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ABSTRACT

This thesis summarizes efforts to estimate fundamental relationships among built

environment characteristics, activity patterns and vehicle use in order to assess their

relative influences on vehicle GHG emission generation in Metro Vancouver, Canada.

Activity-based structural equation models were specified in a cross-sectional study design

using local travel survey data and highly detailed urban form data. Structural equation

analysis permitted explicit modeling of the indirect effects between built environment

variables and vehicle emissions as mediated through activity patterns and vehicle use.

Modeling travel at the activity-tour level allowed for a deeper understanding of the

relative contributions of local and regional built environment variables in explaining tour

complexity, vehicle use and emissions. Controlling for pertinent socio-economic and

demographic variables, standardized parameter coefficients show the built environment

to be a significant predictor of vehicle-related GHG emissions across all models,

although the strength and magnitude of these effects vary by activity tour type. The local

built environment is a stronger predictor of vehicle use and related emissions for non-

work/school tours, while regional accessibility measures yielded larger effects on the

carbon-intensity of work and school tours. Vehicle accessibility yielded significantly

large effects on vehicle use and emissions across all models, suggesting that policy

directions beyond promoting more compact, walkable and regionally connected

development to curb emissions are required. Additional strategies may include those that

address vehicle use in a more direct manner, including higher taxation, insurance or

parking fees. Future research would benefit by incorporating travel and residential

preferences to control for self-selection, assessing the affect of the work and school built

environment on activity patterns and undertaking a more holistic assessment of the links

between the built environment and total household emissions and energy use (including

building, transportation, etc).
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1. INTRODUCTION

1.1. Background and Context

1.1.1. Travel and Emission Trends in Canada

Rising levels of private vehicle use are becoming increasingly widespread across

Canada’s urban regions. Between 1992 and 2005, the proportion of adults who regularly

traveled by car – as either a driver or passenger – rose from 68% to 74%. At the same

time, the share of adults nationwide who made at least one daily trip by bicycle or on foot

declined from 26% in 1992 to 19% in 2005 (Turcotte, 2008). These trends have

significant implications for nationwide greenhouse gas (GHG) levels. Transportation

emissions, largely attributable to household vehicle travel, are now the largest single

sector contributor to local anthropogenic GHG levels across Canada, currently

accounting for approximately 190 MtCO2e (carbon dioxide equivalent1) or 25% of total

emissions. If left unabated, it is predicted that these levels will rise by 18% to over 230

MtCO2e by 2020, still maintaining the single largest component of Canada’s CO2

emissions (Natural Resources Canada, 2006).

Increasing GHG levels contribute to global climate change by perpetuating the

greenhouse effect: the process whereby gases of carbon dioxide, methane, nitrous oxide

and water vapour trap heat in the earth’s atmosphere that would otherwise radiate back to

space (Intergovernmetal Panel of Climate Change, 2007). Worldwide, a changing climate

and an increasing global mean temperature is leading to rising sea levels, more sporadic

growing seasons, ecosystem degradation, and disease outbreaks, all of which may have

potentially devastating effects on both humans and other species (Cazenave et al., 2007;

Cox et al., 2000; Parmesan and Yohe, 2003; Haines et al., 2006). Therefore, it is

important to analyze the nature of anthropogenic GHG emission sources and find ways to

reduce their production in order to mitigate against potentially deleterious impacts on the

biophysical environment for future generations.
                                                  
1 Carbon dioxide equivalent is a metric measure used to compare the emissions from various greenhouse
gases based upon their global warming potential (GWP), using carbon dioxide as the reference (Abler,
2003).
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Most research and policy focused on minimizing travel-related GHG emissions is

concentrated on technological fixes such as vehicle and fuel efficiency (United Nations

Framework Convention on Climate Change, 2003). Recent work suggests, however, that

slow market penetration of alternative fuels and efficiency standards, coupled with

continued strong growth in population and travel demand, may offset any emission

reduction achievements made by technology into the future (Greening, 2004; National

Research Council, 2008). As a result, strategies focused on reducing vehicle travel

demand may yield more significant decreases in travel-related GHG emissions in the

longer term.

1.1.2. Linkages Between Built Environment, Travel and Emissions

A large and ever-increasing body of empirical work consistently demonstrates that the

physical design of the places where people live and work is related with and likely

influences daily travel demand. More compact, walkable and transit-oriented

development patterns characterized by higher densities and mixing of land uses, street

connectivity, quality urban design elements, and pedestrian-scale street design have been

shown to be associated with decreased per capita vehicle travel (fewer miles and trips)

and increased use of alternative modes such as transit, walking and cycling (see reviews

of the literature by Crane, 2000; Ewing and Cervero, 2001; Badoe and Miller, 2000;

Frank and Engelke, 2001; Frank, 2000; Saelens et al., 2003). Although strengths of

association vary between studies, findings have been confirmed in a variety of

geographic scales - from the regional level of major population and employment centres,

to local street and neighbourhood design. These relationships persist even when

controlling for socio-economic characteristics and other potentially confounding factors.

More recent research shows a positive relationship between urban form and travel

patterns when accounting for residential self-selection, suggesting a causal nature of the

built environments influence on travel behaviour (Handy et al., 2006; Vance and Hedel,

2007; Cao et al., 2009; Frank et al., 2007a).

Empirical studies focused on explicitly exploring the connections between the built

environment and travel-related GHG emissions are sparse, but growing (see review by
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Ewing et al., 2008). Findings from this emerging work demonstrate that negative

associations exist between more compact, well-connected and accessible land use

patterns and levels of travel-related GHG emissions. As a result, improving the built

environment to make it easier for people to use alternatives modes of travel, like walking,

cycling, and public transit is seen as an essential component toward reducing vehicle

demand and mitigating rising GHG emissions related to personal travel (Nolon and

Bacher, 2007).

1.2. Problem Statement

Despite these findings, this thesis contends that a detailed understanding of the strength

of effect that the built environment has on vehicle emissions remains underdeveloped.

Two perceived limitations in the current body of work are identified and addressed in the

current study. The first issue concerns approaches to empirically assessing this

relationship. Urban form impacts vehicle emissions indirectly through mediating travel

variables such as broader activity patterns, mode choice, and distance traveled (Anderson

et al., 1996; Naess et al., 1995). Teasing out the independent effects of the built

environment on travel-related emissions is extremely difficult unless appropriate

analytical frameworks are employed. Current attempts to articulate the link between

urban form and travel GHG emissions struggle to capture this complex set of interactions,

due in large part to data limitations and model misspecification. Effects of the built

environment on GHG emissions are examined here in a structural equations model

(SEM) framework to overcome this weakness and clarify relationships. SEM is a set of

simultaneous regression equations specifying the direct links (paths) between sets of

variables (Kaplan, 2000). The second issue relates to the appropriate representation and

measurement of travel and emissions. Daily travel patterns and their subsequent emission

levels are a function of broader activity participation decisions and trip chaining or

touring patterns (Shiftan, 2008). Only limited research has explored how these decisions

interact with the built environment and household demographics to influence emission

generation (Frank et al., 2005a). In this research, travel and emission levels are measured

at the daily activity scale to better assess how transportation decisions are made and

estimate implications for GHG emissions generation.



4

1.3. Research Objectives and Questions

This thesis represents an attempt to enhance the current state of knowledge surrounding

the linkages between urban form and vehicle emissions by adding new dimensions to the

analytical approach in order to more accurately estimate different effects. The geographic

focus of this study is on Metro Vancouver, British Columbia, Canada. Specifically, this

research will:

• Investigate the associations between the built environment, daily activity patterns,

vehicle use, and associated GHG emissions;

• Develop a methodological framework that isolates individual linkages in a

pathway from urban form to travel to emissions; and

• Highlight policy and regulatory implications for local and regional government on

how reduction in vehicle use and related GHG emissions can potentially be

achieved through changes in land use policy.

Out of these research objectives, the following questions will be investigated:

• Are variations in self-reported vehicle use and vehicle GHG emission estimates

statistically associated with different built environment and regional accessibility

characteristics in Metro Vancouver?

• What are the relative structural (regression) effects of different built environment

and regional accessibility characteristics as opposed to individual and household

socio-economic variables on per-capita vehicle GHG emissions?

• Do the structural (regression) effects of local built environment characteristics and

regional accessibility measures on vehicle related GHG emissions vary by activity

tour type?

• Which land use and transportation strategies may be most effective at supporting

a reduction in vehicle GHG emissions in Metro Vancouver?
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1.4. Thesis Organization

The remaining chapters are structured as follows: Chapter 2 discusses pertinent literature

related to two key themes: travel and activity pattern measurements and modeling

techniques used in systems having multiple sets of relationships and endogenous

(dependent) variables. Chapter 3 details the conceptual framework and modeling

methodology used in this analysis. Also included is a description of the data sources,

variables and measurements used to populate the analytical models. Chapter 4 introduces

the study area and outlines results from a descriptive analysis of the sample population.

In Chapter 5, empirical results are presented and the implications of the findings are

discussed. Finally, Chapter 6 summarizes the research and discusses the study’s

limitations and directions for future research.
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2. LITERATURE REVIEW

2.1. Overview

Relevant literature pertaining to this thesis falls within two methodological themes: 1)

measuring daily travel and emissions, and 2) frameworks for assessing multivariate

statistical problems. This chapter reviews the current analytical procedures employed to

study linkages between urban form, travel, and GHG emissions against applicable

methodological improvements that have evolved within and beyond the transportation

research field. It will be demonstrated how key analytical advancements can be applied to

enhance our understanding of the relationships between urban form, travel and emissions.

2.2. Measuring Travel Behaviour and GHG Emissions

2.2.1. Trip-Scale Modeling

Central to any assessment of the spatial patterns of travel-related emissions are

appropriately measured travel variables with which to derive emission estimates. By far

the most popular measure used in this effort is distance traveled by mode (Ewing et al.,

2008). This is not surprising as common distance-based and mode-specific emission

factors can be easily applied to these variables (Van Wee et al., 2005; Stead, 2000). In an

assessment of the relationship between urban density and travel-related CO2 in the

Netherlands, Grazi et al (2008) estimate emissions using commute distance by travel

mode measures. Statistically significant negative relationships were found between urban

density, measured private vehicle use, total commuting distance, distance traveled by

mode, and total daily CO2 emissions. Frank et al (2005a) estimated per-capita travel

emissions in King County Washington from a measure of total daily vehicle miles

traveled while accounting for travel speed, fleet characteristics and vehicle occupancy.

Statistically significant relationships between a number of detailed neighbourhood urban

form measures and per-capita daily travel CO2 emissions were found while controlling

for pertinent socio-economic and demographic factors. Households in areas with higher

levels of land use mix, residential density, retail availability, and street connectivity
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generated fewer vehicle miles traveled (VMT) and lower per-capita CO2 emissions. Frank

et al (2009) undertook additional comparative analyses on the relative influence of local

urban form and regional accessibility measures on vehicle CO2 emissions in the Puget

Sound region. VMT and CO2 were estimated in daily totals. Findings suggested that

neighborhood scale urban form factors, such as land use mix and street connectivity,

while significant, were weaker predictors than regional accessibility.

VandeWeghe and Kennedy (2007) used travel data from Toronto’s 2001 Transportation

Tomorrow Survey, in combination with the City’s EMME/2 travel demand modeling

software to estimate aggregated daily travel distance (i.e. summation of all individual trip

distances over the course of a day) and GHG emissions related to travel. The study

compared both building and travel emissions across Toronto’s census metropolitan areas

to determine the impact of urban form on greenhouse gas causing activities. Results

demonstrated that the per-capita generation of transportation related greenhouse gas

emissions were highest in low-density suburban areas of the city where distance traveled

by vehicle were highest.

A common thread between these studies is the scale at which distance traveled and

subsequent emission levels are calculated and analyzed. In most cases, these variables are

aggregated to daily trip-based totals. Research suggests, however, that representing and

analyzing daily travel in this manner may produce two related limitations. The first

concerns discounting the complexity and pattern language of daily travel. Travel is often

organized into tours, or trip-chains to accomplish a set of activities in an efficient manner

while minimizing time use and costs (Primerano et al., 2008). For instance, an individual

may accomplish their daily errands in the return trip from work so as to avoid leaving

home again in the evening. These patterns are not discernable using aggregated, trip-

based travel measures (Krizek, 2003a). The second drawback is that aggregated travel

variables provide only limited insight into the broader forces that generate and influence

activity decisions and travel demand (Shiftan, 2008; Buliung and Kanaroglou, 2007).

Travel decisions are a function of many factors, including activity type, the location of

destinations, available travel modes, and intra-household decision processes

(Timmermans and Zhang, 2009). The influence of these mechanisms on travel and
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emissions are not explicitly modeled in current empirical studies related to travel

emissions. It is often concluded that modeling and analytical frameworks assessing travel

and related impacts that inappropriately account for these dynamics may yield to spurious

correlations between urban form, travel, and, ultimately, emissions (Handy, 1996; Shiftan

and Suhrbier, 2002).

2.2.2. Activity Tour Modeling

Activity or tour-level modeling of travel addresses the aforementioned limitations and

has proven to yield more insight into the mechanisms driving activity and travel decisions

(Shiftan et al., 2003; Miller et al., 2005; Davidson et al., 2007). Activity modeling

organizes daily travel into sets of home or work-based “activity tours” or “activity

chains” that link individual trips together to include both the outbound and return trips

and all stops made along the way (Bowman and Ben-Akiva, 2001). Tours can be

classified based on their primary tour purpose (e.g. subsistence, maintenance, or

discretionary) and their complexity (number of stops) (Krizek, 2003a; Kuppam and

Pendyala, 2001; Lee et al., 2009). Distance traveled, mode choice, and emission estimates

can then be estimated for an entire tour or set of tours. Buliung and Kanaroglou (2007)

provide a comprehensive overview of additional activity-based concepts, model and

analysis specification, and simulation modeling.

Considerable effort has been extended to understanding the links between tour

complexity and socio-economic and demographic, travel time, and travel cost variables

(Hanson and Hanson, 1981; McGuckin and Murakami, 1999; Jang, 2003; Jang and

Hwang, 2009). Notable findings include parents and guardians in households with

younger children tend to engage in more activity tours, likely the result of the need to

make extra shopping trips and trips to pick up and drop off children at school (Lu and

Pas, 1999). Older adults and retired individuals are more likely to have simple daily

travel patterns (i.e. fewer trips per tour) due to limited direct responsibilities for others

(e.g. younger children) (Golob and Hensher, 2007).
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More recent work has explored the spatial properties of activity tours. Households

located in more compact, accessible areas complete more simple tours with stops closer

to home per tour while households in lower density environments are related to more

complex, multi-stop tours (Krizek, 2003a; Noland and Thomas, 2007; Buliung and

Kanaroglou, 2006). Analysis at the activity-tour type level has also yielded significant

results. Frank et al (2007b), using nested logit modeling, found an inverse relationship

between the level of mixed use, density, and street connectivity where people live and

work and the amount of stops made to and from work during home-based work tours in

the Seattle region. Using similar travel data from the Puget Sound (Seattle) region,

Krizek (2003b) demonstrated that tour frequency increases, while the number of stops per

tour decreases across all tours with heightened neighbourhood accessibility. Unlike the

Frank et al study, however, Krizek is unable to find a significant relationship between

complex work tours and neighbourhood accessibility.

The effect of interactions between socio-economic characteristics, urban form and

activity patterns on distance traveled and mode choice are important, especially from a

GHG emissions perspective. Strathman and Duecker (1994) observe that complex

activity patterns may lead to an increase in vehicle use given the flexibility afforded by a

vehicle for such activity patterns. Crane (1996) suggests that more accessible

neighbourhoods will tend to generate more tours and, subsequently, more vehicle use.

Maat and Timmermans (2006) found that more compact neighbourhoods may induce

higher activity frequencies as shorter trips that can save time may result in more available

time for other low priority activities that may be impossible otherwise. Frank et al

(2007b) demonstrated that less complex tours with stops closer to home might be more

easily accomplished using alternative modes like transit, walking and cycling. These

results suggest a time-based trade-off between the location of stops and tour complexity.

Those living in places where destinations are close can complete single destination trips

easily using less carbon intensive modes. Conversely, those in sprawling, single-use

locations tend to chain their activities to save time and may not be inclined to make as

many home based simple tours. Higher rates of vehicle use are also expected given the

likely increases in distance between destinations.
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Observations from the activity tour-level analysis literature point to important modeling

implications for study directed at assessing the influence of urban form and travel

behaviour on GHG emissions. The ability to capture daily activity pattern characteristics

in combination with traditional measures, like distance traveled and mode choice, is

demonstrated to provide a better approximation of how activity patterns vary over space

(Davidson et al., 2007, Vovsha and Bradley, 2005). These improved estimates of

differences in key travel variables provide the basis for the development of more accurate

estimate of potential GHG emission reductions resulting from the implementation of

more compact, walkable and regionally connected neighbourhood design strategies.

No pertinent studies have explored the influence of urban form and travel behaviour on

GHG at the tour-level. Frank et al (2005a) suggest doing so would offer a greater

understanding of how different land use and regional accessibility characteristics like

transit service and distance to major employment centres, relative to other socio-

economic and demographic variables, influence travel emissions at unit of analysis that

more accurately depicts travel choice. The current study aims to fulfill this research gap.

2.3. Analytical Frameworks and Techniques

The set of interactions between variables influencing the generation of travel-related

GHG emissions in urban areas is complex. Many studies have demonstrated that a variety

of socio-demographic, urban form and transportation systems/networks, and travel

behaviour characteristics all have the ability to affect travel behaviour and activity

patterns (Crane, 2000; Ewing and Cervero, 2001; Badoe and Miller, 2000; Saelens et al.,

2003). These variables all have a subsequent influence on daily travel-related GHG

emissions. Complexity arises from the influence that different factors have on each other

and from the nature of their individual and combined effects on travel emissions (Naess

et al., 1995). For example, only travel variables like mode choice, distance traveled,

vehicle occupancy, speed, and engine operating temperature have a direct influence on

vehicle emissions (Van Wee et al., 2005; Stead, 2000). Conversely, the influence of

urban form, transportation systems, socio-demographics, and broader activity patterns on

emissions is an indirect one and is only realized through their direct effects on the



11

intervening travel behaviour variables (Anderson et al., 1996; Mindali et al., 2004). The

nature of these interactions affects the ability to accurately estimate potential effects of

the built environment on emissions if inappropriate analytical frameworks are employed.

2.3.1. Single Equation Modeling

The use of single-equation modeling techniques, such as ordinary least-squares (OLS)

regression, logit, and multivariate regression analysis, are commonplace in much the

empirical transportation literature (see reviews Ewing and Cervero, 2001, Boarnet and

Crane, 2001; Handy, 1996). As illustrated in Figure 2.1.a, these methods use several

predictor (independent x) variables to predict the strength and nature of effect on one

criterion measure (dependent y). Their use is also ubiquitous in work assessing the

linkages between urban form and travel emissions. Frank et al (2009) used single-

equation regression models to quantify the interactions between urban form, travel and

related CO2 emissions in Puget Sound, Washington. Models specified that travel-related

CO2 per capita (dependent variable) would be equally and directly influenced by all

independent socio-economic, urban form, regional accessibility, and travel behaviour

characteristics. Frank et al (2000) also used ordinary least-square regression techniques to

connect urban form characteristics around where people live with vehicle miles traveled

and criteria air pollutants like nitrous oxide, volatile organic compounds, ozone, and

particulate matter. Grazi et al (2008) employed separate instrumental variable and

ordinary least-square models to assess the effect of urban density, certain socio-economic

and demographic variables, and commuting patterns (independent variable) on total daily

travel-related CO2 emissions (dependent variable) in a sample from the Netherlands.

Single-equation analytical frameworks used in the above studies are limited in their

ability to model the multifaceted interaction between urban form, travel behaviour and

GHG emissions. Primary shortcomings of these efforts include a lack of control for

assessing relationships with multiple equations and multiple endogenous variables and

the inability to account for and estimate both direct and indirect effects between measures

(Washington et al., 2003; Kline, 2005). The limitations of single-equation models in this

context are a key motivation for the current research.
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2.3.3. Structural Equation Modeling

Advancements in computing and statistical analysis techniques have allowed for more

comprehensive, structural relationships between socio-demographics, activity

participation, travel behaviour and urban form using diverse modeling methods (Bhat,

2005, Bhat and Guo, 2007, Habib and Miller, 2008; Misra et al., 2003; Cervero, 2003;

Jang and Hwang, 2009). Structural equation modeling (SEM), originally developed for

use in psychological studies, has emerged as a valuable analytical framework for

assessing complex, multivariate transportation research problems (Golob, 2003).

SEM offers several improvements over traditional single-equation approaches and

addresses many of the analytical realities of the research problem in this study. SEM

allows for the simultaneous prediction of multiple variables and equations in one model

(Tomarken et al., 2005; Kline, 2005). That is, variables that are dependent in one set of

equations may be explicitly specified as explanatory in another. This research involves

multiple relationships among a set of variables and meets the requirements for application

of SEM. For example, while built environment characteristics influence travel behaviour

and activity patterns, it is these behaviours that then influence the generation of GHG

emissions related to travel. An additional advantage of SEM includes the ability to

FIGURE 2.1. Traditional regression vs. structural equation techniques. In (b), the
researcher is able to examine the ability of more than one predictor variable to explain
multiple dependent, possibly mediating, variables.
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separately estimate direct (i.e. x impacts y) and indirect (i.e. x impacts z though y)

relationships (Kaplan, 2000) (see Figure 2.1.b). SEM can estimate the magnitude of the

influence of each variable on the other. This is necessary in order to determine the total

and independent effects of these variables on travel emissions.

SEM has been employed in many transportation-related analysis studies (see review by

Golob, 2003). Common to this body of work are problems centred on complex, multi-

equation issues. Popular applications include assessing the relative influence of

attitudinal and lifestyle predispositions (also known as self-selection) and residential

neighbourhood type on travel behaviour (Jang et al., 2009; Cao et al., 2007). Bagley and

Mokhtarian (2002) developed and employed a nine-equation structural model system to

tease out the direct, indirect and total effects of attitudes and preferences and local urban

form characteristics on daily person trips and daily distance traveled by mode. Ory and

Mokhtarian (2009a) modeled the direct and indirect interrelationships among reported

amount of travel and perceptions, affections and desire for travel using ten structural

equation models. Other applications include activity-based travel demand modeling

where frameworks are needed to study direct relationships between activity demand and

need to travel, or interrelationships between participation in different activities (Jang,

2003; Golob, 2000; Gould et al., 1998; Fujii and Kitamura, 2000). Kuppam and Pendyala

(2000) developed structural equation models to explore the relationships between activity

duration and generation, duration of in-home and out-of-home activities, and activity

frequency and trip chain generation in Washington, D.C. An emerging group of

application includes modeling the mediating pathways linking built environment and

travel behaviour to secondary outcomes like obesity (Stafford et al., 2007).

A perusal of the literature located only one study that has applied a structural equation

modeling framework in the context of assessing the travel emission impacts associated

with different land use patterns and travel behaviour. Bailey et al (2008) use SEM within

a cross-sectional research design to test the hypothesis that public transportation

availability interacts with land use patterns to influence travel patterns in urban areas. The

authors deduce that those individuals in compact places with higher bus and rail transit

accessibility travel less by vehicle and, as a result, reduce their overall petroleum use and
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carbon footprint. The SEM confirms this theory by demonstrating that public transit

availability is negatively associated with vehicle miles traveled. Estimated levels of GHG

emissions are not included in the SEM model. Instead, the total effect of transit

availability on fuel use and GHG emissions is determined using an ad hoc process outside

of the SEM model. As such, the study does not explicitly model what aspects of urban

form, transit availability, and travel behaviour might lead to a reduction in travel-related

GHG emissions.

2.4. Summary

The literature reviewed in this chapter suggests that the use of structural equation

modeling frameworks and activity-level travel behaviour measurements are appropriate

analytical elements that may help to increase our understanding of the interrelationships

between urban form, travel decisions and emissions. Their limited application in

assessing these linkages offers a unique research opportunity. Pertinent studies completed

to date exploring the effects on urban form and travel behaviour and GHG emissions

highlighted in this chapter provide both a theoretical and methodological foundation for

future studies. The research in this thesis will build upon this previous work and utilize a

more robust analytical procedure in order to tease out the independent effects of urban

form, travel behaviour and socio-economics and demographic characteristics on travel-

related GHG.
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3. MODELING METHODOLOGY & DATA SET

3.1. Overview

A leading objective of this research is to develop a series of empirical models to help

better isolate and quantify fundamental relationships among built environment

characteristics, activity patterns and vehicle use, in order to assess their relative

influences on vehicle GHG emissions. Structural equation and activity-tour modeling

approaches are utilized in this effort. This chapter begins with an extensive overview of

the conceptual framework used to guide model development, an explanation of postulated

effects, and a technical synopsis of the procedure followed to develop the structural

equation models. This is followed by a detailed summary of the data used to populate the

models. Methods employed to operationalize both exogenous and endogenous variables

are presented. Also outlined is the process for organizing individual trips into activity

tours.

3.2. Conceptual Framework

The conceptual framework used to guide model specification and analysis in this research

is illustrated in Figure 3.1. The framework was developed based on previous modeling

efforts described in the literature and logical inferences among variable categories (see

Chapter 2). Four sets of variables known to relate with the generation of travel emissions

are included in the conceptual framework: (1) socio-economic and (2) built environment

characteristics are specified as exogenous (independent) variables; (3) activity patterns,

(4) vehicle use as endogenous (dependent) variables. Vehicle GHG emissions are

specified as the final and ultimate endogenous measure. Each variable category includes

a number of individual measures described in greater detail in Section 3.3. Daily travel

characteristics and emission levels are modeled at the activity tour scale in the conceptual

framework.



FIGURE 3.1. Conceptual modeling framework.

16
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3.2.1. Activity Patterns

Daily activity patterns are specified as one of two mediating sets of variables between

urban form and travel-related GHG emissions in the conceptual framework. Activity

patterns are defined as the sequence and combination of daily trips and destinations

(Jones et al., 1990). In the current research, these characteristics are represented by two

variables: complexity of activity tours undertaken (i.e. number of stops made in a given

home-based activity tour) and the spatial distribution of activities (i.e. location of stops in

a given tour). Activity tour patterns have been previously demonstrated to be a direct

function of both individual socio-economic and demographic characteristics (Hanson and

Hanson, 1981; Golob, 2000; Hensher and Reyes, 2000; McGuckin and Murakami, 1999)

and the built environment where individuals reside (Krizek, 2003a; Noland and Thomas,

2007; Frank et al., 2007b; Maat and Timmermans, 2006). These relationships are

reflected in the conceptual model and serve as a starting point for the structural model

estimation procedure.

The framework in Figure 3.1 also anticipates a time-based trade-off between tour

complexity and the location of stops, modeled as a direct effect between the location of

stops and tour complexity. It is expected that a greater share of daily destinations located

near home will be associated with more simple tour patterns (Frank et al., 2007b).

Conversely, destinations spread throughout a city or region may encourage trip-chaining

to save time (Noland and Thomas, 2007).

This research measures only the prospective associations between the home urban

environment and daily activity patterns. Urban form and regional accessibility

characteristics of the work location have been demonstrated to yield statistically

significant links with work-related tour complexity (Krizek, 2003b) and midday work-

based tours (Frank et al., 2007b). This research did not develop measures or account for

mid-day work based other tours (i.e. work   lunch   shopping   work), which

occurred in some instances in the sample population. Such tours may impact the

frequency and complexity of other tours during the day (i.e. if an individual can perform

maintenance or discretionary activities during lunch then these may not be required either
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on the way to or from work or in the evening) (Frank et al., 2007b). Total daily vehicle

use and emission implications associated with these decisions could potentially be

significant. That work location urban form variables and mid-day work tours were not

included in the analysis is a drawback of the research.

The specified variables and linkages chosen to define the structure of daily activity

patterns in this research are an over-simplification of how these decisions are actually

made in reality. Additional variables including individual attitudes and preferences

regarding travel (Khattak and Rodriguez, 2005), travel-time considerations (Mohktarian

and Chen, 2004), and detailed household decision-making processes and trade-offs

(Vovsha, et al., 2004) have been demonstrated to yield significant influence over activity

scheduling and patterns. These are absent here due to data limitations. Nevertheless, the

anticipated linkages are assumed to be reasonable given the scope of the current study.

3.2.2. Vehicle Use

Vehicle use is specified as the second mediating variable between urban form and travel

GHG emissions and is measured by vehicle kilometers traveled (VKT). Variables related

to other modes of travel (i.e. share of daily travel made or traveled by walking, cycling

and transit) are excluded in the models, as this study is not directed at explicitly exploring

the connections between urban form and broader mode choice behaviour. Because all

individuals in the sample reported travel, it is assumed that those traveling zero

kilometers by vehicle are, instead, using alternative, less carbon intensive modes like

transit, cycling, and walking. The reader is encouraged to explore studies described in

Chapter 2 that pursue mode choice modeling within an activity-based framework, or local

research linking urban form and mode choice in the Metro Vancouver region (Devlin et

al., 2009).

The conceptual model reflects research demonstrating that vehicle travel is likely a direct

function of socio-economic and demographic dispositions (Crane, 2000), the built

environment characteristics near home (Frank and Pivo, 1994; Holtzclaw et al., 2002),

and daily activity patterns (Krizek, 2003a). Built environment and socio-economic
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characteristics on travel are also anticipated to have an indirect (or mediating) effect on

vehicle use through their influence on daily activity patterns.

3.2.3. GHG Emissions

Vehicle GHG emissions are specified as the final endogenous variable in the model; that

is all structural relationships previously identified are modeled to influence how much

vehicle GHG emissions related to activity tours are generated daily. Empirical analyses

of GHG emission impacts associated with urban form are found in several studies

identified in Chapter 2. These single-equation approaches demonstrate GHG emissions to

be a function of distance traveled, built environment characteristics, travel preferences

and attitudes, and socio-demographic dispositions (Grazi et al., 2008; Frank et al., 2009).

The conceptual framework reflects these findings in theory; however, it explicitly

specifies that only vehicle kilometers traveled have a direct influence on emissions. The

effects of built environment characteristics like density, neighbourhood walkability, and

regional access on emission levels operate indirectly through activity patterns and vehicle

use. This idea of the built environment as an enabler or disabler for less carbon intensive

travel patterns is consistent with observations in the literature (Anderson et al., 1996;

Mindali et al., 2006). The complexity of these expected relationships highlights the need

for multiple-equation models capable of estimating direct, indirect and total effects.

3.3. Model Structure

The literature reviewed in Chapter 2 suggests that structural equation modeling is a useful

technique for analyzing the relationships specified in the conceptual framework, namely

due to its ability to isolate and separately estimate direct, indirect, and total effects

between variables. Path analysis, a special type of SEM that estimates effects between

observed measures only, is employed in this research. Kaplan (2000) defines a typical

structural equation model without latent variables (i.e. path analysis) as having the form

(Equation 3.1):
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Y = a + BY + TX + e         (EQUATION 3.1)

  

Where Y = a vector holding p observed endogenous variables

X = a vector holding q observed exogenous variables

B = a coefficient matrix that related endogenous variables to each other (p x p)

T = a coefficient matrix that relates endogenous variables to other exogenous

            variables (p x q)

e = a vector of error terms associated with the endogenous variables

a = a vector of structural intercepts

The elements B and T in Eq 3.1 represent the structural relationships among the

variables. For example, returning to the conceptual framework in Figure 3.1, an element

of B would be the path relating activity patterns to travel behaviour. An element of T

would be the path relating travel behaviour to the built environment. Structural equation

models are estimated using structural covariance analysis; whereby parameter estimates

are obtained by minimizing the difference between the observed sample covariance

matrix (i.e. natural co-variances between variables in the sample) and the theoretical

covariance matrix implied by the model (Kline, 2005).

3.4. Model Development

The effect of physical environment measures, like regional accessibility or local urban

form on travel behaviour, has been demonstrated to vary by trip or activity types

(Cervero and Duncan, 2006; Chatman, 2005; Handy, 1992; Cervero and Radisch, 1996).

Exploring all activity tours, regardless of main purpose in the same model, may mask

nuanced effects of certain physical environment variables on vehicle use and/or

emissions. Separate structural equation models were developed to explain the effect of

the built environment on per-capita travel behaviour and emissions related to both home-

based work/school (HBWS) and home-based other (HBO) activity tours. HBWS tours are

classified as those that include a work or school stop, regardless of the presence of other

stops. HBO tours are specified as those including only non-work or school stops like

shopping, recreation, or picking up a passenger. The process used to operationalize
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activity-tours is described in detail in Section 3.6. Previous work on activity-tour

modeling has employed similar classifications of tours to assess built environment

influences (Bowman and Ben-Akiva, 2001; Kuppam and Pendyala, 2001; Lee et al.,

2009, Frank et al., 2007b; Krizek, 2003b).

3.5. Modeling Procedure

3.5.1. Model Specification

The conceptual framework in Figure 3.1 guided development of the initial structural

equation models for each activity-type (work/non-work). The AMOS 16.0 software

extension of SPSS 17.0 was utilized in this effort. AMOS allows for the graphical

specification of SEMs by way of path diagrams, using boxes to represent variables and

arrows to represent nature and direction of effect. After specifying each initial model,

exploratory modeling is performed in order to reach a model that best reproduces the

variances between variables in the sample. This included variable transformation

(described below) and, where appropriate, removal of cases or variables. Model

estimation results summarized in Chapter 5 detail the specification processes used to

finalize each activity type model.

3.5.2. Model Identification

An SEM is identifiable when the number of data points inputted into the model is

sufficient to estimate the specified parameters. Kaplan (2000) and Golob (2003) suggest

that the necessary condition for a model to be identifiable be that the number of variance

and covariance terms (observable variables) is larger than the number of parameters to be

estimated (including regression weights, covariance terms, and variance terms), resulting

in zero or positive degrees of freedom. Zero degrees of freedom imply a just identified

model. Positive degrees of freedom denote a model that is over-identified while a

negative value equates with an under-identified model. An under-identified model

denotes unique values that cannot be estimated from the model. Over-identified models

indicate that the value for each parameter in the model can be obtained in multiple ways

from the observed data (Hoyle, 1995). Achieving an over-identified model is ideal as it
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suggests that more appropriate models may exist. A just-identified model will always fit

perfectly, making an assessment of fit meaningless. AMOS includes a degrees of freedom

calculation in its model output and this was utilized to assess model identification for

each SEM.

3.5.3. Model Estimation

Maximum likelihood (ML) estimation, the standard method of estimating parameters in

structural equation models, is employed in the current study. This procedure establishes

the probability that the observed correlations in the sample data are function of the

specified parameters in the model (Johnson and Wichern, 2002). ML estimation is an

iterative procedure, whereby the AMOS software makes an initial deduction on the value

of the specified parameters and then improves the initial estimate step-by-step through a

series of model runs (Blunch, 2008).

Multivariate normality is a key assumption in structural equation modeling employing the

ML estimation approach. If violated, estimated effects and model fit measures may be

rendered inaccurate. Meeting this condition is a difficulty in many studies (Tomarken, et

al., 2005), with the presence of outliers being especially problematic (Hoyle, 1995). The

current study tested for multivariate distribution for each specified SEM in order to

achieve the best-suited distribution for each model using the Mardia statistic. The Mardia

statistic assesses multivariate normality based on the model’s skewness and kurtosis

functions. A Mardia statistic with a critical ratio greater than 1.96 signifies a departure

from multivariate normality with 95% confidence (West et al., 1995; Blunch, 2008).

Where significant non-normality in a model was observed, variables exhibiting the

highest degree of skew and kurtosis were transformed using the natural log or square root

method. Such transformations have been found to be potentially effective in normalizing

distributions (West et al., 1995). Models were then re-estimated using the newly

transformed variables. If the critical ratio of the revised model’s Mardia statistic still

exceeded 1.96, statistically outlying cases were identified and removed until a reliable

degree of normality in the model was achieved. The Mahalanobis distance generated by

AMOS for each case in the SEM was used to identify outliers in the sample. The
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Mahalanobis distance variable establishes a single mean calculation for all independent

variables in the model and assesses how far away each case in the sample (i.e. in this

case, the person) is from that mean value relative to all remaining cases (Everitt, 1993).

The greater the Mahalanobis distance, the greater contribution said case adds to the non-

normality of the data. Where an individual case was removed in one activity type model,

the corresponding case in the other model was also removed, if applicable, in order to

maintain a more realistic account of total daily per-capita emission levels. A detailed

summary of the corrective actions used in each model is summarized in the results in

Chapter 5. This approach to achieving multivariate normality is consistent with the

methods described in the literature (Blunch, 2008).

A number of alternative estimation approaches have been developed that do not require

multivariate normality in the model dataset, most notably the asymptotic distribution free

(ADF) or weighted-least square (WLS) function. Estimation using these techniques was

considered for models exhibiting extreme non-normality. The literature suggests,

however, that ADF/WLS does not perform well on small datasets (i.e. less than 2,500) or

on models with a large number of variables (Curran et al. 1996; Hoogland and Boomsma,

1998; Ory and Mohktarian, 2009b). ADF/WLS results have also been found to be subject

to parameter overestimation and inflated fit indices (Olsson et al., 2000). For these

reasons, this research avoids the use of ADF/WLS estimation techniques and, where

appropriate, strives to achieve multivariate normal datasets using the steps described

above.

3.5.4. Effect Decomposition

Structural equation models are sets of simultaneous linear regression equations. The

estimated parameter effects are the regression coefficients produced by the interaction

between specified exogenous and endogenous variables (Kaplan, 2000; Golob, 2003).

Direct, indirect, and total regression effects between variables are explicitly calculated for

each activity type model. Direct effects of an exogenous/endogenous variable on an

endogenous variable are simply the regression coefficient between the two variables.

Indirect effects are those between two variables occurring through one or more mediating
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variables. For instance, if x has a direct effect on y, and y has a direct effect on z, then x is

said to have an indirect effect on z through y. Indirect effects are calculated by summing

the product of any associated regression coefficients that link the variables in the

particular structural chain. Total effects between variables are obtained by summing all

direct and indirect regression effects between the variables of interest. It should be noted

that, where occurring, direct and indirect effects between two variables might be of

different signs (positive (+) or negative (-)). A focus only on either the direct or indirect

effects, then, may lead to inconsistent conclusions in some cases. As such, it is important

to ground final model deductions in the estimated total effect. By doing so, an

understanding of how variables of interest influence the system as a whole (e.g. specified

model) is gained. This is a key motive for employing SEM in the current research

context.

3.5.5. Assessing Model Fit

Measures of model fit assess the ability of an identified model to reproduce the

correlations of a given data set. Dozens of measures have been developed for assessing

the fit of an SEM (Golob, 2003; Bollen and Long, 1993). However, little agreement

exists regarding the best measures to employ for assessing model fit given sensitivity to

differences in sample size and model complexity (Bentler, 2007; Yuan, 2005). Debate

concerning appropriate value cut-off points for fit indices is also prevalent in the

literature (Chen et al., 2008). In this context, the reliance on a single index to

accept/reject model fit is considered imprudent, with many suggesting the use of multiple

indices (Kaplan, 2000, Bentler, 2007; Hooper et al., 2008). A total of five indices are

used to measure the fit of each activity type model in this research. Absolute fit measures,

those that assess how well an a priori model reproduces the sample data, include chi-

square (X2), relative chi-square (X2/df), residual mean square error of approximation

(RMSEA), and the standard root mean square residual (SRMR). The comparative fit

index (CFI) and Tucker-Lewis index (TLI), both incremental fit measures, are selected to

assess the adequacy of the target model against an alternative, baseline model specified

by the SEM analysis program (i.e. a “null” or “independent” model). These measures are

chosen over other indices as they have been found to be the most insensitive to sample
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size, model misspecification and parameter estimates (Hooper et al., 2008). Table 3.1

summarizes these goodness-of-fit measures and the common acceptable threshold values

for a well-fitted model in the literature.

TABLE 3.1. Summary of model fit indices.

Measure Description Acceptable Thresholds Comments

Chi-square (X 2)

Assess the magnitude of 
discrepancy between the            
sample and model-fitted 
covariances

Insignifcant p value             
(ie. greater than 0.05)

Extremely sensitive to 
sample size and model 
complexity, almost always 
rejects models for large 
sample sizes (ie. > 1000); 
the more complex a model 
the higher likelihood for 
better fit; included here to 
recognize "traditional" fit 
assessment

Relative chi-square 

(X 2/df)
Chi-square test which           
controls for sample size

Less than 5 acceptable;                  
less than 3 denotes                
good model fit

Gaining popularity given 
limitations with traditional 
chi-square test; still 
sensitive to complex models

Root mean square error 
of approximation 
(RMSEA)

Assess the magnitude of 
discrepancy between the           
sample and model-fitted 
covariances

Good fit = 0.00 - 0.05; 
fair fit = 0.05 - 0.08; 
mediocre fit = 0.08 - 1.0

Favours parsimony, models 
with fewer parameters, 
therefore may be infalted by 
complex models

Standardized root mean 
square residual (SRMR)

Average, standardized    
difference between observed     
and estimated covariance        
matrices 

Close to zero, less than 
0.05 suggests good fit

Comparative Fit Index 
(CFI)

Compares the covariance          
matrix predicted by the              
model to the observed          
covariance matrix in the                
sample; controls for sample                 
size

Greater than 0.9

Tucker-Lewis Index 
(TLI)

Compares the X 2 value of            
the specified model to the            

X 2 of the null model

Greater than 0.9
Like RMSEA, sensitive to 
model complexity; favour 
simple models
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3.6. Data Sources and Attributes

Four data sources were utilized to calculate and operationalize variables for the models in

this research: self-reported daily travel data, regional parcel-level land and urban form

data, regional transit network data, including roadway and transit networks, and locally-

developed GHG emission factors for each transportation mode type in the region. These

data characteristics are described below.

3.6.1. Daily Travel Data

The 1999 TransLink Travel Diary Survey provided detailed travel, person and household

level socio-economic and demographic data used in this research. This survey included

7,063 individuals in 2,990 households across Metro Vancouver who reported

approximately 22,000 trips during the course of one 24-hour period. Collected trip

characteristics included postal code or intersection location of all reported origins and

destinations, modes of travel and purpose for each trip segment. Socio-economic and

demographic characteristics included age, gender, household income, and persons per

household. Recruitment and data collection was conducted between September and

October 1999. Detailed data collection methods are described in detail elsewhere

(TransLink, 2003) and not included in this research for reasons of brevity.

In order to get a complete daily emission profile for each individual in the travel survey,

individual respondents who did not provide all origin and destination points (i.e. valid

postal code, street intersection, address) for all reported trip ends were omitted from the

sample. For instance, if an individual took a total of 5 vehicle trips but recorded the origin

and destination points of only 2 of those trips then that individuals total GHG emission

estimates would be under-reported and inaccurate. Individuals reporting incomplete

socio-economic data were also removed from the full sample. Additionally, only those

individuals identified as adults (age 18 and older) were selected for study. Adults are

generally considered more independent than children and youth. Indeed, studies have

shown travel in youth to be less autonomous and often interlinked with the behaviour and

preferences of their parents (McDonald, 2006; Copperman and Bhat, 2007). After the

validation process, a sample of 2,690 individuals reporting 5,464 trips within 3,746 tours
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remained for analysis. Although considerably smaller than the full travel diary survey,

this action was required in order to utilize realistic daily emission profiles.

3.6.2. Local Urban Form Data

The Metro Vancouver walkability index developed at the University of British Columbia

by Dr. Lawrence Frank and colleagues was used as the source for the urban form

measures in the analysis. The walkability index is a high-resolution, spatial database that

utilizes land use data from the British Columbia Assessment office, street network data

from CanMap, and census data integrated within a Geographic Information System (GIS)

to measure the urban form characteristics of the immediate neighbourhoods around each

postal code centroid in Metro Vancouver. Neighbourhoods are defined as a buffer created

by drawing a road-network based polygon traveling 1-km from the centroid of each

postal code (see Figure 3.2). A 1-kilometer buffer represents the distance that can

generally be covered in a 10-minute walk along the road network. Findings suggest that

this distance is the most reasonable scale for investigating how the general population’s

travel patterns relate with neighbourhood urban form (Moudon et al., 2006; Lee and

Moudon, 2006).

The land area within each network buffer is categorized by use (e.g. commercial, parks,

multi-family residential, etc.). The buffer area, land use categories, and census data were

used to develop four measures of urban form: net residential density, the ratio of retail

floor area to retail ground area, land use mix and street connectivity. These four

characteristics are the most common measures of urban form in the existing travel

behaviour literature and have demonstrated significant correlations with travel behaviour

and choices (Cervero, 2002; Frank and Pivo, 1994; Cervero and Kockelman, 1997;

Greenwald and Boarnet, 2000; Saelens et al., 2003). An overall measure of

neighbourhood walkability is calculated for each postal code using these four urban form

variables. Section 3.7.2.2 offers a detailed description of the methods used to

operationalize these variables.
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3.6.3. Regional Transit Network Data

TransLink, Metro Vancouver’s regional transportation authority, provided spatial data on

the region’s transit routes and stop locations. Route and stop data was provided for all

transit modes in the region, including Bus, SkyTrain, SeaBus, handyDart, and West Coast

Express. The data was date stamped, and is accurate as of, March 2009.

3.6.4. Travel GHG Emissions Data

TransLink also provided mode-specific GHG emissions estimates for both vehicle and

transit modes in the region (TransLink, 2009). Emissions are measured in gCO2e/km

(equivalent carbon dioxide per kilometer) but were transformed to kgCO2/km for the

purposes of this study. An equivalent carbon dioxide value is a universal standard of

measuring GHG emission effects using the functionally equivalent amount of carbon

dioxide as the reference (Abler, 2003). Self-reported vehicle occupancy for all auto trips

FIGURE 3.2. Defining a neighbourhood and measuring urban form. The
blue dot in the centre of the neighbourhood buffer boundaries represents a
household. Source: Frank et al., 2005. Reproduced with permission.
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in the 1999 Travel Diary Survey were used to develop detailed per-capita emission

estimates for each individual reporting vehicle travel.

3.7. Variables

A total of 18 variables were tested and inputted into the structural equation models in this

research, of which 13 were classified exogenous (independent) and 5 specified as

endogenous (dependent). Detailed descriptions of the methods used to operationalize

each measure are included in this section.

3.7.1. Exogenous Variables

3.7.1.1. Socio-Demographic Characteristics

Socio-demographic characteristics were one of two sets of exogenous (independent)

variables in the analytical models. Individual and household level socio-demographic

variables were self-reported and obtained from the 1999 TransLink Travel Diary Survey.

Previous studies have found that socio-demographic variables like age, gender and

income are strongly associated with travel behaviour (Murakami and Young, 1997; Lu

and Pas, 1999). The current study controls for five socio-demographic variables: age

(AGE), gender (FEMALE), persons in household under 18 years of age (PERSONS<18),

vehicle access (VEHCL ACCESS), and household income (HH INCOME). Age was

measured in years as a continuous variable. Gender was coded as dichotomous dummy

variable (0 = Male, 1 = Female). Persons in household under 18 years of age was also

coded as a dummy variable (0 = no, 1 = yes). Household income was measured as an

ordinal variable with four categories (less than $30,000, $30,000 to $59,000, $60,000 -

$90,000, and more than $90,000). As a categorical variable, 4 categories were assumed to

be sufficient to be included in the SEM (Skrondal and Rabe-Hesketh, 2005). Vehicle

access was calculated by dividing the number of vehicles in a household by the number

of licensed drivers.
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3.7.2.2. Local and Regional Built Environment

Built environment measures included local neighbourhood urban form characteristics and

regional accessibility measures such as distance to nearest town centres and/or distance to

work or school. Variables were specified as observed (measurable) exogenous

(independent) variables in the structural equation. These variables were taken from or

calculate using the Metro Vancouver walkability index.

Net Residential Density (NRD): Net residential density is the number of household units

per residential acre within each 1-km network buffer. This measure was calculated by

summing the total number of households in the buffer and the total acres of residential

land base in each buffer. A simple ratio is then used (Equation 3.2):

NRD = h/a                     (EQUATION 3.2)

Where NRD is the net household density per acre; h is the number of households in the

buffer area, and a is the residential land area in acres (calculated as the total area

associated with the centroids of the housing unit).

Intersection Density (INTDEN): Intersection density is defined as the number of

intersections per square km within each postal code network buffer. This measure is

obtained from street network files by summing the total number of intersections in the

buffer, and dividing by the total buffer area in km2. This variable is calculated as

(Equation 3.3):

INTDEN = i/a                     (EQUATION 3.3)

Where INTDEN is the intersection density, i is the number of intersections, and a is the

area of the buffer, in km2 for region x. Intersection density provides a measure of

connectivity for a given neighbourhood. The greater the number of intersections over a

given area, the more direct a route is likely to be from any randomly selected destination

to any other, due in part to smaller blocks and streets that cross at frequent intervals.
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Land Use Mix (MIX): The measure of land use mix captures the evenness of the

distribution of square footage of development across 5 categories of land use deemed to

contribute to walkability (Kockelman, 1997). These categories include (a) single family

residential; (b) multi-family residential; (c) entertainment (comprised of entertainment,

restaurant, and fast food land uses); (d) retail (comprised of small and large neighborhood

retail, large retail, grocery and convenience store land uses, and excepting super large

retail); and (e) office buildings (comprised of office and office building land uses). The

land use mix index did not include agricultural, institutional, industrial, and parking

classifications, as these are not considered to encompass walkable areas. The final land

use mix measure is calculated as follows (Equation 3.4):

MIX = [(area (a)/total area)* ln (area (a)/ total area)*         (EQUATION 3.4)
(area (b)/ total area)* ln (area (b)/total area)*
(area (c)/ total area)* ln (area (c)/ total area)*
(area (d)/ total area)* ln (area (d)/total area)*
(area (e)/ total area)* ln (area (e)/ total area)] / ln (5);

Where area is the building floor area for the buffer in ft2, a=single family residential, b=

multi-family residential, c= entertainment, d=retail, and e=office, and total area is the

sum of all of a-e. The final land use mix measure is an entropy index with values ranging

from zero to one. A land use measure of zero represents a single-use environment and

one represents a highly mixed built environment.

Retail Floor Area Ratio (RFA): The RFA represents the proportion of the retail parcel

area in the buffer which is occupied by retail buildings. This measure was operationalized

by summing the building floor area for all retail uses within the buffer, as well as the total

parcel area for retail uses.  In this case, retail use includes grocery stores, small and large

neighbourhood retail as well as large retail, but not the super large retail areas.  This

variable is the ratio of (Equation 3.5):

RFA = rba/ ra         (EQUATION 3.5.)

Where RFA is the ratio of retail floor area, rba= total building area for retail in ft2, and ra

is the retail land area, also in ft2.  RFA is a ratio and has no units. FAR provides an
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indicator of the degree to which pieces of land is covered in surface parking or where

store-fronts are set up close to the sidewalk providing easy pedestrian access. A ratio of

greater than one indicates the building contains more surface area than the land area it

occupies.  A low ratio indicates that the building covers very little of the parcel it is on

and, given the commercial nature of the use, is likely to be surrounded by parking and

expected to encourage automobile rather than pedestrian access.

Composite measure of neighbourhood walkability (NEIGHBRHD WALK): Measures of

urban form (connectivity, household density, land use mix, and retail floor area) are often

correlated (Frank et al., 2005b; Saelens et al., 2003; Leslie et al., 2007): areas with higher

residential densities also tend to have a higher mixture of land uses and a more

interconnected street pattern. Table 3.2 demonstrates that similar trends are noted in the

Metro Vancouver urban form data.

The inclusion of all neighbourhood design variables in a regression model could produce

spurious results (Ben-Akiva and Lerman, 1985). A walkability index was created that

integrates these variables in order to avoid potential multicolinearity problems in data

analysis. A normalized distribution (z-score) was taken for each urban form variable

within a buffer, and the four normalized scores were then combined to create an overall

walkability index for each buffer. The walkability index was created using the following

formula (Equation 3.6):

NEIGHBRHD WALK = z-score (INTDENx) +         (EQUATION 3.6)
                             z-score (NRDx) + z-score (NRDx) +

     z-score (MIXx) + -score (RFAx)   

TABLE 3.2 Bivariate correlations between individual urban form measures.

Urban Form Measure Net residential 
density (NRD)

Intersection density 
(INTDEN)

Retail floor area 
ratio (RFA)

Land use mix 
(MIX)

Net residential density (NRD) Correlation 1.000 0.175 0.533 0.300
p -value - 0.000 0.000 0.000

Intersection density (INTDEN) Correlation 0.175 1.000 0.283 0.297
p -value 0.000 - 0.000 0.000

Retail floor area ratio (RFA) Correlation 0.533 0.283 1.000 0.365
p -value 0.000 0.000 - 0.000

Land use mix (MIX) Correlation 0.300 0.297 0.365 1.000
p -value 0.000 0.000 0.000 -

Source: Metro Vancouver walkability index. Author's own analysis.
 n = 61,580 postal code centroids.
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Where INTDENx is intersection density, NRDx is household density, MIXx is land use

mix, and RFAx the ratio of retail floor area for a given buffer zone x. Correlation analyses

were run using the neighbourhood urban form measures of the sample population to

obtain the degree of association between these individual variables and the walkability

index. These results are presented in Table 3.3. As expected, it is observed that all urban

form variables show strong positive correlation with the walkability index. The Metro

Vancouver walkability surface is illustrated in Figure 3.3.

Distance to nearest town centre (DIST TO CENTRE): Recent research has demonstrated

varying degrees of effect between local urban form and regional accessibility

characteristics on travel behaviour (Cervero and Duncan, 2006) and travel emissions

(Frank et al., 2009). In addition to local urban form variables, this research includes

regional-scale characteristics like access to major shopping and employment areas. The

shortest network distance to the nearest centre as identified in the Metro Vancouver

Livable Region Strategic Plan (LRSP) was calculated for each postal code in the region

(see Figure 3.4). A 1.5 km network buffer was drawn around a central postal code in each

centre using ArcGIS 9.1 software. The distance is measured from the home postal code to

the edge of the buffer using the Network Analyst extension in ArcGIS 9.1. Three levels

of centres are defined in the LRSP: metropolitan core, regional centres and municipal

town centres (Greater Vancouver Regional District, 1996). The metropolitan core

includes downtown Vancouver and the Broadway corridor and is characterized by the

TABLE 3.3. Bivariate correlations between individual urban form measures
                    and local neighbourhood walkability index value.

Urban Form Measure Walkability Value 
(NEIGHBRHD WALK)

Net residential density (NRD) Correlation 0.636
p -value 0.000

Intersection density (INTDEN) Correlation 0.783
p -value 0.000

Retail floor area ratio (RFA) Correlation 0.763
p -value 0.000

Land use mix (MIX) Correlation 0.634
p -value 0.000

Source: Metro Vancouver walkability index. Author's own analysis.
 n = 61,580 postal code centroids.
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FIGURE 3.3. Metro Vancouver walkability surface. Each dot represents
one postal code centroid. Red postal codes measured as most walkable. Green
postal codes measured as least walkable.

FIGURE 3.4. Metro Vancouver town and regional centres. Source: Greater
Vancouver Regional District, 1996. Reproduced with permission.
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highest densities of amenities, businesses, residential uses and transit service in the

region. Regional centres are highly dispersed and accommodate a significant but lesser

share of the region’s current and future residential, commercial, business and transit

service relative to the metropolitan core. Town centres provide for a smaller number of

business and community facilities and act to support the larger regional centres. It is

acknowledged that the scale of amenities and services varies by type of centre and that

this may have implications on the relative degree of regional accessibility measured in

this research.

Distance to work or school (DIST TO WRK/SCHL): Operationalized as the shortest

network distance between an individual’s home postal code to their self-reported place of

employment or school. The distance is measured using the Network Analyst extension in

ArcGIS 9.1. For individuals reporting both work and school tours, the distance between

home and these destinations were averaged.

Transit Route Availability (TRANSIT AVLBLTY): Measured as the number of transit

routes within and bisecting each 1-km postal code network buffer. This variable acts as a

proxy measure of transit level-of-service for each local neighbourhood in Metro

Vancouver.

3.7.2. Endogenous Variables

3.7.2.1. Daily Activity Tours

This analysis assesses the relationships between built environment measures and vehicle

emissions as mediated by activity tour patterns and vehicle use. Self-reported daily travel

from the 1999 GVRD Trip Diary Survey is aggregated to the activity-tour level as this

scale provides a more realistic account of how travel decisions are made and, as a result,

is less likely to lead to spurious correlations regarding emission generation (Shiftan et al.,

2003). Custom designed algorithms developed in SPSS 17.0 were utilized to aggregate

individual trips into one of two home-based tour types: 1) Home-based Work or School

(HBWS), and 2) Home-based Other (HBO). Work/school tours are classified as those

that include a work or school stop, regardless of the presence of other stops. Non-work
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tours are specified as those including only non-work or school stops like shopping,

recreation, or picking up a passenger. A home-based tour includes all trips made between

leaving home and arriving back at home again. Similar classification of activity patterns

and tours has been used in previous research (Bowman and Ben-Akiva, 2001; Frank et

al., 2007b). Tours were sorted by complexity (defined by number of stops on a tour).

Simple tours are identified as those with only one destination before returning home (i.e.

home   shopping   home). Complex tours include those with more than one

destination before returning home (i.e. home  work  dinning  shopping  home).

Complex tours with several intermediate destinations can have more than one purpose

and mode at individual locations and for individual trip segments. It was assumed that not

all reported purposes and modes are the main choices for such a tour. A hierarchy of

purposes was used in order to categorize complex tours for descriptive purposes. A tour’s

main purpose (i.e. work or non-work) is based on the following prioritized order of

reported activity patterns (Frank et al., 2007b):

1 – Work

2 – Work-related

3 – School

4 – Personal Business

5 – Shopping

6 – Recreation and social

7 – To pick up or drop off passenger

8 – Dining and restaurants

9 – Other

This ordering of tour priorities is similar, although more detailed, to previous efforts at

classifying travel activity (Krizek, 2003b; Strathman and Dueker, 1995). Note that

subsistence (income producing) and maintenance travel is given priority while more

discretionary activities are given the least amount of weight. Any tour containing a work

trip or school trip was categorized as a HBW tour. Tours containing neither a work or

school trip were classified as HBO tours.
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A main travel mode was also assigned to each tour for descriptive analysis purposes.

Home-based tours with only one mode were assigned the reported mode. For multi-mode

tours, the main travel mode was assigned by considering which mode would be a

controlling consideration in planning daily activities. At the trip level, travel modes

affected by schedules (e.g. transit) and availability (e.g. vehicle, bicycle) have a greater

degree of influence than the mode with neither of these constraints – walking (Frank et

al., 2007b). The mode priority order based on the modes available for each trip

constituting a tour is as follows:

1 – Drive to Transit

2 – Walk to Transit

3 – Auto Shared Ride

4 – Auto Drive Alone

5 – Bicycle

6 – Walk

Activity-tour variables: Three variable types were developed to capture daily activity

pattern characteristics for each tour type: fraction of daily stops by tour type located

within 1-km of home (suitable walking distance) (% STOPS NEAR HOME), and fraction

of daily tours by type specified as simple (one stop) (% TOURS SIMPLE). A third tour

complexity variable was operationalized, average number of stops per activity tour

(TOUR CMPLXTY), and employed in models where a disproportionate number of

individuals in the dataset reported taking only a single tour (i.e. expected for the

work/school model, given the one-day nature of the travel survey).

3.7.2.2. Daily Vehicle Kilometers Traveled by Activity Type

A measure of vehicle kilometers traveled (VKT) is used to characterize the daily vehicle

use arising from the complexity and location of activity participation. Total VKT for each

home-based tour type was determined by calculating the shortest network distance along

the roadway between each postal code centroid corresponding to the self-reported origin

and destination point for all vehicle trips in ArcGIS’s Network Analyst extension. Total
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distance traveled by walking, cycling and transit was also calculated for descriptive

purposes. The same method was used in this effort. For transit distance, however, the

shortest distance along the transit network, instead of the road network, was employed.

3.7.2.3. Daily Per-Capita Vehicle GHG Emissions by Activity Type

Daily GHG emissions related to vehicle use (VEHCL GHG) by activity-tour type were

measured at a per-capita scale. Detailed information on trip distance and vehicle

occupancy for each vehicle trip taken in the 1999 GVRD Trip Diary Survey was used to

estimate vehicle GHG emissions. GHG emission estimates were also calculated for transit

modes for descriptive analysis purposes (see Section 4.5). These were ultimately not

included in the analysis as the focus of this research is on vehicle use and vehicle

emissions. The methods described here are comparable to previous approaches developed

to explore and assess criteria air pollution in elsewhere (Frank et al., 2000, Frank et al.,

2009). Emission modeling followed three main steps: 1) determine travel path and

distance for a given trip; 2) calculate GHG estimates based on the above for all motorized

modes; and 3) aggregate emission estimates to activity tour type, each of which is

discussed in detail below.

1) Determine travel path and distance: Respondents in the 1999 GVRD Trip Diary

Survey specified origin and destination points as well as mode used for each recorded

trip. The actual route followed for each trip in the travel survey was not recorded and

required calculation. For vehicle trips, the self-recorded location of trip ends (postal code

or intersection) was spatially matched to the nearest postal code centroid in the

Walkability Index. The ‘Network Analyst’ tool in ArcGIS 9.3 was utilized to estimate the

path and approximate distance (in kilometers) for each origin and destination pair along

the regional road network. For trips and tours involving transit use, self-reported route

number information allowed for trip distances to be estimated based on detailed bus,

SkyTrain, SeaBus, and West Coast Express route networks. The exact transit stops used

to board and disembark a specified transit route was not accounted for in the survey. The

postal code centroid of the nearest transit stops where the specified route stopped was

used. Again, the ‘Network Analyst’ tool in ArcGIS 9.3 was employed to estimate the
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path and approximate distance (in kilometers) by reported transit mode for each origin

and destination pair along the regional transit network.

2) Calculate distance-based GHG estimates per mode: GHG emission estimates were

calculated for trips made using vehicles, public transit, taxis, and school buses. Non-

motorized modes like walking and bicycling were assigned zero emissions. Mode-

specific GHG per kilometer estimates provided by TransLink (measured as gCO2e/km

and converted to kgCO2e/km) were applied to the calculated distance traveled for each

reported trip in the sample (see Table 3.4).

The formula in Equation 3.7 was employed to calculate emissions per travel mode per

trip:

GHG = (Dx x EFx) / O         (EQUATION 3.7)

Where GHG is the greenhouse gas emissions (CO2e) per mode per trip, D is distance

traveled in kilometers in mode X, EF is that mode X’s associated emission factor

measured in kgCO2e/km, and O is vehicle occupancy. Of note, TransLink supplied

separate GHG estimates for both automobile and light-duty trucks. This level of detail

regarding mode choice was not reported in the travel survey and so a single GHG

emission factor was developed to estimate emission levels from vehicle travel. Local data

on Metro Vancouver’s fleet distribution share was unavailable for this effort and so a

TABLE 3.4. GHG emission estimates by transport mode per 
                    vehicle kilometer.

Transport Mode kgCO2e/km

Private Mode 0.3127
   Car (gasoline engine) 0.2596
   Light Truck/SUV (gasoline engine) 0.3776
TransLink Diesel Bus 1.7647
TransLink Electric Trolley Bus 0.0679
TransLink Diesel Community Shuttle Bus 0.6832
SkyTrain Electric Rail Car 0.0868
SeaBus Vessel 21.7831
West Coast Express Passenger Car 2.8640

Source: TransLink, 2009a. Reproduced with permission.
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regional fleet distribution of 55% autos and 45% light duty trucks was assumed. This

distribution reflects a common range in regional fleet distribution in North American

cities  (Frank et al., 2009). Self-reported and estimated vehicle occupancy rates were then

applied to generate emission levels per trip on a per-capita scale. For vehicle (auto)

modes, corresponding GHG per passenger kilometers was divided by the occupancy

reported by survey respondents. Transit route-specific weekday average ridership

estimates supplied by TransLink were employed for calculating per-capita transit trip

emissions.  Average vehicle occupancy for school buses was assumed to be 35

individuals. Vehicle occupancy in taxi modes was assumed to be 1. Although taxis will

have at least two persons in them, occupancy of one is justified based on the reason that

the sole reason of the trip occurring is due to a single person (like a personal auto trip).

Therefore, all emissions generated are assigned to that individual. Transit route specific

boardings (average weekday occupancy over 24-hour period) and vehicle types used to

calculate transit GHG emission estimates are summarized in Appendix A.

3) Aggregate emission estimates to activity tour: Per capita GHG emission estimates

were scaled up from the individual trip to the activity tour level in order to facilitate an

analysis of the linkages between the built environment, daily activity patterns and

emissions. Total emissions from all tours within each tour type (i.e. home-based work

and home-based other) were then calculated. This value was used as the final dependent

variable tested for sensitivity to urban form characteristics in the structural equation

models.

The limitations of the emission estimation methods employed in this research are

acknowledged. The current modeling process is not sensitive to variations in travel speed

and engine temperature. Lower operating speeds and cold engine starts have been shown

to yield additional emission levels from personal vehicles due to inefficient operating

conditions (Stead, 1999). Crane (1996) suggests that compact development policies may

actually have secondary emission effects by reducing average travel speeds and

producing greater trip frequencies that may yield additional cold start trips. However,

emission penalties associated with cold engine starts and low speeds are likely to be small

for several reasons. Ewing et al (2008) cite evidence that CO2 emissions from all vehicle
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starts account for only 3.3% of total passenger travel emissions. Vehicle trip rates in more

compact areas are also lower due to trip shifting from the automobile to alternative, less

carbon intensive modes (Cerver and Radisch, 1996). Finally, any efficiency gained by

designing roads for more free-flow traffic may be largely offset by associated increases in

VMT as explained by the phenomenon of induced travel demand (Cervero, 2002; Barr,

2000). Regardless of these minute effects, emission modeling based on detailed

congestion-based travel speeds, actual trip path, and duration of out-of-home activities

would provide additional leverage through a more accurate representation of daily GHG

emissions. Also absent is the ability to employ vehicle specific GHG emission factors

(i.e. light-duty truck SUV versus small car) (see Table 3.3). Limited modeling

capabilities, especially those of the Metro Vancouver regional travel demand model, and

trip diary data prohibited the estimation of speed and engine temperature variables, and

the inclusion of specific vehicle mode (i.e. light truck or car) in the current research.
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4. SAMPLE PROFILE

4.1. Study Area

This study focuses on Metro Vancouver (formerly, the Greater Vancouver Regional

District), a regional district in the southwestern corner of British Columbia, Canada.

Metro Vancouver consists of 21 local municipalities and one unincorporated area (see

Figure 4.1.). The region has a current population of just over 2.1 million persons and is

expected to grow by 800,000 residents to approach 3 million over the next 25 years

(Metro Vancouver, 2009a). This significant population increase presents a challenge to

local policymakers who will need to properly anticipate and co-ordinate future growth

and development. Adding to this are the geographic constraints limiting the region’s

future outward growth potential, notably water and ocean, mountains, the Agriculture

Land Reserve, and United States border. Historically, these characteristics have

culminated as a natural urban containment boundary resulting in a relatively smaller land

base and compact urban form compared to other urban regions in North America

FIGURE 4.1. Metro Vancouver and member municipalities.
Source: Greater Vancouver Regional District, 1996. Reproduced with permission.
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4.2. Data Sample

The 1999 TransLink Travel Diary Survey provided the detailed travel, person and

household level socio-economic and demographic data used in this research. A sample of

2,690 individuals reporting 5,464 trips within 3,746 tours was separated for analysis. The

sample used in this research is generally representative of the regional population (see

Table 4.1). Representativeness was assessed against median age, gender and median

household income. Other characteristics like education attainment, marital status,

language and ethnicity collected in the 2001 Census were absent from the regional trip

diary survey.

The following tables and paragraphs provide a general descriptive analysis of the sample

data attributes and characteristics. Attributes related to the sample are reviewed at the

individual, household, trip and tour level of measurement. Representativeness

4.3. Individual Characteristics

Individual-level attributes are described in Table 4.2. The distribution across age cohorts

is as expected. The core adult age groups are well represented with close to 80% of all

respondents between 25 and 65 years of age. Comparatively, seniors and young adults are

underrepresented. Holding a driver’s license does not imply immediate access to a

vehicle in the sample: close to 90% of all individuals hold a valid driver’s license,

although it is estimated that persons in the sample have access to a vehicle only 73% of

the time. Approximately three-quarters of the sample are employed in some capacity

while 15% reported being a student. This highly skewed distribution is reflective of the

relatively older age characteristics of the sample.

TABLE 4.1. Regional representativeness of sample population.

Attribute Sample            
Population (a)

Regional 
Population (b)

Median Age 42.0 37.4
Gender (Female) 1,437 (53.4%) 1,014,235 (51.0%)
Median Household Income $30,000 - $59,000 49,940

(a) n = 2,690 persons, 1,888 households (Source: 1999 TransLink Trip Diary Survey).
(b) 1,986,965 persons (Source: Statistics Canada, 2001 Community Profile, Vancouver CMA).
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Individuals reporting employment were measured to reside, on average, 12.6 kilometers

from their self-reported place of employment. A standard deviation of 9.8 kilometers

suggests a rather large degree of variation in this distance and this is confirmed by large

positive skew value and the breakdown of distance to work by category. Just over half of

the sample reporting employment resides within 10 kilometers of their place of work.

Similar distances to school are also estimated and expected as adults frequenting school

are attending universities or colleges that are more dispersed over the region, unlike

elementary and secondary school that are situated in most neighbourhoods.

4.4. Household Characteristics

Household-level attributes are summarized in Table 4.3. Nearly half of the sample

households have two or more vehicles, as compared to only 13% with none. Households

with over 3 persons make up the largest share of households in the sample. However,

single person households account for one-quarter of households. One-third of households

report one or more persons under the age of 18 living at home. Middle income-earning

households characterize three-quarters of the sample population. Comparatively, low and

high earning households are underrepresented.

Metro Vancouver has 15 designated metro, regional and town centres within its borders

(see Figure 3.4). It is estimated that, on average, most households are situated around 3

kilometers from these locations and well-over three-quarters are located less than 5

kilometers away, suggesting relatively good regional access sample-wide.

Geographically, half of households in the sample are located in the suburban areas of the

region. Only a third are located in Vancouver proper. This uneven geographic allocation

is expected and illustrates the current population distribution of the region. Table 4.3 also

summarizes the distribution of households by neighbourhood walkability. All walkability

quartiles are generally well represented in the sample. The higher share of households in

the most walkable neighbourhood quartile likely reflects the compact, pedestrian-friendly

nature of several of the region’s major population areas, including Vancouver, New

Westminster, West Vancouver and parts of Burnaby.
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TABLE 4.2. Individual-level sample characteristics.

Attribute Mean (SD) Skew / Kurtosis Count Share

Age 42.9 (15.4) 0.47 / -0.44
   15-19 97 3.6%
   20-24 204 7.6%
   25-34 625 23.2%
   35-44 597 22.2%
   45-54 567 21.1%
   55-64 322 12.0%
   65-74 180 6.7%
   75 or older 98 3.6%
   Total 2,690 100.0%
Gender
   Male 1,253 46.6%
   Female 1,437 53.4%
   Total 2,690 100.0%
Hold a Valid Driver's License
   Yes 2,404 89.4%
   No 286 10.6%
   Total 2,690 100.0%
Vehicle Access (%) 73.9 (0.34) -1.01 / -0.24
Employment Status
   Employed Full Time 1,274 47.4%
   Employed Part Time 405 15.1%
   Self Employed 201 7.5%
   Employed (Basis Not Specified) 10 0.4%
   Not Employed 800 29.7%
   Total 2,690 100.0%
Student Status
   Student Full Time 236 8.8%
   Student Part Time 171 6.4%
   Student (Basis Not Specified) 7 0.3%
   Not a Student 2,276 84.6%
   Total 2,690 100.0%
Distance to Work (km) 12.6 (9.8) 1.33 / 2.20
   Less than 5 km 351 24.1%
   5 km - 10 km 442 30.3%
   11 km - 15 km 226 15.5%
   16 km - 20 km 147 10.1%
   Greater than 20 km 293 20.1%
   Total 1,459 100.0%
Distance to School (km) 11.8 (9.6) 1.38 / 1.86
   Less than 5 km 75 26.6%
   5 km - 10 km 86 30.5%
   11 km - 15 km 49 17.4%
   16 km - 20 km 25 8.9%
   Greater than 20 km 47 16.7%
   Total 282 100.0%
Number of Tours 1.4 (0.67) 1.91 / 4.40
   1 tour 1,857 69.0%
   2 tours 636 23.6%
   3 or more tours 197 7.3%
   Total 2,690 100.0%
Total Daily Distance Traveled (km) 29.2 (25.3) 2.16 / 9.32
Total Daily Distance Traveled by Mode (km)
   Vehicle (km) 29.8 (25.6) 2.20 / 9.76
   Public Transit (km) 23.1 (21.1) 3.69 / 15.79
   Walk (km) 2.7 (2.6) 5.32 / 37.39
   Bicycle (km) 14.4 (10.6) 9.95 / 119.06

Total Daily Vehicle GHG Emissions (kgCO2e) 5.7 (6.6) 1.93 / 6.08

Source: 1999 TransLink Trip Diary Survey. Author's own analysis.
 n = 2,690 persons
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TABLE 4.3. Household-level sample characteristics.

Attribute Mean (SD) Skew / Kurtosis Count Share

Persons per household 2.52 (1.3) 0.85 / 0.35
   1 440 23.3%
   2 687 36.4%
   3 316 16.7%
   4 or more 445 23.6%
   Total 1,888 100.0%
Household Income 2.44 (0.99) 0.14 / -1.02
   Less than $30,000 (1) 357 18.9%
   $30,000 - $59,000 (2) 675 35.8%
   $60,000 - $89,000  (3) 501 26.5%
   $90,000 or more  (4) 355 18.8%
   Total 1,888 100.0%
Vehicles per household 1.51 (0.99) 0.73 / 1.52
   0 243 12.9%
   1 744 39.4%
   2 677 35.9%
   3 or more 224 11.9%
   Total 1,888 100.0%
Individuals under 18 years old 0.51 (0.89) 1.72 / 2.17
   0 1,330 70.4%
   1 254 13.5%
   2 or more 304 16.1%
   Total 1,888 100.0%
Distance to nearest Town/Regional Centre (km) 3.12 (3.5) 2.73 / 10.39
   Less than 5 km 1,523 80.7%
   5 km - 10 km 299 15.8%
   11 km - 15 km 27 1.4%
   16 km - 20 km 16 0.8%
   Greater than 20 km 23 1.2%
   Total 1,888 100.0%
Regional location
   Urban(a) 668 35.4%
   Suburban(b) 987 52.3%
   Exurban(c) 233 12.3%
   Total 1,888 100.0%
Walkability quartile
   Lowest quartile 384 20.3%
   2nd quartile 435 23.0%
   3rd quartile 417 22.1%
   Highest quartile 652 34.5%
   Totals 1,888 100.0%

Source: 1999 TransLink Trip Diary Survey. Author's own analysis.
(a) Vancouver
(b) Burnaby, Richmond, Surrey, New Westminster, City of North Vancouver,
      District of North Vancouver, West Vancouver, White Rock, Port Moody,
      Coquitlam, Port Coquitlam
(c) Bown Island, Lion's Bay, Langley City, Distruct Municipality of Langley,
     Maple Ridge, Pitt Meadows, Belcarra, Anmore, Delta, Electoral District A
 n = 1,888 households
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4.5. Trip and Activity Characteristics

Key dependent variables in this research are related to activity patterns, vehicle travel and

related GHG emissions. Detailed activity tour attributes are summarized in Table 4.4.

The most common purpose for making tours is for work although, when combined, non-

work or school tours make up over half of all tours in the sample. Shopping, recreational,

social, and personal business trip were the most prevalent purposes for non-work tours.

Overall, diversity in tour complexity is fairly limited across the sample with close to

three-quarters of all tours containing only a single stop (i.e. home-shopping-home). A

private vehicle is the most common primary mode of travel for all tours. However,

variations in primary mode choice exist between main tour purpose and tour complexity

(see Tables 4.5 and 4.6, respectively). HBWS tours are accomplished primarily by drive

alone nearly half the time. This is more than double the use of shared auto rides and

transit use. The drive alone mode share decrease substantially for non-work tours with

shared auto rides being the most common primary mode. Walking is third commonly

reported as the primary mode for non-work travel, behind shared auto rides and drive

alone. Cycling is a more prevalent primary mode for work tours compared to non-work

tours. Similar patterns are observed for primary mode choice by tour complexity. Auto

drive alone accounts for over a third of all simple, one-stop tours while shared ride is the

most common mode for complex tours. Walking is more popular for simple tours

compared to complex tours. Walk tours, on average, have the fewest number of stops,

followed by drive alone (Table 4.7). Auto shared ride and walk to transit have the highest

mean number of stops, likely attributable to the nature of these modes to include a mode

related stop (i.e. transfer) or to pick up or drop off individuals. These patterns are

expected. Vehicle use, transit and even cycling are more appealing for regional trips to

work or school where distances are greater. Walking, cycling and transit is less

favourable for tours with multiple errands, given the potential distance between stops or

the need to carry several items.



     48

TABLE 4.4. Activity tour-level sample characteristics.

Attribute Mean (SD) Skew  / Kurtosis Count Share

Main Tour Purpose
   Work/Work-related 1,457 38.9%
   School 282 7.5%
   Recreation/Social 480 12.8%
   Dinning/Restaurant 91 2.4%
   Shopping 558 14.9%
   Personal Business 461 12.3%
   To Pick-up/Drop-off Passenger 394 10.5%
   Other 23 0.6%
   Total 3,746 100.0%
Number of Tours 1.40 (0.68) 1.91 / 4.40
   1 tour 2,756 73.6%
   2 or more tours 990 26.4%
   Total 3,746 100.0%
Number of Work/School Tours 1.01 (0.11) -0.16 / -0.88
   1 tour 1,720 98.9%
   2 or more tours 19 1.1%
   Total 1,739 100.0%
Number of Other Tours 1.46 (0.76) 1.35 / 2.00
   1 tour 1,449 72.2%
   2 or more tours 558 27.8%
   Total 2,007 100.0%
Tour Complexity (# of stops) 1.49 (0.87) 2.94 / 13.34
   1 stop 2,756 73.6%
   2 stops 575 15.3%
   3 or more stops 415 11.1%
   Total 3,746 100.0%
Tour Complexity for Work/School Tour (# of stops) 1.40 (0.78) 2.11 / 4.19
   Simple (1 stop) 1,303 74.9%
   Multi-stop (2 or more stops) 436 25.1%
   Total 1,739 100.0%
Tour Complexity for Other Tours (# of stops) 1.55 (0.99) 3.02 / 13.42
   Simple (1 stop) 1,453 72.4%
   Multi-stop (2 or more stops) 554 27.6%
   Total 2,007 100.0%
Primary Mode of Travel
   Transit 651 17.4%
   Vehicle 2,721 72.6%
   Bicycle 78 2.1%
   Walk 296 7.9%
   Total 3,746
Distance Traveled per Tour by Tour Type (km)
   Home-based Work/School (km) 26.9 (21.0) 1.34 / 2.37
   Home-based Other (km) 15.2 (18.4) 3.66 / 26.49
   All tours (km) 20.7 (20.5) 2.19 / 9.75
Daily Per-Capita Vehicle GHG  by Tour Type (kgCO2e)

   Home-based Work/School 5.9 (6.1) 1.54 / 3.26
   Home-based Other 2.8 (3.8) 3.86 / 27.15
   All Tours 4.2 (5.3) 2.31 / 7.99
Daily Per-Capita Vehicle GHG  by Tour Complexity  (kgCO2e)

   Simple (1 stop) 3.5 (4.9) 2.29 / 6.65
   Multi-stop (2 or more stops) 5.4 (6.0) 2.28 / 8.97

Source: 1999 TransLink Trip Diary Survey. Author's own analysis.
n = 3,746 activity tours
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The mean distance traveled per capita in the sample population was a total of 30

kilometers during the 24-hour period (Table 4.2). On average, individuals traveled

approximately 20 kilometers per activity tour (Table 4.4). A standard deviation of over

20 kilometers, however, suggests significant variation in this estimated distance. Indeed,

comparing mean distance traveled between work and non-work tours, it is observed that

non-work tours are more than 10 kilometers shorter than work tours at 15 kilometers

round-trip. Average daily distance traveled was estimated to be highest (29 km) for

vehicle travel. Mean daily cycling distance of those reporting the use of a bicycle was

approximately 14 km. Those who walked did so an average of 2.7 kilometers during the

24-hour period. The small standard deviation suggests that most individuals will only

walk for those activities and purposes that are relatively close by. The relatively large and

positive skew and kurtosis values associated with distance traveled by public transit,

walking and bicycle suggest that these distributions are highly non-normal and slanted to

the left (shorter distances). This is expected as these modes are more influenced by time

and spatial constraints thereby making them more ideal for shorter trips and tours (i.e.

TABLE 4.5. Primary mode of travel by main tour purpose. 

Count Share Count Share Count Share
Auto Drive Alone 811 46.6% 481 24.0% 1,292 34.5%
Auto Shared Ride 359 20.6% 1,070 53.3% 1,429 38.1%
Vehicle to Transit 16 0.9% 5 0.2% 21 0.6%
Walk to Transit 418 24.0% 212 10.6% 630 16.8%
Walk 83 4.8% 213 10.6% 296 7.9%
Bicycle 52 3.0% 26 1.3% 78 2.1%
Total 1,739 100.0% 2,007 100.0% 3,746 100.0%
Source: 1999 TransLink Trip Diary Survey. Author's own analysis.
n = 3,746 activity tours

Primary Mode of Travel
All ToursHBW Tours HBO Tours

TABLE 4.6. Primary mode of travel by tour complexity.

Count Share Count Share Count Share
Auto Drive Alone 1,026 37.2% 266 26.9% 1,292 34.5%
Auto Shared Ride 921 33.4% 508 51.3% 1,429 38.1%
Vehicle to Transit 16 0.6% 5 0.5% 21 0.6%
Walk to Transit 480 17.4% 150 15.2% 630 16.8%
Walk 256 9.3% 40 4.0% 296 7.9%
Bicycle 57 2.1% 21 2.1% 78 2.1%
Total 2,756 100.0% 990 100.0% 3,746 100.0%
Source: 1999 TransLink Trip Diary Survey. Author's own analysis.
n = 3,746 activity tours

Multi-Stop ToursSimple Tours
Primary Mode of Travel

All Tours



     50

walking not feasible for long haul trips, long trips by transit may require additional

transfers and waiting).

Finally, turning to vehicle GHG emissions, individuals in the sample emitted, on average,

5.7 kgCO2e during the 24-hour sample period (see Table 4.2). The mean amount of GHG

emissions per tour was estimated at 4.2 kgCO2e, although measurable differences were

observed between tour purpose and complexity. On average, vehicle emissions associated

with simple tours are 20% less than multi-stops tours. Average emissions for work-tours

are 5.9 kgCO2e compared to only 2.8 kgCO2e for non-work tours. All emission

characteristics are highly skewed and kurtotic suggesting significant non-normal

distributions.

4.6. Spatial Characteristics of Key Variables

Data in Table 4.8 illustrates that regional variations exist in average neighbourhood

walkability, regional accessibility, transit levels-of-service, vehicle use, activity patterns

and travel GHG emissions across the sample. The most apparent differences occur

between central and outlying municipalities. Generally, individuals residing in

Vancouver, the region’s central core, drive the fewest kilometers and emit the least

amount of carbon dioxide. As distance from the regional core increases, so too does

average daily vehicle kilometers traveled and vehicle emissions. Individuals in the

outlying areas of White Rock, Maple Ridge, Delta, Langley and Port Moody, drive the

TABLE 4.7. Mean number of stops per tour by primary mode
                   of travel.

Primary Mode of Travel Mean # of Stops 
(SD)

Number of 
Tours

Auto Drive Alone 1.21 (0.66) 1,292
Auto Shared Ride 1.65 (1.11) 1,429
Vehicle to Transit 1.33 (0.65) 21
Walk to Transit 1.37 (0.81) 630
Walk 1.19 (0.62) 296
Bicycle 1.38 (0.76) 78
Total 1.49 (0.87) 3,746
Source: 1999 TransLink Trip Diary Survey. Author's own analysis.
n = 3,746 activity tours
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most kilometers daily and emit some of the higher daily averages of GHGs. These

observations are expected. Compared to those in the core areas, individuals in the most

outlying suburban and exurban areas of the region have greater distances to work, school,

and local and regional town centres, and are under-serviced by public transit (low number

of accessible bus routes close by). Such circumstances make vehicle use both attractive

and required for most daily travel.

A similar dichotomy in regional vehicle use and GHG emissions exists between more and

less walkable municipalities. Vancouver and the City of North Vancouver, two of the

region’s most walkable municipalities, yield relatively low levels of vehicle kilometers

traveled and GHG emissions region wide. The compact, mixed-use nature of these places

helps to support higher levels of transit service and reduces distances between

destinations. However, data in Table 4.8 suggests that regional location may have a

greater effect on these variables than local neighbourhood urban form. White Rock

proves a good case in point for this observation. Although measured as the third most

walkable municipality in the region, attributable largely to its geographically small size

and traditional downtown, White Rock is situated well to the south of many regional

population, employment and shopping centres. Residents in this area, on average, drive

the greatest distance daily (37.5km) and emit some of the most GHG emissions region-

wide. The analytical models and results described in the following chapter will help to

yield empirical insight into the relative effects of regional location and local

neighbourhood urban form and walkability on vehicle use and related GHG emissions. Of

note, no apparent spatial pattern between either regional location or neighbourhood

walkability and average daily activity pattern characteristics (fraction of stops near home

and fraction of tours simple) is discernable at this scale.



TABLE 4.8. Mean spatial characteristics of key variables.

Municipality
Regional   
Location

Daily Vehicle 
Kilometers 
Traveled

Daily Vehicle 
GHG               
(kgCO2e)

Distance to      
Work /         
School

Distance to 
Nearest Town/ 
Regional Centre

Transit Route 
Density

Neigbour-     
hood             
Walkability

Proportion of 
Daily Tours 
Simple

Proportion of 
Daily Stops Near 
Home

Vancouver Urban 12.78 3.10 7.50 2.83 16 4.48 71.2% 10.1%
Burnaby Suburban 17.15 4.36 10.82 0.81 7 -0.32 71.8% 4.8%
Richmond Suburban 27.69 6.93 13.96 2.81 7 -1.33 70.5% 5.8%
Surrey Suburban 31.62 7.86 16.95 2.24 4 -2.24 72.5% 5.8%
New Westminster Suburban 27.81 6.33 14.08 1.03 9 4.32 61.8% 7.2%
North Vancouver (City) Suburban 15.33 4.01 8.55 0.98 8 1.62 68.2% 12.1%
North Vancouver (District) Suburban 26.13 6.33 12.58 4.86 5 -1.57 68.3% 5.1%
West Vancouver Suburban 31.03 7.50 16.58 3.00 6 -1.41 67.8% 2.4%
White Rock Suburban 38.54 9.51 22.84 0.01 7 2.15 65.8% 9.8%
Port Moody Suburban 37.65 9.65 15.99 1.46 5 -0.77 73.5% 3.5%
Coquitlam Suburban 27.62 7.25 15.72 1.46 5 -1.53 69.2% 6.7%
Port Coquitlam Suburban 36.74 7.35 14.67 1.35 5 -0.53 68.1% 2.6%
Langley (City) Exurban 25.01 5.69 13.93 1.20 4 -1.59 84.4% 20.0%
Langley (District) Exurban 36.90 8.55 18.11 6.00 3 -2.90 64.7% 1.1%
Maple Ridge Exurban 35.84 9.43 24.41 6.74 5 -2.35 76.7% 8.7%
Pitt Meadows Exurban 21.84 5.49 23.92 0.01 6 -1.98 78.5% 9.5%
Delta Exurban 37.54 9.52 19.35 11.59 5 -1.26 68.5% 5.7%

Source: 1999 TransLink Trip Diary Survey. Author's own analysis.
n = 2,690 persons
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5. RESULTS & DISCUSSION

5.1. Overview

Detailed results concerning the nature and strength of effects between built environment

measures, daily activity patterns, vehicle use, and vehicle GHG emissions as estimated

using structural equation modeling are presented in this chapter. Findings for each

activity-tour type model are summarized and interpreted separately. A detailed discussion

of all model results in the context of the research questions and objectives is included in

the final section.

5.2. Note on Model Interpretation

Both un-standardized and standardized parameter coefficients between variables are

estimated for all structural equation models in this research. Un-standardized coefficients

are similar to B-values in traditional linear regression and interpreted as the direction and

strength of effect between variables: that is, the numbers of units change in the dependent

variable per one unit increase in the independent variable. Standardized estimates are

transformations of the un-standardized coefficients and interpreted as the number of

standard deviations change in the dependent variable per standard deviation change in the

independent variable. These values are similar to Beta coefficients in linear regression

frameworks. Standardized coefficients lack true scaling information but illustrate the

relative magnitude and importance of a given parameter effect throughout a model. Both

values yield important insight into the nature of effects in a given model. Having said

this, however, interpreting meaningful marginal effects using the un-standardized

coefficients proved to be extremely arduous for all models given the need to transform a

number of variables from their original scale in order to achieve multivariate normality

(discussed below). The results described herein generally speak to the magnitude of

effect between variables as indicated by the standardized coefficients. Unstandardized

coefficient results are reported in Appendix B.
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5.3. Home-Based Other Tours Model Results

5.3.1. Model Exploration and Specification

Model specification was consistent with the conceptual framework in Figure 3.1, which

followed anticipated relationships and linkages between variable types drawn from the

literature (see discussions in Chapter 2 and Section 3.4). Several iterations were required

to obtain a final, multivariate normal and well-fitted model to be estimated. The “Initial”

and “Final” HBO tour statistical models are illustrated in Figure 5.1 with the full

specification process described below.

The “Initial” structural equation model (n = 1,371) consisted of 15 total observed

variables, of which 11 were specified as exogenous (e.g. NRD, INTDEN, RFA, MIX,

DIST TO CENTRE, TRANSIT AVLBLTY, AGE, FEMALE, PERS<18, VEHICLE

ACCESS, and HH INC) and the remaining as endogenous (e.g. % TOURS SIMPLE, %

STOPS NEAR HOME, VKT, VEHICLE GHG). A trial estimation of the model was

performed to screen the nature (e.g. direction and strength) of the parameter coefficients

and test for multivariate non-normality. Some individual urban form variables yielded

opposite, non-significant effects on the endogenous variables they were specified to

interact with. The multicolinear character of these variables was identified as a likely

reason for this occurrence (as discussed in Section 3.7.2.2). These variables were

removed from the model and replaced with the composite neighbourhood walkability

index value (NEIGHBRHD WALK). Although the inclusion of this variable addresses

the issue of multicolinearity, its use precludes the ability to segment out the relative

impact of each individual urban form component on the endogenous variables in the

model. The re-estimated “Initial” model was identifiable (df = 10), however, issues of

multivariate non-normality were observed (Mardia’s coefficient = 66.19, c.r. = 66.85).

Variables exhibiting the highest skew and kurtosis values were transformed using the

square root method (REG ACCESS, TRANSIT AVLBLTY, % TOURS SIMPLE, %

STOPS NEAR HOME, VKT, VEHICLE GHG). Because these variables all had the

probability of being zero, logarithm transformation is problematic since the natural log

function is undefined for zero and negative numbers. The resulting Mardia’s coefficient
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FIGURE 5.1. HBO statistical model specification process. The (-) and (+) symbols above or to
the right of the paths in b) denote the direction of association between variables estimated in the
“Final” model. Refer to Table 5.2 for specific parameter coefficients.



56

for this “Transformed” model was improved but still suggested non-normality in the

model data (2.58, c.r = 2.61). Cases flagged as significant outliers were identified using

the Mahalanobis distance statistic. The removal of a single case (~0.01% of the total

original sample) led to the “Reduced” model with a reasonably multivariate normal

sample (n = 1,370) (Mardia’s coefficient = 0.73, c.r. = 0.74).

A “Final” empirical model was achieved by retaining only those direct linkages yielding

statistically significant parameter estimates (p-value < 0.05). The regression weights of

non-significant parameters were fixed to zero to control for any spurious effect on model

fit. Failing to suppress non-significant pathways has been demonstrated to potentially

result in Type I error, whereby a model is rejected based on poor model fit when it

appropriately reproduces the correlations in a given dataset (Hoyle, 1995).

5.3.2. Model Fit

Model fit indices are summarized in Table 5.1. Overall, the “Final” HBO model was

deemed to effectively reproduce the covariances in the sample data, with most indices

falling within acceptable ranges. Only the relatively large and statistically significant chi-

square value suggested poor model fit. The literature indicates this is not abnormal, as the

chi-square is very sensitive to sample size and model complexity (Hooper et al., 2008).

 Table 5.2 also compared fit indices between the four model iterations. It is interesting to

note that all models preceding the “Final” estimated model were measured by many of

the goodness of fit indices to adequately reproduce the correlations in the dataset despite

moderate to extreme violations in multivariate normality. This confirms the possibility of

TABLE 5.1. Model fit results for HBO models.

Model X 2 df p -value X 2/df RMSEA SRMR CFI TLI

Initial (*) 52.04 10 0.000 5.21 0.055 0.009 0.990 0.933
Transformed (*) 71.78 10 0.000 7.18 0.067 0.008 0.989 0.926
Reduced ((**) 70.21 10 0.000 7.02 0.066 0.008 0.989 0.929
Final (**) 79.71 22 0.000 3.62 0.044 0.014 0.990 0.969
Reference Standards > 0.005 < 5.00 < 0.080 < 0.05 > 0.90 > 0.90

*   n = 1,371 persons
** n = 1,370 persons
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a certain degree of robustness with model specification and estimation using the

maximum likelihood in the face of non-normal datasets (Golob, 2003). In this context,

one may be tempted to ignore the normality of a given dataset, as is often done in practice

(Kaplan, 2000). Nevertheless, it was felt that achieving multivariate normality in the

dataset would maintain a high degree of reliability and integrity in the final model results.

5.3.3. Estimation Results

Table 5.2 reports on the standardized direct, indirect and total significant effects

measured between explanatory and endogenous variables in the “Final” HBO model. Un-

standardized effects can be found in Table B.1 in Appendix B. Blank cells in the table

represent those parameter coefficients allowed to enter the model but constrained to zero

due to non-significant effects. Sample covariance and correlation matrices are reported in

Tables C.1 and C.2 in Appendix C to facilitate replication of this research.

5.3.3.1. Effects on Activity Patterns

A dichotomy in the nature of effects between key endogenous variables on activity

pattern characteristics in Table 5.2 is apparent. Socio-demographic variables yield a

stronger role in shaping the complexity of HBO tours (square root of fraction of tours

simple). Conversely, physical environment characteristics are stronger predictors of the

location of stops (square root of fraction of stops near home) on these tours. The effect of

local neighbourhood walkability on the fraction of stops near home is nearly double that

of distance to the nearest regional or town centre. The indirect effects between all

physical environment variables on the fraction of simple HBO tours undertaken in the

sample are notable and suggest a supporting role in shaping tour complexity as mediated

through the location of stops.



TABLE 5.2. Estimated standardized effects (structural coefficient estimates) for "Final" HBO model.

% TOURS 
SIMPLE*

 % STOPS 
NEAR HOME*

VKT*
VEHICLE 

GHG*
% TOURS 
SIMPLE*

 % STOPS 
NEAR 

HOME*
VKT*

VEHICLE 
GHG*

% TOURS 
SIMPLE*

 % STOPS 
NEAR 

HOME*
VKT*

VEHICLE 
GHG*

AGE
FEMALE -0.092 0.014 0.013 -0.092 0.014 0.013
PERSONS<18 0.114 0.077 0.058 0.002 -0.017 0.057 0.116 0.077 0.041 0.057
VEHICLE ACCESS 0.254 0.243 0.254 0.243
HH INCOME 0.048 0.046 0.048 0.046

NEIGHBRHD WALK 0.122 -0.116 0.004 -0.025 -0.126 0.004 0.122 -0.141 -0.126
DIST TO CENTRE * -0.067 0.062 -0.002 0.012 0.072 -0.002 -0.067 0.074 0.072
TRANSIT AVLBLTY * 0.083 -0.085 0.003 0.016 -0.097 0.003 0.083 -0.069 -0.097

% TOURS SIMPLE * -0.151 -0.144 -0.151 -0.144
% STOPS NEAR HOME * 0.036 -0.196 0.005 -0.192 0.036 -0.191 -0.192

VKT * 0.955 0.955

NOTES: * = Square root transformation.
              All parameter estimates significant at or above 95% confidence interval.
              Standardized coefficients illustrate the relative magnitude of effect of a variable on the whole model (i.e. the total effect of VHCL ACCESS on VKT is 92% greater than that of NEIGHBRHD WALK).
               n = 1,370 persons

Explanatory Variable

DIRECT EFFECTS INDIRECT EFFECTS TOTAL EFFECTS

Endogenous Variable Endogenous Variable Endogenous Variable
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5.3.3.2. Effects on Vehicle Use

Vehicle availability enters the model as the most influential of all explanatory variables

affecting vehicle use (square root of vehicle kilometers traveled) associated with HBO

tours. All else being equal, individuals who have greater vehicle access on a daily basis

are more likely to utilize a vehicle for travel and drive a further distance. Pursuing

simpler HBO tours with more stops within one’s immediate neighbourhood yields strong

negative effects on VKT. Reflected in these findings may be that individuals will

substitute vehicle use for less carbon-intensive modes like walking, cycling and transit

that are easier and more appealing for simple, shorter tours (Frank et al., 2007b). Local

neighbourhood walkability generates the strongest total effect on VKT relative to the

other physical environment characteristics, although its magnitude is less than that of

vehicle availability. The negative relationship between these variables substantiates

relationships found in previous studies: the more compact and diverse one’s

neighbourhood is in terms of possible destinations the fewer VKT generated (Cervero

and Kockelman, 1997; Frank and Pivo, 1994). A unique contribution of this research,

however, is the explicit modeling that the effect of the built environment on VKT is

mediated by an individuals HBO activity patterns, namely tour complexity and location

of stops.

5.3.3.3. Effects on Vehicle GHG Emissions

All structural relationships in the model influence how much vehicle GHG emissions

related to HBO tours one generates daily. Not surprisingly, VKT is the strongest

explanatory variable predicting vehicle emissions, with a magnitude of effect nearly four

times greater than the next strongest predictor (vehicle availability). This suggests that

regardless of one’s socio-demographic dispositions, local built environment, regional

accessibility, and activity pattern, the more you drive, the more emissions are generated.

Although intuitive, this observation neglects the structural relationships that help to shape

an individual’s daily VKT and, subsequently, emission levels. Vehicle availability

(standardized coefficient = 0.243) and neighbourhood walkability (standardized

coefficient = -0.126) yield the largest total effect on vehicle emissions relative to the all

purely independent variables in the model. However, the total effect of vehicle
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availability on GHG emissions is over 90% greater than that of local neighbourhood

walkability. These results are anticipated given their influences on daily HBO vehicle

use. Both effects are entirely indirect. Increased vehicle access is positively associated

with a rise in VKT and vehicle emissions relative to those with less access to a vehicle

that are likely using alternative modes of travel. The negative effect of neighbourhood

walkability on vehicle emissions operates through its associations with daily activity

patterns and VKT. Being female, having children or youth in the household and larger

household incomes are all found to have a significant positive effect on vehicle GHG

emissions, although the magnitude of these effects is small relative to the other

explanatory variables in the model.

5.4. Home-Based Work/School Tours Model Results

5.4.1. Model Exploration and Specification

Model specification for HBWS activity tours was, again, consistent with the conceptual

framework in Figure 3.1. An “Initial” model was specified and tested for issues of

multivariate non-normality and the nature of parameter estimates (see Figure 5.2.a).

Exogenous variables included AGE, FEMALE, PERS<18, VEHICLE ACCESS, and HH

INCOME, NEIGHBRHD WALKABILITY, DIST TO WRK/SCHL, and TRANSIT

AVLBLTY. The variables TOUR CMPLXTY, % STOPS NEAR HOME, VKT, and

VEHICLE GHG were specified as endogenous. The NEIGHBRHD WALK variable was

used in place of the individual urban form measures to overcome any potential issues

with multicolinearity as was observed in the HBO model in Section 5.3. The DIST TO

WRK/SCHL variable replaced distance to nearest town or regional centre as the measure

of regional accessibility. The TOUR CMPLXTY (average number of stops per tour)

measure was used in place of the % TOURS SIMPLE. This substitution is justified as

close to 99% of those taking work or school tours in the sample data completed only one

tour. In this context, the “% TOURS SIMPLE” measure would essentially be rendered an

endogenous dummy variable, thereby violating the assumption that all endogenous

variables are continuous. This limited diversity is reflective of both the one-day



61

collection of the travel survey and the nature of work and school tours (i.e. usually only

one such tour per day).

This “Initial” model (n = 1,739) was subject to extreme violations of multivariate

normality (Mardia’s coefficient = 127.43, c.r. = 140.06). Significant non-normal

variables were transformed using the square root (DIST TO WRK/SCHL, TRANSIT

AVLBLTY, % STOPS NEAR HOME, VKT, and VEHCL GHG) or natural logarithm

method (TOUR CMPLXTY). The “Transformed” model was re-estimated but maintained

extremely high levels of non-normality (Mardia’s coefficient = 36.48, c.r. = 41.06). The

% STOPS NEAR HOME variable contributed the most to violations of normal skew and

kurtosis in the model. Additional data exploration found that over 90% of individuals in

the HBWS sample were reporting all stops occurring beyond their immediate

neighbourhood (i.e. 1-km postal code network buffer). Reaching multivariate normality

with the % STOPS NEAR HOME variable in the model would have required the

additional removal of over 200 outlying cases, or close to 12.5% percent of the entire

dataset. Given that so many cases were removed from the original sample due to issues

with incomplete data (see Section 3.6.1), it was assumed that removing such a large

number of cases would lend to limiting the already trimmed natural variations in the

dataset. A model was not specified or estimated to assess the effects such a decision

would have on model fit or regression coefficients. The % STOPS NEAR HOME

variable was ultimately removed from the model to overcome this limitation. A

“Reduced” model achieved multivariate normality through the removal of 26 cases

identified as outliers using the Mahalanobis distance statistic (Mardia’s coefficient =

1.58, c.r. = 1.92). The “Final” model (n = 1,713) retained only those direct linkages

yielding statistically significant parameter estimates (p value < 0.05) (see Figure 5.2.b).

The % STOPS NEAR HOME variable was anticipated to be both a key endogenous and

explanatory measure in all SEM’s developed for this research. As such, its exclusion

from the model described above (HBWS Model A), although required to achieve

multivariate normality, was considered to possibly neglect any nuanced effects of the

physical environment on how activity patterns are shaped. This is particularly true for the
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FIGURE 5.2. HBWS Model A statistical model specification process. The (-) and (+) symbols
above or to the right of the paths in b) denote the direction of association between variables estimated
in the “Final” model. Refer to Table 5.4 for specific parameter coefficients.
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10% reporting to make some fraction of their daily HBWS tour stops within their

immediate neighbourhood. In order to meaningfully assess the structural effects between

all pertinent variables, a second HBWS model (HBWS Model B) was specified for a

reduced sample of only those individuals completing complex work/school tours (i.e. two

or more stops) (n = 496). This sub-sample captured over three quarters of all individuals

reporting at least one stop close to home (n=78), be this for work/school or

maintenance/discretionary stops made as part of the trip chain. The remaining 22%

(n=22) who made a simple HBWS completely within their neighbourhood could not be

included based on their simple tour complexity. A model was tested that included only

those individuals reporting some fraction of daily HBWS stops within their immediate

neighbourhood, regardless of tour complexity. However, the sub-sample was considered

too small to produce significant results in an SEM analytical framework (n=100).

HBWS Model B included all endogenous and exogenous variables as specified in the

HBWS Model A (Figure 5.3.a). Variables known to exhibit extremes in skew and/or

kurtosis were transformed using either square root or natural logarithm methods. The

“Initial” model exhibited multivariate normality (Mardia’s coefficient = 3.07, c.r. = 1.84).

The “Final” model retained only those direct linkages yielding statistically significant

parameter estimates (p value < 0.05) (see Figure 5.3.b).

The multi-model approach to analyzing the structural effects between the built

environment, activity patterns and vehicle GHG emissions in the HBWS tour sample is

not ideal, but was required given the nature of the travel diary dataset. The study

produced the best possible models given data limitations encountered to study the

relationships between the built environment, activity travel and associated GHG

emissions. The same is to be said for the HBO tour model discussed earlier. Indeed, the

complex nature of interactions between countless variables influencing travel emissions,

many of which are not, and could not be, included in the current analysis make a truly

perfect model or series of models unattainable. The models in this research are specified

so as to yield meaningful and instructive results in a framework that is consistent with

typical SEM practice.
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FIGURE 5.3. HBWS Model B statistical model specification process. The (-) and (+) symbols
above or to the right of the paths in b) denote the direction of association between variables
estimated in the “Final” model. Refer to Table 5.6 for specific parameter coefficients.
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5.4.2. HBWS Model A Model Fit

Model fit indices are summarized in Table 5.3. Overall, the “Final” model was deemed to

effectively reproduce the covariances in the sample data, with most indices falling below

good to acceptable cut-off values.

5.4.3. HBWS Model A Estimation Results

Un-standardized coefficient parameters are reported in Tables 5.4. Standardized

coefficient results are located in Table B.2 in Appendix B. Blank cells in the table

represent those parameter coefficients allowed to enter the model but constrained to be

zero due to non-significant effects. Sample covariance and correlation matrices are

reported in Tables C.3 and C.4 in Appendix C to facilitate replication of this research.

5.4.3.1. Effects on Activity Patterns

Vehicle availability yields the strongest effect on tour complexity (standardized

coefficient = 0.067), however its magnitude is not as considerable as other relationships

found in this research. This suggests other variables or measures may be more pertinent

in shaping tour complexity for HBWS tours across the full sample. Nevertheless, the

positive parameter coefficient suggests that as vehicle availability increases, so does the

average umber of stops per HBWS tour. The age of an individual is found to generate the

only other significant effect on tour complexity, although its magnitude is also quite

small. Physical environment variables entered the initial model but were found be yield

insignificant effects on HBWS tour complexity in the full sample and, so, were

constrained to zero in the final model.

TABLE 5.3. Model fit results for HBWS Model A models.

Model X 2 df p -value X 2/df RMSEA SRMR CFI TLI
Initial (*) 124.60 10 0.000 12.46 0.082 0.006 0.987 0.914
Transformed (*) 123.24 9 0.000 13.690 0.086 0.007 0.987 0.919
Reduced ((**) 133.13 9 0.000 14.79 0.091 0.006 0.986 0.916
Final (**) 141.46 17 0.000 8.321 0.066 0.009 0.986 0.955
Reference Standards > 0.005 < 5.00 < 0.080 < 0.05 > 0.90 > 0.90

*   n = 1,739 persons
** n = 1,713 persons



TABLE 5.4. Estimated standardized effects (structural coefficient estimates) for "Final" HBWS Model A.

TOUR 
CMPLXTY**

VKT*
VEHICLE 

GHG*
TOUR 

CMPLXTY**
VKT*

VEHICLE 
GHG*

TOUR 
CMPLXTY**

VKT*
VEHICLE 

GHG*

AGE -0.059 0.054 0.011 0.042 -0.059 0.065 0.042
FEMALE -0.072 -0.022 -0.072 -0.022
PERSONS<18
VEHICLE ACCESS 0.067 0.290 0.013 0.298 0.067 0.303 0.298
HH INCOME 0.064 0.063 0.064 0.063

NEIGHBRHD WALK -0.099 -0.097 -0.099 -0.097
DIST TO WRK/SCHL * 0.509 0.500 0.509 0.500
TRANSIT AVLBLTY *

TOUR CMPLXTY ** 0.193 0.190 0.193 0.190

VKT * 0.983 0.983

NOTES: * = Square root transformation.
              ** = Natural logarithm transformation.
              All parameter estimates significant at or above 95% confidence interval.
              Standardized coefficients illustrate the relative magnitude of effect of a variable on the whole model (i.e. the total effect of VHCL ACCESS on VKT is 68% greater than that of NEIGHBRHD WALK).
              n = 1,713 persons

DIRECT EFFECTS INDIRECT EFFECTS TOTAL EFFECTS

Endogenous Variable Endogenous Variable Endogenous Variable

Explanatory Variable
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5.4.3.2. Effects on Vehicle Use

The total magnitude of effect of distance to work on vehicle kilometers traveled for

HBWS tours across the full sample is over 67% greater than that of vehicle availability

(standardized coefficient = 0.509 vs. 0.303). This is to be expected, as long commute

distances would be anticipated to decrease the ability to travel to work via transit or even

cycling, thereby making vehicle use more appealing. That this measure was stronger than

vehicle availability also suggests vehicle use may be prevalent even for those individuals

who do not own or have access to a vehicle, possibly accrued through car-pooling or

ridesharing for longer HBWS tours. The total effect produced by local neighbourhood

walkability was significantly negative (-0.099) but is eclipsed by that of distance to

work/school. This result suggests that, to a certain degree, individuals residing in more

walkable areas will generate fewer VKT associated with HBWS tours, possibly due in

part to trading off vehicle use for transit that may be more readily available in these areas.

Transit availability was not a significant predictor of either activity patterns or VKT in

the final model. The average number of stops per HBWS tour in the full sample is

positively associated with VKT and is the third strongest predictor of vehicle use. Other

variables exhibiting significant influence on VKT, but to a lesser extend include: being

female, household income, and age.

5.4.3.3. Effects on Vehicle GHG Emissions

Aside from VKT, Table 5.4 demonstrates that the strongest explanatory predictor of

vehicle GHG related to daily HBWS in the model was distance to work/school

(standardized coefficient = 0.500), followed by vehicle availability (0.298) and tour

complexity (0.190). The total structural effect of distance to work/school on emissions

was over 400% greater than that of the local neighbourhood walkability. This finding

suggests that significant emission reduction for HBWS tours may more likely be

achieved through increasing connectivity between population and employment centres in

the region. An individual’s age, gender, and household income were significant, but

among the least strongest predictors of vehicle emissions in the full HBWS sample.
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These results are anticipated and explained by their previous influences on daily HBWS

activity patterns and/or vehicle use.

5.4.4. HBWS Model B Model Fit

Model fit indices are summarized in Table 5.5. Overall, the “Final” model was deemed to

effectively reproduce the covariances in the sample data, with most indices falling below

good to acceptable cut-off values.

5.4.5. HBWS Model B Estimation Results

The second HBWS model is a departure from the first in that its sample includes only

those that recorded a complex (i.e. multiple stop) tour (n = 496). Compared to the full

HBWS sample, a larger share of individuals in this sub-sample reported making a stop,

be it for work/school or otherwise, within their immediate neighbourhood (15.7%

compared to 5.8%). As discussed in section 5.3.1, this sub-sample is considered diverse

enough to allow for the inclusion of the % STOPS NEAR HOME measure within the

SEM. The results described below, then, offer additional insight into the relationship

between the physical environment and vehicle GHG emissions. Standardized coefficient

parameters are reported in Table 5.6. Blank cells in the table represent those parameter

coefficients allowed to enter the model but constrained to be zero due to non-significant

effects. Un-standardized results are reported in Table B.3 located in Appendix B. Sample

covariance and correlation matrices are reported in Table C.5 and C.6 in Appendix C to

facilitate replication of this research.

TABLE 5.5. Model fit results for HBWS Model B models.

Model X 2 df p -value X 2/df RMSEA SRMR CFI TLI
Initial (*) 71.89 10 0.000 7.18 0.113 0.009 0.976 0.843
Final (*) 86.92 21 0.000 4.14 0.078 0.022 0.975 0.921
Reference Standards > 0.005 < 5.00 < 0.080 < 0.05 > 0.90 > 0.90

*   n = 496 persons



TABLE 5.6. Estimated standardized effects (structural coefficient estimates) for "Final" HBWS Model B.

TOUR 
CMPLXTY**

 % STOPS 
NEAR 

HOME*
VKT*

VEHICLE 
GHG*

TOUR 
CMPLXTY**

 % STOPS 
NEAR 

HOME*
VKT*

VEHICLE 
GHG*

TOUR 
CMPLXTY**

 % STOPS 
NEAR 

HOME*
VKT*

VEHICLE 
GHG*

AGE 0.077 0.075 0.077 0.075
FEMALE 0.092 -0.071 0.010 -0.060 0.092 -0.061 -0.060
PERSONS<18 0.114 0.129 0.126 0.114 0.129 0.126
VEHICLE ACCESS -0.117 0.298 0.000 -0.013 0.278 -0.117 0.285 0.278
HH INCOME 0.066 0.064 0.066 0.064

NEIGHBRHD WALK 0.036 -0.082 0.000 0.004 -0.076 0.036 -0.078 -0.076
DIST TO WRK/SCHL * 0.141 -0.140 0.557 0.000 -0.002 0.574 0.141 -0.140 0.555 0.574
TRANSIT AVLBLTY * 0.205 0.000 -0.024 -0.023 0.205 -0.024 -0.023

TOUR CMPLXTY** 0.105 -0.112 0.105 -0.112
% STOPS NEAR HOME * -0.002 -0.115 0.000 0.102 -0.002 -0.115 0.102

VKT * 0.976 0.976

NOTES:  * = Square root transformation.
              ** = Natural logarithm transformation.
              All parameter estimates significant at or above 95% confidence interval.
              Standardized coefficients illustrate the relative magnitude of effect of a variable on the whole model (i.e. the total effect of VHCL ACCESS on VKT is 265% greater than that of VEHCL ACCESS).
              n = 496 persons

Explanatory Variable

DIRECT EFFECTS INDIRECT EFFECTS TOTAL EFFECTS

Endogenous Variable Endogenous Variable Endogenous Variable
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5.4.5.1. Effects on Activity Patterns

Results in Table 5.6 indicate the all built environment measures yield significant effects

on the average number of stops per tour and/or location of these stops for those

individuals taking complex HBWS tours. Distance to work/school yields nearly equally

strong, but opposite direction of, effect on both tour complexity and the location of stops

(standardized coefficients of 0.141 and –0.140, respectively). Two phenomenon are likely

being reflected in these findings: 1) that individuals with longer commutes pursue

additional errands either on the way to or from work/school so as to reduce the need to go

back out again in the evening (McGuckin et al., 2005) and, 2) that longer commutes

expose individuals to a higher number of activities and destinations likely found in their

local neighbourhood and so possibly encouraging a greater number of additional stops,

especially if a vehicle is utilized (Krizek, 2003b). That the effect between commute

distance and tour complexity is entirely direct is interesting and suggests that regional

accessibility plays a more dominant role in shaping activity tour patterns in complex

HBWS tours compared to an indirect role as seen in the in HBO tours model (see Table

5.3). Transit availability generates the largest effect on the fraction of stops on these

complex tours located near home (standardized coefficient = 0.205). This is an interesting

result and may be illustrating that individuals taking complex HBWS tours who reside in

areas that are well serviced by transit (and also, by definition, likely quite compact and

walkable) are also completing more errands near home, perhaps by foot either on the way

to or from home using transit. Increased vehicle availability reduces the share of stops

made near home, potentially indicating that the degree of flexibility afforded by the

automobile makes it easier to run errands in a number of different locations on the way to

or from work/school. Being female and the presence of youth/children in the household

also necessitated an increase in the number of stops on these complex HBWS tours, most

likely to pick up/drop off children at school or daycare.

5.4.5.2. Effects on Vehicle Use

Comparing the results in Table 5.6 to the results of the previous HBWS model, similar

magnitudes of effect are observed between several explanatory variables and VKT.
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Distance to work/school is, again, the largest, most significant predictor of VKT in the

model. Vehicle availability is also a strong, positive predictor of VKT for those taking

complex HBWS tours. Of note, the presence of children or youth enters into the second

HBWS model as yielding the third strongest positive effect on VKT, likely demonstrating

the need to pickup/drop off youth at school adds extra mileage onto ones HBWS tour.

Transit availability is a significant predictor of vehicle use in this model, however the

magnitude of its negative effect on VKT is the weakest among all explanatory variables.

This effect may be suggesting that vehicle use may remain high, even in well-serviced

transit neighbourhoods, if an individual needs to pursue a number of errands as part of the

HBWS tour.

5.4.5.3. Effects on Vehicle GHG Emissions

VKT is shown to generate the largest total effect on vehicle GHG emissions in the

HBWS complex tour sample. The second strongest total effect is that of distance to

work/school (standardized coefficient = 0.574), which is over 100% greater than the

influence of vehicle availability and 650% larger than local neighbourhood walkability.

The nature of the results in Table 5.6 suggest that, for those individuals pursuing multi-

stop HBWS tours, bringing people and potential employment opportunities closer

together will have the strongest effect of reducing VKT and associated GHG emissions

by shortening commute distances. This may result in 1) public transit or cycling

becoming a more appealing commute option, and 2) additional non-work stops being

made near home, perhaps made by foot, after disembarking from transit.

5.5. Discussion

This research was centered on providing clarification and additional insight into four key

questions concerning the interactions between the physical environments where people

live, their daily activity patterns, vehicle use, and associated emissions (see Section 1.3).

The following section provides a more comprehensive discussion of the model estimation

results in the context of these questions.
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 5.5.1. GHG Emissions Vary by Built Environments

Are variations in self-reported vehicle use and vehicle GHG emission estimates

statistically associated with different built environment and regional accessibility

characteristics in Metro Vancouver? The models in this research generally confirm

hypotheses that vehicle use and associated GHG emissions systematically vary by the

type of physical environment within which one resides (Ewing et al., 2008). Unique to

this study, however, is the explicit modeling of the structural linkages between key

variables that combine to influence per-capita daily travel emissions. Therefore, it is

possible to state with some degree of certainty not just what, but how, key explanatory

variables are associated with travel emissions.

Beginning with the local built environment, results suggest that residing in a highly

walkable neighbourhood, characterized by a compact urban form, a functional mix of

various destinations needed on a daily basis, and a well-connected street network that

allows for more direct routes between stops, reduces vehicle use and vehicle emissions.

This is especially true for HBO tours. The structural effects in Table 5.2 explicitly

demonstrate that walkable neighbourhoods help to increase the number of stops within

one’s immediate neighbourhood, thereby facilitating more simple tours. These findings

substantiate those in previous studies (Maat and Timmermans, 2006; Lee et al., 2009;

Krizek, 2003b; Frank et al., 2007b). The model indicate that this behaviour lends to a

reduction in VKT and associated emissions, as these simple and short tours can be easily

accomplished by foot or transit. Those reporting multi-stop HBWS tours were found to

report more stops near home, but fewer total stops per tour if residing in a compact and

walkable neighbourhood. The reduced VKT and emissions associated with this behaviour

indicate that in many cases these stops are being accessed on foot, likely on the way

to/from work/school using transit. Results show that these individuals make fewer stops

on their way to or from work/school – which suggests they can more easily go back out

again in the evening to accomplish additional errands, also on foot or transit – when

destinations are within a walkable distance.
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Regional accessibility, as measured by commuting distance and proximity to a town or

regional centre, yields significant effects on vehicle emissions. Regional accessibility’s

strongest effects are found in the HBWS tour models. All else being equal, longer

commutes are likely to decrease the ability to travel to work via transit, thereby

increasing the relative utility of vehicle use for HBWS tours. This is reflected in the

significant increases in VKT and GHG emissions associated with larger distance to

work/school. At the same time, longer commutes may also expose individuals to a greater

number of possible activities and destinations along their preferred route of travel,

encouraging more complex tours with more stops located beyond one’s immediate

neighbourhood, especially if a vehicle is utilized (Krizek, 2003b). The farther removed an

individual is from their work/school or a concentration of possible activities and

destinations, the more likely they will chain their trips in order to save time and reduce

the need to travel again after returning home. These longer, more complex trip chains are

difficult to make by transit, cycling and especially on foot and so the more vehicle use

and emissions are accrued.

A larger number of transit routes accessible within one’s immediate neighbourhood helps

to facilitate reductions in both VKT and emissions. These effects, however, are generally

not as strong as those from local walkability and regional accessibility across all models.

More transit options connecting an individual to a greater number of possible destinations

across a city or region help to increase the relative utility of transit compared to a private

vehicle, particularly in terms of travel time and (especially parking) costs. This is

especially true for HBO and multi-stop HBWS tours. Where individuals are possibly

substituting vehicle use for transit, the effect is a reduction in VKT and associated

emissions. The estimation results in the HBO and multi-stop HBWS models indicate that

greater transit availability has the effect of increasing the fraction of stops near home but

reducing the complexity of tours. The fixed routes and schedules of transit service help to

explain this behaviour because complex tours accomplished by transit may require

additional transfers, thereby introducing additional burdens on the traveler. This finding

is important in light of the growing trend toward increasingly complex daily activity and

travel patterns (McGuckin et al., 2005). Public transit does not readily allow for complex
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trip-chains to be made in a timely and cost-effective manner. This poses significant

policy challenges if trips are to be shifted away from single-occupant vehicles in order to

help reduce emissions.

These observations, however informative, are generalizations. The model estimation

results demonstrate that socio-demographic variables also yield significant degrees of

influence on vehicle use and related emissions. An assessment of the relative differences

in effect between these variable types is provided next.

5.5.2. Socio-Demographics vs. Built Environment Effects

What are the relative structural effects of built environment and regional accessibility as

opposed to individual and household socio-economic variables on per-capita vehicle

GHG emissions and other endogenous variables? As the standardized coefficients of the

predictive models represent magnitudes of effect, it is possible to compare the relative

influence between key sets of variables. Most built environment and regional

accessibility measures yield a significant effect on vehicle use and emissions in all

models in this research. Just as powerful, and in some cases more so, however, is that of

vehicle availability. The large magnitude of its total effects across all models highlights

two important points. For one, it confirms the idea of sunk costs associated with vehicle

ownership and access. Resources “sunk” into ownership, rental, insurance, and gas

cannot be recovered, and so individuals may feel obliged to use their vehicle for a given

activity tour even though they may not want or need to for some of their travel (Litman,

2009). This is particularly illustrated in the HBO tours model where vehicle access yields

the strongest magnitude of influence on VKT and associated emissions in the sample,

almost double that of local neighbourhood walkability. The second, and related, point is

that increased vehicle availability appears to facilitate access to a greater number of

destinations scattered throughout a city or region. This situation allows for more complex

tours to be pursued with a greater number of stops located beyond one’s immediate

neighbourhood, possibly even if one’s neighbourhood is well serviced by a number of

destinations and activities, thereby having the effect of increasing both VKT and

emissions. This behaviour is generally exhibited in both HBWS tour models. These
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findings are important from a policy perspective and suggest that actions to get

individuals onto less carbon-intensive modes of travel, for both work and non-work tours,

may need to go beyond improving neighbourhood walkability or increasing regional

connectivity.

The structural approach to this research helped to clarify that activity patterns generate

significant influence in shaping vehicle use and associated GHG emissions. How these

patterns themselves are affected is likely to generate important policy implications for

reducing travel emissions. Generalizing across models, it appears that socio-demographic

variables like age, gender, the presence of youth in the household, and vehicle availability

yield consistently significant direct effects on tour complexity. Most notably, females are

less likely to complete simple HBO tours, but more likely to undertaken complex HBWS

tours over the course of a day, suggesting that these individuals often taken on a greater

number of household responsibilities (McGukin and Murakami, 1999). Individuals with

children in their household are more likely to pursue simple HBO tours and more

complex HBWS tours. This behaviour makes sense as the limited mobility of youth

coupled with the divergent scheduling of their activities may lead to them being picked

up and dropped off at any number of activities throughout the day (Vovsha et al., 2004,

Krizek, 2003b). Some of these, like school, may be best accomplished on the way to/from

work. Other activities, like recreation, may necessitate additional simple tours at other

times during the day. Older adults are less likely to make complex HBWS tours, likely

attributable to fewer responsibilities for others, especially children or youth who are more

likely to have grown up and moved out of the house (Maat and Timmermans, 2006). On

the other hand, it is local built environment variables and regional accessibility measures

that generate stronger, if not the only, direct effects on the location of stops across tours.

The nature of these findings are interesting and suggest that, on the whole, the demand to

participate in various activities is driven predominantly by intra- and inter-household

responsibilities and scheduling, and not, necessarily, the distribution of these activities in

space.
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However, model results indicate a role of the built environment in helping shape tour

complexity. For example, the results in the HBO tour model demonstrate an indirect

effect between built environment measures and tour complexity as mediated by the

location of stops on these tours. This relationship explicitly illustrates the idea of a time-

based trade-off between tour complexity and the location of stops (Frank et al., 2007b). It

is clearly shown that simple HBO tours are more readily made in walkable areas, that is

neighbourhoods with a greater likelihood of having a variety of services and destinations

close by. Those residing in less walkable locations, where destinations are more likely to

be scattered away from the home, will tend to chain trips so as to save time. A second

example is noted in the complex HBWS model (HBWS Model B). Although influenced

by an individual’s gender and the presence of youth in the household, the number of stops

on these tours is also directly affected by commute distance. This is interesting and

indicates that individuals with longer commutes pursue additional errands either on the

way to or from work/school, regardless of other socio-demographic dispositions, likely so

as to reduce the need to go back out again in the evening.

5.5.3. Estimated Built Environment Effects Vary by Activity Tour Type

Do the structural effects of local built environment characteristics and regional

accessibility measures on vehicle related GHG emissions differ depending on activity

travel type? Findings in this research suggest they do. Beginning with HBO tours, the

total effect of local neighbourhood walkability on VKT and vehicle emissions is 90% and

75% greater than that of regional accessibility (as measured by distance to nearest

town/regional centre), respectively. The nature of this finding suggests that people may

trade-off traveling beyond their neighbourhood for non-work/school tours if the activity

(or set of activities) they need to fulfill can be accomplished locally. The discretionary

(i.e. flexible) nature of these tours and the potential ubiquity of non-work or school

destinations (i.e. grocery stores, hardware stores, post offices, restaurants) across

neighbourhoods in a region and not just solely in town or regional centres may help to

facilitate this trade-off. These individuals are also likely able to substitute vehicle use for

less carbon-intensive modes like walking, cycling and transit that are easier and more

appealing for simple, shorter tours, thereby reducing their overall VKT and emissions.
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These results are intriguing as they conflict with those in a seminal study that suggests

otherwise (Handy, 1993). A review of this earlier research yielded a possible explanation

for this discrepancy; namely, the geographic scale used to measure local neighbourhood

characteristics. In her study, Handy assessed the relative effects of average regional

accessibility and neighbourhood design (i.e. traditional, neo-traditional, and suburban-

style) for a series of “super districts” in the San Francisco Bay Area. The main concern

with employing such large, seemingly arbitrary, definitions of a local neighbourhood is

that they have the effect of diluting finer differences in the local built environment within

an individuals more immediate neighbourhood. This can result in an ecological fallacy,

whereby average urban form characteristics within a large area are assumed to apply to

any given neighbourhood resident when, in reality, they may not and should not (Krizek,

2003c). The research in this study addresses these issues by estimating a household’s

neighbourhood to be that within a smaller, 1-km network buffer of its location.

Neighbourhood built environment characteristics like density, land use mix, and

walkability are then measured within that buffer. As explained in Section 3.6.2, a 1-

kilometer buffer is the distance that can generally be covered in a 10-minute walk along

the road network and a measurement that is more able to assess true effects of the local

built environment on travel (Moudon et al., 2006; Lee and Moudon, 2006). So, even

though the nature of the effects between the local built environment, travel behaviour and

emissions is inconsistent with previous findings, this is considered a non-issue. Instead,

the findings in the current research suggest that the use of a more appropriately scaled

definition of neighbourhood helps yield enhanced insights into how the local built

environment influences non-work/school travel behaviour and GHG emissions.

Turning to the HBWS tour models, Tables 5.4 and 5.6 illustrate that the effect of distance

to work/school on VKT is approximately 415% and 600% greater than that of local

neighbourhood walkability, respectively. Similar significant differences in the magnitude

of effect between distance to work/school and emissions are also apparent in both

models. The nature of these findings are consistent with previous studies that suggest

work or school activities may be more constrained by time of day, route, location, and

mandatory participation and, as such, be less influenced by local built environment
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characteristics (Ewing et al., 1994). However, that the local built environment does yield

a certain degree of influence suggests local built environment does have somewhat of a

supportive role in encouraging less carbon-intensive HBWS travel behaviour.

Collectively, the varying magnitudes of effect between variables and activity tour types

suggest unique repercussions for future policy development aimed at curbing vehicle use

and associated emissions in Metro Vancouver. This discussion now turns to articulating

key policy implications emerging from this work.

5.5.4. Policy Implications

Which land use and transportation strategies may be most effective at supporting a

reduction in vehicle GHG emissions in Metro Vancouver? Average vehicle-related

greenhouse gas emissions levels associated with daily work and school related tours are

nearly twice as large as those generated from non-work and school tours in Metro

Vancouver (see Section 4.5). This suggests that the most significant reductions in daily

GHG emission levels may be best accomplished by minimizing the carbon-intensity of

the daily commute - admittedly, an aspect of household travel that may not be the most

modifiable given scheduling realities or work requirements. Regardless, the results in this

research highlight a number of policy options related to land use and transportation

planning that may be employed in this regard.

A key finding in both HBWS tour models was that distance between home and

work/school yielded the strongest effect on vehicle use and emissions in the sample.

Reducing this distance may help to make modes like transit and cycling a more viable

commuting option. Policies centred on increasing the balance between jobs and housing

in both new and existing areas of the region may help to decrease commuting distance by

allowing a greater diversity of employment opportunities to locate closer to where

individuals reside (Levine, 1998; Cervero and Duncan, 2006). Evidence suggests,

however, that a high jobs-housing ratio where people live does not necessarily translate

into working closer to home. Miller and Ibrahim (1998) found the ratio of jobs to

residents and the number of jobs within 5-kilometers of where people live in Toronto had
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little influence on VKT for work travel. Guiliano and Small (1993) found a statistically

significant but extremely small relationship between jobs-housing balance and

commuting data in Los Angeles, concluding that other factors are likely to explain job

and residential choice. These findings suggest that individuals may seek specific

employment opportunities that match their training, expertise, and compensation

expectations. There is no guarantee that a job close to where one resides will satisfy these

and other preferences. In this light, a more appropriate policy to reduce emissions may be

to increase the level of transit service to both established and emerging employment

centres within the region. Doing so may help to improve the utility of transit relative to

the private vehicle. Metro Vancouver already has a well-established bus and SkyTrain

system servicing many of the designated town and regional centres where much of the

employment in this region is located. As such, level-of-service improvements may need

to go beyond introducing new routes and instead focus on reducing travel costs and travel

time through decreased fares, promoting employer-subsidized transit passes, increasing

frequency of buses and SkyTrains, or constructing dedicated bus lanes, especially on the

regions network of suburban highways.

Fixed transit routes, regardless of their cost or time savings, however, will likely do little

to encourage those individuals who are inclined to take on complex HBWS tours, perhaps

because they reside far from work or because their neighbourhood offers no additional

services, to switch to public transit for these tours (Ye et al., 2007; Hensher and Reyes,

2000). Results from the complex HBWS tour sample suggest that where both transit

availability and neighbourhood walkability is high, individuals will make fewer stops

to/from work or school and generate less VKT and GHG emissions in the process. This

suggests that efforts to increase transit service levels need to be coupled with policies that

allow for a functional mixing of land uses in and around transit hubs close to where

individuals reside (i.e. Transit-Oriented Development). Uses like daycares, grocery

stores, post offices, dry cleaners and other uses people may need on a daily basis located

in these areas may help to facilitate transit use if additional errands can be made by

walking to/from transit.
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Results suggest that regionally-scaled policies focused on increasing regional

connectivity, improving transit level of service, and investing in more compact, transit-

oriented urban form are also likely to yield significant potential for reducing emissions

from HBO activity tours as well. The analytical models demonstrate that vehicle use and

emissions related to HBO tours share similar effects to differences in regional

connectivity and transit availability. Unique to this research however, is the finding that

local neighbourhood urban form yields a stronger effect on HBO vehicle use and

emissions than regional characteristics. This points to increasing neighbourhood

walkability as being a key strategy for reducing emissions related to HBO tours.

Walkable areas, characterized by compact, well-connected and mixed-use urban form,

are demonstrated in this research to encourage more simple, shorter HBO tours with more

stops located within one’s immediate neighbourhood. Findings also suggest these kinds

of tours help to reduce VKT and associated emissions, likely as these are easily made on

foot, by bicycle or public transit. Region-wide, initiatives to increase local neighbourhood

walkability need to be focused toward existing nodes and corridors. Policies that

encourage higher development densities in these areas will help to support both a greater

mix of functional land uses and more efficient transit service within reasonable walking

distance of a large number of individuals.

The complex nature of activity scheduling and demands will likely require a suite of

initiatives including, but not limited to, those described above in order to encourage less

carbon-intensive modes of travel and activity patterns in Metro Vancouver. Indeed, the

consistently strong positive effect of vehicle accessibility on vehicle emissions across all

models in this research suggests that additional and more direct approaches targeted at

vehicle ownership and use may be warranted. Such targeted initiatives may include

insurance restructuring to allow for “pay-as-you-drive” policies, increased vehicle

registration fees, road tolls, and parking levies: all strategies that, in effect, penalize

individuals for driving. Coupling these “stick” strategies with stronger regional growth,

local development, and transportation policies that make alternative modes of travel more

appealing (the “carrots”) is likely to add significant leverage to reducing emissions

region-wide.
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6. CONCLUSIONS

6.1. Summary of Findings

This research represents a comprehensive empirical assessment of the nature and strength

of effects yielded by both local and regional-scale built environment characteristics on

vehicle use and related GHG emissions in Canada’s Metro Vancouver region. The study

is part of a growing body of research focused on understanding and appraising the role of

land use and transportation planning in reducing the carbon-intensity of daily travel (see

Ewing et al., 2008). The research offers two unique contributions to the existing body of

knowledge in this area. First, the use of structural equation modeling techniques

permitted the explicit modeling of the indirect relationship between the built environment

and travel emissions as mediated by other variables, such as activity patterns and vehicle

use. By doing so, results generated explain not only what characteristics are most likely

to reduce emission levels, but how such effects occur. Second, effects of the built

environment on emissions are estimated for different activity tour types (e.g. work/school

tours and non-work/school tours). This approach allowed for possible variations in effects

between different built environment characteristics to be modeled.

Consistent with the literature, model results show the built environment to be a

significantly strong predictor of vehicle-related GHG emissions in Metro Vancouver.

However, the strength and magnitude of these effects is demonstrated to vary by activity

tour type. The local built environment is a stronger predictor of vehicle use and related

emissions for non-work/school tours, while regional accessibility measures yielded larger

effects on the carbon-intensity of work and school tours. These findings indicate that the

largest emission reductions may be achieved as part of a balanced effort to concentrate

urban population and employment growth, increase existing transit levels-of-service

region-wide, and invest in measures to create more, and expand existing, walkable

neighbourhoods. Confounding these effects, however, is the consistently strong influence

of key socio-demographic characteristics on vehicle use and emissions across all models.

Most notable is that of vehicle availability: the greater one’s access to a vehicle, the more

vehicle use and associated emissions increase, sometimes regardless of the built
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environment within which one resides. Taken collectively, results suggest that policy

directives are required beyond merely promoting more compact, walkable development

to curb emissions. These strategies may include those that address vehicle use in a more

direct manner, including higher taxation or user fees. As these mechanisms are outside

the traditional purview of land use planning, coordination and education across a number

of agencies, organizations of levels of government will be needed to facilitate their

implementation.

Although conducted in Metro Vancouver, the findings from this research are likely to

have applicability for urban areas across Canada. Many regions and municipalities are

struggling with the need to prepare for continued population and employment growth

while achieving less haphazard development patterns shown to contribute to sedentary

lifestyles, increased energy use, and environment degradation. This research offers

general guidance regarding where policy and regulations need to be focused to reduce the

carbon-intensity of urban travel in the longer term.

6.2. Perspectives on Methodological Approach

Structural equation modeling (SEM) has emerged as yet another analytical approach

towards measuring the complex interactions between the built environment, travel

behaviour, and the implications that result from these linkages (see Golob, 2003). To the

author’s knowledge, this research is the first of its kind to employ SEM in modeling the

travel-related GHG emission consequences associated with different built environments.

Future work considering the use of SEM for similar research is likely to benefit from a

brief assessment of the approach developed for the current study.

The most notable benefit of using SEM in the context of this research is its ability to

model effects between variables in a manner that more closely matches reality. All

models explicitly estimated total effects between built environment measures and vehicle

emissions to occur indirectly; that is, through mediating variables related to daily activity

patterns (i.e. tour complexity and location of stops) and vehicle use. As detailed in

Chapter 2, traditional OLS regression techniques specify all independent measures in a
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model to yield direct effects on the dependent variable even though linkages may not

actually occur as such. Beyond offering a more unique modeling approach, however,

there is no way of assessing whether the estimated results in this research are different

than those produced by an OLS regression model of the same sample and variables.

Structural equation models estimated using the maximum likelihood approach are

extremely sensitive to violations of multivariate normality. Although variable

transformation can be used to reduce the skew and kurtosis within models, doing so

removes true scaling information, thereby rendering the interpretation of meaningful

marginal effects of between variables difficult (i.e. if residential density increases by X

unit/acre, vehicle GHG emissions decrease by Y). Findings that are able to quantify these

effects are useful from a policy development perspective. The non-linear, non-normal

nature of many variables used in travel behaviour research may constrain the applicability

of SEM in some studies. Many key exogenous and endogenous variables in this research

required transformation across all models. This makes it difficult to use the estimated

results to craft detailed land use regulations (i.e. minimum densities, amount of mixed

use, etc). Nevertheless, standardized effects do provide direction as to which policy

efforts are more likely to yield greater impacts in emissions reductions.

Structural equation models are extremely data intensive. Large datasets with significant

natural variation are required to yield meaningful results, especially for complex models.

Limited variation may result in multivariate non-normal models. Attaining travel survey

and built environment data sets that satisfy these requirements is difficult. One-day travel

surveys, as used in this research, may not be sufficient to yield sufficient variation in

travel, particularly for work or school related trip tours that are normally made only once

a day. This situation was evident in specifying the first HBWS tour model. Where

possible, future research employing SEM methods should seek out adequate sample sizes

that yield greater variation across travel types.
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6.3. Limitations and Caveats

The research presented here, although contributing to the body of knowledge concerning

the relationships between the built environment and travel emissions, is not without its

weaknesses. Several limitations are worth noting.

The current study was conducted cross-sectionally. This means that travel and activity

patterns were compared between individuals in different built environments at a single

point in time. A more rigorous study design would experimentally isolate built

environment effects from pre-disposition and attitudinal factors and also provide an

ordered stimulus (change in neighborhood exposure) and follow on response (travel

patterns). There are two ways to do this, either through examining changes in travel

behaviour among individuals moving from one type of built environment to another or

for individuals that live in places that change dramatically; like around a transit station

before and after it opens.

The travel survey data used in this data was recorded over the course of a one-day period

only. Longer periods of data collection (usually two or three day surveys, including both

weekday and weekend travel) are common in the travel behaviour literature. Two or

three-day travel surveys are necessary to establish a more reliable estimate of

representative travel behaviour. In addition, objectively measured travel patterns,

whereby GPS is used to document the actual travel speed and route individuals take on

their daily tours, would be ideal in estimating both distance traveled and vehicle

emissions more accurately. These advancements would provide a better link to the GHG

emission impacts associated with the built environment.

Travel survey data used in this research was collected nearly one decade ago. Metro

Vancouver has been subject to significant changes in population, employment,

development and transportation growth and development patterns during that time. Most

notably, two new SkyTrain rapid transit lines, several major roadways, and new

neighbourhood-style developments have been completed region-wide. It is likely that

travel behaviour and patterns have changed somewhat since 1999. The findings in this
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research, although estimated using unique empirical methods, should by no means be

interpreted as representative of the current situation in Metro Vancouver.

The use of the neighbourhood walkability index precluded the ability to segment out the

relative impact of each individual urban form component on the endogenous variables in

all models in this research. This is an important limitation as it makes the results,

although informative, somewhat vague as to the specific land use regulations that may be

important in shaping less carbon-intensive activity patterns. At best, the findings in this

research allow for only a general idea as to where policy and regulatory strategies need to

be guided in this effort.

Regional accessibility was measured as the distance from the household to the nearest of

one of three centres defined in the Metro Vancouver Livable Region Strategic Plan: the

metropolitan core, regional centres and municipal town centres. The scale of amenities

and services varies by type of centre which may have implications on relative measures

of regional accessibility. If a household is located close to a municipal but far from a

regional centre, their access may be measured as high despite the municipal centre

possibly having fewer services and amenities needed on a daily basis than the regional

centre. Regional accessibility findings should be interpreted with this in mind.

Data limitations precluded the inclusion of work place and school urban form and

regional accessibility measures and mid-day work-based tours. As such, findings need to

be interpreted as summarizing an incomplete picture of total daily travel emissions and

built environment variables.

6.4. Directions for Future Research

A number of opportunities exist to advance the findings of this research. Future work

should endeavor to update these results with a more recent travel survey in order to

capture more current travel behaviour trends in Metro Vancouver.

Findings can be strengthened through additional built environment and level of service

variables in the statistical models. The inclusion of work place built environment
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characteristics into would help assess the relative impact of these elements on mode

choices for work tours as well as mid day work tours. The Walkability Index could be

supplemented with additional variables such as the presence of sidewalks and more

subjective characteristics like topography which may significantly influence an

individuals propensity to engage in active, less carbon intensive modes like walking and

cycling (Leslie et al., 2008). Travel time and costs associated with different modes

(especially vehicle parking fees, transit fares, transit wait times, and travel times) have

been shown to yield significant influence on mode choice in previous studies (see Frank

et al., 2007a; Guo and Wilson, 2004; Bhat and Sardesai, 2006). These measures were

excluded here due to data limitations. Where possible, future work on this topic should

explore a relative travel time and cost approach in model development and estimation to

increase model fit and explanatory power.

Data in this research should be supplemented with emission modeling based on detailed

congestion-based travel speeds, actual trip path, and duration of out-of-home activities in

order to provide additional leverage through a more accurate representation of daily

emissions. GPS travel data would provide for the necessary accurate speed inputs for

such an emission modeling process. So to would capturing the specific vehicle (i.e. light

duty truck or car) and fuel types of those reporting vehicle travel.

The inclusion of attitudinal data regarding residential and travel preferences in future

studies would explicitly control for possible self-selection and help to better establish

causality between variables. A longitudinal study design using time-series (i.e. before and

after) travel data that assessed how activity and travel patterns and emissions change after

moving between neighbourhoods or after a new transportation service has been

developed would also yield greater insight into causality.

Different study designs may produce additional insight into the mechanisms affecting

travel emissions. A multiple-group analysis between two or more independent groups

(i.e. socio-economic status, household income, regional location and neighbourhood

walkability) would allow for a more direct and statistically robust comparative

assessment of associations between key variables. Such a design could clarify with
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additional statistical certainty why certain groups have relatively lower or higher travel

emissions (i.e. do lower income individuals drive more because they cannot afford to

reside in more walkable and connected communities?). Future work employing the SEM

analysis framework would benefit by including traditional OLS regression models

specified using the same variables. Such a design would allow for a direct comparison

between the nature of the parameter estimates, model fit and explanatory power. This

would add leverage into the utility of using SEM in travel behaviour research. These

extensions of the current study would help address several key limitations described in

section 6.3.

This study addresses only one component of urban greenhouse gas emissions. Future

research should conduct a comprehensive assessment of the broader emission impacts

associated with alternative built environment characteristics in urban areas. Such research

would measure the effects of urban development characteristics such as density, building

size and overall neighbourhood and regional structure on emissions and energy use

related to both transportation choices and building use and operations (i.e. electricity,

heating and cooling). Results from this work would provide a more holistic

understanding of the broader carbon footprint impacts of land development practices and

may yield where specific measures to reduce urban emissions and energy use should be

targeted.
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TABLE A.1. Average weekday transit passenger boardings by route and vehicle type.

Route / Line

Average # Passengers 
on Board over Full 
Weekday Operating 
Period

Vehicle Type

002 MACDONALD-16TH AVE/BURRARD STN 14.1 Diesel Bus

003 MAIN/DOWNTOWN 13.8 Electric Trolley Bus

004 PHIBBS EXCH/POWELL/DOWNTOWN/UBC 13.8 Electric Trolley Bus

005 ROBSON/DOWNTOWN 11.7 Electric Trolley Bus

006 DAVIE/DOWNTOWN 11.2 Electric Trolley Bus

007 NANAIMO STN/DUNBAR 13.6 Electric Trolley Bus

008 FRASER/DOWNTOWN 14.8 Electric Trolley Bus

009 BDRY/BWAY STN/GRAN/ALMA/UBC 12.9 Electric Trolley Bus

010 HASTINGS/DOWNTOWN/GRAN 11.4 Electric Trolley Bus

015 CAMBIE/DOWNTOWN 6.9 Diesel Bus

016 29TH AVENUE STN/ARBUTUS 11.8 Electric Trolley Bus

017 OAK/DOWNTOWN/UBC 13.0 Electric Trolley Bus

019 METROTOWN STN/STANLEY PARK 13.7 Electric Trolley Bus

020 VICTORIA/DOWNTOWN 13.8 Electric Trolley Bus

022 KNIGHT/MACDONALD 19.1 Diesel Bus

025 BRENTWOOD STN/UBC 18.1 Diesel Bus

026 JOYCE STN/29TH AVENUE STN 11.7 Diesel Bus

027 KOOTENAY LOOP/JOYCE STN 10.7 Diesel Bus

028 CAP COLLEGE/PHIBBS EXCH/JOYCE STN 14.7 Diesel Bus

029 ELLIOTT/29TH AVENUE STN 9.7 Diesel Bus

032 DUNBAR/DOWNTOWN 25.5 Diesel Bus

041 JOYCE STN/CROWN/UBC 21.8 Diesel Bus

043 JOYCE STN/UBC 25.3 Diesel Bus

044 UBC/DOWNTOWN 32.5 Diesel Bus

049 METROTOWN STN/DUNBAR LOOP/UBC 14.6 Diesel Bus

050 WATERFRONT STN/FALSE CREEK SOUTH 9.0 Diesel Bus

084 UBC/VCC STATION 17.5 Diesel Bus

097 COQUITLAM STN/LOUGHEED STN (B-LINE) 18.3 Diesel Bus

098 BURRARD STN/RICHMOND CTR (B-LINE) 36.2 Diesel Bus

099 BROADWAY STN/UBC (B-LINE) 35.5 Diesel Bus

100 22ND ST STN/AIRPORT STN 16.6 Diesel Bus

101 LOUGHEED STN/22ND ST STN 10.7 Diesel Bus

104 22ND ST STN/ANNACIS ISLAND 10.2 Diesel Bus

106 NEW WESTMINSTER STN/METROTOWN STN 15.2 Diesel Bus

110 LOUGHEED STN/METROTOWN STN 6.9 Diesel Bus

112 EDMONDS STN/LOUGHEED STN 6.0 Diesel Bus

116 EDMONDS STN/METROTOWN STN 9.6 Diesel Bus

123 NEW WEST ST/BRENTWOOD STN/KOOTENAY 11.3 Diesel Bus

129 METROTOWN STN/EDMONDS STN 10.1 Diesel Bus

130 METROTOWN/HASTINGS/KOOTENAY LOOP 16.0 Diesel Bus

134 LAKE CITY STN/BRENTWOOD STN 5.1 Diesel Bus

135 SFU/BURRARD STN 23.4 Diesel Bus

136 LOUGHEED STN/BRENTWOOD STN 6.5 Diesel Bus

143 COQUITLAM STN/SFU 21.6 Diesel Bus

144 SFU/METROTOWN STN 13.7 Diesel Bus

145 SFU/PRODUCTION STN 33.0 Diesel Bus
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TABLE A.1. Continued.

Route / Line

Average # Passengers 
on Board over Full 
Weekday Operating 
Period

Vehicle Type

151 COQUITLAM STN/LOUGHEED STN 8.9 Diesel Bus

152 COQUITLAM STN/LOUGHEED STN 10.3 Diesel Bus

153 COQUITLAM REC CTR/BRAID STN 5.1 Diesel Bus

154 BRAID STN/22ND STREET STN 9.8 Diesel Bus

155 BRAID STN/22ND STREET  STN 11.2 Diesel Bus

156 BRAID STN/LOUGHEED STN 9.8 Diesel Bus

157 COQUITLAM REC CENTRE/LOUGHEED STN 7.7 Diesel Bus

159 PORT COQUITLAM STN/BRAID STN 17.2 Diesel Bus

160 PORT COQUITLAM STN/VANCOUVER 19.2 Diesel Bus

169 COQUITLAM STN/BRAID STN 18.0 Diesel Bus

177 COQUITLAM STN/BRAID STN 9.3 Diesel Bus

179 COQUITLAM STN/JOHNSON 1.7 Diesel Bus

189 COQUITLAM STN/COAST MERIDIAN 6.5 Diesel Bus

190 COQUITLAM STN/VANCOUVER 18.1 Diesel Bus

210 UPPER LYNN VALLEY/VANCOUVER 20.7 Diesel Bus

211 SEYMOUR/PHIBBS EXCH/VANCOUVER 14.9 Diesel Bus

212 DEEP COVE/PHIBBS EXCH 8.3 Diesel Bus

214 BLUERIDGE/PHIBBS EXCH/VANCOUVER 12.9 Diesel Bus

228 LYNN VALLEY/LONSDALE QUAY 10.9 Diesel Bus

229 WESTLYNN/PHIBBS EXCH/LONSDALE QUAY 9.9 Diesel Bus

230 UPPER LONSDALE/LONSDALE QUAY 11.9 Diesel Bus

232 GROUSE MOUNTAIN/PHIBBS EXCH 13.5 Diesel Bus

236 GROUSE MOUNTAIN/LONSDALE QUAY 14.2 Diesel Bus

239 CAPILANO COLLEGE/PARK ROYAL 18.7 Diesel Bus

240 15TH STREET/VANCOUVER 22.9 Diesel Bus

241 UPPER LONSDALE/VANCOUVER 27.0 Diesel Bus

242 UPPER LONSDALE/VANCOUVER 7.6 Diesel Bus

246 LONSDALE QUAY/HIGHLAND/VANCOUVER 7.4 Diesel Bus

247 UPPER CAPILANO/GROUSE/VANCOUVER 22.1 Diesel Bus

250 HORSESHOE BAY/DUNDARAVE/VANCOUVER 17.8 Diesel Bus

251 QUEENS/VANCOUVER/PARK ROYAL 21.2 Diesel Bus

252 INGLEWOOD/VANCOUVER/PARK ROYAL 17.8 Diesel Bus

253 CAULFEILD/VANCOUVER/PARK ROYAL 15.1 Diesel Bus

254 BRITISH PROPERTIES/PARK ROYAL/VAN 14.0 Diesel Bus

255 DUNDARAVE/LYNN VALLEY CENTRE 15.2 Diesel Bus

257 HORSESHOE BAY/VANCOUVER EXPRESS 36.6 Diesel Bus

258 UBC/WEST VANCOUVER 11.9 Diesel Bus

259 LIONS BAY/HORSESHOE BAY -0.2 Diesel Bus

290 DEEP COVE 17.8 Diesel Bus

292 UPPER LYNN VALLEY 23.9 Diesel Bus

301 NEWTON EXCHANGE/RICHMOND CENTRE 12.3 Diesel Bus

311 SCOTTSDALE/VANCOUVER 29.9 Diesel Bus

312 SCOTTSDALE/SCOTT ROAD STN 10.7 Diesel Bus

314 SURREY CENTRAL/SUNBURY/SCOTT RD STN 7.3 Diesel Bus

316 SURREY CENTRAL STN/SCOTTSDALE 10.6 Diesel Bus

319 SCOTT ROAD STN/SCOTTSDALE 18.4 Diesel Bus
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TABLE A.1. Continued.

Route / Line

Average # Passengers 
on Board over Full 
Weekday Operating 
Period

Vehicle Type

320 LANGLEY/GUILDFORD/SURREY CTRL STN 17.0 Diesel Bus

321 WHITE ROCK/NEWTON/SURREY CTRL STN 18.2 Diesel Bus

323 NEWTON EXCH/SURREY CENTRAL STN 14.5 Diesel Bus

324 NEWTON EXCH/SURREY CENTRAL STN 13.1 Diesel Bus

325 NEWTON EXCH/SURREY CENTRAL STN 13.8 Diesel Bus

326 GUILDFORD/SURREY CENTRAL STN 10.8 Diesel Bus

329 SURREY CENTRAL STN/SCOTTSDALE 8.9 Diesel Bus

332 GUILDFORD/SURREY CENTRAL STN 13.4 Diesel Bus

335 FLEETWOOD/SURREY CENTRAL STN 12.6 Diesel Bus

340 NEWTON/22ND ST 17.2 Diesel Bus

341 GUILDFORD/LANGLEY CENTRE 8.5 Diesel Bus

341 GULDFORD/CLOVERDALE 0.2 Diesel Bus

345 KING GEORGE STN/WHITE ROCK CENTRE 16.9 Diesel Bus

351 CRESCENT BEACH/VANCOUVER 12.0 Diesel Bus

352 OCEAN PARK /VANCOUVER 26.9 Diesel Bus

354 WHITE ROCK SOUTH/VANCOUVER 25.5 Diesel Bus

375 WHITE ROCK/WHITE ROCK STH/GUILDFORD 8.3 Diesel Bus

391 SCOTTSDALE/SCOTT ROAD STN 13.6 Diesel Bus

393 NEWTON EXCH/SURREY CENTRAL STN 17.9 Diesel Bus

394 WHITE ROCK/KING GEORGE STN EXPRESS 13.8 Diesel Bus

395 WILLOWBROOK/KING GEORGE STN 19.8 Diesel Bus

401 ONE ROAD/GARDEN CITY 8.2 Diesel Bus

402 TWO ROAD/RICHMOND CENTRE 6.6 Diesel Bus

403 THREE ROAD/RICHMOND CENTRE 6.9 Diesel Bus

404 LADNER EXCH/RICHMOND CTR 7.3 Diesel Bus

405 FIVE ROAD/CAMBIE 4.5 Diesel Bus

407 GILBERT/BRIDGEPORT 5.1 Diesel Bus

410 22ND ST STN/QUEENSBOROUGH/RAILWAY 18.0 Diesel Bus

424 AIRPORT/AIRPORT STN 11.5 Diesel Bus

430 METROTOWN/RICHMOND CENTRE 20.1 Diesel Bus

480 UBC/RICHMOND CENTRE 29.5 Diesel Bus

488 GARDEN CITY/BURRARD STN 25.3 Diesel Bus

490 STEVESTON/BURRARD STN 33.2 Diesel Bus

491 ONE ROAD/BURRARD STN 12.7 Diesel Bus

492 TWO ROAD/BURRARD STN 25.3 Diesel Bus

496 RAILWAY/BURRARD STN 26.0 Diesel Bus

501 LANGLEY CENTRE/SURREY CENTRAL STN 16.0 Diesel Bus

502 ALDGR/BRKSWD/LANGLEY/SURREY STN 18.8 Diesel Bus

509 WALNUT GROVE/SURREY CENTRAL STN 17.6 Diesel Bus

590 LANGLEY SOUTH/SURREY CENTRAL STN 13.3 Diesel Bus

601 SOUTH DELTA/BOUNDARY BAY/VANCOUVER 17.9 Diesel Bus

602 TSAWWASSEN HEIGHTS/VANCOUVER 30.7 Diesel Bus

603 BEACH GROVE/VANCOUVER 31.8 Diesel Bus

604 ENGLISH BLUFF/VANCOUVER 21.7 Diesel Bus

606 LADNER RING -2.9 Diesel Bus

608 LADNER RING 3.9 Diesel Bus
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TABLE A.1. Continued.

Route / Line

Average # Passengers 
on Board over Full 
Weekday Operating 
Period

Vehicle Type

640 LADNER EXCH/SCOTT ROAD STN 14.7 Diesel Bus

701 HANEY/MAPLE RIDGE EAST/COQ STN 4.8 Diesel Bus

791 HANEY PLACE/BRAID STN 8.8 Diesel Bus

804 HOLY CROSS SCHOOL 12.4 Diesel Bus

807 SCHOOL SPECIAL 9.1 Diesel Bus

828 KWANTLEN PARK SCHOOL 6.8 Diesel Bus

848 PORT MOODY SS 11.5 Diesel Bus

855 ELGIN PARK SCHOOL SPECIAL 8.0 Diesel Bus

863 TERRY FOX/ARCH CARNEY 14.4 Diesel Bus

865 ROBERTSON 11.9 Diesel Bus

867 HERITAGE WOODS SCHOOL 30.2 Diesel Bus

881 CARSON GRAHAM SCHOOL SPECIALS 23.6 Diesel Bus

N10 DOWNTOWN/RICHMOND NIGHTBUS 2.6 Diesel Bus

N15 DOWNTOWN/CAMBIE NIGHTBUS 0.0 Diesel Bus

N16 NANAIMO/RENFREW NIGHTBUS 0.9 Diesel Bus

N17 DOWNTOWN/UBC NIGHTBUS 11.2 Diesel Bus

N19 DOWNTOWN/SURREY CNTRL STN NIGHTBUS 8.1 Diesel Bus

N20 DOWNTOWN/VICTORIA NIGHTBUS 4.8 Diesel Bus

N22 DOWNTOWN/DUNBAR NIGHTBUS 3.0 Diesel Bus

N24 DOWNTOWN/UPPER LONSDALE NIGHTBUS 5.5 Diesel Bus

N35 DOWNTOWN/SFU NIGHTBUS 15.2 Diesel Bus

N6 DOWNTOWN/WEST END NIGHTBUS 0.5 Diesel Bus

N8 DOWNTOWN/FRASER NIGHTBUS 5.7 Diesel Bus

N9 DOWNTOWN/COQUITLAM STN NIGHTBUS 4.8 Diesel Bus

SKYTRAIN MILLENIUM LINE 20 / CAR SkyTrain Electric Vehicle

SKYTRAIN EXPO LINE 20 / CAR SkyTrain Electric Vehicle

SEABUS 126 Diesel Boat

WEST COAST EXPRESS 58 / CAR Diesel Train

Source: Translink, 2009b. Reproduced with permission.
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APPENDIX B: UNSTANDARDIZED PARAMETER
COEFFICIENTS



TABLE B.1. Estimated unstandardized effects (structural coefficient estimates) for "Final" HBO model.

% TOURS 
SIMPLE*

 % STOPS 
NEAR HOME*

VKT*
VEHICLE 

GHG*
% TOURS 
SIMPLE*

 % STOPS 
NEAR 

HOME*
VKT*

VEHICLE 
GHG*

% TOURS 
SIMPLE*

 % STOPS 
NEAR 

HOME*
VKT*

VEHICLE 
GHG*

AGE
FEMALE -0.077 (-3.40) 0.072 0.032 -0.077 0.072 0.032
PERSONS<18 0.100 (4.23) 0.052 (2.87) 0.317 (2.42) 0.005 -0.171 0.060 0.105 0.052 0.146 0.060
VEHICLE ACCESS 1.844 (9.90) 0.822 1.844 0.822
HH INCOME 0.123 (1.99) 0.055 0.123 0.055

NEIGHBRHD WALK 0.011 (3.34) -0.084 (-3.52) 0.001 0.018 -0.045 0.001 0.011 -0.102 -0.045
DIST TO CENTRE * -0.022 (-2.36) 0.167 (2.45) -0.002 0.037 0.092 -0.002 -0.022 0.204 0.092
TRANSIT AVLBLTY * 0.019 (2.20) -0.159 (-2.51) 0.002 -0.032 -0.085 0.002 0.019 -0.191 -0.085

% TOURS SIMPLE * -0.936 (-6.42) -0.417 -0.936 -0.417
% STOPS NEAR HOME * 0.097 (2.04) -1.577 (-8.16) 0.091 -0.703 0.097 -1.486 -0.703

VKT * 0.446 (119.11) 0.446

NOTES: * = Square root transformation.
              Beta coefficients are listed without parentheses. T -statistic listed in parentheses (value greater or equal to +/-1.96 indicates significance at or above 95% confidence interval) and calculated only for direct effects.
              Interpretation of effects is similar to OLS regression: B coefficient of 1.0 suggests the endogenous variable increases by 1.0 unit for each unit increase in the explanatory variable.

Explanatory Variable

DIRECT EFFECTS INDIRECT EFFECTS TOTAL EFFECTS

Endogenous Variable Endogenous Variable Endogenous Variable
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TABLE B.2. Estimated unstandardized effects (structural coefficient estimates) for "Final" HBWS Model A.

TOUR 
CMPLXTY**

VKT*
VEHICLE 

GHG*
TOUR 

CMPLXTY**
VKT*

VEHICLE 
GHG*

TOUR 
CMPLXTY**

VKT*
VEHICLE 

GHG*

AGE -0.002 (-2.41) 0.012 (3.25) -0.003 0.005 -0.002 0.009 0.005
FEMALE -0.400 (-4.47) -0.213 -0.400 -0.213
PERSONS<18
VEHICLE ACCESS 0.085 (2.73) 2.422 (16.54) 0.109 1.347 0.085 2.531 1.347
HH INCOME 0.183 (3.72) 0.097 0.183 0.097

NEIGHBRHD WALK -0.080 (-5.45) 0.043 -0.080 0.043
DIST TO WRK/SCHL * 1.066 (28.92) 0.567 1.066 0.567
TRANSIT AVLBLTY *

TOUR CMPLXTY ** 1.283 (11.99) 0.683 1.283 0.683

VKT * 0.532 (217.54) 0.532

NOTES: * = Square root transformation
              ** = Natural logarithm transformation
              Unstandardized coefficients (B ) are listed without parentheses. Critical ratio values are listed in parentheses (c.r. >= +/-1.96 suggest significance to 95% interval) and calculated only for direct effects.
              Interpretation of effects is similar to OLS regression: B coefficient of 1.0 suggests the endogenous variable increases by 1.0 unit for each unit increase in the explanatory variable.
              n = 1,713 persons

Endogenous Variable

Explanatory Variable

DIRECT EFFECTS

Endogenous Variable

INDIRECT EFFECTS

Endogenous Variable

TOTAL EFFECTS
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TABLE B.3. Estimated unstandardized effects (structural coefficient estimates) for "Final" HBWS Model B.

TOUR 
CMPLXTY**

 % STOPS 
NEAR 

HOME*
VKT* VEHICLE 

GHG*
TOUR 

CMPLXTY**

 % STOPS 
NEAR 

HOME*
VKT* VEHICLE 

GHG*
TOUR 

CMPLXTY**

 % STOPS 
NEAR 

HOME*
VKT* VEHICLE 

GHG*

AGE 0.018 (2.66) 0.009 0.018 0.009
FEMALE 0.055 (2.04) -0.376 (-2.54) 0.051 0.170 0.055 -0.325 0.170
PERSONS<18 0.073 (2.53) 0.068 0.036 0.073 0.068 0.036
VEHICLE ACCESS 0.093 (2.54) 2.569 (10.17) 0.000 -0.116 1.288 0.093 2.453 1.288
HH INCOME 0.178 (2.29) 0.093 0.178 0.093

NEIGHBRHD WALK 0.002 (1.97) -0.062 (-2.58) 0.000 0.002 -0.033 0.002 -0.060 -0.032
DIST TO WRK/SCHL * 0.034 (3.10) -0.027 (-2.84) 1.172 (17.78) 0.000 0.034 0.650 0.034 -0.027 1.206 0.650
TRANSIT AVLBLTY * 0.039 (3.54) 0.000 -0.048 -0.025 0.039 -0.048 -0.025

TOUR CMPLXTY** 0.928 (3.77) 0.487 0.928 0.487
% STOPS NEAR HOME * -0.003 (-1.98) -1.242 (-4.09) -0.003 -0.653 -0.003 -1.244 -0.653

VKT * 0.525 (98.24) 0.525

NOTES: * = Square root transformation
              ** = Natural logarithm transformation
              Unstandardized coefficient of 0.000 equals near negligible effect.
              Unstandardized coefficients (B ) are listed without parentheses. Critical ratio values are listed in parentheses (c.r. >= +/-1.96 suggest significance to 95% interval) and calculated only for direct effects.
              Interpretation of effects is similar to OLS regression: B coefficient of 1.0 suggests the endogenous variable increases by 1.0 unit for each unit increase in the explanatory variable.
              n = 496 persons

Explanatory Variable

DIRECT EFFECTS INDIRECT EFFECTS TOTAL EFFECTS

Endogenous Variable Endogenous Variable Endogenous Variable
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APPENDIX C: COVARIANCE / CORRELATION
MATRICES



TABLE C.1. "Final" HBO tour model sample covariance matrix.

Variable DIST TO 
CENTRE *

TRANSIT 
AVLBLTY *

NEIGHBRHD 
WALK

HH            
INCOME

VEHCLE 
ACCESS

PERSONS             
< 18

FEMALE AGE
% STOPS 

NEAR       
HOME *

% TOURS 
SIMPLE *

VKT *
VEHCLE          

GHG *

DIST TO CENTRE * 0.906
TRANSIT AVLBLTY * -0.477 1.876
NEIGHBRHD WALK -0.855 3.345 12.517
HH INCOME 0.161 -0.260 -0.580 1.012
VEHCLE ACCESS 0.036 -0.129 -0.389 0.111 0.124
PERSONS < 18 0.044 -0.103 -0.242 0.055 0.013 0.221
FEMALE -0.029 0.020 0.096 0.019 -0.002 -0.027 0.244
AGE 0.795 -2.169 -8.555 -2.136 0.459 -2.399 0.578 278.359
% STOPS NEAR HOME * -0.037 0.078 0.208 -0.023 -0.008 0.006 -0.004 -0.420 0.101
% TOURS SIMPLE * -0.001 0.010 0.015 0.000 0.001 0.020 0.016 -0.518 0.005 0.171
VKT * 0.459 -1.095 -2.934 0.500 0.318 0.116 -0.011 2.520 -0.215 -0.162 6.576
VEHICLE GHG * 0.211 -0.499 -1.337 0.217 0.153 0.023 0.012 1.618 -0.096 -0.071 2.931 1.432

* =  Square root transformation
n = 1,370 persons

TABLE C.2. "Final" HBO tour model sample correlation matrix.

Variable DIST TO 
CENTRE *

TRANSIT 
AVLBLTY *

NEIGHBRHD 
WALK

HH            
INCOME

VEHCLE 
ACCESS

PERSONS             
< 18

FEMALE AGE
% STOPS 

NEAR       
HOME *

% TOURS 
SIMPLE *

VKT *
VEHCLE          

GHG *

DIST TO CENTRE * 1.000
TRANSIT AVLBLTY * -0.366 1.000
NEIGHBRHD WALK -0.254 0.690 1.000
HH INCOME 0.168 -0.189 -0.163 1.000
VEHCLE ACCESS 0.108 -0.268 -0.312 0.314 1.000
PERSONS < 18 0.099 -0.159 -0.146 0.116 0.077 1.000
FEMALE -0.061 0.029 0.055 0.038 -0.013 -0.116 1.000
AGE 0.050 -0.095 -0.145 -0.127 0.078 -0.306 0.070 1.000
% STOPS NEAR HOME * -0.121 0.180 0.185 -0.070 -0.070 0.039 -0.026 -0.079 1.000
% TOURS SIMPLE * -0.003 0.017 0.010 0.001 0.006 0.105 0.077 -0.075 0.071 1.000
VKT * 0.188 -0.312 -0.323 0.194 0.352 0.096 -0.008 0.059 -0.264 -0.153 1.000
VEHICLE GHG * 0.185 -0.304 -0.316 0.180 0.361 0.040 0.020 0.081 -0.252 -0.143 0.955 1.000

* =  Square root transformation
n = 1,370 persons
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TABLE C.3. "Final" HBWS tour Model A sample covariance matrix.

Variable
DIST TO           

WRK /             
SCHL *

TRANSIT 
AVLBLTY *

NEIGHBRHD 
WALK

HH             
INCOME

VEHCLE 
ACCESS

PERSONS             
< 18

FEMALE AGE
TOUR 

CMPLXTY      
**

VKT *
VEHICLE          

GHG *

DIST TO WRK/SCHL * 1.748
TRANSIT AVLBLTY * -0.552 1.625
NEIGHBRHD WALK -1.793 2.841 11.783
HH INCOME 0.162 -0.259 -0.685 0.941
VEHCLE ACCESS 0.085 -0.115 -0.338 0.097 0.110
PERSONS < 18 0.062 -0.139 -0.374 0.016 0.007 0.212
FEMALE 0.076 -0.009 -0.045 0.039 0.008 0.018 0.250
AGE 0.952 -1.857 -5.039 2.398 0.654 -0.012 0.134 144.396
TOUR CMPLXTY ** 0.003 -0.004 0.006 0.007 0.008 0.006 -0.007 -0.242 0.173
VKT * 2.287 -1.247 -3.866 0.690 0.422 0.134 0.204 4.966 0.239 7.636
VEHICLE GHG * 1.236 -0.657 -2.030 0.360 0.237 0.062 0.123 2.954 0.111 4.065 2.240

* =  Square root transformation
** =  Natural logarithm transformation
n = 1,713 persons

TABLE C.4. "Final" HBWS tour Model A sample correlation matrix.

Variable
DIST TO           

WRK /             
SCHL *

TRANSIT 
AVLBLTY *

NEIGHBRHD 
WALK

HH             
INCOME

VEHCLE 
ACCESS

PERSONS             
< 18

FEMALE AGE
TOUR 

CMPLXTY      
**

VKT *
VEHICLE          

GHG *

DIST TO WRK/SCHL * 1.000
TRANSIT AVLBLTY * -0.327 1.000
NEIGHBRHD WALK -0.395 0.649 1.000
HH INCOME 0.127 -0.209 -0.206 1.000
VEHCLE ACCESS 0.194 -0.272 -0.297 0.303 1.000
PERSONS < 18 0.102 -0.236 -0.237 0.035 0.044 1.000
FEMALE 0.115 -0.014 -0.026 0.080 0.046 0.080 1.000
AGE 0.060 -0.121 -0.122 0.206 0.164 -0.002 0.022 1.000
TOUR CMPLXTY ** 0.005 -0.007 0.004 0.019 0.058 0.030 -0.033 -0.048 1.000
VKT * 0.626 -0.354 -0.408 0.257 0.461 0.105 0.147 0.150 0.208 1.000
VEHICLE GHG * 0.625 -0.344 -0.395 0.248 0.478 0.091 0.165 0.164 0.179 0.983 1.000

* =  Square root transformation
** =  Natural logarithm transformation
n = 1,713 persons
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TABLE C.5. "Final" HBWS tour Model B sample covariance matrix.

Variable
DIST TO           

WRK /             
SCHL *

TRANSIT 
AVLBLTY *

NEIGHBRHD 
WALK

HH           
INCOME

VEHCLE 
ACCESS

PERSONS             
< 18

FEMALE AGE
% STOPS 

NEAR       
HOME *

TOUR 
CMPLXTY **

VKT *
VEHICLE        

GHG *

DIST TO CENTRE * 1.587
TRANSIT AVLBLTY * -0.571 1.673
NEIGHBRHD WALK -1.962 2.887 12.230
HH INCOME 0.125 -0.228 -0.605 0.958
VEHCLE ACCESS 0.067 -0.102 -0.287 0.054 0.094
PERSONS < 18 0.033 -0.201 -0.479 0.063 0.018 0.214
FEMALE -0.053 0.047 0.034 -0.050 0.007 -0.018 0.250
AGE 0.813 -1.303 -7.296 2.520 0.729 0.412 -0.470 120.947
% STOPS NEAR HOME * -0.054 0.063 0.108 -0.005 0.004 0.001 0.012 0.091 0.060
TOUR CMPLXTY ** 0.053 -0.020 -0.033 -0.015 -0.004 0.016 0.011 0.020 -0.001 0.089
VKT * 2.326 -1.338 -4.216 0.550 0.350 0.192 -0.161 6.043 -0.139 0.132 6.963
VEHICLE GHG * 1.227 -0.697 -2.197 0.267 0.201 0.075 -0.096 3.539 -0.067 0.052 3.653 2.012

* =  Square root transformation
** =  Natural logarithm transformation
n = 496 persons

TABLE C.6. "Final" HBWS tour Model B sample correlation matrix.

Variable
DIST TO           

WRK /             
SCHL *

TRANSIT 
AVLBLTY *

NEIGHBRHD 
WALK

HH           
INCOME

VEHCLE 
ACCESS

PERSONS             
< 18

FEMALE AGE
% STOPS 

NEAR       
HOME *

TOUR 
CMPLXTY **

VKT *
VEHICLE        

GHG *

DIST TO CENTRE * 1.000
TRANSIT AVLBLTY * -0.351 1.000
NEIGHBRHD WALK -0.445 0.638 1.000
HH INCOME 0.101 -0.180 -0.177 1.000
VEHCLE ACCESS 0.173 -0.258 -0.268 0.180 1.000
PERSONS < 18 0.056 -0.336 -0.296 0.140 0.125 1.000
FEMALE -0.084 0.072 0.020 -0.103 0.048 -0.078 1.000
AGE 0.059 -0.092 -0.190 0.234 0.216 0.081 -0.086 1.000
% STOPS NEAR HOME * -0.176 0.201 0.126 -0.021 0.050 0.006 0.096 0.034 1.000
TOUR CMPLXTY ** 0.140 -0.052 -0.032 -0.052 -0.044 0.114 0.071 0.006 -0.055 1.000
VKT * 0.700 -0.392 -0.457 0.213 0.432 0.158 -0.122 0.208 -0.216 0.167 1.000
VEHICLE GHG * 0.687 -0.380 -0.443 0.193 0.463 0.115 -0.136 0.227 -0.194 0.124 0.976 1.000

* =  Square root transformation
** =  Natural logarithm transformation
n = 496 persons
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