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Abstract

Modern Graphic Process Units (GPUs) offer orders of magnitude more raw computing power
than contemporary CPUs by using many simpler in-order single-instruction, multiple-data (SIMD)
cores optimized for multi-thread performance rather than single-thread performance. As such,
GPUs operate much closer to the “Memory Wall”, thus requiring much more careful memory
management.

This thesis proposes changes to the memory system of our detailed GPU performance simulator,
GPGPU-Sim, to allow proper simulation of general-purpose applications written using NVIDIA’s
Compute Unified Device Architecture (CUDA) framework. To test these changes, fourteen CUDA
applications with varying degrees of memory intensity were collected. With these changes, we
show that our simulator predicts performance of commodity GPU hardware with 86% correlation.
Furthermore, we show that increasing chip resources to allow more threads to run concurrently does
not necessarily increase performance due to increased contention for the shared memory system.

Moreover, this thesis proposes a hybrid analytical DRAM performance model that uses memory
address traces to predict the efficiency of a DRAM system when using a conventional First-Ready
First-Come First-Serve (FR-FCFS) memory scheduling policy. To stress the proposed model, a
massively multithreaded architecture based upon contemporary high-end GPUs is simulated to
generate the memory address trace needed. The results show that the hybrid analytical model
predicts DRAM efficiency to within 11.2% absolute error when arithmetically averaged across a
memory-intensive subset of the CUDA applications introduced in the first part of this thesis.

Finally, this thesis proposes a complexity-effective solution to memory scheduling that recovers
most of the performance loss incurred by a naive in-order first-in first-out (FIFO) DRAM scheduler
compared to an aggressive out-of-order FR-FCFS scheduler. While FR-FCFS scheduling re-orders
memory requests to improve row access locality, we instead employ an interconnection network ar-
bitration scheme that preserves the inherently high row access locality of memory request streams
from individual “shader cores” and, in doing so, achieve DRAM efficiency and system performance
close to that of FR-FCFS with a simpler design. We evaluate our interconnection network arbitra-
tion scheme using crossbar, ring, and mesh networks and show that, when coupled with a banked
FIFO in-order scheduler, it obtains up to 91.0% of the performance obtainable with an out-of-order
memory scheduler with eight-entry DRAM controller queues.
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Chapter 1

Introduction

In the past, GPUs, commonly known as video cards, have primarily been used for video games,

specifically for accelerating 3D graphics rendering. Since then, GPUs have evolved into massively

parallel computing machines that now have theoretical throughputs tens to hundred times faster

than any general computer processor (CPU) available in the market. This is due to the graphics pro-

cessors’ inherently high amounts of compute power specifically designed for data-parallel execution.

Furthermore, recent GPUs are programmable through languages that are very similar to traditional

languages, such as the “C” programming language, taught in most universities. Researchers have

already demonstrated that the compute power of GPUs can be harnessed for general-purpose ap-

plications and thereby provide a far more cost-effective solution compared to using CPUs. Yet

at the same time, there are obstacles that prevent other applications from running efficiently on

GPUs. Intensive control flow, dynamic program behavior, concurrency, and unpredictable memory

access patterns all can limit the thread-level parallelism available and impose bottlenecks, thereby

reducing performance.

This thesis focuses on the memory subsystem of GPUs running general purpose applications.

First, it describes the changes to the memory system modeled by the performance simulator that

we use to reflect what occurs in real GPU hardware. Next, it proposes a hybrid analytical model

to predict performance of modern DRAM when used in conjunction with modern memory access

scheduling policies. Finally, it proposes a complexity effective solution for memory access scheduling

1
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Figure 1.1: Average memory latency measured in performance simulation in cycles

that relies on intelligent arbitration at the interconnection network that connects the GPU processor

cores to the memory controllers. The rest of this chapter describes the motivation for this thesis,

lists its contributions, explains some fundamental concepts required to understand the thesis, and

summarizes the organization of the thesis.

1.1 Motivation

As the gap between memory speed and microprocessor speed increases, efficient dynamic random

access memory (DRAM) system design is becoming increasingly important as it becomes an in-

creasingly limiting bottleneck. This is especially true in General Purpose Applications for Graphics

Process Units (GPGPU) where applications do not necessarily make use of caches (which are both

limited in size and capabilities 1 relative to the processing throughput of GPUs).

Modern memory systems can no longer be treated as having a fixed long latency. Figure 1.1

shows the measured latency for different applications when run on our performance simulator,

GPGPU-Sim [5], averaged across all memory requests. (We show later in Section 6.1.1 that

GPGPU-Sim models contemporary GPUs fairly accurately, achieving 86% correlation to real hard-
1As of NVIDIA’s CUDA Programming Framework version 2, all caches are read-only [39].

2



1.2. Contributions

ware.) As shown, average memory latency can vary greatly across different applications, depending

on their memory access behavior. In the massively multithreaded GPU Compute architecture that

we simulate, threads are scheduled to Single-Instruction Multiple-Data pipelines in groups of 32

called warps, each thread of which is capable of generating a memory request to any location in

GPU main memory. (This can be done as long as the limit on the number of in-flight memory

requests per GPU shader core has not been reached. In CPUs, this is determined by the number of

Miss Status Holding Registers (MSHR) [25].) In this microarchitecture, a warp cannot proceed as

long as any single thread in it is still blocked by a memory access, making DRAM an even bigger

bottleneck. As such, the memory system of GPU architectures must be properly modeled to provide

useful insight for microprocessor and memory designers alike. Two such modeling methods that

designers use are analytical modeling and detailed performance simulation. Analytical modeling

relies on developing mathematical expressions to relate performance metrics to microarchitecture

and workload parameters. Detailed performance simulation requires cycle-by-cycle simulation of

the behavior of a proposed hardware design. While performance simulation is more accurate, ana-

lytical modeling can be orders of magnitude faster in obtaining meaningful results. In this work, we

explore the GPU memory system using both hybrid analytical modeling2 and detailed performance

simulation.

1.2 Contributions

This thesis makes the following contributions:

1. It presents data characterizing the performance of a set of existing CUDA applications col-

lected on a research GPU simulator (GPGPU-Sim).
2The term “hybrid” was first used for modeling by Shanthikumar and Sargent [50] to describe mathematical

models that used both simulation and analytic techniques.

3



1.2. Contributions

2. It shows that, for certain applications, decreasing the number of threads running concurrently

on the hardware can improve performance by reducing contention for on-chip resources.

3. It provides an analysis of application characteristics including the dynamic instruction mix,

SIMD warp branch divergence properties, and DRAM locality characteristics.

4. It presents a novel DRAM hybrid analytical model to model the overlapping of DRAM timing

constraint delays of one bank by servicing requests to other banks, given an aggressive First-

Ready First-Come First-Serve [43] (FR-FCFS) memory scheduling policy. This policy re-

orders a memory request stream to increase DRAM efficiency by increasing its row access

locality, the number of memory requests per DRAM row access.

5. It presents a method to use this hybrid analytical model to predict DRAM efficiency over the

runtime of an application by profiling a memory request address trace.

6. It presents two heuristics that, when used with the previously mentioned profiling method,

provide bounds on the available bank-level parallelism achievable by the DRAM. Moreover,

it presents a simple method of averaging the predictions of these two heuristics to reduce the

arithmetic mean of the absolute error across all benchmarks to 11.2%.3

7. It shows that GPU architectures do not benefit from previously proposed schedulers that

emphasize fairness due to the different challenges that they present, having at least an order

of magnitude more threads compared to CPU multiprocessors.

8. It shows that the row access locality inherent in the memory request stream from individual

shader cores can be destroyed by the interconnection networks typically used for connecting

shader cores to DRAM controllers. We introduce a novel interconnect arbitration scheme that
3In this thesis, we use arithmetic mean of the absolute value of error to validate the accuracy of our analytical

model, which was argued by Chen et al. [11] to be the correct measure since it always reports the largest error
numbers and is thus conservative in not understating said errors.

4



1.3. Background

preserves this inherent row access locality, thus allowing for a much simpler DRAM controller

design.

9. It presents a qualitative and quantitative analysis of the performance of our interconnect

arbitration scheme and its various heuristics for both mesh and crossbar networks.

10. It also presents a simple solution to deal with the interleaving that can occur due to the inter-

connection network router having multiple virtual channels, which can improve interconnect

throughput [12].

1.3 Background

This section provides an overview of the fundamental concepts of contemporary SIMD GPU archi-

tecture, modern DRAM memory, and interconnection networks for this thesis.

1.3.1 SIMD GPU architecture

Graphic applications that run on GPUs have plentiful parallelism due to independence of calculating

each pixel’s color. Since there are millions of pixels for high-resolution displays, there is significant

parallelism. NVIDIA’s latest GPU architectures exploit this fact by using multiple multi-processor

cores, which we refer to as shader cores, each supporting up to 1024 threads. The shader cores op-

erate in Single-Instruction Multiple-Data (SIMD) fashion with eight parallel processors per shader

core where the same pipeline stage for each processor in a shader core will always be executing the

same instruction on its own separate set of data. By issuing the same instruction to all processors,

the overhead for instruction scheduling can be minimized, increasing GPU processing capabilities

at the expense of requiring a minimum amount of SIMD thread-level parallelism to fully use it.

With the introduction of Compute Unified Device Architecture (CUDA), NVIDIA allows pro-
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grammers to exploit GPUs to run non-graphic, general-purpose applications as well. CUDA allows

programmers to write and run multi-threaded C functions, or kernels, on GPUs. Each kernel is

comprised of an organization of threads. These threads are issued to shader cores in groups called

cooperative thread arrays (CTAs), where each kernel has one or more CTAs. Within a CTA, threads

are grouped into batches of 32 called warps which always execute the same instruction at any time.

With an eight-wide shader core, each warp is issued in groups of eight to the pipelines over four

back-to-back cycles. The many supported threads per shader core allows for “barrel processing”,

where the stalls of one warp due to a long-latency memory load can be hidden by processing other

warps in the meantime.

1.3.2 Modern DRAM memory

Before explaining our hybrid analytical DRAM performance model, it is necessary to be familiar

with the background of modern DRAM and the mechanics of the memory that we are modeling,

GDDR3 [47], including the different timing constraints and various other terminology. A summary

is provided in Table 1.1.

GDDR3-SDRAM is a modern graphics-specific DRAM architecture that improves upon older

DRAM technology used in graphics processors, like DDR-SDRAM [38], by increasing clock speeds

and lowering power requirements. Like DDR-SDRAM, it uses a double data rate (DDR) interface,

meaning that it transfers data across its pins on both the positive and negative edge of the bus

clock. More specific to the particular GDDR3 technology that we study, a 4n-prefetch architecture

is used, meaning that a single read or write access consists of 4 bits transferred across each data

pin over 2 cycles, or 4 half-cycles. (This is more commonly known as the burst length, BL.) For a

32-bit wide interface, this translates to a 16 byte transfer per access for a single GDDR3 chip.

Similar to other modern DRAM technology, GDDR3-SDRAM is composed of a number of

memory banks sharing a common data bus in order to exploit bank-level parallelism in the memory
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Table 1.1: DRAM parameters

Name Description Value
Number of Banks 4

Bus Width (in Bytes) 4
BL Burst Length (in Bytes) 16

tCCD Delay between successive reads 2
or successive writes (in cycles)

tRRD Minimum time between successive ACT 8
commands to different banks (in cycles)

tRAS Minimum time between opening (ACT) 21
and closing (PRE) a row (in cycles)

tRCD Minimum time between issuing ACT 12
and issuing a Read or Write (in cycles)

tRC Minimum time between successive ACTS to 34
different rows in same bank (in cycles)

tWTR Write to Read command delay (in cycles) 5
tRP Minimum time between closing a row 13

and opening a new row (in cycles)
CL Column Address Strobe Latency (in cycles) 9

request stream. We define bank-level parallelism as the spreading of memory requests across mul-

tiple DRAM banks so that a ready DRAM bank can immediately transfer data across the data bus

when another bank is unready. A DRAM bank may be unready if it is in the process of switching

rows or refreshing its data cells. The bank-level parallelism of a memory request stream is crucial

to performance because it maximizes usage of the data bus pins connecting the GPU to the DRAM

chips, a limited and thus precious resource.

Each bank is composed of a 2D array that is addressed with a row address and a column address,

both of which share the same address pins to reduce the pin count. In a typical memory access, a

row address is first provided to a bank using an activate command that activates, or “opens”, all

of the memory cells in the row, connecting them using long wires to the sense amplifiers, which are

subsequently connected to the data pins. A key property of the sense amplifiers is that, once they

detect the values of the memory cells in a row, they hold on to the values so that subsequent accesses

to the row do not force the sense amplifiers to re-read the row. Intelligent memory controllers

exploit this property, scheduling requests out of order and grouping together requests to the same
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Figure 1.2: Memory system organization

row to improve the row access locality of the memory requests. Doing so consequently improves

the efficiency of the memory system by reducing the number of times rows are opened and closed

4. The organization of such a memory system is shown in Figure 1.2.

Typically, the issuing of commands to DRAM is subject to various timing constraints, as out-

lined in Table ??. For clarification, these timing constraints are illustrated in Figure 1.3.

The process of “opening the row,” which must be done before a column can be requested, takes

a significant amount of time called the row address to column address delay, or tRCD [47]. After
4“Row access locality” is temporal in the sense that concurrent accesses to the same row are fast. It is spatial in

the sense that accessing any word in DRAM requires activating the whole row, allowing subsequent accesses to other
data in the row to be fast.
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Figure 1.3: Illustration of timing constraints

this delay, the column address can then be provided to the bank. The process of reading the

column address and choosing the data in the specific column to be output across the data pins is

not instantaneous, instead taking an amount of time called the column access strobe latency, or

CL, from when the column address is provided to when the first bits of data appear on the data

pins. However, since all of the memory cells in the opened row are connected to sense amplifiers,

multiple column addresses can be provided back-to-back, limited only by the column to column

delay, tCCD, and the operations will be pipelined. Once the initial CL cost has been paid, a bank

can provide a continuous stream of data as long as all accesses are to the opened row.

If we want to access data in one row and another row is opened in the same bank, we must close

the opened row by disconnecting it from the long wires connecting it to the sense amplifiers. Before

these long wires, which represent a significant capacitance, can be connected to the new row, they

must first be precharged in order for the sense amplifiers to work properly. This process is defined

as the row precharge delay, or tRP [13]. To summarize, in order to service a request to a new row

when a different row has already been opened, we must first close the row (by issuing a precharge

9



1.3. Background

command) and open the new row (by issuing an activate). This process takes an amount of time

tRP + tRCD.

Furthermore, in a single bank, there is a minimum time required between issuing an activate

command and then issuing a precharge (in other words, between opening and closing the row).

This minimum time is defined as the row access strobe latency, tRAS , and is greater than tRCD.

This is because tRAS also encapsulates the process of restoring the data from the sense amplifiers

to the corresponding row cells, or “refreshing.” (Unlike static RAM, which retains the values in its

memory cells as long as it is provided power, dynamic RAM must be periodically refreshed since

the bit values are stored in capacitors which leak charge over time [13].) Opening a new row too

quickly may not allow adequate time to perform the refresh [53]. Accordingly, the minimum time

required between issuing two successive activate commands in a single bank is tRAS + tRP , which

is defined as the row cycle time, tRC .

In addition to these timing constraints, there are additional constraints on the minimum time

needed between successive activate commands to different banks, (tRRD), and the minimum time

needed between a write and a read command or a read and a write command (tWTR and tRTW )

since the data bus is bi-directional and requires time to switch modes.

In the specific GDDR3 technology that we study, each row must be refreshed every 32ms,

taking 8192 DRAM cycles each time. With an 800MHz DRAM clock and 4096 rows per bank, this

amounts to each bank having to perform refresh 4.2% of the time on average, assuming DRAM is

idle and all rows contain data [47]. As mentioned previously, the process of accessing a row also

refreshes the data in the row, meaning only rows of unaccessed data needs to be actively refreshed,

possibly reducing the refreshing overhead from 4.2%. Due to this relatively small overhead, we

model the effects of refresh on performance in neither our performance simulator nor our analytical

model.
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Figure 1.4: Typical interconnect router architecture

1.3.3 Interconnection networks

Out-of-order memory scheduling requires complex fully-associative comparison logic. In this the-

sis, we also explore simplifying the memory controller design by incorporating intelligence at the

level above the memory controller: the interconnection network. In a multiprocessor architecture,

interconnection networks are typically used to transfer memory writes and memory read requests

from issuing processors to receiving memory controllers, returning memory reads from memory

controllers back to the processors, as well as processor-to-processor communication. The network

can be comprised of either a single crossbar router that connects all inputs to all outputs or several

routers connected in a variety of configurations.

In this thesis, we evaluate the effect of crossbar, mesh, and ring networks on DRAM. No matter

the configuration, all routers are required to perform the common task of sending packets (requests)

from a set of input ports to a set of output ports. This task is called allocation. Since the network
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has finite bandwidth, packets that cannot be transferred in one cycle are split up into flits and

sent over multiple cycles. Figure ?? shows a typical router architecture along with the steps for

performing pipelined routing of a packet [12]. Routing computation, the process of determining

which output the packet should be directed to, and virtual channel allocation, the process of

reserving buffer space at the output port, is performed on a per-packet level. Switch allocation,

the process of reserving a time slot for transferring a flit, and switch traversal, the actual transfer

of the flit across the crossbar switch, is performed on a per-flit level.

There are many different algorithms for performing allocation. In this thesis, we use parallel

iterative matching (PIM), a simple algorithm easily realizable in hardware [4], which is important

in high-speed interconnects. In PIM allocation, a request matrix of input rows by output columns

is first generated to determine which inputs require which outputs. In the context of a crossbar,

the number of inputs is the number of shader cores C and the number of outputs is the number

of DRAM controllers M . PIM is a type of separable allocator, where arbitration is done in two

stages, which is advantageous where speed is important [12]. In our study, we perform input-first

allocation. Figure 1.5 shows a simple example of an input-first allocator with three inputs and two

outputs. First, the input arbiters select from a single request per input port. In other words, each

input arbiter chooses to assert up to one output, depending on whether there are requests from the

corresponding input to the corresponding output. The output of this first stage of input arbiters

is then fed to the output arbiters, which choose from the different requests to each output. This

guarantees that a single input port will not be sending to multiple output ports and a single output

port will not be receiving from multiple input ports in the same cycle.

1.4 Organization

The rest of the thesis is organized as follows:
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>=100 00InputArb >=1000 000OutputArbr00r01r10r11r20r21 g10g00g20g11g01g21>=100 00InputArb>=100 00InputArb >=1000 000OutputArb
Figure 1.5: Block diagram of a Parallel Iterative Matching (PIM) separable allocator for 3

inputs and 2 outputs. Each input arbiter (Input Arb) chooses from one of its
input request signals rIO to assert, then each output arbiter (Output Arb) asserts
one grant signal gIO. (Where I is the input and O is the output).

• Chapter 2 describes the necessary changes to the memory system of GPGPU-Sim to sup-

port applications written using NVIDIA’s CUDA framework. It then introduces the CUDA

applications that were collected to perform the experiments done in this work.

• Chapter 3 proposes techniques to predict the efficiency of a DRAM system when employing

a hybrid analytical model that applies a memory request address trace analysis.

• Chapter 4 presents two novel metrics to quantify the temporal locality of an application and

proposes a novel cache contention model, based upon the above two metrics, to accurately

predict the number of extra data cache misses due to cache contention when the number of

threads sharing a cache approaches and/or exceeds the cache’s associativity.

• Chapter 5 describes our simulation methodology, highlighting the applications used in our

study and how the memory system in our simulation infrastructure was augmented to support
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applications coded using NVIDIA’s CUDA programming framework.

• Chapter 6 presents and analyzes our experimental results.

• Chapter 7 reviews related work.

• Chapter 8 concludes this thesis and suggests future work.

Although GPUs can achieve throughput (in terms of FLOPs) orders of magnitude higher than

CPUs, they require applications with, among other things, high arithmetic intensity to do so.

General purpose applications with irregular memory access behavior perform poorly. This work is

a step towards research on how GPUs can be used for a broader class of applications.
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Chapter 2

Supporting CUDA Applications on
GPGPU-Sim

The version of GPGPU-Sim used by Wilson et al. [16] used the portable instruction set archi-

tecture (PISA). For benchmarks, applications from various benchmark suites including NVIDIA’s

CUDA Software Development Kit [37], SPLASH2 [55], and SPEC CPU2006 [52] were manually

modified from CUDA format to a format recognizable by the simulator. Due to the engineering

effort required in this process, it was decided for the work of Bakhoda et al. [5] that a massively

multithreaded performance simulator that could support native CUDA applications without any

source code modifications would be the better approach. To this end, GPGPU-Sim was modified

to support CUDA’s parallel thread execution (PTX) instruction set, allowing it to simulate CUDA

applications without requiring any changes to the original CUDA source code. We first describe

the microarchitectural changes made to the performance simulator to properly model CUDA. We

then describe the CUDA applications that were collected and used as benchmarks.

2.1 CUDA memories

The CUDA programming framework supports five distinct logical memory spaces, each with its own

unique properties. These are the global memory, local memory, shared memory, texture memory,

and constant memory. The set of CUDA applications that we wished to support used all of these

memory spaces.

Figure 2.1 shows the logical layout of the shader core pipeline that we simulate with the memory
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Shared Memory

FetchDecodeExecuteMemory1Local ConstantTextureShared Global Texture Cache Constant CacheGlobal MemoryData flowInstruction Flow Physical MemoryPipeline Stage New Additions to Simulated Architecture
Writeback

Figure 2.1: Simulated pipeline architecture

stage expanded and the newly added components highlighted with purple boxes in dashed outlines.

Instructions that pass through the memory stage of the pipeline are checked first whether they are

memory instructions. If so, then they get routed to the appropriate substage within the memory

stage. This thesis describes the simulator modifications necessary to support local memory, texture

memory, and constant memory.
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2.1.1 Local memory

The use of local memory accesses is determined automatically by the compiler. They are commonly

used for objects large enough that the compiler deems them unsuitable for storage in registers, such

as large structures or arrays. Within GPGPU-Sim, we model local memory accesses in accordance

to the CUDA programming guide [39] in that they are not cached, like global memory accesses,

and are thus expensive in terms of the latency that they incur. However, since local memory is

defined on a per-thread basis, we can make sure that their accesses are always coalesced by storing

each local memory variable of threads in a half-warp in a contiguous block in memory. Consider

an example where each thread declares a struct with four int variables in local memory. Instead of

storing the variables of the struct of each thread in a contiguous space, we instead interleave the

variables of each thread to ensure memory coalescing.

2.1.2 Texture memory

Texture memory accesses are backed by an L1 read-only texture cache. The use of texture memory

must be specified explicitly by the programmer by calling functions included in the CUDA runtime

API library. In our simulator, we leverage the CUDA runtime API library header files while replac-

ing their library function implementations with our own which invoke simulation setup functions

(such as memory allocation/deallocation and memory copy) and simulation sessions. Proper setup

of textures for use in GPGPU-Sim requires the following steps: first, the memory needed by the

texture must be allocated within the simulated memory space (e.g. GPU main memory). Second,

the memory must be “bound” to a texture reference, which is an object declared by the program-

mer. Apart from having a pointer to the allocated memory, the reference also stores the texture

name as well as other texture-specific properties. This is because texture memory load instructions

differ from load instructions of other memory spaces in PTX in that it uses a unique addressing

mode that relies on the name of the texture and the co-ordinates within the texture. Finally, the
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data must then be copied from CPU memory to the simulated memory space.

CUDA allows for texture objects to be used in a wide variety of ways depending on how the

programmer configured the texture reference, which, in GPGPU-Sim, is a struct containing the

properties in variables that are set using functions from the CUDA runtime API. We added support

for the following capabilities:

• Different data types: Texture data type can vary from single byte chars to four byte ints and

floats to even doubles. Moreover, they can be either scalar or up to a vector of four values.

As such, texture load implementation must properly account for the many different possible

fetch sizes, from a single char (one byte) to a vector of four floats (sixteen bytes). During

simulation, a texture fetch instruction provides the texture name, which we use to look up the

texture reference that holds the pointer to the texture (e.g. address base) in the simulated

memory space. The texture fetch instruction also provides the texture co-ordinates which we

use with the data size to calculate the address offset which, when summed with the address

base, provides us the address of the requested data in the simulated memory space.

• Multi-dimensionality: Textures can be either one-dimensional (indexed with one address

value) or two-dimensional (indexed with two address values). In CUDA, texture cache blocks

are fetched from GPU main memory in a way that preserves two dimensional spatial locality

for two-dimensional textures. In other words, a texture fetch to a specific co-ordinate will

also retrieve data close to the co-ordinate in both dimensions to the same cache block. In

GPGPU-Sim, we implement a 4D blocking address scheme [19] which essentially permutes

the bits in requested addresses to promote spatial locality in a 2D space rather than in linear

space.

• Different addressing modes: The provided index (or indices) into the texture can be either

the absolute co-ordinates in integers or also normalized floats from 0.0 to 1.0 (useful for image
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processing). If normalized address mode is used, CUDA supports a variety of sampling modes

if the normalized address does not scale to integer co-ordinates. For instance, the data of

the nearest co-ordinate to the normalized address may be fetched or the values around the

normalized address can be sampled and averaged (linear filtering). We find that none of the

benchmarks we study use normalized addressing so we only implemented pick nearest. We

leave the implementation of other sampling modes needed for imaging processing and other

graphical applications to future work.

• Boundary condition handling: In accordance with CUDA, we added two methods to GPGPU-

Sim for handling indices that are outside the range of the texture array: “Clamping” clamps

index values below 0.0 and above 1.0 to the range [0.0,1.0) (for normalized addressing mode).

“Wrapping” uses only the fractional part of the texture co-ordinate so that, for example, an

index of 1.75 and -0.25 will both wrap to a texture co-ordinate of 0.75 (again for normalized

addressing mode).

2.1.3 Constant memory

The purpose of constant memory is to store read-only “constant” variables shared among all threads.

As such, constant memory accesses are backed by an L1 read-only constant cache. Unlike the

texture memory cache, the constant cache allows single cycle access latency only if all threads in a

half-warp request the same data. In other words, the texture cache can be thought of as having one

read port for each shader processor in a shader core while the constant cache has only a single read

port shared among all shader processors in a shader core. If there is port conflict (e.g. when shader

processors require access to multiple cache blocks in the same cycle), the accesses are serialized and

the pipeline stalls while the constant cache is being accessed. Since a warp cannot proceed as long

as any thread is stalled waiting on memory, the order in which the constant cache services requests

does not matter. In the benchmarks we study, we find that none of the constant memory accesses
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Table 2.1: Benchmark thread organization

Benchmark Abr. Grid CTA Concurrent Total Instruction
Dimensions Dimensions CTAs/core Threads Count

AES Cryptography [27] AES (257,1,1) (256,1,1) 2 65792 28M
Graph Algorithm: BFS (128,1,1) (512,1,1) 4 65536 17M
Breadth First Search [20]
Coulombic Potential [23, 45] CP (8,32,1) (16,8,1) 8 32768 126M
gpuDG [54] DG (268,1,1); (84,1,1); 5 22512; 596M

(268,1,1); (112,1,1); 6 30016;
(603,1,1) (256,1,1) 4 154368

3D Laplace Solver [17] LPS (4,25,1) (32,4,1) 6 12800 82M
LIBOR Monte Carlo [18] LIB (64,1,1) (64,1,1) 8 4096 907M
Matrix Multiply [46] MMC (8,32,1) (16,16,1) 3 65536 341M
MUMmerGPU [48] MUM (782,1,1) (64,1,1) 3 50000 77M
Nearest Neighbor [9] NN (938,1,1) (16,1,1) 8 15008 6.4M
Neural Network NEU (6,28,1); (13,13,1); 5 28392; 40M
Digit Recognition [7] (50,28,1) (5,5,1) 8 35000
N-Queens Solver [41] NQ (223,1,1) (96,1,1) 1 21408 2M
Ray Tracing [28] RAY (16,32,1) (16,8,1) 3 65536 71M
StoreGPU [3] STO (384,1,1) (128,1,1) 1 49152 134M
Weather Prediction [29] WP (9,8,1) (8,8,1) 3 4608 215M
Black-Scholes BLK (256,1,1) (256,1,1) 3 65536 236M
option pricing [37]
Fast Walsh Transform [37] FWT (512,1,1); (256,1,1); 4 131072; 240M

(256,1,1) (512,1,1) 2 131072

request more than one address per warp.

2.2 CUDA benchmarks

To evaluate GPGPU-Sim, we needed benchmarks that exhibited a wide variety of behaviors in terms

of arithmetic intensity, warp divergence, and memory access patterns. Preliminary evaluation of the

applications included in NVIDIA’s CUDA software development kit (SDK) showed that they tend

to conform well to the CUDA Programming Framework, exhibiting relatively high IPC normalized

to peak, little to no warp divergence, and moderate to low bandwidth utilization. To find other

applications with other behaviors, we collected applications from other research communities and

NVIDIA’s CUDA Zone that reported relatively low speedup versus running on CPUs. Below, we

describe the CUDA applications not in the SDK that we use as benchmarks in our study. These

applications were developed by the researchers cited below and run unmodified on our simulator.
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Table 2.2: Benchmark Properties

Abr. Local Shared Constant Texture Barriers?
Memory? Memory? Memory? Memory?

AES - X X 1D X
BFS - - - - -
CP - - X - -
DG - X - 1D X
LPS - -X - - X
LIB X - X - -
MMC X - - - X
MUM X - - 2D -
NN - - - - -
NEU - - - - -
NQ - X - - X
RAY X - X - X
STO - X - - -
WP X - - - -
BLK - - - - -
FWT - X - - X

Tables 2.1 and 2.2 lists the benchmarks name along with the main application properties, such as

the organization of threads into CTAs and grids as well as the different memory spaces on the GPU

exploited by each application. Note that the instruction counts listed in Table 2.1 are the dynamic

instruction counts run on the GPU kernels summed across all threads. These kernels are essentially

function calls that have been parallelized to run on the GPU and, as such, some of the instruction

counts may seem small relative to typical instruction counts of entire programs. Multiple entries

separated by semi-colons in the grid and CTA dimensions indicate the application runs multiple

kernels.

AES Encryption (AES) [27] This application, developed by Manavski [27], implements the

Advanced Encryption Standard (AES) algorithm in CUDA to encrypt and decrypt files. The

application has been optimized by the developer so that constants are stored in constant memory,

the expanded key stored in texture memory, and the input data processed in shared memory. We

encrypt a 256KB picture using 128-bit encryption.

Graph Algorithm: Breadth-First Search (BFS) [20] Developed by Harish and

Narayanan [20], this application performs breadth-first search on a graph. As each node in the
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graph is mapped to a different thread, the amount of parallelism in this applications scales with

the size of the input graph. BFS suffers from performance loss due to heavy global memory traffic

and branch divergence. We perform breadth-first search on a random graph with 65,536 nodes and

an average of 6 edges per node.

Coulombic Potential (CP) [23, 45] CP is part of the Parboil Benchmark suite developed

by the IMPACT research group at UIUC [23, 45]. CP is useful in the field of molecular dynamics.

Loops are manually unrolled to reduce loop overheads and the point charge data is stored in

constant memory to take advantage of caching. CP has been heavily optimized (it has been shown

to achieve a 647× speedup versus a CPU version [46]). We simulate 200 atoms on a grid size of

256×256.

gpuDG (DG) [54] gpuDG is a discontinuous Galerkin time-domain solver, used in the field

of electromagnetics to calculate radar scattering from 3D objects and analyze wave guides, particle

accelerators, and EM compatibility [54]. Data is loaded into shared memory from texture memory.

The inner loop consists mainly of matrix-vector products. We use the 3D version with polynomial

order of N=6 and reduce time steps to 2 to reduce simulation time.

3D Laplace Solver (LPS) [17] Laplace is a highly parallel finance application [17]. As well

as using shared memory, care was taken by the application developer to ensure coalesced global

memory accesses. We observe that this benchmark suffers some performance loss due to branch

divergence. We run one iteration on a 100x100x100 grid.

LIBOR Monte Carlo (LIB) [18] LIBOR performs Monte Carlo simulations based on the

London Interbank Offered Rate Market Model [18]. Each thread reads a large number of variables

stored in constant memory. We find the working set for constant memory fits inside the 8KB

constant cache per shader core that we model. However, we find memory bandwidth is still a

bottleneck due to a large fraction of local memory accesses. We use the default inputs, simulating

4096 paths for 15 options.
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Matrix Multiply (MMC) [46] This version of matrix multiply improves upon the optimized

version of matrix multiply included in the CUDA SDK. In addition to using blocking to minimize

the number of memory accesses, this version also exploits loop unrolling to reduce loop overheads.

Furthermore, each CTA is carefully sized to maximize utilization of the 16kB shared memory per

shader core.

MUMmerGPU (MUM) [48] MUMmerGPU is a parallel pairwise local sequence alignment

program that matches query strings consisting of standard DNA nucleotides (A,C,T,G) to a ref-

erence string for purposes such as genotyping, genome resequencing, and metagenomics [48]. The

reference string is stored as a suffix tree in texture memory and has been arranged to exploit the

texture cache’s optimization for 2D locality. Nevertheless, the sheer size of the tree means high

cache miss rates, causing MUM to be memory bandwidth-bound. Since each thread performs its

own query, the nature of the search algorithm makes performance also susceptible to branch di-

vergence. We use the first 140,000 characters of the Bacillus anthracis str. Ames genome as the

reference string and 50,000 25-character queries generated randomly using the complete genome as

the seed.

Nearest Neighbor (NN) [9] Nearest neighbor is a data mining application that uses dense

linear algebra to find the k-nearest neighbors from an unstructured data set. The application is

bandwidth bound and has a very regular memory access pattern, thus achieving close to the peak

off-chip bandwidth. We find the 3 nearest neighbors from a set of 42764 records.

Neural Network (NEU) [7] Neural network uses a convolutional neural network to recognize

handwritten digits [7]. Pre-determined neuron weights are loaded into global memory along with

the input digits. We modified the original source code to allow recognition of multiple digits at

once to increase parallelism. Nevertheless, the last two kernels utilize CTAs of only a single thread

each, which results in severe under-utilization of the shader core pipelines. For this reason, we only

run the first two kernels in our simulations in Chapter 6. We simulate recognition of 28 digits from
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the Modified National Institute of Standards Technology database of handwritten digits.

N-Queens Solver (NQ) [41] The N-Queen solver tackles a classic puzzle of placing N queens

on a NxN chess board such that no queen can capture another [41]. It uses a simple backtracking

algorithm to try to determine all possible solutions. The search space implies that the execution

time grows exponentially with N. Our analysis shows that most of the computation is performed

by a single thread, which explains the low IPC. We simulate N=10.

Ray Tracing (RAY) [28] Ray-tracing is a method of rendering graphics with near photo-

realism. In this implementation, each pixel rendered corresponds to a scalar thread in CUDA [28].

Up to 5 levels of reflections and shadows are taken into account, so thread behavior depends on

what object the ray hits (if it hits any at all), making the kernel susceptible to branch divergence.

We simulate rendering of a 256x256 image.

StoreGPU (STO) [3] StoreGPU is a library that accelerates hashing-based primitives de-

signed for middleware [3]. We chose to use the sliding-window implementation of the MD5 algo-

rithm on an input file of size 192KB. The developers minimize off-chip memory traffic by using the

fast shared memory. We find STO performs relatively well.

Weather Prediction (WP) [29] Numerical weather prediction uses the GPU to accelerate

a portion of the Weather Research and Forecast model (WRF), which can model and predict

condensation, fallout of various precipitation and related thermodynamic effects of latent heat

release [29]. The kernel has been optimized to reduce redundant memory transfer by storing the

temporary results for each altitude level of a cell in registers. However, this requires a large amount

of registers, thus limiting the maximum allowed number of threads per shader core to 192, which

is not enough to cover global and local memory access latencies. We simulate the kernel using the

default test sample for 10 timesteps.
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Chapter 3

Hybrid Analytical Performance
Modeling of DRAM

In this chapter, we describe our analytical model of GDDR3 memory. First, we present a more

formal definition of DRAM efficiency in Section 3.1. Then, we present our baseline analytical model

for predicting DRAM efficiency in Section 3.2. Finally, we show how to implement our model using

a sliding window profiling technique on a memory request address trace in Section 3.3.

3.1 DRAM efficiency

We first define DRAM utilization as the percentage of time that a DRAM chip is transferring

data across its bus over an arbitrary length of time, T . We also define DRAM efficiency as the

percentage of time that the DRAM chip is transferring data across its bus over only the period

of time when the DRAM is active (Tactive). We say that a DRAM chip is active when it is either

actively transferring data across its bus or when there are memory requests waiting in the memory

controller queue for this DRAM and it is waiting to service the requests but cannot due to any

of the timing constraints mentioned in Section 1.3.2. If the DRAM is always active, the DRAM

utilization and DRAM efficiency metric will evaluate to the same value for the same period of

time (e.g. T = Tactive). While 100% DRAM efficiency and utilization is theoretically achievable,

less-than-maximum throughput can occur for a variety of different reasons: there may be poor row

access locality among the requests waiting in the memory controller queue, resulting in DRAM

having to pay the overhead cost of constantly closing and reopening different rows too frequently,
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and therefore the few requests per open row are not enough to hide the aforementioned overheads;

the memory controller may also be causing the DRAM to frequently alternate between servicing

reads and writes, thus having to pay the overhead cost of tWTR and tRTW each time; and, specific

only to DRAM utilization, the memory controller queue may simply be empty, forcing the DRAM

to sit idle.

3.2 Hybrid analytical model

As described in the previous section, both our DRAM utilization and DRAM efficiency metrics are

essentially fractions. We use these definitions as the basis of our analytical model, replacing the

numerators and denominators with an expression of variables that can be derived by analyzing a

collected memory request address trace.

We develop our analytical model by first considering requests to a single bank j for a time

period T, which starts from when a request to bank j must open a new row and ends when the

last request to the new row in bank j present in the memory controller queue at the start of the

period has been serviced. We use i to denote the requests to any bank of B banks, not just those

to bank j. The DRAM efficiency of bank j is first expressed as:

Effj =
MIN

[
MAX(tRC , tRP + tRCD + tj),

∑B−1
i=0 ti

]

MAX(tRC , tRP + tRCD + tj)
(3.1)

where

ti = number of requests to bank i ∗ Tsrvc req (3.2)

and

Tsrvc req =
request size

DRAMs per MC ∗ busW ∗ data rate
(3.3)

In essence, the numerator of Equation 3.1 represents the time spent transferring data divided by

the period of time represented in the denominator. To aid our description, we provide the example
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Command
Bus

Bank 0
Bank 1
Bank 2
Bank 3

P0 Precharge A0 Activate R0 R0
Data Bus

R1 R2R1 R2 R1 R3 R3 R3R1 R1 R1R2 R2 R3 R3 R3
R0 R0

R1 R1 R1R2 R2 R3 R3 R3 R0 R0
P0 Pre...

R3
R1 R3

R3
R1 R3R1R1 P0 Command TypeDestination BankDestination BankCommand Type P = PrechargeA = Activate R = ReadT

CLOCK T

Figure 3.1: Timing diagram example. Here, Bank 0 has a different row opened so precharge
and activate must first be issued before read commands can be issued. Banks 1
through 3 have already been initialized to the correct rows.

shown in Figure 3.1 which will be referred to as we elaborate our model.

The principle underlying Equation 3.1 is that a bank must first wait at least tRC before switching

to a new row. This overhead can be hidden if there are requests to other banks that are to opened

rows. In Figure 3.1, this is the case. In this example, j is 0 and the requests to banks 1, 2, and 3

help hide the precharge and activate delays.

The numerator in Equation 3.1 is the sum of all ti, where ti is defined as the product of two

terms: the number of requests that can be serviced by bank i over the set period of time defined

in the denominator multiplied by the time it takes to service each request (Tsrvc req). Note that

the sum of all ti also includes tj . We assume that all memory requests are for the same amount of

data. The formula for calculating how much a single request to bank i contributes to ti is shown in
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3.2. Hybrid analytical model

Equation 3.3. Here, request size is the size of the memory request in bytes, DRAMs per MC is

the number of DRAM chips controlled by each memory controller (e.g., having two DRAM chips

connected in parallel doubles the effective bandwidth per memory controller, meaning each single

chip only needs to transfer half the data per request), busW is the bus width in bytes, and data rate

is the number of transfers per cycle, 2 for GDDR3’s double data rate interface [47]. Moreover, the

minimum granularity of a memory access, ReqGranularity which determines how many read or

write commands need to be issued per request, is defined in Equation 3.4. For a fixed memory

request size, the minimum granularity determines the maximum number of parallel DRAM chips

that can be used efficiently by a single memory controller. (With our simulation parameters, the

maximum number of parallel DRAM chips is four.)

ReqGranularity = DRAMs per MC ∗ busW ∗BL (3.4)

Equation 3.4 depends on a new parameter unused in the previous equations called the burst length,

or BL. Our example corresponds to the baseline configuration described in Section 5.2, where each

request is comprised of 2 read commands to a DRAM chip (2 read commands * 2 DRAM chips per

memory controller * 4B bus width * burst length 4 = 64B request size in our baseline configuration).

Basing our model on our defined metrics, we set the denominator of Equation 3.1 as the period

of time starting from when a particular bank of a DRAM chip begins servicing a request to a new

row (by first precharging, assuming a different row is opened, and then issuing activate to open

the new row) and ending at when the bank issues a precharge to begin servicing a new request to

a different row. To simplify our definition of T in this case, our model assumes that a precharge

command is not issued until its completion can be immediately followed by an activate to the

same bank. Under this assumption, the delay between successive precharge commands is then

constrained by the same delay as the delay between successive activate commands, tRC . This is

shown as T in Figure 3.1. The denominator is controlled by two different sets of factors, depending
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on how many requests need to be serviced in this new row. This is because switching to a new row

is primarily constrained by the three timing parameters described in Section 1.3.2, tRC (row cycle

time), tRP (row precharge delay), and tRCD (row address to column address delay). In the GDDR3

specification that we use, tRC is greater than the sum of tRP and tRCD, so the denominator must

always be greater than or equal to tRC . This is expressed in our model using the MAX() function.

In our example, since there is only one request (2 read commands) to bank 0, the denominator is

dominated by tRC so T equals to tRC .

Given our microarchitectural parameters outlined in Table 5.3 and Table 1.1, our read and

write requests take four “DRAM clock” cycles to complete, where each request is comprised of two

commands. To obtain number of requests to bank i, we count the number of requests waiting in

the memory controller queue that are to the row currently open for corresponding bank i. This is

equivalent to doing so when the memory controller first chooses the request to the new row of bank

j (in other words, right before it needs to precharge and activate). Requests to unopened rows are

not counted because they must wait at least tRC before they can begin to be serviced, by which

time they can no longer be used to hide the timing constraint overhead for bank j. Since requests

to the new row in bank j itself can not be used to hide the latency of precharging and activating

the new row, it appears in both the denominator and in the numerator as one of the terms of
∑

i ti

(when i = j). In our example, there are 2 read commands to bank 0 and 10 read commands issued

to banks 1 through 3 so here tj=2*2=4 and
∑

i ti = 2*(2+10) = 24. Therefore, for the time period

T, Eff0 = 24/34 = 70.6%.

As previously described, ti is used to determine how much of the row switching overhead can be

hidden by row-hit requests to other banks. With good DRAM row access locality, there may be more

such requests than necessary, causing
∑

i ti to be greater than the denominator in Equation 3.1.

Using the MIN() function to find the minimum between
∑

i ti and the expression identical to the

denominator is simply done to impose a ceiling on our predicted result at unity, which we argue
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is accurate since
∑

i ti > MAX(tRC , tRP + tRCD + tj) means that there are more than enough

requests to completely hide the timing constraint delays imposed by opening the new row in bank

j.

As stated before, this equation assumes T = Tactive. In other words, it does not take into account

the amount of time when the DRAM is inactive; therefore, it is more suitable for predicting DRAM

efficiency rather than DRAM utilization. We expect that available memory request address traces

will not necessarily provide any timing information on when DRAM is inactive, in which case we

are limited to only being able to predict the DRAM efficiency. In order to find the DRAM efficiency

over the entire runtime length of a program, we sum the numerators obtained using Equation 3.1

of the time periods that make up the runtime length of the program and divide by the sum of the

corresponding denominators.

Effj =

∑N
n=1 MIN

[
MAX(tRC , tRP + tRCD + tj,n),

∑B−1
i=0 ti,n

]

∑N
n=1 MAX(tRC , tRP + tRCD + tj,n)

(3.5)

Equation 3.5 shows the DRAM efficiency calculation of a program whose entire runtime length

is comprised of N periods, where the DRAM efficiency of each period can be calculated using

Equation 3.1. How we determine which time periods to use is explained next in Section 3.3, where

we detail how we use Equation 3.1 with a memory address trace to determine the DRAM efficiency.

3.3 Processing address traces

In order to use the equations shown in the previous section, the variables must be obtained by

processing memory request address traces. We assume that the memory request address trace is

captured at the point where the interconnection network from the processor feeds the requests

into the memory controller queue, allowing the order in which the requests are inserted into the

memory controller to be preserved. We assume that the trace is otherwise devoid of any sort of
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timing information, such as the time when requests enter the queue.

Consider a simple case of a memory controller with a queue size of 4 and a DRAM with only two

banks, Bank 0 and Bank 1, where each bank has only two rows (Row A and Row B for Bank 0 and

Row X and Row Y for Bank 1 ). Now assume the memory address trace shown in Figure 3.2(a),

where the top request (Bank 0 Row A) is the oldest.

To process the trace, we use the algorithm in Figure 3.3 to determine the ti values needed

for Equation 3.1. Figure 3.3 shows two different heuristics for which we quantify the accuracy in

Section 6.2. The first heuristic, which we call profiling + no activate overlap, is guarded by the

“if(mode == no activate overlap)” statement and the second heuristic, which we call profiling +

full activate overlap, is guarded by the “if(mode == full activate overlap)” statement. While this

algorithm applies only to First-Ready First-Come First-Serve (FR-FCFS), it can be modified to

handle other memory scheduling algorithms. In Section 6.3.4, we modify our algorithm to predict

the DRAM efficiency of another out-of-order scheduling algorithm, “Most-Pending” [43]. Our

approach is based on a sliding window profiling implementation where the window is the size of

the memory controller queue.

We start with the assumption that initially Row A of Bank 0 and Row X of Bank 1 are open

(Figure 3.2(a)). Following our algorithm, the first request that we encounter is to Bank 0 Row A,

which is an opened row, so we can remove that request from the sliding window and increment t0

by Tsrvc req (in Section 3.2), which is calculated to be 4 cycles using the DRAM parameters shown

later in Table 5.3. The next request that we read in is to the same bank but this time to Row B.

We leave this request in the sliding window, e.g. our memory controller queue, in the hopes that,

by looking ahead to newer requests, we can find ones that are to the opened row. Moving on, it

can be seen that the next request is again to Bank 0 Row A, allowing us to service it right away.

In this manner, we process all the requests up to Request 8, removing (servicing) requests that
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are to the opened rows (shown as shaded entries in Figure 3.2(b)), at which point our window size

is 4, meaning the memory controller queue is now full. The ti values can now be used to calculate

the efficiency for this period using Equation 3.1. The ti values are then reset to signify the start

of a new prediction period and repeat our algorithm from the start. For no activate overlap, we

then open the row of only the next oldest request, which is to Bank 0 Row B (Figure 3.2(c)).

The DRAM efficiency over the entire length of the trace can also be computed using the method

described at the end of Section 3.2.

While no activate overlap focuses on the prediction of efficiency by accounting for the requests

in the memory controller queue that can help reduce the overhead of timing constraint delays, it

does not account for the timing constraints of separate banks that can also be overlapped. More

specifically, the process of precharging and activating rows in different banks of the same chip is only

constrained by tRRD. With a tRC value of 34 and a tRRD of 8 as per our DRAM parameters 1.1, we

can completely overlap the activation of rows in all 4 banks (34/8 = 4.25 activate commands issuable

per row cycle). Performance-wise, this means that even for a memory access pattern with minimal

row access locality, the access pattern that finely interleaves requests to all 4 banks can achieve 4

times the bandwidth of an access pattern that has requests to only a single bank. As such, it is

crucial to also take into account the overlapping of precharge and activates for applications with poor

row access locality. Otherwise, the analytical model will significantly underestimate the DRAM

efficiency. We model this using our second heuristic, full activate overlap, which instead opens the

rows of the oldest requests to all banks, assuming that the delays associated with switching rows

can be overlapped in all banks. This is shown in Figure 3.2(d) as Bank1 also switching from RowX

to RowY in accordance with the code guarded by “mode = full activate overlap” in Figure 3.3.

Leaving the opened row for Bank1 as RowX essentially forces the switching overhead of this bank

to be paid separately from Bank0’s switching overhead from RowA to RowB (profiling + no

activate overlap), potentially causing underestimation of DRAM efficiency. Conversely, switching
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the rows of all banks at the same time completely overlaps the switching overheads of all banks

(full activate overlap), potentially causing overestimation of DRAM efficiency.

In essence, the two heuristics described provide upper and lower bounds on the amount of

bank-level parallelism, either fully overlapping the row switching overheads for full activate overlap

or completely serializing the row switching operations of the DRAM banks for no activate overlap.

Since the actual amount of bank-level parallelism will be somewhere within the bounds, we also

show results for a third heuristic, averaged, which averages the DRAM efficiency predictions of the

first two heuristics. In Section 6.2, we will show the accuracy of our three heuristics described in

this section in comparison to the DRAM efficiency measured in performance simulation. We will

show that our averaged heuristic results in highest accuracy.
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Start: Reset window_size to 0
while (window_size < memory controller queue size) { 
//while memory controller queue is not full

Read in newest request, req, to sliding window
if (req.row == opened_row[req.bank]) {
//check if request is to opened row, if so, service it 
//(first-ready first-come first-serve policy)

remove req from window and from trace
treq.bank += Tsrvc_req//update t

} else {
//request is to different row, so store in queue and 
//check if later requests can be serviced first

window_size++ //add this req into window
}

}
Calculate_efficiency(ti) //uses ti to calculate efficiency 
Reset(ti)
if (mode == no_activate_overlap){

//find oldest request, oldest_req
opened_row[oldest_req.bank] = oldest_req.row

}
if (mode == full_activate_overlap){

//find oldest request of all banks, oldest_req[]
for (all i in banks) {

opened_row[oldest_req[i].bank] = 
oldest_req[i].row;

}
}
Go back to Start

Figure 3.3: Sliding window profiling algorithm for processing memory request address traces
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Chapter 4

Complexity-Effective Memory Access
Scheduling

In this chapter, we first describe how the interconnection network that passes requests between

the shader cores and memory controllers affects the memory request address streams. Next, we

show how these effects can drastically reduce the efficiency of a memory controller that employs

in-order request scheduling. Finally, we propose an elegant interconnection arbitration scheme

that increases the efficiency of in-order request scheduling, allowing for a more complexity-effective

design.

4.1 Motivation

The scaling of process technology has allowed processor throughput to increase exponentially. How-

ever, the properties of packaging prevent the pin count from increasing at the same rate. To alleviate

this, chip designers maximize the percentage of pins on a chip used for transferring data. Increasing

the amount of off-chip memory supported by the chip will likely require increasing the number of

memory channels. Each additional memory controller requires its own set of address pins for com-

municating the requested memory addresses and control pins for relaying the commands to control

the DRAM chips.

One approach to reduce the number of memory channels is to have the memory controller

for each channel control multiple DRAM chips, thereby amortizing the address and control pin

overhead across multiple DRAM chips [15]. However, there is a limit to how much of this “chip-
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level parallelism” is available. Consider a case where the typical memory request size is 64 bytes.

In the CUDA Programming Model, the requests made by a half-warp of 16 threads accessing

contiguous 32-bit words can be coalesced into a single 64-byte memory request [39]. If we assume

that a single DRAM chip has a burst length of 4 and a bus width of 4 bytes (typical of modern

graphics double-data rate (GDDR3) memory technology), then the maximum number of DRAM

chips that a memory controller can potentially control without wasting data pin bandwidth is four

(4 DRAM chips per memory controller × 4B bus width × 4 burst length = 64B). Furthermore,

increasing the number of DRAM chips per memory controller reduces the number of read/write

commands per activated row for each chip. If the memory access pattern of a particular application

exhibits low row access locality, then DRAM efficiency can reduce greatly. This occurs when there

is a lack of requests to service to the activated rows of other banks when one bank is constrained

by the DRAM timing overhead needed to switch rows.0%20%40%60%80%100% 1 2 4DRAM Chips per Memory Controller rand1rand2rand3
Figure 4.1: Measured DRAM efficiency for random uniform memory traffic with varying row

access locality

Figure 4.1 shows the DRAM efficiency achieved using FR-FCFS scheduling of uniform random

memory access patterns with varying degrees of row access locality measured using a stand-alone

DRAM simulator based upon GPGPU-Sim [5]. In figure 4.1, rand1 is an artificially generated

uniform random memory access pattern. Since the row designation of each memory access is

random, the high number of rows per chip (4096 for the particular GDDR3 memory that we

simulate [47]) imply that the chance of two back-to-back requests going to the same row in a

particular bank is near-zero, meaning that a new row must be opened after the servicing of each
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memory request. In rand2, we replicate each random memory access once so that there are always

two requests back-to-back to the same row. Similarly, in rand3, we replicate each random memory

access so that there are always three requests back-to-back to the same row. As can be seen, fewer

DRAM chips per memory controller effectively means more DRAM read and write commands to the

rows of each chip to transfer the same total amount of data, thus increasing the DRAM efficiency.

The example above assumes a memory access pattern that is uniform random. Such a memory

access pattern will tend to generate requests to all banks in a chip, thus maximizing “bank-level

parallelism”. As such, the DRAM efficiency values presented in the above example represent the

near-maximum efficiencies obtainable for the given row access locality parameters. On the other

hand, a non-uniform memory access pattern may generate (a disproportionate amount of) requests

to only a subset of the banks of a DRAM chip, which can cause DRAM efficiency to be drastically

lower. For example, consider again the previous example where the row access locality is two and

the number of DRAM chips per memory controller is two. If all of the requests go to a single bank,

the DRAM efficiency plummets from 80.7% to 23.6%.

In order to maximize DRAM efficiency, modern DRAM controllers will schedule DRAM requests

out of order in an effort to maximize the row access locality. Without doing so, the performance

of in-order scheduling can be drastically worse when simple regular request streams (that would

ordinarily schedule very efficiently in DRAM) from multiple sources become interleaved. Figure 4.2

shows a simplified example that illustrates this. Consider first a single shader core interacting with a

single DRAM controller (Figure 4.2(a)). The request stream of this single shader core consists of two

requests to the opened row, RowA. Assuming that Row A has already been loaded into the DRAM

row-buffer, both requests can be serviced immediately and no row-switching latency is incurred.

Now consider two shader cores interacting with the same DRAM controller (Figure 4.2(b)). The

first shader core issues two requests to RowA while the second shader core issues two requests to
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(a)CoreA Req0RowA Req2RowACoreB Req1RowB Req3RowB DRAM ControllerRequest Issue Req1 RowBReq0 RowA DRAM TimingReq2RowAReq0RowAReceived Order Oldest Bus:Time (FR-FCFS)Req2 RowAReq3 RowB Req3RowBReq1RowBRowSwitchReq0RowATime (In-Order) Req1RowBRowSwitchBus: RowSwitch RowSwitchReq2RowA Req3RowBInterconnect DRAM
(b)

Figure 4.2: Conceptual example showing effect of request interleaving due to interconnect
(all requests to a single bank)

RowB. In trying to uphold fairness, a conventional interconnection network router arbiter may

use round-robin arbitration, resulting in the two input request streams becoming finely interleaved

when they pass through the router. In this case, an out-of-order scheduler would group together the

requests to Row A and service them first before switching to Row B and servicing the remaining

requests, thereby only paying the row-switching latency once. On the other hand, an in-order

DRAM scheduler would service the requests as it receives them, therefore having to pay the row-

switching latency three times, resulting in drastically lower DRAM throughput. (Note that the

DRAM timing in Figure 4.2(b) is not shown to scale. In our experiments, servicing a single 64B

request takes 4 cycles while the row switching delay is at least 25 cycles so the effect of request

interleaving is actually much worse than illustrated.) If an intelligent network router recognized

that, in this scenario, it should transfer all the requests of one shader core first before transferring

the requests of the second shader core, then the performance obtainable using out-of-order DRAM
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Figure 4.3: Architecture (DRAM chips are off-chip)

scheduling could be achieved with a much simpler in-order FIFO DRAM scheduler.

In this thesis, we leverage this key observation to design an intelligent interconnection network

coupled with a simple DRAM controller that can achieve the performance of a much more com-

plex DRAM controller. Such a solution saves area and results in a shorter design cycle and less

verification complexity.

4.2 Effect of interconnect on row locality

To determine the effects of memory request stream interleaving due to multiple shader core inputs,

we augmented our simulator, which models the architectures shown in Figure 4.3, to measure the

pre-interconnect row access locality, the row access locality of the memory request sent from the

shader cores to the interconnect, versus the post-interconnect row access locality, the row access

locality of the memory requests seen at the DRAM controllers after they traverse the interconnect,

for a set of CUDA applications.

Figure 4.4 presents the measured post-interconnect row access locality divided by the pre-

interconnect row access locality (Figure 4.4(a)) for crossbar, mesh, and ring networks as well as the
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Figure 4.4: Row access locality measured in number of requests per row activate command before the
interconnect (Pre-Icnt) and after (Post-Icnt). HM = Harmonic Mean

calculated ratio (Figure 4.4(b)). As can be seen, the row access locality decreases by almost 47%

across all network topologies after the interconnect when arithmetically averaging the ratios of the

pre-interconnect locality versus the post-interconnect locality across all applications.

Our configuration for Figure 4.4 has 28 shader cores and 8 memory channels (one DRAM

controller per memory channel), which corresponds roughly to NVIDIA’s GT200 architecture of 30

shader cores and 8 memory channels [6].

4.3 Grant holding interconnect arbitration

One of the fundamental pillars of conventional interconnection networks and their many arbitration

policies is the concept of fairness, such that all input-output combinations receive equal service [12].

Without some degree of fairness in arbitration, nodes in the network may experience starvation.
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4.3. Grant holding interconnect arbitration

One common method of achieving fairness is to perform round-robin arbitration so that the most

recent node that gets serviced becomes the lowest-priority in the next arbitration cycle to allow other

nodes to get serviced. As seen in the previous section, such a policy can significantly reduce the

amount of row access locality in the memory request stream seen by the DRAM controller. With an

in-order memory request scheduler, this can lead to lower DRAM throughput. We therefore propose

an interconnect arbitration scheme that attempts to preserve the row access locality exhibited by

memory request streams from individual shader cores. To this end, we introduce two simple,

alternative modifications that can be applied to any arbitration policy:

“Hold Grant” (HG): If input I was granted output O in the previous arbitration cycle, then

input I again gets the highest priority to output O in the current cycle.

“Row-Matching Hold Grant” (RMHG): If input I was granted output O in the previous

arbitration cycle, then input I again gets the highest priority to output O in the current cycle as

long as the requested row matches the previously requested row match.

With HG, as long as a shader core has a continuous stream of requests to send to a DRAM

controller, the interconnect will grant it uninterrupted access. RMHG has more constraints on

when to preserve grant in order be more fair, but may not perform as well since it will not preserve

any inherent bank-level parallelism found in the memory request stream, found to be important

in reducing average thread stall times in chip multiprocessors by Mutlu et al. [33]. To maximize

the benefit of using our proposed solution, the network topology and routing algorithm should be

such that there is no path diversity. Common examples are a crossbar network or a mesh with

non-adaptive routing. (We leave the development of interconnect arbitration schemes that preserve

row access locality in network topologies with path diversity to future work.) This forces requests

sent to the interconnect to leave in the same order. If requests were otherwise allowed to arrive

at the DRAM controllers out of order, the row access locality in the memory request stream sent

from shader cores may also be disrupted in this way.
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Figure 4.5: Grant-holding interconnect router architecture

In the standard interconnection network router pipeline, there are two stages where our hold-

grant policies can be enforced: virtual channel allocation, which happens first, and switch allocation.

In our experiments, we enforce our hold-grant policies during virtual channel allocation, as illus-

trated in Figure ??. If this is not done, virtual channel allocation will arbitrate packets randomly.

In this case, enforcing hold-grant during switch allocation would be ineffective since the packets

arbitrated during virtual channel allocation would already be interleaved. Implementation of our

scheme requires a small amount of additional memory and additional comparators to keep track

of and determine which inputs to hold grant on. This overhead is quantified in more detail in

Section 4.5.
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4.4 Interleaving due to multiple virtual channels

In interconnection networks, having multiple virtual channels can reduce network latency by reduc-

ing router pipeline stalls [12]. In certain network topologies and with certain routing algorithms,

it can also be necessary to prevent deadlock.

In the context of memory request stream interleaving, multiple virtual channels can effectively

cause a stream of memory requests sent from one source to one destination to arrive out of order.

This occurs since a request that enters a network router gets assigned the first virtual channel

that becomes available “on-the-fly”. (We refer to this as dynamic virtual channel assignment,

or DVCA.) When back-to-back requests from one source shader core are sent to one destination

DRAM controller, they may get assigned to different virtual channels, where each virtual channel is

essentially a different path. This is akin to having path diversity, which was explained in Section 4.3

to be detrimental in preserving row access locality. With requests taking multiple paths to the

destination, order cannot be enforced.

To handle the case when multiple virtual channels are used in the interconnect, we propose a

static, destination-based virtual channel assignment (SVCA). While requests from one input node

can still use multiple virtual channels in this assignment, all requests from one shader core (input

node) to one specific DRAM controller (output destination node) are always assigned the same

virtual channel in each router. In the case where there are virtual channels V C0 to V Cv−1 for

each router and M DRAM controllers, then all requests to DRAM controller M must use V Cn and

only V Cn, where n = M mod v. Doing so allows for a fair virtual channel allotment across all

input-output combinations. We evaluate the performance impact of using SVCA versus DVCA in

Section 6.3.3 and show that applications obtain a speedup of up to 17.7% in a crossbar network

with four virtual channels per port when using SVCA over DVCA.
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4.5 Complexity comparison

Since our proposed changes are not limited to the DRAM controller circuitry, but also apply to the

interconnection network, we attempt to define the complexity with a general-enough method that

can be applied to any network topology. To this end, we quantify the complexity of our design

based on the differences in two metrics, the amount of storage required in bits, and the number of

bit-comparisons.

With FR-FCFS, whenever a new command is issued, every request in the DRAM controller

queue must be checked to determine the best candidate for issuing [15, 44]. For a queue size Q, this

translates to Q times the number of row bits + the number of bank bits. In the GDDR3 technology

that we study, there are 4096 rows (nR) and 4 banks (nB) , which is equal to 12 row bits dlog2(nR)e
and 2 bank bits dlog2(nB)e. For a GPU system with M DRAM controllers, this means a maximum

number of bit comparisons of M ∗ Q ∗ (dlog2(nR)e + dlog2(nB)e) every DRAM command clock.

This number represents an upper bound and can be much lower in certain scenarios. First, the

average occupancy of the DRAM controller queue may be very low, especially if the application is

not memory-intensive. Second, the DRAM request search may be performed in a two step process

where only requests to available banks are selected to check for row buffer hits. Available banks

include those that have pending requests and are not in the process of precharging (closing) a row

or activating (opening) a row.

Since a DRAM controller that implements FR-FCFS needs to perform a fully-associative com-

parison, it does not need to be banked based on the number of DRAM banks. This allows the

controller to maximize its request storage capability if, for instance, all requests go to a single

bank. For our complexity-effective solution, we use a banked FIFO queue with one bank per

DRAM bank. Doing so allows us to consider requests to all banks simultaneously, thus promoting

bank-level parallelism. With this configuration, the DRAM controller considers up to nB requests
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each cycle, checking whether the row of the request matches the opened row for each bank to

determine whether the DRAM controller can issue the request immediately or whether it needs

to first open a new row. Furthermore, when requests are first inserted into the DRAM controller

queue, the DRAM controller must check to which of the banks to insert the request, requiring

an additional dlog2(nB)e comparisons. This adds up to M ∗ (nB ∗ dlog2(nR)e + dlog2(nB)e) bit

comparisons summed across all DRAM controllers.

Our interconnect augmentations to the interconnect, HG and RMHG, also require additional

bit comparisons. We implement our grant-holding policy at the virtual channel allocator. If we are

using HG, then we check whether input-output combinations granted in the previous arbitration

cycle are also pending in this cycle. If so, we force allocation to choose the same input-output

combinations again. This requires knowing which output was chosen in the last arbitration cycle

for each input arbiter and, if there is a request to that output again this cycle, then it is chosen again.

To do this, we store one bit for each input-output combination and set the bits of the combinations

that were previously granted. We then compare these bits to the ones in the request matrix and, if

there is a match, we clear the other request bits to the other inputs for the corresponding output and

the other outputs for the corresponding inputs. This essentially forces the allocation algorithm to

choose the same input-output combination for the next cycle because no other options are available.

For a crossbar with one router, this totals to C ∗M bit comparisons and C ∗M additional bits of

storage required, where C is the number of shader cores. In the context of a mesh, the number

of routers is equal to C+M and an upper bound of nine total input and output ports for a two

dimensional mesh. This is because we do not care about the output port in a shader core node to

itself (since the shader core cannot sink memory requests) and the input port in a memory node

from itself (since the memory controller cannot generate memory requests). (Some nodes on the

edge or corners of the mesh will also have fewer ports.) This sums up to (C+M)*(20) bits compared

and stored since each router will either have 4 inputs and 5 outputs or 5 inputs and 4 outputs for
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Table 4.1: Calculated complexity (HMHG4 = Hash-Matching Hold Grant using 4-bit hashes)

Bits Stored in ICNT Bits Compared in ICNT Bits Compared in Total
DRAM Scheduler

FRFCFS 0 0 M*Q*(dlog2(nR)e+ 3584 bits compared
dlog2(nB)e)

BFIFO+HG C*M C*M 0 224 bits stored
(XBAR) 224 bits compared
BFIFO+HG 20*(C+M) 20*(C+M) 0 720 bits stored
(MESH) 720 bits compared
BFIFO+RMHG C*M + C*M + 0 608 bits stored
(XBAR) dlog2(nR)e ∗ nB ∗M dlog2(nR)e ∗M 320 bits compared
BFIFO+RMHG 20*(C+M) + 20*(C+M) + 0 14,544 bits stored
(MESH) (C + M) ∗ dlog2(nR)e ∗ nB ∗M (C + M) ∗ dlog2(nR)e ∗ 5 2880 bits compared
BFIFO+HMHG4 C*M + C*M + 0 320 bits stored
(XBAR) 4*M 4*M 320 bits compared
BFIFO+HMHG4 20*(C+M) + 20*(C+M) + 0 1440 bits stored
(MESH) (C+M)*4*5 (C+M)*4*5 1440 bits compared

a total of 20 input-output combinations.

An interconnect allocation policy that uses RMHG requires more bit comparisons since, in

addition to the bit comparison and storage overheads incurred using HG, it must also check that

back-to-back requests are indeed to the same row, thus requiring dlog2(nR)e comparisons for each

entry in the request matrix. Compounding this problem for the crossbar and, to a much greater

extent, the mesh is that requests sent to the same output may be to ultimately different destinations,

such as to different banks or, in the case of mesh, to different chips. One solution to account for

this is to have each router keep track of the rows of the most recently granted request to the

different possible destinations for each output. Therefore for a single router, which is the case

of the crossbar, this would require a total of dlog2(nR)enB ∗M additional bits of storage for the

interconnect and dlog2(nR)e∗M bit comparisons. Accordingly, each router of a mesh would require

dlog2(nR)e∗nB ∗M additional bits of storage and dlog2(nR)e*5 bit comparisons, dlog2(nR)e for each

output. Summed across all routers in a mesh, the total requirements is (C+M)∗dlog2(nR)e∗nB∗M
additional bits of storage and (C + M) ∗ dlog2(nR)e ∗ 5 bit comparisons.

Compared to using HG, a mesh network using RMHG can incur significant bit-comparison and
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area overheads, even more than FR-FCFS. However, it is possible to reduce both bit comparison and

bit storage overheads by matching a hash of the row instead of finding exact matches and storing

fewer row entries than the maximum required of nB*M. We call this heuristic Hash-Matching Hold

Grant (HMHG). In our experiments, we match and store only a 4-bit hash of the row bits for the

last granted request for each output for each router (HMHG4) instead of using RMHG. We found

that using more bits did not improve performance. HMHG4 has an overhead of (C+M)*4*M bit

comparisons and (C+M)*4*5 bits stored for the mesh and 4*M bit comparisons and 4*M bits stored

for the crossbar. Table 4.1 summarizes our findings. The right-most column shows the calculated

complexity for our baseline configuration with 28 shader cores, 8 memory controllers with 32-entry

queues each, and 4096 rows and 4 banks per DRAM chip.

In the next chapter, we will describe our experimental methodology. In Section 6.3, we will

quantify the effects of using our complexity-effective DRAM controller design in comparison to

conventional in-order and out-of-order scheduling memory controllers.
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Chapter 5

Methodology

5.1 Supporting CUDA applications on GPGPU-Sim

Table 5.1 shows the simulator’s configuration used to test the applications described in Chapter 2.

Rows with multiple entries show the different configurations that we have simulated. Bold values

show our baseline. We simulate all benchmarks to completion to capture all the distinct phases

of each kernel in the benchmarks, especially the behavior at the tail end of the kernels, which can

vary drastically compared to the beginning. If the kernels are relatively short and are frequently

launched, the difference in performance when not simulating the benchmark to completion can be

significant.

This thesis performs three main studies using the benchmarks described in Section 2.2. The first

study validates our simulator against real hardware while the other two explore the performance

effects of varying two key microarchitecture parameters: the DRAM controller queue size and the

shader resources that affect the limit on the maximum number of CTAs that can execute on a

shader core concurrently.

We issue CTAs in a breadth-first manner across shader cores, selecting a shader core that has

a minimum number of CTAs running on it, so as to spread the workload as evenly as possible

among all cores. We note that this breadth-first CTA distribution heuristic can occasionally lead

to counter-intuitive performance results due to a phenomena we will refer to as CTA load imbalance.

This CTA load imbalance can occur when the number of CTAs in a grid exceeds the number that

can run concurrently on the GPU. For example, consider six CTAs on a GPU with two shader cores
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Table 5.1: Microarchitectural parameters for testing GPGPU-Sim (bolded values show base-
line configuration)

Number of Shader Cores 32
Warp Size 32
SIMD Pipeline Width 8
Number of Threads / Core 256 / 512 / 1024 / 1536 / 2048
Number of CTAs / Core 2 / 4 / 8 / 12 / 16
Number of Registers / Core 4096 / 8192 / 16384 / 24576 / 32768
Shared Memory / Core (KB) 4/8/16/24/32 (16 banks, 1 access/cycle/bank)
Constant Cache Size / Core 8KB (2-way set assoc. 64B lines LRU)
Texture Cache Size / Core 64KB (2-way set assoc. 64B lines LRU)
Interconnection Network Full Crossbar
Number of Memory Channels 8
GDDR3 Memory Timing tCL=9, tRP =13, tRC=34

tRAS=21, tRCD=12, tRRD=8
Bandwidth per Memory Channel 16 (Bytes/Cycle)
DRAM request queue capacity 8/16/32 / 64
Memory Controller out of order (FR-FCFS) /

in order (FIFO) [43]
Branch Divergence Method Immediate Post Dominator [16]
Warp Scheduling Policy Round Robin among ready warps
Maximum Supported In-flight 64/Unlimited
Requests per Shader Core

where at most two CTAs can run concurrently on a shader core. Assume running one CTA on one

core takes time T and running two CTAs on one core takes time 2T (e.g., no off-chip accesses and

six or more warps per CTA—enough for one CTA to keep our 24 stage pipeline full). If each CTA

in isolation takes equal time T, total time is 3T (2T for the first round of four CTAs plus T for

the last two CTAs which run on separate shader cores). Suppose we introduce an enhancement

that causes CTAs to run in time 0.90T to 0.91T when run alone (i.e., faster). If both CTAs on the

first core now finish ahead of those on the other core at time 1.80T versus 1.82T, then our CTA

distributor will issue the remaining 2 CTAs onto the first core, causing the load imbalance. With

the enhancement, this actually causes an overall slowdown since now 4 CTAs need to be completed

by the first core, requiring a total time of at least 3.6T. We carefully verified whether this behavior

occurs by plotting the distribution of CTAs to shader cores versus time for both configurations

being compared. This effect would be less significant in a real system with larger data sets and
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therefore grids with a larger number of CTAs.

In previous work, rather than attempting to eliminate the effect, we simply noted where it

occurred. In this work, we introduce a new metric for measuring processor throughput. Our

conventional calculation of IPC for our GPU architecture is performed by dividing the sum of

all instructions committed in all cores by the number of cycles it takes for the last core to finish

execution of its CTAs. If the finish times of the cores differ significantly, then the final calculated

IPC may not be an accurate measure of the true performance capabilities of the architecture. Cores

that finish early may be assigned CTAs from other kernels to maximize utilization.

In Section 6.1.3 we measure the impact of running greater or fewer numbers of threads. We

model this by varying the number of concurrent CTAs permitted by the shader cores, which is

possible by scaling the amount of on-chip resources available to each shader core. There are four

such resources: number of concurrent threads, number of registers, amount of shared memory, and

number of CTAs. The values we use are shown in Table 5.1. The amount of resources available

per shader core is a configurable simulation option, while the amount of resources required by each

kernel is extracted using ptxas.

Varying the number of concurrent CTAs can cause certain benchmarks to suffer from severe

CTA load imbalance. To address this, we use a new performance metric, IPC weighted by cycle

(IPCwbc), to present our data in and only in Section 6.1.3. With this metric, we first determine

the IPC values of the individual shader cores first, using the finish time of each core as the cycle

time instead of using the finish time of the slowest core. We then take a weighted average of

the individual IPC values, where the weights are the individual cycle times. Finally, this weighted

average is multiplied by the number of cores to obtain our performance metric for the aggregate IPC

of a multicore architecture. Consider the conceptual example shown in Table 5.2. There are two

types of CTAs: CTA A symbolizes an arithmetically-intensive workload while CTA B symbolizes

a memory-intensive workload. Core 1, which is assigned CTA A, finishes much faster than Core
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2 while also executing more instructions. Our conventional IPC metric calculates the system IPC

to be only 1.1 whereas, if we use the IPC weighted by cycle method described above, we obtain

an IPC that is almost double, 2.0. Which one is more accurate? Assume if, after Core 1 finishes

execution, we assign it another CTA of type B and, after Core 2 finishes execution, we assign it

another CTA of type A. Now both cores must run both types CTAs, and should thus finish at the

same time. In this case, each core executes 110 instructions in 110 cycles, for an aggregate system

IPC of 2.0 regardless of which IPC metric we use. Table 5.2 clearly shows that IPCwbc was able

to “predict” this.

Note that our metric is optimistic in assuming that there is no destructive (or constructive)

interaction between the two cores. In the scenario shown in Table 5.2, Core 2 may only be able to

finish execution of CTA B in 100 cycles because Core 1 is idle for most of the time and thus does

not contend for shared resources, such as DRAM. In reality, Core 2 may take longer if Core 1 was

assigned another CTA to run immediately after finishing its first CTA. Nevertheless, this metric is

sufficient in quantifying performance when CTA load imbalance occurs. Consider the case where

a microarchitecture modification results in an increase in IPC compared to a baseline. There are

three possible causes: one, the modification actually improves some part of the system; two, the

CTA load imbalance was more severe in the baseline than in the modified configuration; and three,

there was more constructive interference in the modified configuration than in the baseline. If we

then compare IPCwbc and see that the modified architecture achieved a higher IPCwbc than the

baseline, then we can rule out CTA load imbalance as a possible cause. This is because IPCwbc

becomes more optimistic as the severity of the CTA load imbalance increases. If the IPCwbc of the

modified architecture (which has less severe CTA load imbalance) is still higher than the baseline

in spite of this, then we can say with confidence that the performance improvement was not due to

CTA load imbalance. On the contrary, if the IPCwbc of the baseline is higher, then we know that

the IPC of the baseline is only lower due to CTA load imbalance.
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Table 5.2: Example showing difference between IPC versus IPC weighted by cycle

Work to Core 1 CTA A: 100 instructions in 10 cycles
Work to Core 2 CTA B: 10 instruction in 100 cycles

IPC Calculation 110
100

IPC Value 1.1

IPCwbc Calculation 2 ∗ ( 10
110

∗ 100
10

+ 100
110

∗ 10
100

)

IPCwbc Value 2.0

Table 5.3: Microarchitectural parameters for analytical DRAM model (bolded values show
baseline configuration)

Shader Cores 32
Threads per Shader Core 1024
Interconnection Network Full Crossbar

Maximum Supported In-flight 64
Requests per Shader Core

Memory Request Size (Bytes) 64
DRAM Chips 8,16,32

DRAM Controllers 8
DRAM Chips per Controller 1,2,4

DRAM Controller 8,16,32,64
Queue Size

DRAM Controller First-Ready First-Come
Scheduling Policy First-Serve (FR-FCFS),

Most Pending [43]

5.2 Hybrid analytical modeling of DRAM

To evaluate our hybrid analytical model, we modified GPGPU-Sim [5] to collect the memory

request address streams that are fed to the memory controllers for use in our analytical model.

Table 5.1 shows the microarchitectural parameters used in this study. The advantage of studying a

massively multi-threaded architecture that GPGPU-Sim is capable of simulating is that it allows us

to stress the DRAM memory system due to the sheer number of memory requests to DRAM that

can be in-flight simultaneously at any given time. In our configuration, we allow for 64 in-flight

requests per shader core. This amounts to a maximum of 2048 simultaneous in-flight memory

requests to DRAM. In comparison, Prescott has only eight MSHRs [8] and Willamette has only

four MSHRs [21]. With an eight memory controller configuration, we use our model on 8 separate
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Table 5.4: Benchmarks for analytical DRAM model

Benchmark Label Suite
Black-Scholes option pricing BS CUDA SDK
Fast Walsh Transform FWT CUDA SDK
gpuDG DG 3rd Party
3D Laplace Solver LPS 3rd Party
LIBOR Monte Carlo LIB 3rd Party
Matrix Multiply MMC 3rd Party
MUMmerGPU MUM 3rd Party
Neural Network Digit Recognition NN 3rd Party
Ray Tracing RAY 3rd Party
Reduction RED CUDA SDK
Scalar Product SP CUDA SDK
Scan Large Array SLA CUDA SDK
Matrix Transpose TRA CUDA SDK
Weather Prediction WP 3rd Party
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Figure 5.1: Measured DRAM efficiency and measured DRAM utilization averaged across all DRAM chips
for each benchmark

memory request address streams per application. We test our model on the 14 different applications

shown in Table 5.4, some of which are from the set described in Section 2.2 and some of which are

from Nvidia’s CUDA software development kit [37]. Our only criterium for selecting applications

from the two suites is that they must show greater than 10% DRAM utilization averaged across all

DRAM chips for our given baseline microarchitecture configuration.

To illustrate the diversity of our application set, Figure 5.1 shows the DRAM efficiency and

utilization measured by GPGPU-Sim in performance simulation averaged across all DRAM chips

for each application. We simulate each application to completion in order to collect the full memory
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Table 5.5: Microarchitectural parameters for complexity-effective memory access scheduling
(bolded values show baseline configuration)

Shader Cores 28
Threads per Shader Core 1024
Interconnection Network Ring, Crossbar, Mesh

Maximum Supported In-flight 64
Requests per Multiprocessor
Memory Request Size (Bytes) 64
Interconnect Flit Size (Bytes) 32

DRAM Chips 16
DRAM Controllers 8

DRAM Chips per Controller 2
DRAM Controller 8,16,32,64

Queue Size
DRAM Controller First-Ready First-Come
Scheduling Policy First-Serve (FR-FCFS),

Naive FIFO, Banked FIFO [43]

Table 5.6: Benchmarks for complexity-effective memory access scheduling

Benchmark Label Suite
Fast Walsh Transform fwt CUDA SDK
LIBOR Monte Carlo lib 3rd Party
MUMmerGPU mum 3rd Party
Neural Network Digit Recognition neu 3rd Party
Ray Tracing ray 3rd Party
Reduction red CUDA SDK
Scalar Product sp CUDA SDK
Weather Prediction wp 3rd Party
Nearest Neighbor nn Rodinia

request address trace.

5.3 Complexity-effective memory access scheduling

To evaluate our design, we again used GPGPU-Sim [5]. We implemented our changes to the

interconnection network simulated using the versatile interconnection network simulator introduced

by Dally et al. [12].

Table 5.5 shows the microarchitectural parameters used in this study. We evaluate our design on

the 9 different applications shown in Table 5.6 across three network topologies: ring, mesh, and full

crossbar. To occupy all nodes in a square mesh, we keep the number of memory controllers constant
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at eight and slightly reduce the number of shader cores to 28, resulting in a 6x6 mesh. We found that

certain applications that exhibit low off-chip traffic are not sensitive to varying memory controller

configurations. In order to have results that are more meaningful, we focused our study on only

those applications that meet all three of our selection criteria: first, the total processor throughput

of the application must be less than 75% of the peak IPC for the baseline configuration; second,

the DRAM utilization, percentage time spent of a memory channel transferring data over all time,

averaged across all DRAM controllers must be over 20%. Finally, the DRAM efficiency averaged

across all DRAM controllers must be less than 90%. Following these three criteria ensures that

we study only applications that are truly memory-sensitive. We use 3 applications from NVIDIA’s

CUDA software development kit (SDK) [37], 5 applications from the set used by Bakhoda et. al [5],

and one application from the Rodinia benchmark suite introduced by Che et al. [9]. We simulate

each application to completion.
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Chapter 6

Experimental Results

6.1 GPGPU-Sim simulation

6.1.1 Baseline

We first simulated our baseline GPU configuration with the bolded parameters shown in Table 5.1.

Figures ?? and ?? show the instruction classification and memory instruction breakdown of the

CUDA benchmarks introduced in Section 2.2. As shown, these benchmarks exhibit a diverse range

of computation, control flow, and memory intensity. The memory access patterns in terms of the

types of memory spaces accessed also varies greatly from application to application. Figure 6.3

shows the performance of our baseline configuration (for the GPU only) measured in terms of

scalar instructions per cycle (IPC). In the right-most set of bars, SDK represents the harmonic

mean for all the applications from Nvidia’s CUDA Software Development Kit that we simulated,

while HM represents the harmonic mean of the new applications that we introduced in Section 2.2.

Evidently, there is a large gap in performance between the CUDA SDK applications and real

applications developed by other authors. For comparison, we also show the performance assuming

a perfect memory system with zero memory latency. Note that the maximum achievable IPC for our

configuration is 224 (28 shader cores x 8-wide pipelines). We also validated our simulator against

an Nvidia Geforce 8600GTS, which is top of the mid-range lineup for the G80 series, by configuring

our simulator to use four shaders and two memory controllers. The IPC of the GPU hardware, as

shown in Figure 6.4(a), was estimated by dividing the dynamic instruction count measured (in PTX

instructions) in simulation by the product of the measured runtime on hardware and the shader
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Figure 6.1: Instruction Classification
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Figure 6.2: Memory Instructions Breakdown

clock frequency [36]. Figure 6.4(b) shows the scatter plot of IPC obtained with our simulations

mimicking the 8600GTS normalized to the theoretical peak IPC versus the normalized IPC data

measured using the 8600GTS. The correlation coefficient was calculated to be 0.899. One source

of difference, as highlighted by the data for CP which actually achieves a normalized IPC over

1, is due to compiler optimizations in ptxas, the assembler that generates the final binary run

on the GPU, which reduce the instruction count on real hardware5. Overall, the data shows that

applications that perform well in real GPU hardware perform well in our simulator and applications

that perform poorly in real GPU hardware also perform poorly in our simulator. In the following

sections, we explore reasons why some benchmarks do not achieve peak performance.
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Figure 6.4: Performance comparison with 8600GTS

6.1.2 DRAM utilization and efficiency

In this section we explore the impact that memory controller design has on performance. Our base-

line configuration uses an Out-of-Order (OoO) First-Ready First-Come First-Serve (FR-FCFS) [43]

memory controller with a capacity of 32 memory requests. Each cycle, the OoO memory con-

troller prioritizes memory requests that hit an open row in the DRAM over requests that require

a precharge and activate to open a new row. Against this baseline, we compare a simple First-

In First-Out (FIFO) memory controller that services memory requests in the order that they are

received, as well as a FR-FCFS OoO controller with other varying input buffer capacity sizes of

8 (OoO8), 16 (OoO16), and 64(OoO64). We measure two metrics besides performance (based on
5We only simulate the input PTX code which, in CUDA, ptxas then assembles into a proprietary binary format

that we are unable to simulate.
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Figure 6.5: Impact of DRAM memory controller optimizations
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Figure 6.6: DRAM Efficiency

IPC): the first is DRAM efficiency, which is the percentage of time spent sending data across the

pins of DRAM over the time when there are any memory requests being serviced or pending in the

memory controller input buffer; the second is DRAM utilization, which is the percentage of time

spent sending data across the DRAM data pins over the entire kernel execution time. These two

measures can differ if an application contains GPU computation phases during which it does not
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Figure 6.7: DRAM Utilization
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access DRAM (e.g., if it has been heavily optimized to use “shared memory”).

Figure 6.5 compares the performance of our baseline to other memory controller configurations.

We observe that AES, CP, LPS, MMC, NQ, and STO exhibit almost no slowdown for FIFO.

Figure 6.6 shows AES and STO obtain over 75% DRAM efficiency. Close examination reveals that

at any point in time all threads access at most two rows in each bank of each DRAM, meaning

that a simple DRAM controller policy suffices. Furthermore, Figure 6.7 shows that AES and STO

have low DRAM utilization despite the fact that they are data-processing applications. Both these

applications make extensive use of shared memory (see Figure 6.2). NQ and CP have very low

DRAM utilization, making them insensitive to memory controller optimizations. Performance is

reduced by over 40% when using FIFO for BFS, LIB, MUM, RAY, and WP. These benchmarks all

show drastically reduced DRAM efficiency and utilization with this simple controller.

6.1.3 Are more threads better?

GPUs can use the abundance of parallelism in data-parallel applications to tolerate memory access

latency by interleaving the execution of warps. These warps may either be from the same CTA

or from different CTAs running on the same shader core. One advantage of running multiple

smaller CTAs on a shader core rather than using a single larger CTA relates to the use of barrier

synchronization points within a CTA [46]. Threads from one CTA can make progress while threads

from another CTA are waiting at a barrier. For a given number of threads per CTA, allowing more

CTAs to run on a shader core provides additional memory latency tolerance, though it may imply

increasing register and shared memory resource use. However, even if sufficient on-chip resources

exist to allow more CTAs per core, if a compute kernel is memory-intensive, completely filling up

all CTA slots may reduce performance by increasing contention in the interconnection network and

DRAM controllers.

We explore the effects of varying the resources that limit the number of threads and hence CTAs
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Figure 6.8: Effects of varying number of CTAs

that can run concurrently on a shader core, without modifying the source code for the benchmarks.

We vary the amount of registers, shared memory, threads, and CTAs between 25% to 200% of those

available to the baseline. The results are shown in Figure 6.8, where we report speedup using both

IPC and IPCwbc, explained in Section 5.1. For the baseline configuration, some benchmarks are

already resource-constrained to only 1 or 2 CTAs per shader core, making them unable to run using

a configuration with less resources. We do not show bars for configurations that for this reason are

unable to run. Furthermore, CPS, LPS, LIB, and WP do not have enough CTAs to make use of

increased shader resources, so performance remains constant as the CTA limit is increased beyond

100%. For these benchmarks, all CTAs can run simultaneously for the baseline configuration. We

first note that analyzing the speedup using IPCwbc (Figure 6.8(b)) results in speedups that are

either monotonic or contain a single distinct peak as the CTA limit is scaled, removing the multiple
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peaks in speedup that occur for some benchmarks (BFS, DG, MMC, and MUM) when instead

using IPC (Figure 6.8(a)). A closer analysis at the output logs showed that it is indeed the CTA

load imbalance issue that causes these erratic results in Figure 6.8(a). For this reason, the rest of

this subsection will focus on using IPCwbc (Figure 6.8(b)) to analyze the results. NQ shows little

change when varying the number of CTAs since it has very few memory operations. For AES,

DG, LPS, MUM, NQ, STO, and WP, performance increases monotonically as more CTAs per core

are used. Each CTA in NQ and STO uses all of the shared memory in the baseline configuration,

therefore increasing shared memory by half for the 150% configuration results in no increase in the

number of concurrently running CTAs while doubling the amount of shared memory for the 200%

configuration yields a large performance improvement. While AES and DG are capable of using

the additional shader core resources by increasing the number of concurrently running CTAs, the

increase in performance beyond the baseline configuration is minuscule (1.3% increase in IPCwbc

arithmetically averaged across the two benchmarks when increasing shader resources from 100% to

200%). When the number of concurrently running CTAs increase, there is greater contention in

the shared DRAM system, resulting in increased memory latency of 58.3% (AES) and 72.7% (DG).

For MUM, the speedup is higher (6.0%) because the memory latency increase is much smaller at

only 4.9%. BFS, NN, NEU, and RAY show distinct optima in performance when the CTA limit

is at 150%, 50%, 150%, and 100% of the baseline configuration, respectively. Above these limits,

we observe DRAM efficiencies decrease and memory latencies increase, again suggesting increased

contention in the memory system. For configuration with limits below the optima, the lack of warps

to hide memory latencies reduces performance.

Given the widely-varying workload-dependent behavior, always scheduling the maximal number

of CTAs supported by a shader core is not always the best scheduling policy. We leave for future

work the design of dynamic scheduling algorithms to adapt to the workload behavior.
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Figure 6.9: Comparison of measured DRAM efficiency to predicted DRAM efficiency aver-
aged across all DRAM chips for each benchmark

6.2 Hybrid analytical modeling of DRAM

In Section 6.2.1, we will first show our results for the three heuristics that we described in Section 3.3.

We show that our model obtain a correlation of 72.9% with an arithmetic mean absolute error of

11.2%. In Section 6.2.2, we provide an in-depth analysis on the cause of our errors. In Section 6.3.4,

we perform a sensitivity analysis of our analytical DRAM model across different microarchitecture

configurations.

6.2.1 DRAM efficiency prediction accuracy

Figure 6.9 compares the DRAM efficiency measured in performance simulation to the modeled

DRAM efficiency when using the profiling technique described in Section 3.3. For clarity, we

show only the arithmetic average of the efficiency across all DRAM controllers of each application.

The arithmetic average of these absolute errors is 18.5% for no activate overlap and 17.0% for

full activate overlap. The corresponding correlation is 72.2% and 65.9% respectively. Of the 15

applications studied, nine are predicted more accurately by full activate overlap, indicating that

accounting for bank-level parallelism, even naively, is important in predicting DRAM efficiency.
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Figure 6.10: Arithmetic mean of absolute error of predicted DRAM efficiency averaged across
all DRAM chips for each benchmark (AM = arithmetic mean across all bench-
marks)

When we average the predictions of these two heuristics for averaged, the error is reduced to 11.2%

and the correlation increases to 72.9%. We described in Section 3.3 that, without accounting

for overlap of row activates, we expect our predictions to underestimate the measured efficiency

(profiling + no activate overlap). (We explain why the results of some applications do not match

these expectations in Section 6.2.2.)

In order to confirm our expectations, we propose a new metric, polarity, which is defined as

the arithmetic average of the non-absolute errors divided by the arithmetic average of the absolute

errors. The value of polarity can range between -1 and 1, where -1 means that the test value

(predicted efficiency) is always less than the reference value (measured efficiency), 1 means that the

test value is always greater than the reference value, and 0 means that on average, the error is not

skewed positively or negatively in anyway. We calculated the arithmetic mean of the non-absolute

errors for profiling + no activate overlap to be -14.1%, meaning a polarity of -0.81. This implies a

strong tendency to underestimate the DRAM efficiency, confirming our expectations. On the other

hand, the polarity of average arithmetic error of profiling + full activate overlap is 0.98, meaning

it almost always overestimates the DRAM efficiency. We expect this to occur since the frequency
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Figure 6.11: Comparison of measured DRAM efficiency to predicted DRAM efficiency (1
data point per memory controller per benchmark)

of issuing activates is constrained by tRRD. Moreover, a row activate to a bank cannot be issued as

long as there are still requests to the current row of that bank, further constraining the frequency of

issuing activates. Our profiling + full activate overlap heuristic captures neither of these, essentially

meaning that assuming full overlap of the row activates will always be optimistic in predicting the

DRAM efficiency. Figure 6.11 shows the scatter plots of predicted DRAM efficiency using our three

heuristics to the measured DRAM efficiency. Each dot represents the measured DRAM efficiency

versus predicted for a single DRAM controller. Several facts become immediately apparent. First,

most of the data points for no activate overlap tend to be under the X=Y line, meaning that

this modeling heuristic tends to underestimate the DRAM efficiency, while full activate overlap

behaves the opposite. Second, the data points in Figure 6.11(c) are closest to the X=Y line,

further illustrating the improved accuracy of averaging the predictions obtained using our first two

heuristics.
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6.2.2 Modeling error analysis

Applications where one technique generates significantly poor predictions tend to be predicted

much more accurately by the other technique (BS, LPS, LIB, MMC, MUM, NN, RED, TRA). It

is encouraging to see this because it implies that a heuristic such as averaged that combines no

activate overlap and full activate overlap can reduce the mean absolute error.

We postulate that for applications with poor row access locality, the overlapping of row acti-

vates has more significant impact. Consequently full activate overlap should better predict DRAM

efficiency than no activate overlap, which serializes the precharge and activate delays and poten-

tially underestimates the DRAM efficiency. Conversely, we postulate that applications with good

row access locality will not benefit as much from row activate overlapping, which will make full

activate overlap overestimate the efficiency.

To verify this, we obtain the average row access locality by dividing the total number of read and

write commands by the number of activate commands per memory controller and arithmetically

averaging these values across all memory controllers for each application. Figure 6.12 shows this

average row access locality. The three applications with the lowest row access locality, MUM, TRA,

and WP, follow our hypothesis and are predicted more accurately by full activate overlap than no

activate overlap.

A closer look at Figure 6.9 reveals that, for BS, LPS, MMC, and NEU, the measured DRAM

efficiency is actually lower than that predicted by no activate overlap which we expected to be

a lower bound on the DRAM efficiency. This result for NEU can be explained by its extremely

high row access locality, essentially causing our model to predict close to 100%, regardless of the

heuristic. In this case, the effects of neglecting other timing constraints, such as the read-to-write or

write-to-read latency becomes exposed. For BS, LPS, and MMC, we measure the average DRAM

controller queue occupancy when there is at least one request in the queue, shown in Figure 6.13.

67



6.2. Hybrid analytical modeling of DRAM

0

5

10

15

20

25

30

BS FWT DG LPS LIB MMC MUM NEU NN RAY RED SP SLA TRA WP

R
o

w
 A

cc
es

s 
L

o
ca

lit
y

72.7

Figure 6.12: Average row access locality averaged across all DRAM chips for each benchmark
(AM = arithmetic mean across all benchmarks, HM = harmonic mean across
all benchmarks)

We find that the average DRAM controller queue occupancy for these three applications is the

lowest among all applications, all below 20%. This essentially means that our profiling technique is

too aggressive in that the sliding window (whose length is equal to the modeled memory controller

queue size) that it uses is too large relative to the average memory controller queue occupancy in

simulation. As such, the profiling technique is finding row access locality that does not exist in

simulations since the majority of the requests have not arrived to the memory controller yet. (Note

that the profiling technique used does not take timing information into account so it assumes that

the memory controller (sliding window) can always look ahead in the memory request address trace

by an amount equal to the memory controller queue size.)

6.2.3 Sensitivity analysis

In this section, we present the accuracy of our results while sweeping across different key parameters:

the DRAM controller queue size, the number of parallel DRAM chips per DRAM controller, and

the DRAM controller scheduling policy.

We first present Figure 6.14, which shows the arithmetic mean absolute error of our three
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Figure 6.13: Average DRAM controller queue occupancy averaged across all DRAM chips
for each benchmark (AM = arithmetic mean across all benchmarks)
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Figure 6.14: Arithmetic mean absolute error versus DRAM controller queue size averaged
across all DRAM controllers and across all benchmarks

profiling heuristics, full activate overlap, no activate overlap, and averaged, across four different

DRAM controller queue sizes of 8, 16, 32 and 64. For clarity, we only present the values averaged

across all DRAM controllers and all benchmarks. In general, the error tends to increase as the queue

size increases. We attribute this to the fact that, since the queue occupancy is not always 100%

for some benchmarks for our baseline DRAM controller queue size of 32 anyways (as explained in

Section 6.2.2), the occupancy will be even lower when the queue size is increased to 64. This means

that the size of the profiling window that we use is too large compared to what is occurring in

simulation. Moreover, the efficiency of all DRAM controllers decreases as the queue size is reduced,
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Figure 6.15: Arithmetic mean absolute error versus number of DRAM chips per DRAM
controller

meaning the absolute value of the difference will decrease as well.

Figure 6.15 shows the modeling error as the number of DRAM chips connected in parallel (to

increase bandwidth) to the DRAM controller is varied. Increasing the number of DRAM chips

per controller is an effective way of increasing the total off-chip bandwidth to the chip without

incurring much additional circuit logic on the chip (although it will increase the chip package size

due to an increased number of pins needed for data transfer). Since our memory request data

sizes are fixed at 64B and each of our DRAM chips is capable of transferring 16 bytes of data per

command, the limit in this amount of parallelism is no more than 4 DRAM chips per controller.

Furthermore, as this parallelism is increased, the memory access pattern becomes much more

important in determining the DRAM efficiency. This is because more DRAM chips per controller

means less read and write commands per request, thus reducing Tsrvc req. The number of requests

per row (e.g., the row access locality) thus needs to be higher to maintain the DRAM efficiency as

shown in Equation 3.1. Moreover, reducing Tsrvc req can reduce the value of the denominator of

Equation 3.1, MAX(tRC , tRP + tRCD + tj). This means that there is less time to overlap the row

activate commands of different banks, implying that no activate overlap should be more accurate

than full activate overlap. As we see in Figure 6.15, this is indeed the case.

Finally, we also try implementing our hybrid analytical model for another memory scheduling
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Figure 6.16: Arithmetic mean absolute error of predicted DRAM efficiency of “Most Pend-
ing” memory scheduling algorithm averaged across all DRAM chips for each
benchmark (AM = arithmetic mean across all benchmarks)

policy, “Most Pending” [43]. After all requests to a row have been serviced, our default memory

scheduling policy, First-Ready First-Come First-Serve (FR-FCFS) [43], will then open the row of

the oldest request. “Most Pending,” conversely, will open the row that has the most number of

requests pending to it in the queue (e.g., essentially a greedy bandwidth maximization scheme).

The algorithm to implement this in our analytical model is virtually the same as the one shown in

Figure 3.3 except, instead of finding the oldest request whenever we switch rows, we now find the

oldest request corresponding to the row that has the most number of requests. Figure 6.16 shows

the arithmetic mean absolute error for our baseline configuration. We see that for this scheduling

policy, the error is comparable to that of FR-FCFS.

In conclusion, we see that our model is quite robust and the error stays comparable when varying

across key microarchitectural parameters and even for a different memory scheduling policy. With

smarter heuristics, such as the simple one described in Section 6.2.2, this error can be reduced even

further.
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Figure 6.17: Baseline configuration results for crossbar network, queue size = 32 (HM = Harmonic mean)

6.3 Complexity-effective memory access scheduling

In Section 6.3.1, we will first show how the interconnect modifications of our proposed solution as de-

scribed in Section 4.3 performs in comparison to naive FIFO and FR-FCFS. Where trends across dif-

ferent network topologies are similar, we only present results for the crossbar network. Section 6.3.2

provides an in-depth analysis on how our interconnect modifications effect the memory request ad-

dress streams seen at the DRAM controllers. In Section 6.3.3, we compare static destination-based

virtual channel assignment to dynamic virtual channel assignment. In Section 6.3.4, we perform a

sensitivity analysis of our design across different microarchitectural configurations.

6.3.1 Complexity-effective DRAM scheduling performance

Since RMHG was found in Section 4.5 to be relatively area intensive, we only show results for

the Hold-Grant (HG) modification and Hash-Matching Hold-Grant modification using 4 bit hashes

(HMHG4).
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Figure 6.18: DRAM efficiency and memory latency (HM = Harmonic mean, Queue size = 32)

We present the per-application IPC normalized to FR-FCFS for the crossbar network in Fig-

ure 6.17(a). The banked FIFO controller outperforms the unbanked controller across the board,

indicating that the banked FIFO controller’s better proficiency at exploiting bank-level parallelism

drastically outweighs the additional potential queueing capacity of the unbanked controller. The

row access locality preservation in Figure 6.17(b) is calculated by dividing the post-interconnect lo-

cality of the various configurations by the pre-interconnect locality for FR-FCFS. Our interconnect

modifications help preserve over 70% of the row access locality while FR-FCFS scheduling results

in only 56.2% preservation.

We show the effect of our HG and HMHG4 interconnect modifications on the DRAM efficiency

and memory latency, shown in Figure 6.18 for the crossbar network. Figure ?? shows that naive

scheduling of memory requests in a system that supports thousands of in-flight memory requests

can cause the memory latency to increase exponentially. Our HM and HMHG4 is able to reduce the

latency of an in-order, banked DRAM controller (BFIFO) by 33.9% and 35.3% respectively. Fur-
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thermore, both of our interconnect modifications, HM and HMHG4, improve the DRAM efficiency

of BFIFO from 55% to 63%.

6.3.2 Row streak breakers

In order to gain a better understanding of what causes the performance gap between our complexity-

effective design and FR-FCFS, we perform an in-depth analysis of the scheduled memory requests

in relation to the DRAM controller queue contents for the banked FIFO scheduler. First, we define

a sequence of row-buffer hits to any single bank as a single row streak. Whenever a DRAM bank

switches from an old Row X to a new Row Y (i.e., when a row streak ends), we search backwards

through the FIFO queue corresponding to this DRAM bank starting from the pending request to

Row Y, looking for any other requests to Row X. We define these requests that we are looking for

as stranded requests since, in a FR-FCFS scheduler, these stranded requests would also be serviced

before the row switches. If we find a stranded request, we look at the requests between the stranded

request and the pending request to Row Y. In an ideal interconnection network, these requests,

which we call row streak breakers, would be prioritized to arrive at the DRAM controller after the

stranded request, thus maximizing row access locality. Furthermore, a FR-FCFS scheduler would

prioritize these row streak breakers lower than the stranded request.

Figure 6.19 characterizes the source of the row streak breakers for the banked FIFO configuration

with and without our interconnect augmentations. Each time a stranded request is found using our

method described in the previous paragraph, we increment the counter for each category once if

any requests in the corresponding category are found in the set of row streak breakers. In this way,

for any set of row streak breakers, more than one category may be credited. We categorize row

streak breakers into three possibilities, those originating from a different shader core, those from

the same core but from a different CTA, and those from the same CTA. It can be immediately

seen that row streak breakers originating from different shader cores dominate the distribution.
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Figure 6.19: Row streak breakers normalized to row streaks in Baseline (B = Banked FIFO; H = Banked
FIFO + Hold Grant; R = Banked FIFO + Hash-Matching Hold Grant with 4-bit row hashes

Furthermore, our interconnect augmentations significantly reduce the number of these particular

row streak breakers. Note that the bars in Figure 6.19 do not add up to 100% because sometimes

there are no stranded requests. In these situations, FR-FCFS would make the same scheduling

decision as our banked FIFO scheduler, oldest-first. In other words, shorter bars indicate that the

performance gap between the corresponding configuration and FR-FCFS is also smaller.

In virtually all cases, our interconnect augmentations reduce the number of row streak breakers

due to different shader cores to less than 10% of the total row streaks. The one obvious exception is

neu, where our interconnect augmentations can reduce the row streak breakers to no less than 30%

of the total number of row streaks. Measuring the average number of shader cores that results in a

row streak originate showed that this measure was close to 1 for most other applications, explaining

why an input-based hold-grant mechanism works so well in this architecture. The largest exception

is neu, where the requests of every row streak when using the FR-FCFS scheduling policy are from

more than four different shader cores on average (4.18). In this case, FR-FCFS will be able to

capture row access locality that our interconnection augmentations cannot.
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Figure 6.20: Harmonic mean IPC for different virtual channel configurations (Crossbar network)

6.3.3 Static virtual channel assignment

In this section, we compare the performance results of using static destination-based virtual channel

assignment (SVCA) to more conventional dynamic virtual channel assignment (DVCA) in the case

when there are multiple virtual channels per router port.

Figure 6.20 shows the IPC harmonically averaged across all applications for different virtual

channel configurations: one virtual channel per port (vc1 ), two virtual channels per port with SVCA

(svc2 ), two VCs with DVCA (dvc2 ), four VCs with SVCA (svc4 ), and four VCs with DVCA (dvc4 ).

Here, we increase the number of virtual channels while keeping the amount of buffering space

per virtual channel constant. When using our complexity-effective DRAM scheduling solution,

BFIFO+HG and BFIFO+HMHG4, performance decreases by 21.3% and 21.7% respectively as the

number of virtual channels is increased from one to four while using DVCA. Using SVCA (svc4)

recovers most of this performance loss, improving upon dvc4 by 18.5% and 17.7%. In general,

we find that adding virtual channels does not improve IPC, which matches one of the findings of

Bakhoda et al. [5] that CUDA workloads are generally insensitive to interconnect latency.

6.3.4 Sensitivity analysis

To show the versatility of our interconnect modifications, we test them across two major microar-

chitectural parameters: the network topology and the DRAM controller queue size.

As Figure 6.21 shows, our interconnect modifications perform fairly similarly for two very differ-
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Figure 6.21: Harmonic mean IPC across all applications for different network topologies (Queue size =
32)

ent network topologies: a crossbar and a mesh. For these topologies, HMHG4 achieves 86.0% and

84.7% of the performance of FR-FCFS for memory-bound applications while requiring significantly

less bit comparisons than FR-FCFS. For comparison, we also present the results for a ring net-

work, which requires a minimum of two virtual channels for deadlock avoidance [12]. The deadlock

avoidance algorithm for the ring imposes restrictions on which virtual channels can be used by

any input-output combination to remove cyclic dependencies. To provide adequate bandwidth, we

provision the ring network with a 512-bit wide datapath similar to the one in Larrabee [49]. While

a ring network has the same number of nodes as a mesh, each router has only three input and

output ports, one to the left, one to the right, and one to the shader core or DRAM controller that

it is connected to. In comparison, each mesh router has 5 input and output ports, so the complexity

as detailed in Section 4.5 of the ring will be 60% (or 3/5ths) of that of the mesh. As shown, our

interconnect modifications do not work as well for the ring network due to the interleaving of mem-

ory request streams from having multiple virtual channels. In-depth analysis showed that the ring

network had more than six times as many row streak breakers as the mesh and crossbar networks,

thus achieving only 6.3% speedup over a banked FIFO memory controller with no interconnect

modifications. We leave the development of an interconnect modification that works better for this

case to future work.

Figure 6.22 shows the performance of our interconnect modifications harmonically averaged
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Figure 6.22: Harmonic mean IPC normalized to FR-FCFS for different DRAM controller queue sizes
(Crossbar network)

across all applications in a crossbar network and with different DRAM controller queue sizes.

For the smallest configuration of DRAM controller queue size 8, BFIFO+HMHG4 achieves 91.0%

of the IPC of FR-FCFS. While the performance relative to FR-FCFS decreases as the DRAM

controller queue size increases, the complexity of an increasing FR-FCFS DRAM controller queue

also increases since the number of comparisons per cycle scales for FR-FCFS [15, 44] but remains

constant for a banked FIFO controller with our interconnect modifications.
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Chapter 7

Related Work

This chapter describes related work. First we summarize prior work in GPU architecture simulation

and benchmarking. Then we introduce other analytical models presented in the field of computer

architecture, some specific to DRAM. Finally we describe recent work in DRAM controller design.

7.1 GPU architecture simulation

Existing graphics-oriented GPU simulators include Qsilver [51], which does not model pro-

grammable shaders, and ATTILLA [14], which focuses on graphics specific features. Ryoo et

al. [45] use CUDA to speedup a variety of relatively easily parallelizable scientific applications.

They explore the use of conventional code optimization techniques and take advantage of the dif-

ferent memory types available on NVIDIA’s 8800GTX to obtain speedup. While their analysis is

performed by writing and optimizing applications to run on actual CUDA hardware, we use our

novel performance simulator to observe the detailed behavior of CUDA applications upon varying

architectural parameters.

We quantified the effects of varying the DRAM controller queue configuration and shader core

resource limits which, to our knowledge, has not been published previously. While the authors of the

CUDA applications which we use as benchmarks have published work, the emphasis of their papers

was not on how changes in the GPU architecture can affect their applications [3, 7, 17, 18, 20, 27–

29, 41, 45, 48, 54]. To our knowledge, GPGPU-Sim is the first published detailed performance

simulator that supports running CUDA applications.
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As of July 2009, there are several application suites suitable for GPU architecture study. Mahesri

et al. introduce a class of applications for visualization, interaction, and simulation [26]. They

propose using an accelerator architecture (xPU) separate from the GPU to improve performance of

their benchmark suite. Ryoo et al.’s Parboil benchmark suite [45] has been introduced specifically

to target Nvidia GPUs, being written in CUDA. Parboil provides a central script that provides a

common interface for execution of all applications on both the GPU and CPU. Introduced most

recently, the Rodinia benchmark suite [9] targets multicore CPUs and Nvidia GPUs by providing

application source code written in both OpenMP and CUDA.

7.2 Analytical models

Ahn et al. [2] explore the design space of DRAM systems. They study the effects on throughput of

various memory controller policies, memory controller queue sizes, and DRAM timing parameters

such as the Write to Read delay and the Burst Length. More relevant to our work, they also

present an analytical model for expected throughput assuming a “random indexed” access pattern

and a fixed “record length”. This essentially means that they assume a constant fixed number

of requests accessed per row and a continuous stream of requests whereas our model handles any

memory access pattern. Furthermore, they only show the results of their analytical model for two

micro-benchmarks while we test a suite of applications with various memory access patterns. We

leave a quantitative comparison between their model and ours to future work.

In his PhD thesis, Wang [53] presents an equation for calculating DRAM efficiency by accounting

for the idle cycles in which the bus is not used. His model assumes that the request stream from

the memory controller to DRAM is known while we also account for optimizations to the request

stream made by the memory controller to help hide timing constraint delays. He also considers

only single-threaded workloads, for which he observes high degrees of access locality. Our massively

multi-threaded workloads have a wide range of access localities.
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There exist many analytical models proposed for a variety of microprocessors [10, 11, 22, 24,

30, 31, 35, 40], from out-of-order execution superscalar to in-order execution fine-grained multi-

threaded processors to even GPU architectures. Agarwal et al. [1] also present an analytical cache

model estimating cache miss rate when given cache parameters such as cache size, cache line size,

associativity, etc., and their model also requires an address trace of the program being analyzed. Of

these microprocessor analytical models, only Karkhanis and Smith [24], Chen and Aamodt [10, 11],

and Hong and Kim [22] model long, albeit fixed, memory latency.

7.3 DRAM controller designs

There exist many DRAM scheduler designs proposed for multi-core systems [32–34, 42]. The

primary focus of these designs revolve around the principles of providing Quality-of-Service (QoS)

or fairness for different threads and cores competing for shared off-chip bandwidth [32, 34, 42].

When multiple applications run simultaneously on a system, the memory access traffic of one

application can cause a naive DRAM controller to starve out the requests of another. To the

best of our knowledge, this is the first work that addresses the problem of efficient DRAM access

scheduling in a massively multithreaded GPU architecture with tens of thousands of threads.
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Figure 7.1: Average number of unique banks requested per warp memory operation

Mutlu et al. [33] present a parallelism-aware batching scheduler (PAR-BS) that coordinates

the servicing of multiple requests from a single thread, particularly those to different banks in a

DRAM chip, to reduce the average memory latency experienced across all threads. We anticipate
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the design of such a scheduler to support requests from tens of thousands of threads, which is

possible in GPU architectures, to be highly complex and area-intensive. Furthermore, threads stall

at the warp-level, such that all threads in a warp must be ready before the warp can be issued to

the shader core pipeline. We measure the average number of unique banks to which a warp sends

requests, shown in Figure 7.1. Five out of the nine applications always send requests to only a

single bank per warp. In our hold-grant interconnect arbiter, the requests in a warp will be kept

together as they traverse the interconnect and they will all arrive at the same bank, so batching is

already done. In mum, each warp sends requests to at least three different memory controllers per

warp memory operation (since each DRAM chip has only 4 banks). For PAR-BS to perform well

in this case, there must be coordinated scheduling across multiple memory controllers.
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Chapter 8

Conclusions and Future Work

This chapter concludes the thesis and discusses some future work.

8.1 Conclusions

In this thesis, we detailed the changes made to the memory system of GPGPU-Sim, a detailed per-

formance simulator, to support CUDA applications. Specifically, support was added for memory

accesses to local, constant, and texture memories. We studied the performance of twelve contem-

porary CUDA applications by running them on GPGPU-Sim, first validating our simulator against

real hardware and then studying the performance impact of varying the DRAM controller queue

size and varying the shader core resources that limit the maximum number of CTAs that can con-

currently run on a shader core. We observed that sometimes running fewer CTAs concurrently

than the limit imposed by on-chip resources can improve performance by reducing contention in

the memory system.

In this thesis we have also proposed a novel hybrid analytical DRAM model which takes into

account the effects of Out-of-Order memory scheduling and hiding of DRAM timing delays. We

showed that this model can be used with a sliding window profiling technique to predict the DRAM

efficiency over the entire runtime of an application, given we have its full memory request address

trace. We chose a massively multi-threaded architecture connected to a set of high-bandwidth

GDDR3-SDRAM graphics memory as our simulation framework and evaluated the accuracy of

our model on a set of real CUDA applications with diverse dynamic memory access patterns. We
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introduce two different heuristics to use in conjunction with the sliding window profiling approach

that serve as upper and lower bounds on the achieved bank-level parallelism. By averaging the

predictions of these two contrasting heuristics, we were able to predict the DRAM efficiency of a

set of real applications to within an arithmetic mean of 11.2% absolute error.

Finally, we introduced a novel, complexity-effective DRAM access scheduling solution that

achieves system throughput within up to 91.0% of that achievable with aggressive out-of-order

scheduling for a set of memory-limited applications. Our solution relies on modifications to the

interconnect that relays memory requests from shader cores to DRAM controllers. These modi-

fications leverage the key observation that the DRAM row buffer access locality of the memory

request streams seen at the DRAM controller after they pass through the interconnect is much

worse than that access locality of the individual memory request streams from the shader core

into the interconnect. Three such modifications are possible: either holding grant for a router

input port as long as there are pending requests to the same destination (HG), holding grant for a

router input port as long as there are pending requests to the same destination and the requested

row matches the requested row of the previous arbitrated request (RMHG), or holding grant for

a router input port as long as there are pending requests to the same destination and the hash

of the requested row matches the hash of the requested row of the previous arbitrated request

(HMHG). These modifications work to preserve the inherent DRAM row buffer access locality of

memory request streams from individual shader cores which would otherwise be destroyed due to

the interleaving of memory request streams from multiple shader cores. In doing so, it allows for

a simple in-order memory scheduler at the DRAM controller to achieve much higher performance

than if the interconnect did not have such modifications across different network topologies and

microarchitectural configurations.
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8.2 Future work

This section discusses the new areas of research to where this thesis can be extended.

8.2.1 Improving the analytical DRAM model

Our hybrid analytical model relies on running applications a single time in performance simulation

to collect memory request address traces. Relying on performance simulation for this process

may be undesirable, reducing the usefulness of our model. We anticipate that this process can be

sped up by instead running the applications in functional simulation and then performing some

sort of simple interleaving to obtain a representative memory request address trace. To address

the average error of our model compared to performance simulation, we showed that applications

that are predicted poorly by one heuristic tend to be predicted much better with the other and

that a simple combination of the two heuristics resulted in significant improvement in prediction

accuracy. This implies the possibility for further improvement by combining the two heuristics in

more intelligent ways.

8.2.2 Combining the analytical DRAM model with analytical processor
models

To our knowledge, all previous work that propose analytical modeling of processors [10, 11, 22, 24,

30, 31, 35, 40] model DRAM latency as a constant fixed latency. As this thesis has shown, DRAM

latency varies dramatically from one application to the next, especially if DRAM is heavily utilized.

Intuitively, the accuracy of such analytical models for processors can be improved by incorporating

a more comprehensive analytical DRAM model that can predict more accurate memory latencies.

The first step would be extending the analytical DRAM model described in this thesis to predict

memory latency.
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8.2.3 Design space exploration of intelligent interconnects

Our proposed “hold-grant” interconnect arbitration modifications has been shown to preserve the

row access locality of memory request streams of general purpose applications running on GPUs.

However, the majority of GPUs has and will always be targeted to the gaming community. As

such, the experiments in Section 6.3 should be tried on graphics applications as well. Moreover,

our modifications should be tried on other interconnect allocation policies, such as wave-front and

iSLIP allocation [12]. If the targeted interconnect architecture has multiple virtual channels to

deal with deadlock, such as ring and torus architectures, more work must also be done to improve

system performance when using our interconnect arbitration scheme.
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