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Abstract

Lifetime maximization is a key challenge in the design of sensor-network-based track-
ing applications. In this dissertation, formation of optimal coalitions of nodes is
investigated for data acquisition in bearings-only target localization such that the
average sleep times allocated to the nodes are maximized. Targets are assumed to be
localized with a pre-defined accuracy where the determinant of the Bayesian Fisher
information matrix (B-FIM) is used as the metric for estimation accuracy. Coop-
erative game theory is utilized as a tool to devise a distributed dynamic coalition
formation algorithm in which nodes autonomously decide which coalition to join,
while maximizing their feasible sleep times. Nodes in the sleep mode do not record
any measurements; hence, save power in both sensing and transmitting the sensed
data. The proposed scheme reduces the number of sensor measurements by captur-
ing the spatio-temporal correlation of the information provided by the sensors from
one side and bounding the localization accuracy to the pre-defined value from the
other side. It is proved that if each node operates according to this algorithm, the
average sleep time for the entire network converges to its maximum feasible value.
In numerical examples, we illustrate the inherent trade-off between the localization
accuracy and the average sleep time allocated to the nodes and demonstrate the

superior performance of the proposed algorithm via Monte Carlo simulations.
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Chapter 1

Introduction

1.1 Energy Concerns in Wireless Sensor Networks

In recent years, wireless sensor networks (WSNs) have gained increasing attention
in a wide range of applications [1]. A WSN is a distributed embedded system
comprising a large number of low-cost, low-power and energy-constrained sensor
nodes. These sensors communicate over a wireless channel, performing distributed
sensing and collaborative data processing tasks for various vital military and civilian
applications. Typically, a power source supplies the energy required by the sensors
to perform the above tasks. This power source is often made up a battery with a
limited energy budget. Even though, in some applications, it might be possible to
scavenge energy from the environment (e.g., by using solar cells), external power
sources exhibit a non-continuous characteristic which mandates the need for having
power supplies such as batteries. In addition, since sensors may be deployed in
a hostile or unreachable environment, it could be inconvenient or impractical to
replace or recharge the batteries [2]. Hence, the crucial question that arises is:
“how to reduce energy consumption in WSNs so that the lifetime of the network is
prolonged?”

In general, energy expenditure in WSNs can be divided into three main com-
ponents: (i) data acquisition (sensing), (ii) data processing, and (iii) data trans-
mission. Experimental measurements have shown that data transmission consumes
significantly more energy that data processing [3]. However, in many real applica-

tions (e.g., [4-7]) the power needed by the sensors is comparable, or even greater
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than, the power consumption by the radio. Furthermore, in some applications (e.g.,
target detection, target localization, etc.), due to the dense deployment of sensor
nodes, sensor observations are highly correlated in the space domain. The nature
of the physical phenomenon also establishes the temporal correlation between the
consecutive measurements of the sensors in tracking applications [8]. This spatio-
temporal correlation results in unneeded sensed data (redundant information) which
is unnecessary to be transmitted to the sink. Hence, the benefits from developing
efficient data sensing protocols which captures this spatio-temporal correlations is
two-fold: (i) by taking less measurements, it reduces power consumption when the
sensor itself is power hungry, and (ii) it reduces the unneeded communications even

if the cost of sensing is negligible [2].

1.2 Contributions and Results

In this dissertation, the problem of power conservation for data acquisition is studied
in a WSN that is deployed to localize multiple targets based on noisy bearing (an-
gle) measurements at individual sensors. A novel distributed coalition formation and
sleep allocation scheme is proposed to reduce the number of sensor measurements by
keeping the localization accuracy within an acceptable level. Since estimating the
position of a target in two dimensions needs at least two angle measurements (to per-
form triangularization), it is natural for the sensors to form cooperative coalitions.
There exists an inherent trade off between battery power and sensing accuracy such
that if too few sensors form a coalition, the variance of their collaborative estimate
is high. On the other hand, if too many sensors form a coalition, excessive energy
is consumed. As an example, when two sensors lie on almost a straight line with
the target, they record almost the same bearing information about the target. This
redundant data can be avoided by putting one of the sensors in the sleep mode. Sen-

sor nodes in the sleep mode do not record observations, and as the result, conserve
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energy both in data acquisition and transmitting the sensed data.

Given that target localization requires sensors cooperation, the main idea is
to develop a methodology for sensors to dynamically form optimal collaborative
coalitions in a distributive manner. The abstract formulation we consider is a non-
superadditive cooperative game. The term non-superadditive means that the grand
coalition (the coalition comprising all sensors) is not optimal. This is mainly due to
the trade off between battery life and the variance of estimates mentioned above.
The nodes in each coalition share measurements to localize a particular target, and
as a result, are rewarded with sleep times. Two questions that arise are: (i) What
are the optimal coalition structures for localizing multiple targets with a pre-defined
accuracy? (ii) How can nodes choose the optimal coalitions over time to ensure that
the average sleep times allocated to the nodes are maximized (and, hence, battery
life is prolonged)?

The above questions can be addressed nicely within the framework of coalition
formation in a cooperative game. Assuming that the true position of the target is
unknown, a lower bound can be derived for the covariance of the estimated target
position using the Cramér-Rao lower bound (CRLB), the inverse of which is known
as the Bayesian Fisher information matriz (B-FIM). As is commonly used in the
tracking literature (e.g., [9, 10]), determinant of the B-FIM is utilized as the met-
ric of estimation accuracy. Throughout, this measure is referred to as stochastic
observability.

Since stochastic observability depends on both the angle of measurements and
distances of sensors to the target, it is clear that the optimal coalition does not
necessarily comprise the nearest sensors to the target. The optimal coalition struc-
ture would typically have some sort of diversity amongst angle measurements of
the sensor nodes. Therefore, determining the optimal coalition structure for track-
ing multiple targets is a challenging task. Moreover, devising an algorithm that

each sensor deploys so that the entire network eventually converges to the optimal
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coalition structure is of significant interest.

1.2.1 Why Cooperative Games?

Noncooperative game-theoretic methodologies have been developed for sensor acti-
vation in [11} [12]. These approaches are fundamentally different to the cooperative
game theoretic framework considered in this work. Cooperative game theory pro-
vides an expressive and flexible framework for modeling collaboration in multi-agent
systems. This is appropriate for bearings-only localization in which localization
is essentially achieved by triangularization as explained above. Non-superadditive
coalition formation games, as a main branch of cooperative games, study the com-
plex interactions among agents when the equilibrium state comprises several disjoint
coalitions. Hence, it conforms to the framework in multi-target tracking where the
optimal network structure comprises several coalitions of sensors, each localizing a
particular target. Considering the spatio-temporal correlation of the information
provided by the sensors, a cooperative game analysis allows us to optimize each of

these coalitions in terms of power consumption.

1.2.2 Main Contributions

The main contributions of the present work can be summarized as follows:

o Formulation of the network average lifetime mazximization problem as a non-
superadditive coalition formation game: The power conservation problem is
formulated for data acquisition in two-dimensional bearings-only target local-
ization as a maximization problem for the average sleep time allocated to the
sensors. Each node shares its measurements with other nodes in the coalition
and, as the payoff, obtains a share from the total sleep time achievable by the
coalition under constraints on stochastic observability. In addition, a fairness
criteria is defined for the sleep times allocated to the individual sensors. This

problem is then formulated as a non-superadditive coalition formation game

4
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in which the characteristic function gives the maximum total sleep time that
can be allocated to each coalition of nodes such that the pre-defined accuracy
is satisfied for the corresponding target. The aforementioned fairness criteria
guarantees that this total sleep time is divided among the sensor nodes in a
fair fashion. We propose to use the modified core as the solution concept for

this cooperative game.

The distributed dynamic coalition formation algorithm: In non-super-additive
TU games, finding the optimal coalition structure such that the sum of the
total payoffs gained by each coalition is maximized is an NP-hard problem.
The reason for this complexity is that one needs to search among all possible
coalition structures which is given by the N** Bell number [13] in an N-person
game. This motivates using randomized algorithms to solve the coalition for-
mation problem in non-superadditive games. In this work, a distributed dy-
namic coalition formation algorithm (Algorithm 4.1) is proposed in which each
sensor (as the player of the game) greedily maximizes its expected sleep time
(payoff) for the next period by choosing the optimal coalition whenever it
gets the opportunity to revise its strategy. In addition, sensors rarely choose
suboptimal coalitions whenever they are aware of a potential increase in their
allocated sleep times in future. It will be proved in Sec. 4.3 that if all the
sensors follow the proposed algorithm, the entire network eventually reaches
the maximum total feasible sleep time constrained on the required localization
accuracy which corresponds to the core of the defined non-superadditive coali-
tion formation game. Our work generalizes recent results in dynamic coalition
formation [14] in the sense that convergence to the core is proved when the full
set of blocked nodes is not available at each iteration. A randomized search
method (Algorithm 4.2) for the blocked sensors (players) is also combined with
the above algorithm to achieve a compromise between the computational cost

at each iteration and the convergence rate of the algorithm.
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The proposed algorithm can be applied to a large class of problems in which
“players” cooperate to achieve a common goal and the optimal structure com-

prises several disjoint coalitions of players (See Appendix B).

Multiple target localization and tracking: Multiple target localization is achieved
by employing the proposed distributed dynamic coalition formation algorithm
in a sequential-Bayesian framework (Algorithm 4.3). In general, any Bayesian
estimator can be utilized; However, in this dissertation, the sequential Markov
chain Monte Carlo (particle filter) is selected due to its superior performance
in bearings-only localization and tracking [15]. In addition, a pre-processing al-
gorithm is proposed which addresses the redundant processing and data trans-
missions in WSNs monitoring a large geographical area. It will be proved that
the proposed algorithm guarantees reaching an absorbing state in the Markov
chain underlying the proposed distributed dynamic coalition formation algo-
rithm. This work also incorporates the implementation issues and required
network structure for a WSN operating to localize multiple targets using the

proposed distributed scheme and based on optimal bearing-measurements.

Numerical examples: Numerical examples illustrate the behavior of the pro-
posed algorithm in different scenarios through which the structural results,
exploited to devise the pre-processing algorithm, are studied. These scenarios
include both target localization and tracking. The inherent trade-off between
the energy consumption and the localization accuracy is also demonstrated by
comparing the average sleep times required by the nodes to localize targets
through Monte Carlo simulations. In addition, the superior performance of
the proposed algorithm is demonstrated, in terms of the average sleep time
allocated to the nodes, over the heuristic range-based measurement allocation

method using Monte Carlo simulations.
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1.2.3 Related Publications

The main body of this dissertation is summarized in the following papers:

e O. Namvar Gharehshiran and V. Krishnamurthy, Dynamic Coalition Forma-
tion for Efficient Sleep Time Allocation in Wireless Sensor Networks Using
Cooperative Game Theory, in Proc. of 12" International Conference on In-

formation Fusion (ICIF), Seattle, WA, July 2009.

e O. Namvar Gharehshiran and V. Krishnamurthy, Dynamic Coalition Forma-
tion for Sleep Time Allocation in Bearings-only Target Localization Using
Wireless Sensor Networks, Submitted to IEEE Transactions on Signal Pro-

cessing, revised Nov. 2009.

e O. Namvar Gharehshiran, and V. Krishnamurthy, On Prolonging Life-time in
Wireless Sensor Networks With Application in Localization: A Coalitional-
Game Theoretic Approach, Accepted to the 35th IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICCASP), Dallas, TX,
March 2010.

The results appearing in Appendix Bl are summarized in the following paper:

e O. Namvar Gharehshiran, A. Attar, and V. Krishnamurthy, Dynamic Coali-
tion Formation for Resource Allocation in Cognitive Radio Networks, Accepted
to the IEEE International Conference on Communications (ICC), Cape Town,
South Africa, May 2010.

1.3 Background and Related Works

In the past decade, a great body of research has been developed focusing on how
to reduce energy consumption of the sensor nodes in WSNs such that the network

lifetime can be extended to reasonable times. At a very general level, [2] classifies the
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Energy Conservation
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Protocols Data Acquisition
Adaptive Sampling

Figure 1.1: Taxonomy of energy conservation schemes in WSNs.

main enabling techniques for energy conservation in WSNs as: duty cycling, mobility-
based, and data-driven. These approaches have to be exploited simultaneously to
achieve the maximal energy conservation. Fig. 1.1 shows the taxonomy of the power
conservation schemes in WSNs.

Duty cycling is primarily focused on the networking subsystem. Approaches
based on duty cycling propose protocols on how to put the radio transceiver of
the sensors in the sleep mode when there is no more data to send/receive, and are
commonly accompanied by a sleep/wakeup scheduling algorithm to coordinate the
nodes’ sleep/wakeup times. Indeed, duty cycling techniques exploit the network
redundancy to prolong the network lifetime by adaptively selecting only a minimal
subset of sensors to be in active mode such that the connectivity is maintained.
Examples of such techniques include: topology control protocols [16], sleep/wake up
protocols [17-19], and MAC protocols with low duty cycle [20, 21].

In mobility based techniques, particular nodes which are less energy constrained
(e.g., nodes whose battery can be recharged or replaced) are assigned to collect
data from the sensors. Hence, ordinary nodes save energy due to the reduction in
path length, contention and forwarding overhead. In addition, the nodes which are

located in more loaded paths or closer to the sink do not suffer premature power
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depletion. These schemes can be classified as: mobile-sinks [22), 23] and mobile-
relays [24, 25]. Mobility plays a critical role in maintaining connectivity in an
initially connected network which turn into a set of disconnected subnetworks due
to the energy depletion.

Data driven techniques, in contrast to the duty cycling and mobility approaches
which focus on reducing power consumption in data transmission, are designed to
optimize the energy expenditure in both data transmission and sensing subsystems
by keeping the sensing accuracy within an acceptable level. In general, these ap-
proaches can be classified as: (i) data reduction techniques, and (i) energy-efficient
data acquisition. As examples of data reduction schemes, we refer to: data aggre-
gation [26], data compression [27], and data prediction [28, 29]. Energy-efficient
data acquisition techniques concentrates on power conservation by decreasing the
number of data samples. Adaptive sampling schemes reduces the number of samples
by by exploiting spatio-temporal correlations between the information provided by
the sensors. The algorithms in this class are mostly application-tailored. As in-
stances, we refer to [30] and [31] which consider the adaptive sampling problem
in a flood warning system and environmental monitoring scenario, respectively. In
this dissertation, we focus on the a distributed game-theoretic adaptive sampling
scheme in bearings-only localization which, to the best of our knowledge, has not
been investigated in any previous study.

In literature, there exist only a few works investigating coalition formation as
a dynamical process. Among these works, [32-34] can be regarded as the most
relevant ones to the approach presented in this dissertation.

In [32], a dynamic social learning model is considered where each player observes
a random sample of demand vectors and adjusts his demand based on a best-reply
rule in each period. In addition, [32] introduces “mistakes” on the part of players
(analogous to the “experimentation” in [14]) and proves that the set of stochastically

stable states which can be reached is a subset of the set of the cores of the game.
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The approach proposed here departs from [32] in several aspects. First, the re-
sults presented in [32] are restricted to supperadditive game. However, the work pre-
sented in this dissertation can be applied to both supperadditive and non-superadditive
games. Second, [32] completely abstracts from coalition formation and is focused on
allocations. However, the approach considered here explicitly investigates the coali-
tion formation process. Allowing players to choose their coalitions (to join) makes
this work invaluable for applications where distributed decision making is of interest.
Finally, the best-reply rule considered in [32] differs from the one considered here in
the sense that the players try to maximize their expected payoff, conditional on the
probability that their demands are feasible in a particular coalition.

In [33], players are considered to be farsighted and the transition probabilities
between different coalition structures follow a Markov chain. Given this Markov
chain, players try to maximize the present value of their future expected payoffs.
The transition probability from one state to another is positive only if there exists
a coalition in which all players achieve larger expected future payoffs. However, in
our model, players are myopic which corresponds to the special case of [33] with
a discount factor of 0. The main difference between these two works is that when
players are farsighted, the core will be reached only if it is the unique limit state
of the dynamic process. However, with bounded rationality, a core will be reached
even though the process contains several absorbing states which are not in the core.

In [34], a generic approach is proposed for coalition formation through simple
merge and split operations. These operations take place when they result in an
improvement with respect to some given comparison relation, e.g., utilitarian order.
Furthermore, conditions are introduced under which every iteration of the merge
and split operations yields a unique outcome, which led to a natural notion of
a stable partition. This approach, unlike the approach presented in [32], can be
utilized in both supperadditive and non-superadditive games. However, it departs

from the work presented here in the sense that it is focused on the coalition structure

10
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generation process and does not investigate the bargaining process.

The algorithm devised in this work is based on the approach presented in [14] and
focusses on both the allocations and coalition formation for both supperadditive and
non-superadditive games. Our work differs from [14] in the sense that we assume
not having full information about the set of blocked players at each period. It
will be proved that if each sensor (as the player of the game) follows the proposed
algorithm, the entire network reaches a point in the set of core states of the game
with probability one, in which the maximum average sleep time is achieved and the

total sleep time in each coalition is divided among the sensors in a fair fashion.

1.4 Thesis Organization

The rest of this dissertation is organized as follows. In Chapter 2, the power conser-
vation problem is formulated for data acquisition in bearings-only target localization
in two-dimensional space and the stochastic observability is introduced as the lo-
calization accuracy metric. This problem is interpreted as a non-supperadditive
cooperative game in Chapter I3, where the related concepts and definitions from
cooperative game theory are also provided. In Chapter 4, a distributed dynamic
coalition formation algorithm is introduced for multiple target localization which
converges to the solution to the power conservation problem. In addition, con-
vergence proofs are provided and implementation issues are discussed. Numerical
examples are provided in Chapter 5] to illustrate the behavior and performance of
the proposed solution. Finally, Chapter 6l concludes the thesis and enumerates some
possible future extensions. Derivation of the characteristic function is presented in
Appendix |Al and Appendix B demonstrates how the proposed distributed dynamic
coalition formation algorithm can be utilized to solve the load-balanced resource

allocation in cognitive radio networks (CRN).

11



Chapter 2

Power Conserved Target

Localization

In this chapter, the power conservation problem is formulated for data acquisition in
bearings-only target localization in two-dimensional space and in a scenario where
each target is expected to be localized with a pre-defined accuracy. Target local-
ization is formulated as a non-linear parameter estimation in a sequential Bayesian
framework where, in each period, the prior information about the position of the
target is updated using sensors’ bearing measurements (i.e. the posterior distribu-
tion) and is regarded as the prior for the next period. To measure the accuracy in
localizing targets, stochastic observability is introduced as the estimation accuracy

metric.

Notation and Terminology : Let A= {1,2,--- N} denote the set of sensors.
Any subset & C N is called a coalition and can be identified with a vector S =
(51, ,8Nn) € {0,1}N, where
1 ifies
S; = Vie N. (2.1)
0 ifi¢gS
Those subsets that only contain one node are called singleton coalitions, i.e. {i}. In
addition, the coalition containing all nodes (i.e. N) is called the grand coalition. The
set of all coalitions which forms a partition on N is denoted by P and is called the

coalition structure. Further, the set of all possible coalition structures (i.e, the set

12
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of all partitions on N) is denoted by C, the cardinality of which is given by the N**
Bell number [13]. Finally, = {1,--- ,K} denotes the set of targets detected in the

network.

2.1 Network Average Lifetime Maximization Problem

Consider a scenario in which N sensors are to form coalitions to localize K targets in
two-dimensional space. Each target k is required to be localized with a pre-defined
accuracy denoted by Oy.. Coalitions Sk, k=1,--- , K will be formed, each localizing
a particular target k, and the sensors which are not assigned the localization task
will form singleton coalitions. All sensors in a particular coalition Sy share bearing
measurements to localize target k and as the reward receive some sleep time denoted
by ¢;A. In this formulation, t; € ZN[0,7T] and A denotes the time required by each
sensor to record a single measurement. Therefore, T' — t; determines the number
of measurements that each sensor i records from a maximum of 7' measurements.
Sensors seek to reduce their power consumption in data acquisition by maximiz-
ing t;’s. The aim is to determine the optimal coalition structure and sleep time
allocations such that the average sleep time of the sensors is maximized and, at the
same time, all the targets are localized with the pre-defined accuracy. In addition,
to prevent premature power depletion of the sensor nodes, each sensor is guaranteed
a minimum sleep time equal to 7; measurements.

The coalition formation problem can be formulated as:

.. Zskep(ziesk ti)
maximize,, 7 N
PeC
(P1) subject to det (JB (Sg,t)) >Or  Vke K  (C1)
t; > T Vie N (02)
where t = (¢1,--- ,tn) denotes the sleep time allocation vector and det(Jp(Sg,t))

13



2.1. Network Average Lifetime Maximization Problem

denotes the stochastic observability for a coalition Sy localizing target k which will
be defined in Sec. 2.3l In (P1), the objective function is defined as the average sleep
time allocated to the sensors which is aimed to be maximized over the set of all
possible coalition structures C. The constraints in (C1) guarantee that the required
accuracy is achieved for all the targets in the network. This formulation establishes
a trade-off between the localization accuracy for each target Oy, and the average
sleep time allocated to the sensors in the localization task. In addition to (C1) and

(C2), we introduce the fairness constraints on the sleep time allocations as follows:

S ti>g" (S VSke2V\D, Vk e K, (2.2)
1€Sk
where
*(Sk) = max t; 2.3
g (5e) {ti; €Sk} zz‘;}c (2:3)

subject to  det (Jg (Sg,t)) > O.

Intuitively, g* (Sk) gives the maximum total sleep time achievable in a coalition Sk
such that the pre-defined localization accuracy is satisfied. We set ¢g* (Sg) = 0
if the feasible set in (2.3) is empty. The set of K(2N — 1) constraints in (B.6)
defines a fairness criteria on the sleep times allocated to the sensor nodes in the
sense that the sleep times allocated to the nodes cannot be further improved by
forming a new coalition S;. Therefore, although the sum of the total sleep times
for all coalitions ) g, cp (Zie Sk ti> is maximized, the total sleep time achievable
by each coalition is divided fairly among the sensors in that coalition. In tracking
applications, as the target moves, the optimum coalition structure and sleep time
allocations evolve over time. Hence, the above optimization problem should be
solved repeatedly.

To solve the combinatorial optimization problem in (P1), one has to search

14
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among all possible coalition structures C which is an NP-hard problem (|C| is given
by the N** Bell number). In addition, the feasible values for the vector t has to
be found such that the constraints (C1)-(C3) are satisfied. These tasks incur an
immense computational overhead which have to be accomplished in a centralized
fashion considering the limited power and computational resources of the sensors in
WSNss.

Outline of Main Result: In this dissertation, the above problem is interpreted as
a non-superadditive coalition formation game with N constituting the set of players.
The characteristic function* v (S) for this game gives the total sleep time that can
be achieved by a particular coalition S such that the following relaxed version of

(C1) is satisfied:
L (log (det (I (Sk, £)))) > log (Ox)  Vk € K. (2.4)

Here, L () denotes the lower bound as an operator. We propose a distributed dy-
namic coalition formation algorithm in Sec. 4.2 in which, in each iteration, each
sensor as a myopic optimizer chooses between the existing coalitions to greedily

maximize its expected sleep time as follows:

1 (w) = argmaxg, cp {v (SkU{i}) = Xieso\fiy tj} with probability 1 —¢; (25)

Uniform(P) with probability e;

where w = (P,t) and Uniform(-) denote the state of the network and discrete
uniform distribution, respectively. In addition, ¢; = € > 0 only when there exists a
coalition S}, comprising sensor ¢ for which »°,;c s ti <w (S)- As it will be explained

in Sec. 4.1, the randomization among the existing coalitions that happens with

!The term characteristic function is as used in cooperative games (see Sec. [3.1)) and is completely
unrelated to characteristic functions in probability theory.
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2.2. Non-linear Parameter Estimation in Noise

probability € prevents the nodes being stuck in non-optimal coalition structures. It
will be proved in Theorem 4.3.1] that if each sensor follows (2.5), iterations of the
above algorithm eventually converges to the solution of the problem resulted from
substituting (2.4) in both (C1) and (2.3). Hence, the optimal coalition structure and
sleep time allocations are achieved such that the average sleep time for the sensors in
the network is maximized. This approach brings about two main advantages: (i) it
is performed distributively among the sensors and eliminates the need for a central
decision making device, and (ii) in each iteration, unlike the NP-hard problem in
(P1), sensors have to solve the non-combinatorial optimization problem in (2.5) for
which the computational cost is linear in the number of coalitions (i.e. the number

of targets K).

2.2 Non-linear Parameter Estimation in Noise

In this section, we start with an abstract measurement model. Later in Sec. [2.3) this
abstract formulation is explained in terms of localization in two-dimensional space,
based on which stochastic observability is derived as the metric for localization
accuracy.

Consider a set of sensors denoted by N' = {1,2,...,N}. The parameters that
the sensors aim to estimate constitute an L dimensional vector denoted by p € R

Each sensor i € N records a measurement characterized by

z; =h;(p)+v; st. p~p(p) (2.6)

where z; € RP denotes the measurement vector for the i-th sensor, h; is an arbi-
trary vector-valued but differentiable function of p, and v;’s are mutually indepen-
dent Gaussian random vectors, each with zero mean and covariance matrix R;. In
addition, p (p) denotes the prior distribution for parameter vector p. The set of

measurements collected by a coalition of sensors S will also be denoted by Z (S).
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2.2. Non-linear Parameter Estimation in Noise

Let p(Z(S)) denote an estimate of p which is a function of the observation

vector Z (S). Then, the covariance of p can be expressed as

Cp = Ez5) {(B(2(S8) ~ B) (B(2(S) —B)" } (2.7)

In this work, we adopt a sequential Bayesian framework where the posterior distribu-
tion is obtained by updating the prior p (p) using the sensors’ bearing measurement.
This posterior density is then utilized as the prior for the next period. Hence, the
posterior Cramér-Rao lower bound (P-CRLB) theorem [35] can be employed to es-
tablish a lower bound on Cp. According to this theorem, there exists Jg(S,t) given

by

IB(S,t) = Q+Eyp) {J (S, t)} (2.8a)
Q =B, {[VsIn (0 (B))]" [V In (p (B))]} (2.8b)
J(8,6) = Epzsyp) { Vo (0 (Z(S) [B)]" [Vpln(p(2(S) D))} (2.8¢)

such that
Cp > J5' (S,t) (2.9)

where the matrix inequality indicates that Cp — J ]_31 (S,t) is positive semi-definite.
In the above equations, J(S,t) and Jg(S,t) denote the Fisher information matriz
(FIM) and Bayesian Fisher information matriz (FIM), respectively. Similarly, when
p is regarded as a non-random parameter, Q = 0 and J~!(S,t) provides a lower
bound for the covariance of p.

In Proposition 2.2.1, an expression is derived for the B-FIM using the measure-
ments Z (S) recorded by a coalition of sensors S aiming at estimating the unknown

parameter vector p.

Proposition 2.2.1. Having a coalition of sensors S which provide a set of bear-

ing estimations Z (S), based on the measurement model adopted in (2.22), the B-
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2.2. Non-linear Parameter Estimation in Noise

FIM Jg(S,t) can be expressed as

IB(S,t) = Q+ Y By {[Vsh] R [Vphi}. (2.10)

i€S

Proof. Noting that the vectors v;, i € S, are mutually independent, p (Z (S) |p) can

be expressed as

p(Z(S)Ip) =[] p(zlp). (2.11)
i€S
From (2.22)),
15) = ! exo (=L (2 — b (B)T R (2, — b, (i
pElD) = s p (5o B R (- hi(B). (212)
Therefore,
VpInp (z|p) = — (z; — hi (B)) " Ry (Vphi (B)). (2.13)

In addition, since the vectors v;, i € S, are zero mean,

Ep(ailp) {Vp Inp (2:[p)} = 0. (2.14)

Subsequently, having (2.14) and substituting (2.13) in (2.8c), J (S, t) can be written

as

€S
Ep(zip) { (2 — b (B)) (2 — b (5))" } R (Vshi (B))
=3 (Vphi (B)) "R, (Vphs (D)) (2.15)
€S
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2.2. Non-linear Parameter Estimation in Noise

Finally, substituting (2.15) into (2.8a), the B-FIM can be written as
IB (8,4) = Q+ Y Eyp) { (Vohi ()" By ! (Vphy ()} (2.16)
€S
O

In addition, if the prior density p (p) follows a Gaussian distribution with the

covariance matrix Cp, the following lemma expresses Q (see (2.8b))) in terms of Cp.

Lemma 2.2.1. If the prior density p(p) follows a Gaussian distribution with E,p) {P} =
i and Epg) {(f) — [L)Z} = Cp, Q (as in|2.8b) is given by
Q=c,l. (2.17)

P

Proof. Having E, ) {P} = pt and E,p) {(f) — ﬂ)z} = Cj, p(p) can be written as

5) — ! ep (L p—)Cl p-i)) . 2.18
o) = o p(—50-nTClB-@). (21
Therefore,
In(p(P) = In | ———— | — 5 (p— )" C5' (b - 1) (2.19)
@r)-detCy) 2 P ’
and
Vsln(p(p)) = - (P - i)' C3'. (2.20)

Finally, substituting (2.20) back in (2.8b)),

=C:l (2.21)
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2.3. Target Localization and Stochastic Observability

O

In the next section, the above abstract formulation is employed in the frame-
work of bearing-only localization in two-dimensional space. In addition, we benefit
form Proposition 2.2.1] and Lemma 2.2.1/ to derive a closed-form expression for the

stochastic observability.

2.3 Target Localization and Stochastic Observability

In this section, the measurement model is described for bearings-only target local-
ization in two-dimensional space. In addition, using the results in Proposition 2.2.1
and Lemma 2.2.1, we fill in the details of the stochastic observability constraints in
(P1) (see Sec. 2.1).

Consider a coalition of sensors § which are localizing a particular target by each
sensor recording noisy bearing measurements of the target relative to a coordinate
frame in two dimensions. Let vector p € R? denote the position of the target that

the coalition aims to estimate. Then, each sensor ¢ records a noisy measurement

~

0; =hi (D) +n st. P~p(DP) (2.22)

where 6; and ni ~ N (0,01-2) denote the estimated bearing and the error in the
estimation of the bearing for sensor i, respectively. In addition, p (p) denotes the
prior density of the position of the target. Here, comparing with the measurement
model in (2.6), L=2,D =1and h; (p) = 0;, where 0; denotes the true bearing from
sensor ¢ to the target. Fig. 2.1]illustrates the geometry of bearings-only localization
in two-dimensional space. Suppose the target is stationary. Given that the true

position of the target and the position of the i-th sensor are denoted by p = [y, yt]T
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Y
4 Target
f) = {xt: yf]
9
.,," é‘v = hi(f)) — arctan (yf—y,)
, Ty — X
[1:7;7 yz] [+ o

Sensor 7

Figure 2.1: Geometry of bearings-only localization in two-dimensional space.

and [z;, yi]T, respectively, h; (p) is given by

hi(p) = arctan (H) . (2.23)

Here, it is assumed that the measurement intervals are sufficiently long such
that n;’s are independent between the intervals. In addition, in order to take the

sleep time of each sensor into account, the noise variance is modeled as

1

s . — (2.24)

(T -t)

where f(-) is an increasing function such that f(0) = 0. This implies that the
variance of estimation error for each sensor is inversely proportional to the active
time of that sensor through an increasing function. Therefore, as the sleep time for
a particular sensor decreases, it records more measurements and provides a smaller
error in the bearing estimate.

We now proceed to define the stochastic observability as the metric for localiza-

tion accuracy.

Definition 2.3.1. Stochastic observability is defined as det (Jg(S,t)), where Jg(S,t)
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2.3. Target Localization and Stochastic Observability

denotes the B-FIM.

The P-CRLB, as stated in Sec. 2.2, establishes a lower bound on Cp (covariance
of the target position estimation), the inverse of which is referred to as the B-
FIM matrix. In the literature, various matrix means of the B-FIM have been used
as the estimation accuracy metric, e.g. trace, determinant [9, 36]. The choice of
determinant in this work is justified as it can be attributed to how accurate an

estimate is by noting that it determines the volume of the 1 — o confidence ellipsoid

around the estimate [35]. This boundary is defined as the points [z, y]T satisfying
—1 T — :%t
[33 — Ty Y- Z)t] Cy =5 (2.25)
Y=t

where [2,9¢]T denotes the mean of the posterior target distribution. The following

proposition provides a closed-form expression for the stochastic observability.

Proposition 2.3.1. Consider the measurement model adopted in (2.22)-(2.24).
Given a particular coalition of sensors S and sleep time allocation vector t, the

stochastic observability det (Jg(S,t)) can be expressed as

det (JB(S,t) = det (Q) + > By {0} + 1D By {07} (226)

i€S i€S jeS
Here,

glﬂl) —a (W) (QH cos> <0~Z> + 2¢12 sin (9~1> cos (9~Z> + q22 sin’ (éz)) , (2.27)

L

2 .2 2

In addition, r; = /(¢ — x;)2 + (yr — y;)? denotes the relative distance of the i-th

sensor to the target and o represents the proportionality constant in (2.27)).
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2.3. Target Localization and Stochastic Observability

Proof. First, we use (2.23) to write

~ 1 (- Sin( z)
Vihi (p) = — N (2.29)
Ti | cos(6;)
Therefore, substituting (2.29) in (2.10), the B-FIM can be written as
-2 e . ~ ~
af(T —t; sin”(0;) — sin(6;) cos(6;)
Jg (S,t) = Q+Z% 3 N 3 . (2.30)
ies "% — sin(6;) cos(6;) cos?(;)
: T . aiyr a2
Subsequently, noting that Q+ = Q and using det = a11a92 — Q12021
a1 a2

det (Jp (S,t)) can be expressed as

det (I (S, 1)) =det (Q) + det (Ey(g) {J (S, t)}) + Ep(f,){ S a (W)

i€S 70,

. (qn cos? (91) + 2q12 sin (01) cos (01) + qo2 sin® (01)) },

(2.31)

where

‘Epp) { (W) cos? (67])} (2.32)
JES

In the next step, using the following equalities to change the indices in the sums

(o) () -2 () (o) () o
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2.3. Target Localization and Stochastic Observability

) ) e

det (J (s,t)) can be written as

o2 — ¢ ¢
det (J (S,t)) = QEp(ﬁ){ Z (f(j; 2t )> (f(Tz 2t])>
+

In the last step, having the trigonometric equality

sin(f; — 0;) = sin(6;) cos(;) — sin(6;) cos(6;), (2.36)

det (J (S, t)) is simplified as

a’ — 1 —t)\ . o(5 4
det(J(S,t)):QZZEP(I;){<JC(T2 ;)) (f(T t3)>51n2 (91-—91-)}.

2 2
i€ES jES o 595
(2.37)

i 373
Hence, (2.31) together with (2.37) completes the proof. O

Proposition [2.3.1] will be used in Sec. 3.3 to derive the characteristic function
for the coalition formation game. The expectations in (2.26) cannot be evaluated
analytically. Although one can utilize Monte Carlo methods, a simpler approach to

avoid computing expectations is to approximate the B-FIM as:

JB (Sat) ~Q+J (Svt> |f):[ln (238)

where fi denotes the mean of the prior density p (p). In many practical applica-
tions, the P-CRLB is approximated by (2.38), e.g. the covariance of the estimate

is approximated in the same way in the extended Kalman filter [15]. In this disser-
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2.3. Target Localization and Stochastic Observability

tation, as will be seen in Sec. 3.3, the above approximation is used to compute the
characteristic function for the defined coalition formation game.

Throughout this work, it is also assumed that the prior density of the target is
approximated by a Gaussian distribution with the covariance given by Cg. There-

fore, as proved in Lemma 2.2.1]

Q=C;'. (2.39)

This assumption helps to reduce the computations in evaluating the characteristic

function in Sec. 4.5,
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Chapter 3

The Coalition Formation Game

In this chapter, the power conservation problem presented in (P1) with the relaxed
constraints in (2.4) is interpreted as a non-superadditive coalition formation game.
The advantage of such an interpretation is that one can use dynamic coalition for-
mation algorithms to compute the solution. As it will be explained later in Sec.
3.3, the characteristic function is defined such that larger coalitions of sensors do
not necessarily ensure larger sleep times. This is mainly due to the fact that the
stochastic observability, depending on both relative angles and distances of sensors
to the target, does not necessarily increase as the number of sensor nodes in a coali-
tion goes up. We utilize the modified core [37] as the solution concept for this game.
This chapter also incorporates the related concepts and definitions from cooperative

game theory.

3.1 Cooperative Game Theory

Game theory provides a formal analytical framework to investigate the complex
interactions among rational players. Throughout the past decades, game theory has
been vigorously utilized in a large class of disciplines such as engineering, economics,
political science, philosophy, etc [38]. Recently, there has been a significant growth in
exploiting game-theoretic approaches to analyze wireless networks. This is mainly
due to: (i) the emergence of large-scale, distributed and heterogeneous wireless
networks; (ii) dramatic improvement in computation power, which makes it possible

for network entities to make independent and rational strategic decisions; and (iii)
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3.1. Cooperative Game Theory

the need for low complexity distributed algorithms that can efficiently represent
competitive or cooperative scenarios between network entities [39).
In general, game theory can be classified as follows:

(a) Non-cooperative Game Theory: This class provides analytical tools to study the
interactions among competing players. Each player chooses it strategy independently
such that its own utility improves. In noncooperative games, players cannot make
binding commitments. There exists several solution concepts for non-cooperative
games, among the most renowned ones are Nash equilibrium (NE) and correlated
equilibrium (CE) [40].

(b) Cooperative Game Theory: This class investigates the behavior of rational play-
ers when they collaborate. The main branch of cooperative games is focused on the
formation of cooperating groups of players, referred to as coalitions [37]. Hence, the
game is a competition between coalitions of players, rather than between individual

players.

3.1.1 Coalition Formation Games

A coalition formation game is uniquely defined by the pair (V,v). N ={1,2,--- N}
denotes the set of players (e.g., network entities,) who seek to form groups in order
to collaborate with each other. Any nonempty subset S C N is called a coalition.
Coalitions with |S| = 1, where |X'| denotes the cardinality of the set X, are called
singleton coalitions and N is called the grand coalition. A coalition represents an
agreement between the coalition members to act as a single entity (e.g., pursue the
same goal). The set of all coalitions in a game is called coalition structure and is
denoted by P. v denotes the coalition value which quantifies the worth of a coalition
in a game. Coalition formation games can be categorized into three different classes

based on the definition of coalition value as follows:

1. Games in Characteristic Form: This is the most common form of coalition
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formation games in which the value of each coalition S is exclusively determined
by the players in that coalition, independently from all other players A'\S and how
they are structured. Games in characteristic form are classified as:

(a) Games with Transferable Utility (TU): This class of coalition formation
games was first introduced by Von Neuman and Morgenstern [41]. The value func-
tion in these games is defined by a mapping v : oN R, where 2N denotes the power
set of players. This value function is referred to as characteristic function and asso-
ciates with every coalition S C N the maximal total payoff for that coalition. The
TU property implies that the total payoff v(S) gained by a coalition can be dis-
tributed in any manner between the coalition members 7 € S. However, this value
is commonly distributed using an appropriate fairness rule. Each player’s share of
the total payoff is denoted by x; which forms a vector x = (z1, -+ ,zy) € RWVI.
This vector is referred to as payoff allocation or simply allocation vector. In this
dissertation, we consider this class of coalition formation games.

(b) Games with Non-transferable Utility (NTU): This class of coalition formation
games was first introduced by Aumann and Peleg [42]. In an NTU game, there exist
rigid constraints on the distribution of the coalition values and the characteristic
function represents a mapping to a vector space, i.e, v(S) C RIS, Furthermore, the
share of the total payoff for each player i is a function of the joint actions of other
players, i.e., S\{i}, in that coalition. Therefore, a TU game can be considered as a
special case of the NTU game [38].

Coalition formation games in characteristic form (both TU and NTU) constitute
one of the most important types of games and its application in wireless networks
is progressively increasing. As some instances, the interested reader is referred to

[43], [44), and [45).

2. Games in Partition Form: This class of coalition formation games was first

introduced by Thrall and Lucas [46]. In this class, unlike the games in characteristic
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Figure 3.1: Cooperative games in partition form vs. characteristic form.

form, the value of each coalition S depends on how other players in the game N\S
are structured.
The following Definition introduces the notion of collections and partitions on

the set of players.

Definition 3.1.1. A collection in N is any family of mutually disjoint coalitions
C :={S1,---,Su}, Vi # 35,5 N8; =0. M is called the size of the collection. If
additionally Uf\il S; =N, the collection C is called a partition of N.

Using the above definition, a coalition structure P is a partition of the grand
coalition \V. In these games, the value of each coalition S € P is defined as v(S, P)
which imposes the dependence on the structure of other players in the game. Games
in partition form are intrinsically difficult to solve. Fig. [3.1lillustrates the coalitions
in a cooperative game. The coalition structures specified by the solid and dotted
lines can be expressed as P; = {{1,2,4},{3},{5}} and P2 = {{1,2,4},{3,5}}, re-
spectively. If the characteristic function v in the cooperative game ({1,2,3,4,5},v)
is defined to be in characteristic form, the coalition value for coalition S§; = {1, 2,4}
satisfies v (S1,P1\S1) = v (S1,P2\S1). However, if it is defined to be in partition
form, it is possible that v (S1, P1\S1) # v (S1, P2\S1)-
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I/J/] Player 1
C Player 2

Player 4 % @

Player 3

(a) Coalition S with graph G} (b) Coalition S with graph G%

Figure 3.2: Games in graph form: It is possible that v (G}) # v (G%).

3. Games in Graph Form: This class of coalition formation games was first
introduced by Myerson [47], [48]. In some applications [49], the players are inter-
connected and communicate through pairwise links in a graph. However, the games
in characteristic and partition form can not model the inter-connectivity of such
graphs. Games in graph form consider this interconnection by defining the coalition
values relative to the connectivity structure of the graphs. In these games, given
a graph Gg with the vertices defined as the coalition members of S and a coali-
tion formation game (N, v), the value of S is given by v(Gg). Therefore, in this
class, a specific coalition & can be assigned different coalition values for different
connectivity structures, i.e., v(G5) # v(G%). These graphs can be both directed
or undirected and the value of each coalition can also depend on the connectivity
structure of other coalitions Gpns as well. Fig. 3.2 demonstrates how coalition val-
ues are dependent on the connectivity graph in coalition formation games in graph

form.
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3.1.2 Solution Concept

In coalition formation games, the aim is to find a coalition structure P* and allo-
cation vector x® such that no group of player have the incentive to leave P?. This
coalition structure is referred to as a stable coalition structure and, together with the
corresponding allocation vector, is considered as the solution to the game. Hence, a
solution concept for a game in characteristic form can be interpreted as a coalition
structure, under which the highest gain is achieved, and a fairness criteria which
determines how the gains in each coalition are distributed amongst players.

In the literature, there exist formal solutions for the class of coalition forma-
tion games in characteristic form with supperadditive characteristic function. Here,

superadditivity is defined in TU games as a property of the characteristic function.

Definition 3.1.2. In a TU game, the characteristic function is referred to as sup-

peradditive if

’U(Sl U SQ) > U(Sl) + U(SQ), VS1,S8 C N, S1 NSy =0. (3.1)

Simply put, a TU game is superadditive if cooperation is always beneficial. Thus,
it is guaranteed that if two disjoint coalitions join together and form a single coali-
tion, they will at least receive the same payoff as by acting separately. In super-
additive games, forming the grand coalition will always be to the joint benefit of
all players. The above definition can also be extended for NTU games by replacing
(3.1) with

{x| (zi)ics, € v(S1), (zj)jes € v(S2)} Cv(S1US). (3.2)

The most celebrated solution concept for the coalition formation games with

supperadditive characteristic functions is the core [37]. Other prominent solutions

include Shapley value, kernel, and Nucleolus. These solution concepts are only de-

fined for superadditive TU games (extensions for NTU superadditive games are only
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formalized for the core and Shapley value in literature [38]). The literature dealing
with non-supperadditive games usually redefines these solution concepts or presents
alternatives which are application-specific [14, 34 50, 51]. Therefore, unlike the
coalitional games with superadditive characteristic functions for which formal so-
lutions exist, the solution for a non-superadditive game is not straightforward and
mainly depends on the game under study.

In order to define the core for a non-superadditive TU game, we need the fol-

lowing definitions from the cooperative game theory context.

Definition 3.1.3. An allocation vector x is called individually rational if x; >

v({i}) for alli € N.

In other words, an allocation vector is individually rational if no player can do

better by acting alone.

Definition 3.1.4. In a superadditive TU game, an allocation x is called feasible if

> @i <o(N), (3.3)

ieN
and is called group rational or efficient if the equality holds.

Simply put, an allocation is feasible if sum of the payoffs allocated to the players
in the grand coalition does not exceed the total gain achievable by the grand coali-
tion. suppose an allocation is proposed. If a group of players can form a coalition in
which players are guaranteed to achieve higher payoffs, the new coalition will block

the proposed allocation.

Definition 3.1.5. In a TU game, an allocation x is said to be blocked by a coalition
S if
Zwi < v(S). (3.4)

1€S

32



3.1. Cooperative Game Theory

This property is independent of the superadditive characteristic of the game and,
as will be seen in Definition 3.1.6), acts as the fairness rule on the payoffs allocated

to the players. We now proceed to define the core of a supperadditive TU game.

Definition 3.1.6. If the TU game is superadditive, an allocation x° is in the core

if it both efficient, i.e.,

> af = o(N), (3.5)

1eEN

and non-blocking, i.e.,

Z x$ > v(S) VS C . (3.6)
€S’

In other words, the core of a superadditive game constitutes the grand coali-
tion N and an allocation vector which guarantees that no group of players can leave
the grand coalition. Hence, reaching the core directly implies stability of the grand
coalition.

Definition 3.1.6 can be modified for superadditive NTU games as follows: If the

NTU game is superadditive, an allocation x¢ is in the core if it is both feasible, i.e.
x¢ e v(N), (3.7)

and non-blocking, i.e.,
Iyco(lS);VieS, y>af VS CN. (3.8)

In many practical application, the superadditivity of the characteristic function
is a quite restrictive requirement. These applications include the scenarios in which
a charge is incurred for the information exchange or bargaining process. To deal
with these problems, the feasibility concept is redefined for non-superadditive games

as follows [14]:
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Definition 3.1.7. In non-superadditive TU games, an allocation x is called feasible
if
Z z; <max » v(S), (3.9)

ieEN pec SeP

and is called efficient if the equality holds.

In other words, an allocation is called feasible if the total payoffs allocated to
the players does not exceed the highest possible outcome. Note that if v is supper-
additive,

max Y u(S)=ovWN). (3.10)

and (3.9) reduces to (3.3). In many practical applications, players cannot be allo-
cated continuous-valued payoffs. Let A be the smallest accounting unit. Then,
the players’ allocations are restricted to integral multiples of A in the interval
[v({i}), maxpee > scp v(S)]. This new set is denoted by &;. Considering this re-
striction, together with the modified definition for feasibility, the definition of the

core can be redefined for non-superadditive games as follows:

Definition 3.1.8. For any non-superadditive TU game, an allocation vector X is

called to be in the core if

¢ < ¢ ¢ .
Z o} < max D w(S) < Z zi + A, x € X, (3.11a)
ieN SeP ieN
daf>wu(8) VS CN. (3.11b)
€S’

It is worth emphasizing that in non-supperadditive games, unlike superadditive
games where the core is reached in the grand coalition, the coalition structure in
which the core can be reached constitutes several disjoint coalitions of players. In
this dissertation, interpreting (P1) (see Sec. 2.1) as a non-superadditive TU game,
we are interested in both the core sleep time allocation and the coalition structure

in which this allocation can be reached.
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3.2 Sensors Coalition Formation Game for Target

Localization

The power conservation problem for data acquisition in bearings-only localization
presented in (P1) (see Sec. 2.1) can be interpreted as a T'U coalition formation
game defined by the set of sensors N and a real-valued characteristic function v :
oM \) — R. The characteristic function v associates with any nonempty coalition
the maximum total sleep time that can be gained by that coalition such that the
required localization accuracy is satisfied for the corresponding target. In other
words, v (S) can be interpreted as the reward for sensors collaboration in localizing
a particular target. The payoff for each sensor i is a share ¢; from v (S) that it claims
from the coalition S to which it belongs and tries to maximize it. It is worth noting
that, as stated in Sec. 3.1.1) the coalition formation games encompass cooperative
games where the coalition structure plays a major role.

Intuitively, each sensor i is encouraged to join a non-singleton coalition if its
feasible sleep time in that coalition is rational, i.e. t; > v ({i}). Comparing with
the constraints in (C2), we set v ({i}) = 7;. As a result, each sensor’s sleep time is
restricted to the integers in the interval [1;, T — 1]. This set represents the possible
sleep time values that a sensor can claim from a coalition upon joining it and is
denoted by D; throughout this work. Here, T" is removed from D; since sensors with
sleep times equal to 7" do not contribute to the localization task and, therefore,
to the stochastic observability; hence, they cannot join non-singleton coalitions. It
is worth mentioning that this is just a virtual modification in the formulation of
the game. In reality, since the sensors in singleton coalitions do not contribute in
localization of the targets, they can sleep for the whole period TA (i.e. v ({i}) =T).

In this work, the redefined core for non-superadditive TU games is formulated
as the solution concept for the defined power conservation game. To make the

notations consistent with (P1), we replace x and X; with t and D;, respectively,
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in Definition 3.1.8. Hence, defining the characteristic function v such that (2.4) is
satisfied, the modified core for the coalition formation game (N, v) is the solution to
the relaxed combinatorial optimization problem in (P1). We now proceed to derive
the characteristic function for the game.

In the next section, the characteristic function for the above formulated game

will be derived and the properties will be investigated.

3.3 Characteristic Function for the Coalition

Formation Game

To derive the characteristic function for the sensors coalition formation game defined
in Sec. 3.2, a lower bound is found for the logarithm of the determinant (log-
determinant) of Jg (S, t) using the expression given for det (Jg (S, t)) in Proposition
2.3.1. As can be seen in (2.28), assuming f (7' —t;) to be a linear function of the
active time of each sensor (i.e., f(T —t;) o (T —t;)), det (Jp (S,t)) turns out to
be a bilinear function of the active time of sensors (i.e. T — t;’s). This motivates to
take the logarithm of the constraints in (C1).

Let & and S denote the target and the coalition of sensors localizing it, re-
spectively. Assuming f (T —t;) = a- (T —t;) and a diagonal Q, the characteristic

functions is defined as:

T-1
v(8k) = Log(T)

Oy,

N
1 (1) 1 2)
+3(Z”i1 TR Z)H o

ieSk iESk jGSk

J#i

1) cos? (0:1 ) sin? 9{‘ )
v; :log q11 ) + q22 D) (313)

() oz () 2
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| sin? (0 — %)
S o ) o

where |2|T = max {0, |z} and |-] denotes the greatest integer function. In addition,

assuming fi = [zp, yﬂ]T, r? and 95 are given by

rf = J(wa — 202 + (e — )7, (3.15)
9;1 = arctan <M> . (3.16)
a:,] — X;

This characteristic function evaluates the total sleep time that can be achieved by Sk
in terms of multiple integrals of A. In addition, as stated in Sec. 2.3, the simplifying
assumption in (2.38) is made to compute the estimations in (2.26); As the result, the
distances and bearings of the sensors to the target are defined relative to the mean of
the prior density f1. Detailed derivation of the characteristic function is provided in
Appendix|Al The same approach can be utilized to derive the characteristic function
when Q is non-diagonal.

We next investigate the properties of the function given in (3.12)-(3.14). As
can be seen in (3.12), the first term goes up as the number of sensors in a specific
coalition increases. This translates to the more sleep time that can be allocated
to the sensors in more populated coalitions. However, if the sensor nodes provide
worthless information, the second term forces (3.12)) to decrease. This worthless

information can be classified as:

e Redundant Information: This worthless information corresponds to the case
where two or more nodes lie on almost a straight line relative to the target.
Formally,

Ji,j €Sk 0 =08 £ (3.17)

Therefore, sin (91’1 - 95‘) ~ 0 and log (sin (0? - (9;1)) < 01in (3.14).
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e Imprecise Information: This type of worthless information is provided by the
sensors which are located far relative to the target. Formally, if there exists a

sensor ¢ with r; > 1 such that:

~ 0, (3.18)

then
sin? (97 — %)

~\ 2 ~\ 2
M 2 12 2
(Ti) i (’“j) 9j

On the other hand, if the prior density shows higher uncertainty in y direction

log <0. (3.19)

(i.e. (Cp)yy > (Cp)y;) those sensors located on 9{‘ ~ 0 or 91’-1 ~ 7 (relative to
the target) will be more useful in reducing uncertainty in that direction. In this
case, considering the fact that Q =~ Cf_)l, it is concluded that g1 > ¢oo. As it
is clear from (3.13), the characteristic function will also allocate larger sleep times
to those coalitions comprising the sensors satisfying 9{‘ ~ 0 or 95 ~ 7. Formally,
the numerator in (3.13), i.e. qi1 cos? (9{‘) + qoo sin? (95), increases as cos? (91’1)
gets larger. It is worth mentioning that the same property will be observed for the
sensors located on 0% ~ +7 (relative to the target) when (Cp);; > (Cp)qy-

The above discussion implies that larger coalitions of sensors do not necessarily
guarantee greater characteristic function values. Hence, the characteristic function
exhibits the non-superadditive property as it contradicts the condition in Definition
3.1.2. In addition, the trade-off between the sleep times allocated to the sensors
and the localization accuracy for each target O}, can be clearly seen in (3.12), where
as Oy, goes up, the total sleep time allocated to coalition Sj is reduced.

Now, we proceed to discuss the constraints that above formulation imposes on

the characteristic function.
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3.4 Formulation of Constraints on the Characteristic

Function

In the context of cooperative game theory, it is assumed that the characteristic
function is a fixed function such that if S = Sa, then v (S1) = v(S2) [52]. In
our formulation, although the characteristic function is fixed, its value changes for
a specific coalition as it attempts to localize two different targets. This problem
stems from the fact that the relative bearings 9{" and distances rz’»l , as well as the
required accuracy 6, change as a coalition of sensors tries to localize different targets.
Therefore, the values of the coalitions are dependent to the target indices. In order
to avoid this inconsistency, it is assumed that targets are included in the coalitions
as players of the game achieving zero payoffs. Formally, each coalition is considered
as {k, Sk} where k and Sy, denote the target and the coalition of sensors localizing
it, respectively. Singleton coalitions are also denoted by {0, {i}}.

Since our model assumes a separate coalition of sensors to localize each target,
for our formulation to be well posed, we need to disallow targets leaving or jumping
between coalitions. This requires us to impose the following constraints on the

characteristic function (the process of joining and leaving coalitions will be fully

explained in Sec. 4.1)):

1. In order to prevent targets leave coalitions, we set
v({Sk}) = —0 Vk € K. (3.20)

This forces the sensors to disband and form singleton coalitions when the

target leaves the coalition.

2. In order to prevent targets jump between coalitions, we set

U({kl,kQ,Skl}) = —0 Vkl, ko € K. (3.21)
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If ko joins the coalition localizing k1, its expected payoff in the new coalition
will be —oco. Thus, kg prefers to stay in its current coalition, in which it

achieves zero payoff.
3. When there exists only one sensor in a coalition localizing a target, since no
measurement diversity is provided, we set

o({k, {3 =0 Ve K,VieN. (3.22)

Thus, no sleep time is rewarded to the sole sensor.

4. Finally, to avoid construction of futile coalitions, we set
v({0,S0}) = Z v({0,{i}}) VSy C N. (3.23)
€Sy

This prevents each singleton coalition join other singleton coalitions. Indeed,
there is no motivation for the sensors which are not localizing any target to

cooperate.

We now proceed to develop a distributed decision-making framework through
which the WSN reaches the core of the above formulated coalition formation game

by each sensor following a simple best-reply rule.
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Chapter 4

Dynamic Coalition Formation

for Target Localization

Having interpreted the combinatorial optimization problem in (P1) as a coalition
formation game, in this chapter a distributed dynamic coalition formation algorithm
is proposed that converges to the core of the defined game. In each iteration of the
proposed algorithm, as briefly explained in Sec. 2.1, sensors which have the opportu-
nity to change their “strategies”, greedily maximize their expected sleep time for the
next iteration by joining one of the existing coalitions. In addition, sensors which are
potential of obtaining larger sleep times in future rarely choose suboptimal strategies
to ensure not getting stuck in non-optimal states of the Markov chain underlying
the proposed algorithm. It will be proved that iterations of the above simple oper-
ations executed by the sensors (as the players of the game) eventually converges to
the core of the coalition formation game, which is the solution to the NP-hard opti-
mization problem in (P1). The comprehensive cooperative game-theoretic coalition
formation and sleep time allocation algorithm is also presented for multiple target
localization by integrating the distributed dynamic coalition formation algorithm

with a sequential Bayesian estimator.
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4.1 Dynamic Coalition Formation Solution

4.1.1 Overview

In Sec. 3.1, it was shown that core allocations can be considered as equilibrium
points in the game in the sense that reaching a core allocation and the coalition
structure corresponding to it, no player can achieve larger payoff by deviating from
it. However, it was not explained how the coalition structure and allocations evolve
over time to arrive at such an equilibrium point. The current section addresses these
issues. Simply put, we seek answers for the following questions: How do coalitions
form and change over time? How do players decide on distributing the total gain
determined by the characteristic function? what coalition structure and allocations
will the players eventually arrive at? Throughout this section, since the proposed
approach can be employed in different scenarios, we refer to the constituents of the
game as “players”. Later in this section, we return to the terminology of the problem
investigated in this dissertation.

In order to answer these questions, we use recent results in dynamic coalition
formation in cooperative game theory [14]. Our work generalizes [14] in the sense
that convergence to the core is proved when partial information is available about
the set of blocked players at each period. In addition, a randomized search method
(Algorithm 4.2) for the blocked players is combined with the dynamic coalition
formation algorithm which establishes a tradeoff between the computational cost at
each iteration and the convergence rate of the algorithm.

In a TU game, reaching a certain allocation requires two a priory independent

processes on the side of players:

1. Coalition Structure Generation Process: At this point, the set of players learn
to partition themselves into disjoint coalitions. The objective of any player ¢ is

to join a coalition § which ensures it larger payoff than the singleton coalition.
2. Bargaining Process: For the game being settled in a stable coalition structure,
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in which all players are satisfied with their allocated payoffs, we need a way of
dividing the total payoff determined by the characteristic function such that

the allocation vector satisfies the core stability concept [52].

This setup is very similar to the dynamic learning model in non-cooperative
games with local interaction and player mobility. In these games, players can move
between several locations and the play of the game takes place only between players
at the same location [53]. Thus, players strategies comprise of choosing a location
and an action for the game.

In the model considered here, each player’s strategy comprises a coalition and a
demand for his share of the total payoff gained by the whole coalition. A player joins
a coalition based on a best-reply rule: A player switches coalition only if his expected
payoff in the new coalition strictly exceeds his current payoff and demands the
highest achievable payoff, given the demands of other coalition members, conditional
on feasibility. Using the pure best-reply process, the absorbing states of the process
generated by all players following the best-reply rule do not necessarily converge
to the core allocations. However, if the players are allowed to choose suboptimal
strategies with a small probability when there is a potential of gaining more in

future, all the absorbing states determine core allocations of the game [14].

4.1.2 Myopic Best-reply Correspondence

In the context of cooperative game theory, the basic assumption is that the players
are rational. Rationality means that players always try to maximize their social
welfare which is evaluated in terms of the utility value (characteristic function);
Therefore, rational players select strategies that maximize their expected utility
taking into account the strategies of their opponents. In the proposed approach,
it is assumed that the players are bounded rational. Here, this means that the
players are myopic. A player which is selected to move, considering the feasibility

constraints, tries to maximize its expected payoff only for the next period.
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We now proceed to the best-reply process. Time is discrete. At each period n,

n+1

each player announces his demand for the next period denoted by ;" ". Allocations

in the next period are determined as follows

ot if JJT-LH <v(S) = Yjes ]

gt = i VieS,VSeP.  (4.1)
v({i}) otherwise

In other words, in a particular coalition S, each player receives his payoff only if
the demands of all players in that coalition are feasible. Therefore, the reservation
payoff v({i}) can be considered as a disagreement to how the coalition payoff is being
divided amongst players. Each player i chooses his demand o] from the interval
[v({i}), maxpece Y gep v(S)]. However, for the sake of mathematical tractability, we
restrict the demands to multiples of some small number A in the above interval.
This new set of demands is denoted by Aj.

Each player’s strategic variables are his choice of coalition and the share of the
total payoff gained by the coalition. At period n, given that we are in a specific
coalition structure P, strategies available to player ¢ for the next iteration are given
by:

Zt P = (S ot | P = ST Ui}, ST e PR U B}, ol € X)L (42)

)

Players get the chance to revise their strategies according to the following rule:
at each time step, each player takes a random draw from a Bernoulli trial with
probability £ and outcomes: “revise strategy” and “keep strategy”. In literature,
this trial is referred to as receiving the learn draw [54]. Hence, at each period, a
random subset of the players get the chance to revise their strategies.

If the outcome of the trial is “revise strategy”, the player decides whether to
join any of the existing coalitions & € P" or to form the singleton coalition, and

at the same time, announces his demand for the next period U?H. These decisions
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are based on the following information from the current period: coalition structure
P, and allocation vector x™ = («F,--- ,zf). However, due to incompatibility of
players’ plans, we may encounter coordination problems. This occurs when a player
decides to join a coalition based on the coalition structure in the last period, while
other players in that coalition plan to change their strategies for the next period. In
order to solve this problem, we assume that the players, having the opportunity to
revise their strategies, can always leave their current coalitions and join any other
coalition; and no player is forced to stay in any coalition because of any other player’s
plan.

As stated earlier, players are assumed to be myopic. Hence, players which have
the chance to revise their strategies choose the coalitions which assure them the
highest expected feasible payoff for the next period. Formally, each player determines

his demand and the coalition in which it can be achieved as follows [14]

(W) = (Su i (W) € X, 4.3
ST ) = g, e SV - Yo AN ek (1)
J#

SPH (W) € { argmax v (SU {i}}) — Zx . (4.3b)
SEP”U{@} ]GS
JF

Here, 27! (w") and SP"*! (w") denote the maximum expected payoff for the next
period and the coalition in which it can be achieved for player ¢ when the game is in
state w™ = (P", x"), respectively. If the maximizer coalition in (4.3b) is not unique,

, S?H (w)’ > 1, the player randomizes between all the maximizer coalitions with

equal probability W. The players strategies for the next period are determined
by a best-reply rule: A player switches coalition only if its expected payoff in the
new coalition is strictly greater than its current allocation, i.e. x”“( ") >, and
they demand the most they can get considering the feasibility constraints (see4.3a).

The maximum expected payoff rule, given in (4.3)), defines a finite state Markov
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chain. This Markov chain is referred to as the best-reply process [14]. Formally, the

Markov chain is defined as follows
Q={w=(P,x) | PeCl, x€ xXien Xj} (4.4a)

(Mier,, & Ai (@'|w)) 1 = ONTRewrl if o £ 0
P = ) (4.4b)
1- ZWIEQ Powr if ' =w
w'F#w
where R, denotes the set of players which have to change their strategies in order
to move from state w to w’. Let S(7) and S'(7) denote the coalition to which node i

belongs in state w and w’, respectively. Then, A;(w’|w) is the probability of player

i choosing &'(i) if he is a member of S(7) in state w and can be formulated as

w2 = 2i(w) A S(0) € Si(w)
0 ifal £ m) v S0) ¢ Silw)

7

A (W'w) = (4.5)
where A and V denote the “logical and” and “logical or”, respectively. As stated
before, £ also denotes the probability that each player ¢ gets the chance to revise his
strategy. Therefore, {A; (w'|w) is the probability of player ¢ switching to (z,S’(4))
from (z;,S(7)) in state w.

As the players jump between coalitions over time, they reach a stable coalition
structure in which no player has an incentive to move anymore. For this purpose,

we define the concept of ergodic sets and absorbing states.

Definition 4.1.1. A set F C § is called ergodic if we have

Pow =0  Vw e F,Vur ¢ F, (4.6)

and no nonempty subset of F has this property. If | F| =1, i.e., for some w € § we

have P,, =1, the ergodic set is called absorbing state.

The following theorem guarantees reaching an ergodic set in the above formu-
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lated Markov chain.

Theorem 4.1.1 (Theorem 3.1.1 [55]). In any finite Markov chain, no matter where
the process starts, the probability that the process reaches an ergodic state or set of

states after n steps tends to one as n tends to infinity.

The best-reply process considered in this work may have multiple ergodic sets
and/or absorbing states. The above theorem only guarantees that an ergodic set
will be eventually reached. However, we are only interested in those absorbing states
which constitute the cores of the coalition formation game. The fact that which of
these ergodic sets (states) will be finally reached is determined by the initial state.
The following example demonstrates how the initial state affects the ergodic state

being reached by the best-reply process for a small game.

Example 4.1. Consider the game (N,v) with N' = {1,2,3,4} and

0 if |S] =1
v(S) = (4.7)
IS|+2 if|S]|>1

The unique core allocation for this game is given by: x = (2,2,2,2). This allocation

can be reached in any coalition structure with the following property:
P ={S81,8} st [S1]=|S=2. (4.8)
Suppose the game is started from the initial state

W = ({{1,2,3},{4}}, (2220» (4.9)

Given the coalition structure P, suppose that only player 4 has the opportunity to

revise his strategy. Therefore, following (4.5), xi(w®) = 1 and S}(w°) = {1,2,3}.
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The resulting state is:

wl = ({1,2,3,4}, (gggl>) (4.10)

Although w' is an absorbing state, X' is not in the core. All the players, getting the
chance to revise their strategies, will stick with their current strategies. Otherwise,
they should form a singleton coalition in which they achieve zero payoff.

Now, suppose the game is initiated from the following state

W = ({{1,2},{3},{4} },(2,2,0,0)). (4.11)

Furthermore, suppose that players 3 and 4 get the chance to revise their strategies

at the same time. Therefore, according to (4.5), the resulting state will be

wh = ({{1,2},{3,4}}, (2,2,4,4)) . (4.12)

However, noting the characteristic function in (4.7), this state is infeasible and
should be fized as soon as either player 8 or 4 gets the opportunity to revise his
strategy. Again, if both players 3 and 4 get the chance to revise their strategies

stmultaneously, the following absorbing state results:

w? = ({{1,2,3,4}},(2,2,1,1)). (4.13)

Hence, starting from different initial states, different absorbing states can be

reached which are not necessarily included in the core of the game.

The fact that absorbing states may comprise non-equilibrium states is also ob-
served in the literature of evolutionary models of non-cooperative games [56]. The
solution to this problem is to introduce perturbations, i.e., to allow players choose

suboptimal strategies with a small probability, which can be interpreted as mis-
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takes. The limit distribution for this stochastic process can be reached by letting
the probability of mistakes go to zero [32]. In this dissertation, experiments are
introduced on the side of players. The difference between trembles and experiments
is that experiments are done deliberately. If the game enters an absorbing state
which is not the core of the game, there will be a blocked coalition which guarantees
some players to achieve higher payoffs than their current allocations. However, this
coalition cannot be directly formed. Thus, if the members of the blocked coalition
experiment with some positive probability, they can destabilize the absorbing state.
To let the players deviate with suboptimal strategies, the best-reply process is
modified as follows: in any state w = (P, x), when there exist a coalition &’ ¢ P
such that > ,cq ;i < v(S’), each player ¢ € S’ chooses the best-reply rule with
probability 1 — e and chooses each strategy (S;,z;) € Z;(P) with probability =T
The best-reply process modified by this convention is called best-reply process with
experimentation [14]. Let B (w) = Ug/gp &’ denote the set of all players in blocked
coalitions. Then, the transition probabilities (4.5) of the Markov chain defined in
(4.4) can be modified as follows:
B+ mley o =2 (w) A S (1) €Si(w)

=4

A (@'w) =
% if f # x; (W) VS (1) #S;i (w)

(4.14)

where

e>0 ifie B(w
€ = ) (4.15)
0 otherwise

Therefore, if i ¢ B (w), player i only joins the maximizer coalition S;(w) and de-

mands the feasible sleep time in that coalition o; (w) with probability 1 (if [S;(w)| >

1, it randomizes between them with equal probabilities m) However, ifi € B (w),

it will join S;(w) and demands o; (w) with probability 1 — e (if |S;(w)| > 1, it ran-

domizes between them with equal probabilities ‘Sl(;;)‘) if it does not experiment

and with probability % if it experiments; Hence, the total probability adds up
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1—e¢ €;
O e T EeT
The following example demonstrates how the experimentation plays a role in

destabilizing the absorbing states of the best-reply process when they are not in the

core for the small game considered in Example |4.1.

Example 4.2. Consider the game studied in Example 4.1. Suppose that the game

has reached the absorbing state:

w?=({1,2,3,4},(2,2,1,1)). (4.16)

Starting from w?

, since 8" = {3,4} blocks the current allocations for players 3 and
4, they will experiment with probability € if they have the opportunity to revise their
strategies. Now, suppose that player 3 gets the chance to revise his strategy and

experiments by forming a singleton coalition and x3 = 2. The resulting state will be

wh = ({{1,2,4}, 81}, 2.2,2,1)), (4.17)

where the allocation for player 3 is infeasible and must be fized as soon as player 3
gets the chance to revise his strategy again. However, if player 4 gets the chance to
revise his strategy before player 3 does, it will join the coalition Sy = {3} and the

core will be reached in the following iteration:

w=w’ = ({{1,2},{3,4}},(2,2.2,2)) . (4.18)

Hence, experimentation acts as a de-stabilizer for the non-equilibrium states existing

in the set of ergodic sets of the best-reply process.

Next section introduces the distributed dynamic coalition formation algorithm
in the framework of the sensors coalition formation in a multi-target localization

scenario formulated in Sec. 3.2l
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4.2 Distributed Dynamic Coalition Formation

Algorithm

In this section, we return to the notations and terminology used in the the sensors
coalition formation game for target localization as formulated in Sec. [3.2. Since our
model assumes a separate coalition of sensors to localize each target (see Sec. 13.4),

the best-reply process defined in (4.3) must be modified as follows:

n+1 ny __ n . n n+1 .
(W) = ker}ncg?{(o}v ({k,S; u{i}}) — jgg:n ty, 7 e€D; (4.19a)
k
i

SpH(W") € {argmaxv ({k,Sp U{i}}) — Z t?} (4.19Db)
keKu{0} jesy
J#
where D; is defined as in Sec. 3.2. Here, it is assumed that each sensor getting
the opportunity to revise its strategy will receive the sleep time given by (4.21).
Infeasible allocations in a particular coalition (due to incompatibility of sensors’
strategies) are fixed as soon as the next sensor in that coalition gets the chance to
change strategy.

The following algorithm is being executed independently by each sensor in the
network. This algorithm is decentralized in the sense that each node makes a se-
quence of decisions independently (without considering other nodes’ decisions at the
current period) which ultimately results in the whole network converging to the core
of the defined coalition formation game (see Theorem 4.3.1). As explained in Sec.
3.2, reaching the core ensures that the average sleep time allocated to the sensors
is maximized under constraints on localization accuracy and following the defined
fairness criteria. In what follow, based on the approach explained in Sec. 4.1,
the distributed dynamic coalition formation algorithm is presented in pseudo-code

format.
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Algorithm 4.1: (Distributed Dynamic Coalition Formation)
Initialization: At n = 0 select initial coalition structure such that each
non-singleton coalition comprises at least two sensors and each sensor can
at least achieve its reservation sleep time v({0,{i}}) = 7. Set

o_ ) M s>

v ({0,{i}}) otherwise

Vie N (4.20)

where S(i) denotes the coalition comprising sensor i. Set w® = (P, t?).

In addition, let &, ¢ € (0,1) to be fixed for all sensors in the network.

- The following steps are done independently by each node 7 € N

Step 1— Revision Strategy: Take a random draw from the Bernoulli

trial with probability £. If the outcome is “keep strategy”, set t?“ =

t?, S"t1 () = 8™ (i) and go to Step 5. Otherwise, go to Step 2.
Step 2— FEvaluation of the Best Strategy for the Next Period: Com-

pute

n+l g ny _ n . . n n+l n )
T (W) ker}lcg?o}v ({k,Sp U{i}}) jezsn ty, T (W") €Dy (4.21)
k

J#

S?“ (W) € { argmaxv({k,S; U {i}}) — Z t?}, (4.22)
keKu{0} JES)
J#i
where S = {0}.

Step 3— Ezperimentation:
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If i € B™, take a random draw from the Bernoulli trial with probabil-
ity €. If the outcome in is “experiment”, choose t?“ € D; with equal
probability W and k € KU {0} with equal probability KL—H Go
to Step 5. Else, go to Step 4.

Step 4— Best-reply Process: Set t7T! = 71 (w™) and choose S"* (i) €

S?H (w™) with equal probability m.

Step 5— Recursion: Set n «+— n + 1 and go to Step 1.

In the above algorithm Step 2 to Step 4 correspond to the greedy strategy as
in (2.5). Algorithm 4.1 is accompanied by a procedure for detecting the blocked
sensors B". In this procedure, the set of all possible combinations of coalitions S;, €
oM \0 and targets k € K are checked to find those for which the following inequality
holds:

> ti<v({k.SL})- (4.23)

ieS,,

This corresponds to coalitions ;. for which the constraint (C2) (see Sec. 2.1)) is not
satisfied. Throughout, this method is referred to as exhaustive search for blocked
sensors and, as explained above, requires to check K(2N — 1) different combinations
of targets and sensors (K choices for the target and 2N — 1 choices for the set of
all nonempty coalitions 2V\()). As the number of sensors increases, this number
goes up exponentially fast. Furthermore, in order to prevent examining a particular
coalition S, repeatedly, one needs to keep track of the coalitions for which the above
inequality has already been checked. This imposes an immense memory, as well as
computational, overhead on the network.

As a variation to the above procedure, we propose to construct a sample set from
the set of all possible coalitions and examine (4.23) only for this set. This sample
set is constructed by taking ¢ samples from the set oV \@ and combining with the set

of targets KC. This method is referred to as randomized search for blocked sensors
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4.2. Distributed Dynamic Coalition Formation Algorithm

and the resulting set is denoted by BJ',. Although B, C B", it will proved that
by replacing B™ with B}, Algorithm 4.1 still converges to the core of the defined
coalition formation game with probability one. In what follows, the randomized

search method is presented in pseudo-code format.

Algorithm 4.2: (Randomized Search for Blocked Sensors)
for i =1to ( do
for k=1to K do
Choose a coalition S}, € oN \@ with equal probability 2N71,1
if {k,S;} ¢ P™ then
if Ziesfc t; <v ({k,S}}) then
B, — BLUS]
endif
endif
endfor

endfor

Remark 4.2.1. [t is clearly not necessary to store the sequences t;(w") and S; (W"),
as well as t7' and S™ (i), for all n. This also holds for the set of blocked sensors B"
(B}, ). These sequences can be overwritten at each iteration.

Using Algorithm 4.2 to detect blocked sensors, the memory requirement at each
sensor is reduced to O(N) from O(2N) in the evhaustive search method. This is
due to the fact that we do not keep track of the coalitions S;, for which (4.23) has
already been checked. The computational costs at each sensor can also be improved
to O(K¢) from O(K2N). However, this improvement results in slower convergence
to the core. Hence, depending on the metwork architecture and specifications of
the sensors deployed in the network, one can compromise between the memory and

computational cost and the convergence rate of Algorithm /.1 changing the size of
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4.3. Convergence of the Distributed Dynamic Coalition Formation Algorithm

the sample set denoted by (.

In addition, Algorithm 4.1 should be accompanied by a mechanism to update
the state of the network as it requires w™ at each period n+ 1 to compute t;”rl (w™)
and SP™ (w"). This mechanism, as well as the search method for blocked nodes,
seem to require a centralized device to accomplish these tasks. However, adopting
a hierarchical network architecture, these tasks can be carried out in a distributed
manner as will explained later in Sec. 4.4l

It is worth mentioning that Algorithm 4.1 exploits the Markov chain Monte
Carlo method in the sense that a Markov chain is constructed such that the limiting
distribution only assigns probability 1 to the core state. Having constructed such a
Markov chain, we form a realization of the chain {w(o), w W@ } and once the

core is reached, the network remains in w® in the consecutive periods.

4.3 Convergence of the Distributed Dynamic Coalition

Formation Algorithm

We now proceed to prove that the proposed distributed dynamic coalition formation
algorithm accompanied by the randomized search method for blocked sensors guar-
antees the maximum average sleep time for the sensors conditional on feasibility and
fair sleep time allocations as defined in Sec. 2.1. This will be proved by showing
that the best-reply process with experimentation in Algorithm 4.1 converges to the

core of the defined coalition formation game.

Theorem 4.3.1. Suppose the randomized search method (Algorithm 4.2) is em-
ployed to detect blocked sensors. If every sensor follows Algorithm 4.1 and if the
core of the game is nonempty, the best-reply process with experimentation converges
to the core of the game with probability one. Equivalently, in the Markov chain,

lim P (w” = wc|w0> =1, vwl € Q (4.24)

n—oo
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4.3. Convergence of the Distributed Dynamic Coalition Formation Algorithm

where w® = (P, t°) denotes the core of the game.

Proof. Suppose 7 blocked coalitions exist in state w™. If ¢ samples are taken (we

assume ¢ > 7) from oM \@, the probability of detecting ¢ blocked coalitions in

7y (k2N —
state w™ is given by M Particularly, the probability of detecting all blocked

k2N
(0
coalitions is ffz}ﬂ . Therefore, there is a positive probability to detect blocked
K¢

coalitions with only checking the sample set. Note that any two blocked coalitions
may comprise overlapping blocked sensors. Hence, the probability of detecting all
blocked sensors follows

(2

Kc—
pa > (KgN”; . (4.25)

K¢
Detecting at least one blocked sensor, as stated in Sec. 4.1, will guarantee destabi-
lizing non-equilibrium absorbing states with probability e.

In [14, Theorem 2| it is proved that the vector of sleep times, allocated in an
absorbing state of the best-reply process with experimentation, coincides with the set
of core allocations of the game. Therefore, it is implied that if w = (P,t) is an
absorbing state, then t will be a core allocation for the game and P will be the
coalition structure in which it can be achieved.

Finally, we prove that the best-reply process with experimentation in Algorithm
4.1 converges to an absorbing state with probability one as time tends toward infinity
when Algorithm 4.2 is deployed for detecting blocked sensors. This is proved by
showing that the process will not get stuck in ergodic sets other than the absorbing
states. Suppose that there exists a non-singleton ergodic set ¥ C € such that
|¥| > 2. [14, Theorem 2] guarantees that none of the states in ¥ involve a core
allocation (absorbing states are singleton ergodic sets). As a result, for each w € ¥
there exists {k,S.} ¢ P such that Yiesy ti < v({k,S.}). Therefore, some sensors
have the incentive to experiment. There is a positive probability that all the sensors

in the blocked coalitions (m sensors) are detected. In addition, these sensors can
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4.3. Convergence of the Distributed Dynamic Coalition Formation Algorithm

experiment and form singleton coalitions with some positive probability. Hence,
P+ which comprises of: (i) singleton coalitions, and (ii) non-singleton coalitions

+1

which have no blocked sensors, can be reached in one step. Since W™ can be

reached from w” with some positive probability, we have w”*! € ¥. Now, using

the fact that the core is nonempty and starting with w”t!

, an absorbing state
w® = (P, t°) can be reached in one step. All sensors in non-singleton coalitions
in w™! do not experiment and all sensors in singleton coalitions experiment. This
occurs with probability (£€)™. Now, for every §¢ € P¢, we fix one sensor denoted
by i(S€). There is a positive probability W that all the other sensors in &¢
experimenting in w"*!, join 8¢ and demand t. The resulting state is w2 = we.
Therefore, starting from w”t! there is a positive probability to reach an absorbing
state. This contradicts the assumption that w!*! is an element of an ergodic set and

completes the proof. ]

Noting that the exhaustive search method is a special case of Algorithm 4.2, in
which all the blocked sensor nodes are detected, the convergence of the best-reply

process with experimentation can be easily inferred from Theorem 4.3.1.

Mean Time to Absorption

In order to study the tradeoff mentioned in Remark 4.2.1, we propose to use the
mean time before absorption as the convergence rate for Algorithm 4.1. Suppose
the core of the game is nonempty. Then, there exists at least one recurrent state
in addition to the transient states in the Markov chain defined by the best-reply
process with experimentation. By definition, a homogeneous Markov chain with at
least one transient and one recurrent state is called absorbing. The state space €2

for an absorbing chain can be decomposed as

Q=T+ Ry, (4.26)
J
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4.3. Convergence of the Distributed Dynamic Coalition Formation Algorithm

where 9R;’s denote the disjoint recurrent classes (states comprising core in this work)
and T denotes the set of all transient states. The transition probability matrix can

also be block-partitioned as

-Rl 0 0_
P=| N (4.27)

0 ..« R, O

TRy -~ TR, Q]

Here, R;’s denote the sub-matrices with transition probabilities within each recur-
rent class and Q denotes the sub-matrix with transition probabilities within the
transient states; Furthermore, TR;’s contain the probabilities of going from each
transient state to each state in the recurrent classes. In this work, there exists only
one state comprising the core in each recurrent class, i.e., R; =1fori=1,2,... n.

Therefore, (4.27) reduces to

I, 0
P = , (4.28)
TR Q

where I,, denotes the identity matrix with n equal to the cardinality of the set of
cores in the game.

We seek to compute the mean time before absorption by a given recurrent class
starting from a given transient state. For this purpose, the notion of fundamental

matriz S for absorbing chains is employed which is defined by
S=> Q" (4.29)
n=0

Staring from (4.29) and multiplying both sides by (I, — Q), it is straight forward to
show that

S(In, — Q) = L. (4.30)
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Furthermore, since |%| is finite,
S=(,-Q . (4.31)

Now, the following theorem provides the mean time before absorption by any
of the recurrent classes QR; (core of the coalition formation game) in terms of the

above defined fundamental matrix.

Theorem 4.3.2. [57, Theorem 6.2] Consider a homogeneous Markov chain with
transition probability matriz P as in (4.28). The expected absorption time from each

transient state i is given by the i-th element of
E(Tx) = S1. (4.32)

where 1 represents a column vector of ones and Ty denotes the first-time visit to

one of the recurrent classes R; after time 0.

This measure will be used in Sec. 5.1l to compare the convergence rate of Al-
gorithm 4.1 when accompanied with the two different search methods for blocked

sensors (see Sec. 4.2)).

4.4 Network Architecture and Implementation Issues

In order to employ Algorithm 4.1 to perform coalition formation amongst sensors
to localize multiple targets, it is important to consider the constraints imposed by
the sensor technology. Consider a hierarchical WSN composed of: (i) moderately
populated sensor nodes with limited processing power, memory and energy, and (ii)
a backbone of sparsely spread sensor nodes which assume the role of coalition heads
(CH) and have more computational power and memory and provide larger commu-
nication ranges. Assume the CHs are able to communicate with each other. Each

non-singleton coalition is assigned to a CH which knows the network configuration
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(i.e. locations of other nodes in the network) through an initial setup process. Each
node, existing in a non-singleton coalition, sets up a bidirectional communication
link with the CH. It is also assumed that the sensors are equipped with passive
direction-of-arrival (DOA) detectors and use the Zigbee /TEEE 802.15.4 protocol to
transmit data.

The main computational overhead in Algorithm 4.1 is to detect the blocked
sensors. This task is being accomplished by the CHs collaboratively such that each
CH searches for the blocked coalitions associated with a specific target. In other
words, the CH to which the DOA estimations of a specific target are sent by the
sensor nodes which are localizing it searches for the blocked coalitions comprising
that target. Then, the blocked sensors’ indices are broadcasted among all CHs.
Therefore, the CHs will also be responsible to inform the sensors whenever they are
blocked by any other coalition. In addition, since the CHs represent the role of the
base station for each coalition, they will be responsible for updating the state of the
network after each iteration of Algorithm 4.1 for all sensors in the network. Hence,
computing (4.19) can also be turned over to the CHs. Otherwise, the sensor nodes
have to incur the communication overhead for receiving the following information
from CHs: Q", P™ and ZjGS,? t7 for all k € K. In the latter case, the sensors also
need to experience an initgll setup process to receive the information about the
location of all the other sensors in the network.

Each sensor node, joining a new coalition, sends a message to inform the new
CH. The former CH will also be informed about this move through communication
with the new CH at the end of each period. However, if a sensor is leaving a coalition
to form a singleton coalition, the former CH should be informed. The overhead for
leaving a coalition and joining a new coalition is called the switching cost. This cost
only comprises the communication overhead for informing either the new or the old
CH. Hence, the switching cost for the sensor nodes is inexpensive and they can jump

between coalitions without expending much power.
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4.5. Multiple Target Localization Algorithm in Large WSNs

4.5 Multiple Target Localization Algorithm in Large
WSNs

Pre-processing for Large WSNs In large WSNs (comprising large number of
sensor nodes), to prevent ineffective sensors taking part in the coalition formation,
a pre-processing algorithm is proposed which both reduces the memory and compu-
tational costs to a great extent and ensures that the best-reply process with the new
set of sensors reaches an absorbing state. The following theorem states the condi-
tion under which the existence of at least one absorbing state is guaranteed in the
Markov chain underlying the best-reply process in the sensors coalition formation

game.

Theorem 4.5.1. In a sensor network comprising N sensor nodes attempting to
localize K targets, there exists at least one absorbing state in the Markov chain

defined by the best-reply process if

Jkek st > v({0,{i}}) <v({k,N}). (4.33)
ieN

Proof. The proof is very similar to the one presented in [14, Theorem 1]. Suppose
that for target k, which satisfies (4.33), the grand coalition {k, N} is formed and
each sensor achieves a sleep time ¢7 > v ({0, {i}}) such that > ;e\t = v({k,N}) >
Yien v ({0,{i}}). Now, it is easy to show that there is no incentive for any sensor
to leave the grand coalition. Each sensor i € N has two choices: (i) join other
non-singleton coalitions, (ii) form the singleton coalition. Since ¢ > 0 for all ¢ €
N, they have no incentive to form non-singleton coalitions where v({k,{i}}) =
0. Furthermore, since ¢ > v({0,{i}}), they have no incentive to form singleton
coalitions. Hence, w® = ({k,N'},t®) constitutes an absorbing state for the best-

reply process. O

Four parameters, as explained in Sec. 3.3, affect the total sleep time allocated
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to each coalition: (i) number of sensor nodes, (ii) relative distances of the sensors to
the target, (iii) relative bearings of the sensors to the target, and (iv) prior density
of the target. Considering these four parameters, the set of nodes participating in
the algorithm is contracted as follows:

The algorithm is initialized with the two nearest sensors to fi. Starting the algo-
rithm, in each iteration, consider the set of sensors located inside a circle, denoted

by S;,., with radius ry, and centered at p. If v({k,S,,.}) > v({k, S, ,}) in-

m?

crease 1., by Ar steps; Otherwise, using the structural results presented in Sec. 5.1,

eliminate the sensor nodes with the following properties:

i € E1UE,, (4.34)

Elz{ZEN’ (01—932673 Ez(),j:l,:l:?)/\(nZTj) for 1,7€ S,,, z;é]},
EQ:{ZEN‘ (o > Cpau ezzig)v(cfm > Cp,, A O, =0or £ m)}.

Continue increasing ry, until v ({k, S;,,}) < v ({k,Sr,,_,}) even by eliminating the
above nodes and define R = rp; — Ar. Then, O is defined to replace Oy, in (3.12)
such that

v({k,SrY) = > v({0.{i}}). (4.35)

i€SR
Ok is updated in each iteration of the Bayesian estimator until Ok > 6k

Here, Ok is defined since computing the characteristic function using the orig-
inal Oy, can result in small characteristic function values for which (4.33) cannot
be satisfied for any r,,. In cases where the prior points to a large uncertainty area
(i.e. CpysCpgyy > 1) or the target is required to be localized with very high ac-
curacy (i.e. Op > 1), (3.12)-(3.14) may even produce negative values. Hence, the
above pre-processing algorithm is devised to approach the required accuracy 6k in
consecutive steps of the Bayesian estimator, at the same time, guarantee the exis-

tence of an absorbing in each step. Note that more accuracy in localizing the targets
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(i.e. larger 6k) translates to more iterations of the Bayesian estimator to reach Oy,
Hence, sensors are required to take more measurements which again establishes the
aforementioned trade-off between Oy and the average sleep time allocated to the
sensor nodes.

The pre-processing algorithm is executed for all targets k € K and the result-
ing smaller network comprises the sensors: N’ = (Ji_; Sg,. If any sensor in the
set M\N” joins N, the assumption in Theorem 4.5.1lis not satisfied anymore; hence,

the existence of the absorbing state is not guaranteed.

Remark 4.5.1. As explained in Remark|4.2.1, the memory and computational over-
head is closely connected to the number of sensor nodes being involved in the dis-
tributed dynamic coalition formation algorithm. Particularly, by reducing the num-
ber of sensors using the pre-processing algorithm, the computational overhead for

finding blocked sensors using exhaustive search method is vastly improved.

We now proceed to present the main target localization algorithm by integrat-
ing Algorithm 4.1 with a sequential Bayesian estimator. In general, any Bayesian
estimator can be utilized. Here, the sequential Markov Chain Monte Carlo (particle

filter) is selected due to its superior performance in bearings-only tracking [15].

Algorithm 4.3: (Multiple Target Localization in Large WSNs)

L
Initialization: Set t = 1. Generate particles {p}:l = {xi’l,yf’l] ,wZ’l}lil

for all £ € K based on the prior density of the target p (px) where wi’l

denotes the weight of particle [ for target k at time t.
Step 1— Compute
i, =E{p;}, (4.36)

and
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Qi = : (4.37)

for all k£ € K.

Step 2— Run the Pre-processing Algorithm for each target based on p,
and QL. Compute O according to (4.35) for all k € K. If OL > O,
set Of = O, and FLAG = 1. Then, set

K
N = Sr,. (4.38)
k=1

Step 3— Run the Dynamic Coalition Formation Algorithm (Algorithm
4.2 by CHs, as explained in Sec. 4.4, and Algorithm 4.1 by each sensor
node) with the initial state w and using pt, Q, Of and N to reach
the core w® = (P, t°).

Step 4— FEach sensor 7 existing in a non-singleton coalition S, € P¢
takes a number of measurements equal to T'—t{ from target k, transmits
the measurements to the corresponding CH and then enters the sleep
mode: Z' = {Z},--- | ZL}.

Step 5— Run the particle filter

t+1,0 1L . . EEARY ¢
{pk , W) }lzl = Particle Filter <{pk W) }lzl ,Zk> , Vkelk.
(4.39)

Step 6— If FLAG # 1: Set w!t10 = wb¢ and ¢t « t + 1. Go to Step 1.
Else, finish.

Next chapter, provides numerical examples to demonstrate the behavior and
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performance of the approach proposed to save power in data acquisition amongst

sensor nodes assigned the localization task in different scenarios.
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Chapter 5

Numerical Examples

In this chapter, examples are provided to illustrate the behavior and performance
of Algorithm 4.3. Throughout this section, a standard deviation of 10 degrees is
assumed as the measurement error variance for all sensors, i.e. o; = 10°. It is also
assumed that o« = 1, T'= 10 and 01 = Oy = 103. Finally, we assume that 7, = 5
for all i € N. Hence, sensors receive sleep times in the interval [5,10] and it is

e T
guaranteed that ZZIE\IN L> ZZIG\INT = 5.

5.1 Example: Target Localization

Structural Results: In this part, the behavior of the distributed dynamic coali-
tion formation algorithm is illustrated in a small network comprising 8 sensors. The
small size of the network helps to gain insight on how the prior density of the target
and the relative configuration of the network play a role in the optimal coalition

structure P¢ and sleep times t° allocated to the sensors in the core.

Example 1

Consider the network configuration depicted in Fig. 5.1(a). Assume p (p) is Gaus-

100
sian with covariance matrix Cp = . Equal variances in the z and y

0 100
direction are considered to ignore the effects of the prior density of the target. At

this point, we only aim at studying the role of the relative configuration of the
sensors and target on the coalition structure and allocations in the core. Since the

sensor pairs {1,5}, {2,6}, {3, 7} and {4, 8} are located on the same line of sight from
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the target, they provide the same bearing information about the target. However,
the information that the sensors in coalition {1,2,3,8} provide about the position
of the target (i.e. p = [z, y]T) is more accurate due to being closer to the target. In
addition, the bearings to nodes 1 and 3, as well as nodes 2 and 8, are perpendicular
which provide the highest diversity in measurements. Hence, it is expected that the
coalition {1, 2, 3,8} be allocated the largest total sleep time. If any of the sensors in
the set {4, 5,6, 7} joins this coalition, stochastic observability is no further improved
and the characteristic function allocates less total sleep time as explained in Sec.
3.3. This is verified by the simulation results in which v({1,{1,2,3,8}}) = 26 and
v({1,{1,2,3,4,8}}) =v({1,{1,2,3,5,8}}) = 19.

In Fig. 5.1(a), mean of the target prior distribution and sensors are depicted by
the + and O signs, respectively. Filled squares represent the optimal coalition of
sensors localizing the target and t;’s give the sleep times, in terms of multiples of A,
allocated to the sensors in the core. The solid and dashed ellipses also represent
the prior and posterior densities of the target, respectively. As can bee seen, the
optimal coalition localizing the target and the sleep time allocations in the core
are Sf = {1,{1,2,3,8}} and t° = (7,6,7, 10, 10, 10, 10, 6), respectively.

Table 5.1 gives the expected time before absorption to the core (see Sec. 4.3)
for two different values of € for both exhaustive and randomized search methods.
As it can be seen, decreasing the probability that the set of blocked sensors get the
chance to experiment, the expected time before absorption increases. The trade
off mentioned between the size of the sample set and the expected time before

absorption can also be observed in Table 5.1.

Example 2

In this example, effect of the prior density of the target p(p) is investigated on the
optimal coalition structure reached by every sensor following Algorithm 4.1. The

prior density is assumed to be a zero-mean Gaussian distribution with its covariance
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Figure 5.1: Effects of (a) relative configuration of the target and sensors, and (b)
prior density of the target on the optimal coalition structure in the core for local-

ization of a single target.
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Table 5.1: Expected Time Before Absorption: Exhaustive Search Method vs. Ran-
domized Search Method.

SY={1,{1,3}} and & =5, Vi e N
£ e | ¢ E(Tx)
. 03106 | - 31.9
FExhaustive Search
03103 - 49.8
03067 46.3
Randomized Search
03037 63.4

given by one of the two following matrices:

Cp, = ;o Cpy= . (5.1)

Since Cp,, places larger uncertainty on the y coordinate of the target position, it is
expected that the optimal coalition structure is formed such that it provides more
information about that coordinate. In addition, Fig. |5.1(b) reveals that nodes {1,5}
and {3,7} provide information only on the y and z coordinates of the target’s
position, respectively. However, sensors in the set N'\{1, 3,5, 7} provide information
on both coordinates. Since the uncertainty in x direction is small compared to y
direction, node 3 may provide redundant information as nodes {2,8} reduce the
uncertainty in x direction. Fig. |5.1(b) justifies the above discussion by showing the
optimal coalition localizing the target and allocations in the core: §f = {1,{1,2,8}}
and t° = (5,6, 10, 10, 10, 10, 10,6). Now, considering Cg,, since the uncertainty along
the z axis is increased, we anticipate that node 3 also takes part in the localization

which is verified in Fig. 5.1(a).
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Target Localization

In this part, the behavior of the multiple target localization algorithm (Algorithm
4.3) is investigated for the network configuration depicted in Fig. 5.1. It is assumed
that the covariance of the target distribution is given by Cg, at t = 0. Here, running
the pre-processing algorithm results in N/ = N. Fig. 5.1(a) shows the optimal
coalition structure and sleep times allocated to the sensors when Algorithm 4.1
reaches the core at t = 1. Subsequently, each sensor takes a number of measurements
equal to T' — t; which results in the posterior distribution depicted by the dash-dot
ellipse. This updated distribution will be used as the prior for the next decision
epoch. Fig. 5.2(a) and Fig. 5.2(b) demonstrate the core state, as well as the prior
and posterior distribution of the target, at t = 2 and ¢ = 3, respectively. As can
be seen, although the optimal coalition structure P¢ remains the same for t = 1
to t = 3, the optimal sleep times t¢ allocated to the sensors in the core change.
Furthermore, an example is provided to study the behavior of the Algorithm
4.1 for multiple target localization in the network depicted in Fig. [5.3. Here, it
is assumed that Cp, = Cp, = [1"),]. Running the pre-processing algorithm
results in:Sg, = {7,12,13,16,17,18,22,23} and Sz, = {3,8,9,12,13,14,18,19}.
These sensors are shown with the same color as the corresponding target in Fig.
5.3. Here, Sg, N Sg, = {12,13,18}. Hence, there exists a competition between
the two coalitions localizing the two targets and these sensors will join the coalition
in which they can achieve larger sleep times. Fig. [5.3] demonstrates the optimal
coalition structure and sleep times allocated to the sensors in the core for ¢t = 1.
Finally, the performance of Algorithm 4.3 is compared with a scenario in which
a fixed set of sensor nodes S" are assigned to localize the target in a Bayesian
framework. These sensors are assumed to be the closest sensors to the target, hence
providing more accurate measurements comparing to other sensors. In multi-target
tracking scenarios, if a sensor 7 is in the closest sensors set for more than one target

(i.e. k1, ko € K such that i € S, and i € S, ), then the sensor node chooses the
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Figure 5.2: Localization of a single target: optimal coalition structure and the sleep
times allocated to the nodes in the core in term of multiple of A at: (a) ¢t = 2, and

(b) t = 3.
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Figure 5.3: Multiple target localization: optimal coalition structure and the sleep
times allocated to the sensors in the core at ¢t = 1.

target to localize randomly. We refer to this method as range-based measurement
allocation. These nodes are assumed to be awake for the whole period and take T
measurements, i.e. t; = 0 for all ¢ € S”, after which the prior of the target is updated.
Fig. 5.4 shows the average sleep times allocated to the sensors in each method as
a function of the number of sensors in the network. Here, 100 random network
configurations are generated in two-dimensional space with N sensors and K targets
spread uniformly in each network. The sensors are spread around the targets in
a 200™ x 200™ square and the prior densities of the targets are assumed to be
Gaussian with covariance matrix Cp = [10°,9,]. The core is replaced with the
absorbing state of the best-reply process without experimentation when the core
turns out to be empty. As the number of sensors in the network increases, uniform
distribution of the sensors provides more diversity in the relative configuration of the

target and sensor nodes; Hence, more diverse bearing measurements are collected

and the average sleep times allocated to the sensors increases in both methods.
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Figure 5.4: Average sleep time allocated to the sensors during a localization task
versus number of sensors in the network: distributed dynamic coalition formation
vs. range-based measurement allocation.

However, as can be seen in Fig. 5.4, the distributed dynamic coalition formation
approach demonstrates a significant average sleep time increase compared with the
range-based method. Particularly, the average sleep time allocated to the nodes is
guaranteed to be larger that # = 5.

The aforementioned trade-off between the required localization accuracy Oy, and
the average sleep time allocated to the sensors is also demonstrated and compared
with the heuristic range-based measurement allocation in Fig. [5.5. Here, we again
considered 100 random network configurations with 10 sensors and one target spread
uniformly in a 200" x 200™ square network. The prior density of the target is also
assumed to be Gaussian with covariance matrix as above. Fig. [5.5/illustrates that
as 6k goes up, the average sleep time allocated to the sensors decreases in both
approaches; However, the average allocated sleep time drops more rapidly in the

range-based method. Hence, the distributed dynamic coalition formation approach
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Figure 5.5: Average sleep time allocated to the nodes during a localization task
versus required localization accuracy Og: distributed dynamic coalition formation
vs. range-based measurement allocation.

provides a better trade-off between 6k and the average sleep time allocated to the

SEeNnsors.
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5.2 Example: Tracking Slow Moving Targets

In this example, we use Algorithm 4.3 for tracking a slow moving target as follows:

Algorithm 5.1: (Coalition Formation in Target Tracking)
Require: p(p)) (initial prior density of the targets with mean [ and
covariance C%k) and Oy, for all k € K. Set t = 1:
Step 1— Run Algorithm 4.3 with p(p}) and Oy,.
Step 2— Approximate the posterior as a Gaussian distribution p (p,)
with

i =E{pl}

and

-1
Qi =
0 var (yg )
L
for all k € K where {pg’l = [m{’l,ylf’l} ,w{;’l}l_l denotes the final set of
particles and their weights when Algorithm 4.3 terminates.
Step 3— Predict the distribution of the target position for the next
period:

p (f)f:“l) = Traget Model (f)};, At) .

Step 4— Set t — t+ 1. Go to Step 1.

In Algorithm 5.1, the basic assumption is that the targets move slowly enough
such that the core of the game does not change until Algorithm 4.3 is converged.
Considering the fact that several iteration of Algorithm 4.3 are required to reach

the required accuracy for localization of the target, it is assumed that the time
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Figure 5.6: Network configuration for tracking a slow moving target: Dashed circle
depicts the set of sensors determined by the pre-processing algorithm.

interval At between the consecutive iterations of Algorithm 5.1 is at least one order
of magnitude larger than T'A. Sensors enter the sleep mode after transmitting the
final measurements (see Step 4 in Algorithm 3.3) and wake up to record and transmit
the first set of measurements in the next iteration of Algorithm 5.1.

Consider a network of sensors as shown in Fig. [5.6. The target motion model
is assumed to follow a random walk to the left on the z axis as follows: the target
decides whether to go to the left for 0.2m or stay at its current position every 50A s.
The time interval between the consecutive iterations of Algorithm 5.1 is also assumed
to be 1000A s. Results are shown in Fig. [5.7 for two iterations of Algorithm 5.1
starting with Cp, = [%) 4&]. Sensors which form the optimal coalition for tracking
the target are depicted with filled squares for the first iteration of Algorithm 4.3.
Fig. 5.7 illustrates two iterations of Algorithm 5.1. The solid ellipse and * depict
the updated posterior distribution of the target and its mean, respectively, after

reaching the required accuracy.
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Figure 5.7: Tracking a slow moving target: optimal coalition structure and the
sleep times allocated to the nodes in the core in terms of multiples of A for the first
iteration of Algorithm 4.3 at (a) ¢ =0, and (b) ¢ = 1000A.
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Chapter 6

Conclusions and Future Work

This chapter summarizes the work accomplished in this dissertation, followed by a

discussion on the possible future work for further investigation.

6.1 Summary of Work Accomplished

This dissertation considered the power conservation problem for data acquisition in
WSNs deployed to localize multiple targets. The problem was formulated as combi-
natorial optimization problem where the goal is to maximize the average sleep time
allocated to the sensors over the set of all possible coalition structures such that a
pre-defined localization accuracy is provided for all targets. This NP-hard problem
was interpreted as a non-superadditive coalition formation game in a bearings-only
localization scenario. We proposed a distributed dynamic coalition formation algo-
rithm in which each sensor greedily maximizes its expected sleep time for the next
iteration by joining one of the existing coalitions. The notion of the core was rede-
fined and used as the solution concept for this game. It was shown that the sleep
time allocations and coalition structure in the core is the solution for the aforemen-
tioned combinatorial optimization problem. Furthermore, we proposed a distributed
dynamic coalition formation algorithm in which each node greedily maximizes its
expected sleep times for the next iteration. Experimentation was introduced on the
side of sensors (as players of the game) such that each sensor chooses suboptimal
strategies whenever it knows the chance of achieving larger sleep times in future. It

was shown that if every sensor in the network follows this algorithm, it converges
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to the core of the coalition formation game, and hence the optimal coalition struc-
ture and allocations, with probability one. The main advantage of this algorithm
is that the solution to an NP-hard problem is reached distributively by each sensor
following a simple best-reply rule. This algorithm was integrated with a sequential
Bayesian estimator to localize targets, for which the superior performance over the
heuristic range-based measurement allocation method was demonstrated through
Monte Carlo simulations. The proposed algorithm can also be employed in range-

only tracking scenarios by deriving the appropriate characteristic function.

6.2 Directions for Future Work

1. Numerous applications in wireless networks: The distributed dynamic
coalition formation algorithm developed in Sec. [4.2] provides a generic frame-
work to solve the problem of coalition formation in multi-agent domain. This
approach can be exploited to optimize various performance metrics in wire-
less networks, where the network entities collaborate to achieve some common
goal, by reaching the core of the underlying game. An example is provided in
Appendix B in which the problem of resource allocation with load balancing
is investigated in cognitive radio network. In this example, cognitive radios
(as players of the game) form collaborative groups to exploit the spectrum
available to cognitive base stations most efficiently. Hence, defining the ap-
propriate characteristic function for the cooperative scenario under study, the
proposed distributed dynamic coalition formation algorithm can be utilized to

reach the optimal coalition structure and allocations.

2. Distributed overlapping coalition formation: A possible extension to the
present work is to investigate a scenario in which sensor nodes are involved in
executing more than one task, e.g. detecting intrusions to the network, record-

ing measurements from more than one target at each period, forwarding the
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collected measurements to the sink in a multi-hop scenario, etc. Therefore,
sensors have to distribute their resources between several (not necessarily dis-
joint) coalitions. To tackle such scenarios, the cooperative game model devel-
oped in Sec. [3.1/should be modified allowing overlapping coalitions. Following
this modification, the notion of the core, as the equilibrium state in the game,
should be redefined such that once the system reached that state no player can
do better off by deviating from it. A distributed decision-making framework
can also be developed similar to the one proposed in this dissertation. For
this purpose, one can benefit form [58] which introduces a model for coopera-
tive games with overlapping coalitions and provides some good insight on the

notion of stability in the defined setting.

. Leftover battery and communication cost: Another possible extension to
the present work is to take both the leftover battery energy for each sensor node
and the communication cost between the sensors and the CHs into account.
For this purpose, one needs to modify the characteristic function defined for
the sensors coalition formation game to incorporate both these effects. We
expect this modification to increase the expected time elapsed before the first
sensor runs out of battery. In addition, it is expected to achieve a trade-off
between the relative distances of the sensors to the target and relative distances
of the sensors to the CH in the optimal coalition structure reached in the core

by incorporating the communication cost.

. Alternate bounds for stochastic observability: As explained in Ap-
pendix |Al to derive the characteristic function for the game, a lower bound
is found for the stochastic observability (determinant of the B-FIM). The ap-
proach used in Appendix Al requires this lower bound to be linear in terms
of the active times of the sensors. There exists no generic approach to derive

a closed-form expression for such a bound; However, one may use heuristic
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methods to find a tighter lower bound. It is expected to achieve larger char-
acteristic function values, hence, larger sleep times for a coalition of sensors
compared to the characteristic function proposed in this dissertation if one

can derive such tighter bounds.
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Appendix A

Derivation of the Characteristic

Function

In this appendix, detailed derivation of the characteristic function presented in

(3.12)-(3.14) is provided. In what follows, we benefit from the following inequal-

ity:

Sy Xi S log (X;)
log< 1\} )2 1N . (A1)

This inequality holds due to the concave property of the logarithm function. As the
first step, we remove the expectations in (2.26) using the approximation in (2.38).
Then, applying the above inequality in (2.26)-(2.28) repeatedly, a lower bound can

be found as follows:
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Subsequently, applying
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one can write (A.3) as
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Since the arguments 7' —t; in log(T'—t;) are integers in the closed interval [1,7 — v({i})]
and due to concavity of the logarithm function, log (T — t;) can be lower bounded

by

log (T')
T

log (T'—t;) > ——— 1 t; +log (T) . (A.6)

90



Appendix A. Derivation of the Characteristic Function

In the next step, applying (A.6) in (A.5), one can write
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Finally, applying the relaxed constraints (2.4) in (A.7), the sum of sleep times of

the sensors in a particular coalition Si can be expressed as

S < 1T (h)g <3aT%sk| (1S = 1) det <Q>>
"= o (T)

ics, log (T’ Oy,

m, 1 .
3|5 ¥ Z * 3] Sk| |5k| Z > o) ) (A.8)

zeSk JESK
J#i
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2 (i 2 (it
1 _ log Q11COS~ (292 +q22 Sm~ (2‘92 ) ) (A.9)
(E) ot F)
U@) ~log 1 sin? (0’1 — (9][") ' (A.10)
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The right-hand side in (A.8) gives the maximum total sleep time that can be achieved
by a coalition of sensors Sy constrained on the required localization accuracy Ok
In this dissertation, the aim is to minimize the energy consumption by maximizing
the average sleep time allocated to the sensors. Therefore, we equate the sum of the

sleep times of the sensors in S to the upper bound provided by the right-hand side.
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However, as defined in Sec. 2.1} ;’s are positive integer numbers. As the result, the
sum on the left-hand side should also be confined to Z* (positive integer numbers).

Hence,

S VT_ 1 st,log (m%sk\ (1S = 1) det (Q))

+3 Zv \3| ZZU >J+ (A.11)

’LESk ZESk ]ESk
J#i

where |z|T = max {0, |z} and |-| denotes the greatest integer function. This func-
tion provides the maximum feasible sleep time for a coalition Sy localizing target k
and hence is considered as the characteristic function for the sensors coalition for-

mation game defined in Sec. [3.2.
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Resource Allocation in

Cognitive Radio Networks

Cognitive radio networks (CRN) are promising to enrich the connectivity demand of
users through exploitation of under-utilized licensed bands. However, there are few
vigorous studies in the literature that provide a holistic view of CRNs in performing
tasks such as cognitive radio (CR) admission policy, resource allocation and load
balancing. In this work, the load balanced resource allocation problem is formulated
in CRNs as a non-superadditive coalition formation game in which the CRs, as
players of the game, form collaborative groups to exploit the spectrum available to
cognitive base stations (CBS) most efficiently. Upon joining a coalition, each CR
receives a payoff that can be translated to the revenue form the achieved throughput
subtracted by the cost incurred by occupying one of the available sub-channels. A
distributed decision making framework is developed for coalition formation among
CRs based on the approach presented in Sec. 4.1, that converges to the core of the
defined game corresponding to the maximum average payoff conditional on feasibility
and subject to the fairness rule as defined in 2.1. Furthermore, we will elaborate
on load balancing properties of the proposed solution and demonstrate its superior

performance compared to opportunistic scheduling.
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B.1 Introduction

The end users’ demand to be “always connected” is progressively increasing, man-
dating ever more efficient spectrum utilization techniques. This demand for high
bandwidth, seamless and heterogeneous connectivity makes the traditional fixed
spectrum allocation paradigm unsustainable. Spectrum regulatory bodies have,
hence, embraced a change of paradigm towards more flexible spectrum manage-
ment methods such as secondary spectrum access (SSA), e.g. the FCC has recently
authorized unlicensed access to TV white spaces [59]. A number of standardization
efforts including IEEE 802.22 [60] and IEEE SCC41 are already underway to address
the market needs with SSA-enabled technologies. Cognitive radio (CR) [61] is a key
enabling technology to this end, facilitating intelligent and agile spectrum access
while protecting the licensed users of a given band from degrading interference.

Consider a wide geographical area covered with several primary transmitters
(PT), e.g. TV broadcast towers, each with their dedicated (and licensed) frequency
band as shown in Fig. B.1. A cognitive radio network (CRN) comprised of several
cognitive base stations (CBS) is also operating in that area, very much in-line with
IEEE 802.22 standard assumptions. Due to the lack of dedicated signaling channel
for CRN and inherent instability of underlying secondary bands, each CBS should
autonomously perform tasks such as CBS-CR association, resource allocation, load
balancing and CR hand over (HO).

In this appendix, a distributed decision making framework is proposed based on
the approach presented in Sec. 4.1, which addresses the aforementioned resource
allocation and load balancing problem in a CRN in two steps. In the first step, each
CBS admits an optimal set of CRs, where the admissibility criterion is based on
finding the optimal coalition structure in each cell such that the sum of utilities for
all cells is maximized. Indeed, this step can be conceived as the coalition structure

generation process, as explained in Sec. 4.1. Next, the admitted CRs negotiate to

94



Appendix B.1. Introduction

f

M

sl N
p e (B)) \\f o
/ / I \ ™
CBS 1 / CR ) (@ Y

/ y ) \
( f / ’ \
\ PT1 / / cBS 2 |

1 /

N /J L &

crR /
# /
ya \ /
/ \ \ e
@ é -

7/ fy

M,

\ CBS 3
.

f3

Figure B.1: A typical primary and secondary network architecture pertinent to our
analysis.

reach the optimal payoff allocation in a distributed fashion such that the average
payoff of the CRs is maximized, conditional on feasibility and subject to a fairness
criterion (see Sec. [2.1), hence, converging to the core of the game. This last step
can also be identified as the bargaining process (see Sec. 4.1)).

In the past decade, since the introduction of cognitive radio into wireless commu-
nications lexicon, a great body of research has been developed focusing on various
aspects of this promising technology [62], [63]. However, a holistic view of a CRN
has only recently gained the attention of researchers [60], [62], [64]. To the best
of our knowledge no previous study has investigated the distributed CR admission,
load balancing and optimal channel allocation in a CRN rigorously.

Using cooperative game theory as a tool to optimize performance metrics in
wireless systems has also recently gained attention. In [44], formation of virtual
MIMO systems is formulated as a super-additive cooperative game and the stability

of the grand coalition is studied for both transmitters and receivers cooperation.

95



Appendix B.2. Problem Formulation

A similar problem is investigated in [45], considering the cost (in terms of power)
for exchanging data between cooperating transmitters. To this end, the authors
developed a simple merge and split algorithm, based on the approach proposed in
[34], through which transmitters are able to self-organize and form stable coalitions.
As another example, [43] studies collaborative spectrum sensing (CSS) in CRNs
in which secondary users interact for improving their sensing performance, while
taking into account the false alarm cost. Since the utility represents probabilities,
the game is formulated as a non-transferable cooperative game and a distributed
algorithm is proposed for coalition formation.

The rest of this appendix is organized as follows: In Sec. B.2, the load balanced
resource allocation problem is formulated. In Sec. |B.3, the problem is interpreted
as a cooperative game and a two-step dynamic coalition formation algorithm is

presented. Finally, the numerical results are presented and discussed in Sec. B.4.

B.2 Problem Formulation

Notation

Let N = {1,2,--- ,N} denote the set of CRs in the multi-cell CRN. Coalitions
and coalition structures are denoted by S and P, respectively. The set of all pos-
sible coalition structures is also denoted by C. Finally, the set of sub-channels in
coalition § is denoted by Rs.
Each coalition S is identified by a tuple S = (x,y) where x € {0, 1}N is given by
1, ifies
0, ifi¢gS
Let {e;; i = 1,--- ,N} denote the standard basis vectors in RN. Then, x = ;.5 €;.

In addition, the occupied sub-channels in a particular coalition & are identified by

96



Appendix B.2. Problem Formulation

a vector y € Z+™! given by

1, if sub-channel j is oocupied by CR 14
yj = (B.2)
0, if sub-channel j is not occupied
Lastly, we define an indicator function to determine the sub-channel index to which
each CR is connected as follows
o ify, =1
iy =4 7 Y

0 otherwise

Channel Model

Let F denote the set of licensed frequency bands available in the investigated ge-
ographical area. A specific primary cell k, coexisting with the secondary cell &, as
depicted in Fig. B.1, exploits a subset of these licensed bands denoted by Fp C F,
where k € K = {1,2,...,K}. The set of available frequency bands for SSA is then
indicated by F\Fy and is denoted by F_. It is assumed that the CBS in cell k£ will
partition F_j into My equal-bandwidth sub-channels denoted by the set M. For
mathematical tractability of the investigated problem, it is also assumed that each
CR requires to access one sub-channel and each sub-channel in cell £ will exclusively
be allocated to a single CR. We assume a block fading channel model for all sub-
channels, where the channel fading distribution in the M}, sub-channels of each cell,
as monitored by each CR, are i.i.d. The CSI is assumed to be known at the CRs,
and are fed back to CBS, which can be reliably estimated using the periodic pilot

signals from each CBS.

Pricing Mechanism

Consider a scenario where the primary license owner charges the CRN a flat price,

say G ($), for the total available frequency for SSA over a fixed and agreed period of
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time 7 (S). This “spectrum lease” period is ideally a multiple times of the resource
allocation period of CRN, i.e. 7 = T x 7, where T' € NT and 7 denotes the dura-
tion of CRN resource allocation period. Such an agreement alleviates the need of
primary network monitoring the CRN operation compared to the case where spec-
trum charges are assumed proportional to the CRN activity. Assuming existence of
equal-size secondary bandwidth in all cells, the incurred cost of CRN per cell over

% ($). If secondary bandwidth is not equal

one resource allocation period is G=
in all cells, a proportional cost distribution can be utilized. The CRN, hence, is
interested in maximally utilizing the available bands so as to gain a higher utility
from the charged frequency bands. In the rest of this appendix, and without loss of
generality, we focus on an arbitrary resource allocation period of CRN.

To compensate the incurred cost, CBS k is assumed to use a cost function defined

by

L T
G(llxkll) = A+ (exp Tl 0 1), (B.4)
where A is an arbitrary constant and || - || indicates the L' norm in RN, defined
by ||xx|| ;= 32X, |#s]. This cost function demonstrates increasing differences such

that when user 7 joins cell k, it will pay a higher price of G (||xx||) — G (||xx — e:l]),
compared to existing users in that cell. Therefore, as a particular cell becomes con-
gested, CRs will be motivated to join other cells provided that they have access to
sub-channels in other cells. This approach amounts to a distributed load balancing
mechanism in the CRN which can be parameterized by A and G. The utility func-
tion (in dollars) for a coalition of CRs associated with CBS k, for a given resource

allocation period, is defined as

Us)=c| > [log (1 + P’“j”’“)] =G (=l (B.5)

1€SK ?

where P, ;. denotes the allocated power to CR ¢ from CBS £, UZZ denotes the noise
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power for CR 4 (assumed to be equal for all sub-channels) and g; 5(;)  is the channel
gain for CR ¢ when using sub-channel J(i) in CBS k. The first term in (B.5)
returns the revenue (in dollars) as a function of the achieved throughput. Hence,
the utility function (B.5) essentially determines the profit that each coalition of
CRs gains by occupying a subset of the sub-channels available in a particular cell.
Note that while the cost for accessing resources in each cell, i.e. G (||xx||) in (B.5),
has a readily accessible monetary interpretation, the revenue term may need to be
indirectly translated to a monetary regime. The revenue of each CR, for instance,
can be envisioned as the dollar equivalent of end user satisfaction proportional to
its received service from CBS k.

Upon joining a given coalition, CR ¢ will contribute towards the coalition utility
and in return will receive a pay-off, denoted by p;. The problem considered in this

appendix can then be formally stated as

maximizepep Lser <§:i€$k pi)
PeC
(P2) subject to >ies, Pi S U (Sk) Vk e K (C1)
pi > i vie A(P)  (C2)

where p = (p1,--- ,pn) denotes the payoff vector for all CRs and A (P) denotes the
set of all non-singleton coalitions formed in a particular coalition structure P which
will be vigorously defined later. To make the problem mathematically tractable,
the set of profit values that can be allocated to the CRs is confined to a finite set.
Suppose A ($) is the smallest profit unit. CRs’ demands are then restricted to
the integer multiples of A in the closed interval [0, maxy, ¢ 0 13N, [1x. < M| U (Sk)]-
Throughout, this set is denoted by D.

In the combinatorial optimization problem in (P2), the objective function is
defined as the average payoff achievable by the CRs forming coalitions to exploit

the resources available for SSA in the CRN. This objective function is aimed to
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be maximized over the set of all possible coalition structures C. The constraints
in (C1) guarantee that the total payoff allocations in a particular coalition do not
exceed the profit gained by that coalition. Furthermore, as formulated in (C2), it is
assumed that a given CR i is interested in cooperation only if its payoff is greater
than p;. Let N’ denote the set of CRs admitted to network in the solution to (P2).
A fairness rule is also defined, as in Sec. 2.1, on the vector of payoffs p allocated

to the CRs in N as follows:

SNopi>US) VS C2M\D, vk e K. (B.6)
ieSy
These constraints guarantee that the total profit in the coalitions are divided among
the CRs in a fair fashion such that no CR can gain higher profits by exploiting the
resources associated to any other CBS.
Next section provides a two-step distributed solution to the above problem fol-

lowing the approach presented in Sec. 4.1l

Formulation of Constraints

In the presented formulation, since the channel gains vary as the CRs connect to
different CBSs, the utility function for each coalition, given in (B.5), depends on the
CBS to which the CRs in that coalition are connected, as well as the sub-channels .
Hence, as explained in Sec. [3.4, CBSs are considered as (virtual) players of the game
achieving zero payoffs. Hereafter, to denote this convention, each coalition k € IC will
be denoted by {CBSk,Sk}. Singleton coalitions will also be denoted by {CBSy, {i}},
where i € N'\(Us, epSk). Finally, for our formulation to be well posed, the following

constraints are imposed on the utility function:

e To prevent CBSs leaving coalitions, the utility of a coalition of CRs without
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the corresponding CBS is set to

US) =0 Vkek. (B.7)

e To prevent CBSs jump between coalitions, we set

U{CBSk,CBS.Si}) =0 Yk K € K. (B.8)

e To allocate each sub-channel exclusively to one CR, we set

UCBS, Sy U} ) =0, if FieS,:3() =3() = (B.9)

e Finally, the utility for singleton coalitions is set to
U{CBSy,{i}}) =0, (B.10)
and to prevent singleton coalitions joining other singleton coalitions, we set
U{CBSo,So}) =0, (B.11)

where Sy € 2V\Viz1Sk,

B.3 Distributed Dynamic Coalition Formation

In this section, we propose a two-step algorithm which converges to the solution
to problem (P2) by each CR independently following simple best-reply rules, as
explained in Sec. 4.1l In the the first step a distributed decision-making framework
is developed in the form of two simple join and disjoin rules. It is guaranteed that
if each CR follows these rules, coalitions are formed in each cell such that the sum

of the profits in all coalitions is maximized. Note that traditional (centralized)
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scheduling schemes have a myopic view of isolated cells which, as shown in Sec. B.4,
will fail to maximize the overall utility of all cells. The second step of our proposed
solution ensures reaching a core allocation in the non-superadditive cooperative TU
game defined on the set of CRs admitted to the CRN in the first step.

We now proceed to elaborate these steps separately.

Admission

The first step is essentially the coalition structure generation process, as explained
in Sec. 4.1, and aims to find a partition on the set of CRs such that the sum of the

utility functions for all coalitions is maximized, i.e.

maximize %U({CBS;C,SR}) (B.12)

subject to < Xpy,Xp, >=0 Vki,kp €K

where < -,- > denotes the inner product of vectors in RN. Intuitively, the con-
straints in (B.12) emphasize that coalitions are disjoint, as defined in Chapter 2;
hence, no CR exploits the resources in two different cells simultaneously. This com-
binatorial optimization problem can be interpreted as a cooperative game (N, v) =
({1,--- ,N},U), where N denotes the set of CRs in the CRN which collaborate to
maximize the profit gained by forming coalitions to utilize resources in the CRN.
To reach the optimal coalition structure in the game, a distributed join and disjoin
algorithm is proposed. In each iteration of this algorithm, CRs follow simple join
and disjoin rules which are similar to the merge and split rules as proposed in [34].
In addition, to prevent incompatibility of CRs’ strategies, it is assumed that CRs get
the chance to revise their strategies according to a Bernoulli trial with probability &
as in Sec. 4.1. Each CR, having the opportunity to revise its strategy, employs the

following rules to decide which coalition to join in the next period:

102



Appendix B.3. Distributed Dynamic Coalition Formation

Join and Disjoin Rules:

Rule 1: CR i joins coalition Sy if

di = [U{Se U {i}}) + U{S@ON ] = U{Sk}) +U{S(E)}] > 0,

(B.13)
and
k= di—j |, B.14
arjgglcax ({161%%( ]> ( )
Y=

where S(7) denotes the coalition to which CR ¢ belongs.
Rule 2: CR i disjoins coalition Sy if

U{S\{it}) > U({Sk}), (B.15)

More generally, all CRs i € S;\S}, disband if there exists a coalition Sj,
such that:
U (S,) >U(Sk). (B.16)

To simplify the notation, we dropped CBSj when referring to coalition k in
the above rules. Note that d;_j in effect determines the added profit (or loss
when d;_; < 0) of CR i leaving its current coalition S (i) to join Si. Further-
more, to prevent getting stuck in non-optimal coalition structures, it is assumed
that if there exists a coalition S, such that ;¢ s diwsk > 0, where all i € S, are in
the range of CBS k, CRs i € S, experiment as explained in Sec. [4.1. The following
theorem shows the convergence and stability of the partitions resulting from the

above operations.
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Theorem B.3.1. Any iteration of successive join and disjoin operations terminates.

In addition, the coalition structure reached P2 is stable and

PA = argmax Y U (CBSy,Sk) . (B.17)
PeC SLEP

The stability implies reaching a specific coalition structure P, such that no CR is
interested in leaving P through join and disjoin operations. All CRs in non-singleton
coalitions N/ = {Uke’cSk;Sk € CSA IS > 1} are admitted to the network. All

other CRs form singleton coalitions and achieve zero payoffs.

Dynamic Coalition Formation

In the next step, the admitted CRs, denoted by the set N, collaborate to form
coalitions such that the average payoff allocated to each CR is maximized conditional
on the constraints (C1) and (C2) and subject to the fairness criteria (B.6). This

problem can be formulated as

maximizepep N
peC
subject to Zieék pi <U (CBSk,Sk) Vk e K
Sies, P 2 U (CBSL, ) S € 2V\0,Vk € K
Di > Pi Vi e N7

The above resource allocation problem can be interpreted as a non-super-additive
cooperative TU game (N’ v), where v(-) = U(-) as defined in (B.5). CRs cooperate
in order to exploit available resources most efficiently. Each CR 7 is assumed to be
interested in cooperation only if its profit is greater than p;. Hence, the reservation
payoff v (CBSy, {i}) is set to p;, i.e. v(CBSo,{i}) = p;. Those CRs which prefer
not to cooperate will simply choose the best available sub-channel and the cost for

accessing each sub-channel will be the uniform distribution of the remaining cost
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between unoccupied sub-channels in each cell in the core.

In this step, the distributed dynamic coalition formation algorithm (Algorithm
4.1 accompanied by Algorithm 4.2) is utilized to reach the core of the defined re-
source allocation game. For this purpose, Algorithm 4.1 is required to be modified

as follows:

Algorithm B.1: (Distributed Dynamic Coalition Formation for Re-
source Allocation)

Initialization: At n = 0 select initial coalition structure such that each
non-singleton coalition comprises at least two CRs and each CR can at
least achieve its reservation sleep time v({CBSo,{i}}) = pi. Set
WUCBSLS@D i IS (7)) > 1

= S@)l Vie N’ (B.18)
v ({CBSy,{i}}) otherwise

s
o

where S(i) denotes the coalition comprising CR 4. Set w® = (P, p°). In

addition, let &, e € (0,1) to be fixed for all sensors in the network.

- The following steps are done independently by each CR i € N:

Step 1— Revision Strategy: Take a random draw from the Bernoulli

trial with probability . If the outcome is “keep strategy”, set pi! =

(2
p?, ST (i) = 8™ (i) and go to Step 5. Otherwise, go to Step 2.
Step 2— Evaluation of the Best Strategy for the Next Period: Com-

pute

p?“(w") = max ( max v ({CBSk,gk U {z}}) — Z pl)a (B.19)

keKu{0} \ 3()eyp 1cd
l;éik
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where p?™! (w™) € D;, and

S = { (" @)y @) st = Lt =, (B20)

m/

respectively. m and m’ are also determined by

m € {argmax (3(1323(12” ({CBSk;,gk U {Z}}) - Z pl) }, (B.21)

keKu{0} 18,
1#i

m’ € argmax {v ({CBSk,gk U {z}}) - Z pl}, (B.22)
3(@)eyy 18,
I£i

where S = {0} and Y7 denotes the set of unoccupied sub-channels in

cell k£ and in period n.

Step 83— Experimentation: If ¢ € B", take a random draw from the

Bernoulli trial with probability e. If the outcome in is “experiment”,
choose p ™ uniformly in the interval D;. In addition, choose k € KU{0}
and J (1) € My, uniformly with probabilities ﬁ and Wlw respectively.
Go to Step 5. Else, go to Step 4.

Step 4— Best-reply Process: Set p?“ = p?“ (w™) and choose

S™F1 (i) € S (w™) with equal probability m

Step 5— Recursion: Set n +— n + 1 and go to Step 1.

In Algorithm B.1, D; denotes the set of integral multiples of A in the closed
interval |p;, maxpec Y g, epU (CBSy, Sk)}, where the upper bound is determined by
the solution to the admission step. Theorem 4.3.1] proves that if each CR i € N’
follows Algorithm B.1 and if the core of the game is non-empty, the core of the

resource allocation game is reached with probability one which provides the solution
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Figure B.2: Example 1: Coalition structure and profits allocated to the CRs in the
core.

to the problem (P2). After reaching the core, those CRs which form singleton
coalitions will simply choose the best available sub-channel and the cost for accessing
each sub-channel will be the uniform distribution of the remaining cost of available

resources in each cell between unoccupied sub-channels when the core is reached.

B.4 Numerical Results

The simulation set-up is chosen pertinent to the IEEE 802.22 standard. The carrier
frequency is assumed 700 MHz (TV UHF band) and sub-channel bandwidth is
normalized so that the throughput is expressed as Nats/S/Hz. The channel path
loss model is considered to be COST 231, with CBS hight of 50 m and CR height
of 2 m. We assume a 3 dB log-normal shadowing and Rayleigh fading with unit
mean. In addition, the maximum transmit power of each CBS and the cell radius
are assumed to be 4 Watts and 30 Km, respectively. Furthermore, it is assumed

that A =6, G = 2 and C(z) = C - z in (B.5) with C = 3.5 $/MNats.
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Table B.3: Channel Gains for Example 1

G150y | 5.8e-16 | 1.2e-10 | 1.3¢-27 | 0.4869
g6 | 3e-11 | 1e-27 | 0.0056 | 0.7108

To demonstrate the behavior of the proposed algorithm, two examples are pro-
vided in Figs. B.2land B.3. In both examples, a CR is admitted for each sub-channel
by reaching the stable coalition structure through the join and disjoin rules proposed
in the admission step. The admitted CRs are shown with unfilled squares in color
with the corresponding CBS. Non-singleton coalitions are depicted by filled squares
and CRs which are not admitted to the network are depicted by black squares. In
the first example, we consider the network configuration illustrated in Fig. B.2. It
is assumed that the available bandwidth for each cell is equal to other cells and is
divided into 4 equal sub-channels. Fig. B.2/shows the coalition structure and payoffs
allocated to the CRs in the core using the proposed distributed dynamic coalition
formation algorithm. The sub-channel allocations in the core can also be shown with
the vectors y; = [5,3,6,1] and yo = [7,11,9,12]. As can be seen in Table B.3, sub-
channel 4 in cell 1 provides the highest channel gain for CR 6. However, it prefers
sub-channel 3 and lets CR 1 to occupy sub-channel 4 so that the total throughput,
and as a result, the total cell profit improves. This can be verified noting that
v({CBS1, ({1,5,6},[5,1,0,6])}) = 14.6 and v({CBS1, ({1,5,6},[5,0,6,1])}) = 25.3.

In the second example, the network configuration shown in Fig. B.3 is considered
and it is assumed that the available bandwidth for each cell is divided into 5 equal
sub-channels. Fig. [B.3 demonstrates the coalition structure and payoffs allocated
to the CRs in the core. The sub-channel allocations in the core can also be shown
with the vectors y; = [0,0,2,0,7], y2 = [0,0,1,3,8], and y3 = [0,6,4,0,0]. As

can be seen in Table B.4, the channel gain for sub-channel 2 is higher in cell 1
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Figure B.3: Example 2: Coalition structure and payoffs allocated to the CRs in the
core.

Table B.4: Channel Gains for Example 2

1 2 3 4 5
J6.56).1 | D-Se-44 | 0.1038 | 7.2e-19 | 0.0001 | 2e-34
J63(6)3 | D-de-8 | 0.0599 | 7.3e-24 | 8.8¢-13 | 0.0002

than in cell 3. However, as shown in Fig. B.3, due to the load balancing property
discussed in Sec. [B.2, CR 6 achieves less profit occupying the third sub-channel in
cell 1 rather than occupying the second sub-channel in cell 3. This can be verified
by comparing the feasible payoff for CR 6 in cell 1, given by v({CBS1,{2,6,7}}) —
v({CBS1,{2,7}}) = 5.7, and its payoff in the core, pg = 8.

In Fig. B.4, the average individual CR payoff using the proposed distributed
dynamic coalition formation scheme is compared to the opportunistic scheduler as
the number of CRs in the CRN increases. Each point of the graph is an average over

1000 i.i.d. realizations of the CRN depicted in Fig. B.3. The opportunistic scheduler
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Figure B.4: Average individual CR payoff versus number of CRs in the CRN: Dis-
tributed Dynamic Coalition Formation vs. Opportunistic Scheduling.

in each CBS uses the same utility function as in (B.5) except for the fact that G is
uniformly distributed between all sub-channels. As it can be seen in Fig. B.4, the
average individual payoff increases as the number of CRs increases in both schemes.
However, the distributed dynamic coalition formation approach demonstrates a sig-
nificant average payoff increase compared with opportunistic scheduling, achieving

up to 95.3% improvement at N = 32.
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