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Abstract

We consider the problem of decision fusion in mobile wireless sensor networks

where the channels between the sensors and the fusion center are time—variant.

We assume that the sensors make independent local decisions on the M hy

potheses under test and report these decisions to the fusion center using dif

ferential phase—shift keying (DPSK), so as to avoid the channel estimation

overhead entailed by coherent decision fusion. For this setup we derive the

optimal and three low—complexity, suboptimal fusion rules which do not re

quire knowledge of the instantaneous fading gains. Since all these fusion rules

exploit an observation window of at least two symbol intervals, we refer to

them collectively as multiple—symbol differential (MSD) fusion rules. For bi

nary hypothesis testing, we derive performance bounds for the optimal fusion

rule and exact or approximate analytical expressions for the probabilities of

false alarm and detection for all three suboptimal fusion rules. Simulation and

analytical results confirm the excellent performance of the proposed MSD fu

sion rules and show that in fast fading channels significant performance gains

can be achieve by increasing the observation window to more than two symbol

intervals.
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Chapter 1

Introduction

1.1 Wireless Sensor Networks

Wireless sensor networks (WSNs) have been a topic of much interest because

of their miliary and civilian applications which include target tracking, envi

ronmental monitoring, control, and spectrum sensing [1—5]. Recently advances

in the development of low-cost microsensors and an increased interest in cog

nitive radio have renewed interest in WSNs and the decision fusion problem

[6, 7]. In civilian applications, low-cost microsensors can be deployed for envi

ronmental sampling, surveillance, and habitat monitoring, allowing WSNs to

be used to solve various problems in different fields. For example, it has been

shown that licensed spectrum is frequently underused [8]. Spectrum sensing

can be employed to identify unused spectrum and thereby allow cognitive ra

dios to operate when licensed users are idle, enabling more efficient use of the

limited spectrum [4, 5, 9, 10]. Both spectrum sensing and cognitive radios

depend on decision fusion, which provides a fault-tolerant and robust method

of detection while also increasing detection performance by using observations

from multiple sensors to arrive at a more reliable decision than can be achieved

by individual sensors.
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a)

Figure 1.1: Wireless sensor network with K sensors: (a) Centralized scheme
(b) Decentralized scheme.

WSNs can be centralized or decentralized. Fig. 1.la shows a centralized

sensor network containing K sensors and Fig. 1.tb shows a decentralized sensor

network. In centralized detection, each sensor collects the information of inter

est denoted by Xk [n] and transmits its raw observation to the fusion center (FC)

for processing. Fusion within a centralized scheme is solved by classical hypoth

esis testing, which makes a global decision on the current phenomenon being

observed, i.e., the hypothesis under test H, i e M, M {O, 1,..., M — 1}

[11]. Classical papers by Tenney, Sandell [12] and Tsitsiklis [13] introduced

the decentralized detection problem, where sensors make independent deci

sions based on signal processing of their individual observations. The decision,

8k [n], is then transmitted to the FC to arrive at a final estimate of H, i e M.

Since the processing performed by both the sensors and the FC is threshold

based [13], optimizing the system requires jointly optimizing the thresholds at

all the sensors and the FC simultaneously, and is thus a complex problem. To

reduce the complexity, a person by person optimization (PBPO) method is

frequently used [11], which satisfies the necessary condition for optimality but

does not guarantee a global optimal solution. PBPO attempts to optimize the

processing at each sensor independently by fixing the processing rules at all

H;

2



Phenomenon H,

x1[ri] XK[fl]

Sensor 1 Sensor 2
SK_1[fl]

Sensor K

Figure 1.2: Serial topology sensor network.

other sensors and the FC while one sensor is being optimized. This process is

repeated for the remaining K — 1 sensors and the FC.

Although centralized detection performs best, each sensor is burdened with

transmitting raw data to the FC, resulting in large power consumption and

large communication bandwidth requirement. Therefore, in a wireless situation

where sensors are battery operated and communication resources are limited,

the decentralized scheme is of particular interest.

In general there are three common WSN topologies, namely parallel, serial

and tree [1]. The parallel configuration in Fig. 1.lb is the most common type

of WSN considered in literature. K sensors receive a noisy observation of

the phenomenon H denoted by xk[n] and, after processing the information,

transmit their local decisions, sk[n], to the FC. The FC then makes a global

decision based on the decision of K sensors and not the observations of each

individual sensor, Xk [n].

Fig. 1.2 illustrates a general WSN in serial configuration. The 1st sensor

within the WSN processes only its own observation whereas the remaining

K — 1 sensors process both their own observations and the decisions made by

the previous sensors. Thus, the kth sensor will fuse its observations with the

decision from the (k — 1)th sensor to generate its own decision. The aggregated

data, or the final decision, is presented by the Kth sensor of the WSN.

A WSN in a tree topology is shown in Fig. 1.3. In its simplest form,

3



Phenomenon H

7nj x

Sensor 1 Sensor 2 • , Sensor

( si[n] /s2[nJ

xrKi+i[nj
- -

s11l[n]

SK_1[flj. S[K][fl]

XK[fl] I
Sensor K

Figure 1.3: Tree topology sensor network.

sensors observe a phenomenon and transmit their decisions, Sk [nj, to the next

sensor. The remaining [jJ sensors not only make their own observations of

the phenomenon, but also receive a decision, Sk [n], from two sensors. Decision

fusion is applied and the resultant decision after fusion is transmitted to the

next sensor. The global decision is obtained at the E*lth level of the tree.

1.2 Decision Fusion Literature Review

As mentioned previously, decentralized detection is an important task in WSNs

[1, 11, 12, 14]. To limit complexity, the sensors usually make independent de

cisions based on their respective observations and forward these decisions over
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the wireless channel to a FC, which makes a final decision on the hypothe

sis under test. Most of the existing literature on the decentralized detection

problem assumes ideal error—free communication between the sensors and the

FC. While this is a reasonable assumption for wired sensors, significant perfor

mance degradations may occur if wireless sensors are employed. Therefore, the

problem of fusing sensor decisions transmitted over noisy fading channels has

received considerable interest recently. For example, channel aware decision

fusion for phase—coherent WSNs employing phase—shift keying (PSK) modu

lation was investigated in [15, 16]. In [17], channel statistics based fusion rules

for WSNs employing on/off keying (00K) modulation were considered. The

impact of fading on the performance of power constrained WSNs was stud

ied in [18]. In [19], the performance of type—based multiple access strategies

for fading WSNs was analyzed. Furthermore, the problem of optimal power

scheduling and decision fusion in fading WSNs with amplify—and—forward pro

cessing at the sensors was considered in [20]. Most recently, the impact of

channel errors on decentralized detection was studied for PSK, 00K, and

frequency—shift keying (FSK) modulation in [21].

Interestingly, existing work on decision fusion for noisy fading channels has

mainly considered coherent (e.g., PSK) and noncoherent (e.g., 00K, FSK)

modulation schemes. While the former are suitable for static fading channels,

the latter are appropriate for extremely fast fading channels, where the fad

ing gain changes from symbol to symbol due to e.g. fast frequency hopping.

However, for applications where the fading gains change slowly over time due

to the mobility of the sensors and/or FC, noncoherent modulation may not

be a preferred choice due to the inherent loss in power efficiency compared to

coherent modulation. On the other hand, coherent modulation requires the

insertion of pilot symbols for channel estimation, which reduces spectral effi

ciency and complicates system design. Thus, for conventional point—to—point

communication systems, differential PSK (DPSK) is often preferred for sig

5



naling over time—varying fading channels [22]. While DPSK does not require

instantaneous channel state information (CSI) for detection, the performance

loss compared to coherent PSK can be mitigated by multiple—symbol differ

ential detection (MSDD) if statistical CSI is available at the receiver [23—25].

This motivates the investigation of DPSK for transmission in WSNs and the

design of corresponding fusion rules.

1.3 Thesis Contribution and Organization

This thesis will consider the parallel topology shown in Fig. 1.lb, which has

received the most interest in the literature, and make the following contribu

tions:

1. Formulate the parallel decentralized M—ary hypothesis testing problem

in time—variant fading channels.

2. Propose fusion rules that require at most statistical CSI but not any

knowledge about instantaneous channel gains.

3. Consider fundamental limits on wireless sensor network performance by

investigating performance upper bounds.

4. Estimate probabilities of false alarm and detection for some proposed

fusion rules via analytical expressions.

The following chapters will discuss the above contributions in detail. Chapter

2 introduces the system model for a parallel WSN where sensors employ M—ary

DPSK (M-DPSK) to report their local decisions to the FC. The chapter will

also briefly review MSDD of M—DPSK signals and explain the use of sphere

decoding to reduce the complexity of MSDD. The latter concept is referred to

as multiple—symbol sphere differential decoding (MSDSD).
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In Chapter 3, the M—ary hypothesis testing problem is considered and the

optimal multiple—symbol differential (MSD) fusion rule for sensors employing

differential encoding is derived. The optimal fusion rule is found to be expo

nential in both the number of sensors and the observation window size used

for MSD decision fusion, and therefore we propose three suboptimal fusion

rules with significantly lower complexity and good performance. All proposed

fusion rules in this thesis only require statistical CSI but not any knowledge

about the instantaneous channel gains.

Chapter 4 considers the special case of (M = 2) binary hypothesis testing

(BHT) and derives performance bounds valid for the proposed fusion rules.

The two performance upper bounds consider the limiting cases, i.e., when the

sensors are perfect and when the channel between the sensors and the PC

is perfect. Additionally, exact or approximate analytical expressions for the

probabilities of false alarm and detection for the suboptimal fusion rules are

derived. The analysis allows the system performance to be estimated without

resorting to time consuming simulations of the receiver characteristic curve

(ROC) for each fusion rule.

In Chapter 5, simulation and, where possible, numerical results are pre

sented for the special case of BHT and the more general case of 4—ary multiple

hypothesis testing (MHT). The performance gains achieved by increasing the

observation window size, N, of the MSD fusion rules to more than two sym

bols is shown to be significant. In particular, the performance of coherent

detection with perfect knowledge of the channel gains can be approached for

large enough observation window sizes. Finally, in Chapter 6 we provide some

conclusions for this thesis, as well as several proposals for future work based

on the results presented herein.
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Chapter 2

System Model and Differential

Detection

In this chapter, we introduce the WSN system model under consideration.

Within the WSN, we will consider the transmission scheme used by the sensors,

the fading and noise model used to model the corrupted signal observed by

the FC and consider how the signal can be processed by the FC. Moreover,

MSDD will also be considered in this chapter, focusing on a lower complexity

alternative to MSDD referred to as MSDSD.

2.1 System Model

Consider the parallel distributed multiple hypothesis testing problem where

a set i’C {1, 2, ..., K} of K sensors are used to decide which one out of

M possible hypotheses H, i e M, M {O, 1,..., M — 1}, is present. The

a priori probability of hypothesis H is denoted by P(Hj, i M. Fig. 2.1

illustrates the system model which will be discussed in detail in the following

subsections.
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Figure 2.1: System model for MSDHT decision fusion.

2.1.1 Processing at Sensors

At time n e each sensor k e )C makes an M—ary decision Uk [nj based on its

own noisy observation Xk [n]. We assume that the K observations Xk [n], k e IC,

are independent of each other, conditioned on the M different hypotheses. The

sensors map their local decisions to M—ary PSK (M—PSK) symbols ak [n]

{wIi e M}, wj ej2/M, such that hypothesis H corresponds to the PSK

symbol w. The differential phase symbols ak[nj are differentially encoded

before transmission over the wireless channel to obtain the absolute phase

symbols

Sk[fl] = ak[njsk[n — 1], (2.1)

...

10



where sk[fl} E {wIi e M}. This differential encoding operation facilitates

detection without CSI at the receiver which is particularly useful for trans

mission over time—variant fading channels [22]. In the context of WSNs, such

time—variant channels may arise for example in vehicular WSNs with mobile

sensors and/or mobile fusion centers [2], battlefield surveillance [3], or collab

orative spectrum sensing with mobile nodes [9]. To keep our model general,

we quantify the quality of the local decisions made by the sensors in terms of

conditional probabilities Pk(ak[n] = wlH), i E M, j e M, k e C.

2.1.2 Channel Model

The sensors communicate with the fusion center over orthogonal fiat fading

channels using e.g. a time—division multiple access (TDMA) protocol. The

received signal from sensor k at time n is given by

Yk[T1] = /Phk[n]sk[n] + flk[fl], (2.2)

where PK P/K with total transmitted power P, and hk [n] and k [n] de

note the fading gain and zero—mean complex—valued additive white Gaussian

noise (AWGN), respectively. The noise is independent, identically distributed

(i.i.d.) with respect to both the sensors, k, and time, n, and has variance

E { k [n] 2 } We assume independent, non—identically distributed (i .11. d.)

Rayleigh fading with fading gain variances u E { I hk [n] 2 }, k e 1C. For

the temporal correlation of the fading gains, we adopt Clarke’s model with

cphh,k[)’] {hj[n + A]h[n]} = u Jo(27rBkTA), where Bk denotes the Doppler

shift of sensor k and T denotes the time interval between two observations yk[n]

and Yk [n + 1]. Note that if the sensors use TDMA to report their observations

in a round—robin fashion to the fusion center, T is equal to T KT8, where

T3 is the symbol duration. It is also interesting to observe that the effective

Doppler shift BkT increases with decreasing data rate since T increases with

decreasing data rate.
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2.1.3 Fusion Center Processing

Since the differential encoding operation in (2.1) introduces memory, symbol—

by—symbol information fusion is not optimum. Instead, results from point—

to—point communication systems suggest that the received signals should be

processed on a block—by—block basis [23—25] and will be briefly discussed in the

next section. Here, we adopt the same philosophy for information fusion and

process blocks of N received signals Yk [yk[n—N+i] yk[n—N+2] •..

corresponding to blocks of N—i differential symbols ak [ak [n — N + 2] ak [n —

N + 3] ... ak[n]]T, k e icC. Based on these blocks of received signals any one

of the N — 1 differential symbols in ak can be detected and the corresponding

MSD fusion rules will be discussed in the next chapter.

2.2 Differential Detection

The detection of M—DPSK signals in point—to—point links can be accomplished

easily by processing blocks of received symbols of length N = 2, and consider

ing the phase difference between the current received symbol and the previous

received symbol. This detection is known as conventional DD. However, as

mentioned previously, if channel statistics are known, MSDD can be used

to exploit the memory of the wireless channel thereby improving error per

formance. Moreover, a low complexity algorithm known as MSDSD can be

applied for detection of DPSK signals.

2.2.1 Multiple—Symbol Differential Detection

The problem of MSDD of M—DPSK in additive white Gaussian noise has

been addressed by Divsalar et al. in [23, 25]. Extensions to fading channels

have been considered in [24], noting in the face of time—varying channels,

conventional DD is limited by an error floor and the effects can be mitigated by

12



MSDD. Performance improvement over conventional DD is achieved by jointly

detecting blocks of N received symbols simultaneously, thereby exploiting the

correlation between phase distortions experienced by neighboring symbols [24,

26]. Adopting the previous notation and ignoring the subscript k for a single

user point—to—point system, the received signal at the receiver is

= + n, (2.3)

where Sdiag{s[n—N+1]s[n—N+2]...s[n]},h[h[n—N+1]h[n—N+

2] ... h[n]]T and n [n[n — N +1] n[n — N +2] ... []]T. With the received

vector y being a Gaussian random vector process, the conditional probability

density function of y, given the blocks of N — 1 differential symbols a, is given

by [24]

p(ya)
= Ndt(R) exp (_rHR_lr). (2.4)

Here, r [r[n — N + 1] r[n — N + 2] ... r[n]]T with r[n] y[n]s*[n] and R

= PRhh+oIN, where [Rhh], = yhh[j—i]. To simplify our notation,

we will address in the following the vth element of vectors y and a by y(v),

1 v N, and a(v), 1 ii N — 1, respectively. The maximum—likelihood

(ML) decision for a requires maximizing (2.4). Eliminating all irrelevant terms,

this is equivalent to maximizing

a = argmax {_r”R’r} = argmax {2{ t,y()y*(v) [J a()}}
a a 11=1 ii=ii+1

(2.5)

where t, — [R’],L,,,. If blocks of received signals are properly processed,

performance improves as the block size N 2 increases and approaches the

performance of coherent detection for N —* cc [23, 26]. Applying (2.5) requires

computing the argument for each candidate vector a, i.e., computational com

plexity grows exponentially with N. To reduce the computation complexity of

this problem, MSDSD was proposed in [27].

13



2.2.2 Multiple—Symbol Differential Sphere Decoding

The purpose of adopting sphere decoding is to reduce the number of candidate

vectors a considered without excluding the ML solution. Considering again

(2.5), maximization with respect to a is equivalent to maximization with re

spect to the absolute phase symbols s [s(1) s(2) ... s(N)]T given that the

phase ambiguity is fixed, e.g., s(N) = 1. The ML decision is equivalent to

= argmin {SHUHUs} = argmin {IUsII2}, (2.6)
s,s(N)=1

where U c (LFdiag{y})* is an upper triangular matrix and L is a lower

triangular matrix obtained from the Cholesky factorization of R’ LLH

[27]. The sphere decoder considers all candidate vector s that lie within a

sphere of radius R,

SHUHUS R2. (2.7)

Since U is an upper triangular matrix, MUsh2 can be partially computed given

some elements within s are fixed. Assuming (preliminary) decisions (1) for

the last N — 1 components s(1), ‘‘ + 1 < 1 < N, we define the squared length

N N 2

d1 = u1(t) . (2.8)
t=v+1 u—1

For possible values of s(v), the condition

N 2

d = us(v) + > u,(i) + d1 R2, (2.9)

must be satisfied, where the computation of (2.9) uses the partially computed

squared length d1 accounting for the squared length of the last N — 1 com

ponents. For any s(v) with d > R2, any symbol s(l) for 1 < 1 < v — 1 will

also have d > R2 and therefore can be eliminated early in the search process.

Once a vector . is found to satisfy (2.7), the radius is updated to reflect the

new radius, R2 = IIUhI2. This is repeated until no vector s is within a sphere

14



of radius R and the ML solution . is obtained. The algorithm is shown in [27,

Fig. 1].

Fig. 2.2 shows a binary tree to illustrate the search for . in a 2—DPSK

system with N = 4. The root node of the tree is a node without parents and

represents the initial search, i.e., when s(N) = 1, to fix the phase ambiguity.

Any nodes in the tree excluding the nodes at the top and bottom level of the

tree can be referred to as either a parent or a child since these nodes spawn

from nodes at a higher level of the tree and the nodes themselves can spawn

M child nodes at a lower level. The last level (ii = 1) of the tree consists

of only leaf nodes, nodes that do not have any children. MN_i leaf nodes

represent the number of possible candidate vector s. In Fig. 2.2, the vectors

[s(N — 1),... s(v + 1) s(zi)]T are provided beside each node. The following

illustrates a search for the ML solution.

1. Starting at the root node, the Schnoor—Euchner (SE) search strategy

is applied to estimate the node with the minimum incremental length,

i.e., us(v) + and moves to that node [28]. This is

repeated until a candidate is found, and the radius is updated. The

initial search always produces one if R —* oo. As a result of the SE

algorithm, M — 1 nodes can always be eliminated at the bottom level of

the tree (ii = 1). Fig. 2.2a shows a possible path traversed by the sphere

decoder.

2. Once a candidate is found, the search is repeated by moving up one

level (v = 2) and M— 1 other child nodes spanned by the same parent are

considered. We want to consider the next best child node that has the

shortest incremental length other than the current .(v). This is shown

in Fig. 2.2b. The squared length, d, at this new node is computed using

(2.9) and compared with R.

3. In Fig 2.2c, it is assumed that d at this new node computed in step 2
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is greater than R. Since (2.9) is not satisfied, all child nodes that are

spawned from this node can be eliminated and they are not a possible

ML solution. Furthermore, it is known from step 2 that the considered

node has the next smallest incremental distance compared to (t’). As

a result, the remaining M — 2 nodes considered in step 2 can also be

eliminated since they, like the current node, would also not satisfy (2.9).

Thus, we must move up one level (v = 3) and consider again child nodes

that are spawned from the same parent.

4. Fig. 2.2d shows a new & satisfying (2.7). This new a is selected as the

current best ML solution and the radius is updated. The previous . can

then be eliminated as the ML solution.

5. Repeating step 2, another node must be compared to consider other

candidate . that satisfy (2.7) to ensure no s is excluded, otherwise the

solution obtained by the SD maybe sub—optimal. Fig. 2.2e shows that

there are still 2 possible candidates.

6. Fig. 2.2f assumes that the squared length computed in the previous step

does not satisfy (2.9) and therefore no other candidate s is left and

obtained from step 4 is the ML solution.

As illustrated in the above example, SD can reduce the complexity of

MSDD by eliminating unnecessary comparisons. However, as will be shown

later, the number of eliminations will depend on the channel signal—to-noise

ratio (SNR). At low SNR the complexity of MSDSD is still quite high but

decreases rapidly as channel SNR increases. Although methods such as early

terminate [29] and K—best [30] algorithms have been proposed as a means to

reduce complexity by finding a sub—optimal solution, we will only consider the

case where R —* oc and the search terminates only when the ML solution is

obtained.
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Chapter 3

Multiple—Symbol Differential

Decision Fusion

In this chapter, the optimal and several suboptimal fusion rules for the system

model introduced in Chapter 2 will be derivied. For this derivation, it will be

assumed that the fusion center has knowledge of both the statistical properties

of the channel and the performance index Pk(ak[n] = wIH), i e M, j e M,

of the sensors k e 1C. However, as will become clear in the following, for some

of the considered fusion rules one or both of these conditions can be relaxed.

We denote the indices of the differential symbols considered for detection by

1)0, e {1, 2, ..., N — 1}. To simplify the notation, we will drop the index of

the differential symbol considered for detection wherever possible and denote

it by ak = ak(vo).

3.1 Optimal Fusion Rule

The optimal fusion rule based on the observations. y [yf y ... can

be formulated as

= argmax {log(P(Hy)) + o}, (3.1)
H, ieM
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where o, is a bias term which allows the prioritization of certain hypotheses.

A bias may be useful for example in applications such as spectrum sensing for

a cognitive radio where a missed detection is less desirable than a false alarm.

Since we assume that fading and noise are independent across different sensors,

the conditional probability P(HIy) can be rewritten as

P(HIy)
= p(yIH)P(H) = ñPk(YkIHi)P(Hi) (3.2)

k=1 Pk(Yk)

Furthermore, the conditional pdf pk(ykHj) of sensor k can be expanded as

M-1

Pk(YJJHi) = pk(yklak = = w,IH)
jO

M-1

=
pk(ykak)Pk(ak = wIH), (3.3)

j=O akEA3

where A, contains all Mv_2 possible vectors ak with ak = w and the condi

tional pdf pk(ykak) is given by (2.4). Combining (2.4) and (3.1)—(3.3), and

omitting all irrelevant terms will yield the optimal MSD fusion rule

(K fM_i

= argrnax slog pk(yklak)Pk(ak = wH) J +/3
H1zeM

1=1 \j=O akeA J

= argrnax {lo( exp (2{ tyk()y(v)
H1,ieM k=1 j=O akEA, 1L1 UbL+1

xflak()})Pk(akwiHi)) +}, (3.4)

where ct + 1og(P(H)) denotes the new bias term.

Discussion: Despite its optimal performance, the MSD fusion rule in (3.4)

has several short—comings: (a) The complexity of the fusion rule in (3.4)

is exponential in both K and N; (b) Because of the large dynamic range

of the exponential functions in (3.4), especially for high channel SNRs (i.e.,

PKu/u, >> 1), the optimal fusion rule causes numerical problems, especially
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in fixed point implementations; and (c) The optimal fusion rule requires sta

tistical CSI (in the form of t) and knowledge of the sensor performance (in

form of Pk(ak = w,IHJ), though we note that the coefficients are related to

the coefficients of a linear predictor for the process Tk [n] and can be efficiently

computed using adaptive algorithms [31, 32]. In light of the above—listed draw

backs of the optimal fusion rule, there is a need to search for suboptimal fusion

rules that do not have these drawbacks but still provide a good performance.

3.2 Chair—Varshney (CV) Fusion Rule

The complexity of the optimal fusion rule can be significantly reduced by as

suming that the double sum on the right hand side (RHS) of (3.3) is dominated

by the ML vector k [àk(1) ... ak(N— i)]T which maximizes pk(yklak), i.e.,

pk(yklak) >> pk(ykak), ak ak, k e IC. This is a valid assumption for high

channel SNR. In this case, the optimal fusion rule can be simplified to

H = argmax {lo(Pk(Ykak)Pk(akHi)) (3.5)
H,iEM k=1

where k = ak(z’o) denotes the element of àk which is considered for detection.

We note that the ML vectors k, k E IC, can be efficiently obtained from Yk

by applying the MSDSD algorithm in [27, Fig. 1], cf. Section 2.2.2. For binary

hypothesis testing (M = 2), (3.5) can be expressed as a likelihood ratio

= slog ‘‘

+
log (3.6)

and we decide in favor of H1 if exceeds threshold ‘Yo — /3k, and for H0

otherwise. Thus, (3.5) and (3.6) can be regarded as the MSD version of the

familiar CV fusion rule [11].

Discussion: The complexity of the suboptimal fusion rules in (3.5) and

(3.6) grows only linearly with the increase in the number of sensors K. Fur

thermore, for sufficiently high channel SNR the average complexity of MSDSD
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is polynomial in N [27], and thus, the complexity of the proposed fusion rule

is also polynomial in N. Similar to the optimal fusion rule, knowledge of the

sensor performance and, for N > 2, the statistical CSI, is required for the CV

fusion rule. For N = 2, based on (3.5) it can be shown that statistical CSI is

not required if the channels are i.i.d. (i.e., Rk = R, Vk).

3.3 Fusion Rule for Ideal Local Sensors (ILS)

For derivation of the CV fusion rule it was implicitly assumed that the uncer

tainty about the hypothesis at the fusion center originated only from the local

sensor decisions, whereas the channel between the sensors and the fusion cen

ter was assumed ideal. The opposite assumptions, however, can also be made,

namely that the local sensor decisions are ideal, i.e., Pk(ak = wIH) = 1 and

Pk(ak = wIH) = 0 for j i, and the uncertainty at the fusion center is due

to the noisy transmission channel only. In this case, ak = a, Vk e IC, is valid

and the optimal ML block decision rule for a is given by

a argrnax {1o(Pk(vka)) + (3.7)

where the bias /3 is determined by the trial symbol a a(zio) = w,, i M, and

the hypothesis estimate H can be directly obtained from the relevant element

a = à(vo) w of a. For the binary case, it is convenient to express (3.7) in

terms of a likelihood ratio

AILS = 1og (Pk2), (3.8)
k=1 pk(ykla )

where à’ is that vector a e A3 which maximizes >L log(pk(ya)). In

particular, H = H1 is chosen if AILS > 7o = i3o — /3k, and H; H0 otherwise.

The computational complexity of the fusion rules in (3.7) and (3.8) is only

linear in K but still exponential in N if a brute force search for all possible a

is conducted. Similar to the CV fusion rule, the application of sphere decoding
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is the key to reducing complexity further. For this purpose, we rewrite (3.7)

as

= argmin sHUUks
— (3.9)

s,s(N)=1 I.k=1 J
s [s(1) s(2) ... s(N)]T contains the absolute phase symbols from which the

elements of a are obtained as a(j) = s(j + 1)s*(j). Because of the phase

ambiguity inherent in (3.9), we can set s(N) = 1 without loss of generality.

The sum over k and the bias term ,i3 in (3.9) make a direct application of the

MSDSD algorithm in [27] impossible. However, as will be explained in the

following, a modified version of MSDSD can be used to solve (3.9) efficiently

provided that /3 < 0, i e M. The latter condition can always be fulfilled by

properly choosing aj, i e M.

The modified MSDSD only examines candidate vectors that meet

3HUHU s
—

<R2. (3.10)

Assuming we have found (preliminary) decisions .(l) for the last N — 1 com

ponents s(l), ii + 1 7 N, we can define an equivalent squared length

N K N 2

d1= u() —3ö[vo—ii—1], (3.11)
l=v+1 k=1 =1

where and j3 is obtained from .(v0 + 1)*(vo) = a = w. Com

paring (3.10) and (3.11), possible values for s(v) have to satisfy

K N 2

us(v)+ uL() —i33[v0—v]+d1R2, (3.12)
k=1

where /3 is determined by .(v0 + 1)s*(vo) a wj. Similar to the MSDSD

in [27], once a valid vector . is found, i.e., ii = 1 is reached, the radius R

is dynamically updated by R := d1, and the search is repeated starting with

ii = 2 and the new radius R. If condition (3.12) cannot be met for some index

ii is incremented and another value of s(v) is tested. Based on (3.10)—(3.12)
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the modified MSDSD algorithm given by Algorithms 1 and 2 can be obtained.

Consequently, with an initial radius of R —p the algorithm will always find

a solution to (3.7).

Discussion: The complexity of the ILS fusion rule is linear in K and for

high channel SNR polynomial in N. While statistical CSI is still required for

N> 2, the local sensor performance Pk(ak = wIH2), i e M, j E M, does not

have to be known at the fusion center. Of course, the price to be paid for this

advantage is a loss in performance compared to the optimal fusion rule. For

N = 2, it can be shown based on (3.7) that statistical CSI is not required if

the channels are i.i.d.
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Algorithm 1 Pseudocode for MSDSI) for ILS Fusion Rule

1 function [1, d2] = MSDSD-ILS(U1,U2 Urc, MN, R, vo,fl)

2:

3:

4:

5:

6:

7:

8:

9:

10:

SN := 1

2._ K 5 2
N 45=! UNN

v := N — I

for k = Ito K do q := l=v*1 u,s, end for

[step, n,[ = flndBestILS(q,,..., q’, s4 u, M)

search

while search = I do

d : + q5 2

if v = s’o then

i :=mod(M + (step,,,.i (flv*l )—step(n), M)

d :=d—flj

end if

if 4 <R and n,, M then
2,,

s,, :=

if v I then

1’ := I’ — 1

for k = Ito K do q := usj end for

[step,,,n,.j = flndBestlLS(q,,.... u, M)

ehe

R := 4’
5’ := 5’ + 1

while n = M and search = I do

ifv=N—1 thensearch:=Oelsev:=v+1endif

end while

n,, := n,, + I

initial radius R, vector of bias term/I

fix last component of

initialize squared length

start at component v = N —

sum the last N — v components

find with 12 candidate for comp. at v = N —

update squared length

find current estimated hypothesis a(s’o) = w,

s bins length due to hypothesis i being the candidate

check search radius and constellation size

r store candidate component

check if last component is reached

move down to next component

sum the last N — v components

find the I” candidate for component at v

first componetit reached

store best estimated sequence so far

update sphere radius

move up to previous component

move up until n,, M

r terminate search if v = N — 1 else move up to prey. comp.

count examined candidates for component at v

28: end if

29: else

30: if v=N—l then

31: search:=O

32: else

terminate search if v = N -

5’ 5’ + I

while n,, = M and search = I do

if v = N — I then search := 0 else v := 5’ + I end if

end while

move up to previous component

move up until n M

x terminate search if v = N — I else move up to prey. comp.

37: end if

38:

39: end if

40: end while

41: end function

count examined candidates for component at!’

Algorithm 2 Pseudocode for findBest used in MSDSD

function [STEr, n] = flndBestlLS(q q’, u u, M) find order of M—PSK signal point to test according to SE stsstegy

for m = 0 to M — I do d,,,2, := ue” + q 2 end for Compute all possible square length conthbutions

step sort.0 .scending(d,,,,) returns step,. which contains values m sorted in order of increasing value of d,,,

n, 1 counter of examined candidates for component v

end function
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11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:
26:

27:

1 := S

33:

34:

35:

36:



3.4 Max—Log Fusion Rule

For high channel SNR (i.e., PKu/c1,>> 1, Vk e SAC) one of the exponentials in

(3.4) will be dominant and the max—log approximation, which is well known

from the Turbo—coding literature [33], can be applied

H = argmax {max{lo(Pk(vkIak))+lo(Pk(ak=wiIHi))}+i}

argrnax { max {2{ tVYkcu)Y(v)Yiak()}
k=1 ,41V1L+1 =l)

+log(Pk(ak =wIH))} (3.13)

The max—log fusion rule in (3.13) is computationally more efficient and nu

merically more stable than the optimal fusion rule in (3.4) since exponential

functions are avoided in (3.13). However, if (3.13) is implemented in a straight

forward fashion, its computational complexity is still exponential in N, since

for every test hypothesis H, i e M, the maximum of log(pk(yak)) has to

be found over all ak e A, j e M. However, the max—log fusion rule can be

rewritten as

H = argmax { (max{log(Pk(vkIa))+log(Pk(ak =wH))})

(3.14)

where â is that ak E A3 which maximizes pk(yklak). à can be efficiently

computed using sphere decoding. In particular, one simple method to obtain

â, j E M, is by slightly modifying the MSDSD algorithm in [27, Fig. 1] by

forcing a(vo) = w even when this does not produce the ML solution. This

modified MSDSD must be applied M times and will be referred to as re

peated tree search (RTS) MSDSD. However, a more efficient method can be

obtained by noting that in RTS—MSDSD there are a large number of redun

dant squared length computations. This is avoided if the SD obtains all à,

j M, in a single search. We will refer to this as single tree search (STS)
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MSDSD. The STS—MSDSD approach was proposed in [34] by introducing mul

tiple radii for comparisons rather than just one radius representing the current

best estimate of . Applying STS—MSDSD, we consider M different radii,

[Ro R2 ... RM_1], correspond to M different à. Similar to the MSDSD

algorithm in [27, Fig. 1], STS—MSDSD only examines candidate vector that

meet the condition

HrrHyr D2
8kJk(JkSk<11.j,

where R3 is determined by .sk(vO + 1)s(vo) w3. Similarly, possible values of

Sk(Y) have to satisfy both

N 2

d = U,Sk(V) + > USk(/1) + d1 <R, 1)0 < L/ < M + 1 (3.16)
1LV+1

N 2

= ttSk(V) + uj(tL) + d÷1 R, 1 <ii < v (3.17)

where Rmax = max R3. The condition (3.16) is necessary to ensure that when

a is not the ML solution, it does not get eliminated early on in the search.

Once a valid k is obtained, the radius R, is dynamically updated depending

on (v + 1)(v). The pseudocode for this STS—MSDSD is given in Algorithm

3, where the functions findBest() and findNext() are given in [27, Fig. 1]. For

the binary case, M = 2, (3.14) is equivalent to choosing H1 if likelihood ratio

Am_iog exceeds threshold ‘yo = ,8o — /3, and H0 otherwise, where Amiog is

defined as

Am_iog = maxmin hog = (3.18)
k=1

jEM ieM \Pk(ykkJk)Pk(ak = wjHo)) J
Discussion: The complexity of the max—log fusion rule is linear in K and

for high channel SNR polynomial in N. The implementation of (3.14) and

(3.18) requires knowledge of the sensor performance Pk (ak = Hi), i e M,

j E M. Furthermore, the complexity of the max—log fusion rule is higher

than that of the CV and ILS fusion rules discussed in Sections 3.2 and 3.3,
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respectively. For the max—log fusion rule MK vectors à, j e M, k

have to be obtained per decision. In contrast, for the CV and ILS fusion rules,

only K and one ML vectors have to be computed, respectively. In addition,

in contrast to the CV and ILS fusion rules, the max—log fusion rule requires

statistical CSI even for N 2 and i.i.d. channels. On the other hand, the

max—log fusion rule achieves a superior performance compared to the CV and

ILS fusion rules, cf. Chapter 5.
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Algorithm 3 Pseudocode for MSDSD for Max—Log Fusion Rule

1: function [&] = MSDSD-ILS(U, M, N, , i’s)

SN := I

4 := UNN F
v := N—i

u,ss

Rn,ux := max{Ro Rat..t)

(sn,step,., nJ = findBest(q, a,.,. M)

search := I

while search = 1 do

:= I5i,.,.e”” +q.I2+d,.1

if ci, <R,,,, and n, 14 then

5, :=

27: else

if v == s’s then g := rnod{M + (,n,+t — ,n,), 14) else I := 1 end if

if v == 1 and ci, <R then

:=

max)Rs Ra,s)

V := V + 1

while n,=M and search= ldo

if v = N — 1 then search := 0 else s’ := s’ + I end if

end while

[m,.,step,., n,] = findNext(m,.step,, n,)

etseif (v>s’sor(s’vsandd,<R))andn,M then

V := V — I

Uw3i

[sn,,step,,n,] = findBest(q,.u,.,,M)

mitial vector of radius R,

fix last comp. of s

initialize squared length

start at romp. v = N —

sum the last N — v components

set maximum radius

‘find hestcandidate forcomp. atv=N- 1

• update squared length

• check maximum radius and constetlatims size

• store candidate comp.

check which radius to compare

check if last comp. reached and radius Re

store heat estimated sequence so far

update radius R5

• update maximum mdius

move up to previous comp.

• move up until n, M

• terminate search if v = N — I else move up to prey. comp.

find next component ate to examine

check if need to compare radius R5 and constellation size

move down to next comp.

sum die last N — s’ componenu

find heat candidate for comp. at s’

28:

29:

30:

31:

32:

33:

34:

35:

36:

if s’ = N — 1 then

else

search := 0

ifs’ v5 then s’ := v + 1 end if

while n,= 14 and search= 1 do

if s’ = N — I then search := 0 else v := s’ + 1 end if

end while

end if

[m,,,step,., n,) = fiudNext(m,.,step,., n,)

• terminate search ifs’ = N -

• force to compare other 5(v) comp. ifs’ = s’o, else usove up

move up until n, * M

• terminate search if v = N — I else move up to prey. comp.

41: else

46: end if

e := 5’ + I

while n,= Ill and search= ldo

if v = N — 1 then search := 0 else s’ := s’ + 1 end if

• move up to previous compo.

‘move up until n, * 14

tenninate search if v = N — I else move up to prey. comp.

end if

49: end while

50: end function

2:

3:

4:

5:

6:

7:

8:

9:

10:

II:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:

26:

37: end if

38: else

39:

40:

if v=N—l then

search := 0

42:

43:

44:

• find next component at s’ to examine

terminate search ifs’ = N-I

45: end while

47:

48:

[m,,step,,,n,,] = findNext(n,.step,,,n,.) • find next component at v to examine
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Chapter 4

Analysis of Suboptimal Fusion

Rules

An analysis of the optimal fusion rule does not seem to be possible. Therefore,

we concentrate in this section on the CV, ILS, and max—log fusion rules and

on general performance bounds valid for any fusion rule. To make the analysis

tractable, we assume M 2, i.e., M = {O, 1}, i.i.d. channels, i.e., o = a2,

Bk = B, Rk = R, t = trn,, and pk(yklak) p(ykak), Vk E C, and identical

sensors with probability of false alarm Pf P (ak = —1 H0) = Pk (ak = —1 H0)

and probability of detection Pd P(ak = —1IH1)= Pk(ak = —1H1), V/v e SAC.

4.1 Performance Bounds

Before considering specific fusion rules, we provide two performance upper

bounds valid for any fusion rule including the optimal one.

1) Bound I: For the first bound, we assume that all sensors make correct

decisions and decision errors at the fusion center are due to transmission errors

only, i.e., ak = a, Vk e K, and zero bias, i.e., = = 0. In this case, the

sensor network is equivalent to a point—to—point transmission with K—fold

receive diversity and conventional MSDD [24, 25] is the optimal fusion rule.
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Thus, the probabilities of false alarm and detection are given by

Pf0 = BERVO and Pd0 = 1 — BERJ0, (4.1)

where BERVO denotes the probability that a = a(z’o) was transmitted and

a a, a E {±1}, 1 ‘Jo N — 1, was detected, i.e., BERLI0 is the bit

error rate (BER) for 2—DPSK symbol a(vo) for point—to—point transmission

and MSDD at the receiver. BERVO can be lower bounded as [26]

BERVO > (PEPLIO + PEP,01)/2, 1 vo N — 1, (4.2)

where the pairwise error probability (PEP), PEPU, is the probability that vec

tor s was transmitted and .(vo) [s(1) ... s(vo — 1) .(vo) s(ii0 + 1) ... s(N)]T,

.s(v), was detected. The averaging over two error events in (4.2) is

necessary, since, because of the differential encoding, a(v) a(vo) may be

caused by either .(v) or (vo + 1). Note that in order to get performance

upper bounds, we only count error events causing a single erroneous symbol,

â(v) s(v), in (4.2). Taking into account the K—fold diversity, we obtain from

[26, Eq. (12a)] for the PEP for the problem at hand

PEP=
[

(1
/)](K1)

(+)k,

(4.3)

where p1, —t(PK + o) — 1, 1 v N. Eqs. (4.1)—(4.3) constitute a

performance upper bound for any fusion rule with noisy sensors. This bound

becomes tight for optimal decision fusion if transmission errors dominate the

overall performance, which is the case for example at low channel SNRs and

for highly reliable local sensors.

2) Bound II: For the second bound, we assume a noise—free transmission

channel, i.e., the decision errors at the fusion center are caused by local decision

errors at the sensors only. In this case, the CV fusion rule is optimum and the
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corresponding probabilities of false alarm and detection are given by [11]

Pf0
=

(‘)P(i — Pf)K_ and Pd0
=

()P(i — Pd), (4.4)

where K70, 0 K K, depends on decision threshold ‘Yo as follows

— Klog (E)
K70

= Pd(1-Pf)
(4.5)

log
Pf(1—Pd)

For realistic, noisy transmission channels, (4.4) constitutes a performance up

per bound which becomes tight for high channel SNRs.

4.2 CV Fusion Rule

Considering (3.6) the probabilities of false alarm and detection at the fusion

center can be expressed as

Pf0
=

()P(i —p0)K_i and Pd0
=

()P(1 —p1)K_i, (4.6)

where P0 = P(H = H1H0) and P1 = P(H = H1H1). P0 and P1 can be

expanded as

P = P(H; = H1ak = —1)P(ak = —1lH) + P(H = HlIak = 1)P(ak = 1IH)

= (4.7)

where x0 = f and x1 = d, and BER1I0 is the BER of 2—DPSK for a point—

to—point link without diversity and MSDD at the receiver. This BER can be

approximated as [26, Table I, Eq. (12)]

BERVO PEPL, + PEP0+1, 1 vo <N — 1, (4.8)

PEPV
= i — 1

(4.9)
2 /1+1/pv)

For the special case of N = 2, (4.8) is exact, while it is an accurate approx

imation for N > 2 and sufficiently high channel SNR. Using (4.6)—(4.9) the
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probabilities of false alarm and detection for the CV decision rule can be com

puted approximately (exactly) for N> 2 (N = 2).

4.3 ILS Fusion Rule

The ILS decision in (3.7) is influenced by the local sensor decisions ak(l1),

1 k K, 1 v < N — 1, which makes an exact analysis for N > 2

intractable and renders both approximations and bounds loose. Therefore, in

this subsection, we concentrate on the case N = 2. The probabilities of false

alarm and detection can be expressed as

Pf0 = P(à = —lIa)P(aIHo) and do = P(à = —1Ia)P(aHi),

(4.10)

where P(â = —1ã) denotes the probability that the fusion center detects

a = —1, i.e., H H1, given the local sensor decisions a [a1 a2 ... aK]T.

Furthermore, the conditional sensor decision probabilities in (4.10) are given

by P(aIHo) pK_ko(l
— Pf)k0 and P(aH1) = pK_ko(1

— PdY, where k0

denotes the number of elements of a that are equal to 1. Based on (3.8)

P(â = —1ã) can be expressed as P(â = —ha) = Pr{—AILS < —7o}, which

leads to
c+joo

= —1a) =

-- f ILs(sIa)e°8 (4.11)

c-joo

where ILs(sIa) denotes the Laplace transform of the pdf of —AILS given a and

ak = a, and c is a small positive constant that lies in the region of convergence

of the integral. Closer examination of (3.8) for N = 2 reveals that AILS is a
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quadratic form of Gaussian random variables, and can be expressed as

AILS = {t2yk(1)y(2)} = -2(t2yk(1)y(2) + tly(1)yk(2))

= -2(t2al(hk(1) +nk(1))(hk(2) +nk(2))*

+tlak(/hk(1) + nk(1))*(/Phk(2) + flk(2)))

= uM(ã)u, (4.12)

where u [/hi[n] + ni[n], s/hi[n
—

1] + ni[n — 1], ..., i/hK[n —

T -1] .-i- riK[n — 1]] and M(a) = diag{M1(a1),..., MK(aK)} with Mk(ak) =

2ak
[1t1]. Consequently, we obtain

‘FILS(sIa) l/det(12j.c + sIPvI(ã)), (4.13)

where R ‘K ® R. We note that the integral in (4.11) can be numerically

evaluated efficiently using e.g. Gauss—Chebyshev quadrature rules [35]

c+joo

Pr{—AIL5 < —‘yo} =
— f

c-joe

JLS(C + c6Iã)[1 —

jöj]e0},

(4.14)

where 1’ILs(sIã) is given in (4.13) with s = c + c6 and S = tan(1ir). The

selection of N and c affects the accuracy of the numerical method, with c

selected to satisfy 0 < c < c0, where c0 denotes the smallest real part of all

singularities of IILs(sIã), and N selected as large as possible to achieve a

desired accuracy. Thus, the exact probabilities of false alarm and detection for

the ILS fusion rule with N = 2 can be efficiently computed from (4.10)—(4.11),

(4. 13)—(4. 14).
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4.4 Max—Log Fusion Rule

For the max—log fusion rule, the probabilities of false alarm and detection can

be expressed as

Pf0 = Pr{—Am_iog < —7oIHo} and Pd0 = Pr{—Am_iog < —7oIHi}, (4.15)

cf. (3.18). Denoting the Laplace transform of the pdf of the negative log—

likelihood ratio Am_iog by ‘Im_iog(8j11i), (4.15) can be rewritten as

c+joo

1x = f m_iog(sIHi)e7°8 i e M, (4.16)

c-joo

where x0 fo and x1 = d0. Since Pf0 and Pd0 can be obtained by numerical

integration from (4.16) if 1m_iog(sIHj) is known, the remainder of this section

will be devoted to calculation of this Laplace transform. As the fading gains

and noise samples in the different diversity branches are i.i.d., respectively,

m_iog(8Ii) can be expressed as

‘Tm_iog(sHi) = (I(sIH))K, i e M, (4.17)

where I(sH) denotes the Laplace transform of the pdf of

Zk maxmin)’log
(PYkIaFak wH0)

• (4.18)
jEMIEM \P(YkIà)P(àk=wiHl))J

I2(sIH) can be rewritten as

= (1 — P)I(sà = —1, a = 1) +P1I(sIa = —1, a = —1), i E

(4.19)

where x0 = f and x1 = d, and (sIa, a) denotes the Laplace transform of the

pdf of zk given ak = a and a. For calculation of I(sà, a) it is useful to note

that for M 2, (4.18) can be rewritten as

—

(max{p(yIà)(1
—

Pf),p(yk?4)Pf}
Zk — og

max{p(ykâ)(1 — Pd),p(ykà)Pd}
(4.20)
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Using the definition y and assuming Pf < 0.5

and Pd> 0.5, we can show that (4.20) can be rewritten as

ay<bi

Zk ay + 432, b1 <ay , (4.21)

433, ay>b2

where log(Pf/Pd), /32 log((l
— Pf)/Pd), /33 log((l — P1)/(1 — Pd)),

b1 log(Pf/(1 — Pf)), and b2 log(Pd/(1 — Pd)). To arrive at (4.21) for

a = —1, we have exploited

= (4.22)

For convenience (4.21) is illustrated in Fig. 4.1 for the case a = 1. Fig. 4.1

reveals that the max—log fusion rule soft—limits the log—likelihood ratios y of

the individual sensors at the fusion center by taking into account the a priori

values Pf and Pd. It is interesting to note that Fig. 4.1 can also be related to

Zk

___/337

Figure 4.1: Illustration of relationship between zk and y for a = 1. Note that
with the definitions in Section 4.4, b1 < 0, b2 > 0, < 0, and /33 > 0 as long
as Pd > 0.5 and Pf < 0.5.
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the CV fusion rule where b1 = b2 = 0 and a = 1

Zk =
< 0

(4.23)

L3’ >0

By denoting the pdf of y by py(y) and exploiting (4.21), we can express

= —1, a) as

= —1, a)
= f e’py(ay) dy+f e_8 +2)p(ay) dy+f dy.

—00 b2

(4.24)

For calculation of p,(y), we distinguish in the following the cases N = 2 and

N> 2.

N = 2: For N = 2, the oniy possible error event leading to a = —1 is . =
[—s(1) 1]T when s = [s(1) 1]T and y can be expressed as y = —rRE’rk8+

rR1rk. In other words, y is simply the decision variable for conventional

differential detection. Thus, the Laplace transform of p,(y) is given by [26,

Eq. (27)]
12 /

S) = 4.25
(s-i-vi)(s—v2)

where v112 = (/i + i/Pu0 + 1)/2 with iio = 1. From (4.25) we can calculate

p,(y) as

()
V1V2

(e_v1(y) + ev2(_y)). (4.26)
V1 + V2

Combining (4.24) and (4.26) we obtain

vv /e8I31+jb1 /1 — e(_s+vj)1

Iz(sIa = —1, a)
= I + e82

Vi+Vj ‘ Vi \ —s+v

1 — e_(8+z)j)b2’\ e_83_’01b2’\

+ 1+ 1, (4.27)
.s+vi I vi I

where (i,j) = (1,2) and (i,j) = (2,1) for a = 1 and a = —1, respectively.

N > 2: For N > 2 the problem is more difficult, since there are more

than one possible error events that lead to a(ii0) = a = —1. The most likely

error events are &, and V0+1 which differ from s only in positions v0 and
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‘Jo + 1, respectively. The corresponding likelihood ratios are denoted by y

and Y2 To make

the problem tractable, we assume that & and vO+1 are the only relevant error

events, i.e., we neglect all other error events, which is a valid approximation

for high channel SNRs. In this case, y is given by y = min{yi, y2}. In order to

get closed—form results, we make the following two additional approximations:

(a) y and Y2 are independent and (b) y and Y2 are identically distributed.

Both assumptions are justified for high channel SNRs. By exploiting results

from order statistics [36] and [26], we obtain for the pdf of y

py(y) = 2p,,1(y)(l —P1(y)), (4.28)

where py1(y)
= v2

(e_v1(y) + e’2Yü(_y)), cf. (4.26), P1(y) fp1(x) dx,

and v112 = (i + 1/p0 + 1)/2 with 1 < vo < N — 1. Combining (4.24) and

(4.28) leads to the following closed—form expression for F(sa —1, a 1)

and (sIa= —1,a= 1)

= —1,a 1) 2 ( v1v2
)2

(e_s131
((Vi +v2)e2b1 — e2’2)

v1 + v2 v1v2 2v2

+e2
((vi +v2)(e_(82)b1

— 1)
+

1 — e_(8_2v2)b1

viv(s — v2) v2(s — 2v2)

1 — e_(8f21)b2 e_33_2v1b2

+
v1(s+2v1) ) +

2v ) (4.29)

F(sIa = —1, a = —1) = 2 ( v1v2
2

((v1 +v2)e_v2b2 — e_2)2b2

\v1+v2J \ v1v 2v

+e2
((vi +v2)(1 — e_(H2)b2)

+
e_(8+22)b1

— 1

viv2(s+v2) v2(s+2v2)
e_(8_2’vi)bi

— 1 e_81+2v1b1

+
vi(s — 2v1) ) +

2v? ) (4.30)

We note that a direct numerical integration of (4.17) is problematic since the

inverse Laplace transform of m—1og (s H) has discontinuities (reflected e.g. by

the first and last terms in the sum on the right hand sides of (4.27), (4.29)
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and (4.30)). However, the terms corresponding to the discontinuities can be

easily inverted in closed form, and the remaining term without discontinuities

can then be inverted numerically, e.g. using the Gauss—Chebyshev quadrature

rules mentioned in section (4.3). Specifically, I(sIH) can be decomposed to

=0(sIH) + Cp,i’, (4.31)

where P is the number of terms that contains discontinuities, I0(sfH) =

I(sH)
—

Cp,jesJPi represents the term without discontinuities, and

represent their respective coefficients defined earlier from the Laplace

transform of the pdf of Zk. For (4.19), P = 4 and in the case where the WSN

consist of K sensors, (4.17) can be expressed as,

m_iog(8Hi)

K

(cp,iemi)
= _iog(sIHi) + iiog(slHi).

p=1
(4.32)

The term ‘I_iog(sHi) represents all the discontinuities in Im_iog(sHi) and

can be written as

( cp,iemi)
K =

(d1,d2,.. . , dp)
c1c2•.

.

P1 dp

(4.33)

where the summation is taken over all sequences of integer d such that Z1d =

K and ( K ) K! The inverse Laplace transform of (4.33) cand1,d2,...,dp di!d2!...dp!

easily be obtained, and by combining (4.16), (4.19), (4.27), (4.32), and the cor

responding expression (4.29), (4.30) for N> 2, the probabilities of false alarm
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and detection can be exactly (approximately) computed for N = 2 (N> 2)

= ( d. , dp)
.

d1,d2 dp

— [d1J1,+... + dpJp,])
c+joo

+ f jog(8IHi)e708 , (4.34)

c-joo

where x0 = fo and x1 = d0 denote the probability of false alarm and detection

respectively and —Iog (s I H) contains terms which can be inverted numeri

cally.
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Chapter 5

Numerical and Simulation

Results

This chapter presents numerical and simulation results for the proposed opti

mal and suboptimal fusion rules. Binary hypothesis and non—binary hypothesis

testing will be presented separately. For all results shown in this chapter, the

middle symbol of the observation window is used for detection, i.e., iio = N/2,

since this leads to the best performance.

5.1 Binary Hypothesis Testing

In this subsection, in order to confirm our simulation results with the analytical

results from Chapter 4, we assume M = 2, i.i.d. Rayleigh fading channels,

identical sensors, and P(H0)= P(H1) = 1/2. All curves labeled with “Theory”

(for N = 2) and “Approximation” (for N = 6) were generated using the

analytical methods discussed in Chapter 4, while the remaining curves were

obtained by computer simulation.
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5.1.1 Error Probability

In Figs. 5.1 and 5.2, we examine the error probability Fe Pf0P(Ho) + (1 —

P)P(H1)of the suboptimal MSD fusion rules considered vs. Eb/No for BT =

0.1 and BT = 0, respectively. Here, Eb is the total received average energy per

bit (from all sensors), and N0 denotes the one—sided power spectral density of

the underlying continuous—time noise process. The decision threshold 70 = 0

was used for all fusion rules and K = 8, Pd = 0.8, and Pf = 0.01. In addition

to the suboptimal MSD fusion rules, Figs. 5.1 and 5.2 also contain the two

performance upper bounds introduced in Section 4.1. Furthermore, Fig. 5.1

also includes the performance of the optimal fusion rule for N = 2 (the optimal

fusion rule is computationally not feasible for N = 6) and the error probability

of the coherent max—log fusion rule for DPSK, whereas Fig. 5.2 shows the

performance of the coherent versions of all three suboptimal MSD fusion rules.

We note that these coherent fusion rules require perfect knowledge of the fading

channel gains. Figs. 5.1 and 5.2 show that while the ILS fusion rule has the best

performance for very low Eb/NO, where transmission errors significantly affects

the overall performance, the CV and the max—log fusion rules yield a superior

performance for medium—to—high Es/No. A comparison of Figs. 5.1 and 5.2

reveals that increasing the observation window size from N = 2 to N = 6 is

more beneficial for fast fading (BT = 0.1) than for static fading (BT == 0).

In the latter case, the performance gap between coherent detection and the

respective MSD fusion rules is relatively small even for N = 2. In contrast, for

BT = 0.1 and N 2 the performance of both the CV and the max—log fusion

rules is limited by the high error floor caused by the fast fading. This high

error floor is also seen under the optimal fusion rule, which yields a negligible

performance gain compared to the max—log fusion rule for N = 2. For N = 6

this error floor is mitigated and both the CV and the max—log fusion rules

approach Bound II for high Eb/No, i.e., performance is limited by local sensor

41



decision errors in this case and not by transmission errors. For the ILS fusion

rule increasing the observation window to N > 2 is not beneficial and it even

leads to a loss in performance for high Lb/No for BT = 0. This somewhat

surprising behavior is caused by the local decision errors at the sensors, which

were ignored for derivation of the ILS fusion rule. For N = 2, theoretical and

simulation results in Figs. 5.1 and 5.2 match perfectly, confirming the analysis

in Section 4. As expected from the discussions in Section 4, for N = 6, there

is a good agreement between theoretical and simulation results for the CV

and the max—log fusion rules at high Eb/No ratios, cf. Fig. 5.1 (for clarity of

presentation the analytical curves for N = 6 have been omitted in Fig. 5.2).

At low Lb/No ratios, the analytical results overestimate the actual Fe since the

assumptions leading to the analytical result for N > 2 are less justified.

100
I I

—e—————l’I=2(Sirnulation)
. . —

— —N=2(Theory)
S —V—N=6(Simulatior)

—,
. N = 6 (Approximation)

—I—— Optimal Fusion Rule (N = 2)

Coherent

Max—Log
S

101

\ \ -,-,--e
----- 1-

I \...
102

BoundI.

Bound II
10

I I I

0 5 10 15 30

Eb/NO [dBj

Figure 5.1: Probability of error Fe vs. Eb/No for decision threshold ‘Yo = 0.
K = 8, M 2, Pd = 0.8, Pf = 0.01, BT = 0.1, and i.i.d. Rayleigh fading.
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Figure 5.2: Probability of error P vs. Eb/No for decision threshold 70 = 0.
K = 8, M = 2, Pd 0.8, Pf = 0.01, BT = 0, and i.i.d. Rayleigh fading.

5.1.2 Constant False Alarm Probability

Fig. 5.3 shows P as a function of Eb/NO for a fixed probability of false alarm of

Pf0 0.001, which is achieved by adjusting decision threshold ‘Yo accordingly.

Furthermore, K = 8, Pd = 0.7, Pf = 0.05, and BT = 0.1. In Fig. 5.3,

the max—log fusion rule yields a superior performance compared to the other

suboptimal MSD fusion rules but the CV and ILS fusion rules approach the

max—log performance for high and low Eb/No, respectively. For N = 6, both

the max—log and the CV fusion rules approach Bound II for high enough

Eb/No, whereas for N = 2, these fusion rules as well as the optimal fusion rule

are limited by transmission errors caused by fast fading. In contrast, the ILS

fusion rule achieves a better performance for N = 2 than for N = 6. Fig. 5.3
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shows again a good agreement between analytical and simulation results.

1 I I
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Figure 5.3: Probability of detection Pdo vs. Eb/No for a probability of false
alarm of Pf0 = 0.001. K = 8, M = 2, Pd = 0.7, Pf = 0.05, BT = 0.1, and
i.i.d. Rayleigh fading.

5.1.3 Receiver Operating Characteristic

In Fig. 5.4, we show the ROC for the considered MSD fusion rules and the

coherent max—log fusion rule for DPSK. K = 8, Pd = 0.7, Pf = 0.05, BT = 0.1,

and Eb/No = 20 dB. Fig. 5.4 shows the superiority of the max—log fusion rule

especially if low probabilities of false alarm are desired. Increasing N from two

to six yields significant gains for both the max—log and the CV fusion rules. In

fact, the max—log fusion rule with N = 6 bridges half of the performance gap

between the coherent max—log fusion rule and the MSD max—log fusion rule

with N = 2. On the other hand, for N = 2 the optimal fusion rule performs

only slightly better than the max—log fusion rule.
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K=8,M=2,Pd=0.7,Pf=0.05,BT=0.1,Eb/No=2OdB,and
i.i.d. Rayleigh fading.

5.1.4 Effects of Sensor Network Size

Figs. 5.5 and 5.6 show the impact of the number of sensors on Fe and Pd0,

respectively, for Pd = 0.7, Pf = 0.05, BT = 0.1, and Es/No 20 dB. For

Fig. 5.5, we optimized the decision threshold o for minimization of Fe for

each fusion rule and each considered K. For Fig. 5.6, was chosen so as to

guarantee Pf0 = 0.001. Figs. 5.5 and 5.6 indicate that the max—log fusion rule

benefits more from an increasing number of sensors than the ILS and the CV

fusion rules. In particular, the CV fusion rule shows a saturation effect for large

K in Fig. 5.5. This is due to the fact that since the total Eb/No of all sensors

is fixed, the channel SNR per sensor decreases as K increases. Therefore, the

assumption of a perfect transmission channel, which was implicitly made for

derivation of the CV fusion rule, becomes less justified as K increases leading
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to a loss in performance.

t

Max—Log •.-

I I I I

2 4 6 8 10 12 14 16

K

Figure 5.5: Probability of error Fe vs. number of sensors K. M = 2, Pd = 0.7,
Pf = 0.05, BT = 0.1, Eb/No = 20 dB, and i.i.d. Rayleigh fading.
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bility of false alarm of Pf0 = 0.001. M = 2, Pd = 0.7, Pf = 0.05, BT = 0.1,

Eb/No = 20 dB, and i.i.d. Rayleigh fading.

5.2 Multiple Hypothesis Testing

For the multiple hypothesis testing case, we assume that the local sensor

observations are given by Xk [ri] = Uk [n] + k [n], k 1C, where Uk [n] e

{—(M — 1), —(M — 3),..., M — 1} and ñk[fl] is real AWGN. Throughout this

subsection, we assume identical sensors, P(HZ) 1/M, i E M, and M = 4.

The sensor performance indices Pk(ak[n] = wIH), i E M, j E M, k e )C,

depend on the sensor SNR, SNRS

47



5.2.1 Error Probability

M—iIn Fig. 5.7, we show the probability of missed detection Pm = jO

P(HIH)P(H) vs. Eb/No for the proposed suboptimal MSD fusion rules and

the corresponding coherent fusion rules. Again Eb is defined as the total

received average energy per bit (from all sensors) and K = 8, BT = 0,

SNRS = —3 dB and i.i.d. Rayleigh fading channels. Similar to the binary

hypothesis error probability curves in static fading (BT = 0), the ILS fusion

rule performs best for very low E/N0, the CV and max—log fusion rules per

form well in the middle—to—high Es/No region. With N 2 the performance

is already relatively close to coherent detection and when the observation win

dow is increased to N = 6, only a minor increase in performance is observed.

Again it is observed that increasing the observation window size actually in

creases the missed detection if the ILS fusion rule is used. On the other hand,

in Fig. 5.8 where the proposed MSD fusion rules are shown for N = 2, 4, 6

when BT = 0.1, it is easily seen that increasing the observation window is

beneficial. As the observation window is increased to N = 6, the CV and

max—log fusion rules are able to reduce the inherent error floor caused by fast

fading and its error rate approaches the performance limit due to decision

errors made by the local sensors. From Figs. 5.7 and 5.8, we conclude that,

for ILS fusion, increasing the observation size is not recommended. When the

observation size is increased to N = 6, the performance degrades in static

channels while in non—static channels only minimal improvement is observed

while the complexity of the fusion rule increases dramatically.
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Figure 5.9: Probability of missed detection Pm vs. Eb/No for ILS fusion rule.
M 4, BT 0.1,, i.i.d. Rayleigh fading, and SNRS = —5 dB, —3 dB, 0 dB, 3
dB.

Fig. 5.9 shows miss detection vs. Eb/No using ILS fusion for various SNRS.

In the derivation of the lbS rule in Section 3.3, as SNR8 increases, i.e., with

more reliable sensor decisions, the benefit of increasing the observation window

size to N = 6 becomes more apparent. Therefore, if the sensors can be made

more reliable, e.g., by time averaging the observation at the sensors to im

prove SNR8, increasing the observation size can be considered for ILS fusion,

otherwise a more conservative approach should be taken by using N = 2.

5.2.2 Independent, Non—identically Distributed Fading

Fig. 5.10 shows the probability of missed detection vs. E/N0 for the proposed

suboptimal MSD fusion rules and the corresponding coherent fusion rules with
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Figure 5.10: Probability of missed detection Pm VS. Eb/No. M = 4, BT = 0.1,
SNRS —3 dB, and i.n.d. Rayleigh fading.

the following parameters: K = 8, BT = 0.1, SNRS = —3 dB, and channel

SNR of sensors k e {1, 2, 3, 4} was 3 dB higher than that of the remaining

four sensors, i.e., the fading was i.n.d. As a reference, the performance in

i.i.d. fading channels are also shown. Interestingly both the CV and max—

log fusion rules show little performance degradation for i.n.d. fading for both

considered observation window sizes. Although the ILS fusion rule also shows

little degradation in missed detection performance, the negative effect of i.n.d.

fading is more apparent as the observation window size increases. Since ILS

fusion is limited by the fact that it is ignoring sensor reliability, weighting the

sensors with more reliable channels effectively weights certain sensors more

even though all sensors are identical and unreliable. In the extreme case if the

sensors are not identical, and the SNR8 are lower at the sensors with higher
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channel SNR, the missed detection performance can degrade dramatically.

5.2.3 Effects of Sensor Reliability
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Figure 5.11: Probability of missed detection Pm VS. SNR8. M = 4, BT =

0.1, Eb/NO = 30 dB, and i.n.d. Rayleigh fading.

In Fig. 5.11, we show the probability of missed detection as a function

of SNRS for the proposed suboptimal MSD fusion rules and the correspond

ing coherent fusion rules with the following parameters: K = 8, BT = 0.1,

Es/No = 30 dB, and i.n.d. channel (four channels have a 3 dB higher SNR

than the remaining four channels). For low sensor SNR, the CV fusion rule

achieves a similar performance as the max—log fusion rule since the overall per

formance is mainly affected by the unreliable sensors. However, the CV fusion

rule is not able to fully exploit the increasing reliability of the sensors when

the sensor SNR improves and is ultimately limited by an error floor caused by
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transmission errors which are not optimally taken into account in the CV fu

sion rule. With highly reliable sensors, the CV fusion rule is even outperformed

by the ILS fusion rule, whose performance steadily improves with increasing

sensor SNR. This is probably because the assumption on which the ILS fusion

rule is based, namely error—free sensors, has become more and more justified

at high sensor SNR. Nevertheless, the max—log fusion rule yields the best per

formance among all considered MSD fusion rules, and closely approaches the

performance of the coherent max—log fusion rule with N = 6.

5.2.4 Estimation Error of Channel Correlation Matrix
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Figure 5.12: Probability of missed detection Pm vs. Eb/No with channel cor
relation error. M = 4, BT = 0.1, SNRS = —3 dB, and i.i.d. Rayleigh fading.

In Fig. 5.12, we show the probability of missed detection as a function
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of Es/NO for the proposed suboptimal MSD fusion rules and consider the ef

fect of estimation error on the channel correlation matrix, Rhh, i.e., phh[A] =

2 Jo(2ir(B+ Le)T;\). K = 8, BT = 0.1, SNR8 = —3 dB, and a correla

tion error 2i= ±0.02, i.e., the estimated fading bandwidth is BT = 0.08 and

BT = 0.12, respectively. A small deviation is shown for all three fusion rules

relative to the curve when the optimal matrix is used. For both max—log and

ILS fusion rules a minimal increase in missed detection is observed. For low

Eb/NO, the max—log fusion rule exhibits the largest missed detection differ

ence since the channel errors are the limiting factor at this operating range.

When ILS fusion is performed, the performance degradation when using a non—

optimal channel matrix for detection has little impact on fusion performance.

On the other hand, for the CV fusion rule at medium—to—high SNRs exhibits

a larger performance degradation of approximately 1dB. This is due to the

assumption of perfect channel conditions for the CV fusion rule. Nevertheless,

all three proposed fusion rules show a high tolerance to estimation errors in

the channel correlation matrix.

5.3 Computational Complexity

In Fig. 5.13, we compare the complexity of the considered MSD fusion rules for

N = 6 as a function of Eb/No with the following parameters: K = 8, M = 4,

i.i.d. Rayleigh fading, and SNRS = —3 dB. The complexity is measured in

terms of the (average) number of real multiplications required per decision.

The dashed lines in Fig. 5.13 denote the number of multiplications required

by the respective sphere decoders to find the first vector . and constitute

the lower bounds for the actual complexity. Note that the lower bounds for

the CV and ILS fusion rules practically coincide for the considered example.

Fig. 5.13 shows that the CV fusion rule closely approaches the corresponding

lower bound. In contrast, for the ILS and max—log fusion rules there is always
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a considerable gap between the actual complexity and the lower bound even

at high Eb/NO. For the ILS fusion rule, this gap is due to erroneous sensor

decisions as can be observed from the comparison with the (hypothetical) case

of ideal local sensor decisions. For the max—log fusion rule the gap is due to

the fact that the sphere decoder does not only have to find the ML vector as

for the CV and ILS fusion rules but also has to perform a constrained search

over all ak with a(vo) = w3, j M, cf. Section 3.4. Nevertheless, all three

suboptimal fusion rules have a significantly lower complexity than the optimal

fusion rule.
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Figure 5.13: Number of real multiplications per decision vs. Eb/No. M = 4,

SNRS = —3 dB, and i.i.d. Rayleigh fading.
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Chapter 6

Conclusions and Future Work

6.1 Research Contributions

In this thesis, we have considered the distributed multiple hypothesis testing

problem for mobile wireless sensor networks where sensors employ DPSK to

cope with time—variant fading. We have shown that since differential mod

ulation introduces memory, it is advantageous to consider fusion rules that

base their decisions on an observation window of multiple symbol intervals.

Specifically, we have derived the optimal MSD fusion rule (where complex

ity increases exponentially with an increase in the number of sensors and the

observation window size), and three suboptimal MSD fusion rules, where com

plexity is linear in the number of sensors and, at high SNRs, polynomial in the

observation window size. For binary hypothesis testing, performance bounds

for the optimal fusion rule have been derived, and for the suboptimal fusion

rules, exact or approximate expressions for the probabilities of false alarm and

detection have been provided. Our simulation and analytical results show that

for high and low channel SNR respectively, the performance of the CV and ILS

fusion rules approach that of the optimal fusion rule. The proposed max—log

fusion rule achieves a close—to—optimal performance over the entire SNR range
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but has a higher complexity than the CV and ILS fusion rules.

6.2 Future Work

There are several possible extensions of the work presented in this thesis and

these are listed below.

The first is to consider necessary modifications to the proposed fusion rules

if they are adapted for different WSN topologies as discussed in Section 1.1,

thereby giving a more generalized solution to the WSN decision fusion problem.

The second is to consider whether our assumption of Rayleigh fading can

be extended to other fading models. Rician fading should be investigated since

there are viable scenarios where the FC and the sensors have direct line—of—

sight. In particular, new sub-optimal fusion rules can be investigated since in

Rician fading MSDSD is not optimal.

A third area for futher development is error correction coding in WSN. The

possibility of using error correcting codes to improve detection rates specifi

cally at lower channel SNR can dramatically improve the CV fusion rule per

formance. Moreover, coding can provide a means of reducing the problems

related to faulty sensors that repeatedly send erroneous decisions due to sen

sor malfunctions.
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