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Abstract 

Faced with an increasingly aging and overweight population, our modern societies, 

particularly in the west, are set to witness a steep rise in various orthopaedic health 

problems in the coming decades, especially joint diseases such as arthritis. Better 

understanding of the way bones of the joints work is thus imperative for studying the 

nature and effects of these diseases and for finding cures. The data obtained from 

conventional sources such as skin markers and x-ray/fluoroscopy scans are generally 

useful but quite limited in terms of accuracy, quantification abilities and three-

dimensional visualization potential. The continuous increase in the quality and versatility 

of various modern imaging modalities is enabling many new means for enhanced 

visualization and analysis of motion data of the joints. In this thesis we make use of 

ultrasound (US) and magnetic resonance (MR) imaging to facilitate robust, accurate and 

efficient analysis of the bones of joints in motion. We achieve this by obtaining motion 

data using 3D US with high temporal resolution which is then fused with a high spatial 

resolution, but static MRI volume of the same region (we mostly focus on the knee joint 

area). Our contributions include novel ways for improved segmentation and localization 

of the bones from image data. In particular, a highly effective method for improving bone 

segmentation in MRI volumes by enhancing the contrast at the bone-cartilage interface is 

proposed. Our contribution also focuses on robust and accurate registration of image data. 

To achieve this, a new method for stitching US bone volumes is proposed for generating 

larger fields of view. Further, we also present a novel method for US-MRI bone surface 

registration.  The tools developed during the course of this thesis facilitate orthopaedic 
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research efforts aiming to improving our understanding of the workings of the joints. The 

tools and methodologies proposed are versatile and expected to be applicable to other 

applications. 



 iv 

Table of Contents 

Abstract……………………………………………………………………………………ii 

Table of Contents…………………………………………………………………………iv 

List of Figures…………………………………………………………………...…….....vii 

Acknowledgements………………………………………………………………….……ix 

1 Introduction and Background ................................................................................. 1 

1.1 Motivation........................................................................................................... 1 

1.2 Objectives ........................................................................................................... 3 

1.2.1 Bone Segmentation ..................................................................................... 4 

1.2.2 Bone Registration........................................................................................ 5 

1.3 Medical Imaging in Joint Disease Studies .......................................................... 6 

1.3.1 X-ray Imaging (Radiography/Fluoroscopy, CT) ........................................ 6 

1.3.2 Ultrasound................................................................................................... 8 

1.3.3 MRI............................................................................................................. 8 

1.3.4 Multi Spectral/Contrast MR Imaging ....................................................... 10 

1.4 State-of-the-Art in US-US Volume Registration.............................................. 10 

1.5 State-of-the-Art in US-CT, US-MRI Multimodal Registration........................ 12 

1.6 State-of-the-Art in MRI Cartilage and Bone Segmentation ............................. 15 

1.6.1 Cartilage Segmentation............................................................................. 15 



 v 

1.6.2 Bone Segmentation ................................................................................... 19 

1.6.3 Objective Summary .................................................................................. 21 

2 Multi-Contrast MR Imaging for Enhanced Bone Tissue Visualization and 

Segmentation ................................................................................................................... 23 

2.1 Introduction....................................................................................................... 23 

2.1.1 Methodology............................................................................................. 23 

2.1.2 MR Image Acquisition.............................................................................. 23 

2.1.3 Multi-Contrast Image Fusion.................................................................... 25 

2.1.4 Bone Segmentation ................................................................................... 26 

2.2 Results............................................................................................................... 30 

2.3 Discussion ......................................................................................................... 37 

2.4 Conclusions....................................................................................................... 40 

3 Fast and Accurate 3D Ultrasound Volume Stitching Using Phase Symmetry 

and Harris Corner Detection for Orthopaedic Applications...................................... 42 

3.1 Introduction....................................................................................................... 42 

3.2 Method .............................................................................................................. 44 

3.3 Experiments and Results................................................................................... 50 

3.4 Conclusion and Discussion ............................................................................... 54 

4 Robust, Accurate 3D Ultrasound Volume to MRI Volume Registration Using 

Phase Symmetry Based Surface Separation and Registration ................................... 55 



 vi 

4.1 Introduction....................................................................................................... 55 

4.2 Methods............................................................................................................. 58 

4.3 Results............................................................................................................... 63 

4.4 Conclusions....................................................................................................... 66 

5 Discussions and Conclusions.................................................................................. 67 

5.1 Introduction....................................................................................................... 67 

5.1.1 Thesis Contributions ................................................................................. 67 

5.1.2 Future Work .............................................................................................. 68 

Bibliography .................................................................................................................... 70 

Appendix A - Publications ............................................................................................. 77 

Appendix B – Statement of Imaging Ethics.................................................................. 79 



 vii 

List of Figures 

Figure 1-1 : Osteoarthritis of the knee ............................................................................... 2 

Figure 1-2: CT scan of the knee......................................................................................... 7 

Figure 1-3: US image of the knee (left) and corresponding x-ray image (right).. ............. 8 

Figure 1-4: Different MR pulse sequences can be used to emphasize different anatomical 

structures ..................................................................................................................... 9 

Figure 1-5: Multi-contrast MR bone segmentation ......................................................... 21 

Figure 1-6: US-US volume stitching ............................................................................... 21 

Figure 1-7: US-CT registration (left) and US-MRI registration (right)........................... 21 

Figure 2-1. The proposed multi-contrast MR imaging approach..................................... 25 

Figure 2-2: Demonstration of the process for parameter selection for the coarse 

segmentation (confidence connected thresholding) method..................................... 27 

Figure 2-3: Qualitative illustration of the advantage of using the MCI enhancement. ... 35 

Figure 2-4: Illustration of the advantage of using the MCI enhancement at the bone-

subcutaneous fat interface......................................................................................... 36 

Figure 3-1:  Central slices of the two volumes (in vivo radius) to be registered and their 

phase symmetry images ............................................................................................ 47 

Figure 3-2:  Salient point selection.. ................................................................................ 49 

Figure 3-3:  Qualitative assessment of the registration of the artificial radius (left) and 

the artificial fetus (right) for volume stitching.......................................................... 52 

Figure 3-4:  Qualitative assessment of the registration for the in vivo radial scans for 



 viii 

volume stitching........................................................................................................ 53 

Figure 3-5:  Qualitative assessment of the registration for the in vivo radial scans for 

bone tracking............................................................................................................. 53 

Figure 4-1: Tibial bone surface extraction from MRI scan of knee ................................ 59 

Figure 4-2: Using phase symmetry to clean the US volume of the tibia ......................... 60 

Figure 4-3: Bone surface extraction from phase symmetry volume of tibia. .................. 61 

Figure 4-4: Qualitative result of US-MRI registration .................................................... 64 

Figure 4-5: Qualitative result of US-3D fluoroscopy registration................................... 65 



 ix 

Acknowledgements 

I would like to thank my supervisor Dr. Rafeef Abugharbieh for her continued support 

and guidance and my collaborator Dr. David Wilson for his assistance with the imaging 

and clinical aspects of this work. I am also very grateful to Dr. Derek Wilson, Emily 

McWalter, Dr. David Hunter and Ilker Hacihaliloglu for providing me with all the data 

that made this project possible. I would also like to thank my colleagues from the 

Biomedical Signal and Imaging Computing Laboratory (BiSICL), for all their help in my 

project and the wonderful memories over the past four years. Finally, I would like to 

thank my parents for their love and encouragement. 

 

 

RUPIN DALVI 

 

The University of British Columbia 

 

 

November 2009 



 1 

1 Introduction and Background 

1.1 Motivation 

In recent years, joint diseases have been on the rise. An ageing population has led to a 

huge increase in cases of arthritis (Figure 1-1) and other disorders affecting the bones and 

joints. In the US alone, according to 2003-2005 data from the National Health Interview 

Survey [1], 46.9 million (22%) of all adults have been diagnosed with arthritis. This 

number is set to rise to 67 million or 25% of the adult US population by 2030. Though 

the severity of the disease varies widely, it often takes on very painful forms that 

considerably restrict the mobility of the patients. In fact, 40% of the people afflicted with 

arthritis report that they find it “very difficult or impossible” to perform at least 1 of 9 

important daily tasks including sitting and grasping. Thus arthritis is not a minor disease 

in either its severity or it its prevalence. It is a major disease that cripples individuals and 

subsequently, the society they inhabit.  

Moreover, joint diseases are not limited to arthritis (as a disease), nor to the elderly (as a 

target group). Many joint diseases affect the young, including some like Perthes’ Disease, 

which affects young children. Non pathological diseases, such as injuries, also add their 

share.  Injuries to the weight bearing joints such as the hip and the knee, often requiring 

surgery and considerable physiotherapy, comprise some of the most common forms of 

sporting injuries [2]. 
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Diseases that affect so many people are 

of great importance and recently, there 

has been an increase in the interest 

shown in joint disease research. One of 

the major areas that orthopaedic 

researchers are interested in is analysis 

of the motion of the joints that are 

affected. Diseases of the joints are very 

likely to bring about a change, both in 

the actual way the joint moves as well as the level of mobility, in addition, to being 

painful. They could also be caused by the way the joint moves.  

Study of the motion of the joints of afflicted people and their comparison to similar 

studies made on healthy joints could thus lead to better diagnosis and prognosis as well as 

better treatment planning. Moreover, it could lead to better rehabilitation assessment, 

following surgery, physiotherapy or pharmacological treatment, thus leading to better 

rehabilitation itself. It could help provide better plans to prevent the diseases or to restrict 

them to mild levels. The subsequent improvement in the quality of life of so many 

individuals would result in their leading a more active lifestyle and this could have a very 

positive impact on an ageing society as a whole. In the world of sports, motion analysis 

of the joints could lead to improvements in training that both reduce chances of injury 

and improve performance. Thus there is a lot to be gained, not just by the sick but also by 

the healthy by this research and our goal is to provide orthopaedic researchers analysis 

 

Figure 1-1 : Osteoarthritis of the knee 
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tools for such work.   

1.2 Objectives 

The objective of the research presented is to help improve the mechanisms of joint 

motion analysis in people with joint diseases. Specifically, we aim to develop a system 

that obtains joint motion data at high speed using ultrasound (US) imaging, that is then 

fused with high resolution magnetic resonance imaging (MRI) volumes of the joint. This 

enables orthopedic researchers to visualize the motion of the joint in three dimentions 

(3D) and at a higher resolution. More specifically, this involves the segmentation of the 

tissues of interest (bone and cartilage) from the various imaging datasets and their 

alignment to a common frame of reference. To that end, we have developed novel 

techniques that, robustly and accurately segments bone and registers US and MRI image 

data. 

The general problem facing motion analysis from an imaging perspective is that joint 

motion data are obtained in a variety of ways and using many modalities. By and large, 

the motion data themselves are collected at a low resolution. For example, in the case of 

US, orthopaedic scans only capture the surface of the bones with high levels of noise 

present at limited fields of view in order to increase the speed of acquisition. However, 

this means that such data are not sufficient for completing the desired motion analysis. 

Hence, such acquisitions often have to be merged (registered) with higher resolution data 

that are mostly operate as static imaging tools. Such higher resolution data (e.g., 

computed tomography (CT) or MRI) in turn need to be accurately segmented so that the 

tissue of interest (in our case, bone) is clearly localized. Once both registration and 
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segmentation tasks are achieved, the end result will enable proper analysis of the motion 

data, allowing orthopedic researchers to properly visualize and quantitatively analyze 

both bone morphology, pathology and motion in 3D. In summary our targeted problem 

comprises two distinct areas: (a) Segmentation of the high resolution MRI images and, 

(b) registration of the segmented MRI bones to the motion data (US volumes in our case). 

1.2.1 Bone Segmentation 

High resolution bone imaging data are generally provided by two modalities – CT and 

MRI. From an imaging perspective, each has its own set of advantages and 

disadvantages. Segmentation of bone from CT is relatively easy, since the bone stands 

out sharply against its surrounding soft tissue. Moreover, the depicted bone is cortical, 

which is the outer hard bone whose surface will later be imaged using US. However, CT 

images employs ionizing radiation, and hence poses a health risk that makes it infeasible 

for longitudinal studies or for research on healthy volunteers. For this reason, researchers 

investigated the use of MRI for acquiring high resolution static images of bone regions of 

interest. However, in the scenario where MRI is used, bone segmentation itself becomes a 

fairly difficult problem since in that case, it is the trabecular (inner) and not the cortical 

bone that is imaged (the cortical bone does not show up in MRI). Close to the joint, the 

cortical bone thins out significantly, thus the trabecular bone may come into contact with 

various soft tissues that have MRI intensities that are close to that of the trabecular bone. 

This, along with other problems such as signal fading, noise, chemical shift, image non-

uniformity and partial volume effects, mean that the boundaries between the bone and the 

surrounding tissues become blurred making accurate bone segmentation quite difficult. In 
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the case of the low resolution MRI scans, the sheer lack of resolution aggravates the 

problem considerably. Current MRI bone segmentation methods often rely on high 

resolution MRI data, a condition that motion analysis data violates out of necessity due to 

imaging speed limitations. Using multi contrast imaging, one may be able to get higher 

contrast between objects of interest at lower resolutions while actually getting the images 

at higher speeds. The provision of such imaging approaches as well as a robust 

segmentation framework for motion analysis data using multi contrast MR imaging was 

one of this project’s objectives.  

1.2.2 Bone Registration 

Registration of muti-modal data at differing temporal and spatial resolutions poses 

significant challenges. In the US-MRI case, US probes typically have a limited field of 

view with one probe’s scan output typically not having enough information to accurately 

localize the corresponding region in the MRI volume, which typically has a much larger 

field of view. Hence, one may have to first register adjacent US volumes together 

stitching them into a volume with a large field of view. Following that, the second 

problem of registering the stitched US data to the corresponding MRI images need to be 

addressed.  

Registration of US volumes for stitching has received some attention in the past few 

years. However, most of the methods in the literature have focused on the registration of 

deformable organs such as the liver. Given that our area of interest is the registration of 

bones (which are rigid) these methods end up being needlessly time consuming and in 

many cases, the various complexities are actually counterproductive. Hence, one of this 
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Thesis’ objectives focused on development of a fast and accurate method for US 

registration for volume stitching purposes. Further, the thesis also addresses the US-MRI 

registration challenge where most current multi-modality alignment methods perform 

unsatisfactorily.  

The rest of the chapter presents an overview of the various imaging modalities commonly 

used in orthopaedic research as well as a literature review of the methods currently being 

employed to deal with the problems outlined as the thesis objectives. 

1.3 Medical Imaging in Joint Disease Studies 

1.3.1 X-ray Imaging (Radiography/Fluoroscopy, CT) 

Radiographs (x-ray images) and fluoroscopic data (x-ray movies) have traditionally been 

the standard imaging modality for studying joints, especially joint damage and bone 

erosion in people with problems like arthritis [74], [75] due to the relative simplicity of 

the equipment and the low cost of operation. However, when it comes to gauging small 

changes, such as those due to early bone erosion in arthritic patients, 

fluoroscopy/radiography is not as sensitive as other modalities [76], [77], [78]. As a 

result, other modalities are becoming increasingly popular. In the area of motion analysis, 

since fluoroscopy/radiography images only provide 2D information, they cannot be used 

on their own for providing full motion data. However, they can provide high temporal 

resolution and hence, are fused with 3D static data (such as a CT scan) to obtain 3D 

motion data [80], [81]. (Roentgen stereophotogrammetric analysis (RSA) [82], [83] 

which uses biplanar X-rays, can be used to get highly accurate motion information for 
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fluoroscopic images, but it requires the implantation of at least 3 fiducials in the bone, 

making it impractical for many studies.) 

CT is a tomographic radiographic imaging method offering high-resolution and three-

dimensional visualization of a large range of body tissues (Figure 1-2). CT is perhaps the 

most sensitive modality for studying bone information available right now, especially for 

assessing early bone erosions [84], [85]. However, CT has lower temporal resolution 

compared to fluoroscopy and moreover, the radiation dose incurred proscribes its usage 

for motion capture in orthopaedic settings. Thus, for motion analysis purposes, it is often 

used to provide high resolution static data which is fused with the temporal information 

provided by fluoroscopy in order to get complete motion data as stated before [80], [81]. 

The fluoroscopy-CT framework allows researchers to 

obtain motion scans of the joints with the high 

temporal resolution (due to the fluoroscopy) and high 

anatomical accuracy (due to the CT). Also, it is 

considerably cheaper than MRI. Hence the bulk of 

joint motion data obtained up to now have been using 

this framework. However, the use of x-rays, a form of 

ionizing radiation, requires that the potential risks from a procedure be carefully balanced 

with the benefits of the procedure to the patient. This issue makes the use of this 

framework impractical for researching joint motion of controls/healthy volunteers, who 

would be unjustifiably subjected to harmful radiation. Another problem with this 

framework is that soft tissues show up poorly in fluoroscopy and hence it is not very well 

 

Figure 1-2: CT scan of the knee 
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suited to study the changes in soft tissues due to joint disease. Nor is it a good choice for 

the study of soft tissues under motion. For both these reasons, MRI makes for a better 

option for such research.  

1.3.2 Ultrasound 

While the use of ultrasound is widespread in the medical community, due to its low cost, 

high temporal resolution and safety, it had, until recently, not found wide application in 

the orthopaedic field. One big reason for this is the fact that US can only image the 

surface of the bone and not within/beyond it (Figure 1-3).  

However, in recent years, there has been growing interest 

in the usage of the modality in the tracking of joints during 

surgery as well as during joint analysis for research 

purposes [3], [4]. Nevertheless, the ‘graininess’, limited 

field of view (FOV) and inability to image beyond the 

surface restrict the mainstream usage of this modality for 

orthopaedic applications. 

1.3.3 MRI 

MRI is more sensitive than radiography/fluoroscopy when it comes to detecting subtle 

bone changes such as those seen during early stages of joint disease [76], [77], [78], [79] 

(Figure 1-4). Also, due to its good soft tissue contrast, it has been used in many cartilage 

studies [86], [87]. It has also been gaining traction as a modality in the joint kinematics 

research community [88], [91], [92], [93], [94], [93], [94].The traditional drawbacks of 

 

Figure 1-3: US image of the knee 

(left) and corresponding x-ray 

image (right). Note the graininess 

of the US image and its inability to 

penetrate the bone surface. 
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MRI with regard to bone imaging are that 1) it cannot image cortical bone, and 

assessments have to be made based on the inner trabecular bone region and 2) it lacks the 

temporal resolution needed for real time motion analysis. However, with advances in MR 

technology, various studies of motion analysis of joints have been made possible [88], 

[89], [90], including some 3D motion analysis studies [91], [93], [94] using fast cine-

MRI sequences. While these studies do promise improved analysis, they still have 

considerable limitations, especially practical ones pertaining to scanning patients with 

painful joint diseases. For instance, in [94], the subjects have to repeatedly flex their 

knees against a load for a considerable number of repetitions, thus making the method 

unsuitable for studying patients with arthritis. Another problem common to these studies 

is that the subjects have to lie down in the scanner making the knee motion artificial and 

unlike the normal gait that the researchers are trying to study. Nevertheless, the various 

benefits, including the ability to conduct longitudinal scans without exposing subjects to 

radiation and the ability to image soft tissues like cartilage nicely mean that MRI is 

becoming more commonly used as a modality for conducting orthopaedic research with. 

   
 

(a) T1                                                                                       (b) Fat Suppressed 

Figure 1-4: Different MR pulse sequences can be used to emphasize different anatomical structures . In the T1 

weighted MR (a), the trabecular bone and the subcutaneous fat give higher intensity signal. In the Fat Suppressed MR 

(b) the same tissues are almost completely suppressed 
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1.3.4 Multi Spectral/Contrast MR Imaging 

The usage of multi-contrast MR (T1, T2, PD, etc.) imaging for obtaining more 

information that may then be used for image enhancement, segmentation, etc. is made 

often in the area of brain imaging and angiography [95], [96]. However, it has, as yet not 

been used much for bone imaging and image processing. One of the reasons is probably 

the fact that, till very recently, bone imaging was not done using MRI. But multi contrast 

imaging has the potential to enhance bone images of MRI and also tremendously improve 

the accuracy of bone segmentation and registration. 

1.4 State-of-the-Art in US-US Volume Registration 

Due to the fact that it is cheap and safe, 3D US is becoming increasingly popular as a 

viable alternative imaging modality to fluoroscopy in computer-assisted orthopaedic 

surgery (CAOS) applications. Bone tracking using US for joint motion analysis has also 

been suggested [3], [4].  However, most 3D US probes have a highly limited field of 

view (FOV). Widening of this field of view, via the process of volume stitching, would 

provide great benefits to these and other clinical applications. Accordingly, 3D US 

volume stitching has been the subject of some recent research work. Meyer [5] used 

mutual information to provide affine and elastic registrations of 3D US volumes. Krücker 

[6] modified [5] using a sub-volume approach for faster registration. Pratikakis et al., [7] 

combined the minimization scheme of an automatic 3D non-rigid registration method 

with a multi-scale framework to register 3D US volumes. Poon et al. [8] attempted 

volume stitching of 3D US volumes obtained from a tracked probe. The obtained 

volumes were compounded using the tracking parameters and the residual errors were 
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corrected using two different registration methods. Wachinger et al. [9] proposed 

simultaneous global alignment of multiple ultrasound volumes alternative multivariate 

extensions based on a maximum likelihood framework. Ni et al. [10] proposed feature 

based alignment by registration of features obtained from the 3D US volumes using 3D 

SIFT. Registration of multiple freehand 3D US volumes (obtained from freehand sweeps) 

was attempted by Gee et al. [11]. Instead of registering the entire volume, they registered 

the volumes only at the dividing plane in order to improve registration speed. In a more 

unusual application of 3D US volume registration Pennec [12] aligned 3-D US brain 

volumes using a radial basis parameterization.  

All these works involve some form of elastic warping of the volumes to align them. 

Hence, many of them are time intensive and also prone to registration errors, since a 

volume may be warped in more than one way to closely fit another. However, most of 

them deal with applications where deformable registration is necessary.  

In orthopaedic applications such as CAOS or joint tracking, the tissue being registered is 

usually bone, which removes, or at least alleviates, some of the need for deformable 

registration. However, the presence of reverberations, shadows, speckles, a low signal to 

noise ratio (SNR) and other artifacts present a challenge, even in rigid registration 

frameworks and may lead to poor performance of intensity-based metrics such as sum of 

squared differences, normalized cross-correlation and mutual information.  

Traditionally, feature based registration has been discounted under such circumstances, 

due to the difficulty in finding salient feature point correspondences between volumes. 

However, Hacihaliloglu et al. [13] showed that the usage of Phase Symmetry filters 
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can significantly improve the signal to noise ratio in US images of bone tissue. Moreover, 

recently, the SIFT algorithm by Lowe [13], has been successfully used by Chen et al. [15] 

for rapid feature based preregistration of multi-modal images. Ni et al. [10] have used 3D 

SIFT features to successfully register 3D US volumes for stitching purposes. Though 

their algorithm takes about a minute to register the volumes, they prove that feature based 

registration is a valid option for 3D US alignment. 

1.5 State-of-the-Art in US-CT, US-MRI Multimodal Registration  

As noted earlier, 3D US imaging is popular in the medical community including the 

image guided surgery field due to its low cost, non-ionising nature and high temporal 

resolution. However, US images have a great deal of speckle noise and other artifacts that 

make visualisation as well as other image processing (segmentation, registration, etc…) 

cumbersome and difficult [16]. The artifacts are often misleading, since they often 

resemble meaningful anatomical structures but do not correspond to them. One way to 

use US for its benefits and yet get around its visualisation drawbacks is registration 

between the US images and a visualisation friendly modality, such as CT or MRI [17], 

[18]. This procedure promises great improvement in the safety of surgical procedures that 

currently use US alone – since the CT will improve visualisation. It will also improve the 

safety of both patient and surgeon in the cases where surgery is guided by 2D 

fluoroscopic images – by replacing 2D ionizing fluoroscopy with the safer and 3D US. 

The validity of this procedure, however, hinges on the ability to register CT (or MRI) and 

US images accurately, and hence this is a critical problem. This registration falls under 

the category of ‘multi modal registration’. 
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Multi-modal registration can be model based, feature based and voxel based. Voxel based 

methods use all the information available in the image directly to compare the source and 

target images using an image similarity metric. The fact that this removes the need to 

segment or model the data makes these methods easy to implement. Moreover the fact 

that all the information is being used makes the methods statistically robust as well. 

There are many similarity metrics used for multi-modal image registration, e.g., [19], 

[20], [21], [22]. Most of them have been tried on, and found to perform well on CT and 

MR images. Viola et al [23] and Maes et al [19] independently proposed the now industry 

standard mutual information (MI) metric, Studholme et al [20] suggested an improvement 

- normalized mutual information (NMI). A method based on partition intensity ratio 

(PIU) was developed by Woods [22]. Roche et al [21] proposed a method on correlation 

ratio (CR). 

The fundamental idea underlying all these metrics is that the image intensities are 

assumed to be random variables and they are assumed to have identical independent 

distributions. The metrics then measure the correlation between the random variables.  

This correlation can be viewed as function (depending on the metric) of the joint 

probability density function (PDF) of the random variables. While this works very well 

for registration between modalities such as CT and MRI, the high incidence of artifacts in 

the US volumes that mimic anatomically valid structures means that, for US and CT 

volumes, registration outputs often do not correspond to the global optimum, sometimes, 

even a local optimum is not obtained, as shown in [24]. 

A solution is to detect the useful information for registration. By extracting the regions 
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where the images have better correspondence information, the performance of the 

intensity based methods can be greatly improved. Simple thresholding was used to obtain 

the tissues of interest by Huang [24]. However, complex anatomical structures undermine 

the effectiveness of this method. Roche et al [21] proposed a robust estimation of 

bivariate function together with a correlation ratio method to suppress the correspondence 

outliers between MRI and US. However, the results are highly parameter dependent and 

the process is time consuming. Penney et al [25] extracted a vessel probability density 

map from the US images and used it to register with the MRI images. However, this 

method needs a learning process. This in turn involves both, a large number of US 

images and an empirically determined threshold for MRI images. Leroy et al [26] and 

Wein et al [27] used noise models to detect the artifacts. This works well on artificial 

data, but not very well on real life volumes.  

Local features can provide unique and reliable information for registering the images 

with less trustable information. Stewart et al [28] proposed a method to register the 

retinal images by using local features. The registration starts from the most accurate local 

feature matching and then propagates with more global feature matching. Salient regions 

have been used as features for registration recently because of its higher robustness. 

Huang et al [24] has used multiple salient regions for 2D image registrations. Recently 

Hacihaliloglu et al [13] showed the effectiveness of using Phase Symmetry filters to 

extract bone surfaces from US, opening up new possibilities for registering orthopedic 

US data with CT or MRI volumes.  
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1.6 State-of-the-Art in MRI Cartilage and Bone Segmentation  

Segmentation, in general, is a very well researched area, and has been widely applied in 

many fields including computer vision, robotics and satellite imagery. However, it is 

typically a much more daunting task to perform segmentation for the purpose of 

biomedical image analysis. The segmentation algorithm has to not only successfully 

reproduce the results over different scans in different studies with different patients of 

different disease stages, but also has to realize accuracies high enough for distinguishing 

small changes over certain disease progression and/or populations.  

In the following section, both cartilage and bone segmentations in MRI have been 

discussed. Many of the methods in both cases involve the finding of the bone cartilage 

interface – which makes these segmentation methods, to some degree, interchangeable. 

Hence, though this project itself does not deal with cartilage segmentation, it has been 

discussed. 

1.6.1 Cartilage Segmentation 

Cartilage segmentation has been the topic of a great deal of research. Much of the 

cartilage segmentation is done, at present, manually. This is time consuming and also 

greatly laborious and prone to human error. Most of the algorithms present in the 

literature are semi automated and most of the current ones use prior knowledge of the 

bone cartilage interface and its relationship to the shape and volume of the cartilage, or 

templates obtained from manually segmented volumes in order to guide the 

segmentation. 

The watershed transform was used to segment the cartilage semi automatically in 
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[29] and [30]. In [29], K Nearest Neighbour classification was first used on 15 training 

sets in order to generate a posterior probability map which gave a gradual transition from 

cartilage to background. Then an empirically decided threshold (0.9) was used to 

threshold the cartilage. This was then region grown by growing the largest connected 

component. Upon this, the watershed transform contours obtained from the original 

image and/or the output of the KNN classifier were imposed. By clicking on the 

watershed-detected regions, the user could then select or deselect regions, thus fine 

tuning the segmentation. In [30], prior knowledge is incorporated into the equations of 

the watershed transform in order to improve the segmentation. It requires the input of 

markers to prevent over segmentation, but it tries to generate these automatically. Results 

were better than the standard watershed transform, but nevertheless, not very impressive 

(sensitivity ~90%). 

Another approach based on generating a probability map was used in [31]. An initial 

alignment of the template to the patient scan was determined interactively using a rigid 

body registration for each bone. A statistical model for the intensity distribution of 

structures of interest was determined from a set of voxels sampled interactively. The 

template was converted into a set of maps by computing a distance transform of each of 

these structures in the registered template. This was done to indicate where the bones and 

cartilage are expected to be found in the patient scan The distance transform has low 

values where the anatomy was expected, and high values far away from where the 

anatomy was expected. These maps, along with the original MRI (median filtered), were 

used as features, and cause the classification to vary spatially, depending upon the 
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template anatomy. K nearest neighbour classification was then used to classify each 

voxel. A 3D nonlinear deformation of the template was computed with a fast elastic 

matching algorithm. The process of feature space generation and classification was then 

repeated, using this refined template.  

A spline based method was used by [32], [33] and [34]. They used fat suppressed images. 

The spline is manually initialized by specifying the end points and, coarsely, the control 

points. This is used to find the cartilage midline and then two other splines, starting at the 

midline, travel outward in opposite directions to fit the tibial cartilage edges as specified 

by directional Canny edge detectors. 

A more detailed description of a B-spline segmentation method was given by [35]. They 

used an energy minimization approach for driving the curve deformation towards 

cartilage boundaries. The same approach was used by [36] who used the shape learnt 

from manual segmentations (actually, phantom data) and the Mumford Shah model to 

define the energy. A similar technique was also reported more recently by Raynauld in 

studies regarding knee joint osteoarthritis [37], [38]. 

Segmentation using a probabilistic model was done, among others, by [39]. Using an 

atlas, a probability map of the presence of cartilage was generated considering distance 

and orientation with respect to the bone cartilage interface. Bones were segmented using 

a region growing method and then using the above information, the posterior 

probabilities were obtained, giving the cartilage probabilities for the given image. 0.5 was 

then used as a threshold to obtain the actual cartilage. 
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The most popular methods used for cartilage segmentation currently used are those based 

on Active Shape Models (ASM). These represent objects as a set of n labeled points 

(landmarks). These landmarks are extracted from a set of s training images either 

manually or automatically. A point distribution model (PDM) is then constructed to 

model the variation distribution of the landmarks as follows. The landmarks 

(x1,y1,…xn,yn) for each training image are represented as 

T)yn  ,y1,...xn  (x1,  yi =  

The shape vectors are aligned by scaling, rotation and translation to minimise the sum of 

squared distance between the landmarks. A mean shape is then calculated from the shape 

vectors  
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Principal component analysis (PCA) is then applied using eigenvalue decomposition of 

the covariance matrix. Eigenvectors corresponding to the t largest eigenvalues λi are 

retained in a matrix P. The number of eigenvalues to retain, t, is chosen such that their 

sum sufficiently explains the variance in the training shapes. Any shape in the training set 

can now be approximated by 

Pbyy +=  (1.3) 
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where b is a vector of t elements containing the model parameters, calculated by 

)( yyPb T −=  (1.4) 

To ensure that new shapes generated are in the allowable shape domain, the values of b 

are constrained to lie within the range i ±m λ , where m has a value between two and 

three.In the literature, among many other papers, [34], [36], [40], [41], [42], [43] and [44] 

use variations of the ASM method described above. 

1.6.2 Bone Segmentation 

Though organs such as the brain, the blood vessels, the lungs, etc. have had many 

segmentation methods developed for them for MRI, the bones have been relatively less 

well addressed, and comparatively simple methods such as region growing are still used. 

Even those who do deal with the topic often use the bone segmentation as a coarse first 

step towards cartilage segmentation [39]. Kapur et al [39] proposed a two-step process 

where interactively-acquired seeds are followed with a texture-based region growing 

process resulting in a rough segmentation that is further refined using an active contour-

like regularizer. Fripp et al [40] used three-dimensional (3D) active shape models 

initialized by affine registration to an atlas. However, they reported problems related to 

patella segmentation and results remained sensitive to initialization. Lorigo et al [45] 

used texture-based geodesic active contours [46], [47] to perform segmentation; however 

setting the segmentation parameters for the entire bone without leaking into the cartilage 

is extremely difficult. Bourgeat et al [48] used phase information of the raw MR data in 

addition to the magnitude (intensity) image information in order to improve segmentation 

of the bones of the knee. Reported results were however not very accurate, requiring 
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further manual refinement.  

All of the previously reported segmentation methods suffer problems at weak tissue 

interfaces. This occurs due to a variety of factors including image blurring, noise and 

partial volume effects, but is often mainly attributed to poor bone-cartilage tissue contrast 

where different tissue intensities appear too similar and thus are not clearly 

distinguishable based on one single-contrast MR scan as it does not have enough 

discriminatory information (Fig. 2-1(a)).  The influence of these complicating factors can 

often be reduced with more sophisticated segmentation methods such as those employing 

a priori information e.g. principal component analysis/active shape based methods [44], 

[49]. However, prior-knowledge approaches rely on assumptions such as smoothness and 

known shape which do not always hold in pathologically deformed bones.  

An alternative approach to circumventing the problem of complicated segmentation is to 

improve the contrast between the bone and surrounding confounding tissues (mostly 

cartilage) during the imaging process itself. This could be accomplished by utilizing the 

MRI scanner to capture images of different contrasts i.e. using multi contrast imaging 

(MCI). MCI has been used in a number of application areas, most notably in brain 

imaging where it is commonly employed to enhance brain tissues separation [50], [51]. In 

bone imaging, however, application of MCI has been very limited. Ostrowitzki [52] and 

Carano et al [53] used MCI combined with clustering methods to quantify changes in 

bone lesions in rheumatoid arthritis using class transitional analysis. However, their 

interest was only in lesion changes and did not consider bone segmentation. 

It is to be noted that many of the methods using ASM for cartilage segmentation also 

use the same methods to segment bone. 
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1.6.3 Objective Summary 

In summary, our thesis objectives are as follows: 

• MRI Segmentation: 

Develop a multimodal framework for improved MRI bone segmentation (Figure 1-5) 

 

Figure 1-5: Multi-contrast MR bone segmentation 

• US-US Stitching: 

Develop a robust and fast stitching algorithm for increasing the field-of-view of US 

volumes (Figure 1-6) 

 

Figure 1-6: US-US volume stitching 

• US-MRI/CT Registration: 

Develop an algorithm for US-CT/US-MRI registration (Figure 1-7) 

 

Figure 1-7: US-CT registration (left) and US-MRI registration (right) 

 

Original Enhanced Segmented 

Individual Images Stitched Image 

US-CT Registration US-MRI Registration 
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The rest of this thesis is organized as follows:  

Chapter 2 presents a method for enhanced bone tissue visualization and segmentation 

using multi contrast MRI. This describes the first part of our framework – robust, 

accurate MRI bone segmentation. The subsequent chapters deal with the processing and 

registration of motion capture US bone data to high resolution MRI data. In Chapter 3 a 

fast and efficient algorithm for the stitching of US volumes to enlarge the US field-of-

view is presented. Chapter 4 deals with the multi-modal registration of US with MRI 

data. Chapter 5 concludes the thesis with a review of its contributions and thoughts on 

future improvements and projects. 
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2 Multi-Contrast MR Imaging for Enhanced Bone Tissue 
Visualization and Segmentation

1
 

2.1  Introduction  

Given the objectives of the project, the first step was to develop robust and accurate bone 

segmentation in MRI. In this project we used MCI for facilitating improved segmentation 

of bone structures in MRI based on a simple yet efficient and robust method for 

increasing image contrast between bone and surrounding cartilage tissue. 

2.1.1 Methodology 

Our proposed approach employs MR images with different tissue contrasts to enhance 

contrast at the bone-cartilage interface (BCI). Since trabecular bone is visible in MRI 

scans due to the presence of marrow fat, two scans are acquired: a T1W scan, which 

brightly illuminates the presence of marrow fat, and a fat suppressed (FS) scan, which 

suppresses and nulls the fat signal. The difference image of the two acquisitions thus 

results in an image where only fat remains; thus removing the surrounding cartilage and 

muscle tissue. 

2.1.2 MR Image Acquisition  

We acquired sagittal knee MR image volumes from non-arthritic volunteers (n = 9, 

average age = 35.6 ± 7.8 years) using a Philips Achieva 3T scanner (Philips Healthcare, 

                                                 

• 1 Versions of this work have been published.  
Dalvi, R., Abugharbieh, R., Wilson, D.C., Wilson D.R.. “Highly-Automated 3D Segmentation of Femoral Bone from Hip MRI”. 

International Society for Magnetic Resonance in Medicine Scientific Meeting (ISMRM), Berlin-Germany, 2007  

Dalvi, R., Abugharbieh, R., Wilson, D.C., Wilson D.R.. “Multi-Contrast MR for Enhanced Bone Imaging and Segmentation”. 
International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Lyon-France, 2007, pp. 5620-5623 
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Andover, MA, USA). A quadrature knee coil was used to obtain the T1W and FS scans 

for each volunteer (Fig. 2-1). The two scans were subsequently fused to increase the 

discriminatory power which we will later show to enable more accurate and robust tissue 

segmentation. The protocol parameters for the two sequences acquired were as follows:  

T1W TSE (Turbo Spin Echo) scan: TR = 360 ms, TE = 10 ms, acquisition matrix 

512×512, voxel size = 0.6 mm, NEX = 2, slice thickness = 2 mm, number of slices = 50, 

scan time = 9 min. The specific short TR was chosen to enhance bone marrow signal 

intensity with respect to adjacent tissues [54].  

FS scan:TR = 11.6 ms, TE = 4.4 ms, flip angle = 15
o
, acquisition matrix 512×512, voxel 

size = 0.6 mm, NEX = 2, slice thickness = 2 mm, number of slices = 50, scan time = 5 

min. 3D fast gradient echo with selective water excitation (ProSet) was used. 

In addition, in order to enable comparing segmentation results on lower resolution 

multi-contrast data to results obtained when using higher resolution single-contrast data 

(when the two have the same acquisition time), we also acquired sagittal images of the 

knee from healthy volunteers (n=2). In each case, a conventional single-contrast, high 

resolution T1W scan was acquired (TR = 700 ms, scan time = 652 s, dimension = 

512×512×46). For the proposed multi-contrast method, two lower resolution scans 

(dimension = 336×336×50) were acquired for both volunteers; the first a T1W scan (TR 

= 180 ms, scan time = 365 s) and the second an FS scan (TR = 11.291 ms, scan time = 

252 s). 

 



 25 

2.1.3 Multi-Contrast Image Fusion  

All data were first preprocessed with anisotropic diffusion (edge preserving) filtering [55] 

applied to reduce image noise, and MRI non-uniformity correction subsequently 

performed using the commonly-used non-parametric non-uniform intensity normalization 

(N3) technique [56]. Thereafter, both images were normalized (range: 0 to 255) and their 

difference image was calculated by direct subtraction. (Negative values resulting from the 

subtraction were neglected, i.e., set to zero.) The fat/trabecular bone is the brightest tissue 

in the T1W image and is completely suppressed in the fat-suppressed scans. Also, post 

normalization the non fat/non trabecular bone tissues (muscle, cartilage, etc…) are 

consistently brighter in the fat-suppressed image than in the T1W image. This means that 

upon subtraction of the fat-suppressed image from the T1W image (and setting negative 

values to zero), only the fat/trabecular bone remains in the output. The resultant enhanced 

image thus contains all of the bone marrow as well as surrounding subcutaneous fat but 

excludes the majority of the surrounding cartilage and muscle (Fig. 2-1). 

   

(a) (b) (c) 

Figure 2-1. The proposed multi-contrast MR imaging approach. (a) Example T1W image. (b) Corresponding FS 

image. (c) Resultant cartilage-suppressed (difference) image. Note the poor contrast at the patella-cartilage boundary 

(circled) in (a) as opposed to the very clearly defined boundary in (c). 
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2.1.4 Bone Segmentation  

To demonstrate the value of the proposed bone imaging approach, we performed 

segmentation using state-of-the-art methods on both the enhanced (multi-contrast based) 

images as well as the original T1W (single-contrast) images. 

2.1.4.1 Fully Automatic Laplacian Level Set Segmentation  

The first segmentation technique tested was a two step procedure incorporating a coarse 

initial segmentation based on region growing followed by a fine tuning step. For the 

coarse segmentation, seed points were automatically generated within the femur and the 

tibia. By registering the image data to be segmented to a previously labeled template 

image, the coordinates of the center of mass of the femur and the tibia of the registered 

volume were used as seed points for the segmentation process. A connectivity based 

region growing was then performed which is based on the mean and standard deviation of 

the region under consideration. First, the mean and standard deviation of all the pixel 

intensities currently in the region are computed. All neighboring pixels whose intensity 

values lie within a specified range from the mean (a user-provided factor, σ, is used to 

multiply the standard deviation and define a range around the mean) are then added to the 

region in an iterative ‘region growing’ manner. The values of mean and standard 

deviation are recalculated at each iteration and the process is repeated until a 

predetermined number of iterations is met.  

The parameters for the coarse (confidence connected thresholding) segmentation method 

(viz., the number of iterations and σ) were selected as follows.  
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(a) 

 

(b) 

  

(c) (d) 

Figure 2-2: Demonstration of the process for parameter selection for the coarse segmentation (confidence 

connected thresholding) method. (a) original image (b) map of number of pixels in the segmented image as a function 

of # iterations and σ - vertical axis corresponds to number of iterations and the horizontal axis corresponds to σ. Red 

(oblique)arrow indicating parameter values beyond which leakage occurs (optimal values). Yellow (vertical) arrow 

indicating parameter values at which leakage occurs (c) segmentation of femur with optimal parameter setting (d) 

segmentation with parameters just beyond optimal setting. 
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After selecting the initial seed point as described above, the method was run over a large 

range of values of both number of iterations and σ and the total number of pixels in the 

segmented image for each set of parameters was recorded as shown in Fig. 2-2, where the 

vertical axis corresponds to number of iterations and the horizontal axis corresponds to σ. 

Given the nature of the images being dealt with, the following pattern would intuitively 

hold: For a given number of iterations, increasing σ increases the number of pixels in the 

segmented image. Once the segmentation leaks outside the bone of interest, however, 

there is a large surge in the number of pixels in the segmentation, since the segmentation 

leaks into all the surrounding fat/bone areas. By taking the horizontal gradient of the 

above image, one can then find the threshold points (thresholded local horizontal gradient 

maxima) beyond which leakage occurs, and thus, the parameters that correspond to 

optimal segmentation. In the event of multiple such local maxima, the optimal parameters 

are taken to be the ones corresponding to the highest pixel count for the segmentation. 

The process of parameter selection has been demonstrated in Fig. 2-2. 

To fine-tune the coarse initial segmentation obtained, we employed an automated 

Laplacian level set segmentation technique [57]. Level sets are implicit representations 

that embed the contour in a higher dimensional function which facilitates representation 

of topologically complex shapes. The level-set function, denoted by ψ(X, t), where X is 

the evolving contour at time t, is thus initialized based on the initial coarse contour 

obtained previously and then evolved iteratively. The shape of the contour at any point of 
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time during the curve evolution is obtained by taking the zero level set:  Γ((X), t) = {ψ(X, 

t) = 0}. In essence, the Laplacian level set segmentation method attracts the evolving 

contour to local zero-crossings in the Laplacian (second derivative feature) image. Details 

of the algorithm can be found in [58]. While the algorithm can be implemented in both 

3D and multi-slice 2D, we used the latter since it gave higher Dice’s coefficient values. 

2.1.4.2 Semi-Automated Interactive LiveWire Segmentation  

The second segmentation method we used for validation employed the LiveWire 

approach pioneered by Barrett and Mortensen, [59], [60]. Two dimensional (2D) 

LiveWire was used on each slice of a given volume The method can briefly be described 

as follows: Let S(q) be a 2D slice within an image volume, where q = (x, y) is a point on 

the slice. Let p=(x’,y’) be a neighboring pixel to q . A local cost map C(p, q) of the 

original image is created using image information and path smoothness measures. Image 

features such as gradient magnitude cost CG(q), gradient direction cost CGD(p, q), Canny 

edge detection cost CC(q), Laplacian of Gaussian (LoG) cost CLoG(q), and Euclidean 

distance (smoothness) cost Cd(p, q) (equation 2.1) were used in our implemetation.  

C(p, q) =wC.CC(q) + wLoG.CLoG(q) + wG.CG(q) + wGD.CGD(p, q) + wd.Cd(p, q) 2.1 

where wG, wGD, wC, wLoG, and wd  are the weights for the respective terms. Starting at 

pixel q, a cost map M(q) is thus created to all other pixels slicing the image using the 

accumulated path cost, and a graph search algorithm [59] is then used to find the globally 

minimal cost path. This minimal-cost path connecting the seed points selected by the user 

on the object boundary eventually constitute the outline of the desired segmentation. The 
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number of seed points needed to accurately segment the object depends on the image 

quality and object size and shape. In this paper, we used the LiveWire implementation of 

Poon et al. [61]. 

2.2 Results  

For quantifying the accuracy of the segmentation, manually segmented data sets were 

used as the reference gold standard. In order to validate the improvement in segmentation 

with the proposed approach, we compared the performance of the described two 

segmentation methods on both the enhanced MCI and the T1W data set only (single- 

contrast). Dice’s coefficients were used to measure segmentation accuracy (Eq.2.2):  

( )BABADice +∩= /2  2.2 

where A and B represent the set of manually segmented and automatically segmented 

bone voxels, respectively. To account for the signal fade off that occurs in the areas that 

are not covered by the knee coils, which are near the top and bottom of the image, the 

accuracy was calculated only on the central parts of the image where the bone meet to 

form the joint.  

To quantify the advantage in LiveWire segmentation using the enhanced, multi-

contrast images as opposed to the original images the following evaluation was used: 

Seed points for the LiveWire were initialized using the manual segmentations. In the first 

iteration, every manual point on the boundary was used as a seed point; in the second 

iteration, every second point was used, then every third and so on. The spacing between 

the manual points used as seeds when the segmentation accuracy of the volume dipped 
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just below 97% (Dice’s coefficient) was established. Clearly, greater spacing implies 

lesser number of seeds and thus reduced user input/effort and greater ease of 

segmentation. Table 2-1 shows the largest spacing possible between seeds for both 

original (single-contrast) and enhanced (multi-contrast) images for Dice’s coefficient 

accuracy of 97%. It can be noted that our proposed multi-contrast approach leads to 

significant improvement in the semi automated segmentation using LiveWire with the 

average spacing between seeds increasing from 7 pixels for the original images and 11 

pixels for the enhanced, multi-contrast images. The results shown in the paper are the 

ones using the default parameters for the program.  

Table 2-1: Comparison results of maximum spacing in pixels between seed points for semi automated (LiveWire) 

segmentation of knee bones on 9 subjects from using traditional single-contrast and proposed multi-contrast approach 

at the same DICE accuracy of 97%.  

 
Subject No. 

Femur Tibia Patella 

 
Single-

Contrast 

Multi-

Contrast 

Single-

Contrast 

Multi-

Contrast 

Single-

Contrast 

Multi-

Contrast 

01 6 12 7 11 7 12 

02 7 11 8 11 6 11 

03 8 10 8 12 8 11 

04 7 12 6 11 6 12 

05 8 11 9 12 7 9 

06 5 9 7 11 6 10 

07 6 11 7 11 8 11 

08 7 10 8 11 7 11 

09 8 12 5 10 9 12 

Mean 6.89 10.89 7.22 11.11 7.22 11 

Mean  

(p-values) 
0.0037 0.0064 0.0059 

Std 1.05 1.05 1.20 0.60 1.20 1 
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Table 2-2: Comparison of quantitative results of automated Laplacian level set segmentation (using Dice’s 

coefficients) of knee bones in 9 subjects when performed on single-contrast images and the proposed multi-contrast 

imaging approach.  

 
Subject No. 

Femur Tibia Patella 

 
Single-

Contrast 

Multi-

Contrast 

Single-

Contrast 

Multi-

Contrast 

Single-

Contrast 

Multi-

Contrast 

01 94.15 96.71 95.13 96.30 88.55 89.93 

02 94.35 97.16 95.24 96.32 87.39 88.80 

03 94.67 96.55 96.49 97.88 88.83 91.34 

04 94.17 96.55 94.48 95.51 89.59 90.07 

05 95.51 97.58 95.93 96.85 88.09 89.37 

06 93.23 95.95 89.68 93.94 61.52 72.87 

07 95.15 96.29 95.39 96.11 90.66 91.90 

08 94.87 95.99 96.18 97.49 86.30 91.38 

09 94.30 96.82 95.22 96.49 89.29 89.94 

Mean 94.49 96.62 94.86 96.32 85.58 88.40 

Mean  

(p-values) 
<<0.05 0.0174 0.0518 

Std 0.66 0.53 2.04 1.14 9.11 5.91 

 

Table 2-2 shows the results of the fully automatic segmentation (in terms of Dice’s 

coefficients) of both the single-contrast images (SCI) and the MCI using the 

segmentation method described above. The parameters used for the level set 

segmentation in our tests were empirically set to 50 for the propagation constant, 10 for 

the curvature scaling and 7500 for the iteration number. Quantitative results demonstrate 

superior segmentation of the MCI data with improvements in Dice’s coefficient of 

2.13%, 1.46% and 2.82% for the femur, the tibia and the patella respectively. The 

improvements were statistically significant for the two larger bones (p<<0.05 for the 

femur and, p=0.0174 for the tibia). For added clarification, the sensitivity and specificity 

results for the segmentation have also been documented (Tables 2-3 and 2-4). 
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Table 2-3: Comparison of quantitative results of automated Laplacian level set segmentation (sensitivity) of knee 
bones in 9 subjects when performed on single-contrast images and the proposed multi-contrast imaging approach.  

 
Subject No. 

Femur Tibia Patella 

 
Single-

Contrast 

Multi-

Contrast 

Single-

Contrast 

Multi-

Contrast 

Single-

Contrast 

Multi-

Contrast 

01 96.0991 94.7111 94.8192 95.3769 88.3570 87.0718 

02 95.7865 95.6667 95.5415 93.7591 87.5151 87.8834 

03 95.0796 94.1035 94.6193 97.4533 85.5351 87.9603 

04 95.7719 96.2916 95.0621 95.8312 85.8285 87.1554 

05 95.1409 95.0135 93.3363 95.1940 87.4288 85.7546 

06 93.8679 96.9400 94.0193 95.5620 87.5196 85.9932 

07 93.6589 96.9146 95.6333 94.8358 86.4819 84.8559 

08 93.8648 95.8743 95.2234 95.2316 87.3006 86.5740 

09 94.6363 95.4862 94.3444 94.4038 86.8057 85.2801 

Mean 94.87843 95.66683 94.7332 95.29419 86.9747 86.50319 

Mean  

(p-values) 
0.1951 0.2647 0.3740 

Std 0.923091 0.963597 0.745362 1.024821 0.899288 1.107466 

 
 

Table 2-4: Comparison of quantitative results of automated Laplacian level set segmentation (specificity) of knee 
bones in 9 subjects when performed on single-contrast images and the proposed multi-contrast imaging approach.  

 
Subject No. 

Femur Tibia Patella 

 
Single-

Contrast 

Multi-

Contrast 

Single-

Contrast 

Multi-

Contrast 

Single-

Contrast 

Multi-

Contrast 

01 93.0035 96.8661 93.9510 97.8755 87.2866 90.344 

02 92.5395 94.979 94.6287 95.1956 87.5909 90.555 

03 94.1794 94.6525 94.5130 95.1832 86.9017 89.8723 

04 95.5147 96.3344 95.1162 98.4772 90.2278 91.8177 

05 95.6755 97.1795 94.2952 96.2592 85.3428 89.711 

06 94.1798 97.2369 91.5906 92.8602 66.9012 78.0955 

07 95.8789 95.5578 94.2074 97.7569 87.6806 89.9258 

08 93.971 95.1412 92.9936 95.9603 86.5032 88.5893 

09 94.9832 97.6914 95.0525 96.073 88.2338 89.2585 

Mean 94.436167 96.182089 94.0386 96.18234 85.1854 88.68546 

Mean 

(p-values) 
0.0048 0.0014 0.0087 

Std 1.1767443 1.1256552 1.1154 1.72076 6.983597 4.070327 
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A brief note on the parameter selection for the level set segmentation. Given that the level 

set segmentation is part of an automated method, specifically finding the optimal 

segmentation parameters for each bone would have been somewhat counterproductive. 

The results obtained in Table 2-2 were therefore obtained with a fixed set of parameters. 

These parameters were selected after empirically testing various parameters on one 

single-contrast femur volume to get a good segmentation value and then using the same 

parameters for all the segmentations. However, to find out whether the segmentations 

were robust to parameter tuning, we segmented 3 bones (2 femurs and 1 tibia) from both 

the single-contrast and multi-contrast data (6 cases in all) with a range of parameters and 

found the optimal parameters for segmenting each bone. In each instance, we segmented 

the other 5 cases with these parameter values and found out the mean performance. The 

results can be seen in Table 2-5. We found that the optimal parameters for all bones were 

very similar to each other and that the results were very similar to the results documented 

for the same bones in Table 2-2. We also found that when bones were segmented using 

the parameters optimized for another bone, the segmentation performance was only 

slightly worse. This can be seen from the fact that the mean of the optimized 

segmentations is only marginally better than the mean of the segmentations performed 

using the optimized parameters of one bone on the other bones. Thus, it would be fair to 

assume that the parameters used for the results obtained for Table 2-2 gave a nearly 

optimal segmentation performance. It should be noted that the number of iterations was 

set at 8000 since empirical observation showed that, unless there was leakage, the 

algorithm tended to converge before 8000 iterations. 
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(a) (b) (c) (d) 

 

 

 

 

(e) (f) (g) (h) 

Figure 2-3: Qualitative illustration of the advantage of using the MCI enhancement. (a),(b) Original images. (e),(f) 

Results of segmentation using Laplacian level set segmentation on original single contrast data of femur in (a) and 

patella in (b). (c),(d) Contrast enhanced images. (g),(h) Corresponding segmentation using Laplacian level set 

segmentation on the proposed enhanced data of femur in (c and patella in (d) - note the highly superior segmentation 

results. Yellow indicates the areas of incorrect segmentation. Red indicates correctly segmented regions. Note the poor 

bone-cartilage contrast at the locations of leakage. (Red circles in (a), (b), (c) and (d) indicate points of leakage at the 

bone-cartilage interface.) 

 Figure 2-3 demonstrates the qualitative segmentation improvements achieved when 

using MCI compared to traditional single-contrast imaging. By sharply improving the 

contrast at the bone cartilage interface, our proposed approach successfully prevents 

leakages to which the single-contrast image data segmentation is highly prone. Figure 2-4 

shows the effect of MCI enhancement on automated segmentation at the bone-

subcutaneous fat interface. 
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(a) (b) (c) 

   

(d) (e) (f) 

   

(g) (h) (i) 

   

(j) (k) (l) 

   

(m) (n) (o) 

Figure 2-4: Illustration of the advantage of using the MCI enhancement at the bone-subcutaneous fat interface. Row 

1: the original images. Row 2: the corresponding contrast enhanced, multi-contrast images. Row 3: manual (gold 

standard) segmentation. Row 4: segmentation from the original (single-contrast) images. Row 5: segmentation from the 

enhanced (multi-contrast) images. Yellow indicates the areas of incorrect segmentation. Red indicates correctly 

segmented regions. (Red circles in Rows 1 and 2 indicate points of leakage at the bone-subcutaneous fat interface.) 
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Table 2-5: Table demonstrating of robustness of segmentation to level set parameters. Number of iterations was set 
at 8000 since for most cases (where leakage did not occur) convergence was reached before then. 
 

 

Bone Optimal Values 
Dice’s 

Coefficient 

Mean 

Dice’s 

Coefficient 

of other 5 

volumes 

with these 

values 

  Propagation Constant Curvature Scaling   

Femur 3 50 10 94.8672 96.0498 

Femur 5 30 10 95.8826 95.8562 

Single-

Contrast 

Tibia 9 50 10 95.6593 95.9512 

Femur 3 60 8 96.8795 95.7228 

Femur 5 50 8 97.7326 95.6816 

Multi-

Contrast 

Tibia 9 50 10 96.8429 95.8707 

Mean    96.3107 95.9437  
  

2.3 Discussion 

In absolute terms, the accuracy of the segmentation of the MCI data was very high for 

both the femur and the tibia (mean Dice’s coefficients of 96.6% and 96.32% 

respectively). It was lower for the patella (88.4%). However, this is due to the fact that 

the patella is a much smaller bone than the femur and the tibia and hence even small 

errors in segmentation (in terms of pixels over- or under-segmented) penalize the final 

Dice’s coefficient heavily. Also, the patella is in close proximity to a bank of fat. Given 

that the patella is seen in the MRI scan because of the marrow fat in it, the adjoining fat 

pad makes segmentation very difficult even after the enhancement. Nevertheless, the 

segmentation on multi-contrast images outperforms segmentation on single-contrast 

images in the case of the patella as well. The MCI data also improved the consistency of 

the method as can be seen from the standard deviations in the results over the datasets. 
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Additional to the intended improvement at the BCI, there is also improvement at 

the bone fat interface. One possible reason for this is that the subtraction in the proposed 

method also has the side-effect of highlighting the often thin boundary between marrow 

and subcutaneous fat, which is an issue for the femur and especially, the patella, thus 

limiting a source of potential leakage which segmentation on the SCI data is prone to do. 

Figure 2-4 shows the effect of MCI enhancement on automated segmentation at the bone-

subcutaneous fat interface.  

Furthermore, from Tables 2-3 and 2-4, it can be readily seen that the main 

advantage of the proposed method lies in preventing leakages. This can be inferred from 

the fact that while the segmentation sensitivity is not statistically different for the single- 

and multi-contrast scenarios, the specificity - which indicates the level of leakage - shows 

that the segmentation of the multi-contrast volumes significantly outperforms 

segmentation of single-contrast volumes. 

A potential argument regarding our method is that it requires two scans thus 

increasing the total amount of scanner time needed for imaging and that a single-contrast 

scan, taken at a higher resolution (with an increased scanning time) might in fact possess 

enough image detail to segment the data more accurately. To refute this point, we 

performed automated segmentation on single-contrast data taken at high  resolution 

(512×512×50) and compared the results to those performed on corresponding multi-

contrast data consisting of T1W and FS scans taken at a low resolution (336×336××50) 

over the same duration (please refer to Section 2 for data acquisition details). The results 

of this comparison are shown in Table 2-6, which show that the multi-contrast 
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enhancement holds an advantage even when the resolution is compromised to keep the 

SCI and MCI acquisition times the same to those of a single scan. We acknowledge that 

only two scans are insufficient to draw strong conclusions from. However, they do 

provide a strong indication of the potential advantages of the proposed methodology. 

Table 2-6: Mean segmentation performance (measured as DICE coefficient) of the femur, tibia and patella in the 

standard single-contrast and multi-contrast approach where the single-contrast image is of a higher resolution than the 

multi-contrast image. 

Tissue 
Single-Contrast Data  

(high resolution) 

Multi-Contrast Data  

(low resolution) 

Femur 93.96 94.79 

Tibia 92.55 94.03 

Patella 88.16 89.82  

 
The pulse sequences have not been optimized for the proposed method. Difficulties in 

collecting the data meant that the data we got was part of another group’s study and was 

intended for other purposes and the pulse sequences had thus been optimized for them. 

This can be seen as a plus for the proposed method, however. Since it works well even 

when the images are not optimized for it, it will, intuitively, work even better if they are. 

Another aspect that should be discussed is parameter selection. For the automated 

segmentation, we optimized the parameter selection for the coarse segmentation step in 

the way detailed in the Methods section. We also verified that the parameters selected for 

the fine tuning step (level set segmentation) were optimal or near optimal and that the 

segmentation of relatively robust to parameter selection within a certain range of values. 

While we currently do not have a tried and tested method for optimizing the weighting 

parameters for the LiveWire algorithm, our lab is currently working on an algorithm to 

do precisely that [97]. Once that algorithm is finalized and tested, we will re-evaluate our 

method’s performance with respect to LiveWire. The results shown in the paper are the 
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ones using the default parameters for the program (and the ones, consequently, that most 

people using the algorithm are likely to use unchanged). Having said all this, it should be 

borne in mind that the LiveWire algorithm is a semi-automated technique and hence any 

comparison without the user in the loop is not very meaningful. We got two experts to 

segment the bones from both the original and enhanced volumes and both agreed that it 

was far easier, time saving and convenient to segment the bones on the enhanced 

volumes than on the original ones. 

2.4  Conclusions 

In this paper, we proposed a novel method for enhancing bone contrast in MR data using 

a simple and efficient multi-contrast acquisition approach. Our technique combines T1W 

and FS images, taking advantage of the fact that bone is seen in MRI scans principally 

due to the marrow fat within it. The advantages of our technique were demonstrated both 

quantitatively and qualitatively on real bone MR data where significant accuracy 

improvement was achieved when using multi-contrast data based segmentation compared 

to traditional single-contrast data. Our validation was carried out on knee data of nine 

volunteers. Quantitative improvements measured using DICE coefficients were 

demonstrated and qualitative improvements due to the contrast enhancement were also 

shown, manifesting in fewer visible leaks across boundaries, both at the targeted bone 

cartilage interface and also at the bone-subcutaneous fat interface. Superior segmentation 

was also achieved on lower resolution multi-contrast data compared to higher resolution 

single-contrast data when the two had the same acquisition time. Furthermore, our 

approach demonstrated increased efficiency and ease of use of semi-automated 
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segmentation method when used on multi-contrast images. 

The proposed method promises to be a valuable tool for improving segmentation 

reliability and the associated reduction in analysis time and operator variability in clinical 

applications. This may potentially render large scale MR-based investigations of bone 

deformities and kinematic analyses more feasible.  

The method described above provides the first part of our framework – robust, 

accurate MRI bone segmentation. The subsequent chapters relate the processing and 

registration of motion capture US bone data to high resolution structural data.  
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3 Fast and Accurate 3D Ultrasound Volume Stitching 

Using Phase Symmetry and Harris Corner Detection 

for Orthopaedic Applications
2
 

3.1 Introduction 

The registration phase of the project, as outlined in Chapter 1 comprises of two parts: The 

first part involves the stitching of multiple US volumes to generate a volume with a large 

field of view. The second involves registering the real time US volumes to pre-

operative/pre-testing MRI volumes. This chapter deals with the first part. 

Due to the fact that it is cheap and safe, 3D ultrasound (US) is becoming increasingly 

popular as a viable alternative imaging modality to fluoroscopy in computer-assisted 

orthopaedic surgery (CAOS) applications. Bone tracking using US for joint motion 

analysis has also been suggested [78], [79].  However, most 3D US probes have a highly 

limited field of view (FOV). Widening of this field of view, via the process of volume 

stitching, would provide great benefits to these and other clinical applications. 

Accordingly, 3D US volume stitching has been the subject of some recent research work. 

An overview of these methods was provided in Section 2.2.  

Most of these works involve some form of elastic warping of the volumes to align them. 

Hence, many of them are time intensive and also prone to registration errors, since a 

                                                 

• 2
 A version of this work has been accepted for publication. Dalvi, R., Hacihaliloglu, I., Abugharbieh, R.. "Fast and Accurate 
3D Ultrasound Volume Stitching Using Phase Symmetry and Harris Corner Detection for Orthopedic Applications". SPIE 
Medical Imaging (MI), San Diego-USA, 2010  
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volume may be warped in more than one way to closely fit another. However, most of 

them deal with applications where deformable registration is necessary.  

In orthopaedic applications such as CAOS or joint tracking, the tissue being registered is 

usually bone, which removes, or at least alleviates, some of the need for deformable 

registration. However, the presence of reverberations, shadows, speckles, a low signal to 

noise ratio (SNR) and other artifacts present a challenge, even in rigid registration 

frameworks and may lead to poor performance of intensity-based metrics such as sum of 

squared differences, normalized cross-correlation and mutual information.  

Traditionally, feature based registration has been discounted under such circumstances, 

due to the difficulty in finding salient feature point correspondences between volumes. 

However, Hacihaliloglu et al. [13] showed that the usage of Phase Symmetry filters can 

significantly improve the signal to noise ratio in US images of bone tissue. Moreover, 

recently, the SIFT algorithm by Lowe [13], has been successfully used by Chen et al. [15] 

for rapid feature based preregistration of multi-modal images. Ni et al. [10] have used 3D 

SIFT features to successfully register 3D US volumes for stitching purposes. Though 

their algorithm takes about a minute to register the volumes, they prove that feature based 

registration is a valid option for 3D US alignment. 

In this section, we use probe tracking, Phase Symmetry, Harris corner detection and sub-

volume registration to obtain fast and accurate rigid registration which we will be using 

for bone volume stitching. Using the parameters of the tracked probe, coarse registration 

between the two volumes are obtained. The central slices of these volumes thus contain 

similar structures. These slices are then filtered using Phase Symmetry filters to 
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boost the signal to noise ratio and obtain a good bone surface and then Harris corner 

features are identified and matched. The most appropriate corresponding points are 

chosen based on how well they correlate with each other and also how feature rich their 

neighbourhoods are, and sub-volumes around these points are then registered on a 

volumetric basis. The parameters of this registration are used to register the two volumes.  

As an additional application/verification of the algorithm, we use it to track incidental 

intra-surgical bone motion during CAOS, using a setup similar to that of Lavallee et al 

[3]. A tracked probe attached to the patient obtains volumes at periodic intervals. Each 

successive volume is registered to the previous one using the aforementioned method. 

From the tracking and registration parameters, the bone motion can be inferred. (N.B.: 

Here, we will be only demonstrating the bone registration, not the inference of the motion 

there from.) 

3.2 Method 

The first step in the algorithm is to use the parameters obtained from the probe tracking to 

generate coarse registration. Once this is done, the central slices will contain many 

corresponding features. Before getting at the features, however, we must remove the 

noise and boost the bone signal to noise ratio in the slices. 

Hacihaliloglu et al. [13] proposed the use of a ridge detector, rather than an edge detector, 

to identify and enhance the signal to noise ratio of the bone surface, in order to avoid the 

double sided response at the bone surface that edge detection produces. We have used the 

method they employed, i.e., Phase Symmetry – proposed by Kovesi [62] - for ridge 
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detection. 

Phase symmetry based detection captures the major axis of symmetry of a feature at some 

specified spatial scale. Even signals have real (and even) Fourier transforms. Odd signals 

have imaginary (and odd) Fourier transforms. Generally, signals will have complex 

Fourier transforms, since they are neither perfectly odd nor perfectly even. The resultant 

phase values reflect their degree of symmetry. 

Kovesi [62] gives the following analysis for 1-D phase symmetry: 

For phase symmetry, a signal is convolved with a wavelet pair of band-pass quadrature 

filters (an odd filter and an even filter). If I is the signal and Me
n
 and Mo

n 
denote the 

cosine and sine wavelets at a scale n the responses of each quadrature filter pair forms a 

vector, 

[en(x); on(x)] = [ I(x) *Men; I(x) *Mon ], (3.1) 

The amplitude of the transform at scale n is then given by 

An(x) = (en(x)
2
 + on(x)

2
)
0.5
 (3.2) 

and the phase is given by 

Φn(x) = atan2(en(x); on(x)) (3.3) 

The absolute value of the even-symmetric filter outputs is large and that of the odd-

symmetric filter outputs is small at a point of symmetry. Symmetry would thus be 

proportional to the difference of these absolute values. Likewise, the difference of the 

absolute values of the sine and cosine of the phase angle is proportional to Phase 
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Symmetry. Symmetry is thus given as: 
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T is a noise threshold and is given by: σµ kT += , where µ = mean of the local energy 

distribution, σ = the standard deviation of the same and k is a scalar factor. 

For 2-D images, in addition to scales, a number of separate orientations (r) figure in the 

feature detection. The filters with these orientations are defined by spreading a Log-

Gabor function into two dimensions. Masking a radial Log-Gabor function with an 

angular Gaussian tuned to 0φ  gives a filter tuned to a particular orientation 0φ . The 

frequency band to which the filter responds is controlled by the radial component, and the 

orientation to which the filter responds is controlled by the angular component. The 

resulting two components are then combined into a 2-D Log-Gabor function as in 

Equation. (3.5): 

]
2

)(

))/2(log(

))/(log(
exp[-  ),G(

2

0

2

0

2

0

φσ
φφ

ωκ
ωω

φω
−

+=
 

(3.5) 

The angular bandwidth is given by: 

2log22 ××=∆Ω φσ
 (3.6) 

where φσ  =  s/φ∆  and ∆Ω  is the angular bandwidth. φ∆  is the angular separation 

between neighboring orientations and is defined as r/180°=∆φ , where r denotes the 

total number of orientations used. The parameter s controls the angular overlap of the 
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filter’s transfer function.  

Over a number of scales (m) and at different orientations (r), a 2-D phase symmetry 

measure can then defined as in eqn (3.7): 
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Tr  is the orientation-dependent noise threshold and is analogous to the 1-D scenario. 

For efficient ridge detection for bone surfaces, we use the following parameter values, as 

suggested by Hacihaliloglu et al. [13]: m = 2; r = 6; s = 1.2; ∆Ω  = 25º; k = 8 

  

(a) Central slice of Volume1 (b) Central slice of Volume2 

  

(c) Phase symmetry image of (a) (d) Phase symmetry image of (b) 

Figure 3-1:  Central slices of the two volumes (in vivo radius) to be registered and their phase symmetry images 
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Once the image has been cleaned and the bone surface made prominent (Fig. 3-1), the 

Harris corner detection algorithm – as proposed by Harris and Stephens [63], is used to 

obtain features in both slices. The Harris corner detector works as follows: 

Given an image I, consider two windows, one over the area (a,b) and the other, shifted  

by (x,y). The SSD (sum of squared differences) for these two windows is: 

∑∑ ++−=
a b

ybxaIbaIbawyxSSD 2)),(),()(,(),(

 (3.5) 

I(a + x,b + y) can be approximately written as: 

ybaIxbaIbaIybxaI yx ),(),(),(),( ++≈++
 (3.6) 

where Ix and Iy are partial derivatives of I 

Thus, SSD is given as: 
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The eigenvalues of A are calculated and the following conclusions are made: 

If λ1≈0 and λ2≈0, then pixel (x,y) has no features of interest. 

If λ1≈0 and λ2 has some large positive value, then pixel (x,y) is on an edge. 

If λ1 and λ2 have large positive values, then pixel (x,y) is a corner. 

For every corner point in one slice (Slice 1), the corresponding point in the other slice 

(Slice 2) is taken by correlating a window of a certain radius (in our case 29×29) around 
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the point with similar windows constructed around each corner point in Slice 2. Then the 

points which correlate maximally are considered corresponding, or matching, point pairs. 

For increased robustness, the procedure is performed again, but this time, for every 

corner point in Slice 2, a matching corner point is found in Slice 1. Only matching points 

that correlate maximally in both directions are considered matching point pairs. A 

RANSAC algorithm [64] is then used to remove outliers and find reliable 

correspondences between the feature points of the two slices.  

From these matching points a ‘salient’ point pair is to be selected and the sub-volumes of 

the original volumes around the points in this pair are to be registered. The salient point 

pair is selected as follows: For each matching point pair p, generate windows of a certain 

size (in our case 29×29) around the points. Find the correlation Cp and the mean standard 

deviation σp = (σp1+ σp2)/2 of the windows. Then the point pair to be selected (Fig. 3-2) is 

given by  

)(max pp
p

CP βσα +=  (3.9) 

where α and β are weights given to each parameter. 

 

Figure 3-2:  Salient point selection. The corresponding points shown in the two sub-windows above are the points 

around which the sub-volumes to be registered are formed. 
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Once the salient point pair is identified, sub-volumes (size 17×17×17) around the points 

are generated in both volumes and rigidly registered using volumetric means. In this case, 

we used normalized cross correlation and a gradient descent optimizer to register the two 

volumes. 

Once the parameters for the registration of the two volumes are obtained, they are used to 

obtain the transformation parameters that are to be used on the whole volume. 

3.3 Experiments and Results 

The method was used for two different applications. The first application was registration 

of volumes for volume stitching. The second application was registration of volumes for 

tracking incidental intra-surgical bone motion during CAOS. The images were scanned 

using a GE Voluson 760 US scanner. The algorithm was run in MATLAB (everything 

apart from the sub volume registration, where ITK (C++) was used) on a P4 system with 

2GB of RAM. Registration parameters were obtained, on average, in 4.5 seconds.  

For the first application, the method was tested on two real (in vivo), two artificial human 

radial bones (Sawbone Model #1018-3, Sawbones Inc., Vashon, WA, USA), a real, in-

vitro bovine femur, an artificial fetus (CIRS, Inc., Norfolk, VA, USA) and an artificial 

pelvis (Sawbone Model #1301-96, Sawbones Inc., Vashon, WA, USA). In the case of the 

artificial bones (radius and pelvis), fiducials were attached to the bones at regular 

intervals for quantitative assessment. The distance between the fiducials in the stitched 

volumes was compared to the actual distance between them on the physical bones and the 

accuracy of the stitching was subsequently computed (Equation 3-10).  
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StitchedTrue DistDistError −=  (3-10) 

DistTrue = Mean actual distance between fiducials on the physical objects 

DistStitched = Mean distance between fiducials in the stitched volumes 

The results of the algorithm on the in vivo, real radius scans were only assessed 

qualitatively by visual inspection since there was no ground truth data (such as CT 

scans). In lieu of a tracking system (the one we had was experiencing technical 

difficulties which remained unresolved at the time of writing this thesis), the volumes 

were obtained by moving the probe along a straight line for known distances (0.5 cm) 

between scans and then these distances were used as tracking parameters. The 

quantitative results are shown in Table 3-1 and the qualitative results for the artificial 

radius and fetus scans are shown in Figure 3-3. The qualitative results for one of the in 

vivo scans are shown in Figure 3-4. Visual inspection showed that both in vivo scans had 

correctly registered. 

For the second application, radius tracking was performed on 3 radii (3 volunteers). A 

probe was attached to the right forearm of each volunteer and the volunteer was told to 

slowly bend the arm. For each volunteer, 3 volumes were obtained at periodic intervals. 

Each successive volume was registered to the previous one using the aforementioned 

method. From the tracking and registration parameters, the bone motion could be 

inferred. Here, however, we only demonstrate the bone registration - which is the thrust 

of this method - and not the inference of the bone motion there from – partly due to the 

absence of an actual tracking mechanism.  The image acquisition and processing 

hardware was the same as for the first application. Registration parameters were obtained, 
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on average, in 5 seconds. Again, due to an absence of ground truth for in vivo data, the 

registration assessment is only visual. 

  

(a) (b) 

  

(c) (d) 

Figure 3-3:  Qualitative assessment of the registration of the artificial radius (left) and the artificial fetus (right) for 

volume stitching. (a) and (b) indicate stitching before registration, using only the tracking. (c) and (d) show the results 

of stitching after tracking and registration. 

 

Table 3-1: Mean error measurements for stitching bones 

Bone Error before registration (tracking only) Error after tracking and registration 

Artificial Radius 1 3.15mm 0.59mm 

Artificial Radius 2 1.47mm 0.37mm 

Bovine Femur 0.84mm 0.28mm 

Artificial Pelvis 0.25mm 0.05mm 

 

 Figure 3-5 shows the qualitative result for one radius. Visual inspection showed that, for 

each volunteer, all 3 in vivo scans had correctly registered to each other. 
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(a) (b) 

Figure 3-4:  Qualitative assessment of the registration for the in vivo radial scans for volume stitching. Here, (a) 

indicates stitching before registration, using only the tracking and (b) shows the results of stitching after tracking and 

registration. The dark region is actually the shadow region below the bone – it was shown rather than the bone itself 

since the discontinuity at the overlap in (a) (circled) is more clearly highlighted in this region. Note the smooth 

transition in (b). 

 

  

(a) (b) 

  

(c) (d) 

Figure 3-5:  Qualitative assessment of the registration for the in vivo radial scans for bone tracking. Here, (a) and 

(b) are the central slices of the two successive volumes, (c) is a checkerboard image of the central slices of the two 

successive volumes before registration, using only the tracking and (d) is a checkerboard image of the central slices of 

the two successive volumes after tracking and registration. Note the discontinuities in (c) that have been removed in (d) 

(circled). 
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3.4 Conclusion and Discussion 

In this chapter, we have proposed and tested probe tracking, Phase Symmetry, Harris 

corner detection and sub-volume registration to obtain fast and accurate registration for 

volume stitching. Even though the registration is rigid, given the application area – 

orthopaedic applications – the assumption of rigidity of the tissues of interest is 

reasonable. Moreover, the method is very fast – taking only 4.5 seconds to obtain the 

registration parameters for two US volumes – and hence can be used in fields such as 

CAOS (computer assisted orthopaedic surgery) where speed is of importance. In non 

orthopaedic applications, our method could serve as an essential pre-registration step of 

calculating a global alignment prior to deformable. Future work will involve 

implementing the actual probe tracking mechanism and then validating the algorithm on 

various orthopaedic – and non orthopaedic data – with ground truth as well as porting the 

method to a faster platform such as C or C++ which could make the method fast enough 

to be used in real time applications.  

Chapter 4 deals with the registration of the stitched US data set with the MRI volume. 



 55 

4 Robust, Accurate 3D Ultrasound Volume to MRI 

Volume Registration Using Phase Symmetry Based 

Surface Separation and Registration 

4.1 Introduction 

This chapter deals with the registration of the US volumes of the bones that are obtained 

during the testing phase of the motion analysis to the MRI volume of the bones taken 

preoperatively. This is done in order to show the movement of the bones (captured with 

US) to the researchers using high resolution MRI data, making it much easier for the 

researchers to analyze the motion. 

Most of the work in the literature that deals with US-CT (or US-MRI) registration has 

been in the field of surgical navigation procedures. Navigational procedures have become 

extremely important in modern day surgery. Navigation systems based on preoperatively 

obtained CT and/or MRI data improve the reliability and safety of minimal invasive 

procedures. For these systems to provide reliable performance, however, it is crucial that 

the preoperative datasets should be registered accurately to the volumes being obtained in 

the surgical room. In many surgical disciplines (orthopedics, neurosurgery, traumatology, 

etc.), the accurate registration of bones is of main interest. 

Common methods used in the field are based on paired point registration using 

anatomical landmarks or fiducia1 markers. If the landmarks are anatomical, to ensure an 

accurate registration, the number of landmarks needed is large. Alternatively, fiducials 
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may be used, resulting in a smaller number of markers but this adds both to the time and 

invasiveness of the surgery. 

Another option is using volumetric registration. In this case, complete anatomical 

structures can be used for registration (mostly surfaces), thus increasing the accuracy. 

The usage of intraoperative CT or MRI has been proposed and implemented [65], [66], 

but these systems have major drawbacks with respect to intraoperative applicability, costs 

and radiation exposure (CT). 

In the light of these drawbacks, ultrasound seems to be an ideal intra-operative imaging 

modality. US is cheap, easy, non-ionizing and real-time, and could be used to provide 

intra-operative data that could be registered accurately with preoperative data. 

Ultrasound, however, comes with its own set of problems. It has high noise levels, and 

the imaging, especially where bones are concerned, is very limited. This problem is 

intrinsic, and is due to physical properties of the tissues involved [67]. US waves are 

almost entirely reflected at from the surface of the bone, meaning that nothing beyond the 

bone surface gets imaged by the US. Also, given the highly specular nature of the 

reflections, the direction of sound propagation has to be almost or fully orthogonal to the 

bone surface if the image is to show up clearly. 

There have been some approaches for the registration of bone structures in CT and 

ultrasound data sets in the literature. Most of them address long bones [68], pelvis [69], 

[70] and spine [71], [72], [73]. In this case, volume–volume registration methods, with 

traditional similarity measurements do not work well for US-CT registration. This is due 
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to the fact that the US shows only the bone surface and the CT shows the whole bone, 

resulting is two vastly different looking anatomical images. Thus, all these approaches 

use surface–surface registration methods. For good surface registration, however, 

surfaces must be extracted. Doing so in an automated manner is fairly straightforward in 

the case of bones in CT, but for US, this has traditionally been a challenge. Many of the 

papers mentioned above use artificial bones for their trials, without any overlying tissue, 

making segmentation of US bone surfaces easier. However, this may not be a valid way 

of doing things when real data is being registered. 

To overcome this problem, Brendel et al [17], [18] propose a method where they do away 

with the need to segment the US bone. From the CT images of the bone, they obtain the 

bone surface which would be imaged by the US. Then they register this with the entire 

US volume, with the registration metric being the sum of the values of the US region 

overlapping the CT bone surface. They report good accuracy and high speed. However, 

their lumbar spine data [17] sets are artificial. Moreover, the highly distinctive shape of 

the vertebral bones makes it reasonable to assume that the metric described will be 

optimized only at the correct location. In the smoother, long bones of the knee, this may 

not be the case, as the other bright structures may be significant confounding factors. In 

[18], MRI of the knee is registered to US. However, the surface points from the MRI 

bone surface had to be manually determined. For both the US-CT and US-MRI 

registration the authors increase the contrast of the US bone surface using deep gain 

compensation. They indicate that the contrast increase is very important for proper 

registration. 
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We aim, in this part of the proposal, to provide a fully automated method for US-MRI 

volume registration for motion analysis. This involves two phases – a) registering a 

preoperative MRI scan with a preoperative, stitched US volume and b) registering the 

preoperative, registered-to- MRI US volume to “intra-operative” (taken here to mean data 

obtained during the motion capture) US volumes. The first phase involves quick and 

accurate extraction of the bone surfaces to be registered from BOTH the US and the MRI 

datasets and then registering them using surface registration methods. The second 

involves registering the two US volumes using the method used for volume stitching in 

Chapter 3.  

(N.B.: Though the goal is to use MRI as the high resolution modality, the method has 

been tried out with both CT and MRI volumes as the high resolution modalities. Hence 

the methods section often refers to CT volumes.)  

4.2 Methods 

The first phase involves registering the stitched US volume (obtained at the end of 

Chapter 3) with a preoperative CT/MRI scan. [The CT/MRI would be obtained of the 

knee joint with a certain amount of both the femur and the tibia. The motion testing phase 

would involve US probes to be attached to the upper and lower leg of the subject.] 

Stitched-US is used to generate a greater bone area over which registration can take 

place. This is done to increase the accuracy of the US-CT/MRI registration. To do this, 

we extract the CT/MRI and US bone surfaces. To extract the relevant CT surface, we use 

the method used by [17], i.e., we threshold the scan to remove non bone tissue, cast rays 

in the direction in which the US probe will be scanning and consider the bone pels closest 
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to the rays in that direction. If MRI is used, the bone is segmented out using the method 

suggested in chapter 2 and the relevant surface is extracted by the ray casting method 

noted above (Fig. 4-1). 

  

(a) (b) 

  

(c) (d) 

Figure 4-1: Tibial bone surface extraction from MRI scan of knee (a), segmented tibia (scaled up) (b), delineated 

bone surface as would be seen by US probe (c) and 3D surface (d) 
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To obtain the US bone surface, we perform the following steps (these steps assume that 

the images are taken in a transverse manner: 

1. Obtain the phase symmetry images for the US scans as described in Chapter 3 

(Fig. 4-2). 

  
(a) (b) 

Figure 4-2: Using phase symmetry to clean the US volume of the tibia: (a) US scan of tibia, (b) Phase Symmetry 

filtered output for (a) 

 

2. Remove all small regions whose area is under a certain threshold. 

3. We know that the US will not image any area beyond the bone surface. Hence the 

region under the bones will be a clean shadow, which will be made cleaner still by 

the phase-symmetry filtering. Hence, we cast rays along each line (row/column) 

from the side opposite to the probe towards the probe, and stop at the first high 

intensity pel. Following this, we perform morphological closing and then obtain 

the largest connected component in the resulting image. This will contain the 

bone surface – without any high intensity noise above the bone. The whole 

process is illustrated in Fig. 4-3. 
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(a) (b) 

  
(c) (d) 

Figure 4-3: Bone surface extraction from phase symmetry volume of tibia: (a) Phase symmetry image of US scan of 

human tibia. (b) After ray casting from below to remove artifacts above the bone surface. (c) After closing and largest 

connected component selection. (d) Volume rendering of  (c). 

 

Once the US and CT/MRI bone surfaces are obtained and resampled to match 

resolutions, registration is performed as follows: 

1. Unlike the stitching scenario, the assumption that the central slices contain almost 

the same features does not hold here. However, we can make the assumption that 

the CT/MRI and the US volumes were both captured in the same orientation (e.g. 

sagittal). Therefore, we can assume that the central slice (along a given 

orientation) of one volume will contain features that are highly similar to those in 

one of the slices of the other volume (along the same orientation). Using this we 
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can obtain a coarse ‘pre-registration’ as follows: 

2. Hence, we take the central slice of the CT/MRI volume and register them to each 

slice of the US volume using feature based registration. Specifically, for each US 

slice, we first obtain the bone surface from the slice using the method described 

above and then obtain corner points from both the CT/MRI slice and the US slice 

using the Harris corner detector. For every corner point in the CT/MRI slice, the 

corresponding point in the US slice is taken by correlating a window of a certain 

radius (in our case 29×29) around the point with similar windows constructed 

around each corner point in US slice. Then the points which correlate maximally 

are considered corresponding, or matching, point pairs. For increased robustness, 

the procedure is performed again, but this time, for every corner point in US slice, 

a matching corner point is found in CT/MRI slice. Only matching points that 

correlate maximally in both directions are considered matching point pairs. A 

RANSAC algorithm [64] is then used to remove outliers and find reliable 

correspondences between the feature points of the two slices. Using these reliable 

point pairs, we calculate the registration parameters to align the two slices. Upon 

registration, the correlation between the two (registered) slices is calculated. 

3. The registration parameters that register the US slice that correlates most highly 

with the CT/MRI slice give the in plane rotation as well as x and y translation 

parameters. The z translation can readily be calculated by finding the difference 

between the slice numbers of the two slices.  
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4. Transforming the US volume with these parameters gives a volume that is 

coarsely registered with the CT/MRI volume. 

5. The coarsely registered volumes are then registered more accurately using 

volumetric registration, with sum of differences (SAD) as a registration metric 

and Powell’s multidimensional search as the optimization method.  

Once the registration between the stitched US volume and CT/MRI is done 

preoperatively, the registration between the intraoperative and preoperative US 

volumes can be done using the registration/stitching method detailed in Chapter 3. 

4.3 Results 

Since real life CT/MRI data is difficult to obtain, especially matched with US data, we 

have so far been able to try the method out on only one US-MRI knee dataset pair and 

one US-3D Fluoroscopy pair. Qualitative results of the US-MRI registration are shown in 

Figure 4-4. The result of the US-3D Fluoro registration is shown in Figure 4-5. It should 

be noted that attempting to directly register the CT/MRI and US bone surfaces (without 

the pre-registration described above) using volume–volume registration methods, with 

mutual information and cross correlation, resulted in very poor registrations (not shown). 

While only data from one knee (real) and one radius (artificial) were available for testing 

the method (qualitatively), the initial results seem promising. The US volumes seem to be 

correctly registered to the corresponding region in the MRI/3D Fluoro volumes. Further 

testing is necessary to validate the actual usefulness and effectiveness of the proposed 
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method.  

 

  

(a) (b) 

 

(c) 

Figure 4-4: Qualitative result of US-MRI registration: (a) cross section of bone surface extracted  from US dataset, (b) 

cross section of bone surface extracted from MRI dataset, (c) cross sectional overlay of registered US/MRI bone surfaces 
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(a) (b) 

  

(c) 

Figure 4-5: Qualitative result of US-3D fluoroscopy registration: (a) cross section of bone surface extracted  from US 

dataset, (b) cross section of bone from 3D- fluoroscopy dataset, (c) cross section of bone extracted from 3D- fluoroscopy 

dataset, (d) cross sectional overlay of registered US/3D- fluoroscopy bone surfaces 
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4.4 Conclusions 

We have proposed, in this Chapter, a method for the registration of US-CT/MRI data. 

This allows us to register preoperatively a US volume to a CT/MRI volume. Intra-

operative US scans can then be quickly registered to the preoperative US volume, thus 

registering them to the CT/MRI volume. Thus, we can obtain a feasible motion analysis 

mechanism based on preoperative US and CT/MRI volumes and intraoperative US 

volumes. 
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5 Discussions and Conclusions 

5.1 Introduction 

This chapter is intended to serve as a summary of the contribution of the thesis. It is also 

used to point out aspects of the work done that could be further investigated, improved or 

applied in different directions.  

5.1.1 Thesis Contributions  

The primary goal of this project was to provide a robust and accurate motion analysis 

framework in order to attain the following main objective: to help improve the analysis of 

the motion of the joints of people with joint diseases by orthopaedic researchers.  

This overall objective translated into the following sub goals: 

1. To develop a robust segmentation framework for bone MRI using multi contrast 

MR imaging: 

In this project we used multi contrast imaging (MCI) for facilitating improved 

segmentation of bone structures in MRI based on a simple yet efficient and robust 

method for increasing image contrast between bone and surrounding cartilage tissue. 

We obtained MR imaging at different tissue contrasts that were then combined to 

enhance the contrast at bone-cartilage interface (BCI). The method was subsequently 

shown to produce sustained and significant improvement in bone segmentation when 

both automated and semi-automated segmentation methods were used.  
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2. Register multiple shifted US volumes together and stitch them to generate a 

volume with a large field of view: 

We proposed a phase symmetry based method that would quickly and accurately register 

two US bone volumes together. We showed that the method produced very fast results 

that would, upon porting to a faster language and code optimization, lead to near real 

time or real time registration.  

3. Register US bone volume to MRI volume: 

Finally, we developed a method for registration of data from US and MRI together. We 

used phase symmetry and post processing to accurately obtain the organ surface in US 

and register it to the corresponding surface in MRI. This method would require 

considerable additional testing and validation, but the initial test makes it seem 

promising. 

5.1.2 Future Work 

The work done so far involves two distinctly separate parts – the enhancement of the 

bone images in MRI and the subsequent improvement in their segmentation, and the 

registration of US volumes (used to capture subject motion) to static, high resolution 

CT/MRI data in order to present the motion of the joint in high resolution 3D. Future 

work would initially involve combining these two parts. While we have developed 

procedures for combining the motion data from the US and the high resolution, static 

CT/MRI data, considerably more testing would be needed to validate the methods. 

Registration of the US and MRI would immediately be carried out near the joint 

surfaces, where the cortical bone thins out and hence, the surfaces obtained from both 
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the MRI and the US data correspond. However, this could be inconvenient for many 

applications. Hence later on, registration of bone data taken from the central parts of 

the bone will have to be done. This will involve two approaches: 

1. It will involve estimating the cortical bone in the MRI scans (since what is seen in 

the scans and segmented is the inner bone) and then registering that to the US data 

(which sees the cortical bone surface).  

2. Another approach would be to use new, ultra short echo time sequences being 

developed in MRI that allow for the visualization of cortical bone. These scans 

would allow us to visualize the cortical bones. Then, using the methodology of 

Chapter 2, we could perform multi contrast difference imaging using these scans 

and conventional scans (say T2 weighted scans) to separate out just the cortical 

bone. If that could be done, the registration step would be the same would not 

require estimation of the cortical surface in MRI and this would make registration 

a lot more robust.  

Future work would also involve applying the methods developed in the course of the 

project to other areas of the body. For instance, there is a lot of research being 

conducted on surgical intervention guidance for kidney and prostate biopsies and 

surgeries. The methods developed above could be adapted to those fields as well. 

Finally, once validations on all the proper data have been performed, porting the code 

to C++ and optimizing it for speed should be done. 
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