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Abstract 
 

With the growing interest in nanotechnology, it is becoming important to 

understand the nanoscale mechanics to achieve successful design and fabrication of 

nanoscale devices. However, the classical continuum theory is not directly applicable to 

the analysis of nanoscale domains due to size-dependent behavior of nanostructures. 

Since the surface-to-volume ratio of a nanoscale domain is relatively high compared to 

that of a macro-scale domain, the energy associated with atoms at or near a free surface is 

different from that of atoms in the bulk. The effect of surface free energy therefore needs 

to be considered. Ultra-thin film/substrate systems, which are encountered in applications 

involving nanocoatings, nanotribology and material characterization based on nano-

indentation, may be analyzed using modified continuum elasticity theory incorporating 

surface energy effects. 

 

This thesis presents a set of analytical solutions for elastic field of a layer of 

nanoscale thickness bonded to a rigid base under surface loading and indentation by a 

rigid body. Surface energy effects are accounted for by using Gurtin-Murdoch elasticity 

theory. Fourier and Hankel integral transforms are used to solve the two- and three- 

dimensional boundary-value problems involving non-classical boundary conditions 

associated with the generalized Young-Laplace equation. In the case of a two-

dimensional semi-infinite medium, the solutions can be expressed in closed form. The 

elastic field is found to depend on the layer thickness and surface elastic constants, and 

the influence of surface energy is shown to be more significant under a horizontal load 

than under a vertical load. A characteristic length scale related to the surface material 

properties can be identified for the present class of problems. The solution for the 

indentation problem is considered for flat, conical and spherical rigid indenters. The 

mixed boundary-value problem corresponding to a rigid indenter is formulated in terms 

of a dual integral equation system that is solved by using numerical quadrature. Selected 

numerical results are presented to show the influence of the indenter shape, surface 

properties and size-dependency of response. 
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Chapter 1 
 

INTRODUCTION 

 

1.1 Nanotechnology  

Nanoscience and nanotechnology is a relatively new research field which is 

primarily concerned with the discovery and exploration of the properties of materials 

whose constituent structures exist at the nanometer scale. The jargon ‘nano’ means a 

billionth, and a nanometer (nm) is 10-9 m (that is, the size of several atoms), which is 

roughly 10,000 times smaller than the diameter of a human hair. In the context of 

mechanical properties, ‘nanometer scale’ tends to mean less than 100 nm, whereas for 

electronic properties it means less than 10 nm [1].  

 

Generally, scientific historians do not point to the beginning of nanoscience and 

nanotechnology until 1959, the year that Nobel Laureate physicist Richard Feynman gave 

his landmark speech to the American Physical Society entitled “There’s Plenty of Room 

at the Bottom” [2], which is considered to lay the foundation to conceptualize and 

develop the research base for nanoscience and nanotechnology. He predicted that there 

would be some exciting new phenomena that might revolutionize science and technology 

and affect our daily life, if materials and structures were manipulated and assembled at 

the atomic level. Based on Feynman’s idea, Drexler [3] advanced the idea of “molecular 

nanotechnology” in 1986 in the book Engines of Creation, where he postulated the 

concept of using a large number of robotic-like machines to form the basis of a molecular 

manufacturing technology that may build any structure directly using atoms and 

molecules. Since then, nanoscience and nanotechnology have grown quickly with the 

help, in large part, of the invention of the scanning tunneling microscope (STM) and 

atomic force microscope (AFM). As a result, many nanomaterials and nanostructures are 

developed, such as nanoparticles, nanotubes, nanowires, nanocomposites and nanofilms, 

which are widely used in many areas of application such as advanced materials, chemical 

sensors, biosensor, solar cells, drug delivery and nano-electromechanical systems 

(NEMS), etc. [4].  
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When the physical dimensions of materials and structures enter the nanoscale, the 

corresponding mechanical, electrical, optical, thermodynamic, and other types of 

properties are strongly modified and some fascinating behavior can be observed. Take the 

mechanical properties as an example, the carbon nanotube, first discovered by Iijima [5, 

6], shows excellent mechanical properties with Young’s modulus values of ~1TPa from 

the direct experimental measurements and atomistic simulations [7]. An ultra-thin 

membrane that is barely visible to the naked eye is reported to have supported a liquid 

body 70,000 times heavier than its own weight and withstand significant deformations 

[8]. When an isolated silicon nanoparticle is compressed using a diamond tip in 

Transmission Electron Microscopy (TEM), the results show that the compressible failure 

strain can be as high as 13%, which is much higher than brittle bulk silicon [9]. Ouyang 

et al [93] reported that nanoporous structures have a higher effective elastic modulus 

when the pore size approaches the nanoscale. Other experimental results show that both 

yield strength and fatigue lifetime of ultra-thin copper films are dependent on film 

thickness, and they increase with decreasing film thickness [10]. Nanostructured surface 

coatings can effectively improve the friction and wear-resistant properties of substrates in 

tribology. It is shown that the friction coefficient of a nanostructure coated material is 

lower than that of a conventional coated surface [11]. Moreover, nanoholes in a thin 

metal behave particularly remarkable manner and they can cause surface plasmons to 

couple and behave as if they are molecules. They absorb and reemit at least some light 

without converting it to a different form of energy [12]. In addition, nanoscience and 

nanotechnology have already found their way into the environment applications and 

geochemistry, and a further discussion can be found in Ref. [13]. Therefore, it is quite 

apparent that nanoscale materials and structures are used today pervasively and they 

cover a wide range of applications in science and technology. 

 

1.2 Nanomechanics  

In order to successfully design and develop nanoscale devices and systems, it is 

important to understand all fundamental aspects of the mechanical behavior of nanoscale 

materials and structures. There is therefore growing interest in the study of the mechanics 



3 

of nanoscale structures and devices. Nanomechanics, one of the founding pillars of 

nanoscience and nanotechnology, is a research field that considers the mechanical 

behavior and response at the nanoscale level. It plays an important role in comprehensive 

understanding of the mechanisms of deformation, stress field, strength and fracture of 

nanoscale materials and structures, which can be substantially different from the bulk 

materials. 

 

In general, there are two basic approaches for the investigation of nanomechanics: 

theoretical simulations and experimental methods. The theoretical simulation methods 

include the broad areas of ‘ab initio’ quantum mechanics, the molecular dynamics (MD) 

and multi-scale methods. The atomistic modeling techniques dealing with the motion of 

atoms and simulating the behavior of objects in nanoscale domains based on the first-

principle methods or semi-empirical interatomic potentials cannot be used to analyze 

large systems due to limitations in terms of the time and length scales. Although the 

classical MD simulations have become prominent as a tool for elucidating the complex 

physical phenomena at the nanoscale, the length and time scales that can be probed using 

MD simulations are still fairly limited. Based on coupling of  atomistic and continuum 

models, some multiscale computational approaches are developed to simulate 

hierarchical structures [14, 15], in which the quantum calculation and the MD simulations 

are only used in localized regions where the atomic scale dynamics may be important, 

and the continuum simulation methods elsewhere. To some extent, these computational 

models are also currently limited in applications owing to the requirement of heavy 

computing resources. A comprehensive literature review on the computational 

nanomechanics and materials can be found in Ref. [16]. 

 

Nanomechanics studies require not only atomic and molecular modeling, but also 

modeling at both the mesoscopic and continuum scales, which is especially true for 

mechanical properties that depend on phenomena at all possible length scales [17]. 

Therefore, the application of continuum-based theoretical approaches is considered 

attractive due to their lesser complexity and computational efficiency. If we define the 

atomic models as a bottom-up approach from first-principles or classical MD, the 
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continuum-based models can be considered a top-down approach through building a 

refined continuum model to describe the nanoscale effects [18]. However, the classical 

concepts of continuum mechanics need to be modified to account for the 

quantum/molecular effects that exist at the nanoscale. Unlike the atomistic simulations 

that directly calculate the behavior atom by atom, the main idea behind the majority of 

the modified continuum models is to incorporate the interatomic potentials or atomistic 

properties into the continuum framework as some special parameters to account for the 

nanoscale effects. The surface energy effect, also called surface stress effect, is one of 

such significant effects that may greatly affect the mechanical properties and response of 

nanoscale materials and structures. The surface/interface energy effect acts only on the 

atom layers near or on the surface/interface, thus it cannot be felt in the bulk. However, it 

can no longer be neglected in nanostructured materials whose ratio of surface to volume 

is comparatively high. Such examples include nanobeams, nanoplates, 

nanoinhomogeneities and nanofilms. For example, Dingreville and Qu [19, 20] 

developed a continuum framework to incorporate the excess interfacial free energy into 

the conventional theory of continuum mechanics, and demonstrated that the overall 

elastic behavior of nanoscale structural elements is size-dependent. 

 

The experimental nanomechanics refers to the quantitative experimental study of 

the mechanical behavior and response at the nanoscale level with the help of modern 

scientific testing equipments. Among the various techniques, scanning probe microscopy, 

e.g. STM and AFM, is an effective tool to investigate the individual nanostructures. 

Wong et al. [21] measured the mechanical properties of individual, structurally isolated 

silicon carbide nanorods and multi-wall carbon nanotubes (MWCNTs) directly using 

AFM. Yu et al. [22] and Peng et al. [7] developed AFM cantilever probe-based loading 

techniques and an in situ TEM method using a MEMS material testing system, 

respectively, with which tensile-loading experiments were carried out to determine the 

axial Young’s modulus of MWCNTs and observe the failure patterns as well. Nano-

indentation is another popular tool at present time to extract mechanical properties of 

materials at nanoscale, such as elastic modulus and hardness. In such tests an indenter of 

known geometry is pressed into the surface and the relation of load and indenter 
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displacement is continuously recorded to determine the mechanical properties of surface 

coatings and thin films [23-25]. These instruments allow precise control of either the load 

or displacement during the test and can be used to apply forces as low as a few micro-

newtons to make indentation depths in the nanometer range [26]. Oliver and Pharr [27] 

established an improved method for determining the hardness and elastic modulus from 

nano-indentation load-displacement data by examining six materials. Mao et al. [28] and 

Li et al. [29] investigated the mechanical properties of semiconducting ZnO nanobelts 

and silver nanowires by using nano-indentation, respectively. Their results show that the 

nano-indentation technique is a promising tool for material testing. However, more 

advances in experimental methods are needed that could provide direct information on 

the material properties at all length scales of interest to validate the results from 

theoretical and numerical modeling. 

 

1.3 Review of Surface Elasticity Model  

The seminal concepts of surface energy and surface stress were originally 

formulated by Gibbs [30], who defined a quantityγ , known as excess surface free energy, 

to represent the reversible work per unit area owing to creating a new surface by a 

process such as cleavage or creep. Gibbs also pointed out that there is another surface 

quantity for solids that is associated with the reversible work per unit area needed to 

elastically stretch a pre-existing surface. Since then the surface energy effect has attracted 

substantial attention and Gibbsean thermodynamics has been extended for better 

understanding of many aspects of surface physics [31-35].  It has been recognized that 

the surface thermodynamics is one of the most useful and powerful tools for studying 

various surface phenomena, such as surface reconstruction, self-assembled domain 

patterns, phase transformation, epitaxial growth and so on.  

From the thermodynamics of solid surfaces, the relationship between the surface 

stress and surface free energy has been formulated as [32, 36] 

 αβαβαβ εγγδσ ∂∂+=  (1.1)

where αβσ  and αβε  denote the surface stress and strain, respectively, and αβδ  is the 

Kronecker delta.  
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In contrast to the excess surface free energyγ , which is a scalar, the surface stress 

is a second rank tensor in the tangent plane of the surface and the strain normal to the 

surface is excluded in Eq. (1.1). Thus, the Greek indices take the value of 1 or 2. Clearly, 

the surface stress is composed of the surface free energy part that is strain-independent, 

and its derivative with respect to strain. It should be noted that the second term in the 

right-hand side vanishes for a liquid due to the fact that atoms from the bulk are free to 

migrate to the surface when a liquid surface deforms so that the atom density at the 

surface remains roughly a constant in the process of deformation. However, for solids, it 

is not the case and the surface stress therefore is stain-dependent. Nix and Gao [37] 

presented a clear atomistic interpretation of the interface stress and showed that Eq. (1.1) 

is an expression in the Eulerian frame of reference and the first term does not appear in 

the embedded Lagrangian coordinates. 

 

The excess surface energyγ  can be understood as a superficial energy term since 

a surface can be interpreted as a layer to which a certain energy is attached [34]. Due to 

the different local environment, atoms at or near a free surface or interface have different 

equilibrium positions than do atoms in the bulk of a material. As a result, the energy of 

these atoms is, in general, different from that of the atoms in the bulk [19]. It can also be 

interpreted that the reduced coordination of atoms near or in the surface layer vs. atoms 

within the bulk induces a corresponding redistribution of electronic charge, and the 

altered binding situation in the surface is the modified layer spacing, which deviates in 

general from the bulk values [38]. Thus, the energy associated with atoms near or at the 

surface may differ from those in the bulk. The ratio of surface free energy γ ( 2/J m ) and 

Young’s modulus E ( 3/J m ), / Eγ , is dimensional ( m ) and points to some other inherent 

parameter of a material.  This intrinsic length scale is usually small, in the nanometer 

range or even smaller. When a material element has one characteristic length comparable 

to the intrinsic scale, the surface/interface free energy can play an important role in its 

properties and behavior. The effect of surface free energy therefore becomes important in 

nanoscale problems and leads to some size-dependent behavior. In addition, for some soft 

solids, such as polymer gels and biological materials, the surface energy (hence surface 
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stresses) may also have an important influence on surface topographical patterns. 

Consequently, the study of the elastic field of a solid with surface energy effects is of 

interest to many current technological developments. 

 

Surface energy effects are generally ignored in traditional continuum mechanics. 

However, this is not the case for nanoscale structures due to their high surface/volume 

ratio, soft materials where the ratio of surface energy per unit area to the bulk Young’s 

modulus is comparable to the characteristic size of a material element and other situations 

where the surface tension gradient and other surface energy driven effects have a 

significant influence on the response. By analogy to the linear constitutive equations of 

bulk materials, Miller and Shenoy [39] introduced a set of surface elastic constants and 

suggested a linear surface constitutive relation of the following form: 

 0 Sαβ αβ αβγδ ϕδσ τ δ ε= +  (1.2)

where 0
αβτ  is the surface residual stress under unstrained conditions, and Sαβγδ is the 

fourth order surface elastic stiffness tensor.  

 

Based on a rigorous mathematical formulation, Gurtin and Murdoch [40-42] 

developed a theoretical framework based on the continuum mechanics concepts that 

included the effects of surface and interfacial energy, in which the surface is modeled as a 

mathematical layer of zero thickness perfectly bonded to an underlying bulk. The surface 

(interface) has its own properties and processes that are different from the bulk. For an 

isotropic elastic surface, the generic expression for surface stress-strain relation has the 

following form. 

 ( ) ( ) ,2s s s s s s s suβα βα βα γγ βα β ασ τ δ μ τ ε λ τ ε δ τ= + − + + +  (1.3)

where the superscript ‘s’ is used to denote the quantities corresponding to the surface; sμ  

and sλ  are surface Lamé constants; sτ  is the residual surface tension under unstrained 

conditions, which is a constant.  
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It should be pointed out that the surface elastic constants have dimensions of 

Newton per meter (N/m), which is different from the bulk elastic constants, because the 

surface stress exists on a two-dimensional surface. With the assumption of isotropy, 

Miller and Shenoy [39] computed the values of the surface moduli for different surface 

orientations using the embedded atom method (EAM) and Stillinger-Weber empirical 

potentials. Dingreville and Qu [43, 44] presented a semi-analytical method to compute 

the surface elastic constants of several FCC metals. A systematic study of the surface 

elastic constants has been performed by Shenoy [45] and their values can be calculated 

from atomistic simulations. Recently, Mi et al. [46] performed an atomistic calculation of 

interface elastic properties in noncoherent metallic bilayers. From their results, it is found 

that the surface elastic constants are dependent on crystalline orientation. Moreover, they 

need not be positive definite. Therefore, the quadratic form γδαβαβγδ εεS  may be negative, 

but it does not violate the basic thermodynamic postulates, because a surface region with 

a special atomic structure cannot exist without the bulk and the total energy (bulk + 

surface) still satisfies the positive definite condition [45]. It is noted that the assumption 

of zero-thickness surface/interface is just an idealization of a complex problem. If the 

number of atoms in the bulk is comparable to that of the surface layer, the 

surface/interface model is not applicable in this case. 

 

Although the experimental measurement of surface elastic constants seems to be a 

challenging task, some attempts have already been made. Jing et al. [47] determined the 

surface elastic properties of silver nanowires by using three-point bending test and 

contact atomic force microscopy. They found that surface elastic modulus sE and surface 

residual stress sτ  are 8.7 N/m and 5.8 N/m, respectively, which are of the same order as 

the values determined from atomistic simulations. 

 

The surface elasticity model is extensively used in the nanomechanics to explain 

the size-dependent behavior at the nanoscale. Miller and Shenoy [39] demonstrated that 

size-dependent behavior of nanoscale structural elements can be modeled by applying the 

Gurtin-Murdoch continuum model with surface stress, whose results are almost 

indistinguishable from the atomistic simulations for nanoplates. He and Lilley [48, 49] 
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examined the elastic responses of static and dynamic bending of nanowires under 

different boundary conditions by considering the surface effect. Wang and Feng [50] 

studied the similar problems and discussed the effects of surface elasticity and residual 

surface tension on the natural frequency of microbeams. Their results show that both the 

surface elastic modulus and residual surface tension contribute to the elastic deformation 

and natural frequency of microbeams and nanowires. In contrast, Gurtin et al. [51] 

showed that the beam resonant frequency is independent of the residual surface stress 

within the framework of linear elastic beam theory, and this finding has also been 

validated by subsequent researchers, for example by Lu et al. [52] and Lachut and Sader 

[53]. Recent work by Park [54] has shown that the influence of the residual surface stress 

on the resonant frequencies of silicon nanowires takes places only if finite deformation 

kinematics is considered. The surface effects on the thin plate theory were also examined 

by applying Gurtin-Murdoch continuum model [55-57]. 

 

The continuum theory of surface elasticity was further developed by many 

researchers to analyze the problems of nano-inhomogeneities. For example, Sharma and 

co-workers [58, 59] analyzed the size-dependent elastic field of spherical and ellipsoidal 

nano-inclusions by applying Gurtin-Murdoch model with both residual surface stress and 

strain-dependent surface stresses. Tian and Rajapakse [60, 61] examined the size-

dependent elastic field due to nano-scale circular and elliptical defects in an isotropic 

matrix respectively and observed unstable defect geometries. Based on a micromechanics 

framework, Duan et al. [62-64] extended the Eshelby’ formalism for nanoscale spherical 

inhomogeneities subjected to arbitrary uniform eigenstrain by considering 

surface/interface effects, and demonstrated that the effective moduli of composites 

containing spherical nano-particles are size-dependent and the Eshelby tensors and stress 

concentration tensors are, in general, not uniform inside the inhomogeneity but are size- 

and position-dependent. A more recent review article provides further information on this 

topic [65]. Gao et al. [66] and Tian and Rajapakse [67] independently developed finite 

element methods (FEM) by introducing the surface elements to take into account the 

surface energy effects and then applied the method to investigate elastic inhomogeneity 

problems with complex geometry and loading. 
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1.4 Review of Contact Mechanics of Films/substrates 

Thin film/substrate systems permeate many engineering applications such as 

microelectronics, integrated circuits, magnetic information storage systems, optical filters, 

wear and corrosion resistant coatings, etc. According to William Nix [68], although we 

typically think of thin film based devices in terms of their electronic, magnetic or optical 

properties, many such devices are limited by their mechanical properties. Consequently, 

it is of great importance to understand the mechanical performance and reliability of 

film/substrate systems. Vinci and Vlassak [69] reviewed the mechanical behavior of thin 

films, and introduced the main experimental techniques for the measurement of thin film 

properties. Mishnaevshy Jr. and Cross [70] reviewed the theoretical models and methods 

of analysis of deformation, damage and fracture based on classical continuum mechanics 

for thin film/substrate systems. The related problems of plastic deformation, cracks, as 

well as the effects of dislocation were also discussed by them. Recently, Feng et al. [71] 

and Ngo et al. [72] studied the stress field in a multilayer thin film/substrate system 

subjected to non-uniform temperature and misfit strains based on an extension of the 

classical Stoney formula. 

 

An interesting class of problems in thin film/substrate systems deals with the 

contact mechanics of a surface-loaded layer bonded to an underlying base, which has a 

wide range of practical applications in the mechanics of microelectronics devices, nano-

indentation, and surface coatings. Poulos [73] solved the plane problem for a vertically 

loaded strip and presented the stresses and displacements in an elastic layer underlain by 

a rough rigid base. Harding and Sneddon [74] and Sneddon [75] obtained the analytical 

solutions for a rigid punch with an arbitrary profile in a semi-infinite solid by using 

Hankel integral transform techniques. The flat-ended rigid cylindrical indenter problem 

for an elastic layer resting frictionlessly on a rigid base was solved by Lebedev and 

Ufliand [76]. Dhaliwal and Rau [77, 78] reduced the axisymmetric Boussinesq problem 

of an elastic layer lying over an elastic half-space to a Fredholm integral equation that 

was solved numerically to obtain the elastic field. Yu et al. [79] examined the effect of a 

substrate on the elastic properties of films by using indentation tests and several 
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combinations of film and substrate elastic moduli and film thicknesses were considered. 

Recently, inspired by multidimensional nano-contact mechanics experiments for the 

measurement of both the normal and tangential contact stiffness of film/substrate systems 

[80], Gao et al. [81] gave an analytical formulation to predict the effective elastic 

modulus of film-on-substrate systems under normal and tangential contact. 

 

Nowadays, a film can be fabricated as thin as few nanometers by taking 

advantage of modern processing technologies. Due to the high ratio of surface to volume 

of nanofilms, it is necessary to consider the surface energy effect, which is usually 

neglected in classical mechanics. The Gurtin-Murdoch surface stress model has recently 

been employed to study the modern contact problems. Povstenko [82] derived the elastic 

field of a half-space caused by a jump in the surface tension over a circular area by 

neglecting the bulk properties. He and Lim [83] derived the surface Green’s functions of 

a soft incompressible isotropic elastic half-space with surface energy effects by using the 

Gurtin-Murdoch model. In addition to the incompressibility, they further restricted their 

derivation to the special case where the surface elastic properties are same as the bulk 

properties. Wang and Feng [84] studied the response of a half-plane subjected to surface 

pressures by neglecting the surface elastic constants and considering only the influence of 

constant surface tension. Their results show that both the contact normal stress and the 

deformations depend strongly on the surface residual stress, which are obviously different 

from that obtained by Povstenko [82] and the results of Huang and Yu [85], who 

considered a surface-loaded half-plane with non-zero surface elastic constants. Based on 

the surface elasticity theory, Koguchi [86] presented Green’s functions for an anisotropic 

elastic half-space using Stroh’s formalism.  

   

1.5 Objective and Scope of the Current Work 

Based on the above introduction and literature survey, it can be seen that further 

development of the solutions based on the Gurtin-Murdoch theory of elasticity 

accounting for the surface energy effects is important to the study of the mechanics of 

nanoindentation, nanofilms and nanocoatings. In addition, this class of problems dealing 

with a continuum with surface energy effects also has applications in the study of very 
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soft materials such as biological materials and polymer gels and their surface effects. The 

past studies have concentrated on the simple problems of a semi-infinite medium loaded 

at the surface whereas the focus of this thesis is on the more practical case of an elastic 

layer on a rigid substrate. In addition, no past study has examined the classical 

indentation problems involving a rigid punch in the presence of surface energy effects 

even in the special case of a semi-infinite medium.  The objective of this thesis is 

therefore to examine the behavior of a thin-layer of elastic material bonded to a rigid 

substrate by using the Gurtin-Murdoch continuum theory. Problems related to vertical 

and tangential loading and rigid indenters are considered to understand the importance of 

nanoscale effects in thin layers and the applicability of modified continuum approaches 

for modeling of nanoindentation.  

 

Chapter 2 presents a detailed derivation of an analytical solution for a 

compressible isotropic elastic layer that is perfectly bonded to a rigid base and subjected 

to surface loading. Complete surface stress effects (non-zero surface tension and surface 

elastic properties) are considered in the derivation. Both two-dimensional plane and 

axisymmetric problems are considered. The Fourier and Hankel integral transforms are 

used to solve the boundary-value problems involving non-classical boundary conditions 

associated with the generalized Young-Laplace equation. Closed-form analytical 

solutions are presented for the case of a layer of infinite thickness (half-plane/space) and 

in this case the influence of surface energy effects can be explicitly identified. For a layer 

of finite thickness, the elastic field is examined numerically to assess the influence of 

surface energy effects and layer thickness. 

 

Chapter 3 considers the general three-dimensional asymmetric problems for an 

elastic layer that is bonded to a rigid substrate and subjected to tangential loading at the 

surface. Muki’s method [87] is extended to investigate the elastic field based on the 

Gurtin-Murdoch model. The Hankel integral transforms are used to solve the non-

classical boundary value problems related to a tangential concentrated load and a 

uniformly distributed circular patch load in the tangential direction. The analytical 

solutions are obtained for the corresponding boundary-value problems. Selected 
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numerical results are presented to illustrate the influence of surface energy effects on 

tribology and the tangential stiffness of nano-coatings and ultra-thin films.  

 

In chapter 4, the contact problems for an elastic half space indented by indenters 

with different profiles are investigated by applying the surface elasticity model. The 

medium is assumed isotropic and the indenter is rigid. The analytical solution of the 

corresponding axisymmetric mixed boundary value problem is formulated by using the 

Hankel integral transforms, and the resulting Fredholm Integral Equation of the second 

kind is solved numerically. The influence of the surface stress effect on the elastic field 

and vertical stiffness is presented for different indenter profiles, contact areas and 

material properties.  

 

Finally, chapter 5 presents a summary of the thesis, major findings of the current 

study and suggestions for future work.  
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Chapter 2  
 

PLANE AND AXISYMMETRIC ELASTIC FIELDS OF A SURFACE-LOADED 

THIN LAYER IN THE PRESENCE OF SURFACE STRESSES  

 

2.1 Problem Description and Basic Equations 

In this chapter, both two-dimensional plane and axisymmetric problems for an 

isotropic elastic thin film on a rigid substrate are considered in the presence of surface 

stresses. Consider an elastic layer of finite thickness bonded to a rigid base as shown in 

Fig. 2.1 and subjected to surface loading. According to the Gurtin-Murdoch model, the 

surface energy effects are accounted for by considering the surface as a mathematical 

layer of zero thickness with relevant elastic properties and residual surface tension. The 

governing equations of the bulk material are the same as those in the classical elasticity. 

In addition, on a surface (or interface), the generalized Young-Laplace equation [40, 82] 

and a set of constitutive relations have to be satisfied. The basic equations for small 

displacements and infinitesimal strains of a continuum with surface stress effects are 

summarized below based on Gurtin et al.[40, 42]. 

z

x (r)

p(x)
t(x)

h

 
Fig. 2.1 Elastic layer subjected to surface loading. 

 

In the absence of body forces, the three-dimensional equilibrium and constitutive 

equations of the bulk material are,  

 , 0ij jσ =  (2.1)
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 2ij ij ij kkσ με λδ ε= +  (2.2)

and the classical strain-displacement relationship is,  

 ( ), ,
1=
2ij i j j iu uε +  (2.3)

where  iu  , ijσ  and ijε  denote the components of displacement, stress and strain tensors 

respectively; and μ  and  λ  are Lamé constants of the bulk material. 

 

On the surface, the generalized Young-Laplace equation [82], surface constitutive 

relations and strain-displacement relationship can be expressed as [40, 41] 

 
, 0s

j jnβα β ασ σ+ = ,    s
ji i jn n kβα βασ σ=  (2.4)

 ( ) ( ) ,2s s s s s s s suβα βα βα γγ βα β ασ τ δ μ τ ε λ τ ε δ τ= + − + + +  (2.5)

 ( ), ,
1=
2

s s su uαβ α β β αε +  (2.6)

where the superscript ‘s’ is used to denote the quantities corresponding to the surface; sμ  

and sλ  are surface Lamé constants; sτ  is the residual surface tension under unstrained 

conditions; in  denotes the components of the unit normal vector of the surface; and kβα is 

the curvature tensor of the surface.  

 

It should be noted that the surface stress tensor is a 2D quantity and the strain 

normal to the surface is excluded in Eq. (2.5). Thus, the Greek indices take the value of 1 

or 2, while Latin subscripts adopt values from 1 to 3. 

 

Shenoy [45] and Cammarata [32] have reported the values of the surface stress at 

zero strain ( sτ ) for different surface orientations of pure metals and semiconductors by 

using first-principles calculations or atomistic potential methods. There are also 

experimental measurements cited by Cammarata [32]. By definition these values are 



16 

constant for a given surface orientation of a pure metal/semiconductor at a specific 

temperature. Presence of impurities and vacancies have an influence on the value of sτ .  

 

2.2 General Solutions of Bulk Material   

The general solution for displacements and stresses of a two-dimensional elastic 

solid can be expressed with respect to a Cartesian coordinate system (Fig.1) by using 

Fourier integral transforms as [88, 89],  

1
4

z z i x
zu A z B e C z D e e dξ ξ ξμ μξ ξ ξ ξ ξ

πμ μ λ μ λ
+∞ − −

−∞

⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎪= + + + − + −⎨ ⎬⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭
∫

1 2
4

2                                         

z
x

z i x

u A z B e

C z D e ie d

ξ

ξ ξ

ξλ μξ ξ
πμ μ λ ξ

ξλ μξ ξ ξ
μ λ ξ

+∞ −

−∞

−

⎧⎡ ⎤⎛ ⎞+⎪= − −⎢ ⎥⎨ ⎜ ⎟+⎢ ⎥⎝ ⎠⎪⎣ ⎦⎩
⎫⎡ ⎤⎛ ⎞+ ⎪+ + +⎢ ⎥ ⎬⎜ ⎟+⎢ ⎥⎝ ⎠ ⎪⎣ ⎦ ⎭

∫
 

(2.7)

( ) ( )21
2

z z i x
zz A Bz e C Dz e e dξ ξ ξσ ξ ξ

π
+∞ − −

−∞
⎡ ⎤= − + + +⎣ ⎦∫  

( ) ( ){ }2 2 2 21 2 2
2

z z i x
xx A z B e C z D e e dξ ξ ξσ ξ ξ ξ ξ ξ ξ ξ

π
+∞ − −

−∞
⎡ ⎤ ⎡ ⎤= − − + + +⎣ ⎦ ⎣ ⎦∫  

( ) ( ){ }1 1 1
2

z z i x
xz i A z B e C z D e e dξ ξ ξσ ξ ξ ξ ξ ξ ξ

π
+∞ − −

−∞
⎡ ⎤ ⎡ ⎤= + − + + +⎣ ⎦ ⎣ ⎦∫  

(2.8)

where A(ξ), B(ξ), C(ξ) and D(ξ) are arbitrary functions to be determined from the 

boundary conditions.  

 

In the case of axisymmetric problems, the general solutions for displacements and 

stresses can be expressed in terms of a cylindrical coordinate system (r, θ, z) by using 

Hankel integral transforms as [88, 89],  
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( ) ( ){ } ( )2
10

1 1z z
ru A z B e C z D e J r dξ ξλ μ ξ ξ ξ ξ ξ ξ ξ

μ
∞ −+ ′ ′ ′ ′= − + − + + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∫  

( )2
00

2 2z z
zu A z B e C z D e J r dξ ξλ μ μ μξ ξ ξ ξ ξ ξ ξ

μ λ μ λ μ
∞ −⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞+ ⎪ ⎪′ ′ ′ ′= − + + + − −⎨ ⎬⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭
∫  

(2.9)

( ) ( )

( ) ( ){ } ( )

3
00

2
10

2 2
2

1                            1 1

z zrr

z z

A z B e C z D e J r d

A z B e C z D e J r d
r

ξ ξ

ξ ξ

σ λ μ λ μξ ξ ξ ξ ξ ξ ξ
λ μ μ λ μ λ

ξ ξ ξ ξ ξ ξ ξ

∞ −

∞ −

⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞+ +⎪ ⎪′ ′ ′ ′= − + − + + +⎨ ⎬⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟+ + +⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

′ ′ ′ ′− ⎡− + − ⎤ + ⎡ + + ⎤⎣ ⎦ ⎣ ⎦

∫

∫

 ( ) ( ) ( )

( ) ( ){ } ( )

3
00

2
10

2
1                          1 1

z z

z z

B e D e J r d

A z B e C z D e J r d
r

ξ ξθθ

ξ ξ

σ λ ξ ξ ξ
λ μ μ λ

ξ ξ ξ ξ ξ ξ ξ

∞ −

∞ −

′ ′= +
+ +

′ ′ ′ ′+ − + − + + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

∫

∫
 

( ) ( )3
002

z zzz A z B e C z D e J r dξ ξσ μ μξ ξ ξ ξ ξ ξ ξ
λ μ μ λ μ λ

∞ −⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎪′ ′ ′ ′= + + + − + −⎨ ⎬⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟+ + +⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭
∫

( ) ( )3
102

z zrz A z B e C z D e J r dξ ξσ λ λξ ξ ξ ξ ξ ξ ξ
λ μ μ λ μ λ

∞ −⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎪′ ′ ′ ′= − − + + +⎨ ⎬⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟+ + +⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭
∫  

(2.10)

where ( )nJ ξ  denotes  the n-th order Bessel Functions of the first kind, and the arbitrary 

functions CBA ′′′ ,, and D′  are to be determined from the boundary conditions.  

 

In the case of two-dimensional plane problems, the boundary conditions for the 

problem shown in Fig. 2.1 can be expressed as, 

 
0

( )zz z
p xσ

=
= −  (2.11)

 
( )

2

20
0

s
s x

xz z
z

d udt x
dx dx
τσ κ

=
=

⎛ ⎞
+ = − +⎜ ⎟⎜ ⎟

⎝ ⎠
 (2.12)

 0z z h
u

=
=  (2.13)

 0x z h
u

=
=  (2.14)

where p(x) and t(x) denote the magnitude of applied surface loading in the z- and x-

directions respectively; and 2s s sκ μ λ= + , is a surface material constant. 
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Application of Fourier integral transforms to eqns. (2.11) – (2.14) together with 

the assumption that surface tension is constant and the substitution of eqn. (2.7) results in,  

 
2

( )pA C ξ
ξ

+ =  (2.15)

 ( ) ( ) ( ) 22( )
2

st
B D A C D B A C

i
ξ κ λ μξ ξ ξ
ξ μ λ μ

⎡ ⎤+
+ − − + = − + +⎢ ⎥+⎣ ⎦

 (2.16)

 
( ) ( ) 0h hB A Bh e D C Dh eξ ξμ μξ ξ

λ μ λ μ
−⎡ ⎤ ⎡ ⎤

+ + + − + =⎢ ⎥ ⎢ ⎥+ +⎣ ⎦ ⎣ ⎦
 (2.17)

 
( ) ( )2 2 0h hB A Bh e D C Dh eξ ξλ μ λ μξ ξ

λ μ λ μ
−⎡ ⎤ ⎡ ⎤+ +

− + + + + + =⎢ ⎥ ⎢ ⎥+ +⎣ ⎦ ⎣ ⎦
 (2.18)

 

and 

 ( ) ( ) i xp p x e dxξξ
+∞

−∞
= ∫  

( ) ( ) i xt t x e dxξξ
+∞

−∞
= ∫  

(2.19)

 

Equations (2.15) – (2.18) can be solved to determine the coefficients A, B, C, and 

D appearing in Eq. (2.7) and (2.8). The following solutions are obtained. 

 ( )p tA iA
A

F
+

= ;         
( )p tB iB

B
F
+

=  

( )p tC iC
C

F
+

= ;         
( )p tD iD

D
F
+

=  

(2.20)

 
where 
 

( ) ( ) ( ) ( )( ) ( )

( )

2
32 2 2

2

2 2

2
3 1 2

22

4 5                                                                              2

h
p

p
A e h h h

h

ξξ λ μ
λ μ ξ ξ ξ λ μ ξ

λ μξ

λ λμ μλ μ ξ
λ μ

⎧ +⎪ ⎡ ⎤= + + Λ −Λ + + Λ + − Λ⎨ ⎣ ⎦ +⎪⎩
⎫+ +

− + + ⎬+ ⎭
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( ) ( )

( ) ( )( )

2

2
2

3 1
2 2 2

2
                                                      1 2

2

h
p

p
B e

h h

ξξ λ μ λ μλ μ ξ ξ
ξ λ μ λ μ

λ μ
ξ λ μ ξ

λ μ

⎧ ⎡ ⎤⎛ ⎞+ +⎪= + + Λ − Λ⎨ ⎢ ⎥⎜ ⎟+ +⎝ ⎠⎪ ⎣ ⎦⎩
⎫+ ⎪+ Λ + + − ⎬+ ⎪⎭

 

( ) ( ) ( ) ( )

( )( ) ( )

2
32 2

2

2 2
2

2
3 1

22

4 5                                              2 2

h
p

p
C e h

h h h

ξξ λ μ
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λ μξ

λ λμ μξ λ μ λ μ ξ
λ μ

−
⎧ +⎪ ⎡ ⎤= + − Λ + Λ + Λ⎨ ⎣ ⎦ +⎪⎩

⎫+ +
+ + Λ + + + + ⎬+ ⎭

 (2.21)

( ) ( )

( ) ( )( )

2

2
2

3 1
2 2 2

2
                                                        1 2

2

h
p

p
D e

h h

ξξ λ μ λ μλ μ ξ ξ
ξ λ μ λ μ

λ μ
ξ λ μ ξ

λ μ

−⎧ ⎡ ⎤⎛ ⎞+ +⎪= − + − Λ + Λ⎨ ⎢ ⎥⎜ ⎟+ +⎝ ⎠⎪ ⎣ ⎦⎩
⎫+ ⎪+ Λ + + + ⎬+ ⎪⎭

 

.        

( ) ( ) ( ) 2 22
t

t
A h

ξ μ λ μ
λ μ ξ

ξ ξ λ μ
⎡ ⎤+

= − + +⎢ ⎥+⎣ ⎦
      

( ) ( ) ( )( )23 1 2
2

h
t

t
B e hξξ

λ μ λ μ ξ
ξ

⎡ ⎤= + + + +⎣ ⎦  

( ) ( ) ( ) 2 22
t

t
C h

ξ μ λ μ
λ μ ξ

ξ ξ λ μ
⎡ ⎤+

= + +⎢ ⎥+⎣ ⎦
 

( ) ( ) ( )( )23 1 2
2

h
t

t
D e hξξ

λ μ λ μ ξ
ξ

−⎡ ⎤= + + + −⎣ ⎦  

( )[ ] ( )( )
2 2

2 4 53 cosh(2 ) sinh(2 ) 2F h h h h λ λμ μλ μ ξ ξ ξ ξ λ μ
λ μ

+ +
= + + Λ + + Λ + +

+
 

 

and  

 ( )
( )

2
2

sκ λ μ
μ λ μ

+
Λ =

+
 (2.22)

 

Note that Λ is a parameter with the dimension of length and represents a ratio of 

surface to bulk elastic properties. It can be viewed as a material characteristic length that 

represents the influence of surface energy effects.  It is clear from the above solution that 

Λ solely quantifies the influence of surface elastic properties on the elastic field. Note 
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that Λ vanishes in the absence of surface stress effects and the above solution reduces to 

the classical elasticity solution.   

 

The boundary conditions corresponding to axisymmetric vertical loading of the 

system shown in Fig. 1 can be expressed as,  

 

 
0

( )zz z
p rσ

=
= −  (2.23)

 2

0 2
0 0

1| 1
s

sr r r r
rz z

z z

u d u du ud
dr r dr r dr r
τσ κ=

= =

⎡ ⎤⎛ ⎞⎛ ⎞= − + + + −⎢ ⎥⎜ ⎟⎜ ⎟
⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

 (2.24)

 0r z h
u

=
=  (2.25)

 0z z h
u

=
=  (2.26)

 

Assuming that surface residual stress sτ  is constant along the radial direction and 

taking Hankel integral transforms of eqns. (2.23) – (2.26) together with the use of eqn. 

(2.9) leads to the following equations to determine the unknown arbitrary functions. 

 
2

( )( ' ') ( )( ' ')
2
ZB D A C ξμ λ μ
ξ

+ + + − =  (2.27)

 ( ) ( ) ( )( ' ') ( )( ' ') ' ' ' '
2

s

D B A C B D A C
κ ξ λ μ

λ λ μ ξ ξ
μ
+

− + + + = + − −⎡ ⎤⎣ ⎦  (2.28)

 [ ] [ ]' ( ' ' ) ' ( ' ' ) 0h hB A B h e D C D h eξ ξξ ξ−− + + + + =  (2.29)

 
2 ' ( ' ' ) 2 ' ( ' ' ) 0h hB A B h e D C D h eξ ξλ μ λ μξ ξ

μ μ
−⎡ ⎤ ⎡ ⎤+ +

+ + − − + =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (2.30)

where  

 ( ) ( )00
( )Z rp r J r drξ ξ

∞
= −∫  (2.31)

 

The solution of eqns. (2.27) – (2.30) yields the following solutions for the 

arbitrary functions A’, B’, C’ and D’.  

 ( ) ( )0 1
3

1'
4

A A Z
A

F
ξ

ξ
+

= ;         ( ) ( )0 1
2

1'
4

B B Z
B

F
ξ

ξ
+

=  (2.32)
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( ) ( )0 1
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1'
4

C C Z
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= ;         ( ) ( )0 1
2
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D D Z
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ξ
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=  
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λ μ
−Λ ⎡ ⎤= − + − + + +⎣ ⎦+

 

( )2
0

3 1 2hD e hξλ μ ξ
λ μ

−+
= + +
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( )( ) ( )2
1 3 1 2

2
hD e hξξ λ μ ξ λ μ

λ μ
−Λ ⎡ ⎤= + − + +⎣ ⎦+

 

(2.33)

 
[ ] ( )

2 2
2 5 4( 3 ) cosh(2 ) sinh(2 ) 2 ( )F h h h h μ μλ λλ μ ξ ξ ξ ξ λ μ

λ μ
+ +

= + + Λ + + Λ + +
+

 

 

Eqs. (2.32) and (2.33) together with Eq. (2.9) and (2.10) presents the complete 

elastic field of the layered system shown in Fig. 1. In the case of 0Λ = , the above 

solution reduces to the classical solution for an elastic layer [90]. It is noted that the 

surface effects are again solely represented by the parameter Λ appearing only in the 

terms A1, B1, C1, D1 and F. The first four terms vanish for a solid with no surface stress 

effects. 

 

2.3  Solutions for a Semi-infinite Medium  

Although a closed-form solution for the elastic field of a layer cannot be obtained 

due to the complexity of the integrals involved in the solution, the results of Sect. 2.2 can 
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be specialized for the case where h approaches infinity to obtain a set of closed-form 

solutions.   

 

When h tends to infinity, the Eq. (2.20) together with Eq. (2.21) reduces to the 

following solutions. 

 ( )
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p
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ξ
ξ

=  (2.34)

 
( ) ( )1

12
1 1

p t
B i

λ μ ξξ ξλ μ
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+ Λ
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 (2.35)

 0C D= =  (2.36)
 

In the case of a vertical point load of magnitude P,  

 ( )p Pξ =  (2.37)

and  

 
2
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ξ

= ; 
2 1

P PB μ
ξ λ μ ξ

Λ
= −

+ +Λ
 (2.38)

 

If the surface stress effect is ignored, 0Λ = , the following closed-form solutions 

are obtained for stresses.  

 

 
( )

( )
3

22 2

2
zz c

Pz

z x
σ

π
= −

+
;   ( )

( )
2

22 2

2
xx c

Pzx

z x
σ

π
= −

+
;  ( )

( )
2

22 2

2
xz c

Pz x

z x
σ

π
= −

+
 

( ) 2 2

1 arctan
2x c

P x z xu
z x zπ λ μ μ

⎛ ⎞
= − +⎜ ⎟+ +⎝ ⎠

 

( ) ( )
( ) ( )

0 0

cos2 cos
2

z
z

z c

e xP zu d e x d
ξ

ξξλ μ ξ ξ ξ
π μ λ μ ξ μ

−
∞ ∞ −⎛ ⎞+

= +⎜ ⎟⎜ ⎟+⎝ ⎠
∫ ∫  

 

(2.39)

where the subscript c is used to denote the classical solution in the absence of surface 

effects.  
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Note that based on Eq. (2.39) the stresses and vertical displacement show the 

classical R-1 )( 222 zxR +=  and log R singularities. In addition, the displacement is 

indeterminate to within an arbitrary rigid body displacement due to the behavior of the 

first integral of the expression for czu )( . The classical solutions given above are identical 

to the solutions given by Selvadurai [89].   

 

For 0Λ ≠ , the stress field of the half-plane can be expressed as,  

 ( ) ( ) ( )2 ,
2zz zz c

P zI x zμσ σ
π λ μ

Λ
= +

+
 

( ) ( ) ( ) ( )1 22 , ,
2xx xx c
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( ) ( ) ( ) ( )1 2, ,
2xz xz c

P J x z zJ x zμσ σ
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( ) ( ) ( )0 1
1 , ,

2 2x x c

P zu u J x z J x z
π λ μ λ μ
⎡ ⎤Λ

= + −⎢ ⎥+ +⎣ ⎦
 

( ) ( )( ) ( ) ( )0 1, ,
2 2 2z z c

P zu u I x z I x zμ
π λ μ λ μ λ μ
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= − +⎢ ⎥+ + +⎣ ⎦
 

(2.40)

where 
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( )1 0 2 2

1, xJ x z J
z x
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1 2, xzJ x z J
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⎢ ⎥Λ +⎣ ⎦

 

(2.41)

 ( )1 z ixϕ = +
Λ

;  ( )1 z ixϕ = −
Λ

 (2.42)
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and Ei ( )n z  denotes the Exponential Integral. 
 

It is found that the solution can be expressed in two parts to clearly identify the 

classical and non-classical parts. The characteristic length parameter Λ is found to control 

the non-classical terms associated with the surface energy effects.  A close examination 

of the non-classical part of the solution given by Eqs. (2.40 ) and (2.41) shows that 

stresses contain a singularity of R-1 type and a resulting displacement has a logarithmic 

singularity at the loading point. However, it is important to note that the non-classical 

displacement is not indeterminate as in the case of the classical solution.  

 

In the case of a horizontal point force of magnitude T applied at the origin of the 

coordinate system, eqns. (2.34) and (2.35) reduce to,  

 
A=0,     1

1
TB i
ξ ξ

=
+ Λ

 (2.43)

Substitution of eqn. (2.43) in eqn. (2.7) and the evaluation of the resulting 

integrals yield,  
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(2.44)

  

where the classical elasticity solution corresponding to 0Λ =  is given by, 
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( ) ( )
( ) ( )

0 0

cos2 cos
2

z
z

x c

e xT zu d e x d
ξ

ξξλ μ ξ ξ ξ
π μ λ μ ξ μ

−
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= −⎜ ⎟⎜ ⎟+⎝ ⎠
∫ ∫  

 

The above classical elasticity solution has singularities similar to the vertical 

loading case discussed previously. In addition, the singularities of the non-classical part 

are also similar to the previous case.   

 

For the axisymmetric problem, taking the limit h approaching infinity in eq. 

(2.32) results in,   

 
( )

( )
( )23' 1

2
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A
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ξ λλ μ
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 (2.46)

 
( ) ( )3' 1

2
Z
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 (2.47)

and ' ' 0C D= =  (2.48)

 
where 

 ( ) ( )2 1
μβ ξ

λ μ ξ
Λ

=
+ + Λ

 (2.49)

  

By substituting the above solutions for the arbitrary functions in eqn. (2.9) the 

solution for a half-space can be obtained. In the case of a vertical point load of magnitude 

P, we have 

 ( )
2
PZ ξ
π

= −  (2.50)

  

The solution for elastic field can be written as 
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(2.51)
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where the classical solution for stresses and displacements denoted by a subscript ‘c’ is 

given by,   
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and the integral m
nI  is defined as, 

 ( ) ( ) ( )
0

,m n z
n mI r z e J r dξξ β ξ ξ ξ

∞ −= ∫  (2.53)

  

It is noted that when the surface constant 0Λ = , m
nI   and the associated non-

classical terms of Eqs. (2.51) vanish. 
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2.4  Numerical Results and Discussion 

In this section, selected numerical results are presented to demonstrate the salient 

features of the elastic field. The surface elastic constants can be obtained from atomistic 

simulations [39, 45]. First, consider the case of an elastic half-plane subjected to vertical 

and horizontal point loads at the surface. The solution for the stress field is given in Sect. 

2.3. A close examination of the present solutions indicates that it is convenient to 

introduce the non-dimensional coordinates, 0 /x x= Λ  and 0 /z z= Λ , and non-

dimensionalize stresses by )/(2 ΛπP  for the vertical loading case and by )/(2 ΛπT for the 

horizontal loading case. It can be shown that the non-dimensional stresses are only a 

function of the non-dimensional coordinates and the ratio μλ / of the bulk material. In the 

present study, 226.2/ =μλ  (e.g. Aluminum [91]) is used. The classical solution (in 

dimensional or nondimensional) is independent of Λ. However, the use of Λ in the 

nondimensionalization allows a comparison of the non-classical and classical solutions as 

shown in Figs. 2.2-2.7 but such comparison is valid for a fixed value of Λ and the results 

presented in this paper corresponds to a Al [1 1 1] surface  0.15288 =Λ nm [39].  

 
Fig. 2.2 Nondimensional vertical stress profiles at different depths due to a vertical point 

load. 
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Fig. 2.3 Nondimensional horizontal stress profiles at different depths due to a vertical 

point load. 
 

 
Fig. 2.4 Nondimensional shear stress profiles at different depths due to a vertical point 

load. 
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Fig. 2.5 Nondimensional vertical stress profiles at different depths due to a horizontal 

point load. 
 

 
Fig. 2.6 Nondimensional horizontal stress profiles at different depths due to a horizontal 

point load. 
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Fig. 2.7 Nondimensional shear stress profiles at different depths due to a horizontal point 

load. 
 

Figs. 2.2-2.7 show the distribution along the x-direction of dimensionless vertical 

horizontal and shear stresses of a half-plane at different depths under vertical and 

horizontal point loads. Only the solutions along the positive x-axis are plotted due to the 

symmetry or anti-symmetry of the stress components. The broken lines denote the 

classical elasticity solution corresponding to 0sκ = . It is clear that the influence of 

surface stresses is more significant under a horizontal load when compared to a vertical 

load. In the case of a vertical point load, the vertical normal stress has a negligible effect 

of surface stresses but the horizontal normal stress shows more visible influence. 

However, in the case of a horizontal point load, both vertical and horizontal normal 

stresses show a strong influence of the surface effects. This behaviour under different 

loading may be interpreted from eqns (2.11) and (2.12) by noting that eqn (2.11) is not 

modified from the classical case but eqn (2.12) contains the non-classical boundary 

condition associated with the surface stress effects. The zone of influence is confined 

primarily to 0.10 <z   for a vertical point load and 0.20 <z for a horizontal load. Obviously, 

this behaviour is consistent with the expectation that the influence of surface effects 

would diminish with the distance from the surface. It should be noted that both xxσ  under 
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a vertical load and xzσ  under a horizontal load are no longer zero at the surface for  

0 0x =  due to the presence of surface tension. The results shown in Figs. 2.2-2.7 confirm 

that for materials like soft gels where the characteristic length (Λ) can be quite large or 

for nano-scale structures where Λ is comparable to material dimensions, the influence of 

surface effects need to be accounted. 

 

Next consider the case of a three-dimensional elastic layer bonded to a rigid base 

and subjected to a uniformly distributed vertical load 0p acting over a circular area of 

radius a. The solution for this axisymmetric problem is given in Sect 2.2. In this case, it is 

convenient to use the nondimensional coordinates, 0 /r r= Λ  and 0 /z z= Λ , a 

nondimensional layer thickness 0 /h h= Λ , and the radius of contact area 0 /a a= Λ . The 

solution appears in terms of semi-infinite integrals involving Bessel functions and was 

computed using numerical quadrature. The solutions for vertical and radial displacements 

of the surface of the layer along the r-axis are shown in Figs. 2.8 and 2.9 respectively for 

different layer thicknesses. Note that in the classical elasticity where there is no size 

effect, the elastic field can be uniquely determined by the value of /h a , but accounting 

for the surface effects, the elastic field is size-dependent. In the numerical results, we 

fixed the value of 0 10a = . It can be seen from these figures that the surface effects have 

negligible influence on the vertical displacement profiles of the surface. Both the 

classical solution and the non-classical solution show similar effects of layer thickness; 

lower displacements as the layer thickness decreases. The influence of surface energy on 

the radial displacement profiles is quite significant. It is clear that the magnitudes of 

displacements are smaller than that in classical solution, which implies the surface stress 

effects suppress the deformation and stiffen the surface. 
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Fig. 2.8 Vertical displacement of layer surface due to a uniformly distributed vertical 

load. 
 

 
Fig. 2.9 Radial displacement of layer surface due to a uniformly distributed vertical load. 

 

The nondimensional stress components of the layer at different depths are plotted 

in Figs. 2.10– 2.13. The layer thickness, 0 03 30h a= = . It is found that the influence of 

surface effects on vertical stress profiles is quite negligible similar to the solutions shown 

in Fig. 2.2, however, the surface effects have an influence on the other stress components 
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as shown in Fig. 2.11-2.13, and the zone of influence is about 0 0/ 1.5r a = . The influence 

of surface effects tends to decrease as r  or z increases which is in accordance with the 

expectation that the surface effects primarily affect the region near the surface and 

loading zone. The discontinuity of rrσ at the loading edge 0 0/ 1r a = may be caused by the 

errors of numerical quadrature when computing the semi-infinite integrals.  

 
Fig. 2.10 Radial distribution of vertical stress due to a uniformly distributed vertical load. 

 

 
Fig. 2.11 Radial distribution of radial stress due to a uniformly distributed vertical load. 
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Fig. 2.12 Radial distribution of hoop stress due to a uniformly distributed vertical load. 

 

 
Fig. 2.13 Radial distribution of shear stress due to a uniformly distributed vertical load. 
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Chapter 3  
 

ELASTIC FIELD OF A NANO-FILM SUBJECTED TO TANGENTIAL 

SURFACE LOAD: ASYMMETRIC PROBLEM 

 

3.1 Problem Description 

In this chapter, general three-dimensional problems for an isotropic elastic thin 

layer bonded to a rigid substrate and subjected to surface tangential loading is considered 

in the presence of surface stresses (Fig. 3.1). Similar to Chapter 2, the Gurtin-Murdoch 

continuum theory is used to consider the surface energy effects. This class of problems 

has important applications in the study of nanocoatings, nanotribology and surface 

formations in soft elastic solids. Unlike the layer problems considered in Chapter 2, the 

deformation and stress field under tangential loading is three dimensional consisting of 

three components of displacements and six independent stresses. In this study, cylindrical 

coordinates are employed and the loading is assumed to apply over a circular area. This 

allows the formulation of the present class of problems by using Fourier expansion in the 

θ-direction and Hankel integral transforms in the radial direction. 

 

 

z

rh 2a

x

y

MN

P

Q

 
Fig. 3.1 Elastic layer subjected to tangential surface loading. 
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Muki [87] presented a powerful general solution based on Hankel integral 

transforms to solve three-dimensional boundary-value problems in classical elasticity. In 

this chapter, Muki’s method is extended to solve problems involving thin layers subjected 

to tangential loading in the presence of surface energy effects.  

 

3.2 General Solution of Elastic Field 

According to Muki [87], the general solution for the displacement and stress 

components of an isotropic homogeneous elastic solid can be expressed with respect to a 

cylindrical coordinate system ( , , )r zθ  as, 
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where μ  and λ  denote the Lamé constants; and  
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The arbitrary functions mA , mB , mC , mD , mE  and mF appearing in Eqs. (3.3)-

(3.10) can be determined from the boundary conditions.  

 

Equations (3.1)-(3.10) are applicable only to situations where the applied loading 

is symmetric about θ=0 (x-axis). Under more general loading, the above solutions should 
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contain the complete Fourier expansion with respect to θ including the anti-symmetric 

terms of θ.  The anti-symmetric terms can be easily obtained by replacing 

cos sinm mθ θ→  and sin cosm mθ θ→ − [87].   

 

3.3 Boundary-value Problem 

Following boundary conditions can be established at the top surface of the layer 

by using the generalized Young-Laplace equation.  
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where ( , )g r θ  and ( , )f r θ denote the applied surface tractions in the radial and 

circumferential directions respectively; and a superscript ‘s’ is used to represent the 

surface stress components.  

 
The layer is perfectly bonded to a rigid substrate at the bottom and the boundary 

conditions are,  
 0r z h

u
=
= ;     0

z h
uθ =

= ;     0z z h
u

=
=  (3.14)

 

Neglecting the displacement gradient term, the surface constitutive relations can 

be expressed as [40, 41], 

 ( ) ( )2s s s s s s
βα βα βα γγ βασ τ δ μ τ ε λ τ ε δ= + − + +  (3.15)

where sμ  and sλ  are surface Lamé constants and sτ  is the residual surface tension under 

unstrained conditions.  

 

The loading functions ( , )g r θ  and ( , )f r θ  can be expressed in the following 

general form.  
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In the ensuing analysis, 0m mp q′ ′= =  in view of the fact that only loading 

symmetric about θ=0 is considered in the current formulation. As mentioned previously, 

the solutions corresponding to the anti-symmetric loading terms involving mp′  and mq′  

can be obtained from the symmetric solutions by replacing cos sinm mθ θ→ , 

sin cosm mθ θ→ − , m mp p′→  and m mq q′→ . In addition, it is convenient to obtain 

solutions corresponding to a single value of m without loss of generality. 

 

Considering only a single value of m and applying Hankel integral transforms to 

Eqs. (3.11)-(3.13) together with the substitution of Eqs. (3.1)- (3.10), result in the 

following set of equations to determine the arbitrary functions appearing in the general 

solution. 

 
( ) ( )1 1 1

1 2

1 1

1                                                         
2 2

m m m

m m
m
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X YD

λξ ξ ξ ξ ξ
λ μ

λξ
λ μ μ ξ

⎛ ⎞
− Λ + + Λ + + Λ −⎜ ⎟+⎝ ⎠

⎛ ⎞ +
Λ − =⎜ ⎟+⎝ ⎠

 (3.17)

 ( ) ( ) 0m m m mB D A Cμ ξ
λ μ

+ + − =
+

 (3.18)

 
( ) 32 0h h

m m m mB A B h e D eξ ξλ μ λ μξ
λ μ λ μ

−⎡ ⎤− +
− + + =⎢ ⎥+ +⎣ ⎦

 (3.19)

 
( )3 2 0h h

m m m mB e D C D h eξ ξλ μ λ μ ξ
λ μ λ μ

− ⎡ ⎤+ −
+ + + =⎢ ⎥+ +⎣ ⎦

 (3.20)

 ( ) ( )2 2 2

11 1
2 2

m m
m m

X YE Fξ ξ
μ ξ

−
Λ + + Λ − = −  (3.21)

 0h h
m mE e F eξ ξ− + =  (3.22)

where  

 

( ) ( )1
2 2

2
s s sλ μ μ λ τ

μ λ μ
+

Λ = + −
+

; 2

s sμ τ
μ
−

Λ =  (3.23)
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and [ ] ( )10
( ) ( )m m m mX p r q r rJ r drξ

∞

−= −∫ ; [ ] ( )10
( ) ( )m m m mY p r q r rJ r drξ

∞

+= +∫  (3.24)

 

The parameters 1Λ  and 2Λ  represent the ratios of surface to bulk elastic 

properties and have a dimension of length. The functions mX  and mY  are related to 

Hankel integral transforms of applied loads. 

 

The solution of Eqs. (3.17)-(3.22) yields, 
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1 1
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m m
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t

X YE
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−
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1 1
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t

X YF
Fμ ξ

−
=  

(3.25)

where  

(3.26)

 ( ) 2 2 223 5 32 h
tA h h e ξλ μμ λ μ λ μξ ξ

λ μ λ μ μ λ μ
⎡ ⎤++ +

= − + + +⎢ ⎥+ + +⎣ ⎦
 

( )23 1 2h
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λ μ
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( ) 2 2 223 5 32 h
tC h h e ξλ μμ λ μ λ μξ ξ

λ μ λ μ μ λ μ
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( )23 1 2h
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λ μ
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( ) ( )2 2
21 1h h

tE e eξ ξξ− −= − Λ − +  

( ) ( )2 2
21 1h h
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[ ] ( )
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2 2
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1 1 2
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+ +
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The complete elastic field of the layer can be obtained by substituting the above 

solutions for arbitrary functions into Eqs. (3.1) - (3.10).  It can be seen that the parameters 

iΛ (i=1, 2) associated with the surface elastic properties appear only in tE , tF  and tH .  

Note that iΛ  vanish in the absence of surface stress effects and the above solutions 

reduce to the classical elasticity solutions.  

 

In the following analysis, the above solution is specialized for two common 

loading cases relevant to practical applications. First, consider the case where the layer is 

subjected to a uniformly distributed tangential traction of intensity 0p  along the x-

direction over a circular area with radius a as shown in Fig. 3.1. In view of Eqn. (3.16) , 

 
( ) 0

0

sin                
, ( ) sin

0                           m
m

p r a
f r p r m

r a
θ

θ θ
∞

=

− ≤⎧
= = ⎨ >⎩
∑  

( ) 0

0

cos                  
, ( ) cos

0                           m
m

p r a
g r q r m

r a
θ

θ θ
∞

=

≤⎧
= = ⎨ >⎩
∑  

(3.27)

Therefore,   

 
0       1

( )
0          1m

p m
p r

m
− =⎧

= ⎨ ≠⎩
;   0        1

( )
0          1m

p m
q r

m
=⎧

= ⎨ ≠⎩
 (3.28)

Substitution of Eqn. (3.28) into Eqn. (3.24) yields, 

 ( )1
02           1

0                               1
m

aJ a
p m

X
m

ξ
ξ

⎧
− =⎪= ⎨
⎪ ≠⎩

 

0mY =  

(3.29)

 

If h  approaches infinity, the solution for a layer can be specialized to obtain the 

solution for a semi-infinite domain. In the case of a semi-infinite medium, the Eq. (3.25) 

together with Eq. (3.26) reduces to the following solutions for arbitrary functions. 

 
( ) 3

1

1
4 1

m m
m

X YA
λ μ ξ ξ

+
= −

+ + Λ
 (3.30)
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2

1

1
4 1

m m
m

X YB
μξ ξ

+
= −

+ Λ
 (3.31)

 
2

2

1
4 1

m m
m

X YE
μξ ξ

−
= −

+ Λ
 (3.32)

 0m m mC D F= = =
 

(3.33)
 

In the case of a point load of magnitude Q in the x-direction, Eq. (3.29) reduces to,  

 
          1

0               1
m

Q m
X

m
π

⎧− =⎪= ⎨
⎪ ≠⎩

 

0mY =  for all m 

(3.34)

 

If the surface stress effects are ignored, i.e. 0iΛ =  (i=1, 2), the following closed-

form solutions are obtained for the case of a tangential point load. 
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(3.35)
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2 2
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(3.36)



43 

( )
2 3

2 4

2 sin
2z c

Q z r z z
θσ θ

πρ ρ ρ
⎡ ⎤−

= −⎢ ⎥
⎣ ⎦

 

( ) 3 coszr c

Qzσ θ
πρ

= −  

where the subscript ‘c’ is used to denote the classical solution in the absence of surface 

effects and 

 2 2r zρ = +  (3.37)

Note that Eqs. (3.35) and (3.36) are identical to the classical elasticity solution 

[87].  

 

For 0iΛ ≠ , the elastic field of a half space under a tangential point load can be 

expressed as, 
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( ) 1 1
1 2 cos

4z z c

Qu u I zIμ θ
πμ λ μ

⎡ ⎤
= − +⎢ ⎥+⎣ ⎦

 

(3.38)

 
and the stresses are given by,  
 

( ) 1 1 2 2 2
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(3.39)
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( ) ( )
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1 2 2 2
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1 sin
2 2z z c
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where  

 
( ) ( )1

0
1

,
1

n
m z
n mI r z e J r dξξ ξ ξ

ξ
∞ −Λ

=
+Λ∫ ; ( ) ( )2

0
2

,
1

n
m z
n mJ r z e J r dξξ ξ ξ

ξ
∞ −Λ
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The non-classical part of the above solution is a function of the characteristic 

length parameters iΛ (i=1, 2) associated with the surface energy effects. If 0iΛ = , the 

two integrals m
nI  and m

nJ  vanish and the solution obviously reduces to the classical 

elasticity solution. 

 

3.3 Numerical Results and Discussion 

The analytical solutions for a layer under tangential loading expressed in terms of 

semi-infinite integrals cannot be evaluated analytically to obtain a closed form solution 

due to the complexity of the integrands. Numerical integration techniques are therefore 

employed to calculate the elastic field of a layer. In this section, selected numerical 

results are presented to elucidate the influence of surface tension and surface elastic 

constants on the elastic field. Following Chapter 2, the non-dimensional coordinates 

0 1/r r= Λ  and 0 1/z z= Λ , non-dimensional layer thickness 0 1/h h= Λ , and loading radius 

0 1/a a= Λ  are introduced. The material surface constants are, sμ =1.655 N/m, sλ =-1.247 

N/m, sτ =-0.1154 N/m corresponding to Nickel [1 1 1] surface [45], the bulk elastic 

constants for Nickel are: μ =76.0 GPa and λ  =126.1 [91]. The radius of loading area is 

set to 0 10a = . 
 

Figs. 3.2-3.4 show the distribution of the surface displacements of the layer due to 

a uniformly distributed tangential load. Only the solutions at selected cross sections, for 

example, 0θ =  or / 2θ π= , are plotted along the radial direction, in that the solutions 
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along the θ -direction show a sine or cosine distribution (Eq. (3.1) - (3.8)). It is found that 

the surface stress effects have a quite strong influence on the displacement profiles and 

make the layer stiffer than the classical case. Both the classical and the non-classical 

solutions show similar influence of the layer thickness such that displacements decrease 

with decreasing layer thickness.  

 

 
Fig. 3.2 Non-dimensional vertical displacement at the surface of a layer due to a 

tangential distributed load ( 0θ = ). 
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Fig. 3.3 Non-dimensional radial displacement at the surface of a layer due to a tangential 

distributed load ( 0θ = ). 

 
Fig. 3.4 Non-dimensional circumferential displacement of the surface of a layer due to 

tangential distributed load (
2
πθ = ). 

 

Figs. 3.5-3.8 show the distribution of stresses of a layer at different depths under a 

uniformly distributed tangential loading. It can be clearly seen from these figures that the 
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influence of surface effect is quite significant on the stress field. The radius of influence 

is confined to 1.5 times the contact radius. The consideration of surface stresses lead to 

lower bulk stresses in all cases of layer thickness which is consistent with the stiffening 

behavior observed previously for displacements.  

 
Fig. 3.5 Non-dimensional stress zzσ  of a layer due to tangential load ( 0θ = ). 

 

 
Fig. 3.6 Non-dimensional stress rrσ  of a layer due to tangential load ( 0θ = ). 
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Fig. 3.7 Non-dimensional stress rzσ  of a layer due to tangential load ( 0θ = ). 

 

 

Fig. 3.8 Non-dimensional stress zθσ  of a layer due to tangential load (
2
πθ = ). 

 

Next consider the shear stresses at the interface of the film/substrate, which is an 

important factor in the delamination of the film from substrate. Interfacial shear stress 

components rzσ  and zθσ  along the r-direction are shown in Fig. 3.9 and 3.10, 
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respectively. It can be seen that the influence of the surface effects is more significant for 

relatively thin layers when compared to thick ones, since the influence of surface stresses 

is confined to vicinity of the surface and has little effect on the base of the layer if it is not 

closer to the surface.   

 
Fig. 3.9 Non-dimensional stress rzσ  at the interface of film/substrate ( 0θ = ). 

 

 

Fig. 3.10 Non-dimensional stress zθσ  at the interface of film/substrate (
2
πθ = ). 
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Chapter 4 
 

RIGID INDENTATION OF AN ELASTIC SEMI-INFINITE SOLID  

 

4.1 Problem Description 

In this chapter, indentation of an isotropic elastic half space by a rigid body is 

considered. The surface energy effects are taken into account by using the Gurtin-

Murdoch continuum model. According to author’s knowledge, the influence of surface 

energy effects on indentation problems has not been investigated in the past and such 

effects could have important implications on the mechanics of nanoindentation and 

contact mechanics of soft solids. Consider a semi-infinite elastic solid indented by an 

axisymmetric rigid punch as shown in Fig. 4.1. The radius of contact area and indentation 

depth are denoted by a and d respectively. The solutions for elastic field caused by flat-

ended cylindrical, conical and spherical rigid indenters are derived in this chapter. 

Selected numerical results are presented to demonstrate the salient features of the elastic 

field and vertical stiffness and the influence of surface energy effects. 

 

 

 
Fig. 4.1 Elastic half space indented by an axi-symmetric rigid body.  

 

4.2 Formulation of the Elastic Field 

The solution of axisymmetric contact problem shown in Fig. 4.1 can be 

formulated by using a cylindrical coordinate system (r, θ, z) and general solutions for 
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axisymmetric deformations given by Eq. (2.9) and (2.10) in Chapter 2. Since the 

thickness of the medium is infinite, the arbitrary functions C‘ and D’ appearing in Eq (2.9) 

and (2.10) are set to zero to ensure the regularity of displacements and stresses as 

z approaches infinity. Note that uθ vanishes due to the axial symmetry and all non-zero 

field variables are independent of θ. Accordingly, the general solutions for displacements 

and stresses for an isotropic half space can be expressed as,  

 

( ) ( )2
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1 z
ru A z B e J r dξλ μ ξ ξ ξ ξ ξ

μ
∞ −+

= − + −⎡ ⎤⎣ ⎦∫  (4.1)
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λ μ μ λ

∞ −⎡ ⎤⎛ ⎞
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∫  (4.6)

where λ  and μ  are Lame constants of the bulk material; ( )nJ ξ  denotes  the n-th order 

Bessel Function of the first kind; and the arbitrary functions A  and B  are to be 

determined from the boundary conditions.  

 

The mixed boundary conditions corresponding to the indentation problem shown 

in Fig. 4.1 can be expressed as, 
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in which the function ( )/r aδ  is related to the profiles of indenter and was defined by 

Sneddon [75]. Note that the parameters d and a are unspecified yet. 

 

The Eq. (4.9) must be true for all values of r at the surface and substitution of Eq. 

(4.1) and Eq. (4.6) into Eq. (4.9) results in,  

 ( )0 01 A Bλξ ξ ξ
λ μ

⎛ ⎞
+ Λ = + Λ⎜ ⎟+⎝ ⎠  (4.10)

where 0 / 2sκ μΛ = . 

 

Substitution of Eq. (4.2) and (4.5) in Eq. (4.7) and (4.8) together with Eq. (4.10) 

results in, 
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Introduce,  
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where α  is an arbitrary constant to be determined.  
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In view of Eqs. (4.13) and (4.14), Eqs. (4.11) and (4.12) reduces to the following 

dual integral equation system.  

 ( ) ( ) ( )00
M J r d f rξ ξ ξ
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where  

 ( ) rf r d
a

δ⎡ ⎤⎛ ⎞= − − ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦  (4.17)

 

The solution of dual integral equations of the type (4.15) and (4.16) has been 

studied by Lebedev and Ufliand [76], and Noble [92]. Following Lebedev and Ufliand 

[76], introduce the solutions as 
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where the function ( )g ξ  can be determined from Eq. (4.13) and (4.14) as,  
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and the function ( )tφ  is the solution of the following Fredholm Integral Equation of the 

second kind. 
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Note that, to ensure the convergence of the kernel function ( )K x , i.e. ( ) 0g ξ → , as 

ξ →∞ ,  
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3

λ μα
λ μ
+

=
+  

(4.23)

 

From Eq. (4.5), the distribution of normal stress under the punch can be expressed as: 
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Now introduce the following relations to simplify the ensuing derivation. 
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Eq. (4.19) yields 
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and the Fredholm Integral Equation (4.20) reduces to,  
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where 

 
( )( ) ( ) ( ) ( ) ( )

2
0

0 0 0 0( ) sin si cos ci
3

aG u a u a u a u a uμ
λ μ λ μ

= +⎡ ⎤⎣ ⎦+ +  
(4.28)

and si(x) and ci(x) are sine and cosine integrals defined by 

 
0

sinsi( )
2

x tx dt
t

π
= −∫

 

0

cos cos 1ci( ) ln( )
x

x

t tx dt dt x c
t t

∞ −
= − = + +∫ ∫

 

(4.29)

Here c is Euler's constant with the value of 0.577215664... 
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The function ( )0F τ  of the right-hand side of Eq. (4.27) can be obtained from Eq. 

(4.17) and (4.21) as given below. 

 

(a) For a flat-ended cylindrical indenter with radius a 

 
0r

a
δ ⎛ ⎞ =⎜ ⎟
⎝ ⎠

                                              0 r a≤ ≤
 

( )0 1F τ = −
  

(4.30)

 

(b) For a conical indenter with an apex angle 2θ  

 
cotr r

a
δ θ⎛ ⎞ =⎜ ⎟
⎝ ⎠

                                     0 r a≤ ≤
 

( )0 1 cot
2

aF
d

πτ τ θ⎛ ⎞= − −⎜ ⎟
⎝ ⎠   

(4.31)

 

(c) For a spherical indenter with radius R   

 2

21 1r rR
a R

δ
⎛ ⎞⎛ ⎞ = − −⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

                       0 r a≤ ≤
 

( )
2

2
0 1 aF

dR
τ τ

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠                            
( )a R

 

(4.32)

 

The Fredholm Integral Equation of the second kind (eq. (4.27)) can be solved 

numerically. If the solution of ( )H τ  is known, the functions A and B can be determined 

from Eq. (4.10), (4.13), (4.14), (4.18), (4.25) and (4.26), so that the complete elastic field 

can be obtained. 

 

Note that when 0Λ = , Eq. (4.26) becomes a constant and 

 
( ) ( )( )

2

3
g μξ

λ μ λ μ
= −

+ +  
(4.33)

The dual integral equations (4.15) and (4.16) in this case become 
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 ( ) ( ) ( )00
M J r d f rξ ξ ξ

∞
=∫                                     ( )0 r a≤ ≤  (4.34)

 ( ) ( )00
0M J r dξ ξ ξ ξ

∞
=∫                                        ( )a r< < ∞  (4.35)

which corresponds to the classical indentation problem of a half space in the absence of 

surface energy effects that was solved by Sneddon [75]. 

 

From Eq. (4.24), a simple expression can be obtained for the magnitude of the 

total applied force on the indenter. Integrating the normal stress under the indenter over 

the area of the contact region yields,   

 
( ) ( )

1

0

8 2
3

P da H d
μ λ μ

τ τ
λ μ

+
= −

+ ∫  (4.36)

 

In the case of a flat-ended cylindrical indenter that has a sharp corner, the stress is 

singular at the edge. However, if the indenter has a smooth profile, for example, the 

conical and spherical indenters, the continuity of normal stress around the circle 

r a= ( )1τ =  gives an additional equation 

 ( ) ( )1 0a Hφ = =  (4.37)

which can be used together with equation (4.27) to set up the relationships between the 

penetration depth d and the radius of contact area a for the conical and spherical indenters. 

 

For convenience, introduce a dimensionless parameter γ  as 

 
c

a
a

γ =  (4.38)

where ca  is the radius of contact area corresponding to a homogeneous half space in the 

classical case, and the relationship between ca and indentation depth d were obtained by 

Sneddon [75] as: 

 

(a) For a flat-ended cylindrical indenter 
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 ca a=  (4.39)

(b) For a conical indenter  

 
1 tan
2 cd aπ θ=  (4.40)

(c) For a spherical tip indenter  

 ca Rd=                           ( )ca R  (4.41)

 

Accordingly, the function ( )0F τ  in Eq. (4.30)-(4.32) can be rewritten as follows 

 

 (a) Flat ended punch 

 ( )0 1F τ = −
  

(4.42)

 

(b) Conical indenter  

 ( ) ( )0 1F τ γτ= − −
  

(4.43)

 

(c) Spherical indenter  

 ( ) ( )2 2
0 1F τ γ τ= − −

                           
( )a R

 
(4.44)

 

The formulation of the problem is now complete for each type of indenter 

considered. It can be seen from the Fredholm Integral equation (4.27) that the right-hand 

function ( )0F τ  is solely related to the indenter profile and the kernel function ( )G u  that 

is related to the boundary conditions depends on the surface energy effects.  

 

4.3 Numerical Results and Discussion 

Selected numerical results are presented in this section and the surface elastic 

constants can be obtained from atomistic simulation [39, 45], but they can be for arbitrary 

materials in the present study, because nondimensional coordinates 0 /r r= Λ ,  0 /a a= Λ  

and 0 /d d= Λ are used in the solution. For the bulk material, assuming Aluminum, 
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58.17λ = GPa and 26.13μ = GPa [91]. The Fredholm Integral Equation of the second 

kind (4.27) can be solved numerically. It should be pointed out that the ratio γ  is equal to 

1 for the flat ended cylindrical indenter, but it is unspecified for conical and spherical 

indenters. In the present calculations for conical and spherical indenters, first set the 

parameter γ  equal to 1 and then iterate until a proper value is obtained such that 

(1) 0H = . Then the updated values are used to solve the Fredholm Integral Equation 

(4.27) and obtain the numerical solution of function ( )H τ . 

 

Fig. 4.2 shows the relationships between parameter γ  and the radius of contact 

area for different indenter shapes. It is interesting that it shows a size-dependent behavior 

due to the influence of surface energy effects. It can be seen that γ  is lower than 1, which 

means that the contact area is smaller than that in the classical case. When the radius of 

contact area is small, the material becomes stiffer. It seems that the influence on the 

contact area is only limited to less than 1% and can be neglected in the indentation test. 

However, for some soft materials such as polymer gels and biological materials whose 

intrinsic characteristic lengths are large, the influence of surface effect may be prominent. 

 
Fig. 4.2 Variation of parameter γ  as function of radius of contact area 0a  
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The normal stress profile of the surface under the punch is of interest. Based on 

the analysis presented in Sect. 4.2, the contact stress under the punch at z=0 is given by 

 ( )
( )

( )
( )

( )
( )

1

2 2/ 2

4 2 1
3 / 1 /

zz r a

d H d H
a r a r a

μ λ μ τ τ
σ

π λ μ τ

⎡ ⎤′+ ⎢ ⎥= − −
⎢ ⎥+ − −⎣ ⎦
∫

       
/ 1r a <

 
(4.45)

 

The corresponding classical solution was obtained by Sneddon [75] as: 

 

(a) Flat ended punch 

 ( )
( ) ( )2

4 1
2 1 /

zz

d
a r a

μ λ μ
σ

π λ μ
+

= −
+ −                                      

/ 1r a <
 

(4.46)

 

(b) Conical indenter  

 ( )
( )

( )21 1 /4
log

2 /zz

r ad
a r a
μ λ μ

σ
π λ μ

⎛ ⎞+ −+ ⎜ ⎟= −
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⎝ ⎠                       

/ 1r a <
 

(4.47)

 

(c) Spherical indenter  

 ( )
( ) ( )28

1 /
2zz

d
r a

a
μ λ μ

σ
π λ μ

+
= − −

+                                      
/ 1r a <

 
(4.48)

 

Fig. 4.3-4.5 show the distribution of normal contact stresses under a punch with 

different profiles. The contact stress zzσ  is normalized as ( )0/ 4zz dπσ μ  and the radius 0r  

as 0 0/r a . The broken line represents the classical solution. It is clear that the current 

solutions show the same trend as the classical solutions, and the surface energy effects 

have a negligible influence on the normal contact stresses, which is similar to the results 

of Chapter 2. When the radius of indenter is smaller, the effects of surface stresses are 

comparatively large.  
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Fig. 4.3 Contact stress profiles under the punch for flat-ended cylindrical indenter 

 

 
Fig. 4.4 Contact stress profiles under the punch for conical indenter 
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Fig. 4.5 Contact stress profiles under the punch for spherical indenter 

 

Indentation force is a useful quantity in the indentation testing. Integrating the 

normal stresses of Eq. (4.46)-(4.48) over the contact area together with Eq. (4.36), the 

following load-indentation depth relationships can be obtained for the classical case and 

the non-classical case.  

(a) For a flat-ended cylindrical indenter 

 

( )8
2c cP a d

μ λ μ
λ μ

+
=

+
 

( )
( )( ) ( )

2
1

0

2
3c

P H d
P

λ μ
τ τ

λ μ λ μ
+

= −
+ + ∫  

(4.49)

(b) For a conical indenter  
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μ λ μ
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+
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2
1

0

2 2
3c

P H d
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(4.50)

(c) For a spherical tip indenter  
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( )
( )

16
3 2c cP a d
μ λ μ
λ μ

+
=

+
 

( )
( )( ) ( )

2
1

0

3 2
2 3c

P H d
P

λ μ
γ τ τ

λ μ λ μ
+

= −
+ + ∫  

(4.51)

where cP  is the indentation force in the classical case. 

 

It can be seen from the above equations that the ratio / cP P  contains an integral 

part, in which the integrand function ( )H τ  is dependent on the radius of contact area 0a . 

It implies that / cP P  is dependent on the size of punch and the surface effect may play a 

role. Figure 4.6 shows the variation nondimensional total force ratio against the radius of 

contact area. It is seen that when the contact area becomes smaller, the total indentation 

force needed to make the same depth increases, which implies that the stiffness measured 

in the indentation experiment is dependent on the penetration depth for the conical and 

spherical indenter and depends on the radius of punch for the flat ended cylindrical 

indenter. The maximum influence surface effects is about 5% when 0 0.1a = . However, 

for some soft gel materials whose intrinsic characteristic length is larger compared to the 

metals and the contact radius 0a a= Λ  is comparably higher, the influence of surface 

effects on the indentation force may be more prominent. 
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Fig. 4.6 Variation of nondimensional indentation force with the radius of contact area 
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Chapter 5  

 

SUMMARY AND CONCLUSIONS 
 

5.1 Summary and Major Findings 

The main purpose of this thesis is to investigate the influence of surface energy 

effects on the stresses and deformations of nanoscale film/substrate systems and develop 

solutions based on the Gurtin-Murdoch elasticity model for surface loading and rigid 

indentation problems. The boundary-value problems considered in the present study are 

formulated by using Fourier and Hankel integral transform techniques. Selected 

numerical results are presented to portray the key features of the elastic field and the 

influence of surface energy effects. The conclusions of the current study are given below. 

 

(1) Analytical solutions can be derived for the two-dimensional and axisymmetric 

elastic field of an isotropic compressible elastic layer of finite thickness that is bonded to 

a rigid base and subjected to surface loading. Closed-form solutions can be obtained for a 

half-plane subjected to a vertical or tangential point force and the solution can be 

separated into a classical part and a non-classical part that is governed by the surface 

elastic properties. In the case of a layer, numerical quadrature is required to compute the 

solutions expressed by semi-infinite integrals. A characteristic length, Λ, controlled by 

both surface material properties and bulk properties can be identified and the surface 

energy effects are solely controlled by Λ. Numerical results show that the influence of 

surface stresses is more significant under a horizontal load when compared to a vertical 

load. In the case of a vertical load, vertical displacement and normal stress show a small 

effect of surface energy but the horizontal displacement and horizontal stress have more 

visible influence. For Aluminum, the effect of surface energy becomes negligible at a 

distance greater than the material characteristic length for a vertical point load and twice 

the characteristic length for a horizontal point load. For a uniformly distributed 

axisymmetric load, the influence of surface energy effect is limited to a domain within 

two times the radius of loading area.  
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(2) The solution of a three-dimensional problem is demonstrated by considering 

the case of an isotropic elastic layer perfectly bonded to a rigid substrate and subjected to 

tangential surface loading. Hankel integral transforms are used to solve the boundary-

value problems and analytical solutions are obtained for a tangential concentrated load 

and a uniformly distributed circular patch load. In the case of a semi-infinite medium, the 

solution for elastic field can be separated into a classical and a non-classical part to 

identify the influence of surface energy. As in the case of plane and axisymmetric loading 

problems, the characteristic length Λ governs the non-classical part of the solution. 

Selected numerical results show that the surface energy effects are confined to the region 

within 1.5 times the radius of loading area. The material generally becomes stiffer due to 

the surface energy effects leading to smaller displacements.  

 

(3) The classical rigid indentation problem for an elastic layer is re-examined in 

this thesis in the presence of surface energy effects. The problem can be formulated in 

terms of a set of dual integral equations as in the classical case which can then be reduced 

to a Fredholm integral equation of the second kind. The solution to the integral equation 

is obtained using numerical quadrature. The numerical results show that the radius of 

contact area in the non-classical case is slightly lower than the classical solution for 

conical and spherical indenters and depends on the size of indenter for all three types of 

indenters. A similar size-dependent behavior is also observed for the total indentation 

force and the results show that the surface energy effect causes material to behave stiffer. 

In general the influence of surface energy effects on vertical indentation is quite small but 

can be substantial for lateral loading cases. 

 

5.2 Suggestions for Future Work 

The present thesis has examined only the basic loading and contact problems for a 

thin elastic layer. It is recommended that following studies be undertaken to further 

improve understanding of the nanomechanics of film/substrate systems and the 

mechanics of soft solids. 
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(1) In most practical cases the substrate is not rigid. It is very useful to examine 

the influence of an elastic substrate in the presence of both surface and interface energy 

effects. The current methodology based on Fourier and Hankel transforms can be readily 

extended to solve the case of a flexible substrate.  

 

(2) Isotropic behavior of film/substrate is another limitation of the present study. 

It is useful to consider an anisotropic film/substrate system. Stroh’s formalism that is 

widely used in classical anisotropic elasticity can be extended to formulate the case of an 

anisotropic film/substrate system. 

 

(3) The indentation problem was solved only for a semi-infinite medium. It would 

be useful to consider the indentation of a film/substrate system to simulate a practical 

case. In addition, the solution for lateral loading is also useful in simulating 

multidimensional indentation techniques [80] used for material characterization 

 

(4) Experimental studies are needed to measure the surface elastic constants and 

validate the applicability of Gurtin-Murdoch model. Current results show that the surface 

energy effect has a more significant influence on the elastic field under a tangential load 

compared to a vertical load. Therefore, it is suggested that multidimensional contact 

mechanic experiments be used to measure the surface elastic constants and compared 

with properties determined using atomistic simulations. 
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