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Abstract

This dissertation is an examination of the absolutely continuous spectrum for the

Anderson model on different types of trees. The text is divided into four chapter: an intro-

duction, two main chapters and conclusions.

In Chapter 2 the existence of purely absolutely continuous spectrum is proven for

the Anderson model on a Cayley tree, or Bethe lattice, of degree K. The method used, a

geometric one, is based on some properties of the hyperbolic distance. It is a simplified

generalization of a result for K = 3 given by R. Froese, D. Hasler and W. Spitzer.

In Chapter 3 a similar result is proven for a more general tree which has vertices

of degrees 2 and 3 alternating in a periodic manner. The lack of symmetry changes the

analysis, making it possible to eliminate one of the steps in the proof for the Cayley tree.
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Chapter 1

Introduction

1.1 Preliminaries

In quantum mechanics, the Schrödinger equation describes the change in the quan-

tum state of a physical system. In the standard interpretation of quantum mechanics, the

quantum state, also called a wave function or state vector, ψt, is the most complete descrip-

tion that can be given to a physical system. Solutions to Schrödinger’s equation describe

not only atomic and subatomic systems, atoms and electrons, but also macroscopic sys-

tems, possibly even the whole universe. The equation of a general quantum system is

i ∂tψt = H ψt, where H, the Hamiltonian, is a self-adjoint operator on a Hilbert space. We

know, due to functional calculus, that its solution with initial condition ψ0 is ψt = e−itHψ0.

The total energy of a particle, in quantum mechanics, is expressed as the sum of

operators corresponding to the kinetic and potential energies, in the form H = T + V on

the Hilbert space L2(Rn). For such a system the kinetic term is the unbounded operator

T = −
1
2

∆ =
1
2

p2, with p = i∇. The potential V is a multiplication operator with a function

on the configuration space, a function that depends on the application we want to consider.

For random Schrödinger operators this function is a random variable.

The spectral analysis of H helps us determine some physical properties of the sys-

tem. The spectrum, σ, of an operator has three components. Those components are pure

point spectrum, σpp, singular continuous spectrum, σsc and absolutely continuous spec-

trum, σac. The pure point spectrum corresponds to energy levels for which the system is

generally (depending also on other properties of the model) an insulator and the absolutely

continuous spectrum corresponds to energy levels for which the system is a conductor.

The study of random Schrödinger operators is an area of very active research in

mathematical physics and mathematics. Since the replacement of a continuous system by

a discrete one is a common approximation the physics literature, special attention has been

give to the study of random Schrödinger operators on the discrete space Zd with d = 1, 2, . . .,

the associated Hilbert space being l2(Zd). The ensemble of Hamiltonians of the form: Hq =

∆+k q(x), where ∆ψ(x) =
∑
|y−x|=1 ψ(y) for ψ ∈ l2(Zd), k ≥ 0 and {q(x)}x∈Zd are independent
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identically distributed random variables is known in the literature as the Anderson model

[2]. The assumptions on the random variables are not well motivated, but they are useful

for simplicity. It is certainly interesting (and in many cases a challenging problem) to relax

these assumptions.

In his paper, Absence of diffusion in certain random lattices (1958), P. Anderson

discovered one of the most striking quantum interference phenomena: particle localization

due to disorder. Cited in 1977 for the Nobel prize in physics, the paper was fundamental

for many subsequent developments in condensed matter theory. In particular, in the last

25 years the phenomenon of localization proved to be crucial for the understanding of the

Quantum Hall effect, mesoscopic fluctuations in small conductors as well as some aspects

of quantum chaotic behaviour. Random Schrödinger operators are an area of very active

research in mathematical physics and mathematics. Here the main effort is to clarify the

nature of the underlying spectrum. We will give a short presentation of both what physicists

concluded and what mathematicians proved.

There is a qualitative difference between one dimensional disordered systems (d =

1) and higher dimensional ones (d ≥ 3). For one dimensional disordered systems one

expects that the whole spectrum is pure point. Thus, there is a complete system of eigen-

functions which decay exponentially at infinity. This phenomenon is called Anderson lo-

calization or exponential localization and it corresponds to low mobility of the electrons in

our system. Therefore, one dimensional disordered systems (e.g. thin wires with impuri-

ties) should have low or even vanishing conductivity and an arbitrarily small disorder will

change the total spectrum from absolutely continuous to pure point. This has been already

proved for all energies for an ample class of disordered systems.

The physicists seem to believe that we have complete Anderson localization for

d = 2 similar to the case d = 1. However, the pure point spectrum is expected to be less

stable for d = 2. There are no mathematical proofs.

In dimension (d ≥ 3) the physics of the system is more complicated. For small

randomness, Anderson localization occurs near the band edges of the spectrum. Near any

band edge a there is an inteval [a, a + δ], (respectively [a− δ, a]) of pure point spectrum and

the corresponding eigenfunctions are exponentially localized in the sense that they decay

exponentially fast at infinity. Inside the bands the spectrum is expected to be absolutely

continuous at small disorder. Since the corresponding (generalized) eigenfunctions are cer-

tainly not square integrable, one speaks of extended states or Anderson delocalization in

this regime. The pure point spectrum expands when the randomness increases and the

absolutely continuous part is expected to become smaller and smaller. The physics commu-
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nity believes in the existence of a phase transition from an insulating phase to a conducting

phase. A transition point between these phases is called a mobility edge. At a certain level

of disorder the absolutely continuous spectrum would disappear and we will be left with

only pure point spectrum.

There are no mathematical results on the Anderson delocalization in `2(Zd), d ≥ 2.

There is no proof of existence of absolutely continuous spectrum for any of the models we

have discussed so far. In particular it is not known whether there is a conducting phase

or a mobility edge at all. However, there are results for continuum models on L2(Rd), for

d ≥ 2. On L2(R2), A. Klein, O. Lenoble and P. Mueller proved the existence of dynamical

delocalization at energies in the Landau bands of the randomly perturbed Landau Hamil-

tonian. Also, existence of absolutely continuous spectrum is known for trees. Anderson

delocalization on trees is the focus of this disertation.

The first result on delocalization was obtained by Abel Klein in 1998. He proved

the existence of purely absolutely continuous spectrum, under weak disorder, on the Bethe

lattice (or Cayley tree). This is a graph (“lattice”) without loops (hence a tree) with a fixed

number of edges at every site, its degree. One considers the graph Laplacian on the Bethe

lattice, which is analogously defined to the Laplacian on Zd and an independently identi-

cally distributed potential on the sites of the graph. Using supersymmetric representations

Klein showed that for small disorder the almost sure spectrum is purely absolutely contin-

uous in an energy range which is contained in σac(∆) as shown in [6]. Moreover, the states

in this energy range exhibit super-ballistic-transport behaviour [7].

Later, in 2005, Aizenman, Sims and Warzel presented a different method for estab-

lishing the persistence of some absolutely continuous spectrum under weak disorder. Their

work does not address the question whether the ac spectrum is pure in the intervals under

study. However, the results apply to more general situations.

During the same year, Froese, Hasler and Spitzer introduced a geometric method

which proved the existence of purely absolutely continuous spectrum on a Bethe lattice of

degree 3. Their result is similar to the one obtained by Klein in 1998, but it is only for a

Bethe lattice of degree 3 whereas Klein’s is for any degree K ≥ 3.

The first paper of this manuscript brings a few simplifications to the method and

generalizes it to the Bethe lattice of degree K. The second paper extends the method to

a more general, less symmetrical, type of trees. The model in Chapter 2 is ergodic and

therefore the spectral components are almost surely constant; the one in Chapter 3 is not

but nevertheless, the absolutely continuous spectrum is identified almost surely.
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1.2 General Outline

In both cases, the proofs follow some common steps; these steps will be explained in this

section. Let us consider a tree T; for simplicity we will use the symbol T for both our tree

and its set of vertices. We denote by o its origin. For each x ∈ T we have at most one

neighbor towards the root and one or more in what we refer to as the forward direction. We

say that y ∈ T is in the future of x ∈ T if the path connecting y and the root runs through

x. The subtree consisting of all the vertices in the future of x, with x regarded as its root, is

denoted by Tx. The Anderson Hamiltonian, H, on the Hilbert space `2(T) =
{
ϕ : T →

C ;
∑
x∈T
|ϕ(x)|2 < ∞

}
is the operator of the form H = ∆ + k q where:

1. The free Laplacian ∆ is defined by

(∆ϕ)(x) =
∑

y:d(x,y)=1

(ϕ(x) − ϕ(y)) , for allϕ ∈ `2(T) ,

with the distance d denoting the number of edges in the shortest (only) path between

sites.

2. The operator q is a random potential,

(qϕ)(x) = q(x)ϕ(x),

where {q(x)}x∈T is a family of independent, identically distributed real random vari-

ables with common probability distribution ν. We assume the 2(1 + p) moment,∫
|q|2(1+p)dν, is finite for some p > 0. The coupling constant k measures the disorder.

The goal is to prove the existence of absolutely continuous spectrum for this op-

erator when k is small, more precisely, that there are intervals on which all the spectral

measures associated to this Hamiltonian are absolutely continuous. The analysis herein

focuses on the resolvent (H − λ)−1 for λ ∈ C.

The spectrum of H, denoted by σ(H), is defined to be the set of λ ∈ C such that

(H − λ)−1, the resolvent, does not exist as a bounded operator. For a self-adjoint operator

this spectrum is real. The matrix elements of the resolvent will often be referred to as the

Green functions and denoted by G(x,y)(λ) := 〈δx, (H − λ)−1δy〉 and Gx(λ) for the diagonal

elements. Here δx is the Kronecker delta function.
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The spectral measure µx associated to δx is absolutely continuous with respect to

the Lebesgue measure on some finite interval E, if

lim inf
β↘0

∫
E

∣∣∣〈δx, (H − λ)−1δx〉
∣∣∣1+p

dα < ∞ ,

for some fixed p > 0 and λ = α + i β. This result is proved, for reference, in the appendix

of Chapter 3. Using Fatou’s lemma and Fubini’s theorem we have

E

(
lim inf
β↘0

∫
E

∣∣∣〈δx, (H − λ)−1δx〉
∣∣∣1+p

dα
)
≤ lim inf

β↘0

∫
E
E

(∣∣∣〈δx, (H − λ)−1δx〉
∣∣∣1+p

)
dα ,

hence, for the existence of absolutely continuous spectrum in E it suffices to prove that

sup
λ∈R(E,ε)

E
(∣∣∣∣〈δx, (H − λ)−1δx

〉∣∣∣∣1+p)
< ∞ , (1.1)

where R(E, ε) = {z ∈ C : Re(z) ∈ E, 0 < Im(z) ≤ ε} is a strip along the real axis. We

first prove (1.1) at x = o, the origin of the tree and then extend it to all the other spectral

measures. In (1.1) we have a supremum of the expected value of the (1 + p) power of the

absolute value of a Green function. We will first prove the inequality for a weight function

w, instead of the absolute value, where

w(z) =
|z − zλ|2

Im(z)Im(zλ)
= 2 (cosh(distH(z, zλ)) − 1) .

Up to constants, w(z) is the hyperbolic cosine of the hyperbolic distance from z to zλ =〈
δ0, (∆ − λ)−1δ0

〉
, the Green function at the origin for the Laplacian. We use the inequality

|z| ≤ 4w(z)Im(zλ) + 2|zλ| to finish the proof of (1.1).

For the free Laplacian we can determine intervals of absolutely continuous spec-

trum. We then prove the persistence of this spectrum for the perturbed Laplacian on closed

subintervals, E.

As it can already be observed the matrix elements of the resolvent, the Green func-

tions, will play an important role in this dissertation. We can derive a recursion formula for

G0(λ) based on the forward Green functions.

Let Hx be the restriction of H to `2(Tx). The forward Green function Gx(λ) is de-

fined to be the Green function for the truncated graph, given by Gx(λ) =
〈
δx, (Hx − λ)−1δx

〉
.

The recursion relation for the forward Green functions on any graph can be de-

termined using Schur’s formula (see [5]). In our case, since we only have trees, the for-
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ward Green function at some vertex x ∈ T depends only on the forward Green functions

at the neighbouring sites in the future of x. For example, in the case of a binary tree if

x1 and x2 are the forward neighbours of a vertex x, then Gx(λ) = φ(Gx1 ,Gx2 , λ, q) where

φ(z1, z2, λ, q) =
−1

z1 + z2 + λ − q
. This recursion expression can be easily derived using re-

solvent properties.

For the free Laplacian, self similarity of the tree implies that the forward Green

function at the origin is a fixed point for the transformation φ. Thus, the spectrum of the

free Laplacian can be determined by calculating this fixed point.

Using the above mentioned recursion formula we have, for our example,

w1+p(Gx(λ)) = w1+p(φ(Gx1 ,Gx2 , λ, q). By taking expectation we obtain the probabilis-

tic recursion E
(
w1+p(Gx(λ))

)
= E

(
w1+p(φ(Gx1 ,Gx2 , λ, q))

)
. The particular values for the

forward Green functions at the vertices x, x1 and x2 are different but their probability distri-

bution is the same and therefore E
(
w1+p(Gx(λ))

)
= E

(
w1+p(Gx1(λ))

)
= E

(
w1+p(Gx2(λ))

)
.

If we define µ2(z1, z2, q, λ) =
2w1+p(φ(z1, z2, λ, q))
w1+p(z1) + w1+p(z2)

we have the following:

E
(
w1+p(Gx(λ))

)
= E

(
µ2

(
Gx1(λ),Gx2(λ), q, λ

) (1
2

w1+p(Gx1(λ)) +
1
2

w1+p(Gx2(λ))
))
.

Now suppose we can prove

µ2(z1, z2, λ, q) ≤ (1 − ε)χ1(z1, z2) + χ2(z1, z2) (1.2)

where χ1(z1, z2) and χ2(z1, z2) are cut-off functions and χ2(z1, z2) is supported in a region

where
1
2

w1+p(z1) +
1
2

w1+p(z2) < C and ε > 0 is small.

Then, E
(
w1+p(Gx(λ))

)
≤ (1−ε)E

(
w1+p(Gx(λ)

)
+C. This proves (1.1). The crucial estimate

for the proofs is (1.2) and the main work in the thesis consists in proving this estimate (or

a similar, more complicated one in Chapter 2) for the trees considered. The intermediate

steps for achieving this are different depending on the choice of tree. In Chapter 2 we

look at the Bethe lattice on which all nodes look alike. All these symmetries make the

contraction properties of φ less obvious and two recursion steps are needed in the analysis.

The tree in Chapter 3 has a little bit less symmetry and therefore the analysis requires only

one recursion step.

6



Bibliography

[1] M. Aizenman, R. Sims and S. Warzel. Stability of the Absolutely Continuous Spec-

trum of Random Schrödinger Operators on Tree Graphs. Prob. Theor. Rel. Fields,

(136):363-394, 2006.

[2] P. W. Anderson. Absence of Diffusion in Certain Random Lattices Phys. Rev.,

(109):1492-1505, 1958.

[3] R. Froese, D. Hasler and W. Spitzer. Transfer matrices, hyperbolic geometry and

absolutely continuous spectrum for some discrete Schrödinger operators on graphs. J.

Func. Anal., (230):184-221, 2006.

[4] R. Froese and D. Hasler and W. Spitzer. Absolutely Continuous Spectrum for the

Anderson Model on a Tree: A Geometric Proof of Klein’s Theorem. Commun. Math.

Phys., (269):239-257, 2007.

[5] F. Halasan. Absolutely Continuous Spectrum for the Anderson Model on a Tree-like

Graph arXiv:0810.2516, 2008

[6] W. Kirsch. An Invitation to Random Schrödinger Operators Proceedings of the sum-

mer school on Disordered Systems, Paris 2003

[7] A. Klein. Spreading of wave packets in the Anderson Model on the Bethe Lattice.

Commun. Math. Phys., (177):755-773, 1996.

[6] A. Klein. Extended States in the Anderson Model on the Bethe Lattice. Advances in

Math., (133):163-184, 1998.

[7] M. Reed and B. Simon. Methods of modern mathematical physics I: functional anal-

ysis. Academic Press Inc., New York, second edition, 1980.

[8] B. Simon. Lp norms of the Borel transform and the decomposition of measures. Pro-

ceedings of the American Mathematical Society, 123(12):3749-3755, Dec. 1995.

7



Chapter 2

Absolutely Continuous Spectrum for
the Anderson Model on a Cayley
Tree 1

2.1 Introduction

One of the most important open problems in the field of random Schrödinger operators is

to prove the existence of absolutely continuous spectrum for weak disorder in the Anderson

model [2] in three and higher dimensions. The first result in this direction is Abel Klein’s,

for random Schrödinger operators acting on a tree, or Bethe lattice, of any degree larger

than 2. Klein [6] proves that for weak disorder, almost all potentials will produce absolutely

continuous spectrum. This means that there must be many potentials on a tree for which

the corresponding Schrödinger operator has absolutely continuous spectrum without there

being an obvious reason, such as periodicity or decrease at infinity. Later on, different

other proofs were given to the same result (see [4] and [1]). The goal of this chapter is to

generalize the geometric method in [4] from a Bethe lattice of degree 3 to one of any degree

M + 1, with M ≥ 2.

2.2 The Model and the Results

A Bethe lattice (or Cayley tree), B, is a connected infinite graph with no closed loops and

a fixed degree (number of nearest neighbors) at each vertex (site or point), x. The distance

between two sites x and y will be denoted by d(x, y) and is equal to the length of the shortest

(only) path connecting x and y.

1A version of this chapter will be submitted for publication. Halasan, F. Absolutely Continuous Spectrum
for the Anderson Model on a Cayley Tree.
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The Anderson model on the Bethe lattice is given by the random Hamiltonian

H = ∆ + k q

on the Hilbert space `2(B) = {ϕ : B → C ;
∑
x∈B

|ϕ(x)|2 < ∞}. The (centered) Laplacian ∆ is

defined by

(∆ϕ)(x) =
∑

y: d(x,y)=1

ϕ(y)

and has spectrum σ(∆) = [−2
√

M, 2
√

M] . The operator q is a random potential, with

q(x), x ∈ B, being independent, identically distributed real random variables with common

probability distribution ν. We assume the 2(1 + p) moment,
∫
|q|2(1+p)dν, is finite for some

p > 0. The coupling constant k measures the disorder.

As mentioned above, the existence of purely absolutely continuous spectrum for

the Anderson model on the Bethe lattice was first proved, in a different manner, by Klein in

1998. Given any closed interval E contained in the interior of the spectrum of ∆ on the Bethe

lattice, he proved that for small disorder, H has purely absolutely continuous spectrum in

some interval E with probability one, and its integrated density of states is continuously

differentiable on the interval (he only needed a finite second moment, whereas we have a

finite 2(1+p) moment in our model). We prove a similar result in this chapter. A key point

is the definition of a weight function appearing in the proofs. This definition is motivated

by hyperbolic geometry.

Theorem 2.1. For any E, with 0 < E < 2
√

M and H defined above, there exists k(E) > 0

such that for all 0 < |k| < k(E) the spectrum of H is purely absolutely continuous in [−E, E]

with probability one, i.e., we have almost surely

σac ∩ [−E, E] = [−E, E] , σpp ∩ [−E, E] = ∅ , σsc ∩ [−E, E] = ∅ .

Let H = {z ∈ C : Im(z) > 0} denote the complex upper half plane. For convenience, we fix

an arbitrary site in B to be the origin and denote it by 0. For each x ∈ B we have at most one

neighbour towards the root and two or more in what we refer to as the forward direction.

We say that y ∈ B is in the future of x ∈ B if the path connecting y and the root runs through

x. Let x ∈ B be an arbitrary vertex, the subtree consisting of all the vertices in the future

of x, with x regarded as its root, is denoted by Bx. We will write Hx for H when restricted

to Bx and set Gx(λ) = 〈δx, (Hx − λ)−1δx〉 the Green function for the truncated graph. Gx is

called the forward Green function.
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Proposition 2.2. For any λ ∈ H we have

G(λ) =
〈
δ0, (H − λ)−1δ0

〉
= −

 ∑
x: d(x,0)=1

Gx(λ) + λ − k q(0)

−1

(2.1)

and, for any site x ∈ B,

Gx(λ) = −

 ∑
y: d(y,x)=1, y∈Bx

Gy (λ) + λ − k q(x)


−1

. (2.2)

Proof. We will prove (2.1); (2.2) is proven in exactly the same way. Let us write H = H̃+Γ,

where

H̃ = k q(0) ⊕

 ⊕
x: d(x,0)=1

Hx


is the direct sum corresponding to the decomposition B = {0} ∪

( ⋃
x: d(x,0)=1

Bx
)
. The operator

Γ has matrix elements 〈δx,Γδ0〉 = 〈δ0,Γδx〉 = 1 if d(x, 0) = 1, with all other matrix elements

being 0. The resolvent identity gives

(H̃ − λ)−1 = (H − λ)−1 + (H̃ − λ)−1Γ (H − λ)−1 .

Also,

(H̃ − λ)−1 = (k q(0) − λ)−1 ⊕

 ⊕
x: d(x,0)=1

(Hx − λ)−1

 .
Thus 〈

δ0, (H̃ − λ)−1δ0
〉

=
〈
δ0, (H − λ)−1δ0

〉
+

〈
δ0, (H̃ − λ)−1Γ (H − λ)−1δ0

〉
.

Hence

G (λ) = (q(0) − λ)−1 − (k q(0) − λ)−1
∑

x: d(x,0)=1

〈
δx, (H − λ)−1δ0

〉
, (2.3)

10



The resolvent formula also implies that for each x with d(x, 0) = 1,〈
δx, (H − λ)−1δ0

〉
= −Gx (λ) G (λ) . (2.4)

(2.2) follows from (2.3) and (2.4). �

The recursion relation for Gx(λ) that we just proved leads us to the following trans-

formation

φ : HM × R × H→ H

defined by

φ(z1, ...zM, q, λ) =
−1

z1 + ... + zM + λ − q
. (2.5)

It is easy to see the equivalence between (2.1) and (2.5). Let q ≡ 0. If Im(λ) > 0, the

transformation z 7→ φ(z, ..., z, 0, λ) has a unique fixed point, zλ, in the upper half plane, i.e.

Im(zλ) > 0 (for details see Proposition 2.1, in [3]). Explicitly,

zλ =
−λ

2M
+

1
M

√
(λ/2)2 − M ,

where we will always make the choice Im
√
· ≥ 0 (and

√
a > 0 for a > 0). This fixed point

as a function of λ ∈ H extends continuously onto the real axis. This extension yields, for

Im(λ) = 0 and |λ| < 2
√

M, the fixed point

zλ = −
λ

2M
+

i
2M

√
4M − λ2 ,

lying on an arc of the circle |z| = 1/
√

M. When Im(λ) = 0 and |λ| ≤ E < 2
√

M, the arc is

strictly contained in the upper half plane. Thus, when λ lies in the strip

R(E, ε) = {z ∈ H : Re(z) ∈ [−E, E], 0 < Im(z) ≤ ε}

with 0 < E < 2
√

M and ε sufficiently small, Im(zλ) is bounded below and |zλ| is bounded

above by a positive constant.

In order to prove that the spectral measures are absolutely continuous we need to

establish bounds for E(|Gx(λ)|1+p). Since zλ equals Gx(λ) for the case q ≡ 0 and any x ∈ B,

in order to prove the desired bounds we will use the weight function w(z) defined by

w(z) = 2 (cosh(distH(z, zλ)) − 1) =
|z − zλ|2

Im(z)Im(zλ)
. (2.6)
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Up to constants, w(z) is the hyperbolic cosine of the hyperbolic distance from z to zλ, pro-

vided λ ∈ R(E, ε) with 0 < E < 2
√

M and ε sufficiently small. This notation suppresses the

λ dependence. In essence, we are looking at the hyperbolic cosine of the distance between

Gx(λ) for the free Laplacian and the one for the perturbed one, H. The goal is to prove that

this quantity, which blows up on the boundary, stays mostly finite.

To prove a bound for E(w1+p(Gx(λ))) we will need to use (2.5), more than once, to

express the forward Green function as a function of the forward Green functions at future

nodes. As a result, the study of the following quantity becomes needed:

µ3,p(z1 . . . z2M−1, q1, q2, λ) =
∑
σ

w1+p(φ(φ(zσ1 . . . zσM , q1, λ), zσM+1 . . . zσ2M−1q2, λ))
w1+p(z1) + . . . + w1+p(z2M−1)

where σ are all cyclic permutations. We will state here the needed lemmas, but we will give

the proofs later.

Lemma 2.3. For any E, 0 < E < 2
√

M and any 0 < p < 1, there exist positive constants ε,

η1, ε0 and a compact setM ∈ H2M−1 such that

µ3,p|Mc×[−η1,η1]2×R(E,ε0) ≤ 1 − ε. (2.7)

HereMc denotes the complement H2M−1 \M.

Lemma 2.4. For any E, 0 < E < 2
√

M and any 0 < p < 1, there exist positive constants

ε0, C and a compact setM ∈ H2M−1 such that

µ3,p|Mc×R2×R(E,ε0) ≤ C(1 +

2∑
i=1

|qi|
2(1+p)). (2.8)

Similarly, if we define

µ′3,p(z1, . . . , zM+1) =

w(−(
M+1∑
i=1

zi + λ − q)−1)1+p

w(z1)1+p + . . . + w(zM+1)1+p ,

then

µ′3,p|Mc×R2×R(E,ε0) ≤ C(1 + |q|2(1+p)) .
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Theorem 2.5. Let x be a nearest neighbour of 0. For any E, 0 < E < 2
√

M and all

0 < p < 1, there exists k(E) > 0 such that for all 0 < |k| < k(E) we have

sup
λ∈R(E,ε)

E
(
w1+p(Gx(λ))

)
< ∞ .

Proof. In order to prove that the above quantity is bounded we need a couple of preparatory

steps.

Let η1 and p be given by Lemma 2.3, and choose ε0 andM that work in both Lemma

2.3 and Lemma 2.4. For (z1, . . . , z2M−1) ∈ Mc, we estimate∫
R2
µ3,p(z1, . . . , z2M−1, k q1, k q2, λ)dν(q1)dν(q2)

≤ (1 − ε)
∫

[
−η1

k ,
η1
k

]2
dν(q1)dν(q2) + C

∫
R2\

[
−η1

k ,
η1
k

]2
(1 +

2∑
i=1

|k qi|
2(1+p)) dν(q1)dν(q2)

≤ (1 − ε) + C
∫
R2\

[
−η1

k ,
η1
k

]2
dν(q1)dν(q2) + 2C|k|2(1+p)M2(1+p) ≤ 1 − ε/2

provided k is sufficiently small. Here M2(1+p) denotes the moment
∫
|q|2(1+p) dν(q).

The probability distributions for G and Gx on the hyperbolic plane are defined by

ρG(A) = Prob{G(λ) ∈ A} and ρ(A) = Prob{Gx(λ) ∈ A}. This implies

ρ(A) = Prob{φ(z1 . . . zM, k q, λ) ∈ A} = Prob{(z1 . . . zM, k q, λ) ∈ φ−1(A)}

=

∫
φ−1(A)

dρ(z1) . . . dρ(zM) dν(q) =

∫
HM×R

χA(φ(z1 . . . zM, k q, λ)) dρ(z1) . . . dρ(zM) dν(q)

which gives us that for any bounded continuous function w(z),∫
H

w(z)dρ(z) =

∫
HM×R

w(φ(z1, . . . , zM, k q, λ)) dρ(z1) . . . dρ(zM) dν(q).

Now we have all the ingredients needed to prove our theorem. Using the previous relation

twice, for λ ∈ R(E, ε0), we obtain:
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E
(
w1+p(Gx(λ))

)
=

∫
H

w1+p(z) dρ(z)

=

∫
HM×R

w1+p(φ(z1 . . . zM, k q1, λ)) dρ(z1) . . . dρ(zM) dν(q1)

=

∫
HM×R2

w1+p(φ(φ(z1 . . . zM, k q1, λ), zM+1 . . . z2M−1, k q2, λ))

dρ(z1) . . . dρ(z2M−1) dν(q1)dν(q2)

=

∫
HM×R2

1
2M − 1

∑
σ

w1+p(φ(φ(zσ1 . . . zσM , k q1, λ), zσM+1 . . . zσ2M−1 , k q2, λ))
)

dρ(z1) . . . dρ(z2M−1) dν(q1)dν(q2)

=
1

2M − 1

∫
Mc

(∫
R2
µ3,p(z1 . . . z2M−1, k q1, k q2, λ) dν(q1)dν(q2)

)
×

(
w1+p(z1) + . . . + w1+p(z2M−1)

)
dρ(z1) . . . dρ(z2M−1) + C

≤ (1 − ε/2)
∫
H

w1+p(z) dρ(z) + C = (1 − ε/2)E
(
w1+p(Gx(λ)

)
+ C .

where C is some finite constant, only depending on the choice ofM.

Note: We used the fact that∫
H

w1+p(z)dρ(z) =
1

2M − 1

∫
H2M−1

(
w1+p(z1) + . . . + w1+p(z2M−1)

)
dρ(z1) . . . dρ(z2M−1)

This implies that for all λ ∈ R(E, ε0),

E
(
w1+p(Gx(λ))

)
≤

2C
ε
.

�

Theorem 2.6. Let x ∈ B. Under the hypotheses of Theorem 2.5,

sup
λ∈R(E,ε)

E
(∣∣∣〈δx, (H − λ)−1δx〉

∣∣∣1+p
)
< ∞

for some ε > 0.
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Proof. It is an immediate consequence of Theorem 2.5 and the following inequality:

|z| ≤ 4Im(s)
|z − s|2

Im(z)Im(s)
+ 2|s| . (2.9)

The inequality clearly holds for |z| ≤ 2|s|. In the complementary case, we have |z| > 2|s| and

thus |z− s| ≥ ||z| − |s|| ≥ |s|, implying |z|Im(z) ≤ |z|2 ≤ 2|z− s|2 + 2|s|2 ≤ 4|z− s|2. This proves

(2.9).

Using (2.9) with s = zλ yields that for λ ∈ R(E, ε), |z| ≤ 4w(z)+C, where C depends

only on E and ε.

To finish the proof we need to transfer the estimate from ρ to ρG and therefore

prove the inequality for x = 0. By symmetry it extends to any vertex x ∈ B. In the

proof of the following estimate we need the elementary fact that for z1. . . zM+1 ∈ M,

w1+p


M+1∑

i=1

zi + λ − q


−1 ≤ C

(
1 + |q|2(1+p)

)
. Let R denote R(E, ε), then

sup
λ∈R
E

(∣∣∣∣〈δ0, (H − λ)−1δ0
〉∣∣∣∣1+p)

= sup
λ∈R

∫
H

|z|1+p dρG(z)

≤ C1 sup
λ∈R

∫
H

w1+p(z) dρG(z) + C2

= C1 sup
λ∈R

∫
HM+1×R

w1+p


M+1∑

i=1

zi + λ − k q


−1 dρ(z1) . . . dρ(zM+1) dν(q) + C2

≤ C1 sup
λ∈R

∫
Mc×R

µ′3,p(z1, . . . , zM+1, k q, λ) × (w1+p(z1) + . . . + w1+p(zM+1))

dρ(z1) . . . dρ(zM+1) dν(q) + C′2

≤ C
∫
H×R

(1 + |k q|2(1+p))w1+p(z) dρ(z) dν(q) + C2 ≤ C
∫
H

w1+p(z) dρ(z) + C3

= C E
(
w1+p(Gx(λ))

)
+ C3 ≤ C4 ,

where C, C1, C2,C3 and C4 are positive constants. �

As it was proven in [5] (or in the next chapter), this theorem implies the main result of this

chapter: Theorem 2.1. For any E, with 0 < E < 2
√

M, there exists k(E) > 0 such that

for all 0 < |k| < k(E) the spectrum of H is purely absolutely continuous in [−E, E] with
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probability one, i.e., we have almost surely

σac ∩ [−E, E] = [−E, E] , σpp ∩ [−E, E] = ∅ , σsc ∩ [−E, E] = ∅ .

2.3 Analysis of µ2 and Proofs of Lemmas

For the proofs of our technical lemmas we need to analyse a quantity, µ2, which will prove

to play a significant role in the expression for µ3,p. We define µ2 by

µ2(z1 . . . zM, q, λ) =
M w(φ(z1 . . . zM, q, λ))
w(z1) + . . . + w(zM)

as a function from HM\{(zλ, . . . , zλ)} × R × R → R. In this section R = R(E, ε), for some

0 < E < 2
√

M and ε > 0.

Proposition 2.7. For all z1, . . . , zM ∈ H
M\{(zλ, . . . , zλ)} and λ ∈ R,

µ2(z1, . . . , zM, 0, λ) < 1 .

Proof. For z, s ∈ H set

c(s, z) = 2(cosh(distH(s, z)) − 1) =
|s − z|2

Im(s)Im(z)
.

Note that z 7→ c(s, z) is strictly convex. This can be seen for example by noting that its

Hessian has strictly positive eigenvalues. Also, for s = zλ, c(zλ, z) = w(z). The transfor-

mation φ′(z) = −1/(z + λ) is a hyperbolic contraction (see [3], Proposition 2.1) and since

φ′(z1 + . . . + zM) = φ(z1 . . . zM, 0, λ) we have φ′(Mzλ) = zλ. This implies

distH(φ′(Mzλ), φ′(z1 + . . . + zM)) < distH(Mzλ, z1 + . . . + zM)⇔

cosh(distH(φ′(Mzλ), φ′(z1 + . . . + zM))) < cosh(distH(Mzλ, z1 + . . . + zM))⇔

c(zλ, φ(z1, . . . , zM, 0, λ)) < c(Mzλ, z1 + . . . + zM) = c
(
zλ,

(z1 + . . . + zM)
M

)
≤

1
M

M∑
i=1

c(zλ, zi) ,
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hence

Mc(zλ, φ(z1, . . . , zM, 0, λ))
M∑

i=1
c(zλ, zi)

< 1

Also, from Proposition 2.1 [3], if Im(λ) = 0 then φ′ is a hyperbolic isometry. Therefore

c(φ′(Mzλ), φ′(z1 + . . . + zM)) = c(Mzλ, z1 + . . . + zM)

= c
(
zλ,

z1 + . . . + zM

M

)
≤

1
M

M∑
i=1

c(zλ, zi)

If Im(λ) = 0, then µ2(z, . . . , z, 0, λ) = 1. If Im(λ) > 0, since φ′ is a hyperbolic contraction,

µ2(z, . . . , z, 0, λ) = 1 iff z1 = . . . = zM = zλ. �

Since in our lemmas we will use a compactification argument, we need to under-

stand the behavior of µ2(z1, . . . , zM, q, λ) as z1,. . . ,zM approach the boundary of H and λ

approaches the real axis. Thus, it is natural to introduce the compactification H
M
× R × R.

Here R denotes the closure and H is the compactification of H obtained by adjoining the

boundary at infinity. (The word compactification is not quite accurate here because of the

factor R, but we will use the term nevertheless.)

The boundary at infinity is defined as follows. We cover the upper half plane model

of the hyperbolic plane H with the atlas A = {(Ui, ψi)i=1,2}. We have U1 = {z ∈ C :

Im(z) > 0, |z| < C}, ψ1(z) = z, U2 = {z ∈ C : Im(z) > 0, |z| > C} and ψ2(z) = −1/z = w. The

boundary at infinity consists of the sets {Im(z) = 0} and {Im(w) = 0} in the respective charts.

The compactification H is the upper half plane with the boundary at infinity adjoined. We

will use i∞ to denote the point where w = 0.

With this convention, µ2 is defined in the interior of the compactificationH
M
×R×R

and we want to know how it behaves near the boundary. It turns out that in the coordinates

introduced above, µ2 is a rational function. For the majority of points on the boundary the

denominator does not vanish in the limit and µ2 has a continuous extension. There are,

however, points where both numerator and denominator vanish and at these singular points

the limiting value of µ2 depends on the direction of approach. By blowing up the singular

points, it would be possible to define a compactification to which µ2 extends continuously.

However, this is more than we need for our analysis. We will do a partial resolution of the

singularities of µ2 and then extend µ2 to an upper semi-continuous function on the resulting

compactification.
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The reciprocal of the function w(z), χ(z) =
1

w(z)
=

Im(z)Im(zλ)
|z − zλ|2

is a boundary

defining function for H. This means that in each of the two charts above, χ is positive near

infinity and vanishes exactly to first order on the boundary at infinity. Further more, we can

express µ2 as follows:

µ2(z1 . . . zM, q, λ) =
M

χ(φ(z1 . . . zM, q, λ))[ 1
χ(z1) + . . . + 1

χ(zM) ]

or

µ2(z1 . . . zM, q, λ) =
Mχ(z1) . . . χ(zM)

χ(φ(z1 . . . zM, q, λ))[χ(z1) . . . χ(zM−1) + . . . + χ(z2) . . . + χ(zM)]

Since

χ(φ(z1 . . . zM, q, λ)) =
Im(φ(z1 . . . zM, q, λ))
|zλ − φ(z1 . . . zM, q, λ)|2

=
Im(z1 + . . . + zM + λ)

|zλ(z1 + . . . + zM) + λzλ − qzλ + 1|2

we obtain

µ2(z1 . . . zM, q, λ) =

M
M∏

i=1
χ(zi)|zλ

M∑
i=1

zi + λzλ − qzλ + 1|2

[
M∑
j=1

M∏
i=1
i, j

χ(zi)][
M∑

i=1
χ(zi)|zi − zλ|2 + Im(λ)]

(2.10)

We will now describe our compactification of HM × R × R. Start with H
M
× R × R.

Our blow-up consists of writing χ(z1), . . . , χ(zM) in polar co-ordinates. Thus we introduce

new variables r1 and βi and impose the equations χ(z1) = r1 β1,. . . , χ(zM) = r1βM and

β2
1 + . . . + β2

M = 1. The blown up space, K , is the variety in H
M
×R × R ×RM+1 containing

all points (z1, . . . , zM, q, λ, r1, β1, . . . , βM) that verify the blow-up constraints. The topology

is the one given by the local description as a closed subset of Euclidean space. The set

K\∂∞K can be identified with HM × R × R. After the first blow-up, µ2 becomes

µ2 =

M
M∏

i=1
βi|zλ

M∑
i=1

zi + λzλ − qzλ + 1|2

[
M∑
j=1

M∏
i=1
i, j

βi][
M∑

i=1
βi|zi − zλ|2 + Im(λ)/r1]

(2.11)
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We can extend µ2 to an upper semi-continuous function onK by defining, for points

k ∈ ∂∞K ,

µ2(k) = lim sup
kn→k

kn∈K\∂∞K

µ2(kn) .

Here kn = (z1,n, z2,n, . . . , zM,n, q1,n, λn) and it converges to k in K .

Let us define Σ to be the subset of K where µ2 = 1 and let K0 denote the subset of

∂∞K where λ ∈ (−2
√

M, 2
√

M) and q = 0. For the analysis of µ3 we need the following

lemma:

Lemma 2.8. Let Γ = {k ∈ K : k = (z1, . . . , zM, 0, λ, 0, β, . . . , β)} ⊂ K , it contains points in

K with β1 = . . . = βM = β. Then,

Γ ∩ Σ ∩ K0 = {k ∈ K0 : k = (z, . . . , z, 0, λ, 0, β, . . . , β)} .

Proof. Let us first derive an upper bound µ∗2 for µ2.

For k = (z1, . . . , zM, 0, λ, r1, β1, . . . βM) ∈ K\∂∞K we have

µ2(k) =
M w(φ(z1, . . . , zM, q, λ))

M∑
i=1

w(zi)
=

M c(zλ, φ(z1, . . . , zM, q, λ))
M∑

i=1
c(zλ, zi)

≤
M c(Mzλ, z1 + . . . + zM)

M∑
i=1

c(zλ, zi)
=

M w( 1
M

M∑
i=1

zi)

M∑
i=1

w(zi)
.

Therefore we can define

µ∗2(k) =

M w( 1
M

M∑
i=1

zi)

M∑
i=1

w(zi)
=

M∏
i=1
βi|

M∑
i=1

(zi − zλ)|2

[
M∑
j=1

M∏
i=1
i, j

βi][
M∑

i=1
βi|zi − zλ|2]

(2.12)

Clearly µ2 ≤ µ
∗
2, with equality when λ is real.

Let k ∈ Γ ∩ Σ ∩ K0. If k is a point of continuity for µ∗2 then µ∗2(k) = 1. At a point of

continuity k,

1 = µ2(k) = lim sup
kn→k

kn∈M\∂∞M

µ2(kn) ≤ lim sup
kn→k

kn∈M\∂∞M

µ∗2(kn) ≤ 1 .

The last inequality holds because at a point of continuity, the lim sup is actually a limit
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which can be evaluated in any order. If we take the limit in λ and q first, we may use the

fact that for λ ∈ (−2
√

M, 2
√

M), µ2 = µ∗2. Proposition 2.7 proves that the limit in zi is at

most 1, which implies µ∗2(k) = 1 at the points of continuity.

Since we do not need to know the entire behavior of µ2 at the boundary, we will

concentrate only on the situations needed in the analysis of µ3. Therefore we need two

cases to consider:

C I: Let k ∈ Γ ∩ Σ ∩ K0 such that z1, . . . , zM ∈ ∂∞H and zi , i∞ for all i =

1, . . . ,M. This is a point of continuity and we have:

µ∗2(k) =

|
M∑

i=1
(zi − zλ)|2

M
M∑

i=1
|zi − zλ|2

.

By the triangle inequality and the Cauchy Schwarz inequality,

|

M∑
i=1

(zi − zλ)|2 ≤

 M∑
i=1

|zi − zλ|


2

≤ M

 M∑
i=1

|zi − zλ|2
 .

The first inequality turns into equality if zi − zλ have the same argument for all i and the

second one if zi − zλ are equal in absolute values. Therefore, µ∗2 = 1 iff all zi are equal.

C II: Let k ∈ Γ ∩ Σ ∩K0, z1 = . . . = za = i∞, and za+1, . . . , zM are real, for some

a, 1 < a < M. Suppose (kn) is a sequence that realizes the lim sup in the definition of µ2(k).

µ∗2(kn) =

|
a∑

i=1
(zi − zλ) +

M∑
i=a+1

(zi − zλ)|2

M
M∑

i=1
|zi − zλ|2

≤

|
a∑

i=1
(zi − zλ) +

M∑
i=a+1

(zi − zλ)|2

M
M∑

i=1
|zi − zλ|2

.

The second term in the numerator stays finite in the limit and therefore, obviously

µ∗2(k) ≤
a
M

. �

We end this section with the proofs of our previous lemmas, Lemma 2.3 and Lemma

2.4.

Proof of Lemma 2.3: In order to simplify the notation, let us define

Z = (z1, . . . , z2M−1), Q = (q1, q2), ξσ(Z,Q, λ) = (zσ1 , . . . , zσM , q1, λ),

τσ(Z,Q, λ) = (φ(ξσ(Z,Q, λ)), zσM+1 , . . . , zσ2M−1 , q2, λ) and

νi =
w(zi)

w(z1) + . . . + w(z2M−1)
.
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Extend µ3,p to an upper semi-continuous function on H
2M−1

× R2 × R by setting, at points

Z0, Q0, λ0 where it is not already defined,

µ3,p(Z0,Q0, λ0) = lim sup
Z→Z0,Q→Q0,λ→λ0

µ3,p(Z,Q, λ), .

The points Z, Q and λ are approaching their limits in the topology of H
2M−1

× R2 × R. To

prove the lemma it is enough to show that

µ3,p(Z,Q, λ) < 1

for (Z,Q, λ) in the compact set ∂∞H
2M−1

× {0}2 × [−E, E], since this implies that for some

ε > 0, the upper semi-continuous function µ3,p(Z,Q, λ) is bounded by 1− 2ε on the set, and

by 1 − ε in some neighborhood. We have

µ3,p(Z,Q, λ) =
∑
σ

w1+p(φ(τσ(Z,Q, λ)))
w1+p(z1) + . . . + w1+p(z2M−1)

=
∑
σ

(
w(φ(τσ(Z,Q, λ)))

w(z1) + . . . + w(z2M−1)

)1+p 1

ν
1+p
1 + . . . + ν

1+p
2M−1

=

=
∑
σ

[
µ2(τσ)

(
1

M2µ2(ξσ)(νσ1 + . . . + νσM ) +
1
M

(νσM+1 + . . . + νσ2M−1)
)]1+p

·

·
1

ν
1+p
1 + . . . + ν

1+p
2M−1

.

Define χ(z1) =
1

w(z1)
= R1Ω1, . . . , χ(z2M−1) =

1
w(z2M−1)

= R1Ω2M−1, where R1, Ω1,

Ω2,. . . , Ω2M−1 are defined functions of Z with the property Ω2
1 + . . . + Ω2

2M−1 = 1. Notice

that for any cyclic permutation σ,

νσl =

2M−1∏
j=1
j,l

Ωσ j

2M−1∑
i=1

2M−1∏
j=1
j,1

Ω j


(2.13)

In the analysis of µ2(ξσ) we use the blow-up with coordinates r1σ(ξσ) and βσ j(ξσ)

where j = 1, . . . ,M and in the analysis of µ2(τσ) we use the blow-up with coordinates
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r2σ(τσ) and βσ j(τσ) where j = M, . . . , 2M − 1. Therefore we have the following relations:

R1Ωσ j = r1σβσ j(ξσ) when j = 1, . . . ,M

R1F = χ(φ(ξσ)) = r2σβσ1(τσ)

R1Ωσ j = r2σβσ j(τσ) when j = M + 1, . . . , 2M − 1

where

F =
χ(φ(ξσ))

R1
=

r1σM
M∏

i=1
βσi

R1µ2(ξσ(Z,Q, λ))
M∑
j=1

M∏
i=1
i, j

βσi

=

MΩσ1

M∏
i=2
βσi

µ2(ξσ(Z,Q, λ))
M∑
j=1

M∏
i=1
i, j

βσi

.

Consequently

Ω2
σ j

= β2
σ j

(ξσ)(Ω2
σ1

+ . . . + Ω2
σM

) for j = 1, . . . ,M

Ω2
σ j

= β2
σ j

(τσ)(F + Ω2
σM+1

+ . . . + Ω2
σ2M−1

) for j = M, . . . , 2M − 1.

Suppose that µ3,p(Z,Q, λ) = 1 for some (Z,Q, λ) ∈ ∂∞H
2M−1

× {0}2 × [−E, E].

Then there must exist a sequence (Zn,Qn, λn) with Zn −→ Z in H
2M−1

, Qn −→ (0, 0) and

λn −→ λ ∈ [−E, E] such that

lim µ3,p(Zn,Qn, λn) = 1.

From now on Z and λ will denote the limiting values of the sequences Zn and λn.

Similarly, we will denote by νi and Ωi the limits of νi(Zn) and Ωi(Zn).

We claim that

ν1 = . . . = ν2M−1 =
1

2M − 1
. (2.14)

This follows from the expression for µ3,p(Z,Q, λ), the bound for µ2 and the convexity of

x 7→ x1+p:
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1 = µ3,p(Z,Q, λ)

=
∑
σ

[
µ2(τσ)

(
1

M2µ2(ξσ)(νσ1 + . . . + νσM ) +
1
M

(νσM+1 + . . . + νσ2M−1)
)]1+p

·

·
1

ν
1+p
1 + . . . + ν

1+p
2M−1

≤
∑
σ

[(
1

M2 (νσ1 + . . . + νσM ) +
1
M

(νσM+1 + . . . + νσ2M−1)
)]1+p 1

ν
1+p
1 + . . . + ν

1+p
2M−1

≤
∑
σ

(
1

M2 (ν1+p
σ1 + . . . + ν

1+p
σM ) +

1
M

(ν1+p
σM+1 + . . . + ν

1+p
σ2M−1)

)
1

ν
1+p
1 + . . . + ν

1+p
2M−1

= 1,

so the inequalities must actually be equalities. Since p > 0, strict convexity implies that

equality only holds if ν1 = . . . = ν2M−1. Since their sum is 1, their common value must be
1

2M − 1
.

By going to a subsequence, we may assume that Ωi(Zn) converge. Then (2.13) and

(2.14) imply that their limiting values along the sequence must be

Ω1 = . . . = Ω2M−1 =
1

√
2M − 1

. (2.15)

One consequence is that

zi ∈ ∂∞H (2.16)

for i = 1, . . . , 2M − 1.

Now consider the values of ξσ(Zn,Qn, λn) and τσ(Zn,Qn, λn). Since these values

vary in a compact region inM we may, again by going to a subsequence, assume that they

converge in M to values which we will denote ξσ and τσ. Using (2.14) and the bound

µ2 ≤ 1, we find that

1 = lim
n→∞

∑
σ

[
µ2(τσ(Zn,Qn, λn))

(
µ2(ξσ(Zn,Qn, λn)) + M − 1

M(2M − 1)

)]1+p

(2M − 1)p

≤
1

2M − 1

∑
σ

[
1
M
µ2(τσ) (µ2(ξσ) + M − 1))

]1+p

≤ 1.

This implies that for every σ occurring in the sum we have µ2(ξσ) = µ2(τσ) = 1. Therefore,

using (2.16) we conclude that for each σ, ξσ and τσ lie in the set Σ given by Lemma 2.8.
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Now consider the coordinates βσi , i = 1, . . . ,M for the point ξσ. These are the

limiting values of βσi(zσ1 , . . . , zσM ) along our sequence. Since Ω2
σ j

= β2
σ j

(Ω2
1 + . . . + Ω2

M)

and Ωi = 1√
2M−1

, we have βσi = 1√
M

for i = 1, . . . ,M. Going back to the analysis of

µ2, Lemma 2.8, we conclude that the H coordinates of ξσ, namely the limiting values of

zσ1 , . . . , zσM must be equal. Since this is true for every cyclic permutation, we conclude that

z = z1 = z2 = . . . = z2M−1 ∈ ∂∞H.

We have two distinct cases:

• If z ∈ R then φ(zσ1 , . . . , zσM , q, λ) −→ φ(z, . . . , z, 0, λ) = −1
Mz+λ . From the analysis

of µ2, Case I, the only way τσ = (φ(z, . . . , z, 0, λ), z, . . . , z) can lie in Σ is if φ(z, . . . , z, 0, λ) =

z which would imply z = zλ and this cannot happen since zλ < ∂∞H.

• If z = i∞ then φ(zσ1 , . . . , zσM , q, λ) −→ 0 therefore τσ −→ (0, i∞, . . . , i∞). Since

Ω2
σ j

= β2
σ j

(τσ)(F + Ω2
σM+1

+ . . . + Ω2
σ2M−1

) for j = M, . . . , 2M − 1 and F = 1√
2M−1

in the

limiting case, βσ j(τσ) are equal. Going back to the analysis of µ2, Case II, we conclude that

µ2(τσ) < 1.

Therefore, µ3,p(Z,Q, λ) < 1. �

Proof of Lemma 2.4: Each term in the sum appearing in µ3,p can be estimated

w1+p(φ(· · · · · · ))
w1+p(z1) + . . . + w1+p(z2M−1)

=
(w(z1) + . . . + w(z2M−1))1+p

w1+p(z1) + . . . + w1+p(z2M−1)
·

·

(
w(φ(· · · · · · ))

w(z1) + . . . + w(z2M−1)

)1+p

≤ (2M − 1)p
(

w(φ(· · · · · · ))
w(z1) + . . . + w(z2M−1)

)1+p

,

where φ(· · · · · · ) denotes φ(φ(zσ1 , . . . , zσM , qσ1 , λ), zσM+1 , . . . , zσ2M−1 , qσ2 , λ). Therefore it is

enough to prove
w(φ(· · · · · · ))

w(z1) + . . . + cd(z2M−1)
≤ C(1 +

2∑
i=1

|qi|
2) .
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Let φ(· · · ) denote φ(zσ1 , . . . , zσM , q1, λ). We have

w(φ(· · · · · · ))
w(z1) + . . . + w(z2M−1)

=

∣∣∣∣∣∣1 + zλ

(
φ(. . .) +

2M−1∑
i=M+1

zσi + λ − qσ2

)∣∣∣∣∣∣2
Im

[
φ(. . .) +

2M−1∑
i=M+1

zσi + λ

] ·
1

2M−1∑
i=1

|zi−zλ |2
Im(zi)

=

=

|
M∑

i=1
zσi + λ − qσ1 + zλ(−1 + (

M∑
i=1

zσi + λ − qσ1)(
2M−1∑
i=M+1

zσi + λ − qσ2))|2

Im(
M∑

i=1
zσi + λ) + Im(

2M−1∑
i=M+1

zσi + λ)|
M∑

i=1
zσi + λ − qσ1 |

2

·
1

2M−1∑
i=1

|zi−zλ |2
Im(zi)

≤ C


1

Im(
2M−1∑
i=M+1

zσi)
+

| − 1 + (
2M−1∑
i=M+1

zσi + λ − qσ2)(
M∑

i=1
zσi + λ − qσ1)|2

Im(
M∑

i=1
zσi) + Im(

2M−1∑
i=M+1

zσi)|
M∑

i=1
zσi + λ − qσ1 |

2

 ·
1

2M−1∑
i=1

|zi−zλ |2
Im(zi)

≤ C


1

Im(
2M−1∑
i=M+1

zσi)
+ 2


1

Im(
M∑

i=1
zσi)

+

|
2M−1∑
i=M+1

zσi + λ − qσ2 |
2|

M∑
i=1

zσi + λ − qσ1 |
2

Im(
M∑

i=1
zσi) + Im(

2M−1∑
i=M+1

zσi)|
M∑

i=1
zσi + λ − qσ1 |

2


 ·

·
1

2M−1∑
i=1

|zi−zλ |2
Im(zi)

≤ C


1

Im(
2M−1∑
i=M+1

zσi)
+ 2


1

Im(
M∑

i=1
zσi)

+

|
2M−1∑
i=M+1

zσi + λ − qσ2 |
2

Im(
2M−1∑
i=M+1

zσi)


 ·

1
2M−1∑

i=1

|zi−zλ |2
Im(zi)

.

Choose the compact setM so that
2M−1∑

i=1

|zi − zλ|2/Im(zi) ≥ C > 0 for some constant

C and (z1, . . . , z2M−1) ∈ Mc. Then we can estimate each term depending on whether zσi is

close to zλ.

If all zσi are sufficiently close to zλ, then Im(zσi) is bounded below and |zσi | is

bounded above by a constant. Thus

Im

 2M−1∑
i=M+1

zσi

 2M−1∑
i=1

|zi − zλ|2/Im(zi) ≥ Im

 2M−1∑
i=M+1

zσi

C ≥ C′ > 0 ,

Im

 M∑
i=1

zσi

 2M−1∑
i=1

|zi − zλ|2/Im(zi) ≥ Im

 M∑
i=1

zσi

C ≥ C′ > 0
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and

∣∣∣∣ 2M−1∑
i=M+1

zσi + λ − qσ2

∣∣∣∣2 ≤ ∣∣∣∣ 2M−1∑
i=M+1

zσi + λ
∣∣∣∣ + |qσ2 |


2

≤

∣∣∣∣ 2M−1∑
i=M+1

zσi + λ
∣∣∣∣2 + 1

 (|qσ2 |
2 + 1

)
≤


∣∣∣∣ 2M−1∑

i=M+1

zσi

∣∣∣∣ + |λ|


2

+ 1

 (|qσ2 |
2 + 1

)
≤

∣∣∣∣ 2M−1∑
i=M+1

zσi

∣∣∣∣2 (
|λ|2 + 1

)
+ 1

 (|qσ2 |
2 + 1

)

≤ C

∣∣∣∣ 2M−1∑
i=M+1

zσi

∣∣∣∣2 + 1

 (|qσ2 |
2 + 1

)
≤ C

(
1 + |qσ2 |

2
)
, so we are done.

If all zσi are far from zλ, Im(
2M−1∑
i=M+1

zσi)
2M−1∑

i=1

|zi − zλ|2/Im(zi) ≥
2M−1∑
i=M+1

|zσi − zλ|2 ≥

1
M − 2

|

2M−1∑
i=M+1

(zσi − zλ)|2 ≥C(1 + |

2M−1∑
i=M+1

zσi |
2) so that

|

2M−1∑
i=M+1

zσi + λ − qσ2 |
2
/ Im(

2M−1∑
i=M+1

zσi)
2M−1∑

i=1

|zi − zλ|2/Im(zi)

 ≤ C(1 + |qσ2 |
2) in this case too.

Also,

Im(
M∑

i=1

zσi)
2M−1∑

i=1

|zi − zλ|2/Im(zi) ≥
M∑

i=1

|zσi − zλ|2 ≥ C(1 + |

M∑
i=1

zσi |
2) .

If at least one zσ j is not close to zλ for j = 1, . . . ,M, the first term is still bounded.

If at least one zσ j is close to zλ for j = M + 1, . . . , 2M − 1, then the second term is finite and

Im(
2M−1∑
i=M+1

zσi)
2M−1∑

i=1

|zi − zλ|2/Im(zi) ≥ C + |zσ j − zλ|2 ≥ C(C + |zσ j |
2) .

Therefore ∣∣∣∣ 2M−1∑
i=M+1

zσi + λ − qσ2

∣∣∣∣2
Im

(
2M−1∑
i=M+1

zσi

)
2M−1∑

i=1
|zi − zλ|2/Im(zi)

≤ C

(
C1 + |zσ j |

2
) (

1 + |qσ2 |
2
)

C2 + |zσ j |
2 ≤ C

(
1 + |qσ2 |

2
)
.

The estimates for µ′3,p are very similar. We omit the details. �
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Chapter 3

Absolutely Continuous Spectrum for
the Anderson Model on Some
Tree-like Graphs 2

3.1 Introduction

Random Schrödinger Operators are used as models for disordered quantum mechanical

systems. In particular, the Anderson Model was introduced to describe the motion of a

quantum-mechanical electron in a crystal with impurities. For this model, the states corre-

sponding to an absolutely continuous spectrum describe mobile electrons. Thus, an interval

of absolutely continuous spectrum is an energy range in which the material is a conductor.

An outstanding open problem, the extended states conjecture, is to prove existence

of absolutely continuous spectrum for the lattice Zd with d > 2. Until now, it is only for

the Bethe lattice that this has been established. A first result on the topic was obtained by

A. Klein, [6], in 1998; he proved that for weak disorder, on the Bethe lattice, there exists

absolutely continuous spectrum for almost all potentials. More recently, Aizenman, Sims

and Warzel proved similar results for the Bethe lattice using a different method (see [1]).

Their method establishes the persistence of absolutely continuous spectrum under weak

disorder and also in the presence of a periodic background potential. During the same time,

Froese, Hasler and Spitzer introduced a geometric method for proving the existence of

absolutely continuous spectrum on graphs (see [3]). In their second paper on the topic, [4],

they proved delocalization for the Bethe lattice of degree 3 using this geometric approach.

In this work, we provide a version of the geometric method on a more general class

of trees.
2A version of this chapter has been submitted for publication. Halasan, F. Absolutely Continuous Spectrum

for the Anderson Model on Some Tree-like Graphs.
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Statement of the Main Result

We prove the existence of purely absolutely continuous spectrum for the Anderson Model

on a tree-like graph, T, defined as follows (see Figure 4.1).

n

m

n

m

Figure 3.1: The T tree

Definition 3.1. Let B be an infinite full binary tree in which each node has degree 3 except

for the origin, which has degree 2. Let us call its nodes principal nodes and denote by o

its origin. For the origin and each principal node there are two edges leading away from

the origin. Choose one of them and call it the top edge and call the other the bottom edge.

On each top edge, we add m distinct auxiliary nodes; similarly we add n, m , n, distinct

auxiliary nodes on each bottom edge. Thus we obtain the tree T which has a set of principal

nodes denoted by Tp and a set of auxiliary nodes denoted by Ta.

The conclusions in this paper remain valid if we start with any k-nary tree. We

present the binary case for simplicity. By excluding the m = n case we break some of the

symmetry in our tree; this asymmetry is used in Proposition 4, Section 3. The proof for the

m = n case would constitute a generalization of the Bethe lattice proof presented in [5] and

be considerably longer.

Using the terminology established in [1], we will use the symbol T for both our tree

graph and its set of vertices. For each x ∈ T = {o} ∪ Tp ∪ Ta we have at most one neighbor

towards the root and two in what we refer to as the forward direction. We say that y ∈ T

is in the future of x ∈ T if the path connecting y and the root runs through x. The subtree

consisting of all the vertices in the future of x, with x regarded as its root, is denoted by Tx.

The Anderson Model on T is given by the random Hamiltonian, H, on the Hilbert
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space `2(T) =
{
ϕ : T→ C ;

∑
x∈T
|ϕ(x)|2 < ∞

}
. This operator is of the form

H = ∆ + k q

where:

1. The free Laplacian ∆ is defined by

(∆ϕ)(x) =
∑

y:d(x,y)=1

(ϕ(x) − ϕ(y)) , for allϕ ∈ `2(T) ,

where the distance d denotes the number of edges between sites.

2. The operator q is a random potential,

(qϕ)(x) = q(x)ϕ(x),

where {q(x)}x∈T is a family of independent, identically distributed real random vari-

ables with common probability distribution ν. We assume the 2(1 + p) moment,∫
|q|2(1+p)dν, is finite for some p > 0. The coupling constant k measures the disorder.

Our main theorem states that the above defined Anderson model exhibits purely absolutely

continuous spectrum for low disorder.

Theorem 3.2. Let F be the open interior of the absolutely continuous spectrum of ∆ (this

spectrum depends on m and n) with a finite set of values, S , removed. For any closed

subinterval E, E ⊂ F, there exists k(E) > 0 such that for all 0 < |k| < k(E) the spectrum of

H is purely absolutely continuous in E with probability one.

Remarks.

1). The finite set S will be properly identified in Proposition 3.7.

2). The actual definition we use for F is F := {λ ∈ R : zλ ∈ C, Im(zλ) > 0} \ S where

zλ = 〈δo, (∆ − λ)−1δo〉 (δo is the indicator function at the origin). Defined like this, F is the

support of the absolutely continuous component of the spectral measure of ∆ for δo without

the special values contained in S . Following the ideas in Lemma 3.9 (Section 3.4), i.e.

rearranging the tree and deriving a formula for the Green function at the new origin, we can

prove that the set {λ ∈ R : zλ ∈ C, Im(zλ) > 0} is, in fact, the support of the pure absolutely

continuous spectrum for the Laplacian ∆.

Let δx ∈ `
2(T) be the indicator function supported at the site x ∈ T and let R(E, ε) = {z ∈

C : Re(z) ∈ E, 0 < Im(z) ≤ ε} be a strip along the real axis, for E defined in the previous
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theorem. The following theorem together with the criterion from Section 3.4 gives us the

proof of Theorem 3.2.

Theorem 3.3. Under the hypothesis of the previous theorem, we have

sup
λ∈R(E,ε)

E
(∣∣∣∣〈δx, (H − λ)−1δx

〉∣∣∣∣1+p)
< ∞ ,

for all sufficiently small p > 0, some ε > 0 and all x ∈ T.

Proof of Theoreom 3.2. Let us consider λ = α+iβ. Using Fatou’s lemma, Fubini’s theorem

and Theorem 3.3, we obtain

E

(
lim inf
β↘0

∫
E

∣∣∣〈δx, (H − λ)−1δx〉
∣∣∣1+p

dα
)

≤ lim inf
β↘0

∫
E
E

(∣∣∣〈δx, (H − λ)−1δx〉
∣∣∣1+p

)
dα < ∞ .

Therefore we must have

lim inf
β↘0

∫
E

∣∣∣〈δx, (H − λ)−1δx〉
∣∣∣1+p

dα < ∞ ,

with probability one. Since 〈δx, (H − λ)−1δx〉 is the Stieltjes transform of the measure dµx,

it follows from Proposition 3.8, Section 5 that the restriction of µx to E is purely absolutely

continuous with probability one. In other words, the spectral measure for H corresponding

to δx, for any x ∈ T, is purely absolutely continuous in E with probability one. Therefore

the operator H has purely absolutely continuous spectrum on E. �

3.2 Outline of the Proof

Let Gx(λ) =
〈
δx, (H − λ)−1δx

〉
denote the diagonal matrix element of the resolvent at some

arbitrary vertex x ∈ T, often referred to as the Green function. Our goal is to find bounds for

these Green functions. We first do so for Go(λ) and then extend the bound to all diagonal

terms.

Let Hx be the restriction of H to `2(Tx). The forward Green function Gx(λ) is

defined to be the Green function for the truncated graph, given by

Gx(λ) =
〈
δx, (Hx − λ)−1δx

〉
.
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Figure 3.2: The nodes in the recurrence relation for the forward Green function.

The forward Green function Gx(λ), for x a principal node, can be expressed recurrently as a

function depending on the forward Green function for the two forward principal nodes and

all the random potentials in between. Thus the recurrence relation, which can be derived

using resolvent properties, has the form

Gx(λ) = φ(Gx1(λ),Gx2(λ), q1 . . . qM, λ), (3.1)

where

φ : H2 × RM × H→ H

is defined by

φ(z1, z2, q1 . . . qM, λ) =
−1

φn(z1, q1 . . . qn, λ) + φm(z2, qn+1 . . . qn+m, λ) + λ − qM
(3.2)

with

φ0(z, λ) = z

φ1(z, q1, λ) =
−1

z + λ − q1 + 1
. . .

φn(z, q1 . . . qn, λ) =
−1

φn−1(z, q1 . . . qn−1, λ) + λ − qn + 1

and M = m + n + 1. The nodes x, x1, x2 and the potentials q1, · · · , qM involved in the

recurrence (3.1) are shown in Figure 3.2. Because the origin has degree 2, the recurrence

relation for Go(λ) is given by Go(λ) = φ(Gx1(λ),Gx2(λ), q1 . . . qM, λ + 1).

In the above definition H = {z ∈ C : Im(z) > 0} is the complex upper half plane.
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Notice that since H is random, at each x ∈ T, the forward Green function Gx(λ) is an H-

valued random variable. We notice that since the random potential is i.i.d., at any x ∈ Tp,

Gx(λ) has the same probability distribution denoted by ρ. The Green function at the origin,

Go(λ) = Go(λ), has probability distribution denoted by ρo.

The transformations φn and φm, in the recursion formula, are compositions of frac-

tional linear transformations, hence fractional linear transformations themselves. This im-

plies φ is a rational function whose numerator and denominator have degree 2. If Im(λ) > 0,

the map z 7→ φ(z, z, 0, . . . , 0, λ) is an analytic map from H to H, a hyperbolic contraction.

Let zλ denote its unique fixed point in the upper half plane, a solution to the cubic equa-

tion z = φ(z, z, 0, . . . , 0, λ). The set {λ : Im(λ) = 0 and zλ ∈ H} is a reunion of two

disjoint open intervals on the real axis. Thus, for q ≡ 0, Gx(λ) = zλ for all x ∈ Tp and

Go(λ) = φ(zλ, zλ, 0 . . . 0, λ + 1). The map H 3 λ 7→ zλ extends continuously onto the real

axis. Therefore we define F := {λ : Im(λ) = 0 and zλ ∈ H} \ S where, as mentioned before,

S is defined in Proposition 3.7. We should note again that the set F ∪ S is the support of

the absolutely continuous component of the spectral measure for δo, for the free Laplacian.

The set {zλ}λ∈E is a compact curve strictly contained in H. Thus, when λ lies in the strip

R(E, ε) = {z ∈ H : Re(z) ∈ E, 0 < Im(z) ≤ ε}

with E ⊂ F closed and ε sufficiently small, Im(zλ) is bounded below and |zλ| is bounded

above.

To prove absolutely continuous spectrum, we need the bound on |Gx|
1+p stated in

Theorem 2. To get this bound we first prove that w1+p(Gx) is bounded, where w is a weight

function defined as follows:

w(z) = 2(cosh(distH(z, zλ)) − 1) =
|z − zλ|2

Im(z)Im(zλ)
.

Up to constants, w(z) is the hyperbolic cosine of the hyperbolic distance from z to zλ, the

Green function at the root for ∆. We have dropped the λ-dependence from the notation.

Our proof relies on a pair of lemmas about the following quantity:

µp(z1, z2, q1 . . . qM, λ) =
w1+p(φ(z1, z2, q1 . . . qM, λ)) + w1+p(φ(z2, z1, q1 . . . qM, λ))

w1+p(z1) + w1+p(z2)
,

for z1, z2 ∈ H
2, q1, . . . , qM ∈ R and λ ∈ R(E, ε).

Lemma 3.4. For any closed subinterval E, E ⊂ F and all sufficiently small 0 < p < 1,
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there exist positive constants ε, η1, ε0 and a compact set K ⊂ H2 such that

µp|Kc×[−η1,η1]M×R(E,ε0)(z1, z2, q1 . . . qM, λ) ≤ 1 − ε. (3.3)

Here Kc denotes the complement H2 \ K .

Lemma 3.5. For any closed subinterval E, E ⊂ F and any 0 < p < 1, there exist positive

constants ε0, C and a compact set K ⊂ H2 such that

µp|Kc×RM×R(E,ε0)(z1, z2, q1 . . . qM, λ) ≤ C
M∏

i=1

(1 + |qi|
2(1+p)) . (3.4)

Given these two lemmas we can prove that the decay of the probability distribution

function of the forward Green function at infinity is preserved as Im(λ) becomes small,

provided that ν has a finite moment of order 2(1 + p). Using Lemma 3.4 and Lemma 3.5

we prove Theorem 3.6 below, the last ingredient needed in the proof.

Theorem 3.6. For any closed subinterval E, E ⊂ F, there exists k(E) > 0 such that for all

0 < |k| < k(E) we have

sup
λ∈R(E,ε)

E
(
w1+p(Gx(λ))

)
< ∞ ,

for all x ∈ Tp.

Proof. Let η1 and p be given by Lemma 3.4, and choose ε0 andK that work in both Lemma

3.4 and Lemma 3.5. For any (z1, z2) ∈ Kc and λ ∈ R(E, ε), we estimate∫
RM

µp(z1, z2, kq1 . . . kqM, λ)dν(q1) . . . dν(qM)

≤ (1 − ε)
∫

[− η1
k ,

η1
k ]M

dν(q1) . . . dν(qM) + C
∫
RM\[− η1

k ,
η1
k ]M

M∏
i=1

(
1 + |k qi|

2(1+p)
)

dν(q1) . . .

dν(qM)

≤ 1 − ε/2,

provided |k| is sufficiently small.

The probability distributions on the hyperbolic plane are defined by

ρ(A) = Prob{Gx(λ) ∈ A} ,
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where x is any site in Tp. The recursion formula for the Green function implies that the

distributions dρ are related by

ρ(A) = Prob{φ(z1, z2, k q1 . . . k qM, λ) ∈ A} = Prob{(z1, z2, k q1 . . . k qM, λ) ∈ φ−1(A)}

=

∫
φ−1(A)

dρ(z1) dρ(z2) dν(q1) . . . dν(qM))

=

∫
H2×RM

χA(φ(z1, z2, k q1 . . . k qM, λ)) dρ(z1) dρ(z2) dν(q1) . . . dν(qM)

which gives us that for any bounded continuous function f (z)∫
H

f (z)dρ(z) =

∫
H2×RM

f (φ(z1, z2, k q1 . . . k qM, λ)) dρ(z1) dρ(z2) dν(q1) . . . dν(qM).

Using this relation, for λ ∈ R(E, ε0), we obtain

E
(
w1+p(Gx(λ))

)
=

∫
H

w1+p(z) dρ(z)

=

∫
H2×RM

w1+p(φ(z1, z2, k q1 . . . k qM, λ)) dρ(z1) dρ(z2) dν(q1) . . . dν(qM)

=

∫
H2×RM

1
2
(
w1+p(φ(z1, z2, k q1 . . . k qM, λ)) + w1+p(φ(z2, z1, k q1 . . . k qM, λ))

)
dρ(z1)

dρ(z2) dν(q1) . . . dν(qM)

=
1
2

∫
Kc

(∫
RM

µp(z1, z2, k q1 . . . k qM, λ) dν(q1) . . . dν(qM)
)
×

(
w1+p(z1) + w1+p(z2)

)
dρ(z1) dρ(z2) + C

≤ (1 − ε/2)
∫
H

w1+p(z) dρ(z) + C = (1 − ε/2)E
(
w1+p(Gx(λ))

)
+ C,

where C is some finite constant, only depending on the choice of K . This implies that for

all λ ∈ R(E, ε0),

E
(
w1+p(Gx(λ))

)
≤

2C
ε
.

�

Proof of Theorem 2. It is an immediate consequence of Theorem 3.6, Lemma 3.9 and the

following inequality which holds for any two complex numbers z and s in H:

|z| ≤ 4Im(s)
|z − s|2

Im(z)Im(s)
+ 2|s| . (3.5)
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The inequality clearly holds for |z| ≤ 2|s|. In the complementary case, we have |z| > 2|s| and

thus |z − s| ≥ ||z| − |s|| ≥ |s|, implying

|z|Im(z) ≤ |z|2 ≤ 2
(
|z − s|2 + |s|2

)
≤ 4|z − s|2

and further |z| ≤ 4|z − s|2/Im(z). This proves (3.5).

By using (3.5) with s = zλ we obtain that for λ ∈ R(E, ε)

|z| ≤ 4w(z) + C ,

where C depends only on E and ε.

Lemma 3.9 extends Theorem 3.6 to all x ∈ T and due to the previous inequality the

statement of Theorem 3.3 follows. �

3.3 Proofs of Lemma 3.4 and Lemma 3.5

In this section we will prove the bounds for µp stated in Lemma 3.4 and Lemma 3.5. In

order to do so we extend µp, define some quantities to simplify the calculations and prove

Proposition 3.7. We prove Lemma 3.4 with the use of Proposition 3.7 and then prove

Lemma 3.5.

Since in our lemmas we will use a compactification argument, we need to under-

stand the behavior of µp(z1, z2, q1 . . . qM, λ) as z1, z2 approach the boundary of H and λ

approaches the real axis. Thus, it is natural to introduce the compactification H
2
× RM × R.

Here R denotes the closure and H is the compactification of H obtained by adjoining the

boundary at infinity. (The word compactification is not quite accurate here because of the

factor R, but we will use the term nevertheless.)

The boundary at infinity is defined as follows. We cover the upper half plane model

of the hyperbolic plane H with the atlasA = {(Ui, ψi)i=1,2}. We have U1 = {z ∈ C : Im(z) >

0, |z| < C}, ψ1(z) = z, U2 = {z ∈ C : Im(z) > 0, |z| > C} and ψ2(z) = −1/z = u. The

boundary at infinity consists of the sets {Im(z) = 0} and {Im(u) = 0} in the respective charts.

The compactification H is the upper half plane with the boundary at infinity adjoined. We

will use i∞ to denote the point where u = 0.

We defined µp for z1, z2 ∈ H
2 and λ ∈ R(E, ε), and now we extend µp to an upper
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semi-continuous function on H
2
× RM × R by defining it as

µp(z1,0, z2,0, q1 . . . qM, λ0) = lim sup
z1→z1,0,z2→z2,0,λ→λ0

µp(z1, z2, q1 . . . qM, λ) ,

at points (z1,0, z2,0) and λ0 where it is not already defined. Here, the points (z1, z2) and λ are

approaching their limits in the topology of H
2
× R. For computational purposes we define

the following quantities:

An = (1 + λ − q1 + z1)(1 + λ − q2 + φ1(z1, q1, λ)) . . .

(1 + λ − qn + φn−1(z1, q1 . . . qn−1, λ))

Am = (1 + λ − qn+1 + z1)(1 + λ − qn+2 + φ1(z1, qn+1, λ)) . . .

(1 + λ − qM−1 + φm−1(z1, qn+1 . . . qM−2, λ))

Cn = (1 + λ + zλ)(1 + λ + φ1(zλ, 0 . . . 0, λ)) . . . (1 + λ + φn−1(zλ, 0 . . . 0, λ))

and similarly, if we replace z1 with z2 we obtain Bn and Bm. Cm is defined analogously to

Cn with m factors in the product instead of n. If we expand the expressions for An, Bn and

Cn, respectively Am, Bm and Cm, defined above we can see that they are linear polynomials

in the zi variable (i can be 1, 2 or λ). It is also worth mentioning that Cn , 0, respectively

Cm , 0, and if Im(zi) > 0 then An, Am, Bn, Bm are also different from 0. For more properties

of these quantities see Section 3.5.

For the proof of Lemma 3.4 we need the following result:

Proposition 3.7. For all z1, z2 ∈ ∂∞H
2

and λ ∈ E,

µ0(z1, z2, 0 . . . 0, λ) < 1 . (3.6)

Here E is any closed interval with E ⊂ int(F \ S ).

Remark. In the case m = n, µ0 is symmetric in z1 and z2 and equals 1 at some points on the

boundary. To then prove our desired result we would need to go back one more step in our

recurrence formula and analyse a more complicated version of µp.

Proof of Proposition 3.7. Let us assume n > m. For z1, z2 ∈ H
2\(zλ, zλ) we write z1 = x1+iy1

and z2 = x2 + iy2. Using these conventions, the triangle inequality and some simplifications
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we have

w(φ(z1, z2, 0 . . . 0, λ)) =
|(z1 − zλ)(BmCm) + (z2 − zλ)(AnCn)|2

(y1|Bm|
2 + y2|An|

2)(|Cm|
2 + |Cn|

2)Im(zλ)
(3.7)

≤
(|z1 − zλ||BmCm| + |z2 − zλ||AnCn|)2

(y1|Bm|
2 + y2|An|

2)(|Cm|
2 + |Cn|

2)Im(zλ)

and a similar inequality for w(φ(z2, z1, 0 . . . 0, λ)). These inequalities give us

µ0(z1, z2, 0 . . . 0, λ) ≤ N/D (3.8)

with

N =
(
(|z1 − zλ||BmCm| + |z2 − zλ||AnCn|)2(y2|Am|

2 + y1|Bn|
2)+ (3.9)

(|z2 − zλ||AmCm| + |z1 − zλ||BnCn|)2(y1|Bm|
2 + y2|An|

2)
)
y1y2

and

D = (|Cm|
2 + |Cn|

2)(y2|Am|
2 + y1|Bn|

2)(y1|Bm|
2 + y2|An|

2) (3.10)

(|z1−zλ|2y2 + |z2 − zλ|2y1) .

It is easy to check that N/D ≤ 1 for z1, z2 ∈ H
2 \ (zλ, zλ), but we do not need this since the

statement of our proposition only refers to the boundary

∂(H
2
) = ∂(H)×∂(H)∪∂(H)×H∪H×∂(H) where ∂(H) = R∪{i∞}. We know µ0 ≤ N/D ≤ 1,

so we need to prove that at least one inequality is strict on the boundary. A few cases are to

be considered:

Case I: Both z1 and z2 are on the real axis. Let (z1,i, z2,i, λi) → (z1, z2, λ) be a

sequence that realizes the lim sup in the definition of µ0. Notice that since y1,i → 0 and

y2,i → 0, lim
i→∞

N = lim
i→∞

D = 0 so the limit of N/D may depend on the direction in which z1,i

and z2,i approach z1and z2 . All the following variables will in fact be sequences determined

by (z1,i, z2,i, λi). We will sometimes suppress the index i for simplicity. In order to deal

with this undetermined case we use a blow-up, more precisely we write y1 and y2 in the

following form:

y1 = r1ω1

y2 = r1ω2
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with ω2
1 + ω2

2 = 1 and r1 > 0, all functions of z1 and z2. By going to a subsequence if

needed, assume ω1 and ω2 converge as i → ∞. After cancelling a factor r1, N and D in

(3.8) become

N =
(
(|z1 − zλ||BmCm| + |z2 − zλ||AnCn|)2(ω2|Am|

2 + ω1|Bn|
2)+ (3.11)

(|z2 − zλ||AmCm| + |z1 − zλ||BnCn|)2(ω1|Bm|
2+ω2|An|

2)
)
ω1ω2 ,

D = (|Cm|
2 + |Cn|

2)(ω2|Am|
2 + ω1|Bn|

2)(ω1|Bm|
2 + ω2|An|

2) (3.12)

(|z1 − zλ|2ω2 + |z2 − zλ|2ω1) .

Let us first look at the points on the boundary where D has a non vanishing limit. The points

where D→ 0 will need extra blow-ups and will be analysed afterwards.

We first show that N/D ≤ 1 which is equivalent to proving the polynomial

P(X,Y) =X2ω2
(
ω1ω2|AmBmCn|

2 + ω1ω2|AnBnCm|
2 + ω2

2|AnAm|
2(|Cm|

2 + |Cn|
2)
)
+

Y2ω1
(
ω1ω2|AmBmCn|

2 + ω1ω2|AnBnCm|
2 + ω2

1|BnBm|
2(|Cm|

2 + |Cn|
2)
)
−

2XYω1ω2|CmCn|
(
|AnBm|(ω2|Am|

2 + ω1|Bn|
2) + |AmBn|(ω1|Bm|

2 + ω2|An|
2)
)

being positive; here X = |z1 − zλ| and Y = |z2 − zλ|. It is easy to see that P(X,Y) ≥ 0 since

its discriminant has the form
(
|AmBm||Cn|

2 − |AnBn||Cm|
2
)2 (

ω2|Am|
2 + ω1|Bn|

2
)(

ω1|Bm|
2 + ω2|An|

2
)
.

Let us now assume µ0 = 1, so that µ0 = N/D = 1, and prove that the number of λ

values for which this can happen is finite. The condition µ0 = N/D, which means equality

in (3.7), is equivalent to the existence of p1, p2, s1, s2 positive real numbers and γ and δ

reals such that

BmCm(z1 − zλ) = p1eiδ,

AnCn(z2 − zλ) = p2eiδ,

AmCm(z2 − zλ) = s1eiγ,

BmCm(z1 − zλ) = s2eiγ,

39



which implies

AmBmC2
m(z1 − zλ)(z2 − zλ) = p1s1ei(δ+γ),

AnBnC2
n(z1 − zλ)(z2 − zλ) = p2s2ei(δ+γ),

and therefore p1s1AnBnC2
n = p2s2AmBmC2

m. This equality can be true iff 1). both sides

are 0 or 2). we have only non-zero terms which means, since An, Am, Bn, Bm are all real,

(Cn/Cm)2 must be real. Let us look at each of these two scenarios in detail.

1). There are a few ways in which the right hand side of our equality can vanish.

a) p1 = 0; this implies Bm = 0. Now, N/D = 1 iff the discriminant mentioned above is

0 which can happen if:

– |An| = 0 which means we are in the case D = 0 discussed later;

– ω2 = 0, we are again in the case D = 0,

– ω1 = 0, |Am| = 0 we are in the case D = 0,

– ω2 = 0, |Bn| = 0 we are in the case D = 0,

– |Bn| = 0; in this case Bm = Bn = 0 and according to Lemma 3.10 this can

happen for at most a finite number of λ values which will be included in S .

b) s1 = 0; this implies Am = 0 and the analysis will be almost identical to the one in a).

c) An = 0; this implies p2 = 0 and we are in a similar case to a).

d) Bn = 0; this implies s2 = 0 and we are in a similar case to b).

We should also notice Cn , 0 and Cm , 0.

2).
(

Cn

Cm

)2

∈ R. We have two possibilities:

•
Cn

Cm
∈ R which according to Lemma 3.10 can be true for at most a finite number of λ

values which will be included in S ,

•
Cn

Cm
= r i, r ∈ R, which according to Lemma 3.10 can be true for at most a finite

number of λ values which will be included in S .

The points where D → 0 have to be analysed separately. There are a few ways in

which our denominator can vanish. The first and the last term in the expression for D cannot

be zero, it is only the two middle factors that can become 0. The following situations arise:
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Scenario 1: (ω2|Am|
2 + ω1|Bn|

2) 9 0 and (ω1|Bm|
2 + ω2|An|

2) → 0. This situation can

happen if:

• ω2 → 0 and |Bm|
2 → 0, or

• |An|
2 → 0 and ω1 → 0. Since the analysis of these two cases is almost identical, we

will only look at this second one. We need to consider a blow-up:

|An|
2 = r2 sin(α)

ω1 = r2 cos(α)

with r2 > 0 and α ∈ [0, π/2] functions of z1, z2 and λ. With this new blow-up we have

N =
(
(|z1 − zλ||BmCm| + |z2 − zλ|(r2 sin(α))1/2|Cn|)2(ω2|Am|

2 + r2 cos(α)|Bn|
2)

+ (|z2 − zλ||AmCm| + |z1 − zλ||BnCn|)2(r2 cos(α)|Bm|
2 + ω2r2 sin(α))

)
r2 sin(α)ω2

and

D = (|Cm|
2 + |Cn|

2)(ω2|Am|
2 + r2 cos(α)|Bn|

2)(r2 cos(α)|Bm|
2 + ω2r2 sin(α))

· (|z1 − zλ|2ω2 + |z2 − zλ|2r2 cos(α)) .

By going to a subsequence if needed we can assume that r2,i, Bm,i, Cm,i, Cn,i, ω2,i, αi

converge to 0, Bm, Cm, Cn, 1, α respectively (recall that Bm,i is a linear polynomial in

z2,i). In this situation we find

µ0 ≤
|Bm|

2|Cm|
2 cos(α)

(|Cm|
2 + |Cn|

2)(sin(α) + |Bm|
2 cos(α))

< 1 .

• The last case under this scenario is |An|
2 → 0 and |Bm|

2 → 0. After a blow-up of the

form

|An|
2 = r3 cos(β)

|Bm|
2 = r3 sin(β)
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with r3 > 0 and β ∈ [0, π/2] functions of z1, z2 and λ, we have

N =
(
(|z1 − zλ|(sin(β))1/2|Cm| + |z2 − zλ|(cos(β))1/2|Cn|)2(ω2|Am|

2 + ω1|Bn|
2)+

(|z2 − zλ||AmCm| + |z1 − zλ||BnCn|)2(ω1 sin(β) + ω2 cos(β))
)
ω1ω2 ,

D = (|Cm|
2 + |Cn|

2)(ω2|Am|
2 + ω1|Bn|

2)(ω1 sin(β) + ω2 cos(β))

(|z1 − zλ|2ω2+|z2 − zλ|2ω1) .

Now, the new expression for D would vanish only if ω1 = 0 and cos(β) = 0, or

sin(β) = 0 and ω2 = 0 respectively. This means we have the cases ω1 = 0 and

|An|
2 = 0, or |Bm|

2 = 0 and ω2 = 0 which were already discussed. Otherwise, the

expression N/D is well defined and by arguments similar to the ones before strictly

less than unity.

Scenario 2: (ω2|Am|
2 + ω1|Bn|

2)→ 0 and (ω1|Bm|
2 + ω2|An|

2)9 0. This can happen if:

• ω2 → 0 and |Bn|
2 → 0, or

• |Am|
2 → 0 and ω1 → 0 or

• |Am|
2 → 0 and |Bn|

2 → 0.

Since this scenario is very much the same as the previous one we will not discuss it any

further.

Scenario 3: (ω2|Am|
2 + ω1|Bn|

2) → 0 and (ω1|Bm|
2 + ω2|An|

2) → 0. This situation can

happen if:

• ω2 → 0, |Bn|
2 → 0 and |Bm|

2 → 0, or

• ω1 → 0, |An|
2 → 0 and |Am|

2 → 0. Again, due to the symmetry of our expression, it

is enough to look at this second case. We need a blow-up of the form

ω1 = r3 γ1

|An|
2 = r3 γ2

|Am|
2 = r3 γ3
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with γ2
1 + γ2

2 + γ2
3 = 1 and r3 > 0, functions of z1, z2 and λ.

N =
(
(|z1 − zλ||BmCm| + |z2 − zλ|(r3γ2)1/2|Cn|)2(ω2γ3 + γ1|Bn|

2)+

(|z2 − zλ|(r3γ2)1/2|Cm| + |z1 − zλ||BnCn|)2(γ1|Bm|
2+ω2γ2)

)
γ1ω2 ,

D = (|Cm|
2 + |Cn|

2)(ω2γ3 + γ1|Bn|
2)(γ1|Bm|

2 + ω2γ2)

(|z1 − zλ|2ω2 + |z2 − zλ|2(r3γ2)1/2) .

By going to a subsequence if needed we can assume that r3,i, Bm,i, Cm,i, Cn,i, ω2,i,

γ1,i, γ2,i, γ3,i converge to 0, Bm, Cm, Cn, 1, γ1, γ2, γ3 respectively. In this situation we

obtain

µ0 ≤

(
|BmCm|

2(γ3 + γ1|Bn|
2) + |BnCn|

2(γ1|Bm|
2 + γ2)

)
γ1

(|Cm|
2 + |Cn|

2)(γ3 + γ1|Bn|
2)(γ1|Bm|

2 + γ2)
< 1 ,

provided the denominator does not vanish. If γ1 = γ2 = 0, γ1 = γ3 = 0, γ3 = |Bn|
2 =

0 or/and |Bm|
2 = γ2 = 0 extra blow-ups are needed, but the limiting value for N/D

stays strictly less than 1. As an example, if we consider the extra blow-up given by

γ3 = r4γ3, γ1 = r4γ1, γ2
1 + γ2

3 = 1 and r4 > 0 we have

µ0 ≤
|BnCn|

2γ1

(|Cm|
2 + |Cn|

2)(γ3 + γ1|Bn|
2)
< 1 .

• |Am|
2 → 0, |Bn|

2 → 0, |Bm|
2 → 0 and |Am|

2 → 0. After a needed blow-up the

expressions will look similar to the ones in (3.11) and (3.12), but in the blown-up

variables.

Case II: Both z1 and z2 are i∞. Let (z1, j, z2, j, λ j) ∈ H2×R be a sequence that realizes

the lim sup in the definition of µ0. We sometimes suppress the index j for simplicity. We

consider the change of variables, u1 = − 1
z1

, u2 = − 1
z2

and uλ = − 1
zλ

; now, both u1 and u2

approach 0. With these new variables, N and D from (3.8) are given by

N =
((
|uλ − u1||u2uλBmCm| + |uλ − u2||u1uλAnCn|

)2(Im(u2)|u1Am|
2 + Im(u1)|u2Bn|

2)
+

(
|uλ − u2||u1uλAmCm| + |uλ − u1||u2uλBnCn|

)2

·
(
Im(u1)|u2Bm|

2 + Im(u2)|u1An|
2))Im(u1)Im(u2),
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D =
(
|Cm|

2 + |Cn|
2
)
|uλ|2

(
Im(u2)|u1Am|

2 + Im(u1)|u2Bn|
2
)

·
(
Im(u1)|u2Bm|

2 + Im(u2)|u1An|
2
) (
|uλ − u1|

2Im(u2) + |uλ − u2|
2Im(u1)

)
.

Since both sequences u1, j and u2, j are approaching 0, we can write

u1, j = r j cos(γ j)eix j and u2, j = r j sin(γ j)eiy j , with γ j, x j, y j ∈ [0, π/2]. By going to a

subsequence if needed and recalling that An, j, Am, j, Bn, j and Bm, j are linear polynomial is z1

and z2, we can assume that r j, u1, jAn, j, u1, jAm, j, u2, jBn, j, u2, jBm, j, uλ, jCn, j, uλ, jCm, j, γ j, x j,

y j converge to 0, An, Am, Bn, Bm, Cn, Cm, γ, x, y respectively. After cancelling the common

factor of r j and |uλ, j| in the above expressions for N and D and taking the limit we get

N =
((
|BmCm| + |AnCn|

)2( sin(γ) sin(y)|Am|
2 + cos(γ) sin(x)|Bn|

2)
+

(
|AmCm| + |BnCn|

)2( sin(γ) sin(y)|An|
2 + cos(γ) sin(x)|Bm|

2))
· sin(x) sin(y) sin(γ) cos(γ) ,

D =
(
|Cm|

2 + |Cn|
2)( sin(γ) sin(y)|Am|

2 + cos(γ) sin(x)|Bn|
2)(

sin(γ) sin(y)|An|
2 + cos(γ sin(x)|Bm|

2)( sin(x) cos(γ) + sin(y) sin(γ)
)
.

If we compare this with Case I and consider |z1 − zλ| = |z2 − zλ|, y1 = cos(γ) sin(x) and

y2 = sin(γ) sin(y) we can see that we are in a similar situation to the one in Case I .

Case III: z1 ∈ R and z2 = i∞, respectively z2 ∈ R and z1 = i∞. We consider again

a sequence that realizes the lim sup in the definition of µ0 and we use the same change of

variables for z2, as before. Since z1 → R and u2 → 0 we can write u2 = reiy2 with r > 0

and Im(z1) = y1. After we cancel in both N and D a factor of r6 and |uλ|2 we have

N =
((
|z1 − zλ||u2BmuλCm| + |reiy2 − uλ||AnCn|

)2(r sin(y2)|Am|
2 + y1|u2Bn|

2) (3.13)

+
(
|reiy2 − uλ||AmuλCm| + |z1 − zλ||u2BnuλCn|

)2(y1|u2Bm|
2 + r sin(y2)|An|

2))ry1 sin(y2),

D = (|uλCm|
2 + |uλCn|

2)
(
r sin(y2)|Am|

2 + y1|u2Bn|
2
) (

y1|u2Bm|
2 + r sin(y2)|An|

2
)

(
|z1 − zλ|2r sin(y2)|uλ|2 + |reiy2 − uλ|2y1

)
. (3.14)

If we compare it with Case I and consider |z1 − zλ| = |(z1 − zλ)uλ|, |z2 − zλ| = |reiy2 − uλ|,

y1 = y1, y2 = r sin(y2), |An| = |An|, |Am| = |Am|, |Bn| = |u2Bn| and |Bm| = |u2Bm| we can see

that the blow-ups needed are similar to the ones in Case I and we can conclude N/D < 1.
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Case IV: z1 ∈ H and z2 ∈ R, respectively z2 ∈ H and z1 ∈ R. As before, we take a

sequence that realizes the lim sup in the definition of µ0. If we look at the expressions for D

given by (3.10) we can see that we can have the following three undetermined cases: y2 → 0

and |Bn|
2 → 0, similarly y2 → 0 and |Bm|

2 → 0, or y2 → 0, |Bn|
2 → 0 and |Bm|

2 → 0. The

analysis of these blow-up cases can be done in a similar manner with the one from Case I

and we can conclude that N/D is strictly less than 1.

Case V: z1 ∈ H and z2 = i∞, respectively z2 ∈ H and z1 = i∞. We take a sequence

that realizes the lim sup and we consider the same change of variables as in Case III. With

the same notations u2 = reiy2 with r > 0 and Im(u1) = y1 we obtain the same expressions

for N and D as in (3.13) and (3.14). With similar blow-ups with the ones in Case III we can

conclude that also in this last case the limiting value for N/D is strictly less than 1. �

Proof of Lemma 3.4. To prove the lemma it is enough to show that

µp(Z,Q, λ) < 1

for (Z,Q, λ) in the compact set ∂∞(H
2
) × {0}M × E, since this implies that for some ε > 0,

the upper semi-continuous function µp(Z,Q, λ) is bounded by 1−2ε on the set, and by 1− ε

in some neighborhood.

Let us rewrite µp in terms of µ0.

µp(Z,Q, λ) =
w1+p(φ(z1, z2, q1 . . . qM, λ)) + w1+p(φ(z2, z1, q1 . . . qM, λ))

w1+p(z1) + w1+p(z2)

≤

(
w(φ(z1, z2, q1 . . . qM, λ)) + w(φ(z2, z1, q1 . . . qM, λ))

w(z1) + w(z2)

)1+p

·

·
1

ν
1+p
1 + ν

1+p
2

,

where

νi =
w(zi)

w(z1) + w(z2)
, for i = 1, 2 .

Since we are concentrating on the boundary of H
2
, we need the following blow-up

χ(z1) =
1

w(z1)
= R1Ω1

χ(z2) =
1

w(z2)
= R1Ω2
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where R1,Ω1 and Ω2 are defined as functions of z1 and z2 with the property Ω2
1 + Ω2

2 = 1.

Using the result in Proposition 3.7 we have

µp|∂∞(H)2×{0}M×E <
(
µ0|∂∞(H

2
)×{0}M×E

)1+p (Ω1 + Ω2)1+p

Ω
1+p
1 + Ω

1+p
2

≤ (1 − ε)2p < 1 ,

for sufficiently small p. �

Proof of Lemma 3.5. Each term in the sum appearing in µp can be estimated

w1+p(φ(z1, z2, q1 . . . qM, λ))
w1+p(z1) + w1+p(z2)

=
(w(z1) + w(z2))1+p

w1+p(z1) + w1+p(z2)

(
w(φ(z1, z2, q1 . . . qM, λ))

w(z1) + w(z2)

)1+p

≤ 2p
(
w(φ(z1, z2, q1 . . . qM, λ))

w(z1) + w(z2)

)1+p

.

Now it is enough to prove that
w(φ(z1, z2, q1 . . . qM, λ))

w(z1) + w(z2)
≤ C

M∏
i=1

(1+ |qi|
2) , since this bounds

each term in µp by the desired quantity. With the notations introduced at the beginning of

this section, φn(z1, q1 . . . qn, λ) = −
An−1

An
and applying Cauchy-Schwarz inequality twice we

get

w(φ(z1, z2, q1 . . . qM, λ))
w(z1) + w(z2)

=
|1 + zλφn(z1, q1 . . . qn, λ) + zλφm(z2, qn+1 . . . qn+m, λ) + zλ(λ − qM)|2

Im(φn(z1, q1 . . . qn, λ)) + Im(φm(z2, qn+1 . . . qn+m, λ)) + Im(λ)
·

1
2∑

i=1

|zi−zλ |2
Im(zi)

≤
|AnBm − zλAn−1Bm − zλBm−1An + AnBmzλ(λ − qM)|2

Im(z1)|Bm|
2 + Im(z2)|An|

2 ·
1

2∑
i=1

|zi−zλ |2
Im(zi)

≤
(
1 + |zλ|2

)( |AnBm|
2

Im(z1)|Bm|
2 + Im(z2)|An|

2 +
(
|AnBm|

2 + |An−1Bm + AnBm−1|
2)·(

1 + |qM − λ|
2)

Im(z1)|Bm|
2 + Im(z2)|An|

2

)
·

1
2∑

i=1

|zi−zλ |2
Im(zi)

≤ (1 + |zλ|2)
(
|An|

2(2 + |qM − λ|
2)

Im(z1)
+ 2(1 + |qM − λ|

2)
(
|An−1|

2

Im(z1)
+
|Bm−1|

2

Im(z2)

))
·

1
2∑

i=1

|zi−zλ |2
Im(zi)

.
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Since φn is a fractional linear transformation with coefficients given by the product matrix
n∏

i=1

0 −1

1 1 + λ − qi

, An, the denominator of φn, is a linear polynomial in z whose coefficients

can be bounded above. We get |An| ≤ n |1 + z1|

n∏
|1+λ−qi |≥1

i=1

|1 + λ − qi| which implies,

|An|
2 ≤ C

(
1 + |z1|

2
) n∏

i=1

(
1 + |qi|

2
)
.

Going back to our inequality we have

w(φ(z1, z2, q1 . . . qM, λ))
w(z1) + w(z2)

≤ C
(
C1(1 + |qM |

2)
n∏

i=1

(1 + |qi|
2)

1 + |z1|
2

Im(z1)

+ C2(1 + |qM |
2)

n−1∏
i=1

(1 + |qi|
2)

1 + |z1|
2

Im(z1)

+ C3(1 + |qM |
2)

n+m−1∏
k=n+1

(1 + |qi|
2)

1 + |z2|
2

Im(z2)

)
·

1
2∑

i=1

|zi−zλ |2
Im(zi)

.

Choose the compact set K such that
2∑

i=1
|zi − zλ|2/Im(zi) ≥ C > 0 for some constant C and

(z1, z2) ∈ Kc. Then we can estimate each term depending on whether zi is close to zλ. If z j,

j = 1, 2, is sufficiently close, then Im(z j) is bounded below and |z j| is bounded above by a

constant. Thus

Im(z j)
2∑

i=1

|zi − zλ|2/Im(zi) ≥ Im(z j)C ≥ C′ > 0

and 1 + |z j|
2 ≤ C , so we are done. If z j, j = 1, 2, is far from zλ,

Im(z j)
2∑

i=1

|zi − zλ|2/Im(zi) ≥ |z j − zλ|2 ≥ C(1 + |z j|
2)

so 1 + |z j|
2/

(
Im(z j)

2∑
i=1
|zi − zλ|2/Im(zi)

)
≤ C again. �
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3.4 Additional Results

This section contains two theorems on absolutely continuous spectrum. The first one gives a

sufficient condition for a measure to be absolutely continuous with respect to the Lebesgue

measure on an interval and the latter gives a sufficient condition for a random Schrödinger

operator to exhibit purely absolutely continuous spectrum on some interval.

3.4.1 A Criterion for Absolutely Continuous Spectrum

Let µ be a finite measure on R; its Stieltjes (or Borel) transform F is given by

F(z) =

∫
dµ(t)
t − z

for z = x + i y with y > 0. The following criterion has been proven in [8] for lim sup and we

reproduce it here for lim inf.

Proposition 3.8. Let (a, b) be a finite interval and let p > 0. Suppose

lim inf
y→0

∫ b

a
|F(x + iy)|1+pdx < ∞ .

Then µ is absolutely continuous with respect to the Lebesgue measure on (a, b).

Proof. Since lim inf
y→0

∫ b
a |F(x + iy)|1+pdx < ∞, there exists a sequence yn → 0 such that

sup
n

∫ b
a |F(x + iyn)|1+pdx < C, where C is some constant. Define dµyn(x) = π−1Im(F(x +

iyn))dx. Then by [7], dµyn → dµ weakly, as n→ ∞. That is, for f a continuous function of

compact support we have lim
n→∞

∫
f (x)dµyn(x) =

∫
f (x)dµ(x). Let f be a continuous function

supported on (a, b), then∣∣∣∣∣∣
∫ b

a
f (x)dµ(x)

∣∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣∣
∫ b

a
f (x)dµyn(x)

∣∣∣∣∣∣
= lim

n→∞
π−1

∣∣∣∣∣∣
∫ b

a
f (x)Im(F(x + iyn))dx

∣∣∣∣∣∣
≤ lim

n→∞

(
|| f ||1+1/p||Im(F(x + iyn)||1+p

)
≤ C|| f ||1+1/p .

This implies that dµ(x) = g(x)dx for some g ∈ L1+p. �
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3.4.2 Bounds on the Green Function at an Arbitrary Site

The following lemma proves that assuming we have a bound for the forward Green func-

tions Gx(λ) for all x ∈ Tp, we can obtain a bound for all the diagonal matrix elements Gx(λ),

x ∈ T, of the Green function.

Lemma 3.9. Let F be the open interior of the absolutely continuous spectrum of ∆. Suppose

that for any x ∈ Tp

sup
λ∈R(E,ε)

E
(
w1+p

(〈
δx, (Hx − λ)−1δx

〉))
< ∞ ,

for some closed subinterval E ⊂ F, ε > 0 and 0 < p < 1. Then, for every x ∈ T, we also

have

sup
λ∈R(E,ε)

E
(
w1+p

(〈
δx, (H − λ)−1δx

〉))
< ∞ .

Proof. Suppose we pick an arbitrary node x0 in T and we consider its corresponding diago-

nal matrix element of the Green function for the whole tree T, Gx0(λ) =
〈
δx0 , (H − λ)−1δx0

〉
.

We rearrange the nodes, if needed, such that x0 becomes the origin of the tree. For this ori-

gin, we have Gx0(λ) = Gx0(λ). Looking at the vertices in the future of x0, we can see that

after a finite number of steps, on each branch,the future tree will be a copy of the original

tree. Let us denote by xi the nodes where such a copy starts. An example of such a rear-

rangement is illustrated in the picture below.

We know from the hypothesis that

sup
λ∈R(E,ε)

E
(
w1+p

(〈
δxi , (H

xi − λ)−1δxi

〉))
< ∞ .

Starting with these nodes and using the recurrence formula for the forward Green func-

tion we can work our way back to the origin, and show that the inequality holds at each

intermediate node between an xi and x0.
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x0

x3

x1

x2

x1 x2

x3

x0

Figure 3.3: Rearrangement of a tree.

Let y be such a node, forward of x0 and before xi. Let ρ j be the probability distribu-

tion of Gy j(λ), where y j is a neighbor of y in its forward direction. We assume inductively

that

E
(
w1+p

(〈
δy j , (H

y j − λ)−1δy j

〉))
=

∫
H

w1+p(z j) dρ j(z j) < ∞ .

The functions that define the recurrence formula for the forward Green functions

are fractional linear transformations and depend on the connectivity number of the node

where the forward Green function is computed.

1. Assume y ∈ Ta ∪ {o} with ρ′ the probability distribution of Gy(λ) andK a compact set in

H such that zλ is in the interior of K :

E
(
w1+p (

Gy(λ)
))

=

∫
H

w1+p(z) dρ′(z) =

∫
H×R

w1+p
(

−1
z1 + λ − q + 1

)
dρ1(z1) dν(q)

=
1
2

∫
Kc

(∫
R

w1+p (−1/(z1 + λ − q + 1))
w1+p(z1)

dν(q)
)
× w1+p(z1) dρ1(z1) + C .

The quantity µ =

∫
R

w1+p (−1/(z1 + λ − q + 1))
w1+p(z1)

dν(q) does not need to be less than 1, but

only bounded outside the compact set K . Using the inequalities from the proof of Lemma

3.5,

µ ≤

∫
R

 Im(z1)
Im(z1) + Im(zλ)

(
1 + |zλ|2

) (
1 + C

(
1 + |z1|

2
) (

1 + |kq|2
))

|z1 − zλ|2


1+p

dν(q)
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which is bounded on Kc. We can therefore conclude,

E
(
w1+p (

Gy(λ)
))
≤ C′

∫
H

w1+p(z1) dρ1(z1) + C = C′ E
(
w1+p (

Gy j(λ)
))

+ C .

Hence sup
λ∈R(E,ε)

E
(
w1+p (Gy(λ))

)
< ∞.

2. Assume y ∈ Tp with ρ′′ the probability distribution of Gy(λ) and K a compact set in H2

such that (zλ, zλ) is in the interior of K :

E
(
w1+p (

Gy(λ)
))

=

∫
H

w1+p(z) dρ′′(z)

=

∫
H2×R

w1+p
(

−1
z1 + z2 + λ − kq

)
dρ1(z1) dρ2(z2) dν(q)

=
1
2

∫
Kc

(∫
R

2 w1+p (−1/(z1 + z2 + λ − q))
w1+p(z1) + w1+p(z2)

dν(q)
)
×

(
w1+p(z1)+

+ w1+p(z2)
)

dρ1(z1) dρ2(z2) + C

≤ C′′
(∫
H

w1+p(z1) dρ1(z1) +

∫
H

w1+p(z2) dρ2(z2)
)

+ C

≤ C′′
(
E

(
w1+p (

Gy1(λ)
))

+ E
(
w1+p (

Gy2(λ)
)))

+ C .

Hence sup
λ∈R(E,ε)

E
(
w1+p (Gy(λ))

)
< ∞. The q integral, outside the compact set K , is bounded

by arguments similar to the ones in the proof of Lemma 3.

When we reach the origin x0, we know the inequality holds at all other nodes.

The recurrence relation for the origin is slightly different than everywhere else, due to our

definition of the Laplacian. The argument that proves this final step is nevertheless almost

identical to the one above. �

3.5 On a recursion relation

At the beginning of Section 3 we introduced quantities Ai, Bi and Ci. For q ≡ 0, they all are

recursions of the following form
R0(z) = 1

R1(z) = 1 + λ + z

Rn+1(z) = (1 + λ)Rn(z) − Rn−1(z)
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or, in a matrix formRn+1(z)

Rn(z)

 =

1 + λ −1

1 0

  Rn(z)

Rn−1(z)

 =

1 + λ −1

1 0

n R1(z)

1

 .
We can observe that Rn(z) has the following general form, depending on λ, Rn(z) = (Pol.

of degree (n − 1) in λ) ·z+ (Pol. of degree n in λ). For λ , −3, 1 we have the following

diagonal form Rn+1(z)

Rn(z)

 =
1

det

 1 1

µ2 µ1

 µn
1 0

0 µn
2

  µ1 −1

−µ2 1

 R1(z)

1


where µ1,2 =

1 + λ

2
±

√(
1 + λ

2

)2

− 1 and det = 2

√(
1 + λ

2

)2

− 1.

The general formula for Rn is Rn(z) =
1

det

((
µn

1 − µ
n
2

)
(1 + λ + z) −

(
µn−1

1 − µn−1
2

))
. Also, for

n > m we have

Rn(z) =
µn

1 − µ
n
2

µm
1 − µ

m
2

Rm(z) +
1

det

((
µm−1

1 − µm−1
2

) µn
1 − µ

n
2

µm
1 − µ

m
2
−

(
µn−1

1 − µn−1
2

))
,

=
µn

1 − µ
n
2

µm
1 − µ

m
2

Rm(z) +
1

det

(−1)m (µ1 − µ2)
(
µn−m

1 − µn−m
2

)
µm

1 − µ
m
2

.

Lemma 3.10. The set of λ values for which either of the following identities is true is finite:

(i) Rn(z) = Rm(z) = 0;

(ii)
Rn(zλ)
Rm(zλ)

∈ R, where zλ ∈ H is the fixed point introduced in the Outline of the Proof;

(iii)
Rn(zλ)
Rm(zλ)

= −r i, where r ∈ R.

Proof. (i ) Let us assume Rm(z) = 0. Since we know

Rn(z) =
µn

1 − µ
n
2

µm
1 − µ

m
2

Rm(z) +
1

det

(−1)m (µ1 − µ2)
(
µn−m

1 − µn−m
2

)
µm

1 − µ
m
2

, (3.15)

Rn(z) = 0 iff
1

det

(−1)m (µ1 − µ2)
(
µn−m

1 − µn−m
2

)
µm

1 − µ
m
2

= 0. This identity is equivalent to

µn−m−1
1 + µn−m−2

1 µ2 + . . . + µ1µ
n−m−2
2 + µn−m−1

2 = µm−1
1 + µm−2

1 µ2 + . . . + µ1µ
m−2
2 + µm−1

2 ,
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which is a polynomial of degree max{n − m − 1,m − 1} in λ.

(ii ) Using (3.15) we can write

Rn(zλ)
Rm(zλ)

=
µn

1 − µ
n
2

µm
1 − µ

m
2

+
1

det

(−1)m (µ1 − µ2)
(
µn−m

1 − µn−m
2

)(
µm

1 − µ
m
2

)
Rm(zλ)

. (3.16)

The first term on the right hand side is a real number and since Rm(zλ) < R, the only way to

obtain the desired conclusion is iff µn−m
1 − µn−m

2 = 0 which is equivalent to finding the roots

of a polynomial of degree n − m − 1 in λ.

(iii ) Relation (3.16) becomes

Rn(zλ)
Rm(zλ)

=
µn

1 − µ
n
2

µm
1 − µ

m
2

+
1

det

(−1)m (µ1 − µ2)
(
µn−m

1 − µn−m
2

)
Rm(zλ)(

µm
1 − µ

m
2

)
|Rm(zλ)|2

.

For condition (iii ) to be true we need

µn
1 − µ

n
2

µm
1 − µ

m
2

+
1

det

(−1)m (µ1 − µ2)
(
µn−m

1 − µn−m
2

)
Re(Rm(zλ))(

µm
1 − µ

m
2

)
|Rm(zλ)|2

= 0,

which is equivalent to

(µn
1 − µ

n
2)|Rm(zλ)|2 + (−1)m

(
µn−m

1 − µn−m
2

)
Re(Rm(zλ)) = 0,

The condition resumes to finding the zeros of a polynomial in λ. �
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Chapter 4

Conclusions

Extended states, existence of absolutely continuous spectrum, was proved for Random

Schrödinger operators on tree graphs. The first result was obtained by A. Klein, [6]; he

proved that for weak disorder, on the Bethe lattice, there exists absolutely continuous spec-

trum for almost all potentials. More recently, Aizenman, Sims and Warzel proved similar

results for the Bethe lattice and quantum graphs using a different method, [1] and [2]. Their

method establishes the persistence of absolutely continuous spectrum under weak disorder

(and also, for the Bethe lattice, in the presence of a periodic background potential). During

the same time, Froese, Hasler and Spitzer introduced a geometric method for proving the

existence of absolutely continuous spectrum on graphs, [3]. They used this approach to

prove the existence of absolutely continuous spectrum for the Bethe lattice of degree 3 and

for a tree with strong transverse correlations and large weighted loops, [4] and [5].

The results presented in this work prove the existence of purely absolutely contin-

uous spectrum for the Anderson model on different types of trees. The main ideas behind

our method are based on hyperbolic geometry and were first introduced by R. Froese, D.

Hasler and W. Spitzer in [3].

Chapter 2 proves extended states for the Bethe lattice of any degree K. We general-

ized the result in [4] using a simplified version of the method. In [4] the quantity Z, a sum of

forward Green functions is estimated, whereas we look directly at Gx(λ), the forward Green

function at a vertex x. This, plus some manipulation of the expressions makes the proof of

the desired estimates shorter and easy to generalize. The main advantage of out method in

comparison to [4] is that we do not need a full analysis of the quantity µ2, defined in the

introduction. Instead, we only need to look at the boundary points needed in the following

estimates.

Chapter 3 deals with a more general tree where some of the symmetry is broken.

The lack of symmetry changes the analysis, making it possible to eliminate one of the steps

in the proof for the Cayley tree. The tree analysed, T, has its principal nodes of degree 3

but the proof ca be extended to any degree K.

Since the main goal of all this analysis on trees is to ultimately be able to give an
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answer to the open problem of extended states for the Anderson Model on Zd, d > 2, the

first step is to extend the method to graphs with loops. Our current project is extending the

method to stacked trees. A stacked tree is defined as follows, we take a binary tree and an

identical copy of it. We connect by an edge each vertex from the tree with its correspondent

vertex on the copy and thus obtaining the stacked tree.

Figure 4.1: The stacked tree

Even though the loops in this graph are of a simpler nature than the ones encoun-

tered on Zd, it is still a very important step towards solving the main open problem.
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