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ABSTRACT 

Aerial photographs are a crucial tool for ecological monitoring and management. New 

approaches for aerial photograph analysis are needed because of several existing (and 

anticipated) challenges associated with traditional analysis techniques. The goal of this thesis is 

to provide a synthesis of the valuable, and often unique, ecological information available from 

aerial photographs, and to explore the utility of novel image analysis approaches to extract this 

information. This research is organized to reflect the future of aerial photography as a discipline. 

In chapter two, I review the benefits and challenges of using aerial photographs for ecological 

management. The traditional framework used to classify aerial photographs, as well as sources of 

error are described within the context of the diverse ecological questions that can be addressed 

using aerial photography. The need for new approaches to analyze aerial photographs is 

emphasized throughout this chapter. In chapter three, I compare manual interpretation to an 

automated approach (combining object-based analysis and classification tree modeling), for five 

classification schemes routinely used in British Columbia. Automated approaches hold potential 

for replicating certain aspects of the manual process (such as the delineation of polygons), as 

automated and manually-delineated objects display few statistical differences. Automated 

classification accuracy is highly variable, with individual class accuracies ranging from 0 – 74%; 

however the overall accuracy of several classification schemes exceeded 60%, suggesting certain 

schemes are well suited to automated analysis. In chapter four, object-based analysis is applied to 

historic aerial photographs to better quantify spatial heterogeneity, a concept fundamental to the 

field of landscape ecology. My results suggest sixteen independent factors are needed to describe 

baseline levels of landscape heterogeneity, including several factors not previously identified by 

the discipline of landscape ecology. Lastly, in Chapter five, the significance of this thesis for 

resource management, remote sensing, and landscape ecology is highlighted. Further avenues of 

research are also discussed.  
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1 INTRODUCTION 

 

1.1 The Role of Aerial Photography within Ecology  

Aerial photographs are a cornerstone of resource management and ecosystem planning. Used to 

map various land cover and land use systems, the classification objectives of aerial photograph 

analysis range from the identification of rare habitats, to production of geologic and soil maps for 

engineering purposes (Paine and Kiser 2003). First used as a military reconnaissance tool during 

World War I (Lillesand et al. 2004), aerial photographs have revolutionized the way humans 

view the world, particularly for exploring the interactions between human activities and Earth’s 

ecosystems. An additional benefit of using aerial photographs is the significant reduction in 

associated mapping costs in comparison to alternative mapping methods, such as field data 

collection (Paine and Kiser 2003). As a result, aerial photographs are of enormous value to 

managers and researchers in many disciplines.  

 

Over the course of the 20th century, rapid and extensive environmental changes have occurred on 

local, regional, and global scales, and aerial photographs are one of only a few spatial data 

sources recording these long-term changes. Collected since the 1930’s, aerial photograph 

archives provide one of the largest records of temporally continuous, spatially complete 

landscape information (Paine and Kiser 2003). This long-term information is important because 

it fosters our comprehension of ecosystem patterns and processes, contributes to making 

informed management decisions, and provides reference data for evaluating management goals 

(Arcese and Sinclair 1997, Landres et al. 1999, Swetnam et al. 1999). Furthermore, as landscapes 

continue to change in the future, the past becomes increasingly important for evaluating the 

magnitude of recent changes, such as changes in the rates of catastrophic events (Peters et al. 
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2004). Due to the rarity of historic information, archival aerial photographs provide an 

invaluable resource for ecological monitoring.  

 

1.2 Remote Sensing Challenges for Aerial Photograph Analysis 

Traditionally, ecological information has been derived from aerial photographs through a process 

known as manual interpretation. As a result, manual interpretation is the standard method for 

production of ecosystem classification and inventory maps in many regions (Cohen et al. 1996, 

Hall 2003, Thompson et al. 2007). Manual interpretation consists of two primary steps: 1) 

polygon delineation from hard-copy or digitized photographs; and 2) classification of the created 

polygons. Both of these steps are achieved through human cognition, meaning an individual 

delineates polygons based on perceived boundaries, and then assigns a label representing their 

best estimate at what is actually on the ground. Interpreters use a convergence-of-evidence 

approach, accounting for tone, shape, size, texture, pattern, shadow, site (local characteristics), 

and context simultaneously (Avery and Berlin 1992, Paine and Kiser 2003).  

 

Despite rigorous training of interpreters and thorough development of guidelines to attempt 

standardization of the manual process, there are numerous challenges inherent to this approach. 

Results are somewhat subjective, and inconsistent among interpreters (Fookes et al. 1991). As a 

result, the accuracy of interpretation relies greatly on the personal experience, knowledge, and 

expectations of the interpreter for a given location. Interpretation is also costly, in terms of the 

time, labor, and monetary requirements (Green 2000, MacMillan et al. 2007). Of particular 

concern to the future of manual interpretation is the current shortage of well-trained interpreters, 

whose skills have ideally been combined with years in the field. This lack of interpreters is 

especially troubling given the continued demand for maps derived from manual interpretation.  
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A recent shift in emphasis towards satellite imagery has contributed to this loss of trained 

interpreters for aerial photograph analysis. This shift has primarily been due to the greater 

spectral sensitivity, broader spatial coverage, and more regular re-visitation frequencies of many 

satellites. In addition, rapidly decreasing costs and the increasing availability of free imagery has 

provided cost-effective alternatives to aerial photographs. However, the spatial resolution of the 

most widely available and free satellite imagery is generally coarser than aerial photographs 

(Tuominen and Pekkarinen 2004). Furthermore, collection of satellite imagery began in the 

1970’s, limiting their use for analysis of longer-term landscape change. Given both the loss of 

expert interpreters, and the four additional decade’s worth of information within aerial 

photograph archives, new approaches for analysis of aerial photographs are a research 

imperative.  

 

1.3 New Approaches for Aerial Photograph Analysis 

Object-based methods are one image analysis technique with great potential for improving and 

supplementing traditional aerial photograph analysis. The basic premise of the object-based 

approach employed in this research is that neighboring pixels of similar characteristics are 

merged into homogenous objects using a process called segmentation (Benz et al. 2004, 

Definiens 2007). Essentially, pixels are grouped through numerous iterations that combine 

similar (homogenous) regions of pixels while dissimilar (heterogeneous) regions are kept 

distinct. The end product is an image partitioned into homogeneous objects, which can then be 

classified. This approach used here employs a region merging algorithm for object creation; 

however many different object-based methods have been developed (Hay et al. 2003, Shankar 

2007). 
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Object-based approaches have successfully aided a variety of mapping purposes including 

production of forest inventories (Chubey et al. 2006, Wulder et al. 2008), assessment of 

agricultural land use (Lucas et al. 2007, Watts et al. 2009), and analysis of change over time 

(Laliberte et al. 2004, Pringle et al. 2009). Particularly valuable for resource management, the 

products of object-based analysis could easily be adapted into frameworks of existing 

management strategies based upon aerial photograph interpretation. Furthermore, automated 

object-based methods could increase objectivity and repeatability of results, as compared to 

manual interpretation. The ability of object-based approaches to account for contextual 

information (relationships between neighboring objects) and represent landscape structure over 

multiple spatial scales (create objects of various sizes) is one of the primary benefits of this 

technique (Benz et al. 2004, Blaschke 2004). As a result, higher overall accuracies have been 

reported for maps made with object-based techniques over pixel-based approaches (Pringle et al. 

2009, Wang et al. 2004, Yan et al. 2006). 

 

1.4 Historic Landscape Heterogeneity 

Of the many landscape characteristics and ecological indicators of interest to ecologists and 

managers (Dale and Beyeler 2001), none are more challenging to quantify than spatial 

heterogeneity. Heterogeneity can be related to species diversity, resilience, and ecosystem 

function (Huston 1999) and is highly influential to important biotic and abiotic processes such as 

landscape disturbance and movement of organisms (Turner 1989). Furthermore, despite the 

significance of historical dynamics in understanding spatial patterns and processes, there has 

been less research on quantifying historic spatial heterogeneity. Quantitative measures of historic 

heterogeneity provide reference conditions useful for conservation planning and are valuable for 

setting restoration targets (Sklenicka and Lhota 2002). An ideal source of information for 

defining historic heterogeneity is archival aerial photographs. 
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Landscape heterogeneity may be broadly defined as the degree of spatial variability of some 

property within a system (Li and Reynolds 1995). However, heterogeneity is highly dependent 

upon the spatial and temporal scales over which it is measured (Wiens 1989). The discipline of 

landscape ecology has made progress in quantifying landscape heterogeneity, but has generally 

approached this task using the patch mosaic paradigm (McGarigal et al. 2009). This patch 

mosaic paradigm uses categorical data (e.g. discrete land cover classes) to represent landscape 

heterogeneity via patch-based metrics (or landscape pattern indices) (Cushman et al. 2008, 

Gustafson 1998, Riitters et al. 1995). The major limitation of this approach is that the landscape 

is represented as discrete patches at one spatial scale, when in fact, heterogeneity occurs as 

gradients over a variety of spatial scales (McGarigal et al. 2009). Therefore, new approaches 

capable of characterizing the complexity of landscape heterogeneity are needed. 

 

Object-based analysis may hold great potential for defining landscape heterogeneity. Object-

based analysis is similar to the patch mosaic paradigm in that the landscape is represented 

through a series of ‘objects’ or ‘patches’. For example, patch-based indices (e.g. mean patch size, 

patch shape) derived from categorical data are similar to the object-based metrics derived from 

the segmentation process (e.g. object size, object shape). The primary difference between these 

approaches is that the segmentation process utilizes continuous remotely-sensed data for 

calculation of object-based metrics, whereas the patch mosaic paradigm derives patch-based 

indices using discrete thematic data. A distinct advantage of using object-based metrics, is that 

variability contained within objects is accounted for, unlike in the patch mosaic perspective 

which ignores within-patch heterogeneity. The use of object-based analysis to define 

heterogeneity is completely novel, and may provide important insights into quantification of 

landscape structure. These themes provide the conceptual basis for the research presented here. 
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1.5 Research Objectives 

This thesis is comprised of three studies that highlight the ecological potential of aerial 

photographs and the emerging role of object-based analysis for answering important ecological, 

management, and theoretical questions. With special emphasis on historic aerial photographs, I 

explore a variety of remote sensing tools and spatial statistics for quantitative analyses. I focus 

on the historic landscape of the Kennedy Lake watershed on Vancouver Island, British 

Columbia, Canada. The goals of each chapter are discussed below.  

 

My focus in chapter two was to provide a general overview of aerial photographs, and emphasize 

their importance for ecological management. Technical and methodological challenges 

associated with their use are discussed, and new approaches for more objective, consistent, and 

efficient analysis of aerial photographs are presented. An anticipated impact of this chapter is a 

renewed interest in research using aerial photographs for ecological management. My goal in 

chapter three was to assess the ability of automated analysis techniques (object-based analysis 

and classification tree models) to mimic manual interpretation. The results of manual and 

automated approaches were compared for five different classification schemes related to forest 

and terrain attributes. This pilot comparison provides a compelling argument for further 

development of automated techniques for ecosystem mapping. My objective in chapter four was 

to quantify historic landscape heterogeneity from archival aerial photographs. Object-based 

segmentation was used as a novel method for defining spatial heterogeneity. A new quantitative 

definition was extracted using a multi-scale approach, which identifies several previously 

ignored components of landscape heterogeneity. The implications for the discipline of landscape 

ecology are discussed. Finally, in chapter five I provide a summary of the significance of this 

research and potential directions for future work.
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2 AERIAL PHOTOGRAPHY: A RAPIDLY EVOLVING TOOL FOR ECOLOGICAL 

MANAGEMENT1 

 

2.1 Introduction 

The use of aerial photography to assess and map landscape change is a crucial element of 

ecosystem management. Aerial photographs are ideal for mapping small ecosystems and fine-

scale landscape features, such as riparian areas or individual trees (Fensham and Fairfax 2002, 

Tuominen and Pekkarinen 2005) because they often possess a high level of spatial and 

radiometric (tonal) detail. Aerial photographs also provide the longest available, temporally 

continuous, and spatially complete record of landscape change, dating from the early 1930’s in 

some cases. As a result, aerial photographs are a source of valuable historical information on 

vegetation cover and condition (Cohen et al. 1996, Fensham and Fairfax 2002). Aerial 

photographs can reduce costs involved in mapping, inventorying, and planning (Paine and Kiser 

2003), and as such are used for applications ranging from forest inventories, disturbance 

mapping, productivity estimates, and wildlife management (Avery and Berlin 1992). Thus, many 

important management decisions are routinely based on maps derived from aerial photographs 

(Cohen et al. 1996, Paine and Kiser 2003). 

 

Proliferation of satellite imagery over the past few decades has influenced the use and perceived 

utility of aerial photography in several contrasting ways (Table 2.1). Satellite imagery, with its 

broad spatial coverage and regular re-visitation frequency, has provided researchers and 

managers with a cost-effective alternative to aerial photography. This has contributed to a shift in 

emphasis of university curricula, and the training of remote sensing specialists, away from aerial 

                                                 
1 A version of this chapter has been accepted for publication. Morgan, J.L., Gergel, S.E., Coops, N.C. In Press. 
Aerial Photography: A Rapidly Evolving Tool for Ecological Management. BioScience. 
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Table 2.1 Comparative advantages and disadvantages associated with traditional film-
based aerial photography, digital aerial photographs, and satellite imagery.  
 

 Advantages Disadvantages 
A

er
ia

l P
ho

to
gr

ap
hy

 

• Long time series (1930’s and onwards) 
• Often high spatial resolution 
• Primary basis for many maps used by  
   agencies 
• Stereoscopic view capturing height and  
   topography  
• Comparatively easy to capture 
• Can be collected at any time or place 
• Easy to tailor to specific needs (photograph  
   scale, spatial, spectral, and temporal  
   characteristics, etc.) 
• Less atmospheric interference (due to lower  
   altitude) 

• Individual photographs have limited  
   spatial coverage 
• Large time effort required for processing  
   (film development and orthorectification) 
• Photographs often variable among flight  
   lines (environmental and positional) 
• Difficulty in standardizing image contrast 
   and rectification   
• Manual interpretation can be subjective 
• Quality of photograph dependent upon  
   weather 
• Spatial coverage dependent on needs of  
   original project 
• Limited/inconsistent metadata (mainly  
   historic photographs) 

A
er

ia
l D

ig
ita

l P
ho

to
gr

ap
hy

 • Easy to tailor to specific needs (photograph  
   scale, spatial, spectral, and temporal   
   characteristics, etc.) 
• Image access is immediate (during flight) 
• Exposure conditions optimized in-flight 
• Digital storage is reusable (digital memory) 
• Can be copied repeatedly without data loss 
• Radiometric calibration procedures are  
   extensive 
• Many digital cameras record positional data 
   (GPS) 

• Individual photographs have limited  
   spatial coverage 
• Quality of image dependent upon weather 
• Spatial coverage dependent on needs of  
   original project 
• Shorter time series (1990’s and onwards) 
• Often have coarser resolution than film- 
   based photographs 
• Large amount of digital space required to  
   store high resolution images 

Sa
te

lli
te

 Im
ag

er
y 

• High temporal frequency  
• Systematic collection 
• Broad spatial coverage 
• Easily accessible (many images are free) 
• Many image analysis methods developed 
• Broader spectral range 
• Typically have more rigorous radiometric  
   calibration 
• Metadata precise and easily obtained 
• Current high resolution data provides  
   continuous land cover data (facilitates  
   comparison to historic photos) 

• Shorter time series (1970’s and onwards) 
• Often have coarser resolution than film- 
   based photographs 
• Higher spatial resolution data are  
   expensive 
• Large amount of digital space required to  
   store high resolution images 
• Atmospheric correction usually needed  
   (weather) 
• Sensors are not serviceable (due to their  
   location in space) 
• Greater atmospheric influence (captured  
   outside atmosphere) 
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photographs (Sader and Vermillion 2000) to digital platforms. However, a lack of long-term 

satellite imagery (prior to 1970s) limits the use of satellite data in change detection analyses to 

the past three decades, underscoring the value of longer-term aerial photographs. In addition, the 

spatial resolution of the most widely available and free satellite imagery is generally coarser than 

that of aerial photographs (Tuominen and Pekkarinen 2004). One important development 

associated with the recent emphasis on satellite imagery, however, has been the development of a 

wide range of digital image analysis techniques. While many of these techniques were originally 

developed for satellite imagery, they have also expanded upon the range of analysis techniques 

now available for aerial photographs. 

 

Despite the many advantages of aerial photographs, there are challenges specific to using aerial 

photographs, especially with respect to manual aerial photograph interpretation. While manual 

interpretation by highly-trained individuals remains one of the most effective and commonly 

used approaches for classification of aerial photographs (Wulder 1998), this technique relies 

greatly on the personal experience, knowledge, and expectations of the interpreter for a given 

location. Thus, human interpretations are subjective, and vulnerable to inconsistency and error. 

In addition, resource management agencies are beginning to face a shortage of well-trained 

interpreters, especially those whose skills have ideally been combined with years spent in the 

field. As a result, there is a need for new approaches to reduce or eliminate these difficulties 

associated with traditional aerial photograph analysis, to help foster their continued and evolving 

use. 

 

Motivated by the unique information available from aerial photographs, recent developments in 

digital analysis techniques, and what we believe is a need to reinvigorate training and research in 

ecological management using aerial photography, we review and develop several important 
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themes. First we provide an overview of aerial photographs, along with a generalized discussion 

of challenges inherent with their use, and highlight the ecological importance of the eight 

essential characteristics used in traditional, manual interpretation. Second, we examine how 

digitized aerial photographs may be analyzed using alternative analysis techniques to provide 

more consistent information using more efficient means. We end with several examples of 

emerging ecological management questions that may be best addressed through the use of aerial 

photographs. Our overall aim is to highlight the unique value that aerial photographs hold for 

ecosystem management, and explore possible synergies between new technologies and 

traditional approaches for using aerial photographs. 

 

2.2 Aerial Photography Basics 

Aerial photography is the collection of photographs using an airborne camera. Photographs are 

essentially a representation of the reflectance characteristics (relative brightness) of features 

recorded onto photographic film. More specifically, reflectance is recorded by the film’s 

emulsion, which is a layer of light-sensitive silver halide crystals on backing material for black 

and white photographs, or a series of emulsions for color photographs (Wolf and Dewitt 2000, 

Lillesand et al. 2004). Filters also play an important role in determining the type of information 

recorded by the camera, and consist of a layer of dyes which selectively absorb and transmit 

target wavelengths. Like any camera, the film is protected until briefly exposed to light through a 

lens and filter(s), during which the silver halide crystals (and dyes) react based on the degree of 

reflectance from features on the ground which fall within the camera’s frame, or field of view 

(Lillesand et al. 2004). Aerial photographs are captured most commonly as panchromatic (black 

and white), color, or false color infrared; however various types of electromagnetic radiation can 

also be recorded onto photographic film with the use of different emulsions and filters (Cohen et 

al. 1996).  
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Obtaining a photograph with an appropriate amount of contrast, or tonal variation, is paramount 

for accurate analysis or interpretation. Photographic contrast, or the range of values within the 

photograph, is a product of the film’s emulsion type, the degree of exposure to light, and film 

development conditions (Wolf and Dewitt 2000). Contrast is also directly related to radiometric 

resolution, which is defined as the smallest detectable difference in exposure, or measurable 

difference in reflectance levels (Lillesand et al. 2004). Generally, when exposure and 

development conditions are ideal, any decreases in radiometric resolution (smaller detectable 

differences in tone) will result in greater contrast within the photograph.  

 

Of fundamental importance to the quality of aerial photographs is the camera used to obtain the 

images. Two broad types of airborne cameras are used: film-based and digital cameras (Table 

2.1). The most common type of cameras used in aerial photography are film-based, single-lens 

frame cameras, with lenses of high geometric quality to minimize distortion (Wolf and Dewitt 

2000). Aerial cameras must take photographs of features from great distances; therefore the focal 

length of the lens (the distance from the lens to the film) is fixed to focus reflectance from 

effectively infinite distances away (Wolf and Dewitt 2000, Lillesand et al. 2004). The most 

common focal length for aerial cameras is 152 mm; however longer focal lengths may be used to 

capture imagery from higher altitudes, which are used primarily for aerial mosaics. Aerial digital 

cameras are quite similar in structure; however reflectance is recorded with electronic sensors 

and stored digitally as opposed to the use of film. Although images captured by airborne digital 

cameras are not technically photographs, such imagery will be referred to as digital photography 

in this paper.  
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The scale of an aerial photograph is a function of camera focal length and the flying height of the 

aircraft (Cohen et al. 1996) and most often refers to the conversion between a unit distance 

represented on the photograph and the number of equivalent units on the ground. Scale can also 

refer to the finest/highest spatial unit of resolution (grain), as well as the size of the entire scene 

(extent). The finest unit of resolution on a film-based photograph is not represented by uniform 

pixels (the smallest spatial unit of resolution within an image) as is the case with airborne digital 

imagery or satellite imagery, but is dependent upon the clusters of silver halide grains within the 

emulsion, which tend to be irregularly sized and unevenly distributed (Lillesand et al. 2004). As 

silver halide grains are smaller than most digital detectors, film camera resolution is often finer 

than digital camera resolution (Paine and Kiser 2003). However, the resolution of some current 

digital cameras can be comparable to film resolutions for systems with similar formatting and 

scale (Lillesand et al. 2004). Also of relevance to scale is consideration of the minimum mapping 

unit (MMU), which represents the size of the smallest entity to be mapped. This is often 

established as part of the classification system; however both the scale of the photographs and 

the grain will influence definition of the MMU. 

 

Photographs can be grouped according to their geometry as either vertical or oblique. Vertical 

photographs are taken parallel to the ground with the optical axis of the camera situated directly 

downwards.  Due to the variable conditions during photograph collection (wind, turbulence, etc.) 

true vertical orientation is rarely achieved and photographs almost always contain some degree 

of tilt. Tilted images are obtained on an oblique angle meaning that the optical axis of the camera 

diverges more than 3º from the vertical (Jensen 2000), shifting the normally central focus of a 

photograph to another location and thereby shifting the positions of certain features (Avery and 

Berlin 1992). In contrast, oblique photographs are acquired with a deliberate deviation from a 

vertical orientation. While oblique landscape photographs can predate aerial photographs by 
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decades (acquired from high points on the landscape such as land surveys or airborne) and often 

provide rare historical information, they are more challenging to analyze systematically. 

Therefore, our discussion is limited to the use of vertical aerial photographs.  

 

Two closely related disciplines involved in aerial photography: photogrammetry and aerial 

photograph interpretation; yet each are distinct in their end goals. Photogrammetry (also called 

metric photogrammetry) is concerned with obtaining exceptionally precise quantitative 

measurements from aerial photographs, whereas photographic interpretation (or interpretive 

photogrammetry) focuses more on the recognition, identification, and significance of features on 

photographs (Wolf and Dewitt 2000, Paine and Kiser 2003). Photogrammetric methods are 

highly precise and much of this discipline evolves around techniques to address and correct 

photographic errors. Interpretation methods have also been extensively developed and are 

relevant for understanding the types of ecological information which can be derived from aerial 

photographs. While principles of both disciplines are addressed here, we primarily focus on 

photograph interpretation and classification.  

 

2.3 Digitization of Aerial Photographs 

Film-based photographs may be converted into digital format through scanning (Wolf and 

Dewitt 2000). Photogrammetric scanners convert analog (or continuous tone photographs) into 

digital files represented as pixels (Wolf and Dewitt 2000). The cost of the highest quality 

scanners can be considerable, from $25,000 - $100,000 USD (Aronoff 2005); however scanners 

<$10,000 USD produce digital products suitable for most interpretation needs, with the 

exception of precise photogrammetric work. An inherent drawback of scanning photographs is a 

potential loss of radiometric/tonal variation and spatial resolution from the photograph (Warner 

et al. 1996), and as a result, second or third generation products will not have the detail found in 
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the original. Thus, it is crucial that the scanning resolution (both spatial and radiometric), is 

sufficient to create a geometrically and visually accurate representation of the original aerial 

photograph. It is primarily the physical characteristics of the film and the scale of the aerial 

photograph which will limit the resolvable scanning resolution (dots per inch) (Jensen 2000) 

(Table 2.2); however, other factors such as atmospheric clarity and scene contrast can also 

impact resolution of photographs. Scanning at a resolution too low will result in loss of 

information, whereas a needlessly high scanning resolution will lead to digital files of enormous 

size and storage requirements. Scanning has the advantage that any subsequent interpretation can 

be assisted by software capable of providing systematic analyses (Fensham and Fairfax 2002). 

 
Table 2.2 Relationship between scanner resolution and ground resolution for multiple 
scales of aerial photography. Adapted from (Jensen 2000) p. 111. For example, a 1:20,000 
photograph scanned at 1200dpi, will result in a digital image with a spatial resolution (pixel 
size) of 0.42m. A brief description of common mapping units and general uses of each scale 
is included. 
 
Digitizer Detector 
IFOV* (Scanner 

resolution: Spot size) 

Pixel Ground Resolution as a function of Photographic Scale (meters) 

Dots per 
inch (dpi) 

Micro-
meters 
(µm) 

1:40,000 1:20,000 1:9,600 1:4,800 1:2,400 1:1,200 

200 127.00 5.08 2.54 1.22 0.61 0.30 0.15 
600 42.34 1.69 0.85 0.41 0.20 0.10 0.05 
800 31.75 1.27 0.64 0.30 0.15 0.08 0.04 
1200 21.17 0.85 0.42 0.20 0.10 0.05 0.03 
1500 16.94 0.67 0.34 0.16 0.08 0.04 0.02 
2000 12.70 0.51 0.25 0.12 0.06 0.03 0.02 

Common Minimum 
Mapping Units 

General land 
cover: 2 - 4 ha

Natural 
disturbances 

 Forest stands, 
habitat patches 

Individual trees, 
stream reaches 

 
Common uses  

General 
resource 

assessment 
and planning. 

Mapping of tree species, 
agricultural crops, vegetation 

communities, and soil surveys. 
Historic (archival) photographs are 

often captured at these scales. 

Intensive mapping 
and monitoring of 
specific entities, 
such as damage 

surveys. 
* IFOV (Instantaneous Field of View) 
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2.4 Overview of Basic Photographic Errors 

Despite the great utility of aerial photographs, it is important to note that errors often occur 

during the collection and digitization of photographs which can limit their use (Cohen et al. 

1996, Tuominen and Pekkarinen 2004). While these inaccuracies rarely render aerial 

photographs useless (provided appropriate precautions were taken during photographic 

acquisition, storage, and digitization), an understanding of the major sources of error is crucial 

for accurate analysis. Typically, for many ecological management purposes, geometric errors and 

radiometric errors are most relevant, as they may inaccurately represent photographic features. 

Therefore, we examine the major sources and types of photographic errors in four main 

categories. Errors can be classified as either geometric or radiometric in origin, and either 

systematic or random in form (Table 2.3).   

 

Geometric errors (or positional errors) alter the perceived location and size of features on a 

photograph. Geometric errors can occur due to problems with the equipment used to capture the 

photographs (Wolf and Dewitt 2000), stability of the air borne platform, flying and shutter 

speeds (Paine and Kiser 2003), and the location being photographed. Relief displacement, in 

particular, results in features at higher elevations appearing larger than similarly sized features 

located at lower elevations (Aronoff 2005). However, relief displacement is also what enables 3-

dimensional viewing of overlapping stereo-pairs (called parallax), which aids manual photograph 

interpretation by allowing visualization of topographic relief (Jensen 2000, Paine and Kiser 

2003, Aronoff 2005). A stereo-pair is defined as two adjacent photographs from the same flight 

line that possess some amount of image overlap, usually 60% (Paine and Kiser 2003). While 

geometric distortion is utilized in the manual interpretation process, geometric errors are often 

problematic for digital analyses.  
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Table 2.3 Common errors associated with the use of aerial photographs. Adapted from 
(Paine and Kiser 2003) p. 35. 
 
Type of 
Error 

Systematic Random  

D
is

to
rti

on
 Lens distortion* 

- More common on old photographs 
Image motion compensation 
- Typically occurs on high spatial 
resolution photographs 

Film/print shrinkage* 
- Occurs on historic photographs/film 
Atmospheric refraction of light*  

G
eo

m
et

ri
c 

D
is

pl
ac

em
en

t 

Earth curvature* Topographic/relief displacement 
- More obvious in mountainous areas 
Tilt displacement 
- Especially problematic for oblique 
photographs 
Detector error (roll, crab/yaw, pitch)* 
- Typically affects older aerial photographs 

Se
ns

or
 

Exposure falloff 
 
Sensing geometry 

Bidirectional reflectance  
- e.g. Hotspot effects and mutual shadowing 
      

R
ad

io
m

et
ri

c 

En
vi

ro
nm

en
t Atmospheric (haze) 

 
Clouds 
 
Sun angle 
- Worse for photographs taken off solar 
noon 

* Errors generally considered to be negligible or accounted for during processing 
 
 
Radiometric errors (errors in tone/color) can be caused by the vantage point, condition, and 

calibration of the camera, as well as the types of filter and film emulsion (Jensen 2000). 

Environmental sources of radiometric variability include the hour and season of image capture 

(which affects the angle of the sun), and can cause shadow and/or glare. Atmospheric 

interference due to clouds and haze can also cause radiometric errors (Cohen et al. 1996). In 

addition, the geometry of the airborne platform (camera) can cause variability in brightness 

values, which can be further confounded by sun angle, platform position, and topographic 

variation (Cohen et al. 1996, Paine and Kiser 2003). Next, we present some basic methods for 
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addressing the most relevant geometric and radiometric errors, recognizing that additional errors 

can also affect aerial photographs (Table 2.3). 

 

2.5 Error Correction  

For most digital classification and mapping purposes, it is necessary to use orthorectification 

procedures to correct for geometric displacement errors and provide spatial reference. 

Orthorectification involves the spatial manipulation of a digitized/digital photograph into an 

orthophoto, by adding vertical map (x, y, and z) coordinates to accurately represent distances, 

angles, and areas (Lillesand et al. 2004). This process is different than georeferencing, which 

solely assigns horizontal map (x, y) coordinates to an image. The most basic need for correcting 

these geometric errors is a reference dataset, or a set of reference coordinates, commonly derived 

from existing topographic maps, GIS datasets, satellite imagery, orthophotos or orthophoto 

mosaics. Highly accurate reference/control data is critical because the spatial accuracy of the 

corrected product is dependent upon the geometric quality of the reference layer. Reference data 

are used to orientate the photograph to its true position through the selection of ground control 

points (GCPs). GCPs are locations or features, easily identifiable on both the reference data and 

uncorrected photograph, ideally distributed evenly throughout the entire scene. The target aerial 

photograph (lacking spatial reference) is shifted or warped to its true spatial position by re-

sampling the data using the GCPs as a guide. While various re-sampling algorithms exist, most 

common are the nearest neighbor (simplest and fastest), bilinear interpolation, and cubic 

convolution (yields the smoothest image, yet is computationally intensive), and are available 

within most standard orthorectification software. Of importance to note, is that orthorectification 

and georeferencing are time consuming, particularly for large sets of aerial photographs. 

Geometric correction of historic photographs can be particularly challenging, because changes in 

land cover and feature position over time can make GCP identification difficult. In addition, 
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orthorectification procedures can distort spectral data, therefore spatial referencing is commonly 

applied post-classification. 

 

The most common radiometric procedures applied to digitized aerial photographs typically 

involve manipulation of the image histogram (distribution of the tonal/radiometric values for the 

entire photograph/image). Contrast or histogram stretching, is often used to improve the visual 

appearance of aerial photographs, and alters the frequency distribution of original pixel values to 

allow for better differentiation among unclear or hazy regions. Contrast enhancement includes 

procedures such as image dodging (equalizes dark and light areas across an image for a 

monochromatically balanced product), saturation, and sharpening. Photographs acquired at 

various times within the day are particularly problematic as radiometric response is highly 

dependent upon sun angle and atmospheric conditions. Normalization techniques exist, which 

work to identify similar land cover types across photographs taken under various conditions and 

resample problematic photographs based on the tonal distributions of photographs with more 

ideal contrast. Histogram manipulation can be achieved using a variety of software, such as 

Adobe Photoshop and most standard image processing and analysis programs.  

 

2.6 Aerial Photograph Interpretation 

Traditionally, information has been obtained from aerial photographs through manual 

interpretation. Over the years, manual interpretation has evolved from plastic overlays on hard 

copy images, to soft-copy systems and digitized photographs (Avery and Berlin 1992, Wolf and 

Dewitt 2000). Regardless of the approach used, manual interpretation typically involves 

delineation of polygon boundaries (areas with similar properties) on a stereo-pair and the 

subsequent classification of those polygons by a trained specialist. A variety of key 

characteristics are used to delineate and classify polygons, including tone/color, shape, size, 
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pattern, texture, shadows, site, and context/association (Figure 2.1) (Avery and Berlin 1992, 

Lillesand et al. 2004). Interestingly, while these characteristics can help identify important 

ecological features, they can also be linked to various concepts in ecology (Table 2.4). While we 

discuss these eight characteristics separately, manual interpretation often requires some 

combination of these characteristics for feature identification.  

 
Figure 2.1 Aerial photograph subsets: a. Darker tree species near water are coniferous 
(Tsuga heterophylla); lighter tree species are deciduous (Alnus rubra). b. Yellow trees are 
trembling aspen (Populus tremuloides); green trees are Sitka spruce (Picea sitchensis). c. 
Larger trees on left side of photograph are mature western hemlock (T. heterophylla); on 
right side of photograph trees are smaller, immature western hemlock (T. heterophylla). d. 
The long, linear object is a road and the irregular geometric patches are cultivated areas. e. 
The rough texture in the top right corner of the photograph is indicative of a mature stand 
with high stand complexity; the smooth textured stands at the bottom are more uniform in 
height, indicating a younger stand. f. Various patterns indicating different agricultural uses 
(crops, vineyards, etc.) g. Tree shadows cast on the river help species identification (T. 
heterophylla and Thuja plicata). h. Lighter color of trees suggests presence of deciduous 
vegetation. i. Presence of river indicates riparian area. j. Shadow on left side of photograph 
suggests decrease in elevation towards right side of photograph. 
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Table 2.4 The eight primary aerial photograph characteristics used in manual interpretation, related ecological features, and 
examples of corresponding digital methods which may also be useful for analysis of these attributes. 
 

Characteristic Related Ecological  
Features 

Automated 
Technique 

Description 

Tone/Color  
The relative brightness or 
hue of pixels 
 

Natural and anthropogenic 
feature identification 
(vegetation, soils, urban, etc.) 

Contrast 
Manipulation 

 
 

Modifies the manner in which pixel brightness values 
are displayed by splitting values (thresholding), 
grouping values together (density/level slicing), or 
adjusting their range of sensitivity (contrast 
stretching). See (Cohen et al. 1996).  

Size  
The number of pixels that 
aggregate to form a group of 
pixels with similar 
characteristics 

Vegetation age, structure 
Habitat suitability 
Urban features/land use 

Variogram 
Analysis 

Variograms measure spatial autocorrelation by 
plotting the variance between pixels as a function of 
distance. Related to correlograms. See (Johnson et al. 
2003). 

Shape  
The manner in which related 
groups of pixels are 
arranged; the complexity of 
a feature/patch border 

Natural feature identification 
(irregular shape) 
Anthropogenic feature 
identification (geometric shape) 

Spatial Feature 
Manipulation 

 

Highlights specific areas of tonal variation by 
emphasizing large areas of brightness change (low 
pass spatial filters), local detail (high pass spatial 
filters), abrupt changes in brightness values (edge 
enhancement) or components of spatial frequency 
(Fourier analysis). See (Karniele et al. 1996, Rowe and 
Grewe 2001) 

Texture  
The frequency of change in 
tone among pixels; 
smoothness or roughness 

Vegetation identification 
Biodiversity estimates 
Surface properties (natural and 
anthropogenic features)  
 

GLCM Texture 
 
 
 

Based on the Grey-Level Co-occurrence Matrix 
(GLCM), which summarizes the frequency 
distribution of various combinations of pixel 
brightness values. Texture images are created by 
applying algorithms to each pixel within an image. See 
(Franklin et al. 2000, Jauhiainen et al. 2007). 

Pattern  
The spatial arrangement and 
repetition of features 
(groups of pixels) across an 
area 

Land use 
Natural/anthropogenic 
disturbance 
Habitat suitability 
Landscape structure 

Wavelets 
 

Mathematical function that divides imagery into 
frequency components at multiple scales. See (Strand 
et al. 2006). 
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Characteristic Related Ecological  
Features 

Automated 
Technique 

Description 

Shadow  
The combination of dark or 
‘shadow’ pixels adjacent to 
brighter pixels 

Natural/anthropogenic feature 
identification 
Orientation (landscape, feature, 
etc.) 

Digital terrain 
correction 

Digital terrain/elevation information is used to 
standardize imagery for brightness variation caused by 
topography. See (Sheperd and Dymond 2003). 

Local Characteristics 
Conditions at the 
feature/patch level 

Microclimate 
Local species identification 
Habitat suitability 

Elevation 
Models 

 

Elevation information, particularly at high spatial 
resolutions, can be highly useful for classification of 
local features (as well as land cover over broader 
scales). See (Dorner et al. 2002, Leckie et al. 2003). 

Landscape Context 
Conditions adjacent to or 
surrounding a feature/patch 

Land use 
Habitat suitability 
 

Object-based 
Analysis 

Quantitative contextual rules can be used to classify 
objects/patches based on surrounding conditions, and 
conditions measured over multiple spatial scales. Also 
measures characteristics related to tone, size, shape, 
and texture. See (Hay et al. 2003, Definiens 2007). 

Landscape Position 
Feature/patch location 
within the landscape, often 
in relation to topography 

Topographic location 
Vegetation patterns 
Natural/anthropogenic 
disturbance patterns 

Spatial GIS 
Datasets 

 
 

Ancillary datasets can provide a wide range of 
additional data, useful for image analysis. See 
(Florinsky 1998, Hoersch et al. 2002). 
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2.6.1 Tone/Color 

Variation and relative differences in tone and color on photographs (radiometric properties) are 

the primary characteristics enabling feature identification. For example, foliage of deciduous tree 

species often reflects more light and appears brighter than coniferous species, which are darker 

because they reflect less light (Figure 2.1). Tone/color can also be used to make inferences 

related to the state or the condition of certain features. Surficial deposits with dark tones may 

suggest poor drainage (water absorbs/transmits energy) and high organic matter content, in 

comparison to lightly-colored deposits which are reflective and usually indicate well-drained 

materials such as sand or gravel (Keser 1979). Technically, tone and color both relate to the 

intensity of light reflected by an object/feature; with tone used to describe grayscale variation on 

black and white (panchromatic) photographs and color referring to the hue characteristics of 

color photographs (Avery and Berlin 1992). A result of complex interactions between the sun’s 

radiation and the Earth’s surface, tone and color are greatly influenced by conditions during 

photograph acquisition and digitization (Avery and Berlin 1992). Therefore, it is important to 

compare photographic tone/color and land cover relationships between adjacent photographs or 

among all photographs used in a project. 

 

2.6.2 Size 

The relative and absolute size of objects/features is important not only for identifying both 

cultural and natural features, but can also be used to make ecological inferences about the 

features being identified. Size is particularly significant due to its direct connection to spatial 

scale, a fundamental component of understanding ecological patterns and processes. In 

ecological applications, scale is often used to describe the size, or spatial unit, of a focal 

entity/phenomenon. Analyses can focus on multiple spatial scales, such as at the scale of 

individual tree crowns, where the sizes of individual trees differ according to age class (Figure 
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2.1); or at broader scales, where the relative sizes of habitat patches can provide indicators of 

suitability for different species (Turner et al. 1989). The absolute size of various features may 

also have important ecological implications. Riparian vegetation width is an illustration of this 

point, because riparian size is important for quantifying local protection afforded to a stream, 

such as in highly modified watersheds (Roth et al. 1996). Furthermore, spatial characteristics 

such as the distribution of canopy gaps and other forest structural properties can be identified 

from high spatial resolution aerial photographs, which are important parameters relevant for 

many wildlife species (Fox et al. 2000).  

 

2.6.3 Shape  

Shape is particularly useful for identifying cultural features, which usually have a specific 

geometry and obvious edges, as well as many natural features with distinctive forms (Avery and 

Berlin 1992). In particular, shape can be used to identify various geomorphic features such as 

fluvial landforms (e.g. fans or oxbow lakes), glacial landforms (e.g. drumlins or cirques) or 

organic landforms (e.g. swamps or fens) and disturbances such as landslides (Keser 1979). A 

relevant characteristic over a wide range of spatial scales, shape results from the contrast 

between the border of a specific feature or patch, and the surrounding environment. At fine 

scales, aerial photograph interpreters look for recognizable shapes to classify features, such as 

crown shape to identify tree species, or geometry to identify anthropogenic features, such as the 

long, linear characteristics of roads (Figure 2.1). At broader scales, patch shape can be used to 

distinguish between anthropogenic land use (logged stands or agriculture) and natural 

disturbances (fire or insect damage), and can provide indicators of landscape complexity. 

Interestingly, patch edges influence many important ecosystem and landscape processes such as 

habitat quality (Ries et al. 2004); thereby edge characteristics such as shape, play an important 

role in understanding the interaction between landscape structure and ecological processes.  
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2.6.4 Texture 

Image texture is particularly useful for landform and land cover classification, and is related to 

variation in biophysical parameters, landscape heterogeneity, forest structural characteristics 

(Wulder 1998), and can be helpful for prediction of species distribution and biodiversity patterns 

(St-Louis et al. 2006, Fischer et al. 2008). Aerial photograph interpreters describe texture in 

terms of smoothness and roughness, and the relative variation of this attribute can be used to 

distinguish between various features (Avery and Berlin 1992). For example, the textures of 

different forested stands provide visual indicators of stand complexity, age, and crown closure 

(Figure 2.1). Texture is commonly used to help differentiate between tree species (Trichon 

2001), and other features that may otherwise have similar reflectance and dimensional 

characteristics (Avery and Berlin 1992, Lillesand et al. 2004). Texture is also useful for 

identifying soil types, rangeland vegetation, various hydrologic characteristics, and agricultural 

crops (Lillesand et al. 2004). Texture generally focuses on fine-scale variation (the pixel level), 

in particular by emphasizing the spatial arrangement and frequency of variation in image tone 

(Paine and Kiser 2003, Lillesand et al. 2004). However, texture is directly related to spatial scale, 

meaning textural characteristics will change as the scale of the photograph changes (Avery and 

Berlin 1992), although textures generally appear smoother as scale increases, or as the altitude of 

the aircraft increases.  

 

2.6.5 Pattern   

In contrast to texture, which focuses on tonal variation at a fine-scale (the pixel level), pattern is 

concerned with the spatial arrangement of features or patches over coarser scales (Paine and 

Kiser 2003). Spatial pattern can be random or systematic (Jensen 2000) and is often very 

distinctive for many anthropogenic and natural features (Avery and Berlin 1992). For instance, 

trees in an orchard have a systematic pattern (Figure 2.1); whereas the distribution of gaps in old 
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growth forests may have a more random pattern. In this regard, spatial patterns of features in a 

photograph can provide important clues for identification of land use, forest structural 

characteristics, and disturbance types; all important to understand in terms of ecosystem 

management. In addition, patterns of different habitat or land cover patches can influence 

movement of organisms and materials across the landscape (Gergel and Turner 2002). The 

comprehensive approach of aerial photograph interpretation can also be particularly useful for 

gaining an understanding of the connections and interactions between spatial patterns of natural 

features and landscape structure. One such case used aerial photograph interpretation aided by 

information collected in the field to describe the connection between the spatial patterns of 

ribbon forests and the structure, lithology, and topography of the landscape in Glacier National 

Park, MT (Butler et al. 2003).  

 

2.6.6 Shadow 

Shadows may either help feature identification by providing information about an 

object/feature’s height, shape, and orientation, or hinder classification by obscuring parts of the 

landscape. Shadows provide profiles or silhouettes of certain objects (Tsai 2006) and are 

particularly useful for small feature identification, topographic enhancement, or features 

otherwise lacking tonal contrast (Avery and Berlin 1992, Aronoff 2005). The shadows cast by 

the crowns of different trees on a contrasting background can be helpful for species identification 

(Figure 2.1); however excessive shadows can obscure features (Jensen 2000) and distort 

tone/color, and shape (Tsai 2006). Modern aerial data are typically collected within two hours of 

solar noon (Jensen 2000), thus limiting the extent of shadows; however shadows are often 

problematic on historic aerial photographs.  
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2.6.7 Site and Context 

Site and context (sometimes termed association and/or location) are used in manual 

interpretation; yet, are often defined using overlapping and closely related concepts (Avery and 

Berlin 1992, Wolf and Dewitt 2000, Paine and Kiser 2003). Despite the confusion surrounding 

these characteristics, they relate quite well to three very distinct, yet fundamental, ecological 

concepts: patch characteristics versus landscape context (Pearson 1993), and landscape position 

(Swanson et al. 1988). Because these concepts are widely recognized as important in ecological 

planning and management, we propose refining the ideas around site, context, and association, to 

these three ecologically relevant and well-defined concepts. Local characteristics (at the feature 

or patch level) are important because they reflect fine-scale, microclimatic conditions (Chen et 

al. 1999). In contrast, landscape context (conditions surrounding the feature or patch) is essential 

because the properties of neighboring patches can impact a wide range of ecological phenomena, 

such as prediction of species for conservation planning (Mazerolle and Villard 1999). In the 

specific case of identifying high quality bird habitat, characteristics of the landscape surrounding 

a patch can even have more influence on patch occupancy than any characteristic within the 

patch itself (Pearson 1993). Finally, landscape position (the location of the feature or patch in 

relation to topography) is critical because characteristics such as slope, aspect, and moisture 

gradients affect processes such as vegetation patterns and natural disturbance events (Swanson et 

al. 1988, Dorner et al. 2002).  

 

Local characteristics, landscape context, and landscape position are often used in tandem by an 

interpreter to identify various features. Identification of riparian forests, for instance, could be 

aided by several features: the presence of deciduous vegetation (patch characteristic); its 

adjacency to a river (landscape context), or by the fact that riparian forests occur in areas of 

lower relative elevation than upland forests (landscape position) (Figure 2.1). Classification of 
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bog types in higher latitudes, can also be aided by using local traits such as vegetation type and 

vegetation presence/absence, contextual attributes such as collapse scars and water pools, and 

positional traits including relative height (indicating permafrost thickness) and hummocks (Vitt 

et al. 1994).  

 

2.7 New Approaches for Aerial Photograph Analysis 

Recently developed automated methods of image enhancement and classification (typically 

applied to satellite imagery), are potentially quite useful for aerial photographs, and may help 

address some of the problems with traditional photo-interpretation (Table 2.3 and 2.5). 

Automated analysis of digital imagery has evolved over time into two main approaches (Table 

2.5). Conventional automated image analysis has been conducted on a per-pixel basis, whereby 

enhancement and classification algorithms are applied to individual pixels. While ‘pixel-based’ 

approaches are relatively easy to implement, the representation of landscape elements with pixels 

may be less applicable for some features. A contrasting approach is that of object-based analysis 

(Hay et al. 2003, Definiens 2007). The basic premise of the most common object-based 

approaches is that neighboring pixels of similar properties are merged to form objects (using a 

process termed segmentation) prior to analysis (Blaschke 2004). The resulting objects can then 

be classified using quantitative characteristics such as tone/color, size, shape, texture, and 

contextual relationships (Hay et al. 2003, Definiens 2007), similar to the approach used by 

manual interpreters. This method is particularly promising because it can create objects over 

multiple target scales/sizes to represent the hierarchical nature of ecosystems.  

 

One of the advantages of automated, digital techniques is the ability to explicitly and separately 

analyze individual characteristics of photographs. Digital edge enhancement is one technique 

which can help identify shape characteristics by emphasizing abrupt changes in brightness values 



 32

Table 2.5 Comparative advantages and disadvantages of manual aerial photograph 
interpretation, conventional pixel-based analysis, and object-based classification methods.  
 

  Advantages Disadvantages 
M

an
ua

l  
In

te
rp

re
ta

tio
n 

• Can be fairly accurate 
• Limited image preparation required 
• Commonly used to make resource  
   management maps 
• Comprehensive, uses human knowledge  
   to make logical decisions 
• Well developed discipline (in some  
   regions) 
 

• Subjective 
• Time consuming 
• Inconsistent among interpreters 
• Expensive 
• Dependent upon interpreters experience   
• Shortage of well trained and experienced  
   interpreters 
• Accuracy standards vary widely 

Pi
xe

l-b
as

ed
 

C
la

ss
ifi

er
s 

• Systematic  
• Consistent 
• Repeatable 
• Many well-developed and affordable  
   software packages available 
• Pixel-based accuracy assessment  
   techniques are well developed 

• Arbitrary analysis unit (pixel) 
• Tend to utilize only spectral information 
• Less suited to analysis of high spatial  
   resolution imagery  
• Can produce speckled ‘salt and pepper’  
   results 
• No necessary relation between pixel- 
   based classification and classes on the  
   ground 

O
bj

ec
t-

ba
se

d 
C

la
ss

ifi
er

s  

• Systematic  
• Consistent 
• Repeatable 
• Ability to incorporate multiple scales 
• Better mimics human perception of  
   objects 
• Integrates attributes important to  
   landscape analysis (tone, shape, size,  
   texture, context) 

• Object creation is difficult and can  
   produce unexpected results 
• Less availability and affordability of   
   software 
• Better suited to high spatial resolution  
   imagery 
• Object-based accuracy assessment  
   procedures less developed 

 

between pixels to identify edges (Table 2.4). Edge detection techniques have been useful for 

identifying fine-scale features from aerial photographs with distinctive shapes such as roads 

(Rowe and Grewe 2001) and linear geologic features such as faults, joints, and folds (Karniele et 

al. 1996). The use of edge detection techniques was able to extract geologic features with results 

comparable to that of manual interpretation, and improved upon manual interpretation for 

identification of larger linear features (Karniele et al. 1996). Similarly, texture information is 

often incorporated by calculating separate texture layers (such as homogeneity or variance) based 

on the grey level co-occurrence matrix (Table 2.4) and has been helpful for improving the 
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accuracy of vegetation classifications (Franklin et al. 2000, Jauhiainen et al. 2007). Textural 

derivatives of this nature can extract various components of image texture (beyond the 

smooth/rough scale used by manual interpreters) and were useful for exploring drainage-driven 

vegetation dynamics in various mire sites using recent and historic aerial photography 

(Jauhiainen et al. 2007). Variogram analysis, which identifies autocorrelation over space (Table 

2.4), is another useful tool, and can help identify spatial ranges (sizes) of ecological features or 

processes, such as disease influence in potato crops (Johnson et al. 2003). 

 

Often, photograph or image analysis approaches incorporate multiple automated techniques, or 

use techniques which target multiple characteristics of features, to improve classification 

capacity or accuracy. Mapping individual tree locations is one goal which can be aided by the 

use of both thresholds (Table 2.4) to target specific tone/color characteristics, and window-based 

operators to target specific sized objects related to tree crowns; however aerial photographs of 

high spatial resolutions are required (Uuttera et al. 1998). Similarly, wavelets utilize tone, size, 

and shape characteristics to identify patterns over multiple spatial and/or temporal scales (Table 

2.4), and can be used to identify vegetation distribution characteristics such as woody plant 

encroachment over time (Strand et al. 2006). Object-based classification is another multi-scale 

approach particularly promising for vegetation and landscape analysis (Blaschke 2004) and was 

useful for investigating shrub encroachment dynamics (Laliberte et al. 2004).  Shrubs >2m2 in 

size were delineated from digitized aerial photographs using specific sizes (segmentation scales), 

and then classified using tone and contextual relationships among neighbors and over multiple 

spatial scales (Table 2.4) with accuracies of 87% (Laliberte et al. 2004). Since this approach 

mimics manual interpretation to a certain extent, and is better suited for high spatial resolution 

imagery (Table 2.5), this tool is particularly promising for aerial photograph analysis. 
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The integration of digital terrain information with aerial photographs and other remotely sensed 

imagery can expand mapping capabilities (Florinsky 1998). Local characteristics, such as micro 

relief can be obtained from highly detailed terrain information (Table 2.4), and is useful for fine-

scale applications such as individual tree identification (Leckie et al. 2003). For example, 

incorporation of lidar with high spatial resolution aerial photographs greatly improves the 

identification of individual trees and other forest parameters, useful for forest inventory purposes 

(Leckie et al. 2003). Similarly, broad-scale landscape positional information (such as slope, 

aspect, and moisture indices) (Table 2.4), can be particularly useful when paired with digital 

imagery for classifying vegetation distributions in heterogeneous environments (e.g. (Hoersch et 

al. 2002)). Overall, there is much potential for automated approaches and ancillary datasets to aid 

analysis and classification of digital or digitized aerial photographs.  

 

2.8 Accuracy Assessment  

The value of any analysis or classification is highly dependent upon its accuracy. Thematic maps 

derived from the classification of remotely sensed imagery are routinely used for mapping land 

cover and monitoring land cover change. However, ‘poor’ quality or inaccurate land cover maps 

can render such maps unsuitable for operational purposes (Foody 2002), and inaccuracies can 

lead to ineffective, costly, or even detrimental ecosystem management decisions (Gergel et al. 

2007, Thompson et al. 2007). Establishing the accuracy of a classified product is one of the 

biggest challenges associated with classification or map production, largely due to the 

uncertainties regarding the measurement of accuracy, and a lack of strict assessment guidelines 

suited to this purpose (Foody 2002). As a result, establishing the accuracy of maps derived from 

either manual interpretation or automated analysis can be problematic. 
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Accuracy is often estimated by comparison between the classified photograph/image, and 

reference data derived from field data or alternative thematic datasets (Foody 2002). Collecting 

field reference data can be problematic for remote or difficult to access locations, and can be 

expensive over large areas. Furthermore, some attributes identified on photographs may not be 

measurable from the field (e.g. spatial distributions of patches), and field measurements may be 

even less accurate than photographic mapping (e.g. canopy gaps) (Fox et al. 2000). As a result, 

reference data collected from the field is often limited. More common is the use of previous 

interpretations or other thematic datasets to assess the accuracy of new classifications. However, 

the accuracy of such original interpretations is rarely verified beyond limited ground checking, 

and many forest inventory maps are irregularly updated (Thompson et al. 2007). Furthermore, 

the misclassification rate of such inventories can reach as high as 60% (Thompson et al. 2007). 

Establishing the accuracy of historic aerial photograph classification has additional challenges, 

because historic reference data are often inexistent, and subsequent land cover changes 

frequently render field data collection impossible. Current stump survey data or historic land 

survey data such as the Public Land Survey (PLS) may provide supplemental reference point 

data (Manies and Mladenoff 2000). However, in many cases the accuracy of analyses from 

historical aerial photographs cannot be rigorously quantified. Therefore, any accuracy 

assessment requires careful consideration of the availability and quality of reference data. 

Further, data requirements may differ depending on whether pixel- or object-based classification 

was employed. 

 

In general, two broad types of accuracy should be considered: positional and classification 

accuracy. Positional accuracy relates to the location of features and their borders, and is 

important because even small errors in positional accuracy can have important implications on 

analyses, such as the measurement of river channel movement through time (Hughes et al. 2006). 
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Positional accuracy of manual interpretation also has important implications, yet polygon 

position can be highly variable, and is often dependent upon interpreter style. ‘Lumpers’ are 

interpreters who tend to delineate larger polygons, thereby ‘lumping’ areas of somewhat similar 

character together. In contrast ‘splitters’ delineate smaller polygons recognizing areas with subtle 

differences. Point/dot grids and line transect methods may be less problematic and subjective 

than manual interpretation in terms of positional accuracy; however, these approaches are often 

time consuming and are primarily used for spatial estimates of cover (Paine and Kiser 2003). 

While it is arguable that the imposition of abrupt boundaries on natural ecosystems composed of 

gradients is inherently inaccurate, this type of generalization is a necessary simplification for 

classification. Methods which do assess border accuracy generally involve rigorous field data 

collection (Hughes et al. 2006) and therefore, positional accuracy is rarely addressed. 

 

Classification accuracy is related to the labeling of classes, and can vary greatly among different 

classes. For instance, older stands and those of pure species composition, can generally be 

identified using photograph interpretation with higher accuracy than mixed species or second-

growth stands (Thompson et al. 2007). Additionally, the accuracies of individual species 

identified using manual interpretation can range from complete misclassification, to near perfect 

(Thompson et al. 2007). While many methods of class accuracy assessment exist, the most 

common form of class accuracy representation is through the use of a confusion, or error matrix 

(Stehman 1997). This provides a cross-tabulation of the relationships between the reference data 

(‘truth’) and the classification data on a per-class basis for a sample of locations over the entire 

extent (Foody 2002). Recent work has explored the utility of alternative digital approaches for 

accuracy assessment including pixel and polygon based approaches for high spatial resolution 

imagery (Thompson and Gergel 2008), as well as accuracy assessments conducted across 

multiple spatial scales (Gergel et al. 2007). Although a full discussion is beyond the scope of this 
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paper, accuracy assessment should suit the data type, classification technique, and classification 

scheme used, and must work to ensure accuracy is represented as truthfully and completely as 

possible (Stehman 1997, Foody 2002). 

 

2.9 Conclusions 

Routinely used for decades by resource managers (Cohen et al. 1996, Johnston and Lowell 

2000), aerial photographs provide a spectrum of useful information to managers and researchers, 

unique to other types of ecological inventory information. While ecosystem management 

dilemmas require a differing knowledge base and skill set related to aerial photograph usage, the 

potential for aerial photographs to help answer many current and pressing ecological questions is 

considerable. Reconstruction of historic ecosystem conditions from archive aerial photography 

can be important for characterizing the historic range of variability within ecosystems, useful for 

development of strategies aimed at managing for ecological integrity (Landres et al. 1999). 

Historic information from aerial photographs can also be useful for monitoring landscape and 

ecosystem change (Swetnam et al. 1999), such as tracking decline in foundation species (Trichon 

2001, Ellison et al. 2005). Furthermore, archival aerial photographs provide a source of spatially 

continuous historic information, unlike several other historical reconstruction techniques which 

lack precise and/or continuous spatial coverage (e.g., dendrochronology or pollen samples) 

(Macdonald et al. 1991, Foster et al. 1992).  

 

While aerial photographs are certainly useful for a variety of purposes, it is important to 

emphasize that they have a distinct place within remote sensing and ecology. As discussed 

throughout this review, there are numerous challenges associated with aerial photograph 

interpretation and analysis, as found with any other types of remotely sensed data. However, it is 
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crucial for researchers and managers to identify the strengths and weaknesses of different 

remotely sensed datasets, and use this knowledge to make informed decisions regarding spatial 

dataset selection. While aerial photographs are not suited for every mapping purpose, particularly 

over broader spatial scales (Nichol et al. 2006), they do offer a wealth of ecological information 

which may be used to answer a wide range of critical ecological questions. Our objective for this 

paper was to highlight specific uses of aerial photographs for ecosystem research and 

management, and outline some possible future directions for integration of their unique benefits 

into ecosystem management applications involving remote sensing.  

 

With the demands for spatially explicit data by resource managers and scientists continuing to 

grow (Cohen et al. 1996), the use of digitized/digital aerial photographs and the development of 

automatic analysis techniques can improve the accuracy, consistency, and efficiency of results 

(Harvey and Hill 2001). Given the unique and important information available from aerial 

photographs, and the challenges inherent with their interpretation, further research and training 

with emerging image analysis techniques will be essential to fully avail ourselves of the potential 

of aerial photographs to assist in ecological management. Promise in combining optical imagery 

such as aerial photography, with detailed terrain data and other ancillary datasets, may also be of 

particular importance to explore for a variety of ecosystem applications. Overall, the advances in 

the field of remote sensing will only further our ability to utilize aerial photographs for 

ecological means. 
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3 A COMPARISON OF MANUAL AND AUTOMATED APPROACHES FOR 

CLASSIFICATION OF DIGITAL AERIAL PHOTOGRAPHS2 

 

3.1 Introduction 

Interpretation of aerial photographs is one of the most commonly used methods for production of 

ecosystem classification and inventory maps, which are subsequently used to make many 

decisions related to resource management (Cohen et al. 1996, Hall 2003, Thompson et al. 2007). 

While aerial photograph interpretation is one of the most accurate approaches for air photo 

classification (Wulder 1998), there are many issues inherent to this approach. Manual 

interpretation is the result of an individual’s perception, meaning results are often inconsistent, 

subjective, and difficult to replicate (Fookes et al. 1991, Wulder et al. 2008). Furthermore, there 

is a severe lack of interpreters being trained to replace the large number of experienced 

interpreters nearing retirement. Along with these practical and methodological issues, manual 

interpretation is associated with high financial costs, as well as extensive time and labor 

requirements (Green 2000), which results in infrequent updates to interpretations.  

 

Given the value of aerial photographs, and the current problems associated with traditional 

interpretation, there is a heightened need for development of new, automated methods for air 

photo analysis (Morgan et al. In Press). Fortunately, extensive advances have been made in the 

field of digital image analysis. Object-based analysis is one such approach which has shown 

considerable promise for a variety of mapping purposes, such as forest inventories (Chubey et al. 

2006, Wulder et al. 2008), agricultural land use (Lucas et al. 2007, Watts et al. 2009), and 

changes in land cover over time (Laliberte et al. 2004, Pringle et al. 2009). While numerous 

                                                 
2 A version of this paper is in the final stages of preparation for submission. Morgan, J.L. Gergel S.E. Comparison  
of Manual and Automated Approaches for Digital Aerial Photograph Analysis. Canadian Journal of Remote 
Sensing. 
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algorithms for object-based analysis have been developed (Hay et al. 2003, Shankar 2007), 

region-merging algorithms (which group neighboring pixels into regions of minimum within-

object heterogeneity) are the most common, in part due to the commercial availability of 

software using this approach (Definiens 2007). This method is also used because it offers several 

advantages to pixel-based image analysis methods, such as the ability to represent landscape 

information over multiple spatial scales and the integration of contextual information (Benz et al. 

2004, Blaschke 2004).  

 

Another analysis method with potential for automated classification are Classification And 

Regression Tree (CART) models, which use measured variables to predict both categorical and 

continuous response variables (Bittencourt and Clarke 2003). CART analysis has proven useful 

for land cover mapping over various spatial scales (Hansen et al. 2000, Sugumaran et al. 2003). 

Recently, the integration of object-based segmentation and CART modeling approaches for 

digital imagery analysis has been explored with success (Chubey et al. 2006, Laliberte et al. 

2007, Mallinis et al. 2008, Thomas et al. 2003). While this integrative approach has yielded 

promising results and is well suited to the high resolution of aerial photographs, few studies have 

compared the results achieved by automated approaches to manual interpretation. Exceptions 

focus on border accuracy, and include both qualitative (Leckie et al. 2003, Wulder et al. 2008) 

and quantitative comparisons (Radoux and Defourny 2007). 

 

Our objective is to explore the use of object-based analysis and classification tree modeling as a 

tool for supplementing manual interpretation and addressing some of the issues inherent to 

interpretation. As traditional interpretation consists of two primary steps; 1) polygon delineation; 

and 2) polygon classification (Avery and Berlin 1992, Paine and Kiser 2003), we use 1) object-

based segmentation; and 2) decision tree modeling, to mimic these steps. To determine the 
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ability of the automated approach to replicate manual interpretation, we quantitatively compare 

the results of this twofold approach over local, polygon and landscape scales. We use a set of 

historic aerial photographs within an un-harvested watershed for the comparison, and include 

texture and terrain data for the automated analyses. Historic aerial photographs are used because 

of the inherent value of historic landscape information for conservation and restoration 

(Swetnam et al. 1999). We believe our comprehensive and quantitative comparison of the 

manual interpretation process to a fully automated approach is novel, and provides the 

groundwork for further exploration of alternative methods to address the numerous challenges 

inherent to manual air photo interpretation.  

 

3.2 Methods 

3.2.1 Study Area and Spatial Data 

The research was conducted within the Kennedy Lake watershed in Clayoquot Sound, BC, 

Canada (Figure 3.1). Located on the west coast of Vancouver Island, the watershed has a 

drainage area of approximately 55,013 ha and is dominated by temperate rainforest. Average 

precipitation for this area is 400-700cm, with mean temperatures ranging from 5-15°C. 

Dominant tree species include western hemlock (Tsuga heterophylla), western redcedar (Thuja 

plicata), amablis fir (Abies amabilis), yellow cedar (Chamaecyparis nootkatensis), sitka spruce 

(Picea sitchensis), and red alder (Alnus rubra). There are over 57 different vegetated ecosystems 

currently represented within the watershed according to provincial classification schema (TPC 

2006). Much of the floodplain within the Kennedy Lake watershed has been harvested, and there 

is ongoing restoration occurring throughout this area. 
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Figure 3.1 The Kennedy Lake watershed is located on the west coast of Vancouver Island, 
British Columbia, Canada. 
 

 

 
Panchromatic, vertical aerial photographs taken in 1937-38 were used for this analysis. Since 

riparian corridors and floodplain ecosystems are exceptionally diverse in this area, and have been 

highly modified as a result of extensive timber harvest, our sampled photographs were chosen to 

represent the historic diversity within these sites. Digital scans of the photographs were obtained 

from the National Air Photo Library in Ottawa, Canada. The original contact prints were scanned 

with a resolution of 1200dpi and radiometric corrections were applied to each photograph to 

balance grey levels across the images. Eight stereo-pairs (two adjacent photographs possessing 

spatial overlap from the same flight line) were selected spanning a range of watershed orders 
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(Appendix A). Further photographs were not included due to cost limitations associated with 

manual interpretation. 

 

3.2.2 Manual Interpretation 

The interpretation process used a digital approach, in which polygons were digitized and then 

classified from scanned stereo-pairs (APS 2008). This approach required the transformation of 

stereo-pairs into stereo-models, which are 3-dimensional digital models representing the area of 

overlap between photographs with accurate distances, angles, and areas. First, tie points 

(identical locations on both photographs) were created to link the stereo-pair and identify the 

area of overlap between the two photos. Next, spatial coordinates were assigned to the 

photographs using 1:20,000 Terrain Resource Information Management (TRIM) maps generated 

by the province of British Columbia (GeoBC 1996). A Triangulated Irregular Network (TIN), 

(the required format for digital topographic files within APS) was created from the TRIM data. 

Using this TIN, ten to twelve control points were collected from identical locations (x, y, and z) 

on the two photographs and the TRIM data. Residual errors were less than 1m for all eight sites.  

 

Once the stereo-models were created, all eight landscapes were manually classified. Photograph 

interpretation was performed by a certified air photo interpreter in coastal British Columbia, and 

consisted of two primary steps. First, polygons representing areas of uniform land cover 

characteristics were digitized on the stereo-models. The second step involved assignment of 

classification attributes to the created polygons. Manual interpretation is executed using a 

‘convergence of evidence’ approach, in which traits over numerous spatial scales including tone, 

shape, size, texture, pattern, shadow, site (local topography) and context (neighboring 

characteristics) are considered in combination.  
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Categories identified were based upon the Vegetation Resources Inventory standards of British 

Columbia (Province of British Columbia 2002) and included historic values for leading species, 

vertical complexity, overall productivity, site position, and surface expression (Table 3.1). 

Leading species is the tree species of highest proportion within a polygon. Vertical complexity is 

an important indicator of potential wildlife habitat, and represents canopy complexity based on 

stand age, species composition, and disturbances (Province of British Columbia 2002). Higher 

values indicate more complexity, and therefore greater variability of tree height and age within 

the stand. Site productivity is a relative measure of the potential for tree growth based on site-

specific conditions (such as soil moisture or exposure to sunlight). Site position is related to the 

dominant soil moisture regime, and refers to the polygon location in terms of slope position 

within a catchment. Surface expression is the dominant form of the surficial material, and is 

useful for deduction of soil parent material (Province of British Columbia 2002).  

 

3.2.3 Automated Object Creation 

Classification of forest parameters in previous research has been aided by both image texture 

(Franklin et al. 2000; Wulder et al. 2004), and terrain information (Swanson et al. 1988, Treitz 

and Howarth 2000). Thus, textural and topographic derivatives were generated for all eight 

landscapes to better capture variability within these areas. Correlation, entropy, and homogeneity 

(which represent tonal characteristics) were calculated using the co-occurrence matrix of each 

photograph and a processing window of 3 x 3 pixels (ENVI 2007). These texture layers were 

selected based on their low inter-layer correlations (abs(r) < 0.65). A Digital Elevation Model 

(DEM) was created by converting TRIM mass points into a raster DEM (ESRI 2006), and then 

resampling the data to match the spatial resolution of the photographs which was 0.5m. (The data 

were resampled because matching spatial resolutions are required for data input into the object-

based software. While data resampling is artificially increases information content, subsequent 
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Table 3.1 Five classification schemes as used within the Vegetation Resources Inventory in 
British Columbia (Province of British Columbia 2002). Note: For polygons marked none, 
the absence of forest cover, shadows or other interfering factors impeded classification. 
 

Classification 
Scheme 

Class 
Label 

Definition Percentage of polygons (N=541) 
assigned to each class by the 

interpreter 
Leading Species Cw 

Hw 
Ss 
Yc 
Hm 
Fd 
Ba 
Dr 
None 

Cedar, Western Red 
Hemlock , Western 
Spruce, Sitka 
Cedar, Yellow 
Hemlock, mountain 
Fir, Douglas 
Fir, Amabilis 
Alder, Red 
No classification 

44.5 
21.2 
1.1 
2.6 
3.9 
0.4 
10.7 
15.2 
0.4 

Vertical 
Complexity  

None 
1 
2 
3 
4 
5 

No classification  
Very Uniform 
Uniform 
Moderately Uniform 
Non-uniform 
Very non-uniform 

15.2 
36.2 
34.6 
6.8 
5.9 
1.3 

Site 
Productivity 

VP 
PR 
MD 
GD 
VG 
None 

Very Poor 
Poor 
Moderate 
Good  
Very Good 
No classification  

27.7 
38.8 
15.0 
7.4 
9.6 
1.5 

Site Position  Cr 
Up 
Mid 
Low 
Toe 
Fl 
Dep 
Wet 
None 

Crest 
Upper Slope 
Middle Slope 
Lower Slope 
Toe 
Flat 
Depression  
Wetland 
No Classification 

3.7 
1.8 
24.4 
11.5 
16.5 
19.9 
10.0 
10.4 
1.8 

Surface 
Expression 

C 
D 
F 
H 
M 
N 
P 
R 
T 
U 
None 

Cone 
Depression 
Fan 
Hummock 
Rolling 
No dominant expression 
Plain 
Ridge 
Terrace 
Undulating 
No Classification 

20.1 
1.7 
0.7 
25.3 
23.7 
0.7 
10.0 
7.4 
6.1 
0.2 
4.1 
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segmentation groups this data into objects larger in size than the resolution of the original TRIM 

data). In addition to the elevation data, an aspect layer (ESRI 2006) and a topographic wetness 

index (Gessler et al. 1995) were generated to represent different attributes of terrain. The aspect 

layer was rescaled with a cosine transformation to represent data from 180° (north) to -180° 

(south). Values for the topographic wetness index ranged from -1.5 to 25 and represented 

potential moisture.  

 

The segmentation process within the object-based classifier (Definiens 2007) was used to 

generate objects for comparison to the manually delineated polygons (Figure 3.2). Segmentation 

creates objects by grouping neighboring pixels of similar characteristics, and is controlled by 

three user-defined factors: a set of input layers, a scale parameter, and the homogeneity criterion 

(Definiens 2007). The settings for most factors were determined iteratively. First, segmentations 

in which the reflectance values of the photographs (weight =3) were weighted to have equal 

influence to the terrain data (weight =1 for DEM, aspect, and TWI) yielded objects that were 

qualitatively the most similar to manual polygons. The textural derivatives were not used for 

object creation. Scale parameters (which indirectly influence how large the objects will be) 

ranged from 1200-1650 and were selected to produce approximately the same number of objects 

as compared to manual polygons. Finally, a homogeneity criterion (which primarily dictates the 

shape of the resulting object) with a weighting of 0.7 to favor object tone (versus shape) and 0.7 

in favor of compactness (versus smoothness) produced objects most similar in appearance to 

manually digitized polygons.  
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Figure 3.2 An illustrative example of manually-delineated polygons and segmented objects (shown in white) for a subset of an 
example landscape.  
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3.2.4 Comparison of Manually-delineated Polygons and Segmented Objects 

The two approaches were evaluated by comparing quantitative metrics describing characteristics 

of individual objects and polygons. Thirty object-based metrics related to object size, shape, 

tone, texture, topography, and context were first calculated for all segmented objects within the 

eight landscapes (listed in results). In order to calculate the same object-based metrics for the 

manually-delineated polygons, a shape file of the manual polygons was used to define the 

objects for a second segmentation at each landscape. Essentially, rather than a segmentation 

based on input layers, scale parameters, and a homogeneity criterion, the second segmentation 

was based upon the manual polygons. Once the same 30 metrics were calculated for the 

automated segmentations and the manual interpretations at each landscape, all metrics were 

exported as text files. Polygons or objects adjacent to borders of the photograph were excluded 

from this comparison in order to avoid the influence of edges on the statistics and to avoid using 

‘incomplete’ polygons. (Approximately 50% of the polygons were excluded as a result.) 

 

Three non-parametric statistical tests were used to compare results over local, polygon, and 

landscape scales for each of the eight landscapes (Figure 3.3). First, the two approaches were 

evaluated at a localized level, by comparing mean values of object characteristics across paired 

locations using paired t-tests (SAS 2003). A random sample of 15 paired locations for each 

landscape (representing approximately 1/3rd of the manual polygons and delineated objects) was 

selected such that no polygon or object was sampled twice. Second, the ranked means of the 30 

metrics were compared at the polygon level, using the Wilcoxon rank-sum test (SAS 2003). 

Lastly, the distributions of the 30 metrics for all polygons within the entire landscape were 

compared with the Kolmogorov-Smornoff test (SAS 2003). If the means or distributions were 

not statistically different, this indicated statistical similarities between the manual polygons and 

the segmented objects. All tests used a significance value of 0.05. Non-parametric methods were
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Figure 3.3 The three spatial levels of statistical comparison between the manually-
delineated polygons and segmented objects (shown in black) including a) a subset of one 
image showing paired locations (white dots); b) a subset of one image showing non-border 
polygons (shown in gray); and c) an example of two frequency distributions of the objects 
and polygons as shown in b. 
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used because most metrics failed tests of normality. Results were summarized according to the 

number of landscapes in which a test was not significantly different. Therefore, the higher the 

number of landscapes for which a metric was not statistically different, the greater likelihood the 

segmented objects were similar to the manually delineated polygons.  

 

3.2.5 Automated Object Classification 

A Classification and Regression Tree (CART) approach was used to classify the segmented 

objects. The end product of CART analysis is a logical model, which classifies objects using a 

series of predictor variables (Sherrod 2008). The predictor variables were the 30 object-based 

used for comparison of the manual delineation and automated segmentation results (listed in 

results), and the target classes were the five historic classification schemes used for the manual 

interpretation (Table 3.1). Classification trees were built using the Gini splitting (tree fitting) 

algorithm, which defines classes based on a process of binary recursive partitioning (Bittencourt 

and Clarke 2003, Sherrod 2008). A series of binary splits are used to iteratively divide all entities 

into homogenous groups, using predictor variables best able to differentiate the data into the 

target classes. CART models were built using the five classification schemes two ways. First, 

models were built for individual landscapes to account for tonal (and textural) variability among 

the eight photographs for a total of 40 models. Second, combined datasets were used to assess 

the practicality of implementing CART analysis over photographs from various flight lines by 

using a dataset combining all landscapes for a total of 5 models. 

 

Classification tree sizes and accuracies were determined using minimum cost complexity within 

a 10 V-fold cross validation method (Sherrod 2008). This process works by building ten test 

trees using a subset of the data. Each tree is built using 90% of the total data; however, different 

portions of the data are used to create each tree. As a result, each 10% increment of data not used 
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to build the models is completely unique, and therefore suitable for independent validation 

(Sherrod 2008). To determine tree size, classification error rates were calculated for each step (or 

split) of the model and weighted according to the size of the model (or number of splits). 

Minimum weighted classification error (or cost) was used to determine tree size. Comparative 

classification accuracy was assessed using the reserved validation data and represented with 

confusion matrices and misclassification values. Acceptable overlap accuracies for producer’s 

and user’s statistics were also calculated for classification schemes with ranked classes (such as 

vertical complexity which ranges from uniform to very complex). Essentially, if a class was 

incorrectly classified as its neighboring class (for example, a polygon with low slope position 

was incorrectly labeled as having either a toe or middle slope position), this still represented an 

acceptable classification.  For each classification scheme, this information was summarized 

across all landscapes, and used to quantify model and individual class accuracy. Classification 

trees built using the combined data for all landscapes, were used to provide models for the five 

schemes, and determine the metrics best able to predict classes within each scheme. 

 

3.3 Results 

3.3.1 Comparison of Object and Polygon Characteristics 

Over 70% of the metrics compared between the two approaches were statistically similar across 

local, polygon, and landscape scales (Table 3.2). Locally, only the shape index and the standard 

deviation of the aspect layer were significantly different using paired comparisons. These were 

the only metrics that differed significantly in all three statistical tests. Along with these two 

metrics, object compactness and border length were also statistically different when comparing 

the rank scores of object characteristics at the polygon level. In contrast, almost one-third of the 

distributions of object characteristics were statistically different at the landscape level. Metrics 

for which distributions were significantly different included size, most shape based measures,  
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Table 3.2 Comparison of 30 characteristics for objects derived from an automated 
segmentation and manual interpretation over three spatial scales. The number of 
landscapes (N = 8) in which the segmented objects were statistically similar to the 
manually-delineated polygons are shown. Numbers shown in bold indicate polygon 
characteristics not well mimicked by the automated approach. 
 
Object/Polygon characteristic 
(object-based metric) 

Local – 
Mean paired 

samples 

Polygon – 
Mean rank 

scores 

Landscape – 
Empirical 

distribution  

Abbreviation

Area 8 8 1 Area 
Length  7 8 0 Length 
Width  8 8 1 Width 
Length/width 8 8 6 Length_wid 
Compactness 7 2 1 Compact 
Shape index 1 0 0 Shape_ind 
Border length  6 1 0 Border 
Distance to image border  8 8 8 Distanceto 
Radius of largest enclosed ellipse 7 7 3 Radius 
Mean aspect 8 7 7 MeanAspect 
Mean correlation 8 6 7 MeanCorrel 
Mean DEM 8 8 8 MeanDEM 
Mean entropy 6 7 8 MeanEntrop 
Mean homogeneity 6 7 8 MeanHomog 
Mean photo 8 7 7 MeanPhoto 
Mean TWI 8 7 8 MeanTWI 
Standard deviation aspect 0 0 0 SD_asp 
Standard deviation correlation 8 7 8 SD_corr 
Standard deviation DEM 7 8 5 SD_DEM 
Standard deviation entropy 6 6 8 SD_ent 
Standard deviation homogeneity 7 8 8 SD_hom 
Standard deviation photo 6 7 7 SD_pho 
Standard deviation TWI 7 8 8 SD_TWI 
Mean difference to neighbors 
(aspect) 

8 8 3 MD_asp 

Mean difference to neighbors 
(correlation) 

8 7 6 MD_corr 

Mean difference to neighbors 
(DEM) 

8 6 8 MD_DEM 

Mean difference to neighbors 
(entropy) 

7 8 5 MD_ent 

Mean difference to neighbors 
(homogeneity) 

7 7 5 MD_hom 

Mean difference to neighbors 
(photo) 

7 7 8 MD_pho 

Mean difference to neighbors 
(TWI) 

8 7 8 MD_TWI 
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and metrics related to aspect. Mean values of border length, the shape index, and compactness 

were higher for the automated objects than the manually delineated polygons, whereas the 

standard deviation of aspect was lower. Mean difference to neighbors of the aspect layer 

exhibited greater variance among the segmented objects than the manual polygons; however 

variability of mean object area and other size metrics were greater for the manual polygons. 

 

3.3.2 Comparative Accuracy of the Five Classification Schemes 

Comparative accuracies for the five historic classification schemes ranged from 53.9 - 64.4% 

when totaled across the eight landscapes (Table 3.3-3.7), and decreased to 50.7 - 53.5% when  

using the dataset combining all landscapes (Table 3.8). All accuracies as reported in this analysis 

are comparative accuracies between the manual interpretation and the classification tree model, 

and are therefore not reflective of actual ground accuracy. The Leading Species classification 

model had the highest overall accuracy of the five schemes (Table 3.3), and was highly 

dependent upon textural information for class separation (Table 3.8). The Leading Species model 

built using the combined dataset accounted for only three tree species and polygons with no 

classification (Figure 3.4), yet these classes made up 92% of the total data. The Vertical 

Complexity scheme had relatively low accuracies (Table 3.4), being highly dependent upon tonal 

information for model development (Table 3.8). The third classification scheme, Site 

Productivity, had low accuracies for all models (Table 3.5 and 3.8), and identified only half of 

the classes when using the combined dataset. The Site Position classification scheme generally 

produced poor models (Table 3.6 and 3.8) yet identified the highest proportion of classes (6/9 

describing 93% of the data), out of the five classification schemes. Topographic data contributed 

to the relatively higher classification accuracies for the Surface Expression classification scheme 

(Table 3.7 and 3.8, Figure 3.5). 
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Table 3.3 Totaled accuracy assessment results summarized over all eight landscapes for the 
Leading Species classification scheme (defined in Table 3.1). 
 

Predicted Category 

Class 
(N) Ba Cw Dr Fd Hm Hw None Ss Yc 

Total 
(N) 

Ba 22 26 0 0 2 7 1 0 0 58 
Cw 9 190 0 0 3 31 5 0 4 242 
Dr 0 1 0 0 0 1 0 0 0 2 
Fd 0 0 0 0 0 2 0 0 0 2 
Hm 2 8 0 0 6 3 2 0 0 21 
Hw 5 46 0 0 5 49 10 0 0 115 
None 3 13 0 0 1 6 58 0 1 82 
Ss 0 1 0 0 0 4 0 0 0 5 
Yc 2 8 0 0 1 0 2 0 1 14 

A
ct

ua
l C

at
eg

or
y 

Total 43 293 0 0 18 103 78 0 6 541 
Producer’s 
Accuracy (%) 51.2 64.8 0 0 33.3 47.6 74.4 0 16.7 
User’s Accuracy 
(%) 37.9 78.5 0 0 28.6 42.6 70.7 0 7.1 
Overall Accuracy 
(%) 25.5 76.1 0 0 23.3 33.5 44.8 0 3.6 64.4 
 
 
Table 3.4 Totaled accuracy assessment results summarized over all eight landscapes for the 
Vertical Complexity classification scheme (defined in Table 3.1). Acceptable overlap 
accuracies for producer’s and user’s accuracies are shown in brackets. 

 
Predicted Category 

Class 
(N) None 1 2 3 4 5 

Total 
(N) 

None 52 15 13 0 2 0 82 
1 4 122 65 2 3 0 196 
2 7 59 110 1 10 0 187 
3 0 11 21 1 4 0 37 
4 0 5 16 0 11 0 32 
5 0 2 4 0 1 0 7 

A
ct

ua
l C

at
eg

or
y 

Total 63 214 229 4 31 0 541 
Producer’s 
Accuracy (%) 

82.5 
(n/a) 

57.0 
(84.6)

48.0 
(85.6)

25.0 
(50.0)

35.5 
(51.6)

0  
(0) 

User’s Accuracy 
(%) 

63.4 
(n/a) 

62.2 
(95.4)

58.8 
(90.9)

2.7 
(70.3)

34.4 
(34.4)

0 
(14.3)

Overall Accuracy 
(%) 34.8 51.7  59.7 1.2 20.1 0 53.9 
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Table 3.5 Totaled accuracy assessment results summarized over all eight landscapes for the 
Site Productivity classification scheme (defined in Table 3.1). Acceptable overlap 
accuracies for producer’s and user’s accuracies are shown in brackets. 
 

Predicted Category 

Class 
(N) None VP PR MD GD VG 

Total 
(N) 

None 59 0 2 13 5 2 81 
VP 1 0 0 6 0 1 8 
PR 0 0 6 31 3 0 40 
MD 6 0 2 153 39 10 210 
GD 4 0 2 63 68 13 150 
VG 1 0 0 18 17 16 52 

A
ct

ua
l C

at
eg

or
y 

Total 71 0 12 284 132 42 541 
Producer’s 
Accuracy (%) 

83.1 
(n/a) 

0  
(0) 

50.0 
(66.7)

53.9 
(87.0)

51.5 
(93.9)

37.1 
(69.0)

User’s Accuracy  
(%) 

72.8 
(n/a) 

0 
(0) 

15.0 
(92.5)

72.6 
(92.4)

45.3 
(96.0)

30.8 
(63.5)

Overall Accuracy 
(%) 47.6 0 15.2 64.4 44.3 31.2 53.9 
 

Table 3.6 Totaled accuracy assessment results summarized over all eight landscapes for the 
Site Position classification scheme (defined in Table 3.1). Acceptable overlap accuracies for 
producer’s and user’s accuracies are shown in brackets. 
 

Predicted Category 
 

Class 
(N) Cr Up Mid Low Toe Flat Depr Wet None

Total 
(N) 

Cr 1 13 2 0 5 1 0 0 0 22 
Up 2 34 14 1 4 2 0 0 0 57 
Mid 2 13 48 6 10 5 0 0 1 85 
Low 0 3 18 12 24 5 0 0 0 62 
Toe 1 3 13 7 70 13 0 1 0 108 
Flat 0 0 2 2 15 112 0 0 1 132 
Depr 0 0 3 1 2 4 0 0 0 10 
Wet 0 0 1 3 2 2 0 1 1 10 
None 1 2 3 1 3 4 0 2 39 55 

A
ct

ua
l C

at
eg

or
y 

Total 7 68 104 33 135 148 0 4 42 541 
Producer’s 
Accuracy (%) 

14.3 
(42.9) 

50.0 
(88.2)

46.2 
(76.9)

36.4 
(75.8)

51.9 
(80.7)

75.7 
(87.2)

0 
(0) 

25.0 
(25.0) 

92.9 
(n/a) 

User’s Accuracy 
(%) 

4.5 
(63.6) 

59.6 
(87.7)

56.5 
(78.8)

19.4 
(87.1)

64.8 
(83.3)

84.8 
(96.2)

0 
(40.0) 

10.0 
(10.0) 

70.9 
(n/a) 

Overall Accuracy 
(%) 2.8 33.0 43.7 18.0 45.3 0 67.8 5.0 49.9 58.5 
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Table 3.7 Totaled accuracy assessment results summarized over all eight landscapes for the Surface Expression classification 
scheme (defined in Table 3.1). 
 

Predicted Category 

Class 
(N) C D F H M N None P R T U 

Total 
(N) 

C 80 0 0 17 10 0 0 0 1 0 0 108 
D 1 0 0 1 4 0 0 3 0 0 0 9 
F 1 0 0 1 1 0 1 0 0 0 0 4 
H 33 0 0 85 14 0 1 2 1 0 0 136 
M 11 0 1 11 86 0 3 13 4 0 1 130 
N 0 0 0 0 3 0 0 0 1 0 0 4 
None 0 0 0 3 9 0 36 5 1 0 0 54 
P 0 0 0 1 13 0 0 25 0 0 1 40 
R 1 0 0 9 4 0 0 0 19 0 0 33 
T 0 0 0 0 0 0 0 1 0 0 0 1 
U 0 0 0 1 6 0 0 9 3 0 3 22 

A
ct

ua
l C

at
eg

or
y 

Total 127 0 1 129 150 0 41 58 30 0 5 541 
Producer’s 
Accuracy (%) 62.9 0 0 65.9 57.3 0 87.8 43.1 63.3 0 60.0 
User’s Accuracy  
(%) 73.4 0 0 62.5 66.2 0 66.7 62.5 57.6 0 13.6 
Overall Accuracy 
(%) 49.9 0 0 38.9 49.7 0 39.2 49.7 20.7 0 11.1 61.9 
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Table 3.8 Variables of importance for class differentiation within the five classification 
schemes (as defined by models built using a combined dataset), and the overall accuracy of 
each model. 
 
Classification 
scheme 

Variables of importance for classification 
tree model 

Overall accuracy of 
combined dataset (%) 

Leading Species Standard deviation homogeneity 
Mean difference to neighbors (correlation) 
Standard deviation correlation 
Mean DEM 
Standard deviation DEM 
Mean TWI 

 
53.5 

Vertical 
Complexity 

Standard deviation homogeneity 
Standard deviation photo 
Mean photo 
Mean correlation 
Mean homogeneity 

 
52.7 

Site 
Productivity 

Standard deviation photo 
Mean DEM 
Mean difference to neighbors (entropy) 

 
51.1 

Site Position Mean DEM 
Mean correlation 
Mean difference to neighbors (entropy) 
Standard deviation DEM 
Standard deviation TWI 
Mean TWI 

 
50.7 

Surface 
Expression 

Mean TWI 
Standard deviation correlation 
Standard deviation DEM 
Mean correlation 
Mean entropy 
Mean photo 
Standard deviation photo 

 
52.4 
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Figure 3.4 Pruned classification tree (Sherrod 2008) developed to model leading species 
(defined in Table 3.1) based on the combined dataset. Metric abbreviations are shown in 
Table 3.2. Target classes (terminal nodes) are shown in grey, along with the number of 
polygons correctly classified out of the total polygons identified by that split. 
 

 

 
 
Figure 3.5 Pruned classification tree (Sherrod 2008) developed to model surface expression 
(defined in Table 3.1) based on the combined dataset. Metric abbreviations are shown in 
Table 3.2. Target classes (terminal nodes) are shown in grey, along with the number of 
polygons correctly classified out of the total polygons identified by that split. 
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Individual class accuracies of the 41 target classes were highly variable among the five 

classification schemes (Table 3.3-3.7). Both user’s and producer’s accuracies were higher on 

average than overall class accuracies. Only western red cedar (Cw), uniform vertical complexity 

(2), moderate site productivity (MD) and flat site topography (Fl) had mean class accuracies 

≥60%. In contrast, more than a quarter of all classes had user’s and producer’s accuracies ≥60%. 

In general, the more objects assigned to an individual class, the higher the accuracy of that class. 

For instance, classes present in ≥20% of the total objects segmented from all eight landscapes, 

often had user’s and producer’s accuracies approaching or exceeding 60%. (An exception was 

objects classified as having very poor productivity, which had 0% accuracy.) Rare classes 

(defined as those present in ≤10% of all segmented objects) had average user’s and producer’s 

accuracies of 25% and 20%, respectively. Over half of all the classes met this definition of rare 

(Table 3.1). 

 

Overlap accuracies were often higher than class-to-class comparative accuracies for most classes 

within the Vertical Complexity, Site Productivity, and Site Position classification schemes 

(Table 3.4, 3.5, and 3.6). Individual class overlap accuracies increased 27.3% on average 

(ranging from 0 – 77.5% increase) as compared to the original class-to-class comparisons. Over 

66% of all classes within the Vertical Complexity, Site Productivity, and Site Position 

classification schemes had producer’s and user’s overlap accuracies ≥60%. Of the individual 

classes with poor overlap accuracies, all were defined as rare with the exception of the very poor 

Site Productivity class (Table 3.5). Of the three classification schemes for which overlap 

accuracies could be calculated, the Site Productivity scheme observed the highest average 

increase in individual class accuracy when using the overlap statistics as compared to the original 

class-to-class comparisons. 

 



 67

3.4 Discussion 

3.4.1 Object Creation 

A variety of object-based approaches have been explored in previous research for delineation of 

forest stands (Chubey et al. 2006, Hay et al. 2005, Leckie et al. 2003, Pascual et al. 2008, Wulder 

et al. 2008). While results have suggested the potential for automating (or semi-automating) the 

object delineation process, quantitative validation of this potential has been rare. Our study was 

unique in that it quantitatively showed that at local, polygon, and landscape levels, many 

characteristics of the objects created using the segmentation process were statistically similar to 

characteristics of the manually delineated polygons. We found that mean, standard deviation, and 

contextual measures for the input layers (photographs, texture, and terrain), were similar across 

all scales compared (with the exception of aspect). At local and polygon levels, object size and 

most shape characteristics were also the same. Overall, it appears that the segmented objects 

were most similar to the manual interpretation when compared at local levels, and least similar 

when compared across the entire landscape. 

 

Statistical discrepancies in several shape and aspect-related characteristics found over all three 

scales may demonstrate inherent differences between the two approaches. Shapes of the 

manually derived polygons were less complex and more compact, indicating the manual 

interpreter digitized smoother, non-complex lines. In contrast, the automated segmentation 

approach produced more complex object borders sometimes following variations between 

individual pixels. As a result, there were inconsistencies between the shape characteristics of the 

segmented objects and the manual polygons across all three scales of comparison, such as the 

higher average polygon perimeters produced by the automated segmentation, also observed in 

(Wulder et al. 2008). Aspect characteristics may have been different between methods, because 

the aspect layer was weighted to account for ~15% of the information used to create every object 
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within the segmentation process. The degree to which aspect was utilized by the interpreter is 

unknown and unquantifiable, and may have varied greatly, even across the same landscape.  

 

Likewise, the inability of the automated approach to replicate the empirical distributions of 

manual polygons may be related to the ability of the manual interpreter to produce polygons with 

a wider range of object characteristics within the same landscape. For example, a greater range in 

sizes of manually-delineated polygons as compared to automated object-based approaches has 

also been found in previous research (Wulder et al. 2008). Criticisms of the region merging 

algorithm used in this study have highlighted the disconnect between the scale parameter and 

object size as problematic for ecological analysis (Hay et al. 2003, Hay et al. 2005). However, 

the ease of implementation, strength of results achieved using this approach, and the lack of 

other commercial segmentation software, may outweigh some of these issues for some 

applications.  

 

3.4.2 Object Classification 

The Leading Species and Surface Expression schemes had the highest overall class-to-class 

comparative accuracies when totaled across the eight landscapes (Table 3.3 and 3.7), and were 

among the highest accuracies achieved using the combined dataset (Table 3.8). It was expected 

that identification of historic Leading Species would be challenging due to the narrow spectral 

range of panchromatic, historic aerial photographs. However, accuracy results were likely highly 

influenced by the dominance of the western red cedar class, which was present in nearly 45% of 

all manually classified polygons (Table 3.1). The Leading Species scheme experienced the 

greatest decrease in accuracy for the model built using the combined dataset when compared to 

model accuracies totaled across the eight landscapes (Table 3.3 and 3.8). This decrease in 

accuracy was likely caused by the dominance of texture for class separation (Table 3.8 and 



 69

Figure 3.4), and the tonal (and textural) variability among the photographs. The Surface 

Expression scheme also had slightly higher accuracies, likely because classes were more evenly 

represented across the eight landscapes, and possessed more distinct terrain characteristics, 

reflected in the dominance of topographic variables for classification tree development (Table 

3.8 and Figure 3.5).   

 

Accuracy standards for manual interpretations often consider a class to be correct provided it is 

assigned to a value within +/-1 unit value (or within a bordering class) of the true class 

(Resources Information Standards Committee, 2009). The calculation of overlap accuracy 

statistics greatly improved the results for the Vertical Complexity, Site Productivity, and Site 

Position schemes (Table 3.4, 3.5, and 3.6) and may better represent the potential of classification 

tree analysis. For the three schemes with stepwise or ‘ranked’ classes (e.g. Vertical Complexity 

classes ranging from very uniform to very non-uniform; and Site Position classes ranging from 

toe to crest slope position), errors often occurred between bordering or adjacent classes. 

However, when considering class accuracy within these commonly used overlap guidelines, 

individual class accuracies were often well within the range of acceptable requirements for 

provincial VRI mapping standards (Resources Information Standards Committee, 2009).  

 

Overall, variability in the comparative accuracies within these classification schemes may be 

explained by several factors. First, low class-to-class comparative accuracies may be the result of 

using complex classification categories which are better suited to human cognition. For instance, 

analysis of Site Productivity requires consideration of local conditions, as well as contextual 

circumstances. As this type of classification is complex and arguably subjective, automated 

classification will likely be difficult no matter what classification approach is used. Second, 

while the scale used in the segmentation process may be suitable for creating objects close in size 
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to manual polygons, this single scale is likely not optimal for certain classes. For example, an 

important cue used to classify Vertical Complexity is size variation among individual trees 

within a stand. Relevant information over different spatial scales is therefore obscured when 

analysis occurs solely at the stand level. Third, classification accuracies may be limited by the 

limited number of samples for certain classes. Finally, the lower accuracies produced with the 

combined datasets may be caused by tonal (and textural) variability among the historic 

photographs, and the limited spectral information available from panchromatic photographs.  

 

The wide range of class accuracies reported in previous research and this study is likely due to 

the dependence of classification tree accuracy on sample size, with rare classes generally having 

lower class-to-class comparative accuracies and overlap accuracies (Chubey et al. 2006, Yu et al. 

2006). Despite variability among individual class accuracies, CART analysis has been more 

effective for classification of segmented imagery than alternative methods. For example, CART 

analysis was more accurate when classifying forest vegetation on a segmented image than a 

nearest neighbor algorithmic approach (Mallinis et al. 2008). Another advantage of CART 

analysis is the ability to identify the metrics or variables best able to differentiate amongst 

classes (Laliberte et al. 2007, Yu et al. 2006), making this approach highly suitable for handling 

the large amount of metrics produced by object-based analysis (Chubey et al. 2006). While 

CART analysis may not be suitable for all classification schemes, this technique is highly suited 

to integration with object-based segmentation.  

 

3.5 Future Work and Conclusions  

Several components of this research should be addressed in future work. First, the accuracy of 

the object borders created using object-based segmentation should be examined (as per Radoux 

and Defourny 2007) to assess the ability of the segmentation process to replicate positional 
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accuracy. Second, reference data from the field should be used to establish the true classification 

accuracies of both the manual interpretation and object-based segmentation approaches. Third, 

further development of CART models should be undertaken to investigate the potential of using 

this approach for additional classifications schemes, including continuous variables such as tree 

height and crown closure. The use of additional object-based metrics and the modification of 

binary rules as defined by CART should also be explored within an object-based environment. 

For example, the incorporation of data over several spatial scales may increase the accuracy of 

the classifications, as may the inclusion of more object-based metrics for training within CART 

analysis. Furthermore, by implementing and modifying the CART classification rules within the 

object-based environment, classification accuracy may be improved. 

 

The goal of this study was to test the ability of an object-based segmentation and CART 

classification approach to mimic the historic delineation and classification results achieved by 

manual interpretation, which has potential use as a restoration tool. In this regard, our results 

reflect similarities and comparative accuracies between approaches. Due to problems of 

subjectivity and inconsistency among manual interpreters, the use of manual interpretation as 

reference data may be perceived as problematic (Wulder et al. 2008). However, the development 

of automated techniques for replicating or assisting manual interpretation is arguably unwise 

without direct comparison. Therefore, the results of this study highlight the potential for 

combined object-based analysis and CART analysis to replicate certain aspects of manual 

interpretation.  
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4 QUANTIFYING LANDSCAPE HETEROGENEITY FROM HISTORIC AERIAL 

PHOTOGRAPHS USING OBJECT-BASED ANALYSIS3 

 

4.1 Introduction 

One of the most important concepts of landscape ecology, and a theme central to ecosystems, is 

that of heterogeneity. Heterogeneity can be broadly defined as the degree of spatial variability of 

some property within a system (Li and Reynolds 1995), and is dependent upon both the spatial 

and temporal scales over which it is measured (Wiens 1989). Heterogeneity influences important 

ecological processes (Turner 1989), and can impact species diversity, resilience, and ecosystem 

function (Huston 1999) making heterogeneity relevant to management concerns such as 

ecosystem restoration (Sklenicka and Lhota 2002) and sustainable forest management 

(Lindenmayer et al. 2006). Additionally, since natural levels of spatial heterogeneity and 

complexity are linked to certain ecosystem functions, changes in heterogeneity over time and 

space caused by resource extraction can be used to gauge the ecological consequences of such 

activities (Turner et al. 2003).  

 

Ecosystem baselines offer a basis upon which changes in natural heterogeneity and variability 

can be measured. Acting as pre-disturbance benchmarks for conditions prior to major 

anthropogenic modification, ecological baselines can be used to monitor ecosystem change and 

can enhance our understanding of ecological processes (Arcese and Sinclair 1997). Analysis of 

the natural range of variability in an ecosystem can also provide a basis for evaluation of 

proposed management actions and goals (Landres et al. 1999; Swetnam et al. 1999). One of the 

oldest sources of fine-scale, spatially continuous baseline information is aerial photography 

                                                 
3 A version of this chapter has been submitted for publication and is undergoing review. Morgan, J.L., Gergel. S.E. 
Quantifying Landscape Heterogeneity from Historic Aerial Photographs using Object-based Analysis. Landscape 
Ecology. 
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(Morgan et al. In Press). Collected since the early 1930’s, historic aerial photographs provide 

unique ecological information over long time periods (Paine and Kiser 2003). As a result, aerial 

photographs have traditionally played an important role in ecosystem management, and have 

long been used for purposes such as forest inventories, disturbance mapping, and wildlife 

management (Avery and Berlin 1992). Historic aerial photographs therefore have enormous 

potential for providing baseline data necessary for quantitative mapping and monitoring of 

landscape heterogeneity over time.  

 

Many techniques have been developed to describe spatial heterogeneity and vary widely among 

disciplines. For example, landscape ecology most often conceptualizes heterogeneity from the 

perspective of the patch mosaic paradigm. This approach relates patch-based indices calculated 

from categorical data to represent landscape structure (Gustafson 1998; Cushman et al. 2008). 

This method can be problematic because (despite the continuous nature of most ecological 

variables), the categorical (discrete) representation of heterogeneity may simplify the landscape 

to the point of unacceptable loss of ecological information (McGarigal et al. 2009). In contrast, 

there are methods which depict spatial variability using continuous gradients. Geostatistics can 

represent spatial gradients through interpolation and analysis of point data (spatial 

autocovariance) (Curran and Atkinson 1998). Surface heterogeneity is often characterized in 

remote sensing using digital terrain modeling to represent topography (Pike 2000) and spectral 

measures such as image texture (Nagendra 2001; St-Louis et al. 2006). While the concept of 

landscape heterogeneity as a gradient may be theoretically ideal, such execution is challenging, 

and only recently have continuous surface gradients been used in landscape ecology to quantify 

landscape structure (McGarigal et al. 2009).  

 



 79

Here we use object-based analysis as a new approach to quantify landscape heterogeneity. This 

technique merges neighboring pixels with similar characteristics into somewhat homogeneous 

objects or patches (Blaschke 2003; Benz et al. 2004) and has recently shown much potential in 

image analysis (Laliberte et al. 2004; Pringle et al. 2009). One of the benefits of this approach is 

the ability to represent the hierarchical nature of landscapes by creating objects over multiple 

spatial scales (Hay et al. 2003). Quantitative metrics can then be generated for each individual 

object, and used to describe various elements of landscape variability through characteristics 

such as tone, shape, size, texture, as well as contextual relationships among neighboring objects. 

Another compelling aspect of this approach is that object-based metrics can quantify continuous 

variability within objects (e.g. variation of tone within an object), in addition to representing the 

continuous variability over the landscape (e.g. topography). Thus, this method can account for 

the within-object heterogeneity ignored in the patch mosaic perspective.  

 

Our primary goal is to explore the utility of object-based analysis as a tool for historic landscape 

assessment. Our objectives are to: (1) Quantify historic landscape heterogeneity using an object-

based approach; and (2) Compare historic heterogeneity between two distinct landscape types 

(riparian and upland). To do this, we combine historical aerial photographs, image texture 

information, and terrain data for an un-harvested watershed into an object-based analysis to 

represent various sources of heterogeneity. By using an object-based approach to quantify 

heterogeneity, we investigate an alternative approach with unique capabilities for defining 

landscape heterogeneity, and improve our ability to quantitatively map baseline conditions.  
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4.2 Methods 

4.2.1 Study Area 

The study area encompasses the Kennedy Lake Watershed within Clayoquot Sound, on the west 

coast of Vancouver Island, BC, Canada (Figure 4.1). Kennedy Lake watershed has a drainage 

area of 55,013 ha. A significant portion of the watershed is occupied by Kennedy Flats, a low-

lying area of low gradient streams covering 12,900 ha. Climate of the area is temperate and wet, 

with mean temperatures ranging from 5 – 15°C and precipitation averaging 400-700cm 

depending on elevation. The watershed falls predominantly within the coastal western hemlock 

zone in British Columbia (Meidinger and Pojar 1999), which is the dominant zone on Vancouver 

Island. While the area encompasses diverse sites of varying moisture and nutrient gradients, we 

distinguished two broad landscape types for comparison: riparian and upland. Riparian sites 

(adjacent to streams and rivers) are dominated by fluvial disturbances, and tend to be highly 

productive, occurring at lower elevations and in local depressions (Montgomery 1999). In 

contrast, upland sites occur in higher elevations, often on slopes of higher gradient and in 

general, lack some of the complexity and diversity seen in riparian sites due to decreased 

productivity caused by fewer moisture and nutrient resources (Swanson et al. 1988).  

 

4.2.2 Spatial Data 

Historic aerial photographs captured in 1937-1938 were obtained for the Kennedy Lake 

watershed from the National Air Photo Library (NAPL) in Ottawa, Canada. Photographs are 

panchromatic with a spatial extent of approximately 12km2, and were captured at a vertical angle 

using Fairchild 3.9 or 3.10 cameras (R.C.A.F. 1937-1938). The photographs were scanned at a 

resolution of 1200dpi and were auto-dodged by the vendor (an image enhancement technique 

which equalizes dark and light areas across an image for a monochromatically balanced product) 

(NAPL). Four photographs of each landscape type (riparian and upland), were randomly selected  
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from the suitable photographs (Appendix B). Photographs of poor quality or with extensive 

water coverage or cloud cover were discarded prior to selection. 

 
Figure 4.1 The study area encompasses the entire Kennedy Lake watershed, from which 
eight photographs were selected to represent contrasting riparian and upland landscapes. 
 

 

 
The selected aerial photographs were orthorectified using Alta Photogrammetry Suite (APS 

2008), a process which adds spatial coordinates to an image for accurate representation of 

distance, area, and angles. Orthorectification was necessary for the accuracy of the object-based 

analysis because this step ensured precise spatial alignment with the input terrain layers (British 

Columbia’s 1:20,000 Terrain Resource Information Management (TRIM) maps) (GeoBC 1996). 

Eight to ten ground control points (GCPs) were collected from identical locations on the TRIM 
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data and each photograph to provide x and y coordinates to the imagery. Residual errors ranged 

from 0.5 – 1.6m. Each photograph was also warped to a vector terrain model automatically 

generated from the TRIM mass points (a grid of evenly spaced points containing x, y, and z 

information) within APS, to provide elevation (z coordinate) data. Once corrected, the images 

were then re-sampled to a spatial resolution of 0.5m using bicubic convolution (APS 2008) based 

on the scale of the original photographs (~1:20,000) and the scanning resolution (Jensen 2000). 

 

Image texture was quantified to account for tonal heterogeneity because texture has been linked 

to important ecological parameters such as vegetation structure and species identification 

(Franklin et al. 2000; Wulder et al. 2004). Several texture layers were calculated using the co-

occurrence matrix for all photographs, each with a processing window of 3 x 3 pixels in size 

(ENVI 2007). Highly redundant layers were eliminated based on the results of a correlation 

analysis of the original photographs and the derived texture layers. Texture layers representing 

tonal variation, including entropy (a measure of randomness), variance, homogeneity, and 

correlation were retained (Table 4.1), all with correlations less than 43% (abs(r) < 0.65). All 

texture layers were rescaled to the same range of values as the original photograph to ensure 

equal influence in subsequent analyses. 

 

In order to incorporate surface complexity into our description of landscape heterogeneity, a 

Digital Elevation Model (DEM), and derivative terrain layers were generated from the same 

TRIM data used to orthorectify the photographs (Table 4.1). TRIM contour lines were converted 

into a raster DEM with a resolution of 15m using ArcGIS (ESRI 2006; Hengl 2006). The DEM 

was then resampled to a resolution of 0.5m to match the spatial resolution of the aerial 

photographs. (An identical spatial resolution for all input layers is important for analysis with an 

object-based classifier. Despite the coarse resolution of the original raster DEM, elevation data 
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Table 4.1 Input layers used in the segmentation process to create objects and define 
landscape heterogeneity. 
 
Data  Layer Weight Total 

Weight 
Methods used to generate layer 

T
on

e  
Photograph 

 
12 

 
12 

Scanned from original prints at a resolution of 
1200dpi with radiometric adjustment and 
orthorectification. Processed in (APS 2008). 

Variance 3 
Correlation 3 
Homogeneity 3 

T
ex

tu
re

 

Entropy 3 

 
 

12 

 
Generated based on the co-occurrence 
matrices of the original photographs, using 
texture filters in ENVI (ENVI 2007). 

Elevation 4 Mass points converted to raster DEM (ESRI 
2006), where each pixel represents an 
elevation value. Elevation range for the study 
area is 0 – 1,633m. 

Aspect 4 Aspect as calculated within ArcGIS is 
expressed in degrees from 0 to 359.9° (ESRI 
2006), measured clockwise from north. A 
cosine transformation was used to rescale the 
data to represent aspect from 180° (north) to -
180° (south). T

op
og

ra
ph

y 

Topographic 
Wetness Index 
(TWI) 

4 

 
 
 
 
 
 

12 

 (TWI) = ln(As/tanβ) 
Where As is the specific catchment area 
(upslope area (m2) per unit contour length) 
and β is the slope (Gessler et al. 1995). Values 
range from -1.5 to 25 and represent potential 
moisture. 

 

and topographic derivatives were critical to this study, therefore despite its recognized 

limitations, we used TRIM data because it was the only freely available elevation data for this 

area.) Once the DEM was created, various terrain layers were derived using raster surface 

algorithms within ArcGIS (ESRI 2006). A topographic wetness index layer was also generated 

(Table 4.1). The original DEM, aspect, and topographic wetness were selected to represent 

terrain because of their low between-layer correlations (abs(r) < 0.65) and their ecological 

relevance. For example, both elevation and aspect influence solar energy and water regimes, 

which are closely related to vegetation patterns (Swanson et al. 1988). Similarly, topographic 

indices are used to describe patterns of soil moisture (Burt and Butcher 1985), and are linked to  
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variation of vegetation patterns (Zinko et al. 2005). All three terrain layers were clipped to the 

spatial extent of the selected photographs. 

 

4.2.3 Object-based Analysis 

We used the segmentation process within the object-based classifier (Definiens 2007) to define 

objects based on eight input layers (Table 4.1). Segmentation is the creation of objects with 

minimum within-object heterogeneity and uses a bottom up, pixel merging approach. Objects 

were defined according to three primary factors: a set of input layers, a homogeneity criterion, 

and a scale parameter (Definiens 2007). The eight input layers were weighted to ensure the three 

primary data types (tone, texture, and topography) had equal influence (33% each) on the 

segmentation process and thus, the resulting definition of heterogeneity (Table 4.1). The 

homogeneity criterion within Definiens consists of tone and shape, which are the two main 

characteristics used to create objects. Tone and shape parameters allow the user to control the 

degree of influence that photographic tone and object shape have on the segmentation output. 

Tone and shape were both weighted equally (0.5) to ensure equivalent representation of these 

characteristics. Shape is further broken down into compactness and smoothness. In order to 

avoid favoring a specific shape type, these categories were also assigned equal weightings (0.5).  

 

The third factor related to object definition is the scale parameter, which influences the size of 

the objects to be created. Scale selection is often problematic because no optimal scale(s) exist 

for any landscape (Li and Wu 2004). Therefore, we used scale breaks evident in two object 

metrics (number of objects and minimum object size) measured over a range of spatial scales 

(segmentations) to define relevant scales (Figure 4.2). The first metric, minimum object size, 

revealed an obvious pattern of plateaus as the scale parameter increased, suggesting a series of 

underlying thresholds related to object size and homogeneity. The second metric (number of  
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Figure 4.2 Changes in the number of objects and the minimum object size for 
segmentations using different scale parameters. Panel a. Representative riparian landscape 
(as shown in Figure 4.3a); Panel b. Representative upland landscape (as shown in Figure 
4.3b). The plateaus were used to guide selection of scale parameters suited to all eight 
landscapes. The resulting scale parameters selected were 280, 500 and 720 (shown with 
arrows). 
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objects) decreased exponentially and leveled out around 150 objects, indicating further 

segmentations would yield minimal information gain. The finest scale (composed of sub-objects 

contained within objects at higher scales) was selected within the mid-range of the first 

noticeable plateau in minimum object size (Table 4.2 and Figure 4.3). These sub-objects 

represent small groups of trees and small stream units. The largest scale (called super-objects 

because they encompass objects at lower scales) was selected near the start of the plateau at 

which the number of objects began to level out (~150 objects). This scale represented larger tree 

stands and lakes. The middle scale, which is the primary layer of analysis, was selected from 

within the plateau between these high and low scales and represented medium-sized groups of 

trees and stream reaches. Thus, three scale parameters (280, 500 and 720) were selected for all 

eight landscapes (Table 4.2 and Figure 4.3). 

 
Table 4.2 The scale hierarchy selected for all eight landscapes based on the trends in 
minimum object size and number of objects (shown in Figure 4.3). Associated size statistics 
(averaged over all eight landscapes) and the biophysical features they are meant to 
represent are described. Examples of images segmented using this scale hierarchy are 
shown in Figure 4.2. 
 

Object type Scale Minimum 
object size 

(m2) 

Number of 
objects 

Average 
object size 

(m2) 

Biophysical features 
represented 

Sub-objects 280 665 960 10,219 Small clumps of trees 
(10-50 visible crowns), 
small stream units and 
small bogs. 

Primary 
objects of 
analysis 

500 2,752 311 32,107 Medium sized clumps of 
trees (50-150 visible 
crowns), and stream 
reaches.  

Super-object 720 6,428 165 59,849 Larger stands of trees 
(150-300 visible 
crowns), and small lakes. 
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Figure 4.3 An example photograph (landscape) and segmentation results shown on a subsection of each photograph for a. a 
representative riparian landscape, and b. a representative upland landscape. The scale hierarchy is nested, and object outlines 
are shown in white on the photographs and are described further in Table 4.2.  
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4.2.4 Statistical Analysis 

Factor analysis was used to reduce the redundancy within a set of object-based metrics calculated 

from the segmentation results for each photograph. Two-hundred metrics were initially 

calculated for all objects within each landscape (Appendix C), with the exception of border 

objects which were masked out of the analysis. These object-based metrics were related to object 

size, shape, values of the input layers, relationships between neighbors, and relationships 

between sub- and super-objects. Pair-wise Pearson’s correlation coefficients were calculated for 

all 200 metrics, and used to identify metrics that were highly correlated. When metrics were 

highly correlated (>65%), the simpler and/or more ecologically meaningful metric was retained 

and the others were discarded, resulting in 62 metrics being retained for all landscapes 

(Appendix C). These 62 remaining metrics, were used in a factor analysis with varimax rotation 

(to create simple factor structure and maximize interpretability) to identify orthogonal axes 

describing different ‘dimensions’ of the data (SAS 2003; Manley 2005). The latent root criterion 

was used to identify significant factors, meaning all factors with an eigenvalue greater than one 

were retained for each landscape.  

 

Agglomerative hierarchical cluster analysis was used to group the factors retained from all eight 

landscapes into clusters representing specific elements of landscape heterogeneity (SAS 2003; 

Cushman et al. 2008). The average linkage method was used to cluster factors together based on 

their factor pattern, which is the correlation between all input metrics and the factor itself 

(Appendix D). The metrics with high loadings (correlations) for a given factor pattern represent 

the information summarized by that particular factor. Therefore, clusters were labeled based on 

the properties of the object-based metrics with the highest consistent loadings within each group 

of factors. As cluster analysis requires pair-wise measures of dissimilarity among input entities 

(in this case among extracted factors), a distance matrix was calculated (where distance is 1-
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abs(r), and r is the correlation of the factor patterns) for all of the retained factors from all eight 

landscapes (N = 138) as per (Cushman et al. 2008; McGarigal et al. 2009). Within the distance 

matrix, a value of 0 represents perfect correlation, whereas a value of 1 represents complete 

independence. A plot of fusion distances, which represents the degree of dissimilarity among 

clusters as they are subsequently fused together, was used to determine the final cluster solution 

(Figure 4.4) (Cushman et al. 2008; McGarigal et al. 2009). In short, factor analysis was used to 

identify independent axes of landscape pattern over various landscapes, and cluster analysis was 

used to group related factors together into elements of heterogeneity (Appendix D). 

 

Figure 4.4 Plot of hierarchical clustering results, displaying the distances at which factors 
(and clusters) are grouped/fused together. Fusion distances represent dissimilarity, and are 
based on the correlations between factors. 
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We represented the overall importance of the elements (clustered factors) based on three 

measures: (1) Universality, which is a percentage representation of how often the element was 

identified over all landscapes, (2) Strength, or the average eigenvalue and percent variance 

explained by each element, and (3) Consistency, which used the average pair-wise Pearson’s 

correlation (abs(r)) among each cluster to measure how stable/uniform the meaning of a 

particular element was over different landscapes, similar to (Cushman et al. 2008). We calculated 

these measures over all landscapes, and also separately for riparian and upland landscapes.  

 

4.3 Results 

An average of 17 factors (range 15 – 19) were retained for each landscape using the latent root 

criterion, which cumulatively explained 74.29 – 77.81% of the variance within all 62 object-

based metrics. Riparian landscapes retained one additional factor on average (18), as compared 

to the upland landscapes (which retained 17 factors on average). However, the average amount 

of variance explained by riparian (75.7%) and upland (76.3%) landscape types was very similar 

(within 0.6%). When the factors retained across all landscapes were clustered based on their 

factor structures, sixteen unique clusters were identified over all eight landscapes (Table 4.3), 

based on the inflection point of the fusion distance plot (Figure 4.4). This sixteen cluster solution 

explained 76.5% of the variance within all 138 original factors, and ten of these clusters were 

universal across all landscape types (Table 4.4). The average variance explained by a cluster was 

4.5% (range 7.03 – 2.51%), which indicates that the strength of the extracted clusters was fairly 

low, and that there was low redundancy within the original object-based metrics. Consistency of 

the clustered factors was highly variable, ranging from 0.91 – 0.23. However, average cluster 

consistency was 0.63 indicating significant correlation within the clusters, especially when 

compared to an average correlation of 0.13 amongst all 138 factors. 
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Table 4.3 The sixteen elements (clusters) identified as important for describing baseline landscape heterogeneity. The object-
based metrics with the highest loadings for factors within each element and the potential ecological relevance of each element 
is included. 
 

Label Definition (and Object-based metrics with high loadings) Possible Ecological Relevance 

Sub-object 
variability 

Overall variability/heterogeneity of sub-objects/pixels. (Sub-
object density/area/texture/tone) 

Represents within object heterogeneity, or local 
variability, and may be related to biodiversity. 

Tone Average spectral reflectance. (Mean tone) Reflectance is related to biophysical characteristics. 
Proximity to 
edge 

Continuous measure of distance to the super-object border. 
(Distance to super-object center) 

Habitat conditions vary at forest stand edges as 
compared to interior forest. 

Texture 
variability 

The degree of texture variation within the object: smooth 
versus coarse. (Standard deviation of correlation/variance) 

Related to variation in crown size, tree species type, 
canopy closure, and stand structure. 

Aspect Object aspect: north/south/east/west. (Mean aspect) Relates to local solar energy and water regimes. 
Compactness Object shape complexity. (Compactness, length/width) Feature recognition, such as geomorphic landforms. 
Landscape 
position 

Topographic position of the object within the landscape. 
(Ratio to super-object DEM/TWI)  

Topographic position influences patterns of 
moisture, natural disturbances and thus, vegetation. 

Position within 
super-object 

Categorical measure of whether the object is interior or 
border. (Is end/center of super object) 

Habitat conditions vary at forest stand edges as 
compared to interior forest. 

Object 
orientation 

Object direction derived from object’s location within the 
landscape. (Main direction) 

May be related to geomorphic landforms, such as 
crest and swale patterns, or river channels. 

Slope 
orientation 

The aspect of the object in relation to the landscape. (Ratio 
to super-object aspect) 

Relates to solar energy and water regimes over 
coarse scales. 

Texture context The texture of neighboring/surrounding objects. (Mean 
difference to neighbors homogeneity/entropy) 

Useful for differentiating stand age or species 
composition of contrasting, neighboring tree stands. 

Landscape 
context 

Relates to whether an object is higher/lower in elevation than 
its neighbors. (Mean difference to neighbors DEM/TWI) 

 Neighboring topography related to moisture 
potential, natural disturbances and thus, vegetation. 

Dissimilarity to 
super-object 

Measure of how different an object’s tone/texture is to the 
tree stand it’s located within. (Standard deviation ratio to 
super-object entropy/correlation/tone) 

Identifies anomalous habitat features within a 
stand, and may be indicative of specialized or rare 
habitat types.  

Curvature Relates to the sum of changes in direction of the main line of 
the object, or sinuosity. (Curvature/ length, border length) 

Indicative of specific geomorphic features, such as 
water channels or mountain ridges. 

Size Object size. (Area) Forest patch size can be linked to habitat quality. 
Site Local topography of the object, or micro-topography. (Mean 

DEM/TWI) 
Reflects microclimatic and local moisture 
conditions, and therefore, local species. 
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Table 4.4 The sixteen elements (clusters) identified over all landscapes, along with their 
universality (percentage the element is present over all landscapes), strength (average 
eigenvalue and % variance explained), and consistency (average Pearson’s absolute pair-
wise correlation).  
 

 Label  Universality
(%) 

Average 
eigenvalue 

Average 
variance 

(%) 

Average 
correlation 

1 Sub-object variability 100 5.43 7.03 0.91 
2 Tone 100 4.90 6.44 0.68 
3 Proximity to edge 100 3.92 5.67 0.74 
4 Texture variability 100 3.35 4.97 0.51 
5 Aspect 100 2.61 4.53 0.58 
6 Compactness 100 2.45 4.44 0.72 
7 Landscape position 100 2.10 3.92 0.71 
8 Position within super-object 100 1.63 3.32 0.88 
9 Object orientation 100 1.39 2.95 0.75 
10 Slope orientation 100 1.36 2.89 0.51 
11 Texture context 87.5 2.08 3.65 0.26 
12 Landscape context 87.5 1.86 3.81 0.49 
13 Dissimilarity to super-object 75 2.89 4.66 0.61 
14 Curvature 75 1.22 2.51 0.23 
15 Size 62.5 3.76 5.25 0.73 
16 Site 50 5.14 6.63 0.66 

 

When dividing the results into the two landscape types, the number of universal clusters 

identified increased to twelve for both riparian and upland landscapes (Table 4.5). The twelve 

universal clusters identified in the upland landscapes, explained an additional 5% of the total 

variance within the factors (56%), as compared to the variance explained by the twelve universal 

clusters identified in the riparian landscapes (51%). However, the consistency of the clusters 

identified in riparian landscapes (0.67) was higher on average than upland landscapes (0.60). In 

both landscape types, sub-object variability and tone were the two factors that explained the most 

amount of variance in the data. The sub-object variability cluster explained the most variance 

within riparian landscapes. However, the clusters ranked second and third in upland landscapes 

(sub-object variability and proximity, respectively) explained a much higher amount of overall 

variance when compared to similarly ranked clusters in riparian landscapes.   
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Table 4.5 Universal elements (clusters) identified for riparian and upland landscapes, listed in order of average % variance 
explained. Also shown is the consistency (average Pearson’s absolute pair-wise correlation) of the elements within each 
landscape type. 
 
 Riparian Upland 
 Factor Average 

Variance 
Average 

correlation 
Factor Average 

Variance 
Average 

correlation 
1 Sub-object variability 7.26 0.93 Tone 7.05 0.58 
2 Tone 5.67 0.84 Sub-object variability 6.81 0.91 
3 Texture variability 4.68 0.46 Proximity to edge 6.68 0.78 
4 Dissimilarity to super-object 4.66 0.66 Aspect 4.77 0.57 
5 Proximity to edge 4.65 0.67 Texture variability 4.51 0.64 
6 Compactness 4.55 0.84 Compactness 4.35 0.65 
7 Aspect 4.22 0.60 Landscape position 4.12 0.81 
8 Landscape position 3.71 0.64 Texture context 4.08 0.22 
9 Position within super-object 3.38 0.88 Landscape context 3.79 0.52 
10 Slope orientation 2.94 0.58 Position within super-object 3.27 0.87 
11 Object orientation 2.91 0.76 Object orientation 2.99 0.75 
12 Curvature 2.54 0.22 Slope orientation 2.85 0.43 
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4.4 Discussion 

4.4.1 Quantitative description of spatial landscape heterogeneity 

Our object-based approach provides a highly unique and novel description of landscape 

variability (Table 4.3). The extraction of sixteen landscape elements (clusters) from 62 largely 

unrelated object-based metrics explained over half of the total variance within the original data 

(metrics). Ten of these elements were identified over all of the landscapes, despite being 

calculated from two very different landscape types. However, several of the factors which were 

not universally identified (such as object size and site) explained a significant amount of the 

variance when present (Table 4.4). Thus, defining landscape heterogeneity based solely on the 

ten universal factors could mean that a large amount of variability within certain landscapes 

could be unaccounted for. Therefore, a generalized, quantitative description of landscape 

heterogeneity based on our object-based approach should likely include all sixteen of the 

elements identified.  

 

Potentially problematic was the low consistency of several landscape elements (Table 4.4). 

However, this may be explained by the highly variable nature of the elements. For instance, the 

textural elements identified (texture context and texture variability) are composed of four 

separate texture layers, meaning that clusters representing these attributes are likely related to 

different properties of the input texture layers. Similarly, the elements related to contextual 

relationships (texture context and landscape context) would also be expected to be highly 

variable and likely related to different properties of the relevant input layers. Therefore, while the 

factors contained within several of the clusters may be statistically unrelated, these elements may 

still possess similar theoretical meaning.  
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A major finding of our study was the extraction of new elements that may describe different 

characteristics of landscape heterogeneity, not previously identified using conventional patch 

mosaic-based approaches. For instance, within-object heterogeneity (sub-object variability), and 

homogeneity over broad spatial areas (dissimilarity to super-object), account for variability over 

multiple spatial scales (Table 4.3). Likewise, landscape position, landscape context, and slope 

orientation describe positional variability over various spatial scales and topographic surfaces. 

While characteristics such as context and topographic position have long been conceptually 

important to ecology (Swanson et al. 1988; Montgomery 1999; Dorner et al. 2002), our object-

based approach identifies these terrain-based elements in a quantitatively unique manner, making 

them useful for a wide range of ecological applications. Furthermore, terrain-driven elements 

explained close to half of the total variability explained by all sixteen clusters, underscoring the 

importance of including terrain information and surface complexity into ecosystem and 

landscape analyses (Dorner et al. 2002; Porter et al. 2002; McGarigal et al. 2009). Based on our 

results, we contend that there are several new axes of landscape heterogeneity and new ways of 

quantifying landscape elements important to heterogeneity that have previously been unexplored 

due to limitations with previous approaches. 

 

Despite a fundamentally different approach, many of the elements identified using our object-

based approach can be found in previously established definitions of heterogeneity. Patch 

compaction (compactness), perimeter/shape complexity (shape), patch size, texture, and edge 

contrast/neighborhood similarity (context) are all common themes between our results and the 

results of many patch mosaic-based approaches (Li and Reynolds 1995; Riitters et al. 1995; 

Cushman et al. 2008). There are also similarities between our results and the eight components 

(tone, size, shape, texture, pattern, shadow, site, and context) aerial photograph interpreters use 

to qualitatively characterize landscape variability from manually-drawn polygons (Avery and 
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Berlin 1992). Object tone, shape, size, texture, site (topography), and context are all elements of 

both manual interpretation and our results. Given the differences by which landscape ecology 

(categorical classification of patches), aerial photograph interpretation (qualitative description of 

polygons), and object-based analysis (quantitative variability within objects) define 

heterogeneity, it was somewhat surprising that there was such a high degree of similarity among 

the results of these techniques. However, the identification of similar landscape elements 

amongst very different approaches may emphasize how universal these characteristics are for 

describing heterogeneity. 

 

4.4.2 Heterogeneity over landscapes with different structure 

The similarity between, and relative importance of, clusters identified for both riparian and 

upland landscapes is surprising. This similarity suggests that overall landscape heterogeneity 

may be described using similar elements for both landscape types, despite their obvious 

ecological and biophysical differences. In fact, all of the universally identified clusters were 

ranked within one or two places of each other between landscape types, with the exception of 

aspect, which explained a higher amount of variance in upland landscapes (likely due to the 

relatively flat and low gradient topography in riparian areas, as opposed to the more extreme 

changes in aspect in mountainous regions) (Table 4.5). Furthermore, the number of factors 

originally retained for each landscape type and the total variance explained by those sets of 

factors was very similar. While the similarities in results among the two landscape types suggest 

that application of a universal definition of heterogeneity to every landscape may be feasible, 

there may still be instances where heterogeneity in these different landscape types might require 

different landscape elements to address specific questions related to structural complexity, 

vegetation composition, and disturbance dynamics. 
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Overall, it appears that finer-scale variation in local characteristics of objects may be slightly 

more important for describing riparian heterogeneity, whereas upland landscape heterogeneity 

may be related to processes occurring over coarser scales. Structurally, riparian corridors are 

highly diverse and possess unique ecological characteristics important to biodiversity (Muller 

1997). Riparian areas also possess a lot of fine scale variability due to local diversity of 

vegetation (such as species or age class) and landforms (such as alluvial features or coarse 

woody debris). These traits may account for the high ranking of sub-object variability and 

texture variability within such landscapes, as these elements represent heterogeneity on a local 

level (Table 4.5). In contrast, upland areas often lack some of the structural and ecological 

diversity as compared to riparian sites because landscape changes tend to occur over broader, 

more subtle gradients. (For example, the transition between a river and adjacent riparian forest is 

quite abrupt, whereas changes in species range in higher elevations are more gradual.) This may 

account for the higher ranking of proximity to super-object edge and the inclusion of contextual 

elements (landscape context and texture context), which relate to processes occurring over 

broader scales. Further exploration is warranted to explore differences among landscape types.  

 

4.4.3 Object-based analysis as a landscape analysis tool 

Object-based analysis acts as a hybrid approach between landscape ecology and remote sensing 

by utilizing the rich information found in spatial datasets, within the framework of a patch-based 

perspective. As such, this approach addresses some problems with the use of categorical data as 

the basis for landscape analysis. Most existing metrics in landscape ecology which measure 

elements of spatial heterogeneity (such as Shannon’s diversity or Simpson’s diversity index) are 

based on categorical classifications, and are largely dependent on the proportion of habitat type 

or number of classes used in the classification scheme (Diaz-Varela et al. 2009). In contrast, all 

of the metrics used in this study were calculated based on trends in the continuous spatial data, so 
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problems associated with classification such as arbitrary classification schemes, inappropriate 

thematic resolution (number of classes), and classification errors, are avoided. Furthermore, the 

quantification of contextual data or object/patch border characteristics in the absence of class 

data is a new way of incorporating such relationships, and may be helpful in overcoming the 

categorical limitations of previous approaches used to define heterogeneity.  

 

Potential may also exist in the use of object-based techniques to help address some of the scaling 

issues inherent to landscape analysis. A common criticism of the patch-mosaic paradigm 

approach, and other analyses of landscape structure and heterogeneity, is that arbitrary or 

inappropriate spatial and/or thematic resolutions (scale) are often used for analysis (Li and Wu 

2004). Commonly, thematic maps used in such patch-based analyses are derived from manual 

aerial photograph interpretation, which is subjective and inconsistent, and often has only one 

focal scale related to the purposes of the original classification (often forest inventory) (Foody 

2002; Thompson et al. 2007). In contrast, our approach is consistent (provided the same 

parameters are used), and relies on statistical variability within the data to generate an almost 

limitless range of scales from various sources of remotely sensed data (as opposed to the single 

scale present in most thematic maps). Furthermore, as information derived from an object-based 

classifier can be calculated and used simultaneously over numerous spatial sales, this broadens 

the potential scope of including ecological scales meaningful to multiple species, entities, or 

spatial processes. 

 

Despite the intrinsic advantages of object-based analysis, this approach has several limitations. 

First, results achieved from the segmentation process can be confusing, and object definition can 

be ‘black-box’. User parameterization within the object-based classifier may be difficult to grasp, 

such as the scale parameter, which is unitless and related to within-object variability. While the 
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use of size-based metrics to extract scale breaks (as done in this study) may be a useful approach 

for defining meaningful scales related to landscape pattern, linking such hierarchies to specific 

ecological processes remains problematic (Hay et al. 2003). Finally, as the ecological relevance 

of some object-based metrics may be less apparent, metric choice should be undertaken with 

care. In this regard, further exploration of object-based analysis for defining landscape 

heterogeneity is justified. However, we suggest that enormous potential may exist in the use of 

object-based approaches, particularly within landscape ecology. 

 

4.5 Significance 

Landscape change has been occurring globally over the past several centuries due to 

anthropogenic-driven disturbance (DeFries et al. 2004). One of the foremost challenges for 

degraded ecosystems is the development of restoration strategies which integrate knowledge of 

historical conditions, while accounting for widespread environmental transformation such as 

climate change (Harris et al. 2006). Often, development of ecosystem restoration approaches 

incorporate elements of landscape heterogeneity to set restoration targets. Indices of landscape 

heterogeneity are particularly useful because they act as surrogate measures of various ecological 

properties (Gustafson 1998), and can therefore be linked to the ecological integrity of a target 

area. However, the majority of studies which quantify landscape-level heterogeneity focus on 

current (and often highly disturbed) landscapes, and rarely quantify historic heterogeneity. Our 

assessment of baseline landscape heterogeneity may therefore provide a framework for 

quantifying much needed baseline information, relevant to landscape reconstruction and 

restoration.  
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This exploratory study has demonstrated the use of object-based analysis as a new approach for 

quantifying landscape heterogeneity. One of the biggest advantages of this approach was the 

ability to quantitatively represent specific and complex landscape elements; which we suggest 

could help form the basis of a new definition of landscape heterogeneity. We end with several 

recommendations. First, further development of methodologies for meaningful scale extraction 

should be emphasized, and priority should be placed on linking these scales to ecological 

processes. Secondly, the integration of thematic data into this approach should be used to explore 

the effects of combining continuous information and discrete thematic classes. In this regard, 

future definitions of landscape heterogeneity could not only be based off of the variability within 

the continuous data, but could also incorporate ecologically relevant thematic classifications. 

Third, we recommend that a similar approach should be applied to landscapes that have 

experienced significant changes due to anthropogenic disturbance, in order to explore how an 

object-based definition of heterogeneity changes as the landscape changes over time.  
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5 CONCLUSION 

 

5.1 Research Summary and Implications 

Decades of archival aerial photographs provide one of the only sources of spatially continuous 

data linking the past to the present. This historical data source is critical for understanding the 

dramatic changes that have occurred over past decades and centuries. Information on historic 

conditions is also useful for understanding the natural range of variability within ecosystems and 

improving restoration and conservation planning (Landres et al. 1999, Swetnam et al. 1999). 

With growing evidence of the benefit of historic data for providing insights to complex 

ecosystem processes, managers and researchers across various disciplines are recognizing the 

importance of incorporating long-term information into ecological management and planning 

(Foster et al. 2003). Therefore, improved methods for extracting such historic information are 

crucial. 

 

Recent advances in image analysis technology have enabled researchers and managers to derive 

an ever-broadening range of information from spatial imagery, yet are rarely applied to historical 

aerial photographs. Object-based analysis is one such technique which has provided an 

alternative methodological framework in which spatial data is summarized in a more meaningful 

way as compared to traditional pixel-based analyses (Hay et al. 2003). In order to demonstrate 

the value of aerial photography, my research applied object-based analysis to aerial photographs 

to explore several objectives. The overall goal of this thesis was to explore the practical and 

theoretical integration of aerial photography and object-based analysis within three disciplines; 

ecological management, remote sensing, and landscape ecology. My research made several 

valuable contributions, explored next. 
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As demonstrated in chapter two, there is enormous ecological value within historical aerial 

photographs, and significant promise in using object-based analysis to extract this valuable 

information. The potential of object-based analysis to analyze aerial photographs was explored in 

detail in chapter three, which evaluated the ability of automated analysis techniques to mimic the 

steps of traditional manual interpretation. This comparison was significant because manual 

interpretation is the most commonly used tool for production of forest inventories, and forms the 

basis for many management decisions (Hall 2003); however this traditional approach is 

problematic, being subjective, inefficient, and inconsistent among interpreters (Wulder et al. 

2008). Results of this comparison found many similarities between manual interpretation and 

automated object-based procedures. This research can help provide a foundation for updating the 

methods used to analyze aerial photography.  

 

Ecological indicators are commonly used to monitor landscape conditions over time (Dale and 

Beyeler 2001), yet historic values for many indicators can rarely be determined. In chapter 4 

object-based analysis was applied to archival aerial photography to quantify historic landscape 

heterogeneity, an important indicator of diversity and critical to the discipline of landscape 

ecology. My results not only provided a new definition of heterogeneity, but also develop a 

possible framework for further development of historic landscape indicators based on aerial 

photographs. 

 

5.2 Future Research 

The ability of automated analysis techniques and aerial photographs to aid ecological 

management has been demonstrated throughout this thesis, and several important avenues of 

future research within the discipline of aerial photograph analysis are discussed next. First, there 

is a need to utilize the valuable information contained within historical aerial photograph 
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archives and incorporate this data into ecological research and management. Second, continued 

exploration of object-based analysis as a tool for mapping natural resources from aerial 

photographs is important because of the enormous potential demonstrated thus far. Finally, an 

emergent theme of this research is a lack of training related to aerial photograph analysis in both 

academic and management. Reinvigoration training of expert personnel is necessary for 

continued and optimal utilization of aerial photographs. 

 

As many scientists identify the need for ecological research to occur over broader temporal 

scales (Foster et al. 2003), the unique information contained within historic aerial photography 

merits specific attention for future research. Research should focus on techniques capable of 

handling the unique challenges associated with historic aerial photographs, such as refinement of 

geometric and radiometric correction procedures. Such procedures could be particularly 

beneficial for handling large (and highly variable) sets of photographs and increase their 

availability to ecosystem managers (and other non- specialists). Integration with additional 

auxiliary datasets, such as highly detailed terrain data derived from lidar (light detection and 

ranging), should also be explored as terrain information can improve the quality of data 

extraction from historic photographs (St-Onge and Achaichia 2001, Vega and St-Onge 2008).  

 

Object-based analysis is particular promising for analysis of aerial photographs, and researchers 

have just begun to explore the practical use of this technique for ecological management 

(Chubey et al. 2006, Wulder et al. 2008). Development and refinement of object-based analysis 

should target expanded classification schemes, and further assess the ability of this approach to 

represent landscape structure. Focus should also be placed on assessment of border positional 

accuracy (Radoux and Defourny 2007) and classification accuracy with respect to manual 

interpretation and field reference data (Foody 2002, Thompson et al. 2007).  
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Taken together, this research underscores the lack of training in aerial photograph processing and 

analysis. Anticipated shortages of personnel with technical capabilities specific to aerial 

photographs is problematic for the future of natural resource management, which is heavily 

dependent upon this data source and relevant techniques. Along with the growing demand for 

spatial data by resource managers and scientists (Cohen et al. 1996), is the need for new data to 

integrate well with existing mapping procedures based primarily on manual interpretation. 

Therefore, techniques in which data are produced in an immediately useable format to resource 

managers and planners are necessary (such as object-based techniques), and could be particularly 

promising for decreasing the costs and labor requirements of mapping. 

 

Despite the inherent value of aerial photographs, existing challenges associated with the 

preparation and analysis of this data source threatens their continued contribution to ecology- 

and resource-based dilemmas. By focusing on the application of object-based analysis to aerial 

photographs, this thesis has provided a glimpse into the possible future of aerial photography as a 

tool for ecological research and management. 
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APPENDICES 

Appendix A.  
Locations and photo numbers for the 8 photographs analyzed within the Kennedy Lake 
watershed for Chapter 3. Locations representing a diversity of watershed orders were selected. 
 
 

 
Federal Flight line Photo Numbers: 
 
Site 1: A5646_047 
Site 2: A5681_039 
Site 3: A5776_066 
Site 4: A5682_012 
Site 5: A5776_035 
Site 6: A5682_005 
Site 7: A5775_074 
Site 8: A6275_086 

Kennedy 
Lake

Kennedy 
Lake
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Appendix B.  
Approximate locations and photo numbers for the 8 photographs analyzed within the Kennedy 
Lake watershed for Chapter 4.  
 

Riparian
Upland
Watershed

Riparian
Upland
Watershed

Riparian
Upland
Watershed

 
 
 
Federal Flight line Photo Numbers: 
 
Riparian 1: A5776_066 
Riparian 2: A5776_035 
Riparian 3: A5744_040 
Riparian 4: A5681_039 
Upland 1: A5683_058 
Upland 2: A6332_011 
Upland 3: A5775_074 
Upland 4: A6275_086 
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Appendix C.  
The original 200 object-based metrics calculated from the object-based segmentation for 
defining landscape heterogeneity in Chapter 4. Reduced to a set of 62 metrics (shown in bold) 
with correlations less than 65%. 
 

1 inner_x 
2 inner_y 
3 Area 
4 Area of sub-objects  mean (1) 
5 Area of sub-objects  stddev (1) 
6 Asymmetry 
7 Asymmetry of sub-objects  mean (1) 
8 Asymmetry of sub-objects  stddev (1) 
9 Average branch length 

10 Average length of edges (polygon) 
11 Avrg. area represented by segments 
12 Avrg. mean diff to neighbors of sub-objects Aspect (1) 
13 Avrg. mean diff to neighbors of sub-objects Correlation (1) 
14 Avrg. mean diff to neighbors of sub-objects DEM (1) 
15 Avrg. mean diff to neighbors of sub-objects Entropy (1) 
16 Avrg. mean diff to neighbors of sub-objects Homogeneity (1) 
17 Avrg. mean diff to neighbors of sub-objects Photo (1) 
18 Avrg. mean diff to neighbors of sub-objects TWI (1) 
19 Avrg. mean diff to neighbors of sub-objects Variance (1) 
20 Border index 
21 Border length 
22 Brightness 
23 Compactness 
24 Compactness (polygon) 
25 Contrast to neighbor pixels Aspect (3) 
26 Contrast to neighbor pixels Correlation (3) 
27 Contrast to neighbor pixels DEM (3) 
28 Contrast to neighbor pixels Entropy (3) 
29 Contrast to neighbor pixels Homogeneity (3) 
30 Contrast to neighbor pixels Photo (3) 
31 Contrast to neighbor pixels TWI (3) 
32 Contrast to neighbor pixels Variance (3) 
33 Curvature/length (only main line) 
34 Degree of skeleton branching 
35 Density 
36 Density of sub-objects  mean (1) 
37 Density of sub-objects  stddev (1) 
38 Direction of sub-objects  mean (1) 
39 Direction of sub-objects  stddev (1) 
40 Distance to image border 
41 Distance to super-object center (1) 
42 Elliptic Fit 
43 Elliptic distance to super-object center (1) 
44 Is center of super-object (1) 
45 Is end of super object (1) 
46 Length 
47 Length of longest edge (polygon) 
48 Length of main line (no cycles) 
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49 Length of main line (regarding cycles) 
50 Length/Width 
51 Length/Width (only main line) 
52 Main direction 
53 Max. diff. 
54 Max. pixel value Aspect 
55 Max. pixel value Correlation 
56 Max. pixel value DEM 
57 Max. pixel value Entropy 
58 Max. pixel value Homogeneity 
59 Max. pixel value Photo 
60 Max. pixel value TWI 
61 Max. pixel value Variance 
62 Maximum branch length 
63 Mean Aspect 
64 Mean Correlation 
65 Mean DEM 
66 Mean Diff. to neighbors Aspect (0) 
67 Mean Diff. to neighbors Correlation (0) 
68 Mean Diff. to neighbors DEM (0) 
69 Mean Diff. to neighbors Entropy (0) 
70 Mean Diff. to neighbors Homogeneity (0) 
71 Mean Diff. to neighbors Photo (0) 
72 Mean Diff. to neighbors TWI (0) 
73 Mean Diff. to neighbors Variance (0) 
74 Mean Entropy 
75 Mean Homogeneity 
76 Mean Photo 
77 Mean TWI 
78 Mean Variance 
79 Mean diff. to brighter neighbors Aspect 
80 Mean diff. to brighter neighbors Correlation 
81 Mean diff. to brighter neighbors DEM 
82 Mean diff. to brighter neighbors Entropy 
83 Mean diff. to brighter neighbors Homogeneity 
84 Mean diff. to brighter neighbors Photo 
85 Mean diff. to brighter neighbors TWI 
86 Mean diff. to brighter neighbors Variance 
87 Mean diff. to darker neighbors Aspect 
88 Mean diff. to darker neighbors Correlation 
89 Mean diff. to darker neighbors DEM 
90 Mean diff. to darker neighbors Entropy 
91 Mean diff. to darker neighbors Homogeneity 
92 Mean diff. to darker neighbors Photo 
93 Mean diff. to darker neighbors TWI 
94 Mean diff. to darker neighbors Variance 
95 Mean diff. to super-object Aspect (1) 
96 Mean diff. to super-object Correlation (1) 
97 Mean diff. to super-object DEM (1) 
98 Mean diff. to super-object Entropy (1) 
99 Mean diff. to super-object Homogeneity (1) 

100 Mean diff. to super-object Photo (1) 
101 Mean diff. to super-object TWI (1) 
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102 Mean diff. to super-object Variance (1) 
103 Mean of inner border Aspect 
104 Mean of inner border Correlation 
105 Mean of inner border DEM 
106 Mean of inner border Entropy 
107 Mean of inner border Homogeneity 
108 Mean of inner border Photo 
109 Mean of inner border TWI 
110 Mean of inner border Variance 
111 Mean of outer border Aspect 
112 Mean of outer border Correlation 
113 Mean of outer border DEM 
114 Mean of outer border Entropy 
115 Mean of outer border Homogeneity 
116 Mean of outer border Photo 
117 Mean of outer border TWI 
118 Mean of outer border Variance 
119 Mean of sub-objects  stddev Aspect (1) 
120 Mean of sub-objects  stddev Correlation (1) 
121 Mean of sub-objects  stddev DEM (1) 
122 Mean of sub-objects  stddev Entropy (1) 
123 Mean of sub-objects  stddev Homogeneity (1) 
124 Mean of sub-objects  stddev Photo (1) 
125 Mean of sub-objects  stddev TWI (1) 
126 Mean of sub-objects  stddev Variance (1) 
127 Min. pixel value Aspect 
128 Min. pixel value Correlation 
129 Min. pixel value DEM 
130 Min. pixel value Entropy 
131 Min. pixel value Homogeneity 
132 Min. pixel value Photo 
133 Min. pixel value TWI 
134 Min. pixel value Variance 
135 Number of edges (polygon) 
136 Number of inner objects (polygon) 
137 Number of segments 
138 Perimeter (polygon) 
139 Polygon self-intersection (polygon) 
140 Radius of largest enclosed ellipse  
141 Radius of smallest enclosing ellipse 
142 Ratio Aspect 
143 Ratio Correlation 
144 Ratio DEM 
145 Ratio Entropy 
146 Ratio Homogeneity 
147 Ratio Photo 
148 Ratio TWI 
149 Ratio Variance 
150 Ratio to super-object Aspect (1) 
151 Ratio to super-object Correlation (1) 
152 Ratio to super-object DEM (1) 
153 Ratio to super-object Entropy (1) 
154 Ratio to super-object Homogeneity (1) 
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155 Ratio to super-object Photo (1) 
156 Ratio to super-object TWI (1) 
157 Ratio to super-object Variance (1) 
158 Rectangular Fit 
159 Rel. area to super-object (1) 
160 Rel. inner border to super-object (1) 
161 Rel. rad. position to super-object (1) 
162 Roundness 
163 Shape index 
164 Standard deviation Aspect 
165 Standard deviation Correlation 
166 Standard deviation DEM 
167 Standard deviation Entropy 
168 Standard deviation Homogeneity 
169 Standard deviation Photo 
170 Standard deviation TWI 
171 Standard deviation Variance 
172 StdDev Ratio to super-object Aspect (1) 
173 StdDev Ratio to super-object Correlation (1) 
174 StdDev Ratio to super-object DEM (1) 
175 StdDev Ratio to super-object Entropy (1) 
176 StdDev Ratio to super-object Homogeneity (1) 
177 StdDev Ratio to super-object Photo (1) 
178 StdDev Ratio to super-object TWI (1) 
179 StdDev Ratio to super-object Variance (1) 
180 StdDev diff. to super-object Aspect (1) 
181 StdDev diff. to super-object Correlation (1) 
182 StdDev diff. to super-object DEM (1) 
183 StdDev diff. to super-object Entropy (1) 
184 StdDev diff. to super-object Homogeneity (1) 
185 StdDev diff. to super-object Photo (1) 
186 StdDev diff. to super-object TWI (1) 
187 StdDev diff. to super-object Variance (1) 
188 StdDev. to neighbor pixels Aspect (3) 
189 StdDev. to neighbor pixels Correlation (3) 
190 StdDev. to neighbor pixels DEM (3) 
191 StdDev. to neighbor pixels Entropy (3) 
192 StdDev. to neighbor pixels Homogeneity (3) 
193 StdDev. to neighbor pixels Photo (3) 
194 StdDev. to neighbor pixels TWI (3) 
195 StdDev. to neighbor pixels Variance (3) 
196 Stddev Curvature (only main line) 
197 Stddev of area represented by segments 
198 Stddev of length of edges (polygon) 
199 Width 
200 Width (only main line) 
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Appendix D.  
Factor patterns for the sixteen clusters identified as elements of landscape heterogeneity in 
Chapter 4. 
 
Sub-object variability cluster Riparian Landscapes Upland Landscapes 
Factor Rank 1 1 2 2 3 5 4 1 
Area 0.2 0.3 0.5 0.4 0.3 0.3 0.1 0.3 
Area_of_sub_objects__mean -0.7 -0.6 -0.4 -0.5 -0.6 -0.5 -0.7 -0.6 
Area_of_sub_objects__stddev 0.4 0.6 0.6 0.5 0.5 0.3 0.3 0.5 
Asymmetry_of_sub_mean 0.1 0.0 0.1 0.0 0.2 0.2 0.2 0.2 
Asymmetry_of_sub_stddev 0.7 0.8 0.8 0.8 0.8 0.8 0.7 0.8 
Avrg__area_segment 0.0 0.1 0.2 0.1 0.1 0.1 0.0 0.1 
Border_length 0.4 0.5 0.5 0.5 0.4 0.4 0.3 0.4 
Compactness 0.2 0.1 0.0 0.0 0.1 0.0 0.3 0.1 
Compactness__polygon -0.3 -0.4 -0.3 -0.3 -0.2 -0.2 -0.4 -0.2 
Contrast_to_neig_pix_Asp 0.0 0.1 0.0 0.0 0.2 0.0 0.0 0.1 
Contrast_to_neig_pix_DEM 0.1 -0.1 -0.1 0.0 0.0 -0.1 0.0 -0.1 
Contrast_to_neig_pix_Hom -0.1 0.1 0.0 -0.1 0.0 0.0 0.2 -0.1 
Contrast_to_neig_pix_Phot 0.1 0.0 0.1 0.0 0.0 0.1 0.1 0.1 
Curvature_length 0.0 0.0 -0.3 -0.2 -0.1 -0.2 -0.2 -0.1 
Density_of_sub_stddev 0.8 0.8 0.8 0.8 0.8 0.8 0.7 0.8 
Direction_of_sub_mean 0.0 0.0 0.1 0.0 0.1 -0.1 0.0 0.0 
Direction_of_sub_stddev 0.7 0.8 0.7 0.7 0.6 0.6 0.6 0.5 
Distance_to_super_obj 0.0 -0.1 -0.1 0.0 0.0 -0.1 0.0 0.0 
Elliptic_distance_to_super -0.1 -0.1 -0.2 0.0 -0.1 -0.2 -0.2 -0.2 
Is_center_of_super_object 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.1 
Is_end_of_super_object -0.1 -0.1 0.0 0.0 -0.1 0.0 -0.1 0.0 
Length_of_longest_edge 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.1 
Length_Width -0.1 -0.1 -0.1 0.0 -0.1 -0.1 0.0 0.0 
Main_direction 0.0 0.0 0.0 0.0 -0.1 -0.1 0.1 0.0 
Mean_Aspect 0.0 0.1 0.0 0.1 0.1 0.1 0.1 0.1 
Mean_DEM -0.1 -0.1 -0.1 0.0 0.0 -0.1 0.1 0.0 
Mean_Diff__to_neig_DEM 0.0 0.1 0.0 0.0 0.0 0.0 0.0 -0.1 
Mean_Diff__to_neig_Photo 0.0 0.0 0.0 0.0 -0.1 0.0 -0.1 0.0 
Mean_Photo 0.1 0.0 -0.1 0.0 -0.1 0.0 -0.1 0.0 
Mean_TWI 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Mean_diff_to_bri_neigh_asp 0.0 0.0 0.0 -0.1 0.0 -0.2 0.0 0.0 
Mean_diff_to_bri_neigh_DEM 0.1 0.0 0.0 0.1 0.2 0.1 0.0 0.2 
Mean_diff_to_bri_neigh_hom 0.2 0.2 0.0 0.1 0.0 0.1 0.1 0.2 
Mean_diff_to_bri_neigh_pho 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.1 
Mean_diff_to_bri_neigh_TWI 0.1 0.1 0.1 0.0 0.1 0.2 -0.1 0.1 
Mean_diff_to_bri_neigh_var -0.1 0.0 -0.1 0.0 -0.1 -0.1 0.0 -0.1 
Mean_diff__to_super_Asp 0.0 0.0 0.0 0.1 0.0 0.0 -0.1 0.0 
Mean_diff__to_super_Pho -0.1 -0.1 -0.1 0.0 0.0 0.1 0.1 0.0 
Mean_of_sub_stddev_Hom 0.8 0.7 0.7 0.6 0.6 0.6 0.8 0.8 
Mean_of_sub_stddev_Phot 0.8 0.7 0.8 0.7 0.7 0.8 0.8 0.8 
Mean_of_sub_stddev_TWI 0.3 0.3 0.4 0.3 0.6 0.4 0.3 0.4 
Ratio_to_super_Aspect 0.0 -0.1 -0.1 0.0 0.0 0.1 0.0 -0.1 
Ratio_to_super_DEM 0.0 -0.1 0.1 -0.1 0.1 -0.2 -0.1 0.1 
Ratio_to_super_WI 0.0 -0.1 -0.1 0.0 0.0 0.0 0.0 0.0 
Rel__area_to_super_object 0.0 0.2 0.4 0.0 0.1 0.2 0.1 0.1 
Standard_deviation_Aspect 0.2 0.2 0.1 0.0 0.1 0.1 0.2 0.1 
Standard_deviation_DEM 0.1 0.1 0.0 0.2 0.2 0.2 0.2 0.2 
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Standard_deviation_Entropy 0.2 0.2 0.1 0.2 0.1 0.2 0.1 0.2 
Standard_deviation_Photo 0.3 0.2 0.3 0.1 0.2 0.3 0.2 0.3 
Standard_deviation_TWI 0.0 0.1 0.0 0.1 0.1 0.1 0.0 0.0 
StdDev_Ratio_to_super_Asp 0.1 0.2 0.2 0.1 0.1 0.3 0.0 0.1 
StdDev_Ratio_to_super_Cor 0.0 0.0 -0.1 -0.1 0.1 0.0 0.1 0.0 
StdDev_Ratio_to_super_DEM 0.2 0.2 0.3 0.2 0.1 0.2 0.1 0.1 
StdDev_Ratio_to_super_Ent 0.1 0.1 0.1 0.1 0.2 0.1 0.2 0.2 
StdDev_Ratio_to_super_Pho 0.1 0.0 0.1 0.1 0.2 0.2 0.2 0.2 
StdDev_Ratio_to_super_TWI 0.0 0.1 0.0 0.0 0.1 -0.1 0.0 0.0 
StdDev__to_neighbor_Aspec 0.0 0.1 0.1 -0.1 0.0 0.1 0.1 0.0 
StdDev__to_neighbor_Corre 0.0 0.1 -0.1 -0.1 0.1 0.0 -0.1 0.0 
StdDev__to_neighbor_Entro 0.1 0.0 -0.1 0.1 0.0 0.0 -0.1 0.1 
StdDev__to_neighbor_Photo 0.2 0.1 0.1 0.1 0.1 0.2 0.1 0.1 
StdDev__to_neighbor_Varia 0.2 0.2 0.1 0.0 0.1 0.1 0.1 0.0 
Stddev_Curvature_main 0.0 0.0 0.1 0.0 0.0 0.1 0.1 -0.1 

 
Tone cluster Riparian Landscapes Upland Landscapes 
Factor Rank 4 6 6 1 5 10 1 1 6
Area 0.0 0.0 -0.1 -0.1 0.2 0.0 0.2 0.1 0.0
Area_of_sub_objects__mean 0.0 0.0 0.0 -0.1 0.1 0.0 0.3 0.2 0.0
Area_of_sub_objects__stddev 0.1 0.0 -0.1 0.0 0.1 0.0 0.1 0.0 0.0
Asymmetry_of_sub_mean 0.1 0.0 -0.1 0.0 0.0 0.0 -0.2 0.0 -0.1
Asymmetry_of_sub_stddev -0.1 0.0 0.0 -0.1 0.0 0.0 0.1 0.1 0.0
Avrg__area_segment 0.0 0.0 0.0 0.0 0.1 0.0 0.3 0.1 0.0
Border_length 0.0 -0.1 0.0 0.0 0.2 0.0 0.2 0.2 0.0
Compactness -0.1 -0.1 0.0 0.1 -0.1 -0.1 -0.5 -0.2 -0.1
Compactness__polygon 0.0 0.1 0.0 -0.1 -0.1 0.0 0.1 -0.1 0.1
Contrast_to_neig_pix_Asp -0.1 -0.1 0.0 0.0 -0.1 0.1 0.1 0.0 0.2
Contrast_to_neig_pix_DEM 0.2 0.0 0.1 0.1 0.0 0.0 -0.1 0.1 0.0
Contrast_to_neig_pix_Hom -0.4 -0.1 0.2 -0.5 -0.1 0.0 -0.8 -0.7 0.0
Contrast_to_neig_pix_Phot 0.7 0.6 0.7 0.9 0.9 0.0 0.7 0.7 0.5
Curvature_length 0.0 0.1 0.0 0.0 -0.1 -0.1 -0.3 -0.2 0.0
Density_of_sub_stddev 0.0 0.0 0.0 -0.1 -0.1 0.0 0.1 0.1 0.0
Direction_of_sub_mean -0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0
Direction_of_sub_stddev 0.0 -0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.2
Distance_to_super_obj 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1
Elliptic_distance_to_super -0.1 0.0 0.0 0.0 0.1 0.0 0.1 -0.1 0.0
Is_center_of_super_object 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Is_end_of_super_object 0.0 0.0 0.0 -0.1 0.0 0.0 0.0 0.0 0.0
Length_of_longest_edge -0.1 -0.1 -0.1 0.0 0.0 0.1 0.1 0.1 -0.1
Length_Width 0.0 0.0 0.0 0.0 -0.1 0.0 0.0 -0.2 -0.1
Main_direction 0.0 0.0 -0.1 0.0 -0.1 0.0 0.0 -0.1 0.0
Mean_Aspect -0.1 -0.2 -0.1 0.0 -0.2 0.0 -0.3 -0.1 -0.2
Mean_DEM 0.0 -0.1 0.1 0.1 -0.1 0.0 0.0 -0.1 -0.1
Mean_Diff__to_neig_DEM 0.2 0.0 0.2 0.1 0.1 0.0 0.0 0.1 0.1
Mean_Diff__to_neig_Photo 0.9 0.9 0.9 0.9 0.8 0.4 0.9 0.8 0.9
Mean_Photo 0.7 0.6 0.6 0.8 0.5 0.2 0.7 0.7 0.7
Mean_TWI -0.1 0.0 0.1 -0.2 -0.6 0.0 -0.1 -0.3 0.1
Mean_diff_to_bri_neigh_asp 0.0 0.0 0.0 0.1 0.0 0.0 0.2 0.1 0.1
Mean_diff_to_bri_neigh_DEM -0.1 0.0 -0.1 0.1 0.1 0.0 0.1 0.1 -0.1
Mean_diff_to_bri_neigh_hom 0.1 0.0 -0.1 0.4 0.0 -0.1 0.3 0.2 0.0
Mean_diff_to_bri_neigh_pho -0.8 -0.8 -0.8 -0.8 -0.7 -0.2 -0.8 -0.8 -0.7
Mean_diff_to_bri_neigh_TWI 0.0 -0.1 -0.1 0.1 0.1 0.0 0.0 0.0 -0.1
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Mean_diff_to_bri_neigh_var -0.5 -0.3 0.1 -0.2 -0.2 0.0 -0.8 -0.8 -0.1
Mean_diff__to_super_Asp 0.0 0.1 0.0 0.0 0.1 -0.3 -0.2 0.0 0.0
Mean_diff__to_super_Pho 0.7 0.6 0.6 0.3 0.3 0.8 0.8 0.6 0.5
Mean_of_sub_stddev_Hom 0.1 0.1 0.0 0.2 -0.1 0.0 0.0 -0.1 0.0
Mean_of_sub_stddev_Phot 0.2 0.1 0.0 0.2 0.0 0.0 0.1 0.1 0.0
Mean_of_sub_stddev_TWI 0.0 0.0 0.0 0.2 -0.1 0.0 0.1 -0.1 0.1
Ratio_to_super_Aspect 0.0 0.0 -0.1 0.0 0.0 0.0 0.0 0.0 0.1
Ratio_to_super_DEM 0.0 0.1 0.1 0.0 -0.1 0.2 0.1 0.0 0.1
Ratio_to_super_WI -0.1 0.0 -0.1 0.1 0.0 -0.7 -0.1 -0.3 0.1
Rel__area_to_super_object 0.0 -0.1 0.1 -0.1 -0.1 0.0 0.0 0.0 -0.1
Standard_deviation_Aspect 0.0 0.1 0.0 0.1 -0.4 0.1 0.0 -0.1 -0.1
Standard_deviation_DEM -0.1 0.0 -0.1 0.1 0.0 -0.1 0.1 0.1 0.0
Standard_deviation_Entropy 0.0 0.3 -0.1 0.1 -0.2 0.0 -0.2 -0.4 0.0
Standard_deviation_Photo 0.3 0.2 -0.1 0.6 0.1 0.0 0.8 0.6 0.0
Standard_deviation_TWI 0.0 -0.1 0.0 0.0 -0.6 0.1 -0.1 -0.2 0.1
StdDev_Ratio_to_super_Asp -0.1 0.1 -0.1 -0.1 -0.1 0.1 0.1 0.0 0.0
StdDev_Ratio_to_super_Cor 0.2 0.1 0.3 0.0 0.0 0.7 -0.2 0.8 0.1
StdDev_Ratio_to_super_DEM -0.1 0.0 0.0 0.0 -0.1 0.0 0.1 0.1 0.1
StdDev_Ratio_to_super_Ent 0.0 0.1 -0.1 0.1 0.0 -0.2 -0.2 -0.2 -0.1
StdDev_Ratio_to_super_Pho 0.1 0.0 0.1 0.0 -0.1 0.2 0.7 0.8 0.0
StdDev_Ratio_to_super_TWI -0.1 -0.1 0.0 0.0 0.0 -0.2 0.0 -0.1 -0.1
StdDev__to_neighbor_Aspec -0.1 0.0 -0.1 -0.1 -0.1 0.1 0.1 0.0 -0.2
StdDev__to_neighbor_Corre 0.1 0.0 0.1 0.2 0.0 0.0 0.0 0.1 0.2
StdDev__to_neighbor_Entro -0.1 -0.2 -0.1 -0.1 0.0 0.1 0.0 -0.1 0.1
StdDev__to_neighbor_Photo -0.1 -0.2 -0.1 -0.2 -0.1 0.1 0.0 -0.2 0.0
StdDev__to_neighbor_Varia -0.1 -0.1 0.0 0.1 -0.1 0.0 -0.1 -0.1 -0.1
Stddev_Curvature_main -0.1 0.0 0.1 -0.1 0.0 0.0 -0.1 0.0 0.1

 

Proximity to border cluster Riparian Landscapes 
Upland 
Landscapes 

Factor Rank 6 4 11 3 12 6 3 15 
Area 0.0 -0.1 0.0 0.1 0.1 -0.1 -0.2 0.0 
Area_of_sub_objects__mean 0.2 -0.1 0.1 0.1 0.1 -0.1 -0.2 0.0 
Area_of_sub_objects__stddev 0.0 -0.1 0.0 0.1 0.0 0.0 -0.1 0.0 
Asymmetry_of_sub_mean -0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.0 
Asymmetry_of_sub_stddev 0.1 0.1 0.1 0.0 0.0 0.0 -0.1 -0.1 
Avrg__area_segment 0.0 0.0 0.0 0.0 0.1 -0.1 -0.1 0.0 
Border_length 0.1 -0.2 0.0 0.2 0.1 -0.1 -0.3 0.0 
Compactness 0.0 -0.2 -0.1 0.2 0.0 0.1 -0.2 -0.1 
Compactness__polygon 0.0 0.1 0.0 -0.2 0.0 0.0 0.0 0.0 
Contrast_to_neig_pix_Asp 0.0 0.1 0.1 0.0 0.0 0.2 0.1 0.0 
Contrast_to_neig_pix_DEM -0.2 -0.1 0.0 0.0 0.0 0.0 -0.1 0.0 
Contrast_to_neig_pix_Hom -0.7 0.9 -0.2 -0.8 -0.3 0.9 0.9 -0.1 
Contrast_to_neig_pix_Phot 0.4 -0.5 -0.1 0.2 0.0 -0.3 -0.5 -0.1 
Curvature_length 0.0 -0.2 0.0 0.3 0.1 0.2 -0.1 -0.3 
Density_of_sub_stddev 0.1 0.0 0.0 -0.1 0.0 0.0 -0.1 -0.1 
Direction_of_sub_mean 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Direction_of_sub_stddev 0.0 0.0 0.0 0.1 0.0 -0.1 -0.1 -0.1 
Distance_to_super_obj 0.0 0.0 -0.1 0.0 0.1 -0.1 -0.1 0.0 
Elliptic_distance_to_super 0.0 0.0 0.0 0.1 0.0 -0.1 0.1 -0.2 
Is_center_of_super_object 0.0 0.0 0.0 0.1 -0.1 0.0 0.0 0.0 
Is_end_of_super_object 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 
Length_of_longest_edge 0.0 0.0 -0.1 0.0 0.0 -0.1 0.0 -0.1 
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Length_Width -0.1 0.1 0.0 -0.1 -0.1 0.0 0.1 -0.1 
Main_direction 0.0 0.1 0.0 0.0 -0.1 0.0 0.0 0.0 
Mean_Aspect 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 
Mean_DEM 0.0 0.1 0.1 0.0 -0.1 0.1 0.1 0.0 
Mean_Diff__to_neig_DEM 0.0 -0.1 0.1 0.0 0.0 0.0 -0.1 0.0 
Mean_Diff__to_neig_Photo 0.2 -0.2 0.1 0.0 -0.1 0.1 0.0 0.2 
Mean_Photo 0.0 -0.2 0.0 -0.1 -0.1 0.0 0.0 0.1 
Mean_TWI -0.1 0.0 -0.1 -0.3 -0.1 0.0 0.2 0.0 
Mean_diff_to_bri_neigh_asp 0.0 0.0 0.0 -0.1 0.0 0.0 0.0 0.1 
Mean_diff_to_bri_neigh_DEM 0.1 0.1 0.0 0.1 0.0 0.1 0.0 0.0 
Mean_diff_to_bri_neigh_hom 0.5 -0.7 0.2 0.5 0.1 -0.5 -0.4 0.1 
Mean_diff_to_bri_neigh_pho 0.0 0.1 0.0 0.2 0.0 -0.1 0.0 -0.1 
Mean_diff_to_bri_neigh_TWI 0.0 -0.1 0.0 0.2 0.1 -0.1 -0.1 0.0 
Mean_diff_to_bri_neigh_var -0.5 0.8 -0.1 -0.6 -0.2 0.7 0.8 -0.1 
Mean_diff__to_super_Asp 0.0 0.0 -0.2 -0.2 -0.1 0.1 0.0 -0.2 
Mean_diff__to_super_Pho 0.2 0.1 0.5 0.3 -0.1 0.0 0.0 0.7 
Mean_of_sub_stddev_Hom 0.1 -0.1 0.0 -0.1 0.0 0.0 0.0 0.1 
Mean_of_sub_stddev_Phot 0.2 -0.2 0.1 0.1 0.0 -0.1 -0.2 0.2 
Mean_of_sub_stddev_TWI 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.0 
Ratio_to_super_Aspect 0.0 0.1 -0.1 0.0 0.0 0.0 0.0 0.2 
Ratio_to_super_DEM 0.1 0.0 0.0 -0.1 0.1 0.0 0.0 0.0 
Ratio_to_super_WI 0.0 0.0 -0.1 -0.2 -0.2 0.0 0.0 -0.2 
Rel__area_to_super_object 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 
Standard_deviation_Aspect 0.1 0.0 0.0 -0.2 0.0 -0.1 0.1 -0.1 
Standard_deviation_DEM 0.1 0.0 0.0 0.0 0.0 -0.1 -0.1 -0.1 
Standard_deviation_Entropy -0.1 0.3 0.1 -0.1 0.0 0.4 0.4 0.0 
Standard_deviation_Photo 0.4 -0.7 0.2 0.6 0.2 -0.4 -0.8 0.2 
Standard_deviation_TWI 0.0 0.0 0.0 -0.1 0.0 0.1 0.1 0.0 
StdDev_Ratio_to_super_Asp 0.2 0.0 0.0 -0.1 0.0 -0.2 0.0 -0.1 
StdDev_Ratio_to_super_Cor 0.8 -0.3 0.8 0.7 0.8 -0.3 -0.3 0.8 
StdDev_Ratio_to_super_DEM 0.0 0.0 0.0 0.1 0.1 -0.1 -0.1 0.0 
StdDev_Ratio_to_super_Ent 0.0 0.3 0.4 0.0 0.5 0.6 0.2 0.2 
StdDev_Ratio_to_super_Pho 0.8 -0.4 0.8 0.7 0.8 -0.6 -0.4 0.5 
StdDev_Ratio_to_super_TWI -0.1 -0.1 -0.1 0.2 0.1 0.1 0.0 0.0 
StdDev__to_neighbor_Aspec 0.1 -0.1 0.0 0.0 0.1 -0.1 0.0 0.0 
StdDev__to_neighbor_Corre -0.2 0.0 -0.1 -0.1 -0.1 -0.1 0.0 0.0 
StdDev__to_neighbor_Entro 0.2 -0.2 -0.1 0.1 -0.2 -0.2 0.1 0.0 
StdDev__to_neighbor_Photo 0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 
StdDev__to_neighbor_Varia -0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 
Stddev_Curvature_main 0.0 0.0 -0.1 -0.2 0.2 -0.1 0.0 -0.1 

 
Texture variability cluster Riparian Landscapes Upland Landscapes 
Factor Rank 3 3 14 7 14 5 2 13 3 7
Area -0.1 0.0 -0.1 0.0 0.0 0.1 -0.2 -0.1 0.0 -0.1
Area_of_sub_objects__mean -0.2 0.0 -0.3 0.0 -0.1 0.2 -0.2 0.0 0.0 -0.1
Area_of_sub_objects__stddev -0.1 0.1 0.0 0.0 -0.1 0.1 -0.1 0.1 0.0 -0.1
Asymmetry_of_sub_mean 0.1 0.2 0.2 0.0 0.1 -0.1 0.1 0.0 0.0 0.1
Asymmetry_of_sub_stddev -0.1 0.0 -0.1 0.0 -0.1 0.0 0.0 0.0 0.1 -0.1
Avrg__area_segment -0.5 -0.2 0.0 -0.2 0.0 -0.2 -0.3 -0.1 -0.1 0.0
Border_length 0.2 0.2 -0.2 0.0 0.0 0.2 0.0 0.1 0.1 -0.1
Compactness 0.1 -0.1 -0.2 -0.1 0.0 -0.1 0.0 0.0 0.0 0.1
Compactness__polygon -0.5 -0.3 0.0 -0.1 0.1 -0.2 -0.2 -0.2 -0.2 0.1
Contrast_to_neig_pix_Asp 0.1 -0.1 0.0 0.0 0.0 0.1 0.0 0.1 0.0 -0.2
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Contrast_to_neig_pix_DEM -0.1 -0.1 0.1 0.0 -0.1 -0.4 0.1 0.2 0.2 -0.1
Contrast_to_neig_pix_Hom 0.0 0.1 0.1 0.0 0.2 0.0 -0.1 0.0 -0.1 -0.1
Contrast_to_neig_pix_Phot 0.0 0.0 0.0 0.0 -0.1 -0.1 0.0 -0.1 -0.1 0.1
Curvature_length 0.2 0.0 -0.1 0.0 0.0 -0.1 0.1 0.0 0.0 -0.1
Density_of_sub_stddev 0.0 0.1 0.1 0.0 0.0 0.0 0.1 0.1 0.0 0.0
Direction_of_sub_mean 0.0 0.2 0.0 0.1 -0.1 -0.1 0.0 -0.1 0.1 0.1
Direction_of_sub_stddev 0.0 -0.1 -0.1 0.0 -0.1 0.0 0.0 0.1 0.1 0.0
Distance_to_super_obj 0.1 0.0 -0.1 -0.1 0.1 0.2 0.0 0.1 -0.1 0.0
Elliptic_distance_to_super 0.0 0.0 0.1 0.0 0.3 0.0 0.0 0.0 0.0 0.0
Is_center_of_super_object 0.0 -0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Is_end_of_super_object 0.0 0.0 0.1 0.0 0.0 -0.1 -0.1 0.0 0.0 0.0
Length_of_longest_edge -0.3 -0.2 0.0 -0.2 0.0 -0.3 -0.2 -0.1 -0.1 0.1
Length_Width 0.0 0.1 0.1 0.0 0.1 -0.1 0.0 -0.1 0.0 0.0
Main_direction 0.1 0.0 0.0 0.1 0.0 -0.1 0.0 -0.1 0.0 0.0
Mean_Aspect -0.1 -0.2 -0.1 -0.2 -0.1 0.1 0.4 0.0 0.1 0.0
Mean_DEM -0.1 -0.1 -0.1 -0.1 0.1 0.0 0.7 -0.1 0.8 -0.1
Mean_Diff__to_neig_DEM 0.1 0.0 0.0 -0.2 -0.2 0.0 0.1 -0.1 0.1 0.0
Mean_Diff__to_neig_Photo 0.0 0.0 0.1 0.1 0.1 -0.1 0.1 0.0 0.0 0.1
Mean_Photo 0.4 0.6 0.2 0.5 0.2 0.3 -0.3 0.0 0.0 0.3
Mean_TWI 0.0 -0.1 0.2 0.0 0.2 -0.1 -0.2 -0.2 -0.1 0.2
Mean_diff_to_bri_neigh_asp 0.0 0.0 0.0 -0.1 0.0 -0.1 0.0 0.1 0.0 0.0
Mean_diff_to_bri_neigh_DEM 0.0 -0.2 -0.1 0.2 0.1 0.3 -0.1 -0.1 0.1 -0.1
Mean_diff_to_bri_neigh_hom 0.1 0.0 0.3 0.1 0.3 0.0 0.3 0.0 0.0 0.4
Mean_diff_to_bri_neigh_pho 0.2 0.2 0.1 0.0 0.1 0.0 0.2 0.1 0.1 0.2
Mean_diff_to_bri_neigh_TWI 0.1 0.0 0.1 0.1 0.1 0.2 0.0 -0.3 0.0 0.0
Mean_diff_to_bri_neigh_var 0.0 0.0 0.2 0.1 0.4 -0.1 0.2 0.0 0.0 0.2
Mean_diff__to_super_Asp 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0
Mean_diff__to_super_Pho 0.0 0.0 0.1 0.0 -0.1 0.0 0.0 -0.1 0.0 0.0
Mean_of_sub_stddev_Hom 0.2 0.3 0.4 0.1 0.4 0.0 0.1 -0.1 0.0 0.2
Mean_of_sub_stddev_Phot 0.3 0.3 0.2 0.2 0.2 0.0 0.3 0.1 0.2 0.1
Mean_of_sub_stddev_TWI 0.0 0.0 0.0 0.1 0.4 0.0 0.0 -0.3 0.0 0.1
Ratio_to_super_Aspect 0.0 0.2 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.1
Ratio_to_super_DEM 0.0 0.0 0.0 -0.1 0.0 0.1 0.0 0.0 0.1 -0.1
Ratio_to_super_WI 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Rel__area_to_super_object 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.1
Standard_deviation_Aspect 0.1 0.0 -0.2 0.1 -0.1 -0.1 0.2 0.1 0.0 -0.1
Standard_deviation_DEM -0.1 -0.1 -0.1 0.1 0.1 0.2 0.1 0.0 0.2 0.0
Standard_deviation_Entropy -0.1 -0.1 0.7 -0.4 0.6 -0.6 -0.7 -0.1 -0.8 0.6
Standard_deviation_Photo 0.6 0.6 0.0 0.6 -0.1 0.5 0.8 0.4 0.6 -0.4
Standard_deviation_TWI 0.0 0.0 0.0 0.0 0.3 0.1 -0.2 -0.2 -0.1 0.1
StdDev_Ratio_to_super_Asp 0.0 0.0 -0.2 0.0 0.0 0.1 -0.1 0.0 0.0 0.0
StdDev_Ratio_to_super_Cor 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0
StdDev_Ratio_to_super_DEM 0.0 0.1 0.0 -0.1 0.2 0.0 0.0 0.0 0.0 0.0
StdDev_Ratio_to_super_Ent 0.0 0.1 0.3 0.0 0.1 -0.1 -0.1 0.0 -0.1 -0.2
StdDev_Ratio_to_super_Pho -0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.1 -0.1
StdDev_Ratio_to_super_TWI 0.0 0.0 -0.1 0.0 0.0 -0.3 0.0 0.0 -0.1 -0.1
StdDev__to_neighbor_Aspec 0.0 0.1 0.0 -0.2 -0.1 -0.1 0.2 0.2 0.0 0.1
StdDev__to_neighbor_Corre 0.9 0.9 -0.1 0.8 0.0 0.8 0.3 0.2 0.1 0.0
StdDev__to_neighbor_Entro -0.1 -0.2 0.7 -0.3 0.4 -0.3 -0.7 0.0 -0.8 0.8
StdDev__to_neighbor_Photo 0.8 0.7 0.0 0.6 0.1 0.4 0.8 0.9 0.8 0.0
StdDev__to_neighbor_Varia 0.9 0.8 -0.1 0.9 -0.1 0.9 0.9 0.7 0.9 -0.8
Stddev_Curvature_main 0.0 -0.2 -0.1 0.1 0.0 0.1 0.0 0.1 0.0 0.3
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Aspect cluster Riparian Landscapes Upland Landscapes 
Factor Rank 9 2 15 11 9 12 4 6 8
Area 0.0 -0.2 0.0 0.0 0.1 -0.1 0.2 0.0 0.0
Area_of_sub_objects__mean -0.1 -0.2 -0.2 -0.2 0.0 -0.1 0.1 -0.1 -0.2
Area_of_sub_objects__stddev 0.0 -0.1 0.0 0.1 0.1 -0.1 0.2 0.1 0.0
Asymmetry_of_sub_mean 0.2 0.1 -0.1 0.0 0.2 0.2 0.1 0.0 0.1
Asymmetry_of_sub_stddev 0.0 0.0 0.1 0.1 -0.1 0.0 -0.1 0.0 0.1
Avrg__area_segment 0.1 0.1 0.1 0.1 0.3 -0.1 0.3 0.2 0.0
Border_length 0.0 -0.2 0.1 0.0 0.0 -0.1 0.0 -0.1 0.1
Compactness 0.1 0.1 0.1 0.2 0.0 0.0 0.0 0.1 0.2
Compactness__polygon 0.1 0.0 0.0 0.0 0.1 0.1 0.1 0.2 -0.1
Contrast_to_neig_pix_Asp 0.0 0.1 0.1 0.2 0.1 0.1 0.3 0.0 -0.1
Contrast_to_neig_pix_DEM 0.0 0.1 0.2 0.1 -0.1 0.0 0.0 0.1 -0.1
Contrast_to_neig_pix_Hom 0.0 0.0 0.1 -0.2 -0.2 0.0 0.0 -0.1 0.0
Contrast_to_neig_pix_Phot -0.1 0.0 -0.3 -0.1 0.0 0.0 0.0 0.1 -0.1
Curvature_length -0.1 0.1 -0.1 0.1 -0.2 -0.2 -0.1 0.0 0.1
Density_of_sub_stddev 0.1 0.1 0.0 0.0 0.0 0.2 0.0 0.0 0.0
Direction_of_sub_mean -0.1 -0.1 0.0 0.0 -0.1 0.0 0.1 -0.1 0.0
Direction_of_sub_stddev 0.0 0.0 0.2 0.1 0.0 -0.3 0.1 0.1 0.2
Distance_to_super_obj -0.1 0.0 0.0 -0.1 0.1 -0.1 0.1 -0.1 0.0
Elliptic_distance_to_super -0.1 0.2 0.1 0.0 0.0 -0.2 0.1 0.1 0.0
Is_center_of_super_object -0.1 0.0 -0.1 -0.1 0.0 0.0 0.0 -0.1 -0.1
Is_end_of_super_object 0.1 0.0 0.1 0.1 0.0 0.1 0.0 0.2 0.1
Length_of_longest_edge 0.4 0.3 0.1 0.2 0.8 0.0 0.7 0.7 0.2
Length_Width 0.1 0.2 0.0 0.0 0.3 0.2 0.2 0.0 0.1
Main_direction 0.0 -0.1 0.0 0.0 0.0 0.1 0.1 -0.1 0.0
Mean_Aspect 0.2 0.1 0.1 0.1 0.1 -0.2 -0.1 0.1 0.2
Mean_DEM 0.1 -0.4 0.3 0.2 0.0 0.1 -0.3 -0.1 0.0
Mean_Diff__to_neig_DEM 0.3 0.1 0.4 0.2 0.0 -0.1 0.1 0.2 0.1
Mean_Diff__to_neig_Photo 0.0 0.1 0.0 0.0 0.0 -0.1 0.0 -0.1 0.0
Mean_Photo -0.1 0.0 0.1 0.0 -0.1 0.1 0.2 -0.2 -0.1
Mean_TWI 0.1 0.7 0.1 0.0 0.0 -0.2 0.4 0.2 0.0
Mean_diff_to_bri_neigh_asp 0.5 0.4 0.1 0.2 0.3 -0.1 0.5 0.4 0.5
Mean_diff_to_bri_neigh_DEM -0.4 -0.8 -0.1 -0.3 -0.3 0.7 -0.8 -0.7 -0.3
Mean_diff_to_bri_neigh_hom 0.0 0.2 0.0 0.3 0.2 0.1 0.0 0.1 -0.1
Mean_diff_to_bri_neigh_pho 0.0 0.1 0.0 0.1 0.2 0.2 0.1 0.1 0.1
Mean_diff_to_bri_neigh_TWI -0.1 0.0 -0.2 -0.1 0.1 0.0 0.5 -0.1 -0.1
Mean_diff_to_bri_neigh_var -0.1 0.1 0.1 -0.1 0.2 0.2 -0.1 0.0 0.0
Mean_diff__to_super_Asp 0.0 0.1 -0.1 0.0 0.0 -0.1 0.0 0.2 0.1
Mean_diff__to_super_Pho 0.0 0.1 0.1 0.1 0.1 0.0 -0.1 -0.1 0.0
Mean_of_sub_stddev_Hom -0.1 0.0 -0.1 -0.2 0.0 0.1 -0.1 0.1 0.0
Mean_of_sub_stddev_Phot 0.0 0.0 0.0 -0.2 0.0 0.1 0.0 0.1 0.0
Mean_of_sub_stddev_TWI 0.1 0.1 0.1 0.1 0.1 0.2 0.4 0.1 0.1
Ratio_to_super_Aspect -0.1 0.0 -0.1 -0.1 0.0 0.0 0.1 0.0 0.1
Ratio_to_super_DEM -0.1 -0.1 0.1 -0.1 0.0 0.0 -0.1 0.0 -0.1
Ratio_to_super_WI 0.0 0.1 0.1 0.2 -0.1 0.0 0.0 0.1 0.0
Rel__area_to_super_object 0.2 -0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1
Standard_deviation_Aspect 0.6 0.8 0.5 0.7 0.5 -0.2 0.7 0.8 0.8
Standard_deviation_DEM -0.3 -0.8 0.1 -0.1 0.0 0.6 -0.7 -0.6 -0.1
Standard_deviation_Entropy -0.1 0.0 0.0 0.0 0.0 0.1 -0.1 0.0 -0.1
Standard_deviation_Photo 0.0 0.2 -0.2 0.0 0.0 0.0 0.0 0.0 -0.1
Standard_deviation_TWI 0.1 0.2 0.1 0.1 0.1 -0.1 0.5 0.2 0.2
StdDev_Ratio_to_super_Asp 0.6 0.2 0.7 0.7 0.2 0.0 0.2 0.6 0.7
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StdDev_Ratio_to_super_Cor 0.1 -0.1 0.1 0.1 0.0 -0.1 0.0 0.0 -0.1
StdDev_Ratio_to_super_DEM -0.1 -0.1 0.0 -0.1 0.0 0.1 -0.1 0.0 -0.1
StdDev_Ratio_to_super_Ent 0.1 -0.1 -0.1 0.1 -0.2 -0.1 0.1 0.1 -0.2
StdDev_Ratio_to_super_Pho 0.1 -0.1 0.0 -0.1 -0.1 -0.1 0.0 0.1 -0.2
StdDev_Ratio_to_super_TWI -0.1 -0.1 0.2 0.1 0.1 0.0 0.0 0.1 0.2
StdDev__to_neighbor_Aspec 0.7 0.7 0.3 0.5 0.7 -0.2 0.8 0.7 0.7
StdDev__to_neighbor_Corre 0.1 -0.1 0.1 0.0 -0.2 0.0 0.0 -0.1 0.0
StdDev__to_neighbor_Entro -0.2 0.2 -0.1 0.1 0.3 0.2 -0.1 0.0 0.0
StdDev__to_neighbor_Photo 0.0 0.3 0.0 0.1 0.3 0.1 0.2 0.0 0.1
StdDev__to_neighbor_Varia 0.0 0.2 0.0 -0.1 0.0 0.0 -0.1 -0.1 0.0
Stddev_Curvature_main 0.1 0.0 0.2 -0.1 0.0 0.0 0.1 -0.1 0.0

 
Compactness cluster Riparian Landscapes Upland Landscapes 
Factor Rank 10 9 4 9 4 10 9 12 5
Area -0.1 -0.1 -0.1 -0.1 -0.2 -0.4 -0.1 0.0 -0.1
Area_of_sub_objects__mean -0.2 -0.2 -0.2 -0.2 -0.3 -0.3 -0.1 -0.2 -0.1
Area_of_sub_objects__stddev -0.1 -0.1 0.0 0.0 0.0 -0.3 0.0 -0.1 0.0
Asymmetry_of_sub_mean 0.7 0.8 0.8 0.8 0.6 0.7 0.8 0.1 0.8
Asymmetry_of_sub_stddev 0.0 -0.1 -0.1 -0.2 -0.1 -0.1 -0.1 0.3 -0.2
Avrg__area_segment -0.4 -0.3 -0.3 -0.2 -0.5 -0.4 -0.2 -0.2 -0.3
Border_length 0.2 0.3 0.4 0.2 0.2 -0.1 0.1 0.2 0.3
Compactness 0.5 0.6 0.5 0.1 0.8 0.2 0.2 0.7 0.4
Compactness__polygon -0.6 -0.6 -0.7 -0.5 -0.9 -0.4 -0.4 -0.5 -0.7
Contrast_to_neig_pix_Asp 0.1 0.1 0.0 -0.1 -0.1 -0.1 0.1 0.0 0.1
Contrast_to_neig_pix_DEM -0.1 -0.4 -0.3 -0.2 0.0 0.0 -0.2 -0.2 -0.1
Contrast_to_neig_pix_Hom 0.0 -0.1 0.0 0.3 0.0 0.0 0.1 0.0 0.0
Contrast_to_neig_pix_Phot -0.1 0.0 -0.3 0.0 0.0 -0.1 0.1 0.1 -0.2
Curvature_length 0.0 0.0 0.1 0.0 0.2 0.1 -0.2 0.2 0.2
Density_of_sub_stddev 0.2 0.2 0.2 0.1 0.1 0.1 0.2 0.2 0.2
Direction_of_sub_mean 0.0 0.0 0.0 0.1 0.1 0.0 0.1 0.0 0.0
Direction_of_sub_stddev -0.1 -0.2 -0.2 -0.3 -0.1 -0.3 -0.4 0.0 -0.4
Distance_to_super_obj 0.0 0.1 0.2 0.1 0.0 -0.2 0.0 0.0 0.0
Elliptic_distance_to_super 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.2
Is_center_of_super_object -0.1 0.1 0.0 0.0 0.0 0.1 0.0 0.1 0.0
Is_end_of_super_object 0.0 0.0 0.0 0.1 -0.1 0.0 0.0 0.0 0.0
Length_of_longest_edge 0.1 0.1 0.1 0.2 0.0 0.0 0.1 0.0 0.2
Length_Width 0.8 0.8 0.9 0.8 0.8 0.8 0.8 0.2 0.8
Main_direction 0.0 0.1 0.0 0.1 0.0 -0.1 0.1 0.0 0.1
Mean_Aspect -0.1 0.0 0.1 0.0 0.0 0.1 0.0 0.1 0.0
Mean_DEM 0.0 0.0 -0.2 -0.1 0.0 -0.1 0.0 0.0 -0.1
Mean_Diff__to_neig_DEM 0.0 -0.1 -0.2 -0.1 0.0 -0.1 0.0 -0.1 -0.1
Mean_Diff__to_neig_Photo 0.1 0.1 0.1 0.1 -0.1 -0.1 -0.1 0.2 0.0
Mean_Photo 0.2 0.1 0.0 0.0 -0.1 -0.1 -0.1 0.0 -0.1
Mean_TWI 0.1 0.1 0.1 0.2 0.0 0.1 0.0 0.0 0.0
Mean_diff_to_bri_neigh_asp 0.0 0.0 0.0 0.0 0.2 0.0 0.1 0.3 0.1
Mean_diff_to_bri_neigh_DEM -0.1 0.1 0.0 0.0 0.0 0.0 0.2 0.2 0.0
Mean_diff_to_bri_neigh_hom 0.1 0.1 0.2 -0.1 0.1 0.0 0.0 0.0 0.1
Mean_diff_to_bri_neigh_pho 0.2 0.1 0.1 0.1 0.2 0.2 0.1 -0.1 0.1
Mean_diff_to_bri_neigh_TWI -0.1 0.0 0.0 -0.1 0.0 0.0 0.0 0.0 0.0
Mean_diff_to_bri_neigh_var 0.2 0.2 0.4 0.3 0.1 -0.1 0.1 0.1 0.1
Mean_diff__to_super_Asp -0.1 0.1 -0.1 0.0 -0.3 -0.1 0.0 0.0 0.0
Mean_diff__to_super_Pho 0.1 -0.1 0.1 0.0 -0.1 0.1 -0.1 0.0 0.0
Mean_of_sub_stddev_Hom -0.1 0.2 0.2 0.3 0.4 0.1 0.2 -0.2 0.2
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Mean_of_sub_stddev_Phot -0.1 0.0 0.2 0.2 0.3 0.1 0.2 -0.1 0.1
Mean_of_sub_stddev_TWI 0.0 0.1 0.0 -0.1 0.1 0.0 0.0 0.1 0.1
Ratio_to_super_Aspect 0.0 0.0 0.1 0.0 0.0 -0.1 -0.1 0.0 0.0
Ratio_to_super_DEM 0.0 0.0 -0.1 0.0 -0.1 -0.1 0.1 -0.1 0.0
Ratio_to_super_WI 0.0 0.1 0.0 0.1 -0.1 0.0 0.1 0.0 0.2
Rel__area_to_super_object -0.1 0.0 0.0 0.1 -0.1 0.0 0.0 0.0 -0.1
Standard_deviation_Aspect 0.1 0.2 0.0 -0.1 0.1 0.3 -0.1 0.0 0.0
Standard_deviation_DEM 0.0 0.0 0.1 -0.2 0.4 0.0 0.1 0.3 0.2
Standard_deviation_Entropy 0.0 0.1 0.1 0.3 0.1 0.1 0.2 0.1 0.1
Standard_deviation_Photo -0.1 0.0 0.0 -0.1 0.2 0.0 0.1 0.0 -0.1
Standard_deviation_TWI -0.1 0.1 0.1 -0.1 -0.1 0.0 0.1 0.1 0.1
StdDev_Ratio_to_super_Asp 0.1 0.3 0.0 0.1 0.1 0.2 0.1 0.1 0.0
StdDev_Ratio_to_super_Cor 0.0 0.0 0.0 0.0 0.0 0.0 -0.1 -0.1 0.0
StdDev_Ratio_to_super_DEM 0.0 0.0 0.1 0.0 0.1 0.1 0.0 0.1 0.2
StdDev_Ratio_to_super_Ent -0.1 -0.1 -0.2 0.0 0.2 0.1 0.1 0.1 -0.1
StdDev_Ratio_to_super_Pho -0.1 -0.1 0.0 -0.1 -0.1 0.1 0.1 -0.2 -0.1
StdDev_Ratio_to_super_TWI 0.1 0.0 0.1 0.0 0.1 0.1 0.1 0.0 0.0
StdDev__to_neighbor_Aspec 0.1 0.2 0.3 0.1 0.1 0.2 0.1 0.2 0.3
StdDev__to_neighbor_Corre 0.1 0.1 -0.1 -0.1 0.0 0.0 -0.1 -0.3 -0.1
StdDev__to_neighbor_Entro 0.1 0.2 0.1 0.1 0.0 0.0 0.1 0.1 0.1
StdDev__to_neighbor_Photo 0.1 0.2 0.2 0.1 0.2 0.0 0.2 0.1 0.1
StdDev__to_neighbor_Varia 0.0 0.1 0.1 0.0 0.2 -0.1 0.1 0.1 0.0
Stddev_Curvature_main -0.1 0.1 -0.2 -0.1 -0.2 -0.1 -0.1 -0.5 -0.3

 
Landscape position cluster Riparian Landscapes Upland Landscapes 
Factor Rank 12 10 9 8 14 6 5 12 
Area 0.0 0.0 0.0 0.0 -0.1 0.0 0.0 -0.1 
Area_of_sub_objects__mean 0.1 -0.1 0.0 0.0 -0.2 0.0 0.0 0.1 
Area_of_sub_objects__stddev 0.0 0.0 0.0 0.0 0.1 -0.1 0.0 0.0 
Asymmetry_of_sub_mean 0.0 0.0 0.1 -0.1 0.2 0.1 0.1 0.2 
Asymmetry_of_sub_stddev 0.0 -0.1 0.0 -0.1 0.0 -0.1 0.0 -0.2 
Avrg__area_segment 0.0 0.0 0.0 0.0 -0.1 0.0 -0.1 0.0 
Border_length 0.1 0.0 0.0 -0.1 -0.1 0.0 0.0 -0.2 
Compactness 0.2 0.1 0.0 0.0 0.0 0.0 0.2 0.0 
Compactness__polygon -0.1 0.0 0.1 0.1 0.0 0.1 -0.1 0.1 
Contrast_to_neig_pix_Asp 0.1 0.0 -0.1 0.0 0.2 -0.2 0.0 0.1 
Contrast_to_neig_pix_DEM 0.0 -0.3 -0.1 -0.1 0.1 0.0 -0.2 -0.2 
Contrast_to_neig_pix_Hom -0.1 0.0 -0.1 0.1 0.0 0.1 -0.1 0.1 
Contrast_to_neig_pix_Phot 0.0 0.0 0.1 0.0 0.0 -0.2 0.1 0.1 
Curvature_length 0.1 0.1 0.0 0.1 0.0 -0.1 0.0 0.1 
Density_of_sub_stddev 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 
Direction_of_sub_mean 0.0 0.0 0.0 -0.1 0.0 0.1 0.0 -0.1 
Direction_of_sub_stddev 0.0 0.1 0.0 0.0 0.0 0.1 0.1 -0.2 
Distance_to_super_obj -0.1 0.0 0.1 0.0 -0.4 -0.2 0.0 0.0 
Elliptic_distance_to_super 0.1 -0.1 -0.1 0.0 -0.1 -0.1 0.0 -0.1 
Is_center_of_super_object 0.0 -0.1 0.0 0.0 0.0 0.0 -0.1 -0.1 
Is_end_of_super_object 0.0 0.0 0.1 0.0 0.1 0.0 0.1 0.1 
Length_of_longest_edge 0.0 0.0 0.0 -0.1 0.0 0.0 0.0 0.2 
Length_Width -0.1 0.0 0.1 -0.1 0.1 0.0 0.0 0.0 
Main_direction 0.0 0.0 0.0 0.0 0.0 0.0 -0.1 0.0 
Mean_Aspect 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 
Mean_DEM 0.0 0.0 0.0 0.4 0.0 0.0 -0.1 0.0 
Mean_Diff__to_neig_DEM -0.2 -0.2 -0.3 0.7 0.0 -0.2 -0.6 -0.2 
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Mean_Diff__to_neig_Photo 0.0 0.0 -0.1 0.0 0.1 0.0 -0.2 0.0 
Mean_Photo 0.0 0.0 -0.1 0.0 0.2 0.1 -0.2 0.0 
Mean_TWI 0.1 0.1 0.3 -0.2 0.0 0.5 0.5 0.1 
Mean_diff_to_bri_neigh_asp 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 
Mean_diff_to_bri_neigh_DEM 0.0 0.0 0.0 -0.4 0.0 -0.1 0.2 0.0 
Mean_diff_to_bri_neigh_hom 0.2 0.1 0.0 0.0 0.0 0.0 -0.1 0.1 
Mean_diff_to_bri_neigh_pho 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 
Mean_diff_to_bri_neigh_TWI -0.1 -0.1 0.0 0.0 -0.1 -0.1 -0.2 -0.1 
Mean_diff_to_bri_neigh_var -0.1 0.0 -0.1 0.0 0.1 0.0 0.0 0.1 
Mean_diff__to_super_Asp 0.0 0.0 0.0 0.0 0.2 0.0 0.1 0.1 
Mean_diff__to_super_Pho -0.2 -0.2 -0.3 0.1 0.0 0.0 -0.5 -0.1 
Mean_of_sub_stddev_Hom 0.0 0.1 -0.1 0.1 -0.1 0.1 0.0 0.1 
Mean_of_sub_stddev_Phot 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.1 
Mean_of_sub_stddev_TWI 0.1 0.0 0.1 -0.1 0.2 0.3 0.1 0.1 
Ratio_to_super_Aspect 0.0 -0.1 0.0 0.0 -0.1 -0.1 -0.1 -0.2 
Ratio_to_super_DEM -0.7 -0.7 -0.7 0.7 -0.3 -0.5 -0.7 -0.6 
Ratio_to_super_WI 0.8 0.8 0.8 -0.7 0.1 0.9 0.9 0.7 
Rel__area_to_super_object 0.0 0.0 0.1 0.0 0.2 0.1 0.0 0.0 
Standard_deviation_Aspect 0.0 0.1 0.0 -0.1 0.4 0.1 0.0 0.1 
Standard_deviation_DEM -0.1 -0.1 -0.1 0.4 0.0 -0.1 -0.2 -0.1 
Standard_deviation_Entropy 0.0 0.1 -0.1 0.1 0.0 0.0 0.0 0.1 
Standard_deviation_Photo 0.1 0.1 0.1 0.0 0.0 -0.1 0.0 0.1 
Standard_deviation_TWI 0.2 0.2 0.3 -0.2 0.2 0.5 0.4 0.2 
StdDev_Ratio_to_super_Asp 0.1 0.3 0.2 -0.2 0.6 0.2 0.2 0.1 
StdDev_Ratio_to_super_Cor -0.3 -0.1 -0.3 0.1 -0.1 -0.1 -0.3 -0.1 
StdDev_Ratio_to_super_DEM -0.4 -0.4 -0.3 0.3 0.1 -0.3 -0.2 -0.1 
StdDev_Ratio_to_super_Ent 0.1 0.4 0.1 -0.1 0.0 0.1 0.2 0.4 
StdDev_Ratio_to_super_Pho -0.1 0.1 0.2 0.1 0.1 -0.1 0.0 0.0 
StdDev_Ratio_to_super_TWI 0.3 0.6 0.8 -0.4 0.7 0.9 0.8 0.7 
StdDev__to_neighbor_Aspec 0.0 -0.1 0.0 0.2 0.1 -0.1 0.0 0.1 
StdDev__to_neighbor_Corre -0.1 0.0 0.0 0.1 0.1 -0.1 0.0 0.0 
StdDev__to_neighbor_Entro 0.0 -0.1 0.0 0.0 0.0 0.0 0.1 0.0 
StdDev__to_neighbor_Photo 0.0 -0.1 0.0 0.1 0.0 0.0 0.0 0.0 
StdDev__to_neighbor_Varia 0.0 0.0 0.1 0.0 0.0 -0.1 -0.1 0.1 
Stddev_Curvature_main 0.1 0.0 0.0 0.0 0.1 -0.1 0.1 0.1 

 
Position within super-object 
cluster Riparian Landscapes Upland Landscapes 
Factor Rank 11 13 11 10 11 11 13 13 
Area 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 
Area_of_sub_objects__mean 0.0 0.0 0.0 -0.1 0.2 -0.1 -0.1 0.0 
Area_of_sub_objects__stddev 0.0 0.0 0.0 -0.1 0.0 0.0 0.0 0.0 
Asymmetry_of_sub_mean 0.0 -0.1 0.0 0.0 0.2 -0.1 0.0 0.0 
Asymmetry_of_sub_stddev -0.1 -0.1 0.0 0.0 0.0 0.1 -0.1 0.0 
Avrg__area_segment 0.1 0.0 -0.1 0.0 0.0 0.0 0.0 0.0 
Border_length 0.0 0.0 0.0 -0.1 0.0 0.0 0.0 0.0 
Compactness 0.0 -0.1 -0.1 0.0 0.0 -0.1 0.0 0.0 
Compactness__polygon 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 
Contrast_to_neig_pix_Asp 0.0 0.1 -0.1 0.0 0.0 0.1 0.0 0.0 
Contrast_to_neig_pix_DEM 0.0 0.0 0.0 -0.2 -0.1 0.0 0.1 0.0 
Contrast_to_neig_pix_Hom 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0 
Contrast_to_neig_pix_Phot 0.0 -0.1 0.0 0.0 0.0 -0.1 -0.1 0.1 
Curvature_length 0.0 -0.1 -0.1 0.1 0.0 -0.1 -0.2 -0.1 
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Density_of_sub_stddev 0.0 0.0 0.0 0.0 0.1 -0.1 -0.1 0.0 
Direction_of_sub_mean 0.0 -0.1 0.0 0.1 0.0 0.0 0.1 -0.1 
Direction_of_sub_stddev -0.1 0.0 0.0 0.0 -0.1 0.1 0.1 0.0 
Distance_to_super_obj 0.2 0.2 0.3 0.1 -0.2 0.2 0.2 -0.2 
Elliptic_distance_to_super 0.1 0.2 0.0 0.2 -0.1 0.1 0.1 -0.1 
Is_center_of_super_object -0.9 -0.9 -0.9 -0.9 0.9 -0.8 -0.9 0.9 
Is_end_of_super_object 0.9 0.8 0.9 0.9 -0.9 0.8 0.8 -0.9 
Length_of_longest_edge 0.1 0.0 -0.1 0.0 0.0 0.1 0.0 -0.1 
Length_Width 0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 
Main_direction 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Mean_Aspect 0.0 0.0 0.1 0.0 0.1 0.0 0.1 0.0 
Mean_DEM 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 
Mean_Diff__to_neig_DEM 0.0 0.1 0.0 -0.1 0.0 -0.1 -0.1 -0.1 
Mean_Diff__to_neig_Photo 0.0 0.0 0.0 0.0 -0.1 0.0 0.1 0.0 
Mean_Photo 0.0 0.0 0.0 0.0 -0.1 0.0 0.1 0.0 
Mean_TWI 0.0 -0.1 0.0 0.1 -0.1 0.0 0.0 -0.1 
Mean_diff_to_bri_neigh_asp 0.1 0.0 0.1 0.0 0.0 0.1 0.1 0.0 
Mean_diff_to_bri_neigh_DEM 0.0 0.1 0.0 0.0 -0.1 0.1 0.1 0.1 
Mean_diff_to_bri_neigh_hom 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 
Mean_diff_to_bri_neigh_pho 0.0 0.1 0.0 0.1 0.0 0.0 0.0 -0.1 
Mean_diff_to_bri_neigh_TWI 0.0 0.0 0.0 -0.1 0.0 -0.1 0.0 0.1 
Mean_diff_to_bri_neigh_var 0.1 0.1 0.1 0.1 -0.1 0.0 0.0 0.0 
Mean_diff__to_super_Asp 0.0 0.0 -0.1 -0.1 -0.1 0.0 0.0 -0.1 
Mean_diff__to_super_Pho 0.0 0.1 -0.1 -0.1 -0.1 0.1 0.2 0.0 
Mean_of_sub_stddev_Hom 0.0 -0.1 0.0 0.1 0.1 0.0 -0.1 0.1 
Mean_of_sub_stddev_Phot 0.0 -0.1 0.0 0.2 0.1 0.0 -0.1 0.0 
Mean_of_sub_stddev_TWI 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.1 
Ratio_to_super_Aspect -0.1 -0.2 0.1 0.2 0.0 -0.2 0.0 -0.1 
Ratio_to_super_DEM 0.0 0.0 0.0 0.1 0.0 0.1 -0.1 0.0 
Ratio_to_super_WI 0.1 0.0 0.0 0.1 -0.1 0.0 0.0 -0.1 
Rel__area_to_super_object 0.3 0.3 0.3 0.3 -0.2 0.3 0.3 -0.2 
Standard_deviation_Aspect 0.1 0.1 0.0 0.0 0.1 0.2 0.1 0.0 
Standard_deviation_DEM 0.0 0.1 0.0 0.0 0.0 0.2 0.1 0.0 
Standard_deviation_Entropy -0.1 0.0 -0.1 0.1 0.0 -0.1 0.0 0.1 
Standard_deviation_Photo -0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.1 
Standard_deviation_TWI 0.0 0.0 0.0 -0.1 0.0 0.0 0.0 0.0 
StdDev_Ratio_to_super_Asp 0.1 0.4 0.2 0.3 0.0 0.5 0.2 -0.2 
StdDev_Ratio_to_super_Cor 0.0 0.1 -0.1 0.0 0.1 0.1 0.1 0.0 
StdDev_Ratio_to_super_DEM 0.3 0.2 0.2 0.3 -0.2 0.3 0.2 -0.1 
StdDev_Ratio_to_super_Ent 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 
StdDev_Ratio_to_super_Pho 0.1 0.1 0.1 0.2 0.0 0.2 0.0 -0.1 
StdDev_Ratio_to_super_TWI 0.2 0.1 0.1 0.2 -0.1 0.1 0.1 -0.1 
StdDev__to_neighbor_Aspec 0.1 0.2 0.1 -0.1 0.0 0.1 0.1 0.0 
StdDev__to_neighbor_Corre 0.0 0.0 0.0 -0.1 0.0 0.0 0.0 0.0 
StdDev__to_neighbor_Entro 0.0 0.1 -0.1 0.1 0.0 0.0 0.0 0.0 
StdDev__to_neighbor_Photo 0.0 0.2 0.0 0.1 0.0 0.0 0.0 0.0 
StdDev__to_neighbor_Varia 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 
Stddev_Curvature_main 0.0 0.1 0.0 -0.2 0.0 -0.1 0.2 0.3 

 
Object orientation cluster Riparian Landscapes Upland Landscapes 
Factor Rank 15 15 12 14 13 12 14 16 
Area 0.0 0.1 0.1 0.0 0.0 -0.2 0.0 0.0 
Area_of_sub_objects__mean 0.0 0.0 0.1 0.1 0.0 -0.1 0.0 -0.1 
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Area_of_sub_objects__stddev 0.0 0.1 0.1 0.0 0.0 0.0 0.1 0.0 
Asymmetry_of_sub_mean 0.1 0.0 0.1 0.0 0.2 -0.1 0.1 0.1 
Asymmetry_of_sub_stddev 0.0 0.0 0.1 0.0 0.0 -0.1 0.1 0.0 
Avrg__area_segment 0.0 0.0 0.0 0.0 0.0 -0.1 0.0 0.0 
Border_length 0.0 0.2 0.1 0.1 0.0 -0.3 -0.1 -0.1 
Compactness 0.1 0.1 -0.2 0.0 0.0 -0.1 0.0 0.0 
Compactness__polygon 0.0 -0.1 0.0 -0.1 0.0 0.1 0.1 0.0 
Contrast_to_neig_pix_Asp 0.0 0.1 -0.1 0.1 -0.3 0.3 -0.1 -0.2 
Contrast_to_neig_pix_DEM 0.2 0.2 0.2 -0.1 0.2 0.0 0.1 0.1 
Contrast_to_neig_pix_Hom 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.0 
Contrast_to_neig_pix_Phot 0.0 0.0 0.0 0.0 0.0 -0.1 0.0 0.0 
Curvature_length 0.1 0.0 -0.1 -0.1 0.0 0.0 0.1 0.0 
Density_of_sub_stddev 0.0 0.0 0.0 0.0 0.1 -0.1 0.1 0.0 
Direction_of_sub_mean 0.8 0.8 0.8 0.8 0.8 0.9 0.8 0.8 
Direction_of_sub_stddev 0.0 0.0 -0.1 0.1 -0.1 0.0 -0.2 -0.2 
Distance_to_super_obj 0.0 0.1 0.1 0.0 0.0 -0.1 -0.1 0.0 
Elliptic_distance_to_super 0.0 -0.1 0.0 0.1 0.0 0.1 0.0 0.0 
Is_center_of_super_object 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.1 
Is_end_of_super_object 0.0 -0.1 0.0 0.1 0.0 0.1 0.1 0.0 
Length_of_longest_edge -0.1 -0.2 -0.1 -0.1 0.0 0.0 0.0 0.0 
Length_Width -0.1 0.1 -0.1 0.1 0.0 -0.1 0.1 0.0 
Main_direction 0.8 0.9 0.9 0.8 0.8 0.9 0.8 0.8 
Mean_Aspect 0.0 -0.1 0.0 0.1 0.1 0.1 0.1 -0.1 
Mean_DEM -0.1 0.0 0.1 0.0 -0.1 -0.1 0.1 0.0 
Mean_Diff__to_neig_DEM 0.0 0.1 0.0 0.0 -0.2 -0.1 0.1 -0.1 
Mean_Diff__to_neig_Photo 0.0 0.0 -0.1 0.0 0.0 0.1 0.1 0.0 
Mean_Photo 0.0 0.0 0.0 0.0 -0.1 0.1 0.0 0.0 
Mean_TWI -0.1 -0.1 0.0 0.1 0.1 0.0 -0.1 -0.2 
Mean_diff_to_bri_neigh_asp 0.1 -0.1 -0.1 0.0 0.0 0.0 -0.1 -0.1 
Mean_diff_to_bri_neigh_DEM 0.0 -0.1 0.2 0.0 0.1 -0.1 0.0 0.1 
Mean_diff_to_bri_neigh_hom -0.1 0.0 -0.1 0.0 0.1 0.0 0.1 0.1 
Mean_diff_to_bri_neigh_pho 0.0 0.0 0.0 0.1 0.0 0.0 -0.1 0.1 
Mean_diff_to_bri_neigh_TWI 0.0 0.0 -0.1 -0.1 0.1 0.0 0.0 0.0 
Mean_diff_to_bri_neigh_var -0.1 0.1 -0.2 0.2 0.0 0.0 0.1 0.1 
Mean_diff__to_super_Asp 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 
Mean_diff__to_super_Pho -0.1 -0.1 -0.1 -0.1 0.0 0.1 0.0 0.0 
Mean_of_sub_stddev_Hom 0.0 0.0 -0.1 -0.1 0.0 0.0 0.0 0.0 
Mean_of_sub_stddev_Phot 0.0 0.0 0.0 -0.1 0.0 0.0 0.0 0.1 
Mean_of_sub_stddev_TWI 0.0 0.0 0.0 0.0 0.1 0.0 0.0 -0.1 
Ratio_to_super_Aspect 0.0 0.0 0.0 0.0 -0.1 -0.2 0.1 0.0 
Ratio_to_super_DEM 0.0 0.0 0.1 0.0 0.0 -0.1 0.0 0.0 
Ratio_to_super_WI -0.1 0.0 0.2 0.1 0.1 0.0 0.0 -0.1 
Rel__area_to_super_object 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 
Standard_deviation_Aspect 0.0 -0.1 0.0 -0.1 -0.1 0.0 -0.1 0.0 
Standard_deviation_DEM 0.0 0.0 0.1 0.1 0.1 -0.1 0.0 0.2 
Standard_deviation_Entropy -0.1 -0.1 0.0 0.1 0.0 0.0 0.1 0.1 
Standard_deviation_Photo 0.1 0.0 0.1 -0.1 0.0 0.0 -0.1 0.1 
Standard_deviation_TWI 0.0 0.0 0.0 -0.1 0.1 0.0 -0.1 -0.1 
StdDev_Ratio_to_super_Asp -0.1 -0.1 0.0 0.0 -0.1 -0.2 -0.1 0.1 
StdDev_Ratio_to_super_Cor 0.0 0.0 0.0 0.0 0.0 0.0 -0.1 -0.1 
StdDev_Ratio_to_super_DEM 0.1 0.1 0.0 0.1 0.1 0.0 0.0 0.0 
StdDev_Ratio_to_super_Ent 0.1 0.0 0.2 0.0 0.0 0.0 0.2 0.0 
StdDev_Ratio_to_super_Pho 0.0 0.0 -0.1 -0.1 -0.1 0.0 -0.2 -0.1 
StdDev_Ratio_to_super_TWI 0.0 0.1 -0.1 0.1 0.1 0.0 -0.1 0.0 
StdDev__to_neighbor_Aspec 0.0 -0.1 0.0 0.1 -0.2 0.1 -0.1 -0.1 
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StdDev__to_neighbor_Corre 0.1 0.0 0.2 -0.2 -0.1 -0.1 -0.1 0.1 
StdDev__to_neighbor_Entro -0.1 0.1 -0.1 0.2 0.0 -0.1 0.0 0.1 
StdDev__to_neighbor_Photo 0.0 0.0 -0.1 0.0 0.0 -0.1 0.1 0.1 
StdDev__to_neighbor_Varia 0.0 0.1 0.0 -0.1 0.1 -0.1 0.1 0.1 
Stddev_Curvature_main 0.1 -0.1 -0.3 0.1 0.1 0.0 -0.2 0.1 
 
Slope orientation 
cluster 

Riparian Landscapes Upland Landscapes 

Factor Rank 16 18 12 13 13 16 8 17 14 11 15 17 18
Area 0.0 0.0 0.0 0.1 -0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 -0.1
Area_sub_mean 0.0 0.1 -0.1 0.1 -0.2 0.1 0.0 0.0 -0.1 -0.1 0.1 0.0 -0.1
Area_sub_stddev 0.1 -0.1 0.0 0.0 0.0 -0.1 -0.1 0.0 -0.1 -0.1 0.0 0.0 -0.1
Asym_of_sub_mean -0.1 -0.1 0.1 0.0 0.0 0.1 0.2 0.1 -0.2 0.0 -0.1 0.0 0.1
Asym_of_sub_stddev 0.0 0.0 0.0 -0.1 0.1 0.0 0.0 -0.1 0.1 -0.1 0.1 -0.1 0.0
Avrg__area_segment 0.0 0.2 0.0 -0.1 -0.1 0.0 0.0 0.1 -0.1 0.1 0.0 0.0 0.1
Border_length 0.0 0.0 -0.1 0.1 -0.1 0.1 -0.1 0.0 0.0 -0.1 0.0 0.0 -0.2
Compactness 0.0 0.1 -0.1 0.0 0.0 0.0 0.1 -0.1 -0.1 -0.1 0.0 -0.1 -0.1
Compactness_poly 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.1 -0.1 0.2 0.1 -0.1 0.2
Con_neig_pix_Asp 0.1 -0.1 0.1 0.1 0.0 0.0 -0.2 -0.2 0.2 0.0 0.1 0.1 0.0
Con_neig_pix_DEM 0.2 -0.1 0.1 -0.1 0.0 0.0 0.0 0.1 -0.1 -0.1 -0.1 0.0 0.0
Cont_neig_pix_Hom 0.1 -0.1 0.0 0.0 -0.1 -0.2 0.1 0.1 -0.1 0.0 0.0 0.0 0.0
Cont_neig_pix_Phot -0.1 0.1 -0.1 -0.1 0.0 0.0 0.0 0.0 0.0 0.1 -0.1 0.0 0.0
Curvature_length 0.1 0.0 -0.1 -0.1 0.0 0.0 0.0 -0.1 0.1 0.1 -0.2 0.0 0.1
Density_ sub_stddev 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.1 -0.1 0.0
Direction_sub_mean 0.0 -0.1 0.0 0.1 0.1 0.0 -0.1 0.0 0.0 0.1 0.1 0.0 0.0
Direction_sub_stddev 0.1 0.0 0.0 0.0 0.1 0.0 -0.1 -0.1 0.1 0.0 0.0 0.1 -0.1
Distance_ super_obj 0.0 -0.1 0.0 0.0 0.1 0.0 -0.2 0.0 0.0 0.0 0.0 0.0 -0.1
Elliptic_dist_to_super 0.0 0.0 -0.1 0.1 -0.1 0.0 0.0 0.0 -0.1 0.0 0.0 0.0 0.2
Is_center_super_obj 0.0 0.0 0.0 0.0 0.1 -0.1 -0.1 0.1 0.1 0.0 0.0 0.0 0.0
Is_end_ super_object 0.0 0.0 -0.1 0.0 0.0 0.0 0.0 0.1 -0.1 0.0 0.0 0.0 0.1
Length_longest_edge -0.2 0.2 -0.1 -0.2 -0.1 0.0 0.0 0.0 -0.2 0.0 0.1 -0.1 0.1
Length_Width -0.1 0.0 0.1 0.0 0.0 -0.1 0.1 0.0 0.0 0.0 -0.1 0.0 0.1
Main_direction 0.0 0.0 0.0 0.1 0.0 0.0 0.0 -0.1 -0.1 0.1 0.0 0.0 0.0
Mean_Aspect 0.8 0.2 0.8 0.8 0.9 0.1 -0.7 0.1 0.3 0.8 0.1 0.8 0.2
Mean_DEM 0.0 0.0 0.0 0.0 -0.1 0.0 0.0 -0.1 0.0 0.0 0.0 -0.1 0.0
Mean_Dif_neig_DEM 0.0 0.1 0.0 0.1 -0.1 0.1 0.1 0.0 0.0 -0.1 -0.1 0.0 -0.1
Mean_Dif_neig_Pho -0.1 0.0 0.0 -0.1 -0.1 0.0 0.2 0.0 -0.2 -0.3 0.0 -0.1 0.1
Mean_Photo -0.2 0.0 -0.2 -0.2 0.0 -0.1 0.6 0.1 -0.1 -0.4 0.1 -0.4 0.0
Mean_TWI 0.0 0.0 -0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 -0.1 -0.1 0.1
Mn_dif_bri_nei_asp -0.7 -0.2 -0.7 -0.8 -0.8 -0.1 0.7 -0.1 -0.4 -0.6 -0.1 -0.7 -0.1
Mn_dif_ bri_nei_DEM 0.0 0.0 0.1 0.1 0.2 -0.1 0.0 0.0 0.0 0.3 0.0 -0.1 0.1
Mn_dif_ bri_nei_hom -0.2 0.1 0.1 0.0 0.1 0.1 -0.2 -0.2 0.0 0.0 0.0 0.1 -0.1
Mn_dif_bri_nei_pho -0.1 0.0 -0.1 0.0 0.0 0.0 -0.2 -0.1 0.2 0.1 0.0 0.0 -0.1
Mn_dif_ bri_nei_TWI 0.0 0.0 0.1 0.0 0.1 0.0 -0.1 0.1 0.0 0.1 0.0 0.1 0.0
Mn_dif_bri_nei_var 0.0 0.0 0.0 0.0 0.1 -0.2 -0.1 -0.1 -0.1 -0.1 -0.1 0.0 0.0
Mn_diff_super_Asp 0.2 0.8 0.7 0.6 0.3 0.8 -0.2 0.5 0.8 0.4 0.7 0.2 0.8
Mn_diff_super_Pho 0.2 -0.2 0.0 0.1 0.0 0.0 0.0 -0.2 -0.2 -0.2 0.0 0.1 -0.2
Mn_sub_stddev_Hom -0.1 0.0 -0.1 0.0 0.0 0.1 -0.1 0.0 -0.1 0.1 -0.2 0.2 0.0
Mn_sub_stddev_Phot -0.1 0.0 0.0 0.0 0.1 0.0 -0.1 0.1 0.0 0.1 -0.1 0.0 0.0
Mn_sub_stddev_TWI 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.1 0.0 -0.1 0.0 -0.1
Ratio_ super_Aspect 0.0 0.8 0.3 0.2 0.0 0.8 -0.1 0.7 0.5 0.0 0.8 0.0 0.7
Ratio_ super_DEM 0.1 0.0 0.1 0.0 0.1 0.1 0.1 0.2 0.1 0.1 -0.1 0.0 0.0
Ratio_ super_WI 0.1 0.0 0.1 0.0 -0.1 0.2 0.1 -0.1 0.0 0.0 0.0 0.1 -0.1
Rel_area_to_super -0.1 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 -0.1
Stddev _Aspect 0.0 -0.1 0.1 -0.1 -0.1 0.0 0.4 0.0 0.1 0.2 0.0 0.0 0.1
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Stddev _DEM 0.0 0.0 0.1 0.0 0.0 0.0 0.0 -0.1 0.0 0.3 0.0 -0.1 0.0
Stddev _Entropy -0.1 0.0 -0.1 -0.1 -0.1 -0.1 -0.1 0.0 0.0 0.1 -0.1 0.3 0.0
Stddev _Photo -0.1 0.0 -0.1 0.0 0.1 0.0 -0.1 0.1 0.1 0.2 -0.1 0.0 0.0
Stddev _TWI 0.0 0.0 0.0 0.0 -0.1 0.1 0.1 0.1 -0.1 0.0 -0.1 0.0 0.0
StD_Ratio_sup_Asp 0.1 -0.1 0.0 -0.1 0.1 -0.1 0.1 0.0 0.2 0.2 0.1 0.0 0.0
StD_Ratio_sup_Cor 0.1 -0.1 -0.1 0.0 0.0 -0.1 0.1 -0.1 0.1 0.0 0.0 -0.1 0.0
StD_Ratio_sup_DEM -0.1 0.0 0.0 0.0 0.0 0.0 0.2 0.0 -0.1 -0.1 0.0 -0.1 0.0
StD_Ratio_sup_Ent 0.0 0.1 0.0 -0.1 -0.1 -0.1 0.0 0.0 0.1 0.0 -0.2 0.2 0.0
StD_Ratio_sup_Pho 0.1 0.0 -0.1 0.0 0.0 0.0 0.2 0.2 0.1 0.2 0.0 -0.1 0.2
StD_Ratio_sup_TWI 0.1 0.0 -0.1 0.1 -0.1 0.3 0.1 0.0 0.0 -0.1 -0.1 -0.1 0.0
StdDev_to_nei_Asp -0.1 0.1 0.0 -0.2 -0.4 0.1 0.3 0.0 0.0 -0.2 0.0 0.0 0.0
StdDev_to_nei_Cor -0.1 0.0 -0.1 -0.2 0.0 0.0 0.3 0.0 -0.1 -0.3 0.1 -0.3 0.0
StdDev_to_neir_Ent -0.2 0.1 -0.1 0.0 0.0 0.0 -0.3 -0.2 0.0 0.0 0.0 0.0 0.0
StdDev_to_nei_Pho 0.0 0.0 -0.1 0.0 0.0 0.0 -0.2 0.0 0.0 0.0 0.0 -0.1 0.0
StdDev_to_nei_Var 0.0 0.0 0.0 0.0 0.1 0.0 -0.1 0.0 0.0 0.1 0.0 0.1 0.0
Stddev_Curv_main 0.0 -0.1 -0.1 0.1 -0.2 0.2 -0.1 0.0 0.0 -0.3 0.2 0.0 0.0
 

Texture context cluster 
Riparian 
Landscapes Upland Landscapes 

Factor Rank 13 16 15 15 18 2 9 10 9
Area 0.0 0.0 -0.1 0.1 -0.1 -0.1 0.1 0.0 -0.1
Area_of_sub_objects__mean -0.1 0.1 0.0 -0.1 0.1 -0.2 0.1 0.0 -0.1
Area_of_sub_objects__stddev 0.0 0.0 -0.1 -0.1 -0.1 0.0 0.1 0.0 0.0
Asymmetry_of_sub_mean 0.1 -0.1 0.0 0.0 0.1 0.1 0.1 0.0 0.1
Asymmetry_of_sub_stddev 0.0 0.0 0.0 0.1 -0.1 0.0 0.0 0.0 -0.1
Avrg__area_segment 0.0 0.1 -0.1 0.0 0.0 -0.2 0.0 0.0 0.0
Border_length -0.1 0.0 -0.1 0.1 0.0 0.2 0.1 0.0 0.0
Compactness -0.1 -0.1 -0.3 -0.1 0.0 0.1 0.2 0.0 0.3
Compactness__polygon 0.1 -0.1 0.0 -0.1 0.0 -0.3 -0.2 0.0 0.0
Contrast_to_neig_pix_Asp 0.0 0.0 0.0 0.1 0.1 -0.1 -0.1 0.1 -0.1
Contrast_to_neig_pix_DEM -0.1 0.2 -0.1 0.0 -0.1 0.1 0.0 -0.1 0.0
Contrast_to_neig_pix_Hom 0.4 0.3 0.4 -0.1 0.0 -0.2 0.3 0.5 -0.2
Contrast_to_neig_pix_Phot -0.2 -0.3 0.0 0.0 0.0 0.0 0.5 0.1 -0.1
Curvature_length 0.0 0.0 -0.1 0.0 0.3 0.2 0.1 0.1 0.1
Density_of_sub_stddev 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0
Direction_of_sub_mean 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Direction_of_sub_stddev 0.0 0.1 0.1 0.1 -0.1 0.1 0.1 -0.1 0.0
Distance_to_super_obj -0.1 0.1 0.1 0.0 -0.1 0.1 0.0 0.0 0.0
Elliptic_distance_to_super 0.0 0.0 0.1 -0.1 -0.1 0.0 0.1 0.0 0.0
Is_center_of_super_object 0.1 -0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Is_end_of_super_object 0.0 0.0 0.0 0.0 -0.1 0.0 0.0 0.1 0.0
Length_of_longest_edge 0.0 0.1 -0.1 -0.1 0.0 -0.1 0.0 -0.2 0.1
Length_Width -0.1 -0.1 0.0 0.1 0.2 0.1 0.0 0.0 0.1
Main_direction 0.0 0.1 -0.1 0.0 0.0 -0.1 0.0 -0.1 0.1
Mean_Aspect 0.0 0.1 0.0 0.0 0.0 0.8 -0.1 -0.1 0.1
Mean_DEM 0.0 -0.1 0.0 0.1 0.1 0.2 -0.1 -0.1 0.3
Mean_Diff__to_neig_DEM 0.0 0.0 0.0 0.0 0.1 0.0 -0.1 0.0 -0.1
Mean_Diff__to_neig_Photo -0.1 0.0 0.2 0.1 -0.1 0.0 -0.2 -0.1 0.1
Mean_Photo 0.0 -0.3 0.1 0.0 0.0 -0.5 0.0 0.3 -0.1
Mean_TWI 0.0 -0.3 0.0 -0.1 0.0 -0.1 0.0 0.0 0.5
Mean_diff_to_bri_neigh_asp 0.0 0.1 0.0 0.0 0.0 -0.4 0.1 -0.1 0.0
Mean_diff_to_bri_neigh_DEM 0.0 -0.1 0.0 0.0 -0.1 -0.2 0.0 0.0 0.0
Mean_diff_to_bri_neigh_hom -0.2 -0.3 -0.3 0.3 0.2 0.7 -0.1 -0.6 0.4
Mean_diff_to_bri_neigh_pho 0.0 -0.1 -0.1 0.0 0.1 0.1 0.1 -0.2 0.3
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Mean_diff_to_bri_neigh_TWI 0.0 -0.1 -0.1 0.9 -0.1 -0.1 0.0 -0.2 0.1
Mean_diff_to_bri_neigh_var 0.4 0.1 0.4 0.1 0.0 0.1 0.0 0.1 0.3
Mean_diff__to_super_Asp 0.0 -0.2 0.0 0.0 0.0 0.1 0.1 0.2 0.0
Mean_diff__to_super_Pho 0.3 0.1 0.7 0.0 -0.1 0.0 -0.3 -0.2 0.1
Mean_of_sub_stddev_Hom 0.2 0.1 0.0 0.1 0.5 0.5 0.2 0.0 0.0
Mean_of_sub_stddev_Phot 0.0 0.0 -0.1 0.0 0.3 0.1 0.1 0.0 0.1
Mean_of_sub_stddev_TWI 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ratio_to_super_Aspect 0.1 -0.1 -0.1 0.1 0.0 0.0 0.1 -0.2 0.0
Ratio_to_super_DEM 0.0 0.0 0.2 0.0 0.0 0.0 -0.2 0.0 0.0
Ratio_to_super_WI 0.1 0.0 0.1 0.0 0.2 0.0 -0.1 0.0 0.1
Rel__area_to_super_object 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Standard_deviation_Aspect -0.1 0.0 0.0 0.0 -0.1 -0.3 0.0 0.1 0.0
Standard_deviation_DEM 0.0 0.0 0.0 0.0 0.1 -0.1 0.0 0.0 0.1
Standard_deviation_Entropy 0.7 0.2 0.2 0.1 0.3 0.7 0.6 0.1 -0.1
Standard_deviation_Photo -0.2 0.0 -0.3 0.0 0.2 0.0 0.1 0.0 0.0
Standard_deviation_TWI 0.0 -0.1 0.0 0.0 0.0 -0.1 -0.1 0.0 0.0
StdDev_Ratio_to_super_Asp 0.1 0.0 0.1 0.0 -0.2 0.0 0.0 0.1 -0.1
StdDev_Ratio_to_super_Cor 0.1 0.2 0.0 -0.2 0.4 -0.2 0.8 -0.2 0.0
StdDev_Ratio_to_super_DEM -0.2 0.0 0.0 0.0 0.1 -0.1 0.0 0.0 0.1
StdDev_Ratio_to_super_Ent 0.8 0.7 0.6 -0.1 0.4 -0.1 0.9 0.6 -0.1
StdDev_Ratio_to_super_Pho 0.1 0.2 -0.1 -0.1 0.3 0.0 0.0 0.0 -0.1
StdDev_Ratio_to_super_TWI 0.0 0.1 0.3 0.0 0.1 0.0 -0.1 0.1 -0.1
StdDev__to_neighbor_Aspec 0.0 0.0 0.1 0.2 -0.1 -0.2 0.0 -0.2 0.2
StdDev__to_neighbor_Corre 0.0 -0.1 0.0 0.7 0.1 0.9 -0.1 0.7 -0.8
StdDev__to_neighbor_Entro 0.0 -0.3 0.0 0.3 0.1 0.9 -0.2 -0.5 0.3
StdDev__to_neighbor_Photo -0.1 0.0 0.1 0.2 0.0 -0.1 0.0 -0.2 0.8
StdDev__to_neighbor_Varia 0.0 0.1 0.0 0.1 0.0 0.5 0.1 0.1 0.3
Stddev_Curvature_main 0.0 -0.2 -0.1 0.0 0.0 0.1 0.0 0.0 0.2

 
Landscape context cluster Riparian Landscapes Upland Landscapes 
Factor Rank 8 17 8 16 7 7 8 8 16 10 14 
Area 0.0 0.0 0.0 -0.1 0.2 -0.2 -0.1 0.0 0.0 0.1 -0.2 
Area_of_sub_objects__mean 0.0 -0.1 0.0 -0.1 0.0 -0.2 -0.1 0.0 -0.2 -0.1 -0.1 
Area_of_sub_objects__stdd 0.0 -0.1 0.0 0.0 0.1 -0.1 -0.2 0.0 0.1 0.0 -0.2 
Asymmetry_of_sub_mean -0.1 -0.2 0.1 0.1 -0.1 -0.1 -0.1 -0.1 0.0 0.1 -0.1 
Asymmetry_of_sub_stddev 0.1 0.0 0.1 -0.1 0.0 0.0 0.0 0.0 -0.1 0.0 0.0 
Avrg__area_segment 0.0 -0.2 0.0 -0.1 0.0 -0.2 -0.1 -0.1 0.0 0.1 -0.1 
Border_length 0.1 0.1 0.1 -0.2 0.2 -0.2 -0.1 0.1 -0.1 0.0 -0.3 
Compactness 0.1 0.1 0.1 -0.1 -0.1 0.0 -0.1 0.1 -0.1 -0.1 -0.2 
Compactness__polygon -0.1 -0.2 0.0 0.1 0.0 0.0 0.0 -0.2 0.1 0.0 0.2 
Contrast_to_neig_pix_Asp 0.0 0.1 -0.2 -0.2 0.0 0.0 0.0 0.2 0.6 0.1 0.2 
Contrast_to_neig_pix_DEM -0.2 0.4 -0.5 0.2 -0.2 0.7 0.7 -0.2 0.6 -0.2 0.7 
Contrast_to_neig_pix_Hom 0.0 -0.2 0.0 0.0 -0.3 -0.1 -0.1 0.1 -0.1 0.0 0.0 
Contrast_to_neig_pix_Phot 0.0 0.1 0.0 0.1 0.0 0.1 0.1 -0.4 0.1 0.0 0.2 
Curvature_length 0.0 0.1 0.0 -0.1 0.0 0.2 0.1 0.0 0.1 0.0 -0.1 
Density_of_sub_stddev 0.1 -0.1 0.1 -0.1 0.0 0.0 -0.1 0.1 -0.1 0.1 -0.1 
Direction_of_sub_mean 0.1 0.0 -0.1 0.1 -0.2 0.0 -0.1 0.0 0.0 -0.1 0.0 
Direction_of_sub_stddev 0.0 0.2 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.0 -0.2 
Distance_to_super_obj 0.1 0.0 0.0 -0.1 -0.2 -0.1 -0.2 0.0 0.1 0.1 -0.1 
Elliptic_distance_to_super 0.0 0.0 0.0 -0.1 0.0 0.0 -0.1 -0.1 0.0 0.0 0.0 
Is_center_of_super_object 0.0 0.0 0.0 -0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 
Is_end_of_super_object 0.0 0.0 0.0 0.0 -0.1 0.1 0.0 0.0 0.0 0.0 0.0 
Length_of_longest_edge 0.0 -0.2 0.1 0.0 -0.1 0.0 -0.1 0.1 0.0 0.3 0.1 
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Length_Width -0.1 0.0 0.0 -0.1 -0.1 -0.1 -0.1 0.1 0.0 0.1 -0.1 
Main_direction 0.0 0.0 0.0 0.0 -0.1 0.0 0.0 0.0 0.0 0.0 0.1 
Mean_Aspect 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.0 
Mean_DEM -0.3 0.3 -0.3 0.7 0.1 0.5 0.7 0.0 0.1 -0.2 0.4 
Mean_Diff__to_neig_DEM -0.3 0.6 -0.3 0.7 -0.1 0.8 0.8 -0.2 0.4 -0.2 0.7 
Mean_Diff__to_neig_Photo 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 
Mean_Photo 0.0 0.2 -0.1 0.0 0.1 0.0 -0.1 -0.1 0.1 0.1 0.0 
Mean_TWI -0.1 -0.1 0.0 -0.3 -0.1 -0.6 -0.5 0.6 -0.2 0.1 -0.2 
Mean_diff_to_bri_neigh_asp 0.0 0.0 0.1 0.1 0.0 0.0 0.1 -0.2 0.1 -0.1 0.1 
Mean_diff_to_bri_neigh_DEM 0.0 -0.2 0.0 -0.2 0.4 -0.2 -0.1 -0.1 -0.1 -0.1 -0.3 
Mean_diff_to_bri_neigh_hom 0.1 0.4 0.1 0.0 0.4 0.1 0.1 0.1 0.0 0.3 0.1 
Mean_diff_to_bri_neigh_pho 0.0 0.2 0.2 0.1 0.0 0.1 0.0 0.0 -0.1 0.1 0.0 
Mean_diff_to_bri_neigh_TWI 0.9 0.0 0.8 -0.1 0.7 0.0 -0.3 0.7 0.2 0.8 0.0 
Mean_diff_to_bri_neigh_var 0.0 0.1 0.1 -0.1 -0.1 0.0 0.0 0.3 0.0 0.0 0.0 
Mean_diff__to_super_Asp 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.2 -0.1 0.0 
Mean_diff__to_super_Pho 0.0 0.0 0.0 0.0 0.0 0.0 -0.1 0.2 -0.2 0.0 0.0 
Mean_of_sub_stddev_Hom 0.0 -0.1 0.1 0.1 0.2 0.1 0.1 0.1 -0.1 0.2 0.0 
Mean_of_sub_stddev_Phot 0.0 0.0 0.1 0.1 0.2 0.0 -0.1 0.0 0.0 0.2 0.0 
Mean_of_sub_stddev_TWI 0.8 0.0 0.8 0.0 0.8 -0.2 -0.2 0.7 0.0 0.8 -0.2 
Ratio_to_super_Aspect 0.0 0.0 0.0 0.2 0.1 0.1 -0.1 -0.1 0.0 0.0 -0.1 
Ratio_to_super_DEM 0.0 0.0 0.0 0.2 -0.1 0.5 0.1 0.0 0.1 0.0 0.3 
Ratio_to_super_WI 0.1 -0.1 0.0 0.0 0.2 -0.4 -0.1 0.0 0.0 0.0 -0.1 
Rel__area_to_super_object 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 
Standard_deviation_Aspect 0.0 0.0 0.1 0.0 -0.1 0.0 0.0 -0.1 0.0 0.1 0.0 
Standard_deviation_DEM -0.1 0.1 -0.1 0.2 0.4 0.2 0.2 -0.2 0.1 -0.2 0.1 
Standard_deviation_Entropy 0.0 0.1 0.0 0.0 0.1 -0.1 0.0 0.0 -0.1 0.1 0.0 
Standard_deviation_Photo 0.0 0.0 0.1 0.0 0.2 0.0 0.0 -0.2 0.0 0.0 0.1 
Standard_deviation_TWI 0.9 -0.1 0.9 -0.1 0.9 -0.5 -0.4 0.7 -0.1 0.8 -0.3 
StdDev_Ratio_to_super_Asp 0.0 0.1 0.0 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.0 
StdDev_Ratio_to_super_Cor 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 -0.1 0.0 0.0 
StdDev_Ratio_to_super_DEM 0.0 0.1 0.1 -0.1 0.0 0.0 0.0 0.1 0.0 0.1 0.1 
StdDev_Ratio_to_super_Ent -0.1 -0.1 0.1 0.2 0.1 0.0 -0.1 0.0 0.1 0.1 0.1 
StdDev_Ratio_to_super_Pho 0.0 -0.1 0.0 0.1 0.1 -0.2 0.0 0.1 -0.1 0.0 0.0 
StdDev_Ratio_to_super_TWI 0.2 0.0 0.2 0.1 0.3 -0.3 0.0 0.1 0.0 0.2 -0.1 
StdDev__to_neighbor_Aspec 0.1 0.1 0.2 0.1 0.2 0.0 0.0 0.1 0.0 0.1 0.0 
StdDev__to_neighbor_Corre 0.0 0.0 -0.1 0.1 0.1 0.0 0.1 0.0 -0.1 -0.1 0.0 
StdDev__to_neighbor_Entro 0.1 0.3 0.0 -0.2 0.2 0.0 0.1 0.1 0.0 0.2 0.0 
StdDev__to_neighbor_Photo 0.1 0.1 0.1 -0.1 0.3 0.1 0.0 0.0 0.0 0.1 0.0 
StdDev__to_neighbor_Varia 0.0 -0.1 0.1 -0.1 0.1 0.1 0.2 0.0 0.0 0.0 0.1 
Stddev_Curvature_main 0.0 0.0 -0.1 0.0 0.1 0.0 0.0 0.0 0.1 -0.2 0.0 
 
Dissimilarity to super-object 
cluster Riparian Landscapes Upland Landscapes 
Factor Rank 5 7 7 8 6 1 3 2 7 4
Area 0.9 -0.2 -0.3 -0.3 0.4 0.8 0.6 0.9 -0.2 0.3
Area_of_sub_objects__mean 0.4 -0.1 -0.1 -0.1 0.3 0.4 0.2 0.3 -0.1 0.0
Area_of_sub_objects__stddev 0.6 -0.1 -0.2 -0.2 0.3 0.6 0.5 0.7 -0.1 0.1
Asymmetry_of_sub_mean -0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.1 -0.1
Asymmetry_of_sub_stddev 0.3 -0.1 -0.1 -0.2 0.1 0.3 0.2 0.3 -0.1 0.2
Avrg__area_segment 0.4 -0.1 -0.3 0.0 0.3 0.6 0.5 0.8 -0.2 0.2
Border_length 0.8 -0.2 -0.2 -0.3 0.5 0.8 0.6 0.8 -0.3 0.4
Compactness -0.2 0.0 0.0 0.0 0.2 -0.1 -0.1 -0.2 0.1 0.1
Compactness__polygon -0.1 -0.1 -0.1 0.0 -0.1 0.0 0.1 0.0 0.0 -0.1
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Contrast_to_neig_pix_Asp 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.2 0.0
Contrast_to_neig_pix_DEM 0.2 0.1 0.0 0.0 0.0 -0.1 0.0 -0.1 -0.1 0.1
Contrast_to_neig_pix_Hom 0.0 0.0 0.0 -0.1 -0.1 0.0 0.0 -0.1 0.0 0.0
Contrast_to_neig_pix_Phot 0.1 0.1 0.1 0.2 0.0 0.0 0.0 0.1 0.1 0.0
Curvature_length -0.5 0.0 0.2 0.0 -0.1 -0.4 -0.3 -0.5 0.2 -0.1
Density_of_sub_stddev 0.2 -0.1 -0.1 0.0 0.0 0.2 0.2 0.3 0.0 0.1
Direction_of_sub_mean 0.1 0.0 0.0 0.1 0.0 0.1 -0.1 0.0 0.0 0.1
Direction_of_sub_stddev 0.3 -0.1 -0.1 -0.1 0.1 0.3 0.4 0.3 -0.1 0.3
Distance_to_super_obj 0.1 0.8 0.8 0.7 0.1 -0.7 -0.7 0.0 0.8 -0.8
Elliptic_distance_to_super -0.4 0.8 0.7 0.6 -0.9 -0.8 -0.8 -0.3 0.8 -0.7
Is_center_of_super_object 0.0 -0.1 -0.2 -0.1 0.0 0.0 0.1 0.0 -0.1 0.1
Is_end_of_super_object 0.0 -0.1 -0.2 -0.1 0.2 0.2 0.3 0.0 -0.2 0.1
Length_of_longest_edge 0.1 0.0 0.0 0.2 0.2 0.1 0.2 0.3 0.0 -0.1
Length_Width 0.0 0.0 0.0 0.1 0.1 0.0 0.0 -0.1 0.0 0.0
Main_direction -0.1 0.0 0.0 0.0 0.0 0.0 -0.1 0.0 0.0 0.0
Mean_Aspect 0.0 0.0 0.1 0.0 0.1 -0.2 0.0 -0.1 0.0 -0.1
Mean_DEM 0.0 -0.1 0.0 -0.1 0.0 -0.1 0.1 -0.1 0.0 0.0
Mean_Diff__to_neig_DEM -0.2 -0.1 -0.1 -0.1 0.0 -0.1 0.0 -0.1 -0.2 0.1
Mean_Diff__to_neig_Photo -0.1 0.0 0.0 -0.1 0.0 0.0 0.0 0.0 0.0 0.0
Mean_Photo -0.1 0.0 0.0 -0.1 0.0 0.1 0.1 0.0 -0.1 0.1
Mean_TWI 0.0 0.0 0.0 0.0 0.0 0.1 -0.2 0.1 0.1 0.1
Mean_diff_to_bri_neigh_asp 0.0 -0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0
Mean_diff_to_bri_neigh_DEM 0.1 0.0 -0.1 -0.1 0.0 0.1 0.0 0.2 0.0 0.1
Mean_diff_to_bri_neigh_hom -0.1 0.1 0.0 0.0 0.1 0.0 -0.1 -0.1 0.0 0.1
Mean_diff_to_bri_neigh_pho 0.0 0.0 -0.1 0.0 0.0 0.0 -0.1 -0.1 0.0 0.1
Mean_diff_to_bri_neigh_TWI 0.0 0.1 0.0 -0.1 0.0 0.1 -0.1 -0.1 -0.1 0.0
Mean_diff_to_bri_neigh_var -0.1 -0.1 0.0 -0.2 0.0 -0.1 0.0 -0.2 0.0 0.1
Mean_diff__to_super_Asp -0.1 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.1 -0.1
Mean_diff__to_super_Pho 0.0 0.0 0.0 0.0 0.0 0.0 0.1 -0.1 0.0 0.0
Mean_of_sub_stddev_Hom 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2 -0.1 0.0
Mean_of_sub_stddev_Phot 0.1 0.0 -0.1 0.1 0.0 0.0 0.2 0.3 -0.1 0.1
Mean_of_sub_stddev_TWI 0.1 0.0 -0.1 0.0 0.1 0.2 0.1 0.3 -0.1 0.0
Ratio_to_super_Aspect 0.0 -0.1 -0.1 0.0 -0.1 0.0 0.0 0.1 -0.1 0.0
Ratio_to_super_DEM -0.2 0.0 -0.1 0.0 0.1 0.1 0.0 0.1 0.0 0.1
Ratio_to_super_WI 0.0 0.1 0.1 0.1 -0.2 0.0 -0.1 -0.1 0.1 -0.1
Rel__area_to_super_object 0.4 -0.8 -0.8 -0.7 0.8 0.9 0.8 0.4 -0.8 0.8
Standard_deviation_Aspect -0.1 -0.1 0.0 0.1 0.0 -0.1 0.0 -0.1 0.0 0.0
Standard_deviation_DEM 0.1 -0.1 -0.2 -0.2 0.1 0.3 0.3 0.3 -0.2 0.3
Standard_deviation_Entropy -0.1 0.1 0.0 0.2 -0.1 0.0 -0.1 -0.1 0.1 0.0
Standard_deviation_Photo 0.0 0.1 0.0 0.2 -0.1 0.0 0.0 0.2 0.0 0.0
Standard_deviation_TWI 0.0 0.0 0.0 0.0 0.0 0.1 -0.1 0.1 0.0 0.0
StdDev_Ratio_to_super_Asp 0.1 -0.1 -0.3 0.0 0.1 0.3 0.1 0.1 -0.2 0.2
StdDev_Ratio_to_super_Cor 0.0 -0.1 0.0 -0.1 0.0 0.1 0.0 0.0 -0.1 0.1
StdDev_Ratio_to_super_DEM 0.2 -0.6 -0.6 -0.5 0.8 0.8 0.8 0.3 -0.7 0.8
StdDev_Ratio_to_super_Ent 0.0 0.0 0.0 0.0 -0.1 0.1 0.0 0.0 0.0 0.1
StdDev_Ratio_to_super_Pho 0.1 -0.1 -0.2 -0.2 0.1 0.2 0.2 0.2 -0.2 0.3
StdDev_Ratio_to_super_TWI -0.1 -0.4 -0.2 0.0 0.4 0.2 0.2 0.0 -0.1 0.2
StdDev__to_neighbor_Aspec 0.1 -0.1 0.0 0.0 0.0 0.1 0.1 0.2 -0.1 -0.1
StdDev__to_neighbor_Corre -0.1 0.0 0.0 0.0 -0.1 0.0 0.0 -0.1 -0.1 0.1
StdDev__to_neighbor_Entro 0.0 -0.1 -0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.1
StdDev__to_neighbor_Photo 0.0 0.0 -0.1 0.0 0.1 0.0 0.0 0.0 -0.1 0.1
StdDev__to_neighbor_Varia 0.0 0.1 -0.1 0.0 0.0 -0.1 -0.1 0.0 0.0 0.0
Stddev_Curvature_main 0.0 0.1 -0.1 0.3 0.1 0.0 0.0 0.1 0.0 0.0
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Curvature cluster Riparian Landscapes 
Upland 
Landscapes

Factor Rank 14 19 17 10 17 17 18 16 15
Metric #          
Area 0.1 0.1 -0.1 -0.1 0.0 -0.3 -0.2 0.2 -0.1
Area_of_sub_objects__mean 0.1 0.0 0.0 0.0 -0.1 -0.3 0.0 0.2 -0.1
Area_of_sub_objects__stddev 0.1 0.0 -0.1 0.0 0.0 -0.2 -0.2 0.1 -0.1
Asymmetry_of_sub_mean 0.0 0.2 -0.1 0.1 0.0 0.0 0.0 -0.2 -0.1
Asymmetry_of_sub_stddev -0.1 -0.1 0.0 -0.1 0.0 -0.1 -0.1 0.0 0.1
Avrg__area_segment 0.2 0.3 0.0 0.1 0.1 0.0 -0.2 0.2 0.0
Border_length 0.0 -0.1 0.0 -0.3 -0.1 -0.4 -0.2 0.2 -0.2
Compactness -0.2 -0.3 0.3 -0.5 0.0 0.0 -0.1 0.0 0.0
Compactness__polygon 0.2 0.3 0.1 0.3 0.1 0.1 0.1 0.0 0.2
Contrast_to_neig_pix_Asp -0.1 0.8 0.2 0.0 0.8 0.7 -0.1 0.1 0.0
Contrast_to_neig_pix_DEM -0.1 0.1 -0.1 0.7 -0.1 -0.2 0.5 0.1 -0.3
Contrast_to_neig_pix_Hom 0.1 -0.1 0.0 0.1 0.0 0.1 0.0 -0.1 0.1
Contrast_to_neig_pix_Phot 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.0 -0.1
Curvature_length -0.7 -0.1 0.6 -0.2 0.2 0.0 0.1 -0.2 -0.1
Density_of_sub_stddev 0.0 0.0 0.0 -0.1 0.0 -0.1 0.0 0.0 0.0
Direction_of_sub_mean -0.1 0.1 0.1 0.1 0.0 0.1 0.0 0.0 0.0
Direction_of_sub_stddev 0.1 -0.1 0.1 0.0 0.0 0.1 -0.1 0.0 0.1
Distance_to_super_obj 0.1 -0.1 0.0 -0.1 0.0 0.0 0.6 0.2 -0.2
Elliptic_distance_to_super -0.1 0.0 0.1 0.0 0.1 0.0 0.0 0.2 0.1
Is_center_of_super_object 0.0 0.0 0.1 -0.1 0.0 0.0 0.0 0.0 0.2
Is_end_of_super_object 0.1 0.0 -0.1 0.1 -0.1 0.0 0.0 0.0 0.1
Length_of_longest_edge 0.1 0.4 0.0 0.0 0.2 0.0 0.0 0.0 0.2
Length_Width 0.1 0.1 0.0 -0.1 0.0 -0.1 0.0 -0.1 -0.2
Main_direction 0.1 -0.2 0.0 0.1 -0.1 0.0 -0.1 0.1 0.0
Mean_Aspect 0.0 0.1 -0.1 0.0 0.0 0.0 0.1 0.1 0.0
Mean_DEM 0.1 0.0 0.0 0.1 0.0 0.1 0.1 -0.2 0.3
Mean_Diff__to_neig_DEM 0.0 0.1 0.0 0.2 -0.1 -0.1 0.2 0.0 0.0
Mean_Diff__to_neig_Photo 0.0 -0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0
Mean_Photo 0.0 0.0 0.1 -0.1 0.0 0.1 0.1 0.0 0.0
Mean_TWI 0.0 0.0 -0.1 -0.1 0.0 -0.1 0.1 0.1 -0.2
Mean_diff_to_bri_neigh_asp 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.1
Mean_diff_to_bri_neigh_DEM 0.0 0.0 0.1 -0.1 0.0 -0.1 0.0 0.0 0.0
Mean_diff_to_bri_neigh_hom -0.1 0.1 0.1 -0.1 0.0 -0.1 0.1 -0.1 0.0
Mean_diff_to_bri_neigh_pho 0.0 0.0 0.1 -0.1 -0.1 0.0 0.1 -0.1 -0.1
Mean_diff_to_bri_neigh_TWI -0.1 -0.1 0.0 -0.1 -0.1 -0.1 -0.1 0.0 -0.3
Mean_diff_to_bri_neigh_var 0.0 -0.1 0.0 0.1 -0.1 0.1 0.2 -0.3 0.1
Mean_diff__to_super_Asp -0.1 0.0 0.3 0.2 0.3 0.1 0.0 -0.3 0.0
Mean_diff__to_super_Pho -0.1 0.0 0.0 -0.1 -0.3 -0.2 -0.1 0.0 0.0
Mean_of_sub_stddev_Hom 0.0 0.1 0.0 0.0 -0.1 0.1 0.2 0.0 0.0
Mean_of_sub_stddev_Phot 0.0 0.1 -0.1 0.2 0.1 0.2 0.2 0.0 0.0
Mean_of_sub_stddev_TWI 0.0 0.0 0.0 -0.3 0.0 0.0 0.0 0.1 -0.2
Ratio_to_super_Aspect 0.0 -0.1 0.4 0.8 0.1 -0.1 0.0 0.1 0.5
Ratio_to_super_DEM 0.1 0.0 0.0 0.0 0.1 0.0 -0.3 0.1 0.1
Ratio_to_super_WI 0.2 0.0 0.1 0.0 0.0 0.0 0.1 0.1 0.0
Rel__area_to_super_object 0.0 0.0 -0.1 0.0 0.0 0.0 0.0 -0.1 0.0
Standard_deviation_Aspect 0.0 0.0 0.1 -0.1 0.2 0.4 0.0 0.0 0.1
Standard_deviation_DEM 0.0 0.0 0.0 0.0 0.0 -0.2 0.1 0.1 0.0
Standard_deviation_Entropy 0.0 0.0 0.1 0.0 0.0 0.1 0.1 -0.2 0.0
Standard_deviation_Photo 0.0 0.1 -0.1 0.0 0.1 0.1 0.1 0.1 -0.1
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Standard_deviation_TWI 0.1 0.1 0.1 -0.2 0.1 0.1 -0.1 0.1 -0.2
StdDev_Ratio_to_super_Asp 0.0 -0.1 0.1 0.0 0.0 -0.1 0.0 0.0 0.0
StdDev_Ratio_to_super_Cor 0.0 -0.1 0.1 -0.1 -0.2 -0.1 0.1 0.0 0.1
StdDev_Ratio_to_super_DEM 0.1 0.0 0.0 -0.2 0.3 0.0 0.1 0.0 0.0
StdDev_Ratio_to_super_Ent 0.0 0.0 -0.2 0.0 0.0 0.1 0.1 0.1 0.0
StdDev_Ratio_to_super_Pho 0.0 0.0 0.0 0.2 0.0 0.1 -0.1 0.0 0.1
StdDev_Ratio_to_super_TWI 0.5 0.1 -0.1 -0.1 0.0 0.1 0.1 0.2 0.0
StdDev__to_neighbor_Aspec 0.1 0.1 0.1 0.0 0.1 0.1 -0.1 0.0 0.0
StdDev__to_neighbor_Corre 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.1
StdDev__to_neighbor_Entro 0.0 0.0 0.2 0.0 0.0 0.0 0.0 -0.1 0.1
StdDev__to_neighbor_Photo 0.0 0.0 0.1 -0.1 0.0 0.0 0.1 -0.1 0.0
StdDev__to_neighbor_Varia 0.0 0.0 0.0 0.1 0.0 0.0 0.1 -0.1 0.1
Stddev_Curvature_main 0.8 -0.2 -0.6 0.1 -0.4 0.5 0.2 0.8 0.7

 

Size cluster 
Riparian 
Landscapes 

Upland 
Landscapes

Factor Rank 5 5 4 7 2
Metric #      
Area 0.7 0.7 0.5 -0.3 0.7
Area_of_sub_objects__mean 0.4 0.6 0.4 -0.4 0.5
Area_of_sub_objects__stddev 0.4 0.3 0.4 -0.2 0.5
Asymmetry_of_sub_mean 0.0 -0.1 0.0 0.1 0.0
Asymmetry_of_sub_stddev 0.0 0.1 0.0 0.0 0.2
Avrg__area_segment 0.8 0.8 0.7 -0.5 0.8
Border_length 0.4 0.4 0.0 0.2 0.4
Compactness -0.3 -0.4 -0.7 0.7 -0.5
Compactness__polygon 0.2 0.3 0.6 -0.7 0.4
Contrast_to_neig_pix_Asp 0.2 0.0 0.0 0.1 0.2
Contrast_to_neig_pix_DEM -0.1 -0.1 0.0 -0.1 -0.1
Contrast_to_neig_pix_Hom 0.0 0.0 0.2 0.2 0.0
Contrast_to_neig_pix_Phot 0.1 0.0 -0.1 0.0 0.0
Curvature_length -0.5 -0.6 -0.8 0.6 -0.6
Density_of_sub_stddev 0.1 0.1 0.0 -0.1 0.1
Direction_of_sub_mean 0.0 0.1 0.0 0.0 -0.1
Direction_of_sub_stddev 0.1 0.0 0.0 0.2 0.0
Distance_to_super_obj -0.1 0.2 -0.2 0.0 0.1
Elliptic_distance_to_super -0.2 -0.3 -0.1 0.1 -0.3
Is_center_of_super_object 0.0 0.1 0.0 -0.1 0.0
Is_end_of_super_object 0.0 0.0 0.0 -0.1 -0.1
Length_of_longest_edge 0.7 0.5 0.6 -0.1 0.5
Length_Width -0.1 -0.1 -0.2 0.2 -0.2
Main_direction 0.0 0.1 0.0 -0.1 0.0
Mean_Aspect 0.0 0.0 0.0 0.1 0.1
Mean_DEM 0.0 -0.1 0.2 0.1 -0.3
Mean_Diff__to_neig_DEM -0.2 -0.3 0.1 0.1 -0.1
Mean_Diff__to_neig_Photo -0.1 -0.1 -0.1 0.1 -0.1
Mean_Photo -0.2 -0.3 -0.1 0.0 -0.1
Mean_TWI 0.0 -0.1 -0.2 0.1 0.0
Mean_diff_to_bri_neigh_asp 0.1 0.0 0.1 0.0 0.1
Mean_diff_to_bri_neigh_DEM 0.1 0.0 -0.1 0.0 -0.2
Mean_diff_to_bri_neigh_hom -0.1 -0.2 -0.3 -0.1 -0.3
Mean_diff_to_bri_neigh_pho -0.1 -0.1 -0.2 0.0 -0.2
Mean_diff_to_bri_neigh_TWI 0.0 0.0 0.0 0.1 0.1
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Mean_diff_to_bri_neigh_var -0.2 -0.1 0.0 0.4 -0.2
Mean_diff__to_super_Asp 0.1 0.0 0.0 0.0 -0.2
Mean_diff__to_super_Pho -0.1 0.1 0.1 0.0 0.0
Mean_of_sub_stddev_Hom 0.1 0.0 0.0 -0.1 0.0
Mean_of_sub_stddev_Phot 0.1 0.0 0.1 -0.1 0.0
Mean_of_sub_stddev_TWI 0.0 0.1 0.1 0.2 0.1
Ratio_to_super_Aspect 0.2 0.1 0.0 0.0 0.1
Ratio_to_super_DEM 0.0 0.0 -0.1 0.1 -0.1
Ratio_to_super_WI -0.1 -0.1 0.1 0.0 -0.1
Rel__area_to_super_object 0.2 0.2 0.2 -0.1 0.2
Standard_deviation_Aspect 0.0 0.1 -0.1 -0.1 -0.1
Standard_deviation_DEM 0.0 0.0 0.0 0.0 -0.2
Standard_deviation_Entropy -0.1 0.0 0.2 0.1 -0.1
Standard_deviation_Photo 0.0 0.0 -0.1 -0.3 0.0
Standard_deviation_TWI 0.0 -0.1 0.1 0.1 0.0
StdDev_Ratio_to_super_Asp 0.1 0.1 0.0 -0.1 0.0
StdDev_Ratio_to_super_Cor 0.0 -0.1 -0.1 0.1 0.0
StdDev_Ratio_to_super_DEM 0.1 0.1 0.0 0.0 0.1
StdDev_Ratio_to_super_Ent 0.1 0.1 0.2 0.1 0.0
StdDev_Ratio_to_super_Pho 0.1 0.1 0.0 -0.4 0.1
StdDev_Ratio_to_super_TWI 0.0 0.1 0.0 0.0 -0.1
StdDev__to_neighbor_Aspec 0.3 0.2 0.1 -0.1 0.2
StdDev__to_neighbor_Corre -0.1 -0.1 0.1 0.2 0.0
StdDev__to_neighbor_Entro -0.1 -0.1 0.0 0.1 -0.1
StdDev__to_neighbor_Photo -0.1 -0.2 -0.3 0.0 -0.1
StdDev__to_neighbor_Varia -0.1 -0.1 0.0 0.2 -0.1
Stddev_Curvature_main 0.0 0.2 0.2 -0.1 0.1

 

Site cluster 
Riparian 
Landscapes 

Upland 
Landscapes

Factor Rank 2 1 3 11
Area -0.1 -0.1 -0.1 -0.1
Area_of_sub_objects__mean 0.0 -0.1 -0.2 -0.2
Area_of_sub_objects__stddev 0.0 0.0 0.0 -0.1
Asymmetry_of_sub_mean 0.1 0.1 0.2 0.0
Asymmetry_of_sub_stddev -0.1 0.0 0.0 0.1
Avrg__area_segment 0.1 0.1 -0.2 -0.1
Border_length -0.1 -0.1 0.0 -0.1
Compactness 0.1 0.2 0.1 -0.2
Compactness__polygon 0.1 0.0 0.0 0.0
Contrast_to_neig_pix_Asp 0.0 0.1 -0.1 0.3
Contrast_to_neig_pix_DEM 0.1 -0.2 -0.1 0.0
Contrast_to_neig_pix_Hom -0.1 0.0 -0.1 -0.1
Contrast_to_neig_pix_Phot 0.0 0.1 -0.1 -0.1
Curvature_length 0.0 0.1 0.1 0.0
Density_of_sub_stddev 0.0 0.1 0.1 0.0
Direction_of_sub_mean -0.1 -0.3 0.1 0.0
Direction_of_sub_stddev -0.1 0.0 -0.1 0.1
Distance_to_super_obj 0.0 0.1 0.1 0.0
Elliptic_distance_to_super 0.0 0.3 0.0 -0.1
Is_center_of_super_object 0.0 0.0 -0.1 0.0
Is_end_of_super_object -0.1 0.0 0.1 0.0
Length_of_longest_edge 0.1 0.4 -0.1 -0.1
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Length_Width 0.1 0.1 0.2 0.1
Main_direction -0.1 -0.2 0.1 0.1
Mean_Aspect 0.0 0.0 0.0 -0.1
Mean_DEM -0.7 -0.7 -0.7 0.5
Mean_Diff__to_neig_DEM -0.2 -0.2 -0.3 0.1
Mean_Diff__to_neig_Photo 0.1 0.1 0.1 0.0
Mean_Photo 0.2 0.1 -0.1 0.0
Mean_TWI 0.8 0.7 0.8 -0.6
Mean_diff_to_bri_neigh_asp 0.1 0.2 -0.1 0.0
Mean_diff_to_bri_neigh_DEM -0.7 -0.7 -0.4 0.6
Mean_diff_to_bri_neigh_hom 0.3 0.4 0.4 0.1
Mean_diff_to_bri_neigh_pho 0.3 0.3 0.3 0.1
Mean_diff_to_bri_neigh_TWI 0.0 0.6 -0.2 0.0
Mean_diff_to_bri_neigh_var 0.1 0.3 0.5 0.0
Mean_diff__to_super_Asp 0.0 0.0 0.0 -0.2
Mean_diff__to_super_Pho 0.0 0.0 0.0 0.0
Mean_of_sub_stddev_Hom 0.2 0.2 0.0 0.0
Mean_of_sub_stddev_Phot 0.0 0.1 0.0 0.0
Mean_of_sub_stddev_TWI 0.0 0.5 0.1 -0.1
Ratio_to_super_Aspect 0.0 0.0 0.0 0.2
Ratio_to_super_DEM 0.0 -0.1 -0.1 -0.1
Ratio_to_super_WI 0.2 0.2 0.1 -0.1
Rel__area_to_super_object 0.0 0.0 0.2 0.1
Standard_deviation_Aspect 0.5 0.7 0.0 -0.3
Standard_deviation_DEM -0.8 -0.8 -0.6 0.7
Standard_deviation_Entropy 0.5 0.1 0.4 -0.1
Standard_deviation_Photo 0.0 0.0 -0.2 0.0
Standard_deviation_TWI 0.1 0.8 0.0 -0.3
StdDev_Ratio_to_super_Asp -0.1 0.0 0.1 0.1
StdDev_Ratio_to_super_Cor 0.0 0.0 -0.1 0.0
StdDev_Ratio_to_super_DEM 0.0 -0.1 0.0 0.1
StdDev_Ratio_to_super_Ent -0.1 -0.1 0.0 -0.4
StdDev_Ratio_to_super_Pho -0.1 -0.1 0.0 -0.2
StdDev_Ratio_to_super_TWI -0.1 0.0 0.0 0.0
StdDev__to_neighbor_Aspec 0.3 0.6 -0.2 -0.1
StdDev__to_neighbor_Corre -0.2 -0.4 -0.4 0.1
StdDev__to_neighbor_Entro 0.7 0.6 0.7 0.1
StdDev__to_neighbor_Photo 0.3 0.5 0.6 0.1
StdDev__to_neighbor_Varia 0.0 0.0 0.0 0.2
Stddev_Curvature_main 0.0 -0.1 -0.1 0.1

 
 


