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Abstract 

The detection and isolation of faults in engineering systems is of great practical 

significance.  The early detection of fault occurrence in a machine is critical in avoiding 

machine-performance degradation, and major damage to the machine itself.  In the 

present thesis, the focus is to selects and implements an appropriate modeling approach to 

detect and diagnose the possible faults in a complex hydraulic system of an industrial 

machine with on-line monitoring.   

This work develops a model-based system for on-line condition monitoring of the 

hydraulic system of an industrial automated fish processing machine, using Unscented 

Kalman Filter (UKF).  A requirement in implementing this technique is to develop an 

accurate mathematical model of the monitored system. First, a state-space model is 

developed and validated against simulated results.  The state variables of the model are 

displacement and velocity of the spool valve, pressures of the two chambers of the 

hydraulic cylinder, and displacement and velocity of the hydraulic actuator. The 

unknown parameters of the state-space model are identified through direct measurement 

and experimentation. Results show that under normal operating conditions, the response 

of the machine satisfactorily matches that of the state-space model.   

The developed UKF is implemented in the machine and four common hydraulic faults 

are artificially introduced.  These faults are external leakage in the two chambers of the 

cylinder; internal leakage; and dry friction build up on the surface of the two moving 

plates (cutter carriage).  Low, medium and high levels of leakage are introduced to the 

system.  The criteria that are considered in fault diagnosing are residual moving average 
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of the errors, chamber pressures, and actuator characteristics.  Experimental studies 

indicate that the developed scheme can correctly estimate the current state of the system 

in real time, with an acceptable residual of moving average error (MAE), thereby 

validating it. 
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1 Chapter 1  

Introduction 

 

1.1 Preliminary Remarks 

Hydraulic actuator systems are used in industrial machines and tools, which use 

fluid power to carry out mechanical tasks. Heavy equipment is a common example 

category.  In this type of machinery, high pressure hydraulic fluid is transmitted 

throughout the machine to various hydraulic motors and hydraulic cylinders.  The fluid 

may be controlled manually or automatically by control valves and distributed through 

hoses and tubes.  The popularity of hydraulic machinery may be attributed to the high 

levels of power that can be transferred through small tubes and flexible hoses, the high 

power density, low risk of hazards (compared to potential electric fire), and the ability of 

multiple and small-size actuators that can make use of a common power source.   The 

hydraulic fluid must flow into the actuator or hydraulic motor in a controlled manner and 

then return to a reservoir.  The fluid is then filtered, pressurized through a pump, and 

used again.  Corresponding to the path taken by the hydraulic fluid there is a hydraulic 

circuit, analogous to an electric circuit through which current flows, of which there are 

several types.  Open center circuits use pumps which supply a continuous flow.  The flow 

is returned to the reservoir tank through the open center of the control valve; that is, when 

the control valve is centered, it provides an open return path to the tank and the fluid is 

not pumped to a high pressure.  On the other hand, if the control valve is actuated, it 
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routes fluid to and from the actuator and the tank.  The fluid pressure will increase to 

meet any resistance, since the pump has a constant output.  If the pressure rises too high, 

the fluid returns to the tank through a pressure relief valve.  Multiple control valves may 

be stacked in series.  This type of circuit can use inexpensive, constant-displacement 

pumps.  Closed center circuits supply full pressure to the control valves, regardless of 

whether any valves are actuated or not.  The pumps vary their flow rate, pumping very 

little hydraulic fluid until the operator actuates a valve.  The valve spool therefore does 

not need an open center return path to the tank.  Multiple valves can be connected in a 

parallel where the system pressure is equal for all valves.   

The increasing amount of power available to man that requires control and the 

high demand of modern control systems have focused attention on the theory, design and 

application of control systems.  Hydraulics, the science of liquid flow, is an old 

engineering discipline which has commanded new interest in recent years, especially in 

the area of hydraulic control.  There are many unique features of hydraulic systems 

compared to other type of systems.  As mentioned in [1] and [7], some of the relatively 

important advantages of such systems are as follows: 

1. Heat generated by internal losses is a basic limitation of any machine. 

Lubricants deteriorate, mechanical parts seize, and insulation breaks down as 

the temperature increases.  Hydraulic components are superior to others in this 

respect since the fluid carries away the heat generated to a convenient heat 

exchanger.  This feature permits smaller and lighter components.   

2. Hydraulic fluid also acts as a lubricant thereby prolonging the component life. 
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3. There is no phenomenon in hydraulic components comparable to the 

saturation and losses in magnetic materials of electrical machines.  The torque 

developed by an electric motor is proportional to the current and is limited by 

magnetic saturation.  The torque developed by hydraulic actuators (i.e., motor 

and pistons) is proportional to pressure difference and is limited only by safe 

stress levels.  Therefore, hydraulic actuators are able to generate relatively 

large torques for comparatively small devices. 

4. Hydraulic actuators have a higher speed of response enabling fast starts, stops 

and speed reversals.  Also Torque to inertia ratios is large with resulting high 

acceleration capability. 

5. Hydraulic systems have long operating lives even if employed in harsh 

environments. 

6. Open and closed loop control of hydraulic actuators is relatively simple using 

valves and pumps. 

7. The same fluid power source may be employed with distributed multiple 

actuator elements of low size (again with high power density). 

8. Concerns of electric hazards (compared to arcing in electric motors) are 

minimal.  

Although, there are a number of these advantages associated with hydraulic power 

systems, as mention in [1] and [7], there exist several disadvantages which tend to limit 

their use. They are as listed below: 

1. Hydraulic power is not as readily available as the electrical power.   

2. Small allowable tolerances results in high costs of hydraulic components. 
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3. The hydraulic fluid imposes an upper temperature limit. 

4. Hydraulic systems can become messy because it is difficult to maintain a 

system free from leaks and there is always the possibility of complete loss of 

fluid if a rupture in the system occurs. 

5. Hydraulic systems are nonlinear. 

6. They can be more expensive than comparable electric actuators. 

7. Hydraulic power systems can be more noisy than electric actuators.  

As mentioned, despite of the hydraulic systems pros and cons compared to other 

power sources, hydraulic systems have many unique features. In particular they are more 

compact and can supply high levels of power, which can greatly improves the 

performance of a machine.  In addition, hydraulic actuator systems are unavoidable for 

jobs requiring high levels of power for mobilization.  They can be found in many mobile, 

airborne and stationary applications.  Due to the mentioned reasons, there has been an 

extensive research activity in this area [2]. 

 

1.2 Motivation 

The detection and isolation of faults and malfunctions in engineering systems is of 

great practical significance.  These systems encompass a variety of machinery including: 

1. Industrial production facilities; e.g., power plants, chemical plants, and oil 

refineries 

2. Transportation vehicles; e.g., ships, automobiles, and airplanes,  

3. Household appliances; e.g., air conditioning equipment, refrigerators, and 

washing machines.  
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The early detection of fault occurrence is critical in avoiding product deterioration, 

performance degradation, major damage to the machinery itself, and damage to human 

health or even loss of life.  The quick and correct diagnosis of the faulty component 

facilitates the decisions on corrective actions or repairs. 

 As stated in [3], the traditional approaches to fault detection and diagnosis involve 

the limit checking of some variables or the application of redundant sensors.  More 

advanced methods rely on the spectral analysis of signals measured from the machinery 

or on the comparison of the actual plant behavior to what is expected under normal 

operating conditions, typically based on a mathematical model.  The latter approach 

includes methods which are more deterministic, such as observers, and those formulated 

more on a statistical basis, such as Kalman filter and parameter estimation.                   

The development of approaches for fault detection and diagnosis in automated 

systems such as hydraulic machinery has been an important focus area of researchers in 

engineering.  A successful performance of real-time fault detection and diagnosis in large 

and complex hydraulic systems is seldom achieved and reported.  The lack of an effective 

method for handling temporal data is seen as one of the key problem in this area [4].  

Thus the main objective of the present thesis is to develop, implement, and study a 

suitable model-based approach for detection and diagnosis of possible faults in a complex 

hydraulic system. Real time application with on-line system monitoring is treated. The 

industrial hydraulic manipulator chosen in the present research for experimental 

investigation of fault detection and isolation (FDI) is a planar electro- hydraulic actuation 

system which is an integral part of an automated industrial fish processing machine. 
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1.3 Automated Industrial Fish Cutting Machine 

The traditional "Iron Butcher," which is commonly used in the fish-processing 

industry for head cutting of fish, is known to be somewhat inefficient and wasteful, and 

the resulting product quality may be unacceptable for high-end markets.  Fish processing 

involves head removal/cutting of fish at the position of the collarbone, with the objective 

of optimizing the quality and yield of the product. The challenges include, accurate 

positioning of cutter blades and smooth cutting of fish.  The assessment of the quality of 

processed fish is dependent on the skillful but subjective evaluation by experienced plant 

operators.  In recent years, the fish processing machine has been automated with respect 

to the machine operation, quality control, and on-line monitoring of the state of the 

machine.  Some of the components of the automated Iron Butcher, which is available in 

our laboratory, are as follows: 

1. Hydraulic actuators for cutter positioning 

2. Pneumatic actuator for fish cutting 

3. Various electronic sensors (accelerometers, position sensors, pressure sensors, 

etc.) 

4. Fish conveyor with the associated transmission, drive system, and induction 

motor 

The main purpose of this machine is to automate the fish cutting process and also 

to reduce the meat wastage by guiding the cutter to the optimum location for cutting.  As 

shown in Figure 1.1, first the fish is placed on the conveyer system, which moves the fish 

into the cutting zone.  A camera takes an image of the fish, and by processing the image, 

the control computer identifies the location of the gill and the best location for the cut. 
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This information is then sent to the controllers of the two axes of the positioning system. 

On receiving these drive commands at the servo valves the operation of the hydraulic 

manipulator begins, thereby positioning the carriage of the cutting blade to the desired 

coordinates. The cutting table (cutter carriage) is simply a Cartesian feed system 

empowered by two hydraulic actuators which can move independently in orthogonal X 

and Y directions. Once the table is accurately positioned, a pneumatic cutter with axial 

vertical motion, which gets its power from an air compressor, performs the cut.  After the 

separation, the head slides down the ramp and the rest of the body exits the machine from 

the end of conveyor for further processing. A second camera obtains an image of the 

processed fish for further analysis to determine the cutting quality. 

 

Figure 1.1: Schematic Drawing of the “Iron Butcher” Machine 

 

As shown in Figure 1.2, to control the X motion, a position transducer is mounted 

at the head of the hydraulic cylinder.  Two gage-pressure transducers are installed on the 
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head and rod sides of the cylinder to measure the fluid pressures P1 and P2 in the 

corresponding chambers. 

P-15 0

M

Flow Control Servo-Valve

Position 

Transducer

P1
P2 Pressure 

Transducers

Q1
Q2

Cutter Blade 

and Carriage 

M

Lubricated Surface Hydraulic Cylinder

 

Figure 1.2: The Hydraulic-Actuation Positioning System in One Axis 

 

The industrial sector is in a quest for becoming more productive, efficient, and 

cost effective through the replacement of human workers with enhanced technology 

including automation and machine control.  In the present example, using on-line 

monitoring of the “Iran Butcher”, it is expected to predict impending faults and diagnose 

them.  This method can add to the cost effectiveness of the machine because it can 

prevent the costly and time consuming approach of going through all the machine parts 

using traditional machine health checks and visual inspection, for possible repair or 

replacement. 

Another main component of the Iron Butcher is the pneumatic actuator. 

Pneumatic actuators are widely employed in position and speed control applications 

where cheap, clean, simple and safe operating conditions are required.  In recent years 

low cost pneumatic components have become available in the market which has made it 

possible to adopt more sophisticated control strategies in pneumatic system control.  

x 
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Figure 1.3 shows the cutter pneumatic system that is employed in our industrial fish 

cutting machine. 

 

 

Figure 1.3: Pneumatic Cutter System. 

 

1.4 Hydraulic Power System 

There appears to be a resurgence of interest within the universities and hydraulic 

industries regarding fluid power control systems [5].  Modern hydraulic fluid systems are 

developed in order to better control and accurately transmit fluid power.  Components 

such as hydraulic actuators, servo valves, sensors, and controllers are essential for these 

systems.  The main components of a hydraulic servo system are outlined next.  
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Actuator 

 Actuator is the mechanism that is responsible for delivering force and motion to 

the external load of a given application. In the present machine (Iron Butcher) it is the 

cutting table.  The Iron Butcher uses linear actuators, which are hydraulic cylinders, to 

generate the translational motion of the cutting table.  A hydraulic cylinder has a piston 

sliding through it.  The two sides of the piston are alternately pressurized and de-

pressurized to achieve precisely controlled linear displacement of the piston and the load 

connected to it.  A familiar example of a manually operated hydraulic actuator is a 

hydraulic car jack.  Typically, a "hydraulic actuator" is controlled by a servo valve or a 

hydraulic pump. 

 

Hydraulic Control Valve 

Hydraulic control valves are used commonly within hydraulic control systems for 

accurate modulation and control of the entire system.  The valve provides the interface 

between the hydraulic power element (the pump) and the hydraulic output device 

(actuator).  This valve receives the feedback from the operator or the control source and 

adjusts the system output accordingly.  Commonly, the feedback signal is generated by 

taking the difference between the actual state of motion of the actuator (i.e., velocity or 

position) and the reference signal sent to the control valve.  Hydraulic control valves can 

be classified in a number of ways; however, they are mostly based on the number of flow 

lines connected to the valve.  For instance, a two-way valve has a single input and a 

single output.  A three-way valve has three flow lines given by a supply line, an output 

line and a return line back to the reservoir. 
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 Electrohydraulic Servo Valves       

 Electrohydraulic systems use low-power electrical signals for precisely 

controlling the movements of high-power hydraulic pistons and motors.  The interface 

between the electrical (control) equipment and the hydraulic (power) equipment is the so-

called electrohydraulic servo-valve [6].   These valves are used on systems which must 

respond both quickly and accurately.  Consider the position of an actuator in open-loop 

operation.  The position response steadily grows and displays an unstable behavior in the 

presence of a slightest disturbance.  Furthermore the speed of response must be good 

enough for proper performance.  Therefore, as mentioned before, it is essential to include 

feedback control into the system [7].  The servo valves are manufactured in different 

configurations which include single-stage, two-stage and three-stage models each of 

which consists of a spool valve that is used extensively in hydraulic servo systems.  The 

moving part is called the spool rod along with one or more expanded regions called lands.  

By applying an input displacement to the spool rod and using a torque motor, it regulates 

the flow rate.        

 

Pump 

A hydraulic pump is a pump that is used in hydraulic drive systems.  Hydraulic 

pumps can be hydrostatic or hydrodynamic.  Hydrostatic pumps are positive 

displacement pumps.  A positive displacement pump causes a fluid to move by trapping a 

fixed amount of it and then forcing (displacing) that trapped volume into a discharge 

pipe. The periodic fluid displacement results in a direct increase in pressure.  Hydrostatic 

pumps can be fixed displacement pumps, in which the displacement (flow through the 
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pump per rotation of the pump) cannot be adjusted or variable displacement pumps, 

which have a more complicated construction that allows the displacement to be adjusted. 

Hydrodynamic pumps for non-positive-displacement.  A non-positive-displacement 

pump produces a continuous flow. However, because it does not provide a positive 

internal seal against slippage, its output varies considerably as pressure varies. 

 

Additional Hydraulic Components 

In order to complete the hydraulic system, other components are required in 

addition to the ones discussed above. Examples of these components are sensors, 

hydraulic hoses and valves.  Each of these requires proper installation in the appropriate 

location in the hydraulic circuit for accurate measurement of the required data and for 

avoiding system malfunction.  As mentioned, some of these data are required for system 

control.  For instance, in a closed-loop hydraulic control system, sensors send required 

measurements to the controller using feedback, which generates input signals to the 

servo-valve system based on the received information and the existing system condition. 

Based on the application, different valves are employed to control the hydraulic 

flow, fluid pressure and the direction of flow in the circuit.  These valves are 

manufactured in different sizes based on their applications and the pressure of the 

hydraulic pump supplied to the hoses.   

To minimize losses in hydraulic systems it is important to reduce pressure losses 

in high power valves and outer components as much as possible.  In particular, long 

hydraulic hoses can have a major effect on the pressure drop of the system.  At the same 

time, depending on the circumstances, the choice of permanent or reusable hoses for the 
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replacement assemblies can have a considerable impact on the system cost. A comparison 

of reusable and permanent couplings should be based on cost and convenience [8]. 

 

1.5 Potential Faults in Hydraulic Systems 

Modern hydraulic systems have become highly sophisticated and increasingly 

complex, operating at much higher power and speed with greater accuracy.  They can be 

applied in many fields of modern engineering.  The failure of these systems can result in 

serious problems, however. When the system is out of order and stops operation, there 

will be loss in production and revenue.  A system may develop various types of faults and 

malfunctions which will need periodic and routine maintenance.  An older system may 

even need reconditioning.  In order to prevent operational losses, machinists should take 

up various maintenance and repair measures.  In a hydraulic system, detecting a fault 

alone is not enough.  Fault diagnosis is important because correcting the problem will 

depend on the diagnosis. A component malfunction can arise and, if ignored and left 

uncorrected, it can damage the entire system.  As an example, replacing a faulty pump 

with a new one may correct the problem but the new pump may also fail if the cause of 

the initial fault is not diagnosed and corrected.  This fault may not be obvious and more 

careful analysis and study of the system as a whole may be needed to isolate the primary 

cause from the secondary effects.  It is mostly the technicians’ job to understand the 

overall behavior of the system.  A thorough knowledge of the hydraulic circuit diagram 

along with its control system will be important in the context of maintenance, trouble-

shooting, and reconditioning of the hydraulic oil system.   
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 Before going for repair or reconditioning of a hydraulic system, it is essential to 

know the type and nature of the faults commonly found in these systems.  According to 

Majumdar [8], the most common type of defects are as follows:  

• Reduced speed of travel of machine elements 

• Sharp noise in the system 

• Steep rise in the oil temperature 

• Non-uniform or jerky movement of the tables, carriage, especially at low feed 

rates 

• Slow response to control 

• Excessive leakage in the system 

• Excessive loss of system pressure 

• Cavitation of the pump 

• No supply or low supply from the pump 

• High rate of seal failure 

• High contamination level of the system media and poor oil life 

 

Figure 1.4 shows comparative failure rates of some of the common hydraulic elements 

listed above.  

 It should be noted that these faults may be caused by many interrelated factors.  

Once the causes are established, correcting action becomes easy during breakdown 

maintenance or system reconditioning. The decision to recondition a system will depend 

on the individual condition of the system components (subsystems), their interrelated 

behavioral patterns, and hydraulic performance of the system as a whole.      
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Figure 1.4: General Failure Rate of Common Hydraulic Elements 

 

As mentioned before, leakage is one of the common faults occurring in hydraulic 

systems.  Due to leakage in our hydraulic system, we may experience extensive drop in 

pressure, thereby reducing the moving force required to do the work.  Some other 

problems that we may experience include the reduced system efficiency, the cost of 

replacing the oil lost due to leakage, and machine component wear.  We may categorize 

the leakages into two classes: internal leakage and external leakage.   

While the achievements of technology are significant, we still have not fully 

resolved one of the most widespread hydraulic problems.  In 1987, Henke Russ [9] 

proposed that many leakage problems can be traced to improper installation and 

inadequate in-service monitoring.  Solutions to these problems lie at their source - in the 

area of adequate training of field and plant personnel and a more realistic attitude on the 
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part of operating management as to requirements for more satisfactory performance. In 

recognition of these deficiencies in 'practice' the fluid power industry has been moving in 

the direction of more leak-resistant products.  

In 2008, An and Sepehri [10] developed an experimental evaluation of a leakage 

fault detector in hydraulic actuator based on Extended Kalman Filtering (EKF).  

Identification of external leakage at either side of the actuator as well as the internal 

leakage between the two chambers was examined.  Their work was built upon their 

previous work reported in [11] and incorporated a significant improvement in that the 

new scheme was capable of detecting leakage faults for actuators that were also subject to 

unknown loading and/or significant friction.   

Werlefors and Medvedev [12] developed a nonlinear observer with static 

feedback for leakage detection in hydraulic servo systems. Two issues, namely fast 

dynamics reduction and elimination of multiple stationary points in the estimation error 

dynamics, were treated.  In their work it was shown that leakage detection performance 

was not degraded by the use of a reduced plant model, and that static feedback offered 

enough degrees of freedom to leave one and only one stable stationary point of the error 

dynamics, at the origin. 

Fang [13] and his colleagues introduced a method based on back-propagation 

(BP) neural-networks for the leakage fault diagnosis of a hydraulic system.  This method 

analyses the transient procedure of the pressure of the hydraulic system.  After adding 

noise on the learning patterns of the BP neural networks, the anti-noise ability was 

improved over what is possible with conventional BP networks.  They concluded that this 

method of leakage fault diagnosis was more reliable, widely applicable, and less costly 
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than the traditional method.  In addition to this work, in 2006 El-Betar [14] and 

colleagues proposed another idea of using Artificial Neural Networks (ANN) which dealt 

with the problem of fault detection, isolation and identification of a hydraulic power 

system.  They employed a feed-forward neural network to diagnose actuator internal 

leakage and valve spool blockage.  They trained their ANN with sufficient data of the 

faults obtained from the system.  They have concluded that the trained network had the 

capability to detect and identify various levels of faults. 

 

1.6 Research Objectives 

As discussed in the previous sections, in the operation of hydraulic actuators,   we 

may encounter problems and faults due to factors such as wear in instruments and 

accessories wear, excess improper use of the equipment, and ignoring of on-schedule 

maintenance.  It is essential to identify, detect and deal with these potential faults before 

they occur as they can result in a major catastrophic failure in the system.  In order to 

achieve this, researchers have introduced many different techniques which include the 

use of sensor fusion and signal processing techniques, adaptive control, and 

implementing intelligent control systems that make the system autonomous.   

For the purpose of the present research, the main focus is on the existing 

industrial fish cutting machine. Specifically, the hydraulic actuator system, which is used 

to move the cutter table in the X and Y directions, is considered.  We expect to emulate 

hydraulic faults in the system and then detect and diagnose them in real time using the 

model-based approach developed in the thesis. Specifically, Unscented Kalman Filter 

(UKF) technique is employed. The UKF uses a deterministic sampling approach which 
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estimates the states recursively.  The state distribution is approximated and represented 

using a minimal set of carefully chosen sample points.  This means it only requires the 

measurement from the current state and the estimated state from the previous time step to 

compute the current state. 

There are many common faults in hydraulic systems.  Due to project constraints, 

only the following four faults are studied in this thesis: 

1. Internal leakage of the actuator 

2. External leakage of the actuator through the connecting hose of chamber 1 

3. External leakage of the actuator through the connecting hose of chamber 2 

4. Effect of dry friction build-up on the moving table of the fish cutting machine 

It is hoped that through the present work, we are able to develop a feasible and robust 

method for on-line monitoring and fault diagnosis of the existing industrial machine.  The 

subsequent chapters will present development, implementation, and evaluation of the 

approach.       

 

1.7 Organization of the Thesis    

The organization of the thesis is given now. In Chapter 1 a typical industrial 

machine, which is studied in the present research, and its application have been 

introduced.  The hydraulic system which is one of the main components of the machine is 

brought into the forefront and its essential components are discussed.  Some of the 

common faults that occur in hydraulic systems are also introduced. Finally, the main 

objectives of the current research are outlined. 
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In Chapter 2, the experimental setup and its components are thoroughly 

introduces.  The mathematical state-space model is developed, and discussed.  Unknown 

model parameters are indicated and an appropriate method for finding them is proposed.  

At the end, a set of tests are carried out to validate the developed sate-space model.  

In Chapter 3, general approaches of fault diagnosis are introduced and common 

roadmaps to these approaches are discussed.  A literature surveys is done to justify the 

methodology chosen in for the project.  Kalman filtering in general and Unscented 

Kalman filter in particular are discussed.  The steps of applying the fault monitoring 

scheme to the hydraulic test rig in our laboratory is developed.  Results are shown to 

confirm the satisfactory operation of the developed technique.          

In Chapter 4, the developed condition monitoring technique is implemented in the 

industrial machine and the employed faults are investigated.  Results for on-line 

monitoring and state estimation in real time are shown, followed by a discussion on the 

related fault diagnosis.  

In Chapter 5, conclusions are drawn based on both simulated data and 

experimental results of the present work.  Recommendations are made on possible future 

work for improvement of the developed technique. 
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2 Chapter 2  

Experimental Set-up and Dynamic Modeling  

 

2.1 Introduction 

This chapter describes the experimental set-up using which the implementation 

and experimentation of the present research are carried out.  As indicated in the previous 

chapter, an industrial fish cutting machine, which is available in our laboratory (Industrial 

Automation Laboratory), is used in our work. This is an automated machine which has 

developed for the fish processing industry for the operation of head removal of fish.  It 

consists of many components. The main focus in this work is the hydraulic system which 

is used to position the cutting table (cutter carriage) for accurately positioning the fish 

head for the cutting operation so as to minimize the meat waste and also improve the 

cutting quality. The main components of this hydraulic system are the servo-valves, 

hydraulic pump, hydraulic actuators, needle valves, and hydraulic filter.  A mathematical 

model (dynamic model) of the system is developed after carefully studying each of these 

components.  Control and Graphical User Interface (GUI) software module has been 

developed, using LabView
TM

, to control and interact with the system and to analyze the 

monitored data received from the sensors of the system. Data from on-line system 

monitoring is analyzed to perform fault detection and diagnosis.  

In section 2.2, the experimental test rig and the components of its hydraulic 

system are indicated and system operation is explained.   
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In section 2.3, the state-space model of the experimental system is derived.  The 

unknown parameters of the model are introduced and the method of parameter estimation 

is explained. 

In Section 2.4, the actual data obtained from the experimental setup is compared 

with that of the results from simulations in order to verify and validate the developed 

state-space model. 

2.2 Experimental Set-up 

A schematic diagram of the experimental set-up (Iron Butcher) is shown in Figure 

2.1.  The cutter module of the machine is divided into two subsystems: hydraulic and 

pneumatic subsystems.  The main focus For the purpose of the present project is the 

hydraulic subsystem of the machine. 

The hydraulic subsystem consists of two hydraulic actuators each working 

independently to adjust the cutter table in two orthogonal directions on a horizontal plane 

(X and Y).  The two hydraulic actuators are able to correctly position the approaching fish 

and stabilize it in place during the cutting operation.  These actuators are powered by a 

hydraulic pump which supplies a maximum supply pressure of 3000 psi. A hydraulic 

actuator has an asymmetric cylinder with effective difference in cross-sectional area.  

Accordingly, a cylinder consists of two chambers: chamber 1 and chamber 2, which are 

connected to a four-way five-ported solenoid servo valve with the following 

specifications: 

• System pressure: 2.1 bar = 30.4 psi 

• Voltage: 48 Vdc, 5.3 W 

• Frequency: 60 Hz at 100-120 V or 50 Hz at 200-240V 
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Figure 2.1: Schematic Diagram of the Basic Planar Manipulator 

 

 

 For each cylinder-valve unit here are three sensors, which are used to measure the 

required states. Specifically, two pressure transducers and a Temposonics Linear 

Displacement Transducer (LDT) are employed.  The pressure transducers are installed on 

each side of the cylinder actuator to measure the pressures in the chambers 1 and 2.  The 

linear displacement transducer (LDT) is installed in the cylinder to measure the actuator 

(piston) displacement. The signals from these sensors are transmitted to a PC via a data 

acquisition (DAQ) board for further analysis. A 2-conductor 26-AWG gauge microphone 
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stereo cable is used to connect all the sensors to the BNC DAQ board.  For this cable, the 

maximum frequency for 100% skin depth for solid conductor copper is 107 kHz.  In 

particular, the band width of the cable is 107 kHz when it carries approximately 0.361 

Amps.  A complete monitoring diagram of the working system is shown in Figure 2.2 

and a system control block diagram as given in Figure 2.3.  

 

Figure 2.2 : Diagram of Monitoring Components  

 

 

 

Figure 2.3: Control System Block Diagram 
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1) Data Acquisition Board 

Supplied by Omega, the data acquisition system is used to collect information to 

analyze the state of the system. As technology has progressed, DAQ units have been 

simplified and made more accurate, versatile, and reliable. Some useful terminology in 

data acquisition is given below: 

• Analog-to-digital converter (A/D) 

An electronic device that converts analog signals to an equivalent digital form. 

The analog-to-digital converter is the heart of a data acquisition system. 

• Digital-to-Analog Converter (D/A) 

An electronic component which produces an analog output signal corresponding 

to an incoming stream of digital data.  

• Differential Input 

Refers to the way a signal is wired, with respect to another signal or condition 

(reference) in a data acquisition device.  Differential inputs have a unique high 

and unique low connection for each channel.  Data acquisition devices have either 

single-ended or differential inputs, and many devices support both configurations.  

• General Purpose Interface Bus (GPIB) 

Synonymous with HPIB (for Hewlett-Packard), this is the standard bus used for 

integrating electronic instruments with a computer.  This is also called IEEE 488 

with reference to ANSI/IEEE standards.  
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• Resolution  

The smallest signal increment that can be detected by data acquisition system. 

Resolution can be expressed in bits, in proportions, or as a percentage of the full 

scale.  For example, a system with 12-bit resolution has a corresponding 

resolution of one part in 4,096 or 0.0244 % of full scale. 

• Sample Rate  

This is the speed at which a data acquisition system collects data.  The speed is 

normally expressed in samples per second (S/s).  For multi-channel data 

acquisition devices the sample rate is typically given as the speed of the analog-

to-digital converter (A/D).  To obtain individual channel sample rate, it is 

necessary to divide the speed of the A/D by the number of channels being 

sampled. 

The Universal Serial Bus (USB) is a new standard for connecting PCs to 

peripheral devices such as printers, monitors, modems and data acquisition devices.  USB 

offers several advantages over conventional serial and parallel connections. These 

include higher bandwidth (up to 12 Mbits/s) and the ability to provide power to a 

peripheral device.  USB is ideal for data acquisition applications.  Since USB connections 

supply power, only one cable is required to link the data acquisition device to the 

computer (PC), which most likely has at least one USB port.  A National Instrument (NI) 

USB-6229 BNC with the following specifications is chosen for the present project: 

• 16 differential BNC analog inputs (16-bit, 250 kS/s)  
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• 4 BNC analog outputs (16-bit, 833 kS/s), 48 digital I/O (32 clocked, 8 BNC), 

and 32-bit counters  

• NI Signal Streaming for sustained high-speed data streams over USB; OEM 

version available  

• Compatible with LabVIEW, ANSI C/C++, C#, Visual Basic .NET and Visual 

Basic 6.0  

• NI-DAQmx driver software and NI LabVIEW SignalExpress LE interactive 

data-logging software 

The National Instruments USB-6229 BNC is a USB high-performance M Series 

multifunction data acquisition (DAQ) module optimized for high accuracy at fast 

sampling rates.  The NI USB-6229 BNC is suitable for applications such as data-logging 

and bench-top sensor measurements.  The National Instruments USB-6229 BNC is 

designed for mobile or space-constrained applications. Plug-and-play installation reduces 

the configuration and setup time, while direct screw-terminal connectivity helps keep 

costs down and simplifies the signal connections.  This module also features the new NI 

Signal Streaming technology which allows for DMA-like bidirectional high-speed 

streaming of data across the USB bus.  NI-DAQmx driver and measurement services 

software provides easy-to-use configuration and programming interfaces with features 

such as DAQ Assistant to help reduce development time. 

2) Pressure Transducer 

 A pressure sensor measures fluid pressure, expressed in force per unit area.  

Typically, the sensor output is an electrical signal, but optical, visual, and auditory 
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signals are available as well.   Pressure sensors can also be used to indirectly measure 

other variables such as fluid flow rate, liquid level, and altitude.  Pressure sensors are also 

variously called pressure transducers, pressure transmitters, and pressure indicators. 

Pressure sensors can be classified with respect to the pressure ranges they measure, 

temperature ranges of operation, and most importantly the type of pressure they measure.  

In terms of the pressure type, pressure sensors can be divided into five categories: 

• Absolute pressure sensor  

This sensor measures the pressure relative to the perfect vacuum pressure (0 psi or 

no pressure).  Atmospheric pressure is 101.325 kPa (14.7 psi) at sea level with 

reference to vacuum. 

• Gauge pressure sensor  

This sensor is used in different applications because it can be calibrated to 

measure the pressure relative to a given atmospheric pressure at a given location. 

A tire pressure gauge is an example of gauge pressure indication.  When the tire 

pressure gauge reads 0 psi, there is really 14.7 psi (atmospheric pressure) in the 

tire. 

A SENSOTEC pressure transducer (model LV/2359-12) is chosen and installed 

on our experimental machine to measure the pressure of the hydraulic fluid at different 

stages.  It has an amplified DC output (voltage) with pressure capacity of 3000 psig, 

accuracy of 0.5% and output voltage range of 0-5VDC.  Its pressure port is 1/4 – 18NPT 

female with a supply voltage of ±15 VDC.  This pressure transducer is an all-welded 

stainless steel sensor built for rugged industrial applications that require high accuracy 

and measurement stability. The gage Model LV/2359-12 is a strain gage based 
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transducer. This design references the primary pressure sensing diaphragm to the 

atmosphere, and provides a stable zero regardless of the transducer environment.  These 

sensors connect to the BNC DAQ board using 2-conductor shielded microphone stereo 

cable (#21188). 

3) Linear Displacement Transducer (LDT) 

 A linear actuator is a device that develops force and motion, from an available 

energy source, in a rectilinear manner, as opposed to rotational (angular) motion and 

torque like in an electric motor.  There are various methods of achieving this linear 

motion.  In hydraulic actuators or hydraulic cylinders they typically involve a hollow 

cylinder having a piston within it.  The two sides of the piston are alternately pressurized 

and de-pressurized to achieve a controlled linear displacement of the piston and in turn 

the load connected to the piston.  The linear displacement exists only along the axis of the 

piston/cylinder.  In the present project, a Temposonics II Linear Displacement 

Transducer (LDT) model TTRCU0020 with a stroke of 2.0 inches (0.05 meter) is 

installed on the hydraulic actuator.  The origin of actuator cylinder is located at the point 

where the ram is fully retracted.  It draws a maximum current of 100 mA and a minimum 

of 25 mA for the required voltage of ±15 Vdc.  The output range of the sensor is from -15 

to +15 V.  It can operate at pressures up to 3000 psi.   

The Temposonics II Linear Displacement Transducer senses the position of an 

external magnet to measure displacement with a high degree of resolution. The system 

measures the time interval between an interrogation pulse and a return pulse.  As shown 

in Figure 2.4, the interrogation pulse travels the length of the transducer by a conducting 

wire threaded through the hollow waveguide.  The waveguide is spring loaded within the 
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transducer rod and exhibits the physical property of magnetostriction.  When the 

magnetic field of the interrogation pulse interacts with the stationary magnetic field of the 

external magnet, a torsional strain pulse is produced.  This strain pulse travels in both 

directions, away from the magnet and at the end of the rod, the strain pulse is damped.  

At the head of the transducer, two magnetically coupled sensing coils are attached to 

strain sensitive tapes.  The tapes translate the strain pulse through coils to an electrical 

"return pulse."  The coil voltage is then amplified in the head electronics before it is sent 

to a measuring device as the conditioned "return pulse." 

 

Figure 2.4: Waveguide Interaction 

 

2.3 Potential Faults Implementation 

As mentioned in section 1.6 and illustrated in Figure 2.5, internal and external 

leakages as well as friction build-up on the sliding surface of the cutter table are the main 

faults that are studied in this research.  The friction build-up acts as an external force 
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which restrains the actuator movement (in the y-direction, in the present exercise) and 

thus can be considered as an external force. 

 

Figure 2.5: Schematic Diagram of the Potential Faults in the Hydraulic Actuator 

 Under normal operating conditions, the hydraulic flows q1 and q2 entering 

chamber 1 and chamber 2, respectively.  They are regulated by adjusting the input current 

to the servo-valve.  However, under some conditions, due to ware, rapture or insufficient 

lubrication, hydraulic faults will occur.  In external leakage, the hydraulic hosing can 

undergo fatigue or rapture which will result in loss of hydraulic fluids. Then less flow 

will reach the chambers and as a result the chamber pressure will drop as well. In the case 

of internal leakage, due to the wear and tear of piston material or sealing defects, the 

hydraulic fluid escapes from one chamber into the other.  As in external leakages, this 

defect causes a drop in chamber pressure, thereby reducing the driving force of the 

actuator. 
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 In the present work, needle valves and hydraulic hosing are used to implement 

specific faults in the system, as shown in Figure 2.6. 

 

Figure 2.6: Experimental Hydraulic Setup with Working Sensors 

 

Three needle valves are used in total to emulate the internal and external leakages.  One 

valve is required to connect the two chambers of the cylinder for emulating an internal 

leakage.  The other two valves are used to redirect the hydraulic oil back to the tank 

before it could enter the two chambers.  The required pressure drop in each chamber is 

achieved and the external leakage in chambers one and two is emulated I this manner.  

The severity of the leakage in the system can be decided by simply adjusting the knob of 

each of the needle valves.  For the purpose of this study, three conditions of leakage: low, 

medium (moderate), and high are considered.  For emulating the fourth type of fault in 

the system, the lubrication of the moving table is removed and dried in order to restrict 
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and slow down the table movement by creating more friction on the sliding surface of the 

table.  This force resists the piston displacement during both retraction and extension. 

As shown in Figure 2.3, a closed loop controller is used to regulate the behavior 

of the hydraulic system.  After closing all the needle valves, the set-up is excited with a 

sinusoidal reference signal in order to study the performance of the system.  A low 

frequency reference signal of ( )tr   4.0sin0125.0025.0 π+=  m is applied in the present 

research for a period of 30 seconds.  A sampling time of 50 ms is chosen for sensor 

measurements, considering the limits on the data computation and the processing time 

required by the computer and the hardware.  As shown in Figure 2.7, parts (a) and (b), 

there is about  
4

π   phase difference and 0.004 meter (10%) amplitude difference 

between the actuator displacement and the reference signal.  Additionally, in parts (c) and 

(d), it is observed that the pressure in chamber 2 is higher than that of chamber 1 with a 

difference of about 2 MPa.  This difference in pressure is due to the difference in the 

effective areas of the chambers.  In other words, since the hydraulic cylinder is 

asymmetric and the reference signal is symmetric around the origin, chamber 2 tolerates 

higher pressure due to the smaller effective area.   
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Figure 2.7: System Characteristics – (a) Actuator Referrence Signal, (b) Actuator 

Displacement, (c) Pressure in Chamber 1, (d) Pressure in Chamber 2 
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2.4 System Modeling 

2.4.1 Governing Equations 

Knowing the system behavior and knowledge of the fundamental laws of physics 

is essential for correctly describing the system dynamics as presented in [1] and [7].  This 

modeling will take into account the nonlinear nature of the actuator dynamics.  There are 

two types of common nonlinearity exist in the hydraulic servo-valve systems, as given by 

the basic flow equation through an orifice and the flow forces on the valve spools [15]. 

What causes a change in the position of the piston is the displacement of the valve 

spool from the null position, resulting in a pressure difference across the single-rod 

hydraulic actuator.  This creates a force that is applied to the external load by the actuator 

and can be expressed in the form: 

ffxMAPAPF +=−=∑ && 2211                                    (2.4-1) 

Where: 

21, pp : Pressures in chamber 1 and chamber 2 

21 , AA : Effective piston areas of chamber 1 and chamber 2 

M : Equivalent moving mass in Y direction 

ff : Opposing frictional force of the actuator 

x : Piston displacement in Y Direction 

Hydraulic fluid flows from the servo-valve to the head-side and the rod-side of 

the cylinder (chamber 1 and chamber 2) and it is a function of both the square root of the 

cylinder pressure difference across the port, and the spool valve displacement.  The 
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orifice area depends on the valve geometry and changes linearly with the valve stroke.  

The rate of change of orifice area with stroke is called the “opening” or “area gradient” 

of the valve.  By applying a linear orifice area gradient, the flow equations of the servo-

valve are obtained as follows: 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

0
2

2

0
2

2

222

211

222

111

<

−









−=

−









−−=

≥

−









−=

−









−−=

v

rrvorificed

ssvorificed

v

ssvorificed

rrvorificed

x

PpsignPpxACQ

pPsignpPxACQ

x

pPsignpPxACQ

PpsignPpxACQ

ρ

ρ

ρ

ρ

  (2.4-2) 

 

Where: 

sr PP , : Return pressure and supply pressure 

1Q , 2Q : Fluid volume flow rates to chamber 1 and chamber 2 

21, pp : Pressures in chamber 1 and chamber 2 

vx : Valve spool displacement 

ρ : Hydraulic oil density 

dC : Orifice coefficient of discharge 

orificeA : Orifice area gradient 

Furthermore, using continuity equations and assuming compressibility of the 

hydraulic fluid, we can obtain a relationship between chamber pressure, their flows and 

the piston velocity.  The flows of the chambers may be expressed as: 
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Where: 

x& : Actuator velocity 

L : Maximum piston displacement 

hV : Volume of the fluid inside a hose that connects the servo-valve to the actuator 

β : Effective bulk modulus of the fluid 

21, pp : Pressures in chamber 1 and chamber 2 

21 , AA : Effective piston areas of chamber 1 and chamber 2 

 Equations (2.4-2) and (2.4-3) are combined to eliminate the flow parameters, 

resulting in the following equations: 
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 Modeling of dynamic systems with stick-slip friction phenomenon has been the 

subject of nonlinear dynamics as considered by numerous researchers in the field of 

hydraulic systems [16-20].  Due to the complexity of nonlinear friction and difficulty in 

its modeling, researchers have come up with approximated and semi empirical 
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expressions to represent friction in dynamic modeling [2].  Friction is usually modeled as 

a function of velocity, and in particular sign of the velocity (i.e., direction of motion).  

Cylinders in hydraulic actuators need to be sealed properly due to the existence of high 

pressures in its chambers.  It is needed as well to minimize the friction between the seals 

and the sliding components.  Due to the significant effect of friction on the dynamics of a 

system, in 1985 Karnopp [21] proposed a stick-slip friction model in which a 

straightforward method for representing and simulating friction effects is presented.  True 

zero velocity sticking was also represented without equation reformulation or the 

introduction of numerical stiffness problems.  Later in 1996, Laval [22] proposed a 

similar method which improved Karnopp’s model for friction inside a hydraulic cylinder. 

Friction is particularly noticeable at low velocities, and then smoothly varies with the 

piston velocity.  This friction force combines two major effects: Coulomb friction and 

stiction, due to seals, bearings and the effect of oil viscosity.  Estimating theses 

parameters is not straightforward because of the existing nonlinearities in the 

components.  To estimate these friction parameters simultaneously, the following 

expression was proposed by Laval [22]: 
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Where: 

 stf : Static friction 

 slf : Slip friction 

 bC : Lubrication coefficient 

 d : Effective damping ratio 
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 To express the position of the flow controlling valve as a function of the drawn 

current, the following quadratic equation can be written:  

vnvmnvsp xxdxuK
22 ωω ++= &&&      (2.4-7) 

Where: 

spK : Spool valve position variable 

nω : Natural frequency of the valve 

u : Valve input current 

md : Damping ratio 

 

In order to use this dynamic model in our study, the system parameters must be 

known either by direct measurement or some previously known data specifications 

provided by the manufacturers.  However, sometimes due to difficulties associated with 

unspecified data and information, none of the above methods can be used and some 

alternative methods must be considered.  For the present research, experiments are 

implemented to determine these parameters through system states.           

Friction parameters need a series of experiments for their determination.  To 

approximate the static friction stf , assuming that the set-up is stationary and the initial 

acceleration is ignored at start, the input current to the system is increased slowly until 

the actuator starts to move.  At that instance, the required force to move the actuator is 

equivalent to the static force of friction.  For the purpose of accuracy and minimizing the 

experimental errors, the experiment is repeated in three different locations along the 

cylinder for both extension and retraction.  The average value for the total calculated 
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static force for each trial is considered to represent the estimated static friction force, 

which is 369 N. 

To approximate the slip friction parameter slf , the actuator is run at several 

velocities with reasonably good precision, assuming that there is no acceleration or 

deceleration during these runs (except at start and stop).  As shown in Figure 2.8, the 

actuator force undergoes some change for the first few seconds until it reaches the 

velocity of 0.05 m/s. For the velocity above this point, the actuator force for both 

extension and retraction directions stays constant and steady throughout the runs and it 

converges to a value of 285 N and 271 N respectively. It is also observed that the average 

velocity of 0.07 m/s is reached by the actuator. In order to estimate the slip friction 

parameter from the analysis, the average steady value between the extension and the 

retraction processes is taken, which is 278 N. 

Besides the slip and static friction parameters in the friction dynamic equation 

2.4-6, there are two other parameters that need to be determined: lubrication coefficient 

( )bC  and effective damping ratio ( )d .  In order to estimate these two parameters, the 

friction equation is plotted for different values of  and 
b

C d  and fitted to the experimental 

model plotted in Figure 2.8, in a trial and error approach.   Using the best fitted curve, the 

best values for these state-space model parameters are chosen and are as follows: 

58 s/m and 127 N.s/m
b

C d= = . 
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Figure 2.8: Slip Friction Experimental Result 

 

As mentioned before, some parameters are provided by the manufacturers, some 

are obtained by experimentation, and some by parameter toning methods.  Table 2.1 

gives all the required parameters of the state-space model. 
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Table 2.1: Dynamic Parameters of the Hydraulic System 

23

1 10144.1 mA −×=  N 369=stf  35 m 1050.8 −×=hV  

23

2 10633.0 mA −×=  N 278=slf  mAorifice /m  04.0 2=  

m 0508.0=L  s/m 58=
b

C  Pa 1090.8 8×=β  

N.s/m 127=d  s/m 1080.3 3−×=spK  3kg/m  857=ρ  

kgM Y  7.55=  rad/s 126=nω  MPa  7.20=sP  

210604.3 −×=dC  2.1=md  0=rP  

001.0
0

=v    

 

 

2.4.2 State-Space Model 

A state space representation is a mathematical model of a physical system as a set 

of inputs and state variables related by first-order differential equations, and an algebraic 

output equation related to the state variables. To abstract from the number of inputs, 

outputs and states, the variables are expressed as vectors, and the differential and 

algebraic equations are written in the vector-matrix form.  Having expressed the 

appropriate system dynamic equations in the previous section, now they are converted 

into the state-space form, by introducing the following six state variables of the state 

vector: 

[ ] [ ]Tvv

T
xxPPxxxxxxxxx &&&

21654321 ==  (2.4-8) 

By definition and from the previous physical dynamic equations, the state 

equations of the hydraulic system are expressed next. First, by definition we have: 

21 xx =&      (2.4-9) 
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It should be mentioned that in numerical computations, generally a threshold such 

as 0v  is introduced for zero in the friction equations.  Keeping this in mind, using 

equations 2.4-1 and 2.4-9 to express x&& , the second state equation is obtained as: 

[ ]ffxAxA
M

x −−= 42312

1
&     (2.4-10) 

Where: 




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≤
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−

02

0222

||

                                                                  

     )()]1)(([ 2

vxf

vxdxxsignefff
f

st

xC

slstst

f

b

  (2.4-11) 

Equations 2.4-4 and 2.4-5 are sued to obtain the third and the fourth state 

equations, for 3x& and 4x& , as follows: 
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Similar to 2.4-9, by definition, we can write the fifth state equation, which expresses the 

spool valve displacement: 

65 xx =&      (2.4-13) 

By using equation 2.4-7 for
vx&& and in view of equation 2.4-13, we have the sixth state 

equation:   
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5

2

66 2 xxduKx nmnsp ωω −−=&                                       (2.4-14) 

This completes the state space model. 

2.4.3 Model Validation 

The developed mathematical model of the hydraulic system needs to be validated 

experimentally with respect to actual measurements from the experimental system in 

order validate the model under various operating conditions. This process also will 

determine the uncertainty parameter values.  According to literature [4, 10-11], the 

amount of acceptable threshold allowed for signals simulated from a model is about 10% 

of the measurement from the actual system.  This 10% error may be attributed to model 

uncertainty, for example incorporated in the disturbances of the Kalman filter algorithm 

(see Chapter 3). 

In the present research, for calculating the error signals between the model and 

actual measurement, the method of moving average error (MAE) is used, as suggested in 

[4, 10-11].  In this method, the average of a certain number of error data points, between 

simulation and measurement, is taken at every thk time step and then these average points 

are plotted against time. The following expression is used for calculating the MAE at 

each thk time step in this research: 

n

k

nkj

j

k

∑
−=

=

ε

ε     (2.4-15) 

Where: 

 
i

ε = Error data between measured and simulated values at j
th
 time step   

 n = Number of error data used in calculating the average 
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In this research, a value of 100 is assigned for n  based on the sampling time of 50 ms, 

and the reference signal frequency of 0.4π  as mentioned in section 2.3.  By choosing 

n as 100, MAE can be calculated for a complete motion which consists of the full 

retraction and full extension of the piston. 

The reason for implementing the MAE scheme in our analysis is to make the 

difference error data smoother as it minimizes the effect of unwanted added noise and 

transient errors in the data. 

2.4.4 Experimental Results 

It is essential to establish that the model is sufficiently accurate.  This means that 

the model can be satisfactorily represent the real system for experimentation and analysis 

purposes.  To validate the state space model developed in this research, a low frequency 

reference signal of ( )tr   4.0sin0125.0025.0 π+=  m is applied for both the experimental 

test rig and the sate space model in the simulations, during a period of 30 seconds.  

Figure 2.9, Figure 2.10, and Figure 2.11 show characteristic and MAE plots for chamber 

1, chamber 2, and the actuator displacement, respectively.  Figures 2.9-2.11 (a), illustrate 

the relative accuracy of the state space model with respect to the measured values.  

Figures 2.9-2.11 (b) show the moving average error between the simulated and the 

measured values for the corresponding state as each state converges to a reasonable and 

acceptable value.  By inspection, it can be observed that the pressures in chamber 1 and 

chamber 2 are about 2 MPa and 4 MPa with an MAE value of around 0.23 MPa and 0.24 

MPa, respectively.  The error value for actuator displacement has a steady-state value of 

approximately 2 mm as shown in Figure 2.11 (b). 



 45 

0 5 10 15 20 25 30
0

2

4

P
re

ss
u

re
 (

M
P

a
)

0 5 10 15 20 25 30
0

0.5

Time (sec)

M
A

E
 (

M
P

a
)

X: 29.97

Y: 0.2355

Measured

Simulated

(b)

(a)

 

Figure 2.9: (a) Characteristic Plots for Simulated versus Measured Pressure in Chamber 

1, (b) Plot of MAE between Simulated and Measured Pressures 
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Figure 2.10: (a) Characteristic Plots for Simulated versus Measured Pressure in Chamber 

2, (b) Plot of MAE between Simulated and Measured Pressures 
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Figure 2.11: (a) Characteristic Plots of Actuator Displacement- Simulated and Measured 

Results, (b) Plot of MAE between Simulated and Measured Results 

 

As mentioned in the previous sections, the target of model validation is that the 

MAE value of the signals from the model stays within 10% of the measured ones.  From 

the MAE curves it is evident that all the simulated signals have converged to satisfactory 

values as needed. 

 

2.4.5 Frequency Range 

In this part of experimentation, a sinusoidal time varying frequency with a 

constant-amplitude position reference signal of 















++= t

t
r   

4
13.0sin0125.0025.0  is 

applied to both the state-space model and the actual hydraulic test-rig.  The differences in 

signals between the measured and simulated results are shown in Figures 2.12 to 2.14. 
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Figure 2.12:  Error in Chamber 1 Pressure between Measured and Simulated Signals 

 

 

 

Figure 2.13: Error in Chamber 2 Pressure between Measured and Simulated Signals 
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Figure 2.14: Error in Displacement between Measured and Simulated Signals 

 

 For the hydraulic system under study in the present research, the typical ranges of 

practical operating frequencies are between 0.05 Hz to 0.5 Hz.  As shown in the above 

figures, the signal errors have attained stable and constant amplitude and stayed within a 

satisfactory boundary.  This is due to the fact that as time (t) increases, the frequency 

increases and the amplitude of both state-space model and the measured signals decrease 

at the same rate.  As seen in these curves, in the first few seconds of the run, the actuator 

had to be brought to the midpoint and as the result there is an increase in the amplitude. 

However, as the actuator reaches the center point, the amplitude reduces to the desired 

and bounded value.  In this work, all experiments are carried out at the frequency of 0.2 

Hz. 
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2.4.6 Repeatability of Experiments 

In the present experimentation it is desired to have a constant operating condition 

(e.g., the same environment, fluid temperature, supply pressure, oil viscosity, instruments 

and equipment) throughout the process in every experiment. Failure to meet this 

requirement may make the obtained data unreliable non-comparable.  The temperature of 

the environment was measured to be about 17 C° and the operating supply pressure was 

around 20.7 MPa.  In order to illustrate these desired conditions, as an example, a curve is 

plotted for the repeatability of the pressure in chamber 1, as given in Figure 2.15. 
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Figure 2.15: Pressure Repeatability Data for Chamber 1 

 

 The test rig is run at three different times of the day (morning, noon and evening) 

and three sets of measurements are taken under the same operating conditions.  Visually 

it is verified that the data for all three trials are practically the same, following a similar 

trend and having almost the same magnitude and the time period. 



 50 

3 Chapter 3  

Implementation of UKF in Fault Monitoring Scheme 

 

3.1 Introduction 

The term “fault” in a system refers to an unwanted deviation of at least one 

feature of a system property from the acceptable, standard and usual condition [23].  This 

can leads to a “failure” which is a permanent disruption of a system’s ability to perform 

the required function under specific operating conditions. 

For the improvement of reliability, safety and efficiency, advanced methods of 

monitoring, fault-detection and fault diagnosis become increasingly important.  This 

holds especially for safety related processes like aircraft, trains, automobiles, power 

plants and chemical plants.  In some cases, such as in aircraft and vehicles, the control 

task, reliability and safety depend heavily on the correct functioning of all process parts 

such as actuators, sensors and related hardware.  Failure in such systems must be 

removed immediately to avoid catastrophic damages and possible loss of human life.   

Classical approaches of fault detection are limited to trend checking of some 

measurable output variables and thus, they do not give a deeper insight and usually do not 

allow a proper fault diagnosis.  With this simple method, typically the faults are detected 

with much delay and a detailed fault diagnosis not possible.  Methods of modern systems 

theory enable the systematic use of mathematical models of processes and signals, and 

methods of identification and estimation.  These advanced methods allow development of 

fault detection and diagnosis techniques [24]. 
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In this chapter, schemes of condition monitoring that are relevant to the current 

study are indicated in some detail.  Specifically, the Unscented Kalman Filtering (UKF) 

is investigated with respect to detecting and diagnosing faults in a hydraulic system.  The 

organization of the material in this chapter is as follows: in section 3.2 classifications of 

techniques in fault monitoring are discussed.  This is followed by explaining the Kalman 

filter algorithm for linear systems, in section 3.3.  Introduction of UKF and its 

applications in the present study are discussed in sections 3.4 and 3.5. 

 

3.2 General Techniques of Fault Monitoring 

Methods of fault diagnosis are usually categorized based on the usage of a priori 

knowledge—the relation between the failure and the observations.  For instance, in order 

to accurately design a controller, sufficient knowledge about the plant (e.g., accurate 

dynamic model). This may come from the physics and the fundamentals of the system, 

experience and experimentation.  Fault diagnosis schemes can be categorizes into two 

groups: model-based and signal-based schemes [25-26].  In a model-based scheme, the 

fault monitoring system requires a dynamic model of the plant that is being monitored.  

In some cases, due to system complexity, unknowns, and modeling difficulties, a signal-

based scheme may be advantageous in system monitoring and fault diagnosis.  These two 

approaches are each classified into two subgroups: quantitative based and qualitative 

based. 
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3.2.1 Model-based Fault Diagnosis Approach 

The following sections discuss various techniques that can be used in monitoring 

and fault diagnosis of a system using the model-based approach. 

 

3.2.1.1 Quantitative Approach  

 In the qualitative approach, an in-depth understanding of the exact system 

behavior and the reasons that govern such behavior are gathered qualitatively.  However, 

in quantitative approaches, they rely mostly on previously available data and information.   

More emphasis has been traditionally placed upon quantitative approaches of model-

based fault diagnosis, and these rely on detailed knowledge of a dynamic model of the 

system. A model will provide details about the changes in system dynamics.  The major 

emphasis in the field of quantitative model-based fault diagnosis has been placed upon 

methods of detecting and isolating faults rapidly and accurately [26]. 

Most studies done in the quantitative model-based approach rely on forming 

residual errors from a state-space model. This approach uses state equations (state-space 

model), state observers and parity space relations. Next these classifications are discussed 

in detail. 

   

1) Physical Equations 

 In general, a complete model of a system can be directly obtained from physical 

equations [27].  These models are generated on the basis of the understanding of the 

physical system and they describe the relationships that exist between the process 
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variable.  Typically they allow detecting faults of small size.  The drawback to this 

method is that the development of an accurate model using physical equations can be 

extremely difficult and sometimes impossible for many systems.  The parameter 

identification also adds another difficulty into this technique. 

 

2) State Equations of Linear Systems 

 A dynamic stationary linear system that has “b” inputs and “c” outputs can be 

described in continuous time by following equations: 

( ) ( ) ( )
( ) ( ) ( )tDutCxty

tButAxtx

+=

+=&
 

These state equations are the basis for residual generation and the design of diagnostic 

observers [28]. 

 

3) State Observers 

 Design of an observer in control systems makes it possible to generate residuals 

which can be used to express the sate variables of a dynamic system based on the actual 

input and output signals as obtained from sensors.  A popular technique in this field is the 

Kalman Filter.  The prediction of errors by Kalman filter can be used as a fault detection 

residual.  Then, a zero mean residual will represent a no fault condition in the system and 

a non-zero mean residual will indicate the presence of a fault. 

 

4) Parity Space Relations 

 Parity space fault diagnosis techniques are used to detect abnormal operation of 

dynamic processes and diagnose sensor and actuator faults.  Parity relations can be 



 54 

defined as balance equations that are based on the input-output data of the system.  First, 

the process model between the plant inputs and plant outputs is developed.  Then the 

parity residuals are formed to examine the consistency of the model with sensor data and 

known system input [29]. 

 

 

3.2.1.2 Qualitative Approach 

 Qualitative model-based approaches are mostly classified into diagraphs, fault 

trees and qualitative physics. This classification is discussed next.   

 

1) Signed Graphs 

 Signed digraphs (SDG), which can describe target systems as qualitative network 

models with nodes and branches, provide a new approach to describe large-scale systems. 

In this formulation, the propagation principle of fault evolution in a complicated system 

can be explored and the inference can be applied to accomplish hazard and risk 

assessment or fault diagnosis.  The SDG concept and method for fault diagnosis were 

first presented by Iri et al. in 1979 [30].  The SDG method can save time, manpower, and 

cost, and it is known to possess good maturity and in-depth reasoning ability. 

 

2) Fault Trees 

 Fault Tree Analysis (FTA) can model and analyze failure processes of 

engineering systems.  FTA is basically composed of logic diagrams that display the state 

of the system and is constructed using graphical design techniques.  FTA can be used as a 

valuable design tool, can identify potential accidents, and can eliminate costly design 
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changes.  It can also be used as a diagnostic tool, predicting the most likely system failure 

in a system breakdown.  FTA is used in safety engineering and in major fields of 

engineering. 

 

3) Qualitative Physics Classes 

 In fault diagnosis approaches, qualitative physics mostly concern the behavior of 

the physical system based on reasoning using artificial intelligence [4].  This technique 

deals with qualitative equations which are derived using knowledge and experience.   

 

3.2.2 Signal-based Fault Diagnosis Approach 

These methods of faults diagnosis do not use a mathematical model of the plant 

and they range from physical redundancy and special sensors through limit-checking and 

spectrum analysis to logic reasoning.  Next, these methods are discussed in point form 

rather than in detail for the sake of introducing the existing approaches, pointing out that 

the signal-based approach is not the main objective of the present research.  More 

information is found in [3], which discusses fault monitoring in engineering systems. 

 

1) Physical Redundancy 

 In this approach, the same physical quantity is measured using multiple sensors 

installed on the machine.  Any serious discrepancy between measurements indicates a 

sensor fault. 
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2) Special Sensors 

 Special sensors are designed specifically for designated task, such as 

measurement of pressure (pressure transducers), temperature and vibration, which can 

perform limit checking in hardware. 

 

3) Limit Checking 

 In this approach, once the signals are received by the hardware, the thresholds are 

compared to the preset limits, and fault situations are identified if any of the thresholds 

are exceeded.  Various methods of warning are used in industries, and can vary from pre-

warning to emergency warning, which may shut down the entire operation.  This 

capability has made the approach popular and widely used in industry. 

 

4) Spectrum Analysis 

 This method is based on measuring the frequency spectrum of the variables of the 

operational plant.  Each variable has a typical frequency spectrum and any deviation may 

indicate a fault in the system. 

 

 5) Neural Network Models 

 Artificial neural networks (ANN) can be applied to model complex and nonlinear 

dynamic systems and can be trained using measurement data.  ANN are made up of 

interconnecting artificial neurons that mimic the properties of biological neurons. They 

may be used to solve artificial intelligence problems without necessarily creating an 

analytical model of the system.  The important advantages of ANN are the ability of 



 57 

modeling nonlinearities, high robustness to disturbance, and the ability to generalizing 

knowledge contained from the network.  More discussion on this topic can be found in 

[31]. 

 

6) Expert System 

 As discussed by de Silva [32], an expert system attempts to reproduce the 

performance of one or more human experts, most commonly in a specific problem 

domain, and is a traditional application and/or subfield of artificial intelligence.  Expert 

systems have a common element in that once the system is developed it is proven by 

being placed in the same real world problem solving situation. Typically it can be used as 

an aid to human workers or experts or a supplement to an information system. 
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3.3 Kalman Filtering in Fault Diagnosis 

There are also many examples in engineering where filtering is desirable.  Radio 

communication signals are often corrupted with noise.  A good filtering algorithm can 

remove the noise from electromagnetic signals while still retaining the useful 

information.  Many countries require in-home filtering of power line voltages before 

supplying them to personal computers and peripherals.  Without filtering, the power 

fluctuations would drastically shorten the lifespan of these devices.  

The Kalman filter is a recursive estimator.  This means that only the estimated 

state from the previous time step and the current measurement are needed to compute the 

estimate for the current state.  Kalman filtering was developed in the 1960s and has been 

applied in areas as diverse as aerospace, marine navigation, nuclear power plant 

instrumentation, demographic modeling, manufacturing, and many others. 

 

3.3.1 Fundamentals of Kalman Filter 

 Kalman filter is based on a linear dynamical system, and it may be discretised in 

the time domain.  Its future state depend only on the present state, and not on the past 

state.  The state of the system is represented as a vector of state variables.  At each 

discrete time increment, a linear operator is applied to the state to generate the new state, 

where noise is included. Another linear operator generates the outputs from the hidden 

state vector, including additive noise.  Inputs to the algorithm are the model, noise 

parameters, and measurements from the system.  Two types of noises are used in Kalman 
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Filters: measurement noise, which disrupts the response of the system during 

measurement, and process noise or disturbances that exist at the system input.    

 In order to use the Kalman filter to estimate the internal state of a process, given a 

sequence of noisy observations, one must model the process in accordance with the 

framework of the Kalman filter.  The Kalman filter model in discrete-time assumes that 

the true state at time k+1 is evolved from the state at (k) according to: 

kkkk wBuAxx ++=+1     (3.1) 

Here A and B are the matrices of the state space model, as discussed in Chapter 2, but 

properly discretized with respect to time. 

Process noise may not always have direct physical meaning, and may represent 

model uncertainties.  The Kalman filter formulation requires that the measurements be 

linearly related to the states according to:    

kkk vHxy +=       (3.2) 

Here H is the output/measurement matrix. Also, x is the state vector, y is the system 

output, u is the system input, w  is the process/input noise and v  is the measurement 

noise which are all expressed as vectors.  There is a process noise covariance matrix Q  

corresponding to the process noise vector according to: 

[ ]T

kkk wwEQ =      (3.3) 

The measurement noise covariance matrix R  is related to the measurement noise vector 

v  according to: 

[ ]T

kkk vvER =      (3.4) 

 Since the filter state estimation is done on the basis of predicted-corrected 

approach, before proceeding further, the two important key equations must be defined: a 
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priori (predicted) and a posteriori (corrected) state estimate vector.  The predicted (a 

priori) state estimate vector equation at time step (k) uses the corrected (a posteriori) state 

estimate vector from the previous time step (k-1) and the known system input to write the 

following “time update” equation: 

kkk BuxAx += −
−

1
ˆˆ      (3.5) 

Using the information from the current observation and the given residual, which is the 

difference between the measured and predicted outputs, the corrected (a posteriori) state 

estimate vector equation written in the following form: 

( )−− −+= kkkkk xHyKxx ˆˆˆ     (3.6) 

Where:  

 ( )−− kk xHy ˆ : State residual 

 kK : Kalman filter gain 

 It is appropriate to discuss few points observed in equation 3.6. In real-time fault 

diagnosis ky  is the output from the sensors.  However, for simulation purposes, equation 

3.2 should be used for calculating ky .  Accurate state estimation is desired here and 

therefore it is desirable to have a posteriori state vector equal to the a priori state 

vector, −= kk xx ˆˆ  resulting in a zero residual or ( ) 0ˆ =− −
kk xHy .  In order to minimize the 

error for the filter estimation in both stages of prediction and correction, the Kalman gain 

function is defined as: 

( ) 1−−− += RHHPHPK
T

K

T

Kk     (3.7) 

Where: 

 −
kP = Minimized a priori estimate error covariance 
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  kP = Minimized a posteriori estimate error covariance 

 Covariance is a measure of how much two variables are related.  In these 

equations, covariance matrices −
kP  and kP  represent errors in the state estimates before 

and after an update, respectively.  The equations are as follows: 

QAAPP T

Kk += −
−

1      (3.8) 

( ) −−= kKk PHKIP      (3.9) 

 At the start of the operation, the Kalman filter algorithm requires some initial 

estimates for state variable values,  ,kx and a posteriori estimate of the error covariance, 

0 ,P since these estimates are needed in the first step which is “Time Update” stage.  

Zarchan and Musoff [33] gives the details of Kalman filtering and its practical approach.  

Zheng et al. [34] have constructed different Kalman filters for a networked control 

system according to different system faults. Respective residues were generated and a 

fault detection and isolation (FDI) approach was introduced.  Pirmoradi et al. [35] in 

2007 developed a new scheme for fault detection and diagnosis in spacecraft Attitude 

Determination (AD) sensors.  In their work, measurement data from all sensors are fused 

by a linearized Kalman filter, and fault isolation is performed through Extended Kalman 

Filters (EKF).  Xue et al. [36] implemented a robust Kalman filter and a bank of Kalman 

filters in fault detection and isolation (FDI) of sensors and actuators of an aircraft gas 

turbine engine.  The block diagram given in Figure 3.1 [4] illustrates the structure of a 

working Kalman filter. 
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Figure 3.1: Block Diagram of Working Kalman Filter 

 

3.3.2 Extended Kalman Filter 

In the previous section we discussed how a linear Kalman filters is designed, 

when the system is described by linear differential equations expressed in the state-space 

form and when the measurements are linear functions of the states.  However, in most 

engineering problems, nonlinearities are unavoidable.  The Extended Kalman Filter 

(EKF) has become a standard technique for nonlinear estimation and machine learning 

applications [37].  These include estimating the state of a nonlinear dynamic system, and 

estimating parameters for nonlinear system identification where both states and 

parameters are estimated simultaneously. In EKF, the covariance is determined by 

linearizing the dynamic equations at each time step around the last state or the current 

estimate, and then determining the posterior covariance matrices analytically for the 

linear system; i.e., performing the “Time Update” and “Measurement Update.”   

Unlike its linear counterpart, the extended Kalman filter in general is not an 

optimal estimator (it is optimal if the measurement and the state transition model are both 
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linear) [38, 39].  If the initial estimate of the state is wrong, or if the process is modeled 

incorrectly, the filter may quickly diverge, owing to its linearization.  Another problem 

with the extended Kalman filter lies in the estimation of the covariance matrices.  It is 

likely that the estimated state for a real system vary from the actual current state of the 

system (i.e., estimated covariance matrix tends to underestimate the true covariance 

matrix).  This difference may lead to instability of the procedure.  In this case it is 

common to add an external signal, stabilizing noise, to the system in order to overcome 

this instability. 

Linearization that is needed in EKF generates unreliable estimates in highly 

nonlinear systems.  When one applies an EKF to a complex system, a major problem 

arises in the computation of the state transition matrix which calls for calculation of the 

Jacobian matrix (a matrix of partial derivatives).  This process essentially linearizes the 

nonlinear function around the current estimate. Besides being a computationally 

expensive operation, there is no universal and robust numerical way to carry it out.   

 Due to the reasons of difficulty in implementing and linearization error, it is 

agreed that EKF is only reliable for first order system derivatives which are not highly 

nonlinear.  The second order filters provide better estimation performance.  However, the 

implementation is more difficult and derivatives should be calculated analytically.  In 

many applications second order derivatives will not be available analytically and 

approximations will inevitably be subjected to error.   The solution to this problem is the 

use of unscented transformation (UT) which is discussed in the next section. 
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3.4 Unscented Kalman Filter 

 When the state transition and observation models, which are the predicting and 

updating functions in equations 3.1 and 3.2, are highly nonlinear, the extended Kalman 

filter can give particularly poor performance.  This is because in that approach the 

nonlinear states and parameters are approximated.  In 1997, Julier and Uhlmann [37] 

introduced Unscented Kalman Filtering (UKF) which employs an unscented 

transformation (UT) to pick a minimal set of sample points (called sigma points) around 

the mean.  These sigma points are then propagated through nonlinear functions, from 

which the mean and covariance of the estimate are then recovered. 

 

3.4.1 Unscented Transformation 

As mentioned, the unscented Kalman filter (UKF) uses the unscented 

transformation to pick sigma points around the mean.  These sigma points are then 

propagated through nonlinear functions, from which the mean and covariance of the 

estimate are then recovered.  The result is a filter which more accurately captures the true 

mean and covariance.  In addition, this technique removes the requirement to explicitly 

and precisely calculate Jacobians, which for complex functions can be a difficult and time 

consuming task, requiring complicated derivatives if done analytically or having a high 

computational cost if done numerically.  Julier and Uhlmann [38, 40-41] introduced 

unscented transformation which uses sampled data to calculate the mean and the 

covariance.  It is founded on the intuition that it is easier to approximate a Gaussian 

distribution than it is to approximate an arbitrary nonlinear function.  The approach is 
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illustrated in Figure 3.2.  A set of point (sigma points) are chosen whose sample mean 

and sample covariance are xx and x P , respectively.  The nonlinear function, ( )xhy = , is 

applied to each point to yield a cloud of statistically transformed points u and 
u

y P . 

 

Figure 3.2: Unscented Transformation Scheme. 

 

The following algorithm is used for the nonlinear transformation by forming a vector of 

n2  sigma points:   

( ) ( )
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where ( )nP  is the matrix square root of nP , which is defined as ( ) nPnPnP
T

=  

and  ( )inP  is the thi row of the ( )nP .   No linearization is used in this method. In the 

next step, the calculated sigma points are propagated through the nonlinear function of 

( ) ( )( )ii xhy =  for the range ni 2,...,1= .   The statistically transformed points u and 
u

y P  

are obtained using the following equations: 
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3.4.2 Performance Comparison between UT and EKF 

From the previous sections it is seen that the unscented algorithm is able to 

partially incorporate information of higher order in nonlinearity, leading to greater 

accuracy than what is possible with EKF.  A study is done by Simon on UT 

characteristics and accuracy against EKF [42].  He compared the exact, linearized and 

unscented mean and covariance of randomly generated points as shown in Figure 3.3.   

In this experiment, sensors measure and sample two motion variables (polar 

coordinates) θ and r  at each time step and the points are then transformed and converted 

into rectangular (Cartesian) coordinate Y1 and Y2 using following familiar equations: 

 cos.

sin.

2

1

θ

θ

rY

rY

=

=
   (3.12) 
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Figure 3.3: Comparison between UT and EKF 

 

As observed in the above figure, the unscented covariance calculated using UT is 

much closer to the actual nonlinear covariance than that calculated using EKF.  In 

particular, the mean computed using UT virtually coincides with the actual mean of the 

nonlinear data whereas with EKF, the mean falls far away from the desired location.  

Therefore, it is concluded that the UT is better suited than a first-order linearization 

method.  As it is reasoned out in [37, 43], EKF is good only for predicting mean and 

covariance with first order accuracy.  However, a filter that uses the unscented transform 

will have the estimates closer to real values due to the higher order accuracy for Gaussian 

inputs. 
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3.4.3 Unscented Kalman Filter (UKF) Algorithm 

The UKF algorithm tries to propagate the mean and covariance of a system using 

time-update and measurement update.  The transformation process is similar to the 

ordinary Kalman filter which includes the following:  

1) Predict the new state of the system and its associated covariance taking into 

account the effect of observation noise 

2) Predict the expected observation and the improved covariance taking into 

account the effect of observation noise 

3) Predict the cross-correlation matrix 

  

 In recent years a new technique of UKF has been used by researchers to estimate 

the state of nonlinear systems, which minimizes the prediction errors, for application in 

the field of fault diagnosis [38-43].  The following equations explain the algorithm used 

in the UKF which is an extension to UT: 

1) Consider an n-state discrete-time nonlinear system at step k , with hf  and  

representing the nonlinear state function and the measurement function, respectively, 

given by 

( )
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2) Initialize the filter using the following equations: 
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 The next step uses the “Time Update” equations which propagate the state 

estimate and covariance from one measurement time to the next. 

3) Initially choose a set of sigma points to propagate from time step ( ) kk   to1− : 
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  (3.15) 

4) Transform the Sigma points into the i

k
x̂  vector and combine to obtain the a priori state 

estimate −
k

x  and its predicted error covariance (by taking process noise into account) −
k

P , 

at time k : 
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Now the “Measurement Update” has to be implemented since the “Time Update” 

step has been completed.  However, to save the computational effort, instead of 

generating a new set of sigma points, the same sigma points generated in the “Time 

Update” step are used.  Accordingly, as before, the predicted observation vector
k

ŷ  and 

its predicted covariance yP  are obtained using following equations: 
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5) To estimate the similarities between −
k

x̂  and 
k

ŷ , the cross covariance matrix is 

calculated using the following expression: 
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6) In the concluding step of the algorithm, we calculate the filter gain 
k

K , the final 

updated state estimate −
k

x̂ , and the covariance 
k

P .  The equations are as follows: 

1−= yxyk PPK       (3.23) 

( )
kkkkk

yyKxx ˆˆˆ −+= −     (3.24) 

T

kykkk KPKPP −= −      (3.25) 

The schematic block diagram shown in Figure 3.4 gives the structure of the UKF 

algorithm. 
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Figure 3.4: Schematic Block Diagram of UKF 
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3.5 UKF Application in Hydraulic System 

The state space model of the dynamic system (hydraulic actuator system) as 

developed and validated in Chapter 2 is used now to implement and evaluate the 

Unscented Kalman Filter algorithm. 

 

3.5.1 Discretised Dynamic Model 

The state space model developed in Chapter 2 is discretised with respect to time 

using the sampling time T  and the process time step k  for implementation in the 

discrete-time UKF algorithm. Specifically, using the forward difference method, we 

have:  
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3.5.2 Matrix Specification  

It is important to identify the shape and form of the matrices which are used in the 

present implementation.  The measurement matrix (or H-matrix) having the linear form 

of Hxy =  is one of the three matrices to be determined through experimentation using 

the three outputs that we measure: chamber one pressure ( 3x ), chamber two pressure 

( 4x ) and actuator displacement ( 1x ).  As in equations 3.27 and 3.28, the following 

expressions represent the form of the H matrix and the y vector: 
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The other matrices to be determined are the process noise matrix Q and the 

measurement noise matrix R, both of which are diagonal.  Recalling the preliminary 
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experimental results in section 2.5.1, the MAE values for all three measurable states 

between the measured and the model-based data, are calculated and summarized in Table 

3.1. 

 

Table 3.1: The MAE Value of the Three Measured States 

State 
Actuator 

Displacement 

Pressure in Chamber 1  Pressure in Chamber 2 

Uncertainty 

Value (MAE) 

2.00 mm 0.23 (MPa) 0.24 (MPa) 

 

 

By examining these uncertainty values (MAE value of the state), the three 

components of the process noise matrix for the three measurable states can be determined 

keeping in mind that the covariance value is always square of the uncertainty value of the 

state. Values for the other components of the matrix are assigned based on the physical 

characteristic of the related states.  The following expression represents the Q-matrix in 

SI unit: 
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In order to determine the measurement noise matrix, it is necessary to know the accuracy 

of the sensors that are used. The SENSOTEC pressure transducer has an accuracy of 

51.05 10  Pa× , and the accuracy of the Temposonics linear displacement transducer 

(LDT) is calculated to be 52.08 10  m−× .  Since there are no major sources of noise near 
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the experimental set-up, the noise level is assumed low. Hence, the following expression 

is written in SI unit to represent the measurement noise matrix: 
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Before implementing the UKF algorithm on the hydraulic system, according to 

the block diagram in Figure 3.4, we must initialize the state 0x̂  and the covariance 0P .  

The initial state of 0x̂  is defined as a 6th order column vector whose first component 

value should stay within the range of maximum and minimum values of the actuator 

displacement [ ]L,0 .  Accordingly, the third and the fourth components should be within 

the range of chamber pressures [ ]sr PP , .  Defining 0P  as a positive-definite matrix, the 

following expressions are written in SI unit: 
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Now that all the required matrices are defined, the UKF algorithm can be 

implemented in MATLAB@ and a trial simulation is run to test the performance of the 

filter.  The results of the residual errors in the system state estimation are presented in 

Figure 3.5.  These plots show the errors in the estimates made by the UKF and the 

associated plus and minus values of the theoretical standard deviation bounds of the 

measurements.  If the filter has acceptable performance for our nonlinear system, the 

error should lie within the bounds [4, 33, 40] 68% of the time.  By visual inspection, it 

can be verified that the errors in the UKF consistently lie well within two standard 
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deviations, and it is concluded that the UKF has satisfactory performance for our 

nonlinear system.     

 

Figure 3.5: System Estimation Error for (a) Pressure in Chamber 1, (b) Pressure in 

Chamber 2, (c) Actuator Position 
 

Now that all the required matrices are defined, the UKF algorithm can be 

implemented into the experimental hydraulic system in order to detect and diagnose the 

system faults. The corresponding experimental results are presented and discussed in the 

next chapter. 
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4 Chapter 4  

UKF and Fault Monitoring in Hydraulic Systems 

 

 

4.1 Introduction 

Industries aim to reduce costs associated with operation and maintenance of their 

machinery and equipment.  Cost reductions may be achieved by reducing down time and 

repair costs and improving the quality of products and services. Use of on-line condition 

monitoring for detection and diagnosis of faults and malfunctions, leading to condition-

based maintenance rather than scheduled (i.e., time-based) maintenance will significantly 

contribute in achieving this objective.  With the evolution of monitoring systems, 

maintenance and operation personnel are able to concentrate their activities on other tasks 

with high added value and demand.  In particular, continuous on-line monitoring of 

hydraulic systems provides the means to evaluate the current conditions of the equipment 

and detect abnormality. It allows corrective measures to be taken to prevent impending 

failure, and enables proper response to normal and emergency conditions.  

Continuous monitoring of a hydraulic system will identify potential problem areas 

that can lead to substantial equipment damage.  Correlation between the pressure 

measurement and the actuator position would allow abnormal conditions to be identified, 

which in return would notify operation and maintenance personnel of existence of a 

potential problem.  Further deterioration of the condition could lead to a recommendation 

to take the equipment out of service for repair and maintenance.  The real value of the on-
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line monitoring is not in setting off multiple alarms but rather in triggering the 

maintenance events leading to a true condition-based on maintenance, and providing key 

answers to implementing the plant assets management. 

The four procedures associated with process monitoring are:  fault detection, fault 

identification, fault diagnosis, and process recovery.  Fault detection means determining 

whether a fault has occurred.  Early detection may provide invaluable warning on 

emerging problems with appropriate actions to be taken to avoid serious process upset.  

Fault identification is identifying the observation variables most relevant to diagnosing 

the fault.  The purpose of this procedure is to shift the attention of the plant operators and 

engineers to the subsystems most related to the diagnosis of the fault, so that the effect of 

the fault could be eliminated in a more efficient manner.  Fault diagnosis is determining 

the details of the fault that has occurred (i.e., what component and what possible cause) 

and process recovery is removing the effect of the fault. 

In this chapter we present some results obtained through implementation of a 

UKF filter on the experimental hydraulic system for detection and diagnosis of a set of 

artificially introduced faults as discussed in Chapter 2. The performance of the developed 

procedure is studied using these results. 

 

4.2 Experimental Results 

In order to carry out fault monitoring experiments using UKF on the hydraulic 

test rig, a sinusoidal position reference signal ( )tr   4.0sin0125.0025.0 π+=  is used as in 

the model discussed in Chapter 2.  We have shown using this sinusoidal reference input 
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signal that the simulated response of the state-space model closely follows that of the 

actual experimental test rig, under normal operating conditions.  However, using the UKF 

filter, we are able to estimate the state of the system with high precision, enabling fault 

detection and diagnosis.  The overall duration of each test is about 110 seconds and each 

fault is initiated in the set-up after 50 seconds of the normal machine run and is 

maintained until the end of the test.   

In the present study we monitor the effect of four hydraulic faults in real time. 

These faults consist of one internal leakage, two external leakages, and frictional build up 

on the cutter table (carriage).  In the following sections, the experimental results of the 

induced faults are presented and discussed. 

 

4.2.1 Actuator Leakage Faults 

In this section experimental results of the internal and external actuator leakage 

faults will be studied and discussed.  The severity of the introduced leakage faults in this 

study is proportional to the level of opening of the control needle valve, which is 

categorized into low, medium and high as indicated in Table 4.2-1. 

Table 4.1: Severity Categorization of the Leakage Faults  

Severity of the Leakage Number of Opening Turns of Needle Valve 

Low 

10

5.1
 

Medium 

10

3
 

High 

10

5
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4.2.1.1 Actuator External Leakage at Chamber 1 

The external leakage occurs at chamber 1 due to either hosing rapture or poor 

hosing connections, which result in loss of hydraulic fluid.  This fault is emulated using a 

needle vale that returns a portion of the supply pressure from chamber 1 back to the 

hydraulic tank.  The severity of this fault is manually adjusted by turning the knob of the 

needle valve as specified in Table 4.1.  The occurrence of this fault in the system will 

drop the pressure in chamber 1 and that will create a bigger pressure difference across the 

chambers 1 and 2.  Due to pressure loss in chamber 1 during extraction, the required 

force to withhold the piston and push it back towards chamber 2 will be reduced.  

Therefore, the piston will have a shift of few millimeters of towards chamber 1 

depending on the severity of the leakage, as shown in Figure 4.1.  Due to the existence of 

a closed-loop controller, the shifting stops after about one cycle and it remains consistent 

for the entire run of the experiment.  A similar outcome is observed for all the three levels 

of leakage; however, for brevity, only the medium level leakage is discussed in more 

detail.      
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Figure 4.1: Actuator Displacement with Moderate External Leakage at Chamber 1 
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 According to the generated residual error, this pressure drop creates a bigger 

difference between the actual pressure of the state and the estimated pressure from UKF 

for chamber 1 than for chamber 2.  This phenomenon will become more apparent as the 

leakage level increases from low to medium and to high.  Figures 4.2 to 4.4 show the 

residual errors calculated for each level of leakage.  
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Figure 4.2: Residual Error for Low Leakage at Chamber 1; (a) Actuator Displacement (b) 

Pressure in Chamber 1; (c) Pressure in Chamber 2  
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Figure 4.3:Residual Error for Moderate Leakage at Chamber 1; (a) Actuator 
Displacement (b) Pressure in Chamber 1; (c) Pressure in Chamber 2  
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Figure 4.4: Residual Error for High Leakage at Chamber 1; (a) Actuator Displacement (b) 

Pressure in Chamber 1; (c) Pressure in Chamber 2 
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For simplicity and clarity of observation and comparison, the results for the 

corresponding variation of residual MAEs are summarized in Table 4.2.  It can be 

observed that the increase in external leakage at chamber 1, increases the residual error 

for chamber 1 compared to that of chamber 2.  This difference in value increases as the 

level of leakage increases from low to high. 

Table 4.2: External Leakage at Chamber 1 and the Change in MAEs 

Measurand 

Fault 

Pressure in 

Chamber 1 (MPa) 

Pressure in 

Chamber 2 (MPa) 

Actuator Position 

(mm) 

Leakage at Chamber 1 

(low) 

0.0169 0.0027 0. 33 

Leakage at Chamber 1 

(medium) 

0.0371 0.0028 1.20 

Leakage at Chamber 1 
(high) 

0.220 0.0897 3.95 

 

4.2.1.2 Actuator External Leakage at Chamber 2 

In this section the external leakage at chamber 2 is considered.  The reasons 

behind the occurrence of this common fault in hydraulic system are similar to that of the 

chamber 1 leakage; specifically, hose rapture or loss piping connections.  As before, the 

external leakage fault is emulated by using the connecting hoses and the needle vale 

mounted on chamber 2 which take the hydraulic fluid back to the tank.  Again, the 

severity of the leakage is manually adjusted by using the designated knob of the needle 

valve.  Due to the characteristic similarities for all three levels of leakage and for brevity, 

the medium level leakage is discussed in more detail in this section.  Figure 4.5 illustrates 

the hydraulic actuator displacement while a medium level external leakage occurs in 

chamber 2.  As this external leakage occurs during retracting period, chamber 2 sees a 
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pressure drop and will not have sufficient power to push the piston back towards chamber 

1.  As a result, a shifting towards chamber 2 is observed.  For the same reason as 

mentioned in previous section, shifting of the piston is completed after about one cycle 

due to the existence of the closed-loop controller, and the piston remains consistent for 

the entire run.  Comparing Figure 4.1 and Figure 4.5, it can be concluded that the effect 

of the external leakage at chamber 2 is felt more by the actuator due to the greater 

shifting that takes place in this chamber.  This phenomenon is expected as the pressure in 

chamber 2 is much greater than that of chamber 1.  As a result, more fluid will exit the 

chamber and back to the tank, at a faster rate.    
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Figure 4.5: Actuator Displacement with Moderate External Leakage at Chamber 2 

 
For further study of the leakage at chamber 2, Figure 4.6 to 4.8 illustrate the 

changes in residual error that takes place for chambers 1 and 2 as well as the actuator 

displacement error in three levels of leakage of low, medium and high.  From these 

figures it can be concluded that the leakage at chamber 2 results in greater pressure 

difference across its chamber compared to that of the pressure difference taking place at 

chamber 1.  
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Figure 4.6: Residual Error for Low Leakage at Chamber 2; (a) Actuator Displacement (b) 

Pressure in Chamber 1; (c) Pressure in Chamber 2  
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Figure 4.7: Residual Error for Moderate Level Leakage at Chamber 2; (a) Actuator 

Displacement (b) Pressure in Chamber 1; (c) Pressure in Chamber 2 
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Figure 4.8: Residual Error for High Leakage at Chamber 2; (a) Actuator Displacement (b) 

Pressure in Chamber 1; (c) Pressure in Chamber 2 

 

Table 4.3 summarizes the results for the corresponding variation of residual 

MAEs.  It can be observed that the occurrence of the external leakage at chamber 2 

increases the residual error for this chamber compared to that of chamber 1.  This 

difference in value increases as the level of leakage increases from low to high. 

Table 4.3: External Leakage at Chamber 2 and the Change in MAEs 

Measurand 

Fault 

Pressure in 

Chamber 1 (MPa) 

Pressure in 

Chamber 2 (MPa) 

Actuator Position 

(mm) 

Leakage at Chamber 2 
(low) 

0.0166 0.088 0. 22 

Leakage at Chamber 2 

(medium) 

0.0172 0.106 4.20 

Leakage at Chamber 2 

(high) 

0.0240 0.2170 8.10 
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4.2.1.3 Actuator Internal Leakage 

In this section, the effect of internal leakage on the hydraulic actuator and the 

necessary steps required to detect the fault using UKF are discussed.  There are potential 

causes that lead to internal leakage of a hydraulic cylinder which essentially leads to 

improper operation or malfunctioning of the hydraulic actuator.  Excessive leakage is a 

result of the fluid leaking through a piston seal.  Damaged or weakened sealant used to 

seal the piston which prevents the hydraulic fluid from leaking across the chambers as a 

result of either a worn seal or a worn cylinder barrel, may be the reason. In fact, the most 

common cause of internal leakage is wear of component surfaces during normal 

operation.  Leakage can also result from poor system design, incorrect component 

selection, and poor quality control tolerances during the manufacturing of a component, 

and incorrect overhaul of rebuilt components.  Degraded system performance and 

reliability, and increased operating temperatures are the first visual signs of internal 

leakage.  In hydraulic cylinders, drift or creep in the cylinder rod and the cylinder’s 

inability to hold the designed load will result from increase in leakage.  

In this experiment, the severity of the internal leakage is adjusted manually by 

turning the knob of the designated valve of the hose connecting chamber 1 and 2.  As 

before, the experiment is carried out for the three levels of leakage: low, medium and 

high by making the corresponding number of turns of the knob.  Again due to the 

similarity in the characteristics of the three leakage levels and for brevity, only the 

medium leakage level is discussed in more detail.  Figure 4.9 illustrates the actuator 

displacement while a medium internal leakage takes place.  This case has similar 

behavior to that of chamber 2.  Upon the occurrence of the internal leakage, the piston 
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shifts more towards chamber 2 which has a higher pressure.  Internal leakage reduces the 

pressure difference between the two chambers. The chamber with more effective area 

(chamber 1) exerts greater force on the piston and consequently, it shifts towards the 

other chamber with a lower effective area (chamber 2).  For the same reason as 

mentioned in previous sections, the shifting of the piston is completed after about one 

cycle due to the existence of the closed-loop controller, and it remains consistent for the 

entire run.      
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Figure 4.9: Actuator Displacement with Moderate Internal Leakage 

 Figure 4.10 to 4.12 illustrate the changes in the residual error for chambers 1 and 

2 as well as the actuator displacement error at low, medium and high levels of leakage.  

From these figures it can be concluded that the internal leakage results in an increase in 

MAEs of all the measurements.  In addition, the change in MAE of the actuator 

displacement is more than the change in MAE of the chamber pressure.    
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Figure 4.10: Residual Error for Low Internal Leakage; (a) Actuator Displacement (b) 

Pressure in Chamber 1; (c) Pressure in Chamber 2 
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Figure 4.11: Residual Error for Moderate Internal Leakage; (a) Actuator Displacement 

(b) Pressure in Chamber 1; (c) Pressure in Chamber 2 
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Figure 4.12: Residual Error for High Internal Leakage; (a) Actuator Displacement (b) 

Pressure in Chamber 1; (c) Pressure in Chamber 2 

Table 4.4 summarizes the results for the corresponding variation of residual 

MAE.  Note that the increase in MAEs of chambers 1 and 2 are always within the same 

order of magnitude.  The MAE for actuator position increases as the leakage level 

increases from low to high.  Therefore, the amount of displacement occurring can 

determine the leakage severity.   

Table 4.4: Internal Leakage and the Change in MAEs 

     Measurand 

Fault 

Pressure in 

Chamber 1 (MPa) 

Pressure in 

Chamber 2 (MPa) 

Actuator Position 

(mm) 

Internal Leakage 

(low) 

0.015 0.012 0.78 

Internal Leakage 

(medium) 

0.028 0.024 1.51 

Internal Leakage 

(high) 

0.020 0.025 2.60 
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4.2.1.4 Dry Friction of the Cutter Table 

One of the challenges with our industrial machine is the necessary and adequate 

lubrication of the moving surfaces of the cutter table, which is important for accurate 

response to the cutting control signals.  If adequate lubrication is not present at the sliding 

surface of the cutter carriage, the cutter table may not reach the correct position at the 

correct time for cutting the fish head.  A positioning delay of a fraction of a second can 

cause serious problems in the cutting operation. For example, the cut will take place at 

different parts of the fish body, resulting in meant wastage or degraded product quality.  

If the system can detect inadequate lubrication and resulting friction build-up on the 

cutter table surface, it can inform the operator for corrective action.  It is important to 

detect this problem as soon as possible in order to prevent excessive heat generation and 

material wear, as the heavy table slides on top of the metal plate underneath it. 

For this study, an experiment is carried using the implemented UKF, with 

lubrication-free surface of the cutter table.  For the first 50 seconds, the table is run under 

normal conditions. From then on, the table is maintained in a lubrication-free (dry) 

condition until the end of the run.   

Figure 4.13 illustrates the hydraulic actuator displacement while the dry friction 

build up takes place on the surface of the cutter table.  Due to this, the actuator movement 

is restricted and it falls short of reaching the designated location which is the gill of the 

fish.   
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Figure 4.13: Actuator Displacement with Dry Friction Build-up 

Figure 4.14 shows the residual error signals due to the dynamic friction load.  It 

can be visually observed that the residual error of the actuator position increases much 

more than that of the pressures in chambers 1 and 2. 
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Figure 4.14: Residual Error for Dry Friction Build-up; (a) Actuator Displacement (b) 

Pressure in Chamber 1; (c) Pressure in Chamber 2 
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Figure 4.5 presents the variation of the residual MAEs.  It can be seen that both 

pressure residual errors are increased and have stayed within the same order of 

magnitude. Also the increase in actuator displacement MAE is the largest among the 

three. 

Table 4.5: Dry Friction Build-up and the Change in MAEs 

     Measurand 

Fault 

Pressure in 

Chamber 1 (MPa) 

Pressure in 

Chamber 2 (MPa) 

Actuator Position 

(mm) 

Dry Friction 0.092 0.085 1.98 

 

 

4.3 Fault Diagnosis and Discussion 

In section 4.2, the proposed UKF was implemented in the hydraulic system of the 

industrial machine for on-line monitoring fault detection and diagnosis of the system.   

The experimental results were presented for two external leakages, one internal leakage, 

and dry friction fault in the cutter carriage.  In order to accurately diagnose the occurring 

fault in the system, there are three main factors that should be considered.  These factors 

are the change in the residual MAEs of chamber pressures and actuator displacement.  In 

this section each fault is discussed individually and a method of drawing a conclusion on 

whether that particular fault is taking place is introduced.  Table 4.6 summarizes the 

measurements obtained from our fault monitoring scheme, which was introduced in 

section 4.2, for the industrial machine. 
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Table 4.6: Summary of the Increase in MAEs due to Fault Occurrence 

Measurand 

Fault 

Pressure in 

Chamber 1 (MPa) 

Pressure in 

Chamber 2 (MPa) 

Actuator Position 

(mm) 

Leakage at Chamber 1 
(low) 

0.0169 0.0027 0.33 

Leakage at Chamber 2 

(low) 

0.0166 0.088 0.22 

Internal Leakage 
 (low) 

0.015 0.012 0.78 

Leakage at Chamber 1 

(medium) 

0.0371 0.0028 1.20 

Leakage at Chamber 2 

(medium) 

0.0172 0.106 4.2 

Internal Leakage 

 (medium) 

0.028 0.024 1.51 

Leakage at Chamber 1 

(high) 

0.22 0.0897 3.95 

Leakage at Chamber 2 
(high) 

0.0240 0.2170 8.10 

Internal Leakage 
 (high) 

0.020 0.025 2.60 

Dry Friction 0.092 0.085 1.98 

 

 

Leakage at Chamber 1 

 From Table 4.6  it can be concluded that for any level of leakage at chamber 1, 

the increase in MAE of the pressure in chamber 1 is much greater than that of chamber 2.  

The estimated difference between the values for these two chambers is almost three times 
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in the case of low leakage and this difference increases with the severity of the leakage.  

In particular, in case of external leakage at chamber 1, an increase in MAE of the 

pressure in chamber 1 is always at least 14 KPa higher than the increase in MAE of the 

pressure in chamber 2.  In addition, the MAE increases for actuator displacement by 

about 3 times that for the previous level, for successively higher levels of leakage.  

Therefore, the intensity of the leakage at chamber 1 can be estimated by considering all 

these increases in MAEs and by observing the amount of residual error increments. 

 

 

Leakage at Chamber 2 

 From Table 4.6 and comparing the increase in MAEs for the leakage at chamber 

2, it can be concluded that regardless of any other criterion of variation, in the case of 

having a leakage at chamber 2, the MAE increase in pressure in chamber 2 is almost five 

times greater (70 KPa) than the MAEs increase in pressure in chamber 1.  For instance, 

consider a medium leakage at chamber 2. It is evident that increase in MAE of the 

pressure in chamber 2 is about 89 KPa greater (about 6 times) than the MAE of the 

pressure in chamber 1. Comparing the change in MAEs of the actuator, the increase in 

displacement is about 4 mm as we move up from low to medium and to high levels of 

leakage at chamber 2.  If the residual MAEs for chamber 2 is greater and that an increase 

in MAE of the actuator is taking place, the operator should be able to detect and estimate 

the leakage at chamber 2 by observing the residual error increments. 
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Internal Leakage and Dry Friction 

Referring to Table 4.6, in the event of an internal leakage or dry friction build-up, 

the MAEs for both pressures in chambers 1 and 2 grow identically and stay within a same 

order.  In view of this, it is hard for the operator to distinguish between which fault is 

occurring in the system; therefore, further criteria are needed. 

In section 4.2.1.3 we discussed that in the case of internal leakage, the actuator 

movement has a shift towards chamber 2 due to having less effective area and thus a 

smaller force is exerted on the piston.  Additionally, as shown in Figure 4.15, the pressure 

transducers will detect a decrease in pressures for both chambers 1 and 2.  By considering 

these three criteria: MAEs of pressures for both chambers grow equally, actuator shifts 

towards chamber 2, and chamber pressures drop; the occurrence of an internal leakage in 

the system should be detectable.  However, the severity of the leakage should be 

estimated based on the MAE of the actuator displacement, which increases by about 1 

mm with each increasing level of leakage from low to medium to high.   

As for detecting a dry friction build-up, recalling section 4.2.1.4, the actuator 

displacement plot reduces in magnitude due to restricted movement caused by friction 

build-up on the surface of the table.  To compensate for the external force, higher 

pressures are applied on the actuator as shown in Figure 4.16.  For easier examination of 

the increase in pressure of chambers, a close-up plot is shown in Figure 4.17.  It follows 

that, increase in chamber pressures, reduce in displacement magnitude, and equal 

increase in MAEs of pressure for both chambers, will enable the operator to detect a fault 

of dry friction. 
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Figure 4.15: Chambers Pressure Characteristics under High Internal Leakage; a) Pressure 

in Chamber 1, and b) Pressure in Chamber 2 
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Figure 4.16: Chambers Pressure Characteristics under Dry Friction; a) Pressure in 

Chamber 1, and b) Pressure in Chamber 2 
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Figure 4.17: Zoomed-in Chamber Pressure Characteristics Plot under Dry Friction; a) 

Pressure in Chamber 1, and b) Pressure in Chamber 2
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5 Chapter 5  

Conclusion 

 

 

5.1 Summary 

 In this thesis, a model-based online condition monitoring scheme using Unscented 

Kalman Filter (UKF) was developed, implemented on the hydraulic system of an 

automated industrial fish processing machine, and tested.  The hydraulic test rig and its 

subsystem components were described. A nonlinear state-space model of the system was 

developed and validated through experimentation. Based on an extensive literature 

review, four common hydraulic actuator faults were chosen and artificially introduced to 

the system.  Tests were carried out and based on the results, it was indicated how the 

faults could be diagnosed.    

  A requirement for the method developed in the present work is an accurate model 

of the system.  Therefore the system was carefully inspected and a 6th order nonlinear 

state-space model was derived for use in the UKF algorithm.  The six state variables are 

the actuator displacement and velocity, pressures in chambers 1 and 2, and the 

displacement and velocity of the servo-valve spool.  The sate-space model had both 

known and unknown parameters.  The known parameters were chosen from either 

previously available information on the machine or by direct measurement.  The 

unknown parameters were determined by carrying out a sequence of experiments.  The 

state-space model was then validated by comparing the simulated response to the actual 
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response measured directly from the machine, for a sinusoidal position reference signal.  

The validation results showed that under normal operating conditions the state-space 

model closely represented the actual system as it converged to the corresponding set-up 

features. 

 In general, the thesis described important contributions of Kalman filtering in 

fault monitoring and diagnosis.  The general algorithms of Kalman filter and Extended 

Kalman Filter (EKF) were described and some of their draw backs were discussed, which 

lead led to the introduction of the need for UKF.  It was shown that UKF was more 

reliable and provided better performance over EKF in estimating the states of a nonlinear 

system.   

 The faults studied in the thesis are: 

 1) External leakage at chamber 1 of hydraulic cylinder 

 2) External leakage at chamber 2 of hydraulic cylinder 

 3) Internal leakage inside the hydraulic cylinder  

 4) Dry friction build-up on the surface of the cutter table (carriage)   

The developed UKF methodology for fault monitoring system was tested in the physical 

hydraulic system of the automated fish cutting machine, for each of the four faults.  

Leakage faults were introduced using externally mounted needle valves, at three different 

levels of leakage from low to medium to high.  The UKF scheme correctly identified the 

state of the system and generated a residual error given by the difference between the 

measured and the predicted outputs.  The three outputs measured in this experiment were, 

the pressures in chambers 1 and 2 and the actuator displacement.  For observation and 

presentation of the data trend, the moving average error (MAE) for each measurement 
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was calculated.  It was shown that in order to draw the best possible conclusion on which 

fault was occurring and its level of severity, three criteria had to be taken into account.  

These criteria were the residual MAEs of the chamber pressures and the actuator 

displacement, the change in pressure in chambers 1 and 2, and characteristics of the 

actuator displacement. 

 The main contributions of the thesis, which have an impact on the field of fault 

monitoring and diagnosis of industrial hydraulic systems, are summarized below: 

• A nonlinear state-space model was developed for the hydraulic positioning 

system of an industrial fish cutting machine, and was validated through 

experimentation. The response of the model converged within 10% of the 

actual measurements. 

• A UFK scheme was developed and successfully implemented on the 

automated fish processing machine for online condition monitoring.  

• The UKF scheme was able to accurately distinguish between different types 

of leakage faults (external and internal leakages at chambers 1 and 2) and the 

level of their severities. 

• Detecting dry friction build-up in industrial machines is a rather challenging 

task. The UKF scheme developed in the present work was able to successfully 

and reliably detect this fault in a hydraulic positioning system  
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5.2 Suggestions for Future Work 

Fault diagnosis of nonlinear systems using model-based techniques is a vast area of 

research in the field of control and automation.  The following suggestions may be 

considered as possible future work for the improvement of fault diagnosis of the fish 

processing machine. 

• To be able to accurately diagnose faults in the automated industrial machine, 

the developed UKF scheme should be extended to other parts of the system. 

This will require accurate modeling of the entire system with appropriate 

estimation of their parameters (in particular, the entire hydraulic system 

including hydraulic pump, motor and hosing). 

• There are many other faults that may be introduced into the system to examine 

the effectiveness of the developed condition monitoring scheme.  It is 

essential to develop a technique that is able to distinguish between different 

faults when considering the entire hydraulic system. 

• This UKF scheme should be further improved for accurate diagnosing of 

multiple faults occurring simultaneously in the system. 

• The present UKF scheme detects and diagnoses faults in the hydraulic 

positioning system of the automated fish cutting machine. An expert system 

may be designed and implemented in order to select the most appropriate 

action to resolve the occurring faults.  For system maintenance, this expert 
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system should be able to make decisions based on the history of the previous 

repair done on the machine. 
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