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Abstract

For many years, the manufacturing industry has pursued a commercially
viable, vision-guided, robotic bin-picking system. The goal of such a system
is to select a target part and a corresponding grasp from a pile of jumbled
parts. Strategic planning of this selection to reduce the risk of a failed grasp
attempt would increase the system’s reliability, and, thus, its commercial vi-
ability, and is the focus of this thesis. Specifically, this work aims to find the
best pick ; namely, the best combination of a target part and corresponding
grasp.

The primary contribution of this work is a novel method for generating
many high-quality, rated, pick options for a given vision-guided robotic bin-
picking cycle, enabling the selection of the best pick. The method is tailored
for a two-fingered (antipodal) gripper, typically used in industry; however,
it may be extended to other gripper types (i.e., three-fingered). The method
is broken down into two stages: (1) offline generation of many high-quality
two-fingered grasps for a given part, and (2) online evaluation of these grasps
in the context of the pile to determine a collision-free set of rated picks, and,
ultimately, the most desirable pick. In evaluating grasps online, the effect of
gripper finger clearance is considered to further minimize the risk of collision
when executing the selected pick.

Subsidiary contributions of this work include: (1) an automatic grasp-
generation method to sample the space of all two-fingered grasps for the
target part, (2) a metric function for evaluating grasps, and (3) a measure
of the robustness of a grasp.

The proposed method for pick selection is validated using stereo data of
a real pile of parts. We compare the use of a small set of nominal grasps for
pick selection (an approach typical in industry) to the use of an extensive
evaluated grasp set generated using the proposed method. Our experimental
results show that, in the majority of cases, the use of our method results in
more valid and higher quality picks.
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Notation

Sp - a collection of line segments that comprise a wire-frame approximating
the skeleton of the part (see Figure 3.2)

Nsp - number of line segments comprising Sp

si - single line segment within Sp

Li - length of si

Ψg - 2-D region of space between the fully-opened gripper fingers, located
at the gripper fingertips (see Figure 3.3)

d - linear translation parameter along a line segment

θ - axial rotation parameter about the z-axis of the current part wire-frame
line segment

φ - current-frame rotation parameter about the pinching (or sliding) direc-
tion of the gripper, defined in the plane of Ψg; the pinching direction is
always perpendicular to the line segment

∆d - translational step-size for d

∆θ - rotational step-size for θ

∆φ - rotational step-size for φ

ε - tolerance parameter to model compliance of soft gripper finger contacts

i - index variable for accessing or enumerating grasps from a set of grasps

g - a grasp

gi - ith grasp

r - grasp robustness measure

ri - robustness of the ith grasp
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Notation

q - grasp stability measure

qi - stability of the ith grasp

γ - parameter used to emphasize grasp sta- bility over robustness (γ> 1)

Q - overall grasp quality measure

Qi - overall quality of the ith grasp

{GF ULL} - set of all generated robust grasps; generated by sampling the
grasp space

{G} - subset of η highest quality grasps from the generated grasp set,
{GFULL}

η - number of highest quality generated grasps from {GFULL} comprising
{G}

{N} - set of k nominal, “intuitive” grasps

k - number of nominal grasps comprising {N}

D - initial disparity map

D′ - final filled-in disparity map (has same dimensions as {D})

hD - height of the disparity map, in pixels

wD - width of the disparity map, in pixels

D(m,n) - disparity value at row m and column n in the map, D

m - row coordinate (non-negative integer)

n - column coordinate (non-negative integer)

Binit - user-defined disparity initialization parameter

∆x - user-defined step-size parameter (0 <∆x< 1)

DIFFmax - maximum difference between a disparity value D(m,n) and
the average disparity of the four nearest neighbours of pixel (m,n)

DIFFinit - user-defined initialization parameter for DIFFmax

THRESstop - non-negative user-defined threshold parameter that deter-
mines when the algorithm stops
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Chapter 1

Introduction

1.1 Motivation

The problem of robotic bin-picking is well-known in manufacturing. In this
problem, a storage bin contains many randomly oriented industrial parts,
and a robot must repeatedly recognize a part within the bin, grasp and
manipulate the part, and deliver it to some target location. Typically, the
parts are rigid and comprise complex surface geometry (e.g., with beveled
edges or curved lips), and CAD model data or analytical geometric descrip-
tions of the parts are often unavailable or difficult to obtain. For over thirty
years, there have been efforts to successfully commercialize this process us-
ing intelligent robots equipped with vision systems to quickly and reliably
identify and locate a part, move toward and grasp the part, and then remove
it from the bin safely. Along with the grasping problem, a number of other
problems must also be addressed, including collision-free motion planning,
pose estimation, occlusion avoidance, visual tracking, and servoing, and are
considered in recent works by Chan [8], Baumann [2], Léonard [20], and
others.

However, over the last decade, the bin-picking problem has not received
as much attention. This is not because the problem was solved, but rather,
at the time, the manufacturing industry was still at the stage where special-
ized automation for singulation, fixturing, and palletizing of parts were more
efficient and effective, due to sufficiently large enough line volumes, than
moving forward with a vision-based robotic bin-picking solution. Today,
the manufacturing industry is facing a major paradigm shift. For example,
product lines that used to run for years are now being updated and revised
in shorter and shorter cycles, approaching numbers of months rather than
years. This change puts a great deal of pressure on fixed manufacturing
lines. Furthermore, only recently has the technology in the fields of comput-
ers, robotics, vision, and lighting systems become sufficiently advanced to
make an industrially feasible robotic bin-picking system possible. For these
reasons, there is a renewed interest towards developing a commercially viable
vision-guided robotic bin-picking (VGRBP) solution.

1



Chapter 1. Introduction

Such a VGRBP system must be highly reliable; that is, it must meet the
following requirements:

1. Continual picking of parts out of a bin while avoiding collisions with
obstacles.

2. Average cycle time not exceeding a predetermined length per success-
ful pick-and-place operation.

It is estimated that a VGRBP solution should have an average cycle time
of 10 seconds or less per operation. Because parts are randomly-situated
within a bin, meeting this second requirement is challenging, and is one of
the main reasons why randomized bin-picking systems have yet to be widely
adopted by industry.

One of the key challenges in bin-picking is that a single part can take on
virtually any pose within the jumbled pile inside the bin, and can be easily
obstructed by the other parts. Even when a part is recognized and localized,
a pre-selected “nominal” grasp for retrieving the part does not guarantee
successful picking. Thus, in order to meet the requirement of reliability,
a commercially viable VGRBP system must be able to provide many good
picking options at each cycle. The work presented herein addresses this need.
This work also finds relevance in the applications of automated luggage
handling and fruit-picking.

1.2 Context, Goals, and Objectives

In VGRBP, a cycle is described as a single pick-and-place operation. During
each cycle, the system must determine (1) a target part in the pile (selected
from a set of candidates that have been identified by the computer vision
system) and (2) a collision-free, stable grasp for that target part, where a
grasp is defined by the gripper’s pose (position and orientation) relative to
the part and a corresponding set of contact points on the surface of the
part. Herein, these two items shall collectively be referred to as a pick.
Thus, two distinct grasps for the same target part represent two distinct
picks. Likewise, the same grasp used for two distinct parts also represents
two distinct picks. Ideally, the system should be able to determine and
successfully execute a viable pick at every cycle.

If there are multiple pick options, the system must attempt to select the
best one. This choice is relevant because it can impact system reliability.
Assuming the VGRBP system can recognize and localize parts within the

2



Chapter 1. Introduction

pile, a “naive” method for pick selection would select a target part at random
from the set of localized parts, and then attempt to retrieve it using a
standard “nominal” grasp. However, due to the random nature of parts
jumbled in a bin, some parts are more accessible and easier to retrieve from
the pile than others, and it might not be possible for the robot to successfully
extract the target part from the pile. Furthermore, it is possible that, under
this approach, no stable, collision-free grasps exist for the target; in this
scenario, time-consuming intervention is required (e.g., stirring or shaking
the pile, or even manual operator intervention).

Therefore, it is desirable to have a large number of viable pick options at
a given cycle to reduce the likelihood of an unsuccessful, or excessively time-
consuming, part retrieval attempt. Having many pick options necessitates a
method for evaluating picks in order to select the best one. The “best” pick
would ideally be that which increases system reliability by (1) minimizing the
likelihood of a collision between the robot arm and environmental obstacles
(i.e., the bin, or other parts in the pile), and (2) minimizing the likelihood
of the part slipping out of the grasp (i.e., prematurely dropping the part).
Thus, the broad goals of this work are:

1. To reduce the probability of an unsuccessful part retrieval attempt by
increasing the likelihood of finding a high-quality, viable pick at every
cycle.

2. To develop a way to evaluate candidate picks.

We limit the scope of this problem to a two-fingered (antipodal) gripper
like that shown in Figure 1.1, as this type of gripper is commonly used in
industry [30]. Throughout this work, we use a connecting rod, or con-rod as
our exemplar part. Con-rods are a common engine part and typical in size
and shape of many parts delivered in bins to the assembly process.

The achievement of the aforementioned goals is realized through (1)
a formally-expressed, novel, metric function, developed for the purpose of
evaluating candidate grasps (presented in Section 3.1.2), and (2) a novel
method for generating multiple high-quality pick options at each cycle that
uses grasp evaluation to evaluate picks (presented in Section 3). An overview
of the method described in (2) is illustrated in Figure 1.2. We experimentally
validate the proposed method in (2) using stereo data of real piles of parts
(Section 4), since the use of a stereo camera sensor to obtain 3-D information
is currently being developed for a commercial bin-picking system [6]. In
our experiments, we compare the use of a small set of nominal grasps for

3



Chapter 1. Introduction

Figure 1.1: Standard industrial two-fingered (antipodal) gripper using a
nominal grasp to grip a connecting rod, or con-rod [17].

pick selection (an approach typical in industry) to the use of an extensive
evaluated grasp set generated within the proposed method.

1.3 Contributions

The primary contribution of this work is a method for generating multiple
high-quality (rated) pick options, enabling selection of best pick, for a given
cycle in VGRBP. Our method is broken down into two stages: (1) offline
generation of many high-quality, two-fingered grasps for a given part, and
(2) online evaluation of these grasps in the context of the pile to determine
a collision-free set of rated picks, and, thus, the most desirable pick. This
method is illustrated in Figure 1.2. Inputs to the method include the part
model and corresponding wire-frame, the gripper model (that must be an
antipodal, two-fingered gripper), stereo images (taken at each cycle), and
system parameters (not shown in figure). The output of the offline computa-
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Chapter 1. Introduction

Figure 1.2: Illustration of the proposed method for generating many high-
quality pick options. See Section 1.3 for details.
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Chapter 1. Introduction

tion is a ranked set of feasible, stable, robust grasps. A subset comprising the
highest-quality grasps is used, online, to compute high-quality, collision-free
picks. The resulting set of rated picks is passed to the robot control system
to select the highest-quality pick that is feasible given the robot workspace,
collision, and joint limit constraints. In evaluating grasps online, the concept
of gripper finger clearance is taken into account to further minimize the
risk of collision when executing the selected pick; providing gripper finger
clearance creates a buffer for the various sources of error in the system,
such as robot positional error, object pose estimation error, and noisy or
uncertain stereo data.

Other contributions of this work include: (1) a method for automatic
grasp-generation, to sample the space of all two-fingered (antipodal) grasps
for the choice part, (2) a metric function for evaluating grasps, and (3)
a measure of the robustness of a grasp. All three are necessary to the
aforementioned method for generating multiple high-quality pick options.

The automatic grasp-generation method enables sampling of the space
of all two-fingered grasps, and it may be used on any object for which a
representative wire-frame model can be generated. Thus, one input to this
method is the wire-frame model of the object to be picked. Herein, we
define the wire-frame manually; automatic wire-frame model generation is
possible; however, is beyond the scope of this work. Mesh surface models
of both the object to be picked and the gripper are also required as inputs.
The user specifies rotational and translational step-sizes to determine the
density of the sampling. To simplify the complexity of the problem, only
planar grasps are considered, i.e., the grasp contact points on the object’s
surface lie in a plane. The output is a set of feasible (i.e., collision-free),
stable, robust grasps for the specified object, whereby a grasp is defined by
the pose (position and orientation) of the gripper relative to the part, and
a corresponding set of contact points on the surface of the part.

The metric function contribution enables quantitative evaluation of grasps
for the specified part. It considers grasp stability (evaluated using a pre-
existing approach that is described in Section 2.4.1) and grasp robustness,
where the measure of robustness is also a contribution of this work, and is
a measure of a grasp’s insensitivity to slight positional changes.

The proposed method for generating many high-quality pick options (en-
abling selection of the best viable pick) has the potential to increase the
reliability of a VGRBP system by decreasing the likelihood of a failed pick
attempt on a given cycle. Increased reliability in turn leads to increased
commercial viability of VGRBP systems employing the proposed method,
making it more likely that such systems will be widely adopted by indus-

6



Chapter 1. Introduction

try. Widespread adoption of reliable VGRBP systems is desirable because
these systems reduce expensive fixturing costs and labour costs, leading to
increased profit margins for industry.

In addition, these contributions expand the body of grasp planning re-
search, especially grasp planning in the presence of environmental obstacles,
a topic not commonly addressed in the literature; most research in grasp
planning assumes the target object is isolated or clear to be grasped. This
is relevant to any industry that involves robot manipulation tasks, e.g., in
space exploration, manufacturing, and assistive robotics.

1.4 Outline of Thesis

This thesis is organized as follows: Section 2 provides background infor-
mation and a summary of related work, Section 3 describes the proposed
methodology for evaluating picks (including the offline process of grasp gen-
eration and evaluation and the online process of generating a surface mesh of
the pile and determining the best pick), Section 4 describes the experiments
and results, and Section 5 concludes the thesis and discusses future work.

7



Chapter 2

Background and Related
Work

Although there is little existing literature that directly addresses the problem
of finding the best viable pick in the context of bin-picking specifically, this
problem involves various aspects of computer vision and robotic grasping. In
this chapter, the bin-picking problem is reviewed, and these aspects relevant
to the “best pick” problem are discussed.

2.1 Bin-Picking: The General Problem

The general task of transferring a collection of like objects, one at a time,
from one location to another as part of an assembly line process is prevalent
in manufacturing. In order to avoid expensive fixturing, tooling, and com-
ponent feeders, as well as labour costs, there has been a strong desire in in-
dustry to have an automated bin-picking system, in which a robot efficiently
picks randomly-oriented parts out of a bin with the aid of a computer vision
system, and delivers them to another location within the assembly line.

However, a commercially viable system to perform such a task has proven
elusive due to a number of factors. For one, it is difficult and computationally
expensive to automatically recognize and localize parts within a bin, as the
parts can take on any random orientation, and can obstruct each other.
Also, the path that the robot must execute to retrieve a part is variable,
as it is dependent on the selected target part, and must be recomputed at
each cycle; this is not a trivial task, since the robot can potentially collide
with many obstacles. Furthermore, an isolated object may be grasped in any
number of ways, but, due to the random nature of a pile of parts, only certain
grasps are be possible for a given part within the pile; thus, planning a good
picking option (i.e., one that yields a collision-free, stable, robust grasp that
is within the robot’s reachable workspace) must also be computed at each
cycle. These are only some of the many challenges involved in developing a
fully-automated robotic bin-picking system.

8



Chapter 2. Background and Related Work

Because of these challenges, the kinds of systems currently in place in
assembly lines tend to be semi-structured. For example, parts may be sin-
gulated on a moving conveyer belt [18], so the task of picking becomes a 2-D
vision robot-guidance task, which is much less computationally taxing.

Recently, however, technology has advanced enough in the areas of com-
puter vision and robotics to make it possible to realize a fully-automated
robotic bin-picking solution for an unstructured bin of parts. Currently,
there is a great deal of variety in the proposed systems (i.e., sensor types,
sensor placements, computer vision algorithms, and grasp planning ap-
proaches), and substantial research has been done on sub-problems related
to the task of bin-picking. Some systems use range and laser sensors to
obtain the required depth information to locate objects within a random-
ized pile ([1], [5]), although the use of stereo cameras is more common, as
they are faster and cheaper. We base this work on a robotic system that
uses stereo vision. Variety also exists with the sensor placement (i.e., fixed,
eye-in-hand, or a hybrid of the two) and lighting techniques for improved
part localization (i.e., structured lighting, or switched lighting) [18]. This
work assumes a fixed (stereo) camera mounted above the bin, and does not
consider lighting techniques.

For a proposed bin-picking system to become widely adopted in industry,
it must be reliable, i.e., it must be able to continually pick parts out of
one or more bins while avoiding collisions with obstacles, and without the
average cycle time exceeding a predetermined length per successful pick-
and-place operation. (If the system is unreliable and fails on a given cycle,
time-consuming intervention is required, which increases the average cycle
time.) However, achieving a reliable system is difficult due to the inherent
variability of a randomized pile of parts, and is one of the reasons why there
exists so much variety in systems that have been proposed. Thus, improving
reliability is the primary motivation for the work herein.

2.2 Increasing the Number of Picks

As previously discussed, meeting the requirement of reliability is challenging
due to the nature of randomly-situated parts within the bin, and is one of
the main reasons why VGRBP systems have yet to be widely adopted by
industry. For example, given a set of pre-defined grasping points on a par-
ticular part, and a set of candidate parts within the context of a randomized
bin, in many cases the pre-defined grasps are obstructed by neighbouring
parts or by the walls of the bin. In such cases, the grasps are not feasible

9



Chapter 2. Background and Related Work

since they would result in collisions with the gripper. If there is a limited
number of pre-defined grasps, it is possible that all grasps for all candidate
parts are infeasible, resulting in no viable options for picking.

In some systems, if no valid pick exists, a second attempt is made at
locating a viable candidate; for example, by taking a closer look at the pile,
or by mechanically stirring the parts [28], and then re-examining the pile.
However, these solutions increase the cycle time.

Thus, one way to enhance reliability in a VGRBP system is to increase
the number of pick options available to the robotic system at each cycle.
This decreases the probability of having no viable pick options, and thus,
decreases the probability of an unsuccessful part retrieval attempt. By defi-
nition, the number of possible picks depends on (1) the number of candidate
parts localized by the vision system, and (2) the number of feasible grasps
that are available for each candidate. Much computer vision research has
been done for the purpose of enhancing recognition and localization of ob-
jects for VGRBP systems (i.e., addressing item (1)); if more objects can
be found by the vision system, there are more candidates to choose from
at each cycle. For example, the authors of [13] present a bin-picking sys-
tem based on a technique called active depth from defocus, in which better
recognition and localization of objects is achieved by improving 3-D range
data for model-matching. Similarly, a hybrid coarse-to-fine stereo-matching
algorithm geared towards the task of VGRBP is presented in [32]; the pur-
pose is to improve the stereo data since accurate 3D information of the pile
surface is required in order to localize parts. In [19], Harmonic Shape Con-
texts (HSC) features are used to improve part localization using 3-D data,
for the application of bin-picking. Other examples are presented in [1] and
[16].

However, there is little existing research that addresses item (2), the
number of feasible grasps, which is part of the motivation for this work.
Herein, we attempt to increase the number of picks by increasing the number
of feasible grasps that are available for each candidate.

2.3 Automatic Grasp Generation

One way to increase the number of picks for a given VGRBP cycle is to
increase the number of potential high-quality grasps for a given part by
sampling the grasp space. Grasp sampling of a particular object for a given
gripper is not a trivial task, and has been addressed by the authors of [25] and
[14]. In [25], objects are represented as a collection of primitive 3-D shapes
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(i.e., cones, spheres, and cubes), each of which is manually assigned a set of
grasp starting positions and pre-grasp shapes. Each grasp starting position
and pre-grasp shape collectively define a grasp (when the gripper fingers
are closed at that configuration). The union of all such grasps from each
primitive shape comprising the object results in a set of grasp samples. In
[14], objects are represented by superquadratic decomposition trees in order
to reduce the space of possible grasps, and the surface of each superquadratic
is sampled at a uniform interval. Both methods can accommodate a variety
of object types and gripper types (including two-, three- and five-fingered
grippers), and involve abstracting the surface of the target object to simplify
the problem. In our work, we present a method for densely sampling the
grasp space that is tailored specifically for a two-fingered gripper (as this
is commonly used in industry); this allows us to make the simplification of
considering only planar, antipodal grasps. Instead of abstracting the target
object’s surface, we abstract the target object’s volume using a wire-frame.

2.4 Grasp Evaluation

In order to determine the best pick, an evaluation method must be estab-
lished. Since a pick is defined as, collectively, a target part and a correspond-
ing grasp for that part, it follows that the quality of a pick will depend on
the quality of its constituent grasp. Typically, grasps are evaluated with
regards to stability. Much research has been done on quantifying the qual-
ity of a grasp in this way (e.g., see [11], [7], and [21]). Little research has
been done on the topic of grasp robustness, which becomes important when
evaluating grasps in a real system where there is error and uncertainty in
the data and components of the system. The concepts of grasp stability and
grasp robustness are discussed in Sections 2.4.1 and 2.4.2, respectively.

2.4.1 Grasp Stability

Analyzing grasps and evaluating grasp quality has been a research topic for
many years. Typically, grasp quality measures describe the stability of a
grasp. Since it is desirable in VGRBP to select picks that are highly stable,
we incorporate grasp stability into our method for generating many high-
quality picks. We use the open-source software GraspIt! [24] for evaluating
grasps with regards to stability.

Before describing the grasp evaluation approach, we describe the follow-
ing relevant terms:
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Friction cone - a cone-shaped volume aligned with the normal component of
a contact force applied to an object’s surface. It defines the set of all forces
that can be applied at the contact point without slippage. The size of the
friction cone depends on the coefficient of friction between the contacting
materials.

Wrench - a 6-D vector comprising a 3-D force and a 3-D moment.

Force-closure - a grasp is considered to be in force-closure if and only if it is
in equilibrium for any arbitrary disturbance wrench [27]. This implies that
if a grasp is force-closed, it can withstand any disturbance wrench (with
enough strength).

Grasp wrench space (GWS) - the union of all wrenches that can be applied
to an object by a grasp [24].

The method used by GraspIt! [24] for grasp evaluation is based on the
widely-accepted grasp analysis method proposed by Ferrari and Canny [11].
In [11], grasp quality is described as the magnitude of the largest, worst-
case, disturbance wrench that can be resisted by the grasp with a grip of
unit strength. The process involves computing the GWS of the grasp under
consideration, and is summarized by the following steps:

1. Determine the grasp contact points on the object surface.

2. Approximate the friction cone at each contact point as the convex sum
of a set of finite force vectors around the cone boundary (see Figure
2.1).

3. Compute the corresponding object wrench for each force vector.

4. Compute the GWS as the convex hull of all wrenches.

5. Compute the grasp quality as the distance from the wrench space
origin to the nearest point on the convex hull.

If the GWS does not contain the origin, the grasp is not considered to be
force-closed, i.e., there exists some disturbance wrench that the grasp cannot
resist (regardless of the forces applied by the grasping fingers). For a grasp
to be considered stable, it must be force-closed. It should be noted that
the quality measure provided by GraspIt! [24] does not take into account
robustness.

GraspIt! [24] is the main tool used to support the quality analysis done
in this work; for more in-depth background on grasp analysis, we direct the
reader to [4].
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Figure 2.1: The figure, reproduced from [24], illustrates a contact point
between the gripper and the object surface, and the corresponding friction
cone. (a) The size of the friction cone depends on the coefficient of friction
between the contacting materials, µ. The total contact force, f , must lie
within the friction cone to prevent slippage. (b) The friction cone is rep-
resented by the convex hull of a finite set of force vectors around the cone
boundary.

2.4.2 Grasp Robustness

In VGRBP systems, candidate parts must be recognized and localized using
computer vision techniques. However, even with state-of-the-art computer
vision algorithms, there is always some error in the pose (position and orien-
tation) estimation of each recognized part. Furthermore, robot calibration
is likely to have some error, resulting in errors in the gripper pose (position
and orientation). These sources of error are compounded in the process of
localizing a part and then moving the robot gripper to some desired grasp
location on the surface of that part. Therefore, it is likely that the resulting
grasp will be offset from the desired grasp, leading to an actual grasp that is
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less stable than the planned grasp, or that results in an undesired collision
between the gripper and other nearby parts, or the part itself.

One can expect that, by avoiding such scenarios, the VGRBP system will
be more reliable. Therefore, to improve reliability, we desire to incorporate
a preference for grasps that are “robust”, where we define “robustness” as
the insensitivity of a grasp to small pose errors. There is precedent for
this approach: the authors of [10] address the concept of robustness by
examining the effect of rotational variation of a grasp on the quality of the
grasp. However, the work in [10] does not take into account translational
variation. Both translational and rotational variations are considered in the
method proposed herein. In fact, in general, the concept of grasp robustness
has had very little attention in the grasping literature. This may change
as more autonomous robotic systems appear that are required to perform
unstructured grasping tasks.

2.5 Randomly Stored Objects: Selecting a Good
Pick

As just indicated, very little literature addresses the specific problem of
selecting a good pick. The problem is not formalized well, and, usually, the
focus is on selecting the best part to pick up, rather than the best pick. A
common approach is to select the top-most object in the pile and attempt
to apply a nominal grasp, as is done in [1], [13], and [16]. Locating the
top-most object can be accomplished using image segmentation methods,
such as those described in [31] and [12]. Although this would likely produce
feasible picks in many cases, it is not clear which part to select when multiple
parts are considered to be on top, or when parts are entangled such that no
part can be clearly distinguished as being on top. Furthermore, selecting
the top-most object does not guarantee either gripper finger clearance, or
selection of the best available grasp.

The work in [3] presents a cost function for evaluating a set of 6-D HPOs,
where an HPO is a Hand Position and Orientation, in the context of grasping
an object in a cluttered environment. Factors considered are (1) whether
or not the fixed part of the hand will be in collision, (2) the error of the
fit between a preselected hand preshape and a potential target, and (3) the
likelihood of the fingers being able to reach desired contact points without
collision. Force-closure and grasp quality are not checked until after a set
of HPOs are generated, so even if a given HPO has a low cost, and thus, a
high probability of resulting in a valid grasp, it may not result in the most
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stable grasp available. Also, the concept of grasp robustness is not explicitly
addressed.

2.6 Summary

In this chapter, we described the bin-picking problem, and reviewed var-
ious aspects of computer vision and robotic grasping research relevant to
the problem of determining the best pick for VGRBP. We described how
increasing the number of picking options can enhance system reliability, and
outlined two approaches for achieving this: (1) increasing the number of
recognized candidate parts, and (2) increasing the number of feasible grasps
for a given part. Much computer vision research has addressed (1), but little
work has addressed (2) since densely sampling the grasp space of an object
is a complex, non-trivial problem.

Once a list of potential picks is generated, there is a need to evaluate
these picks to determine the best one. Since grasp quality affects pick quality,
we summarized previous work that addresses grasp evaluation. We described
the simulator GraspIt! [24] used herein to evaluate grasp stability, and
the widely-accepted grasp analysis approach that GraspIt! is based on.
We found that previous work focused on evaluating grasps with regards to
stability only, and little work exists that considers grasp robustness. In
general, there is little research addressing the problem of pick evaluation in
the context of a randomized pile.

In the following chapter, we will address both of these issues, first looking
at grasp robustness in an offline stage, and then pick selection in an online
mode.
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Methodology

In this chapter, we detail the main contribution of this work: a method for
generating multiple high-quality (rated) pick options, enabling selection of
best pick, for a given cycle in VGRBP. Our method is broken down into two
stages: an offline module (described in Section 3.1), followed by an online
module (described in Section 3.2). In the offline portion, we generate many
high-quality two-fingered grasps for a given part. First, we densely sample
the space of all two-fingered grasps for the selected part, discarding any
infeasible grasps. We then evaluate each feasible grasp using our proposed
quality metric, which considers grasp stability and robustness. In the on-
line portion, we evaluate a subset of the highest-quality grasps (that were
generated offline) in the context of the pile, using stereo data of the pile
surface, to determine a collision-free set of rated picks. Gripper finger clear-
ance is taken into account to create a buffer for the various sources of error
in the system, such as robot positional error, object pose estimation error,
and noisy or uncertain stereo data. In the context of a VGRBP system, the
resulting set of picks is then passed to the robot control system to select the
highest-quality pick that is feasible, according to robot workspace and joint
limit constraints. An overview of the method is illustrated in Figure 1.2 in
Section 1.3.

3.1 Offline: High-Quality Grasp Generation

In the case of a manufactured part, ideally, information of all possible ways
in which a given object can be robustly grasped could be generated from
CAD (computer-aided design) data, since this information is useful for pick
selection. In this work, we define a grasp as the 6-D pose, or configuration,
of the gripper relative to the part, and the corresponding set of contact
points on the surface of the part (defined by the pose). The 6-D configura-
tion space of all robust grasps for an object and gripper is highly dependent
on the object and gripper geometries, and is, typically, non-discrete and
non-uniform; there are infinitely many ways to grasp the object, and grasp
quality will likely vary widely over the space. Therefore, formulating a
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closed-form, mathematical description of the robust grasp space is challeng-
ing, and, since it would vary from part to part, impractical. Furthermore,
CAD data of a part is often unavailable, and analytical descriptions of part
geometries is, generally, quite difficult to obtain. Alternatively, one could
uniformly sample the grasp configuration space and evaluate each sampled
grasp to generate a set of grasps that is a good representation of the grasp
space, using empirical data describing the part geometry. Such empirical
data may be obtained by laser-scanning the part. This approach has the
benefits of being general and practical, as well as potentially extendable to
new parts without CAD data, and is the approach we use.

Generating an extensive list of grasps for a given part can be computa-
tionally expensive, and is very difficult to compute online within the required
time constraints. Typically, in the context of industrial bin-picking, a-priori
knowledge of the part to be picked is available. This allows for offline gen-
eration and evaluation of grasps with little concern for computation time.
Thus, the output of the offline module is a rated set of robust grasps. We
summarize the offline process as follows:

1. Densely and uniformly sample the space of all two-fingered, antipodal
grasps, discarding infeasible grasps.

2. Evaluate feasible grasps for stability, discarding unstable grasps.

3. Evaluate stable grasps for robustness, discarding non-robust grasps.

4. Evaluate robust grasps using proposed quality metric function.

Here, “feasible” means that the gripper does not collide with the part. Note
that, if a grasp is evaluated as robust, it is also feasible and stable by def-
inition (see Section 3.1.2). This grasp set hierarchy is illustrated in Figure
3.1.

This section is broken up into two parts. In Section 3.1.1, the approach
for generating an extensive list of feasible grasps for an exemplar part - a
connecting rod, or con-rod (a common automotive part) - is detailed. Section
3.1.2 describes how the quality of each grasp is evaluated.
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Figure 3.1: Illustration of grasp set hierarchy. If a grasp is evaluated as
robust, it is also, by definition, feasible and stable.
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3.1.1 Densely Sampling the Grasp Space

In order to densely sample the grasp space, the following system inputs
are required: a surface model of the part, a corresponding wire-frame, and a
surface model of the gripper. An example of a part model and corresponding
wire-frame is shown in Figure 3.2.

For a standard industrial two-fingered gripper, we generate grasps at
multiple positions and orientations by intersecting the space between the
gripper fingers with the part at uniform intervals. To reduce the complexity
of grasp generation, only planar grasps are considered; i.e., the grasp contact
points lie in a plane. This choice enables us to model the space between the
gripper fingers as a bounded 2-D (planar) region located at the gripper
fingertips (see Figure 3.3). To formally describe this intersection process,
we present the following definitions:

Sp - a collection of line segments comprising a wire-frame that approximates
the geometry of the part (see Figure 3.2)

Nsp - the number of line segments comprising Sp

si - a single line segment within Sp

Li - the length of si

Ψg - the 2-D region of space between the fully-opened gripper fingers, lo-
cated at the gripper fingertips (see Figure 3.3)

d - linear translation parameter along a line segment

θ - axial rotation parameter about the z-axis of the current part wire-frame
line segment

φ - current-frame rotation parameter about the pinching (or sliding) direc-
tion of the gripper, defined in the plane of Ψg; the pinching direction is
always perpendicular to the current line segment

∆d - translational step-size for d

∆θ - rotational step-size for θ

∆φ - rotational step-size for φ

We define the wire-frame, Sp, manually (see Figure 3.2), and restrict
the position of Ψg to points along Sp. The grasp generation algorithm is
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Figure 3.2: (a) Part model. (b) Corresponding wire-frame, Sp; Nsp = 5.

described in Figure 3.4. In this algorithm, we translate the fully-opened
gripper (and, correspondingly, Ψg) in discrete steps along each si ∈ Sp,
and at each translational step, we rotate Ψg through a sphere of discrete
orientations. At each new pose of Ψg, the intersection between Ψg and the
part is computed, resulting in a 2-D cross-section. Grasp points are defined
at the extrema of the cross-section along the pinching direction, within a
tolerance, ε, to account for soft gripper contacts (see Figure 3.5). Only
grasps that do not result in a collision between the fully-opened gripper and
the part are stored (otherwise, they are considered infeasible).
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Figure 3.3: Illustration of Ψg (the 2-D region between the gripper fingertips),
the gripper, and the sampling directions.
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Algorithm GRASP GENERATOR

Let move(si, d, θ, φ) represent a function that translates and rotates gripper
(and, correspondingly, Ψg) to the pose defined by the input parameters

for i = 1 to Nsp

for d = 0 to Li; step ∆d
for θ = 0 to (2π −∆θ); step ∆θ

for φ = 0 to π; step ∆φ
move(si, d, θ, φ)
if fully-opened gripper does not collide with part // feasibility check

compute intersection between Ψg and part
compute grasp points from this intersection
store grasp data (gripper pose + contact points)

end if
end for

end for
end for

end for

Figure 3.4: Grasp Generator Algorithm, which describes the intersection of
Ψg with the part.

22



Chapter 3. Methodology

Figure 3.5: Illustration of generating a set of contact points from a 2-D
cross-section. (a) Sample grasp. (b) Minimal representation of grasp using
a T shape that depicts approach direction, pinching direction, and position
of grasp (see Section 4.1 for details). (c) Contact points corresponding to
sample grasp. Contacts are located at the extrema of the cross-section
(indicated by the arrowheads) along the pinching direction of the gripper,
within a tolerance, ε.
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Parameterizing the rotation with θ and φ ensures that the pinching direc-
tion of the gripper is perpendicular to the current wire-frame line segment.
The justification for sampling this space is that grasps are, in general, more
stable if the forces applied by the gripper fingers are perpendicular to the
surfaces they contact; this minimizes the risk of slippage between the gripper
fingers and the object.

The selection of the sampling step size is important to the grasp gener-
ation algorithm. Although a dense sampling is desired, there is a limit on
the accuracy of the robot that would be used to grasp the part. It would
be superfluous to use a step-size that is smaller than the positional error of
the gripper. Thus, we use the robot’s positional accuracy as a lower bound
on the translational step-size, ∆d.

To uniformly sample the grasp space, it is desirable to use a similar
step-size in all directions. This is complicated by the fact that one sample
direction is translational, while the other two are rotational. To address this,
we select rotational step-sizes (∆θ and ∆φ) such that the arc length spanned
by each rotational step-size is approximately equal to ∆d. In calculating arc
length, we use a radius equal to the average radius of the part. Thus, the
resulting rotational step-sizes are comparable to ∆d, and dependent on ∆d
and the part geometry.

The grasp generation algorithm may be used to collect grasps for any
object that can be roughly approximated by a wire-frame skeleton of line
segments and that can be represented using a 3-D surface mesh model. The
selected object should be small enough such that the gripper fingers can
enclose some portion of the object, and light enough for the robot to lift
without exceeding joint torque limits. Also, the algorithm is compatible
with other gripper types, provided the gripper is capable of generating pla-
nar antipodal grasps (i.e., three-fingered). This provision allows us to model
the space between the fully-opened gripper fingers with a 2-D planar region
(namely, Ψg) used for sampling the grasp space.

3.1.2 Grasp Evaluation

Herein, we consider both grasp stability and robustness in our evaluation of
grasp quality. The simulator we use for evaluating grasp stability, GraspIt!
[24], has been used in [25], [14], [10], and [26]. The GraspIt! quality measures
are based on the magnitude of the largest disturbance wrench that can be
resisted by a unit-strength grasp (see Section 2.4.1 for details). Henceforth,
for a given grasp, gi, we will refer to the GraspIt! quality measure as qi
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and describe grasps with large values of q as being “highly stable”. A grasp
is (technically) stable if qi is greater than zero; therefore, we discard any
grasps whose quality measure is less than or equal to zero.

We evaluate grasp robustness after evaluating grasp stability, since ro-
bustness depends on the stability evaluation. For a grasp, gi, we denote the
robustness as ri. We describe robustness as a measure of the insensitivity
of qi (stability measure) to small variations in the pose (position and orien-
tation) of the grasp. Robustness is important to consider for VGRBP since,
due to the gripper pose error combined with the pose estimation error of
the target part, the actual grasp is likely to be offset from the desired grasp.
We propose that the robustness, ri, of a grasp, gi, is the the inverse of the
standard deviation of q within a local region, ρ, centered on gi. Thus, we
present the following definition:

ri =
1√∑Nρ (qj−q̄)2
Nρ−1

. (3.1)

Nρ is the number of grasps within the local region, ρ, of the grasp in question,
and q̄ is the mean stability measure within this region. Note that ρ is
a discretized, 3-D region, with dimensions corresponding to the sampling
directions, θ, φ, and d, and the discretization is defined by the three sampling
step-sizes. Thus, ρ can be visualized as a 3-D array, in which each array
entry represents a single grasp with unique coordinates, (θ,φ,d). The size of
ρ is an input parameter, and is selected based on the position accuracy of
the robotic system.

Herein, we impose the necessary condition that only feasible, stable
grasps may be robust. Therefore, when we describe a grasp as being ro-
bust, we imply that it is also feasible and stable (see Figure 3.1). A feasible,
stable grasp is considered to be robust (and is, therefore, accepted) if all
neighbouring grasps satisfy the following three criteria:

1. They exist.

2. They are feasible (i.e., they will not result in collisions with the grip-
per).

3. They are stable (qi > 0).

Finally, we propose the following definition for the overall quality mea-
sure, Qi, of a grasp gi:

Qi = qγi · ri, (3.2)

25



Chapter 3. Methodology

where qi and ri have each been normalized between 0 and 1 using the max-
imum value for each from their respective data sets, and γ is a tunable
“stability” parameter that is greater than 1 that emphasizes grasp stabil-
ity over robustness. It should be noted that changing the value of γ does
not affect the ranking order of a set of evaluated grasps, provided that γ is
greater than 1; it only affects the data spread. Henceforth, when we use the
term “quality”, we are referring to Q.

Equation (3.2) ensures that the best grasps are those that both resist
large disturbance wrenches and are insensitive to slight position changes.
The factors are multiplied, rather than weighted and summed, since grasp
quality depends on both factors simultaneously rather than either factor
independently.

3.2 Online: Determining the Best Pick

In VGRBP, a 3-D vision system can be used to obtain a topographical map
of the pile surface, providing information for part localization and obstacle
avoidance (i.e., collision-checking) [6]. Our approach relies on such a sys-
tem; we check for collisions between the pile and a list of pre-generated,
evaluated grasps for each localized candidate part, at each cycle. Since each
grasp-candidate combination is considered to be a unique pick, the result-
ing number of picks checked is the product of the number of grasps in the
employed grasp set and the number of candidate parts. If a pick is collision-
free, it is considered to be valid. To check for collisions between the gripper
and the pile at various pick positions, we first generate a mesh model of
the pile surface at each cycle (see Section 3.2.1). We then compute clear
picks by projecting an enlarged version of the gripper into the pile at each
pick position, and then performing a collision check (see Section 3.2.2). The
gripper fingers are enlarged to incorporate a clearance buffer. The resulting
valid picks are sorted according to each pick’s corresponding grasp quality
measure, Q. The general procedure for generating many high-quality picks
is described in Figure 3.6.

If only the part, the gripper, and the pile configuration were consid-
ered, the best pick would be the highest-quality clear pick. However, some
picks may be impossible due to robot workspace and joint limit constraints.
Therefore, in practice, an additional step is required to process the rated
list to check for feasibility with the robot’s limits before finally selecting the
highest-quality feasible pick. This final step may be executed using standard
techniques, and, as such, is not discussed in detail herein.
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Procedure 1 - Generating Many High-Quality Picks

1. Localize set of candidate parts to pick from pile (located relative to
camera frame).

2. Generate mesh surface model of pile (located relative to camera frame)
according to Procedure 2 (see Figure 3.7).

3. Using (i) ranked set of highest-quality robust grasps (generated offline),
(ii) pose estimates for localized parts, (iii) gripper model, and (iv) pile
surface model, compute and rank collision-free picks according to Pro-
cedure 3 (see Figure 3.10).

4. Return ranked list of clear picks to robot control system to select the
best feasible pick.

Figure 3.6: Overview of the procedure for generating many high-quality
picks.

3.2.1 Generating a Model of the Pile Surface

In order to check for collisions between the pile and the gripper at various
pick positions, a 3-D surface model of the pile is required. Thus, we generate
a mesh of the pile surface using stereo data, according to the procedure
described in Figure 3.7 involving standard mesh processing techniques.
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Procedure 2 - Creating Pile Surface Model

1. Localize a set of candidate parts to pick from the pile (located relative
to the camera frame) using existing computer vision methods.

2. Take a snapshot of the pile using a stereo camera positioned directly
above the pile, and generate a corresponding disparity map.

3. Cull statistical outliers in the disparity data.

4. Fill in regions of the disparity map that are invalid/unknown using It-
erative Averaging Algorithm (described in Figure 3.8).

5. Convert disparity values at each pixel coordinate to (x, y, z) coordinates
(relative to the camera frame) to generate a dense point cloud.

6. Triangulate the point cloud to create a surface mesh.

7. Smooth and down-sample the mesh.

8. Project instances of the part mesh model into the pile mesh at the esti-
mated locations (generated in step 1).

Figure 3.7: Overview of the procedure for generating a mesh model of the
pile surface. See Figure 3.9 for an illustration of this procedure.
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Step 4 of Procedure 2 uses the Iterative Averaging Algorithm (see Figure
3.8) to fill in invalid/unknown regions of the disparity map . For the purpose
of formally presenting this algorithm, we present the following parameter
and variable definitions:

D - initial disparity map

D′ - final disparity map with invalid/unknown regions filled in (has same
dimensions as D)

hD - height of the disparity map, in pixels

wD - width of the disparity map, in pixels

D(m,n) - disparity value at row m and column n in the map, D

Binit - user-defined disparity initialization parameter

∆x - user-defined step-size parameter (0 <∆x< 1)

DIFFmax - maximum difference between a disparity value D(m,n) and
the average disparity of the four nearest neighbours of pixel (m,n)

DIFFinit - user-defined initialization parameter for DIFFmax

THRESstop - user-defined threshold parameter that determines when the
algorithm stops (THRESstop> 0)

The Iterative Averaging Algorithm described in Figure 3.8 has the benefit
of providing a conservative estimate of the clear space within the pile.

In the final step of Procedure 2, we use a-priori knowledge of the part
to improve the pile surface model. The number of projected instances is
directly proportional to the number of candidates we can localize within the
pile; therefore, the quality of the pile model is dependent on how well we
can recognize and localize parts within it. Figure 3.9 illustrates the process
described in Procedure 2.
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Algorithm ITERATIVE AVERAGING

Let isBorderP ixel(D,m, n) represent a function that returns TRUE if the
pixel indexed by (m,n) is along the border of D, and FALSE otherwise

Let isInvalidP ixel(D,m, n) represent a function that returns TRUE if the
pixel indexed by (m,n) has an invalid/unknown disparity value, and FALSE
otherwise

Let neighbourAverage(D(m,n)) represent a function that returns the average
disparity of the nearest four neighbouring pixels to the pixel specified by (m,n)
(must be an interior pixel)

for m = 1 to hD

for n = 1 to wD

if (isBorderP ixel(D,m, n) OR isInvalidP ixel(D,m, n))
D(m,n) = Binit

end if
end for

end for

D′=D
DIFFmax=DIFFinit

while(DIFFmax>THRESSTOP )
for m = 1 to hD

for n = 1 to wD

if (isInvalidP ixel(D,m, n))
diff = (neighbourAverage(D(m,n))−D(m,n))
if(DIFFmax< |diff |)
DIFFmax= diff

end if
D′(m,n) = D(m,n)+∆x·diff

end if
end for

end for
D=D′

end while

Figure 3.8: Iterative Averaging Algorithm used to fill in the invalid/unknown
regions of the disparity map.
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Figure 3.9: Illustration of Procedure 2 (see Figure 3.7) for generating a
pile surface model from stereo data. (a) A top-view of a random pile of
con-rods. (b) A screenshot from the vision software, eVisionFactory [6],
used to localize candidates within the pile. Three candidates have been
localized and highlighted. (c) Disparity map of the pile surface. White
pixels represent regions where depth information is invalid/unknown. (d)
Filled-in disparity map using Iterative Averaging Algorithm. (e) Resulting
mesh after converting to (x, y, z) coordinates, triangulating, smoothing, and
down-sampling. (f) Final model of the pile surface after projecting instances
of con-rod model into the scene at the locations provided by eVisionFactory
[6].
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3.2.2 Computing Clear Picks

In our previous work (see [9]), the focus was on determining the best candi-
date part to pick up from the pile (as opposed to the best pick), and it was
selected to be the part with the highest number of clear grasps. Once the
best candidate was selected using this approach, we chose the best grasp as
the highest-rated clear grasp for that target part. However, this approach is
not ideal for the following reasons: (1) there is no explicit measure of the
clearance around the gripper fingers (this is not computed), and (2) it may
not always yield the highest-quality grasp possible for that pile.

These concerns led us to formulate the notion of a pick, which is collec-
tively a grasp and a candidate part. Thus, we shifted our approach from
“determining the best part to pick up” to “determining the best pick”. In
the latter, we check each potential pick for validity by checking for collisions
between the mesh model of the gripper at each pick configuration, and the
pile mesh model. We then select the best pick as the one with the highest
quality measure that is also collision-free, within a predetermined clearance
buffer. Possible pick configurations are generated by applying a set of high-
quality grasps (generated offline) to each localized candidate. The procedure
for computing clear picks is outlined in Figure 3.10.

In a system where error can originate from the pose estimation of can-
didate parts, the incomplete and noisy stereo data used to form the pile
mesh, and the robot position itself, we impose a buffer of clearance around
the gripper fingers to reduce the likelihood of a collision. We decided to im-
plement clearance as a binary filter: that is, if there is a minimum amount
of collision-free volume around the gripper fingers, the pick is allowable,
or “clear”, and eliminated otherwise. We reasoned that clearance beyond
a predetermined minimum amount should not factor into the quality of a
pick, since it is assumed that the VGRBP system is sufficiently accurate
to operate within the clearance bounds (provided that the clearance buffer
size is chosen based on the accuracy of the system). On the other hand,
interference of any size can cause the pick to fail.

To generate a clearance buffer, we enlarge the gripper fingers by scaling
the finger dimensions (in the x, y, and z directions; see Figure 3.11. The
dimensions of the gripper fingers are multiplied by scale factors to gener-
ate the dimensions of the enlarged gripper. When we check for collisions
between the pile mesh and the gripper, we employ the enlarged gripper, re-
sulting in collision-free picks with some predetermined amount of clearance
(as dictated by the amount of scaling).

When checking for collisions, it is likely unnecessary to use the full list of
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Procedure 3 - Computing Clear Picks

1. Obtain inputs: (i) ranked set of highest-quality robust grasps, {G} (gen-
erated offline), (ii) pose estimates for localized parts, (iii) gripper model,
and (iv) pile surface model (relative to camera coordinate frame).

2. For each localized part:

(a) Using part’s pose hypothesis, obtain homogeneous transformation
that describes part’s pose in camera coordinate frame, cHp.

(b) For each potential grasp, gi, in grasp set {G}:

i. Compute transformation that describes gripper’s pose in cam-
era frame, cHg, using the following equation: cHg =c Hp ·pHg,
where pHg describes gripper’s pose in the part frame.

ii. Apply cHg to gripper model to place gripper at current pick
position.

iii. Check for collisions between gripper and pile surface model.
If collision detected, eliminate pick.

3. Rate remaining picks based on their evaluated grasp quality measure,
Q.

Figure 3.10: Overview of the procedure for computing clear picks.

robust grasps, {GFULL}, generated offline. In addition, although all grasps
in this list are technically “stable” (i.e., force-closed), some may be rela-
tively poor in practice. Lastly, when evaluating picks online, computation
time should be reduced where possible, in order to meet the cycle time re-
quirement. For these reasons, we further reduce this list to a set of the
highest-quality grasps, {G}, for collision-checking.
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Figure 3.11: Illustration of dimensions and scaling directions of gripper,
along which the gripper fingers are enlarged to generate clearance.
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3.3 Summary

In this chapter, we described a novel method for determining the best pick
on a given VGRBP cycle. This method involves (1) an offline portion, in
which we densely sample the two-fingered grasp space of a choice part and
evaluate the quality of all sampled grasps, and (2) an online portion, in which
we evaluate a subset of the highest-quality grasps in the context of the pile
to determine a collision-free set of rated picks. For (1), we presented an
automatic grasp generation algorithm for sampling the grasp space, as well
as a metric function for evaluating grasp quality. For (2), we described the
process of generating a pile surface mesh model needed for collision-checking,
and how we compute clear picks by considering gripper-finger clearance.

In the next chapter, we show the results from applying this method using
a part that is commonly binned in automotive assembly lines.
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Experiments and Results

To evaluate our proposed pick selection method, we investigated bin-picking
of a connecting rod, or con-rod (from a car engine). This part is typical in
size and form of parts that would be suitable for bin-picking applications.
Other parts to consider include screws, shafts, and caps, as they are simple
in shape and typically delivered to the assembly line jumbled in bins. Future
work aims to apply the proposed method to other types of parts, covering
a variety of geometries, in order to strengthen and expand on the results
presented herein.

Section 4.1 shows the results of generating a densely-sampled ranked set
of robust grasps. This grasp set is used in Section 4.2, in which the proposed
method for determining the best pick is experimentally validated using stereo
data of real con-rod piles. In each section, a discussion accompanies the
results shown.

4.1 Creating a Densely-Sampled Set of Evaluated
Grasps

The parameters used for grasp generation for a con-rod are summarized
in Table 4.1. Since typical values for robot accuracy and pose estimation
accuracy are ±1mm and ±2mm, respectively, we estimated the accuracy
of our system to be ±3mm, and thus, used a sampling step-size of 3mm.
To determine the 3-D region, ρ, for robustness calculations, we limited the
neighbourhood around each grasp to include grasps within one step-size in
all directions (θ, φ, and d). This can be visualized as a 3 × 3 × 3 array of
grasp samples. We selected the tunable stability parameter γ = 2.

Table 4.1 summarizes the results of the grasp generation using the pa-
rameters shown in Table 4.1. Out of 26650 grasps sampled, 5011, or 19%
were robust.

Figure 4.1 visualizes these grasps with respect to the con-rod model
from different viewing directions of the model. We have chosen to visually
represent each grasp using a T shape, which is to be interpreted as follows:
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Table 4.1: Summary of input parameters used for grasp generation and
evaluation.

Grasp generation Soft gripper Dimensions of
sampling size finger tolerance, region ρ for γ
(mm) ε (mm) robustness

calculation

3 3 3× 3× 3 2

Table 4.2: Grasp generation results. Percentages are in relation to number
of grasp samples.

# of Feasible grasps Stable and Robust grasps
grasp feasible grasps
samples # % # % # %

26650 20501 76.9 17367 65.2 5011 18.8

• The location of the T along the wire-frame represents the position of
the grasp (as described by d).

• The stem of the T represents the approach direction of the gripper.

• The top bar of the T represents the pinching direction of the gripper.

• The size of the T represents the quality, Q, of the grasp; it has been
uniformly scaled according to Q.

Only robust grasps are shown. In Figure 4.1 (a), the part model is overlaid
onto the wire-frame. In (b), just the wire-frame is shown.

The grasp qualities depicted in Figure 4.1 are consistent with what one
would expect: high-quality grasps tend to be those for which (a) there exist
many points of contact between the gripper fingers and the part, and (b)
forces applied at the gripper finger contacts are generally normal to the
part’s surface. As expected, the best grasps are clustered near the centre
of mass of the part, where disturbance torque is minimized, and few good
grasps are found in regions of high surface curvature. The grasps are not
perfectly symmetrical because the con-rod model used was obtained from a
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Figure 4.1: Visualization from different viewing directions of uniformly-
spaced, densely-sampled list of generated grasps with respect to wire-frame,
Sp. See text in Section 4.1 for details.
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laser scan of a physical con-rod. Since grasp stability, q, is dependent on
the number of contacts between the gripper fingers and the part, the final
quality, Q, is sensitive to the deformability of the gripper fingertips (modeled
in our system as ε) and imperfections in the surface model of the part.

Grasp quality is also sensitive to the resolution of the part model. Recall
from Section 3.1.1 that grasp points are defined at the extrema of the cross-
section along the pinching direction, within ε (see Figure 3.5). If the part
model is high-resolution (i.e., the mesh is formed from a large number of
triangles), the cross-section will also be high-resolution; that is, the cross-
section will comprise the same number of line segments or more than with
a low-resolution model. In this implementation, grasp points are selected as
the end points of each line segment comprising the cross-section, within ε.
Therefore, the number of grasp points and corresponding stability measure
calculated by GraspIt! are dependent on the part model resolution. This
dependency may lead to different grasp rankings if computed at differing
levels of resolution, and motivates the use of a high-resolution part model
in order to achieve a high level of accuracy. The cost of increasing the part
model resolution is computation time, but this is a minor concern since grasp
generation is performed offline.

Another implication of selecting grasp points as the end points of each
line segments is that the number of grasp points generated per line segment
does not depend on the length of the segment. A potential consequence of
this is selecting grasp points that poorly approximate the actual contact-
ing surfaces of the grasp. This is one weakness of using a discrete set of
point contacts to represent continuous surface area contacts. A possible im-
provement to this implementation is using the total length of the set of line
segments that lie within ε to determine the number of grasp contact points.

In addition to using the evaluated densely-sampled set of generated
grasps, illustrated in Figure 4.1 to provide many picks online, we can also
use this data to establish high-quality grasp regions, aiding in the selection
of nominal grasps offline.

4.2 Determining the Best Pick: Validating the
Proposed Method

In our previous work (see [9]), we generated a densely-sampled set of eval-
uated grasps offline, and then used a subset of the highest-quality grasps,
{G}, to select a pick online. However, in that paper, we focused on deter-
mining the best candidate part to pick up, and selected it to be the part
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with the highest number of clear grasps. We then selected the target grasp
to be the highest-quality, collision-free grasp for the chosen target. Thus,
the main differences between earlier work and the proposed method herein
concern the online computation portion, and are summarized by: (1) the
notion of a pick (which enabled searching for the best pick as opposed to
the best target part), and (2) computation of gripper finger clearance.

We validated our previous approach in simulation. Herein, we include a
brief summary of the earlier method and the simulation results in Section
4.2.1. We include these results to reinforce the effectiveness of using a large
grasp set to generate more picking options, and ultimately determine the
best one. Section 4.2.2 explains our experiment and results for validating
our current approach using stereo data from a real pile of parts. In both
cases, we compare two grasp sets: (1) the set of top quality grasps from a
generated list of evaluated grasps, {G}, and (2) a set of 12 nominal intuitive
grasps, {N}, that would typically be used in an industrial application. The
nominal grasps are illustrated in Figure 4.2. It should be noted that, due to
the symmetry of the con-rod and the gripper, there exist two grasps (with
diametrically opposed approach directions) that result in the same set of
contact points on the surface of the object; thus, they share the same Q
value. For both methods (earlier and current), we statistically validate the
hypothesis that using a relatively large grasp set results in more picking
options, on average.
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Figure 4.2: Visual description of {N}, comprising 12 nominal grasps used
for experiments. (a) Side-view of part; arrows represent approach directions.
(b) Top-view of part; arrows represent pinching directions. For each pinching
direction shown in (b), note that there are two grasps, with diametrically
opposed approach directions, that result in the same set of contact points
on the surface of the object.
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4.2.1 Determining the Best Pick in Simulation: Earlier
Work

As previously stated, in earlier work (see [9]), we focused on selecting the
best part to pick up out of a set of candidate parts, and it was chosen to be
that with the highest number of clear grasps from a set of highest-quality
grasps, {G}. Thus, we checked for collisions between the gripper and the
pile for each grasp in {G}, for each candidate. We considered a candidate to
be valid if there existed at least one collision-free grasp to retrieve it with,
and rated valid candidates based on the number of collision-free grasps for
each.

We evaluated candidates within multiple, simulated, randomized piles of
con-rods, using two grasp sets, {G} and {N}, and compared the statistical
results. Using simulated piles allowed us to have complete knowledge (i.e.,
pose information) of all obstacles. To create each pile, we randomly stacked
parts, one at a time, using a physics simulator to model the rigid-body
dynamics. To form {G}, we ranked all grasps from {GFULL} based on Q,
and selected the top 10% of grasps. It should be noted that all grasps from
{GFULL} could, potentially, have been included since all are robust. For
each potential grasp, we checked for collisions with the ground plane and
all other parts in the pile using the efficient hierarchical Oriented Bounding
Box method described in [15].

We performed this evaluation with 100 different piles of 25 con-rods;
for each pile, we selected the last 15 parts that had been added to the pile
as our candidates in order to approximate the real-world situation wherein
the candidates would likely be at or near the surface of the pile. Table 4.3
summarizes the input parameters for the experiment. Figure 4.3(a) shows
an example of a simulated pile of parts, with the candidates highlighted
in Figure 4.3(b). Valid candidates are highlighted and numbered accord-
ing to their rating in Figure 4.3(c)-(d), for the grasp sets {G} and {N},
respectively.

The average number of valid candidates for the set of top grasps, {G},
and the set of nominal grasps, {N}, were 8 and 5, respectively. A paired
t-test analysis of the null hypothesis that these two methods produce the
same distribution of valid parts for picking had a probability of 7.55×10−25,
indicating that the distributions are significantly different. These results are
summarized in Table 4.4. They confirm the hypothesis that increasing the
number of possible grasps for the part results in an increased number of
valid candidates and, accordingly, the number of picking options. However,
this evaluation does not consider whether or not candidates are pinned down
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Table 4.3: Summary of input parameters used for simulated experiment.
Input Parameters

# of # of parts # of # Percentage of Resulting #
piles per pile candidates top robust of grasps

per pile grasps used used

100 25 15 10% 428

Table 4.4: Summary of results from simulated experiment.
Average # of parts with at least

one valid grasp Probability that distributions

Generated grasps Nominal grasps are the same (paired t-test)
{G} {N}

8 5 7.55× 10−25

by other parts, and if so, the extent to which they are buried. One would
expect that a candidate for which there is an available grasp in the context
of the pile, but is deeply embedded in the pile, would be a poor option, and
should be eliminated. An example of this situation is illustrated in Figure
4.3(c) for the candidates rated 5th and 7th. It should be noted that we
assumed that the probability distribution for the number of picks per pile
could be approximated using a normal distribution.

In [9], we had reasoned that there would be a correlation between the
number of grasps available for a particular candidate part and the amount of
clearance around the candidate. As such, this approach did not provide an
explicit computation of clearance - information that is essential for planning
clear picks in practice. This motivated the addition of clearance compu-
tation in the proposed pick evaluation method herein. The results of our
experiments with clearance included are described in the next section.
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Figure 4.3: Comparison of valid candidates determined for an example pile
using grasp sets {G} and {N}. (a) The simulated pile of parts. (b) High-
lighted candidates. (c) Highlighted valid candidates found using {G}, num-
bered according to their rating. (d) Highlighted valid candidates found using
{N}, numbered according to their rating.
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4.2.2 Determining the Best Pick: Using Stereo Data of a
Real Pile

In this experiment, we validate the online portion of the proposed method by
executing it using stereo data from a real pile of parts. We also examine the
effects of varying the amount of required clearance on the resulting number
of generated picks. The tools we used for the experiment included a Point
Grey Research Bumblebee2 stereo camera [29] mounted directly above a pile
of con-rods (see Figure 4.4), and the Point Grey Triclops software [29] to
read in stereo images and create corresponding disparity maps. For mesh
manipulation, including smoothing, coarsening, and collision detection, we
used the open-source GNU Triangulated Surface (GTS) library [22]. To
localize candidate con-rods to pick within the pile, we used computer vision
software called eVisionFactory, or eVF [6], which provides pose hypotheses
of recognized con-rods using image data from the Bumblebee2. An eVF
snapshot with a set of localized candidate parts highlighted is shown in
Figure 3.9(b).

In our experiment, we computed and rated a set of the best available
picks for a real pile of con-rods for each of two sets of grasps: (1) a set
of highest quality grasps from our generated grasp list, {G}, and (2) a set
of 12 nominal “intuitive” grasps, {N}, that would typically be used in an
industrial application (shown in Figure 4.2. For the first set, grasps were
ranked based on Q, and the top η = 120 were selected, although all grasps
could, potentially, have been included since all are robust. This quantity,
η, is a tunable parameter, and optimizing this value depends on the quality
of grasps generated, as well as limits on online computation time. For each
potential pick, we checked for collisions between the gripper and the pile
model, derived from stereo data. We repeated this for 30 random piles
(30 trials), and 3 levels of clearance imposed on the gripper fingers. Table
4.5 summarizes the input parameters for the experiment, while table 4.6
summarizes the clearance parameters.

The data from this experiment are shown in Table 4.7. Statistical anal-
ysis of these data is summarized in Table 4.8 and Figure 4.4. We calculated
the mean and standard deviation, σ, for each clearance level, and defined the
error on the mean as ±σ. In earlier work, we assumed a normal distribution
in our analysis (see Section 4.2.1); however, applying a normal distribution
here to model the probability density of these data results in a significant
portion of the distribution extending into the range of negative numbers.
Since the number of picks must be a non-negative quantity, we modeled the
data with a gamma-type probability density function that is non-negative
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Table 4.5: Summary of input parameters used for pick evaluation experi-
ment.

Input Parameters

# of # of parts # of # of top # of
piles per pile candidates robust grasps clearance

per pile used, η levels used

30 13 3 120 3

Table 4.6: Summary of scaling parameters used at each clearance level.
The scaling directions for enlarging the gripper are shown in Figure 3.11.
The dimensions of the gripper fingers are multiplied by the scale factor
to generate the dimensions of the enlarged gripper. Note that the scaling
parameters for Clearance Level 1 are all unity, resulting in zero clearance
buffer.

Scale Factor (ratio of
Clearance Level gripper finger dimensions)

x direction y direction z direction

1 1.00 1.00 1.00
2 1.20 1.20 1.035
3 1.40 1.40 1.07

by definition [23]. The key parameter that describes the shape of this dis-
tribution, and therefore defines σ, is α (see Appendix A for a description
of the gamma distribution). We chose α = 2 to provide the best fit to the
histogram data (shown in Appendix B).
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Table 4.7: Results of evaluating picks for the two grasp sets, {N} (nominal
grasps) and {G} (grasps generated by our system), on multiple randomized
piles of con-rods for three levels of gripper finger clearance (see Table 4.6 for
clearance parameters). When observing these values, note that, the highest
Q from the entire set of {G} is 0.079. Also note that, some of the grasps
from {N} are unstable (Q = −1, represented by “x” in the table), as they
were not selected based on quality, whereas the grasps from {G} must be
stable by definition.

Clearance Level 1 Clearance Level 2 Clearance Level 3
{N} {G} {N} {G} {N} {G}

Pile #
of

Q
of

#
of

Q
of

#
of

Q
of

#
of

Q
of

#
of

Q
of

#
of

Q
of

# clear best clear best clear best clear best clear best clear best
picks pick picks pick picks pick picks pick picks pick picks pick

1 3 x 7 0.06 2 x 0 n/a 0 n/a 0 n/a
2 4 0.049 50 0.079 2 0.049 14 0.049 0 n/a 1 0.03
3 7 0.049 99 0.079 6 0.049 81 0.079 2 x 20 0.07
4 7 0.049 50 0.079 1 x 8 0.044 1 x 2 0.032
5 6 0.049 70 0.079 5 0.049 50 0.079 2 0.044 29 0.07
6 6 0.049 75 0.079 4 0.044 44 0.079 3 0.044 25 0.076
7 3 x 4 0.035 2 x 0 n/a 1 x 0 n/a
8 2 0.044 52 0.079 2 0.044 43 0.079 1 x 23 0.06
9 5 0.007 39 0.072 3 0.007 20 0.072 0 n/a 3 0.035
10 6 0.049 88 0.079 4 0.049 80 0.079 1 x 31 0.079
11 13 0.049 135 0.079 9 0.049 84 0.079 4 0.007 27 0.061
12 4 0.044 20 0.072 1 0.007 8 0.04 1 0.007 2 0.031
13 6 0.007 27 0.06 5 x 5 0.035 2 x 0 n/a
14 6 0.049 56 0.079 4 0.049 20 0.049 0 n/a 1 0.03
15 3 0.044 41 0.079 2 0.044 18 0.076 2 0.044 11 0.07
16 7 0.044 32 0.076 4 x 4 0.035 1 x 0 n/a
17 3 x 1 0.036 1 x 0 n/a 1 x 0 n/a
18 1 x 6 0.049 1 x 1 0.037 0 n/a 0 n/a
19 12 0.049 102 0.079 5 0.044 74 0.079 3 0.044 29 0.076
20 6 0.007 25 0.049 2 x 5 0.034 1 x 1 0.051
21 6 0.049 44 0.072 3 x 10 0.044 0 n/a 9 0.044
22 3 x 11 0.044 2 x 11 0.044 1 x 7 0.044
23 6 0.049 24 0.072 3 0.007 8 0.049 1 0.007 1 0.036
24 9 0.049 120 0.079 5 0.049 65 0.079 1 x 2 0.035
25 6 0.049 54 0.072 3 0.007 10 0.039 1 x 2 0.03
26 10 0.049 85 0.079 5 0.007 15 0.056 2 x 0 n/a
27 12 0.049 115 0.079 5 0.049 53 0.079 2 0.007 8 0.068
28 10 0.049 117 0.079 6 0.007 62 0.079 2 x 9 0.06
29 8 0.049 106 0.079 5 0.044 75 0.079 2 0.044 52 0.076
30 3 0.007 28 0.076 2 0.007 5 0.06 0 n/a 0 n/a
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Table 4.8: Summary of statistical analysis of experimental data. Experiment
used stereo data of 30 real piles of parts for three levels of gripper finger
clearance.

Clearance Average # of Standard dev., % of trials where
level clear picks σ more picks found using

{N} {G} {N} {G} {G} than using {N}

1 6.1 56.1 4.3 39.7 97%
2 3.4 28.0 2.4 19.8 90%
3 1.3 9.8 0.9 7.0 83%

Figure 4.4: Comparison of the number of clear picks between {N} and {G}
for three levels of gripper finger clearance. Error bars shown represent ±σ,
based on a gamma distribution with α = 2. The parameters used to define
the clearance levels are summarized in Table 4.6. The data used to construct
this figure are summarized in Table 4.7.
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From our results, we observe the following:

1. Using {G} generated significantly more picks, on average, than using
{N}, for all three clearance levels.

2. In the majority of trials, more picks were found using {G} than using
{N}, for all three clearance levels. Specifically, for clearance levels 1,
2, and 3, more picks were found using {G} 97%, 90%, and 83% of the
time, respectively.

3. In all trials where both grasp sets found at least one pick, the quality
of the best pick found using {G} was higher than that using {N}.

4. In all trials where using {N} generated more picks, the best pick found
using {N} was unstable, according to our evaluation (recall that the
grasps comprising {N} were chosen as nominal, “intuitive” grasps, and
not chosen based on their quality).

These results confirm the hypothesis that increasing the number of possible
grasps for the part results in an increased number of clear picks, on average.
Additionally, we have confidence that the resulting clear picks are high-
quality since they have already been evaluated offline, and likely more stable
and robust than those generated using a set of nominal grasps. Finally, for
all piles and both grasp sets, the number of clear picks decreases as the
minimum required clearance increases, as expected. This trend highlights
the advantage of using a larger grasp set when increasing the minimum
required clearance, as it increases the likelihood of finding a clear pick.

As with our earlier method (see Section 4.2.1), the proposed evaluation
does not consider whether or not candidates are pinned down by other parts,
and if so, the extent to which they are buried. Also, the current implemen-
tation has not yet been fully optimized for speed; the online computation
time varies widely, but is on the order of minutes, with the bottleneck oc-
curring during the mesh processing and collision-checking steps. It is cur-
rently a proof-of-concept at this stage, requiring computational speed-ups
to be practical. Another issue is the variability inherent in randomized piles.
This presents a challenge when attempting to statistically analyze the data
since it is very difficult to accurately model the underlying distribution that
drives the data. Future work aims to address these issues.

Figure 4.5 compares the best pick found using each graps set, for pile
10 at the highest clearance level. A snapshot of the pile and the localized
candidates using eVF [6] are shown in Figure 4.5 (a)-(b), respectively. Note
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Figure 4.5: Comparison of the best picks generated from the two grasp sets,
{N} and {G}, for pile 10 at clearance level 3. See text in Section 4.2.2 for
details.
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that, for the experiment, the number of candidate parts was limited to 3 (so
only 3 of the 4 highlighted in Figure 4.5 (b) were used). Figure 4.5 (c)-(d)
recreates the best pick for {N} and {G}, respectively, from three different
points of view, with the target con-rod outlined. The gripper shown in
Figure 4.5 (c)-(d) is the enlarged version of the gripper. In this situation,
only one pick is clear from {N}, whereas 31 of the grasps from {G} are clear.
Upon inspection, it is evident that the best pick provided by {G} results in
the gripper positioned for a better grasp when compared to the best pick
from {N}: in (c), the gripper is positioned to grasp the part on the (slightly
curved) end of the con-rod, whereas, in (d), the gripper is positioned to
pick much closer to the con-rod’s centre-of-gravity, and where the con-rod’s
surface is flatter. This observation is validated by the computed quality
measures of each grasp: “unstable” (Q = −1) for set {N} and 0.079 for set
{G} (which is the highest quality measure from {G}).

4.3 Summary

In this chapter, we validated our proposed pick selection method using a con-
rod (from a car engine) as our exemplar part. In Section 4.1, we present the
results of generating a densely-sampled ranked set of robust grasps, offline.
The highest-quality grasps generated were clustered around the centre of
mass of the part, with the pinching directions roughly perpendicular to the
contact surfaces, as expected. We found few robust grasps in regions of high
surface curvature.

We used this generated grasp set in Section 4.2, as well as stereo data
of real con-rod piles to validate the online portion of the proposed pick se-
lection method. Our experiment consisted of computing and rating a set of
the best available picks for a real pile of con-rods at three levels of gripper
finger clearance for each of two sets of grasps: (1) a set of highest qual-
ity grasps from our generated grasp list, {G}, and (2) a set of 12 nominal
“intuitive” grasps, {N}, that would typically be used in an industrial appli-
cation. Our results confirmed the hypothesis that increasing the number of
possible grasps for a part increases number of clear picks, on average. Also,
the picks computed using the generated grasp set were higher quality than
those generated using the nominal grasp set.

In the next chapter, we summarize the contributions of this thesis, and
describe future directions of this work.
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Chapter 5

Conclusions and Future
Work

5.1 Conclusions

The focus of this work was determining the best pick in the context of
VGRBP. The main contribution is a novel method for generating many
high-quality (rated) pick options for a given cycle, enabling selection of the
best pick. This main contribution requires development of the following
supporting methods: (1) an automatic grasp-generation method to sample
the space of all two-fingered grasps for the target part, (2) a metric function
for evaluating grasps, and (3) a measure of the robustness of a grasp. Our
work was tailored for a two-fingered gripper, as this is commonly used in
industry, but is extendable to other gripper types. Throughout this thesis,
we used a connecting rod as our exemplar part; however, the proposed
method is theoretically generalizable for a wide range of part geometries.

The method developed for the main contribution to generate high-quality
pick options requires, as inputs, a surface mesh model and corresponding
wire-frame of the object to be picked, as well as a model of the gripper. It
comprises an offline portion for generating high-quality grasps, and an online
portion for evaluating these grasps in the context of a pile of objects. The
method requires a stereo vision system to obtain depth information of the
pile surface, as well as a method for recognizing and localizing candidates
within the pile. The output of this method is a list of rated pick options for
a given pile configuration, allowing the grasping system to choose the best
pick.

The automatic grasp generation method, (1), developed herein, also re-
quires a surface mesh model and corresponding wire-frame of the target
object, and a two-fingered gripper model. The method is based on sampling
and does not require a closed-form analytic description of the geometry of
the chosen part; however, it is sensitive to the resolution of the part model
used, and how accurately that model and the wire-frame model represent
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the chosen part. The density of sampling is specified by the user. The out-
put is a list of feasible grasps for the given object and gripper, which can
then be evaluated for quality.

The metric function for evaluating a grasp, (2), requires two quantities:
stability and robustness. Stability is computed using Ferrari and Canny’s
widely accepted grasp quality metric [11]. Grasp robustness, as proposed in
this thesis (3), is a measure of the insensitivity of a grasp to slight positional
changes. We define it as the inverse of the standard deviation of grasp
stability over a neighbourhood of grasp samples. Therefore, the robustness
measure is dependent on the size of this neighbourhood, and on the grasp
stability evaluation. The output of the metric function is a numerical value
that represents the quality of a grasp.

We experimentally validated our pick selection method using stereo data
of a real pile of parts. We compared the use of our proposed method to an
approach typical in industry, and observed that our method resulted in
significantly more picks, and higher quality picks. These results suggest
that using our method would increase reliability within a VGRBP system
by reducing the risk of a failed grasp attempt.

5.2 Recommendations for Future Work

One issue not considered in this thesis was that of part stacking; namely,
whether or not candidate parts are pinned down by other parts, and if so,
the extent to which they are buried. Exploring part stacking scenarios is a
direction for future work, since a candidate part’s position within a random
pile will affect how easily the part may be extracted from the pile. Herein,
only one part, a connecting rod, was considered. In the future, the proposed
method should be tested using other parts, covering a variety of part geome-
tries, in order to support the generalizability of the method. Another area
for exploration is the use of structured lighting to improve the quality of the
stereo data, since the computation of clear picks is highly dependent on the
stereo data quality. Also, the implementation used was not fully optimized;
to be integrated into a commercially viable VGRBP system, computational
speed-ups would be necessary, particularly for collision-detection. Finally,
running more trials with randomized piles of real parts may strengthen the
statistical results presented here.
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Appendix A

Gamma-Type Probability
Distributions

The following description of a gamma-type probability distribution was
taken from [23]. For a gamma-type random variable Y , the probability
density function is given by:

f(y) =

{
yα−1e−y/β

βαΓ(α) if 0≤y <∞; α> 0; β> 0
0 elsewhere

(A.1)

where

Γ(α) =
∫ ∞

0
yα−1e−ydy. (A.2)

The mean is
µ = αβ, (A.3)

and the variance is
σ2 = αβ2. (A.4)

This probability density function is non-negative, and is therefore appropri-
ate for modeling non-negative random variables.
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Appendix B

Histogram Data: Number of
Picks

Figure B.1: Histogram data showing frequency of number of computed clear
picks for 30 randomized piles, each consisting of 13 con-rods. Data is shown
for grasp sets {N} and {G}, at three levels of clearance. For consistency,
we limited the number of non-empty bins to 4.
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