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Abstract

The advancement of biotechnologies has led to indispensable high-throughput
techniques for biological and medical research. Microarray is applied to
monitor the expression levels of thousands of genes simultaneously, while
flow cytometry (FCM) offers rapid quantification of multi-parametric prop-
erties for millions of cells. In this thesis, we develop approaches based on
mixture modeling to deal with the statistical issues arising from both high-
throughput biological data sources.

Inference about differential expression is a typical objective in analysis of
gene expression data. The use of Bayesian hierarchical gamma-gamma and
lognormal-normal models is popular for this type of problem. Some unre-
alistic assumptions, however, have been made in these frameworks. In view
of this, we propose flexible forms of mixture models based on an empirical
Bayes approach to extend both frameworks so as to release the unrealis-
tic assumptions, and develop EM-type algorithms for parameter estimation.
The extended frameworks have been shown to significantly reduce the false
positive rate whilst maintaining a high sensitivity, and are more robust to
model misspecification.

FCM analysis currently relies on the sequential application of a series of
manually defined 1D or 2D data filters to identify cell populations of inter-
est. This process is time-consuming and ignores the high-dimensionality of
FCM data. We reframe this as a clustering problem, and propose a robust
model-based clustering approach based on t mixture models with the Box-
Cox transformation for identifying cell populations. We describe an EM
algorithm to simultaneously handle parameter estimation along with trans-
formation selection and outlier identification, issues of mutual influence.
Empirical studies have shown that this approach is well adapted to FCM
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data, in which a high abundance of outliers and asymmetric cell populations
are frequently observed. Finally, in recognition of concern for an efficient
automated FCM analysis platform, we have developed an R package called
flowClust to automate the gating analysis with the proposed methodology.
Focus during package development has been put on the computational ef-
ficiency and convenience of use at users’ end. The package offers a wealth
of tools to summarize and visualize features of the clustering results, and is
well integrated with other FCM packages.
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Chapter 1

Introduction

Recent technological advances in molecular biology have enabled the rapid
quantification of characteristics for an enormous number of genes or cells
under the same experimental condition. Microarray has been being a pop-
ular technique for monitoring the expression levels of thousands of genes
for more than a decade, while flow cytometry (FCM) offers quantification
of multi-parametric properties for up to millions of cells. To date, exten-
sive applications of these two high-throughput technologies can be found in
health research, medical diagnosis and treatment, drug discovery and vac-
cine development (Schena et al., 1995; DeRisi et al., 1996; Behr et al., 1999;
Debouck and Goodfellow, 1999; Hengel and Nicholson, 2001; Braylan, 2004;
Illoh, 2004; Mandy, 2004; Orfao et al., 2004; Bolton and Roederer, 2009).

The interest in studying changes in gene expression levels over experi-
mental conditions have led to the development of a wealth of methodology
for identifying differentially expressed genes. Meanwhile, the tremendous
attention built towards FCM in recent years has urged the need for both
methodological and software development for an automated analysis plat-
form of gating, the process of identifying cell populations. In this thesis,
we show that the aforementioned issues can be recast into problems of clus-
tering, the process of looking for homogeneous groups of observations in
statistics. We introduce flexible forms of finite mixture models (Tittering-
ton et al., 1985; Banfield and Raftery, 1993; McLachlan and Peel, 2000;
Fraley and Raftery, 2002), commonly applied as a statistical tool for clus-
tering, which serve as the modeling basis for approaches developed to deal
with the issues arising from both high-throughput biological data sources.

In this chapter, we review the technology of microarrays and several pop-
ular methods for differential gene expression. We then give a brief account
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of the FCM technology as well as a few attempts to automate the gating
analysis to date. Next, in Chapter 2, we introduce mixture models based on
a flexible empirical Bayes approach to detect differentially expressed genes
in microarray data. This approach releases the unreasonable assumptions
and enhances the flexibility of models introduced in Newton et al. (2001) and
Kendziorski et al. (2003). In Chapter 3, we develop a unified framework to
simultaneously handle data transformation, outlier identification and clus-
tering, issues which are of mutual influence. This methodology stems from
a mixture model using the multivariate t distributions with the Box-Cox
transformation, which can be viewed as a new class of distributions ex-
tending the t distribution. We proceed to present in Chapter 4 the result
obtained on applying the proposed methodology to FCM data, from which
cell populations asymmetric in shape and an abundance of outliers are often
observed. In Chapter 5 we introduce an open-source software package called
flowClust to implement the methodology introduced in Chapters 3 and 4.
This publicly available package addresses a bottleneck to FCM that there is
a dearth of software tools to manage, analyze and present data on a sound
theoretical ground. Finally, we conclude in Chapter 6 with a discussion
of the overall contribution of this research work, and directions for future
extensions.

1.1 Differential Gene Expression Analysis of

Microarray Data

1.1.1 The Technology of Microarrays

The structure, function, development and reproduction of an organism de-
pends on the type and amount of proteins present in each cell and tissue. A
protein is a sequence of up to 20 types of amino acids, which is specified by
the nucleotide sequence of the encoding gene(s). The synthesis of proteins
consists of two major stages, transcription and translation, and is described
by the central dogma of molecular biology (Crick, 1970); see Figure 1.1.
The genetic information encoded by the deoxyribonucleic acid (DNA) is first

2



Figure 1.1: The central dogma of molecular biology. The synthesis of pro-
teins constitutes two major stages, transcription and translation. Part
of the DNA is first transcribed into the single-stranded mRNA taking a
complementary sequence. The mRNA then migrates from the nucleus to
the cytoplasm, and is translated into proteins. (Picture source: access-
excellence.org)
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transcribed into the messenger ribonucleic acid (mRNA), a single-stranded
sequence complementary to the base sequence in the DNA. The mRNA then
migrates from the nucleus to the cytoplasm, and is translated into proteins.

When a gene is transcribed and then translated, we say that it is ex-
pressed. Cells under different conditions tend to express different sets of
genes, and thereby synthesize different proteins. To understand a biolog-
ical process, it is important to know what proteins are being processed.
Nonetheless, due to the complex structures, the analysis of proteins is dif-
ficult. Based on the fact that the mRNA gets translated into proteins, the
analysis of gene expression helps provide information about the biological
process of interest. This is where microarrays, a technology which facil-
itates the simultaneous measurement of expression levels of thousands of
genes, come forth.

The microarray technology relies on two key chemical processes, reverse
transcription and hybridization. The process of reverse transcription creates
single-stranded complementary DNA (cDNA) copy of mRNA transcripts ex-
perimentally isolated from a cell. Hybridization is the process of combining
two single strands of DNA or RNA into a single molecule. Two strands
which are perfectly complementary to each other tend to bind together, re-
sulting in specific hybridization. The term “specific” is used as opposed to
the case in which binding randomly occurs between two strands that do not
form a complementary pair.

Microarrays can be classified into two categories: the cDNA microarrays
and the oligonucleotide arrays. Below we give a brief account of each of
these two categories.

cDNA Microarrays

A cDNA microarray consists of thousands of microscopic spots attached to a
solid surface, with each spot containing a massive number of identical DNA
sequences to serve as probes. The choice of probes may be customized in-
house to satisfy specific experimental needs. In a typical dual-color cDNA
microarray experiment, two mRNA samples extracted from different exper-

4
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Figure 1.2: The cDNA microarray experiment. A cDNA microarray is a
glass microscope slide spotted with individual DNA sequences as probes.
The cDNA solutions, prepared from mRNA by reverse transcription, are
labeled with green and red dyes respectively to identify the source (control
and treatment). The mixed cDNA target solution is then hybridized with
the probes on the microarray. The array is scanned twice to obtain images
for the red and green intensities.

imental conditions are reverse-transcribed into cDNA, labeled with different
fluorescent dyes (red and green), mixed and targeted against the probes on
the microarray. Owing to the property of preferential binding of a labeled
cDNA molecule (target) to a probe containing the complementary sequence,
specific hybridization occurs, under some stringent environment. The array
is then scanned and the red and green intensities for each spot are measured.
Figure 1.2 illustrates such an experiment.

Oligonucleotide Arrays

In a high-density oligonucleotide array, the probes are composed of short
DNA sequences known as oligonucleotides. Affymetrix GeneChip arrays,
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Figure 1.3: The representation of a gene with a probe set on Affymetrix
GeneChip arrays. A probe set consists of 11–20 distinct probe pairs. Each
perfect match (PM) probe contains an excerpted sequence (25bp long) of
the gene. A mismatch (MM) probe is created from a PM probe by changing
the middle base to its complement.

which consist of up to 33,000 genes with probes containing oligonucleotides
25bp long, are the most popular in this technology. Each gene is represented
by a set of 11–20 distinct probe pairs. The perfect match (PM) probe
of each probe pair contains a section of the mRNA molecule of interest;
the mismatch (MM) probe is created by changing the middle (13th) base
of the PM probe. The use of probe sets to represent genes reduces the
chance of non-specific hybridization by including only probes unique to the
genome, while the presence of MM probes helps quantify the non-specific
hybridization that still occurs. A graphical depiction of the relationship
between gene sequence and probe set is given in Figure 1.3. Various methods
are available for computing the expression summary values from the probe
intensities, for example, gcRMA (Wu et al., 2004), RMA (Irizarry et al.,
2003), MAS 5 (Affymetrix Manual, 2001), and dChip (Li and Wong, 2001).

Compared to cDNA microarrays, high-density oligonucleotide arrays have
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a lower chance of non-specific hybridization and a high detection specificity,
and allow for more genes to be probed in one experiment. However, an
Affymetrix GeneChip array does not support a dual-channel system and
can only be exposed to one sample in each experiment. Also, as an off-the-
shelf product, the probes on the array are not to be customized.

1.1.2 Methods for Detecting Differentially Expressed Genes

The analysis of differential gene expression helps us understand how genes
are differentially expressed under different conditions, for example, normal
and cancer. In recent years, there has been a considerable amount of work
on the detection of differentially expressed genes. In the following we give a
review of some representative methods.

t Tests and Variants

Simplistic statistical treatments include the use of two-sample t tests on
the log intensities, or one-sample t tests on the log intensity ratios for each
gene (Callow et al., 2000). A gene is declared to be differentially expressed
if its p-value is less than a threshold, for example, 0.05. Because of the
large number of hypothesis tests, adjustment methods such as Bonferroni or
Holm-Bonferroni should be employed to control the familywise error rate,
the probability of yielding one or more false positives. In addition, due to
the small number of replicates in microarray experiments, the gene-specific
variance can be poorly estimated. Baldi and Long (2001) suggested using
a modified t test statistic where the denominator is regularized by using a
weighted average of the gene-specific and global variance estimates:

ν0s
2
0 + (R− 1)s2g
ν0 +R− 2

, (1.1)

where R is the number of replicates, s20 and s2g are respectively the estimates
for the global and gene-specific variances, and ν0 is a tuning parameter that
governs the contribution of the global variance. Here, “global” may refer
to all the genes, or those in the neighborhood of gene g. This regularized
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variance estimate is derived from the mean of the posterior distribution of
the gene-specific variance in a Bayesian framework.

Significance Analysis of Microarrays (SAM)

SAM, proposed by Tusher et al. (2001), uses a regularized t statistic dg

where a constant c is added to the gene-specific standard error sg:

dg =
Mg

c+ sg
, (1.2)

where Mg denotes the average log intensity ratio for gene g. The value of c
was suggested by Efron et al. (2001) to be the 90th percentile of all sg. To
estimate empirically the distribution of the statistic dg under the null hy-
pothesis (no differential expression), different permutations of the replicates
are considered, and the statistic shown in Eq.(1.2) is recomputed for each
permutation. The average of the statistics over all permutations, denoted as
d̃g, is then determined for each gene. By considering the displacement of dg
from d̃g, and a threshold ∆, asymmetric cutoffs are obtained as the smallest
dg such that dg − d̃g > ∆, and the largest dg such that dg − d̃g < −∆. The
threshold ∆ is determined by controlling the false discovery rate (FDR), the
proportion of falsely identified genes among the genes declared differentially
expressed, at 10% or a reasonable level. In SAM, the FDR is estimated
as the ratio of the average number of genes called significant from those
permuted datasets to that number from the original dataset.

Lönnstedt and Speed’s B statistic

Making use of an empirical Bayes normal mixture model, Lönnstedt and
Speed (2002) proposed the log posterior odds statistic, more conveniently
called the B statistic, to determine differentially expressed genes. More
explicitly, the log intensity ratio Mgr for gene g on the r-th replicate is
assumed to follow a normal distribution N(µg, kτ−1

g ). Let Ig be the indicator
variable such that Ig = 1 if gene g is differentially expressed and Ig = 0
otherwise. The parameters µg and τg have the following conjugate prior
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distribution:

τg ∼ Ga(ν/2, 1)

µg|τg =

{
0 if Ig = 0
N(0, ckτ−1

g ) if Ig = 1

A mixture structure is implicitly assumed by the above specification on µg.
Let p = Pr(Ig = 1) be the proportion of differentially expressed genes. The
log posterior odds of differential expression is derived to be

Bg = log
Pr(Ig = 1|M)
Pr(Ig = 0|M)

= log
p

1− p
f(Mg|Ig = 1)
f(Mg|Ig = 0)

. (1.3)

A large value of Bg is in favor of the alternative hypothesis of differential
expression. Note, however, that due to computational difficulty, the authors
did not estimate the proportion p and fixed it a priori. In consequence, a
cutoff on Bg for declaring differential expression could not be determined on
an objective ground.

Linear Models for Microarray Data (LIMMA)

LIMMA (Smyth, 2004) reformulates the aforementioned hierarchical model
of Lönnstedt and Speed (2002) in the context of general linear models to
cater for the case of a different number of replicates in different conditions
and the case of multiple conditions. In addition, LIMMA uses a moder-
ated t statistic in place of the posterior odds statistic given by Eq.(1.3) for
inferencing about differential expression:

t̃g =
Mg

s̃g/
√
R
, (1.4)

where the posterior variance estimate

s̃2g =
νs2 + (R− 1)s2g
ν +R− 1

(1.5)
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provides shrinkage of the sample variance s2g towards a pooled estimate s2,
resulting in more stable inference when the number of replicates is small.
The computation of the moderated t statistic does not depend on p in
Eq.(1.3), the potentially contentious parameter that is left un-estimated
in Lönnstedt and Speed (2002).

Efron’s Local False Discovery Rate (fdr)

Efron (2004) proposed an empirical Bayes approach combined with a local
version of the false discovery rate to test for differential expression. In this
method, t test statistics are first obtained, one for each gene. The associ-
ated p-values are converted into z-scores defined as zg = Φ−1(pg), where
Φ indicates the standard normal distribution function. A two-component
mixture,

f(zg) = p0f0(zg) + p1f1(zg), (1.6)

where f0 and f1 refer to the density of the z-scores under the null (no
differential expression) and alternative (differential expression) hypotheses
respectively, and p0 and p1 are the proportion of true null and alternative
hypotheses, is used to model the z-scores. The mixture density f and the
null density f0 are then empirically estimated. For each gene, inference is
based on the local false discovery rate, which is defined as

fdr(zg) ≡
f̂0(zg)

f̂(zg)
. (1.7)

The notation fdr is deliberately shown in lowercase to signify its difference
from the usual definition of false discovery rate proposed by Benjamini and
Hochberg (1995). A gene with an fdr lower than some threshold, say, 10%,
will be called differentially expressed.
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Empirical Bayes Gamma-Gamma and Lognormal-Normal Models

(EBarrays)

Newton et al. (2001) developed a method for detecting changes in gene
expression using a hierarchical gamma-gamma (GG) model. Kendziorski
et al. (2003) extended this to multiple replicates with multiple conditions,
and provided the option of using a hierarchical lognormal-normal (LNN)
model. For the GG model, each observation is modeled by a gamma dis-
tribution with shape a and rate θ. Strength is borrowed across genes by
assuming a gamma prior on θ. Denote by xg and yg the intensities for gene
g in two conditions respectively. The following two-component mixture is
used to model the data:

p(xg,yg) = p pA(xg,yg) + (1− p) p0(xg,yg), (1.8)

where

pA(xg,yg) =
∫ (∏

rp(xgr|a, θgx)
)
π(θgx) dθgx ·

∫(∏
rp(ygr|a, θgy)

)
π(θgy) dθgy

(1.9)
is the marginal density for differentially expressed genes using condition-
specific rate parameters, and

p0(xg,yg) =
∫ (∏

rp(xgr|a, θg)
∏
rp(ygr|a, θg)

)
π(θg) dθg (1.10)

is for non-differentially expressed genes using a common rate parameter.
The LNN model assumes a lognormal sampling distribution for each obser-
vation with mean µ and variance σ2. A conjugate normal prior is imposed on
µ. The corresponding mixture model takes a form similar to that shown in
Eq.(1.8), where the marginal densities are derived by considering µgx 6= µgy

(differential expression) and µgx = µgy (no differential expression) respec-
tively. Note that, in both models, the assumption of a constant coefficient
of variation for all genes has been implicitly made. For both models, the
prior can be integrated out and the EM algorithm can be used to estimate
the unknown parameters. Inference is based on the posterior probabilities

11



of differential expression.

Bayesian Robust Inference for Differential Gene Expression

(BRIDGE)

Gottardo et al. (2006) developed a robust Bayesian hierarchical model for
testing differential expression. The model may be viewed as an extension of
the LNN specification of EBarrays. An enhanced flexibility is achieved by
measures taken to release the implicitly made assumption of the constant
coefficient of variation in EBarrays, and to account for outliers. BRIDGE
includes an exchangeable prior for the variances, which allows different vari-
ances for the genes whilst still achieving shrinkage of extreme variances. In
addition, observations are modeled using a t distribution, which accounts for
outliers. A fully Bayesian approach is adopted, by assuming vague priors on
the parameters and carrying out parameter estimation using Markov chain
Monte Carlo (MCMC) algorithms (Gelfand and Smith, 1990).

Due to the relatively small number of replicates in microarray experi-
ments, combining information across genes in statistical analysis is vital. A
Bayesian framework fits such a scenario very well, and is adopted by most
of the aforementioned methods. Also, mixture modeling is a popular strat-
egy among these methods. Incidentally, the majority of the aforementioned
methods are also applicable to oligonucleotide arrays upon slight or no modi-
fication, although they are presented primarily for cDNA microarrays. Also,
most of the methods have included an extension to multiple conditions.

1.2 Gating Analysis of Flow Cytometry Data

1.2.1 The Technology of Flow Cytometry

Flow cytometry (FCM) is a high-throughput technology that offers auto-
mated quantification of a set of physical and chemical characteristics for
up to millions of cells in a sample. The characteristics measured for each
cell include size, granularity or internal complexity, and fluorescence inten-
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Figure 1.4: The schematic overview of a typical flow cytometer setup. Cells
in the fluidics system are aligned in single file. When a cell intercepts the
light source, light scattering and emission will occur. The scattered light is
collected by the forward scatter (FSC) and sideward scatter (SSC) detectors.
The emitted light is collected by the photomultiplier tubes (PMT), each of
which targets at an individual narrow range of wavelengths. (Picture source:
ab-direct.com)
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3.1 Light Scatter

 

Light scattering occurs when a particle deflects incident laser light. The extent to 
which this occurs depends on the physical properties of a particle, namely its size and 
internal complexity. Factors that affect light scattering are the cell's membrane, 
nucleus, and any granular material inside the cell. Cell shape and surface topography 
also contribute to the total light scatter.

Forward-scattered light (FSC) is proportional to cell-surface area or size. FSC is a 
measurement of mostly diffracted light and is detected just off the axis of the incident 
laser beam in the forward direction by a photodiode (Figure 3-1). FSC provides a 
suitable method of detecting particles greater than a given size independent of their 
fluorescence and is therefore often used in immunophenotyping to trigger signal 
processing.

Side-scattered light (SSC) is proportional to cell granularity or internal complexity. 
SSC is a measurement of mostly refracted and reflected light that occurs at any 
interface within the cell where there is a change in refractive index (Figure 3-1). SSC is 
collected at approximately 90 degrees to the laser beam by a collection lens and then 
redirected by a beam splitter to the appropriate detector.

 

Figure 3-1  

 

Light-scattering properties of a cell 

light source

side scatter detector

forward scatter detector

Figure 1.5: The occurrence of light scattering. The forward scatter detector
measures the amount of light diffracted by a cell in the forward direction.
The sideward scatter detector measures the amount of refracted or reflected
light. (Picture source: BD Biosciences)

sity. FCM is widely used in health research and treatment for a variety
of tasks, such as the monitoring of the course and treatment of HIV in-
fection, the diagnosis and monitoring of leukemia and lymphoma patients,
the cross-matching of organs for transplantation, and research on vaccine
development (Hengel and Nicholson, 2001; Bagwell, 2004; Braylan, 2004; Il-
loh, 2004; Krutzik et al., 2004; Mandy, 2004; Orfao et al., 2004; Bolton and
Roederer, 2009).

Figure 1.4 gives a schematic overview of a typical flow cytometer setup.
Cells are introduced into the sample core of the flow cytometer, where hy-
drodynamic forces align the cells to move in single file and at speeds up to
70, 000 cells per second. When a cell intercepts a light source (e.g., laser),
light scattering will occur. The forward scatter (FSC) detector in Figure 1.5
measures the amount of light diffracted in the forward direction, and is
proportional to the cell-surface area or size. The sideward scatter (SSC)
detector measures the amount of light refracted or reflected by any interface
within the cell, and is proportional to cell granularity or internal complexity.

Before they are introduced into the flow cytometer, cells have been
tagged with fluorescently conjugated antibodies bound to the antigens (Fig-
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Figure 1.6: Specific binding of fluorochrome-labeled antibodies to antigens.

ure 1.6). The fluorochromes will be excited by the light source to incur light
emission, when a cell intercepts the laser. The emitted light will be diverted
to a series of fluorescent detectors. Each of the fluorescent detectors targets
at an individual narrow range of wavelengths, close to the peak emission
wavelength characteristic of an individual fluorochrome. The fluorescent
signals detected are proportional to the amount of individual fluorochromes
present. As each fluorochrome is conjugated to an antibody, the signal can
be used to measure the amount of individual antigens.

Cells of different types have different correlated measurements of FSC
and SSC. Antigens are also present in the cells at different amounts. The
fluorescent signals, combined with the FSC and SSC measurements, can
therefore be used to identify cell populations (homogeneous groups of cells
that display a particular function) and their relative abundance in a sample.

1.2.2 Methods for Identifying Cell Populations

One major component of FCM analysis involves the process of identify-
ing cell populations. This is referred to as gating in the FCM community.
Conventionally, the identification of cell populations relies on applying se-
quentially a series of manually drawn filters, i.e., gates, to subset and select
regions in 1D or 2D graphical representations of the data; see Figure 1.7 for
an example. In such an analysis, the choice of which sequence of parameters
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Figure 1.7: A typical manual gating analysis. (a) Data are projected onto
the FSC and SSC dimensions to identify basic cell populations. An expert
researcher draws a gate on the contour density plot to define the lymphocyte
population. (b) The selected cells are then projected on the CD3 dimen-
sion, and CD3+ cells are defined through an interval gate with the marked
threshold as the lower bound. (c) A quadrant gate is applied on the pro-
jections along the CD4 and CD8β dimensions. Cells within the upper right
gate is referred to as CD3+CD4+CD8β+, the cell population of interest in
this analysis.

to gate on and where to position the gates are highly subjective. It also
ignores the high-multidimensionality of FCM data, which may convey infor-
mation that cannot be displayed on 1D or 2D projections. In addition, there
is a major concern for the manually time-consuming input to the manual
gating analysis. It is not uncommon for an FCM study to include thousands
of samples to analyze, thanks to the high-throughput technological advance-
ment in generating FCM data. Attempts for partial automation have been
made by using software to automatically apply a template gating sequence
with the same set of gates on all samples. Nevertheless, the improvement in
overall efficiency is limited as the variation between samples has not been
taken into account, and therefore sample-by-sample manual adjustment of
the position of the gates cannot be avoided. As noted in Lizard (2007),
the lack of an automated analysis platform to parallel the high-throughput
data-generation platform has become a major bottleneck for FCM.

In statistics, gating may be reframed as a clustering problem. There have
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been few attempts to devise an automated platform with a sound statistical
framework for gating analysis. Below is a brief account of the methods that
have been applied to automate the gating analysis, with the latter two being
recent new additions.

K-means Clustering

K-means clustering (MacQueen, 1967) is a relatively early attempt for FCM
analysis. Its objective is to obtain a partition P withK clusters P1,P2, . . . ,PK ,
corresponding to cell populations in FCM data, such that the within-cluster
sum of squares is minimized:

arg min
P

K∑
k=1

∑
yi∈Pk

(yi − µk)T (yi − µk), (1.11)

where yi is an observation vector and µk is the mean of Pk. The algorithm
starts with K randomly selected points as means. A K-cluster partition
of the data is obtained by assigning each observation to the nearest mean,
followed by a recomputation of the cluster means. Such a procedure repeats
until there is no change in the assignment of observations. This method
was found to be equivalent to the classification EM algorithm (Celeux and
Govaert, 1992, 1995) for a Gaussian mixture model with equal mixing pro-
portions, and a scalar multiple of the identity matrix as a common covariance
matrix.

Bayesian Mixture Modeling using Gaussian Distributions

Chan et al. (2008) proposed a Bayesian approach of representing cell popula-
tions with Gaussian components in a mixture model. Explicitly, observation
yi in an FCM dataset is modeled as

f(yi|w1, . . . , wK ,µ1, . . . ,µK ,Γ1, . . . ,ΓK) =
K∑
k=1

wkφ(yi|µk,Γ−1
k ), (1.12)
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where φ(·|µk,Γ−1
k ) is the multivariate Gaussian density with mean µk and

covariance matrix Γ−1
k , and wk is the mixing proportion. The parameters

in Eq.(1.12) are assumed to follow a conjugate prior distribution:

(w1, . . . , wK) ∼ D(α1, . . . , αK)

µk ∼ N(mk, λkΓ−1
k )

Γk ∼W(rk,Vk)

where D(·) and W(·) denote the Dirichlet and Wishart distributions respec-
tively. Parameter estimation is performed using Gibbs sampling described
in Lavine and West (1992). The number of mixture components is selected
via the Bayesian Information Criterion (Schwarz, 1978). Attempts to re-
solve the inadequacy of Gaussian distributions to asymmetric components
are made by merging components which share a common local mode in
the fitted mixture distribution. Nevertheless, Gaussian mixture models are
known to be vulnerable to the presence of outliers, which are frequently ob-
served in FCM data. Moreover, considering the large size of FCM datasets,
the use of MCMC techniques for parameter estimation requires an enormous
amount of computational time. In FCM analysis usually involving a large
number of samples, time is of the essence.

Mixture Modeling using Skew t Distributions

Another model-based clustering approach of automating the gating analysis
was proposed by Pyne et al. (2009), who addressed the issues of asymmet-
ric cell populations and outliers with the skew t distributions (Sahu et al.,
2003). Each component in the mixture is modeled by a p-dimensional skew
t distribution with the following density:

f(y|µ,Σ, δ, ν) = 2 ϕ(y|µ,Ω, ν) T

(
β

σ

√
ν + p

ν + η

∣∣∣∣∣ ν
)
, (1.13)

where ϕ(·|µ,Ω, ν) is the multivariate t density with mean µ (ν > 1), variance
ν(ν − 2)−1Ω (ν > 2) and degrees of freedom ν, T (·|ν) is the univariate
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standard t distribution function with ν degrees of freedom, Ω = µ+δδT , β =
δTΩ−1(y−µ), σ2 = 1−δTΩ−1δ, and η = (y−µ)TΩ−1(y−µ). A stochastic
representation of the distribution is given by

Y = µ+ U + δ|Z|, (1.14)

where

U ∼ N(0,Σ/τ)

Z ∼ N(0, 1/τ)

τ ∼ Ga(ν/2, ν/2)

and U, Z and τ are all independently distributed. Deduced from Eq.(1.14),
extensions of the Monte Carlo EM algorithm (Wei and Tanner, 1990) have
been developed for parameter estimation complicated by analytically in-
tractable quantities in the E step (Lin, 2009).
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Chapter 2

Flexible Empirical Bayes

Models for Differential Gene

Expression∗

2.1 Introduction

As a natural development following the success of genome sequencing, DNA
microarray technology has emerged for the sake of exploring the functioning
of genomes (Schena et al., 1995). By exploiting the ability of a single-
strand nucleic acid molecule to hybridize to a complementary sequence, re-
searchers can simultaneously measure the expression levels of thousands of
genes within a cell. A common task with microarray is to determine which
genes are differentially expressed under two different conditions.

In recent years, there has been a considerable amount of work on the
detection of differentially expressed genes. An early statistical treatment
can be found in Chen et al. (1997). A common approach is to test a hypoth-
esis for each gene using variants of t or F -statistics and then try to correct
for multiple testing (Efron et al., 2001; Tusher et al., 2001; Dudoit et al.,
2002). Due to the small number of replicates, variation in gene expression
can be poorly estimated. Baldi and Long (2001) and Tusher et al. (2001)
suggested using a modified t statistic where the denominator has been reg-
ularized by adding a small constant to the gene specific variance estimate.
Similar to an empirical Bayes approach this results in shrinkage of the em-

∗ A version of this chapter has been published. Lo, K. and Gottardo, R. (2007). Flexi-
ble empirical Bayes models for differential gene expression. Bioinformatics, 23(3):328–335.
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pirical variance estimates towards a common estimate. Lönnstedt and Speed
(2002) proposed an empirical Bayes normal mixture model for gene expres-
sion data, which was later extended to the two condition case by Gottardo
et al. (2003) and to more general linear models by Smyth (2004) and Cui
et al. (2005), though Smyth (2004) and Cui et al. (2005) did not use mixture
models but simply empirical Bayes normal models for variance regulariza-
tion. In each case, the authors derived explicit gene specific statistics and
did not consider the problem of estimating p the proportion of differentially
expressed genes. Newton et al. (2001) developed a method for detecting
changes in gene expression in a single two-channel cDNA slide using a hi-
erarchical gamma-gamma (GG) model. Kendziorski et al. (2003) extended
this to replicate chips with multiple conditions, and provided the option of
using a hierarchical lognormal-normal (LNN) model. Both models are im-
plemented in an R package called EBarrays (Empirical Bayes microarrays)
and from now on we use the name EBarrays to refer to the methodology.
Both EBarrays model specifications rely on the assumption of a constant
coefficient of variation across genes. In this chapter, we extend both models
by releasing this assumption and introduce EM type algorithms for parame-
ter estimation, thus extending the work of Lönnstedt and Speed (2002) and
Gottardo et al. (2003) as well.

The structure of this chapter is as follows. The extended forms of the two
EBarrays hierarchical models and the estimation procedures are presented
in Section 2.2. In Section 2.3, the performance of the extended models is
examined on three experimental datasets and compared to five other baseline
and commonly used methods. Section 2.4 presents a simulation study to
further compare our empirical Bayes approach to the other methods. Finally,
in Section 2.5 we discuss our results and possible extensions.

26



2.2 A Bayesian Framework for Identifying

Differential Expression

2.2.1 A Hierarchical Model for Measured Intensities

In a typical microarray experiment, two conditions are compared for gene
expression. Let us denote by Xgr and Ygr the intensities of gene g from
the rth replicate in the two conditions respectively. Measurements between
the two conditions are assumed to be independent. The proposed model is
an extension of the EBarrays framework (Newton et al., 2001; Kendziorski
et al., 2003). Extensions to the original two types of model formulation are
considered in turn below.

The Extended Gamma-Gamma Model

Here, a Gamma distribution is used to model the measured intensities of a
given gene. Explicitly, the probability density of Xgr (resp. Ygr) with shape
and rate parameters ag and θgx (resp. θgy) is given by

p(x|ag, θgx) =
1

Γ(ag)
θ
ag
gxx

ag−1 exp(−xθgx) for x > 0. (2.1)

To borrow strength across genes we assume an exchangeable Gamma(a0, ν)
prior for the rate parameters, and a Lognormal(η, ξ) prior for the shape
parameters. The Gamma prior is used for simplicity as it is conjugate to
the sampling distribution (Newton et al., 2001) while the Lognormal prior is
suggested by a histogram plot of the empirical shape parameters estimated
by the method of moments (See Figure 2.1). The hyperparameters a0, ν, η

and ξ are assumed unknown and will be estimated as part of our approach.
The proposed model extends the EBarrays GG model by placing a prior

on the shape parameter. In the original GG model, the shape parameter
a was assumed to be constant and common to all genes whereas now it is
gene specific. However, strength is borrowed across genes through the prior
distribution. By “borrowing strength”, we mean that information from all
genes is used when estimating ag, which comes from the hyperparmeters
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Figure 2.1: Histograms of robust empirical estimates of ag’s with fitted
Lognormal density curves shown on a log scale under the extended Gamma-
Gamma modeling framework. The hyperparameters ξ and η are estimated
using a robust version of the method of moments. The graphs for the
HGU95A and HGU133A spike-in data are for one of the comparisons made
between two array groups.
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through the prior.

The Extended Lognormal-Normal Model

The second formulation is an extension of the EBarrays LNN framework.
The intensities are assumed to be lognormally distributed, i.e., the log-
transformed intensities are from a normal distribution, and we write logXgr ∼
N(µgx, τ−1

gx ) and log Ygr ∼ N(µgy, τ−1
gy ) respectively. A conjugate prior is

imposed on the mean µgx (resp. µgy) and precision τgx (resp. τgy). Ex-
plicitly, we set µgx|τgx ∼ N(m, kτ−1

gx ) and τgx ∼ Gamma(α, β) respectively.
In the original LNN model, the precision τ was assumed to be constant
and common to all genes. Our proposed formulation extends the EBar-
rays model by releasing the assumption of a constant coefficient of variation√

exp(τ−1)− 1, which is equivalent to the assumption of a constant variance
τ−1 on the log scale. Note that our proposed formulation is also the frame-
work of Gottardo et al. (2003). However, we use an EM based algorithm to
estimate the unknown parameters, including the proportion of differentially
expressed genes.

On assuming a prior on both µgx (resp. µgy) and τgx (resp. τgy) common
to all genes, strength is borrowed across genes through both means and
variances of the distributions when making inferences. Again, we mean that
information from all genes is used when estimating both µgx (resp. µgy)
and τgx (resp. τgy). In particular, this is essential for variances — due to
the small number of replicates variance estimates can be very noisy. Similar
ideas have been used in Smyth (2004) and Cui et al. (2005), where the
authors concentrated on variance regularization.

2.2.2 A Mixture Model for Differential Expression

We use a mixture model to identify differentially expressed genes. We as-
sume that a priori θgx = θgy (resp. µgx = µgy) with probability 1 − p and
θgx 6= θgy (resp. µgx 6= µgy) with probability p. For the latter case, the
model specification is just as stated in Section 2.2.1, while the former case
is modeled through setting the gene-specific parameters common to both
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conditions.
Let us denote by zg the indicator variable equal to one if there is real

change in expression for gene g and zero otherwise. Then one can define
the posterior probability of change, Pr(zg = 1|xg,yg, p,ψ), where xg =
(xg1, xg2, . . . , xgRx)′ and yg = (yg1, yg2, . . . , ygRy)′ and ψ denotes the vector
of unknown hyperparameters. Applying the Bayes rule, we obtain

ẑg = Pr(zg = 1|xg,yg, p,ψ)

=
p pA(xg,yg|ψ)

p pA(xg,yg|ψ) + (1− p)p0(xg,yg|ψ)
, (2.2)

where pA(xg,yg|ψ) and p0(xg,yg|ψ) denote the joint marginal density of
the measured intensities of gene g under both the alternative (differential
expression) and null (no differential expression) models respectively given
ψ. The marginal density for the extended LNN model can be computed
explicitly and is given in Appendix A.1. For the extended GG model only θg
can be integrated out, and the corresponding “conditional” marginal density
is given in Appendix A.1. In the next section we describe an approximate
estimation procedure to deal with this difficulty.

2.2.3 Parameter Estimation using the EM-algorithm

Here we start with the extended LNN model as the estimation procedure
is straightforward. The vector of unknown parameters Φ = (ψ′, p)′, where
ψ = (m, k, α, β)′, can be estimated by maximizing the integrated likelihood
using the EM-algorithm (Dempster et al., 1977). The estimation of p is
important since it calibrates the posterior probability of change for multiple
testing, as seen in Eq.(2.2). Such estimation is also part of some multiple
testing procedure such as Storey’s q-value (Storey, 2003). Estimation of the
parameter p can be difficult (Smyth, 2004; Bhowmick et al., 2006), and as
suggested by Newton et al. (2001) we place a Beta(2, 2) prior over p, which
avoids numerical issues when p gets close to 0 or 1. Given the large number
of genes, the prior on p has essentially no effect on the final estimation, and
thus on the number of genes called differentially expressed.
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Treating the zg’s as missing data, the complete-data log-likelihood is
given by

lc(Φ|x,y, z) =
∑
g

[
zg log pA(xg,yg|ψ) + (1− zg) log p0(xg,yg|ψ)

+ (1 + zg) log p+ (2− zg) log(1− p)
]
. (2.3)

During the E-step, the expectation is obtained by replacing zg by ẑg as given
by Eq.(2.2) while the M-step consists of maximizing the conditional expec-
tation with respect to the parameter vector Φ = (ψ′, p)′. At convergence,
the estimated parameters can be substituted into Eq.(2.2) to compute the
posterior probability of change for each gene.

Because the prior of the extended GG model is not conjugate to the sam-
pling distribution, only the marginal density conditional on ag is analytically
available for each gene. We refer to it as the conditional marginal density.
To incorporate information about the prior for the ag’s, we propose to esti-
mate the hyperparameters η and ξ beforehand through an empirical Bayes
approach using the method of moments (see Appendix A.2 for details), and
add log[π(ag|η, ξ)] to the log conditional density as a penalty term. Again,
treating the zg’s as missing data, the corresponding modified complete-data
log-likelihood can be written as

l̃c(Φ|x,y, z) =
∑
g

{
zg log pA(xg,yg|ψ, ag) + (1− zg) log p0(xg,yg|ψ, ag)

+ (1 + zg) log(p) + (2− zg) log(1− p) + log π(ag|η, ξ)
}
,

(2.4)

where ψ = (a0, ν)′. The vector of parameters to be estimated becomes
Φ = (a1, a2, . . . , aG,ψ

′, p)′.
Similar to the extended LNN model, we can use the EM algorithm to

maximize the modified marginal likelihood. During the E-step, to obtain the
conditional expectation of the modified complete-data log-likelihood, zg in
Eq.(2.4) is replaced by ẑg as in Eq.(2.2). The M-step consists of maximizing

31



l̃c given the current zg’s. Such maximization can be difficult given the high
dimensionality of Φ and here we suggest to exploit the conditional structure
of the model during the maximization step, namely that given ψ and p,
the genes are conditionally independent and each ag can be maximized over
separately. Let us split the unknown parameters into two groups, namely,
Φ1 = (a1, a2, . . . , aG)′ (gene-specific shape parameters) and Φ2 = (ψ′, p)′

(global parameters). Then the M-step would consist of iteratively maximiz-
ing over Φ1 given Φ2 and Φ2 given Φ1. Here, we decided to maximize over
Φ1 only once during the first iteration to reduce the computational burden,
and then take EM-iterations with respect to Φ2 only until convergence. It
turns out that the estimates obtained were very similar to the ones obtained
when maximizing over both Φ1 and Φ2, while significantly reducing the
computing time.

Details about the estimation of (η, ξ) and initialization of the EM algo-
rithm can be found in Appendix A.3.

2.3 Application to Experimental Data

2.3.1 Data Description

To illustrate our methodology we use three publicly available microarray
datasets: one cDNA experiment and two Affymetrix spike-in experiments.
All three have the advantage that in each case the true state (differentially
expressed or not) of all or some of the genes is known.

The HIV-1 Data

The expression levels of 4608 cellular RNA transcripts were measured one
hour after infection with human immunodeficiency virus type 1 (HIV-1) us-
ing four replicates on four different slides. 13 HIV-1 genes have been included
in the set of RNA transcripts to serve as positive controls, i.e., genes known
in advance to be differentially expressed. Meanwhile, 29 non-human genes
have also been included and act as negative controls, i.e., genes known to
be not differentially expressed. Another dataset was obtained by repeating
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the four aforementioned experiments but with an RNA preparation different
from that for the first dataset. For easy reference, we label the two datasets
as HIV-1A and HIV-1B respectively. See van’t Wout et al. (2003) for more
details of the HIV-1 data. The data were lowess normalized using a global
lowess normalization step (Yang et al., 2002).

The HGU95A Spike-In Data

This dataset was obtained from a spike-in study by Affymetrix used to de-
velop and validate the MAS 5.0 (Affymetrix Manual, 2001) platform. The
concentrations of 14 spiked-in human gene groups in 14 groups of HGU95A
GeneChip c© arrays were arranged in a Latin square design. The concentra-
tions of the 14 groups in the first array group are 0, 0.25, 0.5, 1, 2, 4, 8, 16, 32,
64, 128, 256, 512 and 1024 pM respectively. Each subsequent array group
rotates the spike-in concentrations by one group such that each human gene
was spiked-in at a particular concentration level on exactly one array group,
and each concentration level came with exactly one spiked-in gene group in
each array group. There are three technical replicates in each array group.
The third array group has been removed from the analysis as one of its
replicates was missing. We use a set of 16 spiked-in genes in our list in
recognition of the extras reported by Hsieh et al. (2003) and Cope et al.
(2004). Analysis is performed on each set of probe summary indices com-
puted using gcRMA (Wu et al., 2004), RMA (Irizarry et al., 2003a), MAS 5
and dChip (Li and Wong, 2001) respectively.

The HGU133A Spike-In Data

This dataset was obtained from another spike-in study done with HGU133A
arrays. A total of 42 spiked-in genes were organized in 14 groups, and
the concentrations used were 0, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, 128, 256
and 512 pM. The arrangement of the spike-in concentrations was similar
to the Latin square design stated above. Again, there are three technical
replicates in each array group. For more information see Irizarry et al.
(2003b). In addition to the original 42, we claim that another 20 genes
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should also be included in the spiked-in gene list as they consistently show
significant differential expression across the array groups in the exploratory
data analysis. Similar observations have been made by Sheffler et al. (2005).
Moreover, the probe sets of three genes contain probe sequences exactly
matching those for the spiked-ins. These probes should be hybridized by
the spike-ins as well. As a result, our expanded spiked-in gene list contains
65 entries in total.

2.3.2 Results

We compare our proposed methods – extended GG (eGG) and extended
LNN (eLNN) models – to five other methods, namely, EBarrays GG and
LNN models, the popular Significance Analysis of Microarrays (SAM) (Tusher
et al., 2001), Linear Models for Microarray data (LIMMA) (Smyth, 2004),
and a fully Bayesian approach named BRIDGE (Gottardo et al., 2006a).
The results have been organized in Tables 2.1–2.3.

In the analysis of the HIV-1 data, we obtain the number of genes called
differentially expressed (DE) for each method. Among those genes called

Table 2.1: Analysis of differential expression with the HIV-1 data.

(a) HIV-1A

Method DE TP∗ FP∗

GG 24 13 0
LNN 18 13 1
eGG 13 13 0
eLNN 14 13 0
LIMMA 13 13 0
SAM 13 13 0
BRIDGE 14 13 0

(b) HIV-1B

Method DE TP∗ FP∗

GG 18 11 1
LNN 18 11 1
eGG 12 11 0
eLNN 12 11 0
LIMMA 11 11 0
SAM 13 11 0
BRIDGE 11 11 0

The FDR is controlled at 0.1.
∗ The numbers of TP and FP are based on the controls, namely, the 13 (resp. 12
in the second experiment) HIV-1 and the 29 non-human genes of which the states
are known in advance. They do not represent the true numbers of TP and FP in
the entire data.
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DE, we look at the number of true positives (TP), i.e., genes known to be
DE in advance, and the number of false positives (FP), i.e., genes known to
be not DE. Gottardo et al. (2006b) showed that one of the HIV genes, which
was expected to be highly differentially expressed had a very small estimated
log ratio and did not properly hybridize in the second experiment (HIV-1B).
We removed the corresponding gene from the list of known differentially
expressed genes. Thus there are 13 genes known to be DE in the first
experiment and 12 in the second. To compare the performance between the
seven methods, we intend to control the false discovery rate (FDR) at a
fixed level of 0.1. The FDR cutoffs can be selected using a direct posterior
probability calculation as described in Newton et al. (2004). For the HIV-
1A dataset, when the FDR is controlled at 0.1, all methods can identify the
13 positive controls. Meanwhile, EBarrays LNN has made one FP. Similar
result is observed when the HIV-1B dataset is considered. All methods
detect 11 out of the 12 positive controls but both versions of EBarrays (GG
and LNN) have made one FP. Concluded from the HIV-1 datasets, along
with LIMMA, SAM and BRIDGE our proposed eGG and eLNN methods
appear to perform the best as they recognize the most positive controls and
do not get any FP.

For the HGU95A spike-in data, after removing the array group with one
missing replicate, we have a set of 13 array groups. To evaluate the different
methods we compare the first array group to the other array groups, leading
to 12 comparisons. Since dChip may return negative probe summary indices,
which cannot be processed by the aforementioned methods, those genes with
negative summary indices were filtered out. This excluded 5.5 spike-ins on
average. This time, since we know the actual status of each gene, we can
check the true FDR of each method against the desired FDR. In addition,
we look at the number of false negatives (FN) as a power assessment.

Unlike the results on the HIV-1 data, SAM does not show a competitive
performance. A large number of FN (>11) have been observed with SAM for
both gcRMA and RMA summary indices, considering that there are only 16
entries in our spiked-in gene list. eLNN and LIMMA have the actual FDR
closest to the desired FDR in general, though they have a relatively large
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Table 2.2: Analysis of differential expression with the HGU95A spike-in
data.

(a) gcRMA

Method FN FDR
GG 2.42 0.22
LNN 1.83 0.22
eGG 1.58 0.28
eLNN 5.83 0.09
LIMMA 4.33 0
SAM 11.25 0.05
BRIDGE 3.6 0.06

(b) RMA

Method FN FDR
GG 2.42 0.28
LNN 2.42 0.25
eGG 2.25 0.2
eLNN 3.25 0.15
LIMMA 3.08 0.08
SAM 12.58 0.23
BRIDGE 2.33 0.17

(c) MAS 5

Method FN FDR
GG 6.5 0.7
LNN 5.42 0.84
eGG 4.33 0.53
eLNN 7.08 0.26
LIMMA 5.58 0.27
SAM 5.83 0.27
BRIDGE 12.08 0

(d) dChip

Method FN FDR
GG 3.25 0.7
LNN 3.58 0.74
eGG 2.83 0.43
eLNN 6.08 0.34
LIMMA 4.83 0.3
SAM 3 0.45
BRIDGE 4.00 0.34

The FDR is controlled at 0.1. The values of FN and FDR shown are the averages
across the 12 comparisons.

number of FN cases regarding MAS 5 and dChip summary indices. The
actual FDRs for EBarrays GG and LNN methods are too high compared
to the other methods, and our proposed extended versions have lowered the
rates by a wide margin while keeping relatively small FN rates.

The HGU133A spike-in data have a set of 14 array groups, and therefore
13 comparisons have been made. A total of 14 out of 65 spiked-in genes
on average have been filtered from the analysis with dChip due to negative
summary indices. The relative performance of the six methods is similar to
that for the HGU95A data. It is worth mentioning that eGG is the only
method that can sustain the FN cases to a low number for all four types
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Table 2.3: Analysis of differential expression with the HGU133A spike-in
data.

(a) gcRMA

Method FN FDR
GG 5.85 0.2
LNN 5.92 0.2
eGG 6.46 0.23
eLNN 13.08 0.07
LIMMA 10.38 0.08
SAM 22.23 0.12
BRIDGE 6.01 0.11

(b) RMA

Method FN FDR
GG 4.38 0.14
LNN 4.46 0.13
eGG 5.23 0.06
eLNN 6.69 0.09
LIMMA 6.15 0.03
SAM 17.15 0.1
BRIDGE 4.53 0.08

(c) MAS 5

Method FN FDR
GG 15.77 0.89
LNN 15.85 0.87
eGG 9.23 0.59
eLNN 15.77 0.23
LIMMA 13.85 0.31
SAM 13.77 0.28
BRIDGE 18.46 0.25

(d) dChip

Method FN FDR
GG 9.31 0.48
LNN 9.69 0.58
eGG 6.69 0.44
eLNN 11.31 0.3
LIMMA 9.38 0.26
SAM 5.08 0.28
BRIDGE 6.92 0.51

The FDR is controlled at 0.1. The values of FN and FDR shown are the averages
across the 13 comparisons.

of probe summary indices, though its FDR is higher than the desired one.
SAM has considerably more FN cases than the other methods for gcRMA
and RMA, while its FDR is close to the desired one. Similarly, eLNN and
LIMMA exhibit good FDR performance but with better FN rates. Again,
the FDRs for EBarrays GG and LNN methods are at quite a high level,
while their extended versions (eGG and eLNN) have significantly reduced
the rates while keeping relatively small FN rates.
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2.4 Simulation Studies

2.4.1 Data Generation

We now use a series of simulations to study the performance of our empir-
ical Bayes framework under different model specifications compared to the
original EBarrays framework and the methods presented in Section 2.3.2.
In order to do so, we generated data from the following models: EBarrays
GG (a = 5, a0 = 0.8, ν = 15), EBarrays LNN (m = 5, σ2 = 2, τ−1 = 0.25,
σ2 being the variance parameter of the prior of µgx or µgy), extended GG
(η = 2, ξ = 1, a0 = 1, ν = 20) and extended LNN (m = 5, k = 12, α = 2, β =
0.5). The values of the parameters are set in the proximity of the estimates
from the HIV-1 data. We fixed the number of genes to 500, the number of
replicates to three in each group and generated 100 datasets under each of
the above models for two different values of p = {0.1, 0.2}.

2.4.2 Results

The seven methods mentioned in Section 2.3.2 are applied to each simu-
lated dataset to make inference about differential expression. Results are
summarized graphically in two ways: a plot of the actual FDR against the
desired FDR, and a plot of the number of FP against the number of FN.
The curves show the average results across the 100 simulated datasets. For
each dataset, results are collected by setting the cutoffs for the posterior
probabilities or p-values at different points in turn in detecting differential
expression.

As expected, the EBarrays GG and LNN models perform quite poorly
compared to the eGG and eLNN models when the variance is not constant
and clearly under estimate the FDR (Figures 2.2 and 2.3). On the other
hand, the eGG and eLNN models are comparable to EBarrays when the
variance is constant, showing that strength borrowing across genes is work-
ing well (Figures 2.4 and 2.5). Finally, both GG and eGG (resp. LNN and
eLNN) appear to perform relatively well under LNN and eLNN (resp. GG
and eGG) model specifications respectively. This confirms previous simula-
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tion studies (Kendziorski et al., 2003).
Overall, SAM is not performing very well and tend to under estimate

the FDR by a large amount. Meanwhile, LIMMA and BRIDGE consistently
show good performance for data generated from the four models, suggesting
that they are good candidates for identifying differential expression under a
wide variety of settings.
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Figure 2.2: Simulation results generated from the extended GG model.
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Figure 2.3: Simulation results generated from the extended LNN model.
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Figure 2.4: Simulation results generated from the EBarrays GG model.
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Figure 2.5: Simulation results generated from the EBarrays LNN model.
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2.5 Discussion

We have extended the EBarrays empirical Bayes framework for differential
gene expression by releasing the constant coefficient of variation assump-
tion, and introducing two algorithms that can be used for parameter esti-
mation. Using both experimental and simulated data we have shown that
the extended framework clearly improves the original framework. In addi-
tion, it appears that the eLNN model performs better than the eGG one as
shown with the spike-in data, and that it is comparable to BRIDGE, a more
computational fully Bayesian approach. This is not the case for the orig-
inal EBarrays framework, where the GG model generally performs better.
This confirms previous findings of Gottardo et al. (2006a) and suggests that
EBarrays GG is more robust to the model misspecification of a constant
coefficient of variation compared to the LNN formulation. However, when
the EBarrays model formulations are extended and the constant coefficient
of variation assumption is released, the LNN model seems more appropriate.

In spite of the complications accompanying the model enhancements
relative to the original EBarrays framework, the proposed methodology re-
mains to be highly competitive in terms of processing time. In the analysis
with the HGU133A data of >20000 genes, it takes about five minutes to
complete the eGG or eLNN analysis of one comparison between the two
array groups each with three replicates on the R platform.

In this chapter, we have compared our approach with five alternatives,
but there are many other methods for detecting differentially expressed genes
with gene expression data. We chose these five because they are either ob-
vious baseline methods or widely used; they are also representative of other
methods. More comparisons between statistical tests can be found in Cui
and Churchill (2003). Among explicit adjustments for multiple testing, we
considered the FDR control method as it is interpretable under each method.

For simplicity and ease of comparison, we assumed that we were in a sit-
uation with only two conditions of interest. However, the methodology could
easily be extended to the multiple condition case (Kendziorski et al., 2003) or
more complex ANOVA-type designs (Cui and Churchill, 2003; Smyth, 2004).
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Chapter 3

Flexible Mixture Modeling

via the Multivariate t

Distribution with the

Box-Cox Transformation∗

3.1 Introduction

In statistics, model-based clustering (Titterington et al., 1985; Banfield and
Raftery, 1993; McLachlan and Peel, 2000; Fraley and Raftery, 2002) is a
popular unsupervised approach to look for homogeneous groups of observa-
tions. The most commonly used model-based clustering approach is based
on finite normal mixture models, which has been shown to give good re-
sults in various applied fields, for example, gene expression (Yeung et al.,
2001; McLachlan et al., 2002; Pan et al., 2002), image analysis (Wehrens
et al., 2004; Fraley et al., 2005; Li et al., 2005), medical diagnosis (Schroeter
et al., 1998; Forbes et al., 2006) and astronomy (Kriessler and Beers, 1997;
Mukherjee et al., 1998).

However, normal mixture models rely heavily on the assumption that
each component follows a normal distribution symmetric in shape, which
is often unrealistic. A common remedy for the asymmetry issue is to look
for transformations of the data that make the normality assumption more
realistic. Box and Cox (1964) discussed the power transformation in the

∗ A version of this chapter has been submitted for publication. Lo, K. and Gottardo,
R. (2009). Flexible Mixture Modeling via the Multivariate t Distribution with the Box-Cox
Transformation.
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context of linear regression, which has also been applied to normal mixture
models (Schork and Schork, 1988; Gutierrez et al., 1995).

Another line of attempts to resolve the asymmetry observed in data is to
enhance the flexibility of the normal distribution by introducing skewness.
Azzalini (1985) developed a class of univariate skew normal distributions
with the introduction of a shape parameter to account for the skewness,
which had been put to use in a mixture modeling context by Lin et al.
(2007b). A multivariate version of the skew normal distributions was first
proposed by Azzalini and Dalla Valle (1996), with various generalizations
or modifications ensuing. One such modification was found in Sahu et al.
(2003), who developed a new class of multivariate skew elliptically sym-
metric distributions with applications to Bayesian regression models, and
included the multivariate skew normal distribution as a special case. As
opposed to Azzalini and Dalla Valle’s (1996) formulation of the skew nor-
mal distribution, the correlation structure in that of Sahu et al. (2003) is
not affected by the introduction of skewness in the sense that independence
between elements of a random vector is preserved irrespective of changes
in the skewness parameters. The latter formulation was adopted by Lin
(2009a), who introduced the multivariate skew normal mixture model and
described an ECM algorithm (Meng and Rubin, 1993) for maximum like-
lihood estimation. However, the implementation of this methodology is
extremely computationally intensive. A simplified version of Sahu et al.’s
(2003) formulation has recently been suggested by Pyne et al. (2009), who
parameterized skewness in the form of a vector in place of a matrix. As
a result of this simplification, the computational complexity of parameter
estimation has been reduced considerably.

In addition to non-normality, there is also the problem of outlier iden-
tification in mixture modeling. Outliers can have a significant effect on the
resulting clustering. For example, they will usually lead to overestimating
the number of components in order to provide a good representation of the
data (Fraley and Raftery, 2002). If a more robust model is used, fewer
clusters may suffice. Outliers can be handled in the model-based clustering
framework, by either replacing the normal distribution with a more robust
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one (e.g., t; see Peel and McLachlan, 2000; McLachlan and Peel, 2000) or
adding an extra component to accommodate the outliers (e.g., uniform; see
Schroeter et al., 1998).

Transformation selection and outlier identification are two issues which
can have heavy mutual influence (Carroll, 1982; Atkinson, 1988). While a
stepwise approach in which transformation is preselected ahead of outlier
detection (or vice versa) may be considered, it is unlikely to tackle the prob-
lem well in general, as the preselected transformation may be influenced by
the presence of outliers. One possible means of handling the two issues si-
multaneously is through the application of skew t distributions (Azzalini and
Capitanio, 2003; Sahu et al., 2003) in mixture modeling. Such an attempt
was given by Lin et al. (2007a), who proposed a skew t mixture model based
on the formulation of Azzalini and Capitanio (2003), but it is confined to
the univariate case. Not until recently has a multivariate version of the skew
t mixture model come to light. Lin (2009b) and Pyne et al. (2009) adopted
a similar approach to the case of skew normal in defining the multivariate
skew t distribution, thereby simplifying Sahu et al.’s (2003) formulation with
a vector in place of a skewness matrix.

In view of the aforementioned issues, we propose a unified framework
based on mixture models using a new class of skewed distributions, namely,
the multivariate t distributions with the Box-Cox transformation, to handle
transformation selection and outlier identification simultaneously. The t dis-
tribution provides a robust mechanism against outliers with its heavier tails
relative to the normal distribution (Lange et al., 1989). The Box-Cox trans-
formation is a type of power transformation, which can bring skewed data
back to symmetry, a property of both the normal and t distributions. Along
with the introduction of the mixture model using this new class of distribu-
tions, we also describe a convenient means of parameter estimation via the
EM algorithm (Dempster et al., 1977). Whilst the proposed framework holds
a big appeal of being computationally much simpler than mixture modeling
using skew t distributions, it performs well in various scenarios compared
to a wealth of competing approaches, as shown in subsequent sections of
this chapter. A simplified form of our proposed framework has been ap-
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plied to flow cytometry, which shows a favorable performance in identifying
cell populations (Chapter 4). This chapter presents a comprehensive frame-
work that substantially enriches that previous simplified version, including
the selection of component-specific transformations, and the estimation of
data outlyingness. In addition, it focuses at the computational development
of the proposed methodology, and includes a large-scale comparison with
competing approaches such as those using the skew normal or t mixture
distributions.

The structure of this chapter is as follows. In Section 3.2 we first intro-
duce the new class of skewed distributions, the multivariate t distributions
with the Box-Cox transformation. Then we introduce the mixture model
using the proposed distributions, and present details including outlier iden-
tification, density estimation and the selection of the number of components.
In addition, we describe an EM algorithm (Dempster et al., 1977) to simul-
taneously handle parameter estimation and transformation selection for our
proposed mixture model. In Section 3.3, the performance of the proposed
framework is examined on real datasets and compared to a wealth of com-
monly used approaches. Section 3.4 presents extensive simulation studies to
further evaluate our proposed framework relative to the other approaches.
Finally, in Section 3.5 we summarize and discuss our findings.

3.2 Methodology

3.2.1 Preliminaries

The Multivariate t Distribution

The multivariate t distribution has found its use as a robust modeling tool
in various fields of applied statistics like linear and non-linear regression,
time series, and pedigree analysis; see Lange et al. (1989) and Kotz and
Nadarajah (2004) for examples. The t distribution is applied in place of the
normal distribution when the latter fails to offer long enough tails for the
error distribution. Formally, a random vector y of length p is said to follow
a p-dimensional multivariate t distribution with mean µ (ν > 1), covariance
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matrix ν(ν − 2)−1Σ (ν > 2) and ν degrees of freedom if its density function
is given by

ϕp(y|µ,Σ, ν) =
Γ(ν+p2 )|Σ|−1/2

(πν)p/2Γ(ν2 ){1 + (y − µ)TΣ−1(y − µ)/ν}
ν+p
2

. (3.1)

The degrees of freedom ν may be viewed as a robustness tuning parameter,
as it controls the fatness of the tails of the distribution. When ν →∞, the
t distribution approaches a p-dimensional multivariate normal distribution
with mean µ, covariance matrix Σ, and density function

φp(y|µ,Σ) =
1

(2π)p/2|Σ|1/2
exp

{
−1

2
(y − µ)TΣ−1(y − µ)

}
. (3.2)

An account of the development of the maximum likelihood estimation of
the multivariate t distribution can be found in Liu and Rubin (1995), Liu
(1997) and Peel and McLachlan (2000). The estimation involves the use
of the EM algorithm or its variants including the ECM (Meng and Rubin,
1993) and ECME (Liu and Rubin, 1994) algorithms. The crux of these
algorithms constitutes the fact that we can parameterize a t distribution
using a normal-gamma compound distribution. The degrees of freedom ν

may be jointly estimated along with other unknown parameters, or fixed a
priori when the sample size is small. In the latter case, the setting with
ν = 4 has been found to provide good protection against outliers and work
well in many applications (see, for example, Lange et al., 1989; Stephens,
2000).

Box-Cox Transformation

The power transformation proposed by Box and Cox (1964) was originally
introduced to make data with asymmetric distributions fulfill the normal-
ity assumption in a regression model. The Box-Cox transformation of an
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observation y is defined as follows:

y(λ) =

{
yλ−1
λ λ 6= 0

log y λ = 0
(3.3)

where λ is referred to as the transformation parameter. Note that this
function is defined for positive values of y only. In view of the need to han-
dle negative-valued data in some applications, we adopt a modified version
(Bickel and Doksum, 1981) of the Box-Cox transformation which is also
defined for negative values:

y(λ) =
sgn(y)|y|λ − 1

λ
, λ > 0. (3.4)

There exist several modified versions of the Box-Cox transformation
to handle negative-valued data, for example, the log-shift transformation,
which was also proposed in Box and Cox’s (1964) paper for the original
Box-Cox transformation. The advantage of our choice given by Eq.(3.4) is
that, while continuity is maintained across the whole range of the data, it
retains the simplicity of the form of the transformation without introducing
additional parameters; when all data are positive, it reduces to the original
version.

3.2.2 The Multivariate t Distribution with the Box-Cox

Transformation

In this subsection, we propose a new class of distributions, namely, the mul-
tivariate t distributions with the Box-Cox transformation (tBC), to handle
transformation and to accommodate outliers simultaneously. Explicitly, a
random vector y of length p following such a distribution has a density
function specified by

ϕp(y(λ)|µ,Σ, ν) · |Jp(y;λ)|, (3.5)
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Figure 3.1: Contour plots revealing the shape of bivariate t distributions
with the Box-Cox transformation for different values of the transformation
parameter. Each distribution has a mean of 10 and unit variance along each
dimension. The degrees of freedom parameter is fixed at eight. The values
of the transformation parameter λ range from −5 (extremely right-skewed)
to 5 (extremely left-skewed).

where |Jp(y;λ)| = |yλ−1
1 yλ−1

2 · · · yλ−1
p | is the Jacobian induced by the Box-

Cox transformation. Equivalently speaking, the random vector y follows a
multivariate t distribution after being Box-Cox transformed. It is difficult
to derive the exact mean and variance of the distribution in closed form.
However, using first-order Taylor series expansion, approximations for the
mean and covariance matrix can be derived. The mean can be approximated
by a vector of length p with the j-th element being sgn(λµj+1) |λµj+1|1/λ,
and the variance by ν/(ν − 2) Dp(µ;λ) Σ Dp(µ;λ), where Dp(µ;λ) is a
diagonal matrix of order p with the j-th diagonal element being |λµj +
1|1/λ−1. The various shapes that can be represented by the tBC are shown
in Figure 3.1.

Analogous to the case of the t distribution without transformation, the
tBC approaches a multivariate normal distribution with the Box-Cox trans-
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formation (NBC) when ν →∞. In addition, this class of distributions also
includes the untransformed version of the multivariate t or normal distribu-
tion. The untransformed t or normal distribution is recovered by setting λ
in Eq.(3.5) to one, although there is a translation of one unit to the left in
each direction on the original scale (due to the term −1/λ in Eq.(3.4)).

The flexible class of tBC offers robustness against both outliers and asym-
metry observed in data. Comparatively, the t distribution alone is deemed
robust in the sense that it offers a mechanism to accommodate outliers. As
noted by Lange et al. (1989), however, the t distribution is not robust against
asymmetric error distributions. When asymmetry is observed, data trans-
formation is desired for the sake of restoring symmetry, and subsequently
drawing proper inferences. The introduction of the tBC is therefore in line
with Lange et al.’s notion.

3.2.3 The Mixture Model of t Distributions with the

Box-Cox Transformation

The Model

Making use of the tBC introduced in the last subsection, we now define
a G-component mixture model in which each component is described by
a tBC. Given data y, with independent p-dimensional observation vectors
yi, i = 1, . . . , n, the likelihood for the tBC mixture model is given as follows:

L(Ψ|y) =
n∏
i=1

G∑
g=1

wgϕp(y
(λg)
i |µg,Σg, νg) · |Jp(yi;λg)|,

G∑
g=1

wg = 1. (3.6)

The mixing proportion wg is the probability that an observation belongs to
the g-th component. Estimates of the unknown parameters Ψ = (Ψ1, . . . ,ΨG)
where Ψg = (wg,µg,Σg, νg, λg) can be obtained conveniently using an EM
algorithm described in the next subsection. Analogous to the case of tBC,
the mixture distribution approaches that for an NBC mixture model with
ϕp(·|µg,Σg, νg) being replaced by φp(·|µg,Σg) when νg →∞ for all g. Also,
the class of tBC mixture models includes the conventional, untransformed t
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or normal mixture model, obtained by fixing λg = 1 for all g. Note that a
restricted form of Eq.(3.6) has been previously applied to identify cell popu-
lations in flow cytometry data, on setting a global transformation parameter
λ = λg and fixing νg = 4 for all g (Chapter 4).

Maximum Likelihood Estimation

In this subsection we illustrate how transformation selection can be handled
along with parameter estimation simultaneously via an EM algorithm. As in
the algorithm for a t mixture model described in Peel and McLachlan (2000),
we first define two types of missing data to augment the set of complete data.
One is the unobserved component membership zi = (zi1, . . . , ziG) with

zig =

1 if yi belongs to the g-th component

0 otherwise

associated with each observation yi. Each vector Zi follows independently a
multinomial distribution with one trial and event properties w = (w1, . . . , wG),
denoted as Zi ∼MG(1,w). Another type of missing data is the weight ui,
coming from the normal-gamma compound parameterization for the t dis-
tribution, such that

Yi|ui, zig = 1 ∼ N(µg,Σg/ui) (3.7)

independently for i = 1, . . . , n, and Ui ∼ Ga(νg/2, νg/2). The advantage of
writing the model in this way is that, conditional upon the Ui’s, the sampling
errors are again normal but with different precisions, and estimation becomes
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a weighted least squares problem. The complete-data log-likelihood becomes

lc(Ψ|y, z,u) =
n∑
i=1

G∑
g=1

zig

{
log
[
wgφp(y

(λg)
i |µg,Σg/ui) · |Jp(yi;λg)|

]
+ log Ga(ui|νg/2, νg/2)

}
=

n∑
i=1

G∑
g=1

zig

{
logwg −

p

2
log(2π)− 1

2
log |Σg|

− ui
2

(y(λg)
i − µg)TΣ−1

g (y(λg)
i − µg) + (λg − 1)

p∑
j=1

log |yij |

+
νg
2

log
νg
2
− log Γ

(νg
2

)
+
νg
2

(log ui − ui) +
(p

2
− 1
)

log ui
}
,

(3.8)

where Ga(·|·) is the density function of ui. The E-step of the EM algorithm
involves the computation of the conditional expectation of the complete-
data log-likelihood EΨ(lc|y). To facilitate this, we need to compute z̃ig ≡
EΨ(Zig|yi), ũig ≡ EΨ(Ui|yi, zig = 1) and s̃ig ≡ EΨ(logUi|yi, zig = 1):

z̃ig ←
wgϕp(y

(λg)
i |µg,Σg, νg) · |Jp(yi;λg)|∑G

k=1wkϕp(y
(λk)
i |µk,Σk, νk) · |Jp(yi;λk)|

, (3.9)

ũig ←
νg + p

νg + (y(λg)
i − µg)TΣg

−1(y(λg)
i − µg)

(3.10)

and

s̃ig ← log ũig + ψ

(
νg + p

2

)
− log

(
νg + p

2

)
, (3.11)

where ψ(·) is the digamma function. Note that, if we assume a global trans-
formation parameter λ, then Eq.(3.9) used to compute z̃ig is slightly simpli-
fied as

z̃ig ←
wgϕp(y

(λ)
i |µg,Σg, νg)∑G

k=1wkϕp(y
(λ)
i |µk,Σk, νk)

. (3.12)
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As can be seen in the following, s̃ig only appears in Eq.(3.18) or Eq.(3.19) for
the update of the degrees of freedom νg. If we fix νg to some predetermined
value, then s̃ig is not needed and Eq.(3.11) can be omitted. Upon plugging
z̃ig, ũig and s̃ig into Eq.(3.8) for zig, ui and log ui respectively, we obtain the
conditional expectation of the complete-data log-likelihood.

In the M-step, we update the parameter estimates with values which
maximize the conditional expectation of the complete-data log-likelihood.
The mixing proportions are updated with the following formula:

ŵg ←
ng
n
, (3.13)

where ng ≡
∑

iz̃ig. The estimation of µg and Σg needs to be considered
along with the transformation parameter λg of the Box-Cox transforma-
tion. Closed-form solutions for µg and Σg are available conditional on λg

as follows,

µ̂g =
∑n

i=1 z̃igũigy
(λg)
i∑n

i=1 z̃igũig
= h1(λg); (3.14)

Σ̂g =
∑n

i=1 z̃igũig(y
(λg)
i − µ̂g)(y

(λg)
i − µ̂g)T

ng
= h2(λg). (3.15)

No closed-form solution is available for λg, but on substituting µ̂g = h1(λg)
and Σ̂g = h2(λg) into the conditional expectation of the complete-data
log-likelihood for µg and Σg respectively, the problem reduces to a one-
dimensional search of λg. Explicitly, the optimization is recast as a one-
dimensional root-finding problem of the equation ∂EΨ(lc|y)/∂λg = 0, in
which

∂EΨ(lc|y)
∂λg

=
∂

∂λg

n∑
i=1

z̃ig

{
− ũig

2

[
(y(λg)
i − µg)TΣ−1

g (y(λg)
i − µg)

]
+ (λg − 1)

p∑
j=1

log |yij |

}

=
n∑
i=1

[
−z̃igũig(y

(λg)
i − µg)TΣ−1

g

] ∂y(λg)
i

∂λg
+

n∑
i=1

z̃ig

p∑
j=1

log |yij |

(3.16)
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where ∂y(λg)
i /∂λg is a vector of length p whose j-th element is

λ−2
g

[
sgn(yij)|yij |λg(λg log |yij | − 1) + 1

]
, and µg and Σg are replaced with

µ̂g = h1(λg) and Σ̂g = h2(λg) respectively. The equation may be solved
numerically using, for example, Brent’s (1973) algorithm. If we assume a
global transformation parameter λ instead, the left hand side of the equation
to consider is slightly modified from Eq.(3.16) as

∂EΨ(lc|y)
∂λ

=
n∑
i=1


G∑
g=1

[
−z̃igũig(y(λ)

i − µg)
TΣ−1

g

] ∂y(λ)
i

∂λ
+

n∑
i=1

p∑
j=1

log |yij |.

(3.17)

Once a numerical estimate of λg has been obtained, we substitute it back
into Eqs.(3.14)–(3.15) to update µg and Σg respectively.

To complete the M-step, we need to update the estimate of the degrees
of freedom νg, unless it is fixed a priori. From Eq.(3.8), we see that there
are no overlaps between terms involving (µg,Σg, λg) and those involving νg.
Hence, the incorporation of the Box-Cox transformation does not complicate
the estimation of νg. Again, since there is no closed-form solution available
for νg, we turn it into a one-dimensional root-finding problem by considering
the equation ∂EΨ(lc|y)/∂νg = 0, in which

∂EΨ(lc|y)
∂νg

=
∂

∂νg

n∑
i=1

z̃ig

{νg
2

log
νg
2
− log Γ

(νg
2

)
+
νg
2

(s̃ig − ũig)
}

∝ ng
{

log
νg
2

+ 1− ψ
(νg

2

)}
+

n∑
i=1

z̃ig(s̃ig − ũig). (3.18)

If we assume a global degrees of freedom ν = νg for all g, the derivative
∂EΨ(lc|y)/∂ν is given by

∂EΨ(lc|y)
∂ν

∝ n
{

log
ν

2
+ 1− ψ

(ν
2

)}
+

n∑
i=1

G∑
g=1

z̃ig(s̃ig − ũig). (3.19)

Alternatively, to improve the convergence, we may exploit the advantage
of the ECME algorithm (Liu and Rubin, 1994) and switch to update ν by

59



optimizing the constrained actual log-likelihood function:

ν̂ ← arg max
ν


n∑
i=1

log

 G∑
g=1

wgϕp(y
(λg)
i |µg,Σg, ν) · |Jp(yi;λg)|

 . (3.20)

Apart from an intuitive sense that a faster convergence is expected on dis-
regarding the information of the parameter estimates obtained from the
previous iteration (which is carried over by the conditional expectation of
the complete-data log-likelihood otherwise) as well as considering the actual
likelihood instead of its approximation, it also saves a little computational
burden by circumventing the computation of s̃ig.

The EM algorithm alternates between the E and M-steps until conver-
gence. The quantity z̃ig may be interpreted as the posterior probability that
observation yi belongs to the g-th component. The maximum a posteriori
configuration results from assigning each observation to the component as-
sociated with the largest z̃ig value. The uncertainty corresponding to each
assignment may be conveniently quantified as 1−maxg z̃ig (Bensmail et al.,
1997).

Outlier Identification

Just like the case of z̃ig, the introduction of ũig does not only facilitate the
implementation of the EM algorithm, but also aids in the interpretation of
the final estimated model. As seen from Eqs.(3.14)–(3.15), ũig serves as the
weight in the weighted least squares estimation of µg and Σg. It holds a neg-
ative relationship with the Mahalanobis distance (y(λg)

i −µg)TΣg
−1(y(λg)

i −
µg) between yi and µg on the transformed scale, as given by Eq.(3.10).
Hence, a small value of ũig would suggest that the corresponding obser-
vation is an outlier, and diminish its influence on the estimation of the
parameters. In contrast, in the absence of such a mechanism, a normal mix-
ture model is not robust against outliers, as the constraint

∑
g z̃ig = 1 for

all i restricts all observations to make equal contributions overall towards
parameter estimation.

Exploiting such a mechanism, we may conveniently set up a rule of calling
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an observation with the associated ũig value smaller than a threshold, say,
0.5, an outlier. Such a threshold may be selected on a theoretical basis by
considering the one-to-one correspondence between ũig and the Mahalanobis
distance which follows some standard, known distribution. On noting that

(y(λg)
i − µg)TΣg

−1(y(λg)
i − µg)/p ∼ F (p, νg), (3.21)

where y(λg)
i follows a p-dimensional t distribution with parameters (µg,Σg, νg)

and F (·) denotes an F distribution, a threshold c for ũig may be determined
by considering the desired threshold quantile level α of the distribution
stated in Eq.(3.21):

c =
νg + p

νg + pF1−α(p, νg)
, (3.22)

where F1−α(·) denotes the α quantile of the F distribution such that Pr(F ≥
F1−α) = 1 − α. For instance, if νg = 4, p = 5, and the desired threshold
quantile level is α = 0.9, then the corresponding threshold for ũig is c =
0.37 given the 0.9 quantile F0.1(5, 4) = 4.051. Any observation with the
associated ũig < 0.37 will be deemed an outlier.

From Eq.(3.10), we can also see how the degrees of freedom νg partici-
pates in robustifying the parameter estimation process. A smaller value of
νg tends to downweight outliers to a greater extent, while a large enough
value tends to regress all weights to one, approaching the case of the NBC
model. In addition, the upper bound of ũig offers a guide for setting the
degrees of freedom ν = νg for all g, if it is preferred to be fixed in advance.
The weight ũig takes a positive value on (0, 1 + p/νg), and for a moderate-
valued νg, its mean is around one. To avoid a point in the vicinity of the
central location of a mixture component from imposing excessive influence
on the estimation of parameters, we may set ν accordingly such that the
ratio p/ν is maintained at an appropriate level, for example, one to 1.5.

Density Estimation

One advantage of mixture modeling based on the normal distribution is that
the marginal distribution for any subset of the dimensions is also normally
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distributed with the mean and covariance matrix extracted from the con-
formable dimensions (Johnson and Wichern, 2002). This favorable property
is also observed in the multivariate t distiribution (Liu and Rubin, 1995;
Kotz and Nadarajah, 2004), making the estimation of the marginal density
for any dimensions available at a very low computational cost. Consider the
partition Y = (Y1,Y2) as an example. If Y comes from a multivariate t
distribution with ν degrees of freedom and with mean and covariance matrix
conformably partitioned as

µ = (µ1,µ2) and
ν

ν − 2
Σ =

ν

ν − 2

(
Σ11 Σ12

Σ21 Σ22

)

respectively, then its subset Y1 will follow a t distribution with mean µ1,
covariance matrix ν/(ν − 2)Σ11 and the same ν degrees of freedom. This
nice property is easily extended to a t mixture model with more than one
component, and, in addition, preserved in our proposed tBC mixture model.
One can easily derive the marginal density by extracting the conformable
partitions from the means, covariance matrices and the Jacobian. The 90th
percentile region of the mixture components shown in Figure 3.2 is produced
by these means.

Selecting the Number of Components

When the number of mixture components is unknown, we apply the Bayesian
Information Criterion (BIC) (Schwarz, 1978) to guide the selection. The BIC
provides a convenient approximation to the integrated likelihood of a model
and, in the context of mixture models, is defined as

BICG = 2 log L̃G −KG log n, (3.23)

where L̃G is the likelihood value of Eq.(3.6) evaluated at the maximum
likelihood estimates of Ψ, and KG is the number of independent parameters
for a G-component mixture model. The BIC would then be computed for a
range of possible values for G and the one with the largest BIC (or relatively
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Figure 3.2: Scatterplots revealing the assignment of observations for different
models applied to the crabs dataset, projected onto the dimensions of the
frontal lobe size and the width of the rear region of the carapace. The solid
lines represent the 90th percentile region of the components in the mixture
models. The line colors match with the group they are labeled, determined
in a way such that the lowest misclassification rate is derived. Misclassified
observations are drawn in red, overriding the original colors used to reveal
their true group memberships. 63



close to it) would be selected. Often, the BIC is applied in line with the
principle of parsimony, by which we favor a simpler model if it does not
incur a downgrade of the modeling performance. Suppose there are two
tBC mixture models with G1 and G2 components respectively such that
G1 < G2. Under the notion of this principle, we would prefer the simpler
model, i.e., the one with G1 components, unless a very strong evidence of
improved performance signified by an increase of >10 (Kass and Raftery,
1995; Fraley and Raftery, 2002) is observed from BICG1 over BICG2 .

3.3 Application to Real Data

3.3.1 Data Description

To illustrate our methodology we use the following two real datasets.

The bankruptcy dataset

This dataset was obtained from a study which conducted financial ratio anal-
ysis to predict corporate bankruptcy (Altman, 1968). The sample consists
of 66 manufacturing firms in the United States, of which 33 are bankrupt
and the other 33 solvent. The data collected include the ratio of retained
earnings (RE) to total assets, and the ratio of earnings before interest and
taxes (EBIT) to total assets. They were derived from financial statements
released two years prior to bankruptcy, and statements from the solvent
firms during the same period.

The crabs dataset

Measurements in this dataset were collected from a study of rock crabs of
genus Leptograpsus (Campbell and Mahon, 1974). The sample is composed
of 50 crabs for each combination of species (blue and orange color forms) and
sex (male and female), resulting in a total of 200 observations. There are
five morphological measurements, namely, the frontal lobe size, the width of
the rear region of the carapace, the length of the carapace along the midline,
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the maximum width of the carapace, and the depth of the body, for each
crab.

3.3.2 Results

We compare the performance of six mixture modeling approaches using dif-
ferent mixture distributions, namely, t with the Box-Cox transformation
(tBC), t, normal with the Box-Cox transformation (NBC), normal, skew
t, and skew normal. Since all observations in the two datasets come with
known labels, we can assess and compare the models based on the following
two criteria: misclassification rates and the number of components selected.

Classification

We fit the two datasets using the six aforementioned models in turn, on fixing
the number of mixture components at the known values, i.e., two for the
bankruptcy dataset and four for the crabs dataset. The same initialization
strategy is applied to the EM algorithm for all the models. Each time,
10 random partitions are generated, each of which is followed by a few
EM runs. The one delivering the highest likelihood value is taken as the
initial configuration for the eventual EM algorithm. At convergence of the
EM algorithm, misclassification rates, i.e., the proportions of observations
assigned to the incorrect group, are computed. Each misclassification rate
is determined as the minimum considering all permutations of the labels of
the components.

Table 3.1 shows the misclassification rates for the different models. As
can be seen, for the bankruptcy dataset, the tBC and NBC mixture models
deliver misclassification rates (15.2% and 16.7% respectively) lower than the
other methods by a large margin. By taking a graphical inspection of the
results, we find that the poor classification performance of the other four
methods is due to the inability to resolve the shape of the two groups of
observations properly (Figures 3.3(b,d–f)). The challenge likely arises from
the scattered group of bankrupt firms, with its most concentrated region
located at the upper right corner and in close proximity to the dense group
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Table 3.1: Misclassification rates for different models applied to the
bankruptcy and crabs datasets.

Model Bankruptcy Crabs
tBC 0.152 (10) 0.070 (14)
t 0.273 (18) 0.075 (15)
NBC 0.167 (11) 0.345 (69)
Normal 0.318 (21) 0.290 (58)
Skew t 0.303 (20) 0.085 (17)
Skew Normal 0.394 (26) 0.175 (35)

The best results are shown in bold. The numbers of misclassified cases are given
within parentheses.

of solvent firms. The sensitivity of normal mixture models to outliers is
clearly demonstrated in this example: the obvious outlier at the bottom of
the scatterplot leads to an excessively sparse component representing the
bankrupt group. Consequently, most observations in the bankrupt group
have been absorbed by the compact component representing the solvent
group. The shapes of the components in the t, skew t and skew normal
mixture models are not all the same, but it appears that for all of them
the scattered group of bankrupt firms are split into two components with
one absorbing a concentration extending to the left and the other to the
bottom. In contrast, both the tBC and NBC mixture models provide a nice
representation of both groups of observations (Figures 3.3(a,c)). The group
of bankrupt firms is resolved quite successfully upon a proper transformation
(λ̂ ≈ 0.5 for both models) of the observations.

As another means of performance assessment, we look into the location
of the misclassified observations in a plot of the ordered uncertainties (Fig-
ure 3.4). On observing that the misclassified observations have spread over
the entire range of the uncertainties, it suggests that the t, skew t and skew
normal mixture models simply provide an incorrect representation of the
two groups (Figures 3.4(b,e,f)). The quality of the fit using the tBC and
NBC mixture models respectively is confirmed by the corresponding uncer-
tainty plots (Figures 3.4(a,c)). We can see that the observations associated
with high uncertainties are also the ones most likely to be misclassified.

66



−300 −200 −100 0

−
25

0
−

15
0

−
50

0

(a) t + Box−Cox

RE ratio

E
B

IT
 r

at
io ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
● ●

●

●
●

●●

●
●

●

● Bankrupt
Solvent

−300 −200 −100 0

−
25

0
−

15
0

−
50

0

(b) t

RE ratio

E
B

IT
 r

at
io ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
● ●

●

●
●

●●

●
●

●

● Bankrupt
Solvent

−300 −200 −100 0

−
25

0
−

15
0

−
50

0

(c) Normal + Box−Cox

RE ratio

E
B

IT
 r

at
io ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
● ●

●

●
●

●●

●
●

●

● Bankrupt
Solvent

−300 −200 −100 0

−
25

0
−

15
0

−
50

0

(d) Normal

RE ratio

E
B

IT
 r

at
io ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
● ●

●

●
●

●●

●
●

●

● Bankrupt
Solvent

−300 −200 −100 0

−
25

0
−

15
0

−
50

0

(e) Skew t

RE ratio

E
B

IT
 r

at
io ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
● ●

●

●
●

●●

●
●

●

● Bankrupt
Solvent

−300 −200 −100 0

−
25

0
−

15
0

−
50

0

(f) Skew Normal

RE ratio

E
B

IT
 r

at
io ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
● ●

●

●
●

●●

●
●

●

● Bankrupt
Solvent

Figure 3.3: Scatterplots revealing the assignment of observations for differ-
ent models applied to the bankruptcy dataset. The black solid lines repre-
sent the 90th percentile region of the components in the mixture models.
Misclassified observations are drawn in red.

67



0 10 20 30 40 50 60

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

(a) t + Box−Cox

Index

U
nc

er
ta

in
ty

0 10 20 30 40 50 60

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

(b) t

Index

U
nc

er
ta

in
ty

0 10 20 30 40 50 60

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

(c) Normal + Box−Cox

Index

U
nc

er
ta

in
ty

0 10 20 30 40 50 60

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

(d) Normal

Index

U
nc

er
ta

in
ty

0 10 20 30 40 50 60

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

(e) Skew t

Index

U
nc

er
ta

in
ty

0 10 20 30 40 50 60

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

(f) Skew Normal

Index

U
nc

er
ta

in
ty

Figure 3.4: Plots revealing the location of misclassified observations relative
to the ordered uncertainties of all observations for different models applied
to the bankruptcy dataset. Locations of the misclassified observations are
marked with red vertical lines.
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The results on the crabs dataset once again show that the tBC mixture
model delivers the best performance in terms of misclassification rate (7%).
It is followed closely by the t (7.5%) and skew t (8.5%) mixture models. Fig-
ure 3.2 shows a scatterplot of the crabs dataset projected onto the first two
dimensions, namely, the frontal lobe size and the width of the rear region
of the carapace. However, unlike the case for the bankruptcy dataset with
only two dimensions, a visually clear discrimination of the four groups in the
crabs dataset cannot be achieved by projecting the observations onto any
two out of the five dimensions. Therefore, we opt for displaying the crabs
dataset on its second versus third principal components which provides a
good visually discriminating effect. Figures 3.5(a,b) suggest that those few
misclassified observations in the tBC and t mixture models are all likely in
the overlapping region of neighboring groups, justifying that these models
provide a good representation of all the four groups in the dataset. This is
further confirmed by a check on the uncertainty plots, in which the misclas-
sified observations are also among the ones with the highest uncertainties
(Figures 3.6(a,b)). Meanwhile, from Figures 3.5(c,d,f) we find that, for the
poorly performed NBC, normal and skew normal mixture models, misclas-
sified cases are concentrated on one or two of the groups. Figures 3.2(c,d,f)
reveal that these models incorrectly split the assignment of the observations
from those groups into other components. As expected, these three poorly
performing normal-based models have misclassified observations spreading
over the entire range in the uncertainty plots (Figures 3.6(c,d,f)).

Selecting the Number of Components

To facilitate this part of analysis, when we apply the aforementioned mod-
els, we fit the data and compute the BIC once for each choice of the number
of mixture components G = 1, 2, . . . ,M , where M = 6 for the bankruptcy
dataset and M = 8 for the crabs dataset. These values are chosen for M be-
cause they are well above the true number of groups (two for the bankruptcy
dataset and four for the crabs dataset) such that little change in the result is
expected when we further increase M ; numerical problems may arise when
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Figure 3.5: Plots revealing the assignment of observations for different mod-
els applied to the crabs dataset, displayed via the second and third princi-
pal components. Misclassified observations are drawn in red, overriding the
original colors used to reveal their true group memberships.
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Figure 3.6: Plots revealing the location of misclassified observations relative
to the ordered uncertainties of all observations for different models applied
to the crabs dataset. Locations of the misclassified observations are marked
with red vertical lines.
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Figure 3.7: Plots of BIC against the number of components for the different
models applied to the bankruptcy and crabs datasets.

M is too large, moreover. From the BIC curves shown in Figure 3.7, we
observe that one single peak is observed for each modeling choice over the
range of the number of components attempted. The number of components
at which a peak is observed is deemed optimal by the BIC for the respec-
tive model. The BIC has selected the correct number of components (two)
for all the mixture models except normal when applied to the bankruptcy
dataset (Table 3.2). As to the crabs dataset in which the separation of the
groups is less clear-cut, it poses a challenge of selecting the right number
of components to most models. Only the tBC and t mixture models have
resolved the correct number of components (four) guided by the BIC. This
result further confirms with what we have observed in the last subsection
that the four-component mixture model using the tBC or t mixture model
provides the best representation of the data out of all candidates.

3.4 Simulation Studies

We have conducted a series of simulations to further evaluate the relative
performance of our proposed framework to the other approaches presented
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Table 3.2: The number of components selected by the BIC for different
models applied to the bankruptcy and crabs datasets.

Model Bankruptcy Crabs
tBC 2 4
t 2 4
NBC 2 3
Normal 3 3
Skew t 2 2
Skew Normal 2 3

The best results are shown in bold.

in Section 3.3.2. The different approaches are evaluated for their sensitivity
against model misspecification, using the following two criteria: the accuracy
in the assignment of observations, and the accuracy in selecting the number
of components.

3.4.1 Data Generation

To facilitate the comparison, we generate data from the following mixture
models: tBC, skew t, t and normal. To assess the accuracy in the assign-
ment of observations, two settings of parameter values have been adopted:
one taken from the estimates obtained when applying each of the aforemen-
tioned models to the bankruptcy dataset, and the other one from the crabs
dataset, with the number of components set as the respective known values.
As a result, each dataset generated from the bankruptcy setting consists
of two components and two dimensions, while that from the crabs setting
has four components and five dimensions. For datasets generated under the
bankruptcy setting we fix the number of observations at 200, while it is set
as 500 for the crabs setting. 100 datasets are generated from each of the
aforementioned models under each setting. To study the accuracy in select-
ing the number of components, we focus at the crabs setting. Pertaining
to this criterion, the crabs setting offers a better platform to discriminate
the relative performance of the different approaches for its larger number
of groups and higher dimensions. 1000 observations are generated from the
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Table 3.3: Average misclassification rates for different models applied to
datasets generated under the bankruptcy or crabs setting.

Model used to fit data
tBC t NBC Normal Skew t Skew Norm.

Model used to tBC 0.075 0.124 0.075 0.126 0.142 0.110
generate data Skew t 0.100 0.094 0.225 0.189 0.087 0.191
under the bank- t 0.109 0.109 0.126 0.134 0.114 0.144
ruptcy setting Normal 0.032 0.032 0.033 0.030 0.032 0.031
Model used to tBC 0.011 0.014 0.057 0.074 0.015 0.016
generate data Skew t 0.024 0.023 0.046 0.060 0.020 0.021
under the t 0.024 0.021 0.048 0.070 0.023 0.023
crabs setting Normal 0.027 0.029 0.042 0.038 0.028 0.028

The best results are shown in bold.

crabs setting instead to avoid numerical problems that may arise from small
components formed when the number of components is significantly larger
than the true number.

3.4.2 Results

Classification

We apply the six approaches presented in Section 3.3.2 in turn to each
generated dataset. Model fitting is done by presuming that the number
of components is known, i.e., two for the bankruptcy setting and four for
the crabs setting. Similar to the way we determined the misclassification
rates in our real data analysis, we consider all permutations of the labels
of the components and take the lowest one out of all misclassification rates
computed. The performance of the different models is compared via the
average misclassification rates.

As shown clearly in Table 3.3, our proposed tBC mixture model is the
only model that remains the best or close to the best in all the compar-
isons made. It delivers the lowest misclassification rates under both settings
(7.5% and 1.1% respectively) when data are generated from the tBC mix-
ture model. The flexibility of the tBC mixture model is exhibited when
we look into its performance in the scenario of model misspecification. It
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remains close to the respective true model in those cases, and even de-
livers the lowest misclassification rate when the true model is t under the
bankruptcy setting (10.9%), or normal under the crabs setting (2.7%). Con-
trariwise, when data are generated from the tBC mixture model, with a lack
of mechanisms to handle asymmetric components, both the t and normal
mixture models do not perform well. It is worth noting that even the skew
t mixture model, which is intended for data departing from symmetry, also
performs poorly; the associated misclassification rate is as high as 14.2%
under the bankruptcy setting, while that for tBC is only 7.5%. When data
are generated from the skew t mixture model, taking advantage of the cor-
rect specification the skew t mixture model performs well. The tBC mixture
model also shows a competent performance, however. Meanwhile, the skew
t mixture model performs satisfactorily when the true mixture model is t
or normal. The normal mixture model cannot match the others at all when
data are generated from models other than normal, showing its vulnerabil-
ity to outliers and asymmetric components. In addition, it is interesting to
notice that the normal mixture model gives a rather high misclassification
rate (3.8%) relative to the levels attained by tBC, t and skew t (2.7%–2.9%)
when it itself is the true model for data generation under the crabs setting.
It seems that the t-based mixture models are more robust to initialization
of the EM algorithm.

Selecting the Number of Components

In this part of study, each time when we apply a model to a dataset generated
under the crabs setting, we set the number of components from one up to
eight in turn. The number of components is then selected to be the one
which delivers the highest BIC. Table 3.4 summarizes the result and gives
the 90% coverage intervals of the number of components selected for each
model out of the 100 repetitions.

The tBC mixture model selects the correct number of components (four)
in the majority of repetitions, even in case of model misspecification. It is the
only model that remains to contain only the true number of components in
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Table 3.4: 90% coverage intervals of the number of components selected by
the BIC for different models applied to datasets generated under the crabs
setting.

Model used to fit data
tBC t NBC Normal Skew t Skew Norm.

Model used tBC (4, 4) (4, 4) (4, 4) (4, 4) (3, 5) (3, 5)

to generate Skew t (4, 4) (4, 4) (4, 5) (4, 5) (4, 4) (4, 4)

data t (4, 4) (4, 4) (4, 5) (4, 5) (4, 4) (4, 4)
Normal (4, 4) (4, 5) (4, 4) (4, 5) (4, 4) (4, 4)

The best results are shown in bold.

all the 90% coverage intervals. On the other hand, both the skew t and skew
normal mixture models fail to distinguish the four groups properly in about
30% of the datasets generated from the tBC mixture model. Besides, both
the NBC and normal mixture models, when applied to datasets generated
from the t or skew t mixture model, tend to require an additional component
to accommodate the data in an excess of outliers.

3.5 Discussion

In this chapter, we have introduced a new class of distributions, the t distri-
butions with the Box-Cox transformation, for mixture modeling. The pro-
posed methodology is in line with Lange et al.’s (1989) notion that trans-
formation selection and outlier identification are two issues of mutual in-
fluence and therefore should be handled simultaneously. In our real data
applications and simulation studies, we have shown the flexibility of this
methodology in accommodating asymmetric components in the presence of
outliers, and in coping with model misspecification. The vulnerability of
the normal-based models to outliers is exposed in the analysis of the crabs
dataset, in which the presence of outliers prevents a clear distinction of the
four groups. A lack of mechanisms to downsize the influence of remote ob-
servations undermines the ability of these approaches to properly locate the
cores of the four groups in the dataset. On the other hand, the analysis
of the bankruptcy dataset provides a very good example of demonstrating
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the importance of incorporating data transformation in clustering. In the
absence of a means to accommodate components departing from symmetry,
the t mixture model fails to provide a reasonable representation of the data,
while the number of groups is known in advance. Our simulation studies
have confirmed these findings.

As mentioned in the Introduction, although mixture modeling using our
proposed tBC distributions and that using the skew t distributions follow
two lines of development with more or less the same aim, our approach has
an appeal of being computationally much simpler to implement. As noted in
Lin (2009b), difficulties have been encountered in evaluating the conditional
expectation of the complete-data log-likelihood in the E-step of the EM al-
gorithm for the skew t mixture model. The objective function cannot be
derived in closed form due to the presence of analytically intractable quan-
tities. Numerical techniques for optimization as well as integration need
to be employed extensively to update a vast amount of quantities in both
the E and M-steps of the algorithm, undermining the computational sta-
bility therein. Besides, the parameterization that accounts for skewness in
our proposed model originates from the family of power transformations,
which is intuitively interpretable. It is less trivial to interpret the skewness
vector parameterized in the skew t distribution, however. In addition, as
presented in Section 3.2.3, the way to identify outliers using our approach
is straightforward and on a theoretical ground. Exploiting the relationship
between ũig and the quantile of an F distribution through Eq.(3.22), it is
almost costless to proceed with outlier identification once the EM algorithm
is completed. On the contrary, when the skew t mixture model is used,
we cannot determine such a threshold by recasting it as a known quantity
obtained from a standard distribution. In consequence, it demands extra
computational effort to identify outliers, especially when the dimension of
the data is high. Finally, perhaps most importantly, as demonstrated from
our real data applications and simulation studies, the simplicity of the com-
putational implementation of our proposed methodology is not achieved at
the expense of the quality of performance. The results have shown that our
proposed approach performs as well as that based on the skew t mixture
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model, or even slightly better.
An open-source software package that facilitates flow cytometry analysis

with the methodology proposed in this chapter has been developed and
is available at Bioconductor (Gentleman et al., 2004); see Chapter 5 for
details. It is released as an R package called flowClust and addresses the
vast demand for software development from the flow cytometry community.
flowClust is dedicated to the automated identification of cell populations,
and is well integrated into other flow cytometry packages. Meanwhile, we
recognize the potential of the proposed methodology in other fields, and the
importance of developing a general-purpose tool like MCLUST (Fraley and
Raftery, 2002, 2006), the popular software that performs clustering analysis
based on normal mixture models. We are going to work on such a general-
purpose, standalone software that will serve as a contribution to the general
public.
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Chapter 4

Automated Gating of Flow

Cytometry Data via Robust

Model-Based Clustering∗

4.1 Introduction

Flow cytometry (FCM) can be applied to analyze thousands of samples
per day. However, as each dataset typically consists of multiparametric
descriptions of millions of individual cells, data analysis can present a sig-
nificant challenge. As a result, despite its widespread use, FCM has not
reached its full potential because of the lack of an automated analysis plat-
form to parallel the high-throughput data generation platform. As noted
in Lizard (2007), in contrast to the tremendous interest in the FCM tech-
nology, there is a dearth of statistical and bioinformatics tools to manage,
analyze, present, and disseminate FCM data. There is considerable demand
for the development of appropriate software tools, as manual analysis of
individual samples is error-prone, non-reproducible, non-standardized, not
open to re-evaluation, and requires an inordinate amount of time, making
it a limiting aspect of the technology (Roederer and Hardy, 2001; Roederer
et al., 2001a,b; de Rosa et al., 2003; Bagwell, 2004; Braylan, 2004; Redelman,
2004; Tzircotis et al., 2004; Spidlen et al., 2006).

The process of identifying homogeneous groups of cells that display a
particular function, known as gating, is one major component of FCM anal-

∗ A version of this chapter has been published. Lo, K., Brinkman, R. R. and Gottardo,
R. (2008). Automated gating of flow cytometry data via robust model-based clustering.
Cytometry Part A, 73A(4):321–332.
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ysis. As mentioned in Chapter 1, currently, to a large extent, gating relies
on using software to apply a series of manually drawn gates (i.e., data fil-
ters) that select regions in 2D graphical representations of FCM data. This
process is based largely on intuition rather than standardized statistical in-
ference (Parks, 1997; Suni et al., 2003; Bagwell, 2004). It also ignores the
high-dimensionality of FCM data, which may convey information that can-
not be displayed in 1D or 2D projections. This is illustrated in Figure 4.1
with a synthetic dataset, consisting of two dimensions, generated from a t
mixture model (McLachlan and Peel, 2000) with three components. While
the three clusters can be identified using both dimensions, the structure is
hardly recognized when the dataset is projected on either dimension. Such
an example illustrates the potential loss of information if we disregard the
multivariate nature of the data. The same problem occurs when projecting
three (or more) dimensional data onto two dimensions.

Several attempts have been made to automate the gating process. Among
those, the K-means algorithm (MacQueen, 1967) has found the most ap-
plications (Murphy, 1985; Demers et al., 1992; Bakker Schut et al., 1993;
Wilkins et al., 2001). Demers et al. (1992) have proposed an extension of
K-means allowing for non-spherical clusters, but this algorithm has been
shown to lead to performance inferior to fuzzy K-means clustering (Wilkins
et al., 2001). In fuzzy K-means (Rousseeuw et al., 1996), each cell can belong
to several clusters with different association degrees, rather than belonging
completely to only one cluster. Even though fuzzy K-means takes into
consideration some form of classification uncertainty, it is a heuristic-based
algorithm and lacks a formal statistical foundation. Other popular choices
include hierarchical clustering algorithms (e.g., linkage or Pearson coeffi-
cients method). However, these algorithms are not appropriate for FCM
data, since the size of the pairwise distance matrix increases in the order
of n2 with the number of cells, unless they are applied to some preliminary
partition of the data (Bakker Schut et al., 1993), or they are used to cluster
across samples, each of which is represented by a few statistics aggregating
measurements of individual cells (Maynadié et al., 2002; Lugli et al., 2007).
Classification and regression trees (Breiman et al., 1984), artificial neural
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Figure 4.1: A synthetic 2D dataset with three mixture components. The
three components can easily be identified when both dimensions are used
(lower left), while the two density curves produced from projecting the data
on either dimension fail to capture the structure.
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networks (Boddy and Morris, 1999) and support vector machines (Burges,
1998; Schölkopf and Smola, 2002) have also been used in the context of
FCM analyses (Beckman et al., 1995; Kothari et al., 1996; Boddy et al.,
2000; Morris et al., 2001), but these supervised approaches require training
data, which are not always available.

In statistics, the problem of finding homogeneous groups of observations
is referred to as clustering. An increasingly popular choice is model-based
clustering (Titterington et al., 1985; McLachlan and Basford, 1988; Banfield
and Raftery, 1993; McLachlan and Peel, 2000; Fraley and Raftery, 2002),
which has been shown to give good results in many applied fields involving
high dimensions (greater than ten); see, for example, Yeung et al. (2001),
Fraley and Raftery (2002) and Pan et al. (2002). In this chapter, we propose
to apply an unsupervised model-based clustering approach to identify cell
populations in FCM analysis. In contrast to previous unsupervised methods
(Murphy, 1985; Demers et al., 1992; Bakker Schut et al., 1993; Roederer and
Hardy, 2001; Roederer et al., 2001a,b; Wilkins et al., 2001), our approach
provides a formal unified statistical framework to answer central questions:
How many populations are there? Should we transform the data? What
model should we use? How should we deal with outliers (aberrant observa-
tions)? These questions are fundamental to FCM analysis where one does
not usually know the number of populations, and where outliers are fre-
quent. By performing clustering using all variables consisting of fluorescent
markers, the full multidimensionality of the data is exploited, leading to
more accurate and more reproducible identification of cell populations.

The most commonly used model-based clustering approach is based on
finite Gaussian mixture models (Titterington et al., 1985; McLachlan and
Basford, 1988; McLachlan and Peel, 2000; Fraley and Raftery, 2002). How-
ever, Gaussian mixture models rely heavily on the assumption that each
component follows a Gaussian distribution, which is often unrealistic. As a
remedy, transformation of the data is often considered. On the other hand,
there is the problem of outlier identification in mixture modeling. Transfor-
mation selection can be heavily influenced by the presence of outliers (Car-
roll, 1982; Atkinson, 1988), which are frequently observed in FCM data.
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To handle the issues of transformation selection and outlier identification
simultaneously, in Chapter 3 we have developed an automated clustering
approach based on t mixture models with the Box-Cox transformation. The
t distribution is similar in shape to the Gaussian distribution with heav-
ier tails and thus provides a robust alternative (Lange et al., 1989). The
Box-Cox transformation is a type of power transformation, which can bring
skewed data back to symmetry, a property of both the Gaussian and t dis-
tributions. In particular, the Box-Cox transformation is effective for data
where the dispersion increases with the magnitude, a scenario not uncom-
mon to FCM data.

4.2 Materials and Methods

4.2.1 Data Description

To demonstrate our proposed automated clustering we use two FCM datasets
publicly available at http://www.ficcs.org/software.html.

The Rituximab Dataset

Flow cytometric high-content screening (Abraham et al., 2004) was applied
in a drug-screening project to identify agents that would enhance the anti-
lymphoma activity of Rituximab, a therapeutic monoclonal antibody (Gas-
paretto et al., 2004). 1600 different compounds were distributed into dupli-
cate 96-well plates and then incubated overnight with the Daudi lymphoma
cell line. Rituximab was then added to one of the duplicate plates and both
plates were incubated for several more hours. In addition to cells treated
with the compound alone, other controls included untreated cells and cells
treated with Rituximab alone. During the entire culture period, cells were
incubated with the thymidine analogue BrdU to label newly synthesized
DNA. Following culture, cells were stained with anti-BrdU and the DNA
binding dye 7-AAD. The proportion of cells in various phases of the cell
cycle and undergoing apoptosis was measured with multiparameter FACS
analysis.
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The GvHD Dataset

Graft-versus-Host Disease (GvHD) occurs in allogeneic hematopoietic stem
cell transplant recipients when donor-immune cells in the graft initiate an
attack on the skin, gut, liver, and other tissues of the recipient. It is one
of the most significant clinical problems in the field of allogeneic blood and
marrow transplantation. FCM was used to collect data on patients sub-
jected to bone marrow transplant with a goal of identifying biomarkers to
predict the development of GvHD. The GvHD dataset is a collection of
weekly peripheral blood samples obtained from 31 patients following allo-
geneic blood and marrow transplant (Brinkman et al., 2007). Peripheral
blood mononuclear cells were isolated using Ficoll-Hypaque and then cry-
opreserved for subsequent batch analysis. At the time of analysis, cells were
thawed and aliquoted into 96-well plates at 1× 104 to 1× 105 cells per well.
The 96-well plates were then stained with 10 different four-color antibody
combinations. All staining and analysis procedures were miniaturized so
that small number of cells could be stained in 96-well plates with optimally
diluted fluorescently conjugated antibodies.

4.2.2 The Model

In statistics, model-based clustering (Titterington et al., 1985; McLachlan
and Basford, 1988; McLachlan and Peel, 2000; Fraley and Raftery, 2002)
is a popular unsupervised approach to look for homogeneous groups of ob-
servations. The most commonly used model-based clustering approach is
based on finite Gaussian mixture models, which have been shown to give
good results in various applied fields (Banfield and Raftery, 1993; McLach-
lan and Peel, 2000; Fraley and Raftery, 2002, 2006). However, Gaussian
mixture models might give poor representations of clusters in the presence
of outliers, or when the clusters are far from elliptical in shape, phenom-
ena commonly observed in FCM data. In view of this, we have proposed
an approach based on t mixture models (McLachlan and Peel, 2000; Peel
and McLachlan, 2000) coupled with a variant of the Box-Cox transforma-
tion (Bickel and Doksum, 1981), which is also defined for negative-valued
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data, to handle the two aforementioned issues simultaneously. Please refer
to Chapter 3 for a detailed account of an Expectation-Maximization (EM)
algorithm (Dempster et al., 1977) for the simultaneous estimation of all un-
known parameters along with transformation selection. When the number
of clusters is unknown, we use the Bayesian Information Criterion (BIC)
(Schwarz, 1978), which gives good results in the context of mixture models
(Fraley and Raftery, 1998, 2002).

While it is possible to estimate the degrees of freedom parameter ν of
the t distribution for each component of the mixture model as part of the
EM algorithm (Peel and McLachlan, 2000), fixing it to a reasonable prede-
termined value for all components reduces the computational burden while
still providing robust results. A reasonable value for ν is four, which leads to
a distribution similar to the Gaussian distribution, with slightly fatter tails
accounting for outliers. Besides, the EM algorithm needs to be initialized.
In this chapter, we apply a type of agglomerative hierarchical clustering
based on Gaussian models (Banfield and Raftery, 1993; Fraley, 1998) for
initialization. Model-based Gaussian hierarchical clustering is a stepwise
process aimed to maximize the classification likelihood function (Banfield
and Raftery, 1993; Celeux and Govaert, 1992). The process starts with
treating each observation itself as one cluster, and then successively merges
pairs of clusters leading to the highest increase in the likelihood until the
desired number of clusters is reached. This initialization method is the
same as the one used in the model-based clustering strategy proposed by
Fraley and Raftery (2002, 2006), as implemented in the R package mclust.
As mentioned in the Introduction, hierarchical clustering algorithms pose a
problem with FCM data as they require the storage of a pairwise distance
matrix which increases in the order of n2 with the number of cells. In view
of this, we apply hierarchical clustering to a subset of data, and perform one
EM iteration to cluster the remaining data to complete the initial partition.
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4.2.3 Density Estimation

To visualize FCM data, it may be convenient to project high-dimensional
data on 1D or 2D density plots. One such application can be found in the
analysis of the GvHD data, in which cells selected through the CD3+ gate
were projected on the CD4 and CD8β dimensions to produce contour plots
(see Figures 4.2 and 4.3). Usually, nonparametric methods are applied to
produce such plots. However, all nonparametric methods require a tuning
parameter (e.g., bandwidth for kernel density estimation; see Silverman,
1986) to be specified to control the smoothness of these plots, and differ-
ent softwares have different default settings. In the model-based clustering
framework, such plots can be easily generated at a very low computational
cost once estimates of the model parameters are available. The degree of
smoothness is controlled by the number of components, which is chosen
by the Bayesian Information Criterion (BIC) (Schwarz, 1978). Please see
Section 3.2.3 for more details on implementation.

4.2.4 Sequential Approach to Clustering

In practice, gating is often done on a preselected subset of data chosen by
projecting the data on the forward light scatter (FSC) and sideward light
scatter (SSC) dimensions. These two variables, which measure the relative
morphological properties (corresponding roughly to cell size and shape) of
the cells, are often used to distinguish basic cell types (e.g., monocytes and
lymphocytes) or to remove dead cells and cell debris. As a consequence,
similar to Hahne et al. (2006), we have adopted a sequential approach to
clustering. We first use the FSC and SSC variables to cluster the data and
find basic cell populations, and then perform clustering on one or more pop-
ulations of interest using all other variables consisting of fluorescent markers.
However, our methodology could also be applied to any subset or the entire
set of variables.
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Figure 4.2: Strategy for clustering the GvHD positive sample to look for
CD3+CD4+CD8β+ cells. The manual gating strategy is shown in (a–c).
(a) Using FlowJo, a gate was drawn by an expert researcher to define the
lymphocyte population. (b) The selected cells were projected on the CD3
dimension, and CD3+ cells were defined through setting an interval gate. (c)
Cells within the upper right gate were referred to as CD3+CD4+CD8β+. (d–
f) A t mixture model with the Box-Cox transformation was used to mimic
this manual selection process; here we display the corresponding density
estimates. For FlowJo, the density estimates correspond to kernel estimates,
while for our gating strategy, the density estimates are obtained from the
estimated mixture models.
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Figure 4.3: Strategy for clustering the GvHD control sample. (a–c) The
same manual gating strategy was applied by the expert researcher. (c)
The upper right gate corresponding to the CD3+CD4+CD8β+ population
contains very few cells, a distinct difference from the positive sample. (d–f)
A t mixture model with the Box-Cox transformation was used to mimic
this manual selection process; here we display the corresponding density
estimates.
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4.3 Results

4.3.1 Application to Real Datasets

The Rituximab dataset

We have re-analyzed a part of the Rituximab dataset using our sequen-
tial clustering approach. This data contains 1545 cells and four variables:
FSC, SSC and two fluorescent markers, namely, 7-AAD and anti-BrdU. We
compared the different models, namely, t mixture with Box-Cox, t mixture,
Gaussian mixture with Box-Cox, and Gaussian mixture, with the results ob-
tained through expert manual analysis using the commercial gating software
FlowJo (Tree star, Ashland, Oregon) and the K-means clustering algorithm
(MacQueen, 1967). As mentioned in Section 4.2.4, we use a sequential ap-
proach where we first cluster the FSC vs. SSC variables to select basic cell
populations (first stage), and then cluster the selected population(s) using
all remaining variables (second stage).

Figure 4.4(a) shows the initial gating performed by a researcher using
FlowJo on the FSC and SSC variables. To facilitate the comparison of our
clustering approach with manual analysis at the second stage, we tried to
mimic this analysis. In order to do so, we used a t mixture model with Box-
Cox transformation, fixing the number of components at one, and removed
points with weights ũ (please refer to Section 3.2.3 for details) less than 0.5,
corresponding to outliers. As shown in Figure 4.4, the selected cells are not
exactly the same but close enough to allow us to compare our clustering
approach to manual gating results when using the two fluorescent markers.

At the second stage, we compare the different clustering models on the
selected cells. Since the number of clusters is unknown in advance, we make
use of the BIC. The BIC curves shown in Figure 4.5, corresponding to the
different models, peak around three to four clusters, motivating us to ex-
amine the results obtained using three (Figure 4.6) and four (Figure 4.7)
clusters respectively. As expected, K-means performs poorly as spherical
clusters do not provide a good fit. Similarly, untransformed mixture mod-
els (t and Gaussian), constrained by the assumption of elliptical clusters,
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Figure 4.4: Initial clustering of the Rituximab data using the FSC and SSC
variables. (a) In typical analysis a gate was manually drawn to select a
group of cells for further investigation. (b) A t mixture model with Box-
Cox transformation was used to mimic this manual selection process. In (b)
points (shown in gray) outside the boundary drawn in black have weights ũ
less than 0.5 and will be removed from the next stage. It can be shown that
this boundary corresponds approximately to the 90th percentile region for
the t distribution transformed back on the original scale using the Box-Cox
parameter. The numbers shown in both plots are the percentages of points
within the boundaries which are extracted for the next stage. Both gates
capture the highest density region, as shown by the two density estimates.

are not flexible enough to capture the top cluster. Furthermore, Gaussian
mixture models (even with the Box-Cox transformation) are very sensitive
to outliers, which can result in poor classification. For example, when four
clusters are used, the Gaussian mixture model breaks the larger cluster into
two to accommodate outliers, while the Gaussian mixture model with the
Box-Cox transformation also has a large spread out cluster to accommo-
date outliers. Finally, Figures 4.6(b) and 4.7(b) show that our t mixture
model-based clustering approach with the Box-Cox transformation can pro-
vide comparable results with the manual gating analysis by identifying three
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Figure 4.5: BIC as a function of the number of clusters for different models
applied to the Rituximab data. All models have a maximum BIC value
around three to four clusters, though there is some uncertainty as the BIC
values are relatively close.

of the four clusters with well-fit boundaries. Note, however, that none of
the four clustering methods detect the left rectangular gate seen on Fig-
ure 4.6(a), which is most likely because of its lower cell density compared
to the other gates and the lack of clear separation along the “7-AAD” di-
mension. This gate, which corresponds to apoptotic cells (Gasparetto et al.,
2004), contains a loose assemblage of cells located at the left of the three far
right gates. Our methodology permits the identification of the three right
clusters with well-fit boundaries, and thus could be combined with expert
knowledge in order to identify apoptotic cells. For example, one could com-
pute a one dimensional boundary at the left-end border of the two largest
clusters, and automatically label cells on the left of that line apoptotic.
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Figure 4.6: Second-stage clustering of the Rituximab data using all the flu-
orescent markers (three clusters). (a) Four gates were drawn by a researcher
to define four populations of interest. (b–f) Clustering was performed on
the cells preselected from the first stage as shown in Figure 4.4(b). The
number of clusters was set to be three. (b–c) Points outside the boundary
drawn in black have weights less than 0.5 and are labeled with “·” when
t distributions were used. (d–f) For clustering performed without using t
distributions, for comparison sake, boundaries are drawn in a way such that
they correspond to the region of the same percentile which the boundaries
drawn in (b–c) represent. Different symbols are used for the different clus-
ters. The numbers shown in all plots are the percentages of cells assigned to
each cluster. The K-means algorithm is equivalent to the classification EM
algorithm (Celeux and Govaert, 1992, 1995) for a Gaussian mixture model
assuming equal proportions and a common covariance matrix being a scalar
multiple of the identity matrix. The spherical clusters with equal volumes
drawn in (f) correspond to such a constrained model.
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Figure 4.7: Second-stage clustering of the Rituximab data using all the flu-
orescent markers (four clusters). (a) Four gates were drawn by a researcher
to define four populations of interest. (b–f) Clustering was performed on
cells preselected from the first stage. The number of clusters was set to
be four. (b–c) Points outside the boundary drawn in black have weights
less than 0.5 and are shown in gray when t distributions were used. (d–f)
For clustering performed without using t distributions, for comparison sake,
boundaries are drawn in a way such that they correspond to the region of
the same percentile which the boundaries drawn in (b–c) represent. Differ-
ent symbols are used for the different clusters. The numbers shown in all
plots are the percentages of cells assigned to each cluster.
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Having shown the superiority of our clustering framework in terms of
flexibility and robustness compared to common approaches, we now turn to
a larger dataset to demonstrate further its capability.

The GvHD Dataset

Two samples of the GvHD dataset (Brinkman et al., 2007) have been re-
analyzed, one from a patient who eventually developed acute GvHD, and
one from a control. Both datasets consist of more than 12,000 cells and four
markers, namely, anti-CD4, anti-CD8β, anti-CD3 and anti-CD8, in addition
to the FSC and SSC variables. One objective of the analysis is to look for
the CD3+CD4+CD8β+ cells. To demonstrate the capability of our proposed
automated clustering approach, we try to mimic the gating strategy stated
in Brinkman et al. (2007). Figures 4.2(a–c) and 4.3(a–c) show the gating
performed by an expert researcher using FlowJo.

In the initial gating, we first extracted the lymphocyte population using
the FSC and SSC variables by applying a t mixture model with the Box-
Cox transformation, fixing the number of clusters from one to eight in turn.
Figure 4.8(a) shows that the BIC for the positive sample has a large increase
from three to four clusters and remains relatively constant afterwards, sug-
gesting a model fit using four clusters is appropriate. Figure 4.8(b) is the
corresponding scatterplot showing the cluster assignment of the points on
removing those with weights less than 0.5, regarded as outliers. It is clear
that the region combining three of the clusters formed matches closely with
the gate drawn by the researcher as shown in Figure 4.2(a), corresponding
to the lymphocyte population.

The next two stages in the manual gating strategy consist of locating
the CD3+ cells by placing an interval gate in the CD3 density plot (Fig-
ure 4.2(b)), and then identifying the CD3+CD4+CD8β+ cells through the
upper right gate in the CD4 vs CD8β contour plot (Figure 4.2(c)). When
applying our proposed clustering approach, we can combine these two stages
by handling all the variables consisting of fluorescent markers at once, fully
utilizing the multidimensionality of FCM data.
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Figure 4.8: Initial clustering of the GvHD positive sample using the FSC and
SSC variables. (a) The BIC curve remains constant beyond four clusters. (b)
The scatterplot reveals the use of three clusters to represent the lymphocyte
population and the remaining cluster (shown in gray) for dead cells. Points
shown in gray have weights less than 0.5 and will be removed from the next
stage.

The fitted model with 12 clusters seems to provide a good fit as suggested
by the BIC (Figure 4.9(a)). We compared our results with those obtained
through the manual gating approach by first examining the estimated den-
sity projected on the CD3 dimension. The unimodal, yet skewed, density
curve suggests that it is composed of two populations with substantially
different proportions superimposed on each other (Figure 4.2(e)). At a level
of around 280, we can well separate the 12 cluster means along the CD3
dimension into two groups, and use the group with high cluster means in
the CD3 dimension to represent the CD3+ population. The unimodal na-
ture of the density curve (Figures 4.2(b,e)) implies that the two underlying
populations somewhat mix together, and therefore setting a fixed cutoff to
classify the cells is likely inappropriate. The merit of our automated cluster-
ing approach is shown here, that, instead of setting a cutoff, it makes use of
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Figure 4.9: Second-stage clustering of the GvHD positive sample (a–b) and
control sample (c–d) using all the fluorescent markers. Clustering was per-
formed on the cells preselected from the first stage. For the positive sample,
(a) the BIC reaches a maximum at 12 clusters; (b) the scatterplot reveals the
cluster assignment of the cells. Points which are assigned to the five clusters
with high CD3 means are classified as CD3+ cells. The five regions drawn
in solid lines form the CD3+ population. The two regions in the upper right
marked with the � symbols are identified as the CD3+CD4+CD8β+ popu-
lation. For the control sample, (c) little increment is observed in the BIC
beyond seven clusters, suggesting that seven clusters, much fewer than for
the positive sample, are enough to model the data in the second stage; (d)
the scatterplot reveals the cluster assignment of the cells. Only two clusters
have been used to model the CD3+ population.
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the information provided by the other dimensions to help classify the cells
into CD3+/CD3− populations. The group with high cluster means in the
CD3 dimension consists of five clusters, and among these five clusters, we
can easily identify the two clusters at the upper right in the CD4 vs CD8β
scatterplot (Figure 4.9(b)) as the CD3+CD4+CD8β+ population.

We have applied the same strategy to the control sample; see Figures 4.3
and 4.9(c–d). Figure 4.9(c) suggests that, this time, only seven clusters
are necessary as the BIC is relatively flat after that. The associated gat-
ing results for the control sample is characterized by an absence of the
CD3+CD4+CD8β+ cells, a distinct difference from the positive sample. This
feature is also captured using our automated clustering approach; the fitted
model contains no clusters at the upper right of the CD4 vs CD8β scatter-
plot (Figure 4.9(d)). This cell population was of specific interest, as it was
identified as one possibly predictive of GvHD, based on the manual gating
analysis in Brinkman et al. (2007).

4.3.2 Simulation studies

We have conducted a series of simulations to study the performance of differ-
ent model-based clustering approaches under different model specifications.
Model performance is compared using the following two criteria: (a) the
accuracy in cluster assignment; (b) the accuracy in selecting the number
of clusters. We performed two simulation studies, one where we set the
dimension to two resembling the Rituximab dataset, and one where the di-
mension was set to four resembling the GvHD dataset. In each case, we
generated data from each of the following models: t mixture with Box-Cox,
t mixture, Gaussian mixture with Box-Cox, and Gaussian mixture, using
the parameter estimates obtained at the second stage in the Rituximab and
GvHD (positive sample) analyses. For the GvHD, to reduce computational
burden, we only selected the five clusters with the largest means in the CD3
dimension, corresponding to the CD3+ population. We refer to the simu-
lation experiments as the Rituximab and the GvHD settings, respectively.
We fixed the number of cells at 500 and generated 1000 datasets under each
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Table 4.1: Average misclassification rates for different models applied to
data generated under the Rituximab or GvHD setting.

Model used to fit data
t+Box-Cox t G.+Box-Cox Gaussian

Model used to t+Box-Cox 0.187 0.211 0.279 0.251
generate data t 0.255 0.263 0.339 0.315
under the Ritux- G.+Box-Cox 0.321 0.400 0.251 0.352
imab setting Gaussian 0.344 0.329 0.317 0.301
Model used to t+Box-Cox 0.112 0.116 0.205 0.230
generate data t 0.107 0.111 0.191 0.221
under the GvHD G.+Box-Cox 0.135 0.143 0.139 0.152
setting Gaussian 0.134 0.132 0.132 0.126

G. = Gaussian; the best results are shown in bold.

of the aforementioned models. To study the accuracy in selecting the num-
ber of clusters using BIC, we generated 100 datasets from the same GvHD
setting with 1000 cells. Here, we used 1000 cells to avoid numerical prob-
lems with small clusters when the number of clusters used is significantly
larger than the true number, while we decreased the number of datasets to
100 because of the increase in computation when estimating the number of
clusters.

Classification Results

The four clustering methods in comparison were applied to each of the 1000
datasets generated from each model. Model fitting was done by presuming
that the number of clusters is known, i.e., four clusters for the Rituximab
setting and five for GvHD. We compared the models via misclassification
rates, i.e., the proportions of cells assigned to incorrect clusters. When
computing the misclassification rates, all permutations of the cluster labels
were considered, and the lowest misclassification rate was determined.

The scatterplot of one of the datasets (GvHD setting) generated from the
t mixture model with Box-Cox transformation can be found in Figure 4.10.
Overall results are shown in Table 4.1. As expected, the Gaussian mixture
models perform poorly when data were generated from the t mixture models
because of a lack of mechanisms to handle outliers. When a transformation
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Figure 4.10: A representative sample generated from the t mixture model
with the Box-Cox transformation under the GvHD setting. (a) The sample
is displayed through the CD4 and CD8β dimensions. (b–e) Classification
results are shown for the four clustering methods. Different plotting symbols
are used for different clusters. Misclassified points are marked with the �
symbols. 104



was applied during data generation, the mixture models without the Box-
Cox transformation fail to perform well. On the contrary, the flexibility
of the t mixture model with the Box-Cox transformation does not penalize
too much for model misspecification. This is illustrated by the results from
the GvHD setting: the t mixture model with the Box-Cox transformation
gives the lowest misclassification rates when the true model is instead the t
mixture model without transformation or the Gaussian mixture model with
the Box-Cox transformation.

Selecting the Number of Clusters

In this part of the study, the four models in comparison were applied to each
of the 100 datasets generated, setting the number of clusters from one to ten
in turn. The number of clusters that delivered the highest BIC was selected.
We compared the models via the mode and the 80% coverage interval of the
number of clusters selected out of the 100 repetitions. As shown in Table 4.2,
the tmixture models can select the correct number of clusters in the majority
of repetitions, even in case of model misspecification. In addition, they
deliver the same 80% coverage intervals as the Gaussian mixture models
do when data were generated from Gaussian mixtures, suggesting that the
robustness against outliers of the t mixture models provides satisfactory
protection against model misspecification. On the contrary, the Gaussian
mixture models tend to overestimate the number of clusters when an excess
of outliers is present in the data generated from t mixtures, and in most
instances in which overestimation happens, six clusters are selected.

4.4 Discussion

The experimental data and the simulation studies have demonstrated the
importance of handling transformation selection, outlier identification and
clustering simultaneously. While a stepwise approach in which transforma-
tion is preselected ahead of outlier detection (or vice versa) may be consid-
ered, it is unlikely to tackle the problem well in general, as the preselected
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Table 4.2: Modes and 80% coverage intervals of the number of clusters
selected by the BIC for different models applied to data generated under
the GvHD setting.

Model used to fit data
t+Box-Cox t G.+Box-Cox Gaussian
M. Int. M. Int. M. Int. M. Int.

Model t+Box-Cox 5 (5, 6) 5 (5, 6) 6 (6, 7) 6 (6, 8)
used to t 5 (5, 7) 5 (5, 6) 6 (6, 7) 6 (6, 8)
generat G.+Box-Cox 5 (5, 6) 5 (5, 6) 5 (5, 6) 5 (5, 6)
data Gaussian 5 (5, 6) 5 (5, 6) 5 (5, 6) 5 (5, 6)

M. = mode; Int. = 80% coverage interval; G. = Gaussian.

transformation may be influenced by the presence of outliers. This is shown
in the analysis of the Rituximab dataset. Without outlier removal the use
of Gaussian mixture models led to inappropriate transformation and poor
classification in order to accommodate outliers (Figures 4.6(d) and 4.7(d)).
Conversely, without transformation, the t mixture model could not model
the shape of the top cluster well (Figures 4.6(c) and 4.7(c)). Similarly, it is
necessary to perform transformation selection and clustering simultaneously
(Gutierrez et al., 1995; Schork and Schork, 1988) as opposed to a stepwise
approach. It is difficult to know what transformation to select beforehand
as one only observes the mixture distribution, and the classification labels
are unknown. A skewed distribution could be the result of one dominant
cluster and one (or more) smaller cluster. As shown by our analysis with the
experimental data and the simulation studies, our proposed approach based
on t mixture models with Box-Cox transformation benefits from handling
these issues, which have mutual influence, simultaneously. Furthermore,
confirmed by results of our simulation studies, our proposed approach is
robust against model misspecification and can avoid the problem of Gaus-
sian mixture models that excessive clusters are often needed to provide a
reasonable fit in case of model misspecification (Yeung et al., 2001).

One of the benefits of model-based clustering is that it provides mecha-
nism for both “hard” clustering (i.e., the partitioning of the whole data into
separate clusters) and fuzzy clustering (i.e., a “soft” clustering approach in
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which each event may be associated with more than one cluster). The latter
approach is in line with the rationale that there exists uncertainty about to
which cluster an event should be assigned. The overlaps between clusters as
seen in Figures 4.6 and 4.9 reveal such uncertainty in the cluster assignment.

It is well known that the convergence of the EM algorithm depends on
the initial conditions used. A bad initialization may incur slow convergence
or convergence to a local minimum. In the real-data examples and the simu-
lation studies, we used a deterministic approach called hierarchical clustering
(Banfield and Raftery, 1993; Fraley, 1998) for initialization. We have found
this approach to perform well in the datasets explored here. However, better
initialization, perhaps incorporating expert knowledge, might be needed for
more complex datasets. For example, if there is a high level of noise in the
data, it might be necessary to use an initialization method that accounts for
such outliers; see Fraley and Raftery (2002) for an example.

To estimate how long it takes to analyze a sample of size typical for an
FCM dataset, we have carried out a test run on a synthetic dataset, which
consists of one million events and 10 dimensions. To complete an analysis
with 10 clusters, it took about 20 minutes on a 3GHz Intel Xeon proces-
sor with 2GB of RAM. This illustrates that the algorithm should be quick
enough for analyzing a large flow dataset. In general, the computational
time increases linearly with the number of events and increases in the order
of p2 with the number of variables, p, per EM iteration. This is an advantage
over hierarchical clustering in which the computational time and memory
space required increase in the order of n2 with the number of events, making
a hierarchical approach impractical when a sample of a moderate size, say,
>5000, is investigated.

Like all clustering approaches, the methodology we have developed in-
cludes assumptions which may limit the applicability of this approach, and
it will not identify every cell population in every sample. If the distribu-
tion of the underlying population is highly sparse without a well-defined
core, our approach may not properly identify all sub-populations. This is
illustrated in the Rituximab analysis where the loosely structured group of
apoptotic cells was left undetected. This in turn has hindered the capa-
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bility of the approach from giving satisfactory esimates of the G1 and S
frequences for the identified clusters that would be desired for normal anal-
ysis of a 7-AAD DNA distribution for cultured cells. On the other hand
identification of every cluster may not always be important. The Rituximab
study was designed as a high throughput drug screen to identify compounds
that caused a >50% reduction in S-phase cells (Gasparetto et al., 2004),
as would be captured by both the manual gates and our automated anal-
ysis should it occur. Furthermore, the exact identification of every cluster
through careful manual analysis may not always be possible, especially in
high throughput experiments. For instance, in the manual analysis of the
GvHD dataset, a quadrant gate was set in Figure 4.2(c) in order to iden-
tify the CD3+CD4+CD8β+ population which was of primary interest. For
convenience sake, this gate was set at the same level across all the samples
being investigated. While five clusters can be clearly identified on the graph,
it would be time-consuming to manually adjust the positions of each of the
gates for all the samples in a high-throughput environment as well as identify
all novel populations. Contrariwise, our automated approach can identify
these clusters in short order without the need for manual adjustment. To
complete the analysis of the GvHD dataset (>12,000 cells, six dimensions)
to identify the CD3+CD4+CD8β+ population (Figure 4.2), it took less than
five minutes, using the aforementioned sequential approach to clustering, on
an Intel Core 2 Duo with 2GB of RAM running Mac OS X 10.4.10.

A rigorous quantitative assessment is important before implementing
this, or any approach, as a replacement for expert manual analysis. The
availability of a wide variety of example data would aid in the development
and evaluation of automated analysis methodologies. We are therefore de-
veloping such a public resource, and would welcome contributions from the
wider FCM community.
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Chapter 5

flowClust: a Bioconductor

package for automated gating

of flow cytometry data∗

5.1 Introduction

In Chapter 4, we mentioned the lack of an automated analysis platform
to parallel the high-throughput data-generation platform in flow cytometry
(FCM). How to resolve this current bottleneck has become an open question
among the FCM community. Recently, a suite of several R packages provid-
ing infrastructure for FCM analysis have been released though Bioconductor
(Gentleman et al., 2004), an open source software development project for
the analysis of genomic data. flowCore (Hahne et al., 2009), the core pack-
age among them, provides data structures and basic manipulation of FCM
data. flowViz (Sarkar et al., 2008) offers visualization tools, while flowQ

provides quality control and quality assessment tools for FCM data. Finally,
flowUtils provides utilities to deal with data import/export for flowCore.
In spite of these low-level tools, there is still a dearth of software that helps
automate FCM gating analysis with a sound theoretical foundation (Lizard,
2007).

In view of the aforementioned issues, based on a formal statistical cluster-
ing approach, we have developed the flowClust package to help resolve the
current bottleneck. flowClust implements a robust model-based cluster-

∗ A version of this chapter has been published. Lo, K., Hahne, F., Brinkman, R. R.
and Gottardo, R. (2009). flowClust: a Bioconductor package for automated gating of flow
cytometry data. BMC Bioinformatics, 10:145.
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ing approach (Peel and McLachlan, 2000; McLachlan and Peel, 2000; Fraley
and Raftery, 2002) which extends the multivariate t mixture model with the
Box-Cox transformation proposed in Chapter 4. As a result of the exten-
sions made, flowClust has included options allowing for a cluster-specific
estimation of the Box-Cox transformation parameter and/or the degrees of
freedom parameter.

5.2 Implementation

With the robust model-based clustering approach described in Chapter 4
as the theoretical basis, we have developed flowClust, an R package to
conduct an automated FCM gating analysis and produce visualizations for
the results. flowClust is released through Bioconductor (Gentleman et al.,
2004), along with those R packages mentioned in Section 5.1. The GNU
Scientific Library (GSL) is needed for successful installation of flowClust.
We have provided a vignette (Appendix B) that comes with flowClust to
enunciate details about installation, and procedures of linking GSL to R,
especially for Windows users.

In recognition of the potential need for analyzing a large number of FCM
samples in parallel, during the process of package development, tremendous
effort has been put into code optimization and automation. The source code
for the entire model-fitting process via the EM algorithm is written in C for
optimal utilization of system resources, and makes use of the Basic Linear
Algebra Subprograms (BLAS) library, which facilitates multithreaded pro-
cesses when an optimized library is provided. To ensure that code is devel-
oped in an efficient manner, vectorization is administered wherever possible
in order to attain minimal explicit looping, one of the major factors lead-
ing to sub-optimal efficiency in programming with R. In addition, instead
of straightforward conversion of mathematical formulae into programming
code, a comprehensive account of the EM algorithm has been taken and
the code has been developed in a fashion such that redundant computation
of the same or uncalled-for quantities is avoided. On the other hand, the
encounter with undesirable execution halt at runtime due to computational
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errors would undermine the level of automation achieved. This is critical
especially when a user needs to analyze a large number of samples. On this
account, we have developed substantial error handling strategies to cope
with various scenarios such as poor initialization of the EM algorithm, and
failure of root-finding for the transformation parameter. Another important
measure taken towards automation is the provision of a good default set-
ting for parameters (e.g., search interval for the root-finding problem, and
tolerance level for the convergence of EM) involved at different steps of the
model-fitting process, or for arguments (e.g., colors for representing individ-
ual clusters, and cutoffs for defining outliers) used in filtering or visualizing
the clustering result. Whilst parameter tuning for individual samples may
still be feasible in a small-scale study, it becomes impractical when hundreds
of samples need to be processed in parallel. We have undergone an exten-
sive tuning process to test against a large number of real FCM samples such
that sensible results or visualization would be delivered within a reasonable
timeframe for the majority of cases upon which the default setting is ap-
plied. Finally, in consideration of convenience from users’ perspective, many
functions or methods in flowClust have been specifically adapted to cater
for various input data structures. Effort has also been made to adapt to the
custom of FCM researchers whilst developing tools of visualization and for
constructing data filters.

A formal object-oriented programming discipline, the S4 system (Cham-
bers, 2004), has been adopted to build the flowClust package. Two key
features of the S4 system, namely, multiple dispatch and multiple inheri-
tance, have been essential for defining classes and methods. For most generic
functions defined or utilized in flowClust (e.g., Subset, split and plot),
method dispatch relies on the multiple dispatch capabilities and is done in
accordance with a signature taking more than one argument. Incidentally,
inheritance is employed to extend classes defined in other packages; see Sec-
tion 5.3.2 for details about integration with other Bioconductor packages
dedicated to FCM analysis. In particular, for the sake of organization, mul-
tiple inheritance is exploited such that multiple classes can be extended
simultaneously.
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The core function, flowClust, of the package implements the clustering
methodology and returns an object of class flowClust. A flowClust object
stores essential information related to the clustering result which can be
retrieved through various methods such as summary, Map, getEstimates,
etc. To visualize the clustering results, the plot and hist methods can be
applied to produce scatterplots, contour or image plots and histograms.

To enhance communications with other Bioconductor packages designed
for the cytometry community, flowClust has been built with the aim of
being highly integrated with flowCore. Methods in flowClust can be
directly applied on a flowFrame, the standard R implementation of a Flow
Cytometry Standard (FCS) file defined in flowCore; FCS is the typical
storage mode for FCM data. Another step towards integration is to overload
basic filtering methods defined in flowCore (e.g., filter, %in%, Subset

and split) in order to provide similar functionality for classes defined in
flowClust.

5.3 Results and Discussion

5.3.1 Analysis of Real FCM Data

In this section, we illustrate how to use flowClust to conduct an auto-
mated gating analysis of real FCM data. For demonstration, we use the
graft-versus-host disease (GvHD) data (Brinkman et al., 2007). The data
are stored in FCS files, and consist of measurements of four fluorescently
conjugated antibodies, namely, anti-CD4, anti-CD8β, anti-CD3 and anti-
CD8, in addition to the forward scatter and sideward scatter parameters.
One objective of the gating analysis is to look for the CD3+CD4+CD8β+

cell population, a distinctive feature found in GvHD-positive samples. We
have adopted a two-stage strategy (Section 4.2.4): we first cluster the data
by using the two scatter parameters to identify basic cell populations, and
then perform clustering on the population of interest using all fluorescence
parameters.

At the initial stage, we extract the lymphocyte population using the
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forward scatter (FSC-H) and sideward scatter (SSC-H) parameters:

GvHD <- read.FCS("B07", trans=FALSE)

res1 <- flowClust(GvHD, varNames=c("FSC-H", "SSC-H"), K=1:8)

To estimate the number of clusters, we run flowClust on the data repeti-
tively with K=1 up to K=8 clusters in turn, and apply the Bayesian Informa-
tion Criterion (BIC) (Schwarz, 1978) to guide the choice. Values of the BIC
can be retrieved through the criterion method. Figure 5.1 shows that the
BIC curve remains relatively flat beyond four clusters. We therefore choose
the model with four clusters. Below is a summary of the corresponding
clustering result:

** Experiment Information **

Experiment name: Flow Experiment

Variables used: FSC-H SSC-H

** Clustering Summary **

Number of clusters: 4

Proportions: 0.1779686 0.1622115 0.3882043 0.2716157

** Transformation Parameter **

lambda: 0.1126388

** Information Criteria **

Log likelihood: -146769.5

BIC: -293765.9

ICL: -300546.2

** Data Quality **

Number of points filtered from above: 168 (1.31%)

Number of points filtered from below: 0 (0%)

Rule of identifying outliers: 90% quantile

Number of outliers: 506 (3.93%)

Uncertainty summary:

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s

9.941e-04 1.211e-02 3.512e-02 8.787e-02 1.070e-01 6.531e-01 1.680e+02

The estimate of the Box-Cox parameter λ is 0.11, implying a transformation
close to a logarithmic one (λ = 0).
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Figure 5.1: A plot of BIC against the number of clusters for the first-stage
cluster analysis. The two curves correspond to the settings with a common
λ and cluster-specific λ respectively for the first-stage cluster analysis. Little
difference in the BIC values between the two settings is observed. The BIC
curves remain relatively flat beyond four clusters, suggesting that the model
fit using four clusters is appropriate.
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Note that, by default, flowClust selects the same transformation for
all clusters. We have also enabled the option of estimating the Box-Cox
parameter λ for each cluster. For instance, if a user finds the shapes of
the clusters significantly deviate from one another and opts for a different
transformation for each cluster, he may write the following line of code:

res1s <- flowClust(GvHD, varNames=c("FSC-H", "SSC-H"), K=1:8,

trans=2)

The trans argument acts as a switch to govern how λ is handled: fixed at
a predetermined value (trans=0), estimated and set common to all clusters
(trans=1), or estimated for each cluster (trans=2). Incidentally, the option
of estimating the degrees of freedom parameter ν has also been made avail-
able, either common to all clusters or specific to each of them. The nu.est

argument is the corresponding switch and takes a similar interpretation to
trans. Such an option of estimating ν further fine-tunes the model-fitting
process such that the fitted model can reflect the data-specific level of abun-
dance of outliers. To compare the models adopting a different combination
of these options, one may make use of the BIC again. Figure 5.1 shows that
little difference in the two BIC curves corresponding to the default setting
(common λ) and the setting with cluster-specific λ respectively can be ob-
served. In accordance with the principle of parsimony in statistics which
favors a simpler model, we opt for the default setting here.

Graphical functionalities are available to users for visualizing a wealth of
features of the clustering results, including the cluster assignment, outliers,
and the size and shape of the clusters. Figure 5.2 is a scatterplot showing
the cluster assignment of points upon the removal of outliers. Outliers are
shown in grey with the + symbols. The black solid lines represent the 90%
quantile region of the clusters which defines the cluster boundaries. The
summary shown above states that the default rule used to identify outliers
is 90% quantile, which means that a point outside the 90% quantile region
of the cluster to which it is assigned will be called an outlier. In most
applications, the default rule should be appropriate for identifying outliers.
In case a user wants finer control and would like to specify a different rule,
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Figure 5.2: A scatterplot revealing the cluster assignment in the first-stage
analysis. Clusters 1, 3 and 4 correspond to the lymphocyte population,
while cluster 2 is referred to as the dead cell population. The black solid
lines represent the 90% quantile region of the clusters which define the cluster
boundaries. Points outside the boundary of the cluster to which they are
assigned are called outliers and marked with “+”.
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he may apply the ruleOutliers replacement method:

ruleOutliers(res1[[4]]) <- list(level=0.95)

An excerpt of the corresponding summary is shown below:

** Data Quality **

Number of points filtered from above: 168 (1.31%)

Number of points filtered from below: 0 (0%)

Rule of identifying outliers: 95% quantile

Number of outliers: 133 (1.03%)

As shown in the summary, this rule is more stringent than the 90% quantile

rule: 133 points (1.03%) are now called outliers, as opposed to 506 points
(3.93%) in the default rule.

Clusters 1, 3 and 4 in Figure 5.2 correspond to the lymphocyte popu-
lation defined with a manual gating strategy adopted in Brinkman et al.
(2007). We then extract these three clusters to proceed with the second-
stage analysis:

GvHD2 <- split(GvHD, res1[[4]], population=list(lymphocyte=

c(1,3,4), deadcells=2))

The subsetting method split allows us to split the data into several
flowFrame’s representing the different cell populations. To extract the lym-
phocyte population (clusters 1, 3 and 4), we may type GvHD2$lymphocyte

or GvHD2[[1]], which is a flowFrame. By default, split removes out-
liers upon extraction. The deadcells=2 list element is included above for
demonstration purpose; it is needed only if we want to extract the dead cell
population (cluster 2), too.

In the second-stage analysis, in order to fully utilize the multidimension-
ality of FCM data we cluster the lymphocyte population using all the four
fluorescence parameters, namely, anti-CD4 (FL1-H), anti-CD8β (FL2-H),
anti-CD3 (FL3-H) and anti-CD8 (FL4-H), at once:

res2 <- flowClust(GvHD2$lymphocyte, varNames=c("FL1-H",

"FL2-H", "FL3-H", "FL4-H"), K=1:15)
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Figure 5.3: A plot of BIC against the number of clusters for the second-stage
cluster analysis. The BIC curve remains relatively flat beyond 11 clusters,
suggesting that the model fit using 11 clusters is appropriate.

The BIC curve remains relatively flat beyond 11 clusters (Figure 5.3), sug-
gesting that the model with 11 clusters provides a good fit. Figure 5.4(a)
shows a contour plot superimposed on a scatterplot of CD8β against CD4
for the sub-population of CD3-stained cells, which were selected based on a
threshold obtained from a negative control sample (Brinkman et al., 2007).
We can easily identify from it the red and purple clusters at the upper right
as the CD3+CD4+CD8β+ cell population. A corresponding image plot is
given by Figure 5.4(b). The code used to produce all the plots shown in this
chapter can be found in Appendix C.
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Figure 5.4: Plots of CD8β against CD4 for the CD3+ population. (a) A
contour plot is superimposed on a scatterplot. The red and purple clusters
at the upper right correspond to the CD3+CD4+CD8β+ cell population,
indicative of the GvHD. (b) The five clusters corresponding to the CD3+

population can also be identified clearly on an image plot.
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The example above shows how an FCM analysis is conducted with the aid
of flowClust. When the number of cell populations is not known in advance,
and the BIC values are relatively close over a range of the possible number
of clusters, the researcher may be presented with a set of possible solutions
instead of a clear-cut single one. In such a case, the level of automation
may be undermined as the researcher may need to select the best one based
on his expertise. We acknowledge that more effort is needed to extend our
proposed methodology towards a higher level of automation. Currently, we
are working on an approach which successively merges the clusters in the
solution as suggested by the BIC using some entropy criterion to give a
more reasonable estimate of the number of clusters; see Section 6.2.3 for
more details.

5.3.2 Integration with flowCore

As introduced in Section 5.1, flowClust has been built in a way such
that it is highly integrated with the flowCore package. The core func-
tion flowClust which performs the clustering operation may be replaced
by a call to the constructor tmixFilter creating a filter object similar
to the ones used in other gating or filtering operations found in flowCore

(e.g., rectangleGate, norm2Filter, kmeansFilter). As an example, the
code

res1 <- flowClust(GvHD, varNames=c("FSC-H", "SSC-H"), K=1:8)

used in the first-stage analysis of the GvHD data may be replaced by:

s1filter <- tmixFilter("lymphocyte", c("FSC-H", "SSC-H"), K=1:8)

res1f <- filter(GvHD, s1filter)

The use of a dedicated tmixFilter-class object separates the task of specify-
ing the settings (tmixFilter) from the actual filtering operation (filter),
facilitating the common scenario in FCM gating analysis that filtering with
the same settings is performed upon a large number of data files. The
filter method returns a list object res1f with elements each of class
tmixFilterResult, which directly extends the filterResult class defined
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in flowCore. Users may apply various subsetting operations defined for the
filterResult class in a similar fashion on a tmixFilterResult object. For
instance,

Subset(GvHD[,c("FSC-H", "SSC-H")], res1f[[4]])

outputs a flowFrame that is the subset of the GvHD data upon the removal
of outliers, consisting of the two selected parameters, FSC-H and SSC-H,
only. Another example is given by the split method introduced earlier in
Section 5.3.1.

We realize that occasionally a researcher may opt to combine the use
of flowClust with filtering operations in flowCore to define the whole
sequence of an FCM gating analysis. To enable the exchange of results
between the two packages, filters created by tmixFilter may be treated
like those from flowCore; users of flowCore will find that filter operators,
namely, &, |, ! and %subset%, also work in the flowClust package. For
instance, suppose the researcher is interested in clustering the CD3+ cell
population which he defines by constructing an interval gate with the lower
end-point at 280 on the CD3 parameter. He may use the following code to
perform the analysis:

rectGate <- rectangleGate(filterId="CD3+", "FL3-H"=c(280, Inf))

s2filter <- tmixFilter("s2filter", c("FL1-H", "FL2-H", "FL3-H",

"FL4-H"), K=5)

res2f <- filter(GvHD2$lymphocyte, s2filter %subset% rectGate)

The constructors rectangleGate and tmixFilter create two filter ob-
jects storing the settings of the interval gate and flowClust, respectively.
When the last line of code is run, the interval gate will first be applied to
the GvHD data. flowClust is then performed on a subset of the GvHD
data contained by the interval gate.

5.4 Conclusion

flowClust is an R package dedicated to FCM gating analysis, addressing
the increasing demand for software capable of processing and analyzing the
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voluminous amount of FCM data efficiently via an objective, reproducible
and automated means. The package implements a statistical clustering ap-
proach using multivariate t mixture models with the Box-Cox transforma-
tion introduced in Chapter 4, and provides tools to summarize and visualize
results of the analysis. The package contributes to the cytometry commu-
nity by offering an efficient, automated analysis platform which facilitates
the active, ongoing technological advancement.
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Chapter 6

Conclusion and Future

Directions

6.1 Summary and Discussion

The intent of this thesis is to develop statistical methodology based on
flexible forms of finite mixture models to address issues arising from high-
throughput biological data sources. In Chapter 2, we introduced an empiri-
cal Bayes approach to detect differentially expressed genes from microarray
data, extending the hierarchical Gamma-Gamma and Lognormal-Normal
models (Newton et al., 2001; Kendziorski et al., 2003). The extension re-
sults in a release of the unreasonable assumption of a constant coefficient
of variation for all genes, and has been shown to remarkably improve the
original framework. Next, in Chapter 3, we proposed a mixture modeling
framework based on a new class of skewed distributions, the multivariate
t distribution with the Box-Cox transformation. We emphasize on a con-
current treatment of data transformation and outlier identification, instead
of tackling the two issues of mutual impact in a sequential manner. The
approach is robust to both asymmetric components and outliers, and re-
mains to be highly competitive in comparisons made with the computa-
tionally much more complicated approach using the skew t mixture model.
In Chapter 4, we reframed the gating analysis in flow cytometry (FCM)
as a clustering problem, and applied the approach proposed in Chapter 3
to automate the identification of cell populations. The result shows that
our approach is well adapted to FCM data, in which a high abundance of
outliers is often observed. Moreover, our approach has an appeal of being
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computationally competitive, which is crucial for FCM analysis considering
the high dimensionality of data and the large number of samples usually
involved. In recognition of concern of the FCM community which has been
seeking an automated analysis platform with a solid theoretical foundation,
we have developed an open-source software package called flowClust, de-
tails of which are delineated in Chapter 5. While flowClust is publicly
released as an R package, its core part that implements the model-fitting
process is coded in C to ensure computational efficiency at users’ end. To
facilitate the convenience of use, specific efforts have been made to adapt
to the custom of FCM researchers, such as developing tools of visualization
and for constructing data filters, or “gates”. flowClust has been built in
a way such that it directly accepts data in FCM-dedicated format, and is
well integrated with other Bioconductor FCM packages. The package is
under active maintenance for further enrichment in the modeling aspect,
feature enhancement for presentation and dissemination of analysis results,
and integration to existing and upcoming FCM analysis tools.

From a monochromatic technology dated back to the late 1960’s, FCM
has evolved into a technology that can simultaneously measure nearly 20
parameters for each cell (Perfetto et al., 2004). To date, the LSR II flow
cytometer from BD Biosciences (San Jose, California) can detect up to 18
colors (corresponding to biomarkers such as antigens) in one experiment.
To the accompaniment of technological advancement, the impact of FCM
on a wealth of fields of biology and medicine has undergone tremendous
growth in the last few years; see, for example, Valet and Tárnok (2003),
Valet (2005), Herrera et al. (2007) and Lizard (2007). We believe that FCM
in the next few years will reach a level of prominence that microarray has
attained in the last decade. Along with the increase in dimensionality of
FCM data, it becomes apparent that the traditional way of gating analysis
by relying on expertise in defining a gating sequence and positioning the
gates is inefficient. How to resolve the bottleneck of a lack of an analysis
platform to parallel such a high-throughput data generation platform has
become an open question among the FCM community. A pleasant trend has
been observed over the past one or two years, when more research work of
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statistical methodology dedicated to FCM comes to light (e.g., Lugli et al.,
2007; Boedigheimer and Ferbas, 2008; Chan et al., 2008; Lo et al., 2008; Pyne
et al., 2009). Such an accelerating trend can also be observed from regu-
lar meetings of the Flow Informatics and Computational Cytometry Society
(FICCS) and other conferences. Since published in April 2008, our article
(corresponding to Chapter 4 of this thesis) has been cited 18 times to date
according to the search result of Web of Science and Google Scholar. Mean-
while, a steady overall increase in the download statistics for flowClust has
been observed from the Package Downloads Report at Bioconductor. These
evidences provide a positive sign that our proposed methodology has the
potential for being a mainstream automated gating approach in an FCM
analysis pipeline.

6.2 Future Directions

In the remainder of this chapter, we briefly describe a few possible directions
for future research, and report preliminary results therein.

6.2.1 Robustification of the Empirical Bayes Model for

Differential Gene Expression

The extension we proposed in Chapter 2 allows for a gene-specific coefficient
of variation in the hierarchical empirical Bayes models originated from New-
ton et al. (2001) and Kendziorski et al. (2003) for microarray data. Such
an enhanced flexibility does not effectively constitute a mechanism to ac-
commodate outliers, though. An outlying data value could occur because of
scratches or dust on the surface, imperfections in the glass slide, or imperfec-
tions in the array production. As a possible way to robustify the empirical
Bayes approach, we may consider the eLNN formulation and replace the
lognormal sampling distribution with a log t distribution. In other words,
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we build a model with the following hierarchical representation:

log xgr = µgx +
εgxr√
wgr

µgx|τgx ∼ N(m, kτ−1
gx )

εgxr|τgx ∼ N(0, τ−1
gx )

τgx ∼ Gamma(α, β)

wgr ∼ Gamma
(νr

2
,
νr
2

)
(6.1)

where wgr and εgxr are independent and therefore εgxr/
√
wgr follows a cen-

tral t distribution with scale matrix τ−1
gx and degrees of freedom νr. All other

notations in (6.1) follow the convention used in Chapter 2, and the model
specification for ygr can be derived accordingly. If we fix wgr = 1 for all g
and r, the aforementioned model reduces to the eLNN model introduced in
Chapter 2.

The joint prior on µgx, τgx and wgr is not conjugate to the sampling
distribution, and the marginal density cannot be derived in closed form.
However, the marginal density is analytically available conditional on wgr.
As a result, it is possible to proceed in a way similar to what we described
in Section 2.2.3 for the eGG model in which a closed-form marginal density
is available conditional on the gene-specific shape parameter. We may take
accordingly the log prior density of wg = (wg1, wg2, . . . , wgR)′ as the penalty
term, and consider the modified complete-data log-likelihood

l̃c(Φ|x,y, z) =
∑
g

{
zg log pA(xg,yg|ψ, wgr) + (1− zg) log p0(xg,yg|ψ, wgr)

+ (1 + zg) log(p) + (2− zg) log(1− p) +
∑
r

log π(wgr|νr)
}
,

(6.2)

where ψ = (m, k, α, β)′ and Φ = (w1,w2, . . . ,wG,ψ
′, p)′. Parameter esti-

mation may then be handled by the EM-type algorithm described in Sec-
tion 2.2.3 in which the M-step is split into two constrained maximization
steps. This robust approach provides a favorable alternative to the fully
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Bayesian approach BRIDGE (Gottardo et al., 2006), which takes a similar
model specification but relies on MCMC techniques and is computationally
intensive.

6.2.2 Development of an Automated FCM Analysis

Pipeline

The analysis of FCM data usually involves two major components: (1) iden-
tifying homogeneous cell populations (commonly referred to as gating), each
of which displays a particular biological function, and (2) finding correlations
between identified cell populations and clinical diagnosis. We presented in
Chapter 4 the statistical methodology based on robust model-based clus-
tering to automate the gating process. An ensuing research focus would be
devising a methodology that extracts features from the result of the auto-
mated gating analysis to facilitate disease diagnosis, and identifies biomark-
ers that correlate with the disease. Essentially, we would like to develop a
pipeline, with minimal manual intervention, for the different stages of FCM
data analysis, including identification of cell populations, extraction of use-
ful features (biomarkers) correlated with a target disease, and classification
of samples. Figure 6.1 shows the overall flow of the proposed data analysis
pipeline (Bashashati et al., 2009).

As a motivational example of FCM analysis which fits into such a pipeline,
here we present our preliminary study on paroxysmal nocturnal hemoglobin-
uria (PNH), a disease of red blood cell breakdown with release of hemoglobin
into the urine. The objective of the study is to build a classification rule
that separates subjects according to their disease status (positive or nega-
tive). A series of FCM samples were obtained from 17 PNH patients and 15
controls. A complete set of samples for one subject includes two red blood
cell samples and three white blood cell samples. Each sample consists of
a distinct antigenic marker. Figure 6.2 shows two histograms from the red
blood cell samples of a PNH patient and a control respectively. A distinctive
subpopulation of low intensities is found in the positive sample. This serves
as the discriminating information for subject classification.
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Figure 6.1: The overall flow of the proposed automated FCM analysis
pipeline.

To quantify the discriminating information, we applied the methodol-
ogy described in Chapter 4 to cluster each red blood cell sample into two
subpopulations. The separation between the two cluster means, that is
expected to be large for a positive sample, provides the basis of discrimi-
nating the two groups of subjects. We proceeded in a similar manner for
each cell type, namely, granulocytes, lymphocytes and monocytes, identified
in the white blood cell samples. At the next-stage analysis, subjects were
represented with the features of interest (i.e., the separation between two
cluster means), or a subset of them, extracted from the clustering stage. We
built classifiers using support vector machines (SVM) (Schölkopf and Smola,
2002) with a linear kernel. Leave-one-out cross-validation was used to assess
the accuracy of the classifiers built. Classifiers with > 97% accuracy have
been found, with a few features consistently found among them.

The preliminary study on PNH presented a simplified scenario of typical
FCM analysis. Very often, we do not know the number of cell populations
in advance, and multiple colors are used in each sample. In such a case, a
better example is given by our current study in which we attempt to de-
vise an analysis pipeline to discriminate subtypes of lymphoma and identify
biomarkers that contribute to such a classification (Bashashati et al., 2009).
Data in this study were generated at the British Columbia Cancer Agency

136



(a) A positive sampleHistogram of data

data

D
e
n
s
it
y

0 200 400 600

0
.0
0
0

0
.0
0
1

0
.0
0
2

0
.0
0
3

0
.0
0
4

0
.0
0
5



(b) A control sampleHistogram of data
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Figure 6.2: Clustering of red blood cell samples from the PNH data. The
graphs shown are the histograms of CD55 from (a) a positive sample, and
(b) a control sample. The presence of the distinctive subpopulation of low
intensities in the positive sample is also expected to be observed on some/all
of the three basic cell types from positive white blood cell samples. A clinical
diagnosis would determine a subject to be PNH positive if the distinctive
subpopulation is observed from at least two cell types.

in 2002–2007. FCM samples were obtained from biopsies of lymph nodes
from 438 lymphoma patients of different subtypes. Samples were divided
into seven tubes, each of which was stained with a distinct set of three
fluorescently conjugated antibodies.

To proceed, we first apply the robust model-based clustering methodol-
ogy to identify cell populations, and use the BIC to determine the number
of cell populations in each sample. Statistics such as the proportion, mean
and variance for each cluster are extracted, resulting in a long list of can-
didate features with discriminating information. The majority of features
are expected to be uninformative, and in order to discard them we apply
the minimum redundancy maximum relevance (mRMR) feature selection
technique (Peng et al., 2005; Ding and Peng, 2005). The mRMR technique
aims at selecting features that are relevant to the class label (i.e., subtype of
lymphoma) whilst minimizing the redundancy of the selected features; the
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Euclidean distance or, more effectively, the Pearson correlation coefficient
between features may be taken as the redundancy measure. Based on the
selected features, we build a classifier using SVM or random forest (Breiman,
2001) to classify the samples, and make predictions about future incoming
samples.

In our current attempt, we randomly split the samples into the training
and testing sets. Samples in the training set are used to select informative
features and build the classifiers, while the training samples are used for per-
formance evaluation. To date, the devised analysis pipeline is confined to a
binary classification, i.e., discrimination between two subtypes of lymphoma.
Our preliminary result shows that 80%–96% accuracy has been achieved in
a few binary classifications performed. Features (in terms of markers) iden-
tified to be informative are in line with previous biological findings (Dogan,
2005), providing promising evidence that the proposed analysis pipeline can
extract biologically meaningful features from FCM data. Subsequent work
would be refining the various components of the pipeline in order to achieve
higher discriminating accuracy, and extending the methodology to facilitate
multi-class discriminations.

6.2.3 Combining Mixture Components in Clustering

In clustering analysis, very often the number of clusters is unknown and
requires estimation. There are several approaches for selecting the number
of components in model-based clustering, such as resampling, cross valida-
tion, and various information criteria; see McLachlan and Peel (2000) for a
review. In this thesis, our approach to the problem is based on the BIC.
Model selection based on the BIC has been shown not to underestimate
the number of clusters asymptotically (Leroux, 1992). Moreover, the BIC
is computationally cheap to compute once maximum likelihood estimation
of the model parameters has been completed, an advantage over other ap-
proaches, especially in the context of FCM where datasets tend to be very
large. Nevertheless, if the correct model is not in the family of models being
considered, more than one mixture component may be needed to provide a
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reasonable representation of an individual cluster of data. In such a case,
the BIC tends to select an excessive number of components relative to the
correct number of clusters (Biernacki and Govaert, 1997; Biernacki et al.,
2000). Biernacki et al. (2000) attempted to rectify this problem by propos-
ing an alternative to the BIC based on the integrated completed likelihood
(ICL). The ICL criterion turns out to be equivalent to the BIC penalized
by the entropy of the corresponding clustering:

ICLG = BICG − 2 ENTG, (6.3)

where

ENTG = −
n∑
i=1

G∑
g=1

ẑig log ẑig (6.4)

is the entropy for the corresponding G-component mixture model, and ẑig

is the conditional probability that the i-th observation arises from the g-th
component. The entropy ENTG is a measure of relevance of the G com-
ponents from a mixture model to the partition of data. Conceptually, it
increases with the scale of overlap between the components. In consequence,
the ICL favors models with well-separated mixture components. In prac-
tice, however, the ICL tends to underestimate the correct number of clusters
(Murphy and Martin, 2003). Such a tendency was also observed when we
attempted to apply the ICL to FCM data.

In a current attempt, we propose an approach for selecting the number of
clusters by combining the ideas underlying the BIC and ICL (Baudry et al.,
2008). The BIC is used to select the number of components in the mixture
model in order to provide a good representation of data. We then define
a sequence of possible solutions by hierarchical merging of the components
identified by the BIC. The decision about which components to merge is
based on the same entropy criterion given by Eq.(6.4) that the ICL uses. In
this way, we propose a way of interpreting the mixture model by identifying
the set of merged components as one cluster.

In the following, we describe in details the hierarchical merging scheme.
At each stage, we choose two mixture components to be merged so as to
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minimize the entropy of the resulting clustering. If components k and k′

from a G-component solution are merged, the conditional probability ẑig

will remain the same for every g except for k and k′. The new cluster k ∪ k′

then has the following conditional probability:

ẑi,k∪k′ = ẑik + ẑik′ . (6.5)

The entropy for the resulting (G−1)-cluster solution is

−
n∑
i=1

 ∑
g 6=k,k′

ẑig log ẑig + ẑi,k∪k′ log ẑi,k∪k′

 . (6.6)

The two components k and k′ to be merged are those minimizing the crite-
rion

n∑
i=1

{
ẑik log ẑik + ẑik′ log ẑik′ − ẑi,k∪k′ log ẑi,k∪k′

}
among all possible pairs of components. Components in the model selected
by the BIC are successively merged by repeating the aforementioned proce-
dure, until the data are reduced to one single cluster.

The proposed approach yields one solution for each value of g = 1, 2, . . . , G,
and the user can choose between them on substantive grounds. If a more
automated procedure is desired for choosing a single solution, one possibility
is to select, among the possible solutions, the solution providing the number
of clusters selected by the ICL. An alternative is to detect an “elbow” on the
entropy curve, i.e., the graph of entropy against the number of clusters. In-
tuitively, when mixture components overlap significantly, the corresponding
entropy will be large. As overlapping components are combined in subse-
quent stages of the hierarchical merging scheme, the entropy will decrease.
When only well-separated components are left in the clustering solution, fur-
ther merging will incur little reduction in the resultant entropy. This idea
has been formalized by Finak et al. (2009) in which a changepoint analysis
is performed. On setting the changepoint at g = 2, 3, . . . , G − 1 in turn, a
series of two-segment piecewise linear regression models is used to fit the
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entropy curve. The optimal location g̃ of the changepoint is determined by
the regression model with the minimum residual sum of squares. Finally, the
presence or absence of such a changepoint may be determined by comparing
the two-segment piecewise regression model with a simple linear regression
model via the BIC or ANOVA. If the result is in favor of the two-segment
piecewise regression model, the proposed hierarchical merging scheme is able
to select a g̃-cluster solution as the optimal.
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Appendix A

Additional Material for

Chapter 2

A.1 Marginal Densities of Measured Intensities

Under the extended GG model, the joint marginal densities of measured
intensities of a given gene g are developed without integrating ag away,
i.e., they are conditional on ag. Denote by G(x; a, b) the Gamma density
function with shape a and rate b. The explicit forms of the conditional
marginal densities are given by

pA(xg,yg|ψ, ag) =
∫ ∞

0

R∏
r=1

G(xgr; ag, θgx) G(θgx;ψ) dθgx

×
∫ ∞

0

R∏
r=1

G(ygr; ag, θgy) G(θgy;ψ) dθgy

=
{

Γ(Rag + a0)
ΓR(ag) Γ(a0)

}2 ν2a0
(∏

r xgr ygr
)ag−1[

(ν +
∑

r xgr)(ν +
∑

r ygr)
]Rag+a0

(A.1)

and

p0(xg,yg|ψ, ag) =
∫ ∞

0

R∏
r=1

G(xgr; ag, θg)
R∏
r=1

G(ygr; ag, θg) ·G(θg;ψ) dθg

=
Γ(2Rag + a0)
Γ2R(ag) Γ(a0)

νa0
(∏

r xgr ygr
)ag−1(

ν +
∑

r xgr +
∑

r ygr
)2Rag+a0

, (A.2)

where ψ = (a0, ν)′.
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The joint marginal densities of measured intensities under the extended
LNN model are developed in a similar fashion, this time by integrating µg
and τg away. Denote by LN(x; a, b) the Lognormal density function with
mean and variance parameters a and b respectively, and by N(x; a, b) the
normal density function. The marginal densities are developed as follows:

pA(xg,yg|ψ)

=
∫ ∞

0

∫ ∞
−∞

∏
r

LN(xgr;µgx, τ−1
gx ) N(µgx;m, kτ−1

gx )G(τgx;α, β) dµgxdτgx
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(A.3)

and
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where ψ = (m, k, α, β)′.

A.2 Estimation of η and ξ for the Prior of ag

As mentioned in Section 2.2.3, to make use of the modified complete-data
log-likelihood given by Eq.(2.4) in the extended GG model we need to pro-
vide estimates of the hyperparameters for the Lognormal(η, ξ) prior of ag
beforehand. Here we propose to use the method of moments (MM) to esti-
mate η and ξ. First we would like to come up with simple estimates of the
ag’s. On noting that the coefficient of variation is given by 1/√ag for each
gene, a robust empirical estimate of ag may be provided by

ãg =
med(xg,yg)2

mad(xg,yg)2
,

where med and mad stand for median and median absolute deviation re-
spectively. Note that a robust counterpart to mean and standard deviation
is adopted since there are usually relatively few replicates. With these crude
estimates of ag’s, we can then obtain the estimates of η and ξ:

η̂ = med({log ãg}) and ξ̂ = mad({log ãg})2.

Again, a robust version of MM is proposed here.

A.3 Initialization of the EM Algorithm

We need to initialize the parameters to be estimated before the EM-type
algorithm described in Section 2.2.3 can be applied. Similar to the esti-
mation for η and ξ above, robust MM estimates of (a, a0, ν) are obtained
for the extended GG model. Similar measure is taken for (m,α, β) if the
data are modeled under the extended LNN framework, while k is empirically
chosen to be 30. After the crude estimation step, updated estimates of the
aforementioned parameters are obtained on maximizing the corresponding
marginal null log-likelihood under either model formulation. This step is
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taken in order to bring the initial estimates closer to the estimates returned
by the EM algorithm. Using these initial estimates together with p set as
0.5, the most likely value under the Beta(2, 2) prior, initial estimates of zg’s
are obtained, which are then used to update the parameter estimates in the
EM algorithm.
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Appendix B

Vignette of the flowClust

Package

B.1 Licensing

Under the Artistic License, you are free to use and redistribute this software.
However, we ask you to cite the following papers if you use this software for
publication.

1. Lo, K., Brinkman, R. R., and Gottardo, R. (2008). Automated gating
of flow cytometry data via robust model-based clustering. Cytometry
Part A, 73A(4):321–332.

2. Lo, K., Hahne, F., Brinkman, R. R., and Gottardo, R. (2009). flow-
Clust: a Bioconductor package for automated gating of flow cytometry
data. BMC Bioinformatics, 10:145.

B.2 Overview

We apply a robust model-based clustering approach proposed by Lo et al.
(2008) to identify cell populations in flow cytometry data. The proposed
approach is based on multivariate t mixture models with the Box-Cox trans-
formation. This approach generalizes Gaussian mixture models by modeling
outliers using t distributions and allowing for clusters taking non-ellipsoidal
shapes upon proper data transformation. Parameter estimation is carried
out using an Expectation-Maximization (EM) algorithm which simultane-
ously handles outlier identification and transformation selection. Please refer
to Lo et al. (2008) for more details.
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This flowClust package consists of a core function to implement the
aforementioned clustering methodology. Its source code is built in C for
optimal utilization of system resources. Graphical functionalities are avail-
able to users for visualizing a wealth of features of the clustering results,
including the cluster assignment, outliers, and the size and shape of the
clusters. The fitted mixture model may be projected onto any one/two di-
mensions and displayed by means of a contour or image plot. Currently,
flowClust provides two options for estimating the number of clusters when
it is unknown, namely, the Bayesian Information Criterion (BIC) and the
Integrated Completed Likelihood (ICL).

flowClust is built in a way such that it is highly integrated with flow-

Core, the core package for flow cytometry that provides data structures
and basic manipulation of flow cytometry data. Please read Section B.4.3
for details about actual implementation.

B.3 Installation

B.3.1 Unix/Linux/Mac Users

To build the flowClust package from source, make sure that the following
is present on your system:

• a C compiler

• GNU Scientific Library (GSL)

• Basic Linear Algebra Subprograms (BLAS)

A C compiler is needed to build the package as the core function is coded
in C. GSL can be downloaded at http://www.gnu.org/software/gsl/.
In addition, the package uses BLAS to perform basic vector and matrix
operations. Please go to http://www.netlib.org/blas/faq.html#5 for a
list of optimized BLAS libraries for a variety of computer architectures. For
instance, Mac users may use the built-in vecLib framework, while users of
Intel machines may use the Math Kernel Library (MKL).
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For the package to be installed properly you may have to type the fol-
lowing command before installation:

export LD_LIBRARY_PATH=’/path/to/GSL/:/path/to/BLAS/’:

$LD_LIBRARY_PATH

which will tell R where your GSL and BLAS libraries are. Note that this
may have already been configured on your system, so you may not have to
do so. In case you need to do it, you may consider including this line in
your .bashrc such that you do not have to type it every time.

If GSL is installed to some non-standard location such that it cannot
be found when installing flowClust, you may set the environment variable
GSL CONFIG to point to the correct copy of gsl-config, for example,

export GSL_CONFIG=’/global/home/username/gsl-1.12/bin/gsl-config’

For convenience sake, this line may also be added to .bashrc.
Now you are ready to install the package:

R CMD INSTALL flowClust_x.y.z.tar.gz

The package will look for a BLAS library on your system, and by default
it will choose gslcblas, which is not optimized for your system. To use an
optimized BLAS library, you can use the --with-blas argument which will
be passed to the configure.ac file. For example, on a Mac with vecLib
pre-installed the package may be installed via:

R CMD INSTALL flowClust_x.y.z.tar.gz --configure-args=

"--with-blas=’-framework vecLib’"

On a 64-bit Intel machine which has MKL as the optimized BLAS library,
the command may look like:

R CMD INSTALL flowClust\_x.y.z.tar.gz --configure-args="--with-

blas=’-L/usr/local/mkl/lib/em64t/ -lmkl -lguide -lpthread’"

where /usr/local/mkl/lib/em64t/ is the path to MKL.
If you prefer to install a prebuilt binary, you need GSL for successful

installation.
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B.3.2 Windows Users

You need the GNU Scientific Library (GSL) for the flowClust package.
GSL is freely available at http://gnuwin32.sourceforge.net/packages/
gsl.htm for Windows distributions.

To install a prebuilt binary of flowClust and to load the package suc-
cessfully you need to tell R where to link GSL. You can do that by adding
/path/to/libgsl.dll to the Path environment variable. To add this you
may right click on “My Computer”, choose “Properties”, select the “Ad-
vanced” tab, and click the button “Environment Variables”. In the dialog
box that opens, click “Path” in the variable list, and then click “Edit”. Add
/path/to/libgsl.dll to the “Variable value” field. It is important that
the file path does not contain any space characters; to avoid this you may
simply use the short forms (8.3 DOS file names) found by typing dir /x at
the Windows command line. For example, the following may be added to
the Path environment variable:

C:/PROGRA~1/GNUWIN32/bin

and the symbol ; is used to separate it from existing paths.
To build flowClust from source (using Rtools), in addition to adding

/path/to/libgsl.dll to Path, you need to tell flowClust where your
GSL library and header files are. You can do that by setting up two en-
vironment variables GSL LIB and GSL INC with the correct path to the li-
brary files and header files respectively. You can do this by going to the
“Environment Variables” dialog box as instructed above and then click-
ing the “New” button. Enter GSL LIB in the “Variable name” field, and
/path/to/your/gsl/lib/directory in the “Variable value” field. Like-
wise, do this for GSL INC and /path/to/your/gsl/include/directory.
Remember to use “/” instead of “\” as the directory delimiter.

You can download Rtools at http://www.murdoch-sutherland.com/

Rtools/ which provides the resources for building R and R packages. You
should add to the Path variable the paths to the various components of
Rtools. Please read the “Windows Toolset” appendix at http://cran.
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r-project.org/doc/manuals/R-admin.html#The-Windows-toolset for
more details.

B.4 Example: Clustering of the Rituximab

Dataset

B.4.1 The Core Function

To demonstrate the functionality we use a flow cytometry dataset from
a drug-screening project to identify agents that would enhance the anti-
lymphoma activity of Rituximab, a therapeutic monoclonal antibody. The
dataset is an object of class flowFrame; it consists of eight parameters,
among them only the two scattering parameters (FSC.H, SSC.H) and two
fluorescence parameters (FL1.H, FL3.H) are of interest in this experiment.
Note that, apart from a typical matrix or data.frame object, flowClust

may directly take a flowFrame, the standard R implementation of an FCS
file, which may be returned from the read.FCS function in the flowCore

package, as data input. The following code performs an analysis with one
cluster using the two scattering parameters:

> library(flowClust)

> data(rituximab)

> summary(rituximab)

FSC.H SSC.H FL1.H FL2.H FL3.H FL1.A FL1.W Time

Min. 59.0 11.0 0.0 0.0 1.0 0.00 0.0 2

1st Qu. 178.0 130.0 197.0 55.0 150.0 0.00 0.0 140

Median 249.0 199.0 244.0 116.0 203.0 0.00 0.0 285

Mean 287.1 251.8 349.2 126.4 258.3 73.46 17.6 294

3rd Qu. 331.0 307.0 445.0 185.0 315.0 8.00 0.0 451

Max. 1023.0 1023.0 974.0 705.0 1023.0 1023.00 444.0 598

> res1 <- flowClust(rituximab, varNames=c("FSC.H", "SSC.H"),

K=1, B=100)
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B is the maximum number of EM iterations; for demonstration purpose here
we set a small value for B. The main purpose of performing an analysis
with one cluster here is to identify outliers, which will be removed from
subsequent analysis.

Next, we would like to proceed with an analysis using the two fluores-
cence parameters on cells selected from the first stage. The following code
performs the analysis with the number of clusters being fixed from one to
six in turn:

> rituximab2 <- rituximab[rituximab %in% res1,]

> res2 <- flowClust(rituximab2, varNames=c("FL1.H", "FL3.H"),

K=1:6, B=100)

We select the best model based on the BIC. Values of the BIC can be re-
trieved through the criterion method. By inspection, the BIC values stay
relatively constant beyond three clusters. We therefore choose the model
with three clusters and print a summary of the corresponding clustering
result:

> summary(res2[[3]])

** Experiment Information **

Experiment name: Flow Experiment

Variables used: FL1.H FL3.H

** Clustering Summary **

Number of clusters: 3

Proportions: 0.2658702 0.5091045 0.2250253

** Transformation Parameter **

lambda: 0.4312673

** Information Criteria **

Log likelihood: -16475.41

BIC: -33080.88

ICL: -34180.67

** Data Quality **

Number of points filtered from above: 0 (0%)
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Number of points filtered from below: 0 (0%)

Rule of identifying outliers: 90% quantile

Number of outliers: 96 (6.99%)

Uncertainty summary:

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0005699 0.0153000 0.1669000 0.2019000 0.3738000 0.5804000

The summary states that the rule used to identify outliers is 90% quantile,
which means that a point outside the 90% quantile region of the cluster to
which it is assigned will be called an outlier. To specify a different rule, we
make use of the ruleOutliers replacement method. The example below
applies the more conservative 95% quantile rule to identify outliers:

> ruleOutliers(res2[[3]]) <- list(level=0.95)

Rule of identifying outliers: 95% quantile

> summary(res2[[3]])

...

** Data Quality **

Number of points filtered from above: 0 (0%)

Number of points filtered from below: 0 (0%)

Rule of identifying outliers: 95% quantile

Number of outliers: 35 (2.55%)

We can also combine the rule set by the z.cutoff argument to identify
outliers. Suppose we would like to assign an observation to a cluster only
if the associated posterior probability is greater than 0.6. We can add this
rule with the following command:

> ruleOutliers(res2[[3]]) <- list(z.cutoff=0.6)

Rule of identifying outliers: 95% quantile,

probability of assignment < 0.6

> summary(res2[[3]])
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...

** Data Quality **

Number of points filtered from above: 0 (0%)

Number of points filtered from below: 0 (0%)

Rule of identifying outliers: 95% quantile,

probability of assignment < 0.6

Number of outliers: 317 (23.07%)

This time more points are called outliers. Note that such a change of the rule
will not incur a change of the model-fitting process. The information about
which points are called outliers is conveyed through the flagOutliers slot,
a logical vector in which the positions of TRUE correspond to points being
called outliers.

By default, when 10 or more points accumulate on the upper or lower
boundary of any parameter, the flowClust function will filter those points.
To change the threshold count from the default, users may specify max.count

and min.count when running flowClust. To suppress filtering at the upper
and/or the lower boundaries, set max.count and/or min.count as −1. We
can also use the max and min arguments to control filtering of points, but
from a different perspective. For instance, if we are only interested in cells
which have a FL1.H measurement within (0, 400) and FL3.H within (0, 800),
we may use the following code to perform the cluster analysis:

> flowClust(rituximab2, varNames=c("FL1.H", "FL3.H"), K=2,

B=100, min=c(0,0), max=c(400,800))

B.4.2 Visualization of Clustering Results

Information such as the cluster assignment, cluster shape and outliers may
be visualized by calling the plot method to make a scatterplot:

> plot(res2[[3]], data=rituximab2, level=0.8, z.cutoff=0)

Rule of identifying outliers: 80% quantile
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The level and/or z.cutoff arguments are needed when we want to apply
a rule different from that stored in the ruleOutliers slot of the flowClust

object to identify outliers.
To look for densely populated regions, a contour/image plot can be made:

> res2.den <- density(res2[[3]], data=rituximab2)

> plot(res2.den)
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> plot(res2.den, type="image")
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When we want to examine how the fitted model and/or the data are
distributed along one chosen dimension, we can use the hist method:

> hist(res2[[3]], data=rituximab2, subset="FL1.H")
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The subset argument may also take a numeric value:

> hist(res2[[3]], data=rituximab2, subset=1)

Since FL1.H is the first element of res2[[3]]@varNames, this line pro-
duces exactly the same histogram as the one generated by the line taking
subset="FL1.H". Likewise, the subset argument of both plot methods
accepts either a numeric or a character vector to specify which two variables
are to be shown on the plot.

B.4.3 Integration with flowCore

As mentioned in Overview, effort has been made to integrate flowClust

with the flowCore package. Users will find that most methods defined in
flowCore also work in the context of flowClust.
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The very first step of integration is to replace the core function flowClust

with a call to the constructor tmixFilter followed by the filter method.
The aim is to wrap clustering in a filtering operation like those found in flow-

Core. The tmixFilter function creates a filter object to store all settings
required for the filtering operation. The object created is then passed to the
actual filtering operation implemented by the filter method. The use of a
dedicated tmixFilter-class object separates the task of specifying the set-
tings (tmixFilter) from the actual filtering operation (filter), facilitating
the common scenario in FCM gating analysis that filtering with the same
settings is performed upon a set of data files.

As an example, the filtering operation that resembles the second-stage
clustering using FL1.H and FL3.H with three clusters (see Section B.4.1) is
implemented by the following code:

> s2filter <- tmixFilter("s2filter", c("FL1.H", "FL3.H"), K=3,

B=100)

> res2f <- filter(rituximab2, s2filter)

The object res2f is of class tmixFilterResult, which extends the
multipleFilterResult class defined in flowCore. Users may apply vari-
ous subsetting operations defined for the multipleFilterResult class in a
similar fashion on a tmixFilterResult object:

> Subset(rituximab2, res2f)

flowFrame object ’A02’

with 1267 cells and 8 observables:

name desc range

$P1 FSC.H FSC-Height 1024

$P2 SSC.H Side Scatter 1024

$P3 FL1.H Anti-BrdU FITC 1024

$P4 FL2.H <NA> 1024

$P5 FL3.H 7 AAD 1024

$P6 FL1.A <NA> 1024

$P7 FL1.W <NA> 1024
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$P8 Time Time (204.80 sec.) 1024

135 keywords are stored in the ’descripton’ slot

> split(rituximab2, res2f, population=list(sc1=1:2, sc2=3))

$sc1

flowFrame object ’A02 (1,2)’

with 976 cells and 8 observables:

name desc range

$P1 FSC.H FSC-Height 1024

$P2 SSC.H Side Scatter 1024

$P3 FL1.H Anti-BrdU FITC 1024

$P4 FL2.H <NA> 1024

$P5 FL3.H 7 AAD 1024

$P6 FL1.A <NA> 1024

$P7 FL1.W <NA> 1024

$P8 Time Time (204.80 sec.) 1024

3 keywords are stored in the ’descripton’ slot

$sc2

flowFrame object ’A02 (3)’

with 291 cells and 8 observables:

name desc range

$P1 FSC.H FSC-Height 1024

$P2 SSC.H Side Scatter 1024

$P3 FL1.H Anti-BrdU FITC 1024

$P4 FL2.H <NA> 1024

$P5 FL3.H 7 AAD 1024

$P6 FL1.A <NA> 1024

$P7 FL1.W <NA> 1024

$P8 Time Time (204.80 sec.) 1024

136 keywords are stored in the ’descripton’ slot
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The Subset method above outputs a flowFrame consisting of observations
within the data-driven filter constructed. The split method separates the
data into two populations upon the removal of outliers: the first population
is formed by observations assigned to clusters 1 and 2 constructed by the
filter, and the other population consists of observations assigned to cluster 3.
The two populations are returned as two separate flowFrame’s, which are
stored inside a list and labelled with sc1 and sc2 respectively.

The %in% operator from flowCore is also defined for a tmixFilterResult
object. A logical vector will be returned in which a TRUE value means that
the corresponding observation is accepted by the filter. In fact, the imple-
mentation of the Subset method needs to call %in%.

The object returned by tmixFilter is of class tmixFilter, which ex-
tends the filter class in flowCore. Various operators, namely, &, |, ! and
%subset%, which have been constructed for filter objects in flowCore,
also produce similar outcomes when applied to a tmixFilter object. For
example, to perform clustering on a subset of data enclosed by a rectangle
gate, we may apply the following code:

> rectGate <- rectangleGate(filterId="rectRegion",

"FL1.H"=c(0, 400), "FL3.H"=c(0, 800))

> MBCfilter <- tmixFilter("MBCfilter", c("FL1.H", "FL3.H"),

K=2, B=100)

> filter(rituximab2, MBCfilter %subset% rectGate)

A filterResult produced by the filter named ’MBCfilter in

rectRegion’
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Appendix C

Code to Produce the Plots in

Chapter 5

# Figure 5.1

plot(criterion(res1, "BIC"), xlab="No. of clusters", ylab="BIC",

type="b", pch=2)

points(criterion(res1s, "BIC"), type="b", pch=3, col=2)

legend("bottomright", col=1:2, pch=2:3, lty=1,

legend=c(expression(paste("global ", lambda)),

expression(paste("cluster-specific ", lambda))))

# Figure 5.2

plot(res1[[4]], data=GvHD, pch.outliers="+", xlab="FSC-Height",

ylab="SSC-Height")

legend("bottomright", col=2:5, legend=1:4, title="Clusters",

pch=20)

# Figure 5.3

plot(criterion(res2, "BIC"), xlab="No. of clusters", ylab="BIC",

type="b")

# Figure 5.4(a)

CD3p <- which(getEstimates(res2[[11]])$locations[,3] > 280)

plot(res2[[11]], data=GvHD2$lymphocyte, include=CD3p, ellipse=F,

pch=20, xlab="CD4-Height", ylab=expression(paste("CD8", beta,

"-Height")))
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res2d <- density(res2[[11]], data=GvHD2$lymphocyte, include=CD3p)

plot(res2d, drawlabels=F, add=T, nlevels=20)

# Figure 5.4(b)

plot(res2d, type="image", nlevels=100, xlab="CD4-Height", ylab=

expression(paste("CD8", beta, "-Height")))
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