
Designing Performance Based
Contracts in Supply Chains

by

Liping Liang

B.Sc., South China University of Technology, 1993
M.Sc., University of British Columbia, 2004

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in

The Faculty of Graduate Studies

(Business Administration)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

December 2009

c⃝ Liping Liang 2009



Abstract

The three essays in this thesis address the design of performance-based contracts in

decentralized supply chains when a supplier’s effort is unobservable.

The first two essays explore various issues in the design of service level agreements

(SLAs), a type of performance-based incentive scheme widely used for outsourcing

manufacturing and services. We consider a supply chain in which a supplier manages

the supply of a durable product for a buyer and the buyer contracts with the sup-

plier on the supplier’s inventory service level. The SLAs are discontinuous incentive

schemes with a multi-period review strategy, and the supplier’s performance measure

is the ready rate (1 - stockout rate).

The first essay (Chapter 2) investigates the effectiveness of two common types

of SLAs: a lump-sum penalty SLA and a linear-penalty SLA. The key finding is

that when the supplier can observe the performance history and dynamically adjust

the investment in inventory to affect her review period performance, to mitigate the

supplier’s incentive for strategic behavior, the penalty should be dependent on the

degree of the supplier’s performance deviation from the target.

The second essay (Chapter 3) focuses on the effectiveness of performance measures

in SLAs. The problem is similar to that in the first essay, but the supplier can

invest both in inventory and in inventory replenishment lead time. We consider

two inventory performance measures: the immediate ready rate and the time-window

ready rate, and find that there exists a unique positive time window such that a ready

rate with window induces the first-best investments. Our findings demonstrate the

importance of choosing the right performance measure to align a supplier’s incentive.

The third essay (Chapter 4) investigates the design of performance-based volume

incentive schemes in the form of allocating business between suppliers when a buyer

maximizes his long-run discounted payoff from repeated dual sourcing. We consider
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Abstract

both the case where a supplier’s effort cost is proportional to her volume of business

and the case where the cost is independent of her volume. We find that to induce and

maintain suppliers’ competition over time, the optimal scheme depends on each sup-

plier’s current share of business and is generally not a simple rank-order tournament;

handicapping the definition of winner can do better than a simple first-past-the-post

rule.
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Chapter 1

Introduction

1.1 Motivation

Outsourcing manufacturing and services is a common practice in both the public

and private sectors. As supply chains become more decentralized and the suppliers

perform tasks on behalf of the buyer, effectively managing these suppliers becomes

vital for a buyer’s success in business. Mechanism design for aligning a supplier’s

incentive with the buyer’s interest has consequently drawn attention from operations

researchers. This has been driving a stream of literature at the interface of operations

management and economics, which addresses the contract design for various opera-

tions management problems such as inventory management, production management,

capacity investment, and quality control.

Traditional contracts often focus on how the work is performed and the payment

is either a fixed price or cost/revenue sharing. For example, a contract may dictate

the inventory level or production capacity in which a supplier should invest. How-

ever, implementing such a type of contract could be infeasible or expensive in many

situations because a supplier’s effort is often unobservable to the buyer and costly to

monitor, which is known as the moral hazard problem in the principal-agent theory.

Performance-based contracting has therefore gained a wider use in recent years due to

its key feature of contracting on outcomes instead of dictating how the work is done.

Service level agreements (SLAs) are a common type of performance-based contract

for managing suppliers. In an SLA, the performance, or outcome of a task desired

by the buyer is specified in terms of a service level target. According to a survey

(Oblicore Inc. 2007), 91% of organizations use SLAs for managing suppliers, inter-

nal agreements, or external customer agreements. Performance-based incentives are

also often used together with competition in the form of allocating business between

multiple suppliers based on the suppliers’ performance (volume incentive). Dyer and

Ouchi (1993) report that Japanese firms usually employ a ‘two-vendor policy’ to mo-
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1.2. Related Literature

tivate suppliers to innovate and improve performance. Sun Microsystems allocates

demand among multiple suppliers using a scorecard system (Farlow et al. 1996). An

empirical study by Bensaou (1999) also shows that Japanese buyers typically split

their purchases among multiple suppliers and then demand that the suppliers make

specialized investments to obtain and keep their business.

Despite the widespread use of performance-based contracts and volume incentives

in practice, there is little theoretical research in the literature on their design. This

thesis attempts to understand performance-based incentives as well as volume incen-

tive schemes by studying issues in the design of SLAs for a single supplier and volume

incentives under supplier competition. Some features of the performance-based in-

centive schemes distinct from traditional contracts present new issues which haven’t

been fully addressed in the literature. For example, performance-based contracts are

typically associated with one or more performance measure, which creates the basis

for compensation. Because SLAs are very context dependent, we study a particular

application to inventory management, in this case for a durable product. To mea-

sure the inventory performance, off-the-shelf (immediate) fulfillment rates are often

used in theory, but time-window fulfillment rates are more commonly used in practice

(LaLonde and Zinszer 1976, LaLonde et al. 1988). We therefore also examine the

effectiveness of both types of performance measures for incentive alignment.

1.2 Related Literature

The research in this thesis is at the interface of operations management and eco-

nomics, and relates to four areas of literature: inventory management, supply chain

contracting, non-cooperative games driven by demand allocation, and principal-agent

theory. The following is an overview of the relevant research work. More detailed

review of the literature can be found in each essay.

1.2.1 Inventory management

A number of papers in the inventory management literature investigate inventory per-

formance measures. Examples are Schneider (1981), Choi et al. (2004), Boyaci and

Gallego (2001), Wang et al. (2005), Thomas (2005), and Katok et al. (2008). Choi et

al. (2004) investigate choosing supplier performance measures for vendor-managed-

2
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inventory when the supplier’s capacity and inventory policy are private information.

The performance measure in their study is mainly the ready rate. Off-the-shelf (imme-

diate) fulfillment rates are often used and studied in theory to measure the inventory

performance, but time-window fulfillment rates are more commonly employed in prac-

tice. Among the few papers that consider time-window performance measures, Boyaci

and Gallego (2001) study the problem of minimizing average inventory costs subject

to fill-rate and fill-rate-with-window service-level constraints in serial and assembly

systems; and in an (s,S) inventory system with service level target represented by a

time-window ready rate, Wang et al. (2005) find a significant tradeoff between the

window length and the inventory costs, and suggest that a longer fulfillment window

and lower price may be used for price-sensitive but time-insensitive customers.

The majority of the inventory management literature considers performance mea-

sures in the long run using expected performance (see Zipkin 2000, for example, for an

introduction on the inventory theory in the literature). This is because the research

questions are generally operations-oriented for an integrated supply chain. Those con-

sidering incentive issues tend to assume a contract can be on the long-run expected

performance (see, e.g., Choi et al. 2004), which can have problems in implementation.

When an SLA is used for a supplier with unobservable effort, the supplier’s perfor-

mance measure in a finite review period is a random variable, which often differs more

or less from the long-run expectation. A contract based on the expected performance

(service level) alone, either being unobservable or needing too long a review period

gives no basis to the supplier for identifying and rectifying underperformance and

thus cannot provide an adequate incentive.

For an SLA to work, it is critical to understand and employ in its design the

probability distribution of its performance over the (typically short) review period in

order for incentive to provide the right alignment. Thomas (2005) and Katok et al.

(2008) consider the fill rate in a finite horizon. Thomas uses simulation to illustrate

its distribution, and Katok et al. use an experimental method for analysis. Both

papers examine how the length of a review period and the bonus/penalty affect the

agent’s choice of the base-stock level. They only investigate a supplier’s stationary

inventory policy but do not consider time-window fulfillment rates.

To address the above issues, for the problem of contracting for inventory manage-

ment service, we are therefore interested in the design of an SLA on the basis of a

random performance measure, as well as the difference between the incentive provided

3
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by an immediate fulfillment rate and that by a time-window one. These two issues

are examined in the first and the second essays respectively.

1.2.2 Supply chain contracting

We introduce two types of contracts which are related to the SLAs studied in the first

two essays.

Supply chain coordination contracts

The coordination of inventory investment (order quantity) with contracts has been

extensively studied in the supply chain literature. A comprehensive review can be

found in Cachon (2003), which includes the coordination of single-period single or

multiple newsvendor problem as well as the coordination of infinite-horizon inventory

investment on a durable product. In particular, for a single-location base-stock model

with linear backorder cost, the optimal coordination contract is essentially a cost

sharing one, with the retailer (agent) and the seller (principal) each bears a portion

of the total supply chain cost (inventory holding and backorder costs). Employing

such a contract means micromanaging the agent because the inventory level and

the backorders at any time need to be recorded, which will definitely result in large

administrative and transaction costs. Moreover, when the backorder cost is nonlinear,

the coordination contract may have a complex form that is difficult to implement,

which will not be an issue when using SLAs.

Performance-based contracts

The design of performance-based contracts has drawn operations researchers’ at-

tention in recent years. Examples can be seen in Plambeck and Zenios (2000), Plam-

beck and Zenios (2003), Kim et al. (2007), and Kim et al. (2009). Plambeck and

Zenios (2000) consider a principal delegating operational control of a production sys-

tem to an agent who can exert unobservable effort to maintain the system, and inves-

tigate the compensation scheme dependent on the observed system state transition.

Plambeck and Zenios (2003) study a vendor-managed-inventory problem in which an

agent chooses a privately known production rate to build inventory for the principal,

and derive a contract based on the observed inventory level. Both papers consider a

dynamic principal-agent problem with a risk-averse agent. Kim et al. (2007) study

an after-sales service supply chain in which a customer operates assembled systems

4
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with each system consisting of distinct parts each provided by a different supplier.

If any of the parts fails, the system is down, and that part has to be replaced by a

spare part. When there is no spare part available, a backorder occurs. Each sup-

plier determines her stock level of spare parts, which is unobservable to the customer.

Facing a system uptime requirement, the customer offers contracts to the suppliers.

The authors propose a contract linear in the backorders of each part, and show that

it induces the first-best solutions when all parties are risk neutral. They only con-

sider suppliers’ stationary policies in a static formulation, and study a coordination

problem with no supplier competition. Kim et al. (2009) focus on the choice of per-

formance measure in a contract for restoration service of mission-critical systems. A

risk-averse supplier makes a one-time service capacity investment unobservable to the

customer of a system with infrequent but costly failure. The supplier’s incentives un-

der the performance measures of sample-average downtime and cumulative downtime

are compared.

The SLAs on inventory management in our study are based on an aggregate

performance measure – the demand fulfillment rate, rather than on the individual

performance outcome such as the number of backorders. This type of contract dif-

fers from most of the aforementioned papers on inventory coordination contract and

performance-based contracts. Thus it is interesting to find out its structure and

understand how it generates the incentive for investment.

1.2.3 Non-cooperative games driven by demand allocation

In the operations management literature, a few papers investigate firms’ competi-

tive behavior under an exogenous demand allocation mechanism, often driven by the

switching behavior of customers in the market, which is dependent on the firms’ real-

ized service levels. Lippman and McCardle (1997) consider a single-period multiple-

competitive-newsvendor problem in which each newsvendor chooses an inventory level

to meet a random demand and a rule specifies the allocation of initial market demand

among the firms and the allocation of excess demand among those firms with remain-

ing inventory. They derive the equilibrium inventory levels under specific allocation

rules. Hall and Porteus (2000) and Liu et al. (2007) consider a multi-period competi-

tive newsvendor problem where two firms make capacity (inventory) decision in each

period, and the demand for each firm is dependent on the realized level of customer

5
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service (product availability) in the prior period. Both papers look for the firms’

equilibrium behaviors in the dynamic game.

Some other papers consider a buyer specifying the allocation rule. Cachon and

Lariviere (1999) investigate a special allocation rule commonly used in the automobile

industry by considering a single supplier allocating capacity to multiple retailers based

on their past sales. A two-period game is studied.

Both Benjaafar et al. (2007) and Cachon and Zhang (2007) consider a buyer

outsourcing a fixed demand at a fixed unit price to multiple suppliers. Benjaafar et al.

(2007) examine two competitive mechanisms used for outsourcing to a set of potential

suppliers in a single-period setting. One mechanism is allocating the whole demand

to one supplier with the probability of being selected increasing with her committed

service level, the other allocating the demand to each supplier in proportion to her

committed service level. Under both cases, it is assumed that the contractual promises

of the suppliers regarding effort or service level are enforceable. The authors compare

the service quality the buyer can achieve under both mechanisms. Cachon and Zhang

(2007) study a queuing system where each supplier’s service time is determined by her

capacity investment, and the buyer allocates the demand among multiple suppliers

based on their service times to minimize the average service time over an infinite

horizon. Suppliers are homogeneous in terms of their capacity costs. Each supplier

chooses a capacity level to maximize her own profit. Several commonly used allocation

rules are evaluated and an optimal rule is proposed.

There exists a vast literature on sourcing policies for the problem of a buyer

awarding a divisible business to one or more suppliers among multiple suppliers. The

research questions are often related to the design of competitive mechanisms in the

form of bidding and the suppliers’ competitive behaviors under the bidding rule.

Elmaghraby (2000) provides a survey on the research of this topic in the operations

research and economics literature. Most of the models are for a one-time decision

problem. The incentive from future business is largely not considered.

Since the suppliers’ competitive behaviors that are influenced by future business

and by the design of competitive mechanisms with no future consideration have been

studied separately in the literature, the natural research question would be: How to

design a competitive mechanism with the suppliers’ incentive coming from the future

business, i.e., a rule for allocating the buyer’s future business among the suppliers

based on their past performance? What is the impact of a supplier’s current share of

6
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business on the form of the optimal allocation rule? How to design an allocation rule

to maintain the suppliers’ competition over time? All these questions are addressed

in the third essay.

1.2.4 Principal-agent theory

Recent years have seen the application of principal-agent theory to operations man-

agement problems for incentive contract design. We also employ this theory as an

analytical tool for all the research problems in this thesis. Bolton and Dewatripont

(2005) provide a broad coverage of literature on principal-agent theory. All three es-

says in the thesis are on the repeated moral hazard problem, with the first two essays

on a single agent and the third on multiple agents.

The SLAs studied in the first two essays are a blend of multiple-period review

strategies and discontinuous incentive schemes. Radner (1985) investigates multiple-

period review strategies for a repeated principal-agent game. The agent’s performance

in a period is a noisy signal of her effort level in that period. The agent’s performance

is reviewed every R periods. If the performance is within a margin of error of the

expected output under the desired efficient effort level, the agent ’passes’ the review.

Otherwise they enter a penalty phase of M periods. The penalty in the SLAs under

our study is monetary, not a subsequent phase of a non-cooperative game. With

discontinuous incentive schemes, the payment from a principal to an agent changes

only when some threshold of good or bad performance is reached (McMillan 1992).

They are typically derived in single-period models. When this type of incentive

scheme is used together with a multi-period review strategy, some new issues emerge.

Spear and Srivastava (1987) study a repeated moral hazard problem with dis-

counting between a principal and an agent, and show that history dependence can be

represented by using the agent’s expected utility as a state, and thus the problem of

characterizing the optimal contract of such a model can be reduced to a constrained

static variational problem. Monetary compensation is used for an incentive. The

third essay considers the problem between a principal and two competing agents, and

the compensation is in the form of future demand. The optimal allocation rule is also

derived from a constrained static variational formulation, but we are also concerned

about the equilibrium of the agents’ dynamic game.

Competitive compensation schemes studied in the economics literature can come

7
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in the form of rank-order tournament or relative performance evaluation (RPE), gen-

erally for a single-period problem. The relevant research can be found, for example, in

Lazear and Rosen (1981), Green and Stokey (1983), Hart (1983), Holmstrom (1982),

and Nalebuff and Stiglitz (1983). RPE compensates the agents based on their output

levels, and the total compensation varies with the agents’ realized output levels. In

our case the total demand to be split is a constant. In tournaments, rewards are

based on rank order of the individuals, not on their actual output levels. Lazear and

Rosen (1981) show that for risk-neutral agents rank-order tournaments work as well

as independent contracts; and for agents with known heterogeneous ability, handicap-

ping will improve the efficiency of the tournaments. We want to find out if rank-order

tournaments are still optimal when incentives come from future business, and how

the demand allocation varies with the agents’ outputs. Both questions are examined

in the third essay.

1.3 Research Methodology and Findings

All three essays study the incentive mechanism design in the presence of suppliers’

moral hazard problem. We therefore apply principal-agent theory to the analysis in

each essay.

The first two essays deal with a single supplier’s service level agreement design

and examine specific forms of discontinuous incentive schemes, so the focus is mainly

to find out if by choosing the contract parameters carefully, the buyer’s optimization

problem constrained by the supplier’s incentive compatibility and individual rational-

ity (participation) constraints can result in the same optimal solution as the first best

(the optimal solution to the unconstrained problem). In the first essay, the analysis

is complicated by the existence of the supplier’s strategic behavior over time due to

the multi-period review structure of SLAs, so we need to use a dynamic programming

technique to solve for the supplier’s optimal policies under the contract offered by the

buyer.

The third essay studies a single-principal/two-agent/multi-period problem, in

which the principal (buyer) designs an allocation rule to dictate how the two agents

(suppliers) play a non-cooperative stochastic game. Therefore, in addition to principal-

agent theory, we also apply stochastic game theory to the suppliers’ problems and

look for the suppliers’ subgame perfect Nash equilibrium in a finite-horizon game as

8
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well as their stationary Nash equilibrium in an infinite-horizon game.

The contribution and findings of each essay are as follow.

1. The main contribution of the first essay is to argue for a methodology for

studying the design of SLAs, specifically applying principal-agent theory. We have

investigated two frequently observed forms of SLAs: the lump-sum penalty SLA and

the linear-penalty one. We have identified the issue of potential supplier’s strategic

behavior under an SLA when the supplier can observe the performance history and

dynamically adjust her effort level to affect her review period performance. We find

that to mitigate the supplier’s incentive for strategic behavior, the penalty should

be dependent on the amount of supplier’s performance deviation from the target. In

particular, a simple linear-penalty SLA can do well over a lump-sum penalty one for

this purpose. When using a linear-penalty SLA, the performance threshold should

be kept close to the target, i.e., the allowable deviation of the performance from the

target should be small.

2. The second essay investigates the effectiveness of performance measures in

SLAs for a multi-task problem. Specifically, we examine two types of linear-penalty

SLAs using either the immediate or time-window ready rate as a performance mea-

sure when the supplier can make privately observed investments in inventory and

supply lead time. We find that there exists a unique positive time window such that

a ready rate with window induces the first-best investment, and so an SLA using

only the immediate ready rate generally cannot induce the first-best investment. The

immediate ready rate can induce near optimal outcome when the buyer’s cost for

delayed demand fulfillment is linear in the length of delay, but the efficiency loss is

higher when the cost is convex. Our findings demonstrate the importance of choos-

ing the right performance measure to align a supplier’s incentive, and provide some

theoretical basis for the use of time-window fulfillment rate in practice for incentive

purpose.

3. The main contribution of the third essay is to examine special features

of performance-based volume incentives under supplier competition over time, and

tackles the topic of volume incentives for operations management which has been little

studied in the literature. For both the case where a supplier’s cost of effort to perform

is proportional to the volume of business and the case where it’s independent of the

volume, we have found: to induce and maintain suppliers’ competition over time, the

optimal volume incentive scheme is generally not a simple rank-order tournament;
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handicapping the definition of winner can do well over a simple first-past-the-post rule

even when the suppliers have an identical capability of doing the work, and the role

of handicapping in volume incentive is either to enhance the suppliers’ competition

intensity or to provide a stronger incentive to the supplier with a larger share; and

volume incentives often need to take into account each supplier’s current share of

business even when a supplier’s effort cost is independent of the business volume. All

these special features of volume incentives differ from those shown for the monetary

incentives in the literature. We have also found that by limiting a supplier ‘s maximum

share in each period, volume incentive schemes can always induce a unique stationary

Nash equilibrium in the suppliers’ stochastic game over an infinite horizon.

Performance-based incentive schemes for operations management have opened an

area with many issues for research. For example, because SLAs are context dependent

and we have only studied the application to inventory management, future research

can investigate SLAs for other types of services such as those for health care, logistics,

and maintenance. The second essay has demonstrated the importance of choosing the

right performance measure for incentive alignment. Future research can be investi-

gating performance measures for various applications. This thesis has focused on a

risk neutral buyer and suppliers. In practice, firms especially the small ones often do

not want to bear a lot of risk. A firm’s risk attitude may have a big impact on the

effectiveness of a contract and its associated performance measures. Future research

can therefore be on the optimal structure of performance-based incentives under risk-

averse buyer or suppliers. Adverse selection is another issue that often exists in reality

but has not been fully examined in the literature. It refers to the situation where an

agent’s capability to do the work is privately known but unobservable to the principal.

In the presence of adverse selection, the performance measure and particularly the

performance target need to be carefully selected and the structure and the values of

the contract parameters may be affected as well. Choi et al. (2004) study the choice

of performance measures for vendor-managed-inventory when the supplier’s capacity

and inventory policy are unknown to the buyer. The third essay has looked into

volume incentives under competition. How monetary incentive interacts with com-

petitive mechanism hasn’t been well investigated and understood in the literature.

With competing suppliers, some conclusions can differ from those for a single agent.

The design of performance-based monetary incentives under competition can be an

avenue for future research.
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1.4 Structure of the Thesis

The rest of this thesis consists of three chapters from two to four. Each chapter is a

stand-alone paper with an introduction, a literature review, the main body and a con-

clusion. Following them is the bibliography for all three chapters. The mathematical

proofs for each chapter are in the appendices at the end of the thesis.

11



Chapter 2

Designing Service Level

Agreements For Inventory

Management

2.1 Introduction

Service level agreements (SLAs) are a common type of performance-based contract

for managing suppliers. A survey by Oblicore Inc. in 2007 found that 91% of organi-

zations use SLAs for managing suppliers, internal agreements, or external customer

agreements. In an SLA, the performance, or outcome of a task desired by the buyer is

identified and a service level target specified. The buyer neither dictates nor needs to

know how the work is done; the vendor can freely choose the most cost-efficient way.

As described by the US Office of Federal Procurement Policy about Performance-

Based Contracting:

The Performance-Based Acquisition (PBA) means an acquisition structured around

the results to be achieved as opposed to the manner in which the work is to be per-

formed (see, e.g., Acquisition Central website).

In return, the buyer pays a fixed price over a certain time period. As a fixed price

alone is not enough to guarantee the required performance, incentives are needed. For

example, a penalty might be imposed when the vendor underperforms over a period

of time.

Despite widespread use of SLAs for outsourcing manufacturing and services, few

papers address their design. This chapter examines some fundamental issues of SLA

design by studying an application to inventory management from a principal-agent

perspective. Specifically, consider a single supplier and a single buyer, where the

supplier manages the supply of a single product for the buyer, and can invest in

inventory to meet a service level target, but the investment level is unobservable to

12



2.1. Introduction

the buyer — a moral hazard problem in agency theory.

A problem with SLA design is that they are very context dependent. However,

companies do need to answer five questions. First, what performance measure should

be used. Since the performance is reviewed over a period of time, this measure should

be an aggregate one. Second, what performance target is appropriate, as a higher

performance means the buyer pays more. A performance target should consider

both the buyer’s valuation of performance and the vendor’s cost of doing the task.

The third question is how frequently performance will be reviewed. Any sufficiently

complex task will result in some natural variation (noise) in performance, which will

be affected by the review frequency. It is undesirable to penalize minor deviations

from the target that are due purely to noise, so the fourth question is how much

deviation is allowed from the target. Lastly, what penalty the vendor should pay

when performance exceeds the allowable deviation. Here we mainly address the last

two questions. Our objective is to study key issues in SLA design and the effectiveness

of different forms of penalties.

We do not explicitly consider the buyer’s backorder cost, but take the target

service level as exogenous. In Section 2.8.1 we discuss the situations under which an

SLA is preferred over a traditional coordination contract, e.g., when the backorder

cost is nonlinear. We investigate two choices of a penalty that the buyer might employ

to manage the supplier. The first is where the supplier incurs a lump-sum penalty

if her review phase performance is below a performance threshold. The second is

a linear-penalty SLA, where the supplier incurs a penalty linear in the amount of

deviation from a performance threshold. For example, again from the Acquisition

Central website (on Performance-Based Service Acquisition), we have:

Example 1. ”The firm-fixed-price for this ... shall be reduced by 2% if the perfor-

mance standard is not met.” (A lump-sum penalty)

Example 2. ”For each 5% degradation in ... performance observed ..., the firm-

fixed-price for ... will be reduced by 1%.” (A linear-based penalty)

Under an SLA, the supplier’s inventory performance is reviewed every 𝑅 periods,

the review phase. Unlike most inventory models we must measure performance (a

random variable) over the finite period 𝑅. A contract based on the expected perfor-

mance (service level) alone, being either unobservable or needing too long a review

phase gives no basis to the supplier for identifying and rectifying underperformance

and thus cannot provide an adequate incentive. Therefore we need the distribution
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of review phase performance. The commonly used inventory performance measures

in both the practice and the literature are fill rate and stockout rate. Fill rate is the

long-run fraction of demands that are filled immediately. The steady state distribu-

tion of the fill rate is very hard to derive. The only study on its distribution is by

Thomas (2005) using simulation for a static periodic-review base-stock model with

zero leadtime. Our problem is more than obtaining the distribution of a performance

measure because we need to find out the supplier’s optimal response and the buyer’s

optimal choice of contract parameters given a performance measure. For simplicity

in exposition, most of this chapter focuses on the ready rate — the long-run fraction

of periods that demands are filled from stock, which is equal to 1 − stockout rate.

But the major insights hold for the fill rate as well. The conventional fill rate and

ready rate are performance measures of the immediate order fulfillment. In practice,

time window fulfillment rates are more commonly used (LaLonde et al. 1988), so

we also consider the ready rate with a window — the long-run fraction of periods

that demands are filled within a pre-specified time window. We provide a theoretical

approximation to the distributions of the immediate and time window ready rates.

In our problem, the optimal inventory policy for the integrated supply chain is a

static one. We first address the SLA design problem assuming the supplier employs a

static inventory policy. However, the supplier can observe her performance during the

review phase and adjust her inventory level, inducing supplier’s strategic behavior. We

investigate the different incentives of the two penalty regimes in achieving the target

performance and avoiding sub-optimal dynamic behavior. We find that although both

the lump-sum penalty and linear-penalty SLAs can induce a nonstrategic supplier to

choose the first-best (system optimal) base-stock level, they can result in very different

inventory investments in the case of a strategic supplier. Specifically, under a lump-

sum penalty SLA, a strategic supplier can achieve a significant cost saving from using

a dynamic inventory policy; but such cost saving is minimal under a linear-penalty

SLA.

The main contribution of this chapter is to argue for a methodology for studying

the design of SLAs, specifically applying principal-agent theory. Our results have

direct managerial implications to the design of SLAs. When the supplier can observe

the performance history and dynamically adjust her effort level to affect her review

phase performance, to mitigate the supplier’s incentive for strategic behavior, the

penalty should be dependent on the degree of supplier’s performance deviation from
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the target. In particular, a simple linear-penalty SLA can do well over a lump-sum

penalty one for this purpose. When using a linear-penalty SLA, the performance

threshold should be kept close to the target, i.e., the allowable deviation of the per-

formance from the target should be small; as a consequence, the penalty rate in a

linear-penalty SLA is small so that the supplier has a low chance to pay an ‘unafford-

able’ penalty. Another drawback with the lump-sum penalty SLA is that the penalty

is generally large, which may not be feasible in practice. Although the application is

to SLAs in inventory management, the lessons are applicable to SLA design in other

situations.

The rest of this chapter is organized as follows. Section 2.2 reviews the literature.

Section 2.3 describes the model, with the distribution of the ready rate derived in

Section 2.4. Section 2.5 studies the buyer’s problem and the supplier’s long-run

average cost under the two SLAs. Section 2.6 investigates the supplier’s strategic

behavior and Section 2.7 presents numerical results. The chapter concludes with a

discussion in Section 2.8 and a summary in Section 2.9.

2.2 Literature Review

Most inventory management literature considers performance measures in the long

run using expected performance. In a finite review phase, and the fact that the

buyer cannot (and does not wish to) observe (micromanage) supplier effort, it is

critical to use the distribution of random performance to try and unravel whether

poor performance results from weak effort by the supplier or simply noise. Punishing

suppliers for mere noise means suppliers overinvest, and charge more, an inefficient

outcome. Thomas (2005) and Katok et al. (2008) consider fill rate in a finite horizon,

using a static periodic-review base-stock model with zero lead time. The former

considers a lump-sum penalty SLA; the latter a lump-sum bonus one, which gives

the supplier a fixed bonus if the actual fill rate is above a threshold. Thomas uses

simulation to investigate how the length of a review phase 𝑅 and the penalty affect

the optimal base-stock level. Katok et al. use an experimental method to examine

how 𝑅 and the bonus affect the human subjects’ choice of the base-stock level. These

two papers only consider the lump-sum penalty/bonus incentive, and do not examine

the supplier’s strategic (dynamic) behavior during a review phase.

Multiple-period review strategies are first studied by Radner (1985) for a repeated
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principal-agent game. The agent’s performance in a period is a noisy signal of her

effort level in that period, and the performance in each period is independently and

identically distributed (i.i.d.). The agent’s performance is reviewed every 𝑅 periods.

If performance is within a margin of error of the expected output under the desired

efficient effort level, the agent ’passes’ the review. Otherwise they enter a penalty

phase of 𝑀 periods.

In the supply chain context, Ren et al. (2008) apply a modified multiple-period

review strategy to an information sharing game between a buyer and a supplier in

a decentralized supply chain. In each period, the market demand is a function of a

demand state and some normally distributed random variable, the buyer privately

observes the realized demand state and sends a forecast to the supplier. A review

strategy is used to evaluate whether the buyer truthfully shares the demand state

information. The review strategy in their model differs from the one in Radner

(1985) in two aspects. First, the review of the buyer’s truthfulness of information

sharing is started right at the beginning of each review phase and is conducted every

period instead of only once at the end of a review phase. Second, the review phase is

not fixed, 𝑅 periods is the maximum length, but the phase can be terminated earlier

once a review indicates that the buyer will have no incentive to share information

truthfully during the rest of the review phase.

Both papers show that the two parties’ payoffs can be arbitrarily close to the

equilibrium efficient payoffs when 𝑅 is sufficiently large. In our model, the SLA

is also a multiple-period review strategy, but there are two major differences. Our

review period length 𝑅 is exogenous, and our penalty is monetary, not a subsequent

phase of a noncooperative game. Also in our model, the performance in each period

can be correlated. We and Radner (1985) study a moral hazard problem and Ren et

al. (2008) a hidden information one.

Choi et al. (2004) investigate choosing supplier performance measures in a vendor-

managed-inventory context. The supplier’s capacity and inventory policy are private

information, so the buyer sets performance measures for the supplier to meet an end-

customer service level target. They show that in a capacitated supply chain, the

supplier’s service level is in general not sufficient to guarantee the target customer

service level, and they propose a menu of contracts instead. Although supplier’s

actions are unobservable in their model, Choi et al. focus on the choice of performance

measures rather than the noise in the observed measures and the penalty for failing
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to meet targets. The performance measure in their study is mainly the ready rate.

The economics literature studies discontinuous incentive schemes where the pay-

ment from a principal to an agent changes only when some threshold of good or

bad performance is reached (McMillan 1992). These are typically single-period mod-

els. We study discontinuous incentive schemes under a multi-period review strategy,

which bring about issues that do not exist in a single-period model.

As we employ a principal-agent framework, a reasonable question is whether our

work is simply a special case. The answer is ‘yes’ at the most abstract level, but the

implementation details differentiate them markedly. In the principal-agent literature,

when both parties are risk neutral, a fixed-fee contract can be used to induce the

first-best effort level, under which the buyer pays the supplier a fixed fee and the

supplier bears all the system costs. Our study differs in two aspects. First, the

SLAs in our study have a specific payment structure in that the supplier only pays

a penalty for underperformance. So an SLA gives a specific form of risk-sharing rule

for the two parties. Secondly, in the principal-agent literature, the distribution of

the performance usually has a simple form such as an additive noise. As we focus

on specific applications, the specific distribution of the performance is critical and

typically quite complex.

The application of SLAs to call center outsourcing is studied by Milner and Olsen

(2008) and Hasija et al. (2008). Both papers consider SLAs based on the expected

performance and do not consider a multi-period review strategy.

2.3 Model Description

Consider a supply chain consisting of a single supplier and a single buyer, where

the supplier manages the supply of a single product for the buyer near the buyer’s

site. Both parties are risk neutral. The demand is stochastic, and the demand in

each period is i.i.d. with mean 𝜆 and standard deviation 𝜎. Assume the distribution

of single-period demand is unimodal and can be either discrete or continuous. The

supplier owns the inventory and incurs a constant unit inventory holding cost ℎ per

time period. The supplier uses a periodic-review base-stock policy with a constant

inventory replenishment lead time 𝐿 and a base-stock level 𝑆. Her only choice is the

base-stock level. At the beginning of period 𝑡, the supplier determines the base-stock

level and places an order. The order placed at time 𝑡 arrives by the end of period

17



2.4. Performance Measure

𝑡+ 𝐿 and is used to fill demands occurred before the end of period 𝑡+ 𝐿.

If a demand is not filled immediately, it is backlogged, and the buyer incurs the

backorder (delay) cost, 𝐶𝐷(𝑦), which is increasing and convex in the length of delay 𝑦.

The buyer pays a unit transfer price 𝑝 for the product to the supplier. The supplier’s

unit ordering cost 𝑐 is constant. Under our assumptions on the inventory holding

cost and backorder cost, the optimal inventory policy for the integrated supply chain

is a static base-stock (order-up-to-S) policy, which has been shown in, for example,

Zipkin (2000).

In order to induce the supplier to invest in inventory, the buyer contracts with the

supplier on the supplier’s inventory service level. This SLA uses some aggregate level

of performance, sets a target service level, and reviews the supplier’s performance

every 𝑅 periods (a review phase). Assume 𝑅 > max{𝐿, 1}.

2.4 Performance Measure

Commonly used measures of inventory performance are fill rate and ready rate. Fill

rate is the long-run fraction of demands that are filled immediately. Ready rate is the

long-run fraction of periods in which demands are filled immediately, which measures

the inventory availability and is equal to 1 − stockout rate. The ready rate and fill

rate in our model are the 𝛼-type and 𝛾-type service levels as defined in Schneider

(1981) and used by Choi et al. (2004). For simplicity in exposition, we mainly focus

on the ready rate. We note that the major insights apply to fill rate as well. We

consider two types of ready rates: the conventional immediate ready rate and the

time window ready rate, which measures the performance of filling demands within

a delivery time window.

2.4.1 Performance measure under a multi-period review

strategy

The supplier’s performance is evaluated every review phase of length 𝑅 demand peri-

ods. Let 𝐷(𝑡) be the demand in 𝑡 periods, 𝐷(𝑡) ≥ 0. Let 𝐷[𝑡, 𝜏) denote the demand

in the interval [𝑡, 𝜏), i.e., from period 𝑡 through period 𝜏 − 1. Let 𝑊 (0 ≤ 𝑊 ≤ 𝐿) be

the delivery time window. 𝑊 = 0 means immediate demand fulfillment, and 𝑊 > 0

means demand fulfillment within a time window 𝑊 . Let the performance indicator
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for period 𝑡 (1 ≤ 𝑡 ≤ 𝑅) be 𝑋𝑊
𝑡 , 𝑋𝑊

𝑡 = 1{𝐷[𝑡 − 𝐿, 𝑡 + 1 −𝑊 ) ≤ 𝑆𝑡−𝐿} ∈ {0, 1},
where 𝑋𝑊

𝑡 = 1 and 𝑋𝑊
𝑡 = 0 represent the situations where there is no or some de-

mand delayed longer than time 𝑊 at the end of period 𝑡, and 𝑆𝑡−𝐿 is the supplier’s

base-stock level chosen in period 𝑡− 𝐿.

We define Pr{𝑋𝑊
𝑡 = 1} = Pr{𝐷[𝑡−𝐿, 𝑡+1−𝑊 ) ≤ 𝑆𝑡−𝐿} = Pr{𝐷(𝐿+1−𝑊 ) ≤

𝑆𝑡−𝐿} = 𝐹𝐿+1−𝑊 (𝑆𝑡−𝐿), where 𝐹𝑛(⋅) is the cumulative distribution function (cdf)

of demands in 𝑛 periods. Let 𝑓𝑛(⋅) denote the corresponding probability density

function (pdf) for continuous demand, or the corresponding probability mass function

for discrete demand. For continuous demand, assume 𝐹𝑛(⋅) and 𝑓𝑛(⋅) are continuous.
Let the supplier’s cumulative performance during a review phase be 𝜂𝑊𝑅 =

𝑅∑
𝑡=1

𝑋𝑊
𝑡 .

𝜂𝑊𝑅 is the number of periods without delay longer than 𝑊 , and 0 ≤ 𝜂𝑊𝑅 ≤ 𝑅. So the

ready rate in a review phase is 𝐴𝑊
𝑅 = 𝜂𝑊𝑅 /𝑅, and is random. 𝐴0

𝑅 is the review phase

immediate ready rate, and 𝐴𝑊
𝑅 (𝑊 > 0) the review phase time window ready rate.

In each period of a review phase, the supplier receives a constant unit transfer price.

Given a performance threshold 𝛼 for the review phase ready rate 𝐴𝑊
𝑅 , if the observed

𝐴𝑊
𝑅 ≤ 𝛼, i.e., 𝜂𝑊𝑅 ≤ 𝑅𝛼, then the supplier incurs a penalty.

2.4.2 Distribution of ready rate under a static base-stock

policy

Under a static base-stock policy, the supplier uses the same base-stock level 𝑆 in every

period. Because the demand in each period is i.i.d, 𝑋𝑊
𝑡 has an identical distribution

for each 𝑡. Pr{𝑋𝑊
𝑡 = 1} = 𝐹𝐿+1−𝑊 (𝑆), and the ready rate (in the long run) is

𝐴𝑊 = lim𝑅→∞𝐴𝑊
𝑅 = 𝐹𝐿+1−𝑊 (𝑆).

The case when 𝐿 = 0 :

We only need to consider the immediate ready rate, 𝑊 = 0. The probability

of no stockout in a period is Pr{𝑋0
𝑡 = 1} = Pr{𝐷(1) ≤ 𝑆} = 𝐹1(𝑆). Because

the demand in each period is i.i.d, the performance in a period 𝑋𝑡 is i.i.d. So the

cumulative performance 𝜂0𝑅 has a binomial distribution 𝐵(𝑅,𝐹1(𝑆)), and Pr{𝜂0𝑅 =

𝑗} =
(
𝑅
𝑗

)
(𝐹1(𝑆))

𝑗(1−𝐹1(𝑆))
𝑅−𝑗. Moreover, the distribution of the review phase ready

rate 𝐴0
𝑅 is approximately normal 𝑁(𝐹1(𝑆),

√
𝐹1(𝑆)(1−𝐹1(𝑆))

𝑅
).

The case when 𝐿 > 0 :
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We can have either 𝑊 = 0 or 𝑊 > 0. The performance in each period can

be correlated. The performance outcomes in any two periods, 𝑋𝑊
𝑖 and 𝑋𝑊

𝑗 , are

independent for ∣𝑖−𝑗∣ ≥ 𝐿+1−𝑊 because 𝐷[𝑖−𝐿, 𝑖+1−𝑊 ) and 𝐷[𝑗−𝐿, 𝑗+1−𝑊 )

have no periods overlapped; and they are correlated for ∣𝑖 − 𝑗∣ ≤ 𝐿 − 𝑊 because

𝐷[𝑖−𝐿, 𝑖+1−𝑊 ) and 𝐷[𝑗−𝐿, 𝑗+1−𝑊 ) have some periods in common. Proposition

2.1 describes the theoretical distribution for 𝜂𝑊𝑅 .

Proposition 2.1 Under a static periodic-review base-stock policy with base-stock level

𝑆,
𝜂𝑊𝑅 −𝐸(𝜂𝑊𝑅 )

𝜎𝑊
𝑅

converges in distribution to a standard normal random variable as 𝑅

approaches ∞, where

𝐸(𝜂𝑊𝑅 ) =
𝑅∑
𝑡=1

𝐸(𝑋𝑊
𝑡 ) = 𝑅𝐹𝐿+1−𝑊 (𝑆),

and variance

(𝜎𝑊
𝑅 )2 = 𝑅𝐹𝐿+1−𝑊 (𝑆)− [(𝐿−𝑊 )(2𝑅− 𝐿+𝑊 − 1) +𝑅](𝐹𝐿+1−𝑊 (𝑆))2

+
𝐿−𝑊∑
𝑛=1

2(𝑅− (𝐿+ 1) + 𝑛+𝑊 )

∫ 𝑆

0

(𝐹𝐿+1−𝑛−𝑊 (𝑆 − 𝑥))2𝑑𝐹𝑛(𝑥). (2.1)

Proposition 2.1 implies that for sufficiently large 𝑅, 𝜂𝑊𝑅 is approximately normally

distributed with mean 𝑅𝐹𝐿+1−𝑊 (𝑆) and standard deviation 𝜎𝑊
𝑅 . Therefore, in our

numerical analysis, we will use normal approximation for the distribution of 𝜂𝑊𝑅 .

Because the supplier’s review phase ready rate 𝐴𝑊
𝑅 = 𝜂𝑊𝑅 /𝑅, Corollary 2.1 follows.

Corollary 2.1 Under a static base-stock policy with base-stock level 𝑆,
𝐴𝑊

𝑅 −𝐸(𝐴𝑊
𝑅 )

𝜎𝑊
𝑅 /𝑅

converges in distribution to a standard normal random variable as 𝑅 approaches ∞,

where

𝐸(𝐴𝑊
𝑅 ) = 𝐹𝐿+1−𝑊 (𝑆).

So for sufficiently large 𝑅, 𝐴𝑊
𝑅 is approximately normally distributed with mean

𝐹𝐿+1−𝑊 (𝑆) and standard deviation 𝜎𝑊
𝑅 /𝑅. Proposition 2.2 shows the effect of the

length of a review phase, 𝑅, on the variability of performance measure 𝐴𝑊
𝑅 .

Proposition 2.2 𝑉 𝑎𝑟(𝐴𝑊
𝑅 ) is decreasing in 𝑅.

Proposition 2.2 implies that a long review phase reduces the variability of the

supplier’s performance outcome. The fill rate distribution obtained by Thomas (2005)

using simulation shows a similar property.
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2.5. Buyer’s Problem

2.5 Buyer’s Problem

In this section we consider a nonstrategic supplier, assuming the supplier uses a static

inventory policy. We derive the optimal contract parameters for the buyer’s prob-

lem. In Section 2.6 we consider the dynamic inventory policy and study a strategic

supplier’s problem under an optimal contract.

Consider two types of SLAs. The first one has a lump-sum penalty under which

a supplier pays the buyer a lump-sum penalty 𝐾 if the supplier’s ready rate with

window 𝑊 during a review phase, 𝐴𝑊
𝑅 , is not above the performance threshold 𝛼.

The second type is a linear-penalty SLA, under which if 𝐴𝑊
𝑅 is no more than 𝛼, then

the supplier will pay the buyer a penalty proportional to the difference between 𝐴𝑊
𝑅

and 𝛼. Specifically, for the realized number of periods without stockout 𝑖, 𝑖 ≤ 𝑅𝛼, the

supplier will pay a penalty 𝐾(𝑅𝛼+1− 𝑖). Let 𝐶𝑃 (𝐴
𝑊
𝑅 , 𝛼,𝐾∣𝑆) denote the supplier’s

average penalty per period when the supplier chooses a static base-stock policy with

base-stock level 𝑆 and the realized review phase ready rate is 𝐴𝑊
𝑅 , given the ready

rate threshold 𝛼 and penalty parameter 𝐾.

The supplier’s objective is to maximize her long-run average profit, which is her

long-run average revenue minus cost, including the inventory holding cost, the ex-

pected penalty and the ordering cost. Because of full backlogging, all demands are

filled. So the supplier’s base-stock level in each period does not affect the average

ordering cost. Without loss of generality we assume the unit ordering cost 𝑐 = 0.

Given the lead time 𝐿 and the base-stock level 𝑆, the buyer’s average cost is

𝑈𝐿(𝑆) = 𝑝𝜆+ 𝜆𝐸𝐶𝐷(𝑦∣𝑆)− 𝐸𝐶𝑃 (𝐴
𝑊
𝑅 , 𝛼,𝐾∣𝑆),

and the supplier’s average profit is

𝜋𝐿(𝑆) = 𝑝𝜆− ℎ𝐸[𝑆 −𝐷(𝐿+ 1−𝑊 )]+ − 𝐸𝐶𝑃 (𝐴
𝑊
𝑅 , 𝛼,𝐾∣𝑆),

where 𝐷(𝐿+ 1−𝑊 ) is the realized demand in 𝐿+ 1−𝑊 periods.

The buyer’s problem is to choose contract parameters 𝑝, 𝛼 and 𝐾 such that

min𝑝,𝛼,𝐾,𝑆 𝑈𝐿(𝑆)

subject to (𝐼𝑅) : 𝜋𝐿(𝑆) ≥ 𝜋

(𝐼𝐶) : 𝑆 ∈ argmax𝑠 𝜋𝐿(𝑆)

,
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2.5. Buyer’s Problem

where 𝜋 is the supplier’s reservation profit per period, and the first constraint is

called the individual rationality (IR) constraint, which guarantees the supplier to

gain at least her reservation profit so that she will accept the contract; and the

second constraint is called the incentive compatibility (IC) constraint, which reflects

the supplier’s optimal solution given the contract offered by the buyer. The above

formulation with the (IR) and (IC) constraints is a standard formulation for incentive

mechanism design in agency theory.

The buyer can choose 𝑝 to make the supplier earn only her reservation profit and

extract the rest of supply chain profit1. So the buyer’s problem can be reformulated

as
min𝛼,𝐾,𝑆 ℎ𝐸[𝑆 −𝐷(𝐿+ 1−𝑊 )]+ + 𝜆𝐸𝐶𝐷(𝑦∣𝑆)

subject to 𝑆 ∈ argmax𝑠 𝜋𝐿(𝑆)
. (2.2)

Let 𝑆∗ be the optimal solution without constraint (2.2). Under our assumptions on

𝐶𝐷(𝑦∣𝑆), 𝑆∗ minimizes the long-run average supply chain cost. So the target ready

rate is 𝐹𝐿+1−𝑊 (𝑆∗), and the buyer’s problem is to choose 𝛼 and 𝐾 to induce the

first-best base-stock level 𝑆∗ and ready rate 𝐹𝐿+1−𝑊 (𝑆∗). In practice, a reasonable

performance threshold should not be above the performance target, so we only con-

sider 𝛼 ≤ 𝐹𝐿+1−𝑊 (𝑆∗).

2.5.1 Choice of contract parameters

Let 𝑉𝐿(𝑆) denote the supplier’s average cost under a static base-stock 𝑆 policy. Un-

der the buyer’s contract, the supplier’s average revenue 𝑝𝜆 does not affect 𝑆, so

the supplier’s profit-maximizing problem is equivalent to minimizing 𝑉𝐿(𝑆). Be-

cause the review phase ready rate 𝐴𝑊
𝑅 = 𝜂𝑊𝑅 /𝑅, in the supplier’s average penalty

𝐸𝐶𝑃 (𝐴
𝑊
𝑅 , 𝛼,𝐾∣𝑆), 𝐴𝑊

𝑅 can be replaced by 𝜂𝑊𝑅 /𝑅.

Under a lump-sum penalty SLA with the ready rate threshold 𝛼 and lump-sum

penalty 𝐾, the supplier’s problem is

min
𝑆
𝑉𝐿(𝑆) = ℎ𝐸[𝑆 −𝐷(𝐿+ 1−𝑊 )]+ +

𝐾

𝑅

𝑅𝛼∑
𝑖=0

Pr{𝜂𝑊𝑅 = 𝑖∣𝑆}. (2.3)

Under a linear-penalty SLA with threshold 𝛼 and penalty rate 𝐾, the supplier’s

1The unit transfer price 𝑝 can be regarded as a fixed fee. By choosing a higher 𝑝, the buyer can
realize any desired profit division between the two parties.
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problem is

min
𝑆
𝑉𝐿(𝑆) = ℎ𝐸[𝑆 −𝐷(𝐿+ 1−𝑊 )]+ +

𝐾

𝑅

𝑅𝛼∑
𝑖=0

(𝑅𝛼 + 1− 𝑖) Pr{𝜂𝑊𝑅 = 𝑖∣𝑆}. (2.4)

For 𝐿 = 0 and 𝑊 = 0,

Pr{𝜂0𝑅 = 𝑖∣𝑆} =

(
𝑅

𝑖

)
(𝐹1(𝑆))

𝑖(1− 𝐹1(𝑆))
𝑅−𝑖, (2.5)

where

𝐹1(𝑆) = Pr{𝐷(1) ≤ 𝑆}.

For 𝐿 > 0 and 0 ≤ 𝑊 ≤ 𝐿, using the result in Section 2.4.2, the distribution

of 𝜂𝑊𝑅 is approximately normal with mean 𝑅𝐹𝐿+1−𝑊 (𝑆) and standard deviation 𝜎𝑊
𝑅 ,

where 𝜎𝑊
𝑅 is given by (2.1). Using a continuity correction,

Pr{𝜂𝑊𝑅 = 0∣𝑆} = Φ(𝑧0),

Pr{𝜂𝑊𝑅 = 𝑖∣𝑆} = Φ(𝑧𝑖)− Φ(𝑧𝑖−1) 0 < 𝑖 < 𝑅,

Pr{𝜂𝑊𝑅 = 𝑅∣𝑆} = 1− Φ(𝑧𝑅−1), (2.6)

where Φ(⋅) is the cdf of the standard normal distribution and 𝑧𝑖 =
𝑖+0.5−𝑅𝐹𝐿+1−𝑊 (𝑆)

𝜎𝑊
𝑅

.

Now what values of parameters (𝛼,𝐾) ensure that the supplier chooses 𝑆∗, the

first best integrated solution? We approach this in two steps; first, the necessary

condition for the supplier’s problem gives us a set of (𝛼,𝐾) candidates for each type

of SLA, and then we look into the unimodality of the supplier’s cost function under

the (𝛼,𝐾) candidates.

Proposition 2.3 The (𝛼,𝐾) values that ensure 𝑆∗ satisfies the first order necessary

conditions for optimality of either (2.3) and (2.4) are such that for continuous de-

mand, there is a unique optimal 𝐾∗(𝛼) for a given 𝛼; and for discrete demand, there

is an interval of optimal 𝐾∗(𝛼), [𝐾∗(𝛼), 𝐾
∗
(𝛼)], for a given 𝛼.

Formulas for both can be found in Appendix A. Proposition 2.3 identifies multiple

optimal candidates (𝛼,𝐾) for both discrete and continuous demands and both types

of penalties. Because 𝜂𝑊𝑅 only takes integer values, we pay particular attention to

Θ, the set of (𝑅𝛼,𝐾) values under which 𝑆∗ is the supplier’s local optimum; thus
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Θ = {(𝑅𝛼,𝐾)∣0 < 𝛼 ≤ 𝐹𝐿+1−𝑊 (𝑆∗), 𝑅𝛼 is integer, 𝐾 ∈ [𝐾∗(𝛼), 𝐾
∗
(𝛼)]}. Note

𝐾∗(𝛼) = 𝐾
∗
(𝛼) = 𝐾∗(𝛼) in the continuous case. We also note that Θ can be empty.

2.5.2 Unimodality of the supplier’s objective function

The candidate parameters (𝛼,𝐾) above are derived from the necessary conditions for

optimality, but may not be sufficient. In this section we examine the unimodality of

the supplier’s average cost under the (𝛼,𝐾) pairs derived above. If the supplier’s cost

function is unimodal then we can be assured that 𝑆∗ is a global optimum. Otherwise

the solution might be only a local optimum and care needs to be exercised. The

supplier’s cost function is very complex due to the complicated distribution function of

the performance measure. Even with strong assumptions on the demand distribution,

it is generally difficult to prove its unimodality.2 We show that the supplier’s cost

function under a lump-sum penalty SLA is generally not unimodal. To show its

unimodality under a linear-penalty SLA, in particular for 𝐿 > 0, we have to rely on

numerical results.

Lump-sum penalty SLA

For (𝑅𝛼,𝐾) ∈ Θ, 𝑉𝐿(𝑆), the supplier’s average cost under a static base-stock 𝑆

policy, may not be unimodal and 𝑆∗ not a global optimum. Consider the following

example.

Consider a normal demand distribution 𝑁(10,
√
10), which can also be considered

as an approximation for a Poisson demand with 𝜆 = 10; ℎ = 1, 𝑅 = 30, 𝐿 = 𝑊 = 0,

𝑆∗ = 14, and hence the performance target 𝐹𝐿+1−𝑊 (𝑆∗) = 𝐹1(𝑆
∗) = 90%. Figure 2.1

shows five supplier’s cost functions 𝑉0(𝑆) under different pairs of parameters

(𝑅𝛼,𝐾) ∈ {(23, 283), (24, 146), (25, 92), (26, 80), (27, 77)} ⊂ Θ. Observe that in

this continuous example the 𝐾∗(𝛼) are unique, not intervals. For example (27, 77)

gives 𝛼 = 27/30 = 90% and (24, 146) gives 𝛼 = 80% compared to the target of

𝐹1(𝑆
∗) = 90%. The plots have increasing 𝑅𝛼 corresponding to a decreasing intercept

on the vertical cost axis. Each curve has 𝑆∗ = 14 as a local optimum, however

none of the curves is unimodal and 𝑆∗ is the global optimum only for 𝑅𝛼 = 23 and

24. For the remaining three pairs, 𝑆 = 0 is the global optimum and 𝑆∗ only local.

Intuitively, under a lump-sum penalty SLA, reducing the base-stock level will only

2For the special case when 𝐿 = 0 and 𝑓 ′
1(𝑆

∗) < 0, we can prove that 𝑆∗ is a local optimum for
the supplier’s problem with either penalty regime. Interested readers can refer to the Appendix.
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increase the supplier’s probability of being penalized, not the penalty itself. For a

large performance threshold, the penalty is small; hence the supplier may prefer not to

stock at all because the holding cost saved may exceed the expected penalty increase.

Thus 𝑆 = 0 can be the global optimum for large 𝛼.

Figure 2.1: Supplier’s cost function (lump-sum penalty, L=0)

Linear-penalty SLA

For the same example but with a linear penalty, Figure 2.2 plots the five sup-

plier’s cost functions for (𝑅𝛼,𝐾) ∈ {(23, 171), (24, 79), (25, 43), (26, 27), (27, 20)} ⊂
Θ. Again, the curve with higher 𝑅𝛼 has lower intercept on the vertical cost axis, and

the first-order condition gives 𝑆∗ = 14 for each curve, but now Figure 2.2 shows that

they are all unimodal and 𝑆∗ is the global optimum.

Figure 2.2: Supplier’s cost function (linear penalty, L=0)

Comparing figures 2.1 and 2.2, observe the cost of choosing too small a value of 𝑆

is much more with a linear than a lump-sum penalty. This is because once the target
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has been missed, with a lump-sum penalty any further deterioration is costless. With

the linear penalty however, the expected cost keeps rising as performance deteriorates.

For 𝐿 = 1, similar patterns can be found.

Thus there are multiple choices of optimal (𝛼,𝐾) for either penalty regime. The

linear-penalty SLA appears more likely unimodal than the lump-sum penalty case.

This is because the supplier’s penalty increases with the amount of performance

deviation from the target. When reducing the base-stock level, the supplier will not

only increase the probability of being penalized, but also the probability of paying

a higher penalty, so the expected penalty increase will offset the holding cost saved.

From Section 2.5.1 and this section, we can conclude that in the case of a lump-sum

penalty SLA, 𝑉𝐿(𝑆
∗) is likely to be the global minimum only under relatively small

thresholds. The linear-penalty SLA is more likely to have 𝑆∗ as the global optimum.

2.6 Supplier’s Strategic Behavior

The optimal contract parameters are derived above under a static inventory policy.

However the supplier, aware of her performance, may prefer to dynamically adjust

inventory as the review period progresses. If her performance so far is good with

few periods left in that review phase, her probability of exceeding the performance

threshold 𝛼 is large, then she has an incentive to decrease inventory to reduce cost.

If the supplier’s probability of exceeding 𝛼 is small due to poor performance, she

may have an incentive to increase inventory to repair the damage or alternatively to

abandon any chance of improving and at least reduce cost by not keeping any further

inventory.

In this section we formulate the dynamic program for computing a strategic sup-

plier’s optimal average cost under a dynamic inventory policy and the optimal contract

obtained above. We first investigate the supplier’s cost minimization problem in a

single review phase under a contract offered, ignoring the impact of the inventory

policy on the subsequent review phases. After we obtain the supplier’s minimum

cost from a single-review-phase problem, we then calculate the supplier’s minimum

long-run average cost.

In this chapter, we mainly study the cases of 𝐿 = 0 and 1 with 𝑊 = 0. But

the major findings also hold for the situation of 𝐿 > 1 and 0 ≤ 𝑊 ≤ 𝐿. For a

positive lead time 𝐿 > 0, the supplier’s performance realization from her action in
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any period is delayed until 𝐿 periods later. So when choosing the base-stock level

in period t, the supplier has to anticipate possible performance outcomes in periods

𝑡, 𝑡 + 1, ..., 𝑡 + 𝐿 − 1, which depend on the base-stock levels chosen in period 𝑡 − 𝑙

(𝑙 = 1, ..., 𝐿).

2.6.1 Single-review-phase problem

Consider a single review phase with 𝑅 periods. The decision epochs = {1, 2, ..., 𝑅,𝑅+

1}, and there is no decision made in period 𝑅 + 1. Let

𝑑𝑡 = demand in period t;

𝑆𝑡 = inventory order-up-to level chosen in period t; and

𝜂𝑡 = supplier’s performance history — number of periods without a stockout up

to the end of period t, 0 ≤ 𝜂𝑡 ≤ 𝑡 for 1 ≤ 𝑡 ≤ 𝑅.

Assume the supplier can always observe her performance history.

For the dynamic programming problem we consider discrete demand, but, without

loss of generality, we scale demand so that 1 unit is ‘small’. The purpose of this will be

clear in Section 2.7 and is only to make the exposition clearer. The dynamic program

for 𝐿 = 0 is a straightforward derivation from 𝐿 = 1, so below we will only give the

𝐿 = 1 case.

By Proposition 2.1 and letting 𝐿 = 1 and 𝑊 = 0, the distribution of 𝜂𝑅 is

approximately normal with mean 𝑅𝐹2(𝑆) and standard deviation 𝜎𝑅, where

𝜎2
𝑅 = 𝑅𝐹2(𝑆)− (3𝑅− 2)(𝐹2(𝑆))

2 + 2(𝑅− 1)
𝑆∑

𝑑=0

(𝐹1(𝑆 − 𝑑))2𝑓1(𝑑).

Let 𝐼𝑡 = the supplier’s inventory position (inventory plus the order made in the

last period) at the beginning of period t, before an order is placed in period t; and

𝐼𝑡 = max{−1, 𝐼𝑡}.
So the base-stock level chosen in period 𝑡, 𝑆𝑡 ≥ 𝐼𝑡.

Let 𝜋1
𝑡 (𝑆𝑡∣𝑖, 𝐼𝑡) denote the supplier’s cost to go from period 𝑡 in a single review

phase given performance history 𝑖, 𝐼𝑡 and 𝑆𝑡; and 𝜋1
𝑡 (𝑖, 𝐼𝑡) = min𝑆𝑡≥𝐼𝑡 𝜋

1
𝑡 (𝑆𝑡∣𝑖, 𝐼𝑡)

denote the supplier’s optimal cost to go from period 𝑡 given 𝑖 and 𝐼𝑡.

Because the supplier does not incur backorder cost, for any negative net inventory

in a period the supplier has the same immediate cost (zero inventory holding cost)

and performance outcome (stockout) in that period. Thus in the state space, we can
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use a single state −1 to represent all the states of negative inventory.

The state space is {(𝜂𝑡−1, 𝐼𝑡) : 0 ≤ 𝜂𝑡−1 ≤ 𝑡−1,−1 ≤ 𝐼𝑡 ≤ 𝑆}, where 1 ≤ 𝑡 ≤ 𝑅+1

and 𝑆 is a large number such that 𝐹2(𝑆) ≈ 1.

Actions (inventory order-up-to level in a period): 𝑆 ∈ {0, 1, .., 𝑆}
State transition:

𝐼𝑡+1 = max{−1, 𝑆𝑡 − 𝑑𝑡}, 𝜂𝑡 =
{
𝜂𝑡−1 + 1 if 𝐼𝑡 ≥ 𝑑𝑡

𝜂𝑡−1 if 𝐼𝑡 < 𝑑𝑡
.

Let 𝜂𝑡−1 = 𝑖 for 1 ≤ 𝑡 ≤ 𝑅+1. Note that 𝜂0 = 0. All the expectation calculations

‘𝐸’ below are on 𝑑𝑡.

Rewards:

𝑟𝑡((𝑖, 𝐼𝑡), 𝑆𝑡) = ℎ𝐸[𝐼𝑡 − 𝑑𝑡]
+ 1 ≤ 𝑡 ≤ 𝑅,

lump-sum penalty: 𝑟𝑅+1((𝑖, 𝐼𝑅+1)) =

{
𝐾 if 𝑖 ≤ 𝑅𝛼

0 if 𝑖 > 𝑅𝛼
,

linear penalty: 𝑟𝑅+1((𝑖, 𝐼𝑅+1)) is similarly defined by

replacing 𝐾 by 𝐾(𝑅𝛼 + 1− 𝑖). (2.7)

The supplier’s base-stock level decision made in period 𝑅 of a review phase cannot

affect her performance in that review phase, but it determines the inventory holding

cost and performance outcome in period 1 of the next review phase. So the optimal

base-stock level 𝑆𝑅 in period 𝑅 is 𝑆𝑅 = argmin𝑆≥𝐼𝑅 𝐸𝜋1(0,max{−1, 𝑆 − 𝑑𝑅}),
where 𝐸𝜋1(0,max{−1, 𝑆−𝑑𝑅}) =

𝑆∑
𝑑=0

Pr{𝐷(1) = 𝑑}𝜋1(0, 𝑆−𝑑)+𝐹 1(𝑆)𝜋1(0,−1)

is the supplier’s expected cost to go from period 1 of the next review phase. We

conjecture that if possible, the supplier will choose the first-best base-stock level 𝑆∗

in period 𝑅. So 𝑆𝑅 = max{𝐼𝑅, 𝑆∗}.

Transition probabilities:

𝑝𝑡((𝑗, 𝐼)∣(𝑖, 𝑢), 𝑆) =

⎧⎨⎩
Pr{𝐷(1) = 𝑆 − 𝐼} 𝑗 = 𝑖+ 1, 𝑆 ≥ 𝑢, 0 ≤ 𝑆 − 𝐼 ≤ 𝑢, 𝐼 ≥ 0

Pr{𝐷(1) = 𝑆 − 𝐼} 𝑗 = 𝑖, 𝑆 ≥ 𝑢, 𝑆 − 𝐼 > 𝑢, 𝐼 ≥ 0

Pr{𝐷(1) > 𝑆} 𝑗 = 𝑖, 𝑆 ≥ 𝑢, 𝐼 = −1

0 otherwise

.
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The dynamic program is

𝜋1
𝑅+1(𝑖, 𝐼𝑅+1) = 𝑟𝑅+1((𝑖, 𝐼𝑅+1)),

for 1 ≤ 𝑡 ≤ 𝑅 :

𝜋1
𝑡 (𝑖, 𝐼𝑡) = ℎ𝐸[𝐼𝑡 − 𝑑𝑡]

+ + min
𝑆𝑡≥𝐼𝑡

[𝐸{𝜋1
𝑡+1(𝑖+ 1, 𝑆𝑡 − 𝑑𝑡)∣𝑑𝑡 ≤ 𝐼𝑡}

+𝐸{𝜋1
𝑡+1(𝑖,max{−1, 𝑆𝑡 − 𝑑𝑡})∣𝑑𝑡 > 𝐼𝑡}].

From the dynamic program, we can obtain 𝜋1
1(0, 𝐼1) for various opening inventory level

𝐼1. The optimal base-stock policy obtained for this single review phase is not optimal

in general for the infinite horizon problem because the terminal reward 𝑟𝑅+1 ignores

the inventory holding cost in the early periods of the next review phase resulting from

the supplier’s base-stock choice in period 𝑅 of the current review phase.

2.6.2 Infinite-horizon problem

Instead of treating the infinite horizon as consisting of many time periods, we can

think of each review phase as one time period in the infinite horizon, i.e., the infinite

horizon consists of many review phases. So all of the supplier’s base-stock policies

in the 𝑛𝑡ℎ finite review phase can be denoted by a vector −→𝜸 𝑛 = (𝛾𝑛1 , 𝛾
𝑛
2 , ..., 𝛾

𝑛
𝑅) ∈ Γ,

where 𝛾𝑛𝑡 is the supplier’s base-stock policy in period 𝑡 of the 𝑛𝑡ℎ review phase, and

Γ is the set of possible base-stock policies in a review phase. Although the supplier’s

base-stock policy within a review phase depends on her performance history in that

review phase and so is history dependent, −→𝜸 𝑛 and 𝜋1
1(0, 𝐼1) only depend on 𝐼1, the

opening inventory of a review phase. Let the opening inventory of a review phase be

the system states. Thus the system states and Γ do not vary with time, and the state

transitions (from the opening inventory of a review phase to that of the subsequent

phase) as well as the supplier’s rewards (expected total cost in a review phase) are

Markovian. So the supplier’s problem in an infinite horizon consisting of review phases

is a Markov decision process. Assume the supplier only uses deterministic base-stock

inventory policies. Due to demand uncertainty, this MDP is unichain.

To find out the supplier’s optimal average cost in an infinite horizon, we use

value iteration. Let 𝜋1(𝐼) denote the supplier’s expected total cost in a single review

phase with an opening inventory 𝐼 as derived above. Let 𝜋𝑛(𝐼) denote the supplier’s

expected total cost in 𝑛 review phases with an opening inventory 𝐼 for the first review

29



2.7. Numerical Analysis

phase. With 𝑛 review phases, the review phases are indexed reversely from 1 to 𝑛,

i.e., the last review phase is indexed by 1 and the first by 𝑛.

The algorithm is as follows.

1. Let 𝜋1(𝐼) = 𝜋1
1(0, 𝐼), 𝜀 = 0.01, and set 𝑛 = 1.

2. For each 𝐼 ∈ {−1, 0, .., 𝑆}, compute 𝜋𝑛+1(𝐼) by applying the dynamic program

as defined above for a single-review-phase problem but with the terminal reward

𝑟𝑅+1((𝑖, 𝐼𝑅+1)) added by 𝜋𝑛(𝐼𝑅+1).

3. If max
𝐼

{𝜋𝑛+1(𝐼) − 𝜋𝑛(𝐼)} − min
𝐼
{𝜋𝑛+1(𝐼) − 𝜋𝑛(𝐼)} < 𝜀, then go to step 4.

Otherwise, increment 𝑛 by 1 and return to step 2.

4. Let 𝑉 𝐷 = 1
𝑅
max

𝐼
{𝜋𝑛+1(𝐼) − 𝜋𝑛(𝐼)}. Then 𝑉 𝐷 is an approximation to the

supplier’s optimal long-run average cost.

2.7 Numerical Analysis

We numerically investigate the supplier’s incentive for strategic/dynamic behavior

using either the lump-sum or linear penalty SLA. We compare the supplier’s optimal

average cost when using a static base-stock 𝑆∗ policy with that under a dynamic

policy. The numerical results demonstrate that the strategic supplier’s gain under a

lump-sum penalty SLA can be large, but that under an optimal linear-penalty SLA

is minimal. It is also shown that a longer inventory replenishment lead time reduces

such gain under both regimes.

Consider two distributions: a Poisson demand with arrival rate 𝜆 and a Normal(𝜆, 𝜎)

demand per period.3 With a normal demand, we can study the impact of various

parameters on the supplier’s gain from a dynamic inventory policy while keeping the

performance target fixed. For the dynamic policy we discretize the normal demand.

Pr{𝐷(1) = 𝑑} = Φ(𝑑−𝜆
𝜎
) − Φ(𝑑−1−𝜆

𝜎
) for 𝑑 > 0, and Pr{𝐷(1) = 0} = Φ(−𝜆

𝜎
). Now it

can be seen why we scaled demand so that 1 unit was ‘small’. Leadtime 𝐿 ∈ {0, 1}.
The performance threshold 𝛼 is chosen such that 𝑅𝛼 is an integer. The range for the

optimal penalty, [𝐾∗(𝛼), 𝐾
∗
(𝛼)], is obtained using the formulas in Section 2.5.1.

3The problem of negative demands with the normal distribution is not significant in our examples,
as is ignored below. Only nonnegative demands are considered in the numerical analysis by using
truncated normal distribution.
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2.7.1 Lump-sum penalty SLA

Under a lump-sum penalty SLA, if the supplier’s ready rate during a review phase

does not exceed the performance threshold 𝛼, then the supplier will pay the buyer a

lump-sum penalty 𝐾. We show that in this case the supplier can benefit significantly

from a dynamic policy.

∙ Poisson demand

The following parameter values are used: ℎ = 1, 𝑅 = 30. With 𝜆 = 8, 9, 10, for

𝐿 = 0, we have 𝑆∗ = 12, 13, 14; and for 𝐿 = 1, 𝑆∗ = 21, 24, 26.

First consider the static base-stock policy.

Consider 𝐿 = 0. For 𝜆 = 10 and 𝑅𝛼 = 24 (i.e., 𝛼 = 80%), [𝐾∗(𝛼), 𝐾
∗
(𝛼)] =

[146, 853]. It can be checked that 𝑆∗ = 14 is the global optimum for the static

inventory policy for any 𝐾 in [146, 853]. For 𝐾 = 146, 200 and 300, the supplier’s

cost savings from using a dynamic policy are 20.3%, 20.9% and 22.4%, respectively.

So even for the same threshold 𝛼, the supplier’s percentage cost saving from a dynamic

policy varies with the penalty and is increasing in 𝐾.

Although by definition all (𝑅𝛼,𝐾) ∈ Θ give 𝑆∗, this might not always be a global

optimum. For example, with 𝑅𝛼 = 25 and using the smallest 𝐾 in the interval

[92, 318], 𝑆∗ is not the global optimum. Let 𝑘∗(𝛼) = min{𝐾∣𝐾 ∈ [𝐾∗(𝛼), 𝐾
∗
(𝛼)] and

𝑆∗ is the supplier’s global optimum} if it exists, then any 𝐾 ∈ [𝑘∗(𝛼), 𝐾
∗
(𝛼)] can in-

duce the supplier to choose 𝑆∗. If the interval is empty we say that𝐾(𝛼) = ‘Infeasible’.

Define Θ∗ = {(𝑅𝛼,𝐾)∣0 < 𝛼 ≤ 𝐹𝐿+1−𝑊 (𝑆∗), 𝑅𝛼 is integer, 𝐾 ∈ [𝑘∗(𝛼), 𝐾
∗
(𝛼)] s.t.

the interval is not empty}. So Θ∗ ⊆ Θ is the set of (𝑅𝛼,𝐾) values under which 𝑆∗ is

the supplier’s global optimum for a static policy.

Now consider the dynamic base-stock policy. Table 2.1 shows the supplier’s per-

centage cost saving from using a dynamic policy under various 𝑅𝛼 and 𝑘∗(𝛼) for

𝐿 = 0 and 1. Note that for 𝑅𝛼 = 27 (i.e. 𝛼 = 90%) the result is ‘Infeasible’. The

results show that the supplier can benefit significantly from a dynamic policy. The

smaller the value 𝛼, the greater motivation for dynamic behavior, so the buyer should

choose the performance threshold 𝛼 as close to the performance target as possible.

Regardless of such choices however, under a lump-sum penalty SLA, the supplier has

a considerable incentive to adopt a dynamic inventory policy and increase costs for

the buyer.

31



2.7. Numerical Analysis

Table 2.1: Supplier’s cost saving (lump-sum penalty,Poisson demand)
𝜆

𝑅𝛼 8 9 10
24 26.14% 22.95% 20.28%

𝐿 = 0 25 18.41% 16.27% 15.21%
26 13.62% 14.69% Infeasible
24 16.70% 20.51% 18.50%

𝐿 = 1 25 14.24% 15.21% 14.41%
26 Infeasible Infeasible Infeasible

Table 2.2: Supplier’s cost saving (lump-sum penalty,normal demand)
𝜎

𝑅𝛼 5 10 15 20
𝐿 = 0 24 20.09% 20.79% 21.09% 21.19%

25 15.20% 15.21% 15.23% 15.25%
𝐿 = 1 24 16.68% 18.13% 18.50% 18.51%

25 15.18% 15.83% Infeasible Infeasible

∙ Normal demand

We use normal demand to better study the impact of lead time on the supplier’s

cost saving from using a dynamic policy. The following parameter values are used:

ℎ = 1, 𝑅 = 30, 𝜆 = 50. With 𝜎 = 5, 10, 15, 20, for 𝐿 = 0, we have 𝑆∗ = 57, 64, 71, 78;

and for 𝐿 = 1, 𝑆∗ = 110, 120, 130, 140. In all scenarios the target ready rate is the

same, about 92%. For 𝐿 = 0 and 1, and 𝑅𝛼 = 26 and 27, 𝑆 = 0 is the global

optimum and the first-best 𝑆∗ is only a local optimum for all values of 𝐾 in their

intervals, that is 𝑘∗(𝛼) does not exist. For 𝐿 = 1, 𝑅𝛼 = 24 and 25, 𝑆∗ is the global

optimum in some of the cases, thus 𝑘∗(𝛼) is within the interval. Table 2.2 shows the

supplier’s percentage cost saving from using a dynamic inventory policy. They are all

very large. Comparing the results for 𝐿 = 0 and 1, we can see that given the same

performance threshold, the supplier’s percentage cost savings from using a dynamic

policy decreases as the lead time increases from 0 to 1.

2.7.2 Linear-penalty SLA

We have shown that a lump-sum penalty SLA will greatly induce supplier’s strate-

gic behavior. Now we investigate the ability of a linear-penalty SLA to discourage
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Table 2.3: Supplier’s cost saving (linear penalty,Poisson demand)
𝐿 = 0 𝐿 = 1

Target=91.7% Target=95.1% Target=92.2% Target=94.8%
Deviation %saving Deviation %saving Deviation %saving Deviation %saving

1.7% 2.04% 1.8% 1.38% 2.2% 2.63% 1.4% 1.16%
5.0% 6.32% 5.1% 6.62% 5.5% 6.64% 4.8% 5.22%
8.3% 12.66% 8.5% 17.77% 8.9% 12.07% 8.1% 10.94%
11.7% 20.09% 11.8% 23.11% 12.2% 18.32% 11.4% 17.77%

supplier’s strategic behavior. We also investigate the effects of lead time 𝐿, demand

variability 𝜎
𝜆
, and the length of a review phase 𝑅, on the supplier’s cost saving from

using a dynamic policy under a linear-penalty SLA. For all the scenarios in the numer-

ical examples below, the supplier’s cost functions have been checked to be unimodal

using plots under the optimal penalty 𝐾 given 𝛼.

∙ Poisson demand

We use ℎ = 1 and 𝑅 = 30. We compare the supplier’s optimal average cost under

a static base-stock 𝑆∗ policy with that under a dynamic base-stock policy, using a

penalty 𝐾 = 𝑘∗(𝛼). We note that for all the numerical examples here we have found

that 𝑘∗(𝛼) = 𝐾∗(𝛼).

To compare the supplier’s cost saving under various performance thresholds 𝛼, we

use a demand rate 𝜆 = 10. For 𝐿 = 0, 𝑆∗ = 14 and 15 with the target service levels =

91.7% and 95.1%, respectively; and for 𝐿 = 1, 𝑆∗ = 26 and 27 with the target service

levels = 92.2% and 94.8%, respectively. Table 2.3 show the results for 𝐿 = 0 and 1.

The threshold 𝛼 is represented by the allowable deviation from the target, which is

equal to the target ready rate − 𝛼. Similar conclusion can be drawn here as that

under a lump-sum penalty SLA. The greater the allowable deviation from the target

(thus the smaller 𝛼), the greater the supplier’s percentage cost saving. Therefore,

to reduce the supplier’s cost saving from using a dynamic policy, the performance

threshold should be chosen to be as close to the performance target as possible.

We also investigate the supplier’s cost saving from using a dynamic policy for

different demand rates, using the smallest possible allowable deviation from the target

(the largest possible 𝛼). For 𝜆 = 7, 8, 9, 10, the corresponding parameter values for

𝐿 = 0 are 𝑆∗ = 11, 12, 13, 14; and those for 𝐿 = 1 are 𝑆∗ = 19, 21, 25, 26. Table

2.4 shows the results. 𝛼 is again represented by the allowable deviation from the
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Table 2.4: Supplier’s cost saving (linear penalty,Poisson demand)
𝐿 = 0 𝐿 = 1

𝜆 Target Deviation %saving Target Deviation %saving
7 94.7% 1.3% 1.10% 92.3% 2.3% 2.62%
8 93.6% 3.6% 3.87% 91.1% 1.1% 1.89%
9 92.6% 2.6% 2.80% 95.5% 2.2% 1.50%
10 91.7% 1.7% 2.04% 92.2% 2.2% 2.63%

Table 2.5: Supplier’s cost saving (linear penalty,normal demand)
𝑅𝛼 𝐿 = 0 𝐿 = 1
24 20.85% 18.39%
25 13.90% 12.58%
26 7.40% 6.57%
27 2.64% 2.63%

target. The supplier’s percentage cost saving is small in all the cases. So under a

linear-penalty SLA with a performance threshold close to the target, the supplier will

have little incentive to adopt a dynamic inventory policy. A linear-penalty SLA can

greatly mitigate the supplier’s strategic behavior.

∙ Normal demand

The following parameter values are used: ℎ = 1, 𝑅 = 30, 𝜆 = 50, 𝜎 ∈ {5, 10, 15, 20},
𝐿 ∈ {0, 1}. Note that we use the same demand process (single-period demand distri-

bution) for both 𝐿 = 0 and 1, so we can investigate the supplier’s cost saving from a

dynamic inventory policy as the lead time increases from 0 to 1.

We first compare the supplier’s cost saving under various 𝛼, using 𝜆 = 50 and

𝜎 = 15 for the single-period demand. For 𝐿 = 0, 𝑆∗ = 71 with the target service

level = 91.9%; and for 𝐿 = 1, 𝑆∗ = 130 with the target service level = 92.1%. The

results are shown in Table 2.5. The supplier’s percentage cost saving decreases with

𝛼, indicating that a tight allowable performance deviation from the target is required

to limit the supplier’s gain from strategic behavior. The results also indicate that

given the same performance threshold, a longer leadtime will reduce the supplier’s

cost saving from strategic behavior.

Next, we investigate the effects of demand variability and leadtime on the sup-

plier’s cost saving from using a dynamic policy. We fix 𝜆 = 50 while changing 𝜎,

so the coefficient of variation of demand 𝜎
𝜆
∈ {0.1, 0.2, 0.3, 0.4}; we use the smallest
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Table 2.6: Supplier’s cost saving (linear penalty,normal demand)
Target ≈ 92% Target ≈ 96.5%

𝜎/𝜆 𝐿 = 0 𝐿 = 1 𝐿 = 0 𝐿 = 1
0.1 2.41% 2.06% 2.72% 2.17%
0.2 2.51% 2.07% 2.81% 2.44%
0.3 2.64% 2.63% 2.90% 2.45%
0.4 2.68% 2.67% 2.95% 2.45%

possible deviation from the target (the largest 𝛼 < target and 𝑅𝛼 is integer). For

𝜎 ∈ {5, 10, 15, 20}, 𝑆∗ is chosen so that the target service level is equal for 𝐿 = 0, 1

and different 𝜎. We consider two target service levels: one is about 92% and the other

about 96.5%. Table 2.6 lists the numerical results. Each column shows that the sup-

plier’s gain from strategic behavior increases with the demand variability. Intuitively,

when demand is less variable, the optimal safety stock under a static inventory pol-

icy is small, and the optimal safety stock under a dynamic inventory policy will not

deviate much from the static one, so the supplier’s gain from a dynamic policy will

be relatively small. Comparing the two columns for each target service level, we can

see that the supplier’s cost saving from a dynamic policy decreases as the leadtime

increases from 0 to 1. So a longer leadtime will likely mitigate the supplier’s incentive

for strategic behavior. We will discuss the insights from this result in Section 2.8.

∙ Effect of length of a review phase 𝑅

We also evaluate the impact of the length of a review phase on the supplier’s

percentage cost saving from a dynamic policy. We use 𝜆 = 50 and 𝜎 = 15 for single-

period demand, 𝑅 ∈ {30, 60}, 𝐿 ∈ {0, 1}, 𝑆∗ is chosen so that the target service

levels for 𝐿 = 0 and 1 are both about 92%, and the same performance threshold

𝛼 = 90% (thus the same allowable deviation from the target). Table 2.7 compares

the supplier’s cost saving under different values of 𝑅 with the other parameters fixed.

It indicates that as the review phase becomes longer, if the performance threshold

remains unchanged, then the supplier will benefit more from a dynamic inventory

policy. This can be explained by Proposition 2.2, which says that the variance of

the supplier’s review phase ready rate decreases with 𝑅. So if 𝛼 is fixed, then as

𝑅 increases, the absolute allowable performance deviation from the target remains

constant, but the relative allowable deviation increases, giving the supplier more

flexibility to dynamically adjust the base-stock level. This implies that as 𝑅 increases,
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Table 2.7: Effect of 𝑅 (linear penalty,normal demand)
𝐿 = 0 𝐿 = 1

𝑅 = 30 2.64% 2.63%
𝑅 = 60 4.12% 4.08%

there should be less allowable performance deviation from the target (thus bigger 𝛼)

in order to discourage the supplier from strategic behavior. We have assumed that

𝑅 is exogenous because in practice 𝑅 can be determined by other factors such as

transaction costs and the accounting policy.

2.8 Discussion

The numerical results have shown that under a linear-penalty SLA with the per-

formance threshold close to the target ready rate, the supplier’s gain from using a

dynamic inventory policy instead of a static one is small. In practice, implementing

a dynamic inventory policy is more complicated than implementing a static one. To

implement a dynamic inventory policy, the supplier has to determine the ordering

quantity based on not only the inventory on hand and the performance history in the

current review phase, but also every order placed in the past yet not arrived. So the

implementation cost of a dynamic policy is higher than that of a static one. In this

chapter, we do not explicitly model the supplier’s costs of implementing an inventory

policy. When the complexity and cost of implementing a policy is taken into account,

a dynamic inventory policy will bring less benefit. So under a linear-penalty SLA

with carefully chosen contract parameters, the supplier will have little incentive for

strategic behavior.

2.8.1 SLA vs. traditional coordination contract

To provide an incentive to the supplier for inventory investment, the buyer can use ei-

ther a traditional supply chain coordination contract or an SLA. Traditional contracts

coordinate the supply chain via a holding cost and backorder cost transfer payment.

Cachon (2003) provides an analysis on this type of contract in a single-location base-

stock model with linear backorder cost. As a special case of this contract, the supplier

pays a penalty on each individual delayed delivery. To micro-manage the supplier in
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this way, the buyer will have to make a detailed record of every single demand. When

demands occur frequently, the buyer will incur large administrative and transaction

costs. With an SLA, the buyer only needs to measure the supplier’s aggregate per-

formance over a period of time. So an SLA is preferable over a traditional contract

for frequent demands.

In most inventory theory, the backorder cost is generally linear in the amount of

delay. But in practice, the backorder cost is often nonlinear; a short delay may not

matter much, but a long delay is very costly. In this case, if a traditional coordination

contract is used, then the contract will likely be quite complicated in order to correctly

align the supplier’s incentive with the supply chain. However, an SLA has a simple

form and is easy to implement even if the backorder cost has a complex form, as in

our model, the backorder cost is convex in the length of delay.

Service levels for inventory performance are widely used in practice. The most

frequently cited reason is that backorder costs are hard to measure because a stockout

may affect not only a firm but also external parties (e.g., customers), so firms prefer to

set a desired performance target. This makes traditional coordination contracts hard

to design. But with an SLA, the performance target can be set exactly as desired.

2.8.2 Lump-sum penalty SLA vs. linear-penalty SLA

A lump-sum penalty SLA is a highly discontinuous incentive scheme used with a

multi-period review strategy. For a single period problem with a risk-neutral buyer

and supplier, any optimal combination of the performance threshold and penalty

can induce the supplier to choose the first-best effort level, and thus a lump-sum

penalty SLA can be optimal. However, the multi-period review strategy brings in

additional issues for the design of discontinuous incentive schemes. In our model, the

supplier can observe her performance history throughout the review phase and can

adjust her effort level at any time to affect her performance outcome at the end of

the review phase. In this case, as demonstrated by the numerical results in Section

2.7, a discontinuous incentive scheme with a lump-sum penalty will cause supplier’s

strategic behavior. If either condition is violated, i.e., the supplier cannot observe her

performance history or cannot adjust her effort level dynamically, then a lump-sum

penalty SLA will be less vulnerable to supplier’s strategic behavior.

From the formulation of the supplier’s dynamic program in Section 2.6.1, we can
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see that under a lump-sum penalty SLA, after observing the performance history in

any period of a review phase, the supplier can take the following strategy. If her past

performance has already exceeded the threshold (call it an ‘early pass’), she will not

put in any effort during the remainder of the review phase. If her past performance

has been poor enough so that she will have no chance to attain the threshold in the

current review phase (call it an ‘early failure’), then she will also not put any effort

into the remaining periods of the review phase. In other situations, she will choose

effort levels depending on the past performance and the number of periods left in that

review phase. In practice, a service level target such as the ready rate for inventory

performance is generally very high (above 90%), so the chance for an early pass is

very small. On the other hand, the chance for an early failure is large. Under a

lump-sum penalty SLA, if an early failure occurs, the supplier’s penalty is fixed no

matter how poor her performance is. Thus a lump-sum penalty SLA will not mitigate

the supplier’s strategic behavior after an early failure. A linear-penalty SLA makes

the supplier’s penalty for poor performance linear in the amount of deviation from

the threshold, and so can better mitigate the supplier’s strategic behavior after an

early failure.

In the case of a positive inventory replenishment lead time, orders placed in a

period will arrive 𝐿 periods later, and the performance as a result of any effort will

be revealed after a time lag of 𝐿 periods. Because of the information delay, the

supplier cannot respond to the performance history as effectively as in the case of no

delay. Moreover, when the number of periods left in a review phase is less than 𝐿,

the supplier cannot adjust the base-stock level to affect her performance at the end

of the current review phase. So we can anticipate that the supplier will benefit less

from her strategic behavior in the case of a positive lead time. This is supported by

the numerical results in Section 2.7 comparing the supplier’s percentage cost savings

from a dynamic policy for 𝐿 = 0 and 𝐿 = 1. In practice, the target ready rate or fill

rate is usually high. Due to this and the positive lead time, unless a review phase is

extremely long and/or 𝛼 is small, there is little chance that the supplier will know she

can meet the performance threshold with probability 1 before a review phase ends.

At the low performance side, the linear-penalty scheme will provide the supplier with

an incentive to prevent her performance from getting worse once it falls below 𝛼.

The linear-penalty SLA we study here does not provide incentives concerning

performance beyond a threshold. So to induce a desired target service level, the
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Table 2.8: Expected penalty vs. supplier’s total cost
𝜆 𝜎 𝐿 Lump-sum Linear
10 3 0 8.9% 12.9%
10 4 0 9.3% 13.1%
10 3 1 5.1% 13.8%
10 4 1 5.1% 14.3%

Table 2.9: Actual penalty vs. supplier’s total cost
𝐿 Lump-sum Linear
0 Prob 9.03% 22.01% 13.05% 5.96% 2.18% 0.66% 0.17%

ratio 99.3% 16.3% 32.5% 48.7% 65.0% 81.2% 97.4%
1 Prob 3.28% 21.79% 14.73% 7.06% 2.40% 0.58% 0.10%

ratio 156.8% 16.1% 32.2% 48.4% 64.5% 80.6% 96.7%

allowable deviation for the supplier performance from the target should be small, i.e.,

𝛼 is not too far from the target. This has been shown by the numerical results on

the supplier’s cost savings under different values of 𝛼.

A linear-penalty SLA imposes a small penalty on the bad outcomes more likely due

to random variability in the performance than to wrong effort levels. This can be seen

by comparing the size of the supplier’s penalty with her revenue under both types of

penalty schemes in two ways. Note that the supplier’s revenue is at least her total cost,

including the inventory holding cost and expected penalty. So we use the supplier’s

total cost as a proxy for her revenue. The first way is to compare the supplier’s

expected penalty with her total cost, and the ratios are shown in Table 2.8 using

normal demand distributions. The second way is to compare the supplier’s actual

penalty with her total cost, as shown in Table 2.9 using a Normal(10, 3), in which for

a lump-sum penalty, the probability of incurring a penalty and the penalty to total

cost ratio are provided; and for a linear penalty, both the probability of incurring

a penalty level and the actual penalty to total cost ratio are provided. The results

show that although the expected penalty under a lump-sum penalty SLA is small, the

actual penalty could exceed the supplier’s revenue, making the supplier earn nothing.

On the contrary, the supplier is unlikely to pay a large penalty under a linear-penalty

SLA. Therefore, a linear-penalty SLA is a mild penalty scheme compared with a

lump-sum penalty one and thus induces a more stable inventory investment.
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2.8.3 Extensions

When studying supplier’s strategic behavior under an SLA, we have mainly focused

on the immediate ready rate as a performance measure for inventory and considered

a periodic-review base-stock policy. The main findings also extend to time-window

ready rate and fill rate as well as a continuous-review inventory policy. When a time-

window ready rate is used with 𝑊 ≤ 𝐿, the performance indicator for period 𝑡 ,

𝑋𝑊
𝑡 = 1{𝐷[𝑡 − 𝐿, 𝑡 + 1 −𝑊 ) ≤ 𝑆𝑡−𝐿}, and the supplier decides a base-stock level

in each period to fill demands in the subsequent 𝐿+ 1−𝑊 periods instead of 𝐿+ 1

periods. So a time window can reduce the supplier’s inventory risk and inventory cost.

Let 𝐿′ = 𝐿−𝑊 . Because an order placed in a period will still arrive 𝐿 periods later,

the supplier’s decision problem is like the one with lead time 𝐿′ but the performance

resulting from a base-stock level decision is realized after 𝐿′ + 𝑊 periods, so the

supplier cannot adjust the base-stock level under a dynamic policy as timely as in

the case of lead time equal to 𝐿′. Therefore, the supplier’s gain from using a dynamic

inventory policy given lead time 𝐿 under a time-window-𝑊 ready rate will not exceed

that under an immediate ready rate given lead time 𝐿−𝑊 . When the fill rate is used

as the performance measure, supplier’s incentive for strategic behavior still exists,

and the supplier’s objective is to dynamically adjust the base-stock level to affect the

proportion of demands filled on time in a review phase instead of the proportion of

periods with all demands filled on time. This will only slightly change the calculation

of the supplier’s expected penalty, but the issues and insights from the ready rate as

performance measure all hold here.

Now suppose the supplier uses a continuous-review base-stock policy (𝐿 > 1).

Because the supplier’s performance is revealed at the end of each period, assume the

supplier chooses the base-stock level once every period. The only difference between

the two inventory policies is that the supplier’s inventory cost is relatively lower

under a continuous-review policy. The supplier’s ability to dynamically adjust the

base-stock level and the effect of the information lag due to positive lead time are

similar under both policies. So the insights from a periodic-review policy also hold

for a continuous-review policy.

When the ready rate is used as inventory performance measure, the supplier may

have other strategic behavior in addition to adopting a dynamic inventory policy.

For example, if the supplier cannot fill all demands in a particular period so that the

performance in that period will be bad no matter what proportion of the demands are
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filled, then the supplier may hold inventory instead of filling partial demands in order

to save the transportation cost in that period. This will increase the supplier’s inven-

tory holding cost. In our model, the supplier manages inventory near the buyer’s site,

so the transportation cost is negligible. In other situations where the transportation

cost is large relative to the holding cost, then the fill rate may be preferred because

it measures the proportion of demands filled.

2.9 Conclusions

In this chapter, we have provided a methodology for studying service level agree-

ments by applying the principal-agent theory to the design and choice of contract

parameters of SLAs. Using a single-location uncapacitated inventory management

problem, we have identified issues in the design of SLAs for inventory management,

where the ready rate is the performance measure. In the case of a positive inventory

replenishment lead time, the supplier’s performance in each period can be correlated.

The ready rate in a finite review phase is a random variable; we have shown that its

distribution is approximately normal for a long review phase. We have studied two

types of SLAs: a lump-sum penalty SLA and a linear-penalty one. Due to their multi-

period review structure, SLAs with a target service level provide the supplier with

an incentive for strategic dynamic behavior. Specifically, we have found that under

a lump-sum penalty SLA, the supplier will have a significant incentive for strategic

behavior. On the other hand, a simple linear-penalty SLA can greatly mitigate sup-

plier’s strategic behavior. This has implication for the design of SLAs in general:

when the supplier can observe the performance history and dynamically adjust her

effort level to affect her review phase performance, to mitigate the supplier’s incentive

for strategic behavior, the penalty should be dependent on the amount of supplier’s

performance deviation from the target. To effectively mitigate the supplier’s incentive

for strategic behavior using a linear-penalty SLA, the allowable deviation of the per-

formance from the target service level should be small. For the application of SLAs

to inventory management in particular, a positive inventory replenishment lead time

and a high fulfillment rate target can further mitigate such strategic behavior.
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Chapter 3

Managing Supplier’s Delivery

Performance With Service Level

Agreements

3.1 Introduction

With the increased outsourcing of manufacturing and services to suppliers comes a

need for better contractual agreements between suppliers and buyers. One of the most

widely employed contractual instruments is a type of performance-based contracts

called Service Level Agreements (SLAs). A survey by Oblicore Inc. in 2007 revealed

that 91% of organizations use SLAs for managing suppliers, internal agreements,

or external customer agreements. According to the Office of Federal Procurement

Policy at the Office of Management and Budget, the US Federal Government expects

agencies to make half their service contracts performance-based acquisitions in fiscal

2008, an increase from the goal of 45% for 2007. SLAs are typically employed when

the buyer neither wants or is not able to micromanage the supplier and has no interest

in how the product or service is delivered; but is interested only in the outcome.

SLAs are often used when the parties involved have a long-term relationship, where

the transactions are not one time. Since a fixed price alone is not enough to guaran-

tee the delivery of the required performance, positive and/or negative performance

incentives are needed. For example, a penalty might be imposed when the supplier

underperforms compared to some target service level. The penalty is not based on

daily transactions but performance over a period of time; reducing the administrative

costs of enforcement and freeing the buyer to concentrate on their core business.

Despite the widespread use of SLAs in practice, there is little theoretical research

on their design. In Chapter 2 studying an application to inventory management,

we identified five fundamental issues of SLA design that need to be answered: what

42



3.1. Introduction

performance measure should be used, what performance target is appropriate, how

frequently the performance should be reviewed, how much deviation of the perfor-

mance is allowed from the target, and what penalty the supplier should pay when

the performance exceeds the allowable deviation. The performance measure should

align the supplier’s incentive with that of the buying firm. The allowable deviation

and the penalty together determine how strong the incentive is for the supplier. We

mainly addressed within the framework of a simple inventory management problem

where the supplier’s decision variable is the base-stock level alone. In this chapter,

we concentrate on the first two questions and briefly address the other three, within

a more complex problem. The natural framework for the study of SLAs is from a

principal-agent perspective, and that is the perspective we take.

Specifically, we study a single-item inventory system with a continuous-review

base-stock policy, stochastic and stationary demand, and full backlogging. We con-

sider a supply chain consisting of a single supplier and a single buyer, where the

supplier can invest both in inventory and in inventory replenishment lead time to

meet a service level target, and both investments are unobservable to the buyer. The

supplier owns the inventory and incurs a linear inventory holding cost. For each de-

layed delivery, the buyer incurs a cost which is a convex and increasing function of

the amount of delay. An SLA uses a multi-period review strategy, under which the

supplier’s inventory performance is reviewed every 𝑅 periods (called a review phase),

and if it is below a pre-specified performance threshold, then the supplier will pay a

penalty linear in the amount of performance deviation from the threshold.

Fill rate and stockout rate are commonly used in both the practice and the litera-

ture for measuring delivery and inventory performance. Most inventory management

literature studies performance measures in the long run using expected performance.

But the performance measure in a finite review phase is a random variable. When

the supplier’s actions are unobservable, it is important to know the distribution of

the performance measure in order to provide an incentive to the supplier. It is very

difficult to derive the distribution of fill rate. Interested readers can refer to Thomas

(2005) for its distribution obtained using simulation in a static periodic-review base-

stock model with zero lead time. For the same reason as in Chapter 2, we focus

mainly on the ready rate, which is the long-run fraction of time that demands are

filled immediately from the stock. It measures inventory availability, and is equal

to 1− stockout rate. The conventional ready rate and fill rate are measures of the
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off-the-shelf or immediate order fulfillment performance. In practice, time-window

fulfillment rates are more commonly used than off-the-shelf performance measures

(LaLonde and Zinszer 1976, LaLonde et al. 1988). In Quick Response and other

forms of time-based competition, the performance measure for customer service is

often the ability to meet delivery promises, where the promised time window is usu-

ally small. For example, around 1995, Hewlett-Packard aimed at a 93% fulfillment

rate within 3 days, and IBM PC and Compaq 95% within 5 days (Hausman et al.

1998). When the performance measure is based on on-time delivery by a supplier to a

buyer, time-window fulfillment rates are also used. Therefore, we also study another

form of ready rate, the ready rate with a window, which is the long-run fraction of

time that demands are filled within a pre-specified time window. We study the ready

rate for simplicity in exposition, but similar insights can be obtained when either the

immediate or time-window fill rate is used as the performance measure.

Because the supplier is responsible for investments in both inventory and lead time

and is evaluated by a single performance measure — the ready rate, our problem is

a multi-task agency problem with a single output. Since both increasing the stock

level and reducing the replenishment lead time can achieve a better performance, the

supplier’s two tasks are substitutes.

The objective of this chapter is twofold. First, we address the design of SLAs in

supply management, including choosing the performance measure, determining the

performance target, allowable deviation and penalties for underperformance. Specif-

ically, we examine two types of SLAs using either the immediate or time-window

ready rates as performance measures. Second, we compare these two forms of SLAs

in terms of the average supply chain cost. We show that when the supplier employs

a static inventory policy, can invest both in inventory level and in supply lead time,

with the investments unobservable to the buyer, an SLA using the time-window ready

rate can induce the supplier to make the investments compatible with overall supply

chain optimization. An SLA using only the immediate ready rate generally cannot

induce this first-best investment. We also discuss the issue of using a single perfor-

mance measure for aligning the supplier’s incentive when the supplier has multiple

ways to achieve inventory performance. The time window in the performance mea-

sures plays three roles. It aligns the supplier’s tradeoff between inventory and lead

time investments with that of the supply chain, allocates inventory risk between the

buyer and a supplier, and to some extent transfers the buyer’s delay cost structure
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to the supplier.

The rest of this chapter is organized as follows. Section 3.2 reviews the literature.

Section 3.3 describes the model and provides mathematical expressions for the waiting

time distribution. Section 3.4 examines SLAs using the immediate or time-window

ready rate as a performance measure and discusses the issue of incentive alignment

using a single performance measure. Numerical analyses are in Section 3.5. We

conclude in Section 3.6.

3.2 Literature Review

This chapter relates to three primary literatures: agency theory, inventory manage-

ment, and supply chain contracting and coordination.

Multiple-period review strategies have been studied in the economics literature by

Radner (1985) for a repeated principal-agent game. Ren et al. (2008) investigate a

modified strategy for an information-sharing game between a buyer and a supplier in

a supply chain context. Both papers use trigger strategies as punishments for non-

cooperation. Details of these approaches can be found in Chapter 2, which studies a

multi-period review strategy in a service level agreement for inventory management.

The review strategy differs from those in Radner (1985) and Ren et al. (2008) in

two major aspects: the length of a review phase 𝑅 is exogenous and the penalty

is a monetary payment instead of a phase of noncooperative game. Moreover, the

performance outcome of the agent (supplier) in each period can be correlated. The

current chapter studies a multi-task moral hazard problem, whereas both Radner

(1985) and Chapter 2 study single-task moral hazard problems and Ren et al. (2008)

a hidden information one.

The immediate fulfillment rate is commonly employed in the inventory manage-

ment literature, however in practice, time-window fulfillment rates are more common.

Boyaci and Gallego (2001) study the problem of minimizing average inventory costs

subject to fill-rate and fill-rate-with-window service-level constraints in serial and as-

sembly systems. In an (𝑠, 𝑆) inventory system with service level target represented by

a time-window ready rate, Wang et al. (2005) find a significant tradeoff between the

window length and the inventory costs, and suggests that a longer fulfillment window

and lower price may be used for price-sensitive but time-insensitive customers. The

above papers study inventory management from a single agent perspective, and do
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not deal with incentive issues in a decentralized system. Our concern is the use of

either the immediate or time-window ready rate as a performance measure to induce

investments by an independent supplier.

The inventory management literature generally considers performance measures

in the long run using expected performance. In practice, a supplier’s delivery perfor-

mance will be evaluated over a finite period of time. At the end of a finite review

phase 𝑅, the buyer, unable to observe the supplier’s effort, observes a single noisy

performance signal. How is the buyer to unscramble poor effort from ‘bad’ random

effects? The buyer needs to know how the supplier’s efforts affect the random distri-

bution of performance. Thomas (2008) uses simulation to investigate the distribution

of fill rate in a static periodic-review base-stock model with zero lead time and Er-

lang demand. Chapter 2 provides a theoretical approximation for the distribution of

the review-phase immediate/time-window ready rate under a static periodic-review

base-stock policy with general demand and discrete lead time. In this chapter, we

employ a similar result under a continuous-review base-stock policy and continuous

lead time.

Choi et al. (2004) investigate choosing supplier performance measures in a vendor-

managed-inventory context. The production of the supplier and the manufacturer are

capacitated. The supplier holds inventory, and her capacity and inventory policy are

private information. So the buyer chooses performance measures for the supplier.

Choi et al. study both the ready rate and the fill rate, and demonstrate that in a

capacitated supply chain, the supplier’s service level is in general not sufficient to

guarantee the manufacturer’s target customer service level. They propose a menu

of contracts with different combinations of the ready rate and expected backorders.

In our model, the buyer incurs a cost for each delayed delivery, and determines the

service level target for the supplier. Moreover, we do not consider production by the

buyer, and the supplier’s supply is uncapacitated. Although the supplier’s actions are

unobservable in their model, Choi et al. only study immediate fulfillment rates in the

long run, and focus on the choice of performance measures, ignoring the variability in

the observed performance measures and the penalty for failing to meet a target. We

study both the immediate and time-window ready rates, and compare the efficiency

of each performance measure at aligning the supplier’s incentive.

In all the aforementioned studies, the target fill rate or ready rate and the time

window are assumed to be given. We allow both the time window and the target
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ready rate to be endogenous.

Our study is also related to incentive contracting on inventory management. In

this stream of literature, principal-agent theory is applied to inventory management

in decentralized systems. Bolton and Dewatripont (2005) provide a broad coverage

of literature on incentive contracts. Literature on moral hazard problems in agency

contracting can be found therein. Corbett (2001) studies the allocation of decision

rights between a single buyer and a single supplier in an order-quantity/reorder-point

(𝑄, 𝑟) inventory system with stochastic and stationary demand and backlogging. The

delivery lead time between the two parties is constant. Consignment stock is studied,

where the supplier holds inventory at the buyer’s site and bears the holding cost until

the goods are sold to the final customer. Corbett considers two situations: one in

which the buyer is the principal and the supplier has private information about her

setup cost; another in which the supplier is the principal and the buyer has private

information about backorder costs. In our model, the supplier carries inventory and

incurs the holding costs, and there is information asymmetry on the supplier’s base-

stock level and lead time.

Lutze and Özer (2008) examine promised lead time contracts offered by a supplier

to a buyer, under which the buyer places orders in advance and the supplier guarantees

the shipment of full order on time after a promised lead time. Both the supplier and

the buyer hold inventory. They investigate how a promised lead time contract can be

used to share inventory risk between a buyer and a supplier. Our model demonstrates

that both the service level agreement structure and the window in the inventory

performance measure allow the two parties to share inventory risk. Lutze and Özer

study an adverse selection problem, where the buyer has private information about

his shortage cost, but there is no uncertainty in the supplier’s performance to meet

the promised delivery lead time. We study a moral hazard problem, in which only the

supplier holds inventory, the buyer offers the contract, and the supplier’s performance

is a random variable.

Kim et al. (2007) study performance-based contracting between a single buyer

and multiple suppliers in after-sales service supply chains. The buyer is a customer

of assembled systems, where each system consists of some distinct parts. Each type

of spare part is stocked by a different supplier. If any of the parts fails, the system

is down, and that part has to be replaced by a spare part. Failed parts are repaired

and then returned to the spare part stock. When there is no spare part available,
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a backorder occurs. Each supplier determines her stock level of spare parts, which

is unobservable to the customer. Facing a system uptime requirement, the customer

offers contracts to the suppliers. Because the uptime requirement is equivalent to a

system backorder target, the authors propose a contract linear in the backorders of

each part, and show that it induces the first-best solutions when all parties are risk

neutral. In our problem, the contract is based on the supplier’s aggregate delivery

performance — the ready rate, not on individual backorders.

3.3 Model and Preliminaries

Consider a supply chain consisting of a single supplier (she) and a single buyer (he)

with the supplier producing a single product for the buyer. The supplier makes to

stock and the buyer makes to order. Without loss of generality, we assume that the

supplier’s unit ordering and processing costs are zero. The supplier holds inventory

at a unit cost of ℎ per period of time, and replenishes her inventory from an unlim-

ited supply source at a constant lead time 𝐿 using an order-up-to-𝑆 inventory policy.

Assume the supplier can invest in the replenishment lead time with cost 𝐶𝑟(𝐿) for

lead time 𝐿. The lead time between the buyer and the supplier is taken as zero, rep-

resenting a situation where the supplier holds inventory at a site near the buyer, such

as a vendor-managed-inventory (VMI) program. Customer demands are stochastic

and stationary. Demands in each period of time are independently and identically

distributed (i.i.d.) with mean 𝜆 and standard deviation 𝜎. The buyer incurs a cost

of waiting if a demand for the product cannot be filled immediately. The buyer’s

processing time is negligible and is assumed to be zero.

Both the buyer and the supplier are risk neutral. Assume the distribution of

the demand and the supplier’s inventory holding and lead time costs are common

information.

In order to induce the supplier to invest in inventory and lead time, the buyer

contracts with the supplier on the supplier’s inventory service level. The service level

agreement uses a multi-period review strategy, under which the supplier’s delivery

performance is evaluated every 𝑅 periods (a review phase). As the review period

progresses the supplier has an incentive to dynamically (state-dependent) change

her stock level 𝑆 depending on her performance to date. In the earlier chapter,

we investigated this issue and concluded that such strategic behavior was mitigated
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with the choice of penalties proportional to the deviation and that the supplier gains

little from adopting them given a small allowable deviation from the target. Such

dynamic inventory policies will also have higher implementation costs than a static

one. Therefore, to allow us to focus on other aspects of SLA design we assume

throughout this chapter that only such linear penalties are used and that the supplier

uses a static inventory policy.

The following notation is used throughout this chapter.

Supplier’s decision variables:

𝑆 : base-stock level

𝐿 : inventory replenishment lead time

Buyer’s decision variables:

𝑊 : time window

𝐴𝑊 : supplier’s expected ready rate (with window 𝑊 )

𝑝 : unit transfer price

𝛼 : performance threshold for 𝐴

𝐾 : penalty rate — penalty paid by the supplier to the buyer per 1% below 𝛼

Other:

𝜆 : demand rate

𝜎 : standard deviation of demand per period

𝑅 : length of a review phase, assumed to be large compared with likely lead times

𝐿

𝐴 : supplier’s realized ready rate (with window) in a review phase

𝐶𝑟(𝐿) : cost of attaining lead time 𝐿 for each unit of demand

𝐶𝐷(𝑦) : buyer’s cost of delay per unit demand if the demand is filled after 𝑦 periods

𝐶(𝑆, 𝐿) : average supply chain cost if 𝑆 and 𝐿 are chosen

𝐶𝐵(𝑆, 𝐿) : buyer’s average cost if the supplier chooses 𝑆 and 𝐿

𝜋(𝑆, 𝐿) : supplier’s average profit if she chooses 𝑆 and 𝐿

𝐼(𝑆, 𝐿) : average inventory level if 𝑆 and 𝐿 are chosen

𝐷(𝑡) : demand in 𝑡 periods

𝐷(𝑡, 𝑢] : demand in the interval (𝑡, 𝑢].

Because working with discrete-valued demand and decision variables 𝑆 and 𝐿

makes our analysis much more complex, and our purpose is to gain insights in in-

centive contracting, we use continuous demand, 𝑆 and 𝐿 as an approximation in the

analysis. We assume that the supplier uses a continuous-review inventory policy.
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Let the cumulative distribution function (cdf) and probability density function

(pdf) of 𝐷(𝑡) be denoted by 𝐹 (𝑥∣𝑡) and 𝑓(𝑥∣𝑡), respectively. 𝐹 (𝑥∣𝑡) = Pr{𝐷(𝑡) ≤ 𝑥}.
The average inventory level given base-stock level 𝑆 and lead time 𝐿 is

𝐼(𝑆, 𝐿) = 𝐸([𝑆 −𝐷(𝐿)]+) =
∫
𝑥<𝑆

(𝑆 − 𝑥)𝑓(𝑥∣𝐿)𝑑𝑥 = 𝑆 − ∫
𝑥<𝑆

𝐹 (𝑥∣𝐿)𝑑𝑥, (3.1)

where 𝐹 (𝑥∣𝐿) = 1−𝐹 (𝑥∣𝐿). Let 𝐹𝑤(𝑦∣𝑆, 𝐿) and 𝑓𝑤(𝑦∣𝑆, 𝐿) denote the cdf and pdf of

the waiting time 𝑤 given 𝑆 and 𝐿, respectively. The distribution of the waiting time

(see Appendix B for derivation) is

𝐹𝑤(𝑦∣𝑆, 𝐿) =

⎧⎨⎩
0 for 𝑦 < 0

Pr{𝐷(𝐿− 𝑦) ≤ 𝑆} for 𝑦 ∈ [0, 𝐿]

1 for 𝑦 > 𝐿.

(3.2)

It follows from (3.2) that

𝑓𝑤(𝑦∣𝑆, 𝐿) =

⎧⎨⎩
Pr{𝐷(𝐿) ≤ 𝑆} for 𝑦 = 0
𝑑𝐹𝑤(𝑦∣𝑆,𝐿)

𝑑𝑦
for 𝑦 ∈ (0, 𝐿)

0 othewise.

Assume the delay cost function 𝐶𝐷(⋅) and lead time cost function 𝐶𝑟(⋅) are con-

tinuous and differentiable; 𝐶 ′
𝐷(⋅) > 0, 𝐶 ′′

𝐷(⋅) ≥ 0, 𝐶𝐷(0) = 0; 𝐶 ′
𝑟(⋅) < 0, 𝐶 ′′

𝑟 (⋅) > 0,

lim𝐿→0𝐶𝑟(𝐿) = ∞, and lim𝐿→�̃�𝐶
′
𝑟(𝐿) = 0, where 0 < �̃� ≤ ∞. Without loss of gener-

ality, we assume that at time 0, the inventory is 𝑆, the base-stock level. We consider

the situation where the supply chain optimal (first-best) base-stock level 𝑆∗ > 0 and

lead time 𝐿∗ < �̃�, i.e., it is optimal for the supply chain to invest in both inventory

and lead time.

3.4 Optimal Ready-Rate Contract

A typical SLA will be of the following form, somewhat abbreviated for simplicity.

The buyer will pay $25 for each part. The target is to ensure that parts are available

95% of the time. Every 90 days (one quarter), a review will determine the % of time

that parts are available within 1 day, and if this figure falls beneath 93% a penalty of

$200 per 1% below 93% will be deducted from the buyer’s invoice.
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The buyer makes a service level agreement with the supplier under a long-term

relationship of the form (𝑅,𝑊,𝐴𝑊 , 𝑝, 𝛼,𝐾). The supplier’s inventory performance

is reviewed every 𝑅 periods (90 days), which constitute a review phase. The per-

formance measure is the ready rate 𝐴 with window 𝑊 (1 day), 𝐴 ∈ [0, 1]. The

distribution of 𝐴 will be discussed below. The target service level is 𝐴𝑊 (95%). A

transfer price 𝑝 ($25) is paid for each unit of demand. If the supplier’s performance

falls below 𝛼 (93%), then the supplier is charged with a linear penalty proportional

to the difference between the actual performance and 𝛼 (𝐾 ($200) per 1% below

𝛼). The buyer chooses the SLA to minimize his long-run average cost, including the

payment to the supplier, the expected order delay cost, minus the penalty paid by

the supplier. Given the SLA offered, the supplier chooses 𝑆 and 𝐿 to maximize her

long-run average profit.

In practice, a reasonable performance threshold 𝛼 should be below the performance

target 𝐴𝑊 . So to provide an incentive to the supplier, the candidate 𝐾 and 𝛼 must

be such that 𝐾 > 0 and 𝛼 ∈ (0, 𝐴𝑊 ).

We assume 𝑅 is exogenous because in practice 𝑅 can be determined by other

factors such as transaction costs and the accounting policy. Katok et al. (2008)

use experimental methods to examine the effect of review periods in a finite-horizon

periodic-review base-stock inventory model. The inventory replenishment lead time is

zero. They find that longer review periods may be more effective than shorter ones at

inducing service improvements. In our model, the supplier’s performance is reviewed

every 𝑅 periods repeatedly. The supplier makes investment to maximize her long-run

average profit over repeated review periods. The supplier chooses the lead time once,

which is unchanged over time; there is no emergency expediting.

3.4.1 Performance measure

The immediate ready rate and time-window ready rate are two common measures for

inventory performance in practice. The immediate ready rate is the fraction of time

that demands are filled immediately; the time-window ready rate is the fraction of

time that demands are filled within a time window. When demand arrivals see time

averages (e.g., Poisson process), the ready rate (with window) is equal to the fill rate

(with window), the fraction of demands that are filled immediately (within a time

window). We study the ready rate for ease of exposition, but the major findings still
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hold if the fill rate is used as performance measure.

Let 𝐴𝑊 = 𝐴𝑊 (𝑆, 𝐿) denote the supplier’s expected ready rate with window 𝑊 if

she chooses the base-stock level 𝑆 and lead time 𝐿. Note that 𝐴0 is the supplier’s

expected immediate ready rate. Using the waiting time distribution in (3.2), we

obtain

𝐴𝑊 = Pr{𝑤 ≤ 𝑊 ∣𝑆, 𝐿} = Pr{𝐷(𝐿−𝑊 ) ≤ 𝑆} = 𝐹𝑤(𝑊 ∣𝑆, 𝐿) 𝑊 ∈ [0, 𝐿]. (3.3)

We assume that the supplier’s delivery performance is evaluated at the end of every

period. Note that the review-phase ready rate with window 𝑊 is the proportion of

periods in the review phase that at the end of the period no demand is delayed longer

than time 𝑊 . Denote the distribution of the review-phase ready rate 𝐴 ∈ [0, 1] with

the mean 𝐴𝑊 by Ψ(𝐴∣𝐴𝑊 ). Ψ(𝐴∣𝐴𝑊 ) ∈ [0, 1], Ψ(1∣𝐴𝑊 ) = 1 and Ψ′(𝐴∣𝐴𝑊 ) > 0. Let

its pdf be denoted by 𝜓(𝐴∣𝐴𝑊 ).

Proposition 3.1 Under a static continuous-review base-stock policy with base-stock

level 𝑆 and lead time 𝐿, 𝐴−𝐴𝑊

𝜎𝑊
converges in distribution to a standard normal random

variable as 𝑅 approaches ∞, where

𝜎2
𝑊 =

1

𝑅2
(𝑅𝐴𝑊 −𝑅2𝐴2

𝑊 + 2
∑
𝑖<𝑗

𝑃𝑖𝑗(𝑆, 𝐿,𝑊 )), (3.4)

and 𝑃𝑖𝑗(𝑆, 𝐿,𝑊 ) = Pr{𝐷(𝑖− 𝐿, 𝑖−𝑊 ] ≤ 𝑆,𝐷(𝑗 − 𝐿, 𝑗 −𝑊 ] ≤ 𝑆} (1 ≤ 𝑖, 𝑗 ≤ 𝑅) is

the probability that both performance outcomes in periods 𝑖 and 𝑗 are good.

Note that 𝐴 is the supplier’s realized ready rate with window 𝑊 (𝑊 ≥ 0) in

a review phase. So when the review phase is sufficiently long, 𝐴 is approximately

normally distributed with mean 𝐴𝑊 and standard deviation 𝜎𝑊 , and Ψ(𝐴∣𝐴𝑊 ) =

Φ(𝐴−𝐴𝑊

𝜎𝑊
) and 𝜓(𝐴∣𝐴𝑊 ) = 1

𝜎𝑊
𝜙(𝐴−𝐴𝑊

𝜎𝑊
), where Φ(⋅) and 𝜙(⋅) are the cdf and pdf

of the standard normal distribution. It can be shown that 𝜎𝑊 is decreasing in 𝑅,

meaning that the supplier’s performance measure is more accurate with a longer

review phase.

3.4.2 First-best solution

Using the result in Proposition 3.1, the supplier’s expected average penalty under the

SLA is

52



3.4. Optimal Ready-Rate Contract

𝐾
𝑅

∫
𝐴<𝛼

(𝛼−𝐴)𝑑Ψ(𝐴∣𝐴𝑊 )

1%
= 100𝐾

𝑅

∫
𝐴<𝛼

Ψ(𝐴∣𝐴𝑊 )𝑑𝐴.

The buyer’s expected average cost and the supplier’s expected average profit given

the SLA are

𝐸𝐶𝐵(𝑆, 𝐿) = 𝑝𝜆− 100𝐾

𝑅

∫
𝐴<𝛼

Ψ(𝐴∣𝐴𝑊 )𝑑𝐴+ 𝜆𝐸𝐶𝐷(𝑦∣𝑆, 𝐿) (3.5)

and

𝐸𝜋(𝑆, 𝐿) = 𝑝𝜆− 100𝐾

𝑅

∫
𝐴<𝛼

Ψ(𝐴∣𝐴𝑊 )𝑑𝐴− ℎ𝐼(𝑆, 𝐿)− 𝜆𝐶𝑟(𝐿), (3.6)

respectively.

If the supplier’s choice of 𝑆 and 𝐿 are observable and verifiable, then the optimal

(first-best) contract is the solution to the following problem:

min
𝑊,𝑝,𝛼,𝐾,𝑆,𝐿

𝐸𝐶𝐵(𝑆, 𝐿)

subject to 𝐸𝜋(𝑆, 𝐿) ≥ 𝜋 (3.7)

where 𝐸𝜋(𝑆, 𝐿) is given by (3.6), 𝐴𝑊 by (3.3), and 𝜋 is the supplier’s reservation

profit per period. Constraint (3.7) is called the individual-rationality (IR) constraint

in agency theory. It ensures that the supplier will expect to earn from this contract

at least her reservation profit, and thus accepts the contract.

The expected total average cost of the supply chain is

𝐸𝐶(𝑆, 𝐿) = ℎ𝐼(𝑆, 𝐿) + 𝜆𝐸𝐶𝐷(𝑦∣𝑆, 𝐿) + 𝜆𝐶𝑟(𝐿). (3.8)

Assume 𝐸𝐶(𝑆, 𝐿) is jointly unimodal in 𝑆 and 𝐿.4 Proposition 3.2 characterizes

the optimal solutions of the supply chain and the buyer.

4The property of 𝐸𝐶(𝑆,𝐿) depends on the demand distribution, delay cost 𝐶𝐷(𝑦∣𝑆,𝐿) and lead
time cost 𝐶𝑟(𝐿). So it is generally difficult to prove unimodality of 𝐸𝐶(𝑆,𝐿) in 𝑆 and 𝐿. But for
normal demand, linear delay cost and 𝐶𝑟(𝐿) with certain property, 𝐸𝐶(𝑆,𝐿) can be shown to be
unimodal. See the Appendix for details.
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Proposition 3.2 (𝑆∗, 𝐿∗) is the solution to

ℎ𝐹 (𝑆∣𝐿) + 𝜆
∂𝐸𝐶𝐷(𝑦∣𝑆, 𝐿)

∂𝑆
= 0 (3.9)

−ℎ∫
𝑥<𝑆

∂𝐹 (𝑥∣𝐿)
∂𝐿

𝑑𝑥+ 𝜆
∂𝐸𝐶𝐷(𝑦∣𝑆, 𝐿)

∂𝐿
+ 𝜆𝐶 ′

𝑟(𝐿) = 0, (3.10)

and it is the buyer’s optimal solution when 𝑆 and 𝐿 are observable and verifiable.

The corresponding optimal expected average supply chain cost is 𝐸𝐶(𝑆∗, 𝐿∗).

Next we investigate the optimal SLA using either a time-window ready rate or

an immediate ready rate as the performance measure when the supplier’s choice of

𝑆 and 𝐿 are unobservable. We call the SLA using the time-window ready rate, a

ready-rate-with-window contract and the SLA using the immediate ready rate, a

ready-rate-without-window contract.

3.4.3 Ready-rate-with-window contract

When the supplier’s choice of 𝑆 and 𝐿 are unobservable, the supplier’s optimal choice

is contingent on the contract parameters. The buyer’s optimization problem is

min
𝑊,𝑝,𝛼,𝐾,𝑆,𝐿

𝐸𝐶𝐵(𝑆, 𝐿)

subject to (𝐼𝑅) : 𝐸𝜋(𝑆, 𝐿) ≥ 𝜋

(𝐼𝐶) : (𝑆, 𝐿) ∈ argmax
𝑠,�̂�

𝐸𝜋(𝑆, �̂�) (3.11)

We make the following three assumptions throughout this chapter.

Assumption 3.1 ∂𝐹𝑤(𝑦∣𝑆,𝐿)
∂𝑆

/∂𝐹𝑤(𝑦∣𝑆,𝐿)
∂𝐿

is strictly monotonic in 𝑦 ∈ [0, 𝐿].

Many probability distributions such as those in the location-scale family and Pois-

son distribution satisfy this assumption.

Assumption 3.2 For any 𝑆, 𝐿 > 0 such that 𝐴0 > 0.5,

∂(

∫
𝐴<𝛼

Ψ(𝐴∣𝐴𝑊 )𝑑𝐴)/∂𝑆

∂(

∫
𝐴<𝛼

Ψ(𝐴∣𝐴𝑊 )𝑑𝐴)/∂𝐿

=

∂𝐴𝑊 /∂𝑆
∂𝐴𝑊 /∂𝐿

for any 𝑊 ∈ [0, 𝐿].
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Note that 𝐴0 is the expected immediate ready rate, and is usually greater than

50% in practice. This means that when the performance measure is the ready rate

with window 𝑊 , the ratio of the marginal changes in the supplier’s expected penalty

with respect to 𝑆 and 𝐿 is the same as that of the performance target. For normal

distribution, this assumption is approximately satisfied. Theoretical validation is not

easy, but the validation can be done through numerical examples (see Appendix B).

Assumption 3.3 The first-order conditions for the supplier’s optimization problem

given the contract offered by the buyer are sufficient.

This allows us to replace the (IC) constraint (3.11) by the first-order conditions

for the supplier’s problem. Even for fixed 𝐿 and no lead time cost it is difficult to

prove the unimodality of the supplier’s profit function 𝐸𝜋(𝑆, 𝐿) (see Chapter 2). So

we have to rely on numerical results to check unimodality. Now we present the main

result of this chapter.

Theorem 3.1 Assume that the optimal solution for the problem of the supply chain

is interior, then there exists a unique optimal time window 𝑊 ∗ ∈ (0, 𝐿∗) that induces

the first-best effort levels.

Theorem 3.1 implies that as long as the relative change in the supplier’s expected

penalty with respect to 𝑆 and 𝐿 is the same as that in the expected performance, then

the buyer can always find a time window 𝑊 ∗ and use the ready rate with window

𝑊 ∗ as the performance measure to coordinate the supply chain.

Let 𝐴∗
𝑊 = 𝐹 (𝑆∗∣𝐿∗ −𝑊 ∗). Corollary 3.1 follows from the proof of Theorem 3.1.

Corollary 3.1 𝑊 ∗ is such that

∂𝐸𝐶𝐷(𝑦∣𝑆∗, 𝐿∗)/∂𝑆
∂𝐸𝐶𝐷(𝑦∣𝑆∗, 𝐿∗)/∂𝐿

=
∂𝐴∗

𝑊/∂𝑆

∂𝐴∗
𝑊/∂𝐿

. (3.12)

To understand the role of 𝑊 ∗ in the optimal SLA, note that ∂𝐸𝐶𝐷(𝑦∣𝑆,𝐿)/∂𝑆
∂𝐸𝐶𝐷(𝑦∣𝑆,𝐿)/∂𝐿 is

the marginal rate of technical substitution (MRTS) for the expected delay cost in

economics theory, ∂𝐴𝑊

∂𝑆
and ∂𝐴𝑊

∂𝐿
are the marginal change in the expected performance

𝐴𝑊 with respect to the base-stock level 𝑆 and lead time 𝐿, respectively. So in the

service level agreement here, the role of the optimal window 𝑊 ∗ is to set a right

performance measure (and target) so that the optimal MRTS in the integrated system
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is transferred to the supplier, and the supplier’s investments in inventory and lead

time are perfectly balanced.

Because Theorem 3.1 implies that the ready rate with window 𝑊 ∗ is the unique

ready rate that induces the first-best effort levels and 𝑊 ∗ > 0, we can conclude that

the immediate ready rate is suboptimal. Corollary 3.2 follows.

Corollary 3.2 The SLA using the immediate ready rate as performance measure

cannot induce the first-best effort levels.

So in general, a service level agreement using the immediate ready rate as the

performance measure is suboptimal.

Proposition 3.3 The first-best ready-rate contract is such that:

1) 𝑊 ∗ is characterized by (3.12), where (𝑆∗, 𝐿∗) is the first-best solution deter-

mined by (3.9) and (3.10);

2) 𝐴∗
𝑊 = 𝐹 (𝑆∗∣𝐿∗ −𝑊 ∗);

3) there are multiple choices of (𝐾∗, 𝛼∗) such that 𝐾∗ > 0, 𝛼∗ ∈ (0, 𝐴∗
𝑊 ) and

satisfy

𝐾∗ = − 𝑅ℎ𝐹 (𝑆∗∣𝐿∗)

100

∫
𝐴<𝛼∗

∂Ψ(𝐴∣𝐴∗
𝑊

)

∂𝑆
𝑑𝐴

and

∫
𝐴<𝛼∗

∂Ψ(𝐴∣𝐴∗
𝑊 )

∂𝑆
𝑑𝐴 < 0;

4) 𝑝∗ = 𝜋
𝜆
+ 100𝐾∗

𝜆𝑅

∫
𝐴<𝛼∗

Ψ(𝐴∣𝐴∗
𝑊 )𝑑𝐴+ ℎ

𝜆
𝐼(𝑆∗, 𝐿∗) + 𝐶𝑟(𝐿

∗).

Proposition 3.3 implies that in practice, managers have many choices for the

threshold performance level 𝛼 and the penalty rate 𝐾. Note that the threshold

performance level determines the allowable deviation of the supplier’s performance

from the target. As noted in Section 3.3, in Chapter 2 we had found it best that 𝛼

should be close to the performance target to mitigate the supplier’s strategic behavior.

So although the choice of the optimal 𝛼 is not unique, it should not be too far from

the target.

Proposition 3.4 If the demand distribution is normal, then for fixed 𝜎
𝜆
, 𝐿∗, 𝑊 ∗ and

𝐴∗
𝑊 are independent of 𝜆, and 𝑆∗ is proportional to 𝜆.

Proposition 3.4 implies that for normal demand and the same coefficient of vari-

ation, the first-best inventory replenishment lead time, the optimal window and the

performance target in the optimal ready-rate-with-window contract are identical, and

56



3.4. Optimal Ready-Rate Contract

the first-best base-stock level is proportional to the demand rate. This has implica-

tions for implementing an SLA. If the demand rate changes, as long as the coefficient

of variation of demand remains the same, the optimal window 𝑊 ∗ and the target

ready rate 𝐴∗
𝑊 in the SLA need not be changed.

Next, we have a result for the first-best immediate ready rate 𝐴∗
0 for general de-

mand distributions and linear delay costs under the optimal ready-rate-with-window

contract. A linear delay cost means 𝐶𝐷(𝑦) = 𝛿𝑦, where 𝛿 > 0.

Proposition 3.5 If the delay cost is linear, then 𝐴∗
0 =

𝛿
ℎ+𝛿

.

Proposition 3.5 indicates that for a linear delay cost, even if the supplier can invest

to attain a different lead time, it will not affect the first-best immediate ready rate

𝐴∗
0. 𝐴

∗
0 is only determined by the holding cost to delay cost ratio ℎ/𝛿.

3.4.4 Ready-rate-without-window contract

A ready-rate-without-window contract has the same interpretation as a ready-rate-

with-window contract except that the supplier’s delivery performance is measured in

terms of the immediate ready rate, i.e., 𝑊 = 0. So the buyer’s optimization problem

is similar to that under a ready-rate-with-window contract with 𝑊 = 0, and the

optimal solution is provided in Proposition 3.6.

Proposition 3.6 Under a ready-rate-without-window contract,

1) the optimal (𝑆∗∗, 𝐿∗∗) that the buyer can induce is the solution to the constrained

optimization problem:

min
𝑝,𝛼,𝐾,𝑆,𝐿

𝐸𝐶(𝑆, 𝐿) (3.13)

subject to ℎ𝐹 (𝑆∣𝐿)∂𝐴0/∂𝐿

∂𝐴0/∂𝑆
+ ℎ

∫
𝑥<𝑆

∂𝐹 (𝑥∣𝐿)
∂𝐿

𝑑𝑥− 𝜆𝐶 ′
𝑟(𝐿) = 0; (3.14)

and

2) the optimal ready-rate-without-window contract is such that:

the optimal immediate ready rate 𝐴∗∗
0 = 𝐹 (𝑆∗∗∣𝐿∗∗);

there are multiple choices of (𝐾∗∗, 𝛼∗∗) such that 𝐾∗∗ > 0, 𝛼∗∗ ∈ (0, 𝐴∗∗
0 ) and

satisfy
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𝐾∗∗ = − 𝑅ℎ𝐹 (𝑆∗∗∣𝐿∗∗)

100

∫
𝐴<𝛼∗∗

∂Ψ(𝐴∣𝐴∗∗
0 )

∂𝑆
𝑑𝐴

and

∫
𝐴<𝛼∗∗

∂Ψ(𝐴∣𝐴∗∗
0 )

∂𝑆
𝑑𝐴 < 0;

and

𝑝∗∗ = 𝜋
𝜆
+ 100𝐾∗∗

𝜆𝑅

∫
𝐴<𝛼∗∗

Ψ(𝐴∣𝐴∗∗
0 )𝑑𝐴+ ℎ

𝜆
𝐼(𝑆∗∗, 𝐿∗∗) + 𝐶𝑟(𝐿

∗∗).

Proposition 3.7 is a counterpart of Proposition 3.4 under a ready-rate-without-

window contract.

Proposition 3.7 If the demand distribution is normal, then for fixed 𝜎
𝜆
, 𝐿∗∗ and 𝐴∗∗

0

are independent of 𝜆, and 𝑆∗∗ is proportional to 𝜆.

Similar to the result in Proposition 3.4, Proposition 3.7 implies that when the

demand rate changes, as long as the coefficient of variation is not changed, the per-

formance target in the optimal ready-rate-without-window contract is still optimal.

Both Propositions 3.4 and 3.7 imply that the optimal performance target in a ready-

rate contract is dependent on the coefficient of variation of demand. Corollary 3.3

follows from Propositions 3.4 and 3.7 and the fact that 𝐸𝐶(𝑆,𝐿)
𝜆

is independent of 𝜆

for fixed 𝜎
𝜆
.

Corollary 3.3 For normal demand, the system loss – the % increase in the aver-

age supply chain cost from not using a window in the contract is identical when 𝜎
𝜆
is

constant.

The results in Propositions 3.4 & 3.7 and Corollary 3.3 will be useful for conducting

numerical analysis in Section 3.5.

3.4.5 Incentive alignment using an inventory performance

measure

In the supplier’s expected average penalty, let Π(𝑆, 𝐿,𝑊 ) =

∫
𝐴<𝛼

Ψ(𝐴∣𝐴𝑊 )𝑑𝐴, then

∂Π(𝑆,𝐿,𝑊 )/∂𝑆
∂Π(𝑆,𝐿,𝑊 )/∂𝐿

= 𝜃 ∂𝐴𝑊 /∂𝑆
∂𝐴𝑊 /∂𝐿

, where

𝜃 =
1− ∂𝜎𝑊 /∂𝑆

∂𝐴𝑊 /∂𝑆
𝜙(𝛼−𝐴𝑊

𝜎𝑊
)/Φ(𝛼−𝐴𝑊

𝜎𝑊
)

1− ∂𝜎𝑊 /∂𝐿
∂𝐴𝑊 /∂𝐿

𝜙(𝛼−𝐴𝑊

𝜎𝑊
)/Φ(𝛼−𝐴𝑊

𝜎𝑊
)
. (3.15)
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The derivation of 𝜃 is from (B.4) in Appendix B. So Assumption 3.2 holds if and

only if ∂𝜎𝑊 /∂𝑆
∂𝐴𝑊 /∂𝑆

= ∂𝜎𝑊 /∂𝐿
∂𝐴𝑊 /∂𝐿

for any 𝑆, 𝐿 > 0 with 𝐴0 > 0.5. From Proposition 3.1,

if the inventory replenishment lead time 𝐿 ≤ 1, then the performance outcomes in

any two periods 𝑖 and 𝑗 are independent, and 𝑅𝐴, the number of periods in a review

phase that have good performance (no demand is delayed longer than the window

𝑊 ), has a binomial distribution with independent outcomes and 𝜎2
𝑊 = 𝐴𝑊 (1−𝐴𝑊 )

𝑅
, so

∂𝜎𝑊 /∂𝑆
∂𝐴𝑊 /∂𝑆

= ∂𝜎𝑊 /∂𝐿
∂𝐴𝑊 /∂𝐿

holds. For 𝐿 > 1, if any two periods 𝑖 and 𝑗 differ by less than

𝐿 periods, then the performance outcomes in these two periods are positively corre-

lated. When changing the base-stock level 𝑆 and lead time 𝐿, the relative change

in the performance variability 𝜎𝑊 due to 𝑆 and 𝐿 may be different from that in the

performance target 𝐴𝑊 , i.e., ∂𝜎𝑊 /∂𝑆
∂𝐴𝑊 /∂𝑆

= ∂𝜎𝑊 /∂𝐿
∂𝐴𝑊 /∂𝐿

may not hold. Other order fulfillment

rates for measuring inventory performance such as the fill rate have similar properties

for positive lead times. From the proof for Theorem 3.1, for a demand distribution

with ∂𝜎𝑊 /∂𝑆
∂𝐴𝑊 /∂𝑆

∕= ∂𝜎𝑊 /∂𝐿
∂𝐴𝑊 /∂𝐿

, there may not exist a 𝑊 ∈ [0, 𝐿] such that a ready rate with

window𝑊 induces the supplier to make the first-best investment (𝑆∗, 𝐿∗), or the opti-

mal time window𝑊 may not be unique. This implies that for inventory management

in a decentralized system, to effectively align a supplier’s incentive with the buyer’s

when the supplier has multiple ways to perform, a single aggregate performance mea-

sure such as the ready rate may not be sufficient. This is due to the performance

variability resulting from positive inventory replenishment lead time. If this is the

case, then other performance measures are needed to complement the fulfillment rate.

In Choi et al. (2004), a ready rate target for the supplier is not a sufficient guarantee

due to the capacity constraints of both the buyer and the supplier, and they propose

average backorders as a second performance measure. But in a finite-horizon, this

measure is also a random variable, and its variability also needs consideration when

designing an SLA.

3.5 Numerical Analysis

We use numerical examples to illustrate how the first-best 𝑆∗, 𝐿∗ and optimal contract

parameters are affected by the demand rate 𝜆, the variability of demand 𝜎, and related

costs including the inventory holding cost, lead time cost and delay cost. Moreover,

because both the immediate and time-window ready rates are seen in practice, we

compare the system performance (the optimal average supply chain cost) under both
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types of SLAs.

Assume the demand per period has a normal distribution. The lead time cost

function is 𝐶𝑟(𝐿) =
𝑟
𝐿
(𝑟 > 0). To simplify the notation, let 𝑧 = 𝑆−𝜆𝐿

𝜎
√
𝐿
. Following the

results in Propositions 3.4 & 3.7 and Corollary 3.3, under the SLA using either type

of ready rate as performance measure, the optimal lead time is independent of 𝜎
𝜆
and

the optimal base-stock level is proportional to 𝜆; and the system loss from using the

immediate ready rate instead of the time-window one is also independent of 𝜎
𝜆
. So we

only need to examine the results for demands with different coefficient of variation of

demand by varying 𝜎 with 𝜆 fixed.

In the inventory management literature, the delay cost is known as the backorder

cost and is usually assumed to be linear in the waiting time. In reality, however, it

may be nonlinear. For example, if the buyer provides after-sales services, customers

may not mind waiting for one or two days to have their laptops, televisions or cars

etc. fixed, in which case the supplier provides spare parts to the buyer; but the

loss of customers’ goodwill goes up quickly when their waiting time is beyond their

tolerance. In the automobile industry, if a customer’s preferred vehicle model is not

immediately available at a car dealer, the customer is often willing to wait for a few

days before receiving it; but if the customer has to wait longer, then she may leave

and go to another dealer. Therefore, we consider two types of delay costs: linear

delay cost with 𝐶𝐷(𝑦) = 𝛿𝑦, and convex delay cost with 𝐶𝐷(𝑦) = 𝛿𝑦2, where 𝛿 > 0.

To be consistent with our continuous approximation of the underlying model, we

report the continuous-valued optimal solutions in the numerical examples. We use

the following parameter values: ℎ ∈ {1, 2}, 𝛿 ∈ {2, 10, 20}, 𝑟 ∈ {2, 4}, 𝜆 = 10, and

𝜎 ∈ {1, 2, ..., 5}. All the formulas for the calculations can be found in Appendix B.

3.5.1 Linear delay cost

Linear delay cost is a common assumption in the theoretical analysis. This represents

the situation where the marginal cost of a delayed delivery does not vary with the

amount of delay. Under linear delay cost,the optimal window 𝑊 ∗ can be computed

from the simple formula below:

𝑊 ∗
𝐿 = 𝐿∗ − 𝑆∗

𝜆− 2𝜆𝐶 ′
𝑟(𝐿

∗)/ℎ
. (3.16)

To examine the optimal ready-rate-with-window contract, we compute the first-
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best (𝑆∗, 𝐿∗) and 𝑊 ∗
𝐿 for the parameters given above. The results are plotted in

Figures 3.1-3.3.

Figure 3.1: First-best base-stock level (linear delay cost)

Figure 3.2: First-best lead time (linear delay cost)

Figures 3.1-3.3 indicate that the optimal window increases with the coefficient

of variation. Because greater demand variability poses higher inventory risk on the

supplier, we can interpret the optimal window as being used for sharing the inventory

risk between the buyer and the supplier. For fixed demand rate, both the first-best

base-stock level and lead time go down with the variability of demand (𝜎). Similar

results are found for the optimal base-stock level and lead time under a ready-rate-

without-window contract. Intuitively, with shorter lead time, the supply chain can

respond more quickly to demand with large variability.

We also examine the performance of a ready-rate-without-window contract by

comparing its optimal average supply chain cost 𝐶∗∗ with the first-best one 𝐶∗ and
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Figure 3.3: Optimal window (ready rate with window, linear delay)

Table 3.1: Cost increase from not using a window contract (linear delay cost)
Parameters % Cost Incre

ℎ = 1, 𝛿 = 10, 𝑟 = 2 0.69%
ℎ = 1, 𝛿 = 10, 𝑟 = 4 0.69%
ℎ = 1, 𝛿 = 20, 𝑟 = 2 0.44%
ℎ = 2, 𝛿 = 10, 𝑟 = 2 1.12%
ℎ = 2, 𝛿 = 2, 𝑟 = 2 3.65%

computing the percentage cost increase from not using a window contract. Table 3.1

demonstrates its performance for different demand variability and related costs.

It turns out that with other parameters fixed, the system loss — the percentage

increase in the average supply chain cost, from using a ready-rate-without-window

contract, is independent of the coefficient of variation of demand for the fixed demand

rate. With other parameters fixed, the system loss is independent of the lead time

cost, decreases with the delay cost, and increases with the holding cost. Proposition

3.5 has shown that for linear delay cost, the first-best expected immediate ready rate

𝐴∗
0 = 𝛿

ℎ+𝛿
= 1

1+ℎ/𝛿
. The numerical results indicate that for small ℎ/𝛿 ratio (high

target service level), the system efficiency loss from using an immediate ready rate

as performance measure is small. So when the holding cost ℎ is small compared with

the delay cost 𝛿, an immediate ready rate will induce the system performance close

to the optimal; if ℎ is close to 𝛿, then a time-window ready rate should be used.
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3.5.2 Convex delay cost

In practice, the cost of delayed delivery to a buyer may not be linear in the amount of

delay. The marginal cost of delay is increasing in the amount of delay, i.e., the delay

cost is convex. Convex delay cost is often assumed for customers’ value of service

time in customer service models.

Similar to the analysis for linear delay cost, we examine the optimal ready-rate-

with-window contract by computing the first-best solution (𝑆∗, 𝐿∗) and the optimal

window 𝑊 ∗
𝐶 for the parameters given above. The optimal window 𝑊 ∗ can be com-

puted from the formula

𝑊 ∗
𝐶 = 𝐿∗ − 𝑆∗Φ(𝑧∗)

𝜆Φ(𝑧∗)− 2𝜆
ℎ
𝐶 ′

𝑟(𝐿
∗)− 𝜎√

𝐿∗𝜙(𝑧
∗)
, (3.17)

where 𝑧∗ = 𝑆∗−𝜆𝐿∗
𝜎
√
𝐿∗ .

Figure 3.4: Optimal window (ready rate with window, convex delay)

Similar patterns are found for convex delay cost about the first-best base-stock

level 𝑆∗ and lead time 𝐿∗, the optimal window 𝑊 ∗
𝐶 , as well as the optimal base-stock

level 𝑆∗∗ and lead time 𝐿∗∗ under a ready-rate-without-window contract as those

in the case of linear delay cost, and similar conclusions can be made. The optimal

window here can be regarded as being used for sharing the inventory risk between

the buyer and the supplier. Compared with linear delay cost, convex delay cost is

smaller for short delay and larger for long delay. So the optimal window also plays a

role of partially transferring the buyer’s delay cost structure to the supplier. This can

be seen by comparing Figure 3.3 with Figure 3.4, where the optimal window under
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Table 3.2: Cost increase from not using a window contract (convex delay cost)
ℎ = 1, 𝛿 = 10 ℎ = 1, 𝛿 = 10 ℎ = 1, 𝛿 = 20 ℎ = 2, 𝛿 = 10 ℎ = 2, 𝛿 = 2

𝜎 𝑟 = 2 𝑟 = 4 𝑟 = 2 𝑟 = 2 𝑟 = 2
1 3.78% 3.35% 2.75% 5.74% 10.46%
2 3.38% 2.95% 2.50% 5.17% 9.43%
3 3.35% 2.89% 2.52% 5.14% 9.16%
4 3.46% 2.94% 2.64% 5.30% 9.20%
5 3.63% 3.05% 2.79% 5.54% 9.39%

convex delay cost is generally larger than that under linear delay cost. For the system

loss from not using a window contract, Table 3.2 shows that unlike that in the case

of linear delay cost, it varies with the coefficient of variation of demand and is not

monotonic. With other parameters fixed, the system loss decreases with the delay

cost, but increases with the holding cost. Similar pattern has been found for linear

delay cost. However, the effect of lead time cost on the system loss is different. Here

the system loss decreases with the lead time cost. In all the scenarios, the system loss

is much greater than that of linear delay cost.

From the above numerical results for linear and convex delay costs, we can see

that a time-window fulfillment rate is preferred to an immediate one for measuring a

supplier’s delivery performance in two situations. One situation is when the buyer’s

cost of delay is not large compared with the inventory holding cost of the product. An

example is perishable products such as expensive electronics, of which the inventory

holding cost also includes the depreciation of the product. Another situation is when

the marginal cost of a delay increases with the length of delay, that is, the delay cost

is small for short delay but very large for long delay, often the case in reality. Linear

delay cost is commonly used in theoretical analysis.

3.5.3 Effect of the length of review phase 𝑅

We first consider an SLA using the optimal time-window ready rate. We have assumed

that both the buyer and the supplier optimize their long-run average payoff, so under

a ready-rate-with-window contract, the optimal (𝑆∗, 𝐿∗) and thus 𝑊 ∗ (and 𝐴∗
𝑊 ) are

not affected by 𝑅. This can be seen from Propositions 3.2 and 3.3. Similarly, under

an SLA using the optimal immediate ready rate, the optimal (𝑆∗∗, 𝐿∗∗) and thus 𝐴∗∗
0

are not affected by 𝑅, which follows from Proposition 3.6.
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For both types of SLAs, let 𝑚 =
∣∣∣𝛼−𝐴𝑊

𝜎𝑊

∣∣∣, 𝑊 ≥ 0. 𝑚 is the relative allowable

deviation of the performance from the target. Because the variability of performance

𝜎𝑊 is decreasing in 𝑅 and 𝛼 < 𝐴𝑊 , for fixed 𝑚, the performance threshold 𝛼 is

increasing in 𝑅, i.e., the threshold should be closer to the target for large 𝑅.

3.6 Conclusions

In this chapter we examine the design of service level agreements in decentralized

supply chains when a supplier has multiple ways to do things. Specifically, we study

ready-rate contracts for managing a supplier’s delivery performance from a principal-

agent perspective, in which the supplier can invest both in inventory and in replen-

ishment lead time, and the investments are unobservable to the buyer. Therefore, we

study a multi-task moral hazard problem.

The SLA in our study is a linear-penalty scheme under a multi-period review

strategy. We investigate two common measures of inventory performance observed in

practice — the immediate ready rate and the time-window ready rate, and show that

under a static continuous-review base-stock policy, the distribution of the supplier’s

review-phase ready rate is approximately normal. Because a single performance mea-

sure is used but the supplier has two choices — inventory and lead time — to affect

the performance, we examine the effectiveness of immediate and time-window ready

rates at aligning the supplier’s incentive with that of the buyer. We also find that

due to positive inventory replenishment lead time, the performance outcome in each

period can be correlated. As a result, the relative change in the variance of the review-

phase ready rate with respect to the base-stock level and lead time may be different

from that of the performance target. In this case, a single performance measure such

as the ready rate cannot align the supplier’s incentive to make first-best investment

in inventory and lead time, and additional performance measure is needed.

We propose a ready-rate-with-window contract, and show that under some mild

conditions the SLA with a time-window ready rate as performance measure always

induces the supplier to choose the first-best level of investment in inventory and lead

time. For normal demand, the optimal window is identical for demands with the

same coefficient of variation; and the greater the coefficient of variation in demand,

the larger the optimal window.

We find that for linear cost of delayed delivery, a simpler form of ready rate
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contract, ready-rate-without-window contract, is near optimal. However, in the cases

where the delay cost is convex, a ready-rate-without-window contract can result in

high system loss — increase in the average supply chain cost; thus a ready-rate-with-

window contract is preferred. The gain from using a ready-rate-with-window contract

instead of a ready-rate-without-window one increases with the convexity of the delay

cost. Therefore, a simple inclusion of window in performance measures can make a

big difference.

The window used in the ready-rate contract plays three roles. First, it transfers

the MRTS of the expected average delay cost to the supplier to balance the supplier’s

investment in inventory and lead time, making the supplier’s tradeoff between inven-

tory and lead-time investments same as that of the supply chain. Second, it facilitates

the sharing of inventory risk (cost from excessive inventory and inventory shortage

from stochastic demand) between a buyer and a supplier by allowing a small delay of

delivery when evaluating the supplier’s delivery performance. Moreover, the window

to some extent transfers the buyer’s delay cost structure to the supplier. This finding

provides a theoretical support for the common use of time-window fulfillment rate in

practice.
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Chapter 4

Volume Incentive Through

Performance-Based Allocation Of

Demand

4.1 Introduction

Buyers of products or services commonly employ multiple suppliers rather than a

single one. There are a large number of reasons why this might happen. For example

in the case of some accident (e.g., supply disruption) the buyer does not want to lose

his single source of product or service. Even without accidents the buyer does not

want to be in a ‘holdup’ situation if switching to another supplier is not easy. In cases

where the purchase amount is uncertain or the supply available is uncertain, then a

backup or emergency source is needed. Finally of course there is the simple need often

to keep supply price competition vigorous by maintaining a stable of suppliers. This

chapter however assumes away all these reasons in order to concentrate on another

widespread motivation. A great deal of innovation in the quality and performance

of products and services is expected to be done by suppliers. The suppliers can

make an effort (invest resources) to improve their performance, which benefits the

buyer. Such investment is costly to the supplier and is often unobservable to the

buyer. Through sourcing from multiple suppliers, the buyer can create competition

between the suppliers and motivate them to invest for better performance. Dyer

and Ouchi (1993) report that Japanese firms usually employ a ‘two-vendor policy’

to motivate suppliers to innovate and improve performance. An empirical study by

Bensaou (1999) also shows that Japanese buyers typically split their purchases among

multiple suppliers and then demand that the suppliers make specialized investments

to obtain and keep their business.

In this chapter we assume away the risk of supply disruption by confining un-
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certainty only to the results of the investment, by all parties being risk neutral, by

supply being fixed to one standardized unit (one million components or ten thousand

payrolls serviced or 1,000 kilometers of yellow lines down the centre of city streets

maintained), and by suppliers being essentially uncapacitated. In addition the price

per unit is fixed. The only way for a supplier to gain a larger share of next period’s

(e.g., year’s) contract for this unit is to improve quality or performance. To improve

quality the buyer will announce in advance how next year’s shares will depend on

this year’s observed performance or quality. This performance-based allocation of

business provides an incentive in the form of business volume, which is commonly

used in practice. For example, Toyota adjusts business volume between just two

suppliers based on their performance to achieve effective competition between the

suppliers (Dyer et al. 1998). Sun Microsystems allocates demand among multiple

suppliers using a scorecard system (Farlow et al. 1996). When allocating business

between two suppliers based on their performance, the buyer’s objective is to keep

suppliers competitive in terms of quality, delivery, or whatever supplier’s performance

characteristic the buyer deems important (Spekman 1988, Hahn, Kim & Kim 1986),

and to motivate suppliers to improve by providing positive incentives (in the form of

increased business volumes) or negative incentives (in the form of decreased business

or competition). The buyer seeks for better supplier performance rather than the

optimal supply chain efficiency. The actual measurement of quality or performance

will be kept as simple as possible in this chapter but the key assumption is that the

buyer can observe the supplier’s performance or quality only and this is a noisy signal

of the supplier’s effort level.

Despite its widespread use, this volume incentive is seldom studied in the litera-

ture. In the absence of direct monetary incentives, volume incentives in the form of

delayed rewards or penalties from gaining or losing future business may be a substi-

tute. The objective of this research is to study special features in the performance-

based volume incentive schemes and the effectiveness of different forms of volume

incentives. We look for answers to the following questions: How can a buyer use the

allocation of demand to induce competition between two suppliers to obtain better

performance when the suppliers’ investments are unobservable? What is the buyer’s

optimal volume incentive scheme that maintains the suppliers’ competition over time?

Specifically, we consider a buyer repeatedly outsourcing a fixed amount of divisi-

ble service or product from two suppliers. The suppliers can make effort to improve
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their performance, and in order to isolate the key structure of what drives an opti-

mal allocation we make the two suppliers equal in every way. The effort levels are

unobservable to the buyer – a moral hazard problem in agency theory. The buyer

allocates his business between the two suppliers based on their past performance in

order to maximize his long-run discounted payoff from repeated dual sourcing. A key

part of the modeling is the suppliers’ cost function. We examine two cases; where a

supplier’s effort cost is proportional to her share of business (the proportional case)

and the case where the cost is independent of her share (the independent case). An

example of the latter might be where a new product is developed in a laboratory and

then can be applied in their supplier’s factory without further tooling; compared to

the former case where the same product is made but the process improvement means

that all the machines must be upgraded. An innovation of new software to payroll

management that could then be rolled out to all accounts would be the latter, but

one which needed the reformatting of accounts one by one would be the former. A

new yellow paint formulation that dried quicker would be the latter but a drying

process that cost per kilometer would be the former. An important example here

is ‘learning by doing’. A firm with a large share might in some circumstances have

much more opportunity to innovate at a lower cost. The company with 999 of the

1,000 kilometers might have greater testing costs than the one with 1 kilometer, but

the cost per kilometer is likely a lot less. Of course in practice this is going to be a lot

more complex, but using these two cases and seeing how the results depend critically

on them gives us insights into the importance of including this aspect.

A natural allocation rule by the buyer that comes readily to mind is to give all

the business to the one with the better performance, often termed a ‘winner-take-all’

or WTA rule, essentially treating the competition as a rank-order tournament. Our

finding addresses both the A, the ‘all’, of this acronym and the W, the ‘winner’. In the

proportional case the optimal is not ‘all’, but in the independent case it essentially is

‘all’. However in neither case is the definition of ‘winner’ a simply ‘first-past-the-post’.

We find that winning must be relative to current shares, essentially an endowment

with which a company enters this year’s competition. For symmetric suppliers with

an identical cost function, in both cases, the optimal rule of business allocation is

what we might term a ‘handicapped’ one. A parallel might be drawn to competitive

sailing where point handicaps reflect equipment endowments or past successes, or to

the game of golf where success is handicapped. Both examples are mainly to ensure
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a vigorous competition, the handicapped player has to work harder to win by being

given a handicap at the start. Thus the competition may also look like a ‘fair’ one. In

some horse races, handicaps give extra weight into the saddles in order to make it a

‘fair’ race, although this may be more to do with making the punting more interesting

with a more evenly balanced field. Thus the supplier with a better performance in the

current period may not get a bigger share in the next period. So in the proportional

case, although the optimal allocation rule is not a WTA one, numerical results show

that a handicapped-winner-take-all (HWTA) rule can perform well compared with the

optimal when the variability (noise) in the performance measure is small, but worse

when the variability (noise) is large, while a common rank-order tournament type of

allocation rule, simple WTA (SWTA) rule, always performs far worse compared to

both the HWTA rule and the optimal one. In the ‘independent’ case, the optimal

allocation rule for a finite horizon problem is a HWTA one. Both a share-dependent

HWTA and a SWTA allocation rules are studied for an infinite horizon problem,

and numerical results indicate that a HWTA rule can often perform much better

than the SWTA one. Therefore, when the incentive comes from the allocation of

business among competing suppliers, each supplier’s current share of business plays

an important role, and using a handicap can be very effective for incentive provision.

The main contribution of this chapter is to examine these special features of

performance-based volume incentive schemes. Our results have direct managerial im-

plications to the design of volume incentive contracts in practice. To induce compe-

tition among suppliers and maintain the competition over time, the optimal volume

incentive scheme is generally not a simple rank-order tournament, which has been

shown in literature to be effective under the monetary incentive scheme. Instead,

handicapping the definition of winner can do well over a simple first-past-the-post rule

and the optimal rule may not be to give all the demand to one company. Performance-

based volume incentives often need to take into account each supplier’s current share

of business.

The rest of this chapter is organized as follows. Section 4.2 reviews the literature.

Section 4.3 describes the model. Section 4.4 studies the buyer’s problem under the two

types of supplier’s effort cost and presents numerical results. The chapter concludes

with a summary and a discussion of future work in Section 4.5.
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4.2 Literature Review

Our study is at the interface of operations management and economics, and thus is

related to both streams of literature.

There exists a vast literature on dual (multiple) sourcing. Elmaghraby (2000)

provides a survey on the research in operations research and economics literature on

sourcing strategies for the problem of a buyer awarding a divisible business to one or

more suppliers among multiple suppliers. The research questions are mostly one-time

decision problems which are related to the design of competitive mechanisms in the

form of bidding and the suppliers’ competitive behavior under the bidding rule.

In the operations management literature, a number of papers investigate the effect

of demand allocation on the behavior of competing firms.

Lippman and McCardle (1997) study a single-period competitive newsvendor

problem in which each newsvendor chooses an inventory level to meet a random

demand and a rule specifies the allocation of initial market demand among the firms

as well as the allocation of excess demand among firms with remaining inventory.

They investigate the relationship between four specific allocation rules and equilib-

rium inventory levels. Both Hall and Porteus (2000) and Liu et al. (2007) consider

a multi-period competitive newsvendor problem where two firms make capacity (in-

ventory) decision in each period, and the demand for each firm is dependent on the

realized level of customer service (product availability) in the prior period. The firms’

equilibrium behavior in the dynamic game is identified. In all three papers, firms’

incentive for competition is governed by an exogenous demand allocation mechanism

driven by the switching behavior of customers in the market, which is dependent on

the firms’ realized service levels in the current (first paper) or prior period (the other

two papers), and there is no buyer dictating the supplier competition. In our model,

a buyer designs the incentive mechanism – a demand allocation rule which is based

on the firms’ past performance levels. So the focus of our study is on the design of a

demand allocation mechanism.

Our study is closely related to two papers. Both Cachon and Zhang (2007) and

Benjaafar et al. (2007) consider a buyer outsourcing a fixed demand at a fixed unit

price to multiple suppliers. Cachon and Zhang (2007) study a queuing system where

each supplier’s service time is determined by the capacity she invests, and the buyer

allocates the demand among multiple suppliers based on their service times to mini-
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mize the average service time over an infinite horizon. Suppliers are homogeneous in

terms of their capacity costs. Each supplier chooses a capacity level to maximize her

own profit. The authors evaluate several allocation rules and show that performance-

based allocation may not motivate suppliers to improve service times. In Benjaafar

et al. (2007), a buyer outsources the demand to a set of potential suppliers. Com-

petition between suppliers is created either by allocating the whole demand to one

supplier with the probability of being selected increasing with her committed service

level – market-seeking (MS) approach, or by allocating the demand to each supplier

in proportion to her committed service level – market-augmenting (MA) approach. In

the MA case, each supplier’s service level is assumed to be independent of the demand

allocated to her. Under both cases, it is assumed that the contractual promises of the

suppliers regarding effort or service level are enforceable. The suppliers are hetero-

geneous in production and service costs. Each supplier chooses a committed service

level to maximize her expected profit. The authors compare the service quality the

buyer can achieve under the MA and MS mechanisms. Neither paper considers the

hidden action problem. There is no noise in the suppliers’ performance outcome, and

the demand allocation is based on the suppliers’ observable effort levels or expected

performance in the first paper and on the suppliers’ committed performance in the

latter.

Cachon and Lariviere (1999) study a special allocation rule commonly used in the

automobile industry by considering a single supplier allocating capacity to multiple

retailers based on their past sales. They examine a two-period game under a given

allocation rule, so their focus of study is not on the design of allocation rule.

In all the aforementioned papers, only Cachon and Zhang (2007) examine the

optimal allocation rule. Our chapter differs from these papers by investigating the

design of volume incentives which are on the basis of past performance and studying

a multi-period multi-agent moral hazard problem.

Our research is also related to the economics literature. Spear and Srivastava

(1987) study a repeated moral hazard problem with discounting between a principal

and an agent, and show that history dependence can be represented by using the

agent’s expected utility as a state, and thus the problem of characterizing the optimal

contract of such a model can be reduced to a constrained static variational problem.

Monetary compensation is used for an incentive. We study a repeated moral hazard

problem between a principal and two competing agents, the compensation is in the
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form of future demand, and the state is Supplier 1’s current share of the business.

Lewis and Yildirim (2002) examine the design of competitive mechanisms for

dual sourcing with supplier learning by doing. Each time only one supplier is selected

through bidding. The buyer faces an adverse selection problem because the suppliers’

production cost is private information. Supplier’s investment in performance is not

in consideration.

In the economics literature, incentive schemes are usually on the basis of mon-

etary reward or penalty. Competitive compensation schemes can come in the form

of rank-order tournament or relative performance evaluation. The relevant research

can be found, for example, in Lazear and Rosen (1981), Green and Stokey (1983),

Hart (1983), Holmstrom (1982), and Nalebuff and Stiglitz (1983). The problems are

generally for a single period. Relative performance evaluation (RPE) compensates

the agents based on their output levels, and is often used when there is a common

shock to the agents’ performance, which is not considered in our problem. The total

compensation in RPE varies with the agents’ realized output levels, but in our case

the total demand to be split is a constant. In tournaments, rewards are based on the

rank order of the individuals, not on their actual output levels. Lazear and Rosen

(1981) show that for risk-neutral agents rank-order tournaments work as well as in-

dependent contracts; and for agents with known heterogeneous ability, handicapping

will improve the efficiency of the tournaments. We find that when incentives are from

future business, rank-order tournaments are generally not optimal, and handicapping

significantly improves the efficiency even when the agents are homogeneous in ability.

4.3 Model Description

Consider a buyer outsourcing the supply of a fixed one unit of a divisible product or

service from two suppliers repeatedly over an infinite horizon. Both the buyer and

the two suppliers are risk neutral. For tractability we make a number of simplifying

assumptions. Each supplier can make effort to improve her performance (e.g., delivery,

quality, cost, etc.). For instance, when contracting for inventory management, a

supplier’s demand fulfillment performance can be measured by the fill rate. In each

period 𝑡 (𝑡 = 1, 2, ...), Supplier 𝑖’s realized performance 𝑥𝑖𝑡 = 𝑒𝑖𝑡 + 𝜀𝑖 (𝑖 = 1, 2), where

𝑒𝑖𝑡 is Supplier 𝑖’s effort level in period 𝑡, 𝜀1 and 𝜀2 are independently and identically
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distributed (i.i.d.) with the probability distribution 𝑁(0, 𝜎)5. In this chapter, we use

a supplier’s effort level to refer to her target performance level. The suppliers have

identical effort cost function, and the cost of effort takes the form 𝐶(𝑒, 𝛽) = 𝑔(𝛽) 𝑏𝑒
2

2
,

where 𝑏 > 0, 𝛽 is a supplier’s share of demand in a period, 𝑔(𝛽) > 0 and 𝑔′(𝛽) ≥ 0.

It is important that marginal increases in performance are increasingly costly to

achieve. The actual quadratic nature is a matter of convenience. Other strictly

convex functions are possible but the analysis would be formidable. The effort cost

is common information. Only two special cases of 𝑔(𝛽) are considered: 𝑔(𝛽) = 𝛽

and 𝑔(𝛽) = 1, the proportional and independent cases respectively. The unit transfer

price 𝑝 of the product or service between the buyer and each supplier is identical and

constant in every period, which can reflect a dominant market price. The unit cost of

supplying the product or service 𝑐 is constant in every period. Consequently, the unit

profit of supplying the product or service 𝑚 = 𝑝− 𝑐 is also constant and identical for

both suppliers. All parties have a common discount factor 𝛾 ∈ (0, 1).

Let 𝛼𝑡 denote Supplier 1’s share of demand in period 𝑡. So Supplier 2’s share

in period 𝑡 is 1 − 𝛼𝑡. The state in period 𝑡 is 𝛼𝑡, Supplier 1’s share in that period,

𝛼𝑡 ∈ [0, 1]. Each supplier’s feasible action set is 𝐴 = [0, 𝑒], where 𝑒 is a sufficiently

large number.

The buyer’s allocation rule for the next period is restricted for simplicity to be

based on the current share and performance. Rules such as based the average of

previous year’s shares or performance levels are not considered. In a repeated moral

hazard problem between a principal and an agent, Spear and Srivastava (1987) have

shown that history dependence in the compensation scheme can be represented by

using the agent’s expected utility as a state, thus the optimal compensation scheme

is independent of the history of the agent’s performance and compensation. In our

problem, because a supplier’s expected future payoff is directly linked to her next

period share of business, by analogy the optimal allocation rule is likely to depend

only on the suppliers’ immediate past performance outcomes and shares. So the

restriction does not necessarily limit our findings.

The sequence of events is as follows. At the beginning of the horizon, the buyer

announces an allocation rule to be used for each period and gives each supplier an

5The case of correlated noise has been studied but essentially no added insights were available and
the complexity was greatly increased. The normal assumption is just for tractability and appears
reasonably benign.
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initial share of the business, with the two suppliers’ total share equal to one. In

every period 𝑡 (except for period 1), the buyer allocates his business between the

two suppliers based on the suppliers’ performance levels in the previous period and

the allocation rule. The suppliers choose their effort levels simultaneously and incur

the effort costs. Their performance levels are realized at the end of the period and

observed by all parties.

We study a moral hazard problem, where the buyer can only observe both sup-

pliers’ realized performance but not their effort levels in each period. Therefore, the

share of demand allocated to each supplier in a period can only be based on immediate

past performance realizations and demand allocations.

Let 𝑣𝑖𝑡 and 𝑣𝐵𝑡 denote Supplier 𝑖’s profit and the buyer’s payoff from period 𝑡

onwards. The buyer’s payoff will be taken as the discounted weighted average quality

(or performance) level in each period. So for 𝑡 ≥ 1, the buyer’s payoff to go and the

suppliers’ profits to go from period 𝑡 onwards are

𝑣𝐵𝑡 (𝛼𝑡) = 𝐸(
∞∑
𝜏=𝑡

𝛾𝜏−1[𝛼𝜏𝑥
1
𝜏 + (1− 𝛼𝜏 )𝑥

2
𝜏 ]) (4.1)

=
∞∑
𝜏=𝑡

𝛾𝜏−1[𝛼𝜏𝑒
1
𝜏 + (1− 𝛼𝜏 )𝑒

2
𝜏 ],

and

𝑣1𝑡 (𝛼𝑡) =
∞∑
𝜏=𝑡

𝛾𝜏−1[𝑚𝛼𝜏 − 𝑏𝑔(𝛼𝜏 )(𝑒
1
𝜏 )

2

2
],

𝑣2𝑡 (1− 𝛼𝑡) =
∞∑
𝜏=𝑡

𝛾𝜏−1[𝑚(1− 𝛼𝜏 )− 𝑏𝑔(1− 𝛼𝜏 )(𝑒
2
𝜏 )

2

2
].

The buyer uses a stationary allocation rule 𝛽𝛼(𝑥1, 𝑥2), which states that given

Supplier 1’s share in a period = 𝛼 and the suppliers’ performance outcomes (𝑥1, 𝑥2)

in that period, Supplier 1’s share in the next period is 𝛽𝛼(𝑥1, 𝑥2). Under the allocation

rule 𝛽𝛼(𝑥1, 𝑥2), the two suppliers play a stochastic game in an infinite horizon. If the

two suppliers’ equilibrium policies are stationary, then the buyer’s problem can be

represented as a static variational problem (omitting the time index in the notations),
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with the buyer’s payoff at period 1 being

𝑣𝐵(𝛼) = 𝛼1𝑒1 + (1− 𝛼1)𝑒2 + 𝛾

∫ ∫
𝑣𝐵(𝛽𝛼(𝑥1, 𝑥2))𝑓(𝑥1∣𝑒1)𝑓(𝑥2∣𝑒2)𝑑𝑥1𝑑𝑥2, (4.2)

where 𝑓(𝑥∣𝑒) = 1
𝜎
𝜙(𝑥−𝑒

𝜎
) and 𝜙(⋅) is the probability density function (pdf) of the

normal distribution, and the payoffs of suppliers 1 and 2 at period 1 being

𝑣1(𝛼) = 𝛼𝑚− 𝑏𝑔(𝛼)(𝑒1)
2

2
+ 𝛾

∫ ∫
𝑣1(𝛽𝛼(𝑥1, 𝑥2))𝑓(𝑥1∣𝑒1)𝑓(𝑥2∣𝑒2)𝑑𝑥1𝑑𝑥2,(4.3)

𝑣2(1− 𝛼) = (1− 𝛼)𝑚− 𝑏𝑔(1− 𝛼)(𝑒2)
2

2

+𝛾

∫ ∫
𝑣2(1− 𝛽𝛼(𝑥1, 𝑥2))𝑓(𝑥1∣𝑒1)𝑓(𝑥2∣𝑒2)𝑑𝑥1𝑑𝑥2. (4.4)

In general we would like to keep the analysis simpler so that any allocation

𝛽 ∈ [0, 1] was possible. Two circumstances prohibit this. First, given a buyer’s

allocation rule, the suppliers will play a stochastic game, so that we must ensure

proper conditions for the Nash equilibrium to exist. Secondly, as the formulation

of the buyer’s problem is basically a repeated principal-agent formulation with the

outcome of the suppliers’ game as the agent, the participation of the suppliers needs

to be ensured via the participation (individual rationality) constraints. Both of these

considerations can place limits on the size of 𝛽 that the buyer can employ. The main

results can be best appreciated by thinking that 𝛽 is between 0 and 1; however to do

the modeling correctly we have to calculate the limits that 𝛽 can feasibly take. By

the symmetry of the two suppliers, the limits are identical for the two suppliers. Let

𝛽 and 𝛽 denote a supplier’s maximum and minimum shares in a period. The actual

values will be addressed later. Note that 𝛽 = 1− 𝛽.

We are interested in the form of the buyer’s optimal stationary allocation rules.

For this purpose, we first derive the optimal allocation rule 𝛽∗
𝛼(𝑥1, 𝑥2) from the static

formulation of the buyer’s infinite-horizon problem, under the assumption that the two

suppliers use stationary policies to play the stochastic game; we then check that under

this 𝛽∗
𝛼(𝑥1, 𝑥2), the suppliers’ infinite-horizon stochastic game has a unique Nash

equilibrium which is stationary and is the one derived from the static formulation.

Let 𝑒∗1 and 𝑒∗2 denote the optimal stationary-policy effort levels of suppliers 1 and 2

under an optimal allocation rule 𝛽∗
𝛼(𝑥1, 𝑥2).

As discussed above we consider two special forms of 𝑔(𝛽): 𝑔(𝛽) = 𝛽, representing
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a demand-dependent effort cost which is linear in the demand 𝛽; and 𝑔(𝛽) = 1, a

demand-independent effort cost.

4.4 Buyer’s Problem

The buyer designs a demand allocation rule to maximize the long-run discounted

aggregate performance of the suppliers over the horizon. Given the allocation rule,

the suppliers choose their effort levels in each period to maximize their respective

long-run discounted profit. So the suppliers play a stochastic game governed by the

buyer’s allocation rule.

To simplify our analysis, assume the suppliers’ incentive compatibility constraints

can be written as first-order conditions. The validity of this assumption will be

checked later for each specific allocation rule6. To focus on the form of the opti-

mal allocation rule and each party’s equilibrium result, we mainly present the static

formulation of the buyer’s problem in the main body, leaving in the appendix the

dynamic formulation of each party’s problem and the verification of the existence of a

unique stationary Nash equilibrium in the suppliers’ stochastic game7. So the buyer’s

problem is to choose an allocation rule 𝛽𝛼(𝑥1, 𝑥2) such that

max𝛽𝛼(𝑥1,𝑥2) 𝑣𝐵(𝛼)

subject to −𝑔(𝛼)𝑏𝑒1 + 𝛾

∫ ∫
𝑣1(𝛽𝛼(𝑥1, 𝑥2))𝑓

1(𝑥1∣𝑒1)𝑓(𝑥2∣𝑒2)𝑑𝑥1𝑑𝑥2 = 0

−𝑔(1− 𝛼)𝑏𝑒2 + 𝛾

∫ ∫
𝑣2(1− 𝛽𝛼(𝑥1, 𝑥2))𝑓(𝑥1∣𝑒1)𝑓2(𝑥2∣𝑒2)𝑑𝑥1𝑑𝑥2 = 0

𝑣1(𝛼) ≥ 0

𝑣2(1− 𝛼) ≥ 0

1− 𝛽 ≤ 𝛽𝛼(𝑥1, 𝑥2) ≤ 𝛽.

(4.5)

The first two constraints are the incentive compatibility constraints for suppliers

1 and 2 respectively, where 𝑓 𝑖 = ∂𝑓/∂𝑒𝑖. The third and fourth constraints are the

6Generally an agent’s incentive compatibility constraint can be replaced by both a first-order
condition and a second-order condition (i.e., concave objective function - a sufficient condition for
the extreme point to be the global optimum). In the appendix we use the seond-order condition as
the sufficient condition for the Nash equilibrium.

7We provide in the appendix the proof of the existence of a unique stationary Nash equilibrium
in the suppliers’ stochastic game under the optimal general allocation rule for the case of 𝑔(𝛽) = 𝛽.
The proof for other forms of allocation rules follows similar methodology and is thus omitted.
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suppliers’ individual rationality constraints which guarantee each supplier’s long-run

discounted payoff to be nonnegative.

4.4.1 Volume incentive under proportional effort cost

As discussed above, the proportional effort cost is taken to be the case of 𝑔(𝛽) = 𝛽.

Allocation rules

We first study the buyer’s optimal allocation rule which maximizes his long-run dis-

counted payoff, and investigate some simple heuristics. We then obtain numerical

results for each type of allocation rule to examine the efficiency of simple heuristics

compared to the optimal rule.

∙ Optimal allocation rule

As the details of Theorem 4.1 make the main message a bit opaque we shall discuss

the main message as-if 𝛽 = 1 and 𝛽 = 0. In Figure 4.1 the axes are the performance

outcomes of the two suppliers. The point (𝑒∗2, 𝑒
∗
1) is where the optimal efforts should

be, and would be if the signal was not noisy. The dashed straight line is the 45∘ line.

The optimal allocation for the buyer would be to allocate all demand to Supplier 1 or 2

in all quadrants based on the point (𝑒∗2, 𝑒
∗
1) except for quadrant (+,+). Thus Supplier

1 gets all when 𝑥1 − 𝑒∗1 > 𝑥2 − 𝑒∗2 and vice versa. However in the (+,+) quadrant

emanating from (𝑒∗2, 𝑒
∗
1), Supplier 1 should get a share 𝛽 where 𝑆(𝛽) =

𝑥1−𝑒∗1
𝑥2−𝑒∗2

and we

have

𝑆(𝛽) =
𝑚+𝐻/(1− 𝛽)2

𝑚+𝐻/𝛽2 , (4.6)

where 𝐻 > 0 is defined in Theorem 4.1.

Because Theorem 4.1 indicates that 𝑒∗1 and 𝑒∗2 are functions of 𝛼, the optimal

allocation rule for the infinite horizon problem is not a WTA one and is a function

of each supplier’s share in the current period. Since the two suppliers’ optimal effort

levels in a period differ when they have unequal shares, the optimal allocation rule

is a handicapped rule in the sense that the suppliers are not compared by their

actual performance but by the deviation from their respective target performance.

Although the two suppliers are symmetric in terms of their effort cost function, for

unequal starting shares in a period, their marginal costs for the same effort level differ
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Figure 4.1: Optimal allocation rule with maximum share = 1

because of the demand-dependent effort cost structure. Therefore, the optimal rule

uses a handicap to cope with unequal marginal effort cost. The supplier with a larger

current share has a lower optimal effort level and a lower handicap under the optimal

rule. This is because a larger share results in a higher marginal effort cost. It can also

be seen from (4.7) that when both suppliers overperform, the optimal allocation rule

dictates that for a range of
𝑥1−𝑒∗1
𝑥2−𝑒∗2

values, Supplier 1’s share in the subsequent period

is dependent on the two suppliers’ relative deviations from their respective target

performance, regardless of how good their actual performance levels are. Moreover,

the optimal allocation rule is symmetric in the suppliers’ performance deviation from

their respective target one.

Theorem 4.1 gives the result but with the correct limits to 𝛽.

Theorem 4.1 For supplier’s cost function with 𝑔(𝛽) = 𝛽:

1. The buyer’s optimal allocation rule is characterized as below: given Supplier 1’s

share in the current period equal to 𝛼,

for 𝑥1 > 𝑒∗1 and 𝑥2 > 𝑒∗2:

if 𝑥1−𝑒∗1 > 𝑆(𝛽)(𝑥2−𝑒∗2), 𝛽1∗
𝛼 (𝑥1, 𝑥2) = 𝛽; if 𝑥1−𝑒∗1 < 𝑆(𝛽)(𝑥2−𝑒∗2), 𝛽1∗

𝛼 (𝑥1, 𝑥2) = 𝛽;
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otherwise, 𝛽1∗
𝛼 (𝑥1, 𝑥2) is determined by

𝑆(𝛽1∗
𝛼 (𝑥1, 𝑥2)) =

𝑥1 − 𝑒∗1
𝑥2 − 𝑒∗2

; (4.7)

for 𝑥1 < 𝑒∗1 or 𝑥2 < 𝑒∗2: 𝛽
1∗
𝛼 (𝑥1, 𝑥2) = 𝛽 if 𝑥1 − 𝑒∗1 > 𝑥2 − 𝑒∗2 and 𝛽1∗

𝛼 (𝑥1, 𝑥2) = 𝛽

otherwise;

where 𝑆(𝛽) is defined by (4.6), 𝑒∗1 =
√
2𝐻

𝛼
√
𝑏
, 𝑒∗2 =

√
2𝐻

(1−𝛼)
√
𝑏
, and 𝐻 > 0 is the solution to

𝜎

𝛾

√
2𝑏𝐻 =

∫
𝑦1(𝛽

∗
(𝑦1, 𝑦2)𝑚− 𝐻

𝛽
∗
(𝑦1, 𝑦2)

)𝜙(𝑦1)𝜙(𝑦2)𝑑𝑦1𝑑𝑦2, (4.8)

𝑦𝑖 ∼ 𝑁(0, 1), and 𝛽
∗
(𝑦1, 𝑦2) = 𝛽1∗

𝛼 (𝑒∗1 + 𝜎𝑦1, 𝑒
∗
2 + 𝜎𝑦2) and is independent of 𝛼.

2. Under 𝛽1∗
𝛼 (𝑥1, 𝑥2), (𝑒

∗
1, 𝑒

∗
2) is the unique stationary Nash equilibrium in the suppli-

ers’ stochastic game.

The correct version of Figure 4.1 is shown below. The interpretation is the same.

Figure 4.2: Optimal allocation rule with maximum share < 1

Corollary 4.1 provides the formulas for calculating the value functions of the buyer

and the suppliers.

80



4.4. Buyer’s Problem

Corollary 4.1 Under the optimal allocation rule 𝛽1∗
𝛼 (𝑥1, 𝑥2), given Supplier 1’s ini-

tial share 𝛼, the suppliers’ value functions

𝑣∗1(𝛼) = 𝑣∗2(𝛼) = 𝑣∗(𝛼)

for any 𝛼 due to symmetry,

𝑣∗(𝛼) = 𝛼𝑚− 𝐻

𝛼
+ 𝛾𝑉,

𝑉 =
1

1− 𝛾

∫ ∫
(𝛽

∗
(𝑦1, 𝑦2)𝑚− 𝐻

𝛽
∗
(𝑦1, 𝑦2)

)𝜙(𝑦1)𝜙(𝑦2)𝑑𝑦1𝑑𝑦2,

and the buyer’s value function is

𝑣∗𝐵 =
2
√
2𝐻

(1− 𝛾)
√
𝑏
.

From the suppliers’ value functions in Corollary 4.1, we can see that under the

optimal allocation rule a supplier’s expected future payoff 𝑉 is independent of her

current share. Therefore, the optimal allocation rule uses a handicap to provide the

suppliers with different level of incentive, but it is also a ‘fair’ rule in that it gives the

suppliers equal expected future payoff.

Also note that the nonlinear equation (4.8) may not have a unique positive solution

of 𝐻. Because 𝑣∗𝐵 is increasing in 𝐻, the buyer would prefer the largest 𝐻. However,

the nonnegativity of 𝑣∗(𝛼) and 𝑉 may restrict such choices because they may become

negative at the largest 𝐻. In fact, in the later section of numerical analysis, we have

found that in some cases there are two solutions of 𝐻 to (4.8), but both 𝑣∗(𝛽) and 𝑉

are always negative at the bigger 𝐻, thus only the smaller 𝐻 is used.

∙ Simple heuristics

Due to the complexity of the optimal allocation rule, we also investigate simpler

rules. Consider the family of WTA allocation rules with the following form8

𝛽2∗
𝛼 (𝑥1, 𝑥2) =

{
𝛽 𝑥1 − 𝑥2 > 𝜃𝛼

1− 𝛽 𝑥1 − 𝑥2 < 𝜃𝛼
, (4.9)

8We ignore the case of equality, i.e., 𝑥1 − 𝑥2 = 𝜃𝛼, because the probability for this to occur is
zero. Similarly for all the WTA rules we are investigating hereafter.
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where 𝜃𝛼 and 𝛽 ∈ (1
2
, 1) are parameters to be determined. Note that we use WTA to

refer to both HWTA and SWTA allocation rules.

Theorem 4.2 For supplier’s cost function with 𝑔(𝛽) = 𝛽, among the family of WTA

allocation rules as defined in (4.9), the optimal rule has 𝜃∗𝛼 ∕= 0 for 𝛼 ∕= 1
2
.

Let

Δ𝑣(𝛽) =
4𝜋𝑏𝜎2𝛽(1− 𝛽)

𝛾2(2𝛽 − 1)
(1−

√
1− 𝑚𝛾2

2𝜋𝑏𝜎2

(2𝛽 − 1)2

𝛽(1− 𝛽)
),

then we obtain Corollary 4.2 following Theorem 4.2.

Corollary 4.2 Given any 𝛽 ∈ (1
2
, 1), the optimal

𝜃∗𝛼 = 𝑒∗1 − 𝑒∗2 =
𝛾Δ𝑣(𝛽)

2
√
𝜋𝑏𝜎

1− 2𝛼

𝛼(1− 𝛼)
;

the optimal 𝛽∗ is a boundary solution, and is constrained by

𝑣(1− 𝛽) =
𝑚

1− 𝛾
− 1

2
(

1

(1− 𝛾)(2𝛽 − 1)
+ 1)Δ𝑣(𝛽) ≥ 0,

𝛾Δ𝑣(𝛽)

2𝜎2
𝜙(1) ≤ 𝑏(1− 𝛽); (4.10)

and the value functions of the buyer and the suppliers are

𝑣∗𝐵(𝛼) =
𝛾

1− 𝛾

Δ𝑣(𝛽∗)√
𝜋𝑏𝜎

,

𝑣∗(𝛼) = 𝛼𝑚− (𝛾Δ𝑣(𝛽∗))2

8𝜋𝑏𝜎2𝛼
+
𝛾

2
(𝑣∗(𝛽∗) + 𝑣∗(1− 𝛽∗)).

It is obvious from Theorem 4.2 result that the optimal ‘take all’ allocation rule is

also a handicapped one with the definition of 𝜃∗𝛼. The reasoning is similar to that for

the optimal general allocation rule. Again, the supplier with a larger current share

has a lower optimal effort level and a lower handicap under the optimal rule, and

the optimal ‘take-all’ allocation rule is a ‘fair’ rule because both suppliers have equal

expected future payoff. We also note that 𝑣∗𝐵(𝛼) is independent of 𝛼. This is due to

the special structure of each supplier’s effort cost which is proportional to the demand

and quadratic in the effort level.
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The simplest form of a WTA allocation rule is the one with 𝜃∗𝛼 = 0, i.e., the SWTA

rule,

𝛽3∗
𝛼 (𝑥1, 𝑥2) =

{
𝛽 𝑥1 > 𝑥2

1− 𝛽 𝑥1 < 𝑥2
. (4.11)

A WTA scheme is usually used in a tournament. It has been extensively studied

in the economics literature for a single-period monetary incentive problem, where

the winner receives an extra reward in addition to a common compensation to each

supplier. Such an incentive scheme has been shown to be optimal when the two

suppliers are symmetric.

Let 𝑒 be the solution to

𝑒 = − 𝛾√
2𝑏𝜎

𝜙(
𝑒√
2𝜎

)(
(2𝛽 − 1)2

𝛽(1− 𝛽)
𝑚+

𝑏

2
𝑒2)[2𝛾Φ(

−𝑒√
2𝜎

) + 1− 𝛾]−1, (4.12)

where Φ(⋅) is the cumulative distribution function (cdf) of the normal distribution.

Proposition 4.1 Under the SWTA rule defined in (4.11), the optimal 𝛽∗ < 1 and

is not necessarily a boundary solution; the optimal effort levels of a supplier with a

current share 𝛽 and 1− 𝛽 are 𝑒∗
𝛽
= (1−𝛽)𝑒

1−2𝛽
and 𝑒∗

1−𝛽
= 𝛽𝑒

1−2𝛽
respectively.

Corollary 4.3 follows from Theorem 4.1 and Theorem 4.2.

Corollary 4.3 For supplier’s cost function with 𝑔(𝛽) = 𝛽, any WTA allocation rule

is suboptimal, and a HWTA rule provides better incentive than a SWTA rule.

Numerical analysis

The method for numerical calculation of the optimal 𝐻 from (4.8) and the calculation

of 𝑒∗1, 𝑒
∗
2, 𝑣

∗
𝐵(𝛼) and 𝑣∗(𝛼) can be found in Subsection 6 of Appendix C. Tables 4.1,

4.2 and 4.3 show the numerical analysis results under the optimal allocation rule, the

HWTA and SWTA rules respectively9. Under all three rules, a supplier’s maximum

(minimum) share 𝛽 (𝛽) goes up (down) with 𝜎. The reason is that when a performance

measure becomes noisier, the suppliers’ Nash equilibrium can still be maintained at a

larger gap in their shares. In return, the more extreme maximum/minimum share can

provide a stronger incentive to the suppliers and counter the disincentive effect of the

9We use the minimum share 𝛽 obtained for the HWTA rule as that for the optimal rule so that
the comparison is on the structure of the rules only without the interference of the minimum share.
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𝛾 𝜎 𝑏 𝑚 𝛽 𝑣∗𝐵 𝑉 𝑣∗(𝛽) 𝑣∗(𝛽)
0.9 0.5 1 1 25.9% 6.08 3.81 3.51 4.11
0.9 1 1 1 11.3% 5.48 3.25 2.70 3.77
0.9 2 1 1 3.5% 3.65 2.90 2.18 3.56
0.9 3 1 1 1.7% 2.66 2.75 1.96 3.45
0.9 0.5 1 2 33.6% 7.83 8.28 7.56 8.00
0.9 1 1 2 18.1% 8.56 7.00 5.97 7.00
0.9 2 1 2 6.5% 6.51 6.11 4.75 6.37
0.9 3 1 2 3.2% 4.94 5.76 4.25 6.12
0.9 0.5 2 1 18.1% 4.28 3.50 3.08 3.91
0.9 1 2 1 6.5% 3.25 3.05 2.41 3.65
0.9 2 2 1 1.8% 1.97 2.77 1.98 3.47
0.9 3 2 1 0.8% 1.40 2.64 1.80 3.36
0.5 0.5 1 1 17.9% 0.84 0.85 0.48 1.22
0.5 1 1 1 6.3% 0.59 0.83 0.31 1.34
0.5 2 1 1 1.7% 0.33 0.82 0.23 1.39
0.5 3 1 1 0.8% 0.23 0.82 0.21 1.40
0.5 0.5 2 1 11.0% 0.52 0.84 0.38 1.29
0.5 1 2 1 3.4% 0.32 0.83 0.26 1.37
0.5 2 2 1 0.9% 0.17 0.83 0.21 1.40
0.5 3 2 1 0.4% 0.12 0.83 0.21 1.41

Table 4.1: Optimal allocation rule (proportional case)

performance variability. On the other hand, as 𝛽 becomes smaller, the supplier with a

share 𝛽 will put more effort and incur higher effort cost, which does not substantially

benefit the buyer overall because this supplier only contributes to a small portion of

the buyer’s business, but does greatly reduce the supplier’s profit. However, the buyer

would prefer this since he is maximizing his own payoff and a larger 𝛽 will strengthen

the suppliers’ incentive.

Table 4.4 compares the effectiveness of the three allocation rules by calculating the

percentage increase in the buyer’s long-run discounted payoff from using a HWTA

rule instead of a SWTA rule, and from using the optimal allocation rule instead

of a HWTA rule. In all the cases, a HWTA allocation rule is much more effective

than a SWTA one. The buyer’s long-run discounted payoff from using a HWTA

rule can be more than doubled of that under a SWTA rule. The incentive can be

further strengthened by using the optimal but more complex allocation rule, with

the improvement generally small for less variable performance measure and large for
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𝛾 𝜎 𝑏 𝑚 𝛽 𝑣∗𝐵 𝑉 𝑣∗(𝛽) 𝑣∗(𝛽)
0.9 0.5 1 1 25.9% 6.05 3.81 3.51 4.11
0.9 1 1 1 11.3% 5.29 3.26 2.74 3.78
0.9 2 1 1 3.5% 3.30 3.01 2.36 3.66
0.9 3 1 1 1.7% 2.31 2.95 2.27 3.63
0.9 0.5 1 2 33.6% 7.82 8.28 7.90 8.67
0.9 1 1 2 18.1% 8.43 7.00 6.17 7.83
0.9 2 1 2 6.5% 6.09 6.20 5.00 7.40
0.9 3 1 2 3.2% 4.44 5.99 4.68 7.30
0.9 0.5 2 1 18.1% 4.21 3.50 3.09 3.92
0.9 1 2 1 6.5% 3.05 3.10 2.50 3.70
0.9 2 2 1 1.8% 1.72 2.95 2.27 3.63
0.9 3 2 1 0.8% 1.18 2.92 2.23 3.62
0.5 0.5 1 1 17.9% 0.83 0.85 0.48 1.22
0.5 1 1 1 6.3% 0.58 0.82 0.30 1.34
0.5 2 1 1 1.7% 0.32 0.81 0.23 1.38
0.5 3 1 1 0.8% 0.22 0.80 0.22 1.39
0.5 0.5 2 1 11.0% 0.51 0.83 0.38 1.29
0.5 1 2 1 3.4% 0.31 0.81 0.26 1.37
0.5 2 2 1 0.9% 0.17 0.81 0.22 1.39
0.5 3 2 1 0.4% 0.11 0.80 0.21 1.40

Table 4.2: HWTA allocation rule (proportional case)
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𝛾 𝜎 𝑏 𝑚 𝛽 𝑣∗𝐵 𝑣∗(𝛽) 𝑣∗(𝛽)
0.9 0.5 1 1 25.0% 3.21 4.85 4.47
0.9 1 1 1 16.4% 2.52 4.98 4.44
0.9 2 1 1 9.6% 1.71 5.14 4.44
0.9 3 1 1 6.7% 1.29 5.22 4.45
0.9 0.5 1 2 29.5% 4.88 9.59 8.98
0.9 1 1 2 20.5% 4.09 9.82 8.90
0.9 2 1 2 12.7% 2.99 10.12 8.87
0.9 3 1 2 9.1% 2.33 10.31 8.88
0.9 0.5 2 1 20.5% 2.05 4.91 4.45
0.9 1 2 1 12.7% 1.49 5.06 4.44
0.9 2 2 1 7.1% 0.95 5.21 4.45
0.9 3 2 1 4.9% 0.70 5.29 4.46
0.5 0.5 1 1 20.8% 0.47 1.21 0.71
0.5 1 1 1 12.5% 0.35 1.30 0.63
0.5 2 1 1 6.7% 0.22 1.38 0.58
0.5 3 1 1 4.5% 0.16 1.41 0.55
0.5 0.5 2 1 16.4% 0.29 1.25 0.67
0.5 1 2 1 9.3% 0.20 1.34 0.60
0.5 2 2 1 4.8% 0.12 1.41 0.56
0.5 3 2 1 3.2% 0.08 1.43 0.54

Table 4.3: SWTA allocation rule (proportional case)
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𝛾 𝜎 𝑏 𝑚 HWTA vs SWTA Optimal vs HWTA
0.9 0.5 1 1 88.6% 0.5%
0.9 1 1 1 110.2% 3.7%
0.9 2 1 1 92.7% 10.6%
0.9 3 1 1 79.2% 15.3%
0.9 0.5 1 2 60.5% 0.1%
0.9 1 1 2 106.1% 1.6%
0.9 2 1 2 103.9% 6.8%
0.9 3 1 2 90.7% 11.2%
0.9 0.5 2 1 106.1% 1.6%
0.9 1 2 1 103.8% 6.8%
0.9 2 2 1 81.1% 14.6%
0.9 3 2 1 69.5% 19.1%
0.5 0.5 1 1 76.6% 0.4%
0.5 1 1 1 69.0% 1.1%
0.5 2 1 1 48.7% 2.9%
0.5 3 1 1 39.6% 3.7%
0.5 0.5 2 1 76.7% 0.8%
0.5 1 2 1 58.6% 1.6%
0.5 2 2 1 40.7% 3.6%
0.5 3 2 1 33.8% 4.2%

Table 4.4: Comparison between rules (% increase in buyer’s payoff)

noisier performance measure. Overall, the improvement in the buyer’s payoff from

using the optimal rule over a HWTA one or from using a HWTA rule over a SWTA

one is better for a larger discount factor. Apparently a handicap can be very effective

for incentive provision.

4.4.2 Volume incentive under demand-independent effort

cost

In Section 4.4.1 we have studied the optimal allocation rule and two simple WTA

rules for the volume incentive design in the case of proportional effort cost. We have

found that the optimal allocation rule is not WTA and is handicapped. Sometimes,

a supplier’s cost of investment is independent of her share of demand, such as a fixed

investment in technology or innovation. Would the finding for the proportional effort

cost still hold for the demand-independent effort cost? We will answer this question

in this section by studying the buyer’s problem in the case of 𝑔(𝛽) = 1.
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Allocation rules

We first study the buyer’s optimal allocation rule for a finite-horizon problem, which

maximizes his expected payoff over the horizon. We then investigate some simple

heuristics for the infinite-horizon problem, and use numerical analysis to compare the

buyer’s expected payoff under different heuristics.

∙ Optimal allocation rule for finite-horizon problem

Before investigating the buyer’s optimal allocation rule for an infinite-horizon

problem, we first consider a finite-horizon problem with 𝑇 periods and study the

optimal rule for this problem, which is not necessarily a stationary rule. Let 𝛼𝑡

denote Supplier 1’s share in period 𝑡, 𝑒𝑖∗𝑡 and 𝑥𝑖𝑡 denote Supplier 𝑖’s target and realized

performance in period 𝑡, and 𝛽𝑡+1 ∈ (1
2
, 1] be the maximum share a supplier can have

in period 𝑡+ 1. Also let Γ𝑡 =
√

(𝛼𝑡)2 + (1− 𝛼𝑡)2. Theorem 4.3 provides the optimal

allocation rule for the finite-horizon problem in the case of demand-independent effort

cost.

Theorem 4.3 For supplier’s cost function with 𝑔(𝛽) = 1, the buyer’s optimal allo-

cation rule for a finite-horizon problem is a HWTA rule with the form:

𝛽𝛼
𝑡+1(𝑥

1
𝑡 , 𝑥

2
𝑡 ) =

{
𝛽𝑡+1 𝛼𝑡(𝑥

1
𝑡 − 𝑒1∗𝑡 ) > (1− 𝛼𝑡)(𝑥

2
𝑡 − 𝑒2∗𝑡 )

1− 𝛽𝑡+1 𝛼𝑡(𝑥
1
𝑡 − 𝑒1∗𝑡 ) < (1− 𝛼𝑡)(𝑥

2
𝑡 − 𝑒2∗𝑡 )

, (4.13)

where

𝑒1∗𝑡 =
𝛾Δ𝑣𝑡+1(𝛽𝑡+1)√

2𝜋𝑏𝜎

𝛼𝑡

Γ𝑡

,

𝑒2∗𝑡 =
𝛾Δ𝑣𝑡+1(𝛽𝑡+1)√

2𝜋𝑏𝜎

1− 𝛼𝑡

Γ𝑡

, (4.14)

and

Δ𝑣𝑡+1(𝛽𝑡+1) = 𝑣1𝑡+1(𝛽𝑡+1)− 𝑣1𝑡+1(1− 𝛽𝑡+1),

with 𝑣1𝑇+1(𝛼𝑇+1) = 𝛼𝑇+1𝑚 and 𝑣2𝑇+1(1 − 𝛼𝑇+1) = (1 − 𝛼𝑇+1)𝑚. Under this rule,

{(𝑒1∗𝑡 , 𝑒2∗𝑡 )}𝑡∈{1,2,...𝑇} constitutes a subgame perfect Nash equilibrium.

∙ Simple heuristic for infinite-horizon problem
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Since Theorem 4.3 has demonstrated that the optimal allocation rule for each

period of a finite horizon takes the same form of a HWTA, we would expect the buyer’s

optimal stationary rule for an infinite horizon is also a HWTA one. Nonetheless, we

shouldn’t immediately jump at the conclusion that the optimal rule for an infinite

horizon takes the same form as the optimal one for a finite horizon. Noting that

with a bang-bang type of allocation rule, in the finite-horizon problem, the choice

of the optimal maximum share for a period does not affect those optimal maximum

shares and thus the suppliers’ optimal payoffs in the subsequent periods; but in the

infinite-horizon problem with a stationary allocation rule, the optimal maximum share

for each period changes simultaneously. In the following analysis, we come back

to the infinite-horizon problem. As the search for the optimal (WTA) rule is not

straightforward, we shall demonstrate the key insights by examining WTA rules with

the form

𝛽4∗
𝛼 (𝑥1, 𝑥2) =

{
𝛽 𝑥1 > 𝑘𝛼𝑥2 + 𝜃𝛼

1− 𝛽 𝑥1 < 𝑘𝛼𝑥2 + 𝜃𝛼
, (4.15)

where 𝜃𝛼 is to be determined, 𝑘𝛼 ∈ (0, 1] for 𝛼 ≥ 0.5 and 𝑘𝛼 ≥ 1 for 𝛼 < 0.5, both

𝜃𝛼 and 𝑘𝛼 are functions of 𝛼, and 𝛽 ∈ (1
2
, 1]. Let Υ𝛼 =

√
1 + 𝑘2𝛼. Theorem 4.4

provides the optimal 𝜃𝛼 and the value functions of the buyer and the suppliers under

the allocation rule (4.15).

Theorem 4.4 For supplier’s cost function with 𝑔(𝛽) = 1, among the family of WTA

allocation rules as defined in (4.15), the optimal rule has 𝜃∗𝛼 = 𝑒∗1 − 𝑘𝛼𝑒
∗
2 for any 𝛼,

where 𝑒∗1 and 𝑒∗2 are the optimal target performance levels of suppliers 1 and 2 under

this optimal allocation rule,

𝑒∗1 =
𝛾Δ𝑣∗(𝛽)√

2𝜋𝑏𝜎

1√
𝑘2𝛼 + 1

, (4.16)

𝑒∗2 =
𝛾Δ𝑣∗(𝛽)√

2𝜋𝑏𝜎

𝑘𝛼√
𝑘2𝛼 + 1

, (4.17)

with

Δ𝑣∗(𝛽) =

⎧⎨⎩
2𝜋𝑏𝜎2(1+𝑘2

𝛽
)

𝛾2(1−𝑘2
�̂�
)
(

√
1 + 𝛾2𝑚(2𝛽−1)

𝜋𝑏𝜎2

1−𝑘2
𝛽

1+𝑘2
𝛽

− 1) 𝑘𝛽 ∕= 1

𝑚(2𝛽 − 1) 𝑘𝛽 = 1

. (4.18)
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𝜃∗𝛼 ∕= 0 for 𝑘𝛼 ∕= 1, and 𝜃∗𝛼 = 0 for 𝑘𝛼 = 1. The suppliers’ value functions

𝑣∗1(𝛼) = 𝑣∗2(𝛼) = 𝑣∗(𝛼)

for any 𝛼 due to symmetry,

𝑣∗(𝛼) = 𝑚𝛼− (𝛾Δ𝑣∗(𝛽))2

4𝜋𝑏𝜎2(𝑘2𝛼 + 1)
+
𝛾

2
(𝑣∗(𝛽) + 𝑣∗(1− 𝛽)), (4.19)

and the buyer’s value function is

𝑣∗𝐵(𝛼) =

√
2𝜋𝜎(1 + 𝑘2

𝛽
)

𝛾(1− 𝛾)Υ𝛼(1− 𝑘2
𝛽
)
[𝛼+ 𝑘𝛼(1− 𝛼)](

√√√⎷1 +
𝛾2𝑚(2𝛽 − 1)

𝜋𝑏𝜎2

1− 𝑘2
𝛽

1 + 𝑘2
𝛽

− 1).

Let 𝑦𝑖 =
𝑥𝑖−𝑒∗𝑖

𝜎
measure the standardized deviation of Supplier 𝑖’s performance

from the target. Then (4.15) with 𝜃∗𝛼 = 𝑒∗1 − 𝑘𝛼𝑒
∗
2 becomes

𝛽
4∗
𝛼 (𝑦1, 𝑦2) =

{
𝛽 𝑦1 > 𝑘𝛼𝑦2

1− 𝛽 𝑦1 < 𝑘𝛼𝑦2
.

Under the allocation rule (4.15) with 𝜃∗𝛼 = 𝑒∗1 − 𝑘𝛼𝑒
∗
2, at the optimal effort levels,

each supplier has equal chance to be the winner, but the whole (𝑦1, 𝑦2) plane is split

into two equal areas by the straight line 𝑦1 = 𝑘𝛼𝑦2 instead of the 45∘ line. From (4.16),

(4.17) and (4.19), noting that the expected future payoff of the supplier with share 𝛼

is 𝛾
2
(𝑣∗(𝛽)+𝑣∗(1−𝛽)), we can see that the allocation rule has an interesting property

that it makes the two suppliers’ expected future payoffs identical (the two suppliers

have equal chance to be the winner) but provides the suppliers with different level of

incentive if 𝑘𝛼 ∕= 1. When 𝑘𝛼 = 1, due to the demand-independent effort cost, the

suppliers’ optimal effort levels are equal. The allocation rule (4.15) with 𝑘𝛼 = 1 is a

SWTA one.

We are particularly interested in two special cases of 𝛽4∗
𝛼 (𝑥1, 𝑥2), where 𝑘𝛼 = 1−𝛼

𝛼

or 1. Corollaries 4.4 and 4.5 follow from Theorem 4.4 by letting 𝑘𝛼 = 1−𝛼
𝛼

and 1 in

(4.15), respectively. The effect of 𝑘𝛼 ∕= 1 will be seen from the subsequent numerical

analysis results.

Corollary 4.4 Under the allocation rule 𝛽4∗
𝛼 (𝑥1, 𝑥2) with 𝑘𝛼 = 1−𝛼

𝛼
, the optimal rule
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has

𝜃∗𝛼 =
𝛾Δ𝑣∗(𝛽)√

2𝜋𝑏𝜎

2𝛼− 1

𝛼

√
𝛽
2
+ (1− 𝛽)2

,

under this rule 𝑒∗𝛽 = 𝛽
1−𝛽

𝑒∗1−𝛽, and the optimal 𝛽∗ is a boundary solution.

Corollary 4.5 Under the allocation rule 𝛽4∗
𝛼 (𝑥1, 𝑥2) with 𝑘𝛼 = 1, the optimal rule

has 𝜃∗𝛼 = 0 for any 𝛼, and under this rule 𝑒∗1 = 𝑒∗2; the optimal 𝛽∗ is a boundary

solution.

Numerical analysis

We compare the effectiveness of two heuristics: a SWTA rule, and a HWTA one with

𝑘𝛼 = 1−𝛼
𝛼

. For all the cases but one in the numerical analysis here, the limit to a

supplier’s maximum share is in fact 1 (the buyer’s total business) because both the

Nash equilibrium condition and the suppliers’ participation constraints set very loose

boundaries to a supplier’s share to be mathematically more than 1. In reality, there

is often a minimum order quantity specified by a supplier. Therefore, in the analysis

below, we impose a minimum share of 10% on each supplier. Table 4.5 compares the

payoffs of the buyer and the suppliers under both rules. It is noted that for the case

where 𝛾 = 0.9, 𝜎 = 0.5, 𝑏 = 1 and 𝑚 = 2, a supplier’s minimum share is limited to

12% due to the Nash equilibrium condition, which causes the HWTA rule to work

worse than the SWTA one. In all the other cases where the same minimum share

applies to both rules, the HWTA rule provides better incentive in terms of the buyer’s

long-run discounted payoff. This is because the performance of the supplier with a

larger share of business is more important to the buyer, and thus the buyer would

often like to ensure that supplier to perform well in order to obtain a high aggregate

performance of the two suppliers. For this purpose, the buyer can provide a stronger

incentive to the supplier with a larger share by giving that supplier a higher award

for performing above the expectation. Here a simple way to achieve this is to let

𝑘𝛼 = 1−𝛼
𝛼

, so that one unit of extra effort will be worth 𝛼 units of overperformance

for the supplier with a share of 𝛼, compared to 1− 𝛼 units for the other supplier.

However, this HWTA allocation rule may not always work better than a SWTA

rule, as shown in Table 4.6. Here for the case where 𝛾 = 0.9, 𝜎 = 0.5, 𝑏 = 1 and𝑚 = 3,

under both rules, the Nash equilibrium condition sets a boundary to a supplier’s

minimum share, which is tighter under the HWTA rule. The first comparison of
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SWTA HWTA

𝛾 𝜎 𝑏 𝑚 𝑣∗𝐵 𝑉 𝑣∗(𝛽) 𝑣∗(𝛽) 𝑣∗𝐵 𝑉 𝑣∗(𝛽) 𝑣∗(𝛽) %increase

0.9 0.5 1 1 4.06 4.17 4.57 3.77 4.44 4.40 4.74 4.06 9.3%
0.9 1 1 1 2.03 4.79 5.19 4.39 2.48 4.81 5.19 4.43 22.2%
0.9 2 1 1 1.02 4.95 5.35 4.55 1.28 4.95 5.34 4.55 26.5%
0.9 3 1 1 0.68 4.98 5.38 4.58 0.86 4.96 5.38 4.55 27.4%
0.9 0.5 1 2 8.12 6.70 7.50 5.90 7.45 8.23 8.82 7.65 −8.4%
0.9 1 1 2 4.06 9.17 9.97 8.37 4.76 9.31 10.04 8.58 17.3%
0.9 2 1 2 2.03 9.79 10.59 8.99 2.54 9.80 10.58 9.02 25.0%
0.9 3 1 2 1.35 9.91 10.71 9.11 1.72 9.91 10.70 9.12 26.7%
0.9 0.5 2 1 2.03 4.59 4.99 4.19 2.38 4.65 5.02 4.29 17.3%
0.9 1 2 1 1.02 4.90 5.30 4.50 1.27 4.90 5.29 4.51 25.0%
0.9 2 2 1 0.51 4.97 5.37 4.57 0.65 4.97 5.37 4.58 27.3%
0.9 3 2 1 0.34 4.99 5.39 4.59 0.43 4.99 5.39 4.59 27.7%
0.5 0.5 1 1 0.45 0.95 1.35 0.55 0.55 0.95 1.33 0.58 21.0%
0.5 1 1 1 0.23 0.99 1.39 0.59 0.28 0.99 1.38 0.59 26.1%
0.5 2 1 1 0.11 1.00 1.40 0.60 0.14 1.00 1.40 0.60 27.6%
0.5 3 1 1 0.08 1.00 1.40 0.60 0.10 1.00 1.40 0.60 27.4%
0.5 0.5 2 1 0.23 0.97 1.37 0.57 0.28 0.98 1.36 0.59 24.3%
0.5 1 2 1 0.11 0.99 1.39 0.59 0.14 0.99 1.39 0.60 27.1%
0.5 2 2 1 0.06 1.00 1.40 0.60 0.07 1.00 1.40 0.60 27.8%
0.5 3 2 1 0.04 1.00 1.40 0.60 0.05 1.00 1.40 0.60 28.0%

Table 4.5: Comparison of SWTA and HWTA (independent case)

𝛽 𝑣∗𝐵 𝑉 𝑣∗(𝛽) 𝑣∗(𝛽) HWTM vs SWTM

SWTA 11.7% 11.66 8.20 9.35 7.06 −38.1%
23.5% 8.09 11.73 12.53 10.93 −10.7%

HWTA 23.5% 7.22 12.97 13.60 12.34

Table 4.6: Comparison of SWTA and HWTA (independent case)
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these two rules is by using the individual minimum share, 11.7% for the SWTA rule

and 23.5% for the HWTA one, which shows a 38.1% lower of the buyer’s long-run

discounted payoff under the HWTA rule than that under the SWTA rule. The second

comparison is by using the same minimum share, 23.5%, which still shows a 10.8%

lower of the buyer’s payoff under the HWTA rule. This is because the two suppliers’

incentives also come from Δ𝑣∗(𝛽), the gain in a supplier’s payoff from a high starting

share 𝛽 instead of a low one 1 − 𝛽. The HWTA rule induces more effort from a

supplier with a larger share, which results in higher effort cost and smaller Δ𝑣∗(𝛽);

while the SWTA rule always induces equal supplier effort and a Δ𝑣∗(𝛽) independent

of 𝛽. Therefore, in some situations a non-handicapped SWTA rule can perform better

than the HWTA rule with 𝑘𝛼 = 1−𝛼
𝛼

.

4.5 Conclusions and Future Work

In this chapter, we have studied the design of performance-based volume incentive

schemes, a type of incentive scheme widely used in practice but not well studied yet

in the literature. We have considered a buyer repeatedly outsourcing a service or a

product from two suppliers, under the assumptions of risk neutral parties, reliable

and uncapacitated supply, no setup fee, zero switching cost, and unobservable sup-

plier effort. We have focused on two types of supplier effort cost: the proportional

case where the effort cost is proportional to the share of demand, and the demand-

independent case where the effort cost is independent of the share. We have found

that to maintain suppliers’ competition over time, the optimal demand allocation rule

is dependent on the suppliers’ current shares, and is not a simple rank-order tourna-

ment. Even when the supplier’s effort cost is demand independent, each supplier’s

current share of business still plays an important role in the allocation rule, and using

a handicap can greatly improve the efficiency of volume incentive schemes. Handi-

capping plays two roles in incentive provision. It can level the field and enhance the

suppliers’ competition when the ‘more important’ supplier is at a disadvantage in the

competition, as seen in the case of proportional effort cost. Alternatively, it gives the

‘more important’ supplier an advantage and makes that supplier work harder than the

other supplier, as seen in the case of independent effort cost. Numerical results have

indicated that for proportional effort cost and performance with small variability, a

handicapped rank-order tournament induces an outcome which is near optimal.
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Other factors can be considered in the study of volume incentive mechanism de-

sign. For example, changing demand may result in a supplier’s switching cost such as

the cost of adjusting the dedicated capacity to meet the demand and avoid low uti-

lization; a buyer may be concerned about the variability in the suppliers’ performance

and thus has a mean-variance type of objective; or the buyer faces unreliable supply

such as supply disruption or random yield. Since under our simple assumptions the

problem and the analysis are already complex, the analysis with the above factors

would be better conducted using simulation or experiments.
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Appendix A

Proof for Chapter 2

Proof of Proposition 2.1

We first compute the variance of 𝜂𝑊𝑅 .

For 𝐿 > 0 and 0 ≤ 𝑊 ≤ 𝐿,

𝐸(𝜂𝑊𝑅 ) =
𝑅∑
𝑡=1

𝐸(𝑋𝑊
𝑡 ) = 𝑅𝐹𝐿+1−𝑊 (𝑆) 𝐸((𝜂𝑊𝑅 )2) = 𝐸[(

𝑅∑
𝑖=1

𝑋𝑊
𝑖 )(

𝑅∑
𝑗=1

𝑋𝑊
𝑗 )]

=
𝑅∑
𝑖=1

𝑅∑
𝑗=1

𝐸(𝑋𝑊
𝑖 𝑋𝑊

𝑗 ) =
𝑅∑
𝑖=1

𝑅∑
𝑗=1

𝐸(1{𝐷[𝑖− 𝐿, 𝑖+ 1−𝑊 ) ≤ 𝑆} × 1{𝐷[𝑗 − 𝐿, 𝑗 +

1−𝑊 ) ≤ 𝑆})

The number of (𝑖, 𝑖) terms is 𝑅, and the sum of these terms is

𝑀1 = 𝑅𝐸(1{𝐷(𝐿+ 1−𝑊 ) ≤ 𝑆}) = 𝑅𝐹𝐿+1−𝑊 (𝑆).

The number of (𝑖, 𝑗) terms with 𝑋𝑊
𝑖 and 𝑋𝑊

𝑗 independent is

2

𝑅−(𝐿+1−𝑊 )∑
𝑖=1

𝑖 =

𝑅−(𝐿+1−𝑊 )∑
𝑖=1

𝑖+

𝑅−(𝐿+1−𝑊 )∑
𝑗=1

(𝑅− 𝐿+𝑊 − 𝑗)

=

𝑅−(𝐿+1−𝑊 )∑
𝑖=1

(𝑖+𝑅− 𝐿+𝑊 − 𝑖) = (𝑅− 𝐿+𝑊 )(𝑅− 𝐿+𝑊 − 1).

This is the number of pairs of 𝑋𝑊
𝑖 and 𝑋𝑊

𝑗 which differ by at least 𝐿 + 1 −𝑊

periods.

The sum of these terms is

𝑀2 = (𝑅−𝐿+𝑊 )(𝑅−𝐿+𝑊−1)𝐸(1{𝐷(𝐿+1−𝑊 ) ≤ 𝑆})𝐸(1{𝐷(𝐿+1−𝑊 ) ≤ 𝑆})
= (𝑅− 𝐿+𝑊 )(𝑅− 𝐿+𝑊 − 1)(𝐹𝐿+1−𝑊 (𝑆))2.

The number of (𝑖, 𝑗) terms with 𝑛 (1 ≤ 𝑛 ≤ 𝐿−𝑊 ) periods of demands in common

is 2(𝑅− (𝐿+ 1) + 𝑛+𝑊 ). This is the number of pairs of 𝑋𝑊
𝑖 and 𝑋𝑊

𝑗 which differ

by exactly 𝐿+ 1− 𝑛−𝑊 periods. For 𝑖 < 𝑗, 𝑗 = 𝑖+ 𝐿+ 1− 𝑛−𝑊 ,

𝐸(𝑋𝑊
𝑖 𝑋𝑊

𝑗 ) = Pr{𝐷[𝑖− 𝐿, 𝑖+ 1−𝑊 ) ≤ 𝑆,𝐷[𝑗 − 𝐿, 𝑗 + 1−𝑊 ) ≤ 𝑆}
= Pr{𝐷[𝑖− 𝐿, 𝑗 − 𝐿) +𝐷(𝑛) ≤ 𝑆,𝐷(𝑛) +𝐷[𝑖+ 1−𝑊, 𝑗 + 1−𝑊 ) ≤ 𝑆}
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=

∫ 𝑆

0

(Pr{𝐷(𝐿+ 1− 𝑛−𝑊 ) ≤ 𝑆 − 𝑥})2𝑑𝐹𝑛(𝑥)

=

∫ 𝑆

0

(𝐹𝐿+1−𝑛−𝑊 (𝑆 − 𝑥))2𝑑𝐹𝑛(𝑥)

𝐶𝑜𝑣(𝐷[𝑖− 𝐿, 𝑖+ 1−𝑊 ), 𝐷[𝑗 − 𝐿, 𝑗 + 1−𝑊 ))

= 𝐶𝑜𝑣(𝐷[𝑖−𝐿, 𝑗−𝐿)+𝐷[𝑗−𝐿, 𝑖+1−𝑊 ), 𝐷[𝑗−𝐿, 𝑖+1−𝑊 )+𝐷[𝑖+1−𝑊, 𝑗+1−𝑊 ))

= 𝑉 𝑎𝑟(𝐷(𝑛)) > 0 and increases with 𝑛

⇒ 𝐷[𝑖− 𝐿, 𝑖+ 1−𝑊 ) and 𝐷[𝑗 − 𝐿, 𝑗 + 1−𝑊 ) are positively correlated,

and

∫ 𝑆

0

(𝐹𝐿+1−𝑛−𝑊 (𝑆 − 𝑥))2𝑑𝐹𝑛(𝑥) increases with 𝑛 ⇒
𝐸(𝑋𝑊

𝑖 𝑋𝑊
𝑗 ) = Pr{𝐷[𝑖 − 𝐿, 𝑖 + 1 −𝑊 ) ≤ 𝑆}Pr{𝐷[𝑗 − 𝐿, 𝑗 + 1 −𝑊 ) ≤ 𝑆∣𝐷[𝑖 −

𝐿, 𝑖+ 1−𝑊 ) ≤ 𝑆} ≥ 𝐹𝐿+1−𝑊 (𝑆) Pr{𝐷[𝑗 − 𝐿, 𝑗 + 1−𝑊 ) ≤ 𝑆} = (𝐹𝐿+1−𝑊 (𝑆))2

So

𝐸(𝑋𝑊
𝑖 𝑋𝑊

𝑗 ) ≥ (𝐹𝐿+1−𝑊 (𝑆))2. (A.1)

The sum of the terms with each pair differing by exactly 𝐿+1−𝑛−𝑊 periods is

𝑀3 =
𝐿−𝑊∑
𝑛=1

2(𝑅− (𝐿+ 1) + 𝑛+𝑊 )

∫ 𝑆

0

(𝐹𝐿+1−𝑛−𝑊 (𝑆 − 𝑥))2𝑑𝐹𝑛(𝑥).

So 𝐸((𝜂𝑊𝑅 )2) =𝑀1 +𝑀2 +𝑀3, and

(𝜎𝑊
𝑅 )2 = 𝑉 𝑎𝑟(𝜂𝑊𝑅 ) = 𝐸((𝜂𝑊𝑅 )2)− (𝐸(𝜂𝑊𝑅 ))2

= 𝑅𝐹𝐿+1−𝑊 (𝑆) + (𝑅− 𝐿+𝑊 )(𝑅− 𝐿+𝑊 − 1)(𝐹𝐿+1−𝑊 (𝑆))2

+
𝐿−𝑊∑
𝑛=1

2(𝑅− (𝐿+ 1) + 𝑛+𝑊 )

∫ 𝑆

0

(𝐹𝐿+1−𝑛−𝑊 (𝑆 − 𝑥))2𝑑𝐹𝑛(𝑥)−𝑅2(𝐹𝐿+1−𝑊 (𝑆))2

= 𝑅𝐹𝐿+1−𝑊 (𝑆)− [(𝐿−𝑊 )(2𝑅− 𝐿+𝑊 − 1) +𝑅](𝐹𝐿+1−𝑊 (𝑆))2

+
𝐿−𝑊∑
𝑛=1

2(𝑅− (𝐿+ 1) + 𝑛+𝑊 )

∫ 𝑆

0

(𝐹𝐿+1−𝑛−𝑊 (𝑆 − 𝑥))2𝑑𝐹𝑛(𝑥).

By (𝐴.1), (𝜎𝑊
𝑅 )2 ≥ 𝑅𝐹𝐿+1−𝑊 (𝑆)− [(𝐿−𝑊 )(2𝑅−𝐿+𝑊 − 1) +𝑅](𝐹𝐿+1−𝑊 (𝑆))2

+
𝐿−𝑊∑
𝑛=1

2(𝑅− (𝐿+ 1) + 𝑛+𝑊 )(𝐹𝐿+1−𝑊 (𝑆))2 = 𝑅𝐹𝐿+1−𝑊 (𝑆)(1− 𝐹𝐿+1−𝑊 (𝑆)).

lim𝑅→∞
(𝜎𝑊

𝑅 )2

𝑅2/3 ≥ lim𝑅→∞𝑅1/3𝐹𝐿+1−𝑊 (𝑆)(1− 𝐹𝐿+1−𝑊 (𝑆)) = ∞.

The sequence {𝑋𝑡} is (𝐿+ 1−𝑊 )-dependent because any subsequence {𝑋𝑡𝑗 , 𝑗 ≥
1} ⊂ {𝑋𝑡}, with 𝑡𝑗 + 𝐿+ 1−𝑊 < 𝑡𝑗+1 for every 𝑗 ≥ 1, is a sequence of independent

random variables. Moreover, 𝑋𝑡 ≤ 1 for all 𝑡.
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Applying Theorem 7.3.1 (Chung 1974 page 214),
𝜂𝑊𝑅 −𝐸(𝜂𝑊𝑅 )

𝜎𝑊
𝑅

converges in distribu-

tion to a standard normal random variable 𝑍, 𝑍 ∼ 𝑁(0, 1) as 𝑅 approaches ∞.

Proof of Proposition 2.2

𝑉 𝑎𝑟(𝐴𝑊
𝑅 ) =

(𝜎𝑊
𝑅 )2

𝑅2 ,

𝑉 𝑎𝑟(𝐴𝑊
𝑅+1)− 𝑉 𝑎𝑟(𝐴𝑊

𝑅 ) =
(𝜎𝑊

𝑅+1)
2

(𝑅+1)2
− (𝜎𝑊

𝑅 )2

𝑅2

= −( 1
𝑅
− 1

𝑅+1
)𝐹𝐿+1−𝑊 (𝑆) − [(𝐿 − 𝑊 )( 2

𝑅+1
− 2

𝑅
+ 𝐿+1−𝑊

𝑅2 − 𝐿+1−𝑊
(𝑅+1)2

) + 1
𝑅+1

−
1
𝑅
](𝐹𝐿+1−𝑊 (𝑆))2 −2

𝐿−𝑊∑
𝑛=1

( 1
𝑅
− 1

𝑅+1
+𝐿+1−𝑛−𝑊

(𝑅+1)2
−𝐿+1−𝑛−𝑊

𝑅2 )

∫ 𝑆

0

(𝐹𝐿+1−𝑛−𝑊 (𝑆−𝑥))2𝑑𝐹𝑛(𝑥)

= −( 1
𝑅
− 1

𝑅+1
)𝐹𝐿+1−𝑊 (𝑆)(1− 𝐹𝐿+1−𝑊 (𝑆))

−2
𝐿−𝑊∑
𝑛=1

( 1
𝑅
− 1

𝑅+1
+𝐿+1−𝑛−𝑊

(𝑅+1)2
−𝐿+1−𝑛−𝑊

𝑅2 )(

∫ 𝑆

0

(𝐹𝐿+1−𝑛−𝑊 (𝑆−𝑥))2𝑑𝐹𝑛(𝑥)−(𝐹𝐿+1−𝑊 (𝑆))2)

= −( 1
𝑅
− 1

𝑅+1
)𝐹𝐿+1−𝑊 (𝑆)(1− 𝐹𝐿+1−𝑊 (𝑆))−Υ

where Υ = 2
𝐿−𝑊∑
𝑛=1

𝑅(𝑅+1)−(2𝑅+1)(𝐿+1−𝑛−𝑊 )
𝑅2(𝑅+1)2

(

∫ 𝑆

0

(𝐹𝐿+1−𝑛−𝑊 (𝑆−𝑥))2𝑑𝐹𝑛(𝑥)−(𝐹𝐿+1−𝑊 (𝑆))2).

Let Δ𝑛 = 𝑅(𝑅 + 1)− (2𝑅 + 1)(𝐿+ 1− 𝑛−𝑊 ). Δ𝑛 is increasing in 𝑛.

By the assumption 𝑅 > 𝐿, 𝑅 ≥ 𝐿+ 1, so

Δ1 = 𝑅(𝑅+1)− (2𝑅+1)(𝐿−𝑊 ) can be negative when 𝑅 is small, for example,

𝑅 = 𝐿+ 1;

Δ𝐿 ≥ 𝑅2 −𝑅− 1 > 0 because 𝑅 > 1.

Let 𝑚𝑛 =

∫ 𝑆

0

(𝐹𝐿+1−𝑛−𝑊 (𝑆 − 𝑥))2𝑑𝐹𝑛(𝑥)− (𝐹𝐿+1−𝑊 (𝑆))2.

From the proof of Proposition 2.1, 𝑚𝑛 > 0 and

∫ 𝑆

0

(𝐹𝐿+1−𝑛−𝑊 (𝑆 − 𝑥))2𝑑𝐹𝑛(𝑥)

increases with 𝑛.

So if Δ1 < 0, let 𝑛 = max{𝑛∣Δ𝑛 < 0},
Υ ≥ 2𝑚𝑛

𝐿−𝑊∑
𝑛=1

𝑅(𝑅+1)−(2𝑅+1)(𝐿+1−𝑛−𝑊 )
𝑅2(𝑅+1)2

= 𝑚𝑛(𝐿−𝑊 ) (2𝑅+2)𝑅−(2𝑅+1)(𝐿+1−𝑊 )
𝑅2(𝑅+1)2

≥ 0;

if Δ1 ≥ 0, then Υ ≥ 0.

So 𝑉 𝑎𝑟(𝐴𝑊
𝑅+1)− 𝑉 𝑎𝑟(𝐴𝑊

𝑅 ) < 0, 𝑉 𝑎𝑟(𝐴𝑊
𝑅 ) is decreasing in 𝑅.

Proof of Proposition 2.3

Lump-sum penalty SLA, 𝐿 =𝑊 = 0 : optimal 𝐾 given 𝛼

𝑉0(𝑆) = ℎ𝐸[𝑆 − 𝐷(1)]+ + 𝐾
𝑅

𝑅𝛼∑
𝑖=0

Pr{𝜂0𝑅 = 𝑖∣𝑆}, where Pr{𝜂0𝑅 = 𝑖∣𝑆} is given by

(2.5).
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1. If the demand and 𝑆 are continuous, then

𝑑𝑉0(𝑆)
𝑑𝑆

= ℎ𝐹1(𝑆) +
𝐾
𝑅

𝑅𝛼∑
𝑖=0

(
𝑅
𝑖

)
[𝑖(𝐹1(𝑆))

𝑖−1(1 − 𝐹1(𝑆))
𝑅−𝑖 − (𝑅 − 𝑖)(𝐹1(𝑆))

𝑖(1 −
𝐹1(𝑆))

𝑅−𝑖−1]𝑓1(𝑆)

= ℎ𝐹1(𝑆)−𝐾
(
𝑅−1
𝑅𝛼

)
(𝐹1(𝑆))

𝑅𝛼(1− 𝐹1(𝑆))
𝑅(1−𝛼)−1𝑓1(𝑆) gives

𝑑𝑉0(𝑆)

𝑑𝑆
= 𝐹1(𝑆)[ℎ−𝐾

(
𝑅− 1

𝑅𝛼

)
(𝐹1(𝑆))

𝑅𝛼−1(1− 𝐹1(𝑆))
𝑅(1−𝛼)−1𝑓1(𝑆)]. (A.2)

Given any 𝛼 < 𝐹1(𝑆
∗), 𝑑𝑉0(𝑆∗)

𝑑𝑆
= 0 ⇒the optimal

𝐾∗(𝛼) =
ℎ(

𝑅−1
𝑅𝛼

)
(𝐹1(𝑆∗))𝑅𝛼−1(1− 𝐹1(𝑆∗))𝑅(1−𝛼)−1𝑓1(𝑆∗)

, (A.3)

where 𝑓1(⋅) is the pdf of single-period demand.

2. If the demand and 𝑆 are discrete, then given any 𝛼, to induce the supplier to

choose 𝑆∗, 𝐾∗(𝛼) should be chosen such that

𝑉0(𝑆
∗ + 1)− 𝑉0(𝑆

∗) ≥ 0 and 𝑉0(𝑆
∗ − 1)− 𝑉0(𝑆

∗) ≥ 0. (A.4)

Because 𝐸[𝑆 − 𝑑]+ =
𝑆∑

𝑑=0

(𝑆 − 𝑑)𝑓1(𝑑) and 𝑓1(𝑑) = Pr{𝐷(1) = 𝑑}, (𝐴.4) ⇒

ℎ𝐹1(𝑆
∗) + 𝐾

𝑅

𝑅𝛼∑
𝑖=0

(Pr{𝜂0𝑅 = 𝑖∣𝑆∗ + 1} − Pr{𝜂0𝑅 = 𝑖∣𝑆∗}) ≥ 0,

and −ℎ𝐹1(𝑆
∗ − 1) + 𝐾

𝑅

𝑅𝛼∑
𝑖=0

(Pr{𝜂0𝑅 = 𝑖∣𝑆∗ − 1} − Pr{𝜂0𝑅 = 𝑖∣𝑆∗}) ≥ 0.

It can be seen from (𝐴.2) that
𝑅𝛼∑
𝑖=0

Pr{𝜂0𝑅 = 𝑖∣𝑆} is decreasing in 𝑆, so

𝑅𝛼∑
𝑖=0

(Pr{𝜂0𝑅 = 𝑖∣𝑆∗} − Pr{𝜂0𝑅 = 𝑖∣𝑆∗ + 1}) > 0,

and
𝑅𝛼∑
𝑖=0

(Pr{𝜂0𝑅 = 𝑖∣𝑆∗ − 1} − Pr{𝜂0𝑅 = 𝑖∣𝑆∗}) > 0.

So the interval of optimal 𝐾∗(𝛼) is

[𝐾∗(𝛼), 𝐾
∗
(𝛼)] = [ 𝑅ℎ𝐹1(𝑆∗−1)

𝑅𝛼∑
𝑖=0

(Pr{𝜂0𝑅=𝑖∣𝑆∗−1}−Pr{𝜂0𝑅=𝑖∣𝑆∗})
, 𝑅ℎ𝐹1(𝑆∗)

𝑅𝛼∑
𝑖=0

(Pr{𝜂0𝑅=𝑖∣𝑆∗}−Pr{𝜂0𝑅=𝑖∣𝑆∗+1})
].
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Lump-sum penalty SLA, 𝐿 > 0,0 ≤ 𝑊 ≤ 𝐿 : optimal 𝐾 given 𝛼

Let 𝑧𝑖(𝑥) =
𝑖+0.5−𝑅𝐹𝐿+1−𝑊 (𝑥)

𝜎𝑊
𝑅

.

From (2.3) and (2.6),

𝑉𝐿(𝑆) = ℎ𝐸[𝑆 −𝐷(𝐿+ 1−𝑊 )]+ + 𝐾
𝑅
Φ(𝑧𝑅𝛼(𝑆)).

1. If the demand and 𝑆 are continuous, then
𝑑𝑉𝐿(𝑆)

𝑑𝑆
= ℎ𝐹𝐿+1−𝑊 (𝑆) + 𝐾

𝑅
𝜙(𝑧𝑅𝛼(𝑆))

𝑑𝑧𝑅𝛼(𝑆)
𝑑𝑆

.

Letting 𝑑𝑉𝐿(𝑆
∗)

𝑑𝑆
= 0 we can obtain 𝐾∗(𝛼) = − 𝑅ℎ𝐹𝐿+1−𝑊 (𝑆∗)

𝜙(𝑧𝑅𝛼(𝑆))
𝑑𝑧𝑅𝛼(𝑆)

𝑑𝑆

.

2. If the demand and 𝑆 are discrete, given any 𝛼, to induce the supplier to choose

𝑆∗, 𝐾∗(𝛼) should be chosen such that

𝑉𝐿(𝑆
∗ + 1)− 𝑉𝐿(𝑆

∗) ≥ 0 and 𝑉𝐿(𝑆
∗ − 1)− 𝑉𝐿(𝑆

∗) ≥ 0 ⇒
ℎ𝐹𝐿+1−𝑊 (𝑆∗) + 𝐾

𝑅
[Φ(𝑧𝑅𝛼(𝑆

∗ + 1))− Φ(𝑧𝑅𝛼(𝑆
∗))] ≥ 0,

and

−ℎ𝐹𝐿+1−𝑊 (𝑆∗ − 1) + 𝐾
𝑅
[Φ(𝑧𝑅𝛼(𝑆

∗ − 1))− Φ(𝑧𝑅𝛼(𝑆
∗))] ≥ 0.

It follows that [𝐾∗(𝛼), 𝐾
∗
(𝛼)] = [ 𝑅ℎ𝐹𝐿+1−𝑊 (𝑆∗−1)

Φ(𝑧𝑅𝛼(𝑆∗−1))−Φ(𝑧𝑅𝛼(𝑆∗)) ,
𝑅ℎ𝐹𝐿+1−𝑊 (𝑆∗)

Φ(𝑧𝑅𝛼(𝑆∗))−Φ(𝑧𝑅𝛼(𝑆∗+1))
].

Linear penalty SLA, 𝐿 =𝑊 = 0 : optimal 𝐾 given 𝛼

𝑉0(𝑆) = ℎ𝐸[𝑆 −𝐷(1)]+ + 𝐾
𝑅

𝑅𝛼∑
𝑖=0

(𝑅𝛼 + 1− 𝑖) Pr{𝜂0𝑅 = 𝑖∣𝑆},
where Pr{𝜂0𝑅 = 𝑖∣𝑆} is given by (2.5).

1. If the demand and 𝑆 are continuous, then

𝑑𝑉0(𝑆)
𝑑𝑆

= ℎ𝐹1(𝑆)+
𝐾
𝑅

𝑅𝛼∑
𝑖=0

(𝑅𝛼+1−𝑖)(𝑅
𝑖

)
[𝑖(𝐹1(𝑆))

𝑖−1(1−𝐹1(𝑆))
𝑅−𝑖−(𝑅−𝑖)(𝐹1(𝑆))

𝑖(1−
𝐹1(𝑆))

𝑅−𝑖−1]𝑓1(𝑆) ⇒

𝑑𝑉0(𝑆)

𝑑𝑆
= ℎ𝐹1(𝑆)−𝐾

𝑅𝛼∑
𝑖=0

(
𝑅− 1

𝑖

)
(𝐹1(𝑆))

𝑖(1− 𝐹1(𝑆))
𝑅−𝑖−1𝑓1(𝑆). (A.5)

Given 𝛼 < 𝐹1(𝑆
∗), 𝑑𝑉0(𝑆∗)

𝑑𝑆
= 0 ⇒

𝐾∗(𝛼) =
ℎ𝐹1(𝑆

∗)
𝑅𝛼∑
𝑖=0

(
𝑅−1
𝑖

)
(𝐹1(𝑆∗))𝑖(1− 𝐹1(𝑆∗))𝑅−𝑖−1𝑓1(𝑆∗)

. (A.6)

2. If the demand and 𝑆 are discrete, then given any 𝛼, to induce the supplier to

choose 𝑆∗, 𝐾∗(𝛼) should be chosen such that
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𝑉0(𝑆
∗ + 1)− 𝑉0(𝑆

∗) ≥ 0 and 𝑉0(𝑆
∗ − 1)− 𝑉0(𝑆

∗) ≥ 0 ⇒

ℎ𝐹1(𝑆
∗) +

𝐾

𝑅

𝑅𝛼∑
𝑖=0

(𝑅𝛼 + 1− 𝑖)(Pr{𝜂0𝑅 = 𝑖∣𝑆∗ + 1} − Pr{𝜂0𝑅 = 𝑖∣𝑆∗}) ≥ 0, (A.7)

and

−ℎ𝐹1(𝑆
∗ − 1) +

𝐾

𝑅

𝑅𝛼∑
𝑖=0

(𝑅𝛼+ 1− 𝑖)(Pr{𝜂0𝑅 = 𝑖∣𝑆∗ − 1}−Pr{𝜂0𝑅 = 𝑖∣𝑆∗}) ≥ 0. (A.8)

It can be seen from (𝐴.5) that the second term in 𝑉0(𝑆) is decreasing in 𝑆, so
𝑅𝛼∑
𝑖=0

(𝑅𝛼 + 1− 𝑖)(Pr{𝜂0𝑅 = 𝑖∣𝑆∗} − Pr{𝜂0𝑅 = 𝑖∣𝑆∗ + 1}) > 0,

and
𝑅𝛼∑
𝑖=0

(𝑅𝛼 + 1− 𝑖)(Pr{𝜂0𝑅 = 𝑖∣𝑆∗ − 1} − Pr{𝜂0𝑅 = 𝑖∣𝑆∗}) > 0.

Then it follows from (𝐴.7) and (𝐴.8) that [𝐾∗(𝛼), 𝐾
∗
(𝛼)] =

[ 𝑅ℎ𝐹1(𝑆∗−1)
𝑅𝛼∑
𝑖=0

(𝑅𝛼+1−𝑖)(Pr{𝜂0𝑅=𝑖∣𝑆∗−1}−Pr{𝜂0𝑅=𝑖∣𝑆∗})
, 𝑅ℎ𝐹1(𝑆∗)

𝑅𝛼∑
𝑖=0

(𝑅𝛼+1−𝑖)(Pr{𝜂0𝑅=𝑖∣𝑆∗}−Pr{𝜂0𝑅=𝑖∣𝑆∗+1})
].

Linear penalty SLA, 𝐿 > 0,0 ≤ 𝑊 ≤ 𝐿 : optimal 𝐾 given 𝛼

𝑉𝐿(𝑆) = ℎ𝐸[𝑆 −𝐷(𝐿+ 1−𝑊 )]+ + 𝐾
𝑅

𝑅𝛼∑
𝑖=0

(𝑅𝛼+ 1− 𝑖) Pr{𝜂𝑊𝑅 = 𝑖∣𝑆}
1. If the demand and 𝑆 are continuous, then using the results in Proposition 2.1,

the approximation for 𝑉𝐿(𝑆) is

𝑉𝐿(𝑆) = ℎ𝐸[𝑆 −𝐷(𝐿+ 1−𝑊 )]+ + 𝐾
𝑅

∫
𝑥≤𝑅𝛼

(𝑅𝛼− 𝑥)𝑑Φ(𝑥−𝑅𝐹𝐿+1−𝑊 (𝑆)

𝜎𝑊
𝑅

)

= ℎ𝐸[𝑆 −𝐷(𝐿+ 1−𝑊 )]+ + 𝐾
𝑅

∫
𝑥≤𝑅𝛼

Φ(𝑥−𝑅𝐹𝐿+1−𝑊 (𝑆)

𝜎𝑊
𝑅

)𝑑𝑥

⇒
𝑑𝑉𝐿(𝑆)

𝑑𝑆
= ℎ𝐹𝐿+1−𝑊 (𝑆) + 𝐾

𝑅

∫
𝑥≤𝑅𝛼

𝑑
𝑑𝑆
Φ(𝑥−𝑅𝐹𝐿+1−𝑊 (𝑆)

𝜎𝑊
𝑅

)𝑑𝑥

= ℎ𝐹𝐿+1−𝑊 (𝑆) + 𝐾
𝑅
[−𝑅𝑓𝐿+1−𝑊 (𝑆)Φ(𝑅𝛼−𝑅𝐹𝐿+1−𝑊 (𝑆)

𝜎𝑊
𝑅

) +
𝑑𝜎𝑊

𝑅

𝑑𝑆
𝜙(𝑅𝛼−𝑅𝐹𝐿+1−𝑊 (𝑆)

𝜎𝑊
𝑅

)].

Letting 𝑑𝑉𝐿(𝑆
∗)

𝑑𝑆
= 0 we can obtain

𝐾∗(𝛼) = 𝑅ℎ𝐹𝐿+1−𝑊 (𝑆∗)

𝑅𝑓𝐿+1−𝑊 (𝑆)Φ(
𝑅𝛼−𝑅𝐹𝐿+1−𝑊 (𝑆∗)

𝜎𝑊
𝑅

)− 𝑑𝜎𝑊
𝑅

𝑑𝑆
𝜙(

𝑅𝛼−𝑅𝐹𝐿+1−𝑊 (𝑆∗)
𝜎𝑊
𝑅

)
, where 𝜎𝑊

𝑅 is given by

(2.1).

2. If the demand and 𝑆 are discrete, given any 𝛼, to induce the supplier to choose
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𝑆∗, 𝐾∗(𝛼) should be chosen such that

𝑉𝐿(𝑆
∗ + 1)− 𝑉𝐿(𝑆

∗) ≥ 0 and 𝑉𝐿(𝑆
∗ − 1)− 𝑉𝐿(𝑆

∗) ≥ 0

⇒ ℎ𝐹𝐿+1−𝑊 (𝑆∗) + 𝐾
𝑅

𝑅𝛼∑
𝑖=0

(𝑅𝛼 + 1− 𝑖)(Pr{𝜂𝑊𝑅 = 𝑖∣𝑆∗ + 1} − Pr{𝜂𝑊𝑅 = 𝑖∣𝑆∗}) ≥ 0,

and

−ℎ𝐹𝐿+1−𝑊 (𝑆∗−1)+ 𝐾
𝑅

𝑅𝛼∑
𝑖=0

(𝑅𝛼+1− 𝑖)(Pr{𝜂𝑊𝑅 = 𝑖∣𝑆∗−1}−Pr{𝜂𝑊𝑅 = 𝑖∣𝑆∗}) ≥ 0.

So [𝐾∗(𝛼), 𝐾
∗
(𝛼)]

= [ 𝑅ℎ𝐹𝐿+1−𝑊 (𝑆∗−1)
𝑅𝛼∑
𝑖=0

(𝑅𝛼+1−𝑖)(Pr{𝜂𝑊𝑅 =𝑖∣𝑆∗−1}−Pr{𝜂𝑊𝑅 =𝑖∣𝑆∗})
, 𝑅ℎ𝐹𝐿+1−𝑊 (𝑆∗)

𝑅𝛼∑
𝑖=0

(𝑅𝛼+1−𝑖)(Pr{𝜂𝑊𝑅 =𝑖∣𝑆∗}−Pr{𝜂𝑊𝑅 =𝑖∣𝑆∗+1})
],

where Pr{𝜂𝑊𝑅 = 𝑖∣𝑆∗} is given by (2.6).

Proposition 2.3 follows from all the above derivations for (𝛼,𝐾) candidates.

Derivation for Section 2.5.2 Unimodality of supplier’s objective function

The derivation below is based on continuous-valued demand and base-stock level

𝑆.

Lump-sum penalty SLA, 𝐿 = 0:

Substituting (𝐴.3) into (𝐴.2) ⇒
at 𝛼 and 𝐾∗(𝛼), 𝑑𝑉0(𝑆)

𝑑𝑆
= ℎ𝐹1(𝑆)(1− (𝐹1(𝑆))𝑅𝛼−2(1−𝐹1(𝑆))𝑅(1−𝛼)𝑓1(𝑆)

(𝐹1(𝑆∗))𝑅𝛼−2(1−𝐹1(𝑆∗))𝑅(1−𝛼)𝑓1(𝑆∗))
𝑑[(𝐹1(𝑆))𝑅𝛼−2(1−𝐹1(𝑆))𝑅(1−𝛼)𝑓1(𝑆)]

𝑑𝑆
= (𝐹1(𝑆))

𝑅𝛼−3(1−𝐹1(𝑆))
𝑅(1−𝛼)−1[(𝑓1(𝑆))

2(𝑅𝛼−2−
(𝑅− 2)𝐹1(𝑆)) + 𝑓 ′

1(𝑆)𝐹1(𝑆)(1− 𝐹1(𝑆))].

𝛼 < 𝐹1(𝑆
∗), 𝐹 ′

1(𝑆) > 0, 0 ≤ 𝐹1(𝑆) ≤ 1

⇒ 𝑅𝛼− 2− (𝑅− 2)𝐹1(𝑆) = 𝑅(𝛼− 𝐹1(𝑆))− 2(1− 𝐹1(𝑆)) < 0 for 𝑆 ≥ 𝑆∗;

moreover, 𝑅𝛼−2
𝑅−2

< 𝛼 < 𝐹1(𝑆
∗), 𝐹 ′

1(𝑆) > 0 ⇒ 𝐹−1
1 (𝑅𝛼−2

𝑅−2
) < 𝑆∗

⇒ 𝑅𝛼− 2− (𝑅− 2)𝐹1(𝑆) < 0 for 𝐹−1
1 (𝑅𝛼−2

𝑅−2
) < 𝑆 < 𝑆∗.

Because it is assumed that the distribution of single-period demand is unimodal,

if 𝑓 ′
1(𝑆

∗) < 0, then 𝑓 ′
1(𝑆) < 0 for 𝑆 ≥ 𝑆∗. This is true for distributions in the location-

scale family and Poisson distribution with 𝑆∗ > 𝜆. Because 𝑓1(𝑆) is continuous,

for 𝑆 > 𝑆∗, 𝑑[(𝐹1(𝑆))𝑅𝛼−2(1−𝐹1(𝑆))𝑅(1−𝛼)𝑓1(𝑆)]
𝑑𝑆

< 0 and 𝑑𝑉0(𝑆)
𝑑𝑆

> 0; 𝑑𝑉0(𝑆∗)
𝑑𝑆

= 0, and

for 𝑆 < 𝑆∗ and 𝑆 close to 𝑆∗, 𝑑[(𝐹1(𝑆))𝑅𝛼−2(1−𝐹1(𝑆))𝑅(1−𝛼)𝑓1(𝑆)]
𝑑𝑆

< 0, and so 𝑑𝑉0(𝑆)
𝑑𝑆

< 0.

Thus 𝑆∗ is a local optimum.
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But 𝑉0(𝑆) may be not unimodal. For small 𝑆 and 𝑆 < 𝑆∗, 𝑑[(𝐹1(𝑆))𝑅𝛼−2(1−𝐹1(𝑆))𝑅(1−𝛼)𝑓1(𝑆)]
𝑑𝑆

>

0. Depending on the value of 𝑆∗ and 𝑅𝛼, it is possible that for 𝑆 < 𝑆∗, 𝑑𝑉0(𝑆)
𝑑𝑆

> 0.

This can be seen from Figure 2.1.

Linear penalty SLA, 𝐿 = 0 :

Substituting (𝐴.6) into (𝐴.5) ⇒ at 𝛼 and 𝐾∗(𝛼),

𝑑𝑉0(𝑆)
𝑑𝑆

= ℎ[𝐹1(𝑆)− 𝐹1(𝑆
∗)

𝑅𝛼−1∑
𝑖=0

(𝑅−1
𝑖 )(𝐹1(𝑆))𝑖(1−𝐹1(𝑆))𝑅−𝑖−1𝑓1(𝑆)

𝑅𝛼−1∑
𝑖=0

(𝑅−1
𝑖 )(𝐹1(𝑆∗))𝑖(1−𝐹1(𝑆∗))𝑅−𝑖−1𝑓1(𝑆∗)

].

Let Λ1 =
𝑅𝛼−1∑
𝑖=0

(
𝑅−1
𝑖

)
(𝐹1(𝑆))

𝑖(1− 𝐹1(𝑆))
𝑅−𝑖−1.

𝑑Λ1

𝑑𝑆
= −(𝑅− 1)

(
𝑅− 2

𝑅𝛼− 1

)
(𝐹1(𝑆))

𝑅𝛼−1(1− 𝐹1(𝑆))
𝑅(1−𝛼)−1𝑓1(𝑆) < 0. (A.9)

Using the same assumption for the case of lump-sum penalty SLA and 𝐿 = 0,

𝑓 ′
1(𝑆

∗) < 0,

1. for 𝑆 > 𝑆∗, 𝐹1(𝑆) > 𝐹1(𝑆
∗) and 𝑓1(𝑆) < 𝑓1(𝑆

∗), then together with (𝐴.9),
𝑑𝑉0(𝑆)
𝑑𝑆

> 0 for 𝑆 > 𝑆∗;

2. for 𝑆 < 𝑆∗, 𝐹1(𝑆) < 𝐹1(𝑆
∗), and by (𝐴.9),

𝑅𝛼−1∑
𝑖=0

(
𝑅− 1

𝑖

)
(𝐹1(𝑆

∗))𝑖(1− 𝐹1(𝑆
∗))𝑅−𝑖−1 <

𝑅𝛼−1∑
𝑖=0

(
𝑅− 1

𝑖

)
(𝐹1(𝑆))

𝑖(1− 𝐹1(𝑆))
𝑅−𝑖−1,

(A.10)

for 𝑆 close to 𝑆∗, because 𝑓 ′
1(𝑆) is continuous, 𝑓 ′

1(𝑆) < 0 and 𝑓1(𝑆) > 𝑓1(𝑆
∗), so

𝑑𝑉0(𝑆)
𝑑𝑆

< 0 for 𝑆 < 𝑆∗ and close to 𝑆∗;

for 𝑆 < 𝑆∗ and not close to 𝑆∗, 𝑑𝑉0(𝑆)
𝑑𝑆

< 0 if 𝑆 satisfies

𝑓1(𝑆
∗)

𝐹1(𝑆∗)

𝑅𝛼−1∑
𝑖=0

(
𝑅− 1

𝑖

)
(𝐹1(𝑆

∗))𝑖(1− 𝐹1(𝑆
∗))𝑅−𝑖−1

<
𝑓1(𝑆)

𝐹1(𝑆)

𝑅𝛼−1∑
𝑖=0

(
𝑅− 1

𝑖

)
(𝐹1(𝑆))

𝑖(1− 𝐹1(𝑆))
𝑅−𝑖−1. (A.11)

The above inequality depends on the value of 𝑆∗ and 𝑅𝛼. Because 1
𝐹1(𝑆∗) <

1
𝐹1(𝑆)

and (𝐴.10), if 𝑆∗ is sufficiently large so that 𝑓1(𝑆)
𝑓1(𝑆∗) is not too small, then (𝐴.11) will
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hold.

Therefore, 𝑆∗ is a local optimum. If (𝐴.11) holds for all 𝑆 < 𝑆∗, then 𝑉0(𝑆) is

unimodal and 𝑆∗ is a global optimum.

Dynamic program for 𝑳 = 0 (Section 2.6.1)

Compared to the case of 𝐿 = 1, the definition of 𝐼𝑡 is modified as

𝐼𝑡 = the supplier’s inventory on hand at the beginning of period t, before an order

is placed in period t.

Because the supplier does not incur the backorder cost, for any nonpositive net in-

ventory in a period, the supplier has the same immediate cost (zero inventory holding

cost). Due to a zero lead time, the inventory performance in any period is determined

by the base-stock level rather than the net inventory in that period. Note that a zero

base-stock level dominates any negative base-stock levels because the inventory costs

in both cases are zero and the supplier’s performance under the former choice may

be better than that under the latter when the demand in a period is zero. Thus in

the state space, we can use 0 to represent all the states of nonpositive inventory.

The state space is {(𝜂𝑡−1, 𝐼𝑡) : 0 ≤ 𝜂𝑡−1 ≤ 𝑡− 1, 0 ≤ 𝐼𝑡 ≤ 𝑆} where 1 ≤ 𝑡 ≤ 𝑅 + 1

and 𝑆 is a large number such that 𝐹1(𝑆) ≈ 1.

Actions (inventory order-up-to level in a period): 𝑆 ∈ {0, 1, 2, ..., 𝑆}
State transition:

𝐼𝑡+1 = [𝑆𝑡 − 𝑑𝑡]
+, 𝜂𝑡 =

{
𝜂𝑡−1 + 1 if 𝑆𝑡 ≥ 𝑑𝑡

𝜂𝑡−1 if 𝑆𝑡 < 𝑑𝑡
.

Rewards:

𝑟𝑡((𝑖, 𝐼𝑡), 𝑆𝑡) = ℎ𝐸[𝑆𝑡 − 𝑑𝑡]
+ 1 ≤ 𝑡 ≤ 𝑅,

and the definition of 𝑟𝑅+1((𝑖, 𝐼𝑅+1)) is the same as that in (2.7). Notice that in

this single-review-phase model there is no consequence of having closing inventory

𝐼𝑅+1.

Transition probabilities:

𝑝𝑡((𝑗, 𝐼)∣(𝑖, 𝑢), 𝑆) =

⎧⎨⎩
Pr{𝐷(1) = 𝑆 − 𝐼} if 𝑗 = 𝑖+ 1, 𝑆 ≥ 𝑢, 𝐼 ≥ 0

Pr{𝐷(1) > 𝑆} if 𝑗 = 𝑖, 𝑆 ≥ 𝑢, 𝐼 = 0

0 otherwise

.

In period t, for the order-up-to level 𝑆𝑡 ≥ 𝐼𝑡,

𝜋1
𝑡 (𝑆𝑡∣𝑖, 𝐼𝑡) = ℎ𝐸[𝑆𝑡 − 𝑑𝑡]

+ + 𝐸{𝜋1
𝑡+1(𝑖+ 1, 𝑆𝑡 − 𝑑𝑡)∣𝑆𝑡 ≥ 𝑑𝑡}+ 𝐹 1(𝑆𝑡)𝜋

1
𝑡+1(𝑖, 0).

The optimal cost to go from period t is 𝜋1
𝑡 (𝑖, 𝐼𝑡) = min𝑆𝑡≥𝐼𝑡 𝜋

1
𝑡 (𝑆𝑡∣𝑖, 𝐼𝑡).
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The dynamic program is

𝜋1
𝑅+1(𝑖, 𝐼𝑅+1) = 𝑟𝑅+1((𝑖, 𝐼𝑅+1));

for 1 ≤ 𝑡 ≤ 𝑅: 𝜋1
𝑡 (𝑖, 𝐼𝑡) = min𝑆𝑡≥𝐼𝑡 𝜋

1
𝑡 (𝑆𝑡∣𝑖, 𝐼𝑡).
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Proof for Chapter 3

Derivation of formula (3.2)

The waiting time distribution given 𝑆 and 𝐿 is derived as follows.

Let 𝑤𝑡 denote the waiting time of a demand at time 𝑡. For the demand at time

𝑡 to be filled by time 𝑡 + 𝑦, the inventory position at time 𝑡 + 𝑦 − 𝐿, denoted by

𝐼𝑃 (𝑡 + 𝑦 − 𝐿), should satisfy the demands occuring in the interval (𝑡 + 𝑦 − 𝐿, 𝑡].

Therefore, the distribution of 𝑤𝑡 given 𝑆 and 𝐿 is

Pr{𝑤𝑡 ≤ 𝑦∣𝑆, 𝐿} = Pr{𝐷(𝑡+ 𝑦 − 𝐿, 𝑡] ≤ 𝐼𝑃 (𝑡+ 𝑦 − 𝐿)},
where 𝐷(𝑡+ 𝑦−𝐿, 𝑡] is the demand during (𝑡+ 𝑦−𝐿, 𝑡], and 𝐼𝑃 (𝑡+ 𝑦−𝐿) is the

constant 𝑆. Note that 𝐷(𝑡+ 𝑦 − 𝐿, 𝑡] = 𝐷(𝐿− 𝑦). So for 0 ≤ 𝑦 < 𝐿,

Pr{𝑤𝑡 ≤ 𝑦∣𝑆, 𝐿} = Pr{𝐷(𝐿− 𝑦) ≤ 𝑆}, which is independent of 𝑡. Therefore,

𝐹𝑤(𝑦∣𝑆, 𝐿) = Pr{𝑤 ≤ 𝑦∣𝑆, 𝐿} = lim𝑡→∞ Pr{𝑤𝑡 ≤ 𝑦∣𝑆, 𝐿} = Pr{𝐷(𝐿− 𝑦) ≤ 𝑆}.
We also define 𝐹𝑤(𝑦∣𝑆, 𝐿) = 0 for 𝑦 < 0 and 𝐹𝑤(𝑦∣𝑆, 𝐿) = 1 for 𝑦 ≥ 𝐿.

Proof of Proposition 3.1

Referring to the proof of Proposition 2.1 in the previous chapter, the proof for the

distribution of 𝐴 is similar. Note that a periodic-review base-stock policy is considered

therein and the timing of demand is defined differently. So in the proof there, 𝐿 is

generally replaced by 𝐿+1. In this chapter, a continuous-review base-stock policy is

studied, and 𝐿 is not replaced by 𝐿+ 1. Moreover, both 𝐿 and 𝑊 are continuous.

The definition of 𝑋𝑊
𝑡 , the performance indicator for period 𝑡 (1 ≤ 𝑡 ≤ 𝑅), is

modified as:

Pr{𝑋𝑊
𝑡 = 1} = Pr{𝐷(𝑡− 𝐿, 𝑡−𝑊 ] ≤ 𝑆} = Pr{𝐷(𝐿−𝑊 ) ≤ 𝑆} = 𝐴𝑊 .

In the proof of Proposition 2.1, the derivation of the variance of the realized ready

rate with window 𝑊 is modified as follows:

𝜎2
𝑊 = 1

𝑅2 [
𝑅∑
𝑖=1

𝑉 𝑎𝑟(𝑋𝑊
𝑖 ) + 2

∑
𝑖<𝑗

𝑐𝑜𝑣(𝑋𝑊
𝑖 , 𝑋𝑊

𝑗 )]

= 1
𝑅2 [

𝑅∑
𝑖=1

𝑉 𝑎𝑟(𝑋𝑊
𝑖 ) + 2

∑
𝑖<𝑗

(𝐸(𝑋𝑊
𝑖 𝑋𝑊

𝑗 )− 𝐸(𝑋𝑊
𝑖 )𝐸(𝑋𝑊

𝑗 ))]
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= 1
𝑅2 [𝑅𝐴𝑊 (1− 𝐴𝑊 ) + 2

∑
𝑖<𝑗

𝐸(𝑋𝑊
𝑖 𝑋𝑊

𝑗 )−𝑅(𝑅− 1)𝐴2
𝑊 ].

So (3.4) follows.

Alternatively, 𝜎2
𝑊 can be written in a similar way as in the previous chapter:

𝜎2
𝑊 =

1

𝑅2
[𝑅𝐹 (𝑆∣𝐿−𝑊 )−((𝐿𝐶−1)(2𝑅−𝐿𝐶)+𝑅)(𝐹 (𝑆∣𝐿−𝑊 ))2+2

𝐿𝐶−1∑
𝑛=1

(𝑅−𝐿+𝑛)𝑃𝑛(𝑆, 𝐿)],

(B.1)

where 𝐿𝐶 = ⌈𝐿−𝑊 ⌉, where ⌈𝑥⌉ gives the ceiling of 𝑥; and

𝑃𝑛(𝑆, 𝐿) =

∫ ∞

−∞
(𝐹 (𝑆 − 𝑥∣𝑛))2𝑑𝐹 (𝑥∣𝐿−𝑊 − 𝑛) (B.2)

is the probability that the performance outcomes in any two periods are both good,

where the two periods differ by 𝑛 periods, 1 ≤ 𝑛 ≤ 𝐿𝐶 − 1. Note that the definition

of the third term is different from that in the proof in the previous chapter, but they

are equivalent.

Unimodality of Total Supply Chain Cost 𝐸𝐶(𝑆, 𝐿)

Linear delay cost:

Consider normal demand, linear delay cost 𝐶𝐷(𝑦∣𝑆, 𝐿) = 𝛿𝑦 (𝛿 > 0), and 𝐶𝑟(𝐿) =

𝑟𝐿−𝑏 (𝑏 > 0).

Using the relationship between the average backorders and average waiting time

(see page 192 of Zipkin (2000)),

𝐵(𝑆, 𝐿) = 𝜆𝐸(𝑦∣𝑆, 𝐿), where 𝐵(𝑆, 𝐿) is the average backorders.

So 𝛿𝐵(𝑆, 𝐿) = 𝜆𝐸𝐶𝐷(𝑦∣𝑆, 𝐿).

𝐵(𝑆, 𝐿) = 𝐸([𝐷(𝐿)− 𝑆]+) =
∫
𝑥>𝑆

(𝑥− 𝑆)𝑓(𝑥∣𝐿)𝑑𝑥
=

∫
𝑥
(𝑥− 𝑆)𝑓(𝑥∣𝐿)𝑑𝑥+ ∫

𝑥<𝑆
(𝑆 − 𝑥)𝑓(𝑥∣𝐿)𝑑𝑥 = 𝐼(𝑆, 𝐿)− (𝑆 − 𝜆𝐿)

⇒ 𝐸𝐶(𝑆, 𝐿) = (ℎ+ 𝛿)𝐼(𝑆, 𝐿)− 𝛿(𝑆 − 𝜆𝐿) + 𝜆𝐶𝑟(𝐿).

Because lim𝐿→0𝐶𝑟(𝐿) = ∞, we only need to consider 𝐿 > 0.

1) Unimodality of 𝐸𝐶(𝑆, 𝐿) in 𝑆 for given 𝐿

Given 𝐿 > 0,

𝐶1(𝑆, 𝐿) =
∂𝐸𝐶(𝑆,𝐿)

∂𝑆
= (ℎ+ 𝛿)𝐹 (𝑆∣𝐿)− 𝛿,

𝐶11(𝑆, 𝐿) =
∂2𝐸𝐶(𝑆,𝐿)

∂𝑆2 = (ℎ+ 𝛿)𝑓(𝑆∣𝐿) > 0
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so 𝐸𝐶(𝑆, 𝐿) is convex in 𝑆 for given 𝐿.

Let 𝑆(𝐿) be the solution to 𝐶1(𝑆, 𝐿) = 0, 𝐹 (𝑆(𝐿)∣𝐿) = 𝛿
ℎ+𝛿

, ∂𝐹 (𝑆(𝐿)∣𝐿)
∂𝐿

= 0 for any

𝐿 > 0.

𝑆(𝐿) is the minimizer of 𝐸𝐶(𝑆, 𝐿) given 𝐿.

2) Unimodality of 𝐸𝐶(𝑆(𝐿), 𝐿) in 𝐿

For normal demand, let 𝑧 = 𝑆−𝜆𝐿
𝜎
√
𝐿
,

𝐹 (𝑆∣𝐿) = Φ(𝑧), 𝑓(𝑆∣𝐿) = 𝜙(𝑧) and 𝐼(𝑆, 𝐿) = (𝑆 − 𝜆𝐿)Φ(𝑧) + 𝜎
√
𝐿𝜙(𝑧).

So 𝐶2(𝑆, 𝐿) =
∂𝐸𝐶(𝑆,𝐿)

∂𝐿
= (ℎ+ 𝛿)[−𝜆Φ(𝑧) + 𝜎

2
√
𝐿
𝜙(𝑧)] + 𝛿𝜆+ 𝜆𝐶 ′

𝑟(𝐿).

By the Envelope Theorem, and noting that Φ(𝑆(𝐿)−𝜆𝐿

𝜎
√
𝐿

) = 𝛿
ℎ+𝛿

,
𝑑𝐸𝐶(𝑆(𝐿),𝐿)

𝑑𝐿
= 𝐶2(𝑆(𝐿), 𝐿) = (ℎ+ 𝛿) 𝜎

2
√
𝐿
𝜙(𝑧∗)− 𝜆𝑏

𝐿𝑏+1 ,where 𝑧
∗ = Φ−1( 𝛿

ℎ+𝛿
).

Let �̃� be such that �̃�𝑏+0.5 = 2𝜆𝑏
(ℎ+𝛿)𝜎𝜙(𝑧∗) .

Then 𝑑𝐸𝐶(𝑆(𝐿),𝐿)
𝑑𝐿

< 0 for 𝐿 < �̃�, 𝑑𝐸𝐶(𝑆(�̃�),�̃�)
𝑑𝐿

= 0 and 𝑑𝐸𝐶(𝑆(𝐿),𝐿)
𝑑𝐿

> 0 for 𝐿 > �̃�.

So 𝐸𝐶(𝑆(𝐿), 𝐿) is unimodal in 𝐿, and 𝐸𝐶(𝑆, 𝐿) is unimodal in (𝑆, 𝐿).

Convex delay cost:

For convex delay cost 𝐶𝐷(𝑦∣𝑆, 𝐿) = 𝛿𝑦2, it is not easy to prove that 𝐸𝐶(𝑆, 𝐿) is

unimodal. Instead, we have to use the plot of 𝐸𝐶(𝑆, 𝐿) for each specific case to check

its unimodality. For example, for the case of ℎ = 2, 𝛿 = 10, 𝑟 = 2, 𝜆 = 4 and 𝜎 = 2,

𝐸𝐶(𝑆, 𝐿) is plotted in the Figure B.1, which indicates that it is unimodal.

Figure B.1: EC(S,L) under convex delay cost

Proof of Proposition 3.2
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At the optimum, constraint (3.7) is binding because otherwise the buyer’s ob-

jective function value can be reduced by decreasing 𝑝 while (3.7) remains to hold.

Solving for 𝑝 from (3.7) with equality and subsituting it into the objective function,

we obtain the buyer’s unconstrained optimization problem:

min𝑆,𝐿𝐸𝐶𝐵(𝑆, 𝐿) = ℎ𝐼(𝑆, 𝐿) + 𝜆𝐸𝐶𝐷(𝑦∣𝑆, 𝐿) + 𝜆𝐶𝑟(𝐿) + 𝜋.

So 𝐸𝐶𝐵(𝑆, 𝐿) = 𝐸𝐶(𝑆, 𝐿) + 𝜋.

The first-order derivatives of the objective function with respect to 𝑆 and 𝐿 are
∂𝐸𝐶𝐵(𝑆,𝐿)

∂𝑆
= ∂𝐸𝐶(𝑆,𝐿)

∂𝑆
= ℎ𝐹 (𝑆∣𝐿) + 𝜆∂𝐸𝐶𝐷(𝑦∣𝑆,𝐿)

∂𝑆

and
∂𝐸𝐶𝐵(𝑆,𝐿)

∂𝐿
= ∂𝐸𝐶(𝑆,𝐿)

∂𝐿
= −ℎ∫

𝑥<𝑆
∂𝐹 (𝑥∣𝐿)

∂𝐿
𝑑𝑥+ 𝜆∂𝐸𝐶𝐷(𝑦∣𝑆,𝐿)

∂𝐿
+ 𝜆𝐶 ′

𝑟(𝐿).

Then by the unimodality of 𝐸𝐶(𝑆, 𝐿), the first-best solution (𝑆∗, 𝐿∗) is the solu-

tion to (3.9) and (3.10).

Checking if normal distribution satisfies Assumption 3.2

Let

Π(𝑆, 𝐿,𝑊 ) =

∫
𝐴<𝛼

Ψ(𝐴∣𝐴𝑊 )𝑑𝐴 =

∫
𝐴<𝛼

Φ(
𝐴− 𝐴𝑊

𝜎𝑊

)𝑑𝐴. (B.3)

∂Π(𝑆,𝐿,𝑊 )
∂𝑆

=

∫
𝐴<𝛼

𝜙(𝐴−𝐴𝑊

𝜎𝑊
) ∂
∂𝑆
(𝐴−𝐴𝑊

𝜎𝑊
)𝑑𝐴 = −

∫
𝐴<𝛼

𝜙(𝐴−𝐴𝑊

𝜎𝑊
)( 1

𝜎𝑊

∂𝐴𝑊

∂𝑆
+𝐴−𝐴𝑊

(𝜎𝑊 )2
∂𝜎𝑊

∂𝑆
)𝑑𝐴

= −Φ(𝛼−𝐴𝑊

𝜎𝑊
)∂𝐴𝑊

∂𝑆
+ 𝜙(𝛼−𝐴𝑊

𝜎𝑊
)∂𝜎𝑊

∂𝑆
.

Similarly, ∂Π(𝑆,𝐿,𝑊 )
∂𝐿

= −Φ(𝛼−𝐴𝑊

𝜎𝑊
)∂𝐴𝑊

∂𝐿
+ 𝜙(𝛼−𝐴𝑊

𝜎𝑊
)∂𝜎𝑊

∂𝐿
.

Let
∂Π(𝑆,𝐿,𝑊 )

∂𝑆
∂Π(𝑆,𝐿,𝑊 )

∂𝐿

= 𝜃 ∂𝐴𝑊 /∂𝑆
∂𝐴𝑊 /∂𝐿

, where

𝜃 =
1− ∂𝜎𝑊 /∂𝑆

∂𝐴𝑊 /∂𝑆
𝜙(𝛼−𝐴𝑊

𝜎𝑊
)/Φ(𝛼−𝐴𝑊

𝜎𝑊
)

1− ∂𝜎𝑊 /∂𝐿
∂𝐴𝑊 /∂𝐿

𝜙(𝛼−𝐴𝑊

𝜎𝑊
)/Φ(𝛼−𝐴𝑊

𝜎𝑊
)
. (B.4)

It follows from (B.1) and (B.2) that

∂𝜎𝑊

∂𝑆
= 1

2𝜎𝑊

∂𝜎2
𝑊

∂𝑆
= 1

2𝑅2𝜎𝑊

∂𝐴𝑊

∂𝑆
[𝑅−2((𝐿𝐶−1)(2𝑅−𝐿𝐶)+𝑅)𝐹𝑤(𝑊 ∣𝑆, 𝐿)+2

𝐿𝐶−1∑
𝑛=1

(𝑅−

𝐿+ 𝑛)∂𝑃𝑛(𝑆,𝐿)/∂𝑆
∂𝐴𝑊 /∂𝑆

],

∂𝜎𝑊

∂𝐿
= 1

2𝑅2𝜎𝑊

∂𝐴𝑊

∂𝐿
[𝑅 − 2((𝐿𝐶 − 1)(2𝑅 − 𝐿𝐶) + 𝑅)𝐹𝑤(𝑊 ∣𝑆, 𝐿) + 2

𝐿𝐶−1∑
𝑛=1

(𝑅 − 𝐿 +

𝑛)∂𝑃𝑛(𝑆,𝐿)/∂𝐿
∂𝐴𝑊 /∂𝐿

].
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Table B.1: Value of 𝜃 for normal demand
𝐿 = 4.2 𝐿 = 4.8

𝑆 𝑅 = 100 𝑅 = 300 𝑆 𝑅 = 100 𝑅 = 300
42 0.99 0.99 48 0.99 0.99
44 0.99 0.99 50 0.99 0.99
46 0.99 0.99 52 0.99 0.99
48 0.99 0.99 54 0.99 0.99
50 0.99 0.99 56 0.99 0.99
52 0.99 0.99 58 0.99 0.99
54 0.99 0.99 60 0.99 0.99
56 0.99 0.99 62 0.99 0.99
58 0.99 0.99 64 0.99 0.99
60 0.99 0.99 66 0.99 0.99
62 0.99 0.99 68 0.99 0.99

We use numerical examples to check if 𝜃 = 1 for normal distribution. Table B.1

presents the value of 𝜃 for normal distribution with 𝜆 = 10 and 𝜎 = 3, 𝐿 ∈ {4.2, 4.8},
𝑅 ∈ {100, 300}, 𝑆 ≥ 𝜆𝐿, and 𝛼−𝐴𝑊

𝜎𝑊
= −0.02 (the relative allowable deviation of the

performance from the target is 2%). It shows that 𝜃 ≈ 1 in all the scenarios. So for

normal demand distribution, Assumption 3.2 approximately holds.

Proof of Theorem 3.1

From the assumption that lim𝐿→0𝐶𝑟(𝐿) = ∞, 𝐿∗ > 0.

Using (B.3), when the supplier’s choices of 𝑆 and 𝐿 are unobservable, the first-

order conditions for (3.6) are

∂𝐸𝜋(𝑆, 𝐿)

∂𝑆
= −100𝐾

𝑅

∂Π(𝑆, 𝐿,𝑊 )

∂𝑆
− ℎ𝐹 (𝑆∣𝐿) = 0, (B.5)

∂𝐸𝜋(𝑆, 𝐿)

∂𝐿
= −100𝐾

𝑅

∂Π(𝑆, 𝐿,𝑊 )

∂𝐿
+ ℎ

∫
𝑥<𝑆

∂𝐹 (𝑥∣𝐿)
∂𝐿

𝑑𝑥− 𝜆𝐶 ′
𝑟(𝐿) = 0. (B.6)

Given Assumption 3.3, constraint (3.11) can be replaced by (B.5) and (B.6). Be-

cause at the optimum, constraint (3.7) is binding, so 𝑝 can be solved from (3.7) by

taking equality in (3.7) and then substituted into the objective function. The buyer’s
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problem becomes

min
𝑆,𝐿

𝐸𝐶𝐵(𝑆, 𝐿) = ℎ𝐼(𝑆, 𝐿) + 𝜆𝐸𝐶𝐷(𝑦∣𝑆, 𝐿) + 𝜆𝐶𝑟(𝐿) + 𝜋

subject to (B.5) and (B.6).

Comparing (B.5) with (3.9), and (B.6) with (3.10), if the first-best solution

(𝑆∗, 𝐿∗) is also the solution to (B.5) and (B.6), then at (𝑆∗, 𝐿∗),

𝜆
∂𝐸𝐶𝐷(𝑦∣𝑆∗, 𝐿∗)

∂𝑆
=

100𝐾

𝑅

∂Π(𝑆∗, 𝐿∗,𝑊 )

∂𝑆
, (B.7)

𝜆
∂𝐸𝐶𝐷(𝑦∣𝑆∗, 𝐿∗)

∂𝐿
=

100𝐾

𝑅

∂Π(𝑆∗, 𝐿∗,𝑊 )

∂𝐿
. (B.8)

𝐸𝐶𝐷(𝑦∣𝑆∗, 𝐿∗) =
∫ 𝐿∗

0
𝐶𝐷(𝑦)𝑑𝐹𝑤(𝑦∣𝑆∗, 𝐿∗) = 𝐶𝐷(𝐿

∗)− ∫ 𝐿∗

0
𝐹𝑤(𝑦∣𝑆∗, 𝐿∗)𝐶 ′

𝐷(𝑦)𝑑𝑦.

By Assumption 3.2, 𝜃 = 1. So (B.8) ÷ (B.7)⇒
∂𝐸𝐶𝐷(𝑦∣𝑆∗,𝐿∗)/∂𝐿
∂𝐸𝐶𝐷(𝑦∣𝑆∗,𝐿∗)/∂𝑆 =

∂Π(𝑆∗,𝐿∗,𝑊 )
∂𝐿

∂Π(𝑆∗,𝐿∗,𝑊 )
∂𝑆

=
∂𝐴∗

𝑊
∂𝐿

∂𝐴∗
𝑊

∂𝑆

⇒
∫ 𝐿∗

0
∂𝐹𝑤(𝑦∣𝑆∗,𝐿∗)

∂𝐿
𝐶′

𝐷(𝑦)𝑑𝑦∫ 𝐿∗

0
∂𝐹𝑤(𝑦∣𝑆∗,𝐿∗)

∂𝑆
𝐶′

𝐷(𝑦)𝑑𝑦
=

∂𝐹𝑤(𝑊 ∣𝑆∗,𝐿∗)
∂𝐿

∂𝐹𝑤(𝑊 ∣𝑆∗,𝐿∗)
∂𝑆

, or

equivalently,

∫ 𝐿∗

0
(
∂𝐹𝑤(𝑦∣𝑆∗,𝐿∗)

∂𝑆
∂𝐹𝑤(𝑦∣𝑆∗,𝐿∗)

∂𝐿

−
∂𝐹𝑤(𝑊 ∣𝑆∗,𝐿∗)

∂𝑆
∂𝐹𝑤(𝑊 ∣𝑆∗,𝐿∗)

∂𝐿

)
∂𝐹𝑤(𝑦∣𝑆∗, 𝐿∗)

∂𝐿
𝐶 ′

𝐷(𝑦)𝑑𝑦 = 0. (B.9)

If 𝑆∗ > 0, for (𝑆∗, 𝐿∗) to be the solution to the supplier’s first-order conditions

(B.5) and (B.6), it is only required that there exists𝑊 ∈ [0, 𝐿∗] such that (B.9) holds.

Let

𝑔(𝑊 ) =
∫ 𝐿∗

0
(
∂𝐹𝑤(𝑦∣𝑆∗,𝐿∗)

∂𝑆
∂𝐹𝑤(𝑦∣𝑆∗,𝐿∗)

∂𝐿

−
∂𝐹𝑤(𝑊 ∣𝑆∗,𝐿∗)

∂𝑆
∂𝐹𝑤(𝑊 ∣𝑆∗,𝐿∗)

∂𝐿

)
∂𝐹𝑤(𝑦∣𝑆∗, 𝐿∗)

∂𝐿
𝐶 ′

𝐷(𝑦)𝑑𝑦, (B.10)

and 𝑔0(𝑦∣𝑊 ) = (
∂𝐹𝑤(𝑦∣𝑆∗,𝐿∗)

∂𝑆
∂𝐹𝑤(𝑦∣𝑆∗,𝐿∗)

∂𝐿

−
∂𝐹𝑤(𝑊 ∣𝑆∗,𝐿∗)

∂𝑆
∂𝐹𝑤(𝑊 ∣𝑆∗,𝐿∗)

∂𝐿

)∂𝐹𝑤(𝑦∣𝑆∗,𝐿∗)
∂𝐿

𝐶 ′
𝐷(𝑦).

∂𝐹𝑤(𝑦∣𝑆∗,𝐿∗)
∂𝐿

= ∂ Pr(𝐷(𝐿∗−𝑦)≤𝑆∗)
∂𝐿

< 0.

It has been assumed that 𝐶 ′
𝐷(𝑦) > 0, and ∂𝐹𝑤(𝑦∣𝑆∗,𝐿∗)

∂𝑆
/∂𝐹𝑤(𝑦∣𝑆∗,𝐿∗)

∂𝐿
is strictly mono-

tonic in 𝑦. Consider the case where ∂𝐹𝑤(𝑦∣𝑆∗,𝐿∗)
∂𝑆

/∂𝐹𝑤(𝑦∣𝑆∗,𝐿∗)
∂𝐿

is increasing in 𝑦.

For 𝑊 = 0, 𝑔0(0∣𝑊 ) = 0, and 𝑔0(𝑦∣𝑊 ) < 0 for 𝑦 ∈ (0, 𝐿∗]. So 𝑔(0) < 0.

For 𝑊 = 𝐿∗, 𝑔0(𝐿∗∣𝑊 ) = 0, and 𝑔0(𝑦∣𝑊 ) > 0 for 𝑦 ∈ [0, 𝐿∗). So 𝑔(𝐿∗) > 0.

Similarly when ∂𝐹𝑤(𝑦∣𝑆∗,𝐿∗)
∂𝑆

/∂𝐹𝑤(𝑦∣𝑆∗,𝐿∗)
∂𝐿

is decreasing in 𝑦, we can show that 𝑔(0) >
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0 and 𝑔(𝐿∗) < 0.

Because 𝑔(𝑊 ) is continuous on [0, 𝐿∗], by the Intermediate Value Theorem, there

exists 𝑊 ∈ [0, 𝐿∗] such that 𝑔(𝑊 ) = 0, and (B.9) holds. Because 𝑔(𝑊 ) is strictly

monotonic in 𝑊 , this 𝑊 is unique; and 𝑔(0) ∕= 0, 𝑔(𝐿∗) ∕= 0, so the optimal 𝑊 ∗ ∈
(0, 𝐿∗).

Proof of Proposition 3.3

The first-best 𝐾 and 𝛼 are determined by the supplier’s first-order conditions at

the first-best solution (𝑆∗, 𝐿∗) and the optimal time window 𝑊 ∗:

100𝐾

𝑅

∫
𝐴<𝛼

∂Ψ(𝐴∣𝐴∗
𝑊 )

∂𝑆
𝑑𝐴+ ℎ𝐹 (𝑆∗∣𝐿∗) = 0 (B.11)

100𝐾

𝑅

∫
𝐴<𝛼

∂Ψ(𝐴∣𝐴∗
𝑊 )

∂𝐿
𝑑𝐴− ℎ

∫
𝑥<𝑆∗

∂𝐹 (𝑥∣𝐿∗)
∂𝐿

𝑑𝑥+ 𝜆𝐶 ′
𝑟(𝐿

∗) = 0, (B.12)

where 𝐴∗
𝑊 = 𝐹 (𝑆∗∣𝐿∗ − 𝑊 ∗). Following Assumption 3.2, either of the equations

is redundant for solving 𝐾 and 𝛼. Because 𝐹 (𝑆∗∣𝐿∗) > 0, the optimal 𝛼 should

be such that

∫
𝐴<𝛼

∂Ψ(𝐴∣𝐴∗
𝑊 )

∂𝑆
𝑑𝐴 < 0. So any 𝐾 > 0 and 𝛼 ∈ (0, 𝐴∗

𝑊 ) satisfying∫
𝐴<𝛼

∂Ψ(𝐴∣𝐴∗
𝑊 )

∂𝑆
𝑑𝐴 < 0 and either equation, e.g. (B.11), are the optimal contract

parameters for a ready-rate-with-window contract.

Proof of Proposition 3.4

Let (⋅) and 𝜑(⋅) denote the cdf and pdf of the standardized demand, respectively.

Also let 𝑠 = 𝑆
𝜆
, then 𝑆 = 𝑠𝜆.

Then the first-order conditions (3.9) and (3.10) can be represented as functions of

𝑠 and 𝐿:

ℎ( 𝑠−𝐿
(𝜎/𝜆)

√
𝐿
)− ∫ 𝐿

0
𝐶 ′

𝐷(𝑦)
1

(𝜎/𝜆)
√
𝐿−𝑦

𝜑( 𝑠−(𝐿−𝑦)

(𝜎/𝜆)
√
𝐿−𝑦

)𝑑𝑦 = 0

and

ℎ[−( 𝑠−𝐿
(𝜎/𝜆)

√
𝐿
)+𝜎

𝜆
1

2
√
𝐿
𝜑( 𝑠−𝐿

(𝜎/𝜆)
√
𝐿
)]+

∫ 𝐿

0
𝐶 ′

𝐷(𝑦)
𝑠+(𝐿−𝑦)

2(𝜎/𝜆)(𝐿−𝑦)3/2
𝜑( 𝑠−(𝐿−𝑦)

(𝜎/𝜆)
√
𝐿−𝑦

)𝑑𝑦+𝐶 ′
𝑟(𝐿) = 0.

Let (𝑠∗, 𝐿∗) denote the solution to the above two equations. For fixed 𝜎
𝜆
, (𝑠∗, 𝐿∗)

is independent of 𝜆, and 𝐴∗
𝑊 = ( 𝑠∗−(𝐿∗−𝑊 ∗)

(𝜎/𝜆)
√
𝐿∗−𝑊 ∗ ) is independent of 𝜆;

𝐸𝐶𝐷(𝑦∣𝑆∗, 𝐿∗) =
∫ 𝐿∗

0
𝐶𝐷(𝑦)𝑑(

𝑠∗−(𝐿∗−𝑦)

(𝜎/𝜆)
√
𝐿∗−𝑦

) is independent of 𝜆, ∂𝐴𝑊∗
∂𝐿

and ∂𝐸𝐶𝐷(𝑦∣𝑆∗,𝐿∗)
∂𝐿

are independent of 𝜆. Because 𝑆∗ = 𝜆𝑠∗, 𝑆∗ is proportional to 𝜆, ∂𝐴𝑊∗
∂𝑆

= 1
𝜆
∂𝐴𝑊∗
∂𝑠

and
∂𝐸𝐶𝐷(𝑦∣𝑆∗,𝐿∗)

∂𝑆
= 1

𝜆
∂𝐸𝐶𝐷(𝑦∣𝑆∗,𝐿∗)

∂𝑠
. So for fixed 𝜎

𝜆
, (3.12) is independent of 𝜆, and 𝑊 ∗, the

solution to (3.12), is independent of 𝜆.
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Proof of Proposition 3.5

If 𝐶𝐷(𝑦) = 𝛿𝑦, then 1
𝛿
𝐸𝐶𝐷(𝑦∣𝑆, 𝐿) is the average waiting time and 𝜆

𝛿
𝐸𝐶𝐷(𝑦∣𝑆, 𝐿)

the average backorders, and 𝐸𝐶𝐷(𝑦∣𝑆, 𝐿) = 𝛿
𝜆
(𝐼(𝑆, 𝐿)− (𝑆 − 𝜆𝐿)).

The first-order condition for the expected average supply chain cost, (3.9), be-

comes

(ℎ+ 𝛿)𝐹 (𝑆∣𝐿)− 𝛿 = 0.

Using the result in Theorem 3.1, under the optimal ready-rate-with-window con-

tract, the supplier’s optimal base-stock level and lead time are the first-best 𝑆∗ and

𝐿∗, and thus satisfy the above first-order condition. So 𝐴∗
0 = 𝐹 (𝑆∗∣𝐿∗) = 𝛿

ℎ+𝛿
.

Proof of Proposition 3.6

The results in Proposition 3.6 are similar to those in Proposition 3.3 with 𝑊 = 0.

(3.14) follows from (B.5), (B.6) and Assumption 3.2.

Proof of Proposition 3.7

Following the definition of (⋅), 𝜑(⋅) and 𝑠 in the proof of Proposition 3.4, (3.1)

becomes

𝐼(𝑆, 𝐿) = 𝑆 − ∫
𝑥<𝑆

( 𝑥/𝜆−𝐿

(𝜎/𝜆)
√
𝐿
)𝑑𝑥 = 𝜆(𝑠− ∫

𝑦<𝑠
( 𝑦−𝐿

(𝜎/𝜆)
√
𝐿
)𝑑𝑦).

Using the result in Proposition 3.6, the optimization problem for solving the op-

timal 𝑆∗∗ and 𝐿∗∗ under the optimal ready-rate-without-window contract can be

reformulated in terms of 𝑠 and 𝐿 as follows.

min
𝑝,𝛼,𝐾,𝑠,𝐿

𝐸𝐶(𝑠, 𝐿) = 𝜆[ℎ(𝑠− ∫
𝑦<𝑠

( 𝑦−𝐿

(𝜎/𝜆)
√
𝐿
)𝑑𝑦) + 𝐶𝑟(𝐿) +

∫ 𝐿

0
𝐶𝐷(𝑦)𝑑(

𝑠−(𝐿−𝑦)

(𝜎/𝜆)
√
𝐿−𝑦

)]

subject to

ℎ𝜆 𝑠+𝐿
2𝐿

( 𝑠−𝐿
(𝜎/𝜆)

√
𝐿
) + ℎ𝜆

∫
𝑦<𝑠

∂
∂𝐿
(( 𝑦−𝐿

(𝜎/𝜆)
√
𝐿
))𝑑𝑦 − 𝜆𝐶 ′

𝑟(𝐿) = 0

It can be simplified as

min
𝑝,𝛼,𝐾,𝑠,𝐿

ℎ(𝑠− ∫
𝑦<𝑠

( 𝑦−𝐿

(𝜎/𝜆)
√
𝐿
)𝑑𝑦) + 𝐶𝑟(𝐿) +

∫ 𝐿

0
𝐶𝐷(𝑦)𝑑(

𝑠−(𝐿−𝑦)

(𝜎/𝜆)
√
𝐿−𝑦

)

subject to

ℎ[ 𝑠+𝐿
2𝐿

( 𝑠−𝐿
(𝜎/𝜆)

√
𝐿
) +

∫
𝑦<𝑠

∂
∂𝐿
(( 𝑦−𝐿

(𝜎/𝜆)
√
𝐿
))𝑑𝑦]− 𝐶 ′

𝑟(𝐿) = 0

The formulation is independent of 𝜆 for fixed 𝜎
𝜆
. So for fixed 𝜎

𝜆
, the optimal

(𝑠∗∗, 𝐿∗∗) is independent of 𝜆, 𝐴∗∗
0 = ( 𝑠∗∗−𝐿∗∗

(𝜎/𝜆)
√
𝐿∗∗ ) is independent of 𝜆, and 𝑆

∗∗ = 𝜆𝑠∗∗

is proportional to 𝜆.

For all the following derivation of formulas, we define

𝑧 = 𝑆−𝜆𝐿
𝜎
√
𝐿
, 𝑧∗ = 𝑆∗−𝜆𝐿∗

𝜎
√
𝐿∗ , 𝑧𝑦 =

𝑆−𝜆(𝐿−𝑦)

𝜎
√
𝐿−𝑦

, 𝑧𝑇 = 𝑆−𝜆(𝐿−𝑇 )

𝜎
√
𝐿−𝑇

and 𝑧+𝑇 = 𝑆+𝜆(𝐿−𝑇 )

𝜎
√
𝐿−𝑇

.

Section 3.5.1. Linear delay cost: formulas
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It is assumed that the demand distribution is normal, 𝐶𝐷(𝑦) = 𝛿𝑦 and 𝐶𝑟(𝐿) =
𝑟
𝐿
.

The average supply chain cost is

𝐸𝐶𝐿(𝑆, 𝐿) = (ℎ+ 𝛿)𝜎
√
𝐿(𝑧Φ(𝑧) + 𝜙(𝑧))− 𝛿(𝑆 − 𝜆𝐿) +

𝜆𝑟

𝐿
(B.13)

(3.9) and (3.10), the first-order conditions for the first-best solution (𝑆∗, 𝐿∗), be-

come

(ℎ+ 𝛿)Φ(𝑧) = 𝛿 (B.14)

(ℎ+ 𝛿)(Φ(𝑧)− 𝜎

2𝜆
√
𝐿
𝜙(𝑧))− 𝐶 ′

𝑟(𝐿) = 𝛿. (B.15)

The subscript 𝐿 in 𝐶𝐿(𝑆, 𝐿) and 𝑊
∗
𝐿 denotes linear delay cost, and 𝐶 ′

𝑟(𝐿) = − 𝑟
𝐿2 .

Constraint (3.14) in the optimization problem under the ready-rate-without-window

contract is

ℎ(
𝑆 − 𝜆𝐿

2𝜆𝐿
Φ(𝑧) +

𝜎

2𝜆
√
𝐿
𝜙(𝑧)) + 𝐶 ′

𝑟(𝐿) = 0. (B.16)

1. Derivation of (B.13)

Applying following formulas on page 206 of Zipkin (2000) to the objective function

in (3.8),

𝐼(𝑆, 𝐿) = 𝜎
√
𝐿[𝑧Φ(𝑧) + 𝜙(𝑧)] (B.17)

and

𝐸𝐶𝐷(𝑦∣𝑆, 𝐿) = 𝛿

𝜆
[𝐼(𝑆, 𝐿)− (𝑆 − 𝜆𝐿)] =

𝛿

𝜆
𝜎
√
𝐿[−𝑧Φ(𝑧) + 𝜙(𝑧)], (B.18)

where Φ(⋅) = 1− Φ(⋅).

2. Derivation of (B.14) and (B.15)

They are obtained by differentiating (B.13) w.r.t. 𝑆 and 𝐿, respectively.

3. Derivation of (3.16)

𝐴∗
𝑊 (𝑆∗, 𝐿∗) = Φ(𝑆

∗−𝜆(𝐿∗−𝑊 ∗)
𝜎
√
𝐿∗−𝑊 ∗ ) ⇒ ∂𝐴∗

𝑊 (𝑆∗,𝐿∗)/∂𝑆
∂𝐴∗

𝑊 (𝑆∗,𝐿∗)/∂𝐿 = − 2(𝐿∗−𝑊 ∗)
𝑆∗+𝜆(𝐿∗−𝑊 ∗) .

(B.18) ⇒ ∂𝐸𝐶𝐷(𝑦∣𝑆∗,𝐿∗)/∂𝑆
∂𝐸𝐶𝐷(𝑦∣𝑆∗,𝐿∗)/∂𝐿 = −Φ(𝑧∗)

𝜆Φ(𝑧∗)+ 𝜎

2
√

𝐿∗ 𝜙(𝑧∗)
. Substituting the above results into

(3.12),

− 2(𝐿∗ −𝑊 ∗)
𝑆∗ + 𝜆(𝐿∗ −𝑊 ∗)

=
−Φ(𝑧∗)

𝜆Φ(𝑧∗) + 𝜎
2
√
𝐿∗𝜙(𝑧

∗)
. (B.19)
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(B.14) and (B.15) ⇒ Φ(𝑧∗) = ℎ
ℎ+𝛿

and 𝜎
2
√
𝐿∗𝜙(𝑧

∗) = − 𝜆
ℎ+𝛿

𝐶 ′
𝑟(𝐿

∗). Substituting

into (B.19) gives (3.16).

Section 3.5.2. Convex delay cost: formulas

It is assumed that the demand distribution is normal, 𝐶𝐷(𝑦) = 𝛿𝑦2 and 𝐶𝑟(𝐿) =
𝑟
𝐿
.

The average supply chain cost is

𝐸𝐶𝐶(𝑆, 𝐿) = [ℎ(𝑆 − 𝜆𝐿)− 𝛿

𝜆
((𝑆 − 𝜆𝐿)2 +

𝜎2

𝜆
(2𝑆 − 𝜆𝐿+

3𝜎2

2𝜆
))]Φ(𝑧)

+𝛿
𝜎2

𝜆2
(𝑆 + 𝜆𝐿− 3𝜎2

2𝜆
)𝑒2𝑆𝜆/𝜎

2

Φ(𝑧+) + (ℎ+
𝛿

𝜆
(𝜆𝐿− 𝑆 − 3𝜎2

𝜆
))𝜎

√
𝐿𝜙(𝑧)

+𝜆𝐶𝑟(𝐿) +
𝛿

𝜆
((𝑆 − 𝜆𝐿)2 +

𝜎2

𝜆
(2𝑆 − 𝜆𝐿+

3𝜎2

2𝜆
)), (B.20)

where 𝑧+ = 𝑆+𝜆𝐿
𝜎
√
𝐿
. (3.9) and (3.10), the first-order conditions for the first-best solution

(𝑆∗, 𝐿∗) become

ℎΦ(𝑧)− 4𝛿𝜎
√
𝐿

𝜆
𝜙(𝑧)−2𝛿(𝐿− 𝑆

𝜆
− 𝜎2

𝜆2
)Φ(𝑧)+2𝛿(𝐿+

𝑆

𝜆
− 𝜎2

𝜆2
)𝑒2𝑆𝜆/𝜎

2

Φ(𝑧+) = 0 (B.21)

ℎΦ(𝑧)− (
ℎ

2𝐿
+2𝛿)

𝜎
√
𝐿

𝜆
𝜙(𝑧)− 2𝛿(𝐿− 𝑆

𝜆
− 𝜎2

2𝜆2
)Φ(𝑧)− 𝛿𝜎2

𝜆2
𝑒2𝑆𝜆/𝜎

2

Φ(𝑧+)−𝐶 ′
𝑟(𝐿) = 0.

(B.22)

The subscript 𝐶 in 𝐶𝐶(𝑆, 𝐿) and 𝑊 ∗
𝐶 denotes convex delay cost. Note that the

constraint in the optimization problem under the ready-rate-without-window contract

for convex delay cost is the same as that for linear delay cost, given by (B.16).

1. Derivation of (B.20)

𝐶𝐶(𝑆, 𝐿) = ℎ𝜎
√
𝐿(𝑧Φ(𝑧) + 𝜙(𝑧)) + 𝜆𝛿

∫ 𝐿

0
𝑦2𝜙(𝑧𝑦)

𝑆 + 𝜆(𝐿− 𝑦)

2𝜎(𝐿− 𝑦)3/2
𝑑𝑦 + 𝜆𝐶𝑟(𝐿) (B.23)

∫ 𝐿

𝑇
𝑦2𝜙(𝑧𝑦)

𝑆+𝜆(𝐿−𝑦)

2𝜎(𝐿−𝑦)3/2
𝑑𝑦 = −∫ 𝐿

𝑇
𝑦2𝑑Φ(𝑧𝑦) = 𝑇 2Φ(𝑧𝑇 ) + 2

∫ 𝐿

𝑇
𝑦Φ(𝑧𝑦)𝑑𝑦

= 𝑇 2Φ(𝑧𝑇 )−2𝜎2

𝜆2

∫ +∞
𝑧𝑇

(𝐿−𝜎2

𝜆2 (
𝑆𝜆
𝜎2 +

𝑧2𝑦
2
−𝑧𝑦

√
𝑆𝜆
𝜎2 +

𝑧2𝑦
4
))(𝑧𝑦−

√
𝑆𝜆
𝜎2 +

𝑧2𝑦
4
− 𝑧2𝑦

4

√
𝑆𝜆
𝜎2 +

𝑧2𝑦
4

)Φ(𝑧𝑦)𝑑𝑧𝑦

= 𝑇 2Φ(𝑧𝑇 ) +
2𝜎2𝐿
𝜆2 [(Φ(𝑧𝑦)𝑧𝑦

√
𝑆𝜆
𝜎2 +

𝑧2𝑦
4
+ 𝑧𝑦Φ(𝑧𝑦))∣+∞

𝑧𝑇
+
∫ +∞
𝑧𝑇

𝑧𝑦

√
𝑆𝜆
𝜎2 +

𝑧2𝑦
4
𝜙(𝑧𝑦)𝑑𝑧𝑦 −∫ +∞

𝑧𝑇
Φ(𝑧𝑦)𝑑𝑧𝑦]
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−2𝜎4

𝜆4 [(Φ(𝑧𝑦)𝑧𝑦(

√
𝑆𝜆
𝜎2 +

𝑧2𝑦
4
)3 + Φ(𝑧𝑦)

𝑧3𝑦
4

√
𝑆𝜆
𝜎2 +

𝑧2𝑦
4
− Φ(𝑧𝑦)𝑧

2
𝑦(

√
𝑆𝜆
𝜎2 +

𝑧2𝑦
4
)2)∣+∞

𝑧𝑇

+
∫ +∞
𝑧𝑇

𝑧𝑦(

√
𝑆𝜆
𝜎2 +

𝑧2𝑦
4
)3𝜙(𝑧𝑦)𝑑𝑧𝑦+

∫ +∞
𝑧𝑇

𝑧3𝑦
4

√
𝑆𝜆
𝜎2 +

𝑧2𝑦
4
𝜙(𝑧𝑦)𝑑𝑧𝑦−

∫ +∞
𝑧𝑇

𝑧2𝑦(

√
𝑆𝜆
𝜎2 +

𝑧2𝑦
4
)2𝜙(𝑧𝑦)𝑑𝑧𝑦]

Let 𝑥 = 2

√
𝑆𝜆
𝜎2 +

𝑧2𝑦
4
, 𝑥𝑇 = 2

√
𝑆𝜆
𝜎2 + 1

4
(𝑆−𝜆(𝐿−𝑇 )

𝜎
√
𝐿−𝑇

)2 = 𝑧+𝑇 .∫ +∞
𝑧𝑇

𝑧𝑦(

√
𝑆𝜆
𝜎2 +

𝑧2𝑦
4
)3𝜙(𝑧𝑦)𝑑𝑧𝑦 =

∫ +∞
𝑧𝑇

1
4
(2

√
𝑆𝜆
𝜎2 +

𝑧2𝑦
4
)3𝜙(𝑧𝑦)𝑑(

𝑆𝜆
𝜎2 +

𝑧2𝑦
4
)

= 𝑒2𝑆𝜆/𝜎
2
[−1

8
𝑥3𝜙(𝑥)∣+∞

𝑥𝑇
− 3

8
𝑥𝜙(𝑥)∣+∞

𝑥𝑇
+
∫ +∞
𝑥𝑇

3
8
𝜙(𝑥)𝑑𝑥] ⇒∫ +∞

𝑧𝑇
𝑧𝑦(

√
𝑆𝜆
𝜎2 +

𝑧2𝑦
4
)3𝜙(𝑧𝑦)𝑑𝑧𝑦 =

1
8
(𝑧+𝑇 )

3𝜙(𝑧𝑇 ) +
3
8
𝑧+𝑇 𝜙(𝑧𝑇 ) +

3
8
𝑒2𝑆𝜆/𝜎

2
Φ(𝑧+𝑇 )

∫ +∞
𝑧𝑇

𝑧3𝑦
4

√
𝑆𝜆
𝜎2 +

𝑧2𝑦
4
𝜙(𝑧𝑦)𝑑𝑧𝑦 = 2

∫ +∞
𝑧𝑇

𝑧2𝑦
4

√
𝑆𝜆
𝜎2 +

𝑧2𝑦
4
𝜙(𝑧𝑦)𝑑(

𝑆𝜆
𝜎2 +

𝑧2𝑦
4
)

= 𝑒2𝑆𝜆/𝜎
2∫ +∞

𝑥𝑇

𝑥
2
(𝑥

2

4
− 𝑆𝜆

𝜎2 )𝑥𝜙(𝑥)𝑑𝑥 = 𝑒2𝑆𝜆/𝜎
2
(
∫ +∞
𝑥𝑇

𝑥4

8
𝜙(𝑥)𝑑𝑥− ∫ +∞

𝑥𝑇

𝑆𝜆
2𝜎2𝑥

2𝜙(𝑥)𝑑𝑥)

using the result above,∫ +∞
𝑧𝑇

𝑧3𝑦
4

√
𝑆𝜆
𝜎2 +

𝑧2𝑦
4
𝜙(𝑧𝑦)𝑑𝑧𝑦

= (1
8
(𝑧+𝑇 )

3 + 3
8
𝑧+𝑇 − 𝑆𝜆

2𝜎2 𝑧
+
𝑇 )𝜙(𝑧𝑇 ) + (3

8
− 𝑆𝜆

2𝜎2 )𝑒
2𝑆𝜆/𝜎2

Φ(𝑧+𝑇 )∫ +∞
𝑧𝑇

𝑧2𝑦(

√
𝑆𝜆
𝜎2 +

𝑧2𝑦
4
)2𝜙(𝑧𝑦)𝑑𝑧𝑦 =

∫ +∞
𝑧𝑇

𝑆𝜆
𝜎2 𝑧

2
𝑦𝜙(𝑧𝑦)𝑑𝑧𝑦 +

∫ +∞
𝑧𝑇

𝑧4𝑦
4
𝜙(𝑧𝑦)𝑑𝑧𝑦

= −∫ +∞
𝑧𝑇

𝑆𝜆
𝜎2 𝑧𝑦𝑑𝜙(𝑧𝑦)−

∫ +∞
𝑧𝑇

𝑧3𝑦
4
𝑑𝜙(𝑧𝑦)

= 𝑆𝜆
𝜎2 𝑧𝑇𝜙(𝑧𝑇 ) +

1
4
(𝑧𝑇 )

3𝜙(𝑧𝑇 ) +
3
4
𝑧𝑇𝜙(𝑧𝑇 ) +

𝑆𝜆
𝜎2 Φ(𝑧𝑇 ) +

3
4
Φ(𝑧𝑇 )

⇒∫ 𝐿

𝑇
𝑦2𝜙(𝑧𝑦)

𝑆+𝜆(𝐿−𝑦)

2𝜎(𝐿−𝑦)3/2
𝑑𝑦

= 𝑇 2Φ(𝑧𝑇 ) +
2𝜎2𝐿
𝜆2 [−1

2
(2𝜆𝑆−𝜆(𝐿−𝑇 )

𝜎2 + 1)Φ(𝑧𝑇 ) +
𝜆
√
𝐿−𝑇
𝜎

𝜙(𝑧𝑇 ) +
1
2
𝑒2𝑆𝜆/𝜎

2
Φ(𝑧+𝑇 )]

−2𝜎4

𝜆4 [(−𝑧𝑇 (12𝑧+𝑇 )3 − 1
8
(𝑧𝑇 )

3𝑧+𝑇 + (𝑧𝑇 )
2(1

2
𝑧+𝑇 )

2)Φ(𝑧𝑇 )− 𝑆𝜆
𝜎2 Φ(𝑧𝑇 )− 3

4
Φ(𝑧𝑇 )

+(3
4
− 𝑆𝜆

2𝜎2 )𝑒
2𝑆𝜆/𝜎2

Φ(𝑧+𝑇 ) +
1
4
(𝑧+𝑇 )

3𝜙(𝑧𝑇 )− 1
4
(𝑧𝑇 )

3𝜙(𝑧𝑇 )

+(3
4
𝑧+𝑇 − 3

4
𝑧𝑇 − 𝑆𝜆

2𝜎2 𝑧
+
𝑇 − 𝑆𝜆

𝜎2 𝑧𝑇 )𝜙(𝑧𝑇 )]

= 𝑇 2Φ(𝑧𝑇 ) +
2𝜎2𝐿
𝜆2 [−(𝜆𝑆−𝜆(𝐿−𝑇 )

𝜎2 + 1
2
)Φ(𝑧𝑇 ) +

𝜆
√
𝐿−𝑇
𝜎

𝜙(𝑧𝑇 ) +
1
2
𝑒2𝑆𝜆/𝜎

2
Φ(𝑧+𝑇 )]

+𝑆2−𝜆2(𝐿−𝑇 )2

𝜆2 Φ(𝑧𝑇 ) +
2𝑆𝜎2

𝜆3 Φ(𝑧𝑇 ) +
3𝜎4

2𝜆4Φ(𝑧𝑇 ) +
𝜎4

𝜆4 (
𝑆𝜆
𝜎2 − 3

2
)𝑒2𝑆𝜆/𝜎

2
Φ(𝑧+𝑇 )

−𝜎
𝜆

√
𝐿− 𝑇 ((𝐿− 𝑇 ) + 3𝜎2

𝜆2 + 𝑆
𝜆
)𝜙(𝑧𝑇 ) ⇒

∫ 𝐿

0
𝑦2𝜙(𝑧𝑦)

𝑆 + 𝜆(𝐿− 𝑦)

2𝜎(𝐿− 𝑦)3/2
𝑑𝑦 = ((

𝑆

𝜆
− 𝐿)2 +

𝜎2

𝜆2
(
2𝑆

𝜆
+

3𝜎2

2𝜆2
− 𝐿))Φ(𝑧)

+
𝜎2

𝜆2
(
𝑆

𝜆
+ 𝐿− 3

2

𝜎2

𝜆2
)𝑒2𝑆𝜆/𝜎

2

Φ(
𝑆 + 𝜆𝐿

𝜎
√
𝐿

) +
𝜎

𝜆

√
𝐿(𝐿− 𝑆

𝜆
− 3𝜎2

𝜆2
)𝜙(𝑧) (B.24)

Substituting (B.24) into (B.23) gives (B.20).
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2. Derivation of (B.21) and (B.22)

The first-order conditions (3.9) and (3.10) become

ℎΦ(𝑧)− 2𝜆𝛿

𝜎

∫ 𝐿

0

𝑦√
𝐿− 𝑦

𝜙(𝑧𝑦)𝑑𝑦 = 0 (B.25)

and

ℎ(Φ(𝑧)− 𝜎

2𝜆
√
𝐿
𝜙(𝑧))− 𝛿

𝜎
(𝑆

∫ 𝐿

0

𝑦

(𝐿− 𝑦)3/2
𝜙(𝑧𝑦)𝑑𝑦+𝜆

∫ 𝐿

0

𝑦√
𝐿− 𝑦

𝜙(𝑧𝑦)𝑑𝑦)−𝐶 ′
𝑟(𝐿) = 0.

(B.26)

The integrals are derived as below.

2.1
∫ 𝐿

𝑇
𝑦√
𝐿−𝑦

𝜙(𝑧𝑦)𝑑𝑦 (0 ≤ 𝑇 < 𝐿)∫ 𝐿

𝑇
𝑦√
𝐿−𝑦

𝜙(𝑧𝑦)𝑑𝑦 = 𝐿
∫ 𝐿

𝑇
1√
𝐿−𝑦

𝜙(𝑧𝑦)𝑑𝑦 −
∫ 𝐿

𝑇

√
𝐿− 𝑦𝜙(𝑧𝑦)𝑑𝑦∫ 𝐿

𝑇

√
𝐿− 𝑦𝜙(𝑧𝑦)𝑑𝑦 = 𝜎3

𝜆3

∫ +∞
𝑧𝑇

(
√

𝑆𝜆
𝜎2 + 𝑧2

4
− 𝑧

2
)(
√

𝑆𝜆
𝜎2 + 𝑧2

4
− 𝑧

2
− 𝑧

2

√
𝑆𝜆
𝜎2 +

𝑧2

4
− 𝑧

2√
𝑆𝜆
𝜎2 +

𝑧2

4

)𝜙(𝑧)𝑑𝑧

= Φ(𝑧𝑇 )(
𝑆𝜎
𝜆2 + 𝜎3

𝜆3 )− 2𝜎2

𝜆2

√
𝐿− 𝑇𝜙(𝑧𝑇 )− 𝜎3

𝜆3 𝑒2𝑆𝜆/𝜎
2
Φ(𝑧+𝑇 ) +

𝑆𝜎
𝜆2 𝑒2𝑆𝜆/𝜎

2
Φ(𝑧+𝑇 )

⇒∫ 𝐿

𝑇
𝑦√
𝐿−𝑦

𝜙(𝑧𝑦)𝑑𝑦 = 𝐿𝜎
𝜆
[Φ(𝑧𝑇 )− 𝑒2𝑆𝜆/𝜎

2
Φ(𝑧+𝑇 )]− Φ(𝑧𝑇 )(

𝑆𝜎
𝜆2 + 𝜎3

𝜆3 )

+2𝜎2

𝜆2

√
𝐿− 𝑇𝜙(𝑧𝑇 ) +

𝜎3

𝜆3 𝑒2𝑆𝜆/𝜎
2
Φ(𝑧+𝑇 )− 𝑆𝜎

𝜆2 𝑒2𝑆𝜆/𝜎
2
Φ(𝑧+𝑇 )

= 𝜎
𝜆
[(𝐿− (𝑆

𝜆
+ 𝜎2

𝜆2 ))Φ(𝑧𝑇 )− (𝐿+ 𝑆
𝜆
− 𝜎2

𝜆2 )𝑒2𝑆𝜆/𝜎
2
Φ(𝑧+𝑇 )] +

2𝜎2

𝜆2

√
𝐿− 𝑇𝜙(𝑧𝑇 ) ⇒

∫ 𝐿

0

𝑦√
𝐿− 𝑦

𝜙(𝑧𝑦)𝑑𝑦 =
𝜎

𝜆
[(𝐿−(

𝑆

𝜆
+
𝜎2

𝜆2
))Φ(𝑧)−(𝐿+

𝑆

𝜆
−𝜎

2

𝜆2
)𝑒2𝑆𝜆/𝜎

2

Φ(
𝑆 + 𝜆𝐿

𝜎
√
𝐿

)]+
2𝜎2

𝜆2
√
𝐿𝜙(𝑧)

(B.27)

2.2
∫ 𝐿

0
𝑦

(𝐿−𝑦)3/2
𝜙(𝑧𝑦)𝑑𝑦∫ 𝐿

0
𝑦

(𝐿−𝑦)3/2
𝜙(𝑧𝑦)𝑑𝑦 = −∫ 𝐿

0
𝐿−𝑦

(𝐿−𝑦)3/2
𝜙(𝑧𝑦)𝑑𝑦 +

∫ 𝐿

0
𝐿

(𝐿−𝑦)3/2
𝜙(𝑧𝑦)𝑑𝑦

= 𝐿
∫ 𝐿

0
1

(𝐿−𝑦)3/2
𝜙(𝑧𝑦)𝑑𝑦 −

∫ 𝐿

0
1√
𝐿−𝑦

𝜙(𝑧𝑦)𝑑𝑦

= 𝐿𝜎
𝑆
(Φ(𝑧) + 𝑒2𝑆𝜆/𝜎

2
Φ(𝑆+𝜆𝐿

𝜎
√
𝐿
))− 𝜎

𝜆
(Φ(𝑧)− 𝑒2𝑆𝜆/𝜎

2
Φ(𝑆+𝜆𝐿

𝜎
√
𝐿
)) ⇒

∫ 𝐿

0

𝑦

(𝐿− 𝑦)3/2
𝜙(𝑧𝑦)𝑑𝑦 =

𝜎

𝜆
[(𝐿

𝜆

𝑆
− 1)Φ(𝑧) + (𝐿

𝜆

𝑆
+ 1)𝑒2𝑆𝜆/𝜎

2

Φ(
𝑆 + 𝜆𝐿

𝜎
√
𝐿

)]. (B.28)

(B.21) and (B.22) follow by substituting (B.27) and (B.28) into (B.25) and (B.26).

3. Derivation of (3.17)

Let 𝑧∗𝑦 = 𝑆∗−𝜆(𝐿∗−𝑦)

𝜎
√
𝐿∗−𝑦

and 𝑧+∗ = 𝑆∗+𝜆𝐿∗
𝜎
√
𝐿∗ .
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(3.12) ⇒ 𝑊 ∗
𝐶 = 𝐿∗ −

∫ 𝐿∗

0
𝑦√

𝐿∗−𝑦
𝜙(𝑧∗𝑦)𝑑𝑦∫ 𝐿∗

0
𝑦

𝐿∗−𝑦
1√

𝐿∗−𝑦
𝜙(𝑧∗𝑦)𝑑𝑦

.

Using (B.27) and (B.28),

𝑊 ∗
𝐶 = 𝐿∗ −

𝜎
𝜆
[(𝐿∗−(𝑆

∗
𝜆

+𝜎2

𝜆2
))Φ(𝑧∗)−(𝐿∗+𝑆∗

𝜆
−𝜎2

𝜆2
)𝑒2𝑆

∗𝜆/𝜎2
Φ(𝑧+∗)]+ 2𝜎

𝜆

√
𝐿∗𝜙(𝑧∗)]

𝜎
𝜆
[(𝐿∗ 𝜆

𝑆∗−1)Φ(𝑧∗)+(𝐿∗ 𝜆
𝑆∗+1)𝑒2𝑆

∗𝜆/𝜎2
Φ(𝑧+∗)]

= 𝐿∗ − 𝑆∗
𝜆

(𝐿∗−𝑆∗
𝜆

−𝜎2

𝜆2
)Φ(𝑧∗)−(𝐿+𝑆∗

𝜆
−𝜎2

𝜆2
)𝑒2𝑆

∗𝜆/𝜎2
Φ(𝑧+∗)+ 2𝜎

𝜆

√
𝐿∗𝜙(𝑧∗)

(𝐿∗−𝑆∗
𝜆

)Φ(𝑧∗)+(𝐿∗+𝑆∗
𝜆
)𝑒2𝑆

∗𝜆/𝜎2
Φ(𝑧+∗)

First-order condition (B.21) ⇒ at the optimal (𝑆∗, 𝐿∗),

(𝐿∗ − 𝑆∗
𝜆
− 𝜎2

𝜆2 )Φ(𝑧∗)− (𝐿+ 𝑆∗
𝜆
− 𝜎2

𝜆2 )𝑒2𝑆
∗𝜆/𝜎2

Φ(𝑧+∗) + 2𝜎
𝜆

√
𝐿∗𝜙(𝑧∗) = ℎ

2𝛿
Φ(𝑧∗),

substituting it into the above formula for 𝑊 ∗
𝐶 gives

𝑊 ∗
𝐶 = 𝐿∗ − 𝑆∗

𝜆

ℎ
2𝛿

Φ(𝑧∗)
(𝐿∗−𝑆∗

𝜆
)Φ(𝑧∗)+(𝐿∗+𝑆∗

𝜆
)𝑒2𝑆

∗𝜆/𝜎2
Φ(𝑧+∗)

.

(B.21) −2×(B.22) ⇒
(𝐿∗ + 𝑆∗

𝜆
)𝑒2𝑆

∗𝜆/𝜎2
Φ(𝑧+∗) = ℎΦ(𝑧∗)− ℎ

𝐿∗
𝜎
𝜆

√
𝐿∗𝜙(𝑧∗)− 2𝛿(𝐿∗ − 𝑆∗

𝜆
)Φ(𝑧∗) + 2𝐶 ′

𝑟(𝐿
∗)

substituting it into the above formula for 𝑊 ∗
𝐶 ⇒ (3.17).
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Proof for Chapter 4

1. Definitions and preliminaries

Let Ψ(𝛽∣𝐻) = 𝛽𝑚 − 𝐻
𝛽

and 𝑆(𝛽∣𝐻) = 𝑚+𝐻/(1−𝛽)2

𝑚+𝐻/𝛽2 , where 𝐻 ≥ 0. Ψ′(𝛽∣𝐻) =

𝑚+ 𝐻
𝛽2 > 0.

We use Ψ(𝛽) and 𝑆(𝛽) instead of Ψ(𝛽∣𝐻) and 𝑆(𝛽∣𝐻) whenever there is no am-

biguity.

The following results will be used in the proofs.∫ 𝑏

𝑎

(𝑦2 − 1)𝜙(𝑦)𝑑𝑦 = 𝑎𝜙(𝑎)− 𝑏𝜙(𝑏), (C.1)∫ 𝑏

𝑎

𝑦2𝜙(𝑦)𝑑𝑦 = 𝑎𝜙(𝑎)− 𝑏𝜙(𝑏) + Φ(𝑏)− Φ(𝑎). (C.2)

2. Formulation of period t problem

Let Supplier 1’s share in period 𝑡 be 𝛼𝑡. Under the allocation rule 𝛽𝛼
𝑡+1(𝑥

1
𝑡 , 𝑥

2
𝑡 ) for

period 𝑡, the buyer’s payoff to go is

𝑣𝐵𝑡 (𝛼𝑡) = 𝛼𝑡𝑒
1
𝑡 +(1−𝛼𝑡)𝑒

2
𝑡 + 𝛾

∫
𝑥1
𝑡

∫
𝑥2
𝑡

𝑣𝐵𝑡+1(𝛽
𝛼
𝑡+1(𝑥

1
𝑡 , 𝑥

2
𝑡 ))𝑓(𝑥

1
𝑡 ∣𝑒1𝑡 )𝑓(𝑥2𝑡 ∣𝑒2𝑡 )𝑑𝑥1𝑡𝑑𝑥2𝑡 , (C.3)

the profits to go of supplier 1 and 2 are

𝑣1𝑡 (𝛼𝑡) = 𝑚𝛼𝑡− 𝑏𝑔(𝛼𝑡)(𝑒
1
𝑡 )

2

2
+𝛾

∫
𝑥1
𝑡

∫
𝑥2
𝑡

𝑣1𝑡+1(𝛽
𝛼
𝑡+1(𝑥

1
𝑡 , 𝑥

2
𝑡 ))𝑓(𝑥

1
𝑡 ∣𝑒1𝑡 )𝑓(𝑥2𝑡 ∣𝑒2𝑡 )𝑑𝑥1𝑡𝑑𝑥2𝑡 , (C.4)

and

𝑣2𝑡 (1− 𝛼𝑡) = 𝑚(1− 𝛼𝑡)− 𝑏𝑔(1− 𝛼𝑡)(𝑒
1
𝑡 )

2

2

+𝛾

∫
𝑥1
𝑡

∫
𝑥2
𝑡

𝑣2𝑡+1(1− 𝛽𝛼
𝑡+1(𝑥

1
𝑡 , 𝑥

2
𝑡 ))𝑓(𝑥

1
𝑡 ∣𝑒1𝑡 )𝑓(𝑥2𝑡 ∣𝑒2𝑡 )𝑑𝑥1𝑡𝑑𝑥2𝑡 . (C.5)
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First-order conditions ⇒
∂𝑣1𝑡 (𝛼𝑡)

∂𝑒1𝑡
= −𝑏𝑔(𝛼𝑡)𝑒

1
𝑡 + 𝛾

∫
𝑥1
𝑡

∫
𝑥2
𝑡

𝑣1𝑡+1(𝛽
𝛼
𝑡+1(𝑥

1
𝑡 , 𝑥

2
𝑡 ))𝑓

1(𝑥1𝑡 ∣𝑒1𝑡 )𝑓(𝑥2𝑡 ∣𝑒2𝑡 )𝑑𝑥1𝑡𝑑𝑥2𝑡 = 0,

∂𝑣2𝑡 (1−𝛼𝑡)

∂𝑒2𝑡
= −𝑏𝑔(1− 𝛼𝑡)𝑒

2
𝑡 + 𝛾

∫
𝑥1
𝑡

∫
𝑥2
𝑡

𝑣2𝑡+1(1− 𝛽𝛼
𝑡+1(𝑥

1
𝑡 , 𝑥

2
𝑡 ))𝑓(𝑥

1
𝑡 ∣𝑒1𝑡 )𝑓 2(𝑥2𝑡 ∣𝑒2𝑡 )𝑑𝑥1𝑡𝑑𝑥2𝑡

= 0 ⇒

𝑒1𝑡 =
𝛾

𝑏𝑔(𝛼𝑡)

∫
𝑥1
𝑡

∫
𝑥2
𝑡

𝑣1𝑡+1(𝛽
𝛼
𝑡+1(𝑥

1
𝑡 , 𝑥

2
𝑡 ))𝑓

1(𝑥1𝑡 ∣𝑒1𝑡 )𝑓(𝑥2𝑡 ∣𝑒2𝑡 )𝑑𝑥1𝑡𝑑𝑥2𝑡 , (C.6)

𝑒2𝑡 =
𝛾

𝑏𝑔(1− 𝛼𝑡)

∫
𝑥1
𝑡

∫
𝑥2
𝑡

𝑣2𝑡+1(1− 𝛽𝛼
𝑡+1(𝑥

1
𝑡 , 𝑥

2
𝑡 ))𝑓(𝑥

1
𝑡 ∣𝑒1𝑡 )𝑓 2(𝑥2𝑡 ∣𝑒2𝑡 )𝑑𝑥1𝑡𝑑𝑥2𝑡 . (C.7)

(𝐶.6) and (𝐶.7) are necessary conditions for (𝑒1𝑡 , 𝑒
2
𝑡 ) to be a Nash equilibrium in

period 𝑡.

3. Proof of Theorem 4.1

Due to the complexity of the problem and our focus on the suppliers’ incentive

issues, we will ignore the suppliers’ individual rationality constraints in the following

analysis and restrict a supplier’s share to a range by letting 𝛽 and 𝛽 be the upper and

lower bounds for a supplier’s share in a period, where 𝛽 can be exogeneously defined

by some constraints such as the minimum order quantity and also ensures the (IR)

constraint is satisfied.

The proof of this theorem consists of two parts. In the first part, we derive the

optimal allocation rule from the static formulation of the buyer’s infinite-horizon

problem, under the assumption that the two suppliers use stationary policies to play

the stochastic game; in the second part, we check that under the derived optimal

allocation rule, the suppliers’ infinite-horizon stochastic game has a unique Nash

equilibrium which is stationary and is the one derived from the static formulation.

∙ Part 1. Derive the optimal allocation rule

We first consider the buyer’s problem with the incentive compatibility constraints

only. Other constraints will define the upper and lower bounds for Supplier 1’s share in

the next period. Let 𝑦𝑖 =
𝑥𝑖−𝑒∗𝑖

𝜎
, then 𝑦𝑖 ∼ 𝑁(0, 1) and from the first-order conditions
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in (4.5), the suppliers’ best responses to an allocation rule 𝛽𝛼(𝑥1, 𝑥2) are

𝑒∗1 =
𝛾

𝛼𝑏𝜎

∫ ∫
𝑣(𝛽𝛼(𝑦1, 𝑦2))𝑦1𝜙(𝑦1)𝜙(𝑦2)𝑑𝑦1𝑑𝑦2, (C.8)

𝑒∗2 =
𝛾

(1− 𝛼)𝑏𝜎

∫ ∫
𝑣(1− 𝛽𝛼(𝑦1, 𝑦2))𝑦2𝜙(𝑦1)𝜙(𝑦2)𝑑𝑦1𝑑𝑦2, (C.9)

where 𝛽𝛼(𝑦1, 𝑦2) = 𝛽𝛼(𝑒
∗
1 + 𝜎𝑦1, 𝑒

∗
2 + 𝜎𝑦2), and 𝑣(𝛽) = 𝑣1(𝛽) = 𝑣2(𝛽) for any 𝛽 due to

symmetry.

Substituting the suppliers’ best response functions into the buyer’s objective func-

tion, we obtain the buyer’s unconstrained optimization problem, in which the buyer

only needs to choose an allocation rule in terms of the suppliers’ standardized per-

formance:

𝑣𝐵(𝛼) = max𝛽𝛼
{𝛾

∫ ∫
[ 1
𝑏𝜎
𝑦1𝑣(𝛽𝛼(𝑦1, 𝑦2)) +

1
𝑏𝜎
𝑦2𝑣(1− 𝛽𝛼(𝑦1, 𝑦2))

+𝑣𝐵(𝛽𝛼(𝑦1, 𝑦2))]𝜙(𝑦1)𝜙(𝑦2)𝑑𝑦1𝑑𝑦2}.

Let 𝐺(𝛽𝛼(𝑦1, 𝑦2)) =
1
𝑏𝜎
𝑦1𝑣(𝛽𝛼(𝑦1, 𝑦2)) +

1
𝑏𝜎
𝑦2𝑣(1− 𝛽𝛼(𝑦1, 𝑦2)) + 𝑣𝐵(𝛽𝛼(𝑦1, 𝑦2)).

Pointwise optimization of 𝑣𝐵(𝛼) w.r.t. 𝛽𝛼(𝑦1, 𝑦2) ⇒
𝐺′(𝛽𝛼(𝑦1, 𝑦2)) =

1
𝑏𝜎
𝑦1𝑣

′(𝛽𝛼(𝑦1, 𝑦2))− 1
𝑏𝜎
𝑦2𝑣

′(1− 𝛽𝛼(𝑦1, 𝑦2)) + 𝑣′𝐵(𝛽𝛼(𝑦1, 𝑦2)).

So the optimal 𝛽
∗
𝛼(𝑦1, 𝑦2) is independent of 𝛼, and we omit the subscript 𝛼 in

𝛽𝛼(𝑦1, 𝑦2) and 𝛽
∗
𝛼(𝑦1, 𝑦2) from now on. It follows that

𝑣𝐵(𝛼) = 𝛾

∫ ∫
[
1

𝑏𝜎
𝑦1𝑣(𝛽

∗
(𝑦1, 𝑦2)) +

1

𝑏𝜎
𝑦2𝑣(1− 𝛽

∗
(𝑦1, 𝑦2))

+𝑣𝐵(𝛽
∗
(𝑦1, 𝑦2))]𝜙(𝑦1)𝜙(𝑦2)𝑑𝑦1𝑑𝑦2 = 𝑣𝐵 (C.10)

is independent of 𝛼.

Let 𝐻 = 𝛾2

2𝑏𝜎2 (

∫ ∫
𝑦1𝑣(𝛽

∗
(𝑦1, 𝑦2))𝜙(𝑦1)𝜙(𝑦2)𝑑𝑦1𝑑𝑦2)

2. Substituting it into (𝐶.8)

and (𝐶.9), we get 𝑒∗1 =
√
2𝐻

𝛼
√
𝑏
, 𝑒∗2 =

√
2𝐻

(1−𝛼)
√
𝑏
, then due to symmetry of the two suppliers,

𝑣1(𝛼) = 𝑣2(𝛼) = 𝑣(𝛼), where

𝑣(𝛼) = 𝛼𝑚− 𝐻

𝛼
+ 𝛾

∫ ∫
𝑣(𝛽

∗
(𝑦1, 𝑦2))𝜙(𝑦1)𝜙(𝑦2)𝑑𝑦1𝑑𝑦2. (C.11)

Note that both 𝐻 and the last term in the above formula are independent of 𝛼

and 𝐻 > 0, so
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𝑣′(𝛼) = 𝑚+ 𝐻
𝛼2 > 0 and 𝑣′′(𝛼) = −2𝐻

𝛼3 < 0,

𝐺′(𝛽(𝑦1, 𝑦2)) = 1
𝑏𝜎
𝑦1(𝑚+ 𝐻

(𝛽(𝑦1,𝑦2))2
)− 1

𝑏𝜎
𝑦2(𝑚+ 𝐻

(1−𝛽(𝑦1,𝑦2))2
),

𝐺′′(𝛽(𝑦1, 𝑦2)) = − 1
𝑏𝜎
𝑦1

2𝐻

(𝛽(𝑦1,𝑦2))3
− 1

𝑏𝜎
𝑦2

2𝐻

(1−𝛽(𝑦1,𝑦2))3
.

So we have

(1) for 𝑦1 > 0 and 𝑦2 > 0: 𝐺(𝛽(𝑦1, 𝑦2)) is concave, the optimal 𝛽
∗
(𝑦1, 𝑦2) is either

determined by 𝐺′(𝛽(𝑦1, 𝑦2)) = 0,

or at the boundary with 𝛽
∗
(𝑦1, 𝑦2) = 𝛽 if𝐺′(𝛽) > 0 and 𝛽

∗
(𝑦1, 𝑦2) = 𝛽 if𝐺′(𝛽) < 0;

(2) for 𝑦1 < 0 and 𝑦2 < 0: 𝐺(𝛽(𝑦1, 𝑦2)) is convex, 𝛽
∗
(𝑦1, 𝑦2) = 𝛽 if 𝐺(𝛽) > 𝐺(1−𝛽)

and 𝛽
∗
(𝑦1, 𝑦2) = 𝛽 otherwise;

(3) for 𝑦1 > 0 and 𝑦2 < 0: 𝐺′(𝛽(𝑦1, 𝑦2)) > 0, 𝛽
∗
(𝑦1, 𝑦2) = 𝛽;

(4) for 𝑦1 < 0 and 𝑦2 > 0: 𝐺′(𝛽(𝑦1, 𝑦2)) < 0, 𝛽
∗
(𝑦1, 𝑦2) = 𝛽.

In the above analysis,

𝐺′(𝛽(𝑦1, 𝑦2)) > 0 is equivalent to 𝑦1 > 𝑆(𝛽(𝑦1, 𝑦2))𝑦2;

𝐺′(𝛽(𝑦1, 𝑦2)) < 0 is equivalent to 𝑦1 < 𝑆(𝛽(𝑦1, 𝑦2))𝑦2;

𝐺(𝛽) > 𝐺(1− 𝛽) is equivalent to
1
𝑏𝜎
𝑦1𝑣(𝛽) +

1
𝑏𝜎
𝑦2𝑣(1− 𝛽) > 1

𝑏𝜎
𝑦1𝑣(1− 𝛽) + 1

𝑏𝜎
𝑦2𝑣(𝛽),

⇔ 𝑦1(𝑣(𝛽)− 𝑣(1− 𝛽)) > 𝑦2(𝑣(𝛽)− 𝑣(1− 𝛽)) ⇔ 𝑦1 > 𝑦2.

Because 𝑦𝑖 =
𝑥𝑖−𝑒∗𝑖

𝜎
, the above analysis on 𝛽

∗
(𝑦1, 𝑦2) immediately translates to

𝛽1∗
𝛼 (𝑥1, 𝑥2) based on 𝑥1 and 𝑥2. So the optimal rule in Theorem 4.1 follows. Let

𝐶 =

∫ ∫
𝑦1𝑣(𝛽

∗
(𝑦1, 𝑦2))𝜙(𝑦1)𝜙(𝑦2)𝑑𝑦1𝑑𝑦2, (C.12)

so

𝐻 =
𝛾2𝐶2

2𝑏𝜎2
. (C.13)

In (𝐶.11), let 𝑉 =

∫ ∫
𝑣(𝛽

∗
(𝑦1, 𝑦2))𝜙(𝑦1)𝜙(𝑦2)𝑑𝑦1𝑑𝑦2, 𝑣(𝛼) = 𝛼𝑚− 𝐻

𝛼
+ 𝛾𝑉 , take

𝛼 = 𝛽
∗
(𝑦1, 𝑦2), multiply both sides by 𝑦1, and integrate both sides over 𝑦1 and 𝑦2,∫ ∫
𝑦1𝑣(𝛽

∗
(𝑦1, 𝑦2))𝜙(𝑦1)𝜙(𝑦2)𝑑𝑦1𝑑𝑦2

=

∫ ∫
𝑦1(𝛽

∗
(𝑦1, 𝑦2)𝑚− 𝐻

𝛽
∗
(𝑦1,𝑦2)

)𝜙(𝑦1)𝜙(𝑦2)𝑑𝑦1𝑑𝑦2 + 𝛾𝑉

∫ ∫
𝑦1𝜙(𝑦1)𝜙(𝑦2)𝑑𝑦1𝑑𝑦2

⇒ 𝐶 =

∫
𝑦1(𝛽

∗
(𝑦1, 𝑦2)𝑚− 𝐻

𝛽
∗
(𝑦1,𝑦2)

)𝜙(𝑦1)𝜙(𝑦2)𝑑𝑦1𝑑𝑦2,

together with (𝐶.13) ⇒
𝜎
𝛾

√
2𝑏𝐻 =

∫ ∫
𝑦1(𝛽

∗
(𝑦1, 𝑦2)𝑚− 𝐻

𝛽
∗
(𝑦1,𝑦2)

)𝜙(𝑦1)𝜙(𝑦2)𝑑𝑦1𝑑𝑦2.
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Check the suppliers’ second-order conditions (Nash equilibrium):

Under the optimal rule 𝛽1∗
𝛼 (𝑥1, 𝑥2),

∂2𝑣1(𝛼)
(∂𝑒1)2

= −𝛼𝑏+ 𝛾

∫ ∫
𝑣1(𝛽

1∗
𝛼 (𝑥1, 𝑥2))𝑓

11(𝑥1∣𝑒1)𝑓(𝑥2∣𝑒2)𝑑𝑥1𝑑𝑥2

= −𝛼𝑏+ 𝛾

∫ ∫
𝑣1(𝛽

1∗
𝛼 (𝑥1, 𝑥2))

1
𝜎4 [(

𝑥1−𝑒1
𝜎

)2 − 1]𝜙(𝑥1−𝑒1
𝜎

)𝜙(𝑥2−𝑒2
𝜎

)𝑑𝑥1𝑑𝑥2.

At (𝑒1, 𝑒2) = (𝑒∗1, 𝑒
∗
2),

∂2𝑣1(𝛼)
(∂𝑒1)2

∣(𝑒∗1,𝑒∗2) = −𝛼𝑏+𝛾
∫ ∫

(𝛽
∗
(𝑦1, 𝑦2)𝑚− 𝐻

𝛽
∗
(𝑦1,𝑦2)

+𝛾𝑉 ) 1
𝜎2 [(𝑦1)

2−1]𝜙(𝑦1)𝜙(𝑦2)𝑑𝑦1𝑑𝑦2

= −𝛼𝑏+ 𝛾
𝜎2

∫ ∫
[(𝑦1)

2 − 1]Ψ(𝛽
∗
(𝑦1, 𝑦2))𝜙(𝑦1)𝜙(𝑦2)𝑑𝑦1𝑑𝑦2.

Using polar coordinates

𝑦1 = 𝑟 sin 𝜃, 𝑦2 = 𝑟 cos 𝜃, 𝑑𝑦1𝑑𝑦2 = 𝑟𝑑𝑟𝑑𝜃, 𝜃 ∼ 𝑈 [0, 2𝜋], tan 𝜃 =
𝑦1
𝑦2

= 𝑆(𝛽
∗
). (C.14)

Let 𝜃min and 𝜃max correspond to 𝛽 and 𝛽.∫
𝑦1

∫
𝑦2

𝑦21Ψ(𝛽
∗
(𝑦1, 𝑦2))𝜙(𝑦1)𝜙(𝑦2)𝑑𝑦1𝑑𝑦2

= Λ1 +Ψ(𝛽)

∫
𝑦2<0

∫ 0

𝑦2

𝑦21𝜙(𝑦1)𝜙(𝑦2)𝑑𝑦1𝑑𝑦2 +Ψ(𝛽)

∫
𝑦2<0

∫
𝑦1<𝑦2

𝑦21𝜙(𝑦1)𝜙(𝑦2)𝑑𝑦1𝑑𝑦2

+Ψ(𝛽)

∫
𝑦1>0,𝑦2<0

𝑦21𝜙(𝑦1)𝜙(𝑦2)𝑑𝑦1𝑑𝑦2 +Ψ(𝛽)

∫
𝑦1<0,𝑦2>0

𝑦21𝜙(𝑦1)𝜙(𝑦2)𝑑𝑦1𝑑𝑦2,

where

Λ1 =

∫ ∞

𝑟=0

∫ 𝜋/2

𝜃=0

𝑟2(sin 𝜃)2Ψ(𝛽
∗
(𝑦1, 𝑦2))

1
2𝜋
𝑒−𝑟2/2𝑟𝑑𝑟𝑑𝜃

=

∫ 𝜋/2

𝜃=0

(sin 𝜃)2Ψ(𝛽
∗
(𝑦1, 𝑦2))

1
𝜋
[

∫ ∞

𝑟=0

𝑟2

2
𝑒−𝑟2/2𝑑( 𝑟

2

2
)]𝑑𝜃

= 1
𝜋

∫ 𝜋/2

𝜃=0

(sin 𝜃)2Ψ(𝛽
∗
(𝑦1, 𝑦2))𝑑𝜃

= 1
𝜋

∫ 𝜃max

𝜃min

(sin 𝜃)2Ψ(𝛽
∗
(𝑦1, 𝑦2))𝑑𝜃+

1
𝜋
Ψ(𝛽)(𝜋

4
− 𝜃max

2
+ 1

4
sin(2𝜃max))+

1
𝜋
Ψ(𝛽)( 𝜃min

2
−

1
4
sin(2𝜃min)).

By (𝐶.2),∫
𝑦2<0

∫ 0

𝑦2

𝑦21𝜙(𝑦1)𝜙(𝑦2)𝑑𝑦1𝑑𝑦2 =

∫
𝑦2<0

[𝑦2𝜙(𝑦2) +
1
2
− Φ(𝑦2)]𝜙(𝑦2)𝑑𝑦2

=

∫
𝑦2<0

𝑦2𝜙(𝑦2)𝜙(𝑦2)𝑑𝑦2 +
1
2

∫
𝑦2<0

𝜙(𝑦2)𝑑𝑦2 −
∫
𝑦2<0

Φ(𝑦2)𝜙(𝑦2)𝑑𝑦2

= − 1
4𝜋

+ 1
4
−
∫
𝑦2<0

Φ(𝑦2)𝜙(𝑦2)𝑑𝑦2,
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∫
𝑦2<0

Φ(𝑦2)𝜙(𝑦2)𝑑𝑦2 = (Φ(𝑦2))
2∣0−∞ −

∫
𝑦2<0

Φ(𝑦2)𝜙(𝑦2)𝑑𝑦2

⇒
∫
𝑦2<0

Φ(𝑦2)𝜙(𝑦2)𝑑𝑦2 =
1
8

⇒
∫
𝑦2<0

∫ 0

𝑦2

𝑦21𝜙(𝑦1)𝜙(𝑦2)𝑑𝑦1𝑑𝑦2 =
1
8
− 1

4𝜋
.

∫
𝑦2<0

∫
𝑦1<𝑦2

𝑦21𝜙(𝑦1)𝜙(𝑦2)𝑑𝑦1𝑑𝑦2 =

∫
𝑦2<0

[−𝑦2𝜙(𝑦2) + Φ(𝑦2)]𝜙(𝑦2)𝑑𝑦2

= −
∫
𝑦2<0

𝑦2𝜙(𝑦2)𝜙(𝑦2)𝑑𝑦2 +

∫
𝑦2<0

Φ(𝑦2)𝜙(𝑦2)𝑑𝑦2 =
1
4𝜋

+ 1
8
,∫

𝑦1>0,𝑦2<0

𝑦21𝜙(𝑦1)𝜙(𝑦2)𝑑𝑦1𝑑𝑦2 =
1
2

∫
𝑦2<0

𝜙(𝑦2)𝑑𝑦2 =
1
4
,∫

𝑦1<0,𝑦2>0

𝑦21𝜙(𝑦1)𝜙(𝑦2)𝑑𝑦1𝑑𝑦2 =
1
2

∫
𝑦2>0

𝜙(𝑦2)𝑑𝑦2 =
1
4
.

So

∫
𝑦1

∫
𝑦2

𝑦21Ψ(𝛽
∗
(𝑦1, 𝑦2))𝜙(𝑦1)𝜙(𝑦2)𝑑𝑦1𝑑𝑦2

= Λ1 +Ψ(𝛽)(3
8
− 1

4𝜋
) + Ψ(𝛽)(3

8
+ 1

4𝜋
).∫

𝑦1

∫
𝑦2

Ψ(𝛽
∗
(𝑦1, 𝑦2))𝜙(𝑦1)𝜙(𝑦2)𝑑𝑦1𝑑𝑦2

= Λ2 +Ψ(𝛽)

∫
𝑦2<0

∫ 0

𝑦2

𝜙(𝑦1)𝜙(𝑦2)𝑑𝑦1𝑑𝑦2 +Ψ(𝛽)

∫
𝑦2<0

∫
𝑦1<𝑦2

𝜙(𝑦1)𝜙(𝑦2)𝑑𝑦1𝑑𝑦2

+Ψ(𝛽)

∫
𝑦1>0,𝑦2<0

𝜙(𝑦1)𝜙(𝑦2)𝑑𝑦1𝑑𝑦2 +Ψ(𝛽)

∫
𝑦1<0,𝑦2>0

𝜙(𝑦1)𝜙(𝑦2)𝑑𝑦1𝑑𝑦2

= Λ2 +
1
8
Ψ(𝛽) + 1

8
Ψ(𝛽) + 1

4
(Ψ(𝛽) + Ψ(𝛽)) ⇒∫

𝑦1

∫
𝑦2

Ψ(𝛽
∗
(𝑦1, 𝑦2))𝜙(𝑦1)𝜙(𝑦2)𝑑𝑦1𝑑𝑦2 = Λ2 +

3

8
(Ψ(𝛽) + Ψ(𝛽)), (C.15)

where Λ2 =

∫
𝑦1>0,𝑦2>0

Ψ(𝛽
∗
(𝑦1, 𝑦2))𝜙(𝑦1)𝜙(𝑦2)𝑑𝑦1𝑑𝑦2

=

∫ ∞

𝑟=0

∫ 𝜋/2

𝜃=0

Ψ(𝛽
∗
) 1
2𝜋
𝑒−𝑟2/2𝑟𝑑𝑟𝑑𝜃 =

∫ 𝜋/2

𝜃=0

Ψ(𝛽
∗
) 1
2𝜋
𝑑𝜃 ⇒

Λ2 =
1

2𝜋

∫ 𝜃max

𝜃min

Ψ(𝛽
∗
)𝑑𝜃 +

1

2𝜋
Ψ(𝛽)𝜃min +

1

2𝜋
Ψ(𝛽)(𝜋/2− 𝜃max). (C.16)

∂2𝑣1(𝛼)
(∂𝑒1)2

∣(𝑒∗1,𝑒∗2) = −𝛼𝑏+ 𝛾
𝜎2 [Λ1+Ψ(𝛽)(3

8
− 1

4𝜋
)+Ψ(𝛽)(3

8
+ 1

4𝜋
)−(Λ2+

3
8
(Ψ(𝛽)+Ψ(𝛽)))]
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= −𝛼𝑏+ 𝛾
𝜋𝜎2 [

∫ 𝜃max

𝜃min

((sin 𝜃)2− 1
2
)Ψ(𝛽

∗
(𝑦1, 𝑦2))𝑑𝜃+

1
4
(sin(2𝜃max)−1)(Ψ(𝛽)−Ψ(𝛽))],

note that sin 𝜋
4
=

√
2
2
,

∂2𝑣1(𝛼)
(∂𝑒1)2

∣(𝑒∗1,𝑒∗2) ≤ −𝛼𝑏+ 𝛾
𝜋𝜎2 [Ψ(𝛽)

∫ 𝜃max

𝜋/4

((sin 𝜃)2 − 1
2
)𝑑𝜃 +Ψ(𝛽)

∫ 𝜋/4

𝜃min

((sin 𝜃)2 − 1
2
)𝑑𝜃

+1
4
(sin(2𝜃max)− 1)(Ψ(𝛽)−Ψ(𝛽))],

because (sin 𝜃)2 = 1−cos 2𝜃
2

,

∂2𝑣1(𝛼)
(∂𝑒1)2

∣(𝑒∗1,𝑒∗2) ≤ −𝛼𝑏+ 𝛾
𝜋𝜎2 [−1

2
Ψ(𝛽)

∫ 𝜃max

𝜋/4

cos 2𝜃𝑑𝜃 − 1
2
Ψ(𝛽)

∫ 𝜋/4

𝜃min

cos 2𝜃𝑑𝜃

+1
4
(sin(2𝜃max)− 1)(Ψ(𝛽)−Ψ(𝛽))]

= −𝛼𝑏 + 𝛾
𝜋𝜎2 [−1

4
Ψ(𝛽)(sin(2𝜃max) − 1) − 1

4
Ψ(𝛽)(1 − sin(2𝜃min)) +

1
4
(sin(2𝜃max) −

1)(Ψ(𝛽)−Ψ(𝛽))]

= −𝛼𝑏+ 𝛾
4𝜋𝜎2Ψ(𝛽)(sin(2𝜃min)− sin(2𝜃max))

= −𝛼𝑏+ 𝛾
4𝜋𝜎2Ψ(𝛽)(sin(2𝜃min)− sin(2(𝜋

2
− 𝜃min))) = −𝛼𝑏,

similarly ∂2𝑣2(1−𝛼)
(∂𝑒2)2

∣(𝑒∗1,𝑒∗2) ≤ −(1 − 𝛼)𝑏, so (𝑒∗1, 𝑒
∗
2) is a Nash equilibrium when the

suppliers only use stationary policies.

Uniqueness of Nash equilibrium:

Let 𝑎𝑖 =
𝑒𝑖−𝑒∗𝑖

𝜎
, 𝑧𝑖 = 𝑦𝑖 − 𝑎𝑖. By (𝐶.1),

∂2𝑣1(𝛼)
(∂𝑒1)2

= −𝛼𝑏+ 𝛾

∫ ∫
Ψ(𝛽1∗

𝛼 (𝑥1, 𝑥2))
1
𝜎4 [(

𝑥1−𝑒1
𝜎

)2 − 1]𝜙(𝑥1−𝑒1
𝜎

)𝜙(𝑥2−𝑒2
𝜎

)𝑑𝑥1𝑑𝑥2

+𝛾𝑉

∫ ∫
1
𝜎4 [(

𝑥1−𝑒1
𝜎

)2 − 1]𝜙(𝑥1−𝑒1
𝜎

)𝜙(𝑥2−𝑒2
𝜎

)𝑑𝑥1𝑑𝑥2

= −𝛼𝑏+ 𝛾
𝜎2

∫ ∫
Ψ(𝛽

∗
(𝑦1, 𝑦2))[(𝑦1 − 𝑎1)

2 − 1]𝜙(𝑦1 − 𝑎1)𝜙(𝑦2 − 𝑎2)𝑑𝑦1𝑑𝑦2

= −𝛼𝑏+ 𝛾
𝜎2 [Ψ(𝛽)

∫ 0

−∞
(

∫ ∞

𝑦2

[(𝑦1 − 𝑎1)
2 − 1]𝜙(𝑦1 − 𝑎1)𝑑𝑦1)𝜙(𝑦2 − 𝑎2)𝑑𝑦2

+Ψ(𝛽)

∫ 0

−∞
(

∫ 𝑦2

−∞
[(𝑦1 − 𝑎1)

2 − 1]𝜙(𝑦1 − 𝑎1)𝑑𝑦1)𝜙(𝑦2 − 𝑎2)𝑑𝑦2

+Ψ(𝛽)

∫ ∞

0

(

∫ 0

−∞
[(𝑦1 − 𝑎1)

2 − 1]𝜙(𝑦1 − 𝑎1)𝑑𝑦1)𝜙(𝑦2 − 𝑎2)𝑑𝑦2

+

∫ ∞

0

(

∫ ∞

0

Ψ(𝛽
∗
(𝑦1, 𝑦2))[(𝑦1 − 𝑎1)

2 − 1]𝜙(𝑦1 − 𝑎1)𝑑𝑦1)𝜙(𝑦2 − 𝑎2)𝑑𝑦2]

= −𝛼𝑏+ 𝛾
𝜎2 [Ψ(𝛽)

∫ 0

−∞
(

∫ ∞

𝑦2−𝑎1

(𝑧21 − 1)𝜙(𝑧1)𝑑𝑧1)𝜙(𝑦2 − 𝑎2)𝑑𝑦2

+Ψ(𝛽)

∫ 0

−∞
(

∫ 𝑦2−𝑎1

−∞
(𝑧21 − 1)𝜙(𝑧1)𝑑𝑧1)𝜙(𝑦2 − 𝑎2)𝑑𝑦2

+Ψ(𝛽)

∫ ∞

0

(

∫ −𝑎1

−∞
(𝑧21 − 1)𝜙(𝑧1)𝑑𝑧1)𝜙(𝑦2 − 𝑎2)𝑑𝑦2
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+

∫ ∞

−𝑎1

(

∫ ∞

−𝑎2

Ψ(𝛽
∗
𝛼(𝑧1, 𝑧2))(𝑧

2
1 − 1)𝜙(𝑧1)𝑑𝑧1)𝜙(𝑧2)𝑑𝑧2

= −𝛼𝑏+ 𝛾
𝜎2 [(Ψ(𝛽)−Ψ(𝛽))

∫ 0

−∞
(𝑦2 − 𝑎1)𝜙(𝑦2 − 𝑎1)𝜙(𝑦2 − 𝑎2)𝑑𝑦2

+Ψ(𝛽)𝑎1𝜙(𝑎1)Φ(𝑎2) +

∫ ∞

−𝑎1

(

∫ ∞

−𝑎2

Ψ(𝛽
∗
𝛼(𝑧1, 𝑧2))(𝑧

2
1 − 1)𝜙(𝑧1)𝑑𝑧1)𝜙(𝑧2)𝑑𝑧2.

∫ 0

−∞
(𝑦 − 𝑎1)𝜙(𝑦 − 𝑎1)𝜙(𝑦 − 𝑎2)𝑑𝑦

= 1
2𝜋

∫ 0

−∞
(𝑦 − 𝑎1) exp[−1

2
((𝑦 − 𝑎1)

2 + (𝑦 − 𝑎2)
2)]𝑑𝑦

= 1
2𝜋

exp[−(𝑎1−𝑎2
2

)2]

∫ 0

−∞
(𝑦 − 𝑎1) exp[−(𝑦 − 𝑎1+𝑎2

2
)2]𝑑𝑦

= 1
2𝜋

exp[−(𝑎1−𝑎2
2

)2][

∫ 0

−∞
(𝑦 − 𝑎1+𝑎2

2
) exp[−(𝑦 − 𝑎1+𝑎2

2
)2]𝑑𝑦

−𝑎1−𝑎2
2

∫ 0

−∞
exp[−(𝑦 − 𝑎1+𝑎2

2
)2]𝑑𝑦]

= 1√
2𝜋

exp[−(𝑎1−𝑎2
2

)2][− 1
2
√
2𝜋

exp[−(𝑎1+𝑎2
2

)2]−𝑎1−𝑎2
2
√
2

∫ 0

−∞

√
2√
2𝜋

exp[−1
2
(
√
2(𝑦−𝑎1+𝑎2

2
))2]𝑑𝑦]

= 𝐿
2
√
2𝜋
,

where 𝐿 = − 1√
2𝜋

exp[−1
2
(𝑎21 + 𝑎22)]− 𝑎1−𝑎2√

2
exp[−(𝑎1−𝑎2

2
)2]Φ(−𝑎1+𝑎2√

2
).

Let 𝑦 and 𝑦 be the solutions to (𝑦1 − 𝑎1)
2 − 1 = 0, 𝑦 − 𝑎1 = 1, 𝑦 − 𝑎1 = −1,

(𝑦1 − 𝑎1)
2 − 1 ≥ 0 for 𝑦1 ≥ 𝑦 and 𝑦1 ≤ 𝑦. Because 𝛽 ≤ 𝛽

∗
𝛼(𝑧1, 𝑧2) ≤ 𝛽,

∂2𝑣1(𝛼)
(∂𝑒1)2

≤ −𝛼𝑏+ 𝛾
𝜎2 [(Ψ(𝛽)−Ψ(𝛽)) 𝐿

2
√
2𝜋

+Ψ(𝛽)𝑎1𝜙(𝑎1)Φ(𝑎2)

+

∫ ∞

0

{Ψ(𝛽)

∫ ∞

𝑦

[(𝑦1−𝑎1)2−1]𝜙(𝑦1−𝑎1)𝑑𝑦1+Ψ(𝛽)

∫ 𝑦

0

[(𝑦1−𝑎1)2−1]𝜙(𝑦1−𝑎1)𝑑𝑦1

+Ψ(𝛽)

∫ 𝑦

𝑦

[(𝑦1 − 𝑎1)
2 − 1]𝜙(𝑦1 − 𝑎1)𝑑𝑦1}𝜙(𝑦2 − 𝑎2)𝑑𝑦2]

= −𝛼𝑏+ 𝛾
𝜎2 [(Ψ(𝛽)−Ψ(𝛽)) 𝐿

2
√
2𝜋

+Ψ(𝛽)𝑎1𝜙(𝑎1)Φ(𝑎2)

+

∫ ∞

0

{Ψ(𝛽)

∫ ∞

𝑦−𝑎1

(𝑧21 − 1)𝜙(𝑧1)𝑑𝑧1 +Ψ(𝛽)

∫ 𝑦−𝑎1

−𝑎1

(𝑧21 − 1)𝜙(𝑧1)𝑑𝑧1

+Ψ(𝛽)

∫ 𝑦−𝑎1

𝑦−𝑎1

(𝑧21 − 1)𝜙(𝑧1)𝑑𝑧1}𝜙(𝑦2 − 𝑎2)𝑑𝑦2]

= −𝛼𝑏+ 𝛾
𝜎2 [(Ψ(𝛽)−Ψ(𝛽)) 𝐿

2
√
2𝜋

− (Ψ(𝛽)−Ψ(𝛽))𝑎1𝜙(𝑎1)Φ(𝑎2)

+(Ψ(𝛽)−Ψ(𝛽))((𝑦 − 𝑎1)𝜙(𝑦 − 𝑎1)− (𝑦 − 𝑎1)𝜙(𝑦 − 𝑎1))Φ(𝑎2)]

= −𝛼𝑏+ 𝛾
𝜎2 (Ψ(𝛽)−Ψ(𝛽))[− 1

2
√
2𝜋
𝜙(
√
𝑎21 + 𝑎22)−𝑎1−𝑎2

2
𝜙(𝑎1−𝑎2√

2
)Φ(−𝑎1+𝑎2√

2
)−𝑎1𝜙(𝑎1)Φ(𝑎2)+

2𝜙(1)Φ(𝑎2)]
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= −𝛼𝑏+ 𝛾
𝜎2 (Ψ(𝛽)−Ψ(𝛽))[−1

2
𝜙(𝑎1)𝜙(𝑎2)+

𝑎2−𝑎1
2

𝜙(𝑎1−𝑎2√
2
)(1−Φ(𝑎1+𝑎2√

2
))−𝑎1𝜙(𝑎1)Φ(𝑎2)+

2𝜙(1)Φ(𝑎2)]

because 𝑥𝜙(𝑥) is maximized at 𝑥 = 1 and −𝑥𝜙(𝑥) is maximized at 𝑥 = −1,

relaxing each term in the [ ] individually, we obtain
∂2𝑣1(𝛼)
(∂𝑒1)2

≤ −𝛼𝑏+ 𝛾
𝜎2 (Ψ(𝛽)−Ψ(𝛽))[−1

2
𝜙(𝑎1)𝜙(𝑎2) +

𝑎2−𝑎1
2

𝜙(𝑎1−𝑎2√
2
)− 𝑎1𝜙(𝑎1)Φ(𝑎2)

+2𝜙(1)Φ(𝑎2)]

≤ −𝛼𝑏+ 𝛾
𝜎2 (Ψ(𝛽)−Ψ(𝛽))[ 1√

2
𝜙(1) + 3𝜙(1)Φ(𝑎2)]

≤ −𝛼𝑏+ 𝛾(2𝛽−1)
𝜎2 (𝑚+ 𝐻

𝛽(1−𝛽)
)( 1√

2
+ 3)𝜙(1).

Because 1−𝛽 ≤ 𝛼 ≤ 𝛽, the sufficient condition for the existence of a unique Nash

equilibrium when the suppliers only use stationary policies is

𝛾(2𝛽 − 1)

𝜎2
(𝑚+

𝐻

𝛽(1− 𝛽)
)(

1√
2
+ 3)𝜙(1) < 𝑏(1− 𝛽). (C.17)

Because (𝐶.17) holds at 𝛽 = 1
2
with strict inequality, the set of the values of 𝛽 such

that 𝛽 > 1
2
and (𝐶.17) holds is nonempty.

∙ Part 2. Prove the existence of a unique stationary Nash equilibrium in the

suppliers’ infinite-horizon stochastic game under 𝛽1∗
𝛼 (𝑥1, 𝑥2)

The proof consists of two steps: the first step is on a finite-horizon problem and

uses backward recursion to show the existence of a unique subgame perfect Nash

equilibrium in the two suppliers’ finite-horizon stochastic game; and the second step

shows when the horizon goes to infinity, the subgame perfect equilibrium becomes a

stationary equilibrium.

Step 1. Finite-horizon problem:

First consider a 𝑇 -period model, 𝑇 < ∞. Assume given Supplier 1’s share in

Period 𝑇 + 1, 𝛼𝑇+1, the terminal values of each party take the following form:

𝑣𝐵𝑇+1(𝛼𝑇+1) = 𝑉 𝐵
𝑇+1 =

2
√

2𝐻𝑇+1√
𝑏

, 𝑣1𝑇+1(𝛼𝑇+1) = 𝛼𝑇+1𝑚− 𝐻𝑇+1

𝛼𝑇+1
+ 𝛾𝑉𝑇+1,

𝑣2𝑇+1(1− 𝛼𝑇+1) = (1− 𝛼𝑇+1)𝑚− 𝐻𝑇+1

1−𝛼𝑇+1
+ 𝛾𝑉𝑇+1,

where 𝛼𝑇+1 ∈ [𝛽, 𝛽], and 𝐻𝑇+1 ≥ 0 and 𝑉𝑇+1 are independent of 𝛼𝑇+1. Because

there is little restriction on the value of 𝐻𝑇+1 and 𝑉𝑇+1, the above form has included

the case of no future payoff for the buyer beyond period 𝑇 when 𝐻𝑇+1 = 0 and the

case of no future payoff for the suppliers beyond period 𝑇 when 𝐻𝑇+1 = 𝑉𝑇+1 = 0.
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Motivated by Part 1 of the proof, we consider an allocation rule of the following

form for the finite horizon problem.

Given Supplier 1’s share in period 𝑡, 𝛼𝑡, the optimal allocation rule for period 𝑡+1

(𝑡 ≤ 𝑇 ), 𝛽𝛼∗
𝑡+1(𝑥

1
𝑡 , 𝑥

2
𝑡 ), takes the form

1. for 𝑥1𝑡 > 𝑒1∗𝑡 and 𝑥2𝑡 > 𝑒2∗𝑡 :

if 𝑥1𝑡 − 𝑒1∗𝑡 > 𝑆(𝛽∣𝐻𝑡)(𝑥
2
𝑡 − 𝑒2∗𝑡 ), 𝛽𝛼∗

𝑡+1(𝑥
1
𝑡 , 𝑥

2
𝑡 ) = 𝛽; if 𝑥1𝑡 − 𝑒1∗𝑡 < 𝑆(𝛽∣𝐻𝑡)(𝑥

2
𝑡 − 𝑒2∗𝑡 ),

𝛽𝛼∗
𝑡+1(𝑥

1
𝑡 , 𝑥

2
𝑡 ) = 𝛽; otherwise, 𝛽𝛼∗

𝑡+1(𝑥
1
𝑡 , 𝑥

2
𝑡 ) is determined by 𝑆(𝛽𝛼∗

𝑡+1(𝑥
1
𝑡 , 𝑥

2
𝑡 )∣𝐻𝑡) =

𝑥1
𝑡−𝑒1∗𝑡

𝑥2
𝑡−𝑒2∗𝑡

;

2. for 𝑥1𝑡 < 𝑒1∗𝑡 or 𝑥2𝑡 < 𝑒2∗𝑡 : 𝛽𝛼∗
𝑡+1(𝑥

1
𝑡 , 𝑥

2
𝑡 ) = 𝛽 if 𝑥1𝑡−𝑒1∗𝑡 > 𝑥2𝑡−𝑒2∗𝑡 and 𝛽𝛼∗

𝑡+1(𝑥
1
𝑡 , 𝑥

2
𝑡 ) =

𝛽 otherwise, where

𝑒1∗𝑡 =

√
2𝐻𝑡

𝛼𝑡

√
𝑏
, 𝑒2∗𝑡 =

√
2𝐻𝑡

(1− 𝛼𝑡)
√
𝑏
, (C.18)

and 𝐻𝑡 (𝑡 = 𝑇, 𝑇 − 1, ...1) is calculated as

𝐻𝑡 =
𝛾2

2𝑏𝜎2
(

∫
𝑦1(𝛽

∗
𝑡+1(𝑦1, 𝑦2)𝑚− 𝐻𝑡+1

𝛽
∗
𝑡+1(𝑦1, 𝑦2)

)𝜙(𝑦1)𝜙(𝑦2)𝑑𝑦1𝑑𝑦2)
2 > 0, (C.19)

where 𝛽
∗
𝑡+1(𝑦1, 𝑦2) = 𝛽𝛼∗

𝑡+1(𝑒
1∗
𝑡 + 𝜎𝑦1, 𝑒

2∗
𝑡 + 𝜎𝑦2).

In period 𝑇 , let 𝑦𝑖 =
𝑥𝑖
𝑇−𝑒𝑖∗𝑇
𝜎

(𝑖 = 1, 2), from (𝐶.6) and (𝐶.7),

𝑒1𝑇 = 𝛾
𝑏𝛼𝑇

∫
𝑥1
𝑇

∫
𝑥2
𝑇

(𝛽𝛼∗
𝑇+1(𝑥

1
𝑇 , 𝑥

2
𝑇 )𝑚− 𝐻𝑇+1

𝛽𝛼∗
𝑇+1(𝑥

1
𝑇 ,𝑥2

𝑇 )
+𝛾𝑉𝑇+1)

𝑥1
𝑇−𝑒1𝑇
𝜎2 𝑓(𝑥1𝑇 ∣𝑒1𝑇 )𝑓(𝑥2𝑇 ∣𝑒2𝑇 )𝑑𝑥1𝑇𝑑𝑥2𝑇

= 𝛾
𝑏𝛼𝑇 𝜎

∫
𝑦1

∫
𝑦2

(𝛽
∗
𝑇+1(𝑦1, 𝑦2)𝑚− 𝐻𝑇+1

𝛽
∗
𝑇+1(𝑦1,𝑦2)

)(𝑦1− 𝑒1𝑇−𝑒1∗𝑇
𝜎

)𝜙(𝑦1− 𝑒1𝑇−𝑒1∗𝑇
𝜎

)𝜙(𝑦2− 𝑒2𝑇−𝑒2∗𝑇
𝜎

)𝑑𝑦1𝑑𝑦2,

and

𝑒2𝑇 = 𝛾
𝑏(1−𝛼𝑡)𝜎

∫
𝑦1

∫
𝑦2

((1−𝛽∗
𝑇+1(𝑦1, 𝑦2))𝑚− 𝐻𝑇+1

1−𝛽
∗
𝑇+1(𝑦1,𝑦2)

)(𝑦2− 𝑒2𝑇−𝑒2∗𝑇
𝜎

)𝜙(𝑦1− 𝑒1𝑇−𝑒1∗𝑇
𝜎

)𝜙(𝑦2−
𝑒2𝑇−𝑒2∗𝑇

𝜎
)𝑑𝑦1𝑑𝑦2.

It is obvious that 𝛽
∗
𝑇+1(𝑦1, 𝑦2) is symmetrical in 𝑦1 and 𝑦2, i.e., 𝛽

∗
𝑇+1(𝑦1, 𝑦2) =

1− 𝛽
∗
𝑇+1(𝑦2, 𝑦1) for any (𝑦1, 𝑦2). So∫
𝑦1(𝛽

∗
𝑇+1(𝑦1, 𝑦2)𝑚− 𝐻𝑇+1

𝛽
∗
𝑇+1(𝑦1,𝑦2)

)𝜙(𝑦1)𝜙(𝑦2)𝑑𝑦1𝑑𝑦2

=

∫
𝑦2((1− 𝛽

∗
𝑇+1(𝑦1, 𝑦2))𝑚− 𝐻𝑇+1

1−𝛽
∗
𝑇+1(𝑦1,𝑦2)

)𝜙(𝑦1)𝜙(𝑦2)𝑑𝑦1𝑑𝑦2.

Because letting 𝑒𝑖𝑇 = 𝑒𝑖∗𝑇 in the two equations above for 𝑒1𝑇 and 𝑒2𝑇 will make both

equations hold simultaneously, obviously 𝑒1∗𝑇 =
√
2𝐻𝑇

𝛼𝑇

√
𝑏
, 𝑒2∗𝑇 =

√
2𝐻𝑇

(1−𝛼𝑇 )
√
𝑏
is a solution to

(𝐶.6) and (𝐶.7) for period 𝑇 problem.
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To show (𝑒1∗𝑇 , 𝑒
2∗
𝑇 ) is a unique Nash equilibrium in period 𝑇 , consider the suppliers’

second-order conditions. Following similar analysis as above for the second-order

conditions in the static formuation, but with 𝐻 and 𝑉 replaced by 𝐻𝑇+1 and 𝑉𝑇+1,

we can show that

at (𝑒1𝑇 , 𝑒
2
𝑇 ) = (𝑒1∗𝑇 , 𝑒

2∗
𝑇 ),

∂2𝑣1𝑇 (𝛼𝑇 )

(∂𝑒1𝑇 )2
∣(𝑒1∗𝑇 ,𝑒2∗𝑇 ) ≤ −𝛼𝑇 𝑏 and

∂2𝑣2𝑇 (1−𝛼𝑇 )

(∂𝑒2𝑇 )2
∣(𝑒1∗𝑇 ,𝑒2∗𝑇 ) ≤ −(1 −

𝛼𝑇 )𝑏, so (𝑒1∗𝑇 , 𝑒
2∗
𝑇 ) is a Nash equilibrium;

moreover, the sufficient condition for the existence of a unique Nash equilibrium

in period 𝑇 is 2𝛾(2𝛽−1)
𝜎2 (𝑚+ 𝐻𝑇+1

𝛽(1−𝛽)
)𝜙(1) < 𝑏(1− 𝛽).

At the Nash equilibrium (𝑒1∗𝑇 , 𝑒
2∗
𝑇 ), from (𝐶.3) and noting that 𝑉 𝐵

𝑇+1 is independent

of 𝛼𝑇+1,

𝑣𝐵𝑇 (𝛼𝑇 ) = 𝑉 𝐵
𝑇 = 2

√
2𝐻𝑇√
𝑏

+ 𝛾𝑉 𝐵
𝑇+1,

𝑣1𝑇 (𝛼𝑇 ) = 𝛼𝑇𝑚− 𝐻𝑇

𝛼𝑇
+ 𝛾𝑉𝑇 , 𝑣

2
𝑇 (1− 𝛼𝑇 ) = (1− 𝛼𝑇 )𝑚− 𝐻𝑇

1−𝛼𝑇
+ 𝛾𝑉𝑇 ,

where

𝑉𝑇 =

∫
𝑣1𝑇+1(𝛽

∗
𝑇+1(𝑦1, 𝑦2))𝜙(𝑦1)𝜙(𝑦2)𝑑𝑦1𝑑𝑦2

=

∫
(𝛽

∗
𝑇+1(𝑦1, 𝑦2)𝑚− 𝐻𝑇+1

𝛽
∗
𝑇+1(𝑦1,𝑦2)

)𝜙(𝑦1)𝜙(𝑦2)𝑑𝑦1𝑑𝑦2 + 𝑉𝑇+1.

Suppose the above results hold for period 𝑡+1 (𝑡 ≤ 𝑇−1), i.e., under the condition
2𝛾(2𝛽−1)

𝜎2 (𝑚 + 𝐻𝑡+2

𝛽(1−𝛽)
)𝜙(1) < 𝑏(1 − 𝛽), (𝑒1∗𝑡+1, 𝑒

2∗
𝑡+1) defined by (𝐶.18) and (𝐶.19) with

the subscript 𝑡 replaced by 𝑡 + 1 is the unique Nash equilibrium of the suppliers in

period 𝑡+ 1, and at this equilibrium,

𝑣𝐵𝑡+1(𝛼𝑡+1) = 𝑉 𝐵
𝑡+1 =

2
√

2𝐻𝑡+1√
𝑏

+ 𝛾𝑉 𝐵
𝑡+2,

𝑣1𝑡+1(𝛼𝑡+1) = 𝛼𝑡+1𝑚− 𝐻𝑡+1

𝛼𝑡+1
+ 𝛾𝑉𝑡+1, 𝑣

2
𝑡+1(1−𝛼𝑡+1) = (1−𝛼𝑡+1)𝑚− 𝐻𝑡+1

1−𝛼𝑡+1
+ 𝛾𝑉𝑡+1,

where

𝑉𝑡+1 =

∫
(𝛽

∗
𝑡+2(𝑦1, 𝑦2)𝑚− 𝐻𝑡+2

𝛽
∗
𝑡+2(𝑦1,𝑦2)

)𝜙(𝑦1)𝜙(𝑦2)𝑑𝑦1𝑑𝑦2 + 𝑉𝑡+2.

Then using the backward recursive argument and similar analysis as that for

period 𝑇 problem, we can show that in period 𝑡, under the condition

2𝛾(2𝛽 − 1)

𝜎2
(𝑚+

𝐻𝑡+1

𝛽(1− 𝛽)
)𝜙(1) < 𝑏(1− 𝛽), (C.20)

(𝑒1∗𝑡 , 𝑒
2∗
𝑡 ) defined by (𝐶.18) and (𝐶.19) is the unique Nash equilibrium of the suppliers

in period 𝑡, and at this equilibrium,

𝑣𝐵𝑡 (𝛼𝑡) = 𝑉 𝐵
𝑡 , 𝑣

1
𝑡 (𝛼𝑡) = 𝛼𝑡𝑚− 𝐻𝑡

𝛼𝑡
+ 𝛾𝑉𝑡, 𝑣

2
𝑡 (1− 𝛼𝑡) = (1− 𝛼𝑡)𝑚− 𝐻𝑡

1−𝛼𝑡
+ 𝛾𝑉𝑡,
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where

𝑉𝑡 =

∫
(𝛽

∗
𝑡+1(𝑦1, 𝑦2)𝑚− 𝐻𝑡+1

𝛽
∗
𝑡+1(𝑦1, 𝑦2)

)𝜙(𝑦1)𝜙(𝑦2)𝑑𝑦1𝑑𝑦2 + 𝑉𝑡+1, (C.21)

and

𝑉 𝐵
𝑡 =

2
√
2𝐻𝑡√
𝑏

+ 𝛾𝑉 𝐵
𝑡+1. (C.22)

Because (𝐶.20) holds at 𝛽 = 1
2
, the set of the values of 𝛽 such that 𝛽 > 1

2
and

(𝐶.20) holds is nonempty. So under condition (𝐶.20), {(𝑒1∗𝑡 , 𝑒2∗𝑡 )}𝑡=1,2,...,𝑇 constitutes

a unique subgame perfect Nash equilibrium.

Step 2. Infinite-horizon problem:

When 𝑇 → ∞, the Nash equilibrium is stationary if there exists a solution to

𝐹 (𝐻∞) = 𝐻∞ − 𝛾2

2𝑏𝜎2
(

∫
𝑦1(𝛽

∗
(𝑦1, 𝑦2)𝑚− 𝐻∞

𝛽
∗
(𝑦1, 𝑦2)

)𝜙(𝑦1)𝜙(𝑦2)𝑑𝑦1𝑑𝑦2)
2 = 0. (C.23)

Then in period 𝑡, given 𝛼𝑡, 𝑒
1∗
𝑡 = 𝑒∗1 =

√
2𝐻∞
𝛼𝑡

√
𝑏
, 𝑒2∗𝑡 = 𝑒∗2 =

√
2𝐻∞

(1−𝛼𝑡)
√
𝑏
,

the allocation rule is in fact the optimal allocation rule derived in the Part 1 proof;

and from (𝐶.21) and (𝐶.22),

𝑉∞ = 1
1−𝛾

∫
(𝛽

∗
(𝑦1, 𝑦2)𝑚− 𝐻∞

𝛽
∗
(𝑦1,𝑦2)

)𝜙(𝑦1)𝜙(𝑦2)𝑑𝑦1𝑑𝑦2, 𝑉
𝐵
∞ = 2

√
2𝐻∞

(1−𝛾)
√
𝑏
.

It is obvious that 𝐹 (𝐻∞) is continuous in 𝐻∞. To prove the existence of a solution

to (𝐶.23), we can find a bound to 𝐹 (𝐻∞) using the fact that 𝛽 ≤ 𝛽
∗
(𝑦1, 𝑦2) ≤ 𝛽. For

simplicity of notation, we omit 𝐻∞ in Ψ(𝛽
∗
(𝑦1, 𝑦2)∣𝐻∞) in the analysis.

Using polar coordinates defined in (𝐶.14), in 𝐹 (𝐻∞), let

𝐵 =

∫
𝑦1

∫
𝑦2

𝑦1Ψ(𝛽
∗
(𝑦1, 𝑦2))𝜙(𝑦1)𝜙(𝑦2)𝑑𝑦1𝑑𝑦2

= Λ3 +Ψ(𝛽)

∫
𝑦2<0

∫ 0

𝑦2

𝑦1𝜙(𝑦1)𝜙(𝑦2)𝑑𝑦1𝑑𝑦2 +Ψ(𝛽)

∫
𝑦2<0

∫
𝑦1<𝑦2

𝑦1𝜙(𝑦1)𝜙(𝑦2)𝑑𝑦1𝑑𝑦2

+Ψ(𝛽)

∫
𝑦1>0,𝑦2<0

𝑦1𝜙(𝑦1)𝜙(𝑦2)𝑑𝑦1𝑑𝑦2 +Ψ(𝛽)

∫
𝑦1<0,𝑦2>0

𝑦1𝜙(𝑦1)𝜙(𝑦2)𝑑𝑦1𝑑𝑦2]

= Λ3+Ψ(𝛽)

∫
𝑦2<0

𝜙(𝑦2)(𝜙(𝑦2)−𝜙(0))𝑑𝑦2−Ψ(𝛽)

∫
𝑦2<0

(𝜙(𝑦2))
2𝑑𝑦2+

1
2
(Ψ(𝛽)−Ψ(𝛽))𝜙(0)

= Λ3 +Ψ(𝛽)( 1
4
√
𝜋
− 𝜙(0)

2
)−Ψ(𝛽) 1

4
√
𝜋
+ 1

2
(Ψ(𝛽)−Ψ(𝛽))𝜙(0) ⇒

𝐵 = Λ3 +Ψ(𝛽)
1

4
√
𝜋
−Ψ(𝛽)

1

4
√
𝜋
(
√
2 + 1), (C.24)
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where Λ3 =

∫
𝑦1>0,𝑦2>0

𝑦1Ψ(𝛽
∗
(𝑦1, 𝑦2))𝜙(𝑦1)𝜙(𝑦2)𝑑𝑦1𝑑𝑦2

=

∫ ∞

𝑟=0

∫ 𝜋/2

𝜃=0

Ψ(𝛽
∗
)𝑟 sin 𝜃 1

2𝜋
𝑒−𝑟2/2𝑟𝑑𝑟𝑑𝜃 =

√
𝜋
2

∫ 𝜋/2

𝜃=0

Ψ(𝛽
∗
) sin 𝜃 1

2𝜋
𝑑𝜃 ⇒

Λ3 =
1

2
√
2𝜋

[

∫ 𝜃max

𝜃min

Ψ(𝛽
∗
) sin 𝜃𝑑𝜃 +Ψ(𝛽)(1− cos 𝜃min) + Ψ(𝛽) cos 𝜃max]. (C.25)

Because Ψ′(𝛽∣𝐻∞) > 0 and 𝐻∞ ≥ 0,

Λ3 <
1

2
√
2𝜋
Ψ(𝛽)

∫ 𝜃max

𝜃min

sin 𝜃𝑑𝜃 + 1
2
√
2𝜋
Ψ(𝛽)(1− cos 𝜃min) +

1
2
√
2𝜋
Ψ(𝛽) cos 𝜃max

= 1
2
√
2𝜋
[Ψ(𝛽) + (Ψ(𝛽)−Ψ(𝛽)) cos 𝜃min] ⇒

𝐵 < 1
2
√
2𝜋
[ 1√

2
+ cos 𝜃min](Ψ(𝛽)−Ψ(𝛽));

Λ3 >
1

2
√
2𝜋
Ψ(𝛽)

∫ 𝜃max

𝜃min

sin 𝜃𝑑𝜃 + 1
2
√
2𝜋
Ψ(𝛽)(1− cos 𝜃min) +

1
2
√
2𝜋
Ψ(𝛽) cos 𝜃max

= 1
2
√
2𝜋
[Ψ(𝛽) + (Ψ(𝛽)−Ψ(𝛽)) cos 𝜃max] ⇒

𝐵 > 1
2
√
2𝜋
[ 1√

2
+ cos 𝜃max](Ψ(𝛽)−Ψ(𝛽)) > 0.

Let 𝐹1(𝑥) = 𝑥− 𝛾2

16𝜋𝑏𝜎2 (
1√
2
+ cos 𝜃min)

2(Ψ(𝛽)−Ψ(𝛽))2

= 𝑥− 𝐽(𝜃min)(𝑚+ 𝑥
𝛽𝛽
)2,

and 𝐹2(𝑥) = 𝑥− 𝐽(𝜃max)(𝑚+ 𝑥
𝛽𝛽
)2,

where 𝐽(𝜃) = 𝛾2

16𝜋𝑏𝜎2 (2𝛽 − 1)2( 1√
2
+ cos 𝜃)2. So for any 𝑥 ≥ 0,

𝐹1(𝑥) < 𝐹 (𝑥) < 𝐹2(𝑥). (C.26)

𝐹 ′
1(𝑥) = 1− 2𝐽(𝜃min)(𝑚+ 𝑥

𝛽𝛽
) 1
𝛽𝛽
, 𝐹 ′′

1 (𝑥) = −2𝐽(𝜃min)
1

(𝛽𝛽)2
< 0;

𝐹 ′
2(𝑥) = 1− 2𝐽(𝜃max)(𝑚+ 𝑥

𝛽𝛽
) 1
𝛽𝛽
, 𝐹 ′′

2 (𝑥) = −2𝐽(𝜃max)
1

(𝛽𝛽)2
< 0.

Let 𝑥∗ be the solution to 𝐹 ′
1(𝑥) = 0, so 𝐹1(𝑥) takes the maximum at 𝑥∗ =

𝛽𝛽(
𝛽𝛽

2𝐽(𝜃min)
−𝑚),

and 𝐹1(𝑥
∗) = 𝛽𝛽(

𝛽𝛽

4𝐽(𝜃min)
−𝑚).

Because 𝐹1(0) < 0 and 𝐹2(0) < 0, the sufficient condition for the existence of a

solution to (𝐶.23) is 𝐹1(𝑥
∗) ≥ 0, which is equivalent to

(2𝛽 − 1)2

𝛽(1− 𝛽)
≤ 4𝜋𝑏𝜎2

𝛾2𝑚( 1√
2
+ cos 𝜃min)2

. (C.27)

Because (𝐶.27) holds at 𝛽 = 1
2
with strict inequality, the set of the values of 𝛽

135



Appendix C. Proof for Chapter 4

such that 𝛽 > 1
2
and (𝐶.27) holds is nonempty. (𝐶.27) sets a lower bound to 𝛽 with

𝛽 > 0, and guarantees at least one solution to 𝐹1(𝑥) = 0.

(𝐶.27) ⇒ 𝐹 ′
2(0) = 1− 2𝐽(𝜃max)

𝑚
𝛽𝛽
> 1− 2𝐽(𝜃min)

𝑚
𝛽𝛽

≥ 1− 1
2
= 1

2
;

for sufficiently large 𝑥, 𝐹 ′
2(𝑥) < 0, so (𝐶.27) guarantees two solutions to 𝐹2(𝑥) = 0.

Let the bigger solution to 𝐹2(𝑥) = 0 be 𝑥, and the smaller one be 𝑥. Obviously

𝑥∗ ∈ [𝑥, 𝑥]. It follows from (𝐶.26) that 𝐹 (𝑥) < 0, 𝐹 (𝑥) < 0 and 𝐹 (𝑥∗) > 𝐹1(𝑥
∗) ≥ 0.

By the Intermediate Value Theorem, there exists at least one 𝑥 ∈ [𝑥, 𝑥] such that

𝐹 (𝑥) = 0. Because 𝐹 (𝑥) < 𝐹2(𝑥) < 0 for 𝑥 > 0 and 𝑥 /∈ [𝑥, 𝑥], there is no fixed

point outside [𝑥, 𝑥]. So under (𝐶.27), (𝑒∗1, 𝑒
∗
2) constitutes a unique stationary Nash

equilibrium. It is noted that (𝐶.27) is a sufficient condition which can be relaxed

because 𝐹1(𝑥) only gives a lower bound to 𝐹 (𝑥), even if 𝐹1(𝑥
∗) < 0, there may still

exist a solution to 𝐹 (𝑥) = 0 when the maximum value of 𝐹2(𝑥) is positive.

It is also noted that there could be multiple fixed points in [𝑥, 𝑥]. As will be

shown in Corollary 4.1, the buyer’s long-run discounted payoff 𝑣∗𝐵 = 2
√
2𝐻

(1−𝛾)
√
𝑏
. So when

there are multiple fixed points in [𝑥, 𝑥], the largest fixed point while making the (IR)

constraint and Nash constraint hold is optimal.

4. Proof of Corollary 4.1

From the proof of Theorem 4.1, 𝐺′(𝛽
∗
(𝑦1, 𝑦2)) = 0 ⇒

𝑆(𝛽
∗
(𝑦1, 𝑦2)) =

𝑦1
𝑦2

= 𝑅. (C.28)

Because∫ ∫
𝑦1𝑣(𝛽

∗
(𝑦1, 𝑦2))𝜙(𝑦1)𝜙(𝑦2)𝑑𝑦1𝑑𝑦2 =

∫ ∫
𝑦2𝑣(1− 𝛽

∗
(𝑦1, 𝑦2))𝜙(𝑦1)𝜙(𝑦2)𝑑𝑦1𝑑𝑦2,

(𝐶.10) ⇒
𝑣𝐵 = 𝛾 2

𝑏𝜎

∫ ∫
𝑦1𝑣(𝛽

∗
(𝑦1, 𝑦2))𝜙(𝑦1)𝜙(𝑦2)𝑑𝑦1𝑑𝑦2 + 𝛾𝑣𝐵

∫ ∫
𝜙(𝑦1)𝜙(𝑦2)𝑑𝑦1𝑑𝑦2

⇒ 𝑣𝐵 = 2
√
2𝐻

(1−𝛾)
√
𝑏
.

In (𝐶.11), using the definition of 𝑉 in the proof of Theorem 4.1, take 𝛼 = 𝛽
∗
(𝑦1, 𝑦2)

and integrate both sides over 𝑦1 and 𝑦2,

𝑉 =

∫ ∫
(𝛽

∗
(𝑦1, 𝑦2)𝑚− 𝐻

𝛽
∗
(𝑦1,𝑦2)

)𝜙(𝑦1)𝜙(𝑦2)𝑑𝑦1𝑑𝑦2 + 𝛾𝑉

∫ ∫
𝜙(𝑦1)𝜙(𝑦2)𝑑𝑦1𝑑𝑦2

⇒ 𝑉 = 1
1−𝛾

∫ ∫
(𝛽

∗
(𝑦1, 𝑦2)𝑚− 𝐻

𝛽
∗
(𝑦1,𝑦2)

)𝜙(𝑦1)𝜙(𝑦2)𝑑𝑦1𝑑𝑦2.

Substituting this into (𝐶.11) gives the formula for 𝑣∗(𝛼).
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In the following subsections 5 to 7, for simplicity of notation, we use 𝛽 for 𝛽.

5. Proof of Theorem 4.2

For simplicity of notation, we use 𝜃 for 𝜃𝛼. Under the allocation rule defined by

(4.9), Supplier 1’s long-run discounted payoff is

𝑣1(𝛼) = 𝛼𝑚−𝛼𝑏(𝑒1)
2

2
+𝛾[𝑣1(𝛽)Φ(

𝜃 − (𝑒1 − 𝑒2)√
2𝜎

)+𝑣1(1−𝛽)Φ(𝜃 − (𝑒1 − 𝑒2)√
2𝜎

)]. (C.29)

FOC ⇒

−𝛼𝑏𝑒1 + 𝛾(𝑣1(𝛽)− 𝑣1(1− 𝛽))
1√
2𝜎
𝜙(
𝜃 − (𝑒1 − 𝑒2)√

2𝜎
) = 0. (C.30)

Supplier 2’s long-run discounted payoff is

𝑣2(1− 𝛼) = (1− 𝛼)𝑚− (1− 𝛼)𝑏(𝑒2)
2

2

+𝛾[𝑣2(1− 𝛽)Φ(
𝜃 − (𝑒1 − 𝑒2)√

2𝜎
) + 𝑣2(𝛽)Φ(

𝜃 − (𝑒1 − 𝑒2)√
2𝜎

)]. (C.31)

FOC ⇒

−(1− 𝛼)𝑏𝑒2 + 𝛾(𝑣2(𝛽)− 𝑣2(1− 𝛽))
1√
2𝜎
𝜙(
𝜃 − (𝑒1 − 𝑒2)√

2𝜎
) = 0. (C.32)

Because 𝑣1(𝛼) = 𝑣2(𝛼) for any 𝛼, denote it by 𝑣(𝛼) and let Δ𝑣(𝛼) = 𝑣(𝛼)−𝑣(1−𝛼).
For an allocation rule to provide incentive to suppliers, we need Δ𝑣(𝛽) > 0.

The buyer’s problem is

𝑣𝐵(𝛼) = max
𝛽,𝜃

{𝛼𝑒1+(1−𝛼)𝑒2+𝛾[𝑣𝐵(𝛽)Φ(𝜃 − (𝑒1 − 𝑒2)√
2𝜎

)+𝑣𝐵(1−𝛽)Φ(𝜃 − (𝑒1 − 𝑒2)√
2𝜎

)]}
(C.33)

subject to (𝐶.30) and (𝐶.32).

Note that 𝑣𝐵(𝛽) = 𝑣𝐵(1 − 𝛽). Let 𝜂1 and 𝜂2 be the Lagrangian multipliers of

(𝐶.30) and (𝐶.32).
∂ℒ
∂𝜃

= −(𝜂1 + 𝜂2)𝛾Δ𝑣(𝛽)
𝜃−(𝑒∗1−𝑒∗2)

2𝜎2
1√
2𝜎
𝜙(

𝜃−(𝑒∗1−𝑒∗2)√
2𝜎

) = 0 ⇒ the optimal

𝜃∗ = 𝑒∗1 − 𝑒∗2. (C.34)
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It follows from (𝐶.30), (𝐶.32) and (𝐶.34) that

𝑒∗1 =
𝛾Δ𝑣(𝛽)

𝛼
√
2𝑏𝜎

𝜙(
𝜃∗ − (𝑒∗1 − 𝑒∗2)√

2𝜎
) =

𝛾Δ𝑣(𝛽)

2𝛼
√
𝜋𝑏𝜎

, (C.35)

𝑒∗2 =
𝛾Δ𝑣(𝛽)

2(1− 𝛼)
√
𝜋𝑏𝜎

. (C.36)

For 𝛼 ∕= 1
2
, 𝑒∗1 ∕= 𝑒∗2. So 𝜃

∗ ∕= 0.

6. Proof of Corollary 4.2

The formula for 𝜃∗𝛼 follows from (𝐶.35) and (𝐶.36). Substituting this formula,

(𝐶.35) and (𝐶.36) into the buyer’s objective function, (𝐶.29) and (𝐶.31), we obtain

𝑣𝐵(𝛼) =
𝛾

1−𝛾
Δ𝑣(𝛽)√

𝜋𝑏𝜎
,

𝑣(𝛼) = 𝛼𝑚− (𝛾Δ𝑣(𝛽))2

8𝜋𝛼𝑏𝜎2 + 𝛾
2
(𝑣(𝛽) + 𝑣(1− 𝛽)) ⇒

𝑣(𝛽) = 𝛽𝑚− (𝛾Δ𝑣(𝛽))2

8𝜋𝛽𝑏𝜎2
+
𝛾

2
(𝑣(𝛽) + 𝑣(1− 𝛽)), (C.37)

𝑣(1− 𝛽) = (1− 𝛽)𝑚− (𝛾Δ𝑣(𝛽))2

8𝜋(1− 𝛽)𝑏𝜎2
+
𝛾

2
(𝑣(𝛽) + 𝑣(1− 𝛽)). (C.38)

⇒ Δ𝑣(𝛽) = (2𝛽 − 1)𝑚+ (𝛾Δ𝑣(𝛽))2(2𝛽−1)
8𝜋𝑏𝜎2𝛽(1−𝛽)

⇒ Δ𝑣(𝛽) is the solution to

𝛾2(2𝛽 − 1)

8𝜋𝑏𝜎2𝛽(1− 𝛽)
(Δ𝑣(𝛽))2 −Δ𝑣(𝛽) + (2𝛽 − 1)𝑚 = 0. (C.39)

Let 𝑊 = 𝛾2

8𝜋𝑏𝜎2
1−2𝛽
𝛽(1−𝛽)

. Then Δ𝑣(𝛽) = 1
2𝑊

(−1±√
1 + 4𝑊 (2𝛽 − 1)𝑚).

For 𝛽 > 1
2
, 𝑊 < 0 and

√
1 + 4𝑊 (2𝛽 − 1)𝑚 < 1; and for there existing a solution

to (𝐶.39), we need

1 + 4𝑊 (2𝛽 − 1)𝑚 ≥ 0. (C.40)

This could constrain the value of the optimal 𝛽. Δ𝑣(𝛽) = 0 at 𝛽 = 1
2
, so

Δ𝑣(𝛽) =
1

−2𝑊
(1−

√
1 + 4𝑊 (2𝛽 − 1)𝑚). (C.41)

Let Σ𝑣(𝛽) = 𝑣(𝛽) + 𝑣(1− 𝛽). (𝐶.37) + (𝐶.38) ⇒

(1− 𝛾)Σ𝑣(𝛽) = 𝑚− (𝛾Δ𝑣(𝛽))2

8𝜋𝑏𝜎2𝛽(1− 𝛽)
. (C.42)
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It follows that 𝑣(𝛽) = 1
2
(Σ𝑣(𝛽) + Δ𝑣(𝛽)), 𝑣(1− 𝛽) = 1

2
(Σ𝑣(𝛽)−Δ𝑣(𝛽)).

Let 𝐾 = 𝛾2

8𝜋𝑏𝜎2 . For 𝛽 >
1
2
,

∂𝑊
∂𝛽

= −𝐾( 1
𝛽2 +

1
(1−𝛽)2

) < 0, ∂
∂𝛽
( 1
−2𝑊

) = 1
2𝑊 2

∂𝑊
∂𝛽

< 0,
∂
∂𝛽
(
√
1 + 4𝑊 (2𝛽 − 1)𝑚) = 1

2
(1+ 4𝑊 (2𝛽− 1)𝑚)−

1
2 [−4(2𝛽− 1)𝑚𝐾( 1

𝛽2 +
1

(1−𝛽)2
)+

8𝑊𝑚]

= −2(1 + 4𝑊 (2𝛽 − 1)𝑚)−
1
2𝑚[(2𝛽 − 1)𝐾( 1

𝛽2 +
1

(1−𝛽)2
) + 2𝐾(2𝛽−1)

𝛽(1−𝛽)
]

= −2(1 + 4𝑊 (2𝛽 − 1)𝑚)−
1
2
𝐾(2𝛽−1)𝑚

𝛽2(1−𝛽)2
= 2(1 + 4𝑊 (2𝛽 − 1)𝑚)−

1
2

𝑚𝑊
𝛽(1−𝛽)

.

By (𝐶.41),
∂Δ𝑣(𝛽)

∂𝛽
= 1

2𝑊 2
∂𝑊
∂𝛽

(1−√
1 + 4𝑊 (2𝛽 − 1)𝑚) + (1 + 4𝑊 (2𝛽 − 1)𝑚)−

1
2

𝑚
𝛽(1−𝛽)

= − 1
2𝐾(2𝛽−1)2

(𝛽2+(1−𝛽)2)(1−√
1 + 4𝑊 (2𝛽 − 1)𝑚)+(1+4𝑊 (2𝛽−1)𝑚)−

1
2

𝑚
𝛽(1−𝛽)

= (1− 4𝐾(2𝛽−1)2𝑚
𝛽(1−𝛽)

)−
1
2 [ 1

2𝐾(2𝛽−1)2
(1−

√
1− 4𝐾(2𝛽−1)2𝑚

𝛽(1−𝛽)
)(𝛽2 + (1− 𝛽)2)− 𝑚(2𝛽−1)2

𝛽(1−𝛽)
].

At 𝛽 = 1
2
, (1− 4𝐾(2𝛽−1)2𝑚

𝛽(1−𝛽)
)−

1
2 = 1, 𝛽2 + (1− 𝛽)2 = 1

2
, (2𝛽 − 1)2 𝑚

𝛽(1−𝛽)
= 0,

lim𝛽→ 1
2

1
2𝐾(2𝛽−1)2

(1−
√
1− 4𝐾(2𝛽−1)2𝑚

𝛽(1−𝛽)
) = − lim𝛽→ 1

2

1
8𝐾(2𝛽−1)𝛽

2(1+4𝑊 (2𝛽−1)𝑚)−
1
2

𝑚𝑊
𝛽(1−𝛽)

= lim𝛽→ 1
2

𝑚
4𝛽3(1−𝛽)2

(1 + 4𝑊 (2𝛽 − 1)𝑚)−
1
2 = 8𝑚,

so

lim
𝛽→ 1

2

∂Δ𝑣(𝛽)

∂𝛽
> 0. (C.43)

∂2Δ𝑣(𝛽)

∂𝛽2 = 1

2𝐾(1+4𝑊 (2𝛽−1)𝑚)
3
2 (2𝛽−1)3

[
(
1−√

1 + 4𝑊 (2𝛽 − 1)𝑚
)2 (

2
√

1 + 4𝑊 (2𝛽 − 1)𝑚+ 1
)

+4𝑚2𝐾2(2𝛽−1)6

𝛽3(1−𝛽)3
]

⇒ ∂2Δ𝑣(𝛽)

∂𝛽2 > 0 for 𝛽 > 1
2
and ∂2Δ𝑣(𝛽)

∂𝛽2 < 0 for 𝛽 < 1
2
;

so Δ𝑣(𝛽) is convex in 𝛽 > 1
2
and concave in 𝛽 < 1

2
. By (𝐶.43), ∂Δ𝑣(𝛽)

∂𝛽
> 0 for

𝛽 satisfying (𝐶.40); because 𝑣𝐵(𝛽) =
𝛾

1−𝛾
Δ𝑣(𝛽)√

𝜋𝑏𝜎
, the optimal 𝛽∗ should be as large as

possible and is constrained by (𝐶.40).

∙ Supplier’s individual rationality constraint

(𝐶.39) and (𝐶.42) ⇒ Σ𝑣(𝛽) = 1
1−𝛾

[2𝑚− 1
2𝛽−1

Δ𝑣(𝛽)],

so 𝑣(1− 𝛽) = 𝑚
1−𝛾

− 1
2
(1 + 1

(1−𝛾)(2𝛽−1)
)Δ𝑣(𝛽) ⇒

𝑣(1− 𝛽) =
𝑚

1− 𝛾
+

1

4𝑊
(1+

1

(1− 𝛾)(2𝛽 − 1)
)(1−

√
1 + 4𝑊 (2𝛽 − 1)𝑚) ≥ 0. (C.44)

∙ Nash equilibrium condition (suppliers’ second-order conditions)
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We need to check if at the optimal 𝛽∗, the Nash equilibrium between the two

suppliers exists and is unique.

SOC for Supplier 1’s and Supplier 2’s problems:
∂2𝑣1(𝛼)
(∂𝑒1)2

= −𝛼𝑏+ 𝛾Δ𝑣(𝛽) 1√
2𝜎

𝜃−(𝑒1−𝑒2)
2𝜎2 𝜙(𝜃−(𝑒1−𝑒2)√

2𝜎
)

and ∂2𝑣2(1−𝛼)
(∂𝑒2)2

= −(1− 𝛼)𝑏− 𝛾Δ𝑣(𝛽) 1√
2𝜎

𝜃−(𝑒1−𝑒2)
2𝜎2 𝜙( 𝜃−(𝑒1−𝑒2)√

2𝜎
).

Using the fact that 𝑥𝜙(𝑥) is maximized at 𝑥 = 1, the sufficient condition for the

existence of a unique Nash equilibrium is

𝛾Δ𝑣(𝛽)

2𝜎2
𝜙(1) ≤ 𝑏min{𝛼, 1− 𝛼} = 𝑏(1− 𝛽). (C.45)

This condition also guarantees that using the suppliers’ FOCs for the incentive com-

patibility constraints is sufficient.

So the optimal 𝛽∗ is constrained by (𝐶.40), (𝐶.44) and (𝐶.45).
∂𝑣(1−𝛽)

∂𝛽
= 1

(1−𝛾)(2𝛽−1)2
1

−2𝑊
(1−√

1 + 4𝑊 (2𝛽 − 1)𝑚)

−1
2
(1 + 1

(1−𝛾)(2𝛽−1)
)[− 1

2𝐾(2𝛽−1)2
(𝛽2 + (1 − 𝛽)2)(1 − √

1 + 4𝑊 (2𝛽 − 1)𝑚) + (1 +

4𝑊 (2𝛽 − 1)𝑚)−
1
2

𝑚
𝛽(1−𝛽)

]

= (1−√
1 + 4𝑊 (2𝛽 − 1)𝑚) 1

4𝐾(2𝛽−1)2
(𝛽2 + (1− 𝛽)2 + 1

(1−𝛾)(2𝛽−1)
)

−(1 + 4𝑊 (2𝛽 − 1)𝑚)−
1
2

𝑚
2𝛽(1−𝛽)

− 1
2

1
(1−𝛾)(2𝛽−1)

(1 + 4𝑊 (2𝛽 − 1)𝑚)−
1
2

𝑚
𝛽(1−𝛽)

= (1+4𝑊 (2𝛽− 1)𝑚)−
1
2 [(1+4𝑊 (2𝛽− 1)𝑚)

1
2

1
4𝐾(2𝛽−1)2

(𝛽2+(1−𝛽)2+ 1
(1−𝛾)(2𝛽−1)

)

− 1
4𝐾(2𝛽−1)2

(𝛽2+(1−𝛽)2+ 1
(1−𝛾)(2𝛽−1)

)+ 𝑚
𝛽(1−𝛽)

(𝛽2+(1−𝛽)2+ 1
(1−𝛾)(2𝛽−1)

)− 𝑚
2𝛽(1−𝛽)

−
1
2

1
(1−𝛾)(2𝛽−1)

𝑚
𝛽(1−𝛽)

]

= (1+4𝑊 (2𝛽−1)𝑚)−
1
2{−[(1− (1+4𝑊 (2𝛽−1)𝑚)

1
2 ) 1

4𝐾(2𝛽−1)2
− 𝑚

𝛽(1−𝛽)
](𝛽2+(1−

𝛽)2 + 1
(1−𝛾)(2𝛽−1)

)− 𝑚
2𝛽(1−𝛽)

− 1
(1−𝛾)(2𝛽−1)

𝑚
2𝛽(1−𝛽)

}
= −(1+4𝑊 (2𝛽−1)𝑚)−

1
2 [ 1

4𝐾(2𝛽−1)2
(1−(1+4𝑊 (2𝛽−1)𝑚)

1
2 )(1+4𝑊 (2𝛽−1)(𝛽2+

(1− 𝛽)2 + 1
(1−𝛾)(2𝛽−1)

) + 𝑚
2𝛽(1−𝛽)

(1 + 1
(1−𝛾)(2𝛽−1)

)], so

∂𝑣(1− 𝛽)

∂𝛽
< 0 for 𝛽 >

1

2
. (C.46)

Let 𝛽 > 1
2
be the solution to 1 + 4𝑊 (2𝛽 − 1)𝑚 = 0. At 𝛽,

𝑣(1− 𝛽) = 𝑚
1−𝛾

+ 1
4𝑊

( 1

(1−𝛾)(2𝛽−1)
+ 1)

= 1

4𝑊 (1−𝛾)(2𝛽−1)
[4𝑊 (2𝛽 − 1)𝑚+ 1 + (1− 𝛾)(2𝛽 − 1)] = 1

4𝑊
< 0,

by (𝐶.46), the solution to 𝑣(1− 𝛽) = 0 is smaller than 𝛽;

for 𝛽 > 1
2
, ∂

∂𝛽
(1 + 4𝑊 (2𝛽 − 1)𝑚) = 4𝑚𝑊

𝛽(1−𝛽)
< 0. So (𝐶.40) holds at any 𝛽 ≤ 𝛽,
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(𝐶.44) implies (𝐶.40). The optimal 𝛽∗ is a boundary solution constrained by (𝐶.44)

and (𝐶.45).

7. Proof of Proposition 4.1

Note that we only consider 𝛽 > 1
2
. Let 𝑒 = 𝑒∗𝛽 − 𝑒∗1−𝛽. From (𝐶.30) and (𝐶.32), 𝑒

solves

𝑒 =
𝛾Δ𝑣(𝛽)√

2𝑏𝜎
𝜙(

𝑒√
2𝜎

)
1− 2𝛽

𝛽(1− 𝛽)
. (C.47)

So 𝑒∗𝛽 = 𝛾Δ𝑣(𝛽)√
2𝛽𝑏𝜎

𝜙( 𝑒√
2𝜎
) = (1−𝛽)𝑒

1−2𝛽
, 𝑒∗1−𝛽 = 𝛽𝑒

1−2𝛽
.

(𝐶.29) and (𝐶.31) become

𝑣1(𝛽) = 𝛽𝑚− 𝛽
𝑏(𝑒𝛽)

2

2
+ 𝛾[𝑣1(𝛽)Φ(

−𝑒√
2𝜎
) + 𝑣1(1− 𝛽)Φ( −𝑒√

2𝜎
)],

𝑣2(1− 𝛽) = (1− 𝛽)𝑚− (1− 𝛽)
𝑏(𝑒1−𝛽)

2

2
+ 𝛾[𝑣2(1− 𝛽)Φ( −𝑒√

2𝜎
) + 𝑣2(𝛽)Φ(

−𝑒√
2𝜎
)]

⇒ Σ𝑣(𝛽) = 1
1−𝛾

(𝑚− 𝑏𝛽(1−𝛽)
2(2𝛽−1)2

(𝑒)2);

Δ𝑣(𝛽) = (2𝛽 − 1)𝑚+ 𝑏
2
𝛽(1−𝛽)
2𝛽−1

𝑒2 − 𝛾Δ𝑣(𝛽)(2Φ( −𝑒√
2𝜎
)− 1)

⇒ Δ𝑣(𝛽) = [1 + 𝛾(2Φ( −𝑒√
2𝜎
)− 1)]−1[(2𝛽 − 1)𝑚+ 𝑏

2
𝛽(1−𝛽)
2𝛽−1

𝑒2],

substituting into (𝐶.47),

𝑒 = − 𝛾√
2𝑏𝜎

𝜙(
𝑒√
2𝜎

)(
(2𝛽 − 1)2

𝛽(1− 𝛽)
𝑚+

𝑏

2
𝑒2)[2𝛾Φ(

−𝑒√
2𝜎

) + 1− 𝛾]−1. (C.48)

So given any 𝛽, the optimal 𝑒 can be solved from (𝐶.48).

∂𝑒
∂𝛽

= 𝛾√
2𝑏𝜎

𝑒
2𝜎2𝜙(

𝑒√
2𝜎
)( (2𝛽−1)2

𝛽(1−𝛽)
𝑚+ 𝑏

2
𝑒2)[2𝛾Φ( −𝑒√

2𝜎
) + 1− 𝛾]−1 ∂𝑒

∂𝛽

− 𝛾√
2𝑏𝜎
𝜙( 𝑒√

2𝜎
)( (2𝛽−1)𝑚

𝛽2(1−𝛽)2
+ 𝑏𝑒 ∂𝑒

∂𝛽
)[2𝛾Φ( −𝑒√

2𝜎
) + 1− 𝛾]−1

− 𝛾2

𝜎2 (𝜙(
𝑒√
2𝜎
))2( (2𝛽−1)2

𝛽(1−𝛽)
𝑚+ 𝑏

2
𝑒2)[2𝛾Φ( −𝑒√

2𝜎
) + 1− 𝛾]−2 ∂𝑒

∂𝛽

⇒ ∂𝑒
∂𝛽

= [(1
𝑒
+ 𝑒

2𝜎2 )(
(2𝛽−1)2

𝛽(1−𝛽)
𝑚+ 𝑏

2
𝑒2) + 𝑏𝑒]−1 (2𝛽−1)𝑚

𝛽2(1−𝛽)2

⇒ ∂𝑒
∂𝛽
< 0 for 𝛽 > 1

2
.

Because 𝑣𝐵(𝛽) = 𝑣𝐵(1− 𝛽), we only consider 𝑣𝐵(𝛽) for 𝛽 >
1
2
.

From (𝐶.33), 𝑣𝐵(𝛽) = − 2𝛽(1−𝛽)𝑒
(1−𝛾)(2𝛽−1)

.

∂𝑣𝐵(𝛽)
∂𝛽

=
2(2𝛽2−2𝛽+1)
(1−𝛾)(2𝛽−1)2

𝑒− 2𝛽(1−𝛽)
(1−𝛾)(2𝛽−1)

∂𝑒
∂𝛽

=
2(2𝛽2−2𝛽+1)
(1−𝛾)(2𝛽−1)2

𝑒− 2𝑚
(1−𝛾)𝛽(1−𝛽)

[(1
𝑒
+ 𝑒

2𝜎2 )(
(2𝛽−1)2

𝛽(1−𝛽)
𝑚+ 𝑏

2
𝑒2) + 𝑏𝑒]−1

= 2
1−𝛾

[2𝛽
2−2𝛽+1

(2𝛽−1)2
𝑒− 𝑚

𝛽(1−𝛽)
((1

𝑒
+ 𝑒

2𝜎2 )(
(2𝛽−1)2

𝛽(1−𝛽)
𝑚+ 𝑏

2
𝑒2) + 𝑏𝑒)−1]

⇒
∂2𝑣𝐵(𝛽)

∂𝛽2 = 2
(1−𝛾)

{− 2
(2𝛽−1)3

𝑒+
(2𝛽2−2𝛽+1)

(2𝛽−1)2
∂𝑒
∂𝛽

− (2𝛽−1)𝑚

𝛽2(𝛽−1)2
[(1

𝑒
+ 𝑒

2𝜎2 )(
(2𝛽−1)2

𝛽(1−𝛽)
𝑚+ 𝑏

2
𝑒2)+𝑏𝑒]−1

141



Appendix C. Proof for Chapter 4

+ 𝑚
𝛽(1−𝛽)

[(1
𝑒
+ 𝑒

2𝜎2 )(
(2𝛽−1)2

𝛽(1−𝛽)
𝑚+ 𝑏

2
𝑒2) + 𝑏𝑒]−2[(− 1

𝑒2
+ 1

2𝜎2 )(
(2𝛽−1)2

𝛽(1−𝛽)
𝑚+ 𝑏

2
𝑒2) ∂𝑒

∂𝛽

+(1
𝑒
+ 𝑒

2𝜎2 )(
(2𝛽−1)𝑚

𝛽2(𝛽−1)2
+ 𝑏𝑒 ∂𝑒

∂𝛽
) + 𝑏 ∂𝑒

∂𝛽
]}

= 2
(1−𝛾)

{− 2
(2𝛽−1)3

𝑒+
(2𝛽2−2𝛽+1)

(2𝛽−1)2
∂𝑒
∂𝛽

− ∂𝑒
∂𝛽

+ ∂𝑒
∂𝛽

𝛽(1−𝛽)
(2𝛽−1)

[(1
𝑒
+ 𝑒

2𝜎2 )(
(2𝛽−1)2

𝛽(1−𝛽)
𝑚+ 𝑏

2
𝑒2) + 𝑏𝑒]−1[(− 1

𝑒2
+ 1

2𝜎2 )(
(2𝛽−1)2

𝛽(1−𝛽)
𝑚+ 𝑏

2
𝑒2) ∂𝑒

∂𝛽

+(1
𝑒
+ 𝑒

2𝜎2 )(
(2𝛽−1)𝑚

𝛽2(𝛽−1)2
+ 𝑏𝑒 ∂𝑒

∂𝛽
) + 𝑏 ∂𝑒

∂𝛽
]}

= 2
(1−𝛾)

{− 2
(2𝛽−1)3

𝑒+ 2𝛽(1−𝛽)

(2𝛽−1)2
∂𝑒
∂𝛽
+ ∂𝑒

∂𝛽
𝛽(1−𝛽)
(2𝛽−1)

[(1
𝑒
+ 𝑒

2𝜎2 )(
(2𝛽−1)2

𝛽(1−𝛽)
𝑚+ 𝑏

2
𝑒2)+𝑏𝑒]−1[ ∂𝑒

∂𝛽
[(− 1

𝑒2
+

1
2𝜎2 )

(2𝛽−1)2

𝛽(1−𝛽)
𝑚+ 3𝑏

2
(1 + 𝑒2

2𝜎2 )] + (1
𝑒
+ 𝑒

2𝜎2 )
(2𝛽−1)𝑚

𝛽2(𝛽−1)2
]}

= 2
(1−𝛾)

{− 1
4𝜎2

𝑒2

𝛽(1−𝛽)(2𝛽−1)2
(𝛽 (1− 𝛽) (𝑒2 + 3

2𝜎2 ) + 2𝑚 (2𝛽 − 1)2)

+ ∂𝑒
∂𝛽

𝛽(1−𝛽)
(2𝛽−1)

[(1
𝑒
+ 𝑒

2𝜎2 )(
(2𝛽−1)2

𝛽(1−𝛽)
𝑚+ 𝑏

2
𝑒2)+𝑏𝑒]−2 (2𝛽−1)𝑚

𝛽2(1−𝛽)2
[ 3
2𝜎2

(2𝛽−1)2

𝛽(1−𝛽)
𝑚+3𝑏+7𝑏𝑒2

4𝜎2 +( 𝑒
2𝜎2 )

2( (2𝛽−1)2

𝛽(1−𝛽)
𝑚+

𝑏𝑒2

2
)]}.

For 𝛽 > 1
2
, because ∂𝑒

∂𝛽
< 0, ∂2𝑣𝐵(𝛽)

∂𝛽2 < 0, thus 𝑣𝐵(𝛽) is concave in 𝛽.

It follows from (𝐶.48) that

[2𝛾Φ( −𝑒√
2𝜎
) + 1− 𝛾]𝑒/𝜙( 𝑒√

2𝜎
) = − 𝛾√

2𝑏𝜎
( (2𝛽−1)2

𝛽(1−𝛽)
𝑚+ 𝑏

2
𝑒2), so 𝑒→ −∞ as 𝛽 → 1.

∂𝑣𝐵(𝛽)
∂𝛽

= 2
1−𝛾

[2𝛽
2−2𝛽+1

(2𝛽−1)2
𝑒− 𝑚

( 1
𝑒
+ 𝑒

2𝜎2 )((2𝛽−1)2𝑚+ 𝑏
2
𝛽(1−𝛽)𝑒2)+𝑏𝛽(1−𝛽)𝑒

]

𝑚
( 1
𝑒
+ 𝑒

2𝜎2 )((2𝛽−1)2𝑚+ 𝑏
2
𝛽(1−𝛽)𝑒2)+𝑏𝛽(1−𝛽)𝑒

→ 0 as 𝛽 → 1, so ∂𝑣𝐵(𝛽)
∂𝛽

→ −∞ as 𝛽 → 1.

Because 𝑣𝐵(𝛽) is concave in 𝛽, the solution of 𝛽 to ∂𝑣𝐵(𝛽)
∂𝛽

= 0 is smaller than 1, so

the optimal 𝛽∗ < 1.

It follows from the formulas for Σ𝑣(𝛽) and Δ𝑣(𝛽) that

𝑣(1−𝛽) = 1
2
[ 1
1−𝛾

(𝑚− 𝑏𝛽(1−𝛽)
2(2𝛽−1)2

(𝑒)2)−(1+𝛾(2Φ( −𝑒√
2𝜎
)−1))−1((2𝛽−1)𝑚+ 𝑏𝛽(1−𝛽)

2(2𝛽−1)
𝑒2)].

Similar to the case under the HWTA rule, the sufficient condition for the ex-

istence of a unique Nash equilibrium between the two suppliers is (𝐶.44) together

with (𝐶.48). The optimal 𝛽∗ obtained from ∂𝑣𝐵(𝛽)
∂𝛽

= 0 needs to be checked with

the Nash equilibrium condition and the supplier’s individual rationality constraint

(𝑣(1− 𝛽) ≥ 0 together with (𝐶.48)). If either constraint is binding, then the optimal

𝛽∗ is a boundary solution.

8. Method for numerical calculation for the optimal allocation rule

𝛽1∗
𝛼 (𝑥1, 𝑥2) and 𝑔(𝛽) = 𝛽

∙ Computing the right hand side of (4.8)

Using polar coordinates defined in (𝐶.14), tan 𝜃 = 𝑦1
𝑦2

= 𝑚+𝐻/(1−𝛽)2

𝑚+𝐻/𝛽2 . By (𝐶.24)

and (𝐶.25), the right hand side of (4.8) is
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𝐵 = 1
2
√
2𝜋
[

∫ 𝜃max

𝜃min

Ψ(𝛽) sin 𝜃𝑑𝜃 +Ψ(𝛽)( 1√
2
+ cos 𝜃max)−Ψ(𝛽)( 1√

2
+ cos 𝜃min)].

(𝐶.28) ⇒

(𝑅− 1)𝑚𝛽4 − 2(𝑅− 1)𝑚𝛽3 + (𝑅− 1)(𝑚+𝐻)𝛽2 − 2𝑅𝐻𝛽 +𝑅𝐻 = 0, (C.49)

where 𝑅 = tan 𝜃. So the value of 𝛽 corresponding to 𝜃 is determined by (𝐶.49),

and

∫ 𝜃max

𝜃min

Ψ(𝛽) sin 𝜃𝑑𝜃 can be computed numerically by adding Ψ(𝛽) sin 𝜃 over 𝜃 ∈
[𝜃min, 𝜃max].

∙ Steps used for numerical calculation of 𝑣𝐵, 𝑣(𝛼) and 𝑒
∗
1, 𝑒

∗
2

Step 1. Compute 𝐻. A search method is used. For any 𝐻 in a range of values,

using (𝐶.49) to compute 𝛽 corresponding to 𝜃 and calculate

∫ 𝜃max

𝜃min

Ψ(𝛽) sin 𝜃𝑑𝜃, then

using the above numerical method to obtain the RHS of (4.8). If (4.8) holds at a

value of 𝐻, then 𝐻 is optimal under the optimal allocation rule 𝛽
∗
(𝑦1, 𝑦2).

Step 2. Using the result in Corollary 4.1 and Theorem 4.1,

𝑣𝐵 = 2
√
2𝐻

(1−𝛾)
√
𝑏
, 𝑒∗1 =

√
2𝐻

𝛼
√
𝑏
, 𝑒∗2 =

√
2𝐻

(1−𝛼)
√
𝑏
.

Step 3. Compute 𝑣(𝛼).

Using the result in Corollary 4.1,

𝑉 =
1

1− 𝛾

∫ ∫
(𝛽

∗
(𝑦1, 𝑦2)𝑚− 𝐻

𝛽
∗
(𝑦1, 𝑦2)

)𝜙(𝑦1)𝜙(𝑦2)𝑑𝑦1𝑑𝑦2. (C.50)

By (𝐶.15) and (𝐶.16),∫
𝑦1

∫
𝑦2

Ψ(𝛽
∗
(𝑦1, 𝑦2))𝜙(𝑦1)𝜙(𝑦2)𝑑𝑦1𝑑𝑦2 =

1
2𝜋

∫ 𝜃max

𝜃min

Ψ(𝛽
∗
(𝑦1, 𝑦2))𝑑𝜃+Ψ(𝛽)(3

8
+ 𝜃min

2𝜋
)+

Ψ(𝛽)(5
8
− 𝜃max

2𝜋
).

Similar to the calculation for the RHS of (4.8) as above,

∫ 𝜃max

𝜃min

Ψ(𝛽
∗
(𝑦1, 𝑦2))𝑑𝜃 can

be computed numerically by using the optimal 𝐻 in Step 1, and adding Ψ(𝛽) over

𝜃 ∈ [𝜃min, 𝜃max]. This gives the calculation of 𝑉 , then for any 𝛼, 𝑣(𝛼) = 𝛼𝑚−𝐻
𝛼
+𝛾𝑉 .

9. Proof of Theorem 4.3

We use backward induction to solve this problem. Let 𝑦𝑖𝑡 =
𝑥𝑖
𝑡−𝑒𝑖∗𝑡
𝜎

, where 𝑖 = 1, 2,

𝑡 = 1, 2, ..., 𝑒𝑖∗𝑡 is Supplier 𝑖’s optimal effort level in period 𝑡.
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Because there is no future business from the buyer beyond period 𝑇 + 1, in pe-

riod 𝑇 + 1, both suppliers have no incentive for investment in performance, so both

suppliers’ optimal effort levels are 0, 𝑣𝐵𝑇+1(𝛼𝑇+1) = 0, 𝑣1𝑇+1(𝛼𝑇+1) = 𝛼𝑇+1𝑚, 𝑣
2
𝑇+1(1−

𝛼𝑇+1) = (1− 𝛼𝑇+1)𝑚.

∙ Period 𝑇 problem:

The buyer’s profit to go is

𝑣𝐵𝑇 (𝛼𝑇 ) = 𝛼𝑇 𝑒
1
𝑇 + (1− 𝛼𝑇 )𝑒

2
𝑇 . (C.51)

Supplier 1’s expected profit to go is

𝑣1𝑇 (𝛼𝑇 ) = 𝑚𝛼𝑇 − 𝑏(𝑒1𝑇 )2

2
+ 𝛾𝑚

∫
𝑥1
𝑇

∫
𝑥2
𝑇

𝛽𝛼
𝑇+1(𝑥

1
𝑇 , 𝑥

2
𝑇 )𝑓(𝑥

1
𝑇 ∣𝑒1𝑇 )𝑓(𝑥2𝑇 ∣𝑒2𝑇 )𝑑𝑥1𝑇𝑑𝑥2𝑇

FOC ⇒
∂𝑣1𝑇 (𝛼𝑇 )

∂𝑒1𝑇
= −𝑏𝑒1𝑇 + 𝛾𝑚

∫
𝑥1
𝑇

∫
𝑥2
𝑇

𝛽𝛼
𝑇+1(𝑥

1
𝑇 , 𝑥

2
𝑇 )𝑓

1(𝑥1𝑇 ∣𝑒1𝑇 )𝑓(𝑥2𝑇 ∣𝑒2𝑇 )𝑑𝑥1𝑇𝑑𝑥2𝑇 = 0 ⇒

𝑒1𝑇 =
𝛾𝑚

𝑏

∫
𝑥1
𝑇

∫
𝑥2
𝑇

𝛽𝛼
𝑇+1(𝑥

1
𝑇 , 𝑥

2
𝑇 )𝑓

1(𝑥1𝑇 ∣𝑒1𝑇 )𝑓(𝑥2𝑇 ∣𝑒2𝑇 )𝑑𝑥1𝑇𝑑𝑥2𝑇 . (C.52)

Similarly, the FOC for Supplier 2’s expected profit to go is
∂𝑣2𝑇 (1−𝛼𝑇 )

∂𝑒2𝑇
= −𝑏𝑒2𝑇 +𝛾𝑚

∫
𝑥1
𝑇

∫
𝑥2
𝑇

(1−𝛽𝛼
𝑇+1(𝑥

1
𝑇 , 𝑥

2
𝑇 ))𝑓(𝑥

1
𝑇 ∣𝑒1𝑇 )𝑓2(𝑥2𝑇 ∣𝑒2𝑇 )𝑑𝑥1𝑇𝑑𝑥2𝑇 = 0 ⇒

𝑒2𝑇 = −𝛾𝑚
𝑏

∫
𝑥1
𝑇

∫
𝑥2
𝑇

𝛽𝛼
𝑇+1(𝑥

1
𝑇 , 𝑥

2
𝑇 )𝑓(𝑥

1
𝑇 ∣𝑒1𝑇 )𝑓2(𝑥2𝑇 ∣𝑒2𝑇 )𝑑𝑥1𝑇𝑑𝑥2𝑇 . (C.53)

(𝐶.52) and (𝐶.53) are necessary conditions for (𝑒1𝑇 , 𝑒
2
𝑇 ) to be a Nash equilibrium.

Substituting (𝐶.52) and (𝐶.53) into (𝐶.51), the buyer’s problem becomes

𝑣𝐵𝑇 (𝛼𝑇 ) =

∫
𝑦1𝑇

∫
𝑦2𝑇

𝛽
𝛼

𝑇+1(𝑦
1
𝑇 , 𝑦

2
𝑇 )

𝛾𝑚
𝑏𝜎
[𝛼𝑇𝑦

1
𝑇 − (1− 𝛼𝑇 )𝑦

2
𝑇 ]𝜙(𝑦

1
𝑇 )𝜙(𝑦

2
𝑇 )𝑑𝑦

1
𝑇𝑑𝑦

2
𝑇 .

Pointwise optimization w.r.t. 𝛽
𝑇+1

𝛼 ⇒
the optimal value is determined by the sign of 𝛾𝑚

𝑏𝜎
[𝛼𝑇𝑦

1
𝑇 − (1−𝛼𝑇 )𝑦

2
𝑇 ]𝜙(𝑦

1
𝑇 )𝜙(𝑦

2
𝑇 ).

So to induce (𝑒1𝑇 , 𝑒
2
𝑇 ) defined by (𝐶.52) and (𝐶.53), the optimal allocation rule is

a HWTA one such that

𝛽
𝛼

𝑇+1(𝑦
1
𝑇 , 𝑦

2
𝑇 ) =

{
𝛽𝑇+1 𝛼𝑇𝑦

1
𝑇 > (1− 𝛼𝑇 )𝑦

2
𝑇

1− 𝛽𝑇+1 𝛼𝑇𝑦
1
𝑇 < (1− 𝛼𝑇 )𝑦

2
𝑇

, (C.54)
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and

𝛽𝛼
𝑇+1(𝑥

1
𝑇 , 𝑥

2
𝑇 ) =

{
𝛽𝑇+1 𝛼𝑇 (𝑥

1
𝑇 − 𝑒1∗𝑇 ) > (1− 𝛼𝑇 )(𝑥

2
𝑇 − 𝑒2∗𝑇 )

1− 𝛽𝑇+1 𝛼𝑇 (𝑥
1
𝑇 − 𝑒1∗𝑇 ) < (1− 𝛼𝑇 )(𝑥

2
𝑇 − 𝑒2∗𝑇 )

.

Using the fact that∫
𝑦

𝜙(𝑦)𝜙(
1− 𝛼

𝛼
𝑦)𝑑𝑦 =

𝛼√
2𝜋Γ

∫
𝑦

Γ

𝛼
𝜙(

Γ

𝛼
𝑦)𝑑𝑦 =

𝛼√
2𝜋Γ

,∫
𝑦

𝜙(𝑦)𝜙(
𝛼

1− 𝛼
𝑦)𝑑𝑦 =

1− 𝛼√
2𝜋Γ

∫
𝑦

Γ

1− 𝛼
𝜙(

Γ

1− 𝛼
𝑦)𝑑𝑦 =

1− 𝛼√
2𝜋Γ

, (C.55)

where Γ =
√
𝛼2 + (1− 𝛼)2,

𝑒1𝑇 = 𝛾𝑚
𝑏𝜎

∫
𝑦2𝑇

[𝛽𝑇+1

∫ ∞

𝑦2𝑇
1−𝛼2
𝛼2

𝑦1𝑇𝜙(𝑦
1
𝑇 )𝑑𝑦

1
𝑇 + (1− 𝛽𝑇+1)

∫ 𝑦2𝑇
1−𝛼2
𝛼2

−∞
𝑦1𝑇𝜙(𝑦

1
𝑇 )𝑑𝑦

1
𝑇 ]𝜙(𝑦

2
𝑇 )𝑑𝑦

2
𝑇

= 𝛾𝑚
𝑏𝜎

∫
𝑦2𝑇

(2𝛽𝑇+1 − 1)𝜙(𝑦2𝑇
1−𝛼2

𝛼2
)𝜙(𝑦2𝑇 )𝑑𝑦

2
𝑇 =

𝛾𝑚(2𝛽𝑇+1−1)√
2𝜋𝑏𝜎

𝛼𝑇

Γ𝑇
.

So (𝐶.52), (𝐶.53) and (𝐶.54) ⇒ 𝑒1∗𝑇 =
𝛾𝑚(2𝛽𝑇+1−1)𝛼𝑇√

2𝜋𝑏𝜎Γ𝑇
, 𝑒2∗𝑇 =

𝛾𝑚(2𝛽𝑇+1−1)(1−𝛼𝑇 )√
2𝜋𝑏𝜎Γ𝑇

,

at (𝑒1∗𝑇 , 𝑒
2∗
𝑇 ),

𝑣1𝑇 (𝛼𝑇 ) = 𝑚(𝛼𝑇 + 𝛾
2
)− 𝑏

2
(𝑒1∗𝑇 )2 = 𝑚(𝛼𝑇 + 𝛾

2
)− 𝑏

4𝜋
(
𝛾𝑚(2𝛽𝑇+1−1)𝛼𝑇

𝑏𝜎Γ𝑇
)2,

𝑣2𝑇 (1− 𝛼𝑇 ) = 𝑚(1− 𝛼𝑇 + 𝛾
2
)− 𝑏

2
(𝑒2∗𝑇 )2 = 𝑚(1− 𝛼𝑇 + 𝛾

2
)− 𝑏

4𝜋
(
𝛾𝑚(2𝛽𝑇+1−1)(1−𝛼𝑇 )

𝑏𝜎Γ𝑇
)2,

Δ𝑣𝑇 (𝛼𝑇 ) = 𝑣1𝑇 (𝛼𝑇 )− 𝑣1𝑇 (1− 𝛼𝑇 ) = (2𝛼𝑇 − 1)[𝑚− 1
4𝜋𝑏

(
𝛾𝑚(2𝛽𝑇+1−1)

𝜎Γ𝑇
)2]

𝑣𝐵𝑇 (𝛼𝑇 ) = 𝛼𝑇 𝑒
1∗
𝑇 + (1− 𝛼𝑇 )𝑒

2∗
𝑇 =

𝛾𝑚(2𝛽𝑇+1−1)Γ𝑇√
2𝜋𝑏𝜎

.

Because 𝑣𝐵𝑇 (𝛼𝑇 ) is increasing in 𝛽𝑇+1, the optimal 𝛽𝑇+1 is a boundary solution.

∂Γ𝑇

∂𝛼𝑇
= 1

2Γ𝑇

∂Γ2
𝑇

∂𝛼𝑇
= 2𝛼𝑇−1

Γ𝑇
, ∂

2Γ𝑇

∂𝛼2
𝑇

= 1
Γ2
𝑇
[2Γ𝑇 − (2𝛼𝑇−1)2

Γ𝑇
] = 1

Γ3
𝑇
⇒

∂𝑣𝐵𝑇 (𝛼𝑇 )

∂𝛼𝑇

=
𝛾𝑚(2𝛽𝑇+1 − 1)√

2𝜋𝑏𝜎

2𝛼𝑇 − 1

Γ𝑇

, (C.56)

∂𝑣𝐵𝑇 (𝛼𝑇 )

∂𝛼𝑇
= 0 at 𝛼𝑇 = 1

2
.

∂2𝑣𝐵𝑇 (𝛼𝑇 )

(∂𝛼𝑇 )2
=
𝛾𝑚(2𝛽𝑇+1 − 1)√

2𝜋𝑏𝜎

1

Γ3
𝑇

> 0, (C.57)

so 𝑣𝐵𝑇 (𝛼𝑇 ) is convex and is minimized at 𝛼𝑇 = 1
2
,
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at 𝛼𝑇 = 1
2
, Γ2

𝑇 = 1
2
, and

∂2𝑣𝐵𝑇 (𝛼𝑇 )

(∂𝛼𝑇 )2
=

2𝛾𝑚(2𝛽𝑇+1−1)√
𝜋𝑏𝜎

.

∂𝑣1𝑇 (𝛼𝑇 )

∂𝛼𝑇

= 𝑚− 𝛾2𝑚2(2𝛽𝑇+1 − 1)2𝛼𝑇 (1− 𝛼𝑇 )

2𝜋𝑏𝜎2Γ4
𝑇

, (C.58)

so for
∂𝑣1𝑇 (𝛼𝑇 )

∂𝛼𝑇
> 0, because

𝛾2𝑚(2𝛽𝑇+1−1)2𝛼𝑇 (1−𝛼𝑇 )

2𝜋𝑏𝜎2Γ4
𝑇

is maximized at 𝛼𝑇 = 1
2
, it is

required that
𝛾2𝑚(2𝛽𝑇+1−1)2

2𝜋𝑏𝜎2 < 1.

∂𝑣2𝑇 (1− 𝛼𝑇 )

∂𝛼𝑇

= −𝑚(1− 𝛾2𝑚(2𝛽𝑇+1 − 1)2𝛼𝑇 (1− 𝛼𝑇 )

2𝜋𝑏𝜎2Γ4
𝑇

) = −∂𝑣
1
𝑇 (𝛼𝑇 )

∂𝛼𝑇

, (C.59)

∂Δ𝑣𝑇 (𝛼𝑇 )
∂𝛼𝑇

=
∂𝑣1𝑇 (𝛼𝑇 )

∂𝛼𝑇
− ∂𝑣2𝑇 (1−𝛼𝑇 )

∂𝛼𝑇
= 2

∂𝑣1𝑇 (𝛼𝑇 )

∂𝛼𝑇
> 0,

∂2𝑣1𝑇 (𝛼𝑇 )

(∂𝛼𝑇 )2
=

𝛾2𝑚2(2𝛽𝑇+1 − 1)2(2𝛼𝑇 − 1)(1 + 2𝛼𝑇 − 2(𝛼𝑇 )
2)

2𝜋𝑏𝜎2Γ6
𝑇

,

∂2𝑣2𝑇 (1− 𝛼𝑇 )

(∂𝛼𝑇 )2
= −∂

2𝑣1𝑇 (𝛼𝑇 )

(∂𝛼𝑇 )2
. (C.60)

∙ Period 𝑇 − 1 problem:

The buyer’s payoff to go and the suppliers’ profits to go are defined by (𝐶.3) to

(𝐶.5) with 𝑡 = 𝑇 − 1 and with 𝑔(𝛼𝑡) = 𝑔(1− 𝛼𝑡) = 1. (𝐶.6) and (𝐶.7) become

𝑒1𝑇−1 =
𝛾
𝑏𝜎

∫
𝑦1𝑇−1

∫
𝑦2𝑇−1

𝑣1𝑇 (𝛽
𝛼

𝑇 (𝑦
1
𝑇−1, 𝑦

2
𝑇−1))𝑦

1
𝑇−1𝜙(𝑦

1
𝑇−1)𝜙(𝑦

2
𝑇−1)𝑑𝑦

1
𝑇−1𝑑𝑦

2
𝑇−1,

𝑒2𝑇−1 =
𝛾
𝑏𝜎

∫
𝑦1𝑇−1

∫
𝑦2𝑇−1

𝑣2𝑇 (1− 𝛽
𝛼

𝑇 (𝑦
1
𝑇−1, 𝑦

2
𝑇−1))𝑦

2
𝑇−1𝜙(𝑦

1
𝑇−1)𝜙(𝑦

2
𝑇−1)𝑑𝑦

1
𝑇−1𝑑𝑦

2
𝑇−1.

Substituted into the buyer’s objective function,

𝑣𝐵𝑇−1(𝛼𝑇−1) = 𝛾

∫
𝑦1𝑇−1

∫
𝑦2𝑇−1

[ 1
𝑏𝜎
(𝛼𝑇−1𝑣

1
𝑇 (𝛽

𝛼

𝑇 )𝑦
1
𝑇−1 + (1− 𝛼𝑇−1)𝑣

2
𝑇 (1− 𝛽

𝛼

𝑇 )𝑦
2
𝑇−1)

+𝑣𝐵𝑇 (𝛽
𝛼

𝑇 )]𝜙(𝑦
1
𝑇−1)𝜙(𝑦

2
𝑇−1)𝑑𝑦

1
𝑇−1𝑑𝑦

2
𝑇−1.

Let 𝐺(𝛽
𝛼

𝑇 ) =
𝛼𝑇−1

𝑏𝜎
𝑦1𝑇−1𝑣

1
𝑇 (𝛽

𝛼

𝑇 ) +
(1−𝛼𝑇−1)

𝑏𝜎
𝑦2𝑇−1𝑣

2
𝑇 (1− 𝛽

𝛼

𝑇 ) + 𝑣𝐵𝑇 (𝛽
𝛼

𝑇 ).

Pointwise optimization w.r.t. 𝛽
𝛼

𝑇 and by (𝐶.56), (𝐶.58) and (𝐶.59) ⇒
𝐺′(𝛽

𝛼

𝑇 ) =
1
𝑏𝜎

∂𝑣1𝑇 (𝛽
𝛼
𝑇 )

∂𝛽
𝛼
𝑇

(𝛼𝑇−1𝑦
1
𝑇−1 − (1− 𝛼𝑇−1)𝑦

2
𝑇−1) +

∂𝑣𝐵𝑇 (𝛽
𝛼
𝑇 )

∂𝛽
𝛼
𝑇

,

by (𝐶.57) and (𝐶.60),

𝐺′′(𝛽
𝛼

𝑇 ) =
1
𝑏𝜎

∂2𝑣1𝑇 (𝛽
𝛼
𝑇 )

(∂𝛽
𝛼
𝑇 )2

(𝛼𝑇−1𝑦
1
𝑇−1 − (1− 𝛼𝑇−1)𝑦

2
𝑇−1) +

∂2𝑣𝐵𝑇 (𝛽
𝛼
𝑇 )

(∂𝛽
𝛼
𝑇 )2

.

Because the distribution of a supplier’s performance given her effort level 𝑓(𝑥∣𝑒) is
normal and satisfies the MLRP, the allocation rule should be such that 𝛽𝛼

𝑇 (𝑥
1
𝑇−1, 𝑥

2
𝑇−1)
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is increasing in 𝑥1𝑇−1 and decreasing in 𝑥2𝑇−1, and 𝛽
𝛼

𝑇 (𝑦
1
𝑇−1, 𝑦

2
𝑇−1) is increasing in 𝑦1𝑇−1

and decreasing in 𝑦2𝑇−1, so

for 𝛼𝑇−1𝑦
1
𝑇−1 > (1 − 𝛼𝑇−1)𝑦

2
𝑇−1, 𝐺

′(𝛽
𝛼

𝑇 ) > 0 and 𝐺′′(𝛽
𝛼

𝑇 ) > 0 for 𝛽
𝛼

𝑇 > 1
2
, the

optimal 𝛽
𝛼∗
𝑇 (𝑦1𝑇−1, 𝑦

2
𝑇−1) = 𝛽𝑇 ,

for 𝛼𝑇−1𝑦
1
𝑇−1 < (1 − 𝛼𝑇−1)𝑦

2
𝑇−1, 𝐺

′(𝛽
𝛼

𝑇 ) < 0 and 𝐺′′(𝛽
𝛼

𝑇 ) > 0 for 𝛽
𝛼

𝑇 < 1
2
, the

optimal 𝛽
𝛼∗
𝑇 (𝑦1𝑇−1, 𝑦

2
𝑇−1) = 1− 𝛽𝑇 .

Thus the optimal allocation rule is a HWTA one,

𝛽
𝛼

𝑇 (𝑦
1
𝑇−1, 𝑦

2
𝑇−1) =

{
𝛽𝑇 𝛼𝑇−1𝑦

1
𝑇−1 > (1− 𝛼𝑇−1)𝑦

2
𝑇−1

1− 𝛽𝑇 𝛼𝑇−1𝑦
1
𝑇−1 < (1− 𝛼𝑇−1)𝑦

2
𝑇−1

. (C.61)

Using (𝐶.55),

𝑣𝐵𝑇−1(𝛼𝑇−1) =
𝛾Γ𝑇−1√
2𝜋𝑏𝜎

Δ𝑣𝑇 (𝛽𝑇 ) +
𝛾
2
[𝑣𝐵𝑇 (𝛽𝑇 ) + 𝑣𝐵𝑇 (1− 𝛽𝑇 )] ⇒

∂𝑣𝐵𝑇−1(𝛼𝑇−1)

∂𝛼𝑇−1
= 𝛾 2𝛼𝑇−1−1√

2𝜋𝑏𝜎Γ𝑇−1
Δ𝑣𝑇 (𝛽𝑇 ),

∂2𝑣𝐵𝑇−1(𝛼𝑇−1)

∂𝛼2
𝑇−1

= 2𝛾√
2𝜋𝑏𝜎Γ𝑇−1

Δ𝑣𝑇 (𝛽𝑇 )− 𝛾 2𝛼𝑇−1−1√
2𝜋𝑏𝜎

Δ𝑣𝑇 (𝛽𝑇 )
2𝛼𝑇−1−1

Γ3
𝑇−1

= 𝛾√
2𝜋𝑏𝜎

Δ𝑣𝑇 (𝛽𝑇 )
1

Γ3
𝑇−1

> 0.

𝑒1𝑇−1 =
𝛾
𝑏𝜎
Δ𝑣𝑇 (𝛽𝑇 )

𝛼𝑇−1√
2𝜋Γ𝑇−1

, 𝑒2𝑇−1 =
𝛾
𝑏𝜎
Δ𝑣𝑇 (𝛽𝑇 )

1−𝛼𝑇−1√
2𝜋Γ𝑇−1

,
∂𝑒1𝑇−1

∂𝛼𝑇−1
= 𝛾√

2𝜋𝑏𝜎
Δ𝑣𝑇 (𝛽𝑇 )

1−𝛼𝑇−1

Γ3
𝑇−1

.

𝑣1𝑇−1(𝛼𝑇−1) = 𝑚𝛼𝑇−1 − 𝑏(𝑒1𝑇−1)
2

2
+ 𝛾

2
[𝑣1𝑇 (𝛼𝑇 ) + 𝑣2𝑇 (1− 𝛼𝑇 )],

∂𝑣1𝑇−1(𝛼𝑇−1)

∂𝛼𝑇−1
= 𝑚− 𝛾2

2𝜋𝑏𝜎2 (Δ𝑣𝑇 (𝛽𝑇 ))
2 𝛼𝑇−1(1−𝛼𝑇−1)

Γ4
𝑇−1

,

∂2𝑣1𝑇−1(𝛼𝑇−1)

(∂𝛼𝑇−1)2
= 𝛾2

2𝜋𝑏𝜎2 (Δ𝑣𝑇 (𝛽𝑇 ))
2 (2𝛼𝑇−1−1)(1+2𝛼𝑇−1−2𝛼2

𝑇−1)

Γ6
𝑇−1

.

∙ Period 𝑡 problem:

Based on the results for periods 𝑇 and 𝑇 − 1, suppose in period 𝑡+ 1,

𝑒1𝑡+1 =
𝛾Δ𝑣𝑡+2(𝛽𝑡+2)√

2𝜋𝑏𝜎

𝛼𝑡+1

Γ𝑡+1
, 𝑒2𝑡+1 =

𝛾Δ𝑣𝑡+2(𝛽𝑡+2)√
2𝜋𝑏𝜎

1−𝛼𝑡+1

Γ𝑡+1
;

∂𝑣𝐵𝑡+1(𝛼𝑡+1)

∂𝛼𝑡+1
= 𝛾 2𝛼𝑡+1−1√

2𝜋𝑏𝜎Γ𝑡+1
Δ𝑣𝑡+2(𝛽𝑡+2) ⇒

∂𝑣𝐵𝑡+1(𝛼𝑡+1)

∂𝛼𝑡+1
> 0 for 𝛼𝑡+1 >

1
2
,
∂𝑣𝐵𝑡+1(𝛼𝑡+1)

∂𝛼𝑡+1
< 0 for 𝛼𝑡+1 <

1
2
;

∂2𝑣𝐵𝑡+1(𝛼𝑡+1)

∂𝛼2
𝑡+1

= 𝛾√
2𝜋𝑏𝜎

Δ𝑣𝑡+2(𝛽𝑡+2)
1

Γ3
𝑡+1

> 0,

∂𝑣1𝑡+1(𝛼𝑡+1)

∂𝛼𝑡+1
= 𝑚− 𝛾2

2𝜋𝑏𝜎2 (Δ𝑣𝑡+2(𝛽𝑡+2))
2 𝛼𝑡+1(1−𝛼𝑡+1)

Γ4
𝑡+1

> 0,

∂2𝑣1𝑡+1(𝛼𝑡+1)

(∂𝛼𝑡+1)2
= 𝛾2(2𝛼𝑡+1−1)(1+2𝛼𝑡+1−2(𝛼𝑡+1)2)

2𝜋𝑏𝜎2Γ6
𝑡+1

(Δ𝑣𝑡+2(𝛽𝑡+2))
2
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⇒ ∂2𝑣1𝑡+1(𝛼𝑡+1)

(∂𝛼𝑡+1)2
> 0 for 𝛼𝑡+1 >

1
2
,
∂2𝑣1𝑡+1(𝛼𝑡+1)

(∂𝛼𝑡+1)2
< 0 for 𝛼𝑡+1 <

1
2
;

∂𝑣2𝑡+1(1− 𝛼𝑡+1)

∂𝛼𝑡+1

= −∂𝑣
1
𝑡+1(𝛼𝑡+1)

∂𝛼𝑡+1

,
∂2𝑣2𝑡+1(1− 𝛼𝑡+1)

(∂𝛼𝑡+1)2
= −∂

2𝑣1𝑡+1(𝛼𝑡+1)

(∂𝛼𝑡+1)2
. (C.62)

Then in period 𝑡, referring to the formulation defined in Subsection 2 of Appendix

C with 𝑔(𝛼𝑡) = 𝑔(1− 𝛼𝑡) = 1,

𝑒1𝑡 =
𝛾
𝑏𝜎

∫
𝑦1𝑡

∫
𝑦2𝑡

𝑣1𝑡+1(𝛽
𝛼

𝑡+1(𝑦
1
𝑡 , 𝑦

2
𝑡 ))𝑦

1
𝑡 𝜙(𝑦

1
𝑡 )𝜙(𝑦

2
𝑡 )𝑑𝑦

1
𝑡 𝑑𝑦

2
𝑡 ,

𝑒2𝑡 =
𝛾
𝑏𝜎

∫
𝑦1𝑡

∫
𝑦2𝑡

𝑣2𝑡+1(1− 𝛽
𝛼

𝑡+1(𝑦
1
𝑡 , 𝑦

2
𝑡 ))𝑦

2
𝑡 𝜙(𝑦

1
𝑡 )𝜙(𝑦

2
𝑡 )𝑑𝑦

1
𝑡 𝑑𝑦

2
𝑡 .

substituted into the buyer’s objective function,

𝑣𝐵𝑡 (𝛼𝑡) = 𝛾

∫
𝑦1𝑡

∫
𝑦2𝑡

[ 1
𝑏𝜎
(𝛼𝑡𝑣

1
𝑡+1(𝛽

𝛼

𝑡+1)𝑦
1
𝑡 + (1− 𝛼𝑡)𝑣

2
𝑡+1(1− 𝛽

𝛼

𝑡+1)𝑦
2
𝑡 )

+𝑣𝐵𝑡+1(𝛽
𝛼

𝑡+1)]𝜙(𝑦
1
𝑡 )𝜙(𝑦

2
𝑡 )𝑑𝑦

1
𝑡 𝑑𝑦

2
𝑡 .

Let 𝐺(𝛽
𝛼

𝑡+1) =
𝛼𝑡

𝑏𝜎
𝑦1𝑡 𝑣

1
𝑡+1(𝛽

𝛼

𝑡+1) +
(1−𝛼𝑡)

𝑏𝜎
𝑦2𝑡 𝑣

2
𝑡+1(1− 𝛽

𝛼

𝑡+1) + 𝑣𝐵𝑡+1(𝛽
𝛼

𝑡+1).

Pointwise optimization w.r.t. �̂�𝑡+1 and by (𝐶.62) ⇒
𝐺′(𝛽

𝛼

𝑡+1) =
1
𝑏𝜎

∂𝑣1𝑡+1(𝛽
𝛼
𝑡+1)

∂𝛽
𝛼
𝑡+1

(𝛼𝑡𝑦
1
𝑡 − (1− 𝛼𝑡)𝑦

2
𝑡 ) +

∂𝑣𝐵𝑡+1(𝛽
𝛼
𝑡+1)

∂𝛽
𝛼
𝑡+1

,

by (𝐶.62),

𝐺′′(𝛽
𝛼

𝑡+1) =
1
𝑏𝜎

∂2𝑣1𝑡+1(𝛽
𝛼
𝑡+1)

(∂𝛽
𝛼
𝑡+1)

2
(𝛼𝑡𝑦

1
𝑡 − (1− 𝛼𝑡)𝑦

2
𝑡 ) +

∂2𝑣𝐵𝑡+1(𝛽
𝛼
𝑡+1)

(∂𝛽
𝛼
𝑡+1)

2
.

Because the distribution of a supplier’s performance given her effort level 𝑓(𝑥∣𝑒)
is normal and satisfies the MLRP, the allocation rule should be such that 𝛽𝛼

𝑡+1(𝑥
1
𝑡 , 𝑥

2
𝑡 )

is increasing in 𝑥1𝑡 and decreasing in 𝑥2𝑡 , and 𝛽
𝛼

𝑡+1(𝑦
1
𝑡 , 𝑦

2
𝑡 ) is increasing in 𝑦1𝑡 and

decreasing in 𝑦2𝑡 , so

for 𝛼𝑡𝑦
1
𝑡 > (1 − 𝛼𝑡)𝑦

2
𝑡 , 𝐺

′(𝛽
𝛼

𝑡+1) > 0 and 𝐺′′(𝛽
𝛼

𝑡+1) > 0 for �̂�𝑡+1 >
1
2
, the optimal

𝛽
𝛼

𝑡+1(𝑦
1
𝑡 , 𝑦

2
𝑡 ) = 𝛽𝑡+1,

for 𝛼𝑡𝑦
1
𝑡 < (1 − 𝛼𝑡)𝑦

2
𝑡 , 𝐺

′(𝛽
𝛼

𝑡+1) < 0 and 𝐺′′(𝛽
𝛼

𝑡+1) > 0 for �̂�𝑡+1 <
1
2
, the optimal

𝛽
𝛼

𝑡+1(𝑦
1
𝑡 , 𝑦

2
𝑡 ) = 1− 𝛽𝑡+1.

Thus the optimal allocation rule for period 𝑡+ 1 is again a bang-bang one,

𝛽
𝛼

𝑡+1(𝑦
1
𝑡 , 𝑦

2
𝑡 ) =

{
𝛽𝑡+1 𝛼𝑡𝑦

1
𝑡 > (1− 𝛼𝑡)𝑦

2
𝑡

1− 𝛽𝑡+1 𝛼𝑡𝑦
1
𝑡 < (1− 𝛼𝑡)𝑦

2
𝑡

.

Using (𝐶.55),

𝑣𝐵𝑡 (𝛼𝑡) =
𝛾Γ𝑡√
2𝜋𝑏𝜎

Δ𝑣𝑡+1(𝛽𝑡+1) +
𝛾
2
[𝑣𝐵𝑡+1(𝛽𝑡+1) + 𝑣𝐵𝑡+1(1− 𝛽𝑡+1)],

∂𝑣𝐵𝑡 (𝛼𝑡)

∂𝛼𝑡
= 𝛾 2𝛼𝑡−1√

2𝜋𝑏𝜎Γ𝑡
Δ𝑣𝑡+1(𝛽𝑡+1),

∂2𝑣𝐵𝑡 (𝛼𝑡)

∂𝛼2
𝑡

= 𝛾√
2𝜋𝑏𝜎

Δ𝑣𝑡+1(𝛽𝑡+1)
1
Γ3
𝑡
.
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𝑒1∗𝑡 = 𝛾
𝑏𝜎
Δ𝑣𝑡+1(𝛽𝑡+1)

𝛼𝑡√
2𝜋Γ𝑡

, 𝑒2∗𝑡 = 𝛾
𝑏𝜎
Δ𝑣𝑡+1(𝛽𝑡+1)

1−𝛼𝑡√
2𝜋Γ𝑡

,
∂𝑒1𝑡
∂𝛼𝑡

= 𝛾√
2𝜋𝑏𝜎

Δ𝑣𝑡+1(𝛽𝑡+1)
1−𝛼𝑡

Γ3
𝑡
.

𝑣1𝑡 (𝛼𝑡) = 𝑚𝛼𝑡 − 𝑏(𝑒1𝑡 )
2

2
+ 𝛾

2
[𝑣1𝑡+1(𝛼𝑡+1) + 𝑣2𝑡+1(1− 𝛼𝑡+1)],

∂𝑣1𝑡 (𝛼𝑡)

∂𝛼𝑡
= 𝑚− 𝛾2

2𝜋𝑏𝜎2 (Δ𝑣𝑡+1(𝛽𝑡+1))
2 𝛼𝑡(1−𝛼𝑡)

Γ4
𝑡

,
∂2𝑣1𝑡 (𝛼𝑡)

(∂𝛼𝑡)2
= 𝛾2(2𝛼𝑡−1)(1+2𝛼𝑡−2(𝛼𝑡)2)

2𝜋𝑏𝜎2Γ6
𝑡

(Δ𝑣𝑡+1(𝛽𝑡+1))
2.

So all the value functions in period 𝑡 have the same properties as those in period

𝑡+ 1. By recursion, the optimal allocation rule for every period takes the same form

as in (𝐶.61).

Nash equilibrium condition:

Note that

∫ 𝑏

𝑎

((𝑦)2 − 1)𝜙(𝑦)𝑑𝑦 = 𝑎𝜙(𝑎)− 𝑏𝜙(𝑏).

Second-order conditions for the suppliers’ period 𝑡 problems:

at (𝑒1∗𝑡 , 𝑒
2∗
𝑡 ),

∂2𝑣1𝑡 (𝛼𝑡)

(∂𝑒1𝑡 )
2 = −𝑏+ 𝛾

𝜎2

∫
𝑥1
𝑡

∫
𝑥2
𝑡

𝑣1𝑡+1(𝛽
𝛼
𝑡+1(𝑥

1
𝑡 , 𝑥

2
𝑡 ))((

𝑥1
𝑡−𝑒1∗𝑡
𝜎

)2 − 1)𝑓(𝑥1𝑡 ∣𝑒1∗𝑡 )𝑓(𝑥2𝑡 ∣𝑒2∗𝑡 )𝑑𝑥1𝑡𝑑𝑥
2
𝑡

= −𝑏+ 𝛾
𝜎2

∫
𝑦1𝑡

∫
𝑦2𝑡

𝑣1𝑡+1(𝛽
𝛼

𝑡+1(𝑦
1
𝑡 , 𝑦

2
𝑡 ))((𝑦

1
𝑡 )

2 − 1)𝜙(𝑦1𝑡 )𝜙(𝑦
2
𝑡 )𝑑𝑦

1
𝑡 𝑑𝑦

2
𝑡

= −𝑏 + 𝛾
𝜎2

∫
𝑦2𝑡

[𝑣1𝑡+1(𝛽)

∫ ∞

𝑦2𝑡
1−𝛼𝑡
𝛼𝑡

((𝑦1𝑡 )
2 − 1)𝜙(𝑦1𝑡 )𝑑𝑦

1
𝑡 + 𝑣1𝑡+1(1 − 𝛽)

∫ 𝑦2𝑡
1−𝛼𝑡
𝛼𝑡

−∞
((𝑦1𝑡 )

2 −

1)𝜙(𝑦1𝑡 )𝑑𝑦
1
𝑡 ]𝜙(𝑦

2
𝑡 )𝑑𝑦

2
𝑡

= −𝑏+ 𝛾
𝜎2 [𝑣

1
𝑡+1(𝛽)

∫
𝑦2𝑡

𝑦2𝑡
1−𝛼𝑡

𝛼𝑡
𝜙(𝑦2𝑡

1−𝛼𝑡

𝛼𝑡
)𝜙(𝑦2𝑡 )𝑑𝑦

2
𝑡−𝑣1𝑡+1(1−𝛽)

∫
𝑦2𝑡

𝑦2𝑡
1−𝛼𝑡

𝛼𝑡
𝜙(𝑦2𝑡

1−𝛼𝑡

𝛼𝑡
)𝜙(𝑦2𝑡 )𝑑𝑦

2
𝑡 ]

= −𝑏 < 0,

similarly
∂2𝑣2𝑡 (1−𝛼𝑡)

(∂𝑒2𝑡 )
2 = −𝑏, so (𝑒1∗𝑡 , 𝑒2∗𝑡 ) is a Nash equilibrium, and {(𝑒1∗𝑡 , 𝑒2∗𝑡 )}𝑡=1,2...,𝑇

constitutes a subgame perfect Nash equilibrium.

Let 𝜀𝑖 =
𝑒𝑖𝑡−𝑒𝑖∗𝑡

𝜎
.

∂2𝑣1𝑡 (𝛼𝑡)

(∂𝑒1𝑡 )
2 = −𝑏+ 𝛾

𝜎2

∫
𝑥1
𝑡

∫
𝑥2
𝑡

𝑣1𝑡+1(𝛽
𝛼
𝑡+1(𝑥

1
𝑡 , 𝑥

2
𝑡 ))((

𝑥1
𝑡−𝑒1𝑡
𝜎

)2 − 1)𝑓(𝑥1𝑡 ∣𝑒1𝑡 )𝑓(𝑥2𝑡 ∣𝑒2𝑡 )𝑑𝑥1𝑡𝑑𝑥2𝑡

= −𝑏+ 𝛾
𝜎2 [

∫
𝑦2𝑡

∫ ∞

𝑦2𝑡
1−𝛼𝑡
𝛼𝑡

𝑣1𝑡+1(𝛽𝑡+1)((𝑦
1
𝑡 − 𝜀1)

2 − 1)𝜙(𝑦1𝑡 − 𝜀1)𝜙(𝑦
2
𝑡 − 𝜀2)𝑑𝑦

1
𝑡 𝑑𝑦

2
𝑡

+

∫
𝑦2𝑡

∫ 𝑦2𝑡
1−𝛼𝑡
𝛼𝑡

−∞
𝑣1𝑡+1(1− 𝛽𝑡+1)((𝑦

1
𝑡 − 𝜀1)

2 − 1)𝜙(𝑦1𝑡 − 𝜀1)𝜙(𝑦
2
𝑡 − 𝜀2)𝑑𝑦

1
𝑡 𝑑𝑦

2
𝑡 ]

= −𝑏+ 𝛾
𝜎2 [

∫
𝑧2𝑡

∫ ∞

(𝑧2𝑡+𝜀2)
1−𝛼𝑡
𝛼𝑡

𝑣1𝑡+1(𝛽𝑡+1)((𝑧
1
𝑡 )

2 − 1)𝜙(𝑧1𝑡 )𝜙(𝑧
2
𝑡 )𝑑𝑧

1
𝑡 𝑑𝑧

2
𝑡

+

∫
𝑧2𝑡

∫ (𝑧2𝑡+𝜀2)
1−𝛼𝑡
𝛼𝑡

−∞
𝑣1𝑡+1(1− 𝛽𝑡+1)((𝑧

1
𝑡 )

2 − 1)𝜙(𝑧1𝑡 )𝜙(𝑧
2
𝑡 )𝑑𝑧

1
𝑡 𝑑𝑧

2
𝑡 ]
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= −𝑏+ 𝛾
𝜎2Δ𝑣𝑡+1(𝛽𝑡+1)

∫
𝑧2𝑡

(𝑧2𝑡 + 𝜀2)
1−𝛼𝑡

𝛼𝑡
𝜙((𝑧2𝑡 + 𝜀2)

1−𝛼𝑡

𝛼𝑡
)𝜙(𝑧2𝑡 )𝑑𝑧

2
𝑡

= −𝑏+ 𝛾
𝜎2

1−𝛼𝑡

𝛼𝑡
Δ𝑣𝑡+1(𝛽𝑡+1)

∫
𝑧2𝑡

(𝑧2𝑡+𝜀2
(1−𝛼𝑡)2

Γ2
𝑡

+𝜀2
𝛼2
𝑡

Γ2
𝑡
)𝜙(Γ𝑡

𝛼𝑡
(𝑧2𝑡+𝜀2

(1−𝛼𝑡)2

Γ2
𝑡

))𝜙(𝜀2
(1−𝛼𝑡)

Γ𝑡
)𝑑𝑧2𝑡

= −𝑏+ 𝛾
𝜎2

𝛼2
𝑡 (1−𝛼𝑡)

Γ3
𝑡

Δ𝑣𝑡+1(𝛽𝑡+1)𝜀2𝜙(𝜀2
1−𝛼𝑡

Γ𝑡
)

≤ −𝑏+ 𝛾
𝜎2

𝛼2
𝑡

Γ2
𝑡
Δ𝑣𝑡+1(𝛽𝑡+1)𝜙(1),

similarly
∂2𝑣2𝑡 (𝛼𝑡)

(∂𝑒2𝑡 )
2 ≤ −𝑏+ 𝛾

𝜎2

(1−𝛼𝑡)2

Γ2
𝑡

Δ𝑣𝑡+1(𝛽𝑡+1)𝜙(1). So the sufficient condition for

the existence of a unique subgame perfect Nash equilibrium in the 𝑇 period problem

is
𝛾
𝜎2

𝛽2
𝑡

Γ2
𝑡
Δ𝑣𝑡+1(𝛽𝑡+1)𝜙(1) ≤ 𝑏, which sets a boundary to the value of 𝛽𝑡+1.

10. Proof of Theorem 4.4

To simplify the notation, we omit the subscripts of 𝑘𝛼, 𝜃𝛼 and Υ𝛼 when there is

no ambiguity, and use 𝛽 for 𝛽.

The suppliers’ optimal effort levels

𝑒∗1 =
𝛾
𝑏

∫
𝑥1

∫
𝑥2

𝑣1(𝛽
4∗
𝛼 (𝑥1, 𝑥2))𝑓

1(𝑥1∣𝑒∗1)𝑓(𝑥2∣𝑒∗2)𝑑𝑥1𝑑𝑥2

= 𝛾
𝑏𝜎

∫
𝑦2

[𝑣1(𝛽)

∫ ∞

𝑘𝑦2+
1
𝜎
(𝜃−(𝑒∗1−𝑘𝑒∗2))

𝑦1𝜙(𝑦1)𝑑𝑦1

+𝑣1(1− 𝛽)

∫ 𝑘𝑦2+
1
𝜎
(𝜃−(𝑒∗1−𝑘𝑒∗2))

−∞
𝑦1𝜙(𝑦1)𝑑𝑦1]𝜙(𝑦2)𝑑𝑦2

= 𝛾
𝑏𝜎

∫
𝑦2

(𝑣1(𝛽)− 𝑣1(1− 𝛽))𝜙(𝑘𝑦2 +
1
𝜎
(𝜃 − (𝑒∗1 − 𝑘𝑒∗2)))𝜙(𝑦2)𝑑𝑦2

⇒ 𝑒∗1 =
𝛾Δ𝑣∗(𝛽)

𝑏𝜎
1√
2𝜋Υ

exp[− 1
2Υ2𝜎2 (𝜃 − (𝑒∗1 − 𝑘𝑒∗2))

2],

and similarly

𝑒∗2 = 𝛾Δ𝑣∗(𝛽)
𝑏𝜎

𝑘√
2𝜋Υ

exp[− 1
2Υ2𝜎2 (𝜃 − (𝑒∗1 − 𝑘𝑒∗2))

2] ⇒ 𝜃∗ = 𝑒∗1 − 𝑘𝑒∗2, and (4.16) and

(4.17) follow.

For 𝑒∗1, 𝑒
∗
2 > 0, we need 𝑘 > 0 and Δ𝑣∗(𝛽) > 0.

𝑣∗𝐵(𝛼) = 𝛼𝛾Δ𝑣∗(𝛽)
𝑏𝜎

√
2𝜋Υ

+𝑘(1−𝛼)𝛾Δ𝑣∗(𝛽)
𝑏𝜎

√
2𝜋Υ

+𝛾

∫
𝑦2

[𝑣∗𝐵(𝛽)
∫ ∞

𝑘𝑦2

𝜙(𝑦1)𝑑𝑦1+𝑣
∗
𝐵(1−𝛽)

∫ 𝑘𝑦2

−∞
𝜙(𝑦1)𝑑𝑦1]𝜙(𝑦2)𝑑𝑦2

⇒
𝑣∗𝐵(𝛼) =

𝛾Δ𝑣∗(𝛽)√
2𝜋𝑏𝜎Υ

[𝛼+ 𝑘(1− 𝛼)] +
𝛾

2
[𝑣∗𝐵(𝛽) + 𝑣∗𝐵(1− 𝛽)], (C.63)

𝑣∗𝐵(𝛽) =
𝛾Δ𝑣∗(𝛽)√
2𝜋𝑏𝜎Υ𝛽

[𝛽 + 𝑘𝛽(1− 𝛽)] + 𝛾
2
[𝑣∗𝐵(𝛽) + 𝑣∗𝐵(1− 𝛽)],

𝑣∗𝐵(1− 𝛽) = 𝛾Δ𝑣∗(𝛽)√
2𝜋𝑏𝜎Υ1−𝛽

[1− 𝛽 + 𝑘1−𝛽𝛽] +
𝛾
2
[𝑣∗𝐵(𝛽) + 𝑣∗𝐵(1− 𝛽)].

Due to symmetry, 𝑘1−𝛽 = 1/𝑘𝛽, it follows that 𝑣
∗
𝐵(𝛽) = 𝑣∗𝐵(1− 𝛽),
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𝑣∗1(𝛼) = 𝑣∗2(𝛼) = 𝑣∗(𝛼),

𝑣∗(𝛼) = 𝑚𝛼− 1
4𝜋𝑏

(𝛾Δ𝑣∗(𝛽)
𝜎

1
Υ
)2 + 𝛾

∫
𝑦2

[𝑣∗(𝛽)
∫ ∞

𝑘𝑦2

𝜙(𝑦1)𝑑𝑦1

+𝑣∗(1− 𝛽)

∫ 𝑘𝑦2

−∞
𝜙(𝑦1)𝑑𝑦1]𝜙(𝑦2)𝑑𝑦2

= 𝑚𝛼− 1
4𝜋𝑏

(𝛾Δ𝑣∗(𝛽)
𝜎

1
Υ
)2 + 𝛾

2
(𝑣∗(𝛽) + 𝑣∗(1− 𝛽)).

FOC of the supplier’s problem:
∂𝑣1(𝛼)
∂𝑒1

= −𝑏𝑒1 + 𝛾

∫
𝑥1

∫
𝑥2

𝑣1(𝛽
4
𝛼(𝑥1, 𝑥2))𝑓

1(𝑥1∣𝑒1)𝑓(𝑥2∣𝑒2)𝑑𝑥1𝑑𝑥2 ⇒

∂𝑣1(𝛼)

∂𝑒1
= −𝑏𝑒1 + 𝛾Δ𝑣(𝛽)√

2𝜋Υ𝜎
exp[− 1

2Υ2𝜎2
(𝑒∗1 − 𝑘𝑒∗2 − (𝑒1 − 𝑘𝑒2))

2], (C.64)

∂𝑣2(1−𝛼)
∂𝑒2

= −𝑏𝑒2 + 𝛾Δ𝑣(𝛽)
𝜎

𝑘√
2𝜋Υ

exp[− 1
2Υ2𝜎2 (𝑒

∗
1 − 𝑘𝑒∗2 − (𝑒1 − 𝑘𝑒2))

2],

⇒ at any equilibrium (𝑒1, 𝑒2), 𝑒2 = 𝑘𝑒1, so at an equilibrium (𝑒1, 𝑒2),
∂𝑣1(𝛼)
∂𝑒1

= −𝑏𝑒1 + 𝛾Δ𝑣(𝛽)
𝜎

1√
2𝜋Υ

exp[− 1−𝑘2

2𝜎2(1+𝑘2)
(𝑒∗1 − 𝑒1)

2],
∂𝑣2(1−𝛼)

∂𝑒2
= −𝑏𝑒2 + 𝛾Δ𝑣(𝛽)

𝜎
𝑘√
2𝜋Υ

exp[− 1−𝑘2

2𝜎2(1+𝑘2)
(𝑒∗1 − 𝑒1)

2].
∂𝑣1(𝛼)
∂𝑒1

= 0 ⇒

𝑒1 =
𝛾Δ𝑣(𝛽)√
2𝜋Υ𝑏𝜎

exp[− 1− 𝑘2

2𝜎2(1 + 𝑘2)
(𝑒∗1 − 𝑒1)

2], (C.65)

substituting (𝐶.65) and 𝑒2 = 𝑘𝑒1 into the supplier’s value function, we obtain

Δ𝑣(𝛽) = 𝑚(2𝛽 − 1)− 1
4𝜋𝑏

(𝛾Δ𝑣(𝛽)
𝜎

exp[− 1−𝑘2𝛽
2𝜎2(1+𝑘2𝛽)

(𝑒∗1 − 𝑒1)
2])2

1−𝑘2𝛽
1+𝑘2𝛽

⇒
for 𝑘𝛽 ∕= 1,

Δ𝑣(𝛽) =
2𝜋𝑏𝜎2(1+𝑘2𝛽)

𝛾2(1−𝑘2𝛽)
(

√
1 +

𝛾2 exp[−
1−𝑘2

𝛽

𝜎2(1+𝑘2
𝛽
)
(𝑒∗1−𝑒1)2]𝑚(2𝛽−1)

𝜋𝑏𝜎2

1−𝑘2𝛽
1+𝑘2𝛽

− 1),

Δ𝑣∗(𝛽) =
2𝜋𝑏𝜎2(1+𝑘2𝛽)

𝛾2(1−𝑘2𝛽)
(

√
1 + 𝛾2𝑚(2𝛽−1)

𝜋𝑏𝜎2

1−𝑘2𝛽
1+𝑘2𝛽

− 1);

and for 𝑘𝛽 = 1, Δ𝑣(𝛽) = 𝑚(2𝛽 − 1),

then from (𝐶.63), 𝑣∗𝐵(𝛼) =
√
2𝜋𝜎(1+𝑘2𝛽)

𝛾(1−𝛾)Υ(1−𝑘2𝛽)
[𝛼+ 𝑘(1− 𝛼)](

√
1 + 𝛾2𝑚(2𝛽−1)

𝜋𝑏𝜎2

1−𝑘2𝛽
1+𝑘2𝛽

− 1).

From (𝐶.64),
∂2𝑣1(𝛼)
(∂𝑒1)2

= −𝑏+ 𝛾Δ𝑣(𝛽)

𝜎
√
2𝜋Υ3𝜎2 exp[− 1

2𝜎2(1+𝑘2)
(𝑒∗1−𝑘𝑒∗2−(𝑒1−𝑘𝑒2))2](𝑒∗1−𝑘𝑒∗2−(𝑒1−𝑘𝑒2))

≤ −𝑏+ 𝛾Δ𝑣(𝛽)
(1+𝑘2)𝜎2𝜙(1),

similarly ∂2𝑣2(𝛼)
(∂𝑒2)2

≤ −𝑏+ 𝛾Δ𝑣(𝛽)
(1+𝑘2)𝜎2𝜙(1).
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For 𝑘𝛽 ≤ 1, Δ𝑣(𝛽) ≤ Δ𝑣∗(𝛽). So the sufficient condition for the existence of a

unique Nash equilibrium is
𝛾Δ𝑣∗(𝛽)
(1 + 𝑘2)𝜎2

𝜙(1) ≤ 𝑏. (C.66)

11. Proof of Corollary 4.4

Letting 𝑘𝛼 = 1−𝛼
𝛼

in Theorem 4.4, we obtain the formula for 𝜃∗𝛼, 𝑒
∗
𝛽 and 𝑒∗1−𝛽, then

𝑒∗𝛽 = 𝛽
1−𝛽

𝑒∗1−𝛽. Also

𝑣∗𝐵(𝛼) =
√
2𝜋𝜎Γ3

𝛾(1−𝛾)(2𝛽−1)
(
√
1 + 𝛾2𝑚(2𝛽−1)2

𝜋𝑏𝜎2Γ2 − 1) is independent of 𝛼.

∂𝑣∗𝐵(𝛽)

∂𝛽
=

√
2𝜋𝜎

𝛾(1−𝛾)
[3Γ(2𝛽−1)2−2Γ3

(2𝛽−1)2
(
√
1 + 𝛾2𝑚(2𝛽−1)2

𝜋𝑏𝜎2Γ2 − 1)

+ Γ3

2(2𝛽−1)

√
1+

𝛾2𝑚(2𝛽−1)2

𝜋𝑏𝜎2Γ2

𝛾2𝑚
𝜋𝑏𝜎2

4(2𝛽−1)Γ2−2(2𝛽−1)3

Γ4 ]

=
√
2𝜋𝜎

𝛾(1−𝛾)

√
1+

𝛾2𝑚(2𝛽−1)2

𝜋𝑏𝜎2Γ2

[Γ8𝛽2−8𝛽+1
(2𝛽−1)2

(1 + 𝛾2𝑚(2𝛽−1)2

𝜋𝑏𝜎2Γ2 −
√
1 + 𝛾2𝑚(2𝛽−1)2

𝜋𝑏𝜎2Γ2 ) + 𝛾2𝑚
𝜋𝑏Γ𝜎2 ]

=
√
2𝜋𝜎

𝛾(1−𝛾)Γ(2𝛽−1)2

√
1+

𝛾2𝑚(2𝛽−1)2

𝜋𝑏𝜎2Γ2

[2𝑚
𝜋𝑏
( 𝛾
𝜎
)2(2𝛽 − 1)4 + Γ2(8𝛽2 − 8𝛽 + 1)

−Γ2(8𝛽2 − 8𝛽 + 1)
√

1 + 𝛾2𝑚(2𝛽−1)2

𝜋𝑏𝜎2Γ2 ]

=
√
2𝜋𝜎Γ

𝛾(1−𝛾)(2𝛽−1)2

√
1+

𝛾2𝑚(2𝛽−1)2

𝜋𝑏𝜎2Γ2

[2𝑚
𝜋𝑏
( 𝛾
𝜎
)2 (2𝛽−1)4

Γ2 +(2(2𝛽−1)2−1)(1−
√

1 + 𝛾2𝑚(2𝛽−1)2

𝜋𝑏𝜎2Γ2 )].

For 2(2𝛽 − 1)2 ≤ 1, i.e., 𝛽 ≤ 1
2
+

√
2
4
, ∂𝑣𝐵(𝛽)

∂𝛽
> 0;

for 𝛽 > 1
2
+

√
2
4
, 2(2𝛽 − 1)2 − 1 > 0, and noting that 1 − √

1 + 𝑎 > −𝑎 for any

𝑎 > 0,
∂𝑣∗𝐵(𝛽)

∂𝛽
>

√
2𝜋𝜎Γ

𝛾(1−𝛾)(2𝛽−1)2

√
1+

𝛾2𝑚(2𝛽−1)2

𝜋𝑏𝜎2Γ2

𝑚(2𝛽−1)2

𝜋𝑏Γ2 ( 𝛾
𝜎
)2[2(2𝛽 − 1)2 − (2(2𝛽 − 1)2 − 1)]

=
√
2𝛾𝑚

(1−𝛾)𝑏𝜎Γ
√
𝜋

√
1+

𝛾2𝑚(2𝛽−1)2

𝜋𝑏𝜎2Γ2

> 0,

so
∂𝑣∗𝐵(𝛽)

∂𝛽
> 0 for any 𝛽 > 1

2
, therefore, the optimal 𝛽∗ is a boundary solution and

is constrained by the (IR) constraint or Nash equilibrium constraint.

Letting 𝑘𝛽 = 1−𝛽
𝛽

in (4.18),

Δ𝑣∗(𝛽) = 2𝜋𝑏𝜎2(𝛽2+(1−𝛽)2)
𝛾2(2𝛽−1)

(
√
1 + 𝛾2𝑚(2𝛽−1)2

𝜋𝑏𝜎2(𝛽2+(1−𝛽)2)
− 1).

By (𝐶.66), because the 𝛾Δ𝑣∗(𝛽)
(1+𝑘2)𝜎2𝜙(1) is decreasing in 𝑘, the Nash equilibrium con-

dition becomes√
2𝜋𝑏𝛽2

𝛾(2𝛽−1)
√
𝑒
(
√

1 + 𝛾2𝑚(2𝛽−1)2

𝜋𝑏𝜎2(𝛽2+(1−𝛽)2)
− 1) ≤ 𝑏.
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(4.19) with 𝑘𝛼 = 1−𝛼
𝛼

⇒
Σ𝑣∗(𝛽) = 𝑣∗(𝛽) + 𝑣∗(1− 𝛽) = 1

1−𝛾
[𝑚− (𝛾Δ𝑣∗(𝛽))2

4𝜋𝑏𝜎2 ]. So

𝑣∗(𝛽) = 1
2
(Σ𝑣∗(𝛽) + Δ𝑣∗(𝛽)) = 1

2
( 1
1−𝛾

[𝑚− (𝛾Δ𝑣∗(𝛽))2
4𝜋𝑏𝜎2 ] + Δ𝑣∗(𝛽)),

𝑣∗(1− 𝛽) = 1
2
(Σ𝑣∗(𝛽)−Δ𝑣∗(𝛽)) = 1

2
( 1
1−𝛾

[𝑚− (𝛾Δ𝑣∗(𝛽))2
4𝜋𝑏𝜎2 ]−Δ𝑣∗(𝛽)).

The (IR) constraint is 𝑣(1− 𝛽) ≥ 0.

12. Proof of Corollary 4.5

From the results in Theorem 4.4, letting 𝑘𝛼 = 1,

Δ𝑣(𝛽) = (2𝛽 − 1)𝑚, Σ𝑣(𝛽) = 1
1−𝛾

[𝑚− (𝛾(2𝛽−1)𝑚)2

4𝜋𝑏𝜎2 ],

𝑒∗1 = 𝑒∗2 =
𝛾(2𝛽−1)𝑚
2
√
𝜋𝑏𝜎

, 𝜃∗ = 0.

It follows that

𝑣(𝛽) = 1
2
( 1
1−𝛾

[𝑚− (𝛾(2𝛽−1)𝑚)2

4𝜋𝑏𝜎2 ] + (2𝛽 − 1)𝑚),

𝑣(1− 𝛽) = 1
2
( 1
1−𝛾

[𝑚− (𝛾(2𝛽−1)𝑚)2

4𝜋𝑏𝜎2 ]− (2𝛽 − 1)𝑚),

𝑣𝐵(𝛽) =
𝛾

1−𝛾
Δ𝑣(𝛽)
2
√
𝜋𝑏𝜎

= 𝛾
1−𝛾

(2𝛽−1)𝑚
2
√
𝜋𝑏𝜎

.

For 𝑣(1− 𝛽) ≥ 0, 1
2
( 1
1−𝛾

[𝑚− (𝛾(2𝛽−1)𝑚)2

4𝜋𝑏𝜎2 ]− (2𝛽 − 1)𝑚) ≥ 0 ⇒
𝛾2𝑚(2𝛽−1)2

4𝜋𝑏𝜎2 + (1− 𝛾)(2𝛽 − 1) ≤ 1 ⇒

𝛽 ≤ 1

2
+

1

𝑚𝛾2
(
√

(𝜋𝑏𝜎2(1− 𝛾))2 + 𝜋𝑏𝜎2𝑚𝛾2 − 𝜋𝑏𝜎2(1− 𝛾)). (C.67)

Second-order condition for Supplier 1’s problem
∂2𝑣1(𝛼)
(∂𝑒1)2

= −𝑏+ 𝛾(2𝛽 − 1) 𝑚
2𝜎2

−(𝑒1−𝑒2)√
2𝜎

𝜙(−(𝑒1−𝑒2)√
2𝜎

) ≤ −𝑏+ 𝛾𝑚(2𝛽−1)

2𝜎2
√
2𝜋𝑒

, so ∂2𝑣1(𝛼)
(∂𝑒1)2

≤ 0 for

𝛽 ≤ 1

2
+
𝑏𝜎2

√
2𝜋𝑒

𝛾𝑚
, (C.68)

which can be obtained similarly for Supplier 2’s problem.

Because 𝑣𝐵(𝛽) is increasing in 𝛽 for any 𝛽, the optimal 𝛽 is the boundary solution

constrained by (𝐶.67) and (𝐶.68).
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