability is derived as the metric for localization

accuracy.

Consider a set of sensors denoted by N = {1, 2, . . . ,N}. The parameters that

the sensors aim to estimate constitute an L dimensional vector denoted by p̃ ∈ RL.

Each sensor i ∈ N records a measurement characterized by

zi = hi(p̃) + vi s.t. p̃ ∼ p (p̃) (2.6)

where zi ∈ RD denotes the measurement vector for the i-th sensor, hi is an arbi-

trary vector-valued but differentiable function of p̃, and vi’s are mutually indepen-

dent Gaussian random vectors, each with zero mean and covariance matrix Ri. In

addition, p (p̃) denotes the prior distribution for parameter vector p̃. The set of

measurements collected by a coalition of sensors S will also be denoted by Z (S).
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2.2. Non-linear Parameter Estimation in Noise

Let p̂ (Z (S)) denote an estimate of p̃ which is a function of the observation

vector Z (S). Then, the covariance of p̂ can be expressed as

Cp̂ = EZ(S)

{
(p̂ (Z (S))− p̃) (p̂ (Z (S))− p̃)T

}
. (2.7)

In this work, we adopt a sequential Bayesian framework where the posterior distribu-

tion is obtained by updating the prior p (p̃) using the sensors’ bearing measurement.

This posterior density is then utilized as the prior for the next period. Hence, the

posterior Cramér-Rao lower bound (P-CRLB) theorem [35] can be employed to es-

tablish a lower bound on Cp̂. According to this theorem, there exists JB(S, t) given

by

JB (S, t) = Q + Ep(p̃) {J (S, t)} (2.8a)

Q = Ep(p̃)

{
[∇p̃ ln (p (p̃))]T [∇p̃ ln (p (p̃))]

}
(2.8b)

J (S, t) = Ep(Z(S)|p̃)

{
[∇p̃ ln (p (Z (S) |p̃))]T [∇p̃ ln (p (Z (S) |p̃))]

}
(2.8c)

such that

Cp̂ ≥ J−1
B (S, t) (2.9)

where the matrix inequality indicates that Cp̂ − J−1
B (S, t) is positive semi-definite.

In the above equations, J(S, t) and JB(S, t) denote the Fisher information matrix

(FIM) and Bayesian Fisher information matrix (FIM), respectively. Similarly, when

p̃ is regarded as a non-random parameter, Q = 0 and J−1(S, t) provides a lower

bound for the covariance of p̂.

In Proposition 2.2.1, an expression is derived for the B-FIM using the measure-

ments Z (S) recorded by a coalition of sensors S aiming at estimating the unknown

parameter vector p̃.

Proposition 2.2.1. Having a coalition of sensors S which provide a set of bear-

ing estimations Z (S), based on the measurement model adopted in (2.22), the B-
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2.2. Non-linear Parameter Estimation in Noise

FIM JB(S, t) can be expressed as

JB (S, t) = Q +
∑

i∈S
Ep(p̃)

{
[∇p̃hi]

T R−1
i [∇p̃hi]

}
. (2.10)

Proof. Noting that the vectors vi, i ∈ S, are mutually independent, p (Z (S) |p̃) can

be expressed as

p (Z (S) |p̃) =
∏

i∈S

p (zi|p̃) . (2.11)

From (2.22),

p (zi|p̃) =
1√

(2π)D det (Ri)
exp

(
−1

2
(zi − hi (p̃))T R−1

i (zi − hi (p̃))
)

. (2.12)

Therefore,

∇p̃ ln p (zi|p̃) = − (zi − hi (p̃))T R−1
i (∇p̃hi (p̃)) . (2.13)

In addition, since the vectors vi, i ∈ S, are zero mean,

Ep(zi|p̃) {∇p̃ ln p (zi|p̃)} = 0. (2.14)

Subsequently, having (2.14) and substituting (2.13) in (2.8c), J (S, t) can be written

as

J (S, t) = Ep(Z|p̃)

{ [∑

i∈S
(zi − hi (p̃))T R−1

i (∇p̃hi (p̃))

]T

[∑

i∈S
(zi − hi (p̃))T R−1

i (∇phi (p̃))

] }

=
∑

i∈S
(∇p̃hi (p̃))T R−1

i

Ep(Z|p̃)

{
(zi − hi (p̃)) (zi − hi (p̃))T

}
R−1

i (∇p̃hi (p̃))

=
∑

i∈S
(∇p̃hi (p̃))T R−1

i (∇p̃hi (p̃)) . (2.15)
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2.2. Non-linear Parameter Estimation in Noise

Finally, substituting (2.15) into (2.8a), the B-FIM can be written as

JB (S, t) = Q +
∑

i∈S
Ep(p̃)

{
(∇p̃hi (p̃))T R−1

i (∇p̃hi (p̃))
}

. (2.16)

In addition, if the prior density p (p̃) follows a Gaussian distribution with the

covariance matrix Cp̃, the following lemma expresses Q (see (2.8b)) in terms of Cp̃.

Lemma 2.2.1. If the prior density p(p̃) follows a Gaussian distribution with Ep(p̃) {p̃} =

µ̃ and Ep(p̃)

{
(p̃− µ̃)2

}
= Cp̃, Q (as in 2.8b) is given by

Q = C−1
p . (2.17)

Proof. Having Ep(p̃) {p̃} = µ̃ and Ep(p̃)

{
(p̃− µ̃)2

}
= Cp̃, p(p̃) can be written as

p(p̃) =
1√

(2π)L det (Cp̃)
exp

(
−1

2
(p̃− µ̃)T C−1

p̃ (p̃− µ̃)
)

. (2.18)

Therefore,

ln (p (p̃)) = ln


 1√

(2π)L detCp̃


− 1

2
(p̃− µ̃)T C−1

p̃ (p̃− µ̃) , (2.19)

and

∇p̃ ln (p (p̃)) = − (p̃− µ̃)T C−1
p̃ . (2.20)

Finally, substituting (2.20) back in (2.8b),

Q = Ep(p̃)

{[
− (p̃− µ̃)T C−1

p̃

]T [
− (p̃− µ̃)T C−1

p̃

]}

= C−1
p̃ Ep(p̃)

{
(p̃− µ̃) (p̃− µ̃)T

}
C−1

p̃

= C−1
p̃ . (2.21)
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In the next section, the above abstract formulation is employed in the frame-

work of bearing-only localization in two-dimensional space. In addition, we benefit

form Proposition 2.2.1 and Lemma 2.2.1 to derive a closed-form expression for the

stochastic observability.

2.3 Target Localization and Stochastic Observability

In this section, the measurement model is described for bearings-only target local-

ization in two-dimensional space. In addition, using the results in Proposition 2.2.1

and Lemma 2.2.1, we fill in the details of the stochastic observability constraints in

(P1) (see Sec. 2.1).

Consider a coalition of sensors S which are localizing a particular target by each

sensor recording noisy bearing measurements of the target relative to a coordinate

frame in two dimensions. Let vector p̃ ∈ R2 denote the position of the target that

the coalition aims to estimate. Then, each sensor i records a noisy measurement

θ̂i = hi (p̃) + ηi s.t. p̃ ∼ p (p̃) (2.22)

where θ̂i and ηi ∼ N
(
0, σ2

i

)
denote the estimated bearing and the error in the

estimation of the bearing for sensor i, respectively. In addition, p (p̃) denotes the

prior density of the position of the target. Here, comparing with the measurement

model in (2.6), L = 2, D = 1 and hi (p̃) = θ̃i, where θ̃i denotes the true bearing from

sensor i to the target. Fig. 2.1 illustrates the geometry of bearings-only localization

in two-dimensional space. Suppose the target is stationary. Given that the true

position of the target and the position of the i-th sensor are denoted by p̃ = [xt, yt]
T
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2.3. Target Localization and Stochastic Observability

Figure 2.1: Geometry of bearings-only localization in two-dimensional space.

and [xi, yi]
T, respectively, hi (p̃) is given by

hi(p̃) = arctan
(

yt − yi

xt − xi

)
. (2.23)

Here, it is assumed that the measurement intervals are sufficiently long such

that ηi’s are independent between the intervals. In addition, in order to take the

sleep time of each sensor into account, the noise variance is modeled as

σ2
i ∝

1
f(T − ti)

(2.24)

where f(·) is an increasing function such that f (0) = 0. This implies that the

variance of estimation error for each sensor is inversely proportional to the active

time of that sensor through an increasing function. Therefore, as the sleep time for

a particular sensor decreases, it records more measurements and provides a smaller

error in the bearing estimate.

We now proceed to define the stochastic observability as the metric for localiza-

tion accuracy.

Definition 2.3.1. Stochastic observability is defined as det (JB(S, t)), where JB(S, t)
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denotes the B-FIM.

The P-CRLB, as stated in Sec. 2.2, establishes a lower bound on Cp̂ (covariance

of the target position estimation), the inverse of which is referred to as the B-

FIM matrix. In the literature, various matrix means of the B-FIM have been used

as the estimation accuracy metric, e.g. trace, determinant [9, 36]. The choice of

determinant in this work is justified as it can be attributed to how accurate an

estimate is by noting that it determines the volume of the 1−σ confidence ellipsoid

around the estimate [35]. This boundary is defined as the points [x, y]T satisfying

[
x− x̂t y − ŷt

]
C−1

p̂



x− x̂t

y − ŷt


 = 1, (2.25)

where [x̂t, ŷt]T denotes the mean of the posterior target distribution. The following

proposition provides a closed-form expression for the stochastic observability.

Proposition 2.3.1. Consider the measurement model adopted in (2.22)-(2.24).

Given a particular coalition of sensors S and sleep time allocation vector t, the

stochastic observability det (JB(S, t)) can be expressed as

det (JB(S, t)) = det (Q) +
∑

i∈S
Ep(p̃)

{
g
(1)
i

}
+

∑

i∈S

∑

j∈S
Ep(p̃)

{
g
(2)
ij

}
. (2.26)

Here,

g
(1)
i = α

(
f(T − ti)

r2
i σ

2
i

) (
q11 cos2

(
θ̃i

)
+ 2q12 sin

(
θ̃i

)
cos

(
θ̃i

)
+ q22 sin2

(
θ̃i

))
, (2.27)

g
(2)
ij =

α2

2

(
f (T − ti)

r2
i σ

2
i

) (
f (T − tj)

r2
j σ

2
j

)
sin2

(
θ̃i − θ̃j

)
. (2.28)

In addition, ri =
√

(xt − xi)2 + (yt − yi)2 denotes the relative distance of the i-th

sensor to the target and α represents the proportionality constant in (2.24).
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Proof. First, we use (2.23) to write

∇p̃hi (p̃) =
1
ri



− sin(θ̃i)

cos(θ̃i)


 . (2.29)

Therefore, substituting (2.29) in (2.10), the B-FIM can be written as

JB (S, t) = Q +
∑

i∈S

αf(T − ti)
r2
i σ

2
i




sin2(θ̃i) − sin(θ̃i) cos(θ̃i)

− sin(θ̃i) cos(θ̃i) cos2(θ̃i)


 . (2.30)

Subsequently, noting that QT = Q and using det




a11 a12

a21 a22


 = a11a22 − a12a21,

det (JB (S, t)) can be expressed as

det (JB (S, t)) =det (Q) + det
(
Ep(p̃) {J (S, t)}

)
+ Ep(p̃)

{ ∑

i∈S
α

(
f (T − ti)

r2
i σ

2
i

)

·
(
q11 cos2

(
θ̃i

)
+ 2q12 sin

(
θ̃i

)
cos

(
θ̃i

)
+ q22 sin2

(
θ̃i

)) }
,

(2.31)

where

det
(
Ep(p̃) {J (S, t)}

)
= Ep(p̃)

{∑

i∈S

(
αf (T − ti)

r2
i σ

2
i

)
sin2

(
θ̃i

)}

· Ep(p̃)





∑

j∈S

(
αf (T − tj)

r2
j σ

2
j

)
cos2

(
θ̃j

)


 (2.32)

−
(
Ep(p̃)

{∑

i∈S

(
αf (T − ti)

r2
i σ

2
i

)
sin

(
θ̃i

)
cos

(
θ̃i

)})2

.

In the next step, using the following equalities to change the indices in the sums

(∑

i∈S
xi

) 
∑

j∈S
yj


 =

1
2

(∑

i∈S
xi

) 
∑

j∈S
yj


 +

1
2


∑

j∈S
xj




(∑

i∈S
yi

)
, (2.33)
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(∑

i∈S
xi

)2

=

(∑

i∈S
xi

) 
∑

j∈S
xj


 , (2.34)

det (J (s, t)) can be written as

det (J (S, t)) =
α2

2
Ep(p̃)

{ ∑

i∈S

∑

j∈S

(
f (T − ti)

r2
i σ

2
i

) (
f (T − tj)

r2
j σ

2
j

)

(
sin2

(
θ̃i

)
cos2

(
θ̃j

)
+ sin2

(
θ̃j

)
cos2

(
θ̃i

)

− 2 sin
(
θ̃i

)
sin

(
θ̃j

)
cos

(
θ̃i

)
cos

(
θ̃j

) )}
. (2.35)

In the last step, having the trigonometric equality

sin(θ̃i − θ̃j) = sin(θ̃i) cos(θ̃j)− sin(θ̃j) cos(θ̃i), (2.36)

det (J (S, t)) is simplified as

det (J (S, t)) =
α2

2

∑

i∈S

∑

j∈S
Ep(p̃)

{(
f (T − ti)

r2
i σ

2
i

) (
f (T − tj)

r2
j σ

2
j

)
sin2

(
θ̃i − θ̃j

)}
.

(2.37)

Hence, (2.31) together with (2.37) completes the proof.

Proposition 2.3.1 will be used in Sec. 3.3 to derive the characteristic function

for the coalition formation game. The expectations in (2.26) cannot be evaluated

analytically. Although one can utilize Monte Carlo methods, a simpler approach to

avoid computing expectations is to approximate the B-FIM as:

JB (S, t) ≈ Q + J (S, t) |p̃=µ̃, (2.38)

where µ̃ denotes the mean of the prior density p (p̃). In many practical applica-

tions, the P-CRLB is approximated by (2.38), e.g. the covariance of the estimate

is approximated in the same way in the extended Kalman filter [15]. In this disser-
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tation, as will be seen in Sec. 3.3, the above approximation is used to compute the

characteristic function for the defined coalition formation game.

Throughout this work, it is also assumed that the prior density of the target is

approximated by a Gaussian distribution with the covariance given by Cp̃. There-

fore, as proved in Lemma 2.2.1,

Q = C−1
p̃ . (2.39)

This assumption helps to reduce the computations in evaluating the characteristic

function in Sec. 4.5.
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Chapter 3

The Coalition Formation Game

In this chapter, the power conservation problem presented in (P1) with the relaxed

constraints in (2.4) is interpreted as a non-superadditive coalition formation game.

The advantage of such an interpretation is that one can use dynamic coalition for-

mation algorithms to compute the solution. As it will be explained later in Sec.

3.3, the characteristic function is defined such that larger coalitions of sensors do

not necessarily ensure larger sleep times. This is mainly due to the fact that the

stochastic observability, depending on both relative angles and distances of sensors

to the target, does not necessarily increase as the number of sensor nodes in a coali-

tion goes up. We utilize the modified core [37] as the solution concept for this game.

This chapter also incorporates the related concepts and definitions from cooperative

game theory.

3.1 Cooperative Game Theory

Game theory provides a formal analytical framework to investigate the complex

interactions among rational players. Throughout the past decades, game theory has

been vigorously utilized in a large class of disciplines such as engineering, economics,

political science, philosophy, etc [38]. Recently, there has been a significant growth in

exploiting game-theoretic approaches to analyze wireless networks. This is mainly

due to: (i) the emergence of large-scale, distributed and heterogeneous wireless

networks; (ii) dramatic improvement in computation power, which makes it possible

for network entities to make independent and rational strategic decisions; and (iii)
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the need for low complexity distributed algorithms that can efficiently represent

competitive or cooperative scenarios between network entities [39].

In general, game theory can be classified as follows:

(a) Non-cooperative Game Theory: This class provides analytical tools to study the

interactions among competing players. Each player chooses it strategy independently

such that its own utility improves. In noncooperative games, players cannot make

binding commitments. There exists several solution concepts for non-cooperative

games, among the most renowned ones are Nash equilibrium (NE) and correlated

equilibrium (CE) [40].

(b) Cooperative Game Theory: This class investigates the behavior of rational play-

ers when they collaborate. The main branch of cooperative games is focused on the

formation of cooperating groups of players, referred to as coalitions [37]. Hence, the

game is a competition between coalitions of players, rather than between individual

players.

3.1.1 Coalition Formation Games

A coalition formation game is uniquely defined by the pair (N , v). N = {1, 2, · · · , N}
denotes the set of players (e.g., network entities,) who seek to form groups in order

to collaborate with each other. Any nonempty subset S ⊆ N is called a coalition.

Coalitions with |S| = 1, where |X | denotes the cardinality of the set X , are called

singleton coalitions and N is called the grand coalition. A coalition represents an

agreement between the coalition members to act as a single entity (e.g., pursue the

same goal). The set of all coalitions in a game is called coalition structure and is

denoted by P. v denotes the coalition value which quantifies the worth of a coalition

in a game. Coalition formation games can be categorized into three different classes

based on the definition of coalition value as follows:

1. Games in Characteristic Form: This is the most common form of coalition
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formation games in which the value of each coalition S is exclusively determined

by the players in that coalition, independently from all other players N\S and how

they are structured. Games in characteristic form are classified as:

(a) Games with Transferable Utility (TU): This class of coalition formation

games was first introduced by Von Neuman and Morgenstern [41]. The value func-

tion in these games is defined by a mapping v : 2N → R, where 2N denotes the power

set of players. This value function is referred to as characteristic function and asso-

ciates with every coalition S ⊆ N the maximal total payoff for that coalition. The

TU property implies that the total payoff v(S) gained by a coalition can be dis-

tributed in any manner between the coalition members i ∈ S. However, this value

is commonly distributed using an appropriate fairness rule. Each player’s share of

the total payoff is denoted by xi which forms a vector x = (x1, · · · , xN ) ∈ R|N |.
This vector is referred to as payoff allocation or simply allocation vector. In this

dissertation, we consider this class of coalition formation games.

(b) Games with Non-transferable Utility (NTU): This class of coalition formation

games was first introduced by Aumann and Peleg [42]. In an NTU game, there exist

rigid constraints on the distribution of the coalition values and the characteristic

function represents a mapping to a vector space, i.e, v(S) ⊂ R|S|. Furthermore, the

share of the total payoff for each player i is a function of the joint actions of other

players, i.e., S\{i}, in that coalition. Therefore, a TU game can be considered as a

special case of the NTU game [38].

Coalition formation games in characteristic form (both TU and NTU) constitute

one of the most important types of games and its application in wireless networks

is progressively increasing. As some instances, the interested reader is referred to

[43], [44], and [45].

2. Games in Partition Form: This class of coalition formation games was first

introduced by Thrall and Lucas [46]. In this class, unlike the games in characteristic
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3.1. Cooperative Game Theory

Figure 3.1: Cooperative games in partition form vs. characteristic form.

form, the value of each coalition S depends on how other players in the game N\S
are structured.

The following Definition introduces the notion of collections and partitions on

the set of players.

Definition 3.1.1. A collection in N is any family of mutually disjoint coalitions

C := {S1, · · · , SM}, ∀i 6= j, Si ∩ Sj = ∅. M is called the size of the collection. If

additionally
⋃M

l=1 Sl = N , the collection C is called a partition of N .

Using the above definition, a coalition structure P is a partition of the grand

coalition N . In these games, the value of each coalition S ∈ P is defined as v(S,P)

which imposes the dependence on the structure of other players in the game. Games

in partition form are intrinsically difficult to solve. Fig. 3.1 illustrates the coalitions

in a cooperative game. The coalition structures specified by the solid and dotted

lines can be expressed as P1 = {{1, 2, 4}, {3}, {5}} and P2 = {{1, 2, 4}, {3, 5}}, re-

spectively. If the characteristic function v in the cooperative game ({1, 2, 3, 4, 5}, v)

is defined to be in characteristic form, the coalition value for coalition S1 = {1, 2, 4}
satisfies v (S1,P1\S1) = v (S1,P2\S1). However, if it is defined to be in partition

form, it is possible that v (S1,P1\S1) 6= v (S1,P2\S1).
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3.1. Cooperative Game Theory

(a) Coalition S with graph G1
S (b) Coalition S with graph G2

S

Figure 3.2: Games in graph form: It is possible that v
(
G1
S
) 6= v

(
G2
S
)
.

3. Games in Graph Form: This class of coalition formation games was first

introduced by Myerson [47], [48]. In some applications [49], the players are inter-

connected and communicate through pairwise links in a graph. However, the games

in characteristic and partition form can not model the inter-connectivity of such

graphs. Games in graph form consider this interconnection by defining the coalition

values relative to the connectivity structure of the graphs. In these games, given

a graph GS with the vertices defined as the coalition members of S and a coali-

tion formation game (N , v), the value of S is given by v(GS). Therefore, in this

class, a specific coalition S can be assigned different coalition values for different

connectivity structures, i.e., v(G1
S) 6= v(G2

S). These graphs can be both directed

or undirected and the value of each coalition can also depend on the connectivity

structure of other coalitions GN\S as well. Fig. 3.2 demonstrates how coalition val-

ues are dependent on the connectivity graph in coalition formation games in graph

form.
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3.1.2 Solution Concept

In coalition formation games, the aim is to find a coalition structure Ps and allo-

cation vector xs such that no group of player have the incentive to leave Ps. This

coalition structure is referred to as a stable coalition structure and, together with the

corresponding allocation vector, is considered as the solution to the game. Hence, a

solution concept for a game in characteristic form can be interpreted as a coalition

structure, under which the highest gain is achieved, and a fairness criteria which

determines how the gains in each coalition are distributed amongst players.

In the literature, there exist formal solutions for the class of coalition forma-

tion games in characteristic form with supperadditive characteristic function. Here,

superadditivity is defined in TU games as a property of the characteristic function.

Definition 3.1.2. In a TU game, the characteristic function is referred to as sup-

peradditive if

v(S1 ∪ S2) ≥ v(S1) + v(S2), ∀S1,S2 ⊆ N , S1 ∩ S2 = ∅. (3.1)

Simply put, a TU game is superadditive if cooperation is always beneficial. Thus,

it is guaranteed that if two disjoint coalitions join together and form a single coali-

tion, they will at least receive the same payoff as by acting separately. In super-

additive games, forming the grand coalition will always be to the joint benefit of

all players. The above definition can also be extended for NTU games by replacing

(3.1) with

{x | (xi)i∈S1 ∈ v(S1), (xj)j∈S1 ∈ v(S2)} ⊆ v(S1 ∪ S2). (3.2)

The most celebrated solution concept for the coalition formation games with

supperadditive characteristic functions is the core [37]. Other prominent solutions

include Shapley value, kernel, and Nucleolus. These solution concepts are only de-

fined for superadditive TU games (extensions for NTU superadditive games are only
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formalized for the core and Shapley value in literature [38]). The literature dealing

with non-supperadditive games usually redefines these solution concepts or presents

alternatives which are application-specific [14, 34, 50, 51]. Therefore, unlike the

coalitional games with superadditive characteristic functions for which formal so-

lutions exist, the solution for a non-superadditive game is not straightforward and

mainly depends on the game under study.

In order to define the core for a non-superadditive TU game, we need the fol-

lowing definitions from the cooperative game theory context.

Definition 3.1.3. An allocation vector x is called individually rational if xi ≥
v({i}) for all i ∈ N .

In other words, an allocation vector is individually rational if no player can do

better by acting alone.

Definition 3.1.4. In a superadditive TU game, an allocation x is called feasible if

∑

i∈N
xi ≤ v(N ), (3.3)

and is called group rational or efficient if the equality holds.

Simply put, an allocation is feasible if sum of the payoffs allocated to the players

in the grand coalition does not exceed the total gain achievable by the grand coali-

tion. suppose an allocation is proposed. If a group of players can form a coalition in

which players are guaranteed to achieve higher payoffs, the new coalition will block

the proposed allocation.

Definition 3.1.5. In a TU game, an allocation x is said to be blocked by a coalition

S if
∑

i∈S
xi < v(S). (3.4)
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This property is independent of the superadditive characteristic of the game and,

as will be seen in Definition 3.1.6, acts as the fairness rule on the payoffs allocated

to the players. We now proceed to define the core of a supperadditive TU game.

Definition 3.1.6. If the TU game is superadditive, an allocation xc is in the core

if it both efficient, i.e.,
∑

i∈N
xc

i = v(N ), (3.5)

and non-blocking, i.e.,

∑

i∈S′
xc

i ≥ v(S ′) ∀S ′ ⊆ N . (3.6)

In other words, the core of a superadditive game constitutes the grand coali-

tion N and an allocation vector which guarantees that no group of players can leave

the grand coalition. Hence, reaching the core directly implies stability of the grand

coalition.

Definition 3.1.6 can be modified for superadditive NTU games as follows: If the

NTU game is superadditive, an allocation xc is in the core if it is both feasible, i.e.

xc ∈ v(N ), (3.7)

and non-blocking, i.e.,

@y ∈ v(S ′) ; ∀i ∈ S ′, yi > xc
i ∀S ′ ⊆ N . (3.8)

In many practical application, the superadditivity of the characteristic function

is a quite restrictive requirement. These applications include the scenarios in which

a charge is incurred for the information exchange or bargaining process. To deal

with these problems, the feasibility concept is redefined for non-superadditive games

as follows [14]:
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Definition 3.1.7. In non-superadditive TU games, an allocation x is called feasible

if
∑

i∈N
xi ≤ max

P∈C
∑

S∈P
v(S), (3.9)

and is called efficient if the equality holds.

In other words, an allocation is called feasible if the total payoffs allocated to

the players does not exceed the highest possible outcome. Note that if v is supper-

additive,

max
P∈C

∑

S∈P
v(S) = v(N ). (3.10)

and (3.9) reduces to (3.3). In many practical applications, players cannot be allo-

cated continuous-valued payoffs. Let ∆ be the smallest accounting unit. Then,

the players’ allocations are restricted to integral multiples of ∆ in the interval

[v({i}), maxP∈C
∑
S∈P v(S)]. This new set is denoted by Xi. Considering this re-

striction, together with the modified definition for feasibility, the definition of the

core can be redefined for non-superadditive games as follows:

Definition 3.1.8. For any non-superadditive TU game, an allocation vector xc is

called to be in the core if

∑

i∈N
xc

i ≤ max
P⊂C

∑

S∈P
v(S) <

∑

i∈N
xc

i + ∆, xc
i ∈ Xi (3.11a)

∑

i∈S′
xc

i ≥ v(S ′) ∀S ′ ⊆ N . (3.11b)

It is worth emphasizing that in non-supperadditive games, unlike superadditive

games where the core is reached in the grand coalition, the coalition structure in

which the core can be reached constitutes several disjoint coalitions of players. In

this dissertation, interpreting (P1) (see Sec. 2.1) as a non-superadditive TU game,

we are interested in both the core sleep time allocation and the coalition structure

in which this allocation can be reached.
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3.2 Sensors Coalition Formation Game for Target

Localization

The power conservation problem for data acquisition in bearings-only localization

presented in (P1) (see Sec. 2.1) can be interpreted as a TU coalition formation

game defined by the set of sensors N and a real-valued characteristic function v :

2N \∅ −→ R. The characteristic function v associates with any nonempty coalition

the maximum total sleep time that can be gained by that coalition such that the

required localization accuracy is satisfied for the corresponding target. In other

words, v (S) can be interpreted as the reward for sensors collaboration in localizing

a particular target. The payoff for each sensor i is a share ti from v (S) that it claims

from the coalition S to which it belongs and tries to maximize it. It is worth noting

that, as stated in Sec. 3.1.1, the coalition formation games encompass cooperative

games where the coalition structure plays a major role.

Intuitively, each sensor i is encouraged to join a non-singleton coalition if its

feasible sleep time in that coalition is rational, i.e. ti > v ({i}). Comparing with

the constraints in (C2), we set v ({i}) = τi. As a result, each sensor’s sleep time is

restricted to the integers in the interval [τi, T − 1]. This set represents the possible

sleep time values that a sensor can claim from a coalition upon joining it and is

denoted by Di throughout this work. Here, T is removed from Di since sensors with

sleep times equal to T do not contribute to the localization task and, therefore,

to the stochastic observability; hence, they cannot join non-singleton coalitions. It

is worth mentioning that this is just a virtual modification in the formulation of

the game. In reality, since the sensors in singleton coalitions do not contribute in

localization of the targets, they can sleep for the whole period T∆ (i.e. v ({i}) = T ).

In this work, the redefined core for non-superadditive TU games is formulated

as the solution concept for the defined power conservation game. To make the

notations consistent with (P1), we replace x and Xi with t and Di, respectively,
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in Definition 3.1.8. Hence, defining the characteristic function v such that (2.4) is

satisfied, the modified core for the coalition formation game (N , v) is the solution to

the relaxed combinatorial optimization problem in (P1). We now proceed to derive

the characteristic function for the game.

In the next section, the characteristic function for the above formulated game

will be derived and the properties will be investigated.

3.3 Characteristic Function for the Coalition

Formation Game

To derive the characteristic function for the sensors coalition formation game defined

in Sec. 3.2, a lower bound is found for the logarithm of the determinant (log-

determinant) of JB (S, t) using the expression given for det (JB (S, t)) in Proposition

2.3.1. As can be seen in (2.28), assuming f (T − ti) to be a linear function of the

active time of each sensor (i.e., f (T − ti) ∝ (T − ti)), det (JB (S, t)) turns out to

be a bilinear function of the active time of sensors (i.e. T − ti’s). This motivates to

take the logarithm of the constraints in (C1).

Let k and Sk denote the target and the coalition of sensors localizing it, re-

spectively. Assuming f (T − ti) = α · (T − ti) and a diagonal Q, the characteristic

functions is defined as:

v(Sk) =

⌊
T − 1
log(T )

[
|Sk| log

(
3αT 3

√|Sk| (|Sk| − 1) det(Q)
Õk

)

+
1
3

( ∑

i∈Sk

v
(1)
i +

1
|Sk| − 1

∑

i∈Sk

∑

j∈Sk
j 6=i

v
(2)
ij

)]⌋+

(3.12)

v
(1)
i = log


q11

cos2
(
θµ̃
i

)

(
rµ̃
i

)2
σ2

i

+ q22

sin2
(
θµ̃
i

)

(
rµ̃
i

)2
σ2

i


 (3.13)
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v
(2)
ij = log


1

2

sin2
(
θµ̃
i − θµ̃

j

)

(
rµ̃
i

)2
σ2

i

(
rµ̃
i

)2
σ2

j


 (3.14)

where bxc+ = max {0, bxc} and b·c denotes the greatest integer function. In addition,

assuming µ̃ = [xµ̃, yµ̃]T, rµ̃
i and θµ̃

i are given by

rµ̃
i =

√
(xµ̃ − xi)2 + (yµ̃ − yi)2, (3.15)

θµ̃
i = arctan

(
yµ̃ − yi

xµ̃ − xi

)
. (3.16)

This characteristic function evaluates the total sleep time that can be achieved by Sk

in terms of multiple integrals of ∆. In addition, as stated in Sec. 2.3, the simplifying

assumption in (2.38) is made to compute the estimations in (2.26); As the result, the

distances and bearings of the sensors to the target are defined relative to the mean of

the prior density µ̃. Detailed derivation of the characteristic function is provided in

Appendix A. The same approach can be utilized to derive the characteristic function

when Q is non-diagonal.

We next investigate the properties of the function given in (3.12)-(3.14). As

can be seen in (3.12), the first term goes up as the number of sensors in a specific

coalition increases. This translates to the more sleep time that can be allocated

to the sensors in more populated coalitions. However, if the sensor nodes provide

worthless information, the second term forces (3.12) to decrease. This worthless

information can be classified as:

• Redundant Information: This worthless information corresponds to the case

where two or more nodes lie on almost a straight line relative to the target.

Formally,

∃ i, j ∈ Sk : θµ̃
i ' θµ̃

j ± π. (3.17)

Therefore, sin
(
θµ̃
i − θµ̃

j

)
' 0 and log

(
sin

(
θµ̃
i − θµ̃

j

))
< 0 in (3.14).
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• Imprecise Information: This type of worthless information is provided by the

sensors which are located far relative to the target. Formally, if there exists a

sensor i with ri À 1 such that:

sin2
(
θµ̃
i − θµ̃

j

)

(
rµ̃
i

)2
σ2

i

(
rµ̃
j

)2
σ2

j

' 0, (3.18)

then

log




sin2
(
θµ̃
i − θµ̃

j

)

(
rµ̃
i

)2
σ2

i

(
rµ̃
j

)2
σ2

j


 < 0. (3.19)

On the other hand, if the prior density shows higher uncertainty in y direction

(i.e. (Cp̃)22 À (Cp̃)11) those sensors located on θµ̃
i ≈ 0 or θµ̃

i ≈ π (relative to

the target) will be more useful in reducing uncertainty in that direction. In this

case, considering the fact that Q ≈ C−1
p̃ , it is concluded that q11 À q22. As it

is clear from (3.13), the characteristic function will also allocate larger sleep times

to those coalitions comprising the sensors satisfying θµ̃
i ≈ 0 or θµ̃

i ≈ π. Formally,

the numerator in (3.13), i.e. q11 cos2
(
θµ̃
i

)
+ q22 sin2

(
θµ̃
i

)
, increases as cos2

(
θµ̃
i

)

gets larger. It is worth mentioning that the same property will be observed for the

sensors located on θµ̃
i ≈ ±π

2 (relative to the target) when (Cp̃)11 À (Cp̃)22.

The above discussion implies that larger coalitions of sensors do not necessarily

guarantee greater characteristic function values. Hence, the characteristic function

exhibits the non-superadditive property as it contradicts the condition in Definition

3.1.2. In addition, the trade-off between the sleep times allocated to the sensors

and the localization accuracy for each target Õk can be clearly seen in (3.12), where

as Õk goes up, the total sleep time allocated to coalition Sk is reduced.

Now, we proceed to discuss the constraints that above formulation imposes on

the characteristic function.
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3.4 Formulation of Constraints on the Characteristic

Function

In the context of cooperative game theory, it is assumed that the characteristic

function is a fixed function such that if S1 = S2, then v (S1) = v (S2) [52]. In

our formulation, although the characteristic function is fixed, its value changes for

a specific coalition as it attempts to localize two different targets. This problem

stems from the fact that the relative bearings θµ̃
i and distances rµ̃

i , as well as the

required accuracy Õ, change as a coalition of sensors tries to localize different targets.

Therefore, the values of the coalitions are dependent to the target indices. In order

to avoid this inconsistency, it is assumed that targets are included in the coalitions

as players of the game achieving zero payoffs. Formally, each coalition is considered

as {k,Sk} where k and Sk denote the target and the coalition of sensors localizing

it, respectively. Singleton coalitions are also denoted by {0, {i}}.
Since our model assumes a separate coalition of sensors to localize each target,

for our formulation to be well posed, we need to disallow targets leaving or jumping

between coalitions. This requires us to impose the following constraints on the

characteristic function (the process of joining and leaving coalitions will be fully

explained in Sec. 4.1):

1. In order to prevent targets leave coalitions, we set

v({Sk}) = −∞ ∀k ∈ K. (3.20)

This forces the sensors to disband and form singleton coalitions when the

target leaves the coalition.

2. In order to prevent targets jump between coalitions, we set

v({k1, k2,Sk1}) = −∞ ∀k1, k2 ∈ K. (3.21)
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If k2 joins the coalition localizing k1, its expected payoff in the new coalition

will be −∞. Thus, k2 prefers to stay in its current coalition, in which it

achieves zero payoff.

3. When there exists only one sensor in a coalition localizing a target, since no

measurement diversity is provided, we set

v({k, {i}}) = 0 ∀k ∈ K, ∀i ∈ N . (3.22)

Thus, no sleep time is rewarded to the sole sensor.

4. Finally, to avoid construction of futile coalitions, we set

v({0,S0}) =
∑

i∈S0

v({0, {i}}) ∀S0 ⊂ N . (3.23)

This prevents each singleton coalition join other singleton coalitions. Indeed,

there is no motivation for the sensors which are not localizing any target to

cooperate.

We now proceed to develop a distributed decision-making framework through

which the WSN reaches the core of the above formulated coalition formation game

by each sensor following a simple best-reply rule.
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Chapter 4

Dynamic Coalition Formation

for Target Localization

Having interpreted the combinatorial optimization problem in (P1) as a coalition

formation game, in this chapter a distributed dynamic coalition formation algorithm

is proposed that converges to the core of the defined game. In each iteration of the

proposed algorithm, as briefly explained in Sec. 2.1, sensors which have the opportu-

nity to change their “strategies”, greedily maximize their expected sleep time for the

next iteration by joining one of the existing coalitions. In addition, sensors which are

potential of obtaining larger sleep times in future rarely choose suboptimal strategies

to ensure not getting stuck in non-optimal states of the Markov chain underlying

the proposed algorithm. It will be proved that iterations of the above simple oper-

ations executed by the sensors (as the players of the game) eventually converges to

the core of the coalition formation game, which is the solution to the NP-hard opti-

mization problem in (P1). The comprehensive cooperative game-theoretic coalition

formation and sleep time allocation algorithm is also presented for multiple target

localization by integrating the distributed dynamic coalition formation algorithm

with a sequential Bayesian estimator.
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4.1 Dynamic Coalition Formation Solution

4.1.1 Overview

In Sec. 3.1, it was shown that core allocations can be considered as equilibrium

points in the game in the sense that reaching a core allocation and the coalition

structure corresponding to it, no player can achieve larger payoff by deviating from

it. However, it was not explained how the coalition structure and allocations evolve

over time to arrive at such an equilibrium point. The current section addresses these

issues. Simply put, we seek answers for the following questions: How do coalitions

form and change over time? How do players decide on distributing the total gain

determined by the characteristic function? what coalition structure and allocations

will the players eventually arrive at? Throughout this section, since the proposed

approach can be employed in different scenarios, we refer to the constituents of the

game as “players”. Later in this section, we return to the terminology of the problem

investigated in this dissertation.

In order to answer these questions, we use recent results in dynamic coalition

formation in cooperative game theory [14]. Our work generalizes [14] in the sense

that convergence to the core is proved when partial information is available about

the set of blocked players at each period. In addition, a randomized search method

(Algorithm 4.2) for the blocked players is combined with the dynamic coalition

formation algorithm which establishes a tradeoff between the computational cost at

each iteration and the convergence rate of the algorithm.

In a TU game, reaching a certain allocation requires two a priory independent

processes on the side of players:

1. Coalition Structure Generation Process: At this point, the set of players learn

to partition themselves into disjoint coalitions. The objective of any player i is

to join a coalition S which ensures it larger payoff than the singleton coalition.

2. Bargaining Process: For the game being settled in a stable coalition structure,

42



4.1. Dynamic Coalition Formation Solution

in which all players are satisfied with their allocated payoffs, we need a way of

dividing the total payoff determined by the characteristic function such that

the allocation vector satisfies the core stability concept [52].

This setup is very similar to the dynamic learning model in non-cooperative

games with local interaction and player mobility. In these games, players can move

between several locations and the play of the game takes place only between players

at the same location [53]. Thus, players strategies comprise of choosing a location

and an action for the game.

In the model considered here, each player’s strategy comprises a coalition and a

demand for his share of the total payoff gained by the whole coalition. A player joins

a coalition based on a best-reply rule: A player switches coalition only if his expected

payoff in the new coalition strictly exceeds his current payoff and demands the

highest achievable payoff, given the demands of other coalition members, conditional

on feasibility. Using the pure best-reply process, the absorbing states of the process

generated by all players following the best-reply rule do not necessarily converge

to the core allocations. However, if the players are allowed to choose suboptimal

strategies with a small probability when there is a potential of gaining more in

future, all the absorbing states determine core allocations of the game [14].

4.1.2 Myopic Best-reply Correspondence

In the context of cooperative game theory, the basic assumption is that the players

are rational. Rationality means that players always try to maximize their social

welfare which is evaluated in terms of the utility value (characteristic function);

Therefore, rational players select strategies that maximize their expected utility

taking into account the strategies of their opponents. In the proposed approach,

it is assumed that the players are bounded rational. Here, this means that the

players are myopic. A player which is selected to move, considering the feasibility

constraints, tries to maximize its expected payoff only for the next period.
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We now proceed to the best-reply process. Time is discrete. At each period n,

each player announces his demand for the next period denoted by σn+1
i . Allocations

in the next period are determined as follows

xn+1
i =





σn+1
i if σn+1

j ≤ v (S)−∑
j∈S
j 6=i

xn
j

v({i}) otherwise
∀i ∈ S, ∀S ∈ P. (4.1)

In other words, in a particular coalition S, each player receives his payoff only if

the demands of all players in that coalition are feasible. Therefore, the reservation

payoff v({i}) can be considered as a disagreement to how the coalition payoff is being

divided amongst players. Each player i chooses his demand σn
i from the interval

[v({i}), maxP∈C
∑
S∈P v(S)]. However, for the sake of mathematical tractability, we

restrict the demands to multiples of some small number ∆ in the above interval.

This new set of demands is denoted by Xi.

Each player’s strategic variables are his choice of coalition and the share of the

total payoff gained by the coalition. At period n, given that we are in a specific

coalition structure Pn, strategies available to player i for the next iteration are given

by:

Ξn+1
i (Pn) =

{
(Sn+1

i , σn+1
i ) | Sn+1

i = Sn ∪ {i},Sn ∈ Pn ∪ {∅}, σn+1
i ∈ Xi

}
. (4.2)

Players get the chance to revise their strategies according to the following rule:

at each time step, each player takes a random draw from a Bernoulli trial with

probability ξ and outcomes: “revise strategy” and “keep strategy”. In literature,

this trial is referred to as receiving the learn draw [54]. Hence, at each period, a

random subset of the players get the chance to revise their strategies.

If the outcome of the trial is “revise strategy”, the player decides whether to

join any of the existing coalitions S ∈ Pn or to form the singleton coalition, and

at the same time, announces his demand for the next period σn+1
i . These decisions
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are based on the following information from the current period: coalition structure

Pn, and allocation vector xn = (xn
1 , · · · , xn

N). However, due to incompatibility of

players’ plans, we may encounter coordination problems. This occurs when a player

decides to join a coalition based on the coalition structure in the last period, while

other players in that coalition plan to change their strategies for the next period. In

order to solve this problem, we assume that the players, having the opportunity to

revise their strategies, can always leave their current coalitions and join any other

coalition; and no player is forced to stay in any coalition because of any other player’s

plan.

As stated earlier, players are assumed to be myopic. Hence, players which have

the chance to revise their strategies choose the coalitions which assure them the

highest expected feasible payoff for the next period. Formally, each player determines

his demand and the coalition in which it can be achieved as follows [14]

xn+1
i (ω) = max

S∈Pn∪{∅}
v (S ∪ {i})−

∑

j∈S
j 6=i

xn
j ; xn+1

i (ωn) ∈ Xi, (4.3a)

Sn+1
i (ω) ∈





argmax
S∈Pn∪{∅}

v (S ∪ {i}})−
∑

j∈S
j 6=i

xn
j





. (4.3b)

Here, xn+1
i (ωn) and Sn+1

i (ωn) denote the maximum expected payoff for the next

period and the coalition in which it can be achieved for player i when the game is in

state ωn = (Pn,xn), respectively. If the maximizer coalition in (4.3b) is not unique,

i.e.,
∣∣∣Sn+1

i (ω)
∣∣∣ > 1, the player randomizes between all the maximizer coalitions with

equal probability 1

|Sn+1
i (ω)| . The players strategies for the next period are determined

by a best-reply rule: A player switches coalition only if its expected payoff in the

new coalition is strictly greater than its current allocation, i.e., xn+1
i (ωn) > xn

i , and

they demand the most they can get considering the feasibility constraints (see 4.3a).

The maximum expected payoff rule, given in (4.3), defines a finite state Markov
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chain. This Markov chain is referred to as the best-reply process [14]. Formally, the

Markov chain is defined as follows

Ω = {ω = (P,x) | P ∈ C, x ∈ ×i∈N Xi} (4.4a)

Pωω′ =





(∏
i∈Rωω′ ξ Λi (ω′|ω)

)
(1− ξ)N−|Rωω′ | if ω′ 6= ω

1−∑
ω′∈Ω
ω′ 6=ω

Pωω′ if ω′ = ω
(4.4b)

where Rωω′ denotes the set of players which have to change their strategies in order

to move from state ω to ω′. Let S(i) and S ′(i) denote the coalition to which node i

belongs in state ω and ω′, respectively. Then, Λi(ω′|ω) is the probability of player

i choosing S ′(i) if he is a member of S(i) in state ω and can be formulated as

Λi
(
ω′|ω)

=





1
|Si(ω)| if x′i = xi(ω) ∧ S ′(i) ∈ Si(ω)

0 if x′i 6= xi(ω) ∨ S ′(i) /∈ Si(ω)
(4.5)

where ∧ and ∨ denote the “logical and” and “logical or”, respectively. As stated

before, ξ also denotes the probability that each player i gets the chance to revise his

strategy. Therefore, ξΛi (ω′|ω) is the probability of player i switching to (x′i,S ′(i))
from (xi,S(i)) in state ω.

As the players jump between coalitions over time, they reach a stable coalition

structure in which no player has an incentive to move anymore. For this purpose,

we define the concept of ergodic sets and absorbing states.

Definition 4.1.1. A set F ⊂ F is called ergodic if we have

Pωω′ = 0 ∀ω ∈ F , ∀ω′ /∈ F , (4.6)

and no nonempty subset of F has this property. If |F| = 1, i.e., for some ω ∈ F we

have Pωω = 1, the ergodic set is called absorbing state.

The following theorem guarantees reaching an ergodic set in the above formu-
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lated Markov chain.

Theorem 4.1.1 (Theorem 3.1.1 [55]). In any finite Markov chain, no matter where

the process starts, the probability that the process reaches an ergodic state or set of

states after n steps tends to one as n tends to infinity.

The best-reply process considered in this work may have multiple ergodic sets

and/or absorbing states. The above theorem only guarantees that an ergodic set

will be eventually reached. However, we are only interested in those absorbing states

which constitute the cores of the coalition formation game. The fact that which of

these ergodic sets (states) will be finally reached is determined by the initial state.

The following example demonstrates how the initial state affects the ergodic state

being reached by the best-reply process for a small game.

Example 4.1. Consider the game (N , v) with N = {1, 2, 3, 4} and

v(S) =





0 if |S| = 1

|S|+ 2 if |S| > 1
(4.7)

The unique core allocation for this game is given by: x = (2, 2, 2, 2). This allocation

can be reached in any coalition structure with the following property:

P = {S1,S2} s.t. |S1| = |S2| = 2. (4.8)

Suppose the game is started from the initial state

ω0 =
({
{1, 2, 3}, {4}

}
,

(
5
3
,
5
3
,
5
3
, 0

))
. (4.9)

Given the coalition structure P0, suppose that only player 4 has the opportunity to

revise his strategy. Therefore, following (4.3), x1
4(ω

0) = 1 and S1
i (ω

0) = {1, 2, 3}.
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The resulting state is:

ω1 =
(
{1, 2, 3, 4} ,

(
5
3
,
5
3
,
5
3
, 1

))
. (4.10)

Although ω1 is an absorbing state, x1 is not in the core. All the players, getting the

chance to revise their strategies, will stick with their current strategies. Otherwise,

they should form a singleton coalition in which they achieve zero payoff.

Now, suppose the game is initiated from the following state

ω0 =
({
{1, 2} , {3} , {4}

}
, (2, 2, 0, 0)

)
. (4.11)

Furthermore, suppose that players 3 and 4 get the chance to revise their strategies

at the same time. Therefore, according to (4.3), the resulting state will be

ω1 =
({
{1, 2}, {3, 4}

}
, (2, 2, 4, 4)

)
. (4.12)

However, noting the characteristic function in (4.7), this state is infeasible and

should be fixed as soon as either player 3 or 4 gets the opportunity to revise his

strategy. Again, if both players 3 and 4 get the chance to revise their strategies

simultaneously, the following absorbing state results:

ω2 =
({
{1, 2, 3, 4}

}
, (2, 2, 1, 1)

)
. (4.13)

Hence, starting from different initial states, different absorbing states can be

reached which are not necessarily included in the core of the game.

The fact that absorbing states may comprise non-equilibrium states is also ob-

served in the literature of evolutionary models of non-cooperative games [56]. The

solution to this problem is to introduce perturbations, i.e., to allow players choose

suboptimal strategies with a small probability, which can be interpreted as mis-
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takes. The limit distribution for this stochastic process can be reached by letting

the probability of mistakes go to zero [32]. In this dissertation, experiments are

introduced on the side of players. The difference between trembles and experiments

is that experiments are done deliberately. If the game enters an absorbing state

which is not the core of the game, there will be a blocked coalition which guarantees

some players to achieve higher payoffs than their current allocations. However, this

coalition cannot be directly formed. Thus, if the members of the blocked coalition

experiment with some positive probability, they can destabilize the absorbing state.

To let the players deviate with suboptimal strategies, the best-reply process is

modified as follows: in any state ω = (P,x), when there exist a coalition S ′ /∈ P
such that

∑
i∈S′ xi < v (S ′), each player i ∈ S ′ chooses the best-reply rule with

probability 1− ε and chooses each strategy (Si, xi) ∈ Ξi(P) with probability ε
|Ξi(P)| .

The best-reply process modified by this convention is called best-reply process with

experimentation [14]. Let B (ω) =
⋃
S′ /∈P S ′ denote the set of all players in blocked

coalitions. Then, the transition probabilities (4.5) of the Markov chain defined in

(4.4) can be modified as follows:

Λi
(
ω′|ω)

=





1−εi
|Si(ω)| +

εi
|Ξi(P)| if x′i = xi (ω) ∧ S ′ (i) ∈ Si (ω)

εi
|Ξi(P)| if x′i 6= xi (ω) ∨ S ′ (i) 6= Si (ω)

(4.14)

where

εi =





ε > 0 if i ∈ B (ω)

0 otherwise
(4.15)

Therefore, if i /∈ B (ω), player i only joins the maximizer coalition Si(ω) and de-

mands the feasible sleep time in that coalition σi (ω) with probability 1 (if |Si(ω)| >
1, it randomizes between them with equal probabilities 1

|Si(ω)|). However, if i ∈ B (ω),

it will join Si(ω) and demands σi (ω) with probability 1 − ε (if |Si(ω)| > 1, it ran-

domizes between them with equal probabilities 1−ε
|Si(ω)|) if it does not experiment

and with probability ε
|Ξi(P)| if it experiments; Hence, the total probability adds up
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to 1−ε
|Si(ω)| +

εi
|Ξi(P)| .

The following example demonstrates how the experimentation plays a role in

destabilizing the absorbing states of the best-reply process when they are not in the

core for the small game considered in Example 4.1.

Example 4.2. Consider the game studied in Example 4.1. Suppose that the game

has reached the absorbing state:

ω2 = ({1, 2, 3, 4} , (2, 2, 1, 1)) . (4.16)

Starting from ω2, since S ′ = {3, 4} blocks the current allocations for players 3 and

4, they will experiment with probability ε if they have the opportunity to revise their

strategies. Now, suppose that player 3 gets the chance to revise his strategy and

experiments by forming a singleton coalition and x3
3 = 2. The resulting state will be

ω4 =
({
{1, 2, 4}, {3}

}
, (2, 2, 2, 1)

)
, (4.17)

where the allocation for player 3 is infeasible and must be fixed as soon as player 3

gets the chance to revise his strategy again. However, if player 4 gets the chance to

revise his strategy before player 3 does, it will join the coalition S2 = {3} and the

core will be reached in the following iteration:

ωc = ω5 =
({
{1, 2}, {3, 4}

}
, (2, 2, 2, 2)

)
. (4.18)

Hence, experimentation acts as a de-stabilizer for the non-equilibrium states existing

in the set of ergodic sets of the best-reply process.

Next section introduces the distributed dynamic coalition formation algorithm

in the framework of the sensors coalition formation in a multi-target localization

scenario formulated in Sec. 3.2.
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4.2 Distributed Dynamic Coalition Formation

Algorithm

In this section, we return to the notations and terminology used in the the sensors

coalition formation game for target localization as formulated in Sec. 3.2. Since our

model assumes a separate coalition of sensors to localize each target (see Sec. 3.4),

the best-reply process defined in (4.3) must be modified as follows:

tn+1
i (ωn) = max

k∈K∪{0}
v ({k,Sn

k ∪ {i}})−
∑

j∈Sn
k

j 6=i

tnj , tn+1
i ∈ Di (4.19a)

Sn+1
i (ωn) ∈

{
argmax
k∈K∪{0}

v ({k,Sn
k ∪ {i}})−

∑

j∈Sn
k

j 6=i

tnj

}
. (4.19b)

where Di is defined as in Sec. 3.2. Here, it is assumed that each sensor getting

the opportunity to revise its strategy will receive the sleep time given by (4.21).

Infeasible allocations in a particular coalition (due to incompatibility of sensors’

strategies) are fixed as soon as the next sensor in that coalition gets the chance to

change strategy.

The following algorithm is being executed independently by each sensor in the

network. This algorithm is decentralized in the sense that each node makes a se-

quence of decisions independently (without considering other nodes’ decisions at the

current period) which ultimately results in the whole network converging to the core

of the defined coalition formation game (see Theorem 4.3.1). As explained in Sec.

3.2, reaching the core ensures that the average sleep time allocated to the sensors

is maximized under constraints on localization accuracy and following the defined

fairness criteria. In what follow, based on the approach explained in Sec. 4.1,

the distributed dynamic coalition formation algorithm is presented in pseudo-code

format.
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Algorithm 4.1: (Distributed Dynamic Coalition Formation)

Initialization: At n = 0 select initial coalition structure such that each

non-singleton coalition comprises at least two sensors and each sensor can

at least achieve its reservation sleep time v({0, {i}}) = τi. Set

t0i =





v({k,S(i)})
|S(i)| if |S (i)| > 1

v ({0, {i}}) otherwise
∀i ∈ N (4.20)

where S(i) denotes the coalition comprising sensor i. Set ω0 =
(P0, t0

)
.

In addition, let ξ, ε ∈ (0, 1) to be fixed for all sensors in the network.

- The following steps are done independently by each node i ∈ N :

Step 1—Revision Strategy: Take a random draw from the Bernoulli

trial with probability ξ. If the outcome is “keep strategy”, set tn+1
i =

tni , Sn+1 (i) = Sn (i) and go to Step 5. Otherwise, go to Step 2.

Step 2—Evaluation of the Best Strategy for the Next Period: Com-

pute

tn+1
i (ωn) = max

k∈K∪{0}
v ({k,Sn

k ∪ {i}})−
∑

j∈Sn
k

j 6=i

tnj , tn+1
i (ωn) ∈ Di (4.21)

Sn+1
i (ωn) ∈

{
argmax
k∈K∪{0}

v({k,Sn
k ∪ {i}})−

∑

j∈Sn
k

j 6=i

tnj

}
, (4.22)

where Sn
0 = {∅}.

Step 3—Experimentation:
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If i ∈ Bn, take a random draw from the Bernoulli trial with probabil-

ity ε. If the outcome in is “experiment”, choose tn+1
i ∈ Di with equal

probability 1
T−v({0,{i}}) and k ∈ K∪ {0} with equal probability 1

K+1 . Go

to Step 5. Else, go to Step 4.

Step 4—Best-reply Process: Set tn+1
i = tn+1

i (ωn) and choose Sn+1 (i) ∈
Sn+1

i (ωn) with equal probability 1
|Sn+1

i (ωn)| .

Step 5—Recursion: Set n ← n + 1 and go to Step 1.

In the above algorithm Step 2 to Step 4 correspond to the greedy strategy as

in (2.5). Algorithm 4.1 is accompanied by a procedure for detecting the blocked

sensors Bn. In this procedure, the set of all possible combinations of coalitions S ′k ∈
2N \∅ and targets k ∈ K are checked to find those for which the following inequality

holds:
∑

i∈S′
k

ti < v
({

k,S ′k
})

. (4.23)

This corresponds to coalitions S ′k for which the constraint (C2) (see Sec. 2.1) is not

satisfied. Throughout, this method is referred to as exhaustive search for blocked

sensors and, as explained above, requires to check K(2N− 1) different combinations

of targets and sensors (K choices for the target and 2N − 1 choices for the set of

all nonempty coalitions 2N \∅). As the number of sensors increases, this number

goes up exponentially fast. Furthermore, in order to prevent examining a particular

coalition S ′k repeatedly, one needs to keep track of the coalitions for which the above

inequality has already been checked. This imposes an immense memory, as well as

computational, overhead on the network.

As a variation to the above procedure, we propose to construct a sample set from

the set of all possible coalitions and examine (4.23) only for this set. This sample

set is constructed by taking ζ samples from the set 2N \∅ and combining with the set

of targets K. This method is referred to as randomized search for blocked sensors
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and the resulting set is denoted by Bn
rs. Although Bn

rs ⊆ Bn, it will proved that

by replacing Bn with Bn
rs, Algorithm 4.1 still converges to the core of the defined

coalition formation game with probability one. In what follows, the randomized

search method is presented in pseudo-code format.

Algorithm 4.2: (Randomized Search for Blocked Sensors)

for i = 1 to ζ do

for k = 1 to K do

Choose a coalition Si
k ∈ 2N \∅ with equal probability 1

2N−1
.

if
{
k,Si

k

}
/∈ Pn then

if
∑

i∈Si
k
ti < v

({
k,Si

k

})
then

Bn
rs → Bn

rs ∪ Si
k

endif

endif

endfor

endfor

Remark 4.2.1. It is clearly not necessary to store the sequences ti(ωn) and Si (ωn),

as well as tni and Sn (i), for all n. This also holds for the set of blocked sensors Bn

(Bn
rs). These sequences can be overwritten at each iteration.

Using Algorithm 4.2 to detect blocked sensors, the memory requirement at each

sensor is reduced to O(N) from O(2N) in the exhaustive search method. This is

due to the fact that we do not keep track of the coalitions S ′k for which (4.23) has

already been checked. The computational costs at each sensor can also be improved

to O(Kζ) from O(K2N). However, this improvement results in slower convergence

to the core. Hence, depending on the network architecture and specifications of

the sensors deployed in the network, one can compromise between the memory and

computational cost and the convergence rate of Algorithm 4.1 changing the size of
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the sample set denoted by ζ.

In addition, Algorithm 4.1 should be accompanied by a mechanism to update

the state of the network as it requires ωn at each period n+1 to compute tn+1
i (ωn)

and Sn+1
i (ωn). This mechanism, as well as the search method for blocked nodes,

seem to require a centralized device to accomplish these tasks. However, adopting

a hierarchical network architecture, these tasks can be carried out in a distributed

manner as will explained later in Sec. 4.4.

It is worth mentioning that Algorithm 4.1 exploits the Markov chain Monte

Carlo method in the sense that a Markov chain is constructed such that the limiting

distribution only assigns probability 1 to the core state. Having constructed such a

Markov chain, we form a realization of the chain
{
ω(0), ω(1), ω(2), · · ·

}
and once the

core is reached, the network remains in ωc in the consecutive periods.

4.3 Convergence of the Distributed Dynamic Coalition

Formation Algorithm

We now proceed to prove that the proposed distributed dynamic coalition formation

algorithm accompanied by the randomized search method for blocked sensors guar-

antees the maximum average sleep time for the sensors conditional on feasibility and

fair sleep time allocations as defined in Sec. 2.1. This will be proved by showing

that the best-reply process with experimentation in Algorithm 4.1 converges to the

core of the defined coalition formation game.

Theorem 4.3.1. Suppose the randomized search method (Algorithm 4.2) is em-

ployed to detect blocked sensors. If every sensor follows Algorithm 4.1 and if the

core of the game is nonempty, the best-reply process with experimentation converges

to the core of the game with probability one. Equivalently, in the Markov chain,

lim
n→∞P

(
ωn = ωc|ω0

)
= 1, ∀ω0 ∈ Ω (4.24)
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where ωc = (Pc, tc) denotes the core of the game.

Proof. Suppose γ blocked coalitions exist in state ωn. If ζ samples are taken (we

assume ζ À γ) from 2N \∅, the probability of detecting % blocked coalitions in

state ωn is given by
(γ

%)(
K2N−γ
Kζ−% )

(K2N

Kζ )
. Particularly, the probability of detecting all blocked

coalitions is
(K2N−γ

Kζ−γ )
(K2N

Kζ )
. Therefore, there is a positive probability to detect blocked

coalitions with only checking the sample set. Note that any two blocked coalitions

may comprise overlapping blocked sensors. Hence, the probability of detecting all

blocked sensors follows

pd ≥
(K2N−γ

Kζ−γ

)
(K2N

Kζ

) . (4.25)

Detecting at least one blocked sensor, as stated in Sec. 4.1, will guarantee destabi-

lizing non-equilibrium absorbing states with probability ε.

In [14, Theorem 2] it is proved that the vector of sleep times, allocated in an

absorbing state of the best-reply process with experimentation, coincides with the set

of core allocations of the game. Therefore, it is implied that if ω = (P, t) is an

absorbing state, then t will be a core allocation for the game and P will be the

coalition structure in which it can be achieved.

Finally, we prove that the best-reply process with experimentation in Algorithm

4.1 converges to an absorbing state with probability one as time tends toward infinity

when Algorithm 4.2 is deployed for detecting blocked sensors. This is proved by

showing that the process will not get stuck in ergodic sets other than the absorbing

states. Suppose that there exists a non-singleton ergodic set Ψ ⊂ Ω such that

|Ψ| ≥ 2. [14, Theorem 2] guarantees that none of the states in Ψ involve a core

allocation (absorbing states are singleton ergodic sets). As a result, for each ω ∈ Ψ

there exists {k,S ′k} /∈ P such that
∑

i∈S′
k
ti < v({k,S ′k}). Therefore, some sensors

have the incentive to experiment. There is a positive probability that all the sensors

in the blocked coalitions (m sensors) are detected. In addition, these sensors can
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experiment and form singleton coalitions with some positive probability. Hence,

Pn+1 which comprises of: (i) singleton coalitions, and (ii) non-singleton coalitions

which have no blocked sensors, can be reached in one step. Since ωn+1 can be

reached from ωn with some positive probability, we have ωn+1 ∈ Ψ. Now, using

the fact that the core is nonempty and starting with ωn+1, an absorbing state

ωc = (Pc, tc) can be reached in one step. All sensors in non-singleton coalitions

in ωn+1 do not experiment and all sensors in singleton coalitions experiment. This

occurs with probability (ξε)m. Now, for every Sc ∈ Pc, we fix one sensor denoted

by i(Sc). There is a positive probability 1
Ξi(Pn+1)

that all the other sensors in Sc

experimenting in ωn+1, join Sc and demand tci . The resulting state is ωn+2 = ωc.

Therefore, starting from ωn+1 there is a positive probability to reach an absorbing

state. This contradicts the assumption that ωt+1 is an element of an ergodic set and

completes the proof.

Noting that the exhaustive search method is a special case of Algorithm 4.2, in

which all the blocked sensor nodes are detected, the convergence of the best-reply

process with experimentation can be easily inferred from Theorem 4.3.1.

Mean Time to Absorption

In order to study the tradeoff mentioned in Remark 4.2.1, we propose to use the

mean time before absorption as the convergence rate for Algorithm 4.1. Suppose

the core of the game is nonempty. Then, there exists at least one recurrent state

in addition to the transient states in the Markov chain defined by the best-reply

process with experimentation. By definition, a homogeneous Markov chain with at

least one transient and one recurrent state is called absorbing. The state space Ω

for an absorbing chain can be decomposed as

Ω = T +
∑

j

Rj , (4.26)
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where Rj ’s denote the disjoint recurrent classes (states comprising core in this work)

and T denotes the set of all transient states. The transition probability matrix can

also be block-partitioned as

P =




R1 · · · 0 0
...

. . .
...

...

0 · · · Rn 0

TR1 · · · TRn Q




. (4.27)

Here, Ri’s denote the sub-matrices with transition probabilities within each recur-

rent class and Q denotes the sub-matrix with transition probabilities within the

transient states; Furthermore, TRi’s contain the probabilities of going from each

transient state to each state in the recurrent classes. In this work, there exists only

one state comprising the core in each recurrent class, i.e., Ri = 1 for i = 1, 2, . . . , n.

Therefore, (4.27) reduces to

P =




In 0

TR Q


 , (4.28)

where In denotes the identity matrix with n equal to the cardinality of the set of

cores in the game.

We seek to compute the mean time before absorption by a given recurrent class

starting from a given transient state. For this purpose, the notion of fundamental

matrix S for absorbing chains is employed which is defined by

S =
∞∑

n=0

Qn. (4.29)

Staring from (4.29) and multiplying both sides by (In−Q), it is straight forward to

show that

S(In −Q) = In. (4.30)
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Furthermore, since |T| is finite,

S = (In −Q)−1. (4.31)

Now, the following theorem provides the mean time before absorption by any

of the recurrent classes Rj (core of the coalition formation game) in terms of the

above defined fundamental matrix.

Theorem 4.3.2. [57, Theorem 6.2] Consider a homogeneous Markov chain with

transition probability matrix P as in (4.28). The expected absorption time from each

transient state i is given by the i-th element of

E(TR) = S1. (4.32)

where 1 represents a column vector of ones and TR denotes the first-time visit to

one of the recurrent classes Rj after time 0.

This measure will be used in Sec. 5.1 to compare the convergence rate of Al-

gorithm 4.1 when accompanied with the two different search methods for blocked

sensors (see Sec. 4.2).

4.4 Network Architecture and Implementation Issues

In order to employ Algorithm 4.1 to perform coalition formation amongst sensors

to localize multiple targets, it is important to consider the constraints imposed by

the sensor technology. Consider a hierarchical WSN composed of: (i) moderately

populated sensor nodes with limited processing power, memory and energy, and (ii)

a backbone of sparsely spread sensor nodes which assume the role of coalition heads

(CH) and have more computational power and memory and provide larger commu-

nication ranges. Assume the CHs are able to communicate with each other. Each

non-singleton coalition is assigned to a CH which knows the network configuration
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(i.e. locations of other nodes in the network) through an initial setup process. Each

node, existing in a non-singleton coalition, sets up a bidirectional communication

link with the CH. It is also assumed that the sensors are equipped with passive

direction-of-arrival (DOA) detectors and use the Zigbee/IEEE 802.15.4 protocol to

transmit data.

The main computational overhead in Algorithm 4.1 is to detect the blocked

sensors. This task is being accomplished by the CHs collaboratively such that each

CH searches for the blocked coalitions associated with a specific target. In other

words, the CH to which the DOA estimations of a specific target are sent by the

sensor nodes which are localizing it searches for the blocked coalitions comprising

that target. Then, the blocked sensors’ indices are broadcasted among all CHs.

Therefore, the CHs will also be responsible to inform the sensors whenever they are

blocked by any other coalition. In addition, since the CHs represent the role of the

base station for each coalition, they will be responsible for updating the state of the

network after each iteration of Algorithm 4.1 for all sensors in the network. Hence,

computing (4.19) can also be turned over to the CHs. Otherwise, the sensor nodes

have to incur the communication overhead for receiving the following information

from CHs: Qn, Pn and
∑

j∈Sn
k

j 6=i

tnj for all k ∈ K. In the latter case, the sensors also

need to experience an initial setup process to receive the information about the

location of all the other sensors in the network.

Each sensor node, joining a new coalition, sends a message to inform the new

CH. The former CH will also be informed about this move through communication

with the new CH at the end of each period. However, if a sensor is leaving a coalition

to form a singleton coalition, the former CH should be informed. The overhead for

leaving a coalition and joining a new coalition is called the switching cost. This cost

only comprises the communication overhead for informing either the new or the old

CH. Hence, the switching cost for the sensor nodes is inexpensive and they can jump

between coalitions without expending much power.
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4.5 Multiple Target Localization Algorithm in Large

WSNs

Pre-processing for Large WSNs In large WSNs (comprising large number of

sensor nodes), to prevent ineffective sensors taking part in the coalition formation,

a pre-processing algorithm is proposed which both reduces the memory and compu-

tational costs to a great extent and ensures that the best-reply process with the new

set of sensors reaches an absorbing state. The following theorem states the condi-

tion under which the existence of at least one absorbing state is guaranteed in the

Markov chain underlying the best-reply process in the sensors coalition formation

game.

Theorem 4.5.1. In a sensor network comprising N sensor nodes attempting to

localize K targets, there exists at least one absorbing state in the Markov chain

defined by the best-reply process if

∃ k ∈ K s.t.
∑

i∈N
v ({0, {i}}) ≤ v ({k,N}) . (4.33)

Proof. The proof is very similar to the one presented in [14, Theorem 1]. Suppose

that for target k, which satisfies (4.33), the grand coalition {k,N} is formed and

each sensor achieves a sleep time tsi ≥ v ({0, {i}}) such that
∑

i∈N tsi = v({k,N}) ≥
∑

i∈N v ({0, {i}}). Now, it is easy to show that there is no incentive for any sensor

to leave the grand coalition. Each sensor i ∈ N has two choices: (i) join other

non-singleton coalitions, (ii) form the singleton coalition. Since tsi > 0 for all i ∈
N , they have no incentive to form non-singleton coalitions where v({k, {i}}) =

0. Furthermore, since tsi ≥ v({0, {i}}), they have no incentive to form singleton

coalitions. Hence, ωs = ({k,N} , ts) constitutes an absorbing state for the best-

reply process.

Four parameters, as explained in Sec. 3.3, affect the total sleep time allocated
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to each coalition: (i) number of sensor nodes, (ii) relative distances of the sensors to

the target, (iii) relative bearings of the sensors to the target, and (iv) prior density

of the target. Considering these four parameters, the set of nodes participating in

the algorithm is contracted as follows:

The algorithm is initialized with the two nearest sensors to µ̃. Starting the algo-

rithm, in each iteration, consider the set of sensors located inside a circle, denoted

by Srm , with radius rm and centered at µ̃. If v ({k,Srm}) ≥ v
({

k,Srm−1

})
in-

crease rm by ∆r steps; Otherwise, using the structural results presented in Sec. 5.1,

eliminate the sensor nodes with the following properties:

i ∈ E1 ∪ E2, (4.34)

E1 =
{

ı ∈ N
∣∣∣
(
θı − θ ' `π, ` = 0,±1,±2

)
∧

(
rı ≥ r

)
for ı,  ∈ Srt , ı 6= 

}
,

E2 =
{

ı ∈ N
∣∣∣

(
Cp̃11 À Cp̃22 ∧ θı = ±π

2

)
∨ (Cp̃22 À Cp̃11 ∧ θı = 0 or ± π)

}
.

Continue increasing rm until v ({k,SrM}) < v
({

k,SrM−1

})
even by eliminating the

above nodes and define R = rM −∆r. Then, Ôk is defined to replace Õk in (3.12)

such that

v ({k,SR}) =
∑

i∈SR
v ({0, {i}}) . (4.35)

Ôk is updated in each iteration of the Bayesian estimator until Ôk > Õk.

Here, Ôk is defined since computing the characteristic function using the orig-

inal Õk can result in small characteristic function values for which (4.33) cannot

be satisfied for any rm. In cases where the prior points to a large uncertainty area

(i.e. Cp̃11,Cp̃22 À 1) or the target is required to be localized with very high ac-

curacy (i.e. Õk À 1), (3.12)-(3.14) may even produce negative values. Hence, the

above pre-processing algorithm is devised to approach the required accuracy Õk in

consecutive steps of the Bayesian estimator, at the same time, guarantee the exis-

tence of an absorbing in each step. Note that more accuracy in localizing the targets
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(i.e. larger Õk) translates to more iterations of the Bayesian estimator to reach Õk.

Hence, sensors are required to take more measurements which again establishes the

aforementioned trade-off between Õk and the average sleep time allocated to the

sensor nodes.

The pre-processing algorithm is executed for all targets k ∈ K and the result-

ing smaller network comprises the sensors: N ′ =
⋃K

k=1 SRk
. If any sensor in the

set N\N ′ joins N ′, the assumption in Theorem 4.5.1 is not satisfied anymore; hence,

the existence of the absorbing state is not guaranteed.

Remark 4.5.1. As explained in Remark 4.2.1, the memory and computational over-

head is closely connected to the number of sensor nodes being involved in the dis-

tributed dynamic coalition formation algorithm. Particularly, by reducing the num-

ber of sensors using the pre-processing algorithm, the computational overhead for

finding blocked sensors using exhaustive search method is vastly improved.

We now proceed to present the main target localization algorithm by integrat-

ing Algorithm 4.1 with a sequential Bayesian estimator. In general, any Bayesian

estimator can be utilized. Here, the sequential Markov Chain Monte Carlo (particle

filter) is selected due to its superior performance in bearings-only tracking [15].

Algorithm 4.3: (Multiple Target Localization in Large WSNs)

Initialization: Set t = 1. Generate particles
{
p

t,l
k =

[
xt,l

k , yt,l
l

]
, wt,l

k

}L

l=1

for all k ∈ K based on the prior density of the target p (p̃k) where wt,l
k

denotes the weight of particle l for target k at time t.

Step 1— Compute

µ̃t
k = E

{
pt

k

}
, (4.36)

and
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Qt
k =



var

(
xt

k

)
0

0 var
(
yt

k

)



−1

, (4.37)

for all k ∈ K.

Step 2— Run the Pre-processing Algorithm for each target based on µt
k

and Qt
k. Compute Ôt

k according to (4.35) for all k ∈ K. If Ôt
k > Õk,

set Ôt
k = Õk and FLAG = 1. Then, set

N ′ =
K⋃

k=1

SRk
. (4.38)

Step 3— Run the Dynamic Coalition Formation Algorithm (Algorithm

4.2 by CHs, as explained in Sec. 4.4, and Algorithm 4.1 by each sensor

node) with the initial state ωt,0 and using µt
k, Qt

k, Ôt
k and N ′ to reach

the core ωc = (Pc, tc).

Step 4— Each sensor i existing in a non-singleton coalition Sc
k ∈ Pc

takes a number of measurements equal to T − tci from target k, transmits

the measurements to the corresponding CH and then enters the sleep

mode: Zt =
{Zt

1, · · · ,Zt
K

}
.

Step 5— Run the particle filter

{
p

t+1,l
k , wt+1,l

k

}L

l=1
= Particle Filter

({
p

t,l
k , wt,l

k

}L

l=1
,Zt

k

)
, ∀k ∈ K.

(4.39)

Step 6— If FLAG 6= 1: Set ωt+1,0 = ωt,c and t ← t + 1. Go to Step 1.

Else, finish.

Next chapter, provides numerical examples to demonstrate the behavior and
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performance of the approach proposed to save power in data acquisition amongst

sensor nodes assigned the localization task in different scenarios.
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Chapter 5

Numerical Examples

In this chapter, examples are provided to illustrate the behavior and performance

of Algorithm 4.3. Throughout this section, a standard deviation of 10 degrees is

assumed as the measurement error variance for all sensors, i.e. σi = 10◦. It is also

assumed that α = 1, T = 10 and Õ1 = Õ2 = 103. Finally, we assume that τi = 5

for all i ∈ N . Hence, sensors receive sleep times in the interval [5, 10] and it is

guaranteed that
∑

i∈N tci
N ≥

∑
i∈N τi

N = 5.

5.1 Example: Target Localization

Structural Results: In this part, the behavior of the distributed dynamic coali-

tion formation algorithm is illustrated in a small network comprising 8 sensors. The

small size of the network helps to gain insight on how the prior density of the target

and the relative configuration of the network play a role in the optimal coalition

structure Pc and sleep times tc allocated to the sensors in the core.

Example 1

Consider the network configuration depicted in Fig. 5.1(a). Assume p (p̃) is Gaus-

sian with covariance matrix Cp̃ =


100 0

0 100


. Equal variances in the x and y

direction are considered to ignore the effects of the prior density of the target. At

this point, we only aim at studying the role of the relative configuration of the

sensors and target on the coalition structure and allocations in the core. Since the

sensor pairs {1, 5}, {2, 6}, {3, 7} and {4, 8} are located on the same line of sight from
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the target, they provide the same bearing information about the target. However,

the information that the sensors in coalition {1, 2, 3, 8} provide about the position

of the target (i.e. p̃ = [x, y]T ) is more accurate due to being closer to the target. In

addition, the bearings to nodes 1 and 3, as well as nodes 2 and 8, are perpendicular

which provide the highest diversity in measurements. Hence, it is expected that the

coalition {1, 2, 3, 8} be allocated the largest total sleep time. If any of the sensors in

the set {4, 5, 6, 7} joins this coalition, stochastic observability is no further improved

and the characteristic function allocates less total sleep time as explained in Sec.

3.3. This is verified by the simulation results in which v({1, {1, 2, 3, 8}}) = 26 and

v({1, {1, 2, 3, 4, 8}}) = v({1, {1, 2, 3, 5, 8}}) = 19.

In Fig. 5.1(a), mean of the target prior distribution and sensors are depicted by

the + and ¤ signs, respectively. Filled squares represent the optimal coalition of

sensors localizing the target and ti’s give the sleep times, in terms of multiples of ∆,

allocated to the sensors in the core. The solid and dashed ellipses also represent

the prior and posterior densities of the target, respectively. As can bee seen, the

optimal coalition localizing the target and the sleep time allocations in the core

are Sc
1 = {1, {1, 2, 3, 8}} and tc = (7, 6, 7, 10, 10, 10, 10, 6), respectively.

Table 5.1 gives the expected time before absorption to the core (see Sec. 4.3)

for two different values of ε for both exhaustive and randomized search methods.

As it can be seen, decreasing the probability that the set of blocked sensors get the

chance to experiment, the expected time before absorption increases. The trade

off mentioned between the size of the sample set and the expected time before

absorption can also be observed in Table 5.1.

Example 2

In this example, effect of the prior density of the target p(p̃) is investigated on the

optimal coalition structure reached by every sensor following Algorithm 4.1. The

prior density is assumed to be a zero-mean Gaussian distribution with its covariance
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Figure 5.1: Effects of (a) relative configuration of the target and sensors, and (b)
prior density of the target on the optimal coalition structure in the core for local-
ization of a single target.
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Table 5.1: Expected Time Before Absorption: Exhaustive Search Method vs. Ran-
domized Search Method.

S0
1 = {1, {1, 3}} and t0i = 5, ∀i ∈ N
ξ ε ζ E(TR)

Exhaustive Search
0.3 0.6 - 31.9

0.3 0.3 - 49.8

Randomized Search
0.3 0.6 7 46.3

0.3 0.3 7 63.4

given by one of the two following matrices:

Cp̃1 =



100 0

0 100


 , Cp̃2 =



25 0

0 100


 . (5.1)

Since Cp̃2 places larger uncertainty on the y coordinate of the target position, it is

expected that the optimal coalition structure is formed such that it provides more

information about that coordinate. In addition, Fig. 5.1(b) reveals that nodes {1, 5}
and {3, 7} provide information only on the y and x coordinates of the target’s

position, respectively. However, sensors in the set N\{1, 3, 5, 7} provide information

on both coordinates. Since the uncertainty in x direction is small compared to y

direction, node 3 may provide redundant information as nodes {2, 8} reduce the

uncertainty in x direction. Fig. 5.1(b) justifies the above discussion by showing the

optimal coalition localizing the target and allocations in the core: Sc
1 = {1, {1, 2, 8}}

and tc = (5, 6, 10, 10, 10, 10, 10, 6). Now, considering Cp̃2 since the uncertainty along

the x axis is increased, we anticipate that node 3 also takes part in the localization

which is verified in Fig. 5.1(a).
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Target Localization

In this part, the behavior of the multiple target localization algorithm (Algorithm

4.3) is investigated for the network configuration depicted in Fig. 5.1. It is assumed

that the covariance of the target distribution is given by Cp̃1 at t = 0. Here, running

the pre-processing algorithm results in N ′ = N . Fig. 5.1(a) shows the optimal

coalition structure and sleep times allocated to the sensors when Algorithm 4.1

reaches the core at t = 1. Subsequently, each sensor takes a number of measurements

equal to T − ti which results in the posterior distribution depicted by the dash-dot

ellipse. This updated distribution will be used as the prior for the next decision

epoch. Fig. 5.2(a) and Fig. 5.2(b) demonstrate the core state, as well as the prior

and posterior distribution of the target, at t = 2 and t = 3, respectively. As can

be seen, although the optimal coalition structure Pc remains the same for t = 1

to t = 3, the optimal sleep times tc allocated to the sensors in the core change.

Furthermore, an example is provided to study the behavior of the Algorithm

4.1 for multiple target localization in the network depicted in Fig. 5.3. Here, it

is assumed that Cp̃1 = Cp̃2 = [ 100 0
0 100 ]. Running the pre-processing algorithm

results in:SR1 = {7, 12, 13, 16, 17, 18, 22, 23} and SR2 = {3, 8, 9, 12, 13, 14, 18, 19}.
These sensors are shown with the same color as the corresponding target in Fig.

5.3. Here, SR1 ∩ SR2 = {12, 13, 18}. Hence, there exists a competition between

the two coalitions localizing the two targets and these sensors will join the coalition

in which they can achieve larger sleep times. Fig. 5.3 demonstrates the optimal

coalition structure and sleep times allocated to the sensors in the core for t = 1.

Finally, the performance of Algorithm 4.3 is compared with a scenario in which

a fixed set of sensor nodes Sr are assigned to localize the target in a Bayesian

framework. These sensors are assumed to be the closest sensors to the target, hence

providing more accurate measurements comparing to other sensors. In multi-target

tracking scenarios, if a sensor i is in the closest sensors set for more than one target

(i.e. ∃ k1, k2 ∈ K such that i ∈ Sr
k1

and i ∈ Sr
k2

), then the sensor node chooses the
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Figure 5.2: Localization of a single target: optimal coalition structure and the sleep
times allocated to the nodes in the core in term of multiple of ∆ at: (a) t = 2, and
(b) t = 3.
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Figure 5.3: Multiple target localization: optimal coalition structure and the sleep
times allocated to the sensors in the core at t = 1.

target to localize randomly. We refer to this method as range-based measurement

allocation. These nodes are assumed to be awake for the whole period and take T

measurements, i.e. ti = 0 for all i ∈ Sr, after which the prior of the target is updated.

Fig. 5.4 shows the average sleep times allocated to the sensors in each method as

a function of the number of sensors in the network. Here, 100 random network

configurations are generated in two-dimensional space with N sensors and K targets

spread uniformly in each network. The sensors are spread around the targets in

a 200m × 200m square and the prior densities of the targets are assumed to be

Gaussian with covariance matrix Cp̃ = [ 100 0
0 100 ]. The core is replaced with the

absorbing state of the best-reply process without experimentation when the core

turns out to be empty. As the number of sensors in the network increases, uniform

distribution of the sensors provides more diversity in the relative configuration of the

target and sensor nodes; Hence, more diverse bearing measurements are collected

and the average sleep times allocated to the sensors increases in both methods.
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Figure 5.4: Average sleep time allocated to the sensors during a localization task
versus number of sensors in the network: distributed dynamic coalition formation
vs. range-based measurement allocation.

However, as can be seen in Fig. 5.4, the distributed dynamic coalition formation

approach demonstrates a significant average sleep time increase compared with the

range-based method. Particularly, the average sleep time allocated to the nodes is

guaranteed to be larger that
∑

i∈N τi

N = 5.

The aforementioned trade-off between the required localization accuracy Õk and

the average sleep time allocated to the sensors is also demonstrated and compared

with the heuristic range-based measurement allocation in Fig. 5.5. Here, we again

considered 100 random network configurations with 10 sensors and one target spread

uniformly in a 200m × 200m square network. The prior density of the target is also

assumed to be Gaussian with covariance matrix as above. Fig. 5.5 illustrates that

as Õk goes up, the average sleep time allocated to the sensors decreases in both

approaches; However, the average allocated sleep time drops more rapidly in the

range-based method. Hence, the distributed dynamic coalition formation approach
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provides a better trade-off between Õk and the average sleep time allocated to the

sensors.
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5.2 Example: Tracking Slow Moving Targets

In this example, we use Algorithm 4.3 for tracking a slow moving target as follows:

Algorithm 5.1: (Coalition Formation in Target Tracking)

Require: p(p̃0
k) (initial prior density of the targets with mean µ̃0

k and

covariance C0
p̃k

) and Õk for all k ∈ K. Set t = 1:

Step 1— Run Algorithm 4.3 with p(p̃t
k) and Õk.

Step 2— Approximate the posterior as a Gaussian distribution p
(
p̂t

k

)

with

µ̃t
k = E

{
p

f
k

}

and

Qt
k =



var

(
xf

k

)
0

0 var
(
yf

k

)



−1

for all k ∈ K where
{
p

f,l
k =

[
xf,l

k , yf,l
l

]
, wf,l

k

}L

l=1
denotes the final set of

particles and their weights when Algorithm 4.3 terminates.

Step 3— Predict the distribution of the target position for the next

period:

p
(
p̃t+1

k

)
= Traget Model

(
p̂t

k, ∆t
)

.

Step 4— Set t ← t + 1. Go to Step 1.

In Algorithm 5.1, the basic assumption is that the targets move slowly enough

such that the core of the game does not change until Algorithm 4.3 is converged.

Considering the fact that several iteration of Algorithm 4.3 are required to reach

the required accuracy for localization of the target, it is assumed that the time
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Figure 5.6: Network configuration for tracking a slow moving target: Dashed circle
depicts the set of sensors determined by the pre-processing algorithm.

interval ∆t between the consecutive iterations of Algorithm 5.1 is at least one order

of magnitude larger than T∆. Sensors enter the sleep mode after transmitting the

final measurements (see Step 4 in Algorithm 3.3) and wake up to record and transmit

the first set of measurements in the next iteration of Algorithm 5.1.

Consider a network of sensors as shown in Fig. 5.6. The target motion model

is assumed to follow a random walk to the left on the x axis as follows: the target

decides whether to go to the left for 0.2m or stay at its current position every 50∆s.

The time interval between the consecutive iterations of Algorithm 5.1 is also assumed

to be 1000∆ s. Results are shown in Fig. 5.7 for two iterations of Algorithm 5.1

starting with Cp̃0 = [ 25 0
0 25 ]. Sensors which form the optimal coalition for tracking

the target are depicted with filled squares for the first iteration of Algorithm 4.3.

Fig. 5.7 illustrates two iterations of Algorithm 5.1. The solid ellipse and ∗ depict

the updated posterior distribution of the target and its mean, respectively, after

reaching the required accuracy.
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Figure 5.7: Tracking a slow moving target: optimal coalition structure and the
sleep times allocated to the nodes in the core in terms of multiples of ∆ for the first
iteration of Algorithm 4.3 at (a) t = 0, and (b) t = 1000∆.
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Chapter 6

Conclusions and Future Work

This chapter summarizes the work accomplished in this dissertation, followed by a

discussion on the possible future work for further investigation.

6.1 Summary of Work Accomplished

This dissertation considered the power conservation problem for data acquisition in

WSNs deployed to localize multiple targets. The problem was formulated as combi-

natorial optimization problem where the goal is to maximize the average sleep time

allocated to the sensors over the set of all possible coalition structures such that a

pre-defined localization accuracy is provided for all targets. This NP-hard problem

was interpreted as a non-superadditive coalition formation game in a bearings-only

localization scenario. We proposed a distributed dynamic coalition formation algo-

rithm in which each sensor greedily maximizes its expected sleep time for the next

iteration by joining one of the existing coalitions. The notion of the core was rede-

fined and used as the solution concept for this game. It was shown that the sleep

time allocations and coalition structure in the core is the solution for the aforemen-

tioned combinatorial optimization problem. Furthermore, we proposed a distributed

dynamic coalition formation algorithm in which each node greedily maximizes its

expected sleep times for the next iteration. Experimentation was introduced on the

side of sensors (as players of the game) such that each sensor chooses suboptimal

strategies whenever it knows the chance of achieving larger sleep times in future. It

was shown that if every sensor in the network follows this algorithm, it converges
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to the core of the coalition formation game, and hence the optimal coalition struc-

ture and allocations, with probability one. The main advantage of this algorithm

is that the solution to an NP-hard problem is reached distributively by each sensor

following a simple best-reply rule. This algorithm was integrated with a sequential

Bayesian estimator to localize targets, for which the superior performance over the

heuristic range-based measurement allocation method was demonstrated through

Monte Carlo simulations. The proposed algorithm can also be employed in range-

only tracking scenarios by deriving the appropriate characteristic function.

6.2 Directions for Future Work

1. Numerous applications in wireless networks: The distributed dynamic

coalition formation algorithm developed in Sec. 4.2 provides a generic frame-

work to solve the problem of coalition formation in multi-agent domain. This

approach can be exploited to optimize various performance metrics in wire-

less networks, where the network entities collaborate to achieve some common

goal, by reaching the core of the underlying game. An example is provided in

Appendix B in which the problem of resource allocation with load balancing

is investigated in cognitive radio network. In this example, cognitive radios

(as players of the game) form collaborative groups to exploit the spectrum

available to cognitive base stations most efficiently. Hence, defining the ap-

propriate characteristic function for the cooperative scenario under study, the

proposed distributed dynamic coalition formation algorithm can be utilized to

reach the optimal coalition structure and allocations.

2. Distributed overlapping coalition formation: A possible extension to the

present work is to investigate a scenario in which sensor nodes are involved in

executing more than one task, e.g. detecting intrusions to the network, record-

ing measurements from more than one target at each period, forwarding the
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collected measurements to the sink in a multi-hop scenario, etc. Therefore,

sensors have to distribute their resources between several (not necessarily dis-

joint) coalitions. To tackle such scenarios, the cooperative game model devel-

oped in Sec. 3.1 should be modified allowing overlapping coalitions. Following

this modification, the notion of the core, as the equilibrium state in the game,

should be redefined such that once the system reached that state no player can

do better off by deviating from it. A distributed decision-making framework

can also be developed similar to the one proposed in this dissertation. For

this purpose, one can benefit form [58] which introduces a model for coopera-

tive games with overlapping coalitions and provides some good insight on the

notion of stability in the defined setting.

3. Leftover battery and communication cost: Another possible extension to

the present work is to take both the leftover battery energy for each sensor node

and the communication cost between the sensors and the CHs into account.

For this purpose, one needs to modify the characteristic function defined for

the sensors coalition formation game to incorporate both these effects. We

expect this modification to increase the expected time elapsed before the first

sensor runs out of battery. In addition, it is expected to achieve a trade-off

between the relative distances of the sensors to the target and relative distances

of the sensors to the CH in the optimal coalition structure reached in the core

by incorporating the communication cost.

4. Alternate bounds for stochastic observability: As explained in Ap-

pendix A, to derive the characteristic function for the game, a lower bound

is found for the stochastic observability (determinant of the B-FIM). The ap-

proach used in Appendix A requires this lower bound to be linear in terms

of the active times of the sensors. There exists no generic approach to derive

a closed-form expression for such a bound; However, one may use heuristic
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methods to find a tighter lower bound. It is expected to achieve larger char-

acteristic function values, hence, larger sleep times for a coalition of sensors

compared to the characteristic function proposed in this dissertation if one

can derive such tighter bounds.
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self-organizing uplink tree for voip services in IEEE 802.16j networks,” in Proc.

Intl. Conf. on Communications, Dresden, Germany, June 2009.

[50] T. Sandholm, K. Larson, M. Andersson, O. Shehory, and F. Tohme, “Coalition

structure generation with worst case guarantees,” Artificial Intelligence, vol.

111, no. 1, pp. 209–238, 1999.

[51] D. Ray, A game-theoretic perspective on coalition formation. Oxford University

Press, USA, 2007.

[52] R. Aumann and S. Hart, Handbook of Game Theory with Economic Applica-

tions, Volume 2: Volume II. North Holland, 1994.

[53] T. Dieckmann, “The evolution of conventions with mobile players,” Journal of

Economic Behavior and Organization, vol. 38, no. 1, pp. 93–111, 1999.
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Appendix A

Derivation of the Characteristic

Function

In this appendix, detailed derivation of the characteristic function presented in

(3.12)-(3.14) is provided. In what follows, we benefit from the following inequal-

ity:

log

(∑N
i=1 Xi

N

)
≥

∑N
i=1 log (Xi)

N
. (A.1)

This inequality holds due to the concave property of the logarithm function. As the

first step, we remove the expectations in (2.26) using the approximation in (2.38).

Then, applying the above inequality in (2.26)-(2.28) repeatedly, a lower bound can

be found as follows:
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Subsequently, applying

∑
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∑

j∈Sk
j 6=i
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one can write (A.3) as
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Since the arguments T−ti in log(T−ti) are integers in the closed interval [1, T − v({i})]
and due to concavity of the logarithm function, log (T − ti) can be lower bounded

by

log (T − ti) ≥ − log (T )
T − 1

ti + log (T ) . (A.6)
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In the next step, applying (A.6) in (A.5), one can write
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Finally, applying the relaxed constraints (2.4) in (A.7), the sum of sleep times of

the sensors in a particular coalition Sk can be expressed as
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The right-hand side in (A.8) gives the maximum total sleep time that can be achieved

by a coalition of sensors Sk constrained on the required localization accuracy Õk.

In this dissertation, the aim is to minimize the energy consumption by maximizing

the average sleep time allocated to the sensors. Therefore, we equate the sum of the

sleep times of the sensors in Sk to the upper bound provided by the right-hand side.
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However, as defined in Sec. 2.1, ti’s are positive integer numbers. As the result, the

sum on the left-hand side should also be confined to Z+ (positive integer numbers).

Hence,

∑
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where bxc+ = max {0, bxc} and b·c denotes the greatest integer function. This func-

tion provides the maximum feasible sleep time for a coalition Sk localizing target k

and hence is considered as the characteristic function for the sensors coalition for-

mation game defined in Sec. 3.2.
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Resource Allocation in

Cognitive Radio Networks

Cognitive radio networks (CRN) are promising to enrich the connectivity demand of

users through exploitation of under-utilized licensed bands. However, there are few

vigorous studies in the literature that provide a holistic view of CRNs in performing

tasks such as cognitive radio (CR) admission policy, resource allocation and load

balancing. In this work, the load balanced resource allocation problem is formulated

in CRNs as a non-superadditive coalition formation game in which the CRs, as

players of the game, form collaborative groups to exploit the spectrum available to

cognitive base stations (CBS) most efficiently. Upon joining a coalition, each CR

receives a payoff that can be translated to the revenue form the achieved throughput

subtracted by the cost incurred by occupying one of the available sub-channels. A

distributed decision making framework is developed for coalition formation among

CRs based on the approach presented in Sec. 4.1, that converges to the core of the

defined game corresponding to the maximum average payoff conditional on feasibility

and subject to the fairness rule as defined in 2.1. Furthermore, we will elaborate

on load balancing properties of the proposed solution and demonstrate its superior

performance compared to opportunistic scheduling.
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B.1 Introduction

The end users’ demand to be “always connected” is progressively increasing, man-

dating ever more efficient spectrum utilization techniques. This demand for high

bandwidth, seamless and heterogeneous connectivity makes the traditional fixed

spectrum allocation paradigm unsustainable. Spectrum regulatory bodies have,

hence, embraced a change of paradigm towards more flexible spectrum manage-

ment methods such as secondary spectrum access (SSA), e.g. the FCC has recently

authorized unlicensed access to TV white spaces [59]. A number of standardization

efforts including IEEE 802.22 [60] and IEEE SCC41 are already underway to address

the market needs with SSA-enabled technologies. Cognitive radio (CR) [61] is a key

enabling technology to this end, facilitating intelligent and agile spectrum access

while protecting the licensed users of a given band from degrading interference.

Consider a wide geographical area covered with several primary transmitters

(PT), e.g. TV broadcast towers, each with their dedicated (and licensed) frequency

band as shown in Fig. B.1. A cognitive radio network (CRN) comprised of several

cognitive base stations (CBS) is also operating in that area, very much in-line with

IEEE 802.22 standard assumptions. Due to the lack of dedicated signaling channel

for CRN and inherent instability of underlying secondary bands, each CBS should

autonomously perform tasks such as CBS-CR association, resource allocation, load

balancing and CR hand over (HO).

In this appendix, a distributed decision making framework is proposed based on

the approach presented in Sec. 4.1, which addresses the aforementioned resource

allocation and load balancing problem in a CRN in two steps. In the first step, each

CBS admits an optimal set of CRs, where the admissibility criterion is based on

finding the optimal coalition structure in each cell such that the sum of utilities for

all cells is maximized. Indeed, this step can be conceived as the coalition structure

generation process, as explained in Sec. 4.1. Next, the admitted CRs negotiate to
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Figure B.1: A typical primary and secondary network architecture pertinent to our
analysis.

reach the optimal payoff allocation in a distributed fashion such that the average

payoff of the CRs is maximized, conditional on feasibility and subject to a fairness

criterion (see Sec. 2.1), hence, converging to the core of the game. This last step

can also be identified as the bargaining process (see Sec. 4.1).

In the past decade, since the introduction of cognitive radio into wireless commu-

nications lexicon, a great body of research has been developed focusing on various

aspects of this promising technology [62], [63]. However, a holistic view of a CRN

has only recently gained the attention of researchers [60], [62], [64]. To the best

of our knowledge no previous study has investigated the distributed CR admission,

load balancing and optimal channel allocation in a CRN rigorously.

Using cooperative game theory as a tool to optimize performance metrics in

wireless systems has also recently gained attention. In [44], formation of virtual

MIMO systems is formulated as a super-additive cooperative game and the stability

of the grand coalition is studied for both transmitters and receivers cooperation.
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A similar problem is investigated in [45], considering the cost (in terms of power)

for exchanging data between cooperating transmitters. To this end, the authors

developed a simple merge and split algorithm, based on the approach proposed in

[34], through which transmitters are able to self-organize and form stable coalitions.

As another example, [43] studies collaborative spectrum sensing (CSS) in CRNs

in which secondary users interact for improving their sensing performance, while

taking into account the false alarm cost. Since the utility represents probabilities,

the game is formulated as a non-transferable cooperative game and a distributed

algorithm is proposed for coalition formation.

The rest of this appendix is organized as follows: In Sec. B.2, the load balanced

resource allocation problem is formulated. In Sec. B.3, the problem is interpreted

as a cooperative game and a two-step dynamic coalition formation algorithm is

presented. Finally, the numerical results are presented and discussed in Sec. B.4.

B.2 Problem Formulation

Notation

Let N = {1, 2, · · · ,N} denote the set of CRs in the multi-cell CRN. Coalitions

and coalition structures are denoted by S and P, respectively. The set of all pos-

sible coalition structures is also denoted by C. Finally, the set of sub-channels in

coalition S is denoted by Rs.

Each coalition S is identified by a tuple S = (x,y) where x ∈ {0, 1}N is given by

xi =





1, if i ∈ S
0, if i /∈ S

(B.1)

Let {ei; i = 1, · · · , N} denote the standard basis vectors in RN. Then, x =
∑

i∈S ei.

In addition, the occupied sub-channels in a particular coalition S are identified by
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a vector y ∈ Z+|Rs| given by

yj =





i, if sub-channel j is oocupied by CR i

0, if sub-channel j is not occupied
(B.2)

Lastly, we define an indicator function to determine the sub-channel index to which

each CR is connected as follows

I(i) =





j if yj = i

0 otherwise
(B.3)

Channel Model

Let F denote the set of licensed frequency bands available in the investigated ge-

ographical area. A specific primary cell k, coexisting with the secondary cell k, as

depicted in Fig. B.1, exploits a subset of these licensed bands denoted by Fk ⊆ F ,

where k ∈ K = {1, 2, . . . ,K}. The set of available frequency bands for SSA is then

indicated by F\Fk and is denoted by F−k. It is assumed that the CBS in cell k will

partition F−k into Mk equal-bandwidth sub-channels denoted by the set Mk. For

mathematical tractability of the investigated problem, it is also assumed that each

CR requires to access one sub-channel and each sub-channel in cell k will exclusively

be allocated to a single CR. We assume a block fading channel model for all sub-

channels, where the channel fading distribution in the Mk sub-channels of each cell,

as monitored by each CR, are i.i.d. The CSI is assumed to be known at the CRs,

and are fed back to CBS, which can be reliably estimated using the periodic pilot

signals from each CBS.

Pricing Mechanism

Consider a scenario where the primary license owner charges the CRN a flat price,

say G ($), for the total available frequency for SSA over a fixed and agreed period of
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time τ (S). This “spectrum lease” period is ideally a multiple times of the resource

allocation period of CRN, i.e. τ = T × τ̃ , where T ∈ N+ and τ̃ denotes the dura-

tion of CRN resource allocation period. Such an agreement alleviates the need of

primary network monitoring the CRN operation compared to the case where spec-

trum charges are assumed proportional to the CRN activity. Assuming existence of

equal-size secondary bandwidth in all cells, the incurred cost of CRN per cell over

one resource allocation period is G̃ = G
T×K ($). If secondary bandwidth is not equal

in all cells, a proportional cost distribution can be utilized. The CRN, hence, is

interested in maximally utilizing the available bands so as to gain a higher utility

from the charged frequency bands. In the rest of this appendix, and without loss of

generality, we focus on an arbitrary resource allocation period of CRN.

To compensate the incurred cost, CBS k is assumed to use a cost function defined

by

G(‖xk‖) = λ · (exp
ln( G̃

λ
+1)

|Mk|
‖xk‖−1), (B.4)

where λ is an arbitrary constant and ‖ · ‖ indicates the L1 norm in RN, defined

by ‖xk‖ :=
∑N

i=1 |xi|. This cost function demonstrates increasing differences such

that when user i joins cell k, it will pay a higher price of G (‖xk‖)−G (‖xk − ei‖),
compared to existing users in that cell. Therefore, as a particular cell becomes con-

gested, CRs will be motivated to join other cells provided that they have access to

sub-channels in other cells. This approach amounts to a distributed load balancing

mechanism in the CRN which can be parameterized by λ and G̃. The utility func-

tion (in dollars) for a coalition of CRs associated with CBS k, for a given resource

allocation period, is defined as

U(Sk) = C


 ∑

i∈Sk

[
log

(
1 +

Pi,k · gi,I(i),k

σ2
i

)]
−G (‖xk‖) , (B.5)

where Pi,k denotes the allocated power to CR i from CBS k, σ2
i denotes the noise
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power for CR i (assumed to be equal for all sub-channels) and gi,I(i),k is the channel

gain for CR i when using sub-channel I(i) in CBS k. The first term in (B.5)

returns the revenue (in dollars) as a function of the achieved throughput. Hence,

the utility function (B.5) essentially determines the profit that each coalition of

CRs gains by occupying a subset of the sub-channels available in a particular cell.

Note that while the cost for accessing resources in each cell, i.e. G (‖xk‖) in (B.5),

has a readily accessible monetary interpretation, the revenue term may need to be

indirectly translated to a monetary regime. The revenue of each CR, for instance,

can be envisioned as the dollar equivalent of end user satisfaction proportional to

its received service from CBS k.

Upon joining a given coalition, CR i will contribute towards the coalition utility

and in return will receive a pay-off, denoted by pi. The problem considered in this

appendix can then be formally stated as

maximizep∈D
P∈C

∑
Sk∈P

(∑
i∈Sk

pi

)

N

(P2) subject to
∑

i∈Sk
pi ≤ U (Sk) ∀k ∈ K (C1)

pi ≥ pi ∀i ∈ A (P) (C2)

where p = (p1, · · · , pN) denotes the payoff vector for all CRs and A (P) denotes the

set of all non-singleton coalitions formed in a particular coalition structure P which

will be vigorously defined later. To make the problem mathematically tractable,

the set of profit values that can be allocated to the CRs is confined to a finite set.

Suppose ∆ ($) is the smallest profit unit. CRs’ demands are then restricted to

the integer multiples of ∆ in the closed interval [0,maxxk∈{0,1}N,‖xk‖≤|Mk| U(Sk)].

Throughout, this set is denoted by D.

In the combinatorial optimization problem in (P2), the objective function is

defined as the average payoff achievable by the CRs forming coalitions to exploit

the resources available for SSA in the CRN. This objective function is aimed to

99



Appendix B.2. Problem Formulation

be maximized over the set of all possible coalition structures C. The constraints

in (C1) guarantee that the total payoff allocations in a particular coalition do not

exceed the profit gained by that coalition. Furthermore, as formulated in (C2), it is

assumed that a given CR i is interested in cooperation only if its payoff is greater

than pi. Let N ′ denote the set of CRs admitted to network in the solution to (P2).

A fairness rule is also defined, as in Sec. 2.1, on the vector of payoffs p allocated

to the CRs in N ′ as follows:

∑

i∈Sk

pi ≥ U (Sk) ∀Sk ⊆ 2N \∅, ∀k ∈ K. (B.6)

These constraints guarantee that the total profit in the coalitions are divided among

the CRs in a fair fashion such that no CR can gain higher profits by exploiting the

resources associated to any other CBS.

Next section provides a two-step distributed solution to the above problem fol-

lowing the approach presented in Sec. 4.1.

Formulation of Constraints

In the presented formulation, since the channel gains vary as the CRs connect to

different CBSs, the utility function for each coalition, given in (B.5), depends on the

CBS to which the CRs in that coalition are connected, as well as the sub-channels .

Hence, as explained in Sec. 3.4, CBSs are considered as (virtual) players of the game

achieving zero payoffs. Hereafter, to denote this convention, each coalition k ∈ K will

be denoted by {CBSk,Sk}. Singleton coalitions will also be denoted by {CBS0, {i}},
where i ∈ N\(∪Sk∈PSk). Finally, for our formulation to be well posed, the following

constraints are imposed on the utility function:

• To prevent CBSs leaving coalitions, the utility of a coalition of CRs without
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the corresponding CBS is set to

U(Sk) = 0 ∀k ∈ K. (B.7)

• To prevent CBSs jump between coalitions, we set

U({CBSk, CBSk′ ,Sk}) = 0 ∀k, k′ ∈ K. (B.8)

• To allocate each sub-channel exclusively to one CR, we set

U({CBSk,Sk ∪ {l}}) = 0, if ∃ i ∈ Sk : I(i) = I(l) = j. (B.9)

• Finally, the utility for singleton coalitions is set to

U({CBS0, {i}}) = 0, (B.10)

and to prevent singleton coalitions joining other singleton coalitions, we set

U({CBS0,S0}) = 0, (B.11)

where S0 ∈ 2N\∪
K
k=1Sk .

B.3 Distributed Dynamic Coalition Formation

In this section, we propose a two-step algorithm which converges to the solution

to problem (P2) by each CR independently following simple best-reply rules, as

explained in Sec. 4.1. In the the first step a distributed decision-making framework

is developed in the form of two simple join and disjoin rules. It is guaranteed that

if each CR follows these rules, coalitions are formed in each cell such that the sum

of the profits in all coalitions is maximized. Note that traditional (centralized)
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scheduling schemes have a myopic view of isolated cells which, as shown in Sec. B.4,

will fail to maximize the overall utility of all cells. The second step of our proposed

solution ensures reaching a core allocation in the non-superadditive cooperative TU

game defined on the set of CRs admitted to the CRN in the first step.

We now proceed to elaborate these steps separately.

Admission

The first step is essentially the coalition structure generation process, as explained

in Sec. 4.1, and aims to find a partition on the set of CRs such that the sum of the

utility functions for all coalitions is maximized, i.e.

maximize
P∈C

∑

k∈K
U({CBSk,Sk}) (B.12)

subject to < xk1 ,xk2 >= 0 ∀k1, k2 ∈ K

where < ·, · > denotes the inner product of vectors in RN. Intuitively, the con-

straints in (B.12) emphasize that coalitions are disjoint, as defined in Chapter 2;

hence, no CR exploits the resources in two different cells simultaneously. This com-

binatorial optimization problem can be interpreted as a cooperative game (N , v) =

({1, · · · , N} ,U), where N denotes the set of CRs in the CRN which collaborate to

maximize the profit gained by forming coalitions to utilize resources in the CRN.

To reach the optimal coalition structure in the game, a distributed join and disjoin

algorithm is proposed. In each iteration of this algorithm, CRs follow simple join

and disjoin rules which are similar to the merge and split rules as proposed in [34].

In addition, to prevent incompatibility of CRs’ strategies, it is assumed that CRs get

the chance to revise their strategies according to a Bernoulli trial with probability ξ

as in Sec. 4.1. Each CR, having the opportunity to revise its strategy, employs the

following rules to decide which coalition to join in the next period:
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Join and Disjoin Rules:

Rule 1: CR i joins coalition Sk if

di→k := [U({Sk ∪ {i}}) + U({S(i)\{i}})]− [U({Sk}) + U({S(i)}] > 0,

(B.13)

and

k = argmax
j∈K

(
max
l∈Rk
yl=0

di→j

)
, (B.14)

where S(i) denotes the coalition to which CR i belongs.

Rule 2: CR i disjoins coalition Sk if

U({Sk\ {i}}) > U({Sk}), (B.15)

More generally, all CRs i ∈ Sk\S ′k disband if there exists a coalition S ′k
such that:

U (S ′k
)

> U (Sk) . (B.16)

To simplify the notation, we dropped CBSk when referring to coalition k in

the above rules. Note that di→k in effect determines the added profit (or loss

when di→k < 0) of CR i leaving its current coalition S (i) to join Sk. Further-

more, to prevent getting stuck in non-optimal coalition structures, it is assumed

that if there exists a coalition S ′k such that
∑

i∈S′
k
di→k > 0, where all i ∈ S ′k are in

the range of CBS k, CRs i ∈ S ′k experiment as explained in Sec. 4.1. The following

theorem shows the convergence and stability of the partitions resulting from the

above operations.
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Theorem B.3.1. Any iteration of successive join and disjoin operations terminates.

In addition, the coalition structure reached PA∞ is stable and

PA
∞ = argmax

P∈C

∑

Sk∈P
U (CBSk,Sk) . (B.17)

The stability implies reaching a specific coalition structure P, such that no CR is

interested in leaving P through join and disjoin operations. All CRs in non-singleton

coalitions N ′ =
{
∪k∈KSk;Sk ∈ CSA

∞, |Sk| > 1
}

are admitted to the network. All

other CRs form singleton coalitions and achieve zero payoffs.

Dynamic Coalition Formation

In the next step, the admitted CRs, denoted by the set N ′, collaborate to form

coalitions such that the average payoff allocated to each CR is maximized conditional

on the constraints (C1) and (C2) and subject to the fairness criteria (B.6). This

problem can be formulated as

maximizep∈D
P̃∈C̃

∑
S̃k∈P̃

(∑
i∈S̃k

pi

)

|N ′|

subject to
∑

i∈S̃k
pi ≤ U

(
CBSk, S̃k

)
∀k ∈ K

∑
i∈S̃′

k
pi ≥ U

(
CBSk, S̃ ′k

)
∀S̃ ′k ⊆ 2N ′\∅, ∀k ∈ K

pi ≥ pi ∀i ∈ N ′

The above resource allocation problem can be interpreted as a non-super-additive

cooperative TU game (N ′, v), where v(·) = U(·) as defined in (B.5). CRs cooperate

in order to exploit available resources most efficiently. Each CR i is assumed to be

interested in cooperation only if its profit is greater than pi. Hence, the reservation

payoff v (CBS0, {i}) is set to pi, i.e. v (CBS0, {i}) = pi. Those CRs which prefer

not to cooperate will simply choose the best available sub-channel and the cost for

accessing each sub-channel will be the uniform distribution of the remaining cost
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between unoccupied sub-channels in each cell in the core.

In this step, the distributed dynamic coalition formation algorithm (Algorithm

4.1 accompanied by Algorithm 4.2) is utilized to reach the core of the defined re-

source allocation game. For this purpose, Algorithm 4.1 is required to be modified

as follows:

Algorithm B.1: (Distributed Dynamic Coalition Formation for Re-

source Allocation)

Initialization: At n = 0 select initial coalition structure such that each

non-singleton coalition comprises at least two CRs and each CR can at

least achieve its reservation sleep time v({CBS0, {i}}) = pi. Set

p0
i =





v({CBSk,S(i)})
|S(i)| if |S (i)| > 1

v ({CBS0, {i}}) otherwise
∀i ∈ N ′ (B.18)

where S(i) denotes the coalition comprising CR i. Set ω0 =
(P0,p0

)
. In

addition, let ξ, ε ∈ (0, 1) to be fixed for all sensors in the network.

- The following steps are done independently by each CR i ∈ N ′:

Step 1—Revision Strategy: Take a random draw from the Bernoulli

trial with probability ξ. If the outcome is “keep strategy”, set pn+1
i =

pn
i , Sn+1 (i) = Sn (i) and go to Step 5. Otherwise, go to Step 2.

Step 2—Evaluation of the Best Strategy for the Next Period: Com-

pute

pn+1
i (ωn) = max

k∈K∪{0}

(
max

I(i)∈Yn
k

v
({
CBSk, S̃k ∪ {i}

})
−

∑

l∈S̃k
l 6=i

pl

)
, (B.19)
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where pn+1
i (ωn) ∈ Di, and

Sn+1
i (ωn) =

{(
xn+1 (ωn) ,yn+1 (ωn)

)
;xn+1

m = 1, yn+1
m′ = i

}
, (B.20)

respectively. m and m′ are also determined by

m ∈
{

argmax
k∈K∪{0}

(
max

I(i)∈Yn
k

v
({
CBSk, S̃k ∪ {i}

})
−

∑

l∈S̃k
l 6=i

pl

)}
, (B.21)

m′ ∈ argmax
I(i)∈Yn

k

{
v

(
{CBSk, S̃k ∪ {i}}

)
−

∑

l∈S̃k
l 6=i

pl

}
, (B.22)

where S̃n
0 = {∅} and Yn

k denotes the set of unoccupied sub-channels in

cell k and in period n.

Step 3—Experimentation: If i ∈ Bn, take a random draw from the

Bernoulli trial with probability ε. If the outcome in is “experiment”,

choose pn+1
i uniformly in the interval Di. In addition, choose k ∈ K∪{0}

and I (i) ∈Mk uniformly with probabilities 1
K+1 and 1

|Mk| , respectively.

Go to Step 5. Else, go to Step 4.

Step 4—Best-reply Process: Set pn+1
i = pn+1

i (ωn) and choose

Sn+1 (i) ∈ Sn+1
i (ωn) with equal probability 1

|Sn+1
i (ωn)| .

Step 5—Recursion: Set n ← n + 1 and go to Step 1.

In Algorithm B.1, Di denotes the set of integral multiples of ∆ in the closed

interval
[
pi, maxP∈C

∑
Sk∈P U (CBSk,Sk)

]
, where the upper bound is determined by

the solution to the admission step. Theorem 4.3.1 proves that if each CR i ∈ N ′

follows Algorithm B.1 and if the core of the game is non-empty, the core of the

resource allocation game is reached with probability one which provides the solution
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Figure B.2: Example 1: Coalition structure and profits allocated to the CRs in the
core.

to the problem (P2). After reaching the core, those CRs which form singleton

coalitions will simply choose the best available sub-channel and the cost for accessing

each sub-channel will be the uniform distribution of the remaining cost of available

resources in each cell between unoccupied sub-channels when the core is reached.

B.4 Numerical Results

The simulation set-up is chosen pertinent to the IEEE 802.22 standard. The carrier

frequency is assumed 700 MHz (TV UHF band) and sub-channel bandwidth is

normalized so that the throughput is expressed as Nats/S/Hz. The channel path

loss model is considered to be COST 231, with CBS hight of 50 m and CR height

of 2 m. We assume a 3 dB log-normal shadowing and Rayleigh fading with unit

mean. In addition, the maximum transmit power of each CBS and the cell radius

are assumed to be 4 Watts and 30 Km, respectively. Furthermore, it is assumed

that λ = 6, G̃ = 2 and C(x) = C · x in (B.5) with C = 3.5 $/MNats.
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Table B.3: Channel Gains for Example 1

1 2 3 4

g1,I(1),1 5.8e-16 1.2e-10 1.3e-27 0.4869

g6,I(6),1 3e-11 1e-27 0.0056 0.7108

To demonstrate the behavior of the proposed algorithm, two examples are pro-

vided in Figs. B.2 and B.3. In both examples, a CR is admitted for each sub-channel

by reaching the stable coalition structure through the join and disjoin rules proposed

in the admission step. The admitted CRs are shown with unfilled squares in color

with the corresponding CBS. Non-singleton coalitions are depicted by filled squares

and CRs which are not admitted to the network are depicted by black squares. In

the first example, we consider the network configuration illustrated in Fig. B.2. It

is assumed that the available bandwidth for each cell is equal to other cells and is

divided into 4 equal sub-channels. Fig. B.2 shows the coalition structure and payoffs

allocated to the CRs in the core using the proposed distributed dynamic coalition

formation algorithm. The sub-channel allocations in the core can also be shown with

the vectors y1 = [5, 3, 6, 1] and y2 = [7, 11, 9, 12]. As can be seen in Table B.3, sub-

channel 4 in cell 1 provides the highest channel gain for CR 6. However, it prefers

sub-channel 3 and lets CR 1 to occupy sub-channel 4 so that the total throughput,

and as a result, the total cell profit improves. This can be verified noting that

v({CBS1, ({1, 5, 6}, [5, 1, 0, 6])}) = 14.6 and v({CBS1, ({1, 5, 6}, [5, 0, 6, 1])}) = 25.3.

In the second example, the network configuration shown in Fig. B.3 is considered

and it is assumed that the available bandwidth for each cell is divided into 5 equal

sub-channels. Fig. B.3 demonstrates the coalition structure and payoffs allocated

to the CRs in the core. The sub-channel allocations in the core can also be shown

with the vectors y1 = [0, 0, 2, 0, 7], y2 = [0, 0, 1, 3, 8], and y3 = [0, 6, 4, 0, 0]. As

can be seen in Table B.4, the channel gain for sub-channel 2 is higher in cell 1
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Figure B.3: Example 2: Coalition structure and payoffs allocated to the CRs in the
core.

Table B.4: Channel Gains for Example 2

1 2 3 4 5

g6,I(6),1 5.8e-44 0.1038 7.2e-19 0.0001 2e-34

g6,I(6),3 5.4e-8 0.0599 7.3e-24 8.8e-13 0.0002

than in cell 3. However, as shown in Fig. B.3, due to the load balancing property

discussed in Sec. B.2, CR 6 achieves less profit occupying the third sub-channel in

cell 1 rather than occupying the second sub-channel in cell 3. This can be verified

by comparing the feasible payoff for CR 6 in cell 1, given by v({CBS1, {2, 6, 7}})−
v({CBS1, {2, 7}}) = 5.7, and its payoff in the core, p6 = 8.

In Fig. B.4, the average individual CR payoff using the proposed distributed

dynamic coalition formation scheme is compared to the opportunistic scheduler as

the number of CRs in the CRN increases. Each point of the graph is an average over

1000 i.i.d. realizations of the CRN depicted in Fig. B.3. The opportunistic scheduler
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Figure B.4: Average individual CR payoff versus number of CRs in the CRN: Dis-
tributed Dynamic Coalition Formation vs. Opportunistic Scheduling.

in each CBS uses the same utility function as in (B.5) except for the fact that G̃ is

uniformly distributed between all sub-channels. As it can be seen in Fig. B.4, the

average individual payoff increases as the number of CRs increases in both schemes.

However, the distributed dynamic coalition formation approach demonstrates a sig-

nificant average payoff increase compared with opportunistic scheduling, achieving

up to 95.3% improvement at N = 32.
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