
AN ANALYTICAL PLATFORM FOR CUMULATIVE IMPACT 
ASSESSMENT IN NORTHEASTERN BRITISH COLUMBIA 

 
 
 

by  
 

Bogdan Mihai Strimbu 
 

B.Sc. Transilvania University, 1992 
M.Sc., The University of British Columbia, 2003 

 
 
 
 
 
 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF  
THE REQUIREMENTS FOR THE DEGREE OF  

 
DOCTOR OF PHILOSOPHY 

 
in  
 

THE FACULTY OF GRADUATE STUDIES 
 

(Forestry) 
 
 
 
 

THE UNIVERSITY OF BRITISH COLUMBIA 
(Vancouver) 

 
 

September 2009 
 

©Bogdan Mihai Strimbu, 2009 



ii 
 

ABSTRACT 
 

The combined influence on the environment of all projects occurring in a single area is 

evaluated through cumulative impact assessments (CIA), which consider the consequences of 

multiple projects, each possibly insignificant on its own, yet important when evaluated 

collectively. Traditionally, the future human activities are included in CIA using an analytical 

platform, commonly based on complex models that supply precise predictions but with 

asymptotically null accuracy. To compensate for the lack of accuracy of the current CIA I have 

proposed a shift in the paradigm governing the CIA. The paradigm shift involves a change in 

the focus of CIA investigations from the detailed analysis of one unlikely future to the 

identification of the patterns describing the future changes in the environment. To illustrate the 

approach, a set of 144 possible and equally likely futures were developed that aimed to 

identify the potential impacts of forest harvesting and petroleum drilling on the habitat 

suitability of moose and American marten. The evolution of two measures of habitat suitability 

(average HSI and surface of the stands with HSI>0.5) was investigated using univariate and 

multivariate repeated measures. Both analytical techniques (i.e., univariate or multivariate) 

revealed that the human activities could induce at least one cycle (with a period larger than 

100 years), in the moose and American marten habitat dynamics. The planning period was 

separated into three or four distinct periods (depending on the investigation methodology) 

following a sinusoidal pattern (i.e., increase – constant – decrease in the habitat suitability 

measures). The attributes that could induce significant changes in the environment are the 

choice of harvesting age and the valued ecosystem component. The choice of the valued 

ecosystem component is critical to the analysis and could change the conclusions of the CIA. 
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1. INTRODUCTION 
 

 

The impact of human activities on the environment ranges from relatively innocuous industries 

such as tourism, to more invasive extractive industries such as forestry, mining or oil and gas 

exploration. The harmful consequences of industrial development has become notable as 

environmental effects associated with these activities challenge the capacity of an ecosystem to 

incorporate naturally occurring disturbances (Fuhrer 2000; Marcu 1981). Over time, the 

accumulation of stresses resulting from human activities could transform an ecosystem so 

profoundly that recovery to a preexisting desirable state is no longer possible using existing 

conventional processes (Gore et al. 1990; Toffler 1970). To prevent the environment changing 

beyond socially acceptable limits, the potential effects of human-induced perturbations are 

generally evaluated by environmental impact assessment studies (Koornneef et al. 2008). The 

main difficulty in assessing the environmental response to human developments lies in the way 

that most economic activities have limited impacts when assessed singly, but generally have 

additive or synergistic effects when considered in the context of all past, present and 

foreseeable future activities. The combined influence of a suite of projects occurring in a 

predefined area is therefore evaluated using cumulative impact assessments studies (CIA). 

These consider the consequences of multiple projects, each possibly insignificant on its own, 

yet important when considered collectively (Council on Environmental Quality 1969).   

 

The CIA literature addresses the qualitative aspects of the environmental changes induced by 

the evolution of society (Contini and Servida 1992; Glasson et al. 1994; Marr 1997; Masera and 

Colombo 1992; Reid 2001). However, fewer studies have elaborated specific methods that can 

be used in evaluating the cumulative impacts associated with human developments (Spaling 

and Smit 1994). Most current CIAs are performed using either complex modular models (Dube 

et al. 2006; Voinov et al. 2004) or different heuristic techniques (Stakhiv 1988). The two CIA 

methods have been possible as an extensive computational effort has been undertaken for the 

last 30 years to represent the response of a specific set of environmental attributes to different 

human-induced transformations of the environment [e.g., DHSVM in hydrology, FORECAST in 

ecology or FOREPLAN in forest harvesting]. The CIA literature abounds in detailed 

investigations founded on methods initially developed to assess particular activities, such as 

land-use change associated with urban development (Dickert and Tuttle 1985; Stakhiv 1988), 

water resource developments (Dee et al. 1973; Gosselink and Lee 1989) and construction 

(Leopold et al. 1971). These have been enhanced so that they can be used as analytical 
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support for CIA (Rotmans and van Asselt 2001). Regardless of the method adopted, the current 

CIA modeling platforms are based on the assumption that small incremental changes are the 

driver of environmental dynamics (Cherp et al. 2007; Dube et al. 2006; Hegmann et al. 1999), 

and that these changes can be represented mathematically. The complexity of the CIA 

investigation and the intricate structure associated with modular modeling has led to CIA based 

on information supplied by one analytical platform (Voinov et al. 2004): one CIA - one complex 

model. The mono-analytical approach is preferred for CIA investigations for two reasons. First, 

the unique platform supplies an accurate assessment of the impact of current activities on the 

environment, and secondly, the modular structure of the investigation platform allows the 

adjustment of different modules to address the complexity of the CIA. However, the two 

strengths of the approach diminish when the temporal dimension is incorporated into CIA, as 

the accuracy of the assessment decreases exponentially with the number of entities (e.g., 

independent modules, equations or grid cells). The reduction in accuracy may be sufficiently 

acute for the CIA to convey erroneous conclusions; as the probability of occurrence of a 

complex model converges to zero. The asymptotic null probability of the results supplied by the 

complex mono-analytical methodologies employed by CIA is rooted in the frameworks of the 

models frameworks, which can be fully empirical (Patil et al. 2002), fully process-based 

(Leimbach and Jaeger 2005) or a combination of the two (Wu and David 2002), in the sense of 

Korzukin et al. (1996). CIA using models based exclusively on processes and theories have 

difficulty representing environmental dynamics when socio-economic, biophysical and land-

management variables are used (Verburg et al. 2004). Additionally, process–based CIA does 

not supply a measure of the accuracy of the results, and assume that the environmental 

dynamics are fully known and predictable. Therefore, the current complex mono-analytical CIA 

models incorporate empirical components that lead to precise predictions but with reduced 

accuracy, as the probability of occurrence of the outcome of a model is:  

 

Probability of occurrence = 1/ (the number of equally likely results) ≤  

≤ (the smallest number of equally likely results supplied by each empirical equation)-n ≤  (1.1) 

≤ n

n

−

∞→
+ )11(lim = 0          

 

where n is the number of non-overlapping entities used by the model and the two 1s correspond 

to the smallest (respectively largest) value of the confidence interval supplied by the empirical 

equations.  
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The null probability of occurrence of the results supplied by the multi-modular approach is 

enforced when possible future activities are considered in the environmental assessment. The 

accuracy of the CIA decreases even more when the location of the activities, in addition to the 

timing, is of interest. The description of the spatial dynamics requires the addition of an extra 

module or set of equations to describe the spatial dynamics which would increase the n value in 

Equation 1.1, making the convergence to 0 faster. Therefore, considerable effort is required in 

reducing the uncertainties determining the future evolution of the environment, as CIA of the 

present state is focused mainly on fulfilling the environmental constraints.  

 

The efforts to increase the accuracy of the predicted environmental response to human induced 

perturbations consider the CIA an instrument to analyze and assess the past, present and future 

human induced disturbances (Spaling and Smit 1993). Viewed as a scientific tool, CIA is 

primarily a generator of information to be used in the planning process. The usage of the CIA as 

a provider of inputs to the decision making process is the natural result of the multi-modular 

approach. Within this context, the legislative and administrative framework has a significant 

influence in the implementation of the results supplied by the CIA investigation. To ensure that 

economic activities are not transforming the environment to states unacceptable by the society, 

in North America, Canada and the USA promoted specific legislation to implement the CIA; 

Canada in 1992 (Government of Canada, 1992)  and the USA in 1969 (Council of 

Environmental Quality, 1969).  

 

1.1 Objectives 
 

To address the lack of confidence in the techniques currently used for CIA, the present research 

proposes a change in the focus of the environmental assessment when the prediction of future 

activities is of interest. In the case when potential developments could impact the environment, 

the CIA should focus on identifying patterns in the environmental attributes that could lead to 

undesirable environmental outcomes. To identify the patterns associated with unacceptable 

states of the environment, the research presented here promotes the development of a set of 

future environments, each of them possible and equally likely. The set of futures is similar to the 

states of the molecules in a fluid, with each future resembling the trajectory of a molecule 

(Boltzmann 1995). As in statistical thermodynamics, the set of futures would be used to 

represent globally the state (i.e., the possible evolution of the environment during the length of 

the future) but, because the futures are objects with the probability of existence asymptotically 0 

[i.e., (probability of occurrence of a year during the future) -future duration ≈ 0] compared with the 
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particles from a fluid that are physical entities (i.e., probability of existence is 1), the CIA 

investigation will focus on describing the similarities or differences existing within the state, 

rather than quantifying a specific attribute of the state.  Therefore, the objectives of the present 

research are to identify the patterns describing significantly different environmental states and 

the environmental attributes associated with the respective patterns. 

 

1.2 Hypotheses and assumptions 
 

A set of hypotheses and assumptions were developed to guide this research. The assumptions 

used to delineate the possible patterns associated with an environmental state were: 

1. The future is unknown; 

2. The theoretical framework used to quantify the attributes representing the future does 

not change; and 

3. The influence of human activities on the environment can be separated from the effects 

of natural events. 

 

The three assumptions served as the basis for the testing of the two hypotheses proposed by 

the CIA paradigm and further served as the foundation for the development of the set of futures. 

The two hypotheses tested in the present study were: 

1. There is an identifiable pattern associated with each state of the environment; and 

2. The chosen analytical tools play a significant role in the description and forecast of future 

environments. 

 

To test the hypotheses and to illustrate the proposed CIA approach the research presented in 

this thesis considered the impact of two human activities (forest harvesting and petroleum 

drilling) on two valued ecosystem components (VEC) from northeastern British Columbia 

[moose (Alces alces) and American marten (Martens Americana], as defined by Duinker (1994). 

Based on the recommendation of the Treaty 8 Tribal Association, three study areas (i.e., 

Moberly, Doig and Fort Nelson), totaling 1.7 million ha, were used to represent the northeastern 

part of British Columbia (i.e., the 17 million ha east of the Kechika – Finlay corridor). The 

research used data supplied by the Ministry of Sustainable Resource Management (2004) for 

forestry and wildlife, and by the Oil and Gas Commission (2005), Baker Hughes Inc. (2005) and 

Energy Information Administration (2005) for petroleum wells. 
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1.3 Thesis structure 

 

The objectives of the research were achieved by integrating the results supplied by a newly 

developed set of models describing petroleum drilling and forest harvesting. The set of models 

and their integration into one analytical platform, which enabled the identification of the patterns 

associated with different environmental states, are presented individually as chapters of the 

thesis. The following enumeration presents the title and outlines the contents of each chapter in 

addressing the research objectives. 

 

Chapter 2. Paradoxical empirical investigations of complex environmental systems 
Chapter 2 serves two purposes: first, the development of the temporal evolution of the 

petroleum drilling, and secondly, the testing of the second hypothesis of the study (i.e., the 

analytical tools influence the description of the environment). Chapter 2, by extending the 

findings of Seppelt and Richter (2005), Descartes (1850) and Bacon (1855), advocate the usage 

of a stochastic approach (i.e., set of possible and equally likely futures) as an alternative to the 

current mono-modeling platform approach. To test the second hypothesis of the study, Chapter 

2 challenges the present methodologies of representing the dynamics of complex environmental 

systems, which use mathematical models whose validity relies on the assumption that 

knowledge regarding the physical world is drawn from observations or experiments subject to 

the principles of reasoning. In the chapter it is argued that this assumption should be modified, 

as empirical relationships describing environmental systems have a haphazard character and 

fail to converge to an assumed model. Using an approach resembling the Liar Paradox it was 

proved that the scientific inquiry could be influenced by the analysis itself, and does not depend 

only on the data. Consequently, the chapter findings indicate either the inability to reveal the 

true relationships within complex environmental systems or that an analytical factor should be 

included in the description of those systems. 

 

Chapter 3. A deterministic harvest scheduler using perfect bin - packing theorem  
Chapter 3 forecasts the evolution of the landscape as a result of the forest harvesting occurring 

in the three study areas. Currently, in northeastern British Columbia forest planning uses 

heuristic techniques, techniques promoted by the need to solve complex problems that cannot 

be solved using mixed integer programming. In Chapter 3 it is proved that for merchantability 

standards ensuring the perfect bin-packing theorem (PBPT), the maximum volume that can be 

harvested annually equals the sum of the maximum MAI of the stands. The method to compute 

the maximum volume accommodates optimality criteria at the stand level, regarded as 
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maximum MAI, and at the forest level, regarded as maximum annual allowable cut (AAC). The 

harvestings were scheduled by adjusting the first fit decreasing algorithm (FFD) to the spatial 

constraints associated with forest planning. When PBPT conditions were not met, a mixed 

integer programming solution was developed to adjust the merchantability standards of the 

stands to the distributional requirements of the PBPT, an adjustment that ensured the optimal 

performance of the FFD. The adjusted FFD was compared with linear programming and 

simulated annealing (SA) using two harvesting ages (i.e., one based on MAI maximization and 

one determined as the minimal age) and the same set of spatial-temporal constraints for three 

areas.  

 

Chapter 4. An analytical platform for cumulative impact assessment in northeastern 
British Columbia 
Petroleum drilling and forest harvesting are the main activities changing the landscape in 

northeastern British Columbia. The two activities are used to represent the combined influence 

on the environment of all projects occurring in the area; influence evaluated by cumulative 

impact assessments (CIA) studies. Chapter 4, which starts by integrating the results from 

Chapters 2 and 3, adds a spatial dimension to the petroleum drilling. To compensate for the lack 

of accuracy of the current mono-analytical CIA, Chapter 4 proposes a shift in the paradigm 

governing the CIA. The paradigm shift involves a change in the focus of CIA investigations from 

the detailed analysis of one unlikely future to the identification of the patterns describing the 

future changes in the environment. To illustrate the approach, a set of 144 possible and equally 

likely futures were developed that aimed to identify the potential impacts of forest harvesting 

and petroleum drilling on the habitat suitability of moose and American marten. The habitat of 

the two species was assessed using a habitat suitability index (HSI). Two statistics were used to 

quantify the impact of the two human activities on the habitat of moose and American marten 

(average HSI and Area HSI>0.5). Based on the two HSI statistics, the distinct environmental states, 

which describe the patterns associated with the future changes of the environment, were 

identified using univariate repeated-measures analysis. The univariate analysis supplied an 

answer to the first research hypothesis, namely the pattern associated with each state of the 

environment can be identified. 

 

Chapter 5. Multimodelling assessment of the impact of the petroleum drilling and forest 
harvesting on the wildlife habitat in northeastern British Columbia 
Chapter 5 builds on the results of Chapter 4 and expands the findings of Chapter 4 by providing 

a multivariate perspective of the environmental dynamics. The analysis in this chapter uses the 
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same approach of describing the environment [i.e., a set of probably and equally likely 

evolutions of two HSI statistics (average HSI and Area HSI>0.5)]. Chapter 5 enhances the 

univariate investigation of Chapter 4 by clearly delineating the significant environmental states, 

and identifying the attributes associated with the respective states. The multivariate perspective 

on the environmental dynamic complemented and confirmed the main results of the univariate 

approach as multivariate repeated measures analysis, hierarchical cluster analysis, principal 

component analysis and canonical discriminant analysis, the main tools used to identify the 

impact of the forest harvesting and petroleum drilling on the habitat of moose and American 

marten, supplied similar results. The agreement between the multivariate and univariate 

investigations supported the first hypothesis of the study (i.e., the human activities induce an 

identifiable pattern within the environment). 

 

Chapter 6. Conclusions 
Chapter 6 concludes the thesis by relating the previous chapters and summarizing the important 

results and findings of the research. The chapter also discusses the strengths, weaknesses and 

overall significance of the research, presents the status of the working hypotheses, and 

evaluates the current knowledge related to the CIA. The thesis discusses the potential 

applications of the research findings, specifically the extension of the proposed CIA paradigm 

change to other environmental investigations that routinely use complex models (such as 

climate dynamics and land-use planning), and the impact of the new bounds of the objectives of 

the forest planning on the existing heuristic algorithms. The thesis ends by identifying two 

directions for future research: one practical (inclusion of other human activities within the 

proposed CIA framework), and one theoretical (assessment of the sensitivity of the CIA to the 

violation of the analytical assumptions and the impact of different distributions describing the 

environment on the analytical platform).  

 

  



8 
 

1.4 References 
 

 1.  Bacon, F. 1855. The New Organon. Oxford University Press, Oxford. 338 p. 

 2.  Baker Hughes Inc. 2005. Worldwide Rig Counts - Current & Historical Data. Flaharty, G. 
and Shiels, G. (eds.).  Houston TX, Baker Hughes Inc.  

 3.  Boltzmann, L. 1995. Lectures on gas theory. Dover Publications. 490 p. 

 4.  Cherp, A., Watt, A. and Vinichenko, V. 2007. SEA and strategy formation theories: From 
three Ps to five Ps. Environmental impact assessment review 27(7):624-644. 

 5.  Contini, S. and Servida, A.. 1992. Risk analysis and environmental impact studies. P. 79-
104 in Environmental impact assessment, Colombo, A.G. (ed.), Kluwer Academic 
Publisher, Dordrecht. 

 6.  Council on Environmental Quality. The National Environmental Policy Act. 42. 1969.  

 7.  Dee, N., Baker, J., Drobny, N.,Duke, K., Whitman, I. and Fahringe, D. 1973. 
Environmental Evaluation System for Water Resource Planning. Water Resources 
Research 9(3):523-535. 

 8.  Descartes, R. 1850. Discourse on method of rightly conducting the reason, and seeking 
truth in the science. Sutherland and Knox, Edinburgh. 118 p. 

 9.  Dickert, T.G. and Tuttle, A.E. 1985. Cumulative impact assessment in environmental 
planning; a coastal wetland watershed example. Environmental impact assessment 
review(5):37-64. 

 10.  Dube, M., Johnson, B. Dunn, G., Culp, J., Cash, K.,  Munkittrick, K., Wong, I., Hedley, K., 
Booty, W., Lam, D., Resler, O., and Storey, A. 2006. Development of a New 
Approach to Cumulative Effects Assessment: A Northern River Ecosystem 
Example. Environmental Monitoring and Assessment 113(1 - 3):87-115. 

 11.  Duinker, P.N. 1994. Cumulative effects assessment: what's the big deal? P. 11-24 in 
Cumulative effects assessment in Canada: from concept to practice, Kennedy, A.J. 
(ed.), Alberta Association of Professional Biologists, Calgary. 

 12.  Energy Information Administration. Spot Prices for Crude Oil and Petroleum Products.  
2005.  U.S. Department of Energy.  

 13.  Fuhrer, E. 2000. Forest functions, ecosystem stability and management. Forest Ecology 
and Management 132(1):29-38. 

 14.  Glasson, J., Therivel, R., and Chadwick, A. 1994. Introduction to environmental impact 
assessment. UCL Press, London. 342 p. 



9 
 

 15.  Gore, J.A., Kelly, J.R. and Yount, J.D. 1990. Application of Ecological Theory to 
Determining Recovery Potential of Disturbed Lotic Ecosystems - Research Needs 
and Priorities. Environmental management 14(5):755-762. 

 15.  Government of Canada. 1992. Canadian Environmental Impact Assessment Act. 37. 

 16.  Gosselink, J.G. and Lee, L.C. 1989. Special Issue - Cumulative Impact Assessment in 
Bottomland Hardwood Forests. Wetlands 9: 93-174. 

 17.  Hegmann, G., Cocklin, C., Creasey, R., Dupuid, S., Kennedy, A., Kingsley, L., Ross, W., 
Spaling, H., and Stalker, D. 1999. Cumulative Effects Assessment Practitioners 
Guide.  Hull, QC, Canadian Environmental Assessment Agency. 143 p. 

 18.  Koornneef, J., Faaij, A. and Turkenburg, W. 2008. The screening and scoping of 
Environmental Impact Assessment and Strategic Environmental Assessment of 
Carbon Capture and Storage in the Netherlands. Environmental impact 
assessment review 28(6):392-414. 

 19.  Korzukhin, M.D., TerMikaelian, M.T., and Wagner, R.G. 1996. Process versus empirical 
models: Which approach for forest ecosystem management? Canadian Journal of 
Forest Research-Revue Canadienne de Recherche Forestiere 26(5):879-887. 

 20.  Leimbach, M. and Jaeger, C. 2005. A modular approach to Integrated Assessment 
modeling. Environmental Modeling and Assessment 9(4):207-220. 

 21.  Leopold, L.B., Clarke, F.E., Hanshaw, B.B., and Balsley, J.R.. 1971. A procedure for 
evaluating environmental impact. Washington D.C, U.S. Geological Survey. 15 p. 

 22.  Marcu, M. 1981. Meteorologie cu elemente de climatologie forestiera. Ceres, Bucharest. 
291 p. 

 23.  Marr, K. 1997. Environmental impact assessment in the United Kingdom and Germany. 
Ashgate Publishing, Aldershot. 327 p. 

 24.  Masera, M. and Colombo, A.G.. 1992. Contents and phases of an EIA study. P. 53-78 in 
Environmental impact assessment, Colombo, A.G. (ed.), Kluver Academic 
Publishers, Dordrecht. 

 25.  Ministry of Sustainable Resource Management. TRIM/TRIM II positional files - basemap. 
[2004], http://srmwww.gov.bc.ca/bmgs/catalog/bcgs_indexes.htm. 2004. Victoria 
BC, Ministry of Sustainable Resource Management.  

 26.  Oil and Gas Commission. Well Surface Location.  2005.  Oil and Gas Commission.  

 27.  Patil, A.A., Annachhatre, A.P. and Tripathi, N.K.. 2002. Comparison of conventional and 
geo-spatial EIA: A shrimp farming case study. Environmental impact assessment 
review 22(4):361-375. 



10 
 

 28.  Reid, L.M. 2001. Cumulative watershed effects: then and now. Watershed management 
Council Network 10(1):24-33. 

 29.  Rotmans, J. and van Asselt, M.B.A.. 2001. Uncertainty management in integrated 
assessment modeling: Towards a pluralistic approach. Environmental Monitoring 
and Assessment 69(2):101-130. 

 30.  Seppelt, R. and Richter, O. 2005. "It was an artefact not the result": A note on systems 
dynamic model development tools. Environmental Modelling & Software 
20(12):1543-1548. 

 31.  Spaling, H. and Smit, B. 1993. Cumulative Environmental-Change - Conceptual 
Frameworks, Evaluation Approaches, and Institutional Perspectives. 
Environmental management 17(5):587-600. 

 32.  Spaling, H. and Smit, B. 1994. Classification and evaluation methods for cumulative 
effects assessment. P. 47-65 in Cumulative effects assessment in Canada: from 
concept to practice, Kennedy, A.J. (ed.), Alberta Association of Professional 
Biologists, Edmonton. 

 33.  Stakhiv, E.Z. 1988. An Evaluation Paradigm for Cumulative Impact Analysis. 
Environmental management 12(5):725-748. 

 34.  Toffler, A. 1970. Future Shock. Random House, New York. 505 p. 

 35.  Verburg, P.H., Schot, P.P., Dijst, M.J. and Veldkamp, A. 2004. Land use change 
modelling: current practice and research priorities. GeoJournal 61(4):309-324. 

 36.  Voinov, A., Fitz, C., Boumans, R. and Costanza, R. 2004. Modular ecosystem modeling. 
Environmental modelling and software 19:285-304. 

 37.  Wu, J.G. and David, J.L. 2002. A spatially explicit hierarchical approach to modeling 
complex ecological systems: theory and applications. Ecological Modelling 153(1-
2):7-26. 

 
 
  



11 
 

2. PARADOXICAL EMPIRICAL INVESTIGATIONS OF COMPLEX 
ENVIRONMENTAL SYSTEMS1 

 
 

The need for accurate environmental predictions coupled with current computational flexibility 

has led to the development of complex multi-modular models in subjects ranging from hydrology 

(Wigmosta et al. 1994) to forestry (Kimmins et al. 1999) and cumulative impacts (Voinov et al. 

2004). The predictions are based on the assumption that models can quantify the relationship 

between different environmental attributes. Bas van Fraassen (1980) has argued that models 

connecting measured data with theoretical hypotheses are empirically adequate but fail to 

reveal the truth as constant adjustments are required. Therefore, environmental models have 

more of a heuristic value (Oreskes et al. 1994) as their verification is precluded by a logical 

fallacy (i.e., affirming the consequent) rooted in the incomplete access to natural phenomena 

(Bacon 1855). Models based only on processes, theories and laws solve the fallacy problem but 

face difficulties in numerically representing the relationships between environmental dynamics 

and socio-economic, biophysical or land-management variables (Verburg et al. 2004). 

Additionally, process-based environmental models encounter the challenge that even simple 

descriptions of reality can lead to chaotic behaviors (May 1974). Stochastic models enhance 

process modeling by including a random element in the equations describing the environmental 

relationships (Winston 1994), but do not solve the two difficulties mentioned above. The basis of 

stochastic modeling is the assumption that the equations describing the environmental 

dynamics are converging, in the sense of Grimmet and Stirzaker (2002), an assumption met 

only when the conditions of the ergodic theorem are met (Grimmett and Stirzaker 2002). 

Therefore, stochastic modeling adds a set of methodological constraints without solving the two 

process-based challenges (i.e. quantitative representation of the processes and their chaotic 

behavior).  Alternatively, empirical models are representative of the data but do not reveal the 

structure or the rules governing the relationships between attributes describing the environment 

(Korzukhin et al. 1996). Therefore, complex environmental relationships are represented by 

models that are either fully empirical or a combination of empirically-derived equations with 

process-based models (Korzukhin et al. 1996).  Irrespective of the approach, two challenges 

face the modeling framework. First, the predictions are precise but have reduced accuracy, as 

the probability of occurrence of the outcome of a model converges to 0:  

 

Probability of occurrence = 1/ (the number of equally likely results) ≤  
                                                 
1 A version of this chapter has been submitted for publication. Strimbu, B.M. and Innes, J.L. 
Paradoxical empirical investigations of complex environmental systems. 
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≤ (the smallest number of equally likely results supplied by each empirical equation  (2.1) 

present in a non-overlapping modeling unit)-n ≤ n

n

−

∞→
+ )11(lim = 0 

 

where n is the number of non-overlapping units used by the model and the two 1s correspond to 

the smallest (respectively largest) value of the confidence interval supplied by the empirical 

equations. Secondly, the spatial or temporal scale has a significant impact on the outcomes 

(Refsgaard 1997; Vazquez et al. 2002), as the calibration of a model is scale dependent and 

usually impacts the results (Chaubey et al. 2005). However, not all environmental models are 

scale dependent as some allometric models (Enquist and Niklas 2001)  exhibit scale-

independent relationships, with unchanged relationships for 21 out of the 27 orders of 

magnitudes in mass that cover the life processes (West and Brown 2004). Besides supplying 

results with probability of occurrence asymptotically null, the models describing complex 

environmental systems implicitly rely on an assumption similar to universal biological scaling 

laws (West et al. 1997; West and Brown 2004): the models are structurally invariant with scale 

(i.e., the significance and the type of relationships among the components of  a model do not 

change across scales). 

 

I argue that the structure of the models describing the relationships between the components of 

environmental complex systems depends on analytical details that are not necessarily related to 

the recorded data. Therefore, either the data drawn from observations and experiments are not 

sufficient to represent the environment or the current scientific tools are unable to reveal the true 

relationships between the attributes representing the environment. To support this argument I 

use an approach resembling the Liar Paradox (Mills 1998), namely the hypothesis that the 

equations describing the relationships among the attributes quantifying the environment are 

simultaneously linear and nonlinear. I tested the linearity hypothesis by performing a time series 

investigation, as for a true linear model ∑ ×=
i

TiiT XaY |  the size of the time-step should not 

influence the linearity of the equations, as long as the models developed for each time-step are 

correct, where YT represents the dependent variable calculated using the time step T, Xi|T is the 

ith independent variable for time step T and ai|T is the coefficient of variable Xi|T. The lack of 

impact of the time step on a linear model is valid if E(YT)=E(YT’)/n where E(YT ) is the expected 

value of variable YT,, T and T’ are two times steps such that T’ = nT, and  n is a natural number. 

For a true model, the equality of the two expectations holds irrespective the time steps, as   
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which proves that time-step has no effect on the model structure. 

 

I selected time series models to prove the hypothesis as time series represents the simplest 

forecast relationship (i.e., one-dimensional). Time series models are sensitive to the fulfillment 

of the statistical assumptions (particularly independence), therefore to ensure that the results 

are not biased (Gujarati 1995) or meaningless, I considered that the analysis was completed 

when the residuals were reduced to white noise (WN) and did not exhibit nonlinear 

dependencies (Brockwell and Davis 1996).  

 

To prove the validity of the argument (i.e., the relationship between the environment 

components are described by equations that are simultaneously linear and nonlinear) only 

empirical equations were considered, as complex environmental models contain a significant 

number of empirically-derived equations (Voinov et al. 2004). The proof used data from the oil 

and gas industry and developed autoregressive equations connecting the count of active 

petroleum rigs, a variable representing the complex array of environmental conditions required 

for drilling, with the New York Mercantile Exchange (NYMEX) oil price (Baker Hughes Inc 2005; 

Oil and Gas Commission 2005). To investigate the time step influence on the relationship 

between the number of active petroleum rigs and oil prices I adopted a hybrid approach, in the 

sense of Walls (1992), which covers both econometrical and geological investigations. 

Following the recommendation of Walls (1992), the relationship was assessed using the most 

common variables present in petroleum drilling inquiries: actual (xt
1) and historical average 

(xt
2)of the number of rigs and NYMEX crude oil prices at time t (i.e., monthly minimum (xt

3), 

maximum (xt
4) and average (xt

5)). To demonstrate the hypothesis I used monthly averages for 

five time-steps (i.e., 1, 2, 3, 6 and 12 months). The monthly average was recommended by the 

length of time for which an active rig is stationed at a particular drilling location (i.e., commonly 

four to five weeks). To test whether the argument is valid at different spatial scales, jurisdictions 

and geological conditions I examined the dynamics of the relationship between oil prices and 

the number of active rigs for the main petroleum production areas around the world: Africa, 

Canada, Europe, Far East, Latin America, Middle East and USA.  

 

The results (Appendix A) confirmed the findings of previous studies (Walls 1992) and identified 

a significant relationship between the number of active rigs on one hand, and the past number 
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of rigs and the NYMEX oil prices, on the other. However, the time-step changed the structure of 

the relationship for all regions except the USA, as the NYMEX oil prices were eliminated from 

the models based on averages computed for time-steps larger than three months (i.e., 

significance larger than 0.1). For the USA, the equation had non white-noise residuals 

(p=0.001). Consequently, for the USA, I built an autoregressive model (AR) that met modeling 

requirements (p>0.06 for WN and p>0.05 for quadratic dependency) but eliminated all the 

NYMEX oil prices, regardless of the time-step, as being highly insignificant (p>0.5). The results 

suggest that the number of active rigs is sensitive to oil prices in all regions except the USA, 

where variables other than NYMEX oil prices seem to play a more important role in the 

dynamics of active rigs. The lack of significance of the NYMEX oil prices for time steps greater 

than three months could be related to the loss of information associated with the increase in the 

time-step size used to compute the monthly average (Kuo et al. 1999). Therefore, generating 

structurally invariant models for all time-steps (Refsgaard 1997; Schoorl et al. 2000) led to 

inefficient results. While it was expected that by increasing the temporal scale of the 

investigation all the oil prices would lose their importance, it was not expected that for the same 

region different time-steps will contain different oil-prices  (e.g., the model for Europe included 

NYMEX maximum oil price for the monthly time step and the minimum oil price for the tri-

monthly data). This change of the variable (i.e., NYMEX oil prices) within the models (i.e., 

regional equation) only indicates a lack of structural invariance, but evidence of the absence of 

structural invariance was supplied by the violation of the Banach-Steinhaus theorem (Banach 

and Steinhaus 1927) by the autoregressive and the moving average terms of the model 

(Appendix A). Banach and Steinhaus (1927) proved that the linear equations will converge to 

the true relationship, in respect to the time-step, provided that there is no evidence that the 

linear equations are incorrect. The theorem ensures that the linear model  

∑
≥

+==
1

|||0|1 '
i

p
TiTiT

p
TTT xaaXAx          (2.3) 

converges to the true model XA'  only if p
Tix | constitute a bounded fundamental sequence on a 

complete set (where AT’ is the transposed vector of the coefficients ai|T, p is the autoregressive 

order, p≥1, and XT
p is the (xp

i|T ) vector with time step T). The convergence is trivial for time 

steps larger than a critical value, Tc, for which the correlogram contains only terms that are not 

significantly different from 0 as 0''lim aXAXA TTTcT
==

>
but it is not necessarily valid for all T < Tc 

as iTiTcT
aa ≠

< |lim . The latter case characterizes the models for Africa and Europe (Figures 2.1a 

and 2.1b), where it seems that 0lim | →
→ TiTcT

a , or 8.0lim | <
→ TiTcT

a  respectively, even that the 
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expected value is 1| =TiEa  (i.e., the time series became random noise for T>Tc). Therefore, the 

linearity of a variable significant at all scales is either nonexistent or the analysis is data 

dependent, as fulfillment of the Banach-Steinhaus theorem is contingent on data (i.e., not valid 

for Europe or Africa). Furthermore, all the models had a break or a significant drop in the 

autoregressive coefficient at the two-month time-step, indicating a haphazard connection 

between the theoretical findings and the real data. Consequently, besides theoretical 

considerations strictly related to the model development, the selection of the model depended 

on the time-step. However, for each time-step there is no indication that the models are 

incorrect (i.e., all assumptions and requirements were met) (Appendix A), leading to the 

conclusion that there is no structural invariance across time-steps.  

 
Figure 2.1 Coefficient of the autoregressive term of the number of active rigs and the dynamics 
of the moving average for the error model. The drop in the magnitude of the coefficient at the 
time step two-months and the variation in the type of equation describing the error model show 
the haphazard investigation of the complex environmental system, while the decrease of the 
coefficient of the autoregressive term with time-step contradicts the Banach-Steinhaus theorem. 
 

The lack of consistency across different time-steps for the significance of the variables, and the 

absence of convergence of the coefficient of the autoregressive term to the expected value, 

indicated the existence of an insufficient relationship between the theoretical framework and 

data obtained from observations. This insufficiency was deepened by the fluctuation of the 

model describing the moving average (MA) part of the relationship. The use of the MA or the 
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autoregressive conditional heteroskedasticity (ARCH) process (Brockwell and Davis 1996) was 

imposed to ensure that the residuals were organized as WN and were linearly and quadratically 

independent (Appendix A), a condition essential for valid time-series inferences. A loss of 

information was present to the MA and ARCH terms, as for time-steps less than three months, 

90% of the models had a MA or ARCH term, compared to only 47% for time-steps larger than 

three months. Additionally, the type of equation describing the moving average depended on the 

time step (Appendix A), as all the models, except for the USA, changed the degree of the MA 

equation at least once (Fig 2.1c and 2.1d): from linear to no MA term or the opposite (i.e., Latin 

America, Canada and Europe), from linear to quadratic and no MA (i.e., Africa and Far East) or 

from quadratic and no MA (the case of Middle East). The variation of the MA part of the model 

changes the entire model from linear to nonlinear and back. The same haphazard variation as 

identified for the autoregressive coefficients was present in the model type, confirming that the 

equations describing the active numbers of rigs is linear and nonlinear, according to the time-

step, consequently the absence of an invariant structure across different time-steps. 

 

I complemented the previous analysis performed on areas covering millions of square 

kilometers, different geo-climatic zones and politico-economical regimes, with a similar 

investigation but focused on one homogeneous area, northeastern British Columbia (BC), 

Canada. To substantiate that structural invariance is not confined to the variable representing 

the count of active rigs, the BC analysis considered the number of wells drilled. To enhance the 

investigation performed on the number of active rigs, besides the linear model a Gamma 

distribution model, suitable for count type data, was used to describe the dynamics of the 

number of well existing on the landscape (Renshaw 1994). 

 

The results (Appendix A) showed that regardless of the model type (i.e., linear or Gamma) the 

smaller and geologically and regulatory homogeneous area is characterized by models with 

greater structural variability than the larger and more heterogeneous regions. However, the 

main distinction between the BC and the continental or national models was the absence of a 

linear model across all time-steps (Fig. 2.2a). The presence of a square root model for the 

number of wells drilled annually, which replaced the linear model, was imposed by the necessity 

to have the residuals distributed as WN. For the annual time-step, not only the linear model 

disappeared but the significant variable also changed, from the annual to the cumulative 

number of wells drilled (Appendix A). The transformation of the model with each time-step was 

amplified for the Gamma distribution model, which had a linear denominator only for monthly 

and bimonthly data and a square root denominator for the remaining time-steps (Fig.2.2 b). 
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Nevertheless, for both the linear and Gamma models, the changes of the significant variables 

from linear equation to square-root equation did not affect the error term, which had a linear MA 

regardless of the time-step. The loss of information identified at the models describing the 

number of active rigs was also observed for BC as NYMEX oil prices were dropped from the 

models with time-steps larger than two months (Fig 2.2.c and 2.2 d). The same conclusion 

regarding the lack of structural invariance found for the active number of rigs was reached for 

the models representing the number of wells, as for each time step and model (i.e., linear and 

Gamma) there were no indications that the models were incorrect but the evolution of their 

structure violated the Banach – Steinhaus theorem. Therefore, either the models were nonlinear 

or the analysis should have included information related to the analysis itself, such as time-

steps or scale. However, there was no indication that the linear models were incorrect, leading 

to the conclusion that the models should incorporate in addition to the mathematical formula 

information regarding their analytical validity.  

 
Figure 2.2 Confidence interval (α=0.02) for coefficient of the autoregressive term (i.e., number 
of wells drilled per time-step), and the number of economic variables present in the model 
describing the total number of wells drilled per time-step. The same pattern identified for the rig 
count model (i.e., decrease in the coefficient of the autoregressive term with the time-step) and 
the absence of a linear model across all time steps confirm the haphazard character of a 
scientific investigation. The decrease in the number of economic variables confirms the loss of 
information mentioned by other studies (Kuo et al. 1999) when time step increases; therefore 
the inefficiency of structural invariant models. 
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The results demonstrate that the development of complex representations of the environment 

could lead to models whose variable structure denies the convergence to the true model, 

regardless of the model type (i.e., linear or nonlinear) and distribution used (i.e., normal or 

gamma). Therefore, it seems that data obtained through observations or experiments are 

insufficient to quantify complex environmental relationships. The analysis itself could play a 

significant role in the investigation process as it is structurally dependent on at least one 

external factor, namely scale. One must therefore either acknowledge the inability of current 

scientific methods to reveal the true relationships governing complex environmental systems or 

should introduce an analytical factor into the description of those systems. 
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3. A DETERMINISTIC HARVEST SCHEDULER USING PERFECT BIN 

PACKING THEOREM1 
 

3.1 Introduction 

 

To incorporate sustainable forest management into annual allowable cut determinations, forest 

planners are using techniques that have evolved from one-dimensional models, such as the 

area- or volume-control approach (Davis et al. 2001, p. 528-545; Bettinger et al. 2009, p. 214-

228) to complex multidimensional perspectives, such as mixed integer programming and 

heuristic techniques (Bettinger et al. 2002). Mixed integer programming can identify the optimal 

solution that answers the planning requirements, but has limited applicability in real forest 

planning applications as it depends on the problem size (Crowe et al. 2003). Sometimes even 

problems with less than 100 variables can be difficult to solve using mixed integer programming 

(Anderson et al. 1994, p.345), as the computation time can have an exponential or even 

factorial dependency on the number of integer variables (Nemhauser and Wolsey 1988; Wolsey 

1998). Additionally, scheduling is complicated by the interdependency between the temporal 

constraints (e.g., each stand has a different harvesting age) and the spatial constraints (e.g., the 

size of an opening has to be smaller than 60 ha or the forested landscape has to contain wildlife 

corridors). The introduction of multidimensional approaches into forest planning led to the 

widespread use of heuristic techniques, techniques with reduced complexity comparing to 

mixed integer programming but supplying suboptimal results (Zomaya and Kazman 1999). The 

lack of optimality of heuristic algorithms is present both at stand and forest levels. From a stand-

level perspective, the departure from optimality is associated with harvesting at ages different to 

those determined through marginal analysis (Duerr 1993, p. 93; Amacher et al. 2009, p.38, 47). 

At the forest level, the sub-optimality of the heuristic techniques follows from the fact that the 

annual allowable cut (AAC) determined using heuristic algorithms is less than the AAC supplied 

by mixed integer programming [sometimes the difference is less than 5%, as reported by 

Boston and Bettinger (1999)], when similar planning constraints are imposed (Crowe and 

Nelson 2003; Pukkala and Kurttila 2005; Bettinger et al. 2002; Murray and Church 1995). 

 

The objective of forest planning (i.e., scheduling the harvestings in time and space) is 

complicated by the type and spatial repartition of the silvicultural systems distributed across the 

                                                 
1 A version of this chapter has been submitted for publication. Strimbu, B.M., Innes, J.L. and 
Strimbu, V.F. A deterministic harvest scheduler using perfect bin packing theorem. 
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forest (Heinonen and Pukkala 2004; Baskent and Jordan 2002), which can lead to non-

polynomial complexity problems (Kangas et al. 2002). Clearcuts are operationally preferred and 

are easier to implement in computations than selection or shelterwood methods. However, 

clearcuts introduce a set of constraints that are not present with other silvicultural systems 

within an integrated forest management framework: the greenup/adjacency delay. This type of 

constraint further increases the complexity of the planning problem, promoting even more the 

use of heuristic techniques in solving the large combinatorial scheduling problems, as defined 

by Lockwood and Moore (1993). Among the heuristic techniques used in forest planning, 

stochastic algorithms are the most popular and it is common practice to perform a set of runs 

with the “best” solution being selected (Bettinger et al. 2002). The necessity of several runs 

complicates the investigation and diminishes the reduced computation time feature of the 

heuristic algorithms, as the selected solution can be obtained after several hours of total 

computing time (Murray and Church 1995; Pukkala and Kurttila 2005). In the case of large 

scheduling problems, the performances of the heuristic technique are assessed by comparing 

the magnitude of the AAC supplied by the heuristic algorithms with a value considered an upper 

bound (Bettinger et al 2009), commonly obtained using linear programming (LP). The present 

research focuses in determining a majorant for the AAC, in the sense of Shanks and Gambill 

(1973) that accommodates simultaneously the optimality for stand and forest and provides a 

tighter bound than LP for the AAC. Additionally, I propose a new algorithm for computing the 

AAC that is deterministic and supplies results close to the value that optimizes the objectives for 

both stand and forest.  

 

3.2 Methods 

 

3.2.1 Data description 

 
The performance of a new harvest scheduler algorithm or the adjustments of an existing one 

are normally assessed using either computer-generated data (Bettinger et al. 2002) or real data 

(Murray and Church 1995). Following Heinonen and Pukkala (2004), who used real data to 

evaluate two harvest scheduling algorithms, the new AAC majorant and the new harvesting 

algorithm are presented using forest inventory data from three areas from north-eastern British 

Columbia, Canada (Fig 3.1).  
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Figure 3.1 Study areas 
 

Each area has more than 35,000 stands [in the sense of Kangas and Kangas (1999)] larger 

than 0.5 ha (Table 3.1) and combined, the three areas cover 1.75 million ha. Depending on the 

area, the timber harvesting land base (THLB) contains between 4700 and 8000 units larger than 

5 ha (the units were obtained by merging the original adjacent stands smaller than 5 ha based 

on species, site index and age) (Table 3.1). The data were supplied by the former British 

Columbia Ministry of Forests and the former British Columbia Ministry of Sustainable Resources 

Management. Three biogeoclimatic zones (Anonymous 1997a; Anonymous 1997b; Anonymous 

1999) cover the areas considered in the analysis: the Boreal White-Black Spruce (BWBS) zone, 

which dominates the western extension of the Great Plains region of Canada , and the Spruce–

Willow–Birch (SWB) and Engelmann Spruce–Subalpine Fir (ESSF) zones that are found at 

elevations above 1300 m. The main tree species are white spruce (Picea glauca), black spruce 

(Picea mariana), trembling aspen (Populus tremuloides), lodgepole pine (Pinus contorta), 

balsam poplar (Populus balsamifera), Engelmann spruce (Picea engelmannii) and subalpine fir 

(Abies lasiocarpa). 
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Table 3.1. Timber harvesting land base (THLB) 

Study Area Forest cover THLB 
Surface 

[ha] 
# stands 
(> 0.5 ha) 

Surface 
[ha] 

# units >5 ha obtained by aggregation 
of adjacent stands smaller than 5 ha 

Doig  684 138 37042 183 057 7926 
Fort Nelson  641 024 86893 91 355 5486 
Moberly  410 194 36319 140 222 4729 

 
 

3.2.2 Optimal harvesting age and mean annual increment 

 

The moment when a stand is harvested is determined by the dynamics of the attributes 

considered in the planning process, such as biomass, net present value or habitat suitability. 

The set of attributes describing a stands can be represented as a multivariate function f : Rm → 

R, ))(),..,((),..,( 11 iyiyfyyf mm = , where )(),..,(1 iyiy m are the functions quantifying the 

attributes y1 to ym at age i into the real set R.  The harvest timing ensuring stand – level 

optimality occurs at the age that maximizes the function f (when optimality is represented by 

minimum then the inverse transformation would revert the analysis to maximum) during an 

undefined long planning horizon (i.e., an unspecified large number of harvests); that is

∫
horizonPlanning

m dttytyf
0

1 ))(),..,(( . In the case when silvicultural treatments are repeated indefinitely   
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The optimal harvesting age (OHA) is the age for which the Eq. 3.1 holds irrespective the length 

of the planning horizon. According to Eq. 3.1 the OHA is the rotation that ensures the 

maximization of the function f during one rotation: 
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 is reached when its total derivative in respect to the rotation R of the 

stand is null (Shanks and Gambill, 1973):  
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(3.2) 

 

The differentiation of the Eq. 3.2, which considers a broad array of attributes, leads to a 

complicated equation that could occlude the objective of the current research (i.e., 

determination of a tighter bound for the harvested volume than linear programming and 

presentation of a new forest harvesting algorithm). Furthermore, a series of functions 

quantifying some of the stand’s attributes could contain a significant subjective component 

(such as visual quality objectives or representation of the wildlife habitat loss in monetary terms) 

that would increase unnecessarily the complexity of the presentation. Without a significant loss 

of generality (understood as the unaltered expansion of findings between two dimensional 

spaces) I use only one attribute (i.e., the stand’s yield), which allows a clear description of the 

algorithm and an objective quantification of the stand. When the yield is assumed to be 

harvested only once during the rotation (i.e., clearcut), then the function f reduces to one yj(i) 

and the Eq. 3.2 has the simpler form 0)(
=

R
Ry

dR
d , where y(R)= yj(R). The 

R
Ry )( is the mean 

annual increment (MAI) corresponding to the rotation; therefore, for the simple case of 

clearcutting, the optimal harvesting age occurs at maximum MAI, max(MAI), when only stand’s 

yield is considered,  which confirms the results of Rucareanu and Leahu (1982, p. 127-140), 

Davis et al (2001, p. 146) and Bettinger et al (2009, p.108). 

 

Harvesting at max(MAI) ensures the optimality of the timber accumulation criterion (Davis et al. 

2001, p. 145-147) at the stand but not at the forest level. To integrate the stand within the forest, 

current schedulers optimize the timber harvesting for the entire forest, so that most stands are 

harvested at ages different than the age at max(MAI), Age max(MAI), therefore at a suboptimal 

value for the stand. In the case of harvesting at suboptimal ages, it is preferable for harvesting 

to occur after the MAI has peaked, as the annual stand growth rate has already passed its 

maximum and the stand is likely to have reached a steady-state phase (Nyland 1996, p. 204).  
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3.2.3 Maximum volume harvested annually determined using MAI 

 

A perfect harvest scheduling model is a model that guarantees the optimality of the established 

goals at the stand and at the forest level. Therefore, when the goal is the maximization of the 

even-flow annual harvested volume, a perfect scheduler should harvest each stand at OHA [i.e., 

the age of max(MAI)]  and should ensure the constancy and global maximality of the annual 

harvested volume. The identification of a solution that accommodates both optima, for the stand 

and for the forest, could start by establishing the OHA for each stand, which is determined by 

the merchantability standards when only the volume is of interest. Following the establishment 

of OHA for each stand the maximum volume to be harvested annually (MVHA) can be 

determined using the perfect bin-packing theorem (Coffman et al. 2000).  

 

The perfect bin-packing theorem (PBPT) states that “for positive integers k, j, and r, with k ≥ j, 

one can perfectly pack a list L consisting of r×j items, r each of sizes 1 through j, into bins of 

size k if and only if the sum of the r×j item sizes is a multiple of k” (Coffman et al. 2000). 

Therefore, a necessary and sufficient condition for a constant MVHA (i.e., the bin size from the 

PBPT) of n stands (i.e., the list from PBPT) is that the volume of the harvested stands can be 

organized as an arithmetic series (i.e., the 1 through j from the PBPT) whose terms are 

uniformly distributed across the series (i.e. the r from the PBPT) and having the sum a multiplier 

of MVHA. In eventuality that the PBPT conditions are met, then  is a multiple 

of the MVHA. 

 

Two constraints are imposed by the perfect bin-packing theorem: first, the volumes of the 

harvested stands range from 1 through j without gaps, and, second, that the forest contain a 

constant number of stands (i.e., r from the PBPT) with the same volume (i.e., r of volume 1, r of 

volume 2 and so on). Usually, real forests do not meet these conditions as the volume of the 

harvested stands are seldom evenly distributed across an arithmetic series with a step of one, 

even when a normal forest was the long term goal of the forest management (Rucareanu and 

Leahu 1982). The volume distribution of the harvested stands can be described by continuous 

and invertible cumulative functions, which can be translated into uniform distributions, as proved 

by the inversion principle (Devroye 1986, p.28). For the main functions used to describe the 

volume distribution, Deveroye (2003, p.29) provided the inversion function transforming the non-

uniform random variate into a uniform variate, ensuring the fulfillment of the PBPT. The simplest 

2
)1(

1

+
=×∑

=

jjrir
j

i



27 
 

case of transforming the series of the harvested volume in an arithmetic series with step one 

and the term uniformly distributed across the series is when the harvested volumes have a 

uniform distribution. In this case, r from the PBPT would be the number of stands with the same 

volume (the case of discrete distributions) or within the same volume class (the case of 

continuous distributions), j= n/r, and each harvested volume would be represented as a value 

between 1 and j if the following linear transformation is applied: 

 

⎥
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⎡
−

×−− −

)//()(
)101(

minmax

minstand

rnVV
VVceiling

ε

 
        (3.3) 

 

where Vmin is the smallest harvested volume, Vmax the largest harvested volume from the series 

of stands with volume when harvested V stand and ε is a natural number  ensuring that the ceiling 

function will return value 1when Vstand = Vmin and value j when the Vstand = Vmax. 

 

Perfect bin-packing theorem identified the necessary and sufficient conditions for perfect 

scheduling (Coffman et al. 2000), but supplied no indications regarding the size of MVHA. The 

magnitude of the MVHA was determined on the next corollary of PBPT: 

 
Corollary. For a set of merchantability standards ensuring the fulfillment of the PBPT, the 

maximum volume that can be harvested annually is equal to the sum of the maximum mean 

annual increment of the stands. (A proof is presented in the Appendix B). 

 

To meet the requirements of the PBPT, the volume of the stands should be uniformly distributed 

or have a left-skewed distribution with respect to the harvest timing, which is the difference 

between the OHA and the current age of the stand. The volume distribution with respect to 

harvest timing depends on the conditions of the forest and the selected set of merchantability 

standards. The conditions of the forest cannot be changed, therefore when the distributions are 

skewed to the right, the OHA have to be recalculated such that the volume distribution meets 

the PBPT. The OHA ensuring the PBPT requirements are determined by adjusting the 

merchantability standards [e.g., from minimum upper stem diameter 10 cm (the stand could be 

managed for pulpwood) to 20 cm (the stand could be managed for sawtimber)], as according to 

Eq. 3.2 the OHA depends on the derivative of the function quantifying the attributes of interest 

(e.g., MAI for pulpwood differs from MAI for sawtimber). The new merchantability standards can 

be found by solving the following mixed integer programming problem, which would transform a 

right-skewed distribution to a uniform or slightly left-skewed distribution: 
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where Age g
OHA = Age g

max(MAI) is the OHA determined for the goal g (i.e. the age at max(MAI) 

determined for the merchantability standard g), 
g
iX is the binary variable indicating whether or not stand i would be harvested at Age g

max(MAI),  

g
iV is the volume of stand i at OHA for goal g. 

 

The objective function ensures that among all possible merchantability standards (e.g., the 

combination between the minimum diameter at breast height and the minimum upper stem 

diameter) only the standards that maximize the Corollary’s results are selected. The first 

constraint selects the combinations of merchantability standards leading to even-flow, while the 

second constraint restricts the harvestings only to the merchantability standards supplying 

uniform or left-skew distributions of the harvested volumes. The last two constraints ensure that 

each stand has one (the third constraint) and only one (the fourth constraint) merchantability 

standard (the initial or the adjusted standard). 

 

3.2.4 Adjusting Maximum Volume to be Harvested Annually: First Fit 
Decreasing algorithm 

 

The computation time used to solve forest scheduling problems depends on the problem size, 

importance of the results and the CPU performances, with several authors providing solution in 

seconds (McDill et al 2002), minutes (Gun and Richards 2005; Bettinger et al 2002) or hours 

(Crowe et al 2003).  The present research focuses on choosing an efficient and deterministic 

algorithm that provides a solution to the scheduling of the harvest of more than 4000 stands in 
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less than 10 minutes. One possible such algorithm is the First Fit Decreasing (FFD) algorithm 

(Coffman et al., 1997) that can be implemented to run on average )log(nnR ××  steps, less than 

1 min when rotation R is 100 years, the number of stands n is less than 10000 and the CPU is 

an Intel 3 GHz Pentium 4. The FFD algorithm sorts the stands in decreasing order in relation to 

the attributes of interest and allocates stands to the nearest year in the planning period that can 

accommodate its size (Coffman et al. 1997). Johnson (1973) showed that queuing the stands in 

relation to the attribute quantifying the planning objective (e.g., volume when the objective is 

even – flow maximization) supplies results that have an expectation larger than 7/9×MVHA [the 

result without proof can be found in Coffman et al. (1997)]. The use of a different criterion in 

queuing and selecting the harvest timing of a stand (such as oldest first or randomness) could 

lead to results with an expectation 70% smaller than the optimal solution (Garey et al. 1976; 

Ullman 1971).  Therefore, I built an efficient algorithm (Fig 3.2) which, by combining the FFD 

method with the distributional adjustment required by PBPT (i.e., the harvested volumes are 

uniformly distributed in respect to the harvest timing), ensured that the even – flow of the AAC is 

larger than 7/9×MVHA.  

 

The spatial constraints associated with sustainable forest management, such as greenup – 

adjacency delays or wildlife corridors, were not considered in MVHA computations and could 

lead to results below 7/9×MHVA. The spatial restrictions were incorporated into the FFD 

algorithm using the unit restriction model, in the sense of Murray (1999). The units are either the 

individual stands larger than 5 ha or an aggregation of adjacent stands smaller than 5 ha, 

aggregation based on the harvest timing. The selection of unit restricted model to address the 

greenup-adjacency was preferred over the area restricted model, as the area restriction model 

is computationally intense (Goycoolea et al 2005), and the purpose of this chapter is to present 

the algorithm itself not the response of the algorithm to the modeling of the spatial constraints. 

The green-up adjacency constraint complicates the planning problem but has little effect on the 

magnitude of MVHA determined based on PBPT corollary when the difference between harvest 

timing of neighboring stands is larger than the greenup – adjacency delay. When the availability 

of stands for harvesting is limited by the adjacency delay then either the harvesting age could 

be determined by adjusting FFD [i.e., the stand with largest volume and age larger or equal to 

OHA] or by adding extra constraints to the mixed integer programming problem (3.4). Adjusting 

the harvesting age using mixed integer programming problem (3.4) could lead to infeasible 

matrices, from the size perspective (matrices larger than 60000 x 60000 values). Therefore, to 

avoid size-related issues and to maintain the computational time to minutes, the harvest timing 

of a stand fulfilling the greenup-adjacency delay was established by adjusting the FFD 
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algorithm, such that the stand with the largest volume would be harvested first (condition 

imposed by the FFD algorithm) but at any age equal or larger than OHA, which relaxes the 

PBPT’s Corollary [i.e., age at max(MAI)]. The adjustment of the FFD algorithm was preferred 

over the mixed integer programming (3.4) as bin-packing heuristic algorithms are self organizing 

to resemble the PBPT requirements (Csirik et al. 1999) and can supply results having the 

expectation MVHA (Csirik and Johnson 2001). 

 

Following the work of Murray and Church (1995), Bettinger et al. (2002), Crowe and Nelson 

(2003), Pukkala and Kurttila (2005), I compared the results supplied by the adjusted FFD with 

the results produced by simulated annealing (SA) and a relaxed LP, using data from the three 

areas. The set of constraints framing the scheduling problem were similar to those used by 

Crowe et al. (2003) but enhanced with some of the conditions from the Sustainable Forest 

Management Plan developed for the Fort St. John Pilot Project (Jukes et al. 2004): 

 A maximum 10% fluctuation of the annual harvested volume in respect with the average 

volume harvested yearly during the planning period; 

 A maximum opening size of 60 ha; 

 A minimum opening size of 5 ha; 

 Stands are harvested either at ages larger than a preset value, as suggested by 

Bettinger et al. (2002) and Crowe and Nelson (2003), which for the study areas was 

recommended by Jukes et al (2004) to be approximately 120 years, or at ages larger or 

equal to OHA (i.e., Agemax(MAI)). The optimal harvesting age (Appendix C) was 

determined considering the merchantability standards of 17.5 cm for spruce and sub-

alpine fir and 12.5 cm for all other species (Pedersen 2003); 

 Greenup/adjacency delay of 1, 5,10 and 20 years, respectively; 

 A planning period of 100 years. 

 

The above constraints determined four comparison scenarios [i.e., two algorithms (i.e., SA and 

adjusted FFD) × two harvesting ages (i.e., harvesting at OHA or older and harvesting above a 

minimum age)]. The relaxed LP was not included in the comparisons as it was used mainly to 

compute a majorant for the SA algorithm. 
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Figure 3.2 First fit decreasing scheduler algorithm that fulfils the PBPT corollary requirements 

and queues the stands according to the attribute considered for optimization 
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3.2.5 Simulated annealing 

 
Simulated annealing (Metropolis et al. 1953) has been identified as one of the heuristic 

algorithms that supplies results close to the linear programming solution attached to the forest 

planning problem (Crowe and Nelson 2003; Bettinger et al. 2002). The simple implementation of 

the simulated annealing (SA) has led to its frequent use as a test algorithm in forest planning. 

Additionally, SA supplies one of the fastest solutions amongst commonly used heuristic 

algorithms, as for similar problems tabu search requires three times more time and genetic 

algorithms require five times more time (Bettinger et al. 2002).  

 

The parameters of SA [i.e., initial temperature (Ti), freezing temperature (Tf) and the rate of 

annealing (ra)] are usually selected experimentally for each problem (Boston and Bettinger 

1999; Bettinger et al. 2002; and Crowe and Nelson 2003). The tree parameters, together with 

the number of solutions computed for each temperature, S, determine the run-time of the 

algorithm if no stopping rule is enforced [e.g., the solution did not change for a certain ratio 

between the number of accepted and rejected solutions (Zomaya and Kazman 1999; Baskent 

and Jordan 2002) or the solution is the best solution obtained after a preset number of iterations 

(Crowe and Nelson 2003)].  The runtime needed by SA to reach an optimal solution with 

certainty is greater than the runtime required for complete enumeration and evaluation of all 

possible solutions (Geman and Geman 1984); which makes the guaranteed optimality pointless 

with SA. An estimation of the time to obtain SA solution using an exponential cooling schedule 

(Nourani and Andresen 1998) is:  

 

  (3.5) 

 

Based on Eq. 3.5, the expected time required by SA to reach an optimal solution with the 

parameters (Ti, Tf, ra) is 
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 t is the time to generate and assess and alternate state 

 S is the number of solutions for each temperature 

 U(0,1) is a uniform random variate taking values between 0 and 1. 

 

When actual harvest scheduling values are used in the SA computations, the exponential 

integral ∫ −− dxxx )exp(1  can be assumed negligible in respect to )/exp( TVT Δ ;  therefore, the 

double integral from Eq.  3.6

)/exp()exp()/exp()()/exp( 1 TVTdxxxTVTdTVdTV Δ≈−+Δ=ΔΔ ∫∫∫ − , 
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To identify the set of parameters leading to solutions close to optimality I performed a 

preliminary investigation for each area by running the SA only 15 min and choosing seven rates 

of annealing, ranging between 0.70 and 0.99 (i.e., from 0.7 to 0.95 in steps of 0.05 plus 0.99) 

and 13 initial temperatures (103, 104, 105, and from 106 to 108 in steps of 9.9 x 106). Using 

several trial and error runs I selected as freezing temperature the value 100, except for initial 

temperatures 106 or less when 0 was used. The number of solutions at any given temperature 

was determined experimentally starting with the value that supplied the ratio between the 

number of accepted and rejected solutions (Hoss and Stutzle, 2005, p.77) of 1:10, as proposed 

by Zomaya and Kazman (1999). For each study area, 10000 solutions per temperature led to an 

average ratio of maximum one accepted to 10 rejected solutions, resembling the results of 

Bettinger et al (2002). Consequently, S = 10000 was used in all the computations, irrespective 

the initial and freezing temperatures, annealing rate or study area. Based on Eq. 3.7, the 

selected set of parameters and assuming that the time to evaluate a solution is approximately 

10-10 seconds, the expected computing time is of the order of 1018 seconds (approximately 1013 

hours), which lead to the termination of the algorithm not when the temperature would reach the 

cooling point but when the ratio between the number of accepted and rejected solution is 

smaller than the accepted ratio, as recommended by Zomaya and Kazman (1999). Hastings 

(1970) linked SA to Markov chains; therefore, when the time of a run is relatively short, the 

generation of several runs is required. Consequently, for green-up/adjacency of 5 years I 

produced ten solutions for each initial temperature, rate of annealing, study area and method of 

selecting the harvesting age (i.e., minimum age or OHA). Consequently, I performed a total of 
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10 runs × 13 initial temperatures × 7 annealing rates ×3 study areas × 2 harvesting ages  = 

5460 SA runs with a total time of 1365 hours. To investigate the impact of the adjacency delay 

on the performance of SA, an additional set of runs, each one hour long, were executed.  For 

each study area, harvesting age and adjacency delay and using only the set of parameters (i.e., 

initial temperature, number of iterations per temperature and annealing rate) that supplied the 

largest results among the above 5460 runs, a series of five runs were executed, a total of 120 

runs. The one hour run supplied larger results than the 15 min run and was comparable with the 

waiting time of Crowe and Nelson (2003), which allowed 40 min for SA to supply a solution. The 

greenup-adjacency constraint in SA was addressed with the same algorithm used for the 

adjusted FFD, the unit restriction model.  

 

The results supplied by the two algorithms were compared with the solution supplied by a 

relaxed linear programming (LP) representation of the scheduling problem (Eq. 3.8). The 

employment of a relaxed LP in conjunction with different heuristic techniques was advocated by 

the Lockwood and Moore (1993), Csirik et al (1999), Baskent and Jordan (2002), Bettinger et al 

(2002, 2009) and Gunn and Richards (2005), who used it to identify the bounds of the optimal 

solution. The LP constraints relaxed were the greenup-adjacency delay and the harvesting of a 

stand in one intervention (i.e., the harvest of a stand could occur in several clearcuts), which 

were not incorporated as restrictions. LP algorithm was used to identify an upper bound for the 

scenarios based on the preset harvesting age; therefore, harvesting could occur only on stands 

120 years or older. The relaxed, LP which aim the maximization of the volume harvested during 

the planning period, is  

max V , ,   

  

∑ V , , 1 ∑ V , ,                      

∑ V , , 1 ∑ V , ,                        (3.8) 

∑ ,                                                                       

, 0       120      
 

where Xi,j is the area of unit i to be harvested in year j of the planning period p 

Vi,j is the volume per hectare of unit i in year j of the planning period p 

N is the number of units in the timber THLB 

ϕ is the maximum fluctuation of the annual harvested volume (in this case ϕ=0.1) 

Ai is the area of unit i. 
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The first two constraints ensure that the annual harvested volume does not vary with more than 

10%, irrespective of the years during the planning period. The last two constraints ensure that a 

unit is not harvested more than once during the planning period and a unit cannot be harvested 

at ages less than the preset harvest age (i.e., 120 years). The LP (3.8) did not include 

constraints regarding the growing stock as for the formulation (3.8) does not lead to a significant 

reduction of the forest inventory. The non-significant difference between the final and the 

existing or optimal growing stock is the result of the formulation (3.8) and can be proven by 

comparing the AAC with the annual growth of the forest estate (e.g., AAC ≤ annual growth or 

AAC ≥ annual growth). From the enumeration of all possible comparisons, the cases fulfilling 

the LP constraints (i.e., even-flow is ensured between any two years of the planning period, the 

harvesting of a unit can occur at most once during the planning period and the length of the 

planning period is larger than half preset harvest age) have the growing stock non-significant 

different from the existing or optimal growing stock. The decision variables from (3.8) define the 

LP approach as a Model I formulation (Bettinger et al 2009). 

 

The two algorithms, adjusted FFD and SA, were implemented using Delphi 7.0 (Borland 

Software Corporation 2001) and all runs were executed on a 3 GHz Pentium 4 processor and 

Windows XP operating system. The same data manipulation procedure and programming 

platform was used for both algorithms to eliminate possible coding or compiling differences that 

could influence the comparison of the algorithms (Pukkala and Kurttila 2005). The LP solution 

was obtained using the C-Whiz 4.1 solver (Optimal Software 2001), while the matrix quantifying 

the LP problem was generated using Spectrum 3.0 (USDA Forest Service 2008). The results 

supplied by the three scheduling algorithms were analyzed with SAS 9.1 (SAS Institute Inc. 

2004). 

 

3.3 Results 

  

The introduction of a new forest planning method is usually tested for a single area (Mathey et 

al. 2007; Lockwood and Moore 1993; Clements et al. 1990). I enhanced this approach by using 

three areas to assess the performances of the adjusted FFD. The longitudinal analysis of the 

distributions describing the relationship between the volume and age and the land surface and 

age indicated that the differences are non-significant (p=0.84 and p=0.23, respectively), 

regardless the area.  Having similar age – volume and age – surface distributions, the three 

areas were suitable for use in a comparison of the adjusted FFD algorithm with simulated 
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annealing.  This similarity also offered the opportunity to evaluate the performance of the two 

methods in relation to the green-up / adjacency delay constraint, as consistent results on 

different areas fulfill the repeatability requirement, mandatory to any valid scientific investigation. 

 

For the selected merchantability standards and the corresponding OHA, all three areas revealed 

a left skewed distribution (Fig 3.3), indicating the fulfillment of the PBPT requirements. The 

volume available for harvesting, in the absence of spatial constraints, was larger than MVHA for 

an entire century (the case of Doig and Moberly areas) or for the next 40 years (the case of Fort 

Nelson area). The existing surplus of volume compared with MVHA indicates that the 

merchantability standards were not optimal selected, as other limits would have offered larger 

AAC. However, the MVHA was determined without spatial constraints; therefore, the availability 

of volume could partially or totally offset the impact of the green-up/adjacency constraint on the 

magnitude of AAC. 

 

 

Figure 3.3 Current volume and area distribution with respect to harvest timing. The decrease in 
volume and area with respect to harvest timing indicate the reduced number of units with low 
site index available for harvesting in the future. This situation is desired as units with longer 
OHA are difficult to harvest during a planning period shorter than OHA. 
 

The left-skewed distribution of the volume in relation to the harvest timing (Fig 3.3) suggested 

that the AAC determined considering spatial constraints could reach the MVHA. Based on the 

PBPT corollary and the proposed 7/9×MVHA threshold identified by Johnson (1973), I 

determined the AAC by performing several runs using the adjusted FFD. The runs successively 
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decreased the AAC threshold from MVHA to 0.75×MVHA in increments of -0.05×MVHA. This 

approach was possible since the computational time for each area was less than 3 min. In 

addition to the fast computation, the adjusted FFD algorithm is deterministic, and no additional 

runs were required. The incremental approach showed that AAC can exceed a threshold of 

0.95×MVHA for all three areas when the adjacency/greenup delay is less than or equal to five 

years. An increase in the adjacency/greenup delay from 5 to 20 years decreased AAC supplied 

by adjusted FFD with 4% at the Doig area and with 11% at the Moberly and Fort Nelson areas, 

when harvest occurred at ages close to Agemax(MAI). Irrespective of the adjacency delay, the 

adjusted FFD supplied AACs significantly larger than the 7/9×MVHA limit (p<0.0001) when the 

harvesting occurred at ages equal or larger than OHA. 

 

The adjusted FFD algorithm supplied the greatest AACs within the four investigated scenarios 

for all areas (Fig 3.4 a, b and c) when the harvesting occurred at ages close to Agemax(MAI). The 

adjusted FFD supplied results constantly larger than SA, when the harvestings were scheduled 

according to the Corollary of the PBPT. However, the use of the adjusted FFD algorithm did not 

always ensure better results than SA. When the harvesting age was established above a preset 

age and the green-up/adjacency delay was less than 20 years, the adjusted FFD algorithm 

supplied the smallest AACs (Fig 3.4b). Similar to the adjusted FFD, SA produced the highest 

AAC when the stands were harvested at Agemax(MAI) and not at a preset value, except for the 

Moberly area (Fig 3.4b).  

 

Figure 3.4. AAC dependency on the algorithm and the green-up/ adjacency delay for Doig area 
(3.4a), Moberly area (3.4b) and Fort Nelson area (3.4c). The solid line represents the adjusted 
FFD algorithm (───) and the dotted line represents the SA algorithm (·····). The squares (■ ■ ■) 
indicates that the harvest occurred at Age max(MAI), while the disks are associated with 
harvestings at ages larger than 120 years (● ● ●) 
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The sensitivity of the AAC to the adjacency/greenup delay, identified at the adjusted FFD, was 

also present at SA, which dropped between 10% (Fort Nelson area) and 70% (Moberly area) 

when the adjacency/greenup delay increased from 1 to 20 years. While the adjusted FFD 

supplied a relatively small reduction in AAC (i.e., 20%) regardless of the harvesting age and 

adjacency delay, SA seems to be sensitive to both harvesting age (i.e., Agemax(MAI) or preset 

value) and adjacency delay. The AAC calculated using SA could decrease with adjacency delay 

more than two-thirds when the harvest occurred at max(MAI)) and between 20% and 40%  

when the harvest occurred at a preset age. The adjusted FFD yielded a counterintuitive result 

for the Moberly area as the AAC for an adjacency delay of 20 years was greater than that for 10 

years delay. However, this anomaly is not especially rare for bin-packing problems, as indicated 

by Hoffman (1998, p. 172-173) and Rhee (1991). 

 

The variation of the AAC during the planning period plays a significant role in the forest decision 

process (Pedersen 2003), less variation of the AAC being preferred. The adjusted FFD 

algorithm supplied a relatively uniform AAC for all three areas, when the harvestings were 

scheduled according to the Corollary of the PBPT, namely Agemax(MAI). The AAC based on the 

Corollary of the PBPT reduced its variation with the adjacency delay, as the standard deviation 

of the AAC decreased from 1 to 20 years, in some cases by almost 50% (i.e., Moberly area). In 

comparison, SA produced increasingly variable results with the increment of the 

greenup/adjacency delay for all areas, augmenting the variability of AAC (expressed as the 

standard deviation) sometimes by more than 50% (i.e., Doig area).  

 

The LP supplied the maximal even flow AAC in the absence of spatial constraints and for 

harvests occurring at ages equal or larger than 120 years (Table 3.2). The LP solution was 16% 

smaller than the MVHA for all three areas. The existence of a ratio of 5/6 between the LP 

solution and MVHA for all the study areas suggests the existence of a relationship between the 

two algorithms that could be rooted in the deterministic character of both algorithms. A LP 

solution smaller than MVHA was not surprising as MVHA could schedule multiple harvests of 

the same stand during the planning period (sometimes even three times - the case of the 

lodgepole pine stands with site index larger than 30 and age larger or equal with OHA in year 

one of the planning period). The LP supplied AAC at most 25% larger than the corresponding 

AAC determined using SA (for Fort Nelson area) or 40% for AAC determined using adjusted 

FFD (for Moberly area).  
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Table 3.2. Comparison between the MVHA and the AACs supplied by LP, adjusted FFD and 

SA, for the adjacency delay of 1 year and minimum harvest age 120 years  

 

Study area MVHA 

[103 m3] 

AAC [103 m3] 

LP  Adjusted FFD SA 

Doig 500 422 398 347 

Fort Nelson 280 235 231 177 

Moberly 315 263 156 212 

 

3.4 Discussion 

 

The PBPT corollary established MVHA as the upper bound of the volume that can be harvested 

annually but did not indicate that the solution is unique. Coffman et al. (2002) showed that 

MVHA can be reached by scheduling stands for harvesting in more than one combination. This 

non-uniqueness feature of the adjusted FFD algorithm is desired, as it offers flexibility when 

implementing the strategic forest management plan. 

 

The comparison of adjusted FFD and SA with MVHA represents the highest level of validating a 

heuristic algorithm (i.e., level 6), while the comparison with LP supplies a level 5 validity, 

according to the classification of Bettinger et al (2009).  Fig 3.4 (a, b and c) revealed that for 

preset harvesting ages, SA can supply results 50% smaller than MVHA, the aspatial optimal 

solution, (for the Fort Nelson or Doig areas with a 20 years green-up delay) but within 25% from 

the solution supplied by the LP (i.e., 80% for Moberly area, 75% for Fort Nelson area and 83% 

for Doig area). The relatively good performances of SA compared to LP agrees with the results 

of Boston and Bettinger (1999), Baskent and Jordan (2002), and Crowe and Nelson (2003), 

who, using SA and a preset harvesting age, achieved results within 95% the LP solution. The 

excellent performances of SA in forest scheduling mentioned in the literature could depend on 

the enforcement of a single harvest (at most once) during the planning period for each stand. By 

ensuring that a stand is not harvested more than once during the planning period, the length of 

the planning period was related with the scheduling algorithm and for northeastern British 

Columbia could lead to the harvesting of a stand almost 70 years before the OHA [e.g., a stand 

of white spruce with SI = 10 has OHA=190 years (Appendix C)]. The harvest prior to OHA could 

lead to a reduction of the volume planed for harvesting as much as 50% of the volume at 

culmination MAI (e.g., for white spruce with SI≤9 or subalpine fir with SI≤10). The selection of 
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the harvesting age had an evident impact on the AAC for the Moberly area, which was the only 

area with an average OHA greater than 120 years, the preset harvesting age (i.e., average OHA 

was 130 years and standard error of the mean 0.6 years). Considering the surplus of harvesting 

volume during the century planning period (Fig 3.3), scheduling the harvestings in Moberly area 

using SA before the optimality of the timber accumulation criterion supplied results larger than 

SA using OHA or the adjusted FFD but using the preset harvesting age and a greenup delay 

less than 20 years. Irrespective of the selection of the harvesting age, the largest AAC supplied 

by SA was at least 20% smaller than the MVHA (Fort Nelson and greenup of one year) 

confirming the findings of Wah and Wang (1999) and Baskent and Jordan (2002) and proved by 

Hoss and Stutzle (2005, p. 77-78) when compared with the known maximal solution. 

 

The adjusted FFD supplied results that were more uniform than those from the SA in relation to 

the greenup/adjacency delay, as the variance was smaller in 39 out of 48 comparisons (81%). A 

constant AAC is not only operationally and socially preferred but also allows integration into the 

forest planning process of other activities that tend to increase the variability of the results (such 

as financial fluctuations or land-use change) without exceeding the regulatory or predefined 

range of the variability of the AAC (in this case 20%). 

 

The benefit associated with the use of the simulated annealing algorithm is that it provides an 

acceptable solution in relatively short time, from seconds (Liu et al 2006; Ohman and Lamas, 

2005) to minutes (Crowe and Nelson, 2001; Baskent and Jordan, 2002). However, its heuristic 

character recommends several runs, 20 in the case of Wah and Wang (1999) and Heinonen 

and Pukkala (2004) or 10 in the case of Baskent and Jordan (2002). In the analysis, for each 

area I performed 1820 runs of 15 min and 40 runs of one hour, and only when the stands were 

harvested at a preset harvesting age SA supplied larger AAC than the corresponding adjusted 

FFD but in only 4 out of the 12 scenarios (33%). In contrast, the adjusted FFD supplied the 

solution in 3 minutes and was larger than the SA solution when the harvestings occurred at 

max(MAI ) (Fig 3.4 a, b and c): from 9% for Fort Nelson area (i.e., adjacency delay 10 years) to 

82% for Moberly area (i.e., adjacency delay 20 years). The adjusted FFD supplied AAC on 

average 25% greater and 100 times faster than those provided by SA. SA can produce larger 

AAC than the adjusted FFD if either the number of runs or the annealing time is converging to 

∞. However, in practice, the number of runs is usually relatively small (less than 20), and in such 

cases Wah and Wang (1999) or Baskent and Jordan (2002) showed that SA could supply 

solutions that are 20% below the optimal solution, results confirmed by the findings. 
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Whichever study area, the greenup/adjacency constraint had a reduced influence on the 

adjusted FFD results, with less than a 15% decrease in AAC between 1 and 20 years delay (Fig 

3. 4 a, b and c), except for one case (i.e., 20% for Doig area when the adjacency delay was 20 

years and the harvests were scheduled using the preset harvesting age). In contrast, the 

greenup/adjacency delay had a major impact on the solution supplied by the SA as all areas 

showed a reduction in AAC of more than 15% (70% to Moberly area) when the delay increased 

from 1 to 20 years. From an operational perspective, the downward trend of the AAC when the 

adjacency delay is increasing might be offset with the use of fertilization, irrigation, or elite or 

genetically enhanced clones for stand regeneration. The intensive silviculture could have a 

double impact on the harvestings when SA is used for scheduling: increase the yield and reduce 

the greenup/adjacency delay. For adjusted FFD additional management prescriptions seeking 

mainly a decrease of the greenup/adjacency delay seems unjustified as the algorithm supplies 

results close to the optimal solution for delays less than 20 years. Nevertheless, the intensive 

silviculture could yield harvesting volumes superior to the MVHA, which was determined 

assuming that the yield of the present and the future stands are the same.  

 

3.5 Conclusion 

 

To accommodate the optimal harvesting criterion at the forest and stand level I based the 

analysis on the PBPT corollary and demonstrated that the maximum volume that can be 

harvested annually should equal the sum of the maximum mean annual increment of the 

stands. To achieve MVHA, the harvested volumes have to be distributed uniformly or left-

skewed. When the distributional requirements were not met, I developed a mixed integer 

programming solution that would ensure the fulfillment of the PBPT conditions.  

 

PBPT does not consider the constraints associated with the spatial arrangements of the stands, 

such as adjacency. To accommodate the set of spatial constraints associated with the 

greenup/adjacency delay the harvestings were scheduled using the unit restriction model 

(Murray 1999) within the First Fit Decreasing algorithm (Johnson 1973). The inclusion of the 

spatial constrains in the FFD algorithm using the unit restriction model, rather than developing a 

spatial specific algorithm inside FFD  was preferred, as the FFD algorithm could self organize to 

structures resembling the PBPT requirements (Csirik et al. 1999), and supply an AAC close to 

the MVHA (Csirik and Johnson 2001). I compared the results supplied by the adjusted FFD with 

the results supplied by SA and a relaxed LP using three study areas in northeastern British 
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Columbia and the constraints enforced by a local Sustainable Forest Management Plan (Jukes 

et al. 2004).  

 

The adjusted FFD (i.e., the FFD algorithm constrained to meet the spatial restrictions and the 

conditions of the PBPT Corollary) supplied the greatest AAC from all areas, within 5% of the 

MVHA when the greenup/adjacency delay was less or equal than five years. The adjusted FFD 

and the relaxed LP produced results in less than three minutes; in comparison, SA required six 

hours. The AAC determined using the adjusted FFD was less variable than the AAC derived by 

SA. The adjusted FFD seems to be sensitive to the violation of PBPT distributional 

requirements, as for one of the areas (i.e., Moberly) it supplied both the smallest and the 

greatest AAC. The greenup/adjacency delay had little impact on the adjusted FFD algorithm but 

could reduce the AAC by 70% when SA was used.  

 

These results suggest that further research into the ability of the adjusted FFD algorithm to 

incorporate more complex spatial-temporal constraints, such as patch size distribution or 

financial marginal analysis, is warranted. A natural extension of this work would be the 

examination of the initial spatial distribution, which limits the accessibility of the stands for 

harvesting due to adjacency/greenup constraints. Finally, an examination of the reasons why 

simulated annealing is outperformed by the adjusted FFD algorithm could lead to amendments 

enhancing the efficiency of the heuristic techniques commonly used in forest planning. 
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4. AN ANALYTICAL PLATFORM FOR CUMULATIVE IMPACT 
ASSESSMENT IN NORTHEASTERN BRITISH COLUMBIA1 

 

4.1 Introduction 
 

Human activities have continuously influenced the natural landscape in a multitude of ways - 

from relatively innocuous industries such as tourism and hunting, to more intrusive industries 

such as forestry and oil and gas extraction. The negative impacts of industrial development 

have become increasingly apparent as the environmental effects associated with these activities 

have expanded and challenged the capacity of ecosystems to recover from naturally-occurring 

perturbations (Fuhrer 2000; Marcu 1981). Over time, the accumulation of stresses resulting from 

human activities will change an ecosystem so profoundly that recovery is no longer possible 

using conventional processes (Gore et al. 1990; Toffler 1970). To prevent the degradation of the 

environment beyond socially accepted limits, the effects of economic developments are 

evaluated through environmental impact assessments (Koornneef et al. 2008). The main 

difficulty in assessing the environmental responses to human developments relate to the 

reduced impact of most projects when considered individually that may develop significant 

impacts when assessed in the context of past, present and foreseeable future activities. As a 

result, the combined influence on the environment of all projects occurring in a single area is 

evaluated through cumulative impact assessments (CIA). These consider the consequences of 

multiple projects, each insignificant on its own, yet important when considered collectively 

(Council on Environmental Quality 1969).   

 

The CIA literature addresses extensively the qualitative aspects of the environmental changes 

induced by the development of society (Contini and Servida 1992; Glasson et al. 1994; Marr 

1997; Masera and Colombo 1992; Reid 2001). However, only a few studies have elaborated 

specific methods to be used in evaluating the cumulative impacts associated with human 

development (Spaling and Smit 1994). Currently the most popular CIA methods are based on 

complex modular models (Dube et al. 2006; Voinov et al. 2004) or operations research (Stakhiv 

1988). The CIA literature abounds in detailed investigations based on methods initially 

developed to assess particular activities, such as land-use change associated with urban 

development (Dickert and Tuttle 1985; Stakhiv 1988), water resources development (Dee et al. 

1973; Gosselink and Lee 1989) or construction (Leopold et al. 1971), all of which were 

                                                 
1 A version of this chapter has been submitted for publication. Strimbu, B.M. and Innes, J.L. An 
analytical platform for cumulative impact assessment in northeastern British Columbia.  
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enhanced for use as analytical support for CIA (Rotmans and van Asselt 2001). Regardless of 

the method adopted, current CIA modeling platforms are based on the assumption that small 

incremental changes are the driver of the environmental dynamics (Cherp et al. 2007; Dube et 

al. 2006; Hegmann et al. 1999). The complexity of CIA investigation combined with the intricate 

structure associated with modular modeling led to CIA based on results supplied by one 

analytical platform (Voinov et al. 2004). The mono-analytical approach for CIA could convey 

erroneous conclusions, as from a theoretical perspective the probability of occurrence of a 

complex model converges on zero. The asymptotic null probability of the results supplied by the 

complex methodologies employed by CIA is rooted on the model’s framework, which can be 

fully empirical (Patil et al. 2002), fully process-based (Leimbach and Jaeger 2005) or a 

combination of the two (Wu and David 2002), in the sense of Korzukin et al. (1996). CIA using 

models based exclusively on processes, theories and laws encountered difficulties in 

quantifying the relationships between environmental dynamics and socio-economic, biophysical 

and land-management variables (Verburg et al. 2004). Process-based CIA has no confidence 

intervals for the predicted values, casting doubts on the results. The complex models 

incorporating empirical components supply precise predictions but with reduced accuracy, as 

the probability of occurrence of the outcome of a model is:  

 

Probability of occurrence = 1/ (the number of equally likely results) ≤ 

 (the smallest number of equally likely results supplied by each empirical equation)-n ≤ (4.1) 

≤ n

n

−

∞→
+ )11(lim = 0,  

 

where n the number of non-overlapping units used by the model and the two 1s correspond to 

the smallest (respectively largest) value of the confidence interval supplied by the empirical 

equations of each unit. To address the lack of confidence associated with such results; this 

study proposes a new CIA analytical framework based on a change of the paradigm governing 

CIA investigations. The focus addressed here is to reveal the existence or not of pattern(s) in a 

possible future rather than providing a detailed investigation of one improbable future.  
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4.2 Methods 
 

4.2.1 Paradigm shift 
 

A paradigm shift is required because the mono-analytical platform of current CIA is unable to 

forecast accurately complex environmental systems. CIA methodologies constrained to meet all 

legislative and regulatory requirements epitomize the development of the environment but 

provide little insight into the integrated behavior of the environment (Rotmans and van Asselt 

2001). For CIA that considers the future of the environment as an integrated and significant part 

of the assessment, the investigation should focus on identifying the commonalities or the 

differences throughout the planning period. The commonalities and differences would delineate 

the patterns within the environmental dynamics. To identify these patterns I focused on the 

analysis of a multitude of futures rather than one future, an approach initially developed by 

Boltzman (1995) for statistical thermodynamics. To ensure that the CIA is performed within the 

framework established by Boltzmann, the futures should be independent and with the same 

probability of occurrence. Therefore, the paradigm shift promotes the development of a set of 

futures, each independent and equally likely, which would be used to identify the main 

environmental attributes affected by human activities as well as the moments when significant 

environmental changes could occur. 

 

4.2.2 Analytical platform 
 
The CIA method proposed here is spatially and temporally explicit and assumes that all 

activities occur within the regulatory framework. Additionally, because the paradigm shift 

requires the investigation of a set of futures, the method only considers feasible futures The 

restriction of human activities to those permitted within the regulatory context does not ensure 

that the evolution of the environment is on the desired path, only that some attributes used to 

represent the environment numerically do not exceed the appropriate thresholds.  This is a 

substantial difference from current CIA methodologies that determine whether or not the 

regulatory thresholds affecting the valued ecosystem components are exceeded and then 

recommend measures to mitigate or eliminate the undesired effects of the human activities on 

the respective VECs [e.g., Osowski et al (2001), Dube et al. (2006), Perdicoulis and Piper 

(2008)). The proposed method has previously been suggested by several authors [such as 

Duinker and Greig (2007)], who argued for a departure from a specific future to a set of possible 

futures. 
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To illustrate the proposed method, I performed a CIA for three areas from northeastern British 

Columbia (Fig 4.1). The predominant forest species in the area are white spruce (Picea glauca), 

black spruce (Picea mariana), trembling aspen (Populus tremuloides), lodgepole pine (Pinus 

contorta), balsam poplar (Populus balsamifera), engelman spruce (Picea engelmannii) and 

subalpine fir (Abies lasiocarpa) (Meidinger and Pojar 1991). The biogeoclimatic (BEC) zones 

dominating the area are the Boreal White-Black Spruce zone, on the western side of the 

Western Canadian Sedimentary Basin, and the Spruce-Willow-Birch zone and Engelmann 

Spruce-Subalpine Fir zone that are found at elevations above 1300 m (Ministry of Sustainable 

Resource Management 2004). Sedimentary (fine and coarse clastic sedimentary rocks, 

siltstone, and mudstone) and metamorphic rocks (greenstone and green-schist) are prevalent in 

the area, leading to the development of regosols, gleysols, cryosols or humo-ferric podzols, 

depending on the local conditions (Meidinger and Pojar 1991). 

 
Figure 4.1 Study areas 
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The study areas were selected to reflect the degree of development of oil and gas development 

activities: low (Moberly area), medium (Fort Nelson area) and high (Doig area). In addition to oil 

and gas development, I considered forest harvesting, which is traditionally excluded from CIA 

investigations but could lead to significant and undesirable changes in the environment when 

combined with the forest clearance required by oil and gas activities. The assessment of the 

cumulative impact of the two activities was performed on two valued ecosystem components 

(VEC), in the sense of Beanlands and Duinker (1983), which were identified by the Treaty 8 

Tribal Association as representative for the area:  moose (Alces alces) and American marten 

(Martes americana). These two species appear to have no direct relationships (Franzmann and 

Schwartz 1997) and are therefore suitable subjects for an investigation of the synergistic 

properties of interest to CIA (Preston and Bedford 1988). I considered just two human activities 

and two VECs to ensure the generality of the method, as multi-dimensional investigations (i.e., n 

activities and p VECs) are similar with the two-dimensional ones (Gilbert 1976). Zhang and 

Montgomery (1994), Chaubet et al. (2005), Therivel and Ross  and Kienzle (2004) identified a 

significant impact of scale on the results when raster data are used in the environmental 

investigation. To avoid adding scale as a variable in the CIA, I used scale-free vector data 

(Green et al. 2006). The vector data were supplied by the BC Ministry of Sustainable Resource 

Management (2004) for forest and wildlife, and by the Oil and Gas Commission (2005) and 

Energy Information Administration (2005) for petroleum wells. The computations were 

performed with SAS 9.1 (SAS Institute Inc. 2004) and ArcGIS 9.3 (Environmental Systems 

Research Institute 2008) was used for the initial data preparation. 

 

Based on Boltzman’s approach (1995), the paradigm shift requires the development of a set of 

futures, each future being considered a sample unit that would be used to delineate the 

significantly different periods that could exist along the environmental evolutionary tracks (Fig 

4.2a). To ensure valid inferences, the set of futures has to cover a large range of possible 

developments of the environment, with a minimum 10 futures / area being recommended by 

Tran (1997). Because each future has to be independent and equally likely, I described each 

future using different spatially and temporally explicit forecasting techniques. The minimum 

number of futures can be obtained by developing multiple independent models to describe each 

human activity considered in the CIA, leading to the seemingly parallel structure from Fig 4.2b.  
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Figure 4.2 Analytical framework for the shift of the CIA paradigm (a) and the development of set 
of equally likely and independent futures (b).  
 

The structure apparent in Fig 4.2b differs from traditional scenario analyses [such as Schnorbus 

and Alila (2004), Nitschke and Innes (2008), Menard et al. (2002) or Caplat et al. (2008)] which 

vary some attributes within a single quantitative platform, rather than developing a set of 

different quantitative platforms (i.e., set of different models describing the environmental 

processes considered in the analysis). In the study, I focused on generating more than 10 

futures/area using techniques and results appropriate for the representation of  the two human 

activities being considered, which were heuristic techniques for forest harvesting (Bettinger et 

al. 2002) and autoregressive (AR) models for  petroleum drilling (Walls 1992). As mineral rights 

supersede surface rights in most jurisdictions, I considered that petroleum drilling will not be 

impeded by any ownership rights or forest management activities, except when specifically 

regulated by law (such as archeological sites, sites associated with endangered species or 

waterfowl nesting sites).  

 

4.2.3 Generating futures 
 

To generate the independent and equally likely futures I adopted a hierarchical approach that 

mimics the real development: the forest harvest accommodates the harvest associated with the 

petroleum drilling. The hierarchy of human activities is imposed by oil and gas legislation, which 
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attach greater importance to mineral rights than surface rights. For each future, the activities 

were modeled in a descending sequence according to the position in the hierarchy (i.e., 

petroleum drilling first, as the least constrained activity, followed by forest harvesting). CIA 

investigations commonly do not consider long-term forecasts (Lenzen et al. 2004; Nitschke 

2008). However, investigations combining oil and gas activities with forest harvesting require a 

time period determined by the largest duration of the two activities, in this case forest harvesting 

(Schneider et al. 2003). To illustrate the proposed CIA method, the futures were 100 years long, 

as the length of the forest plan is usually 100 years, and the centennial CIA was recommended 

by Schneider et al. (2003). 

 

4.2.3.1  Petroleum drilling 
 

Spatially and temporally explicit petroleum drilling futures were generated using a two step 

approach. The evolution of the number of wells was forecasted and then the predicted number 

of wells was distributed across the landscape. This approach was motivated by the large 

number of models developed to predict the numbers of wells (Iledare and Pulsipher 1997; 

Ringlund et al. 2008; Walls 1994) and the lack of investigations that predict directly the spatial-

temporal dynamics of the well-drilling process (AXYS Environmental Consulting Ltd. 2003; Rao 

2000). The temporal evolution of petroleum drilling was represented using either the number of 

wells drilled in each time period (Cuddington and Moss 2001; Iledare 1995; Ringlund et al. 

2008) or the total number of wells existing in the landscape (Walls 1994; Walls 1992). 

Econometric approaches commonly use short time steps in modeling petroleum drilling activity 

[such as three months (in the case of Canada and Latin America in Ringlund et al. (2008), 

months (Sadorsky 2001) or weeks (Lanza et al. 2005; Manning 1991)], but when the discovery 

processes are added to the drilling model then the time step is increased to a year (Cuddington 

and Moss 2001; Walls 1994)  or two years [for the  Middle East, Africa or Asia-Pacific in 

Ringlund et al. (2008) ]. The proposed CIA platform includes forest harvesting (usually modeled 

using yearly time steps); therefore the futures were produced using a 12 month time-step.  

 

The three areas selected to test the proposed CIA are located in the Western Canadian 

Sedimentary Basin and reflect the range of oil and gas activities occurring in the region. The 

equations describing the temporal evolution of the petroleum well count were therefore not 

developed for each area but for the entire region. Walls (1994), Lanza et al (2005), Rao (2000) 

and Holland (2008) showed that an autoregressive equation can be used to describe the well 

count evolution. I enhanced the autoregressive approach of Ringlund et al. (2008) with the data 
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investigation techniques proposed by Balke and Gordon  (1986) and added a set of covariates 

to the auto-regressed variable: 

 

ttttt sXLCyLB νμ +++= )()(         (4.2) 
 

where yt and Xt denote the drilling activity and the matrix of the covariate variables in period t, 

B(L) and C(L) are the two lag-polynomials in the lag operator L,  given by: 
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Following the models proposed by Ringlund  et al (2008), the set of covariates used to model 

the number of wells included the oil prices at the New York Mercantile Exchange. I enhanced 

the approach of Ringlund et al (2008) and Lanza et al (2005), which used only one oil price as a 

covariate (i.e., monthly or trimestrial and annual, respectively) by considering the minimum and 

the maximum oil price in addition to the average. 

 

The autocorrelation, inverse autocorrelation and partial autocorrelation functions for the annual 

and total number of wells were used to identify the order of the autoregressive model (Cleveland 

1972). The method proposed by Cleveland (1972) was also used to identify the presence of a 

non-linear trend in the model describing the dynamics of the number of wells. The augmented 

Dickey-Fuller (DF) test (Dickey and Fuller 1979) evaluated whether or not the model describing 

the well drilling dynamics had an intercept and a linear time trend term. The DF test was 

supplemented by the Bartlet’s Kolmogorov – Smirnov test which assessed whether or not the 

difference between two consecutive years was white noise, in the sense of Brockwell and Davis 

(1996) 

 

To enhance the AR model mentioned by Walls (1994), Lanza et al. (2005) and Holland (2008), I 

used the Smallest Canonical (SCAN) correlation and Extended Sample Autocorrelation 

Function (ESACF) method to tentatively identify whether or not an ARMA process (Brockwell 



55 
 

and Davis 1996) could represent petroleum drilling, as proposed by Tsay and Tiao (1985), Choi 

(1992) and Box et al (1994). In the case that the SCAN and ESCAF indicated the presence of 

an ARMA process, the Minimum Information Criterion method was used to identify the order of 

the possibly stationary and invertible ARMA process. The Bayesian information criterion was 

employed to determine the autoregressive order required to estimate the error series (Hannan 

and Rissanen 1982).  

 

To model counting processes (e.g., the number of petroleum wells) Lindsey (1995) and 

Kingman (1995) advocated the use of generalized models as an alternative to time series 

models. Two models can represent the drilling process: Poisson and negative binomial (Eq. 

4.3), as presented by Cameron and Trivedi (1998). The same equation (Eq.4.3) described the 

drilling activities regardless of the model type: 
 

ttt XLCy ε+= ))(exp(          (4.3) 
 

The negative binomial model differs from the Poisson model by allowing the mean of the 

process to differ from its variance (a property of a Poisson process) by a variable that is gamma 

distributed. Indications regarding the possible use of Poisson and negative binomial regression 

models can be supplied by the DF test, autocorrelation and chi-square test (Rees 2002). The 

models developed for the entire northeastern British Columbia were implemented for each of 

the three study areas, after the significance of each equation was tested on each area.  

 

Regardless of the model type (i.e., autoregressive or generalized model), the representation of 

the process describing the number of wells was considered complete when the residuals were 

white noise, assessed using Bartlet’s Kolmogorov-Smirnov test, and stationary, assessed with 

the Philips-Peron test (1988). To avoid numerical errors and possible overestimation of the 

parameters of the variance the conditional index and the variance inflation factor (i.e., the 

measures of numerical errors and parameters overestimation, respectively) should be  less than 

10, as recommended by Belsley et al. (1980), and Neter et al. (1996). Within a time series 

framework, the violation of the assumptions can lead to biased or erroneous results (Phillips 

1986) and I therefore checked the normality of the residuals using the  Jarque and Bera test, 

homoskedasticity using White’s test, and serial correlation using Vinod’s version of the Durbin-

Watson (DW) autocorrelation test (Vinod 1973). I supplemented the DW autocorrelation test 

with the McLeod and Li portmanteau test.  
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Once the annual amounts of drilling had been determined, indicator kriging (IK) was used to 

spatially distribute across the landscape the number of wells predicted to be drilled in each year. 

Indicator kriging was developed by Journel (1983) to predict variables that operate only on the 

binary set {0,1}, which in the petroleum drilling case corresponds to presence or absence at a 

given location of a well. However, kriging supplies values into a set organized as a field 

(Hungerford 1990), therefore the values supplied by IK could be considered as quantifying the 

probability of a well being drilled at a specific location. The indicator variogram [Eq. 4.4] used by 

IK is an adjustment of the classical variogram to a variable that has a Bernoulli distribution. 
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where h is the distance between wells, x are the coordinates and I(x,z) is the indicator function 

at location x, and z is a real number quantifying the presence or absence of a well at location x. 

In addition to the indicator variogram, the robust variogram proposed by Hawkins and Cressie 

(1984a) was adjusted for the indicator variable (Eq. 4.5) and was used in computations:  
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where N(h) is the number of points quantifying the presence or absence of a well for the h 

distance class. I tested the directional symmetry of the spatial correlation using the isotropy test 

statistics proposed by Lu and Zimmerman (1994). 

 

The IK requires three attributes in the input dataset: the vector x (which gives the position) and 0 

and 1 [that identify the presence or absence of a well at location x]. The data supplied by the Oil 

and Gas Commission (2005) can be used to assign only the value for 1; therefore a method to 

identify the 0 within the landscape had to be developed. An intuitive procedure that assigns a 

value of 0 to areas where no drilling can occur (e.g., inside populated areas, archeological sites, 

streams or lakes) failed to identify the 0 in areas where drilling can occur (e.g., pastures or 

forest with no harvesting constraints). An intuitive approach is therefore unable to delineate 0 

from 1, and could lead to clusters of 0s, that would associate large lag distances to non-

negative values, of little use in the variogram development. Consequently, a method to identify 

the locations where drilling is allowed but it is not performed had to be developed. A method 

used to determine the places where no drilling would occur should consider two observations:  
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• for any given year the position of wells that would be drilled in subsequent years was 

unknown; 

• the true variogram would be known when no further drilling occurs, as the maximum 

number of wells in the area is reached. When drilling will cease, the variograms built 

using data before the maximum number of wells is reached converges to the true 

variogram (Kolmogorov and Fomin 1999).  

 

The above two observations indicated that a set of variograms should be computed by splitting 

the dataset containing the wells information in two subsets, according to the year [i.e., the year 

would separate the set of wells in wells with known position (past) and wells with unknown 

position (future)]. The change of the separation year during the petroleum exploration period 

would create a set of variograms that would converge to the true variogram. Therefore, for the 

wells drilled before a certain year the I(x,z)=1 while for wells drilled after the respective year the 

I(x,z)=0. 

 

Based on the two observations and using data supplied by the MSRM, I developed variograms 

for each of the three areas, as each area has different geomorphologic features that could lead 

to different empirical variograms. The empirical variograms (i.e., indicator and robust) were used 

to identify the theoretical variograms representing the spatial distribution of the wells. The 

variogram fitting was assessed using Q1 and Q2 statistics, as suggested by Kitanidis (1991).  

 

The IK computes the probability of petroleum drilling at specific locations, commonly the 

coordinates of the vertexes within a grid. To determine the grid required by IK, each quarter-

section (i.e., quarter of a square mile) was separated in four quadrants, each quadrant being 

associated with one of the four wells that can be drilled on a quarter-section  without the 

consent of the Agricultural Land Commission of British Columbia (Agricultural Land Commission 

and Oil and Gas Commission 2002). Within each quarter section, the Cartesian coordinates of 

the wells were computed. Using the Cartesian coordinates, all the wells were plotted at the 

quarter-section level. The grid size was determined as the minimum distance between any two 

wells that is a divisor of a mile. The integration into a mile of the IK grid was advocated to 

conform to the grid used by the Government of British Columbia. 

 

The probability of occurrence of a new well within a quadrant was considered as being 

proportional to the number of wells already within the quadrant. Of the four values, only the 

largest two were selected, to ensure the compliance with the regulations constraining drilling 
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activities (Government of British Columbia 2004). The set of locations where drilling could occur 

was determined using data from the Oil and Gas Commission of British Columbia, the quarter-

section grid used by the Government of British Columbia, and the constraints imposed by the 

Petroleum and Natural Gas Act and Land Act (Government of British Columbia 2004). Based on 

petroleum developments in Alberta (Information Services AEUB 2005), the Canadian province 

with the greatest amount of petroleum exploration, the density of oil and gas wells on the 

landscape will reach the maximum capacity allowed by the regulations (Anonymous 2004). 

Therefore, the grid for which the IK would be computed contains the center of the two quadrants 

having the largest number of wells within the quarter-section grid.  

 

Indicator kriging supplied the probability of drilling at a certain location, and the drilling moment 

was determined assuming that larger probabilities are associated with earlier drilling; an 

assumption based on kriging’s exact interpolation property (Cressie 1993) and strict 

monotonicity of the cumulative probability function (Grimmett and Stirzaker 2002). The 

probability of drilling at a specific location, conditioned by the number of wells drilled annually, 

provided the spatial and temporal dynamics of the wells. 

 

4.2.3.2  Forest harvesting 
 

To meet the regulations governing the coordination of activities occurring on the landscape, the 

CIA method assumed that any forest harvesting would include the areas harvested for 

petroleum drilling (i.e., well pads). To accommodate the hierarchy of different industries 

changing the landscape, the current forest schedulers used in northeastern British Columbia to 

determine the annual allowable cut (AAC) are spatially and temporally explicit heuristic 

algorithms. I used two heuristic algorithms: simulated annealing (SA) (Metropolis et al. 1953) 

and an adjusted first fit decreasing (FFD) algorithm (Johnson 1973).  For forest scheduling 

problems, SA (Lockwood and Moore 1993)  has been identified as one of the heuristic 

algorithms with the simplest implementation but with results close to the linear programming 

solution attached to the forest planning problem, which is considered to be the optimal solution 

(Crowe and Nelson 2003; Bettinger et al. 2002). The SA is sensitive to the initial selection of the 

parameters used in computations [i.e., initial temperature (Ti), freezing temperature (Tf) and the 

rate of annealing (ra)]. The identification of the optimal starting parameters is commonly 

obtained by experimentation, which is time consuming. To attain solutions in times relatively 

comparable with adjusted FFD the parameters were  selected following the recommendations of 

Boston and Bettinger (1999), Bettinger et al. (2002) and Crowe and Nelson (2003) and not by 
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experimentation. To obtain a solution I allowed the SA to run on average 60 min, in agreement 

with the approach of Crowe and Nelson (2003), which considered that SA supplied an efficient 

solution to the forest planning problems in less than 40 min. The selected rates of annealing 

were 0.85, 0.9, 0.95 and 0.99, the initial temperatures were 1000, 10000 and 100000, and the 

freezing temperatures were 1, 50 and 100, in agreement with the results of Bettinger et al 

(2002) and Crowe and Nelson (2003). The stochastic character of the SA required a series of 

runs to be performed; out of each the best solution is selected. To ensure that the solution 

supplied by SA can be compared with the adjusted FFD from the computational time 

perspective, five runs were executed using the same set of constraints.  

 

The adjusted FFD algorithm amends the FFD algorithm (Johnson 1973) to the spatial 

constraints starting from a determined and non-spatial maximal AAC. Using the perfect bin-

packing theorem (Coffman et al. 2002), Strimbu et al. (2008) proved that the maximum volume 

that can be harvested annually in the absence of spatial constraints but fulfilling regulatory 

requirements equals the sum of the maximum of the MAI of all the stands. The inclusion of the 

spatial constraints in the scheduling process could lead to values smaller than the upper AAC 

boundary, so an AAC that met the regulatory requirements was determined by decreasing the 

upper AAC boundary in steps of 5% until all the forest planning constraints were fulfilled.  

 

The set of constraints used to compute the AAC were based on the Sustainable Forest 

Management Plan developed for the Fort St. John Pilot Project (Jukes et al. 2004a). Among the 

large number of constraints used to determine AAC (Jukes et al. 2004b), the main restrictions 

governing the magnitude of the volume that would be harvested annually and included in the 

computations were: 

 An annual variation in  AAC less than 10%, regardless the pair of years during the 

planning period; 

 The only silvicultural treatment is clear-cutting; 

 The opening size lies between 5 ha and 60 ha; 

 Greenup/adjacency delay of 5 years; 

 A planning horizon of 100 years. 

 

In addition to the two scheduling algorithms, two harvesting ages were used to determine the 

AAC: a preset minimum harvesting age (Crowe and Nelson 2003) and age at maximum mean 

annual increment (Davis et al. 2001).  AAC maximization was ensured when the maximum 

volume to be harvested for the entire forest estate coincided with the maximum for each stand 



60 
 

from the forest estate. When volume is the attribute of interest in the planning process, the 

maximum volume to be harvested at the stand level occurs at the age when MAI peaks (Davis 

et al. 2001). The culmination age of the MAI was determined considering the merchantability 

standards of 17.5 cm for spruce and sub-alpine fir and 12.5 cm for all other species (Pedersen 

2003). Stand harvesting at ages larger than a preset value has been suggested by Bettinger et 

al. (2002) and Crowe and Nelson (2003), and for the three study areas was approximately 120 

years (Jukes et al. 2004b). However, a preset harvesting age does not ensure AAC 

maximization, and could lead to harvesting being undertaken 70 years before the culmination of 

MAI (e.g., a stand of white spruce with SI ≤10). Nevertheless, I developed future forested 

landscapes using a preset harvesting age as being the current method used to schedule the 

forest harvestings in the area. In all, four futures were developed: two algorithms x two 

harvesting ages (i.e., FFD/age@max(MAI), FFD/Preset age, SA/age@max(MAI) and SA/Preset 

age). 

 

The forest scheduling algorithms were implemented using Delphi 7.0 (Borland Software 

Corporation 2001) and all runs were executed on a 3 GHz Pentium 4 processor and Windows 

XP operating system. The stand growth and yield as well as the mean annual increment was 

computed using TIPSY 3.1 (Ministry of Forests 2005a) for managed stands and WinVDYP 

(Ministry of Forests 2005b) for unmanaged stands (a total of 18000 stands and more than 100 

harvest ages). 

 

4.2.3.3  Moose and American marten habitat 
 

The two VECs considered in the proposed CIA (i.e., moose and American marten) were 

assessed using habitat suitability index (HSI) models. HSI is the most common method used in 

CIA studies to quantify the quality and quantity of the habitat of the species (Graham et al. 2000; 

MacDonald 2000; Nitschke 2008; Osowski et al. 2001). While HSI models do not reflect 

accurately the response of the species to landscape changes, they do provide indications of 

habitat quality and availability, a necessary but not sufficient condition. However, a large 

number of studies have identified a significant correlation between the population dynamics and 

different indexes describing the habitat (Hirzel et al. 2006; Larson et al. 2004; Ottaviani et al. 

2004), including HSI. The HSI used in the study area are restricted to assess the habitat 

suitability during winter, the limiting season (Allen et al. 1988; Dussault et al. 2006; Romito et al. 

1999; Takats et al. 1999). The HSI equations quantifying the habitat suitability of each stand 

are:  
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The two HSI models are based on the rather questionable assumption that proximity to human 

settlements or human activities do not affect the species behavior (Romito et al. 1999; Takats et 

al. 1999). Additionally, the two models hypothesize that water and mineral resources can be 

obtained in the area that supplies food and cover and are not limiting during the winter season. 

The forest attributes from Eq. 4.6 and Eq. 4.7 quantify the changes in habitat suitability induced 

by both petroleum drilling and forest harvesting and confirmed the absence of a direct 

dependency between moose and American marten. To assess the cumulative impact of the two 

activities I computed two statistics for each year during the 100 year planning period,  one 

describing the average change of the HSI at the landscape level and one revealing the 

availability of superior habitats (i.e., HSI>0.5) across the landscape. I selected a threshold of 0.5 

for the HSI following the results of Jager et al. (2006), Kroll and Haufler (2006), Liu et al.(2005) 

and Bailey et al. (2002). The average HSI is an indication of the habitat dynamics at the 

landscape level and signals whether or not human activities have significantly changed the 

landscape (Nitschke 2008). The superior habitats index was used to complement the average 

HSI, as non-realistic steep declines in species occurrence could be modeled when poor habitats 

are not excluded from the landscape (Jager et al. 2006).  
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4.2.4 Cumulative impact assessment 
 

The framework used to develop the futures (Fig 4.2a and 4.2b) ensured that the regulatory 

conditions governing human activities were not violated, as each future was hierarchically 

constrained to meet the applicable environmental, social and economic requirements. This 

hierarchical approach is an enhancement of the CIA modular modeling proposed by Stakhiv 

(1988), which considered that all activities have the same priority and optimized the economic 

development subject to environmental constraints. It also improves on the studies of Voinov et 

al (2004) and Lam et al (2004), neither of which considered human activities within a 

hierarchical framework, and the study of Costanza et al (2002), which considered unrealistic 

human activities (e.g., complete conversion from forest to residential or the opposite). However, 

the hierarchy does not ensure that the activities situated on the lowest hierarchical level will not 

supply futures that could have the attributes that quantify the VECs violating the regulatory 

thresholds.  

 

To ensure that all the futures fulfilled the regulatory requirements, I compared the HSI of each 

future and year during the planning period with a threshold HSI. To identify the HSI thresholds, I 

considered that the minimum amount of suitable habitat should not interfere with the population 

dynamics of moose or American marten. From this perspective, both species could present a 

change in the number of individuals larger than 50% (i.e., increase or decrease), as Peterson 

(1997) found for moose and Fryxell et al (1999) revealed for American marten. Using simulated 

data Jager et al. (2006) showed that for American marten a 50% reduction in population size 

could be induced by a 17% loss in the habitat, a value in agreement with Chaplin et al. (1998)  

who live-trapped the American marten and found that the population did not change significantly 

when the surface of the habitat diminished by 20%. While a decrease in the size of the habitat 

by a fifth could lead to significant changes in the population of American marten, a different 

perspective was identified for moose, as a reduction with 40% of the habitat due to forest and 

hunting activities was not reflected in a significant reduction of the moose population (Rempel et 

al, 1997). In fact, Rempel et al (1997) argue that in the absence of hunting, a 44% habitat 

disturbance induced by the forest harvesting did not lead to a decrease in the number of 

individuals. To be consistent with the results of the above studies, I considered that the 

regulatory thresholds could be met when the two statistics quantifying the habitat (i.e., average 

HSI and Area HSI>0.5) do not decrease by more than 15% for American marten and 40% for 

moose from the present values. The present values were selected as the reference values as 

moose and American marten are considered by the BC Conservation Data Center to be 
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‘species apparently secure and not at risk of extinction’, and have G5 global conservation status 

(i.e., widespread, abundant and secure) (2008); a status that should be maintained. 

 

The scheduling of the forest harvesting was constrained to include forest removal associated 

with well pads, with the implication that landscape connectivity would be maintained [one of the 

requirements of the sustainable forest management plan in the region (Jukes et al. 2004b)]. The 

lack of fragmentation due to forest harvesting and well drilling is the result of the four-color 

theorem (Appel and Haken 1976), which is enforced by the green-up constraint. The four-color 

theorem ensures the existence within the forest of multiple corridors with ages at least 25 (the 

average age of each cluster of adjacent stands is larger than 8 years), as on average each 

stand has four neighbors stands. Considering Eq. 4.6 and 4.7 in the context of the four–color 

theorem, the dynamics of the HSI for moose and American marten would not be caused by the 

spatial arrangement of the stands. 

 

To identify whether or not the HSI is impacted by human developments as well as the moments 

when significant environmental changes could occur I performed a univariate longitudinal 

analysis of the set of futures using the Helmert transformation (Crowder and Hand 1990). In 

longitudinal analyses the validity of the F-test used by univariate tests depends on the fulfillment 

of the Huynh-Feldt condition by the covariance matrix (Huynh and Feldt 1970). The Huynh-Feldt 

condition was assessed using the sphericity test proposed by Anderson (1984). In cases where 

the covariance matrix did not meet the Huynh-Feldt condition, the significance level of the F-test 

was adjusted using the modifications proposed by Greenhouse and Geisser (1959) and Huynh-

Feldt (1970).  

 

The existence of moments when the significant changes could occur depends on the models 

used to produce the set of futures. I therefore included an assessment of the differences 

between futures, and used the futures to identify periods with similar environments. I used a 

polynomial transformation to separate the futures, as recommended by Crowder and Hand 

(1990) for quantitative longitudinal analyses. The differences between futures as well as the 

identification of the periods between the moments when the environment could change 

significantly were established using the Scheffe test, as advocated by Zar (1996).  

 

The two measures used in the CIA investigation operate on two scales (i.e., the average HSI is 

between 0 and 1 and the area with HSI>0.5 is larger than 150,000). Rencher (2002) and Neter 

et al. (1996) mention that longitudinal analyses could be impacted by the difference in the 
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orders of magnitude. In order to avoid problems created by including in the same analysis 

values larger than 105 and values less than 100, the attributes describing the size of the area 

with HSI>0.5 were transformed to values between 0 and 1 using the linear function: 

 

)]5.0min()5.0/[max()]5.0min(5.0[ >−>>−> HSIAreaHSIAreaHSIAreaHSIArea   (4.8) 

 

where min and max are the minimum and maximum operators applied to the HSI values of each 

future. 

 

4.3 Results 
 

4.3.1 The development of the set of futures 
 

For the number of wells drilled annually the SCAN correlation and ESACF method supplied 

completely different results, indicating the likelihood that an ARMA process cannot be used to 

model annual variations in well drilling. However, SCAN and ESCAF revealed that an ARMA (2, 

2) process could represent the series describing the total number of wells. Nevertheless, 

minimum information criterion did not confirm the SCAN and ESCAF results as it associated 

one of the largest Bayesian information criterion to the ARMA (2, 2) process. Consequently, an 

ARMA process was not used to model the evolution of the number of wells. 

 

Of the three autocorrelation functions used in the analysis (i.e., autocorrelation, inverse 

autocorrelation and partial autocorrelation) only the autocorrelation for lag one year appeared to 

be significant (i.e. p<0.05), suggesting a first order autoregressive model for the series 

describing the wells drilled annually. The autocorrelation functions for the total number of wells 

indicated the presence of a non-linear trend and the absence of a relationship for lags greater 

than one year. Therefore, regardless the series used to describe the evolution of the number of 

wells (i.e., annual or total), there was no evidence to suggest that there was a relationship 

between drilling activities more than two years apart. 

 

The augmented Dickey-Fuller (DF) test revealed that the series describing the annual number of 

wells may be described by a difference – stationary process as p =0.999. Bartlet’s Kolmogorov 

Smirnov test confirmed the result of the DF test, and indicated that the difference between the 

numbers of wells in two consecutive years is white noise (p=0.74). However, the first model 
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from Table 4.1 (i.e., yt = 1.255 × yt-1 + εt) met all the time-series assumptions and indicated that 

within a linear regression context the annual number of wells can be predicted from the number 

of wells drilled in the previous year. A similar situation was encountered for the total number of 

wells, but in addition to the number of wells present on the landscape in the previous years, the 

models also included the drilling effort of the previous year (second model from Table 4.1). 

 

Table 4.1 Models describing the evolution of the number of petroleum wells in the northeastern 
British Columbia 
Model Residuals assessment (p value for … ) 
Equation Fit assessment Nor. Heter

sked. 
Auto-correlation White 

noise 
Stationarity 

Pr>F Adj 
R2 

Max 
VIF 

Max
Cond 
Index 

DW # lags 
auto. 
>2σ  

ML Zero 
mean

Trend 

1 yt = 1.255 
× yt-1 + εt 

0.001 0.8
7 

1 1 0.09 0.12 0.38 0 0.29 0.54 0.69 0.99 

2 Totalt=1.01
× totalt-1 

+1.1×yt-1+εt 

0.001 0.9
9 

7.27 5.2 0.05 0.18 0.34 0 0.49 0.98 0.78 0.17 

3 y t =0.54× 
totalt-1 – 
1.02×(year-
1948)2 – 
0.44×year 
×f(t)+ εt  

0.001 0.9
0 

7.7 8.8 0.13 0.73 0.34 0 0.12 0.33 0.12 0.51 

4 yt=exp(3.62 
+ 5.7 x 10-4 

x totalt-1 – 
1.6 x 10-8 x 
total2t-1)+εt 

0.47* Deviance = 54.26 0.01 0.93 0.20 0 0.32 0.83 0.28 0.80 

5 yt=exp(3.69  
+5.3 x 10-4 

x totalt-1 – 
1.39×10-8 

×total2t-1)+εt 

0.75* Deviance = 1.14 0.01 0.01 0.15 0 0.05 0.81 0.82 0.98 

 

Total t – total number of wells drilled at year t 

y t – number of wells drilled in year t 

f(t) – is the function sin(π(year-1948)/period), w period=12 before 1988 and 8 after 1987. 

DW – Durbin Watson autocorrelation test (Vinod 1973) 

ML – McLeod and Li portmanteau test (McLeod and Li 1983) 

* - for Poisson and negative binomial models the p-value refers to chi-square goodness of fit for 

Poisson, respectively negative binomial distribution 

εt ~ WN (0, σε). 
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Irrespective of the dependent variable (i.e., annual or total number of wells), the residual 

analysis revealed the presence of a parabolic or exponential function. In addition to the 

nonlinearity, one of the models for the number of wells drilled annually contains a periodic 

function with increasing amplitude and decreasing period (third model from Table 4.1), 

confirming the inappropriateness of an ARMA process (i.e., ARMA process is based on a linear 

function) to the northeastern British Columbia wells data. The first three models from Table 4.1 

are regression based models and were developed using Eq. 4.2. The Poisson model (i.e., the 

fourth model in Table 4.1) has a deviance larger than 1, indicating possible over-dispersion. 

Additionally the likelihood ratio test proposed by Cameron and Trivedi (1998) revealed that the 

mean and variances are not equal (p<0.0001), casting doubt on the appropriateness of a 

Poisson model in this context and recommended the usage of the negative binomial model (the 

fifth model from Table 4.1). Models with deviances larger than 10 can be used if the deviance of 

the residuals do not reveal recording errors or significant outliers impacting the model (Neter et 

al. 1996). The investigation of the results did not exposed any recording errors or the presence 

of significant outliers, indicating that negative binomial (i.e., model five in Table 4.1) and Poisson 

models should be used for the interpretation. The analysis confirms the results of Ringlund et al 

(2008) or Lanza et al (2005), and reveals that regardless of the model type (i.e., regression or 

generalized model), annual oil prices do not play a significant role in modeling the drilling effort.  

 

All the models meet the time-series assumptions (Table 4.1), as the variance inflation factor was 

smaller than 8 [a threshold of 10 was recommended by (Neter et al. 1996)], and the conditional 

index was smaller than 9 [the maximum value recommended by Belsey et al (1980) was 10]. 

The residuals did not exhibit any significant departure from normality (p>0.05), were not 

heteroskedastic (p>0.12) except in the case of the negative binomial model, and were not 

autocorrelated (p>0.15 for DW test and p>0.05 for Mcleod and Li portmanteau test). 

Furthermore, all the models had the residuals organized as white noise (p>0.33) and were 

stationary with the mean and trend not significantly different from 0 (p>0.12 and p>0.17, 

respectively). The fulfillment of the assumptions and the agreement with the results of other 

studies investigating petroleum drilling (Iledare and Pulsipher 1997; Lanza et al. 2005; Rao 

2000; Ringlund et al. 2008; Walls 1994) suggests that the models can be considered as correct 

and as having the same likelihoods. The futures built using the five models can therefore occur 

and are equally likely. 

 

All five models indicated that for northeastern British Columbia the maximum number of 

permitted wells, as regulated by current legislation (Agricultural Land Commission and Oil and 
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Gas Commission 2002), would be reached. The main difference in the results supplied by the 

five models lay in their asymptotic behavior, which is finite for the generalized models and 

infinite for the regression type models.  

 

For each study area, the set of five equations were refitted and compared with the equations 

determined for the entire northeastern British Columbia area. Most pair-wise parameters did not 

differ significantly (α=0.05). However, for the Moberly and Doig areas, the model including the 

periodic term (i.e., model 3 in Table 4.1) and the Poisson model was non-significant. In addition, 

for all three areas the negative binomial model had the coefficient of the squared total number of 

wells non-significant different than 0. However, the sign and magnitude of the non-significant 

variables corresponded to the ones developed for the entire region. Therefore, the evolution of 

the well drilling effort in the three study areas was modeled using the equations developed for 

the entire northeastern British Columbia (Fig 4.3), as the non-significant models or variables in 

an area enhance the landscape developments predicted by the significant models.  

 

The results from each study area confirmed the results obtained for the entire northeastern 

British Columbia region: the time series models will reach the maximum number of wells 

allowed by the regulations (i.e., 20,000 in the Doig area, 19,000 in the Fort Nelson area and 

8,400 in the Moberly area) while the generalized models will not reach that maximum during the 

century long planning period (Fig. 4.3). Regardless of the model used (i.e. Poisson or negative 

binomial), the three study areas had different peak moments: in approximately 2025 for the Doig 

area, 2045 for the Fort Nelson area and after 2050 for the Moberly area. Furthermore, for the 

Moberly area, the generalized model had a non-asymptotic behavior similar to the 

autoregressive models, as the peak moment would not be reached before 2050.  

 

 
Figure 4.3 Evolution of the number of wells drilled annually 
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The IK method, used to distribute the temporal evolution of the number of wells across the 

landscape, did not consider geology as influencing the location of a well. For northeastern 

British Columbia 62% of the wells were drilled above known petroleum reservoirs. This 

departure from pure randomness (50%) and large sample size (almost 18,000 wells) could lead 

to the conclusion that there is a relationship between geology and well position. However, since 

1992, almost 13,000 wells have been drilled (i.e., 72% of the total number of wells existing in 

September 2005), out of which less than 10% were above newly discovered reservoirs and 48% 

were above known reservoirs. Therefore, at a landscape scale, well positioning does not 

correlate well with oil and gas discoveries, and the location of known petroleum reservoirs was 

not incorporated into the IK estimates. 

 

For each area an indicator and a robust variogram were determined. The type of variogram did 

not impact the IK estimations, as kriging is a unique and exact interpolator (Kitanidis 1997), but 

the confidence interval of the predicted values were affected (Cressie 1993). The robust 

variogram (Eq. 4.5) presented almost 50% less variability than the indicator variogram (Eq. 4.4) 

so,  following the recommendation of Hawkins and Cressie (1984), I used only the robust 

variogram in the kriging computations (Table 4.2). With a probability larger than 0.75, two wells 

were separated by more than 300 m, To ensure that the grid used for kriging is integrated within 

the grid used by the Government of British Columbia, the side of the grid was selected as 400 

m, half the side of the quarter-section. Support for the choice of this distance was provided by 

the oil and gas development occurring in the Doig area, where 665 quarter- sections have 

already reached the maximum number of wells recommended by current legislation (2 

wells/quarter section). 

 

Table 4.2 Variograms of the study areas 
Study area Variogram 

type 
Equation Fit assessment Grid size 

[m] 
Isotropy 

P(|Q1||=0) P(|Q2|=1) p(vario. is 
isotropic) 

Moberly  Spherical 0.05×(1.5×h/4000-
0.5×(h/4000) 3) 

0.17 0.23 400 0.061 

Doig area Spherical 0.063×(1.5×h/15000-
0.5×(h/15000) 3) 

0.22 0.16 400 0.25 

Fort Nelson Linear 2×10-6×h 0.19 0.13 400 0.14 
 

The distribution of the wells within the quarter-section for the entire northeastern British 

Columbia follows a pattern of 35%-21%-23%-21%, clockwise from the NE quadrant to the SE 

quadrant.  The general pattern existing in the British Columbian part of the Western Canadian 
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Sedimentary Basin was confirmed by one of the study areas (i.e., Doig) that indicated that the 

evolution of the drilling process within the quarter section seems to follow the 35-21-23-21 

pattern. For the Moberly and Fort Nelson areas, areas with reduced oil and gas developments, 

the spatial distribution was almost equal among the four quadrants (Fig. 4.4).  Therefore, the 

probability of drilling within the quadrant was assigned according to the distribution 

characterizing the drilling occurrence for the entire northeastern British Columbia. 

 

 
 
Figure 4.4 Quadrants within the quarter section grid used to determine the well forecast grid 
 

The average forest harvesting for the next 100 years varied according to the scheduling 

algorithm and the harvesting age (Fig. 4.5), with the FFD algorithm supplying the largest AAC 

for all three areas. The selection of the harvesting age played a significant role in the size of 

AAC which was not necessarily translated in a significant disturbance at the landscape level 

(Table 4.3), as for the Doig and Moberly areas the difference between the harvested areas was 

less than 15% , regardless of the scheduling algorithm. However, the algorithm plays a 

significant role in determining the magnitude of the AAC, as the FFD algorithm supplied results 

significantly larger (p<0.001) than SA, from 15% for the Fort Nelson area to more than 20% for 

the Doig and Moberly areas. The results for Fort Nelson are counter-intuitive as despite the 

significantly larger AAC (i.e., p<0.0001 for AAC=270000m3/year supplied by FFD algorithm 

compared to 225000m3/year supplied by SA algorithm) the clearing of the forested landscape 

was insignificant (i.e., p>0.2 when the clear-cut area of 950 ha/year determined by the FFD 

algorithm was compared to the clear-cut area of 930 ha/year for the SA algorithm). In fact, in 

85% of the futures the larger AAC was not reflected in a significantly larger landscape 

disturbance. 
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Figure 4.5 The evolution of the AAC and of the land disturbance during the planning period 
 

Table 4.3. Timber harvesting land base (THLB) and AAC for the four harvesting scenarios 
 

Study 
area 

Surface 
[ha] 

# stands >0.5 ha THLB 
[ha] 

Average AAC [1000 m3] /  
Average Harvested area [ha] 

FFD/MAI FFD/Preset SA/MAI SA/Preset
Doig 684 138 37042 183 057 495 390 355 330 

1500 1350 1300 1200 
Fort 

Nelson 
641 024 86893 91 355 270 220 225 120 

950 950 930 900 
Moberly 410 194 36319 140 222 290 155 185 205 

1050 1000 700 670 
 

The coefficient of variation for the AAC lay between 5%, for the Fort Nelson area and 30%, for 

the Moberly area. The reduced AAC variability, the direct result of the 10% AAC annual 

variation, is not reflected at the scale of individual clear-cuts, which has a coefficient of variation 

(CV) almost double than the corresponding coefficient of variation of the AAC  

(e.g., CV AAC – FFD/Age@max(MAI) for Doig = 29% and CV cleared area – FFD/ Age@max(MAI) for Doig = 53% or  

CV AAC – SA/Preset age for Moberly = 6% and CV cleared area – SA/Preset age for Moberly = 21%).  
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The required seral stage distribution [i.e., stands having high biodiversity emphasis and less 

than 40 years old should occupy less than 27% of the study area, and the old seral stages 

(stands older than 120 years) should occur on at least a third of the area (Ministry of Forests 

1995)] was met throughout the planning period for all three areas. The fulfillment of the seral 

stage distribution requirements is obvious for the futures which have the harvests occurring at 

ages larger than 120 years. The futures for which the harvests occur at the age when MAI 

peaks also met the seral stage distribution requirements as more than 30% of the stand have 

the Agemax(MAI)>120 years. Irrespective the scheduling algorithm and the adopted harvesting 

age, the clearcuts did not change the landscape structure more than 2% year to year, with 

harvested stands being regenerated with species appropriate to the respective forest 

ecosystems. 

 

4.3.2 Habitat suitability index for the set of futures 
 

The combination of two forest scheduling algorithms, two harvesting ages, five drilling models, 

two species and two habitat perspectives (i.e., average HSI and stands with HSI>0.5) led to 80 

futures for each study area. The five drilling models had an undifferentiated impact on the 

average HSI (i.e., the difference among the five models was less than 1%), regardless of which 

scheduling algorithm or harvesting age was used, or of which study area. Therefore, for each 

study area and VEC, the futures quantified using average HSI were determined only by the 

forest harvesting (Fig. 4.6). Different results were obtained for the futures represented by stands 

with HSI>0.5, as drilling activities could play an important role for the first 20 to 40 years, when 

significantly different environments could be reached, depending on the study area and the 

model describing petroleum development (Fig 4.7a and 4.7b). For each study area, forest 

scheduling algorithm and harvesting age the set of five futures converged to one future once the 

maximum number of wells was reached. After the moment of convergence, the dynamics of the 

stands with HSI>0.5 were determined entirely by the forest harvesting activities.  
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Figure 4.6 The evolution of the average HSI during the planning period 

 

The FFD algorithm supplied better ranges for the average HSI than did the SA algorithm, 

regardless of the method of selecting the harvesting age (i.e., age at maximum MAI or preset 

age). The FFD algorithm also led to a relatively constant range of variation for the average HSI 

(e.g., 4 % for moose HSI), while SA induced larger changes in the average HSI (e.g., 12% for 

moose). While the harvesting algorithm seems to play a significant role in the dynamics of the 

average HSI for moose (i.e., 46%–48% for FFD compared with 32%–44% for SA in the Moberly 

area, 46%–50% compared to 44%–46% in the Fort Nelson area and 64%–68% compared to 

49%–52% in the Doig area),  the American martin habitat suitability seems to be little influenced 

by the algorithm, as the HSI had similar pair-wise ranges for each study area (i.e., 34%–38% for 

the Moberly area, 41%–47% for the Fort Nelson area and 23%–26% for the Doig area). Besides 

the differences in ranges (which is a measure of the variation in the L1 space), the algorithms 

also presented different measures of variation when the L2 space was used to assess the 

variability of the futures (Grimmett and Stirzaker 2002). For each species, harvesting age and 

study area, the standard errors of the mean of the nonlinear equations describing the temporal 

dynamics of the average HSI were at least twice larger for the FFD algorithm than for the SA 

algorithm (i.e., 3.7 times for the Moberly area, 2.1 times for Fort Nelson area and 4.1 times for 
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the Doig area). The equations used to describe the evolution of the average HSI [the equations 

were based on Bertalanffy’s family of equations )exp()( 1
653210

4 −×−××+×+ yearbbyearbbbb b , 

where b0 –b6   are coefficients] is of little interest for the proposed CIA framework, as it aims to 

investigate a set of futures, rather than any one in particular. Nevertheless, each equation 

fulfilled the time-series modeling assumptions and requirements [the equations were significant 

(p<0.001), had a coefficient of determination larger than 0.9, and the residuals were organized 

as white noise (p>0.2) with no evidence of nonlinear trends (p>0.08)]. The method of selecting 

the harvesting age within the forest scheduling algorithm seems to play a significant role in the 

dynamics of the average habitat suitability as for almost 85% of the comparisons (10 out of 12) 

the HSI had different evolutions depending on whether the harvesting occurred at MAI or after a 

preset age. The method of selecting the harvesting age could also play an important role in the 

long-term evolution of the habitat suitability, as for a preset harvest age the average HSI had an 

increasing tendency, regardless of the algorithm, species and study area. For the harvesting 

age as determined by the MAI, half the futures exhibited a relatively constant HSI, and half 

decreased. The most significant decrease in the average HSI occurred in areas with a reduced 

timber harvesting land base relative to the size of the entire study area (14% of the entire Fort 

Nelson area and 27% for the Doig area), and increased variation in the surface cleared 

annually. However, regardless of the scheduling algorithm and harvesting age the average HSI 

did not decrease more than 3% during the entire 100-year planning period.  

 

While the average HSI decreased in six out of the 24 futures, the area with HSI>0.5 either 

remained relatively constant (less than 1% decrease) or increased during the planning period. 

Like the average HSI, the FFD algorithm supplied larger areas with HSI>0.5 than the SA 

algorithm, regardless of the harvesting age (Fig 4.7a and 4.7b). The standard error of the mean 

was 30% smaller for the FFD than for the SA, the reverse of what occurred with the average 

HSI. For American marten, regardless of the scheduling algorithm or harvesting age, the 

surface of the stands with HSI>0.5 increased. The development of moose habitat was more 

nuanced than that of American marten, as the dynamics of the area with HSI>0.5 showed a 

slow but non-significant decreasing trend (in the Fort Nelson area, p>0.06). A characteristic of 

all the futures describing the surface of the stands with HSI>0.5 for American marten was the 

reduced standard error of the mean [the models describing the American marten evolution were 

also developed using Bertalanfy’s family of equations] when compared with moose (less than 

20%). Drilling activities seemed to have no impact on the occurrence of highly suitable stands 

for American marten but played a major role in moose habitat. Depending on the study area, the 

availability of stands with HSI>0.5 for moose could decrease by more than 10000 ha (e.g., Doig 
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area) as long as petroleum drilling was active. Furthermore, the petroleum drilling seemed to 

lead to sharp annual changes in moose habitat, with significant reductions from year to year [up 

to ten times for the Fort Nelson (Fig. 4.7b) or Moberly (Fig. 4.7a) areas]. For the period when 

the petroleum drilling influenced the environment, the regression type models seem to have a 

similar impact on the better habitat of the two species, as all three models produced futures with 

an analogous trend and relatively reduced magnitude in the variation of the stands with 

HIS>0.5,. For the same period, the futures supplied by the regression types models were 

significantly different from futures developed using the generalized models (p<0.01), which are 

responsible for the largest annual drop in the area of the stands with HSI>0.5 (e.g. Fort Nelson 

area and the forest harvesting scheduled using FFD algorithm or Moberly area and the forest 

harvesting scheduled using SA algorithm).  

 
Figure 4.7 a. The evolution of the areas with HSI>0.5 using FFD as forest harvesting algorithm 
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Figure 4.7 b The evolution of the areas with HSI>0.5 using SA as forest harvesting algorithm 
 

In view of the lack of significance of the drilling activities on the average HSI, only 144 futures [3 

study areas x 2 species x (5 drilling models HIS>0.5 + 1 drilling model average HSI) x 2 forest 

scheduling algorithms x 2 harvesting ages] were used for the CIA investigations. All 144 futures 

had the average HSI and the surface of the stands with HSI>0.5 not decreasing by more than 

15 %, indicating that each future could occur, as the selected thresholds were met. 

Consequently, all 144 futures were used in the CIA. The sphericity test (p<0.001) showed that 

the covariance matrix did not satisfy the Huynh – Feldt  condition, and the results were therefore 

assessed using the correction proposed by Greenhouse and Geisser (1959) and Huynh and 

Feldt (1970). The two tests showed that the environment would change significantly during the 

next century (p<0.0001), regardless of the study area (p<0.001) or harvesting algorithm 

(p=0.002). A similar conclusion was reached for the differences between the futures, but with a 

reduced level of significance (p=0.02). The forest scheduling algorithm seems to be responsible 
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for the differences among the futures (p=0.038)   while the study area has little impact (p=0.48) 

in identifying a significant different future within the set of 144 futures. The scheduling algorithm 

showed different influence on the species, as moose seems to be associated with both SA and 

FFD (47% of futures with SA and 97% with FFD) while American marten mainly with FFD (46% 

of the futures). An adjusted Scheffe test separated the 100 years into three periods: year 1 to 

50, year 51 to 93 and year 94 to 100. The periods differed not only in duration but also in 

variability [seven distinct time intervals spanned the first 50 years (year 1, years 2–11, years 

12–16, years 17–26, years 27–36, years 37–39 and years 40–50), while the second period had 

only one time interval and the third had two (years 94–98 and 99–100)]. The time intervals had 

significantly different covariance matrixes, but the HSI had similar trends within each period 

increasing in the first period, constant in the second and decreasing in the last period.  

 

The models used to develop the futures were significantly different (p<0.0001), with the set of 

futures developed for moose based on the SA algorithm and HSI>0.5 in Fort Nelson being 

separated for the remaining 134 futures. The SA algorithm was also responsible for the further 

separation of the 134 futures into two groups: one having 124 futures and one having the 10 

futures derived for American marten in Fort Nelson area.  The delineation of the 144 futures in 

two groups was maintained regardless of the forest harvesting algorithm: one grouping the 

models describing habitat suitability for American marten in the Ft. Nelson area with the models 

for moose in the Moberly area (i.e., 30 futures), and one containing the remaining 114 futures. 

 

The investigation of the autocorrelation function for all 144 futures revealed the existence of at 

least one cycle within each future. The cycle periods exceeded 100 years, ranging from 100 to 

140 years, with two exceptions, both of which were 30 years (both quantifying the average HSI 

for moose for the Doig area using the SA algorithm). About 18% of the futures revealed a 

second, shorter cycle imbedded into the longer cycle, with period varying from 15 to 30 years. 

 

4.4 Discussion 
 

The results supplied by the set of 144 futures confirmed the studies performed in the region by 

Nitschke (2008) and Schneider et al (2003) that found that the combined environmental impacts 

of forestry and oil and gas development in the western Sedimentary Canadian Basin were not 

significant. Nitschke (2008) identified that forest harvesting and petroleum drilling activities (i.e., 

well drilling, roads and resource exploratory clearing) were the main activities changing the 

landscape in northeastern British Columbia. Among the 82 species investigated by Nitschke 
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(2008), less than a quarter (i.e., 20 species) could have encompassed a reduction in the surface 

of their habitat, including American marten and moose. The decrease in the habitat availability 

for moose that Nitschke suggested might have occurred in northeastern British Columbia 

contradicts the findings of Ball and Dahlgren (2002), who found that the human activities 

increased the area of suitable habitat.  In this study, I found that habitat suitability for moose did 

not change significantly (Fig 4.6 and 4.7a and b).  The models suggested that an increase in 

habitat suitability would occur for American marten, regardless of the type of measurement used 

(i.e., average HSI or stands with HSI>0.5), confirming the results of Chapin et al (1998) and 

Hargis et al (1999).  

 

The habitat suitability of both species responded primarily to forest harvesting rather than 

petroleum drilling, especially when the average HSI was used to evaluate changes in the 

environment (Fig 4.6). However, when better habitats were considered in the analysis, 

petroleum drilling started to induce significant changes in the environment (Fig.4.7). These 

changes were evident before the number of wells peaked.  

 

The set of functions describing the evolution of the drilling effort is separated into two classes 

with or without a periodic term. The increasing amplitude part of the period term seems to 

emphasize the rise in oil and gas drilling sensitivity, probably a result of the increase in stock-

market dynamics combined with the fluctuating geo-economical situation (Williams 2006). 

However, the decreasing period (i.e., from 12 years to 8 years), starting in 1988, indicates the 

fast response of oil and gas industry to the socio-economic environment as well as the rapid 

implementation of petroleum related research (Cuddington and Moss 2001).  

 

Forest planning activities aim to maximize, minimize or maintain an objective, which can be 

explicitly quantitative, such as AAC (Davis et al. 2001) or net present value (Pukkala and Kurttila 

2005), or can be represented numerically, such as wildlife habitat (Bettinger et al. 2002) or 

recreation (Teeguarden and Werner 1968). To avoid subjective quantifications that could 

influence the results, the aim of the forest planning process in all three areas was AAC 

maximization and not habitat enhancement or increase of habitat surface. The results revealed 

that irrespective the algorithm or the harvesting age, both HSI statistics (i.e., average and areas 

with HSI>0.5) exhibited a pronounced cyclicity. Furthermore, among the set of 144 futures with 

a significant long term cycle, 24 futures presented a second cycle, enforcing the synergistic 

impact of the human activities on the environment, as noncyclical developments could induce 

cycles on the VECs. While the longer cycle could be associated with the variability in the 
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environment, the cycles with shorter periods indicate that when considered together, timber 

harvesting and well drilling could periodically place the environment at the risk of reaching 

undesired states, especially when the attributes quantifying VECs dynamics are close to the 

critical thresholds. The two human activities considered in the study could lead to a decrease in 

the amount of better habitat, especially when forest harvesting was scheduled using SA (i.e., a 

third of the futures); however, larger harvesting volumes do not necessarily translate into a 

decrease in the habitat suitability (i.e., the case of American marten when harvestings were 

scheduled using adjusted FFD algorithm). From this perspective, scheduling the harvesting 

using the FFD algorithm produced at least 10 % more volume / ha than SA (for the Moberly 

area it was almost 20%) without a significant reduction in the availability of better or average 

habitats. 

 

The decrease apparent in the average HSI for 60% of the futures is consistent with the findings 

of Jager et al (2006), which argued that the average HSI is a weak indicator of the habitat 

suitability at the landscape level.  A reduction in both HSI statistics only occurs after the 

cessation of drilling activities, and is not constant. The negative trend of the HSI after 40 years 

is closer to the observed evolution of the environment than to the forecasts commonly made in 

forest management plans, which assume that the attributes of interest (e.g., AAC) have a 

desirable long-term trajectory, but only after an initial unfavorable period. Another difference 

between the results and many current management plans lies in the reduced impact of the two 

human activities on the availability of better habitat for moose and American marten. While this 

seems to contradict several earlier studies in the region (Cizek et al. 2002; Dube et al. 2006; 

Yamasaki et al. 2008), it is not really surprising considering that the main activity changing the 

landscape is forest harvesting and not petroleum drilling [in agreement with the results of 

(Nitschke 2008)].  One of the surprising findings of this study is the reduced impact of forest 

harvesting on the habitat suitability while the AAC is increasing (Table 4.3), a direct result of the 

arrangement of the harvests. 

 

The three periods identified by the proposed CIA analytical platform are characterized by 

different dynamics, the first having the largest variation and the second the lowest. The first 

period, which could last 50 years, comprised seven significantly different sub-periods, three of 

them less than five years. These three sub-periods were characterized by a relatively constant 

or insignificant decrease of the HSI and separate the remaining four sub-periods, which are 

characterized by a significant increase of the HSI. The large number of sub-periods in the first 

half century, which is when petroleum drilling was occurring, could indicate that the clearing for 
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well pads is not responsible for the degradation of the habitat but does increase the variability of 

habitat quality. Of particular interest is the short sub-period between year 37 and year 39 when 

petroleum drilling seems to have no impact in comparison with the disturbance induced by the 

harvesting scheduled with the FFD algorithm and preset age (i.e., the Moberly area in Fig 4.7a). 

The weak performance of the FFD algorithm when harvesting occurs at a preset age is the 

result of the violation of the perfect bin - packing theorem (Coffman et al. 2000), and results in 

the FFD supplying results worse than the SA (Strimbu et al. 2008).  

 

The second period, which is the longest period with no sub-periods, would occur most likely 

after the petroleum drilling stopped, and is reflected in 80% of the futures (i.e., 116 futures), 

indicating the importance of forest harvesting in determining environmental dynamics. The 

second period also has the least variation, indicating that besides the constancy of habitat 

suitability, the variation of the HSI and the area with better habitats would not present large 

deviations within the period. In the third period the area of stands with HSI>0.5 decrease in all 

the futures produced using the SA algorithm and in two third of the futures produced with the 

FFD algorithm. The delineation of the three periods along the planning period follows a 

sinusoidal pattern that could be associated with the period cycle. The cyclic feature of the HSI 

emphasizes the long term and difficult to detect cumulative impact of the two activities. The 

study indicates that cyclical response of the environment to different human induced 

disturbances seems to be produced by non-cyclical human activities. This type of response 

resembles the chaotic behavior identified by May (1974) or Williams (1997). 

 

The three periods are separated by two significant moments, one most likely to occur after 50 

years, and one after 93 years. The HSI describing the two moments do not differ significantly in 

magnitude (p=0.24) as both could be associated with the second period, a period characterized 

by reduced variability of the measures used to quantify the habitat. However, the two moments 

can also be seen as separating an upward trend (i.e., first period) from a downward trend (i.e., 

third period). The first moment would occur at least 10 years after the cessation of petroleum 

drilling (after 30 years in the Doig area) confirming the environmental inertia mentioned by 

Hannan and Freeman (1984) and Ruef (1997). The first moment can be relatively easy 

identified as the moment when the increase in habitat stops, but the second moment cannot be 

clearly delineated, as the downward trend is present in 80% of the futures. Furthermore, the 

decrease starts after 80 years (sometimes after 70 years [i.e., in the Moberly and Fort Nelson 

areas when the forest harvesting is scheduled using the FFD algorithm)] and not after 93 years, 

as the longitudinal analysis indicated the presence of a statistically significant change in the set 
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of 144 futures. The 13-year difference is probably associated with the moment when the effects 

could be detected (i.e., year 93) and not necessarily when the environment started to change 

(i.e., year 80). 

 

The attributes that could induce significant changes in the environment are harvesting age and 

the VEC. The increasing harvesting age could significantly reduce the availability of better 

habitats, especially when SA is used to schedule the forest harvesting. The VEC could also 

change the CIA investigation as the measure for American marten seems to have a constant 

increase (i.e. 58% of the futures quantifying the availability of better habitats) while the measure 

for moose decreased (i.e. 54% for the futures quantifying the availability of better habitats). 

While the choice of harvesting age could be responsible for significant changes in the 

environment, the algorithm used to schedule the harvesting seemed to have little impact on 

landscape disturbance, as five out of six scenarios induced similar clearing footprints on the 

landscape. Regardless of the development of the petroleum drilling, the clearing associated with 

the well pads did not produce significant changes in the metrics used to assess the VEC. From 

this perspective, the futures obtained using the five models (i.e., the three regression-type 

models and the two generalized models) could have not been delineated for the same study 

area and within the same forest harvesting algorithm and harvesting age. 

 

4.5 Conclusion 
 

Traditionally, the inclusion of future activities in cumulative impact assessments has been done 

using one analytical platform. For complex CIA investigations, the analytical platform is 

commonly based on modular modeling (Alila and Beckers 2001; Voinov et al. 2004) or on 

different operations research techniques (Stakhiv 1988). To compensate for the influence of the 

model, I have suggested a shift in the paradigm governing the CIA. The paradigm shift involves 

a change in the focus of CIA investigations from the detailed analysis of one unlikely future to 

the identification of the patterns describing the future changes in the environment. To illustrate 

the approach, a set of 144 possible and equally likely futures were developed that aimed to 

identify the potential impacts of forest harvesting and petroleum drilling on the habitat suitability 

of moose and American marten. 

 

Petroleum drilling will cease by the middle of the 21st century, with areas experiencing higher 

drilling intensity in the past (e.g., Doig) stopping before areas that are currently less well-

developed (e.g., Moberly). The economic and environmental impact of the forest harvesting is 
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dependent on the algorithm used to schedule the harvestings as well as on the choice of 

harvesting age. The combination of the first-fit decreasing algorithm and harvesting at the age 

when MAI peaks supplied the largest AAC among all the planning strategies investigated. In 

85% of cases, the disturbance associated with larger AAC did not differ significantly from lower 

AACs.  

 

The evolution of two measures of habitat suitability (average HSI and surface of the stands with 

HSI>0.5) revealed that the human activities could induce at least one cycle, having a period 

between 100 years and 150 years, in the habitat dynamics of moose and American marten, 

even though regulatory constraints do not plan for cycles. The existence of a cycle in the habitat 

of the two VEC was reinforced by the presence of a second but shorter cycle in a sixth of the 

futures. However, the results support the conclusion that habitat suitability would not vary by 

more than 15% from the present values throughout the 100-year simulation period. The two 

human activities considered in the CIA had no negative impact on the availability of better 

habitat for American marten but could lead to an insignificant reduction for moose. 

 

The planning period was separated into three distinct periods: the first characterized by an 

increase in the habitat suitability measures, which would last almost 50 years, the second 

lasting approximately 40 years and characterized by constant conditions, and the third (10-year) 

period marking the start of a decrease in the habitat suitability measures. The three periods 

were separated by two significant moments, one most likely to occur after 50 years, and one 

during the last decade of the century. The two moments could not be separated based on the 

magnitude of the attributes describing the periods, but the moments delineated an upward trend 

(i.e., first period) from a downward trend (i.e., third period). Both moments would occur after the 

cessation of petroleum drilling. 

 

The attributes that could induce significant changes in the environment are the choice of 

harvesting age and the VEC. The choice of VEC is critical to the analysis and could change the 

conclusions of the CIA. The study suggests that the harvesting algorithm and petroleum drilling 

may not have a significant impact on the VEC used in the CIA investigation. However, I 

recommend that future CIA investigations be based on the analysis of a greater range of human 

activities and a greater range of VECs. 
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5. MULTIMODELING ASSESSMENT OF THE IMPACT OF PETROLEUM 
DRILLING AND FOREST HARVESTING ON WILDLIFE HABITAT1 

 

5.1 Introduction 
 

The increasing demand for petroleum products that has characterized the first decade of the 

third millennium has led to the profound transformation of landscapes where oil or gas drilling 

takes place (Yamasaki et al. 2008). When combined with other natural or anthropogenic 

disturbances, such as fire, insect outbreaks and forest harvesting, petroleum activities can 

significantly change the environment (Government of Canada 1992). The impact of different 

developments on the landscape was and is the focus of a large number of scientific 

investigations. A query of the ISI database using “forest harvesting” and “oil” as keywords 

reveals that more than 30 articles have been published on the topic over the last 10 years. The 

large number of articles has arisen partly because the computational challenges associated with 

the forecast of complex environmental systems have been overcome by technological advances 

since 1980.  

 

While technological advances have largely solved the computation problems, they have not 

addressed the theoretical foundation of environmental forecasting. One characteristic of the 

software used in large-scale environmental investigations is the mono-analytical mathematical 

framework (i.e., most software is restricted to a single mathematical approach to simulating 

environmental dynamics), such as DHSVM (Wigmosta et al. 1994), FORECAST (Kimmins et al. 

1999), ESRI Hydro Data Model (Environmental Systems Research Institute 2001), ALCES 

(Stelfox 1999) or SORTIE (Menard et al. 2002). As a result, 97% of the papers identified in the 

ISI database provide results that rely on only one quantitative framework. The use of a single 

but complex investigative tool to forecast environmental dynamics leads to results with null 

probability of occurrence as:  

 

Probability of occurrence = 1/ (the number of equally likely results) 

 ≤ (the smallest number of equally likely results       (5.1.) 

supplied by each distinct entity used in the quantification)-n≤ 0)11(lim =+ −

∞→

n

n
  

 
                                                 
1 A version of this chapter has been submitted for publication. Strimbu, B.M. and Innes, J.L. 
Multimodeling assessment of the impact of petroleum drilling and forest harvesting on wildlife 
habitat in northeastern British Columbia.  
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where n is the number of distinct entities used in the forecast and the two 1s correspond to the 

smallest (respectively largest) value of the confidence interval supplied by the equations used in 

a model entity. In generating this, I have discounted software that does not provide confidence 

intervals for each entity used in forecast; as such software is based on the unrealistic 

assumption that the future is perfectly predictable and known.  

 

The aim of the study presented here is to analyze the possible and cumulated impact of specific 

human activities (i.e., petroleum drilling and forest harvesting) on aspects of the environment 

(e.g., wildlife habitat) by providing confidence in the results. To generate confidence intervals, I 

advocate a fundamental change in the methods used in the past to forecast the environment, 

changes derived from the methodology developed by Boltzman (1995) for thermodynamic 

systems. 

 

5.2 Methods 
 
I used three areas from northeastern British Columbia to determine the impact of petroleum 

developments and forest harvesting on wildlife habitat (Fig 5.1). The dominant tree species in 

northeastern British Columbia are white spruce (Picea glauca), black spruce (Picea mariana), 

trembling aspen (Populus tremuloides), lodgepole pine (Pinus contorta), balsam poplar 

(Populus balsamifera), Engelmann spruce (Picea engelmannii) and subalpine fir (Abies 

lasiocarpa) (Meidinger and Pojar 1991). The biogeoclimatic  zones associated with these 

species are the Boreal White-Black Spruce zone, located on the western side of the plains of 

the Western Canadian Sedimentary Basin, and the Spruce-Willow-Birch zone and Engelmann 

Spruce-Subalpine Fir zone found on the eastern foothills of the Rocky Mountains at elevations 

above 1300 m (Ministry of Sustainable Resource Management 2004). 
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Figure 5.1 Study areas 

 

The boundaries of the three areas were selected by the Treaty 8 Tribal Council and reflect 

differences in the intensity of disturbance produced by petroleum drilling activities in the 

landscape: low (Moberly area), medium (Fort Nelson area) and high (Doig area). The impact of 

forest harvesting and petroleum drilling was assessed for two valued ecosystem components 

(VEC), in the sense of Beanlands and Duinker (1983), which were also selected by the Treaty 8 

Tribal Council: moose (Alces alces) and American marten (Martes americana). The two human 

activities and the two VECs ensure that the analytical framework used to assess the impact of 

landscape disturbance on different environmental attributes can be generalized, as there is no 

difference between multidimensional investigations (i.e., n activities and p VECs) and two-

dimensional investigations when Euclidean spaces represent the investigations (Gilbert 1976). 

The data that were used to evaluate the responses of the two VECs to human developments 

were supplied by the British Columbia (BC) Ministry of Sustainable Resource Management 

(Ministry of Sustainable Resource Management 2004) for forest and wildlife, and by the Oil and 



95 
 

Gas Commission (Oil and Gas Commission 2005) and Energy Information Administration 

(Energy Information Administration 2005) for petroleum wells. The analysis was performed 

using SAS 9.1 (SAS Institute Inc. 2004) and the input-data were prepared with ArcGIS 9.3 

(Environmental Systems Research Institute 2008). 

 

To determine the confidence surrounding the results, understood here as the probability of 

rejecting the null hypothesis, I developed a set of independent and equally likely futures. Each 

future represented a possible evolution of the environment under potential human developments 

or natural events. These futures symbolized the trajectories of the different particles used by 

Boltzman (1995) to describe a fluid. Similar to Boltzman’s trajectories, each future represented a 

sample unit that expressed the dynamics of the environment. However, rather than providing 

the average values for each attribute of interest, which was the goal of  Boltzman’s approach, I 

focused on delineating significantly different periods that could exist during the evolution of the 

environment (Fig.5.2). Therefore, to identify the impact of the human activities on the 

environment, I determined the commonalities or differences that existed throughout the planning 

period for the entire set of futures. In comparison to Boltzman’s approach I changed the 

computation objectives (i.e., from averages to periods) as the particles are real entities while the 

set of futures is non-existent and an average is irrelevant being based on imaginary inputs. The 

validity of the methodology required that the set of futures be independent and equally likely, a 

condition of the Boltzman approach. The independence and equal likelihood conditions 

recommended the description of each future using different (ensuring independence) and 

possible (ensuring the likelihood) forecasting methodologies, and led to the seemingly parallel 

structure from Fig 5.2. 
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Figure 5.2 Development of the set of futures 

 

To ensure reliable inferences under the structure proposed in Fig 5.2, I generated at least 10 

futures/area, the minimum number recommended by Tran (1997). Each future was spatio-

temporally explicit and was obtained by combining the development of forestry [using heuristic 

techniques (Bettinger et al. 2002)] and oil drilling [using a combination of autoregressive (AR) 

models (Walls 1992) with indicator kriging (Journel 1983)]. The futures built using the above 

approach had to meet the regulatory requirements imposed on forest harvesting and oil drilling, 

but did not necessarily ensure that the evolution of the environment was on a desirable path. 

While forestry and oil drilling were controlled by regulatory constraints, other attributes 

quantifying the environment and impacted by human development (such as wildlife habitat) 

could exceed the appropriate thresholds, making the respective future improbable. Identification 

of significant periods within the planning period was therefore based on the futures fulfilling not 

only the requirements of each individual human activity but also on constraints associated with 

other attributes describing the environment (e.g., wildlife habitat suitability). 
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5.2.1 Development of independent and equally likely futures 
 

To develop the independent and equally likely futures, I adopted a hierarchical framework that 

reflects real developments: forest harvesting could only occur on sites not previously harvested 

by the oil drilling activities. I operated within the multimodel framework from Fig. 5.2, as in British 

Columbia mineral rights have priority over surface rights (Government of British Columbia 

2004). Oil drilling could therefore not be impeded by any ownership rights or forest management 

activities, except when specifically regulated by the law (such as archeological sites, sites of 

endangered species or nesting sites of waterfowl birds). Consequently, the possible 

development of oil drilling was developed first, with forest harvesting being constrained to 

incorporate land already cleared for well pads. 

 

5.2.1.1  Generation of futures for oil and gas drilling 
 

The spatio-temporal development of oil drilling was represented by first forecasting the evolution 

in the number of wells and then distributing the wells across the landscape. This approach has 

been advocated by the large number of models developed to predict the evolution of the oil well 

count (Iledare and Pulsipher 1997; Ringlund et al. 2008; Walls 1994) and the reduced 

availability of models to describe directly the spatial-temporal dynamics of the well drilling 

process (Rao 2000). To accommodate the yearly time step of forest planning, the temporal 

development of the oil and gas drilling was also represented with an annual time-step: using 

either the number of annual wells drilled (Cuddington and Moss 2001; Walls 1994) or the total 

number of wells existing on the landscape (Walls 1994; Walls 1992). 

 

I developed equations describing the temporal evolution of the oil and gas wells count for the 

entire region as the three study areas could be considered as a sample of the entire 

northeastern British Columbia. Furthermore, the larger amount of information available for the 

whole of northeastern British Columbia led to more accurate models (Neter et al. 1996). Two 

types of models were elaborated: one based on autoregressive equations (Brockwell and Davis 

1996) and one based on generalized models (Neter et al. 1996). Autoregressive equations are 

the most common tools describing well count development (Holland 2008; Lanza et al. 2005; 

Rao 2000; Ringlund et al. 2008; Walls 1994), and I therefore developed three different models 

to predict the future petroleum drilling using the autoregressive approach. The autoregressive 

approach was based on the equation proposed by Balke and Gordon (1986) to which a set of 

covariates were added to the auto-regressed variable: 
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ttttt sXLCyLB νμ +++= )()(        (5.2) 
 

where yt and Xt denote the well activity and the matrix of the covariate variables in period t, B(L) 

and C(L) are the two lag-polynomials in the lag operator L which are given by: 
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The covariates considered in the three autoregressive models enhanced the approach of 

Ringlund and others (2008) and Lanza and others (2005), which considered only one covariate 

(i.e. the average oil price), by assessing the impact of three prices (i.e., average, minimum and 

maximum) on the oil and gas drilling. 

 

The method proposed by Cleveland (1972) for analysis of the autocorrelation, inverse 

autocorrelation and partial autocorrelation functions was used to identify the order of the 

autoregressive model as well as the presence of a non-linear trend in the model describing the 

dynamic of the number of wells. The augmented Dickey-Fuller (DF) test evaluated the slope and 

the intercept of the model describing the well drilling dynamics and a Bartlett’s Kolmogorov – 

Smirnov test was used to assess whether the difference between two consecutive years was 

white noise. 

 

The Smallest Canonical (SCAN) correlation and Extended Sample Autocorrelation Function 

(ESACF) methods (Box et al. 1994; Choi 1992; Tsay and Tiao 1985) were used to identify 

whether an ARMA process can represent oil and gas well drilling. Contingent on a stationary 

and invertible ARMA process, the Minimum Information Criterion (MINIC) method was 

employed to identify the order of the ARMA process while a Bayesian information criterion (BIC) 

was used to reveal the autoregressive order of the errors.  

 

Lindsey (1980) and Kingman (1996) used generalized models as an alternative to time series 

models to describe the counting processes (e.g., number of oil and gas wells).  Following the 
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recommendation of Cameron and Trivedi (1998), the drilling process was represented using two 

generalized models: Poisson and negative binomial (Eq. 5.3):  

 

ttt XLCy ε+= ))(exp(          (5.3) 
 

The five models (i.e., three autoregressive and two generalized models) were considered as 

being correct when the residuals were white noise, assessed using a Bartlett’s Kolmogorov-

Smirnov test, and stationary, assessed using a Philps-Peron test (Phillips and Perron 1988). 

Once the temporal modeling for the entire northeastern British Columbia was finished I tested 

the validity of the five equations on each of the three study areas.  

 

The wells predicted to be drilled in each year were spatially distributed using indicator kriging 

(IK). Indicator kriging (Journel 1983) operates on the binary set {0,1} that can be used to 

represent the absence, 0, or the presence, 1, at a given location of a well. The variable 

representing the presence or absence of a well follows a Bernoulli distribution; the classic 

variogram was therefore replaced with a robust indicator variogram, as proposed by Hawkins 

and Cressie (1984):  
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where h is the distance between wells, xi, yi are the coordinates of a well, I(xi, yi) is the indicator 

function at location (xi, yi), and N(h) is the number of points quantifying the presence or absence 

of a well for the h distance class.  

 

The results of the indicator kriging were real numbers not integers; I therefore interpreted the 

indicator kriging as quantifying the probability of a well being drilled at a specific location.  

 

In any estimate of the probability of drilling using IK, the input dataset should contain at least 

three attributes: x and y (which gives the position) and 0 and 1 [that identify the well’s presence 

or absence at the (x,y) location]. Data supplied by the BC Oil and Gas Commission (Oil and Gas 

Commission 2005) contain details of the wells present in the study areas. The dataset is 

suitable for the assignation of the presence value (1), but does not indicate the absence of 

drilling (0). I therefore sought to develop a method to identify the places where drilling cannot 

occur. A possible procedure would be to follow the intuitive approach of assigning the value 0 to 
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areas where no drilling can occur (e.g., inside populated places, archeological sites, streams or 

lakes). However, this approach failed to identify the 0 in areas where drilling can occur (e.g., 

pastures or forest with no harvesting constraints) and led to clusters of 0s that associated large 

lag distances to non-negative values, of little use in the indicator variogram elaboration. The 

inability to delineate 0 from 1 using such an intuitive approach was based on the violation of two 

conditions that describe the development of drilling:  

1. the true variogram would not be known until the drilling will stop, as the maximum 

number of wells in the area is reached; 

2. for any given year the position of wells that would be drilled the following years is 

unknown.  

 

A consequence of the first condition is that the variograms built using data before the maximum 

number of wells is reached will converge to the true variogram (Kolmogorov and Fomin 1999). 

The second condition indicated that splitting the dataset containing the well information into two 

subsets, according to the year of drilling [i.e., wells drilled before a selected year of drilling 

would have the position known (past) while the wells drilled after the selected year would have 

the position unknown (future)] would create a set of variograms that would converge to the true 

variogram (the variogram for the year when drilling will cease). The dataset provided by the Oil  

and Gas Commission (Oil and Gas Commission 2005) was therefore divided into two, such that 

for wells drilled before a specific year the I(x,y)=1 while for wells drilled after the respective year 

the I(x,y)=0. 

 

The three study areas had different geomorphologies that could lead to different distributions of 

wells on the landscape. I therefore developed individual variograms for each of the three areas. 

The variogram fitting was assessed using Q1 and Q2 statistics, as suggested by Kitanidis 

(1997). Besides the variogram, the accuracy of the IK estimates also depends on the directional 

symmetry of the spatial correlation, which was tested using the isotropy test proposed by Lu and 

Zimmerman (1994). 

 

The IK developed using the above procedure computes the probability of oil and gas drilling at 

specific locations. To identify the locations relevant to the drilling process I constructed a grid 

that would supply the coordinates where the IK would be estimated. The grid was based on the 

quarter section system used by the Government of British Columbia in landscape planning 

(Ministry of Sustainable Resource Management 2004). Each quarter section was divided into 

four quadrants, as no more than four wells can be drilled on a quarter-section (Agricultural Land 
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Commission and Oil and Gas Commission 2002). For each well, the Cartesian coordinates 

relative to the quarter-section in which it was located were determined. Using the Cartesian 

coordinates, all the wells were plotted on one quarter-section and the probability of occurrence 

of a new well within a quadrant was considered as being proportional to the number of wells 

within the respective quadrants. Of the four values, only the largest two were selected as 

regulations constraining drilling activities give unobstructed authority to the Oil and Gas 

Commission for a maximum of two wells per quarter section (Government of British Columbia 

2004). I assumed that oil and gas development in BC would mirror that in Alberta, the Canadian 

province with the most experience in oil and gas exploration (Information Services AEUB 2005), 

and that the density of oil and gas wells on the landscape would reach the maximum capacity 

allowed by the regulations (Anonymous 2004). The grid used for computing the IK has as 

vertices the center of the two quadrants with the largest number of wells within the quarter-

section grid. Finally, the moment of drilling at a certain location was determined by ranking the 

probability of drilling (i.e., ranking the results of indicator kriging), and, within the order set, 

assigning to each year the number of wells supplied by one of the five temporal models. This 

approach was based on two properties:  the exact interpolation of IK (Cressie 1993) and the 

strict monotonicity of the cumulative probability function (Grimmett and Stirzaker 2002), 

properties justifying the assumption that larger probabilities are associated with earlier drilling. 

 

5.2.1.2  Generation of futures for forest harvesting 
 

In northeastern British Columbia, the annual allowable cut (AAC) is determined using heuristic 

algorithms constrained to meet different spatial and temporal conditions (Jukes et al. 2004). In 

addition to the requirements of the sustainable forest management plan used for the area 

(Jukes et al. 2004) I accommodated the hierarchy of the two industries by constraining the 

scheduling of the forest harvesting to include the surfaces harvested by the petroleum drilling 

(i.e., well pads). I generated four independent and equally likely future forest landscapes by 

using two possible heuristic algorithms [i.e., simulated annealing (SA) (Metropolis et al. 1953)  

and an adjusted first fit decreasing (FFD) algorithm (Johnson 1973; Strimbu et al. 2008) ] and 

two harvesting ages (i.e., a preset harvesting age (Bettinger et al. 2002) and age at max(MAI) 

(Davis et al. 2001)].  I selected SA as it is the main algorithm used for forest scheduling in 

northeastern British Columbia as well as being one of the heuristic algorithms with the simplest 

implementation (Lockwood and Moore 1993). Furthermore, SA supplies results close to the 

linear programming solution describing the forest planning problem, which is considered an 

optimal solution (Crowe and Nelson 2003; Bettinger et al. 2002). To select the parameters 
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required by the SA (i.e., initial temperature (Ti), freezing temperature (Tf) and the rate of 

annealing (ra)) I followed the recommendations of Boston and Bettinger (1999), Bettinger et al. 

(2002) and Crowe and Nelson (2003). To obtain a solution I allowed SA to run on average 60 

minutes, adhering to the results of Crowe and Nelson (2003), which suggested that SA could 

supply an efficient solution in less than one hour.  I selected the rates of annealing at 0.7, 0.75, 

0.8, 0.85, 0.9, 0.95 and 0.99, the initial temperatures at 1000, 10000 and 100000, and the 

freezing temperatures at 1, 50 and 100, similar to the values used by Bettinger et al. (2002) and 

Crowe and Nelson (2003).  

 

I adjusted the FFD algorithm in the sense that the FFD algorithm was applied to a changing bin 

size, downwards, starting from a maximal AAC. The maximum AAC was determined using the 

perfect bin-packing theorem (Coffman et al. 2000) and represented the upper boundary of the 

AAC, i.e. the maximum volume that could be harvested annually in the absence of spatial 

constraints. Strimbu et al. (2008) have shown that the aspatial upper AAC boundary is the sum 

of the maximum mean annual increment of the stands. The computation of the upper AAC 

boundary did not consider spatial constraints, and the inclusion of green-up constraints in the 

scheduling process could therefore lead to values smaller than the upper AAC boundary. To 

meet the regulations, I determined the AAC by decreasing the upper AAC boundary (i.e., sum of 

the maximum mean annual increment of all stands) in increments of 5%, until all the forest 

planning constraints were met. The constraints (Table 5.1) governing the magnitude of the 

volume that could be harvested annually were based on the Sustainable Forest Management 

Plan developed for the Fort St. John Pilot Project (Jukes et al. 2004). 

 

Table 5.1 The harvest scheduling constraints 
No. Constraint Value 

1 The maximum yearly variation of the AAC from the mean AAC of the 

planning period 

10% 

2 The stands are harvested using one silvicultural system. Clear-cutting 

3 The minimum opening size created by harvesting 5 ha 

4 The maximum opening size created by harvesting 60 ha 

9 The length of time until a stand is considered fully stocked after 

harvesting (the greenup/adjacency constraint) 

5 years 

10 The planning horizon 100 years 

 

The maximum volume to be harvested annually at a forest level occurs when the harvesting 

coincides with the maximum MAI of each stand. The maximum AAC should therefore ensure 
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that each stand is harvested at the age when MAI peaks (Davis et al. 2001). The harvesting 

guidelines for northeastern British Columbia recommend merchantability standards of 17.5 cm 

for spruce and sub-alpine fir and 12.5 cm for all other species (Pedersen 2003), and these 

standards were used to determine the culmination age of the MAI (Appendix C). In addition to 

the future forested landscapes developed using an algorithm aiming to achieve the 

maximization of AAC (i.e., adjusted FFD and harvesting at the peak MAI), I developed futures 

using a preset harvesting age, which is the method currently being used to schedule forest 

harvesting in the area. For the three study areas the minimum harvesting age was established 

120 years, following the recommendations of Jukes et al. (2004). Harvesting above a preset age 

could result in stands being harvested 70 years before the culmination of MAI (e.g., a stand of 

white spruce with SI ≤10) leading to local maximization of the AAC.  

 

The constraints that could play a significant role in determining the AAC that were not 

incorporated in the mathematical model were seral stage distribution and growing stock. The 

constraints regulating the seral stage distribution were not represented mathematically as either 

the harvest occurred at ages larger than 120 years (for the future considering that the stands 

are harvested at a preset minimum age) or more than 30% of the THLB had the harvest age 

larger than 120 years (Appendix C) (for the futures considering that the stands are harvested 

when MAI peaks). When adjusted FFD is used to schedule the harvests, then the perfect bin-

packing theorem (Coffman et al. 2000) conditions were met; consequently, the growing stock 

constraint was fulfilled, as AAC was smaller or equal to MVHA (in this case MVHA = annual 

growth of the forest estate where harvest can occur). When the harvests are scheduled using 

SA, the growing stock could decrease to undesired levels, therefore the implementation of a set 

of constraints addressing the reduction of the growing stock became necessary. However, if the 

AAC supplied by SA is smaller than MVHA and the perfect bin-packing theorem condition are 

fulfilled then the magnitude of the growing stock would not decline to unacceptable levels.  

 

The forest scheduling computations were performed using Delphi 7.0 (Borland Software 

Corporation 2001) and the runs were executed on a PC with a 3 GHz Pentium 4 processor and 

Windows XP operating system. The forest yield was determined using TIPSY 3.1 (Ministry of 

Forests 2005a) for managed stands and WinVDYP (Ministry of Forests 2005b) for unmanaged 

stands. 
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5.2.2 Assessment of the cumulative impact of oil drilling and forest 
harvesting  

 

5.2.2.1  Quantification of moose and American marten habitat 
 

The evolution of the environment was assessed using habitat suitability indexes (HSI) that 

measure the quality and quantity of the habitat of the two VECs selected (i.e., moose and 

American marten). The HSI models do not accurately represent the response of the species to 

the environmental changes but only the habitat quality and availability, a necessary but not 

sufficient condition. However, several studies identified a significant correlation between 

population dynamics and different indices describing habitat (Hirzel et al. 2006; Larson et al. 

2004; Ottaviani et al. 2004; Roloff and Haufler 1997; Roloff and Kernohan 1999), recommending 

HSI as a suitable measure for the trends in moose and American marten populations.  

 

The limiting season for the two species is winter, and I therefore used only the HSI quantifying 

habitat suitability during the cold season (Romito et al. 1999; Takats et al. 1999). Both HSI 

models relied on the assumption that proximity to human settlements or human activities do not 

affect the species behavior and there is unrestricted access by the animals to water and mineral 

resources in the area that supplies food and cover. According to Romito et al (1999), the moose 

winter habitat in the region is influenced mainly by the amount of shrubs and deciduous saplings 

[a stands is quantified as being 100% suitable if the shrubs and deciduous saplings cover 25% 

of the stand]. The requirements of American marten for the winter habitat are more nuanced 

than moose, and depended on the simultaneous fulfillment of several conditions: presence of 

coniferous (a stand with more than 15% pine, spruce or fir then is 100% suitable), relatively 

close canopy (between 30% and 70% a stands is assumed to be 100% suitable), and presence 

of tall trees (stands with height larger than 15 m are 100% suitable). Two statistics were used to 

assess the cumulative impact of oil and gas drilling and forest harvesting: one describing the 

average change of the HSI at the landscape level and one measuring the availability of superior 

habitats (i.e., HSI>0.5) across the landscape. The 0.5 threshold for the HSI was selected based 

on the results of Jager et al. (2006), Kroll and Haufler (2006), Liu et al. (2005) and Bailey et al. 

(2002). The average HSI was selected as indicating the habitat dynamics at the landscape level 

as well as whether or not human activities significantly changed the landscape from the habitat 

perspective (2002). The superior habitats complemented the average HSI, as HSI models could 

misrepresent reality by steep declines in species occurrence; declines predicted when poor 

habitats are not excluded from the modeled landscape (Jager et al. 2006).  
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5.2.2.2  Analysis of the futures induced by oil and gas drilling and forest 
harvesting 

 

The hierarchy outlined in Fig. 5.2 does not ensure that activities situated on the lowest 

hierarchical level will not supply futures having the two HSI statistics violating regulatory 

thresholds. To ensure that all futures met the regulatory requirements, the average HSI and the 

area with HSI>0.5 of each future and year of the planning period were compared with a 

threshold HSI. I considered that the threshold HSI was reached when the minimum amount of 

suitable habitat would affect the population dynamics of moose and American marten. Based on 

the results of Peterson (1997) and Fryxell et al. (1999), I considered that for both moose and 

American marten a 15% reduction of the two HSI statistics would ensure that the population 

change would be within the natural range of variation. The reference value was selected the 

statistic of the first year of each future, as the current conservation status for both moose and 

American marten (i.e., yellow listed by BC Conservation data center and G5 by NatureServe) is 

desirable to be maintained or enhanced during the future.  

 

The two statistics used to quantify the evolution of the environment operate on two scales (i.e., 

the average HSI is between 0 and 1 and the area with HSI>0.5 is larger than 100,000). Rencher 

(2002) and Neter et al. (1996) mention that within a repeated measures framework, the 

difference in the orders of magnitude could affect the results. To include values operating on a 

105 scale with the values operating on a 100 scale in the same analysis the values representing 

the size of the area with HSI>0.5 (i.e., between 100 000 and 500 000) were transformed to 

values compatible with the average HSI (i.e., between 0 and 1). The transformation to subunit 

values was performed using the linear relationship:  

)]min()/[max()]min([ 5.05.05.05.0 >>>> −− HSIHSIHSIHSI AreaAreaAreaArea
    (5.5) 

 

where min and max are the minimum, respective maximum, operators applied to the 100 HSI 

values within each future. 

 

I performed a univariate repeated measures analysis of the set of futures to identify the impacts 

of human developments on the habitat of moose and American marten. I used a Helmert 

transformation (1990) to reveal the existence of significantly different periods, while the 

differences between the futures were assessed using univariate two-sample profiles, as 

advocated by Rencher (2002). When the assumptions required for valid repeated measures 

analysis were violated [i.e., the Huynh-Feldt condition, which was tested using the sphericity test 
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proposed by Anderson (1963)], the significance level of the F-test was adjusted using the 

modifications proposed by Greenhouse and Geisser (1996) and Huyhn-Feldt (1970). The 

differences between the futures and the moments when the habitat suitability could change 

significantly were assessed using the Scheffe test, as suggested by Zar (1996). 

 

To enhance the one-dimensional perspective supplied by the univariate approach, I used 

multivariate repeated measures to reveal the existence of the moments when significant 

changes could occur in the wildlife habitat during the planning period. This technique also 

enabled the assessment of the impact of the models in the delineation of the homogeneous 

periods (i.e., the intervals between the moments when significant changes in the wildlife habitat 

could occur). I used Wilks’ likelihood ratio, Pillai’s trace and Lawley-Hotelling tests for the 

interpretation [‘Roy’s root’ (another common multivariate test used in significance testing) is an 

extension of ‘Pillai’s trace’ tests (Rencher 2002) and therefore was not used]. To ensure the 

consistency of the comparison between the univariate and multivariate repeated measures, the 

homogeneous periods were identified using a Helmert transformation in combination with the 

multivariate two-sample profiles (Rencher 2002); this also enabled the evaluation of the impact 

of the models on the analysis. 

 

The multivariate repeated measures analysis was supplemented by a hierarchical cluster 

analysis that provided a different multivariate perspective on the possible commonalities in the 

set of futures.  As with the repeated measures analysis, hierarchical cluster analysis was used 

to separate the futures forecasting period (i.e., 100 years) into distinct sub-periods. The 

similarities within the set of futures and the moments when significant changes could occur were 

identified using centroid and Ward’s minimum variance clustering methods, as recommended by 

Rencher (2002). The distance between two clusters, DAB, was measured using the increase in 

the sum of squares for Ward’s method and the distance between the mean vectors of two 

clusters for the centroid method (Rencher 2002):  

∑∑∑
∈∈∈
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∑ −= 2|||| BAAB xxD  (centroid method) 

where xi is the vector representing the future i, when the common periods are identified, or the 

year i, when the difference between the models is assessed  

Ax is the mean vector of the cluster CA, CB or CAB, which are in the relationship BAAB CCC ∪=  
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The representative clusters were delineated based on the formal procedure proposed by 

Mojena (1977) and improved by Milligan and Cooper (1985), which selects the number of 

clusters based on the change in the distance between two adjacent levels of grouping at which  

njsj ...,,2,125.1 =×+> δδδ       (5.7) 

where: δ1, δ2, ... , δn are the distances values for stages with n, n-1, …, 1 clusters, δ  and sδ are 

the mean and the standard deviation of the distances between two adjacent groups, and 1.25 is 

a constant proposed by Milligan and Cooper (1985). 

 

A more detailed investigation of the changes in habitat suitability was supplied by principal 

component analysis (PCA), which enhanced the results supplied by the hierarchical cluster 

analysis by allowing a formal analysis of the similarities within the set of futures. Besides 

revealing the similarities, I used PCA to identify the moments when the wildlife habitat 

underwent significant changes. The eigenvectors with a level of variance larger than 5% were 

selected for interpretation based on Noble et al. (2004), while the attributes with loadings larger 

than 0.32 were considered significant, as suggested by Tabachnick and Fidell (2001). Strimbu 

and others (2009) have shown that in landscape investigations the distribution of the residuals 

can affect the significance of the results, and so when the data were found not to be multi-

normal, the PCA provided only an indication of the similarities within the set of futures. 

 

The PCA identified the similar futures and the moments when wildlife habitat could change 

significantly by considering that the study area and the forecasting methodology had no 

influence on the analysis. To check this assumption, I used the methodology proposed by 

Mackenzie and others (1999), namely canonical discriminant analysis (CDA). The delineation of 

the periods was performed based only on the harvesting algorithms (i.e., SA and FFD) and not 

on the drilling models, as the oil and gas disturbance is incorporated in the AAC computation. I 

identified the impact of the years from the planning period on the harvesting algorithm by 

selecting for interpenetration the years with correlation between the years and the canonical 

variates larger than 0.32, as well as the years with standardized canonical coefficients larger 

than half the maximum standardized coefficient, as advocated by Rencher (2002). The results 

supplied by CDA are relatively robust to the violation of the assumptions, as CDA relies on 

relatively weak assumptions [i.e., a multi-normal data distribution is only required within each 

categorical attribute (Rao 1973) and, for descriptive investigations, the homogeneity of the 

covariance matrix is relaxed].  
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Parametric repeated measures, PCA and CDA rely on the assumption of data normality (Diggle 

et al. 2002; Hardle and Simar 2003). To test this assumption I used two univariate tests (the 

Shapiro-Wilks and Kolmogorov-Smirnov tests) and three multivariate tests [the Mardia kurtosis 

and skewness tests (Mardia 1970) and the Henze-Zirkler test (Henze and Zirkler 1990)]. The 

two univariate normality tests covered the main mathematical approaches associated with 

distributional testing: Shapiro-Wilks, which is a regression based test, and Kolmogorov-Smirnov, 

which is based on the empirical distribution function (Thode 2002). The three multivariate tests 

cover two of the main procedures used to assess the multivariate normality (Thode 2002): the 

direct – data assessment (Mardia kurtosis and skewness tests) and the empirical characteristic 

function (Henze and Zirkel test).  For this study, the variance homogeneity assumption, required 

by the Gauss theorem, was relaxed because I did not use the results for prediction, but to detect 

and describe the patterns (e.g., similarities, differences or periods existent within the set of 

futures). Besides normality, the outliers were of particular interest because the computations 

were performed using the least square method, which is sensitive to outliers (Park and Lee 

2004; Rocke and Woodruff 1996; Schwager and Margolin 1982) I used the Schwager – 

Margolin (1982) approach to identify the outliers as it detects several outliers simultaneously 

(Rencher 2002) and uses the maximum likelihood method, which seems to be more robust than 

the least square method (Islam and Tiku 2004).  

 

5.3 Results 
 

The augmented Dickey-Fuller (DF) test was the first step in the development of the models 

describing the evolution of the number of oil wells and indicated that the annual well count 

series may have a difference – stationary process, as p =0.999. The DF test was confirmed by 

Bartlet’s Kolmogorov Smirnov test, which showed that the difference between the numbers of 

wells in two consecutive years could be white noise (p=0.74). However, the investigation of the 

autocorrelation functions revealed that a first order autoregressive model could be used to 

represent the number of wells drilled annually, as the autocorrelation function for a one year lag 

was significantly larger than 0 (p<0.01), while the inverse and partial autocorrelations were 

insignificant, regardless of the lag size (p>0.3). For the total number of wells, the autocorrelation 

functions indicated the presence of a non-linear trend and the absence of a relationship for any 

lag larger than one year (p>0.24). Therefore, regardless of the series used to describe the 

evolution of the number of wells (i.e., annual or total), there was no evidence of a relationship 
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between drilling activities more than two years apart, in agreement with the results of Lanza and 

others (2005).  

 

The SCAN correlation and ESACF methods supplied different results for the number of wells 

drilled annually, indicating that an ARMA process cannot be used to model the yearly dynamics 

of well drilling. The total number of wells could be represented by an ARMA (2, 2) process, as 

revealed by SCAN and ESCAF. However, MINIC did not confirm the SCAN and ESCAF results, 

as one of the largest BIC was associated with the ARMA (2, 2) process. Consequently, the 

ARMA process was not used to model the evolution of the number of wells, whether annual or 

total. 

 

The two types of models (i.e., autoregressive equations and generalized models) led to the 

development of five possible patterns in the evolution of the number of petroleum wells (Table 

5.2). All the models fulfilled the main time series assumptions [i.e., significance (p<0.001), and 

residuals were organized as white noise (p>0.12) and were stationary (p>0.17)]. The residuals 

were normally distributed for the models based on autoregressive equations (p>0.5), and non-

normal for the Poisson and Negative binomial models. The residuals analysis indicated that the 

functions describing the number of wells are nonlinear (parabolic or exponential), whether using 

the annual or total number of wells. The nonlinear evolution of the number of wells was 

reinforced by the presence of a model with a periodic fluctuation, increasing amplitude and 

decreasing period (model three in Table 5.2) and reconfirmed the inappropriateness of the 

ARMA process for the northeastern BC well data. Although the Poisson model had a deviance 

greater than 1, based on the recommendation that models with deviance smaller than 10 are 

not necessarily incorrect (Neter et al. 1996), I concluded that the results supplied by both 

generalized models should be selected for the interpretation. Regardless of the model type (i.e., 

autoregressive or generalized model), the annual oil prices seemed to have no impact on the 

drilling effort, confirming the results of Ringlund et al. (2008) and Lanza et al. (2005). The 

fulfillment of the assumptions and the agreement with other studies investigating the evolution of 

the number of wells (Iledare and Pulsipher 1997; Lanza et al. 2005; Rao 2000; Ringlund et al. 

2008; Walls 1994) suggests that the models are correct and do not have different likelihoods. 

Therefore, it can be concluded that the futures built using the five models can occur and are 

equally likely. 
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Table 5.2 Well drilling 
Temporal dynamics of the number of wells 

Equation Pr>F Normal. White  
noise 

Stationarity 
Zero 
mean 

Trend 

1 y t = 1.255 x y t-1 + εt 0.001 0.09 0.69 0.99 0.99 

2 Total t = 1.01 x totalt-1 + 1.1 x y t-1 + εt 0.001 0.05 0.78 0.17 0.17 

3 y t =0.54 x totalt-1 – 1.02 x (year-
1948)2 – 0.44 x year x f(t)+ εt  

0.001 0.13 0.12 0.51 0.51 

4 y t=exp(3.62+5.7 x 10-4 x totalt-1 – 1.6 x 
10-8 x total2t-1)+ εt 

0.47* 0.001 0.28 0.80 0.80 

5 y t = exp(3.69+5.3 x 10-4 x totalt-1 – 
1.39 x 10-8 x total2t-1)+ εt 

0.75* 0.001 0.82 0.98 0.98 

Spatial dynamics of the wells 
Study 
area 

Variogram 
type 

Equation P(|Q1||=0) P(|Q2|=1) P(vario.is 
isotropic) 

Moberly  Spherical χ(h)=0.05×(1.5×h/4000-
0.5×(h/4000) 3) 

0.17 0.23 0.061 

Doig  Spherical χ(h)=0.063×(1.5×h/1500
0-0.5×(h/15000) 3)  

0.22 0.16 0.25 

Fort 
Nelson 

Linear χ(h)=2×10-6×h 0.19 0.13 0.14 

 
Total t – total number of wells drilled at year t; 

y t – number of wells drilled in year t; 

f(t) – is the periodic function sin(π(year-1948)/period), where period=12 before 1988 and 8 after 

1987; 

* - for Poisson and negative binomial models the p-value refers to chi-square goodness of fit for 

Poisson, respectively negative binomial distribution; 

εt ~ WN (0, σε); 

χ(h)- variogram; 

h is the distance between wells; 
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while ζk is the kth orthonormalized residual obtained using n points. 

 

The set of five equations were refitted for each study area and compared with the equations 

determined for the entire northeastern British Columbia region. The pair-wise comparison of the 
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parameters was insignificant (p>0.05), except for the Moberly and Doig areas, where the model 

including a periodic term and the Poisson model were insignificant, as was the variable 

representing the squared total number of wells in the Negative Binomial model. However, as the 

sign and magnitude of the insignificant variables were similar to the ones developed for the 

entire region, the evolution of the drilling effort in the three study areas was considered to be 

adequately represented by the equations developed for the entire region. To this end, the 

models based on autoregressive equations will reach the maximum number of wells allowed by 

the regulations (i.e., 20,000 in the Doig area, 19,000 in the Fort Nelson area and 8400 in the 

Moberly area) while the generalized models will not reach that maximum for more than 100 

years. The generalized models have different peak moments, depending on the existing drilling 

intensity: approximate 2025 in the Doig area (the area with the largest number of wells), 2045 in 

the Fort Nelson area and 2050 in the Moberly area (the area with the lowest number of wells).  

 

In northeastern British Columbia, it seems that the geology does not play a significant role in 

determining the location of a well within the regions known to have oil reserves, as of the 13,000 

wells drilled since 1992 (i.e., 72% of the total number of wells existing in September 2005), less 

than 10% were above newly-discovered reservoirs and only 48% were above known reservoirs. 

As a result, detailed geological maps do not provide particularly useful information in identifying 

the location of the disturbances caused by oil well drilling, as at the landscape level, the 

positioning of the wells does not follow oil and gas discoveries. Consequently, the location, size 

and shape of the known oil reservoirs were not incorporated into the IK estimates. 

 

The three areas have different robust variograms, spherical for the southern areas (the Moberly 

and Doig areas) and linear for the northern area (Fort Nelson), suggesting a stationary model 

for the areas with low and high petroleum development and a nonstationary model for the area 

with intermediate development (Table 5.2). An indication of the appropriate grid size to be used 

for kriging prediction was provided by the oil and gas developments from Doig area, where 665 

quarter sections have already reached the maximum number of wells recommended by current 

legislation (i.e., 2 wells / quarter section). For more than 75% of the wells in the Doig area, any 

two wells were separated by more than 300 m, suggesting a grid size of 400 m, which would 

delineate the quarter section into quadrants and would ensure the integration in the grid used 

for land use planning in British Columbia. Within the quarter-section, the wells were distributed 

following a pattern of 35%-21%-23%-21%, clockwise from the NE quadrant to the NW quadrant.  

The 35-21-23-21 pattern identified for the Doig area was also observed for the British 

Columbian part of the Western Canadian Sedimentary Basin. The probability of drilling at the 
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center of the quadrant was therefore assigned according to the pattern identified in the Doig 

area. For example, if a well was drilled in the quadrant where the probability of drilling was 21%, 

then the next well drilled within the quarter-section would be in the quadrant with a probability 

35%, while if there is no well drilled within the quarter-section the two wells would be drilled in 

the quadrants with probability 35% and 23%. 

 

The maximum volume that can be harvested annually in the absence of the spatial constraints 

varies according to the timber harvesting land base, with Doig being the largest and Fort Nelson 

the smallest (Table 5.3). The scheduling algorithm and the harvesting age had a significant 

impact on the volume harvested annually (Table 5.3), but the FFD was notable in supplying the 

largest AAC of any algorithm for all tree areas. The green-up adjacency constraint of five years 

seemed to have little effect on the AAC supplied by the FFD algorithm, especially when the 

harvesting occurred at the culmination of MAI (i.e., the AAC was less than 5% smaller than the 

maximum harvestable volume), but had a dramatic effect on SA, especially when the harvesting 

was performed at a preset age (for Fort Nelson, the AAC was less than half the maximum 

harvestable volume). The scheduling algorithm seems to be responsible for the magnitude of 

the AAC, as FFD algorithm supplied results significantly larger than SA regardless of the area 

(p<0.001), and ranged from 15% for the Fort Nelson area to more than 20% for the Doig and 

Moberly areas. The increase in the AAC supplied by the FFD algorithm was not necessary 

reflected in a significant increase in landscape disturbance, as for the Fort Nelson area, a 

significantly larger AAC (p<0.0001 for AAC=270,000 m3/year supplied by the FFD algorithm 

compared to 225,000 m3/year supplied by the SA algorithm) did not lead to a significantly larger 

area of forest being cleared (p>0.2 when the clear-cut area of 950 ha/year determined by FFD 

algorithm is compared to the clear-cut area of 930 ha/year for SA algorithm). A similar situation 

was encountered for the Doig and Moberly areas for which the difference between the 

harvested areas was less than 15%, regardless of which scheduling algorithm was used. 
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Table 5.3 The AAC obtained using the two algorithms (i.e., SA and FFD) and the two harvesting 
ages (i.e., preset minimum age and Age max(MAI)) 

Study 
area 

Surface 
[ha] 

THLB 
[ha] 

MVHA 
[m3] 

Average AAC [103 m3] / Average Harvested area [ha] 
First Fit Decreasing Simulated Annealing 

Agemax(MAI) Age preset Agemax(MAI) Age preset 
Doig 684138 183057 500000 495 390 355 330 

1500 1350 1300 1200 
Fort 

Nelson 
641024 91355 280000 270 220 225 120 

950 950 930 900 
Moberly 410194 140222 315000 290 155 185 205 

1050 1000 700 670 
 

 

The variability (expressed as the coefficient of variation) of the AAC was between 5% for the 

Fort Nelson area and 30% for the Moberly area. The clearcut area had a coefficient of variation 

at least 50% larger than the corresponding coefficient of variation for the AAC  

(e.g., CV AAC – FFD/Age@max(MAI) for Doig = 29% vs. CV cleared area – FFD/Age@max(MAI) for Doig = 53% or  

CV AAC – SA/Preset age for Moberly = 6% vs. CV cleared area – SA/Preset age for Moberly = 21%).  

 

The selection of the harvesting age ensured that, whether or not the stands were harvested at 

the culmination of MAI (at which more than 30% of the THLB would be harvested at ages >120 

years) or at the preset minimum age of 120 years, the seral stage distribution required by the 

provincial guidelines [stands with age < 40 years should occupy less than 27% of the study area 

and old seral stages (stands >120 years) should occur on more than a third on the area] 

(Ministry of Forests 1995) was fulfilled during the entire planning period for all three areas. The 

clearcuts did not change the forest structure more than 2% in any year of the planning period, 

irrespective the scheduling algorithms or harvesting age. 

 

The proposed multimodel structure from Fig. 5.2 led to 80 futures for each study area (two 

species x two HSI statistics x two forest scheduling algorithms x two harvesting ages x five 

drilling models).  Among the 240 futures, oil drilling played a significant role only when the 

environment was quantified using the HSI>0.5 (i.e., 120 futures). When the futures were 

represented by the average HSI, the five drilling models produced similar results, with 

differences less than 1%. Consequently, only 24 futures based on the average HSI were used in 

the analysis. All 144 futures (i.e., 120 futures for HSI>0.5 plus 24 futures for the average HSI) 

had the two statistics fulfilling the selected thresholds [i.e., the area with HSI>0.5 and average 

HSI either increased or decreased within the preset limits (less than 15 %,)] indicating that all 

the futures are possible, therefore suitable for analysis.  
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The analysis of the superior habitats (i.e. stand with HSI>0.5) revealed the important role that 

drilling activities could play for the first 20 to 40 years. For each of the three areas, harvesting 

algorithm and harvesting age, the set of futures determined by the five drilling models 

converged to one future, when the maximum number of wells allowed by regulations was 

reached. After convergence, the development of stands with HSI>0.5 would depend only on 

forest harvesting activities.  

 

The average HSI was larger for the futures produced by the FFD algorithm regardless of the 

method used to select the harvesting age (i.e., age at maximum MAI or preset age). The 

magnitude of the average HSI for moose was significantly sensitive (p<0.01) to the harvesting 

algorithm (46%-48% for FFD compared with 32%-44% for SA in the Moberly area, 46%-50% 

compared to 44%-46% in the Fort Nelson area and 64%-68% compared to 49%-52% in the 

Doig area). American marten habitat seemed little influenced by the algorithm (p>0.2), as the 

average HSI has similar pair-wise ranges for each study area (34%-38% for the Moberly area, 

41%-47% for the Fort Nelson area and 23%-26% for the Doig area). The development of the 

average habitat suitability was influenced by the method of selecting the harvesting age within 

the forest scheduling algorithm, as for almost 85% of the comparisons (i.e., 10 out of 12) the 

trajectories of the average HSI were different, depending on whether the harvesting occurred at 

MAI or after a preset age. The choice of harvesting age seemed to influence the long-term 

development of habitat suitability, as for the preset harvest age the average HSI had an 

increasing trend, regardless of the algorithm, species and study area, while for the harvesting 

age at the culmination of MAI, half of the futures had a relatively constant HSI and half declined. 

The decrease in the average HSI was noticed for areas with a reduced timber harvesting land 

base relative to the size of the entire study area (14% from the entire area for Fort Nelson area 

and 27% for the Doig area). Nevertheless, the decrease in the average HSI was less than 3% 

over the 100 year planning period, regardless of which scheduling algorithm and harvesting age 

was used. While the average HSI decreased in 25% of the futures (six of 24), the area of the 

stands with HSI>0.5 either remained relatively constant (less than 3% decrease) or increased 

during the planning period. The FFD algorithm supplied larger areas with superior habitat than 

the SA algorithm, regardless of the harvesting age. The superior availability of better habitats on 

landscapes forecasted using FFD compared with the landscapes obtained using SA is probably 

because the FFD would harvest more than once during the planning period high productive 

stands (therefore suitable for moose) and would leave the stands with low SI to grow old 

(therefore suitable for American marten). The areas with HSI>0.5 ranged from 6000 ha for 

Moberly to 16000 ha for Fort Nelson when the FFD algorithm was used and from 4000 ha for 
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the Moberly area to 10000 ha for the Fort Nelson area when the SA algorithm was used. The 

availability of superior habitat for the two species developed differently, as the surface of the 

stands with HSI>0.5 for American marten increasing regardless the forest scheduling algorithm 

and the harvesting age, while the area of superior habitat for moose had a slow but non-

significant decline (e.g., the Fort Nelson area, p>0.06). Drilling had little impact on the 

occurrence of highly suitable marten habitat, but negatively affected moose habitat, which 

decreased by as much as 10,000 ha in the Doig area while drilling was active. Drilling could also 

induce dramatic annual changes in the availability of moose habitat, with significant drops from 

year to year [up to ten times for the Fort Nelson or Moberly areas]. 

 

The examination of the three assumptions with a possible impact on parametric longitudinal 

investigations (e.g., normality, presence of outliers and sphericity) revealed the partial fulfillment 

of the analytical requirements. The univariate normality tests agreed with the multivariate tests 

and indicated that habitat suitability index is not normally distributed (p<0.0001). The Schwager-

Margolin test did not identify any year during the futures as an outlier. The same conclusion was 

reached for the futures themselves, as no future was found to be positioned as an outlier in the 

space determined by the 144 futures. Besides statistical assumptions, the data transformation 

could play a significant role in the analysis (Tukey 1977). The linear transformations associated 

with the multivariate analyses and the change in the magnitude of the values representing the 

superior habitats (i.e., from values of the order of 106 to the order of 100) would not alter the 

results of the statistical tests, as isomorphic transformations of a Cartesian coordinate systems 

(such as translation or rotation) ensure findings validity, irrespective the Cartesian coordinate 

system (Hungerford 1990). 

 

The sphericity test (p<0.001) indicated that the Huynh – Feldt condition was not met by the 

covariance matrix, so the correction proposed by Greenhouse and Geisser (1959) and Huyn 

and Feldt (1970) was adopted to interpret the results. The univariate repeated measure 

revealed that during the next century, the habitat would change significantly (p<0.0001) in all 

three study areas (p<0.001), regardless of the harvesting algorithm (p≤0.002 for H0: “The 

habitat would not change during the planning period”, H0 performed for each study area and 

algorithm). The significant difference between the futures (p=0.02) indicated that the 144 futures 

covered a wide array of possible habitat developments. The univariate analysis suggested that 

of the two human activities investigated, forest harvesting was the more important in 

determining the trend in habitat suitability (p=0.038), while the study area had no impact 

(p=0.48). The scheduling algorithms had different impacts on the two species, with moose being 
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associated with both SA and FFD (47% of futures with SA and 97% with FFD) while American 

marten was only related to the FFD (46% of the futures). The Scheffe test divided the planning 

horizon into three periods: years 1 to 50, years 51 to 93 and years 94 to 100. The HSI within 

each period had a similar trend: increasing in the first period, constant in the second and 

decreasing during the last period. The univariate repeated measures indicated that the models 

determining the futures were significantly different (p<0.0001), with the ten futures for moose 

developed using SA algorithm and area of better habitats for Fort Nelson being separated from 

the remaining 134 futures. The 134 futures were further separated in two groups by the SA 

algorithm: one having 124 futures and one having the 10 futures derived for American marten 

habitat in the Fort Nelson area. 

 

The multivariate repeated measure analysis confirmed the results of the univariate analysis, 

with all three multivariate tests (i.e. Wilk’s, Pillai’s and Lawley-Hotelling) agreeing that the 

habitat would change significantly during the planning period (p<0.0001). The planning period 

was separated into four sub-periods: years 1 to 11, years 12 to 49, years 50 to 75, and after 

year 75. The main attribute characterizing the four sub-periods was the variability within each 

sub-period, as the first and third sub-period were homogeneous (the transition from one year to 

another during the period was insignificant), while the second and fourth sub-period were 

heterogeneous (the yearly transitions were separated into 13 and 10 distinct groups, 

respectively). The four sub-periods delineated three distinct moments during the planning period 

that seemed to occur at years 11, 49 and 74. While the three moments mark the transition from 

one sub-period to another, there are two obvious separations during the planning period, one 

occurring at the end of the fourth decade (between years 36 and 39) and one at the end of the 

century (between years 93 and 99), when all years differ significantly from one another. The 

multivariate tests also revealed that the futures were significantly different (p<0.0001), but the 

partition of the futures into groups was difficult as the two-sample profiles identified more than 

20 groupings among the 144 futures. The futures developed using the average HSI was so 

different (only 2 out of 24 futures were not significantly different) that no groups were detected, 

agreeing with the results obtained for superior habitats. 

 

The hierarchical clustering algorithms seemed to have no impact in grouping either the futures 

or the time periods, as Mojena’s (1977) formal procedure identified the same significant 

numbers of clusters using the centroid and Ward’s minimum variance methods. I therefore 

restricted the interpretation to the Ward’s minimum variance method as it supplied a clearer 

delineation of the clusters than the centroid method. The hierarchical cluster analysis confirmed 
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the results of the multivariate repeated measures analysis in that the planning horizon was 

separated into four distinct sub-periods (Fig 5.3a). Although two different techniques (cluster 

analysis and multivariate repeated measures) were used to identify the moments when the 

habitat would significantly change, the results were very analogous, as cluster analysis revealed 

that significant habitat transformations could start in years 11, 37 and 71 (compared to years 11, 

49 and 74 as indicated by multivariate repeated measures). In contrast to the multivariate 

repeated measures analysis, which failed to identify similar models, the cluster analysis 

delineated four classes of futures based on the models used to build the futures (Fig 5.3b). The 

set of futures was initially separated into two classes (one containing 64 futures and the other 

with 80 futures), each being divided into two further classes. Within the group with 80 futures, 

the futures developed using the superior American marten habitat in the Doig and Moberly 

areas and moose habitat in the Doig area with the FFD algorithm (50 futures) were 

differentiated from the futures of moose habitat in the Moberly area with the FFD algorithm and 

of marten habitat in the Fort Nelson area (30 futures). Of the class with 64 futures, the futures 

developed using superior moose habitats in the Doig and Moberly areas using the SA algorithm 

(only the harvesting at culmination MAI for the Moberly area), and at Fort Nelson with the FFD 

algorithm (25 futures) were isolated from the futures developed using average HSI (24 futures) 

and the futures developed for the superior moose habitat using SA for the Moberly (only the 

preset harvesting age) and Fort Nelson areas (15 futures).  

 

Fig 5.3 a. The significant periods revealed by cluster analysis using Ward’s minimum variance 

method (SSE is the sum of square of errors) 
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Figure 5.3 b. The significant models revealed by cluster analysis using Ward’s minimum 
variance method (SSE is the sum of square of errors). 
 

The PCA partially confirmed the results of the cluster analysis and repeated measure analysis 

and divided the planning period into three periods (Fig. 5.4a) with the significant separation 

moments occurring after 11 and 59 years. The separation was mainly the result of the first four 

eigenvectors, which covered more than 90% of variance (Table 5.4). The first eigenvector, 

responsible for two thirds of the variance, was associated with 98% of the futures (142 out of 

144) while the second eigenvector, responsible for 13% of the variance, was associated with the 

futures developed using superior moose habitats (except for the Moberly area) and for 

American marten, based on FFD algorithm for the Fort Nelson area (60 futures). The remaining 

eigenvectors accounted for 13% of the variance and were associated with the futures developed 

for superior moose habitats (50 futures for the third eigenvector and 40 futures for the fourth 

eigenvector). PCA offered a different perspective than cluster analysis, as the first two 

eigenvectors failed to provide a clear separation of the 144 futures, regardless of the study area 

or harvesting algorithm (Fig 5.4b). Even the combination study area-harvesting algorithm failed 

to produce an unambiguous grouping of the futures, as each combination presented at least 

one set of futures outside the overall pattern (e.g., Fort Nelson and SA). The lack of partitioning 
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was supported by the relative distribution of the variance among the selected eigenvectors (63% 

for the first eigenvector and 26% for the second). The years associated with the selected 

eigenvectors (the first three eigenvectors) covered the entire planning period, with the first 

eigenvector being related to the last two thirds of the century while the second eigenvector was 

associated with the first third (Table 5.4). 

 

Table 5.4 Principal components analysis 
Statistics Principal component 

1 2 3 4 

Years 

Proportion of 

variance 

0.658 0.133 0.077 0.055 

Significant All futures 

except the 

two 

developed 

using 

average 

HSI and 

SA for 

moose on 

Doig area 

 

1. All futures for 

moose developed 

using HSI>0.5 and SA 

2. Futures developed 

for moose using HIS 

>0.5 and FFD for Doig 

and Fort Nelson areas 

3. Futures developed 

for marten using 

HSI>0.5 and FFD for 

Fort Nelson area 

1. All futures 

for Moberly 

area developed 

using average 

HSI and SA 

2. All futures 

developed for 

moose using 

HSI>0.5 except 

for Doig area 

 

1. Futures for 

moose developed 

using HSI>0.5 for 

Fort Nelson area 

2. Futures for 

moose developed 

using HSI>0.5 and 

FFD for Doig area 

3. Three unrelated 

futures developed 

for moose using 

average his 

Models 

Proportion of 

variance 

0.629 0.259 0.057 0.0168 

Selected 

years 

1 

33-100 

3-39 2-10 - 
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Figure 5.4 PCA separating the significant periods (a) and the significant combination of study 
area harvesting algorithm (b). 
 

The CDA (Fig 5.5) revealed that the harvesting algorithms play a significant role in shaping the 

future of the wildlife habitat (p<0.0001 for all three multivariate tests). Although the first four 

eigenvectors had canonical correlations exceeding 0.99, only the first two were selected for 

interpretation, as each explained more than 5% of the variance (Table 5.5). However, not all 

years seem to have had a significant impact on the harvesting algorithm (p>0.1), with the first 

two thirds of the planning period and three other years being important (years 1 – 63, 69, 85 and 

86). Only 32 of the 66 significant years were selected for interpretation; these years had a 

b 

a 
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correlation with the canonical variate of >0.32, or the standardized canonical coefficient was 

larger than half the maximum standardized canonical coefficient (Table 5.5). Among the 32 

years, no year had a correlation with the second canonical variate of >0.32, and the 

interpretation was therefore based only on the standardized canonical coefficient. Regardless of 

the year, only years 85 and 86 had both the standardized canonical coefficients and the 

correlation with the first canonical variate fulfilling the selected cut-off values. 

 

Table 5.5 Canonical discriminant analysis 

Statistics Canonical variate 1 Canonical variate 2 

Canonical correlation 0.999 0.999 

Proportion of variance 0.788 0.186 

Year Correlation 

between year 

and canonical 

variate 

Standardized 

canonical 

coefficients 

Correlation 

between year 

and canonical 

variate 

Standardized 

canonical 

coefficients 

7-26 0.32  to 0.50 -23924 to  

13726 

-0.1 to 0.23 -5927 to 

10038 

31 0.1881 47061 0.2581 -3493 

34 0.217 37497 0.1574 -9640 

37 0.1166 101867* 0.1916 11750* 

43 -0.179 62186 0.0886 -2796 

50 -0.218 100920 -0.001 4191.7 

52 -0.221 58141 -0.012 -3425 

56 -0.226 59579 0.0023 2693 

63 -0.306 50558 0.0434 -4804 

85 -0.35 -88893 -0.04 7291 

86 -0.33 82041 -0.06 -5418 

 

* largest standardized canonical coefficient 
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Figure 5.5 Canonical discriminant analysis indicating the impact of harvesting algorithm on 
delineating the significant years during the planning period 
 
 

5.4 Discussion 
 

The fulfillment of all major assumptions related to the development of the oil drilling, of the 

harvesting requirements imposed by BC forest regulations, and of the habitat thresholds 

indicated that the investigation of the set of possible and equally likely futures could reveal the 

similarities or differences between the futures or among the years of each future. The repeated 

measures analysis (both univariate and multivariate) showed that the futures differed 

significantly. The large array of diverse and possible habitat development produced by the 

multimodel framework was desirable from two perspectives: firstly to ensure that the models 

used to build the measure of habitats was not bounded by a narrow homogeneous set of 

potential futures and secondly to provide confidence in the results. The difference between the 

futures was likely not an artifact of the violation of one of the least square method assumptions 

as no outlier was identified among the 144 futures. The variability of the futures increased the 

likelihood of occurrence of a significant change in habitat suitability during the planning period, 

as indicated by the univariate and multivariate methods. Similarly, with the investigation of the 

futures, the delineation of the planning period in distinct sub-periods was not the product of an 
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outlier, as no year was identified as an outlier. However, the lack of outlier years was not 

surprising, as the entire research was developed within a repeated measure framework, which 

emphasized that the habitat did not change significantly from year to year.  The normality 

assumption that could have impacted the results was violated but the high significance of the 

multivariate analyses (p<0.001) meant that the requirement for a normal distribution did not 

greatly affect the interpretation, which was based on an exploratory rather than explanatory 

context.  

 

The univariate and multivariate repeated measures analyses revealed the existence of at least 

three distinct periods during the century planning horizon. The disagreement between the 

univariate and multivariate results lay in the number of periods (three with the univariate and 

four with the multivariate analyses), but the mid-century breakpoint was present in both types of 

analysis. The presence of a mid-century breakpoint in the dynamics of habitat suitability was not 

confirmed by the cluster analysis (the second breakpoint occurred at year 37) but was roughly 

confirmed by the PCA (the breakpoint was at year 59). The results of the PCA were also in 

agreement with the three periods identified by the univariate analysis, but the PCA indicated 

that the planning period separation would occur almost entirely in the first half of the century 

(years 11 and 59) while the univariate analysis suggested a partition in years 50 and 93. The 

change in the habitat suitability that was predicted to occur twice in the first 60 years suggests a 

need for the reassessment of the environmental structure, and was common to all multivariate 

investigations.  The first significant habitat change was identified by all multivariate technique as 

taking place at the end of the first decade. The disagreement between different multivariate 

techniques over the timing of the second habitat change likely results from the large variability 

existent within the set of 144 futures. The variability in habitat suitability, confirmed by the 

repeated measures analysis, and the likelihood of change during the increase in HSI (as shown 

by the Scheffe test) suggested that the transition from the second to the third homogeneous 

periods would occur between years 37 and 59. The results supplied by the multivariate 

investigations were considered to be more likely than the univariate investigations, as the 

multivariate analyses provide a more comprehensive picture of the possible futures (Hardle and 

Simar 2003). The arrangement of the years within the distinct periods in a consecutive pattern, 

as revealed by the cluster analysis and PCA, confirmed that a significant transformation in 

habitat will not occur suddenly but will probably require over half of a decade or more. The 

interlude between the two periods would be characterized by insignificant yearly changes in the 

habitat suitability but the end year would be different than the beginning year. The lack of habitat 

delineation between the years suggests the need for an analysis of the environmental attributes 
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within a multivariate platform, which would allow the simultaneous and integrated assessment of 

the attributes describing the environment. The indistinguishable changes resemble the chaotic 

behavior of the environment as a whole (May 1977; Prigogine 1997), and draw attention to the 

possible existence of nonlinear processes underlining the environmental dynamics. 

 

Both univariate and multivariate investigations showed that of the two human activities 

examined, forest harvesting is more responsible for the changes occurring in habitat during the 

century long planning period. The relative lack of impact of well drilling on habitat suitability was 

initially indicated by the development of the futures, as the futures built using the average HSI 

did not delineate among the models describing the drilling, and the futures built using stands 

with HSI>0.5 revealed no impact of drilling after the first 40 years. The importance of forest 

harvesting as a determinant of habitat was also reflected at the procedural level, as the 

harvesting algorithm provided a significant role in deciding the development of moose and 

American marten habitat (the CDA results). The perspective of change, understood as the 

method used to represent the development of the habitat suitability, has an impact on the 

conclusions even when the species and habitat quantification remained constant. From this 

perspective, the futures assessed using the average HSI were separated from those evaluated 

using stands with HSI>0.5 (cluster analysis, PCA and CDA). The findings confirm the results of 

Seppelt and Richter (2005), who found that the choice of methods could alter the results. This 

undesirable conclusion reinforced the need for multiple methods, as advocated in the multi-

model structure (Fig. 5.2).  

 

The habitat of the two species presented a similar evolution; even though locally the trends and 

variability were different. The analogous response of moose and American marten to the two 

human activities, as clearly indicated by the CDA and PCA, was unexpected as the habitat 

requirements of the two species are unrelated, and differs from the results obtained by Nitschke 

(2008) who found that only American marten had a significant change in the average habitat 

suitability. I confirmed the difference in the behavior of the two species mentioned by the 

Nitschke, but the results indicate that the habitat change was related to forest harvesting (more 

specifically the algorithm used to schedule the harvestings) rather than to other human activities 

[such as seismic lines or roads, which accounted only for 1% of the land-use change, as 

indicated by the Oil and Gas Commission of British Columbia database (Oil and Gas 

Commission 2005)].  

 



125 
 

The investigation indicated that a significant increase in the annual allowable cut does not 

necessarily translate directly into a significant decrease in habitat suitability, and may even lead 

to an increase in habitat suitability (as for FFD in the Fort Nelson and Doig areas). 

Nevertheless, where human activities are changing the habitat of the two species, the shift 

seems to concentrate on the better habitat, rather than on the overall landscape, as revealed by 

PCA and cluster analysis. While the stands with HSI>0.5 appear to be sensitive to the combined 

effect of the two human activities, the study area seemed to have no influence on the evolution 

of habitat for either species, as determined by all the multivariate analyses. This suggests that 

the results could be extended from the 1.7 million ha sampling area to the entire northeastern 

British Columbia region (17 million ha). 

 

5.5 Conclusions 
 

To assess the cumulative impact of drilling and forest harvesting on the habitat of moose and 

American marten in northeastern British Columbia I developed a multi-model analytical 

framework that enabled the identification of the moments when the habitat would significantly 

change and the attributes responsible for those changes. Based on the recommendation of the 

Treaty 8 First Nations, three areas covering 1.7 million ha were selected to represent the 17 

million ha of northeastern British Columbia. The use of two species and two human activities (oil 

drilling and forest harvesting) ensured that the multi-model framework could be generalized to 

assess an array of human activities and VECs. The multi-model framework required the 

development of a set of independent and equally likely futures of the attributes that quantify the 

VEC (in our case, the habitat suitability indices for the two species). The set of futures, with 

each future representing a possible evolution of the environment, would provide the confidence 

interval for the moment when significant environmental changes would occur. The set of futures, 

developed as a combination of the probable and independent models quantifying the evolution 

of the human activities, led to 240 futures (5 drilling models x 2 forest harvesting algorithms 

(simulated annealing or adjusted first-fit decreasing algorithm) x 2 harvesting ages (age at 

culmination MAI or preset age) x 3 study areas x 2 HIS statistics (average HSI or area with 

HIS>0.5) x 2 VECs). Of the 240 futures, only 144 (i.e. 120 + 120/5) were considered in the 

analysis, as the five drilling models had an indistinguishable impact on the average HSI.  

 

The univariate and multivariate analyses revealed the existence of at least three distinct periods 

within the next century, with unanimous agreement that management plans should be re-
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evaluated close to the mid-century to assess whether or not the path followed by wildlife habitat 

is on the desired trajectory. The multivariate investigation indicated a significant change in 

habitat after the first decade, requiring a first revision of the planning strategies to evaluate 

whether the multi-model framework supplied accurate results and to adjust the land-use 

management plans according to the preferred goals. Regardless of the investigation technique 

(univariate or multivariate), the main human activity impacting wildlife habitat is forest 

harvesting, especially the algorithm used to schedule the harvesting (the same result was 

obtained by Nitschke (2008) using generated data). The human activities seem to affect the 

better moose habitats (as indicated by cluster analysis and PCA) but the influence is relatively 

weak (less than 25%). The results reveal that an insignificant increase in landscape disturbance 

and habitat suitability can lead to a significant increase in the annual allowable cut.  Therefore, 

the cumulated impact of human activities does not necessarily depend on the intensity of the 

environmental change, but, within certain limits, on the arrangement of the disturbance induced 

by the activities, confirming the findings of Strimbu et al. (2005). Besides the significant impact 

of the spatial organization of the disturbances on the attributes quantifying the VECs, this 

research also substantiates the results of Seppelt and Richter (2005), in the sense that the 

methodology itself could play a significant role in the analysis, and of Prigogine (1997) and May 

(1974), in the sense that the environmental dynamics seems to be driven by nonlinear 

processes. 

 

Future research should focus on two directions: one theoretical and one practical. From the 

practical perspective, future work needs to expand the proposed multi-model framework to 

incorporate other human activities and VECs (such as agriculture, tourism and mining). From a 

theoretical perspective, future research should concentrate on the sensitivity of the framework to 

the violation of the assumptions and on the impact of data distributions on the results. 
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6. CONCLUSIONS 
 

Cumulative impact assessments (CIA) focus on the mitigation of the undesirable effects induced 

by all human activities occurring in an area (Therivel and Morris, 2001). The actual and potential 

detrimental consequences of different projects are estimated using a variety of methodologies 

ranging from checklists to mathematical or statistical models (Therivel and Morris, 2001). 

Among the mathematical and statistical models used for CIA, the most popular are based on 

modular modeling (Voinov et al., 2004) and heuristic techniques (Stakhiv, 1988). The two 

methodologies have the advantage that they supply accurate results and can represent the 

intricate relationships within the environment. The complex interactions between the different 

components of the environment have typically led to the use of a single analytical platform (i.e., 

one theoretical approach) for the CIA. When the interest lies in the disturbance induced by a set 

of current or planned economic activities in an area, the CIA methodology focuses on providing 

a constellation of measures that provides an indication of whether or not the total instability will 

exceed acceptable environmental limits. However, the single platform, while providing technical 

solutions at a specific point in time, fails to maintain the accuracy associated with mathematical 

and statistical models when a spatial-temporal forecast is required, as the outcomes have a 

probability of occurrence asymptotically null. The reduced accuracy requires that the 

assessment of the impact of future activities should not be treated in the same way as for 

existing activities.  

 

The focus of the research presented in this thesis is to illustrate a new approach for CIA that 

incorporates the spatial and temporal distribution of future activities that could result in a 

significant disturbance to the environment. The new approach presented in the thesis suggests 

a need to change the CIA paradigm: rather than performing a detailed assessment of an 

improbable future the CIA should focus on identifying the patterns associated with undesired 

states of environment. The identification of patterns related to undesirable environmental 

conditions can be performed by analyzing a multitude of futures rather than one future, an 

approach similar to that used in statistical thermodynamics (Boltzmann, 1995). The analysis of a 

set of futures translates the question of whether or not the attributes describing an 

environmental state meet the regulatory conditions, which is the focus of current CIA 

investigations based on single analytical platforms, to whether or not the environment could 

reach an unacceptable state. To ensure the valid identification of the patterns delineating 

significantly different states of the environment, the attributes describing each future have to 

fulfill the regulatory constraints at any moment and at any location. To use an analytical 
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framework compatible with statistical thermodynamics, each future should be independent and 

with the same probability of occurrence. The fulfillment of the regulatory constraints ensure that 

the future could occur (i.e., it does not violate legislation), while the requirements of 

independence and equal probability ensure that standard statistical techniques can be used to 

identify the constellation of attributes defining an environmental pattern. Based on the set of 

futures, the paradigm shift promotes identification of the main environmental attributes affected 

by human activities and, additionally, the moments when significant environmental changes 

could occur. 

 

I selected three areas from northeastern British Columbia (Moberly, Doig and Fort Nelson) to 

illustrate the proposed CIA method The human activities investigated were forest harvesting and 

oil and gas drilling, the two industries dominating the region, while the attributes describing the 

environment were moose (Alces alces) and American marten (Martens americana), the two 

valued ecosystem components (VEC) identified by Treaty 8 First Nations as significant from 

social and environmental perspectives. A set of possible independent and equally likely futures 

was developed using different spatial and temporal analytical tools to model the two human 

activities. To this end, Chapters 2 and 3 focus on forecasting the oil and gas developments 

(Chapter 2) and the forest harvesting (Chapter 3). A total of 20 spatially and temporally explicit 

futures were developed for each area (5 futures oil and gas drilling x 2 possible harvesting 

algorithms x 2 harvesting ages). The temporal evolution of the oil and gas drilling seems to 

depend not only the model and data but also on the time step that is used. While the influence 

of the size of the time step, or more generally the magnitude of the elementary modeling unit, 

was noted by previous researchers (Chaubey et al., 2005; Claessens et al., 2005; Vazquez et 

al., 2002; Lanza et al., 2005), the findings of Chapter 2 reveal that the models do not converge, 

therefore a true model cannot be identified. Consequently, from a theoretical perspective, the 

analytical tools are unable to identify an accurate model, even when all the modeling 

assumptions and requirements are met. This result emphasizes the need for a paradigm shift in 

cumulative impacts analyses, as statistical investigations of sets of futures are likely to be more 

reliable than a single probable but likely inaccurate future.  

 

To harmonize the forest harvesting methodology, which uses annual plans, with the oil and gas 

drilling, the CIA was performed using only results based on an annual time step (i.e., for both 

forest harvesting and prediction of the number of wells). The planning period for the foreseeable 

forest harvesting and oil and gas drilling activities occurring in the region was 100 years. The 

results from Chapter 3 reveal that the methodology used to schedule the harvestings has an 
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economic and environmental impact, as significantly greater harvest volumes are not 

necessarily associated with significantly larger disturbances. Furthermore, the greater harvested 

volumes did not result in a significant increase in the annual variation, suggesting that it is 

possible to use algorithms that are faster and supply results that meet both economic and 

ecological constraints.  

 

The combined impact of forest harvesting and oil and gas drilling on the two VECs is 

investigated using univariate repeated measurements (Chapter 4) and multivariate techniques 

(Chapter 5). The two measures assessing the VEC dynamics during the planning period 

(average HSI and area with HSI>0.5) revealed that the maintenance of the present trends in 

forest planning and petroleum drilling will likely lead to futures that fulfill the regulatory 

requirements. The fulfillment of the regulations does not necessarily ensure that the attributes 

describing the environment are maintained in a socially and ecologically acceptable state, as 

shown by Strimbu et al. (2009). Nevertheless, in the eventuality that the set of futures leads to 

desirable future environments, an increase in the exploitation of the two natural resources 

(volume of harvested timber and number of petroleum drilling wells) would not be reflected in a 

decrease of the HSI by more than 15% of the present values. Therefore, whether or not the 

trend and intensity of the current forest harvesting and petroleum drilling is maintained or 

increased, as long as the regulations are met, the populations of the two species would likely 

not experience a decrease outside the natural range of variation (Chapters 4 and 5).  

 

The habitats of the two species evolve in a similar way, despite local differences in the trend 

and variability during the planning period. The univariate repeated measure analysis (Chapter 4) 

reveals the existence of three distinct periods within the century long planning period. The 

separation of the planning period into distinct time intervals is confirmed by the multivariate 

analysis (Chapter 5), with the emphasis on the half century moment. The middle of the planning 

period separated the environment into two well-defined periods in term of variability (Chapter 4), 

number of periods (one for univariate and two for multivariate) and trend (the two measures of 

the VECs having decreased in the first period vs. increasing or remaining relatively constant in 

the second period). Forest harvesting seems to have a greater impact on the habitat of the two 

species than oil and gas drilling. The influence of forest harvesting was reflected not only in the 

magnitude of the harvesting but in the scheduling of the interventions in the forest, as simulated 

annealing supplied smaller annual allowable cuts than first-fit decreasing algorithm but with a 

larger negative footprint on the habitat of moose and American marten (Chapter 5). The impact 

of human activities appears to be concentrated on the better habitats and not on the overall 
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landscape. Finally, the need for a change in the CIA paradigm was suggested not only by the 

evolution of the environment that could follow significantly different trajectories (Chapters 4 and 

5 indicated the existence of at least four classes of futures making the detailed analysis of one 

future useless), but also by the presence of cycles within the habitat evolution, indicating the 

possible chaotic behavior of the environment as a whole (Prigogine, 1997; May, 1977). 

 

The present research enhances the environmental impact assessment methodology (Morris and 

Therivel, 2001) by adding a new dimension to the investigation of the attributes used to describe 

the environment: the unknown future. The results of the research demonstrated that the spatial 

and temporal dynamics of the potential human activities should be investigated separately from 

known environmental processes. The approach presented in this thesis offers an alternative to 

current CIA methods (Therivel, 2001; Morris and Emberton, 2001; Hodson et al., 2001) that 

incorporate and analyze future human-induced disturbances using the same methodology for 

known and predicted activities. 

 

The approach proposed here has both strengths and weaknesses. The main strength of the 

proposed paradigm lies in the identification of the moments when significant decisions should 

be made and the environmental attributes that should be considered during the decision 

process. The research has provided a relatively accurate means to determine the attributes 

responsible for potential environmental changes as well as the confidence intervals for the 

periods when the attributes could change. However, the multi-model analytical platform has two 

weaknesses. Firstly, the requirement for a set of independent and equally likely futures leads to 

polynomial complexity (Sipser, 1996) in terms of the number of futures (i.e., the development of 

m x n futures when the CIA is investigating m human activities using n different analytical 

frameworks). The large number of futures requires an intensive theoretical and computational 

effort, making the creation of the set of independent and equally likely futures difficult, and best 

done by a large interdisciplinary team of experts. Secondly, while the computational and 

theoretical difficulties are expected to decrease with further developments in information 

technology, the analytical framework of the proposed paradigm will not provide the technical 

recommendations normally associated traditional CIA techniques, but will only indicate when 

significant decisions should be made that will enable an acceptable environmental trajectory. 

 

The main approach used to address the objectives of the CIA (mitigation, remediation and 

compensation of the impact of human activities occurring in an area) consists of ensuring that 

the constraints associated with different VECs are met (Stakhiv, 1988; Voinov et al., 2004; 
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Costanza et al., 2002). The analytical tools used to provide solutions to the restrictions imposed 

by regulations range from operational research (such as linear programming or heuristic 

techniques) to modular modeling (Voinov et al., 2004; Kimmins et al., 1999). Therefore, the aim 

of the current CIA methodologies is to supply the technical details that ensure that human-

induced disturbances conform to environmental legislation as well as to the requirements 

defined by social inputs. Current CIA methodologies answer technical questions related to the 

design of the human activities, but fail to provide accurate information about the spatial and 

temporal response of the environment to further activities. A natural enhancement of current 

CIA methods would therefore be the development of an analytical platform that could 

incorporate the forecasting of different human activities while taking into account the accuracy of 

the CIA. The development of an analytical platform for an accurate CIA could start by 

developing several equally likely responses of the environment to possible human activities. 

Each environmental response would then have a CIA undertaken for it using the current 

methodologies.  

 

6.1 Status of the hypotheses and significance of the research 
 

The present research is based on three assumptions: 

• The future is unknown; 

• The theoretical framework used to quantify the attributes representing the future does 

not change; 

• The influence of human activities on the environment can be separated from naturally 

occurring events. 

 

These three assumptions served as a basis for testing two hypotheses proposed by the CIA 

paradigm and further served as the foundation for the development of the set of futures. The 

two hypotheses tested in the present study were: 

• There is an identifiable pattern associated with each state of the environment. 

• The chosen analytical tools play a significant role in the description and forecast of the 

environment. 

 

The first hypothesis has been extensively investigated using single analytical platforms (Baskent 

and Jordan, 1995; Chapin et al., 1998; Enquist et al., 2002; Roberts and Gilliam, 1995; Caplat et 

al., 2008) and has revealed the existence of a relationship between an association of different 

attributes and a specific environmental state. The research presented here has not only 
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enhanced the findings of the single analytical approach by confirming the existence of the 

patterns within the set of attributes used to describe the state of environment but has also 

associated a measure of confidence with the presence or absence of the respective patterns. 

The second hypothesis was initially investigated by Seppelt and Richter (2005), who found that 

different software supplies different solutions to the simple Lotka-Volterra prey-predator model 

(Volterra, 1926). My results extend the work of Seppelt and Richter by showing that it is not only 

the software that can influence the results but also the methodology itself (Chapter 2). The 

findings of Chapter 2 raise the question of whether or not the current scientific investigations, 

which assume that knowledge should be drawn only by using valid analytical methods applied 

to data (Bacon, 1855), should be reevaluated. As different results are reached by using same 

methodology but different methodological details, a scientific investigation should consider the 

inclusion of a component describing the analysis itself, not only the conclusions founded on the 

respective analytical tools.  

 

The research presented here has three novel elements. Firstly, a new paradigm for CIA is 

proposed (Chapter 4 and Chapter 5). A second element is the development of a new forest 

harvesting scheduler that demonstrates that the harvesting of greater volumes is not necessarily 

associated with a greater land clearing, and could lead to better overall environments (e.g., 

average HSI for moose and American marten) or landscapes with a greater amount of better 

habitat (e.g., areas with HSI>0.5). Furthermore, the research has determined the maximum 

amount of volume that can be harvested in the absence of spatial constraints, a limit difficult to 

compute for large size problems using standard forest harvest scheduling techniques, such as 

mixed integer programming or heuristic methods. The third element of novelty is the new 

perspective on the impact of the analysis on the results, which demonstrated the necessity of 

adjustments to the theoretical framework of scientific investigation as established by Descartes 

(1850), Spinoza (1894), Locke (1823) and Hume (1888). 

 

6.2 Potential applications and future research 
 

The present research offers a new perspective on the incorporation of explicit future spatial and 

temporal changes into complex models. Two potential applications of the proposed framework 

are a natural extension of the advocated analytical platform and paradigm change. The first 

application is the extension of the proposed paradigm change (i.e., identification of patterns 

within the analyzed system rather than detailed behavioral investigations of an unlikely future) to 

other areas involving complex modeling such as hydrology, climate dynamics and land-use 
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planning. The proposed development of an alternative paradigm for CIA involving forecasts was 

based on the large uncertainties associated with predictions. The paradigm supporting the 

identification of structures within a system rather than bijective relationships could be applied to 

domains involving large uncertainties, such as genetics, population dynamics and microbiology. 

The second application of the present research is associated with the determination of the 

upper harvesting limit that could lead to the development of better and faster heuristic 

algorithms for forest planning, especially the selection of the initial values of the parameters 

required by different methods. An additional possible application of the present research is in 

the areas of psychology, sociology, history or anthropology, by providing an alternative 

methodology to identify significant patterns for the respective disciplines, such as archetypes for 

psychology (Jung, 1959) or civilizations for history (Toynbee and Somervell, 1947). 

 

Future research based on the proposed change of the CIA paradigm could focus on two 

directions: one theoretical and one practical. From the practical perspective, future work should 

expand the proposed multimodel framework to incorporate other human activities (such as 

agriculture, tourism or mining) and VECs (such as water, air quality or visually quality 

objectives) into the CIA. From a theoretical perspective, future research should concentrate on 

the sensitivity of the proposed CIA framework to the violation of the analytical assumptions as 

well as the identification of the assumptions with the greatest impact on the results. A second 

avenue for further research based on the proposed change of the CIA paradigm is the 

incorporation of observed distributions of natural processes into the analytical platform. 
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APPENDICES 
 

Appendix A 
 

Time-series modeling is more sensitive to the violation of assumptions than modeling of 

independent data (Gujarati 1995). Therefore, a model is considered finalized when the 

significant variables produce residuals distributed as white noise and do not exhibit nonlinear 

deterministic dependencies (Brockwell and Davis 1996). The two conditions, white noise, tested 

with Bartlett's Kolmogorov-Smirnov statistic (Bartlett 1978), and quadratic independence, tested 

using Q statistics (McLeod and Li 1983), ensure that time series models are not spurious 

(Phillips 1986) and are unlikely to be represented as a quadratic chaotic series (Sprott 2003). All 

the computations were performed using a maximum likelihood algorithm; the generalized 

Durbin-Watson test (Vinod 1973) assessed the sequence independence, Philips-Perron test 

evaluated the stationarity of sequences, normality was investigated using the Bera approach 

(Bera 1982) and studentized deleted residuals were employed to identify the outliers (Neter et al 

1996). The significant variables were selected using stepwise selection criterion with a level of 

significance of 0.02. 

 

I demonstrated that the structure of a model can be dependent on the time step by developing 

time-series models for the count of active rigs (Table 7.1) and the number of wells drilled during 

a time-step (Table 7.2). The values from Table 7.1 and 7.2 represent the probability to reject the 

null hypothesis associated with each of the previously mentioned tests. The symbols from Table 

1 and 2 represent the number of the active rigs, or the number of drilled wells, respectively (i.e., 

actual (xt
1) and total (xt

2)) and the crude oil prices (i.e., monthly minimum (xt
3), maximum (xt

4) 

and average (xt
5)), based on New York Mercantile Exchange, at time t. 
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The time-series models built for British Columbia (Table 7.2) has all the residuals distributed as 

white noise but the Portmanteau test shows a possible quadratic relationship among residuals 

for the linear model with time-step 1, 3 and 12 months. However, the presence of a quadratic 

relationship was probably the result of the lack of normality as the GARCH process did not 

identify any significant nonlinear terms. The normality assumption was not met but because all 

the distributions were unimodal and did not exhibit significant asymmetry; the inference was 

considered valid from a distributional perspective, as suggested by Glass et al (1972) and 

Games and Lucas (1966). The Gamma distribution model, supplementing the linear model, 

used as a link function the reciprocal function. A Bartletts‘s Kolmogorov – Smirnov test revealed 

that all the residuals are WN. The Portmanteau test indicated the absence of a quadratic 

relationship among residuals.



 

 
 

Table A.1 Time-series model for the monthly average of number of active rigs. I included an insignificant economic variable for Africa 
region to ensure the fulfillment of the time series assumptions as the estimator efficiency (reduced by this decision) was not relevant for the 
analysis. xt

1 and xt
2 are the monthly average for actual and total (cumulated) number of active rigs, while xt

3, xt
4 and xt

5 are the monthly 
minimum, maximum and average of the NYMEX crude oil prices. 
Region Equation R2 Pr<F White 

noise 

Durbin 

Watson  

Portmanteau 

test 

Normality 

Autoregressive model (monthly data) 

Africa 0.98× 1
1

−tx +0.03× 1
4
−tx +νt 

νt = 0.19 ×νt −1−0.146× νt −1+εt 

0.99 0.0001 0.84 0.43 0.07 0.88 

Europe 36.23+0.86× 1
1

−tx -0.00063× 1
2
−tx +0.177× 1

4
−tx  0.96 <0.0001 0.231 0.267 0.943 0.08 

Middle 
East 

0.938× 1
1

−tx +0.459× 1
3
−tx +νt 

νt = 0.159 ×νt −1+εt     → ttt eh=ε  

ht=22.42+0.07×εt-1
2+1.38×εt-2

2 

0.95 <0.0001 0.121 0.067 0.904 <0.0001 

Far East 0.988× 1
1

−tx +0.097× 1
4
−tx +νt 

νt = 0.305× νt −1+0.84 ×νt-2 +εt  → ttt eh=ε  

ht=47.69+0.103×εt-1
2  

0.88 <0.0001 0.897 0.442 0.809 <0.0001 

Latin 

America 
0.98× 1

1
−tx +0.215× 1

5
−tx  0.98 <0.0001 0.164 0.224 0.649 0.058 

US 0.989× 1
1

−tx +νt 

νt = −0.857× νt −1+0.226×νt-2+0.139×νt-

10 −0.33×νt −11 

0.99 <0.0001 0.08 0.344 0.129 <0.0001 

Canada 0.845× 1
1

−tx +1.47 × 1
3
−tx +νt 

νt = −0.117× νt −1+0.144×νt-2−0.741×νt-12 

0.86 <0.0001 0.157 0.318 0.480 <0.0001 

144 



 

 
 

 
Region Equation R2 Pr<F White 

noise 
Durbin 
Watson 

Portmanteau 
test 

Normality 

Autoregressive model (bimonthly data) 

Africa 0.98× 1
1

−tx +νt 

νt = −0.29× νt −1−0.29× νt −1 

0.99 0.0001 0.12 0.23 0.17 0.0001 

Europe 129.56+0.753× 1
1

−tx -0.0022× 1
2
−tx + 0.74× 1

3
−tx +νt 

νt = −0.287 ×νt −1 

0.96 <0.0001 0.88 0.51 0.102 0.22 

Middle East 0.919× 1
1

−tx +1.294× 1
3
−tx + νt  and ttt h εν =  

ht=67.71+0.931×νt-1
2+0.338×νt-2

2
 

0.99 <0.0001 0.67 0.65 0.96 0.001 

Far East 0.975× 1
1

−tx +0.373× 1
4
−tx +νt 

νt = 0.207× νt −4 + εt
  

0.99 <0.0001 0.12 0.97 0.71 0.11 

Latin 
America 

0.957 × 1
1

−tx +0.905× 1
5
−tx +νt 

νt = 0.322 ×νt −1 

0.99 <0.0001 0.45 0.52 0.57 0.67 

US 0.626× 1
1

−tx +νt 

νt = −0.84 ×νt −1−0.144×νt-6 

0.99 <0.0001 0.10 0.09 0.24 0.001 

Canada 0.695 × 1
1

−tx +5.21× 1
3
−tx +νt 

νt = 0.841 ×νt −6  

0.87 <0.0001 0.31 0.42 0.18 0.20 
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Region Equation R2 Pr<F White 

noise 
Durbin 
Watson  

Portmanteau 
test 

Normality 

Autoregressive model (tri-monthly data) 

Africa 0.99× 1
1

−tx +νt 

νt = −0.34 ×νt −1+εt → ttt eh=ε  

ht=240.5+0.43×εt-1
2
 

0.99 0.0001 0.19 0.15 0.23 0.03 

Europe 105.33+0.84× 1
1

−tx -0.00l4× 1
2
−tx + +νt 

νt = −0.348× νt −1 

0.93 <0.0001 0.30 0.19 0.84 0.0001 

Middle East 0.99× 1
1

−tx  0.98 <0.0001 0.32 0.001 0.96 0.0001 

Far East 0.99× 1
1

−tx  0.99 <0.0001 0.07 0.004 0.86 0.0001 

Latin America 0.99× 1
1

−tx  0.99 <0.0001 0.79 0.001 0.96 0.0001 

US 0.98× 1
1

−tx +νt 

νt = −0.51× νt −1−0.43×νt-4+ 0.52×νt-10 

0.98 <0.0001 0.87 0.76 0.53 0.0001 

Canada 0.78 × 1
1

−tx + νt 

νt = −0.84 ×νt −4 

0.95 <0.0001 0.44 0.16 0.09 0.0001 
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 Region Equation R2 Pr<F White 
noise 

Durbin Watson  Portmanteau 
test 

Normality 

Autoregressive model (six-monthly data) 

Africa 0.98× 1
1

−tx +νt 

νt = −0.463 ×νt −1 

0.99 0.0001 0.56 0.25 0.42 0.26 

Europe 265.57+0.81× 1
1

−tx -0.0037× 1
2
−tx + νt 

νt = −0.548× νt −1+0.386×νt−2 

0.92 0.0001 0.69 0.66 0.98 0.16 

Middle 
East 

0.996× 1
1

−tx  0.99 0.0001 0.65 0.02 0.58 0.08 

Far East 0.997× 1
1

−tx  0.99 0.0001 0.17 0.003 0.83 0.11 

Latin 
America 

0.985× 1
1

−tx +νt 

νt = −0.518 ×νt −1 

0.99 0.0001 0.59 0.06 0.52 0.0001 

US 0. 1
1

−tx +νt 

νt = −0.633 ×νt −1+0.378×νt-2 

0.98 0.0001 0.98 0.92 0.09 0.06 

Canada 0.998× 1
1

−tx + νt 

νt = −0.35× νt −4 

0.96 0.0001 0.88 0.51 0.80 0.02 
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Region Equation R2 Pr<F White 
noise 

Durbin 
Watson  

Portmanteau 
test 

Normality 

Autoregressive model (yearly data) 

Africa 0.3975× 1
1

−tx  0.98 0.001 0.21 0.02 0.92 0.74 

Europe 724.16+0.74× 1
1

−tx -0.00× 1
2
−tx  0.84 0.0001 0.69 0.49 0.20 0.66 

Middle East 0.967× 1
1

−tx  0.94 0.0001 0.88 0.16 0.17 0.002 

Far East 0.989× 1
1

−tx +νt 

νt = −0.447×νt −4 

0.99 0.0001 0.78 0.33 0.25 0.59 

Latin America 0.99× 1
1

−tx +εt 0.98 0.0001 0.28 0.08 0.06 0.29 

US 0.94× 1
1

−tx +νt 

νt = −0.45 ×νt −1+0.44×νt-4- 0.53×νt-10 

0.94 0.0001 0.61 0.15 0.05 0.89 

Canada 0.99× 1
1

−tx + εt 0.93 0.0001 0.56 0.61 0.90 0.46 
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Table A.2 The models for the wells number in northeastern British Columbia.  I have omitted 
the error term from the autoregressive equation to enhance the legibility of the table.  
Time-
step 

Equation Pr<F White 
noise 

Portmant. 
test 

Normality 

1 month 0.276× 1
1

−tx +2.518× 1
4
−tx +νt 

νt= - 0.22× νt-4+0.15×νt-8 - 0.15× νt-11-

0.48 ×νt-13 

0.001 0.40 0.008 0.0001 

1000 /(8.5+10-3× 1
1

−tx -2×10-3× 1
2
−tx +3× 1

4
−tx )+νt

νt=0.15 ×νt-2 

0.001 0.91 0.99 0.0001 

2 months 0.836× 1
1

−tx + νt 

νt=  0.256× νt-2-0.39×νt-5 -0.349×νt-10 

0.001 0.35 0.11 0.0001 

1000 /(5.6 - 10-3× 1
2
−tx - 10-3× 1

4
−tx ) +  νt 

νt=  -0.16 ×νt-1-0.76×νt-6  

0.001 0.97 0.96 0.0001 

3 months 0.718× 1
1

−tx +0.011× 1
2
−tx + νt 

νt=  0.473 ×νt-3 

0.001 0.86 0.02 0.0001 

1000 /(21.1 – 0.2 ×( 1
2
−tx )0.5– 3×10-3× 1

1
−tx )+νt 

νt=  -0.28× νt-1+1.01×νt-2 -1.09×νt-3-0.63×νt-5 

0.001 0.08 0.75 0.0001 

6 months 0.495× 1
1

−tx +0.03× 1
2
−tx  0.001 0.99 0.16 0.001 

1000 /(13.5 – 0.1× ( 1
2
−tx )0.5 +10-3× 1

1
−tx ) 0.001 0.39 0.96 0.001 

1 year 54.77×( 1
2
−tx )0.5+ νt 

νt=  -0.52 ×νt-1 

0.001 0.93 0.005 0.001 

1000 /(50.4 – 5.6×( 1
2
−tx )0.5+10-3× 1

1
−tx )+νt 

νt=  0.41 νt-1+0.88νt-2  

0.001 0.99 0.04 0.001 
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Appendix B 
 

Corollary. For a predetermined set of merchantability standards ensuring PBPT fulfillment, the 

maximum volume that can be harvested annually is equal to the sum of the maximum mean 

annual increment of the stands. 

 

Proof: The perfect packing theorem ensures that the MVHA can be reached by harvesting a 

selected yearly combination of stands if, and only if, the total volume of all stands at optimal 

harvesting age (OHA) is a multiple of MVHA. Therefore, the maximum amount of timber that 

can be harvested when perfect bin-packing conditions are fulfilled is 

∑∑
= =

×=
R

j

N

i
ijij MVHAkVX

1 1
       (6) 

Where R is the rotation period, N is the number of stands used for MVHA computation, Vij is 

the volume of stand i harvested at age j, Xij is a binary variable identifying where or not the 

stand i was harvested at age j, and k is a positive integer ensuring the equality (6). 

 

The planning period needs to be determined exactly as the bin-packing theorem operates in 

discrete non-stochastic settings. Therefore, concepts as the mean, median or mode of OHA 

cannot be used to represent forest rotation as some stands would require harvesting a non-

integer number of times during rotation, violating PBPT settings. The perfect bin-packing 

theorem restricts R to values that ensure that all stands are harvested an integer number of 

times during rotation. The smallest possible number that satisfies this condition is the smallest 

common multiplier of the OHA. Thus, the forest rotation is determined as: 

),..,max(),..,max(
2

),..,max(
1

1
2

1
21

1
1 ..

N
ss

NN aa
s

aaaa RRRR =      (7) 

where R1, ..., Rs = the decomposition factors of OHA for each stand, derived from numbers 

theory 

ai
j = the exponent of the decomposition factor Rj corresponding to OHA of stand i, OHAi 
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i
s

ii a
s

aa
i RRROHA ...21

21=  for stand  

s = the number of distinct decomposition factors among all OHAi 

 

The smallest common multiplier ensures that each stand is harvested an integer number of 

times during forest rotation but transforms R into a pseudo-rotation, as each stand will be 

harvested at least once in R years. The number of times stand i is harvested during this 

pseudo-rotation period is R/ OHAi: 

1..
..

.. ),..,max(),..,max(
2

),..,max(
1

21

),..,max(),..,max(
2
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1 1

22
1
211

1
1

21

1
2

1
21

1
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RRR

RRR
OHA

R

(8) 
 

During the rotation period R the total harvested volume is iOHAi

N

i i

V
OHA

RV ,
1

∑
=

= . 

Therefore,  

∑∑∑∑
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1

,
,

1

)max(/   (9)

   
Where 

iOHAiMAI , is the mean annual increment of stand i at OHAi  [q.e.d.] 
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Appendix C 
 

Optimal harvesting ages determined using TIPSY 3.2.  
 

Lodgepole pine (Pinus contorta) 

 

Site index Optimal harvesting age 

8 177 
9 154 

10 137 
11 127 
12 118 
13 108 
14 110 
15 100 
16 100 
17 100 
18 90 
19 80 
20 80 
21 70 
22 70 
23 60 
24 60 
25 60 
26 60 
27 60 
28 60 
29 50 
30 50 
31 40 
32 30 
33 30 
34 30 
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White spruce (Picea glauca) 

 

Site index Optimal harvesting age 

8 228 
9 210 

10 190 
11 170 
12 160 
13 150 
14 140 
15 130 
16 120 
17 110 
18 100 
19 100 
20 90 
21 90 
22 80 
23 80 
24 80 
25 70 
26 70 
27 70 
28 70 
29 60 
30 60 
31 60 
32 60 
33 60 
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Black spruce (Picea mariana),  

Engelmann Spruce (Picea engelmannii)  

Subalpine fir (Abies lasiocarpa) 

 

The species substitution was performed based on the recommendation from TIPSY 3.2.  

 

Site index Optimal harvesting age 

8 254 
9 254 

10 214 
11 184 
12 190 
13 170 
14 150 
15 140 
16 130 
17 120 
18 110 
19 100 
20 100 
21 90 
22 90 
23 80 
24 80 
25 70 
26 70 
27 70 
28 60 
29 60 
30 60 
31 60 
32 60 
33 50 
34 50 
35 50 
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Trembling aspen (Populus tremuloides) 

 

Site index Optimal harvesting age 

8 244 
9 204 

10 197 
11 188 
12 178 
13 170 
14 148 
15 150 
16 140 
17 130 
18 130 
19 120 
20 120 
21 120 
22 110 
23 120 
24 120 
25 110 
26 110 
27 110 
28 110 
29 100 
30 100 
31 90 
32 90 
33 90 
34 90 
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