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Abstract

In this thesis we study the coherent energy transfer in photosynthetic sys-
tems. This resonant energy transfer has proven to be a coherent transfer in
some light harvest complexes. The model which we suggest to describe this
mechanism is an exciton hopping on an N-site ring coupled to a spin bath.
Analytic results are found for both the dynamics of the influence functional
and of the reduced density matrix of the excitons. We also give results for
the dynamics of the current as a function of time. By setting states split-
ting initially into 2 separate wave-packets moving at different velocities, we
reproduce the coherent beating phenomenon in experiments.
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Chapter 1

Introduction

The biosystems on Earth are not perpetual motion machines. It is through
photosynthesis that they can harvest energy from sunlight to maintain their
daily metabolic activities. Photosynthetic organisms , aka photoautotrophs,
exist in plants, algae, and many species of bacteria. The colors of such
plants and creatures are determined by their photosynthesis absorption fre-
quencies. Most plants are green because they have a maximum absorption
red-peak ranged from 680Hz to 700Hz which is why these photosynthetic
molecules are called ”chlorophyll”. Chlorophyll varies in absorption spectra
among different kinds of organisms and yield different colors, such as the
bacteriachlorophyll in purple bacteria and carotenoid in yellow flowers.

In the 1930s, Robert Emerson and William Arnold discovered that light
reaction productivity varied under different wavelengths of light.[1] They
used three light sources: a neon-tube, a normal 40 watt lamp and a mercury-
vapor lamp. More precise measurement confirmed their discovery with two
reaction peaks: one absorbing up to 600 nm wavelengths, the other up to
700. Later people learned that the former one contains only chlorophyll-
a, the later one contains primarily chlorophyll-a with most of the available
chlorophyll-b, among other pigment. In addition, they also found that it
takes 2480 chlorophylls to absorb enough energy to fix one molecule of car-
bon dioxide. This result implied that most chlorophylls are not directly
engaged in the carbon fixation process[2]. They serve as light-harvesting
antennae capturing the sunlight and funnelling the electronic excitation to-
ward the few reaction centers (RC) located on the photosynthetic mem-
branes. The existence of surrounding antennae is essential to maintain the
high efficiency of the RCs and increase the cross section of photon absorp-
tion. In certain bacterial systems light harvesting efficiency is indeed above
99%[2].

In photosystems, chlorophyll molecules are specifically arranged in and
around pigment protein complexes which are embedded in the thylakoid
membranes of chloroplasts. In these complexes, chlorophylls serve two pri-
mary functions. One of the functions is to construct the RCs to host the
photosynthetic reactions. The other function, which comprises most of the
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Chapter 1. Introduction

chlorophylls (up to several hundreds of molecules per photosystem) is to ab-
sorb light and transfer the light energy to the RCs. The transfer takes only
a few tens of picoseconds and is performed with extraordinarily high effi-
ciency: most of the absorbed photons give rise to a charge separation event.
Remarkably, recent experiments have shown that there is a long coherent
time in this energy transfer process. [3, 4]

To understand the role of decoherence in this photosynthetic system, we
propose a model which involves pure phase decoherence coming from spin
bath. This model simulates a exciton propagating around a ring of N discrete
sites(in the case of photosynthesis , there are usually 16 or 32 chlorophylls
in a ring), while coupled to a spin bath. The general Hamiltonian we will
study is

H =
∑

j

∑
<ij>

{tijc†icj exp[iA0
ij + i

∑
k

(φij
k + αij

k ·σk)] + H.c.}+
∑

k

hk ·σk

(1.1)
This thesis is organized as follows. In Chapter 2, we describe the struc-

tures of two well-known light-harvesting complexes, and review some re-
markable experiments involving them. In Chapter 3, we provide several
theories found in previous literature which were applied to this problem and
discuss the advantages and disadvantages of these approaches. In Chapter 4,
we introduce the influence functional theory to establish a theoretical frame-
work in which to study the open system energy transfer. In Chapter 5, we
propose a spin bath model to study the energy transfer in light harvesting
complexes. We argue the necessities of a spin bath model in this problem.
We show the derivation of our model Hamiltonian and the approximations
we make in order to simplify calculations. Analytic results are found for the
dynamics of the influence functional and of the reduced density matrix of
the particle, both for initial single wave-packet states, and for states split
initially into 2 separate wave-packets moving at different velocities. We also
give results for the dynamics of the current from site to site as a function of
time.
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Chapter 2

Experiments on Light
Harvesting Molecules

Light harvesting molecules have been studied for almost a century. Their
structures have been thoroughly explored in late 1990s. Until early this
century, the mechanism of energy transfer through multichromophore com-
plexes was generally assumed to involve incoherent hoppings. There was
nothing inherently quantum mechanical or wave-like in the process itself.
These notions were challenged by new experimental evidences in 2007[3, 4].

In this chapter, we begin by introducing the structure of three commonly
studied light harvesting complexes, the light harvesting complex type I and
II in Rhodopseudomonas acidophila, and Fenna-Matthew-Olson (FMO) com-
plex of Prosthecochloris aestuarii. Their structures are described and basic
absorption spectrum is provided. We then introduce the experimental evi-
dences about coherent quantum beating in light harvesting molecules. Such
effect was observed in both FMO complexes and reaction centers of light
harvesting complex type I.

2.1 Structures of Light Harvesting Molecules

There are two ways to look into the structures of light harvesting molecules.
1)Fluorescense detections. It has been, for a long time, the standard way to
determine the distance between molecules. The fluorescence detections are
highly sensitive. In Förster theory[5], emission spectrums are determined
by overlap integrals of wave functions on different sites, and this value is
inversely proportional to sixth power of distance. Hence, we are able to
determine the distance between molecules. 2)X-ray crystallography. In this
method, photosynthetic organisms are distracted from the membranes and
crystalized in laboratory condition. Although this method depicts a direct
observation on complexes’ structures, the results were restricted by low res-
olution until late 1990s. [6] Compared with the plant chromophores, bacte-
rial chromophores are easier to extract and purify. Late in the 20th century,
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2.1. Structures of Light Harvesting Molecules

people found that in most purple bacteria, the photosynthetic membranes
contain two types of light-harvesting complexes, light-harvesting complex I
(LH1) and light-harvesting complex II (LH2).[7] LH1 is found surrounding
directly the reaction centers(RCs), where the energy from the photons is
finally stored. LH2 is not directly associated with the reaction centers but
transfers energy as antennae towards LH1 and thus RCs[2, 8].

In 1995, the crystal structure of peripheral light-harvesting complex type
II (LH2) in a purple bacterium Rhodopseudomonas acidophila was resolved
by x-ray diffraction[9]. One year later, the crystal structure of LH2 of
Rhodospirillum molischianum was also determined to a resolution of 2.4
Å[10]. This complex consists of 24 bacteriochlorophylls(BChls). Crystal-
lized chlorophylls were distilled and grown under 293K [11]. These BChls
have a C8 global symmetry. Sixteen of the BChls in a complex form a ring
structure that is responsible for the strong absorption peak around 850nm
(B850)at room temperature and the remaining eight BChls are bound near
the cytoplasmic surface, and are responsible for another absorption peak
around 800nm (B800).[2]. The diameter of the B850 ring is 23 Å and that
of the B800 ring it is 28Å. Whereas the electronic interaction between
neighboring B850 pigments is quite strong and gives rise to excitonic be-
havior [12], the interaction between adjacent BChl-a in the outer B800 ring
is much smaller than the inhomogeneous broadening of the B800 band [13],
although the B800 ring are relatively larger and thus closer in space. B800
rings act rather like ”antenna rings”, which collect energy and transfer into
the B850 ring of the same complex. B850 rings act like ”storage rings”,
where the excitation delocalizes rapidly over a broad area.[9] The strong
coupling between different B800 rings makes it a network throughout the
organism. One interesting property of this complex is that excitions can
always find a pathway towards the rare LH1 in the large network, extremely
swiftly (3-5ps) almost without energy loss.

In the same year, 1995, the structure of LH1 of Rb. sphaeroides was
shown as an electron density projection map in agreement with the 8.5 Å
resolution [14]. The preparation of crystals is same as of LH2’s. The complex
contains a ring of 32 BChls which is responsible for the 875nm absorption
band. The overall diameter of LH1 is 118 Å[8]. LH1 surrounds a reaction
center (RC) which is the destination of incoming photons. The large LH1
ring lies in the center of the process of photosynthesis. They absorb excita-
tions from LH2 networks and send it into the RCs. The details of interplay
between LH1 and RC are not clear yet. The time scale for LH1→RC transfer
is around 35 ps, which is the longest stage in photosynthesis[2]. RC contains
a BChls dimer in the center, two accessory BChls flanking on each side and
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2.2. Coherent Quantum Beating Phenomenon

a bacteriopheophytin (BPhy) adjacent to each flanking BChl. These units
make an individual RC itself a small exciton transfer network, in which cou-
plings between them lead to a multi-band spectrum. The whole structures
of both LH1 and LH2 are shown in [8].

Another popular photosynthesis units are the Fenna-Matthew-Olson (FMO)
complex of Prosthecochloris(P.) aestuarii. In 1997, it became the first
pigment-protein complex whose structure was solved by X-ray crystallography[15,
16]. It showed a global C3 symmetry with an arrangement of three identi-
cal subunits. Each subunit contains seven BChls with the nearest neighbor
distance of 11.3 to 14.4 Å, while the distance between nearest neighbors in
different subunits of the trimer is about 24 Å [17]. Actually, it has been
shown that the optical spectrum of the FMO complex is mainly determined
by the interactions within a single subunit[15]. They are almost not interact-
ing with other monomers. Its structure is shown in [18]. The fundamental
difference between FMO and LH1, 2 is that there is no spatial symmetry
in FMO complex. Couplings between the seven BChls in single subunit
are all different. Numeric simulations based on experiment spectrums show
that the excitation band in single subunit are all localized near one or two
BChls.[17] In LH1 and LH2, however, the excitation bands are spread all
around the ring.

2.2 Coherent Quantum Beating Phenomenon

In 1932, Emerson and Arnold exposed the chlorophylls to various flash-
ing light sources, with different intensity and wavelength. They measured
the carbon dioxide reduced to determine the responses of chlorophylls af-
ter each flashing. Until the 1990’s, due to the spectroscopy techniques,
people can even directly track an individual chlorophyll on molecular level.
However, if we not only want to study long term asymptotic behavior of
multichromophores, but also wish to see their dynamics in first several mo-
ments, the fluorescence detection is not enough. Such single signal spec-
troscopy will only give us information about the band level and exciton
energy levels[19, 20]. For example, a given complex composed by N chro-
mophores, it has N one-exciton states that are given by linear combinations
of N single-site wave function. Therefore, in principle the line shape of the
absorption spectrum contains information of the N electronic transitions
between the electronic ground and N one-exciton states. Since the N transi-
tion probabilities independently add up to produce the absorption spectrum,
the spatiotemporal dynamics between different one-exciton states cannot be
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2.2. Coherent Quantum Beating Phenomenon

studied by using conventional linear spectroscopic techniques.[20] The dif-
ficulty was overcome by nonlinear spectroscopies developed at the end of
last century.[17]. The nonlinear pathways are results of four field-matter
interactions, which create cross peaks between different states[21]. It con-
tains generally N2 peaks which are sufficient to describe N on-site energy
plus N(N−1)

2 couplings. This method allows us to directly see the wave-like
process in transfer.

In 2007 , Engel et al studied decoherence in FMO complexes under 77K
through a 2D femtosecond nonlinear spectroscopy. They found that the
coherence time is unexpectedly longer than most of the previous theoretical
calculations (> 660fs)[3]. This method involves 4 pulses sequentially applied
into the system. The first two pulses are coherent(their relative phase is
locked) and thus create coherence signals propagating in the system. Then
they allowed the systems to freely dephase for a time T then added the two
probing signals. Fourier transform of the time intervals between the first
two signals and the last two signals are called the excitation frequency and
the detect frequency respectively, and T is called the dephasing time. They
varied T from 0 to 660fs and found the spectrum peak oscillations always
existed. It was a direct observation of decoherence in photosynthetic units,
though the condition of samples is not natural. 77K is still high compared
with the normal low temperature physics requirement, but low enough to
change the aggregate structures of biological molecules. To prevent the
denaturing in low temperature, they mixed the sample with glycerol which
created a glassy background in low T. But after all, it is still a remarkable
evidence suggested that FMO complex might itself be structured to dampen
fluctuations that would induce decoherence of the electronic excitation.

A few months later, Hohjai Lee et al found similar coherent effects in
the RCs of Rhodobacter sphaeroides[4]. They used a two-color electronic
coherence photon echo experiment (2CECPE) which involves two signals
with different wavelengths to excite coherence between two exciton bands
in RCs. They measured the oscillating echo signals after time T to study
coherence effects. They did the experiment in both 77K and 180K and
found that the coherent beating pattern survived at least 400 fs in both
case. This evidence supported the previous one that the long coherent time
is not unique to FMO complexes and it probably could survives in room
temperature. Their results are shown in their paper. We can see that,
though not varnishing to zero, the damping of the beat amplitudes by time
is obvious.

Though large photosynthesis systems contain more bands and thus create
a more complicated beating pattern than single complex, people began to
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2.2. Coherent Quantum Beating Phenomenon

believe that coherent energy transfer exists widely among photosystems.
Back in 1998, people already obtained the evidence of coherent hopping
between B850 ring and B800 ring in LH2[12]. Although it does not appear
large, the coherent times in both experiments in 2007 are relatively long
comparing to the energy transfer time under 77K (∼ 1ps). This evidence
is a challenge to existing theories. In next chapter we will review some
important theoretical approaches on light harvesting complexes.
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Chapter 3

Review of Existing Theories

For a long time, there were mainly two theories dominating this field. Förster
theory is the first successful theory in history. The energy transfer between
chromophores is assumed to be incoherent hoppings. It is pictured as ran-
dom walks with a general downhill direction towards the reaction center.
Redfield theory does include coherent hoppings. But it requires weak site-
bath couplings, which is not applicable to photosystems. Both of them
cannot explain the new experimental evidences well. In this chapter, we will
go through these two theories and then introduce several latest attempts
about how to explain this phenomenon.

In addition, these experiments suggested that in a strongly coupled,
non-equilibrium systems, quantum behaviors can still survive long enough
to finish ”calculations” (i.e. transfer towards reaction centers). This co-
herent feature in a poorly controlled, decohering environment has already
attracted attention from quantum information realms. At the end of this
chapter, I will introduce some related explorations in this realm, including
the entanglement dynamic and Feynman cursor computer.

3.1 Resonant Energy Transfer

A single chlorophyll is a typical resonant energy excitation system. A chloro-
phyll absorbs a photon and creates a hole-electron resonant pair between a
conducting band and a valence band, which is so-called an ”exicton”. An
exciton is a bound state of a electron-hole pair. It usually has a long life-
time. In biological molecules, the dielectric constant is usually very small
compared with the Coulomb interaction between electrons and holes (about
several electron volts). Thus the exciton tends to be much smaller, which
is so-called the Frenkel exciton. [22] Electrons and holes are close in space,
usually sit at same site and move together.

Through interactions between molecules, these resonant excitations spread
throughout the whole system. The resonant energy transfer(RET) mecha-
nism is first suggested by Oppenheimer[23]. The electron-hole pair in the
donor merges together and the acceptor absorbs the energy to create a new
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3.1. Resonant Energy Transfer

Figure 3.1: Model picture for resonant energy transfer showing fluorescence
of the donor to the acceptor.

electron-hole pair. This mechanism is illustrated in Fig. 3.1. This coupling
between chlorophylls, which is originally the Coulomb interaction, has a van
der Waals like R−6 distance dependence with a typical effective range for 2-5
nanometers[24]. In LH1 and LH2, typical distance between chlorophylls is
about 1 nm, as described above. Henceforth the interaction range is about
two times of the typical distance, which means we are only required to con-
sider nearest-neighbor and second nearest-neighbor couplings. In most case
nearest-neighbor couplings are enough to explain dynamics. But for FMO
complexes, since it does not have a global symmetry and the chlorophylls in
a same subunit are close in space, people usually include couplings between
any two of them.

This mechanism itself is not complicated. At most it will be a Hamil-
tonian as a N × N matrix. Since N is not large (no more than 32), simple
diagonalization will give us everything we want. However in biological sys-
tems, we cannot avoid influence from environment. There are not only
chlorophylls responsible for energy transfers. Other factors such as amor-
phous cell tissues, auxiliary pigments, ionized solvent, and reaction catalysis
also affect the transfer process. They change positions between chlorophylls,
rotate their directions or polarize molecules. Figuring out their influence is
the main problem of RET. Basically, how to treat surroundings separates
theoretical approaches from each other.

9



3.2. Förster Theory

3.2 Förster Theory

The phenomenon of RET was first observed at the beginning of last century.
In the late 1940’s, it was Förster who proposed a theory describing this inter-
action and derived a equation that relates the interchromophore distances to
the spectroscopic properties between chromophores. [5] It then became the
standard way of spectroscopic distance determination in biology[8, 25, 24].
Förster theory is a semi-classical theory which involves incoherent hoppings
between different sites. Förster assumed weak inter-site couplings and as-
sumed that one can use equilibrium Fermi Golden Rule to treat the electron
coupling between site to site. This implies that 1) the timescales of the
exciton transfer are much larger than that of the bath-exciton response,
otherwise the bath cannot be treated as equilibrium; 2) the bath-exciton
couplings are larger than the electron couplings, otherwise we should in-
clude the bath interactions into our calculation[5, 26]. In this theory, the
effect of surrounding bath is to destroy all the quantum correlations between
consecutive hoppings.

In Förster theory, the probability Pi to find molecule i excited at time t
can be determined by

d

dt
Pi =

∑
j

(WijPj − WjiPi) (3.1)

Wij is the Förster transfer rate from molecule j to molecule i. Using Fermi
Golden rule, we can get Pi as a function of the electronic coupling Vij and
the overlap spectral Jij(ω)

Wij =
π

h

∫ ∞

0
dε|Vij |2Jij(ε) (3.2)

If interactions are in dipole-dipole form, the V 2 term will be proportional to
R−6. This theory was successful in history. This sixth power dependence on
distance was verified experimentally in 1978 [27]. Until now people are still
working on this model and trying to improve its performance. Leegwater
[28] shows that such model is even accurate to predict the decay time of
excitation in LH2 when the ratio between the bath-exciton coupling Γ and
the inter-exciton coupling J is not large enough. In his simulation, the
dissipation effects due to RCs and surrounding baths are added as a non-
Hermitian term in Hamiltonian by hand. He claims that down to Γ/J ∼ 1
region Förster theory still works well. However there is a fundamental flaw
of Förster theory: the assumption of no coherence of hoppings and no time
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3.3. Redfield Theory

correlation of bath fluctuations makes this theory impossible to study the
new coherent transfer behavior in recent experiment.

3.3 Redfield Theory

The theory includes coherent hoppings was first introduced by Redfield[29].
Opposite to the Förster limit where Γ � J , Redfield assumes Γ � J and
thus treats the bath-excitation couplings as perturbation. Electron-phonon
couplings are described by the fluctuation dynamics in the ground electronic
stats. Diagonalizing the bare electronic Hamiltonian we find that eigenstates
for excitons is a linear combination of the single site base, i.e.

|k〉 =
∑

i

aki|i〉 . (3.3)

The equation of motion for the diagonal density matrix elements are same
with (3.1) except the site indices i, j replaced by the exciton indices k, k′

d

dt
Pk =

∑
k′

(Wkk′Pk − Wk′kPk′) (3.4)

But Wkk′ are calculated in a different way:

Wkk′ = 2Re

∫ ∞

0
dt ei(ωk′−ωl)t〈eiHphtHel−ph

k′k e−iHphtHel−ph
kk′ 〉ph (3.5)

Hph is the Hamiltonian of the phonon bath; 〈...〉 indicates taking average
over the phonon bath distribution. It is proportional to e−βHph when the
bath is in thermal equilibrium. Hel−ph is the coupling between the bath
and the excitons, i.e. Hel−ph

kk′ = 〈k|Hel−ph|k′〉. The most important thing
in Redfield’s theory is to evaluate this correlation function. If the phonon
modes in each monomer are independent, then

Wkk′ =
∑

i

〈k|i〉〈i|k′〉Jn(ωk′ − ωk) (3.6)

Here Jn(ω) is the phonon spectral function at site-n. [26]
Redfield theory provides a microscopic description of excitation dynam-

ics via a master equation in a reduced space of excitons. However, in light
harvesting molecules, the dipole transition is on order of 250cm−1 and the
spectrum linewidth induced by environmental coupling is about 120cm−1.
In this case the Γ � J conditions is not satisfied; Föster theory fits better
in this region.
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3.4. Recent Approaches

Förster theory and Redfield theory are the two major theories in RET,
and they have some features in common. One is that both theories are
Markovian which means the system has no memory of past states. Second,
since they are built to calculate the exciton life time, transfer efficiency and
transfer time, neither of them include the off-diagonal terms in the reduced
density matrix. [13]. In order to study the transfer dynamics between chloro-
phylls, the off-diagonal terms are essential to get correct coherent pattern.
People began to explore other possibilities in this territory.

3.4 Recent Approaches

In 2008, Mohseni et al [30, 31] proposed an environment-assisted quantum
walk model. They rewrited the semi-classical Förster equation (3.1) into a
quantum Lindblad master equation which involves a phonon bath linearly
coupled to excitons. The resulting equation of motion under Born-Markov
and secular approximations is

∂ρ(t)
∂t

= − i

h
[HC + HLS , ρ(t)] + L(ρ(t)) (3.7)

Here ρ(t) is the density matrix of the central system and HC is its bare
Hamiltonian. HLS is the lamb shift due to phonon bath coupling. L is the
Lindbladian superoperator. Generally it can be written as

L(ρ) =
∑
ω

∑
m,n

γmn(ω)[Am(ω)ρA†
n(ω) − 1

2
Am(ω)A†

n(ω)ρ − 1
2
ρAm(ω)A†

n(ω)]

(3.8)
Here Am(ω) are Lindblad generators and γmn(ω) are the Fourier transfor-
mation of the bath correlation function. Based on such formalism, Mohseni
et al found that in FMO complexes increasing temperature does raise the
energy transfer efficiency by about 25%. This approach partly explains the
99% efficiency in photosynthesis.

In the same year, another group from United Kingdom tried to prove
that even at zero temperature, transport of excitations across dissipative
quantum networks can be enhanced by local dephasing noise. [32] Their
techniques are smiliar with Mohseni’s: a Lindbladian master equation with
dissipation and dephasing noise terms added by hand. But they argued that
nature always choose the best way for energy transfer, so that they found
a set of optimal parameters in their model and claimed that this is what
happens in nature. They found that the maximum transfer rate happens
at the point when the noise coupling strength term γk is not zero. They
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3.5. Quantum Information Considerations

suggested that while dephasing noise destroys quantum correlations, it may
at the same time enhance the transport of excitations.

Another approach is done by Joel Gilmore and Ross H Mckenzie[33],
their model Hamiltonian is a central two level system (TLS) coupled to a
boson bath.

H =
1
2
εσz + Δσx +

∑
k

ωka
†
kak + σz

∑
k

Mk(a
†
k + ak) (3.9)

σs are pauli matrices; a†k, ak are creation and annihilation operators of the
phonon bath. The spectral function J(ω) = 4π

∑
k M2

k/ωδ(ω − ωk) deter-
mines the resistivity from the bath. J(ω) = ηω is the Ohmic dissipation
case. They followed the similar procedure of Feynmann and Calderia [34].
In spin boson model, there is a critical value ωc which as if Δ � ωc then
there is always coherent oscillations between two states; if Δ � ωc and with
η > 1

π there is always incoherent relaxations; for η < 1
π coherent oscillations

could occur, too. This minimal model illustrats how a bath can gradually
turn a coherent quantum system into incoherent one. For more sites, in
order to study the resonance energy transfer, more TLSs should be added
into this Hamiltonian as a natural generalization of coupled biomolecules.
They suggested that this generalized model could be employed to study the
rings of chlorophyll molecules.

3.5 Quantum Information Considerations

Quantum decoherence itself is an important problem in physics. Practical
realizations of quantum computers heavily depend on the conservation of
quantum coherences in a relatively long time. Besides the last step from LH1
to RC, time for an energy signal to find a pathway towards the several LH1
among thousands surrounding molecules is about 3-5 picosecond in two-color
pump-probe measurement. Compared with the coherent time determined
in the experiment (> 660 femtosecond), this coherent time is not short. We
might expect that in certain laboratory conditions the time will be even
longer. Actually, biological molecules have already attracted attentions of
quantum information theorists.[35, 36]

Biological environment are peculiar to physicists: the temperature is
usually high (around room temperature), the bath is always far from equi-
librium and we do not get complete knowledge about driven forces in a bi-
ological system. Before we could utilize light harvesting molecules, the first
question will be whether entanglement exists. Generally, coherent behaviors
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3.5. Quantum Information Considerations

do not guarantee entanglement. Sarovar et al [37] studied the entanglement
in FMO complex. Based on 2D femtosecond spectroscopy data, they did
numeric simulations of the concurrency between any two sites of the FMO
complexes. Their results are encouraging: non-zero entanglement exist sfor
a time scale of 5 picosecond at 77k and 2 picosecond at room temperature
(300K). This result is illustrated in their paper.

We can see entanglement does not just exist between nearest sites. For
example, the No.1 and No.3 chlorophylls are the second furthest pair in
FMO complex (about 28Å) and they are weakly coupled. But they do show
large entanglement for more than 1 picosecond. Though the entanglement
is probably a by-product of coherent behavior and does not impact the
energy transfer properties much, it opens a door to build a naturally robust
quantum devices. Global entanglement within a multichromophore subunit
can be mapped into a reduced 3-site model with entanglement between each
other.[38] This model can be used to realize some quantum random walk
computations.[39]

On probably practical way of quantum computer is Feynman cursor
model[40]. The proposal is to couple the register with additional degrees
of freedom, which is the cursor, together with a time independent Hamilto-
nian for desired evolution. The idea is simple. Consider a system composed
by two subspaces: |bi〉 as orthogonal set for register part and |ci〉 for cursor
part. Then due to the Schmidt decomposition of the state |M(t)〉, we can
always find

|M(t)〉 =
∑

j

√
λj(t)|bj(t)〉 ⊗ |cj(t)〉 (3.10)

in which 〈bj(t)|bi(t)〉 = 〈cj(t)|ci(t)〉 = δij ,∀i, j. Then if at time t the cursor
is found in state |cj(t)〉, the register collapses into |bj(t)〉. Feynman proved
that this model is able to compute all the function computable by a deter-
ministic Turing machine. In light harvesting molecules, if we imagine the
hopping excitons as Feynman’s pointer of cursor and the bath as registers
in which results of computations are stored. When we control the excitons’
movement, we also do transformation on bath register by coupling. Thus
this photosynthetic system becomes a Feynman machine.

This is a new realm for quantum information technologies. How to utilize
this biological complexes in quantum computation is still a open question.
To study its application, in rest of this thesis we are trying to establish a
proper theory to describe the coherent dynamics .

14



Chapter 4

Reduced Density Matrix and
Influence Functional

Before introducing our model, I would like to introduce some fundamental
concepts about decoherence and reduced density matrix formalism. Quan-
tum mechanics was developed by understandings of microscopic worlds, for
instance spins and atomic structures. If this theory is correct, then it should
no contradict with the mesoscopic and macroscopic world. For a pure quan-
tum state, the system is composed by the superposition of possible quan-
tum states. The wave function describes the superposition of state in this
systems. After you do measurement, the wave function collapses and the
absolute value of certain superposition coefficient gives the probability you
can find the system in this certain state. This property apparently does not
exist in our daily life, which is dominated by probabilistically additive law.
Then the issue about how the classical statistic behaviors appear within the
framework of quantum mechanics arises. Though there is still no general
agreement on the interpretation, mainly due to disputes around ”measure-
ment” and ”observation”, the understanding of decoherence is essentially
connected to this problem.

”Decoherence” is the mechanism by which the classical limit emerges
out of a quantum starting point. It can be viewed as the loss of information
from a system in to environment. In this sense decoherence only happens
in a open quantum system. We separate a quantum subsystem, which is
usually called central system, from a global quantum system, which is usu-
ally called the environment or the bath. Due to couplings between them in
some certain physical forms, the bath continually takes measurements on the
central system, and leading to a destruction of quantum phase correlations.
That may untangle the quantum state and produce our macroscopic reali-
ties. Thus, practically the rate of decoherence give us a boundary between
quantum-classical theory. If the decoherence time is long enough for us to
probing the quantum effects, then quantum theory should be employed, but
otherwise classical theory is more applicable and for most of time, easier to
handle. In addition, understanding the details of decoherence in many par-
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4.1. Reduced Density Matrix

ticular cases is of great technical importance. For example, in the quantum
computing and communication field, one of the major problems that pre-
vents a quantum computer becoming practical is decoherence, most qubits
cannot survive decoherence before the operation finishes.

To study decoherence we need reduced density matrix formalism. Since
now the isolated time evolution of the central system is not unitary any more
because entanglements between the system and environment is introduced
by coupling. Wave function itself is not enough to describe the system.
In this chapter we begin with the concept of reduced density matrix in
quantum mechanics. We introduce the influence functional theory, which is
a rigorous method to obtain the dynamics of reduced density matrices. We
show that the influence functional theory preserves the correlations between
baths, which is omitted in popular master equation approaches. At the end
we provide some examples of these subjects. The calculations will be useful
in later chapters.

4.1 Reduced Density Matrix

For a pure state |φ〉, we define the projection operator ρ = |φ〉〈φ| as its
density operator. This is a equivalent form for wave function. However it is
easy to be extended into a more generalized state which also includes classic
probability additive law. For such generalized state it can be written as

ρ =
∑

i

Ci|φi〉〈φi| (4.1)

∑
i

Ci = 1, 0 ≤ Ci ≤ 1 (4.2)

This statistical mixture formation implies that at a particular time the state
of a system is not perfectly known. Positive Ci’s assure this sum is convex.
An important example is the equilibrium density operator in which the
Ci are canonically distributed, and the |φi〉〈φi| are projectors on energy
eigenstates.

ρ =
1
Z

∑
i

e−βEi |φi〉〈φi|, (4.3)

where Z =
∑

i e
−βEi is the partition function. The expected value of a

observable G for a pure state |φ〉 can be written as

〈G〉 = 〈φ|G|φ〉 = tr(G|φ〉〈φ|) (4.4)
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4.1. Reduced Density Matrix

Then for a mixed state with density matrix ρ, the expectation value of G is

〈G〉 = tr(ρG) (4.5)

Back to our ”central system” plus ”bath” model, we could consider it as a
large system composed of two part A and B, each with a Hilbert space HA

and HB. For a pure state |φ〉AB ∈ HA
⊗

HB, it can be written as a linear
combination of orthogonal basis in each Hilbert space.

|φ〉AB =
∑
im

aim|i〉A|m〉B,
∑
im

|aim|2 = 1 (4.6)

We assume FA is an observable of subsystem A. In the view of the whole
system A+B, this observable should be expressed as F = FA

⊗
IB, with IB

the identity operator of subsystem B. The expectation value of FA in state
ρAB is

〈FA〉 =trAB(ρABF ) = trAB(ρABFA

⊗
IB)

=
∑
im

〈i|A〈m|B
∑
jn,kl

cjn,kl|j〉A|n〉B〈k|A〈l|BFA

⊗
IB|i〉A|m〉B

=
∑

i

〈i|A
∑
jk

(
∑
m

cjm,km)|j〉〈k|FA|i〉A

=trA(ρAFA)

(4.7)

We arrive with a expression for subsystem A which is apparently indepen-
dent of subsystem B. But ρA is actually dependent on HB since

ρA ≡
∑
jk

(
∑
m

cjm,km)|j〉〈k| = trB(ρ). (4.8)

We define ρA as our reduced density matrix and define this operation trB

as partial trace of B. Generally the reduced density matrix is not a pure
state, which means if we only look at a specific small portion of a large
quantum system, we cannot gain complete information of the system. If
we consider A as our ”central system” and B as the surrounding bath, ρA

determines the properties of the subsystem which we are interested in. The
coupling between the bath and the system is the reason why decoherence
exists. In the word of density matrix formalism, the effect of decoherence
on density matrices is essentially the decay or rapid vanishing of the off-
diagonal elements of the partial trace of the whole system’s density matrix.
Thus, in order to explore the time evolution of the reduced density matrix
and study its decoherence, we need to find the equation of motion of reduced
density matrix. However, this is not usually a straightforward calculation
and in most cases there is no exact analytical answer.
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4.2. Path Integral Formalism

4.2 Path Integral Formalism

We still start with the whole system A + B. x and q each labels the states
in Hilbert space HA and HB respectively (as a generalized position). We
assume the Hamiltonian ruled the global system is

H = HA(x) + HB(q) + HI(x,q). (4.9)

To carry out the dynamics of reduced density matrix, we use the technique
first introduced by Feynman and Vernon[41]. Based on path integral form,
the time evolution of the whole system’s density matrix ρAB can be written
as

ρAB(xf ,qf ;x′
f ,q′

f ) =
∫

dqidq′
idxidx′

iρAB(xi,qi;x′
i,q′

i)

× JAB(xf ,qf ;x′
f ,q′

f t;xi,qix′
i,q′

i, 0)
(4.10)

The subscripts f, i indicate final and initial states respectively. And the
integration kernel

JAB(xf ,qf ;x′
f ,q′

f t;xi,qix′
i,q′

i, 0)

=
∫ q(t)=qf

q(0)=qi

Dq
∫ q′(t)=q′f

q′(0)=q′i
Dq′

∫ x(t)=xf

x(0)=xi

Dx
∫ x′(t)=x′

f

x′(0)=x′
i

Dx′ exp{ i

�
(SAB[x,q] − SAB[x′,q′])}

(4.11)

SAB is the action of the Hamiltonian HAB and similarly we could write it
as

SAB[x,q] = SA[x] + SB[q] + SI [x,q] (4.12)

Suppose that the density operator of the global system at the initial time
t = 0 is in product form i.e.

ρAB(0) = ρA(0) ⊗ ρB(0) (4.13)

Then we take partial trace over B in equation (4.10) and get

ρA(xf ,x′
f ; t) =

∫
dxidx′

i

∫ x(t)=xf

x(0)=xi

Dx
∫ x′(t)=x′

f

x′(0)=x′
i

Dx′

exp{ i

�
(SA[x] − SA[x′])}F [x(t),x′(t)]ρA(xi,x′

i; 0)

(4.14)
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4.2. Path Integral Formalism

With the kernel

F [xf ,x′
f ] ≡

∫
dqfdqidq′

∫ q(t)=qf

q(0)=qi

Dq
∫ q′(t)=qf

q′(0)=q′i
Dq′

exp{ i

�
(SB[q] + SI [q,x] − SB[q′] − SI [q′,x′])}ρB(q,q′; 0)

(4.15)

Here D indicate functional integration for all possible path from time 0 to t.
Since we take trace over system B, the final state of B should be the same
qf for both q(t) and q′(t). This method is called the influence functional
method and F [x(t),x′(t)] is so called the ”influence functional”.

Generally, the influence functional F [x(t),x′(t)] does not only depend on
the initial and the end point of the path x(t) but also the positions at any
time between them. In other words, the state of the central system in the
moment is not solely depending on its state in previous instant. We need
to include everything about its history after t = 0 to predict its behavior
thereafter. For superoperator K(t, t′) which is defined as ρ(t) = K(t, t′)ρ(t′),
this situation means

K(t, 0) �= K(t, t′)K(t′, 0); 0 < t′ < t. (4.16)

This property implies that the effect of bath does not actually make
the wave-function collapsed unless we do measurement on it. If we stop
at a time t′ and measure the properties of the system, then we actually
do ”environmental trace over” on our density matrix and make it from a
pure state to a reduced mixture. After that if we let the system continue
evolving to time t, it will be different from the one which evolves from 0 to
t without disturbation. How the system changes depends on our measure-
ment base. For instance when we are studying the photoemission system,
we could choose to study either the light from the atom, may it be emit-
ted, absorbed or scattered; or the properties of the atom’s variables before
and after. Generally it will give different results. However, most master
equations approaches,including quantum Langevin equation, Lindblad for-
malism and Zwinger equation, whose target is to find a equation of motion
like ∂

∂tρ(t) = Lρ(t), omit this retarded effect. Markov approximation as-
sumes that a given future state at any given moment depends only on its
present state. Nowadays there are some modified non-Markovian models,
such as [42, 43], introduce a time dependent kernel into the formation by
hand.

Formally, equation (4.14) gives the time evolution of the reduced density
matrix of the central system and it is a exact result. However, in most cases
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4.2. Path Integral Formalism

it is not easy to calculate out this equation analytically. Next we provide two
examples about path integral and influence functional. They both involve a
particle hopping on a discrete ring and its influence functional kernel with
environment.

4.2.1 Example I: Particle Moving On a Discrete Ring

Consider our N-site tight binding Hamiltonian as

H =
∑
<ij>

Δoe
iΦ/Nc†icj (4.17)

with periodic boundary condition cN+1 = c1. < ij > indicate nearest neigh-
bor pairs. Φ is a flux term threading the ring. Then there is an accumulated
phase depending on the winding number of each path. The standard way
to calculate the Green function is through Fourier transformation

c†j =

√
1
N

∑
kn

eiknjc†kn
,

c†kn
=

√
1
N

∑
�

e−ikn�c†� ,

kn =
2πn

N
, n = 0, 1, . . . , N − 1 , (4.18)

the Hamiltonian is then diagonalized as

H =
∑
kn

2Δo cos(kn − Φ/N)c†kn
ckn

. (4.19)

Then the 1-particle Green function is

Go
jj′(t) ≡ 〈j|Go(t)|j′〉 ≡ 〈j|e−iHot|j′〉

=
1
N

∑
n

e−i2Δ0t cos(kn−Φ/N)eikn(j′−j) . (4.20)

We will then reproduce this result through path integral method, though
since it is a dicrete model path integral reduces to countable path summa-
tion. The idea is to count possible paths start from site j and end at site
j′. The contribution of each path is 1

n!(−iΔot)neimΦ+i(j−j′)Φ/N . Here m
is the winding number, n is the number of total steps of this path. The
factor 1

n! is due to permutation. Each path is composed by a clockwise
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4.2. Path Integral Formalism

steps and b counter-clockwise steps. For a given total step n and winding
m, there are n+mN−j′+j

2 clockwise steps and n−mN+j′−j
2 counter-clockwise

steps. Here n±(mN−j′+j)
2 ∈ N otherwise it is impossible. Therefore, there are

n!

(n+mN−j′+j
2

)!( n−mN+j′−j
2

)!
possible path after permutation. We sum over all

contributions by possible m and n to get the Green function in path integral
form

Go
jj′(t) =

+∞∑
n=0

[n±(mN−j′+j)]/2∈N∑
m∈Z

(−iΔ0t)n

(n+mN−j′+j
2 )!(n−mN+j′−j

2 )!
eimΦ+i(j−j′)Φ/N

(4.21)
Equation(4.21) looks quite different from (4.20), but they do agree with each
other. Let me start with equation (4.20). Using the generation function of
Bessel Function

eiz cos θ =
∞∑

m=−∞
Jm(z)imeimθ (4.22)

, we could rewrite (4.20) into

Go
jj′(t) =

1
N

N−1∑
n=0

+∞∑
m=−∞

Jm(2Δ0t)i−meim(kn−Φ/N)eikn(j′−j) . (4.23)

Since kn = 2πn
N , we do the summation over index n at first:

1
N

N−1∑
n=0

eikn(j′−j+m) =
∑

p

δj′−j+m,pN (4.24)

The delta function here is the Kronecker delta function. Then we can write
this as a sum over winding numbers p, viz.,

Go
jj′(t) =

∑
p

JpN+j−j′(2Δ0t)e−i(pN+j−j′)(π/2+Φ/N) (4.25)

Then looking back at equation (4.21), using the Taylor expansion of Bessel
function

Jα(x) =
+∞∑
m=0

(−1)m

m!Γ(m + α + 1)
(
x

2
)2m+α . (4.26)

we then transform (4.21) into (4.25) after we set m ↔ p. We can find that
winding numbers enter the order of Bessel funcions.
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4.2.2 Example II: Influence Functional

Let us start with the same Hamiltonian as (4.17) but this time the flux is
depending on a environment coordinate Φ(x), and x has its own Hamiltonian
h(x). Our new Hamiltonian is

H =
∑
<ij>

Δoe
iΦ(x)/Nc†icj + h(x) (4.27)

For simplification , we assume that Φ(x) commutes with h(x), i.e.[Φ(x), h(x)] =
0 and h(x) does not contain time variables explicitly. Formally we can still
write the Green function of the central system as

Go
jj′(t) =

∑
p

JpN+j−j′(2Δ0t)e−i(pN+j−j′)(π/2+Φ(x)/N) (4.28)

This expression contains a environment coordinate. If we partial trace over
this environment coordinate, the phase factor becomes

F (t) = 〈e−i(p+(j−j′)/N)Φ(x)〉 = Tr(e−i(p+(j−j′)/N)Φ(x)e−ih(x)tρ0) (4.29)

Here ρ0 is the inital state of the bath. The Green function becomes

Go
jj′(t) =

∑
p

JpN+j−j′(2Δ0t)i−pN−j+j′Fj,j′(p; t) (4.30)

Then Fj,j′(p; t) is the influence function defined in (4.15) [41]. It depends on
properties of the bath (bath coupling ,bath Hamiltonian, initial bath state)
as well as details of the path (start and end point, winding number, etc).
These expressions are useful in later chapter.
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Chapter 5

Coherent Hopping on a Ring
with Spin Bath

For light harvesting molecules, there are mainly two bath models in the lit-
erature: white noise model and oscillator bath model. Both of them have
non-physical part: white noise is under infinite temperature and completely
random distributions; oscillator bath cannot avoid the energy loss to envi-
ronment.

In this chapter, we begin with the reasons of using the spin bath. We
argue that spin bath modes are also important in light harvesting molecules.
It has some unique features which have not been understood well. We dis-
cuss dynamics of a general bath spin and assumptions we make. Then we
show the general influence functional method which provides analytic results
about the reduced density matrix, and parameterize its decoherence rate an-
alytically. At the end, we put two initially separated wave-packets into this
system to reproduce the coherent beating phenomenon in the molecules ex-
periments. We see how sharp oscillating beat patterns are rapidly suppressed
by surrounding environments.

5.1 Why Spin Bath

Spin bath models were developed in low temperature physics [44]. In low
temperature, the physics is dominated by localized modes, such as defects,
dislocations paramagnetic impurity spins. Due to their low characteristic en-
ergy scale, they often give decoherence with almost no dissipation. We have
already known that there is almost no energy loss during the energy transfer
in light harvesting molecules. When people are dealing with oscillator bath
models, they need to find specific parameters(temperature, Ohmic constant,
etc) to avoid energy loss. The reason is that in oscillator bath modes, dissi-
pation is inevitable when dephasing is present due to fluctuation dissipation
theorem. The central system are keeping exchanging energy with environ-
ment. However, spin bath models have a natural advantage which allows us
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5.2. General Model for Spin Bath

to study decoherence processes distinctively from dissipations.
The hopping energy in light harvesting complexes is usually 2 orders

smaller than the on-site excitation energy. [17]. The energy level spacing of
surrounding excitable molecules is large so that we are allowed to truncate
them from multi energy levels to a simple two level system. The transfer
seems impossible to cause multi excitations in these molecules. In addition,
biological system is always far away from equilibrium and localized modes
are generated constantly. These modes will not interact with delocalized
ones quickly. Plus, people already proved that the light energy is absorbed
one by one. We do not need to consider about multi-particle transfer.

At last, spin bath is not well-understood yet. Unlike oscillator models,
which are analytically solvable with a classical analogy, spins are totally
quantum. The general dynamic of a spin in a time-dependent field is not
solvable. We see the general path integral formalism of spins later. In
remains of this thesis we are all working in this model.

5.2 General Model for Spin Bath

Figure 5.1: An 8-site ring as a demonstration for B800 rings of LH2. At left
it is shown in a site representation with nearest-neighbour hopping between
the nodes. At right a potential U(R) with 8 potential wells is shown as a
contour map (with lower potential shown darker). When truncated to the 8
lowest eigenstates, this becomes equivalent to the site model shown at left.

In the ring-like structure of LH1 and LH2, this symmetric simplifies our
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calculations. Consider the central system as a particle hopping on a close
ring. Then the most general Hamiltonian for a system coupled to a spin
bath is

H = HD + HND + HSB (5.1)

with diagonal (ie., on-site) terms

HD =
∑

j

(εj +
∑

k

ωj
k · σk)c

†
jcj (5.2)

and non-diagonal terms, associated with inter-site hopping of form

HND =
∑
<ij>

{tijc†icj exp[iA0
ij + i

∑
k

(φij
k + αij

k · σk)] + H.c.} (5.3)

The independent spin bath Hamiltonian is

HSB =
∑

k

hk · σk +
∑
k,k′

V αβ
kk′ σ

α
k σβ

k′ (5.4)

The operator c†j creates a particle at site j. The {σk} are Pauli operators
for the surrounding two level systems (TLSs), with k = 1, 2, ....Ns. The
phase factors {A0

ij} gives a topological feature between different path; there
are different accumulated phases due to different winding number. The
origin of such flux is not limited to magnetic field: it can be any general
phase factor when particles travel around the ring, for example the spin
orbit coupling or the interaction between reaction center. Since our ring is
symmetric, so that the hopping matrix elements tij → Δ0, and we assume
A0

ij = 2πΦ/NΦ0, where Φ0 is the flux quantum. For nonsymmetric case
,such as FMO complex, on-site energy is different for site to site and the
problem is more complicated which we need to consider the localization
problem around certain site. In this thesis we only consider a completely
symmetric ring like LH1, the site energy εj → ε0,∀j, and we henceforth
ignore it; this leaves only the on-site interaction ωj

k with the bath.
The origin of non-diagonal terms is a little more subtle. Suppose there

were no spin bath in the problem, so that our ”bare” ring had a Hamiltonian

Ho =
∑
<ij>

[
tijc

†
icj eiA0

ij + H.c.
]

+
∑

j

εjc
†
jcj (5.5)

This ”1-band” Hamiltonian is the result of truncating of a Hamiltonian of
form:

HV =
P 2

2M
+ U(R) (5.6)
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where a particle of mass M moves in a potential U(R) characterized by
N potential wells in a ring array (see again Figure.5.1). Then εj is the
energy of the lowest state in the j-th well, and tij is the tunneling amplitude
between the i-th and j-th wells. In path integral language, this tunneling
is over a semiclassical ”instanton” trajectory Rins(τ), and this occurs over
a timescale τB in 1/Ω0 (the ”bounce time” [45]), where Ω0 is roughly the
small oscillation frequency of the particle in the potential wells.

Consider now what happens when we couple to the spin bath. The bath
spins couple to the position of the particle via an interaction [46]

Hint(R) =
∑

k

F (R − rk) · σk =
∑

k

Hk
int(R) (5.7)

where F (r) is some vector function, and rk is the position at the k-th bath
spin. The diagonal coupling ωj

k · σk is easily obtained from (5.7) when we
truncate to the single band form. But the term (5.7) must also generate a
non-diagonal term. We can see this by defining the operator

T̂ k
ij = exp [−i/�

∫ τf (Rj)

τin(Ri)
dτ Hk

int(R, σk)] (5.8)

where the particle is assumed to start in the i-th potential well centered at
position Ri, at the initial time τin, and finish at position Rj in the adjacent
j-th well at time τf ; the intervening trajectory is the instanton trajectory
(which in general is modified somewhat by the coupling to the spin bath).

Now we operate on σk with T̂ k
ij , to get

|σf
k〉 = T̂ k

ij |σin
k 〉 = ei(φij

k +αij
k ·σk)|σin

k 〉 (5.9)

where we note that both the phase φij
k multiplying the unit Pauli matrices,

and the vector αij
k multiplying the other 3 Pauli matrices, are in general

complex. In this way the instanton trajectory of the particle acts as an
operator in the Hilbert space of the k-th bath spin[44, 47].

Note that there will also in general be a coupling of the bath spins to
the momentum of the particle, of form

Hint(P) =
∑

k

G(P − rk) · σk =
∑

k

Hk
int(P) (5.10)

which will also generate a non-diagonal interaction between the particle and
the spins, of the same form as in (5.3). Now, if we know U(R), F (R −
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5.2. General Model for Spin Bath

Figure 5.2: A typical path(solid line) for a particle moving in a discrete ring
coupled to environmental modes(wavy lines) as a function of time.

rk), and G(P − rk), we can then calculate the parameters φij
k and αij

k by
various methods [44, 48]. However we are interested here in the generic
case, and our object is to study the dynamics of decoherence as one varies
the αij

k ; thus we simply assume these parameters to be given. Actually,
the biological solvent is quite dirty, it contains many different effects such
as ionized charges, molecule amorphous and . It is almost impossible to
determine these parameters specifically in these systems.

In this thesis we mainly focus on a special case of the general Hamiltonian
in equations (5.1)-(5.4), given by

Hφ = −Δ0

∑
<ij>

[c†icje
i(A0

ij+
∑

k αij
k ·σk) + H.c.] +

∑
k

hk · σk (5.11)

This Hamiltonian is chosen because it isolates the processes contributing
to pure phase decoherence without energy dissipation, as we discussed above.
We drop the the diagonal interaction ωj

k to avoid complications of the energy
relaxation. For other terms, we drop the interaction V αβ

kk′ , between bath
spins. Since we have already mentioned that in light harvesting molecules,
couplings between environment molecules are 2 orders smaller than its own
on-site energy. It is often a good approximation. Since it is a symmetric
ring, we put εj = 0, and absorb the phases φij

k into a renormalization of Δ0

(from
∑

k Im φij
k ), and of A0

ij (from
∑

k Re φij
k ).
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5.3. Path Integral Formalism for Spin Bath

5.3 Path Integral Formalism for Spin Bath

To calculate the influence functional, we need to at first written the spin
Hamiltonian in to path integral form. Consider the Hamiltonian of a spin,

H = B · S (5.12)

Here B is a function of t and S = 1
2σ for spin 1/2 system. Since eia(n·σ) =

cos a + i(n · σ) sin a, we can always transform our equation (5.11) in to this
form. To get a path integral form, we consider the coherent state |n〉, which
satisfy

n · σ|n〉 = |n〉 (5.13)

Here n is a 3-D unit vector. In σz representation, this state can be written
as

|n〉 = |z〉 =
(

e−iφ cos θ
2

sin θ
2

)
(5.14)

(θ, φ) are the spherical angles of vector n. The phase space is a sphere. This
coherent state set is complete. The normalization is

∫
d2n
2π

|n〉〈n| = 1 (5.15)

But they are not orthogonal. The inner product between any two states
|na〉 and |nb〉 is

〈na|nb〉 = z†azb (5.16)

Then for the propagator G(na,nb, t) = −i〈na|e−i
∫

dt′B·S|nb〉, we slice the
time interval [0, t] into N parts and plug (5.15) in, we have

G(na,nb, t) = −i

∫
〈na|e−iδtB·S|n1〉〈n1|e−iδtB·S|n2〉〈n2|....|nN 〉〈nN |e−iδtB·S|nb〉

(5.17)
Here δt = t/N and

∫
indicate all the integrals from all plug-ins. If N → ∞,

we only keep the first order of δt. Noticing that zj+1 ≈ zj + ż(j)δt, the
quantity

〈nj+1|e−iδtB·S|nj〉 ≈〈nj+1|nj〉 + 〈nj+1|iδtB · S|nj〉 ≈ z†j+1zj − i
1
2
B · nj

≈1 + ż†jzj − i
1
2
B · nj ≈ eiδt(−iż†j zj− 1

2
B·nj)

(5.18)
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5.4. Bare Ring Dynamics

Therefore, we get the path integral form for spin as

G(na,nb, t) = −i

∫ D2n(t)
2π

eiS[n(t)] (5.19)

S[n(t)] =
∫ t

0
dt′(−iż†z − 1

2
B · n) (5.20)

Unless in some special cases (e.g. B(t) = constant, or B(t) = (B1 cos ωt, B1 sinωt,B0)),
this integral cannot be evaluated analytically. In spin bath case, B(t) usually
depends on the path chosen by the central system, which means principally
we cannot make any assumption in B(t). There is no general method about
how to make approximations here. In the later sections, we deal with two
special case: hk = 0 (no intrinsic dynamics of bath spin); and hk → ∞ (high
field limit).

5.4 Bare Ring Dynamics

At first we consider the dynamics of a particle(exciton) moving on the N-site
ring described by Ho in (5.5), with no bath. This is basically depending on
the excitation energy and overlap integral between chlorophylls. We have
already solved the Green function in previous sections, see (4.25). We are
using this result to get some useful expression in this section.

Before we start, it is often more useful to have expressions for the density
matrix; even though these depend trivially for a free particle on the Green
function. One has, for the ’bare’ density matrix of the system at time t,

ρo(t) = e−iHotρo(0)eiHot. (5.21)

Thus, suppose we have an initial density matrix ρo
l,l′ = 〈l|ρ(t = 0)|l′〉 at time

t = 0 (where l and l′ are site indices), then at a later time t we have

ρo
jj′(t) ≡ 〈j|ρo(t)|j′〉 = 〈j|e−iHot|l〉ρl,l′〈l′|eiHot|j′〉

= ρl,l′G
o
jl(t)G

o
j′l′(t)

†. (5.22)

where we use the Einstein summation convention (summing over l, l′). In
what follows we will often choose the special case where the particle begins
at t = 0 on site 0, so that ρl,l′ = δ0lδl′0, and then we have

〈j|ρo(t)|j′〉 = Go
j0(t)G

o
j′0(t)

†. (5.23)
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5.4. Bare Ring Dynamics

Now the most obvious way of evaluating this is by using the result for the
Green function, to produce a double sum over winding numbers:

ρo
jj′(t) =

∑
l,l′

ρl,l′
∑
pp′

ei(p−p′)ΦeiΦ(j−j′+l−l′)/N iN(p′−p)+j′−j+l−l′JNp+j−l(2Δot)JNp′+j′−l′(2Δot)

=
∑
l,l′

ρl,l′
∑
pp′

ei(Φ/N+π/2)[N(p′−p)+j′−j+l−l′]JNp+j−l(2Δot)JNp′+j′−l′(2Δot)

(5.24)

This expression contains two path interferences which is clear by physical
understanding. However it is somewhat unwieldily, particularly for numeri-
cal evaluation, because of the sum over pairs of Bessel functions. It is then
useful to notice that we can also derive the answer as a single sum over
winding numbers. To do this we use Graf’s summation theorem for Bessel
functions[49]

Jν(2x sin
θ

2
)(−e−iθ)

ν
2 =

+∞∑
μ=−∞

Jν+μ(x)Jμ(x)eiμθ (5.25)

We set θ = 0, 2π
N , ...2πm

N , ...2π(N−1)
N , which is the km in (4.18) and multiply

e−i(j−l)θ on each side. We then have

Jν(2x sin
km

2
)e−i(km+π) ν

2 e−i(j−l)km =
+∞∑

μ=−∞
Jν+μ(x)Jμ(x)ei(μ−j+l)km

(5.26)
Noticing then that

N−1∑
m=0

eikmn =
∑

p

δNp,n (5.27)

we do the sum over m; only μ − j + l = Np survives, and thus

1
N

N−1∑
m=0

Jν(2x sin
km

2
)e−i(km+π) ν

2 e−i(j−l)km =
1
N

∑
p

JNp+j−l+ν(x)JNp+j−l(x)

(5.28)
Setting ν = Np′+j′−l′−Np−j+l, x = 2Δot, we then substitute (5.28)back
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5.4. Bare Ring Dynamics

into (5.22), to get

ρo
jj′(t) =

∑
ll′

ρll′
∑
pp′

ei(Φ/N+π/2)(Np′−Np+j′−j+l−l′)JNp+j−l(2Δot)JNp′+j′−l′(2Δot)

=
1
N

∑
ll′

ρll′
∑

p

ei(Np+j′−j+l−l′)( Φ
N

+π
2
)

N−1∑
m=0

JNp+j′−j+l−l′(4Δot sin
km

2
)

× e−i(km+π)Np+j′−j+l−l′
2 e−i(j−l)km

=
1
N

∑
ll′

ρll′
∑

p

N−1∑
m=0

JNp+j′−j+l−l′(4Δot sin
km

2
)

× ei(Np+j′−j+l′−l) Φ
N
−ikm(j+j′+Np−l−l′)/2

(5.29)

If we start with ρ(0) = |0〉〈0|, the expression is shortened to

ρjj′ =
1
N

N−1∑
m=0

∞∑
p=−∞

JNp+j′−j [4Δot sin(km/2)]×eiΦ(p+(j′−j)/N)−ikm(j+j′+Np)/2

(5.30)
In this expression we use the fact that density matrix ρ is Hermitian, i.e.,
ρjj′ = ρ∗j′j . By setting p → −p, km → −km, we have

ρo
jj′(t) =

1
N

∑
p

N−1∑
m=0

J−Np+j−j′(4Δot sin
km

2
)e−i(−Np+j−j′) Φ

N
+ikm(j+j′−Np)/2

=
1
N

N−1∑
m=0

∞∑
p=−∞

JNp+j′−j [4Δot sin(km/2)]eiΦ[p+(j′−j)/N ]−ikm(j+j′−Np)/2

(5.31)

From either Go
jj′(t) or ρo

jj′(t) we may immediately compute two useful
physical quantities. First, the probability to find the particle at time t at
site j, assuming it starts at the origin, is

P
(o)
j0 (t) = 〈j|ρo(t)|j〉 = |Go

j0(t)|2. (5.32)

which from above can be written as

P
(o)
j0 (t) =

∑
pp′

JNp+j(2Δot)JNp′+j(2Δot) e−iN(p′−p)(Φ/N+π
2
) (5.33)

31



5.4. Bare Ring Dynamics

or in single sum form as

P o
j0(t) =

1
N

N−1∑
m=0

∞∑
p=−∞

eip(Φ+Nkm/2)JNp[4Δot sin(km/2)] . (5.34)
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Figure 5.3: Results for the free particle for N = 3 and for a particle initially
on site 1. Left: The probabilities to occupy site 1 (full line), 2 (large dashes),
and 3 (small dashes). Right: the current from site 1 to site 2. Top: Φ = 0.
Bottom: Φ = π/2 (i.e. φ = π/6).

One may also compute moments of these probabilities (eg., the 2nd mo-
ment j2P o

j0(t) tells us the rate at which a density matrix spreads in time).
The bare density matrix is of course strictly periodic in time, as seen most

obviously in (5.34). To give some idea of how the free particle behaves, it
is useful to look at plots of these results for a small 3-site ring, where the
oscillation periods are quite short. One then has, for the case where the
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5.4. Bare Ring Dynamics

particle starts at the origin, that

P o
j0(t) =

1
3
(
1 + (3δj,0 − 1)

[
J0(2Δo

√
3t) + 2

∞∑
p=1

J6p(2Δo

√
3t) cos(2pΦ)

]

+ (δj,1 − δj,2)2
√

3
∞∑

p=1

J6p−3(2Δo

√
3t) sin((2p − 1)Φ)

)
.

(5.35)

In Fig. 5.3 the return probability P
(o)
00 (t) is plotted for N = 3; we see that

the periodic behavior depends strongly on the flux Φ.
The second useful quantity is the current between site j and site j + 1;

since the equation of motion of ρnn reads

i
d

dt
ρnn =

∑
n′

[〈n|H|n′〉〈n′|ρ|n〉 − 〈n|ρ|n′〉〈n′|H|n〉] (5.36)

Thus we define the current Inn′ , which is the current from n′ to n, as

Inn′ = −i(Δnn′ρn′n − ρnn′Δn′n). (5.37)

In our bare ring model here, it reads

Io
j,j+1(t) = 2 Im [Δ0e

−iΦ/Nρo
j+1,j(t)] (5.38)

Again, one can write the current as either a double sum over pairs of wind-
ing numbers, or as a single sum. The derivation is same as the reduce
density matrix. For the case where the particle starts from the origin, these
expressions reduce to

Ij+1,j = 2Δo

∑
pp′

JNp+j(2Δot)JNp′+j+1(2Δot) cos[(
π

2
N + Φ)(p′ − p)]

=
2Δo

N

N−1∑
m=0

∑
p

JNp+1(4Δot sin
km

2
)e−ikm(Np+1

2
+j)iNp+1 cos[(

π

2
N + Φ)p]

(5.39)

for the double and single sums respectively. An interesting special case is
the current between the site of origin and the adjacent site I01. One can
simplify this to

Io
01(t) =

1
2

∂|G00|2
∂t

+
N

t
|G00|2

∂argG00

∂Φ
. (5.40)
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5.4. Bare Ring Dynamics

To derive (5.40), we notice that

∑
p

JpN+1(x) = J1(x) +
+∞∑
l=1

(JlN+1(x) + (−1)lN−1JlN−1(x)) (5.41)

And

JlN−1(x) − JNl+1(x) = 2J ′
lN (x) (5.42)

JlN−1(x) + JNl+1(x) =
2lN

x
JNl(x) (5.43)

Substituting back into (5.68) to make orders of all Bessel functions as Nl, ,
we could use (4.23) to absorb the sum. It yields

Io
01(t) = Δ0[

1
2Δ0

(
∂G00

∂t
+

Ni

t

∂G00

∂Φ
)G∗

00 +
1

2Δ0
(
∂G∗

00

∂t
− Ni

t

∂G∗
00

∂Φ
)G00]

=
1
2

∂|G00|2
∂t

+
Ni

2t
(G00

∂G∗
00

∂Φ
− G∗

00

∂G00

∂Φ
)

=
1
2

∂|G00|2
∂t

+
N

t
|G00|2

∂argG00

∂Φ
(5.44)

Again, the currents across any links must be strictly periodic in time; and
again, it is useful to show the results for a 3-site system. For this case N = 3
, and assuming that the particle begins at the origin, we find

I0,1 =
2Δo

3

2∑
m=1

∑
p

J3p+1(4Δot sin
mπ

3
)e−imπ(3p+1)/3i3p+1 cos[(

3π

2
+ Φ)p]

(5.45)

which we can also write in the form

I0,1 =
2Δo

3

∑
p

J3p+1(2
√

3Δot)i3p+1 cos[(
3π

2
+ Φ)p]

2∑
m=1

(e−iπ(3p+1)/3 + e−i2π(3p+1)/3)

(5.46)

Now let us write e−iπ(3p+1)/3 + e−i2π(3p+1)/3 = (−)pe−iπ/3 + e−2iπ/3. If p is
even, this becomes −i

√
3 and cos[(3π

2 + Φ)p] = (−)3p/2 cos(Φp); If p is odd,
it becomes−1 and cos[(3π

2 + Φ)p] = (−)3(p−1)/2 sin(Φp). Therefore, we have

I0,1 =
2
3
Δo

∞∑
p=−∞

J3p+1(2Δo

√
3t)K(p,Φ) ,

K(p,Φ) = sin(pΦ) if p = odd ,

K(p,Φ) =
√

3 cos(pΦ) if p = even . (5.47)
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5.5. Ring Plus Bath

These results are shown in Fig. 5.3. Notice that in this special case the
result is periodic in Φ; this is not however true for a general initial density
matrix ρl,l′ , when the periodicity is in Φ/N . This is due to our symmetric
flux distribution assumption on each bond.

5.5 Ring Plus Bath

From now on we are going to solve for the reduced density matrix of the
particle once it is coupled to the spin bath, assuming the system to be
described by Hφ in (5.11). We have already discussed it in previous sections.
A typical paths for a particle is shown in Fig. 5.4.

t

j

3

0

0

2

1

3

2

1

Figure 5.4: A particular path in a path integral for the particle, shown here
for an N = 4 ring. This path, from site 0 to site 1, has winding number
p = 1.

Let us rewrite (4.30) into a influence functional form for density matrices.
If we can parameterize a path for the angular coordinate Θ(t) which includes
m transitions between sites in the form

Θ(m)(t) = Θ(t = 0) +
m∑

i=1

∑
qi=±

qiθ(t − ti) , (5.48)

where θ(x) is the step-function. The propagator K(1, 2) for the particle
reduced density matrix between times τ1 and τ2 is then

K(Θ2, Θ′
2; Θ1, Θ′

1) =
∫ Θ(τ2)=Θ2

Θ(τ1)=Θ1

dΘ
∫ Θ′(τ2)=Θ′

2

Θ′(τ1)=Θ′
1

dΘ′ e−
i
�
(So[Θ]−So[Θ′])F [Θ, Θ′]

(5.49)
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where So[Θ] is the free particle action, and F [Θ, Θ′] is the influence func-
tional , defined by

F [Θ, Θ′] =
∏
k

〈Ûk(Θ, t)Û †
k(Θ′, t)〉 , (5.50)

Here the unitary operator Ûk(Θ, t) describes the evolution of the k-th en-
vironmental mode, given that the central system follows the path Θ(t) on
its ”outward” voyage, and Θ′(t) on its ”return” voyage. Thus F [Θ, Θ′] acts
as a weighting function, over different possible paths (Θ(t), Θ′(t)). The dif-
ference between (4.30) and (5.50) is that this one contains the interference
between two path Θ and Θ′.

To see the explicit form, let us write the ”bare” free particle density
matrix in the form of a double sum over winding numbers

ρo
jj′(t) =

∑
pp′

ρo
jj′(p, p′; t) (5.51)

Then the key result is that in the presence of phase coupling to the spin
bath, the reduced density matrix takes the form

ρjj′(t) =
∑
pp′

∑
ll′

ρo
j−l,j′−l′(p, p′; t)F l,l′

j,j′(p, p′)ρll′ (5.52)

where the influence functional, initially over the entire pair of paths for the
reduced density matrix, has now reduced to the much simpler function

F l,l′
j,j′(p, p′) = ρo

j−l,j′−l′(p, p′; t)F l,l′
j,j′(p, p′) (5.53)

involving only the initial and final states, as well as the winding numbers.
We can do this because the effect of the pure phase coupling to the spin
bath is to accumulate an simple additional phase in the path integral each
time the particle hops. Just as for the free particle, we can then classify the
paths by winding number; for a path with winding number p which starts
at site l (the initial state) and ends at site j, the additional phase factor can
then be written as

exp{−ip
∑

k

⎛
⎝ 〈N0〉∑

〈mn〉=〈01〉
−i

〈j−1,j〉∑
〈mn〉=〈l,l+1〉

⎞
⎠ (αmn

k · σk)} (5.54)

and for fixed initial and final sites, this additional phase only depends on
the winding number. One thing to notice is that in this factor we make the
assumption that

[eiα·σ, eiα′·σ] ≈ 0 (5.55)

36



5.5. Ring Plus Bath

Actually this commutator is proportional to (sinα sinα′)(nα×nα′), we drop
it since the coupling α is usually very small and along similar directions.
Performing the sums over the two paths as before, but now including the
phase factors (5.54), we get:

F l,l′
j,j′(p, p′) = 〈e−i(p−p′)

∑
k

∑〈N−1,N〉
〈mn〉=〈0,1〉 α

mn
k ·σke

−i(p−p′)
∑

k

∑〈l−1,l〉
〈mn〉=〈l′,l′+1〉 α

mn
k ·σk

× e
−i

∑
k

∑〈j−1,j〉
〈mn〉=〈j′,j′+1〉 α

mn
k ·σk〉
(5.56)

In the purely symmetric case where αij
k → αk for every link, the influence

function reduces to the much simpler result

F l,l′
j,j′(p, p′) = 〈e−i[N(p−p′)+(j−j′+l−l′)]

∑
k αk·σk〉 (5.57)

which for a particle being launched from the origin gives the result (5.60)
quoted in the main text.

If we start with initial density matrix ρ(t = 0) = |0〉〈0|, then the reduced
density matrix at time t is

ρjj′(t) =
∑
pp′

ρo
jj′(p, p′; t) 〈e−i(p−p′)

∑
k

∑〈N0〉
〈mn〉=〈01〉 α

mn
k ·σk e

−i
∑

k

∑〈j−1,j〉
〈mn〉=〈j′,j′+1〉 α

mn
k ·σk〉

≡
∑
pp′

ei(p−p′)ΦeiΦ(j−j′)/N (−i)Np+j(i)Np′+j′JNp+j(2Δot)JNp′+j′(2Δot)

× 〈e−i(p−p′)
∑

k

∑〈N0〉
〈mn〉=〈01〉 α

mn
k ·σk e

−i
∑

k

∑〈j−1,j〉
〈mn〉=〈j′,j′+1〉 α

mn
k ·σk〉

(5.58)

However, as noted above, we are interested in the purely symmetric case
where αij

k → αk for every link. In this case the expression (5.58) reduces to
a much simpler result:

ρjj′(t) =
∑
pp′

ei(p−p′)ΦeiΦ(j−j′)/N i[N(p−p′)+(j−j′)]JNp+j(2Δot)JNp′+j′(2Δot) Fj−j′(p, p′)

(5.59)
in which the influence functional reduces for the symmetric ring is defined
by

Fj−j′(p, p′) = 〈e−iN(p−p′)
∑

k αk·σk e−i(j−j′)
∑

k αk·σk〉 (5.60)

Now consider the current Ij,j+1(t), which is given in general by:

Ij,j+1 = −i〈Δ̃j,j+1ρj+1,j − Δ̃j+1,jρj,j+1〉 (5.61)
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where we define
Δ̃j,j+1 = Δoe

iΦ/Nei
∑

k αj,j+1
k ·σk (5.62)

Using the results derived above for the density matrix, we can derive ex-
pressions for Ij,j+1(t) in both single and double winding number forms. The
double Bessel function form is

Ij,j+1 = − 2Δo

∑
pp′

JNp+j−l(2Δot)JNp′+j+1−l′(2Δot)

× Re〈ρl,l′i
N(p−p′)ei[(p−p′)+ 1

N
]Φ e

−i(p−p′)
∑

k

∑〈N0〉
〈mn〉=〈01〉 α

mn
k ·σk

(5.63)

· e2i
∑

k

∑〈j−1,j〉
〈mn〉=〈j′,j′+1〉 α

j,j+1
k ·σk〉 (5.64)

Again, we make the assumption of a completely ring-symmetric bath, so
that αij

k → αk. Then we get

Ij+1,j = 2Δo

∑
pp′

∑
l,l′

JNp+j−l(2Δot)JNp′+j+1−l′(2Δot)Fl,l′(p′, p)

× Re[ρll′e
iΦ[p′−p+(l−l′)/N)]]

(5.65)

From this we can derive the single Bessel Function summation form as fol-
lows. Using the equation

∑
p

JNp+n−l(x)JNp+n−l+ν(x) =
1
N

N−1∑
m=0

Jk(2x sin
km

2
)e−i(n−l)km−i(km−π)ν/2

(5.66)

which is another form of Graf’s identity[49], we set ν = N(p′−p)+1+ l− l′,
x = 2Δot; then

Ij+1,j =
2Δo

N

N−1∑
m=0

∑
p

∑
l,l′

JNp+1+l−l′(4Δot sin
km

2
)e−ikm[Np+1

2
+n−(l+l′)/2]

× iNp+1+l−l′Fll′(p)Re[ρl,l′e
iΦ[(p′−p+l−l′)/N)]]

(5.67)

where we define Fll′(p, 0) ≡ Fll′(p).
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If we make the assumption that the particle starts at the origin, these
results simplify considerably; one gets

Ij+1,j = 2Δo

∑
pp′

JNp+j(2Δot)JNp′+j+1(2Δot)Fj,j(p′, p) cos[(
π

2
N + Φ)(p′ − p)]

=
2Δo

N

N−1∑
m=0

∑
p

JNp+1(4Δot sin
km

2
)e−ikm(Np+1

2
+j)iNp+1 (5.68)

× Fj,j(p) cos[(
π

2
N + Φ)p] (5.69)

for the double and single sums over winding numbers, respectively; In later
expression we might use F0(p) instead of Fj,j(p, 0) for practical analysis.
In the later sections we evaluate this influence function in different limit.
Before we continue , it is useful to note what are the important parameters
in this problem. In symmetric case, assuming that |αk| � 1 for all k, as
discussed above, then it has been usual to define a parameter[44, 47]

λ =
1
2

∑
k

|αk|2 (5.70)

which is intended to measure the strength of the pure phase decoherence
(this parameter has been referred to as the ’topological decoherence strength’
in the literature[44]).

5.5.1 Phase Averaging

In this and next subsections, we assume that there is no external field acting
on bath spin, i.e. hk = 0,∀k. This means the bath does not have intrinsic
dynamics. In light harvesting molecules, such modes are caused by localized
phonons, distortions of bacteria tissues as well as surrounding ions in the
biological solvent. They can freely change from one state to another. We
consider the problem in tow conditions: general strong decoherence limit
and particular intermediate decoherence region.

(i)If the number N of bath spin is large, though αk is small, we still
can have a large λ � 1. This is the limit of strong decoherence limit. The
additional phase is accumulated by each successive hoppings of the spin
environment. In fact, the universal behavior comes from complete phase
phase randomisation, so that all possible phases contribute equally to the
answer.[47, 48] In this case, the ’influence function’ Fj−j′(p.p′) = δj,j′δp,p′ ,
ie., only on-site terms are allowed. This is what has been assumed in Förster
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and Redfield theories. The resulting density matrix is always diagonal, with
matrix elements

ρj,j′(t) = δj,j′

+∞∑
p=−∞

J2
Np+j(2Δot) (5.71)

We notice that in this strong decoherence limit, since the flux Φ enters the
final result via the term ei(p−p′)Φ and only p = p′ terms are allowed, there
is no dependence on the flux at all. To see how these results works out in
practise, consider again the 3-stie ring; we evaluate the ’return’ probability
P00(t). In strong coherence limit the behavior simplifies to

P00(t) = δj,j′

+∞∑
p=−∞

J2
3p(2Δot) =

1
3
(1 + 2J0(2Δo

√
3t)) (5.72)

It is shown in Fig. 5.5 And for the current, we could do the same thing. In

5 10 15
�0t
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2
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1
P j
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Figure 5.5: Plot of Pj1(t) for a 3-site ring, for a particle initially on site 1,
in the strong decoherence limit. Left: The probability to occupy site 1 (full
line), 2 (large dashes), and 3 (small dashes). Right: the current from site 1
to site 2 (compare Fig. 5.3). The results do not depend on Φ.

strong decoherence limit, one has

I(0, 1) =
2
√

3
3

Δo(ρ0,0 − ρ1,1)J1(2Δo

√
3t) . (5.73)

Again we see that the result is completely independent of the flux.
(ii) If the decoherence is not large, i.e. for the intermediate decoher-

ence limit, the form of Fj−j′(p, p′) is not just a delta function. In room
temperature(or 77K which is still high enough) we can assume that such
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5.5. Ring Plus Bath

modes is equally distributed. Therefore the initial distribution is an equally
populated states, we then get

Fj,j′(p, p′) =
∏
k

cos((N [p − p′] + j − j′)|αk|)

≈ e−λ(N [p−p′]+j−j′)2
(5.74)

λ is the same definition in (5.70). The last line is valid when any single
|αk| � 1. The limit λ → ∞ is the ”strong decoherence” limit for this
distribution. Other initial distributions for spin bath are easily evaluated
from (5.60).

From expressions like (5.74) one can then write down expectation values
of physical quantities as a function of time by using (5.59) and (5.68). This
derivation is pretty the same so we just list results. The possibilities to find
a particle at site j is

Pj0(t) =
∑
pp′

JNp+j(2Δot)JNp′+j(2Δot)e−iN(p′−p)(Φ/N+π
2
) F0(p, p′) (5.75)

The current n + 1 → n is

In,n+1 = −2Δo

∑
pp′

JNp+n(2Δot)JNp′+n+1(2Δot)F0(p′, p) cos[(
π

2
N + Φ)(p′ − p)]

(5.76)

One can compare it with the strong decoherence limit result. In this
intermediate decoherence regime, where the effects of the flux Φ are still
visible, the effect of λ here acts as an perturbation to the flux. To see this
we expand F0(p, p′) around αk = 0 point:

F0(p, p′) = 1 − N2(p − p′)2λ + O(λ2) (5.77)

Then Pj0 can be written as

Pj0(t, Φ) ≈ P 0
j0(t, Φ) −

∑
pp′

JNp+j(2Δot)JNp′+j(2Δot)e−iN(p′−p)(Φ/N+π
2
)(p − p′)2N2λ

=P 0
j0(t, Φ) + N2λ

∂2P 0
j0(t,Φ)
∂Φ2

+ O(λ2)

(5.78)

Here P 0
j0(t, Φ) is the probability when there is no bath present. Again, we

consider the 3-site ring, we could get the probabilities and currents as

P1(t) =
1
3
(
1 + 2[J0(2Δo

√
3t) + 4

∞∑
p=1

J6p cos(2pΦ)F0(6p)]
)

. (5.79)
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I(0 → 1) =
2
3
Δo

∞∑
p=−∞

J3p+1(2Δo

√
3t)K(p, φ) ,

K(p, φ) = sin(3pφ) if p = odd ,

K(p, φ) =
√

3 cos(3pφ) if p = even . (5.80)

These results are shown in Fig. 5.7 and Fig. 5.6

Wave-packet Interference

Using the formalism of previous chapters, we could try to reproduce the
quantum beating phenomenon in our model ring. In experiments, people
put 2 pairs of coherent signals into the system: one to create the coherent
interference; another one to detect it. In theory, since we can directly calcu-
late the transfer amplitude, only pair of coherent signals is required. We use
signals in form of wave-packet instead of a single site state because single
site states collapse pretty quickly in time due to uncertainty principle. We
can that if a proper center speed of a wave-packet is chosen, it will survive
a long time with little dispersion.

We now turn to the situation where two signals are launched at t = 0
from 2 different points in the ring. The idea is to see how the spin bath
affects their mutual interference, and how, by effectively coupling to the
momentum of the particle, it destroys the coherence between states with
different momenta. We do not give complete results here, but only enough
to show how things work.

We therefore start with two wave-packets which will initially be in a pure
state, and will then gradually be dephased by the bath. In the absence of
a bath, we will assume the wave function of this state to be the symmetric
superposition

Ψ(t) =
1√
2
(ψ1(t) + ψ2(t)) (5.81)

The free-particle wave function in real space is then

|Ψj(t)〉 =
N−1∑
n=0

e−(kn−π/2)2(ei(j−j0)kne−2iΔot cos (kn+Φ/N)

+ e−ijkne−2iΔot cos (kn−Φ/N))|j〉
(5.82)

so that the probability to find a particle at time t on site j is Pj(t) = |Ψj(t)|2.
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The two wave-packets are assumed to have Gaussian form:

|ψ1(t)〉 =
N−1∑
n=0

e−(kn−π/2)2D/2

× e−ix0kn−i2Δ0t cos(kn−Φ/N)|kn〉 (5.83)

|ψ2(t)〉 =
N−1∑
n=0

e−(kn−π/2)2D/2|2π − kn〉 (5.84)

At t = 0, one of the packets is centered at the origin, and the other at
site jo, and they both have width D. Note that the velocity of each wave-
packet is conserved, and at times such that Δot = 2n, they cross each other.
From (5.83) we see that the main effect of the flux is to shift the relative
momentum of the wave-packets. It also affects the rate at which the wave-
packets disperse in real space - this dispersion rate is at a minimum when
φ = π

2 . The interference pattern is shown in Fig. 5.8
In this graph we can see that there are very sharp interference peaks

when they meet each other. Since there is completely no decoherence in this
system, this is what we expected. If we put flux in this system, it will not
change this pattern much. To see this point, let us look back to (5.82) when
N → ∞. In this limit, we can always find a km which satisfies kn − φ = km

hence we can replace kns with kms and do not need to change boundaries of
the sum due to periodicity. The resulting wave function is

|ψ1〉 = e−iφx0

N−1∑
n=0

e−(km+φ−π/2)2D/2e−ix0km−i2Δ0t cos(km)|km〉 (5.85)

It is a wave-packet with central speed π/2 − φ. This means that the
effect of flux is to shift the central speed of a wave-packet. In finite N cases,
Fig. 5.9 still shows that the flux shifts the central speed. In this figure the
wave-packets have initial central momentum 0. They are totally driven by
external flux.

Let us now consider the effect of phase decoherence from the spin bath.
Using the results for Pjj′(t) from the last section, with an initial reduced
density matrix given by

ρ(j, j′; t = 0) = |Ψj(t = 0)〉〈Ψj′(t = 0)| (5.86)

we find a rather lengthy result for the probability that the site j is occupied
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at time t:

Pj(t) =
N−1∑

n,n′=0

+∞∑
m=−∞

e−((kn−π/2)2+(kn′−π/2)2)D/2F0(m)

×{ei(j−j0)(kn−kn′ )Jm(4Δot sin ((kn − kn′)/2))eim((kn+kn′ )/2+Φ/N)+

+ e−i(kn−kn′ )jJm(4Δot sin ((kn − kn′)/2))eim((kn+kn′ )/2−Φ/N)+

+ [ei((j−j0)kn+jkn′ )Jm(4Δot sin ((kn + kn′)/2))eim((kn−kn′ )−Φ/N) + h.c.]}
(5.87)

Here we again use (4.22).
One can also, in the same way, derive results for the current in the situa-

tion where we start with 2 wave-packets. We see that expressions like (5.87)
are too unwieldy for simple analysis. However in the strong decoherence
limit (5.87) simplifies to:

Pj(t) =
N−1∑

n,n′=0

e−((kn−π/2)2+(kn′−π/2)2)D/2{ei(j−j0)(kn−kn′ )J0(4Δt sin ((kn − kn′)/2))

+ e−ij(kn−kn′ )J0(4Δt sin ((kn − kn′)/2))

+ [ei((j−j0)kn+jkn′ )J0(4Δt sin ((kn + kn′)/2)) + h.c.]}
(5.88)

and again we see that the flux has disappeared from this equation. This
result is shown in Fig 5.10.

We notice 2 interesting things here. First, the interference between the
two wave-packets is completely washed out, as one might expect. However
notice also that each wave packet splits into parts which move in opposite
directions. This is because the interaction with the fluctuating bath flux
can actually change the direction of parts of each wave-packet (note that
the transformation Φ → Φ + π reverses the momentum).

We can try another decoherence methods which there is a coefficient
controlled the decoherence rate. We put decoherence term (5.74) into (5.87)
by using the similar method stated in previous sections. Now the influence
functional has the form F0(m) =

∏
k cos mαk. If αi is very small, then

basically decoherence rate is determined by λ =
∑N

i=1(αi)2 as discussed
above. It is shown in Figure 5.11. We can see that the wave-packet coherence
is pretty fragile, it is completely suppressed when λ > 3 × 10−3.
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5.5.2 High Field Limit

Until now , we ignore the ’transverse field’ term
∑

k hk · σk in the Hamil-
tonian (5.4). We are going to study this term in this section. In light har-
vesting complexes, it is the high excitation energy on surrounding molecules
responsible for this high external field. The excitation energy of biologi-
cal molecules is about 100eV, which is equivalently 105K. This large field
divides surrounding bath spins into certain polarization groups and makes
the hoppings between different polarization groups forbidden. These effects
greatly change the effect of our central system as many strong coupling mod-
els do. We are still studying in this limit and that is the reason I put his
part at the end of this chapter.

The Hamiltonian we are considering now is becoming

H = Δei
∑

ij(φij+
∑

k αij
k ·σk)c†icj +

∑
k

hkσ
z
k (5.89)

The fields hk act on each spin in bath may not always point in z-direction.
This effective ”magnetic field” has many origins. But we can rotate every
σk to let hk acting along its ”z-direction”. Now the dynamics of spin baths
are entangled with the central system. We have a roughly argument on this
issue. When αk is small then eiαij

k ·σk ≈ 1 + iαij
k · σk. The dynamic terms of

the surrounding spin k in this system is

(hk + iΔ
∑
ij

αij
k c†icj) · σk (5.90)

The external field a bath spin feels is affected by the path chosen by the
central particle. By each hopping in the ring , spins take precession along
different axes. If αk is large, the precession can be completely random. This
kind of entangled precession is a unique source of decoherence in spin bath.
To make things simple we assume all hk for surrounding spins are equal and
we have totally K spins in the bath. The spin bath space is split into 2K
energy degenerate subspaces, which are distinguished by their polarization
M =

∑
k σz

k. Each ”polarization group” M is C
(K+M)/2
K fold degenerated.

We can solve this model in a particular limit when hk � |α|, which
is so-called the ”high field limit”. The intrinsic dynamics of spin bath in
this limit is strictly restrained. There is a selection rule which only allows
transitions within same polarization subspaces. In other words, transitions
in bath spins always conserve the quantity M . Considering the rotation
symmetry of the ring, we assume that by rotating along z-direction most of
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{αij
k } can point along x-axis. This simplified Hamiltonian reads

H = Δei
∑

ij(φij+
∑

k αij
k σx

k )c†icj +
∑

k

hkσ
z
k (5.91)

In order to enforce the restriction to a polarization group M, we use the
projection operator

PM ≡ δ(
∑

k

σk − M) =
∫ 2π

0

dξ

2π
eiξ(

∑
k σz

k−M) (5.92)

Consider a path composed by L steps {i0, i1, ....iL}, with i0.....L ∈ {1, 2, ...., N}
indicate the past site sequence. The contribution of this path in the proba-
bility amplitude is

Wi0...iL = eimφ (iΔt)L

L!
〈δ(

∑
k

σz
k−M)ei

∑
k α

iLiL−1
k σx

k ......δ(
∑

k

σz
k−M)ei

∑
k α

i1i0
k σx

k 〉
(5.93)

m is the winding number. φ =
∑

φij is the total flux. Then the total
probability amplitude from site i0 to iL is

G(iL, i0; t) =
∑

all possible path
Wi0...iL . (5.94)

And the density matrix is given by

ρij(t) =
∑
k,l

G(i, k; t)G†(j, l; t)ρlk(t = 0) . (5.95)

To solve this quantity, we define the operator

TL ≡ δ(
∑

k

σz
k − M)ei

∑
k α

iLiL−1
k σx

k ......δ(
∑

k

σz
k − M)ei

∑
k α

i1i0
k σx

k . (5.96)

Substitute (5.96) into (5.92). We do Taylor expansion to second order of αk:

TL| ↑〉 =ei(
∑L

n=1 ξn−M
∑L

n=1 ξn){| ↑〉 + i

L∑
n=1

αin
k e−2i

∑L
m=n ξm | ↓〉

− (
L∑

n=1

(αin
k )2 +

∑
m<n

αin
k αim

k )e−2i
∑n−1

j=m ξj | ↑〉}

TL| ↓〉 =e−i(
∑L

n=1 ξn−M
∑L

n=1 ξn){| ↓〉 + i

L∑
n=1

αin
k e2i

∑L
m=n ξm | ↑〉

− (
L∑

n=1

(αin
k )2 +

∑
m<n

αin
k αim

k )e2i
∑n−1

j=m ξj | ↓〉}

(5.97)
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Here we still assume the equally distributed initial state. Then the total
contribution of all configurations with K+M

2 spin-ups and K−M
2 spin-downs,

which compose the
∑

k σz
k = M subspace, is

∏
k

A±
k (L,L′) ≡ 〈↑ (↓)|T †

L′TL| ↑ (↓)〉 (5.98)

A±
k (L,L′) =1 −

L∑
n=1

L∑
n=1

(αin
k )2 −

L′∑
n=1

(αi′n
k )2 −

L∑
m<n

αin
k αim

k e±2i
∑n−1

j=m ξj

−
L′∑

m<n

α
i′n
k α

i′m
k e∓2i

∑n−1
j=m ξ′j −

L∑
n=1

L′∑
n′=1

αin
k α

i′
n′

k e±2i(
∑L

m=n ξm−∑L′
m′=n′ ξm′ )

(5.99)

Here the plus sign + is for spin-up ↑; the minus sign − is for spin-down
↓. This production is for a particular arrangement of spins. The next step
is to average this value over all possible spin configurations. Notice that
small M configurations has a way larger phase space, i.e. more possible
permutations. Most of them comes out from M

K ≈ 0 region where we can
almost find a complex conjugate of every Ak. Therefore,

Ak(L,L′) = exp{ −
L∑

n=1

∑
k

[(αin
k )2 +

L∑
m<n

αin
k αim

k cos(2
n−1∑
j=m

ξj)]

−
L′∑

n=1

∑
k

[(αi′n
k )2 +

L′∑
m<n

α
i′n
k α

i′m
k cos(2

n−1∑
j=m

ξ′j)]

−
L∑

n=1

L′∑
n′=1

αin
k α

i′
n′

k cos[±2i(
L∑

m=n

ξm −
L′∑

m′=n′
ξm′)]}

(5.100)

To deal with this equation, we make variables :

χn = 2
L∑

p=n

ξp ;

χ′
n = 2

L′∑
p=n

ξ′p ;

−→s n
k = αin

k (cos χn, sinχn) ;
−→
s′ nk = α

i′n
k (cos χ′

n, sinχ′
n) .

(5.101)
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One thing we should notice here is that this transformation is only valid when
αin

k �= 0. If αk = 0 for some k , then Ak is simply equals to 1. All following

calculations are based on αin
k �= 0, ∀k, in. Define

−→
S =

∑
n,k

−→s n
k +

∑
n,k

−→
s′ nk ,

the total average contribution of such paths is

Ak(L,L′) = e−
1
2
(
∑

n,k |−→s n
k |2−

∑
n,k |−→s′ n

k |2)− 1
2
|−→S |2δ(

−→
S −

∑
n,k

−→s n
k −

∑
n,k

−→
s′ nk)

(5.102)
Here we include the constraint

δ(
−→
S −

∑
n,k

−→s n
k −

∑
n,k

−→
s′ nk) =

∫
d−→z ei−→z ·(−→S −∑

n,k
−→s n

k−
∑

n,k

−→
s′ n

k ) (5.103)

Remember that from (5.92) we introduce an integral over ξ, which is now
transformed into χ. By putting them together, we have the expression for
the density matrix,

ρ(iL, i′L′ , t) =
∑
L,L′

∑
i0,i′0

∑
m,m′

(Δt)L+L′
iL−L′

(L+mN
2 )!(L−mN

2 )!(L′+m′N
2 )!(L′−m′N

2 )!
ei(m−m′)φ

·
∏
k

Bk(L,L′)ρ(i0, i′0)

(5.104)

Bk(L,L′) =
∫ ∞

0
zdz

∏
n

(
∫ 2π

0
d
χn

2π
)
∏
n′

(
∫ 2π

0
d
χ′

n′

2π
)eiz(

−→
S −∑

n,k
−→s n

k−
∑

n,k

−→
s′ n

k )

× e−
1
2
(
∑

n,k |−→s n
k |2−

∑
n,k |−→s′ n

k |2)− 1
2
|−→S |2

=
∫ ∞

0
dz z

L∏
n=1

J0(αin
k z)

L′∏
n′=1

J0(α
i′n
k z)e−

z2

2
− 1

2
(
∑

n(αin
k )2+

∑
n′ (α

i′
n′

k )2) .

(5.105)

m and m′ as winding numbers. Here we use the integral presentation of
Bessel functions

Jn(x) =
1
2π

∫ π

−π
e−i(nτ−x sin τ) dτ (5.106)

If α
inin+1

k = αk for every site, which is the perfect symmetric case, then it
becomes

Bk(L,L′) =
∫ ∞

0
dz (J0(z)e−

1
2
α2

k)L+L′
e−

1
2
z2

z (5.107)
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From (5.104), we find the term J0(z)e−
1
2
α2

k can be absorbed into Δot. e−
1
2
z2

is independent of path length and winding number. Therefore, if the bare
system density matrix is ρ0

ij(Δot) (without bath), then we have the density
matrix ρij(t) in the high field limit is

ρij(t) =
∏
k

(
∫ ∞

0
dzk e−

z2
k
2 zk)ρ0

ij(Δot
∏
k

J0(zk)e−λ) (5.108)

The definition of λ is the same as (5.70). This is our main result for high
field limit. Due to our discussion of (5.101), this equation is puzzling at first
glance: if we substitute λ = 0, which is the no coupling case, into (5.108),
we cannot go back to the bare ring expression which means that even very
small λ can make a fundamental change to the result. This is because the
selection rule for bath transitions gives a strong restriction to hoppings in
the central system. We also neglect the fact that the transition between
different polarization groups. To include this effect we should use a more
decent path integral method, which remains unavailable. At last we can see
a example of our result. Again for a bare 3-site ring with flux φ threading
it, we know that the probability P o

0 (t) to stay at the initial site after time t
is

P o
0 (t) =

1
3
[1 + 2J0(2

√
3Δt) + 4

∞∑
p=1

J6p(2
√

3Δt) cos(6pφ)] (5.109)

Then in this high field limit, we can see that

P0(t) =
1
3

∏
k

(
∫ ∞

0
dzk e−

z2
k
2 zk)[1 + 2J0(2

√
3Δte−λJ0(zk))

+ 4
∞∑

p=1

J6p(2
√

3Δte−λJ0(zk)) cos(6pφ)]
(5.110)
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Figure 5.6: The current Io
01(t) from site 0 to site 1, for N = 3 and for

Φ = 0 (top) and Φ = π/4 (bottom) in the intermediate decoherence region.
Different color indicate different λ. Blue: λ = 0; Red: λ = 0.01; Cyan:
λ = 0.05; Black: λ = 0.20
.
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Figure 5.7: The probability P00(t) for the particle to return to the origin
from site 0 to site 1, for N = 3, in intermediate decoherence region. The
flux threading is 0.4π. Different color indicate different λ. Yellow: λ = 0;
Green: λ = 0.01; Cyan: λ = 0.05; Blue: λ = 0.20; Black: λ = 0.50
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Figure 5.9: The evolution of wave packets with different external flux. The
size of the ring is 100. The wave packet starts rest at the 50th site. In the
first graph, φ = 0. In the second graph, φ = π

5 . In the third graph, φ = π
2
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5.5. Ring Plus Bath

Figure 5.10: Interference between 2 wave-packets in the strong decoherence
limit. The packets start at site 0 and site jo = 50 respectively at t = 0, and
their relative velocity is π

2 , in phase units.
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Figure 5.11: Two wave-packets interference in a topological bath. They
start at 0th site and 50th site respectively, and then move towards each
other with central speed π

2 . In the first graph, the strength of the coupling
λ = 0. In the second graph, λ = 10−3. In the third graph, λ = 1.5 × 10−3.
In the fourth graph, λ = 2 × 10−3. In the fifth graph, C = 2.5 × 10−3. In
the sixth graph, λ = 3 × 10−3.
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Chapter 6

Conclusions

We studied the phase decoherence in a particular light harvesting complex
which bears a symmetric ring-like multichromophore structure. We modeled
a light harvesting complex as a particle hopping on an N-site ring, coupled
to a spin bath. This is a simplified model since we are only interested in
the decoherence phenomenon in recent experiments. Analytic results were
found for the dynamics of the influence functional and of the reduced density
matrix of the central exciton. The dynamic of particles in the spin bath acted
differently from ones in oscillator baths, and we found that coherent beating
phenomenon is quite sensitive to coupling constants.

We reviewed the structures of light harvesting complexes determined by
recent x-ray diffraction measurement. Some of them bear C8 or C16 global
spatial symmetries. We reviewed resonant energy transfer both between
chlorophylls within the same complex and between different complexes. We
then, reviewed the recent experimental evidences which showed the quan-
tum beating between two coherent signals in the chlorophyll networks. We
witnessed the beating surviving longer than most previous theoretical pre-
dictions. Photosynthesis has been studied for many years, but a full quan-
tum mechanical description of the mechanism leading to this remarkable
phenomenon is yet not available. We pointed out that this is also important
to quantum information considerations due to the transfer’s long coherent
time and swiftness in the completion of calculations(i.e. finding a pathway
towards the signal’s destination, which is, the reaction centers).

We reviewed some significant theories in history about RET in light
harvesting molecules, including Förster theory, Redfield theory and some
recent development. The assumption previously was that there is no coher-
ent hopping between different chlorophylls. This has been challenged by new
experimental evidences. Recent development include environment-assisted
quantum walks and multi-spin-boson model. People continue to try to ex-
plain photosynthetic energy transfer through coherent hopping descriptions.
We reviewed some quantum information applications in this field such as en-
tanglement between neighboring chlorophylls, as well as the Feynman cursor
computer.
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6.1. Open Questions

The essential problem here is to understand how surrounding proteins
and biological solvent affect the energy transfer. We suggested modeling
this system as a spin bath model instead of an oscillator bath model. We
argued that the localized modes are also important in biological systems
and that their high excitation energies make the truncation valid. In spin
bath, the energy dissipation and phase decoherence can be separated and
thus we were able to focus on the decoherence phenomenon. We employed
the influence functional method to study dynamics of a particle moving on
a ring coupled to a spin bath. To avoid complications, we made several
assumptions on couplings and spin dynamics to keep our result analytical.

We first studied the bare ring without bath. We introduced some impor-
tant properties to depict the system: the reduced density matrices and the
bond current from one site to another. The flux in the system gives a topo-
logical feature to distinguish different elements in its 1st homotopy group.
We then, added a pure phase coupling to explore its influence on central
particle. The dynamics were described in Feynman-Vernon influence func-
tional forms. In our problems, we obtained a series expansion over Bessel
functions with winding numbers in their orders. The forward and backward
paths are coupled and the influence functional kernel between these paths
are determined by different coupling forms. We calculated them in both
a strong decoherence limit and the intermediate decoherence regime. We
then put two initially separated wave-packets into this model to reproduce
the coherent beating phenomenon in light harvesting molecule experiments.
We found that the sharp oscillating beat patterns are rapidly suppressed by
small coupling parameters.

6.1 Open Questions

This work is still far from gaining a full understanding of photosynthetic
energy transfers. Its features are not determined solely by spin bath model.
To try to provide a realistic model which is able to explain its features, we
should include couplings of the excitons to both delocalized and localized
modes. To achieve the latter, we will need a great deal of information about
the effective coupling parameters in the molecules, but we may be able to
make predictions about the effects of temperature and size of rings on the ex-
citon dynamics. Further works should also investigate other light harvesting
molecules which do not have ring structures such as FMO complexes.

We also have many open questions concerning the spin bath model. Our
assumptions of commutation and hk = 0 do not include the time correla-

56



6.1. Open Questions

tions of bath fluctuations. The calculations in high field limit conserve such
correlations. We plan to further explore this limit. Also the correlations in
time will affect the error correction scheme in fault-tolerant quantum com-
putation. It has been proven that spatially correlated quantum noise will
generate a minimal error which cannot be corrected[50]. Applying the spin
bath model to discuss the decoherence effects on quantum computation, is
a largely unexplored field.
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