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Abstract 

Aerospace, die and mold, and automotive industries machine parts at high cutting speeds 

to reduce production cycle periods. Machine tools which carry out the cutting operations rely 

on either precision ball screw or linear motor direct drives to accurately position the 

workpiece relative to the cutting tool. However, the precise positioning capability of the 

drives is limited by low servo bandwidth and poor disturbance rejection resulting from 

structural flexibilities in ball screw drives as well as weak dynamic stiffness/robustness in 

direct drives. 

  This thesis proposes modeling, parameter identification, control and online 

parameter estimation techniques which aim at increasing the servo bandwidth and 

disturbance rejection ability of high speed machine tool feed drives. 

A hybrid finite element methodology is used to model the structural dynamics of ball 

screw drives. As part of the model, two stiffness matrices are developed for connecting the 

finite element representation of the ball screw to the lumped-mass representation of the nut. 

The developed model is used to analyze the coupled axial-torsional-lateral vibration behavior 

of a critical structural mode that limits high bandwidth control of ball screw drives. 

Moreover, a method for accurately identifying the mass, damping and stiffness matrices 

representing the open-loop dynamics of ball screw drives is developed. The identified 

matrices are used to design gain-scheduled sliding mode controllers, combined with 

minimum tracking error filters, to effectively suppress the critical axial-torsional-lateral 

mode of ball screw drives thereby achieving high bandwidth control and good disturbance 

rejection.  

For direct-driven machines, a high bandwidth disturbance adaptive sliding mode 

controller is designed to improve the dynamic stiffness of the drive, compared to similar 

controller designs, without increasing the controller’s complexity. Furthermore, the cutting 

forces applied to the drive are estimated accurately using a disturbance recovery algorithm 

and used to improve the dynamic stiffness of low-frequency structural modes of direct-driven 

machine tools. 
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Finally, a method for estimating the changing mass of the workpiece during machining 

operations with cutting forces that are periodic at spindle frequency is introduced.  

The techniques presented in this thesis are verified through simulations and/or 

experiments on single-axis ball screw and linear motor feed drives. 
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close to and loved by them? I am not going to guess how many, but I love my wife dearly 

and appreciate her family so much. 
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How many have a 10 month old boy who is always eager to welcome them home from 

school? How many are amazed at how he thinks he is so smart that he insists on typing 

strange “corrections” into his dad’s Ph.D. thesis? How many have my little “Ziggy”? I know 

the answer: None. 

How many have come know the Almighty as a wonderful Father? How many have 

grown to love Him dearly and have derived strength from Him in the ups and downs of their 

Ph.D. journey? How many have Him as a sure hope even when the future is unknown? I pray 

there are many and I am glad to be in the number. 

I have deeply enjoyed my Ph.D. journey – I think that is mildly put. 
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Chapter 1 

Introduction 

With the advent of high speed machining, the performance demands placed on machine 

tools from end users like the die and mold, automotive and aerospace industries have 

increased tremendously over the years. On one hand, the aerospace industry requires high 

speed machine tools that enable complex parts to be produced in one piece within the 

shortest possible time. On the other hand, the die and mold industry demands machine tools 

that can cut complex 3-D shapes with speed, accuracy and high-quality surface finishes. 

Similarly, automotive manufacturers need high-precision machines that can perform point-to-

point cutting operations in the shortest time possible. 

In response to these demands, machine tool manufacturers have pushed the limits of 

high speed machine tools to a point beyond which these desirable, but otherwise 

unattainable, goals can be reached. This has come as a result of advances in various areas of 

machine tool engineering. For instance, the utilization of tooling materials such as carbide, 

ceramic, polycrystalline diamond, and cubic boron nitride has significantly increased 

achievable metal removal rates. Likewise, the use of ceramic balls in spindle bearing systems 

has increased the attainable speeds of machine tool spindles to values exceeding 40,000 

[rpm]. 

 To complement the advances in these other areas of machine tool technology, machine 

tool feed drives have to be capable of achieving high feed rates (over 50 [m/min]) and 

accelerations exceeding 1 [g] while aiming to attain sub-micron positioning accuracy. Such 

high performance positioning requirements in turn demand high bandwidth (greater than 100 

[Hz]) and good disturbance rejection from closed-loop feed drive controllers. Typically, two 

types of feed drive design are resorted to in high speed machine tools − indirect or ball screw 

drives, and direct drives based on linear motor technology. 

Ball screw drives provide thrust and linear motion at the machine tool table by 

transmitting power from a rotary motor through a ball screw mechanism. They are commonly 

used in machine tools because of their relatively high stiffness to cutting force disturbances 

and low sensitivity to variations in workpiece inertia as a result of their inherent gear 
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reduction ratio. To be able to meet the speed and accuracy requirements of high speed 

machine tools, moving parts of ball screw drives are made lighter while furnishing them with 

high-bandwidth actuators, high-resolution feedback devices and low-friction roller or 

hydrostatic guideways.  

The problem, however, with such high speed ball screw drives is that lightening them 

may lead to loss of stiffness in some parts of the mechanical structure (particularly the ball 

screw shaft), while low friction in the guideways reduces the amount of damping in the 

system. At the same time, higher feed rates and, in particular, higher accelerations lead to a 

proportional increase in the amount of inertial reactions borne by the drives. These factors 

put together result in an increase in the oscillatory excitations of the structural components of 

the drive, thereby making high speed ball screw drives structurally flexible as opposed to 

being rigid. Moreover, the properties of some of the vibration modes change as the table 

travels along the ball screw, and also as material is removed from the workpiece during 

machining operations. The vibration modes of the ball screw are also exposed to dynamic 

cutting forces which further excite them. These various elements combine to make structural 

flexibility a major bottleneck in achieving high bandwidth and good disturbance rejection in 

ball screw-driven machine tools.  

The situation is slightly different for direct-driven machine tools. Direct drives supply 

linear motion and thrust directly to the machine tool table without any need of an 

intermediary conversion mechanism. Therefore, they have an advantage over ball screw 

drives because they involve fewer components and are thus less susceptible to the influence 

of undesirable structural modes. In addition, they can achieve higher speeds and accelerations 

with minimal backlash and friction, and they have unlimited travel range. Direct drives, 

however, have some significant drawbacks. The absence of gear reduction between the linear 

motor and table in direct drives makes them very sensitive to changes in workpiece mass. 

Furthermore, their dynamic stiffness depends mainly on the controller settings; it has little re-

enforcement from the mechanical structure. As a result, the large forces that occur during 

machining could easily excite the dynamics of the control loop and cause instability in both 

the controller and the metal cutting process. In order to mitigate the effects of cutting forces 

and workpiece mass variations on the control of direct-driven machines, they are typically 

oversized by increasing the mass of the table and the power of the linear motors. This in turn 
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reduces the achievable bandwidth and increases the cost of direct-driven machine tools, both 

of which are undesirable. 

This thesis tackles the aforementioned challenges encountered in controlling high speed 

machine tool feed drives by proposing modeling, parameter identification/estimation and 

control techniques that address the specific and mutual problems of ball screw drives and 

direct drives. It achieves this goal as follows: First, a review of related literature is presented 

in Chapter Two, thereby providing a backdrop based on the work of other researchers to 

evaluate the methods put forward in the subsequent chapters. Chapter Three then introduces a 

finite element model that is used to gain profound insight into the structural behavior of 

flexible ball screw drives so that controllers that exploit the physical capabilities of the drives 

can be designed. Furthermore, a method for accurately identifying the structural dynamics 

information needed for controller design is put forward in the same chapter. In Chapter Four, 

a mode-compensating controller is designed to actively suppress the most critical resonance 

mode of ball screw drives, thereby achieving high bandwidth and good disturbance rejection. 

Chapter Five then moves on to direct drives where a controller is designed to enhance the 

dynamic stiffness of the control loop against cutting force disturbances. Moreover, the 

dynamic stiffness of direct-driven machines as a whole is further improved by proposing a 

method for accurately estimating low-frequency cutting forces and using them to cancel out 

vibrations between the tool and workpiece. Following this, the influence of changes in 

workpiece mass on both ball screw and direct drives is investigated in Chapter Six, and a 

new method for estimating the mass of the workpiece during periodic cutting operations is 

advanced. In the final chapter, concluding remarks and future research directions are 

discussed, while supplementary pieces of information pertinent to the content of this thesis 

are detailed in the ensuing bibliography and appendices. 
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Chapter 2 

Literature Review 

2.1 Overview 

This chapter is devoted to reviewing some of the work done by other researchers, which 

bear relevance to the topics addressed in this thesis. Section 2.2 reviews past research in the 

area of modeling and identification of ball screw feed drives, including their structural 

flexibility, while Section 2.3 covers research related to controller design for ball screw drives 

with structural flexibility. Work done on high bandwidth control and dynamic stiffness 

enhancement of direct-driven machine tools is presented in Section 2.4, followed by an 

exploration of research related to online mass identification for high speed feed drives in 

Section 2.5. A summary of the contents of this chapter is presented in Section 2.5. 

2.2 Modeling and Identification of Dynamics of Flexible Ball Screw Drives  

2.2.1 Modeling 

Over the years, a lot of research effort has been put into modeling of ball screw drives 

including their structural flexibility. Flexible ball screw drive models published in literature 

range from fairly simple ones consisting of lumped masses connected by springs to more 

complicated ones entirely built using finite element methods (FEM). 

As an example of one of the simpler models, Chen et al [14] represented a ball screw 

drive using rigid bodies connected by springs. Their model considered the axial and torsional 

deformations of the ball screw as well as the pitch motion of the table due to the guideway 

joint. Using their model, they highlighted the important role of guideway deformations in the 

positioning accuracy of the table. Similar models have been proposed by Kim and Chung 

[44], Lee et al [46], Poignet et al [60], and Yang and Lin [86]. 

Van Brussel et al [76] employed FEM to model a three-axis milling machine, including 

its ball screw drive, resulting in a large model having thousands of degrees of freedom 

(DOF). Using component mode reduction procedures in two steps, the original finite element 
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model was reduced to a state-space model suitable for control design and simulation. A 

similar approach was taken by Schafers et al [67] who also created a full FEM model of a 

milling machine and used it to demonstrate the need for a mechatronics approach for the 

design and control of high speed machine tools. 

There are merits and demerits of the lumped parameter and full FEM (i.e. distributed 

parameter) approaches to modeling flexible ball screw drives. The lumped parameter models 

are usually much simpler than the full FEM models because they involve fewer DOF and less 

redundant information. However, unlike the full FEM models, lumped parameter models are 

incapable of capturing the variation in drive dynamics as the table moves along the ball 

screw.  

With a view to combining the merits of the aforementioned two methods of modeling 

flexible ball screw drives, numerous researchers have resorted to hybrid methods which 

consider the distributed stiffness and inertia of the ball screw while modeling other 

components of the drive as lumped masses connected by springs. One such approach has 

been put forward by Pislaru et al [59]. In their model, the distributed-parameter 

representation of the ball screw consists of a bunch of masses/inertias and springs which 

correspond to various sections of the ball screw shaft. However, such models cannot capture 

the changing dynamics of the feed drive system as the nut moves along the ball screw, 

because the values of the ball screw’s parameters are apparently obtained for only one 

position of the nut. Varanasi and Nayfeh [79] overcome this shortcoming by modeling the 

ball screw using a uniform beam. The resulting infinite-dimensional model of the ball screw 

drive system is reduced to a low-order model using a Galerkin’s procedure based on shape 

functions derived from the quasi-static deformation of the system. Their model shows a good 

prediction of the open-loop transfer function of the drive when compared to experimental 

results. A similar approach has also been adopted by Whalley et al [84]. As an alternative to 

using analytical beam formulations, most researchers prefer to employ a hybrid strategy 

whereby the ball screw is modeled using beam finite elements (e.g. [1][10][29][39][70][88] 

[90]) because it is simpler, more practical and more versatile than using beam equations. 

The interface between the ball screw and nut plays an important role in the transmission 

of motion, vibrations and forces from the ball screw to the table. For this reason, a lot of 
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research effort has been invested into understanding the dynamics of the screw-nut interface 

([21][22][50][82]). When modeling ball screw drives using FEM, the screw-nut interface is 

modeled as a special stiffness matrix which connects the ball screw to the nut. In deriving 

this special screw-nut interface matrix, most of the researchers mentioned above ([1][10][29] 

[39][70][79][84]) have considered only the axial and/or torsional deformations of the 

ballscrew. Zaeh et al [88] go a step further to include the effects of the ball screw’s lateral 

deformations through 3-D transformations of the stiffness of each individual ball. However, 

their method falls short of determining some cross-coupling terms between deformations in 

the axial, torsional and lateral directions of the ball screw and nut which are significant to the 

dynamics of ball screw drives. 

This thesis employs a hybrid FEM methodology originally introduced by the author in 

[54] where the ball screw is modeled as a Timoshenko beam, while the other more rigid 

components are modeled as lumped masses/inertias connected by springs. Furthermore, it 

builds upon the work of Zaeh et al [88] by deriving two new screw-nut interface stiffness 

matrices. One of the matrices is derived based on the assumption that the screw acts as a rigid 

body within the nut while the other is derived by considering the elastic deformations of the 

screw within the nut. The former matrix is shown to be better suited for short nuts and rigid 

ball screws while the latter is developed for longer nuts and more flexible ball screws. Both 

stiffness matrices are shown to contain additional cross-coupling terms between the 

deformations in the axial, torsional and lateral directions of the ball screw and nut which are 

not found in previous models. These additional cross-coupling terms are shown to play a 

significant role in the dynamics of high speed ball screw drives through simulations and 

experiments. 

2.2.2 Parameter Identification 

Parameter identification from experimental measurements is often carried out to obtain 

accurate values for the physical quantities that constitute the analytical models described in 

the previous section.  

Allotta et al [1] used modal updating techniques to identify the position dependent 

boundary conditions of a ball screw system. They first created a free-free finite element 

model (i.e. without physical constraints) of the screw. Then, using scalar springs with 
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unknown stiffnesses in different directions, they applied boundary conditions corresponding 

to the bearings and nut supports. By matching the resonance and anti-resonance frequencies 

of the modeled and experimentally measured frequency response functions (FRFs) the 

unknown stiffness coefficients of the constraints were identified using an iterative technique. 

Lee et al [46] proposed an experimental technique for identifying the parameters of a flexible 

ball screw drive model based on contour error measurements using a cross grid encoder. 

They outlined a procedure for tuning the controller parameters in order to reduce the 

structural vibrations of the machine tool thus improve its overall contouring accuracy by 

using the model and contour error measurements. A procedure for identifying unknown joint 

parameters in a servomechanism with multiple joints was proposed by Yang and Lin [86]. 

The method worked by comparing Bode graphs of the experimental and analytical models to 

identify the stiffness and damping coefficients. Sensitivity techniques were then applied to 

reduce the discrepancies between the eigenvalues obtained from analytical and experimental 

models. The joint parameters of an industrial servomechanism consisting of a motor, a ball 

screw, some gears and linkages were identified using the method. Kamalzadeh and 

Erkorkmaz [40] identified the mass, damping and stiffness matrices of a 2-DOF ball screw 

model by matching the FRF obtained from the model to the FRF measured from the drive. 

However, their method failed to identify off-diagonal terms in the mass matrix of the drive 

which are very important for accurate control of flexible ball screw drives. 

This thesis presents a simple but effective least squares method for identifying the mass, 

damping and stiffness matrices of a 2-DOF model of ball screw drives (including the off- 

diagonal terms in the drive’s mass matrix) based on FRF data 

2.3 Control of Flexible Ball Screw Drives 

The influence of structural resonances significantly limits the achievable bandwidth of 

ball screw drives [61]. Therefore, there is a significant amount of research activity in the area 

of designing controllers which directly or indirectly address the problem of structural 

dynamics in ball screw-driven machines. 

One technique commonly used to tackle this problem is to pre-filter motion commands 

before applying them to the servo controller [37][81], or to modify the frequency content of 

the command and feedback signals using a notch filter set at the resonance frequency of the 
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drive [28][29][54][70][90]. Notch filters prevent the control signal from exciting the 

problematic modes but cannot stop the table disturbance forces from exciting them. They 

also tend to have a negative effect on the phase margin of the controlled system. 

Furthermore, they are not robust to changes in the behavior of the resonance mode due to 

changing table position or workpiece mass.  

Lim et al [48][49] have reported that a torsional displacement feedback control scheme, 

which is based on an estimation of the torsional displacement of flexible ball screws using 

known stiffness properties and motor torques, leads to a significant reduction in the 

positioning error of the table. A similar strategy has also been adopted by Kamalzadeh and 

Erkorkmaz [41][42] who propose two methods for canceling out axial elastic deformations in 

ball screw drives. The first method [41] is a feed-forward technique which calculates the 

motor torque based on the reference commands and the modeled friction behavior of the 

drive. The second method [42], on the other hand, is a feedback strategy which uses the 

control voltage applied to the drive to estimate the motor torque. They observe that the first 

method has better stability margins than the second, albeit less robust to un-modeled 

disturbances and changes in workpiece inertia. They improve the stability margins of the 

feedback method by low-pass filtering the control voltage before using it for elastic 

deformation cancelation. 

As an alternative approach, Erkorkmaz and Kamalzadeh [29] have also proposed an 

active vibration suppression method based on measuring the twist of the ball screw using two 

rotary encoders placed at either end of the ball screw. Vibration cancelation is achieved by 

calculating a negative torque proportional to the measured twist of the ball screw and 

applying it to the drive. 

Chen and Tlusty [15] showed by simulation that applying accelerometric feedback 

combined with a feed-forward compensator on a flexible ball screw drive improved the 

transient response at the machine tool table, and chatter vibration characteristics between the 

cutting force and machined part.  

Symens et al [72] resorted to gain-scheduling as an alternative to classical fixed-

parameter controllers which do not perform well for machine tools with varying structural 

flexibility. They employed two different scheduling schemes – one ad-hoc and the other 
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analytically derived – on H∞ controllers designed for various positions of a machine tool with 

position-dependent structural dynamics. Their experiments yielded good results from the ad-

hoc scheme but the analytically derived linear parameter varying (LPV) scheduling gave very 

poor results because of the inherent conservatism in the LPV method. Zhou et al [91] used 

simulations to demonstrate the merits of applying an “adaptive” notch filter to table-position-

dependent torsional modes of a ball screw drive. They used neural networks to tune the 

parameters of the notch filter as a function of the table’s position. Dumur et al [25] employed 

an adaptive generalized predictive controller to damp out the structural modes of ball screw 

drives in the presence of variations of drive inertia, but they did not consider the effects of 

table position-dependent structural dynamics variations in their controller. 

A different approach was taken by Van Brussel et al [76]. They capitalized on the 

robustness of the H∞ controller, by performing a design based on the nominal position of the 

machine tool, while factoring the information regarding the position-dependent variation of 

the machine dynamics into the uncertainty model of the controller. Their controller, which 

considered the flexibilities of the machine, was shown to outperform a reference PID 

controller which was designed based on only rigid-body dynamics, in tracking performance. 

However, when it came to disturbance rejection, the H∞ controller was seen to perform 

poorly. Its disturbance rejection performance was improved by building it around a velocity 

loop closed with a PI-Controller which added more damping to the system. 

Erkorkmaz [28] designed an elaborate adaptive sliding mode controller (ASMC) to 

actively damp the first torsional mode of a ball screw drive. The controller was shown to 

improve the high speed tracking and contouring performance of the drive significantly when 

compared to a similar design which did not consider the flexibility of the drive. Similarly, 

Kamalzadeh and Erkorkmaz [40] designed a mode-compensating ASMC to actively damp 

out the first axial-torsional vibration mode of ball screw drives. The effectiveness of their 

design was improved by using feed-forward action to force the motor to follow a different 

reference command than the table. While the table was made to follow the desired trajectory, 

the motor’s reference command was made to cancel the deformations of the ball screw 

arising from inertial forces and/or estimated disturbance forces. Their design, however, did 



 

 10

not consider the effects of non-minimum phase zeros on the effectiveness of their mode-

compensating ASMC. 

The implications of non-minimum phase (NMP) zeros on non-collocated control of 

flexible systems has been studied extensively by Spector and Flashner [71]. Non-collocated 

control occurs in plants whose actuator(s) are not coincident with the location(s) of feedback 

measurement. Spector and Flashner observe that NMP zeros are an inescapable result of the 

finite propagation speed of elastic deformation waves in flexible structures. From their study 

they conclude that the transfer functions of non-collocated systems are always NMP beyond 

some finite frequency and that qualitatively erroneous control signals could result by mis-

modeling a NMP system with a minimum phase model.  Freudenberg and Looze [32] also 

indicate that NMP feedback systems are severely limited in their achievable closed-loop 

performance, particularly in terms of sensitivity and complementary sensitivity. Varanasi and 

Nayfeh [79], in agreement with the findings of Spector and Flashner [71], observe that the 

off-diagonal terms in the mass matrix of their 2-DOF ball screw drive model tend to give rise 

to NMP zeros in the non-collocated dynamics of flexible ball screw drives from motor torque 

to table position. 

The effects of NMP zeros on the feed-forward control of single input-single output 

(SISO) closed-loop systems was studied extensively by Tomizuka [73] who introduced the 

zero phase error tracking controller (ZPETC). The ZPETC is a feed-forward controller that 

cancels out all of the poles and stable zeros of a closed-loop system. The NMP (unstable) 

zeros, on the other hand, are approximately canceled out in a way that theoretically yields 

zero phase lag between the command and actual position signals, and a gain that is very close 

to unity for a wide frequency range. This pioneering work of Tomizuka has been followed by 

many similar feed-forward SISO control techniques [33][34][74][81], all of which result in 

non-causal systems.  

The problem with feed-forward controllers, however, is that they are unable to detect 

and take corrective action against deviations arising from external disturbances and/or 

modeling errors [63]. To exploit the advantages of feed-forward controllers, they should be 

used together with robust feedback control action. The adaptive sliding mode controller, 

introduced by Slotine and Li [69], is one of such controllers which combine feed-forward 
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action with robust feedback control. This is one reason why it is often employed for feed 

drive control [5][28][29][40]. However, the performance of the ASMC is limited because its 

disturbance adaptation and sliding surface dynamics are coupled. In response to this 

shortcoming, Won and Hedrick [83] have proposed the disturbance adaptive discrete-time 

sliding mode controller (DADSC) for SISO systems. They demonstrate the advantages of the 

DADSC over the ASMC using the speed control of engines. 

This thesis addresses the challenge of controlling flexible ball screw drives by proposing  

mode-compensating DADSCs combined with a feed-forward minimum tracking error filter 

(MTEF) designed to actively damp the first axial-torsional-lateral mode of ball screw drives. 

The plant inversion-based MTEF is designed such that it is stable, causal and effective even 

when the identified open-loop dynamics of the ball screw drive contains NMP zeros. 

Furthermore, the parameters of the proposed controllers are scheduled in an ad hoc fashion to 

achieve effective vibration cancelation as the properties of the suppressed mode change as a 

function of the table position.  

2.4 Control and Dynamic Stiffness Enhancement of Direct-Driven Machines 

Unlike ball screw drives, direct drives are not prone to low-frequency vibration modes, 

so they are usually modeled simply as a pure mass with some viscous damping [77]. 

However, as previously mentioned, their direct nature makes them sensitive to cutting force 

disturbances and workpiece inertia variations which have to be dealt with using the controller 

[2][77]. 

Xu and Yao [85] introduce an adaptive robust controller (ARC) for linear motors. The 

controller has an online parameter adaptation scheme that is utilized to reduce the effects of 

uncertainties coming from the workpiece inertia, friction, force ripple and amplifier 

parameters. The uncompensated uncertain non-linearities are then handled by robust control 

laws thereby achieving high performance. Implementation problems related to the parameter 

adaptation are mitigated by making the regressor dependent on only the reference trajectory 

as opposed to the system states. Shieh and Tung [68] design an optimal linear quadratic 

controller for direct drives which considers the uncertainties due to payload variation and 

time-varying disturbances. They guarantee robustness by connecting an auxiliary input to the 

nominal optimal control. In [26], Egami and Tsuchiya regard the influence of parameter 
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variation and disturbance forces of a linear motor system as an equivalent disturbance signal. 

Compensation action is realized using the estimated value of the equivalent disturbance 

thereby achieving an improvement of the phase delay of the whole control system and a 

reduction in the effects of the parameter variation on the performance of the drive. 

Renton and Elbestawi [66] propose minimum-time path optimization (MTPO) combined 

with minimum-time tracking control (MTTC) to improve the performance of direct drives. 

The MTPO is used to schedule the maximum feed rate along a tool path in such a way as to 

avoid exceeding the velocity/acceleration limits of each of the machine’s axes. The MTTC, 

on the other hand, attempts to move the drive to the target path (i.e. position and velocity) as 

quickly as is allowed by the current and voltage limits of the amplifier using feed-forward 

action. They also suggest the use of a “periodic observer” for estimating and canceling out 

periodic cutting forces applied to direct drives within the bandwidth of the controller. 

Similarly, Komada et al [45] propose a disturbance observer for improving acceleration 

control of direct drives. In order to reduce the effects of noise and quantization errors on the 

performance of the designed disturbance observer, its poles are scheduled as a linear function 

of the desired speed of the drive.  

Jamaludin et al [36] controlled a two-axis linear motor using the classical cascaded 

controller. In addition, they modeled the friction on the guides and predicted the remaining 

un-modeled friction using an observer based on the inverse model of the machine dynamics. 

They added a repetitive controller to the position control loop, which reduced the effect of 

periodic cutting forces significantly and led to higher dynamic stiffness on the linear drives. 

Castaneda-Castillo and Okazaki [13] attempted to achieve cutting force compensation using 

a model reference control algorithm. They estimated cutting forces in a three-axis milling 

machine using recursive least-squares by considering them as variations in inertia. However, 

they were only able to estimate very low frequency loads (i.e. less than 10 [Hz]). Denkena et 

al [23] experimentally identified the friction, damping and cogging force patterns of a direct 

drive. They then controlled the drive using a state-space controller with disturbance 

compensation.  Finally, they demonstrated tool breakage monitoring based on cutting forces 

calculated from the motor current. 
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Chung et al [18] propose a variable structure controller (i.e. sliding mode controller), for 

direct drives, with integral action in the sliding surface and disturbance estimation using a 

load torque observer. The integral action improves robustness to unknown disturbances while 

the load torque observer reduces unwanted chattering in the sliding mode controller (SMC). 

Wang et al [80] contend that when a plant controlled by a SMC reaches sliding mode, the 

closed-loop behavior of the controlled system is independent of the plant dynamics. 

Therefore, a feed-forward controller designed based on the closed-loop dynamics of a SMC 

at sliding mode theoretically should be independent of the plant model. However, they 

observe that the presence of disturbance forces and model uncertainties prevent the 

controlled system from fully reaching sliding mode. They demonstrate their controller on a 

linear motor driven-stage 

Alter and Tsao [2][3] designed two H∞ controllers aimed at improving the dynamic 

stiffness of direct drives. The first was designed to yield a position feedback controller with 

integral action while the second included optimal force feedback control. Based on 

experimental results, the first H∞ controller showed a 26-47 [%], while the second exhibited a 

70-100 [%] improvement in dynamic stiffness over a proportional derivative (PD) controller. 

Choi and Tsao [16] modeled the average cutting force in two-dimensional milling operations 

as the product of a constant (but uncertain) gain and the velocity of the orthogonal direct-

driven axes. They then designed a robust multi input-multi output (MIMO) H∞ controller for 

the two axes coupled by the cutting force equation. Simulation and experimental results 

demonstrated that the MIMO design outperforms an axis-based SISO PID controller design 

in terms of tracking and contouring performance under cutting conditions. 

Van Brussel et al compared a sliding mode controller to a robust H∞ and pole-placement 

controller for controlling a direct drive with changing inertia. They observed that the SMC 

performed better than the other two controllers. By adjusting the weighting factors of the H∞ 

controller to match the behavior of the SMC, they were able to achieve good performance 

with the H∞. Similar results were also demonstrated in [78]. Jamaludin et al [35] compared a 

classical cascaded controller to a SMC for a direct drive. They observed that both controllers 

performed similarly in terms of tracking performance but that the SMC exhibited better 

dynamic stiffness properties than the classical cascade controller (except at the low frequency 

range because of a lack of integral action in their SMC). They however did not compare the 
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dynamic stiffness of the two controllers at the most critical point – the resonance frequency 

of the controlled drive where the drive’s flexibility is usually lowest.  

Chung et al [17] explain that there are three types of modes (in addition to the controller-

induced modes) which contribute to the dynamic stiffness between tool and workpiece in 

machine tools – spindle modes, tool modes and machine tool structural modes. The tool and 

spindle modes are usually at relatively high frequencies – typically greater than 400 [Hz]. 

The structural modes, however, are those low-frequency modes (typically less than 100 [Hz]) 

which result from motions like the rocking of the machine’s column or bed. They 

demonstrate how the dynamic stiffness of such low-frequency modes could be improved by 

using a tuned active damping device attached to the machine tool. Similar results are also 

demonstrated by Brecher et al in [11]. The problem with active damping techniques, 

however, is that they involve building or purchasing a damping device, carefully searching 

for the best location to mount it on the machine tool and then tuning it iteratively to achieve 

the best performance. To mitigate this problem, Zatarain et al [89] use an accelerometer 

attached to the tool center point (TCP) to measure the vibratory displacements of the tool 

based on a state-space observer. The estimated displacements are then fed back to the 

controller and used to improve the dynamic stiffness of the drive between the tool and 

workpiece by up to 70 [%]. However, attaching an accelerometer to a rotating tool is a 

challenging task practically. 

This thesis proposes a two-pronged approach for dynamic stiffness enhancement of 

direct-driven machine tools. First, it designs a rigid body dynamics-based DADSC to achieve 

high bandwidth and dynamic stiffness in the control loop of direct drives, particularly at the 

resonance frequency of the controlled drive. The decoupling of disturbance estimation and 

sliding surface dynamics in the DADSC is shown to give it superior dynamic stiffness 

compared to the ASMC and cascaded controller, while remaining as good as the other two 

controllers in terms of reference tracking performance and simplicity. It also proposes a 

technique for further improving the dynamic stiffness between tool and workpiece, in direct- 

driven machine tools, by canceling out low-frequency vibrations resulting from machine tool 

structural modes. The technique is based on accurately estimating the cutting force 

disturbances applied to the drive, using true disturbance force recovery, and then utilizing the 
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estimated (recovered) forces to predict the relative displacement between tool and workpiece 

based on the measured or modeled transfer function of the machine. 

2.5 Online Mass Estimation for High Speed Feed Drives 

The variation of workpiece mass during cutting operations changes the behavior of 

structural modes in flexible ball screw drives thereby reducing the effectiveness of mode-

compensation techniques in suppressing them. It also leads to a loss of bandwidth in both 

direct drives and ball screw drives. Online workpiece mass estimation is instrumental in 

mitigating the adverse effects of workpiece mass change on the dynamics of high speed feed 

drives [61]. 

Liu et al [51] design three different adaptive controllers with online mass estimation – a 

backstepping adaptive controller, a self-tuning adaptive controller, and a model reference 

adaptive controller – for a linear motor direct drive. Using the designed controllers, they 

experimentally demonstrate satisfactory performance in transient response, load disturbance 

rejection capability and tracking ability even when the inertia of the drive is increased up to 

ten times. Qian et al [65] propose a method based on neural networks for estimating the 

varying workpiece mass of direct drives. The estimated mass is used to switch between three 

controllers designed in order to achieve robust control in presence of workpiece mass 

variation. Hirovonen et al [38] design an adaptive nonlinear backstepping controller for a 

direct drive. They assume that the direct drive is used to move a flexible workpiece with an 

unknown mass and stiffness, both of which are estimated by the controller. They also note 

that the parameter estimates of the controller do not converge to their true values even though 

the stability of the controller is guaranteed by a Lyapunov function. 

Butler et al [12] control a direct-drive using a model reference adaptive approach. The 

inertia of the actual drive is estimated using recursive least squares and used to update the 

reference model. This adaptive control scheme is shown to perform better than a fixed PID 

controller, designed for the same drive, in terms of tracking performance. Similarly, Dessaint 

et al [24] use recursive least squares to estimate the inertia and damping parameters of a 

linear drive controlled by a PID regulator with an additional feed-forward loop. They use the 

identified parameters to adjust the parameters of the feed-forward loop of the controller. 
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In terms of ball screw drive control, Dumur et al [25] used an adaptive generalized 

predictive controller (GPC) to damp out the structural modes of flexible ball screw drives in 

the presence of variations of drive inertia. Online parameter estimation was carried out using 

a recursive least squares technique with conditional updating. Simulation results 

demonstrated significant advantages of using the adaptive GPC over the fixed GPC in terms 

of reference tracking performance. 

A major drawback of the online mass estimation techniques described above is that they 

do not consider the effects of cutting force disturbances on the accuracy of parameter 

estimation. In reality, however, the mass change is usually accompanied by large dynamic 

forces which greatly affect the effectiveness of mass estimation techniques. This challenge is 

addressed by Lee et al [47] who carry out simultaneous disturbance torque and inertia 

estimation using a full order observer and a reduced-order extended Luenberger observer 

(ROELO). They use the ROELO to estimate the inertia of the drive, based on the disturbance 

torque values estimated at the previous time step using the full order observer, by assuming 

that the disturbance torque remains constant. The full order observer is then updated with the 

identified inertia value by assuming that it too remains constant over the time step. This 

method is only suitable for quasi-static disturbance forces and mass variations at low rates, 

which is not the case in most high speed machining operations. Similarly, Awaya et al [9] use 

a disturbance observer for inertia estimation as well as for disturbance compensation in a ball 

screw-driven machine. However, they again assume that the disturbance force is constant and 

that the reference commands are periodic, both of which are unrealistic assumptions in most 

machining operations.  

Some of the control methods described earlier (e.g. [13][26][85]) also attempt to 

estimate both workpiece mass and disturbance forces simultaneously. However, as Erkormaz 

[28] explains, persistence of excitation is necessary for the parameters of adaptive controllers 

to converge. Persistence of excitation is hardly achieved in feed drives because of the 

smoothness of the reference commands applied to them [28]. 

In response to the practical difficulty of accurately estimating workpiece mass in the 

presence of cutting force disturbances, Renton and Elbestawi [66] suggest that the mass of 
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the workpiece be estimated during rapid traverse motions when the disturbance force is zero. 

However, in many cutting operations, such interruptions in cutting may scarcely occur. 

This thesis exploits the periodicity of certain cutting operations and the low-frequency 

properties of ball screw and direct drives to introduce a method which estimates the varying 

workpiece mass using “zero-force pockets” that occur in the frequency spectrum of unknown 

periodic signals. As a result, accurate online mass estimation can be achieved without 

interrupting the cutting operation.  

2.6 Summary 

In this chapter, literature related to modeling and control of flexible ball screw drives, 

control and dynamic stiffness enhancement of direct-driven machines, and online workpiece 

mass estimation for both types of high speed feed drives have been highlighted. The 

motivation for research into these areas, and the various solutions put forward by other 

researchers have been discussed so as to place the work that follows in perspective, and 

provide a background for further research into these topics. 
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Chapter 3 

Modeling and Identification of the Dynamics of Flexible Ball Screw Drives 

3.1 Overview 

Designing effective controllers for high speed ball screw drives requires a good 

understanding and accurate characterization of the structural dynamics of the ball screw 

mechanism, and its potential interaction with the controller dynamics of the drive. To achieve 

this purpose, this chapter presents a two-pronged approach consisting of analytical modeling 

using finite element methods, and parameter identification based on experimentally measured 

data. The finite element model is used to get a global picture and gain theoretical 

understanding of ball screw drive structural dynamics, particularly the complex transmission 

of motion and vibrations at the screw-nut interface. The experimental parameter 

identification is then used to obtain a more compact and accurate representation of the 

dynamics needed for controller design. 

The content of this chapter is arranged as follows. Section 3.2 gives a brief introduction 

to ball screw mechanisms and then presents an overall picture of the finite element modeling 

technique employed in this thesis. Detailed modeling of the screw-nut interface connection is 

then laid out in Section 3.3. In Section 3.4, the developed model is implemented on a single-

axis ball screw test bed and the resulting open-loop dynamics are analyzed using simulations 

and then corroborated experimentally. A method for accurately extracting the mass, damping 

and stiffness matrices of the drive from experimental measurements is presented in Section 

3.5, and concluding remarks are given in the last section. 

3.2 Modeling of Drive Components 

A typical drive consists of a ball screw which is attached to the motor shaft through a 

coupling as shown in Figure 3.1. The screw is constrained axially and radially by a thrust 

bearing at the motor side.  The screw is either unsupported, if it is short, or supported by a 

radial bearing to provide axial freedom in order to allow for its thermal expansion. Pre-

tensioned ball screws also exist for which the distal end of the screw is supported axially in 

order to keep it in tension. This way, stresses resulting from thermal growth are reduced. The 
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rotary motion of the screw is converted into a translation at the nut, which is connected to the 

table supported by the guideways at two parallel sides.   

 

 

 

Figure 3.1: Mechanical Components of a Ball Screw Feed Drive 

3.2.1 Ball Screw 

The threads of the ball screw do not make any substantial contribution to its stiffness 

however they contribute to its inertia as presented in [70]. Therefore, instead of modeling it 

using three dimensional elements, the ball screw is usually modeled accurately using beam 

elements [10][29][39][70][79][84][88]. Timoshenko beam elements are used because they 

consider shear effects in lateral deformation formulations, and give a more accurate 

prediction of high-frequency natural modes, when compared to Euler-Bernoulli beams [52], 

especially when the beam is short. The root diameter (dr) is used to derive the stiffness 

matrix, while an equivalent diameter (de) is used to calculate the mass matrix at the threaded 

section of the screw. The equivalent diameter is obtained by equating the mass of a cylinder 

having a diameter (de) to the mass of the threaded section including the threads: 

2
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d L V
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+⎜ ⎟

⎝ ⎠=  

 

(3.1) 

 

where L represents the length of the threaded section and Vthr is the total volume of the 

threads which can be estimated from their geometry. Each beam element has six degrees of 

freedom (DOF) on each of its two nodes; three translations (ux, uy, uz) and three rotations (θx, 



 

 20

θy, θz) as shown in Figure 3.2. The expressions for the element stiffness and mass matrices of 

a Timoshenko beam can be found in literature [64][87]. 

 

Figure 3.2: Timoshenko Beam Element 

3.2.2 Rigid Components 

Components like the rotor, nut, table and frame are relatively more rigid than the ball 

screw and joint interfaces, hence they are approximated by lumped inertia properties defined 

at their centers of mass. The mass matrix (Eq.(3.2)) of rigid components consists of a 

translating mass (m) and nine rotary inertias (Ixx, Iyy, Izz, Ixy, Iyx, Ixz, Izx, Iyz, Izy), and in the most 

general case is given by: 

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0
0 0 0
0 0 0

xx xy xz

yx yy yz

zx zy zz

m
m

m
I I I
I I I
I I I

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

M  
(3.2) 

 

In cases where information in the form of displacements and forces are desired at other 

locations of the component, a rigid-body transformation matrix (TP-COM) is used to map the 

information at the center of mass (COM) to the desired location, P, as:  

3 3

3 3 3 3
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P COM

P COM

×

× ×

−⎡ ⎤⎧ ⎫ ⎧ ⎫
=⎨ ⎬ ⎨ ⎬⎢ ⎥

⎩ ⎭ ⎩ ⎭⎣ ⎦

I ru u
0 Iθ θ

T
1442443

 (3.3) 
 

where u and θ are the displacement and rotation vectors at a given location, expressed as  u = 

{ux uy uz}T and θ = {θx θy θz}T, respectively (see Figure 3.2). r is the position vector from the 
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COM to point P given by r = {rx ry rz}T while S(r) is the tensorial representation of r given 

by: 

0
S( ) 0

0

z y

z x

y x

r r
r r
r r

⎡ ⎤−
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

r  

 

(3.4) 
 

Eq.(3.4) assumes that the table and nut undergo small rotations, since their rigid-body 

motions are translations along the feed axis. The generalized force vector, FP = {Fx Fy Fz Mx 

My Mz}T, consisting of forces and moments applied at point P, is transformed from the point 

P to the COM by the transpose of the transformation matrix, TP-COM as: 

T
COM P COM P−=F T F  (3.5) 

3.2.3 Joint Interfaces 

Couplings, bearings, fasteners and guideways are modeled as linear spring elements in 

the directions of compliance as shown in Table 3.1.  If the joint modeled as a spring element 

possesses considerable inertia, the inertia is lumped at both ends of the spring and attached to 

the adjoining components. This is the case, for instance, in jaw couplings where the inertia of 

the jaws is lumped to the components joint by the coupling. 

3.3 Screw-Nut Interface 

One aspect of ball screw drives that requires a great deal of attention when modeling is 

the interface between the ball screw and nut. This is because it plays an important role in the 

transmission of motion, vibrations and forces from the ball screw to the table. As explained 

in Chapter 2, current models of the screw-nut interface consider only the axial and/or 

torsional deflections of the ball screw while assuming that the lateral deformations of the ball 

screw are decoupled from its torsional and axial deformations so cannot be transmitted 

through the screw-nut interface to the table. In a previous work [54], the author presented the 

theoretical framework for a comprehensive model which includes axial, torsional and lateral 

dynamics of the ball screw in the formulations of a new screw-nut interface model. This 
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original model was however tentative and largely unverified experimentally. Here, the author 

revisits the originally proposed screw-nut interface model and produces a more definitive 

model which better describes the interaction between axial, torsional and lateral dynamics at 

the screw-nut interface. 

Joint Model (Constraint) 

Torsional Coupling Torsional spring (in θz direction) - see Figure 3.2 for coordinate 

axes 

Thrust Bearing Axial spring (in z-direction), lateral springs (in the x and y-

directions) and rotational springs (in θx and θy directions) 

Radial Bearing Lateral springs (in the x and y-directions) 

Fasteners Springs in directions of significant compliance 

Guideway Lateral springs (in the x and y-directions) at each slide located at 

the corners of the table. 

Table 3.1: Typical Spring Element Models (Constraints) of Joints in Ball Screw Drives 

3.3.1 Modeling of Interface Stiffness 

Preloaded balls are inserted between the nut and screw in order to convert the sliding 

friction present in Acme leadscrews to rolling friction. The preload applied at the screw-nut 

interface helps to mitigate backlash effects and increase the rigidity of the drive. As a result 

of the preload, some of the balls in the interface contact the screw’s threads on its upper (U) 

side while others make contact on its lower (L) side [55]. 

In modeling the screw-nut interface, the mass of the balls is assumed to be negligible, 

while all the compliance is assumed to come from their point of contact with the screw and 

nut. Therefore, the balls are modeled as massless springs having a stiffness kBall aligned along 

the common line of contact (contact normal) between screw and nut [88] as depicted in 

Figure 3.3(a). 
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Figure 3.3: (a) Spring Model of Balls in Screw-Nut Interface (b) Orientation of Contact 
Normal 

In order to apply the stiffness of each ball to the finite element (FE) beam model of the 

ball screw and lumped-inertia model of the nut, a two-stage transformation is used. The first 

stage of the transformation is used to convert kBall from a local coordinate system, established 

for each ball, to the global coordinate system defined for the ball screw drive (as shown in 

Figure 3.2). The second stage of the transformation is developed in order to lump the 

stiffness of all the balls distributed all around the screw-nut interface such that they can be 

connected to the nut node, and to one or more nodes on the ball screw. The stiffness matrices 

for the screw-nut interface are then obtained by applying the two-stage transformation to kBall 

as explained in the following subsections.   

3.3.2 First Stage of Transformation: Local to Global Coordinates 

The orientation of the contact normal along which the spring stiffness (kBall) is aligned is 

described by the angles α and β [88] as shown in Figure 3.3(b). The pitch angle (α) of the ball 

screw is given by: 

1tan
p

p
d

α
π

−
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

 (3.6) 

where p is the pitch and dp is the pitch diameter of the ball screw. β is the mean thread angle 

at the ball contact point. Hthr and Lthr are the height and length of the thread, respectively. 

In order to simplify the analysis, the ball screw thread is unwrapped and represented as a 

double-inclined plane, inclined at angles α and β, as shown in Figure 3.4(a).  Two coordinate 
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systems, CS1L and CS2L, are attached to the centre of each ball resting on the plane. CS1L is 

aligned such that its z-axis points along the contact line of the ball, normal to the plane (i.e. 

the direction of kBall), while CS2L is established so that its z-axis is parallel to the ball screw’s 

axis (global z-axis), and its y-axis lies along the radial line from the ball’s centre to the axis 

of the ball screw (see Figure 3.5 for clarity).  

 

Figure 3.4: Inclined Plane Representation of Ball Screw Thread 
The coordinates, CS1U and CS2U on Figure 3.4(b) are established following the same 

logic, except that they represent the case where the ball-contact configuration is reversed as 

shown in the figure. The subscripts L and U are used to differentiate the ball-contact 

configurations as “lower” and “upper”, respectively. 

For the L-configuration, the transformation T2L-1L that obtains CS2L from CS1L is derived 

by a current-frame rotation of -α and β about the y and x-axis, respectively, and modeled as:  

2 1 Rot ( ) Rot ( )L L y xα β− = − ⋅T  (3.7) 

where Rot represents a rotation operator about the axis specified by the accompanying 

subscript. More details about the Rot operator are given in Appendix A. 

The transformation T2U-1U, which obtains CS2U from CS1U is calculated in a similar 

fashion, except this time the current-frame rotation is first α about the y-axis and then -β 

about the x-axis:  
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2 1 Rot ( ) Rot ( )L L y xα β− = ⋅ −T  (3.8) 

Since the spring deformation always occurs along the z1-axis in both configurations, the 

transformations T2L-z1L and T2U-z1U are obtained by post-multiplying T2L-1L and T2U-1U by a 

unit vector in the z1-direction, as: 

{ } { }2 1 2 1 2 1 2 10 0 1 ;      0 0 1T T
L z L L L U z U U U− − − −= ⋅ = ⋅T T T T  (3.9) 

Here T2L-z1L is the transformation which obtains CS2L from z1L, while T2U-z1U is the 

transformation that obtains CS2U from z1U. The same notation is used for all the 

transformation matrices hereinafter.  

Figure 3.5 shows the relationship between the previously described coordinate systems, 

CS2L and CS2U, and a new coordinate system, CS4. CS4 is centered at a specified point P4 

along the axis of the screw, and aligned in such a way that its three axes are parallel to the 

global axes of the ball screw. Another coordinate system CS3 (not shown in the figure) is 

established such that it has all its axes parallel to CS4 but its origin is located at the centre of 

each ball. In order words, CS3 is a ball-centered global coordinate system. The 

transformation, T3-2L is simply a rotation about the z3-axis (or z4-axis) by an amount φ. Here 

the azimuth angle φ [88] represents the angle measured in the counter-clockwise direction 

from the x3-axis (or x4-axis) to the x2L or x2U-axis. As will be explained later, the angle φ 

specifies the location of the centre of each ball along the ball screw thread. 

 

 

 

Figure 3.5: Relationship between Ball Coordinates and Screw Coordinates 
In order to obtain T3-2U, first the y2U and z2U-axes are flipped using a Boolean matrix so 

that they coincide with their corresponding axes in CS2L. This is followed by a rotation about 

the z3-axis by the angle φ.  The transformations are expressed as: 
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3 2 3 2

1 0 0
Rot ( );      Rot ( ) 0 1 0

0 0 1
L z U zφ φ− −

⎡ ⎤
⎢ ⎥= = ⋅ −⎢ ⎥
⎢ ⎥−⎣ ⎦

T T  (3.10) 

The transformation from each local coordinate system to the global coordinate system 

for the L and U-configurations, T3-z1L and T3-z1U, are given by: 

3 1 3 2 2 1 3 1 3 2 2 1;       z L L L z L z U U U z U− − − − − −= ⋅ = ⋅T T T T T T  (3.11) 

Since these transformation matrices are orthonormal, the inverse transformations, Tz1L-3 

and Tz1U-3, are simply given by the transpose of their corresponding forward transformations, 

T3-z1L and T3-z1U. 

3.3.3 Second Stage of Transformation: Lumping to Nodes 

It is obvious from the previous section that each ball in the screw-nut interface has a 

unique local-global transformation matrix which depends on its contact configuration (L or 

U) and its azimuth angle φ (Figure 3.5). However, the nut is modeled as a lumped mass 

represented by a single node located at its COM, whiles the ball screw, being an FE beam, 

has discrete nodes along its axis. The aim of the lumping explained in this section is therefore 

to develop transformation matrices between the ball-centered global coordinate systems for 

each ball, to node-centered global coordinate systems attached to the nut and ball screw 

nodes. This way, the ball stiffness matrices distributed all around the contact interface can be 

connected to the nodes of the nut and ball screw. 

In [54] the author proposed two methods for performing this lumping operation – the 

Rigid Ball Screw method and the Shape Function method. Even though neither of these 

methods was fully verified experimentally, the preliminary simulation tests carried out in 

[54] indicated that the Shape Function method yielded unreasonable results. The results from 

the Rigid Ball Screw method, on the other hand, were more realistic. Necessary theoretical 

modifications have been made to the Shape Function method and its revised version, together 

with the original version of the Rigid Ball Screw method, is presented below. A comparison 

of the performance of two methods is provided in Appendix B. 
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(A) Rigid Ball Screw Method 

In this method, the region of the drive within the screw-nut interface is assumed to move 

as a rigid body. In order words, the motion of the screw is assumed to be characterized by a 

translation (uBS) measured at a point P located within the nut, and a rotation (θBS), as shown 

in Figure 3.6. Point P is the origin of the CS coordinate system and represents a node on the 

ball screw. Since the nut is also modeled as a rigid body, it translates and rotates by amounts, 

uN and θN, measured from P, respectively. For convenience, P is chosen to coincide with the 

COM (node) of the nut, since this is where all its inertia properties are lumped. r is the 

position vector measured from P to the centre of any of the balls in the interface.  

 

 

 

Figure 3.6: Lumping to Nodes based on Rigid Ball Screw Assumption 
If the coordinate system, CS4, in Figure 3.5, is chosen such that it coincides with CS, 

then the position vector r for each ball can be expressed as a function of φ as:  
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This function is derived from the parametric equation of a helix having a pitch p equal to 

the pitch of the ball screw. R is the constant radius measured from the axis of the screw to the 

centre of each ball while rg is the gear reduction ratio of the ball screw given by: 

2g
pr
π

=  (3.13) 
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Figure 3.7 shows the relationship among r, rN and rBS for the L and U-Configurations. rN 

and rBS are the position vectors measured from P to the nut-ball and screw-ball contact 

points, PN and PBS, of each ball, respectively. 

 

Figure 3.7: Position Vectors for Ball Contact Points 
If rBall is defined as the position vector from the ball’s centre, P3, to PN for the L and U-

Configurations, then rBS and rN are given by: 

- ;      BS Ball N Ball= = +r r r r r r  (3.14) 

The vector rBall for the L and U-Configurations is obtained by transforming the radius of 

the ball, RBall, to the global coordinates using T3-z1L and T3-z1U, as: 
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(3.15) 

Since the ball screw and nut are considered to be rigid bodies, and the rotations involved 

in vibratory motions are small, the transformations T3-BS and T3-N (between the displacements 

in CS3 and displacements and rotations in CS) for the nut and ball screw can then be written 

as: 

[ ] [ ]3 3 3 3 3 3

3- 3-
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(3.16) 

Here, u3BS and u3N are the displacements of PBS and PN measured in the CS3 coordinate 

system. S(.) is the operator defined in Eq.(3.4). 
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Using the transformations, T3-BS and T3-N, displacements at the screw-ball and nut-ball 

contact points for all balls can be combined into equivalent nodal displacements and rotations 

at a point P for the ball screw and nut, respectively. 

(B) Shape Function Method 

It was assumed that the section of the ball screw within the screw-nut interface acts as a 

rigid body in the Rigid Ball Screw method. However, in some cases where the nut is 

significantly long, for instance in the spacer and offset preload mechanisms [55], this 

assumption may not be realistic since the ball screw may undergo significant deformations 

within the screw-nut interface. In such cases, the Shape Function method described in this 

section provides a more realistic means of lumping the distributed interface stiffness to the 

ball screw nodes. 

 

 

 

Figure 3.8: Shape Function Method 
Figure 3.8 gives a pictorial representation of the Shape Function method. As shown, the 

nut is still assumed to perform a rigid-body translation and rotation, uN and θN, measured 

from P. However, this time, the deformations of the ball screw at each of its NNode nodes 

within the screw-nut interface are considered. A new global coordinate system CSi, centered 

at point Pi (the undeformed location of the ith node of the ball screw) has also been 

established. Here, uBSi and θBSi are the translational and rotational displacements of the ith 

node. The goal of the Shape Function method is to lump the global stiffness matrices defined 

at the center of each ball to each of the NNode nodes of the ball screw within the screw-nut 

interface. 
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Figure 3.9: More Details of Shape Function Method 
Figure 3.9 shows a more detailed representation of the method for two adjacent FE beam 

elements of the ball screw. The coordinate axes have been omitted for clarity. Here, it is 

assumed, without loss of generality, that the elements within the screw-nut interface have 

equal lengths, LElm. ξ is the non-dimensional distance measured from the left to the right node 

of each element such that its value ranges from 0 to 1 for a distance 0 to a distance LElm. The 

node of interest is labeled as the ith node, while the nodes to its left and right are respectively 

labeled as the i-1th and i+1th nodes. 

A global coordinate system CSξ (not shown in the figure) is established at every point Pξ 

along the axis of the ball screw. The displacements uBSξ and rotations θBSξ of the ball screw 

are measured from CSξ. Furthermore, similar to the coordinate system CSi established on the 

ith node, CSi-1 and CSi+1 have been established on the i-1th and i+1th nodes, respectively.  

The first step in obtaining the required transformation matrix is to derive a relationship 

between the displacements (u3BS) at the screw-ball contact point (PBS) and the displacements 

and rotations of the ball screw at each point Pξ along its axis. This is achieved by assuming 

that that the cross-section of the ball screw at each Pξ location translates and rotates as a rigid 

body about Pξ by amounts uBSξ and θBSξ, respectively. This results in the transformation T3-BSξ 

given by: 



 

 31

[ ]3 3 3

3-

S( ) BS
BS BSi

BS
BS

ξ

ξ
ξ

×
⎧ ⎫⎪ ⎪= − ⎨ ⎬
⎪ ⎪⎩ ⎭

u
u I r

θ
T

1442443  
 

(3.17) 

The transformation T3-N for the nut remains the same as defined in Eq.(3.16). The vector 

rBSi in Eq.(3.17) represents the radial position of PBS with respect to Pξ. It is obtained by 

extracting the x and y components of rBS; i.e.: 

1 0 0
0 1 0
0 0 0

BSi BS

⎡ ⎤
⎢ ⎥= ⎢ ⎥
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r r  

 
(3.18) 

rBS is given in Eq.(3.14).  

The next step in the transformation involves deriving a relationship between CSξ and the 

global coordinate systems (CSi-1, CSi and CSi+1) attached to the nodes of the ball screw. This 

is achieved by making use of the shape function matrix for the Timoshenko Beam Element 

[64][87] given by:  
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 (3.19) 

The elements of the shape function matrix are all functions of ξ and they represent 

spatial interpolation functions from displacements and rotations at the two nodes of an FE 

beam element to displacements and rotations anywhere within the element. The expressions 

for these functions are provided in Appendix A.  

The shape function matrix of Eq.(3.19) is defined only within the boundaries of a given 

element. It cannot be used across element boundaries. Therefore, the region around each 

node is divided into two, as shown in Figure 3.9. Region 1 is the portion to the left of the ith 

node up to halfway into the element on its left, while Region 2 is the portion on its right up to 
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halfway into the element on the right. These two regions have to be considered separately in 

the analysis.  

Region 1 is bounded by the azimuth angles φL and φM while Region 2 is bounded by φM 

and φR. Within these bounds, the relationship between ξ and φ is given by the linear function: 

1;      
R L

m c mξ φ
φ φ

= + =
−

 
 

(3.20) 

The constant c depends on the region of interest according the following relationships: 
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(3.21) 

Since the shape function matrix is only valid for the nodes of a particular element, in 

Region 1, it a transformation from CSi-1 and CSi to CSξ while in Region 2 it is from CSi and 

CSi+1 to CSξ. Mathematically this is expressed as: 
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(3.22) 

Hence the transformation between CS3 and the node-centered global coordinate systems 

CSi-1, CSi and CSi+1 for the ball screw is given by: 
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(3.23) 

Though these transformations are functions of both φ and ξ, they can easily be 

transformed into functions of φ using the linear relationship between ξ and φ derived in 

Eq.(3.20).  

3.3.4 Derivation of Stiffness Matrix 

After the necessary transformations between the ball-centered local coordinate system z1 

aligned in the direction of kBall, and the node-centered global coordinate systems have been 

obtained, the derivation of the interface stiffness matrix is obtained as follows. 

The stiffness matrix in the kBall direction between the screw-ball and nut-ball contact 

points, PBS and PN (see Figure 3.7) is given by: 

1 1
1 1Ball Ballk

−⎡ ⎤
= ⋅ ⎢ ⎥−⎣ ⎦

K  
 

(3.24) 

Based on the Rigid Ball Screw method, the transformation matrix between the 

displacements at PBS and PN in the z1 coordinate direction, and the displacements and 

rotations at the screw’s node and nut’s node is expressed for the L-Configuration as: 

1 1 3 3 1 1 3 3;     z L BS z L BS z L N z L N− − − − − −= ⋅ = ⋅T T T T T T  (3.25) 

Similarly, for the U-Configuration, the transformations are given by: 
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1 1 3 3 1 1 3 3;     z U BS z U BS z U N z U N− − − − − −= ⋅ = ⋅T T T T T T  (3.26) 

As explained in Section 3.3.3, in the calculation of the rBall used in T3-BS and T3-N, the 

contact configuration of the ball must also be taken into account. 

The combined transformation matrix for the ball screw and nut is given by the block 

diagonal matrix, Tz1L-BSN, for the L-Configuration and Tz1U-BSN for the U-Configuration. 

Mathematically, this is expressed as: 
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(3.27) 

The screw-nut interface stiffness matrices for each ball as a function of the azimuth 

angle φ are calculated by transforming KBall. These matrices KL and KU, for the L and U-

Configurations, respectively, are given by: 

1 1 1 1;T T
L z L BSN Ball z L BSN U z U BSN Ball z U BSN− − − −⋅ ⋅ ⋅ ⋅K T K T K T K T= =  (3.28) 

Since these stiffness matrices have all been transformed into the same coordinate 

systems for all the balls, they can be combined by averaging each matrix over the whole 

motion range for the ball concerned, and then adding them all algebraically. 
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where KSN is the interface stiffness matrix and NBall is the total number of balls in the 

interface, while φk,st and φk,end are the azimuth angles of kth ball at the beginning and end of its 

motion range. The notation KL/U is used to indicate a choice between KL and KU depending 

on the contact configuration of the kth ball.  

For the Shape Function method, the derivation follows the same sequence described for 

the Rigid Ball Screw method above. To avoid repetition here, the derivations will be shown 

for only the L-configuration. For the U-Configuration, all that needs to be changed are the 

subscripts from L to U. 
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The transformation between the displacements at the contact points PN and PBS 

expressed for the Rigid Body method in Eq.(3.25) becomes: 

1 1 3 3 1 1 3 3;     z L BSi z L BSi z L N z L N− − − − − −= ⋅ = ⋅Τ T Τ T T Τ  (3.30) 

for the Shape Function method. Notice that the transformation for the nut remains the same. 

This is because the nut is still assumed to be a rigid-body in the Shape Function method. 

The block diagonal matrix for the combined transformation in this case is given by: 

1 1 6
1

1 18 1

z L BSi
z L BSiN

z L N

− ×
−

× −

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

Τ 0
Τ

0 T
 (3.31) 

Using this, the ith-node interface stiffness for each ball is obtained as: 

1 1
T

Li z L BSiN Ball z L BSiN− −⋅ ⋅K T Κ T=  (3.32) 

 
 

 

 

Figure 3.10: Integration Limits for Region 1 and Region 2 

If φki,st and φki,end are used to represent the azimuth angles at the beginning and end of the 

motion path of the kth ball within the region around the ith node (Figure 3.10) then the 

stiffness matrix for the ith node is obtained as:  
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Here, KSNi is the interface stiffness connecting the i-1th, ith and i+1th nodes on the ball screw 

to the nut node while NBalli is the number of balls in the region around the ith node. Again, the 

subscript Li/Ui in KLi/UiR1 and KLi/UiR2 indicates a choice between the L and U configurations 

depending on the nature of the ball’s contact. The additional subscripts R1 and R2 indicate 

whether the stiffness matrix is derived based on the transformations for Region 1 or Region 

2. κ1, κ2 and κ3 are binary switching functions defined as: 

, , , ,
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 (3.34) 

Each of the NNode nodes within the screw-nut interface has its own KSNi matrix and each 

matrix is derived following the steps explained above. 

As can be seen, the Rigid Ball Screw method requires fewer computations than the 

Shape Function method. It is therefore necessary to know when the Rigid Ball Screw method 

is a preferable choice over the Shape Function Method. The case study in Appendix B shows 

that the Rigid Ball Screw method gives similar simulation results as the Shape Function 

method for short nuts. However, as the length of the nut increases, the predictions of the two 

models become markedly different. Therefore, by way of recommendation, it is better to 

consider using the Rigid Body method for short nuts and more rigid ball screws and to use 

the Shape Function method for long nuts and less rigid ball screws. 

3.3.5 Determination of Ball Stiffness 

The ball stiffness kBall is not usually provided in manufacturers’ catalogs. However, a 

value is often provided for the axial stiffness of the screw-nut interface, kAx. This value can 
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be used to calculate kBall by noting that, based on the geometrical transformations described 

above, the direct stiffness in the axial direction always turns out to be: 

2 2cos cosAx Ball Ballk k N α β=  (3.35) 

Consequently, given α, β and NBall, kBall can easily be calculated from kAx. 

3.3.6 Characteristics of Stiffness Matrix 

The general structure of the first six rows and columns of the interface stiffness matrix, 

KSN, is given in Eq.(3.36). As seen from the matrix, in addition to the direct stiffness terms 

(on the main diagonal) and the cross-coupling term between the axial and torsional directions 

(kz,θz), the proposed model also contains cross-coupling terms between the two lateral planes 

(kx,θx and ky,θy) and between the lateral, torsional and axial directions (kx,z, kx,θz, kz,θx, kθx,θz) 

which are not found in other models (e.g. [88]). The implication of these extra cross-coupling 

terms is that, for instance, a torque applied to the motor can create torsional, axial and lateral 

displacements on the ball screw which can then affect the positioning of the table and fatigue 

life of the ball screw.  
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 (3.36) 

In the original model presented in [54], the kx,θz and the kx,z terms of KSN1-6,1-6 were 

indicated as equal to zero. But a careful analysis of the theoretical formulations revealed that 

these terms are zero only for special combinations of the geometric parameters of the model. 

In the general case, however, these terms are non-zero as indicated in the updated model of 

Eq.(3.36).  

It is also worth mentioning here that the same characteristics discussed above for KSN are 

exhibited by KSNi. Therefore, KSNi has not been given any special consideration in this 

subsection. 
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3.4 Analysis of Open-Loop Dynamics of a Single-Axis Ball Screw Drive Test Bed 

The finite element modeling technique presented in Sections 3.2 and 3.3 is used to 

model a single-axis ball screw drive test bed and relevant information about the open-loop 

dynamics of the drive is extracted. Experimental measurements of the same open-loop 

dynamics are also acquired from the drive. By comparing and contrasting the simulated and 

measured results, a clearer understanding and a more accurate characterization of the drive’s 

dynamics are obtained. 

3.4.1 Description of Single-Axis Ball Screw Drive Test Bed 

The single-axis ball screw drive test bed (hereinafter referred to as test bed) used for 

model verification and analysis purposes is shown in Figure 3.11(a). It consists of a 20 [mm] 

diameter ball screw constrained axially on the end closer to the motor (proximal end) by a 

thrust bearing. The end farther from the motor (distal end) is constrained using a radial ball 

bearing. It is driven by a brushless DC motor connected to the ball screw via a bellow-type 

coupling. Position measurement is obtained via three high-resolution encoders – two rotary 

encoders (each with 0.1 [μm] resolution) at either end of the ball screw and a linear encoder 

(with 0.05 [μm] resolution) mounted to the table. It is also furnished with a tachometer 

attached to its distal end. The test bed can achieve velocities of up to 27 [m/min] and 

accelerations reaching 1 [g] over a stroke of about 360 [mm].  
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Figure 3.11: (a) Test Bed – Single-Axis Ball Screw Drive (b) Schematic Representation 
of Test Bed Model 

Figure 3.11(b) shows a schematic representation of the model of the test bed built using 

the technique described in Sections 3.2 and 3.3. The screw-nut interface is modeled using the 

Rigid Ball Screw method because the nut is short (i.e. LNut=30 [mm]). The parameters used in 

the model are either obtained from the manufacturers’ catalogs, approximated from prior 

knowledge or calculated from computer-aided design (CAD) models of the drive components 

as listed in Table 3.2 and Table 3.3. 

 

 

 

(a)

(b)
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Parameter  Value 

Table mass  [kg] 20 

Diameter and pitch of ball screw [mm] 20 

Inertia of motor’s rotor [kgm2] 9.65x10-5 

Inertia of encoder’s rotor [kgm2] 8.5x10-5 

Torsional stiffness of coupling [Nm/rad] 6500 

Lateral stiffness of guideway joints [N/m] 1.86x108 

Vertical stiffness of guideway joints [N/m] 1.37x108 

Axial stiffness of thrust bearing [N/m] 1.13x108 

Radial Stiffness of thrust bearing [N/m] 1.0x108 

Rotational stiffness of thrust bearing [Nm/rad] 6000 

Radial stiffness of radial ball bearing [N/m] 5.0x107 

Table 3.2: General Parameters of the Single-Axis Ball Screw Drive Test Bed 

Screw-Nut Interface Parameter Value 

kAx  [N/m] 1.37x108  

α [degrees] 17.7 

β [degrees] 75 

NBall 7 

RBall [mm] 3.969  

R [mm] 10  

φk,st  [degrees] -270 

φk,end [degrees] 270 

Table 3.3: Screw-Nut Interface Parameters of Test Bed 
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3.4.2 Measurement/Simulation of Open-Loop Frequency Response Functions 

Three characteristic frequency response functions (FRF) are measured from the test bed 

with the position and velocity closed-loop controllers turned off. The first is the FRF between 

a torque applied to the motor through the amplifier and the angular displacements measured 

from the motor shaft. This FRF represents the open-loop (OL) dynamics of the drive when 

position measurements are taken from the encoder mounted on the motor shaft. The second 

FRF is measured between the applied motor torque and the axial displacement of the table. It 

shows the OL dynamics of the drive when position measurements are taken from the linear 

encoder mounted on the table. The third FRF, representing the OL disturbance dynamics of 

the drive, is measured between an impact force applied at the table (in the direction of motion 

of the table) and axial displacement measurements obtained from the table. The impact force 

was generated using an instrumented modal testing hammer. To investigate the variation in 

dynamics as the table moves along the ball screw, each of these FRFs are measured at three 

distinct positions of the table within its travel range (i.e. X = 30 [mm] to X = 390 [mm] in 

Figure 3.11(b)): 

a) Position 1: Table closest to the motor (i.e. around X = 30 [mm]) 

b) Position 2: Table at the middle of its travel range (i.e. around X = 210 [mm]) 

c) Position 3: Table farthest away from the motor (i.e. around X = 390 [mm]) 

The bandwidth of the drive’s amplifier is 950 [Hz], therefore a frequency range of up to 

1000 [Hz] is considered as the frequency range of interest for all of the measurements taken. 

Beyond this frequency range, the motor torque generated through the amplifier is severely 

attenuated and the measurements are corrupted.  

The same FRFs measured from the test bed are also simulated using the model described 

in Sections 3.2 and 3.3 and the results are compared in Figures 3.12 to 3.14 and in Table 3.4. 
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Mode 1  [Hz]  Mode 2 [Hz] Mode 3 [Hz]  

Position Sim. Mea. Err [%] Sim. Mea. Err [%] Sim. Mea. Err [%] 

Pos. 1 292 237 23.2 624 610 2.3 816 738 10.6 

Pos. 2 267 228 17.1 629 613 2.6 813 728 11.7 

Pos. 3 250 218 14.6 636 619 2.7 812 725 12.0 

Table 3.4: Comparison of Measured and Simulated Natural Frequencies of the Three 
Modes in the Open-Loop Dynamics of the Test Bed 

 

Figure 3.12: (a) Measured (b) Simulated FRF between a Torque Applied to the Motor 
and the Angular Displacement of the Motor at Three Positions of the Table within its 

Travel Range 
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Figure 3.13: (a) Measured (b) Simulated FRF between a Torque Applied to the Motor 
and the Axial Displacement of the Table at Three Positions of the Table within its 

Travel Range 
 

Figure 3.14: (a) Measured (b) Simulated FRF between a Force Applied to the Table in 
the Axial Direction and the Axial Displacement of the Table at Three Positions of the 

Table within its Travel Range 
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From the simulated FRFs (Figure 3.12(b) to Figure 3.14(b)) it is seen that the model 

captures the qualitative behavior of all three modes correctly. It is able to accurately predict 

the relative amplitudes and natural frequencies of the modes and the way they vary as the 

table travels along the ball screw. However, it shows some errors in predicting the exact 

natural frequencies of the modes (shown in Table 3.4) as well as the exact amplitudes of the 

modes (as seen from the figures). These prediction errors are mainly due to the inaccuracies 

in the joint stiffness values obtained from manufacturers’ catalogs [29][79]. As explained in 

Varanasi et al [79], the accuracy of the model can be improved by measuring the 

bearing/housing stiffness experimentally. But even with the experimentally tuned parameters, 

the prediction errors do not vanish, they only reduce.  Since the aim of the finite element 

analysis performed in this thesis is not to replace the experimental measurements but to 

complement them, it is sufficient that the model provide a reasonable idea of the behavior of 

the actual system. Therefore, no extra effort has been put into measuring each of the joint 

stiffnesses experimentally. Instead, a method for accurately extracting the mass, damping and 

stiffness matrices of the drive from experimental measurements is put forward in Section 3.5. 

3.4.3 Analysis of Mode Shapes using Simulation Model 

In order to gain better insight into the behavior of the aforementioned modes, it is useful 

to study their mode shapes. However, it is impractical to experimentally measure the full 

mode shapes of the ball screw assembly. This is partly because the table moves along the 

screw and covers a large portion of it thereby reducing the number of available 

measurement/excitation locations. More importantly, the complex nature of the ball screw’s 

vibrations (i.e. involving stretching, twisting and bending along its entire length) makes it 

difficult to get a good idea of the mode shapes of the ball screw based on a few 

measurement/excitation locations/directions. However, since the mode shapes are indicators 

of the qualitative behavior of the modes, the finite element model is instrumental in 

understanding the behavior of these modes. 
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Figure 3.15: Simulated Deformed Shapes of the Three Modes of the Test Bed with 
Table at the Middle of its Travel Range (i.e. Position 2) 

Figure 3.15 shows the simulated mode shapes of all three modes of the test bed at a 

sample position of the table (i.e. at Position 2 with the table located at the middle of its travel 

range). Using the information gleaned from these simulated mode shapes coupled with 

observations from measured/simulated FRFs, a detailed analysis of the three modes is 

presented here. 

Mode 1: Mode Simulated around 267 Hz (Measured around 228 Hz) 

This particular mode is well known to occur in ball screw drives, as observed by other 

researchers as well [28][29][40][54][70][79]. In their studies they describe this mode as a 

coupled axial-torsional mode of the ball screw which causes axial displacements (vibrations) 

of the table. They have not reported any lateral vibration effects in the behavior of this mode. 
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However, as shown in Figure 3.15(a), the proposed finite element model reveals that 

Mode 1 is characterized by rotation of the motor’s rotor together with coupled axial, torsional 

and lateral deformations of the ball screw. As a result of these motions, axial displacements 

at the table occur. This additional lateral vibration component predicted by the proposed 

model is as a result of characteristics of the screw-nut interface stiffness matrix derived in 

Section 3.3. As discussed in Section 3.3.6, the proposed screw-nut interface stiffness matrix 

contains extra cross-coupling (CC) terms (kx,θx, ky,θy, kx,z, kx,θz, kz,θx and kθx,θz) which couple the 

axial, torsional and lateral vibrations of the ball screw shaft. The influence of these extra 

cross-coupling terms on Mode 1 can be seen by comparing the mode shape obtained with the 

proposed model, which contains the aforementioned cross-coupling terms, to that obtained 

with the cross-coupling terms removed (i.e. kx,θx= ky,θy= kx,z= kx,θz= kz,θx= kθx,θz=0). 

Figure 3.16 shows a comparison of the (slightly exaggerated) shape of Mode 1 with and 

without the extra cross-coupling terms. As seen, when the cross-coupling terms are removed, 

the lateral deformation of the mode disappears and the ball screw’s vibrations become purely 

axial-torsional as observed by other researchers.  

 

Figure 3.16: Comparison of Shape of Mode 1 Generated using Proposed Model with 
Extra Cross-Coupling (CC) Terms and Model without Extra CC Terms 
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To further investigate this effect, a simulated FRF is generated by applying a torque to 

the motor and obtaining the lateral displacement of the ball screw at the point marked as “P” 

in Figure 3.16. As shown in Figure 3.17(a), the proposed model predicts that the torsional 

excitation of the motor excites the lateral vibrations of three modes – Mode 1 (at 267 [Hz]) 

and two other modes – Mode A at 338 [Hz] and Mode B at 401 [Hz]. However, the model 

without the cross-coupling terms indicates that none of these modes vibrate in the lateral 

direction as a result of a torsional excitation of the motor. According to the model without the 

cross-coupling terms, Mode 1 is a purely axial-torsional mode which is completely 

decoupled from the other two modes which are purely lateral modes.  The measured FRF 

(Figure 3.17(b)) between a torque applied to the motor and lateral displacement of the actual 

ball screw at point “P” confirms the prediction of the proposed model, indicating that there is 

a coupling between axial/torsional and lateral vibrations in these modes. The simulated 

shapes of the other two modes, using the proposed model, are shown in Figure 3.18. They 

both involve the turning of the motor (due to the coupling joint between the motor and the 

ball screw shaft) and lateral vibrations of the screw; no significant axial vibrations of the 

table occur as a result of them. 
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 (a) Simulated 

 

(b) Measured 

 

 

 

 

Figure 3.17: (a) Simulated (b) Measured FRF between Torque Applied to Motor and 
Lateral Displacement of Point “P” (see Figure 3.16) on Ball Screw. FRFs are obtained 

with Table at Position 2 
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Figure 3.18: Simulated Deformed Shapes of Mode A and Mode B with Table at the 
Middle of its Travel Range (i.e. Position 2) 

From the preceding investigations, it is evident that the ball screw stretches, twists and 

bends when a torque is applied to the motor around the natural frequency of Mode 1. But 

from the controller design stand point, it is of interest to know if the bending of the ball 

screw actually influences the positioning of the table. To explore this possibility, the FRF of 

Figure 3.13 (between the motor torque and axial displacement of the table) is simulated and 

measured at various positions (X) of the table along the ball screw. The positions of the table 

are referenced from the beginning of the threaded section of the ball screw as shown in 

Figure 3.11(b). The natural frequencies, vibration amplitudes and the table’s normalized 

modal displacements are measured and simulated at these different positions. In the 

simulated plot (Figure 3.19(a)), when the cross-coupling terms are neglected, the table 

position is affected only by the torsional-axial vibrations of the ball screw. The torsional-

axial vibrations of Mode 1 exhibit decreasing modal stiffness as the table moves away from 

the motor. Consequently, the natural frequency of Mode 1 decreases steadily as the table 
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moves away from the motor while the table’s vibration amplitude follows the reverse pattern. 

However, when the cross-coupling terms are considered, as also indicated by the 

experiments, the lateral vibrations create two sudden drops in amplitude at locations around 

X = 150 [mm] and X = 300 [mm]. It is also observed that the lateral vibrations do not alter the 

natural frequency variation in any significant way but it affects the modal displacement of the 

table considerably.  

Figure 3.19: (a) Simulated (b) Measured Variation of Natural Frequency, Vibration 
Amplitude and Table’s (Normalized) Modal Displacement due to Mode 1 as Table 

moves within its Travel Range. Simulations are performed with and without the extra 
Cross-Coupling (CC) Terms  

This phenomenon can be understood by studying the simulated interaction between 

Mode 1 and the other two lateral modes (i.e. Mode A and Mode B) as the table moves along 

the ball screw. It is observed that when the table is at the proximal end (i.e. at X = 30 [mm]), 

Mode A starts out at 175 [Hz] while Mode B starts at 545 [Hz]. As the table moves towards 

the distal end (i.e. X = 390 [mm]), the natural frequency of Mode A increases steadily while 

that of Mode B decreases. Finally, when the table reaches the distal end, Mode A’s natural 

frequency becomes 512 [Hz] while Mode B’s becomes 199 [Hz]. The table locations X = 160 
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[mm] and X = 300 [mm] respectively correspond to the points where natural frequency of 

Mode A and Mode B coincide with Mode 1’s natural frequency during the course of the 

motion. Interestingly, these are also the points in Figure 3.19(a) where the simulated table 

displacement amplitude exhibits sudden drops. Figure 3.20(a) and (b) show the mode shapes 

of Mode 1 at X = 160 [mm] and X = 300 [mm]. It is observed that at these locations, the 

lateral deformation of the ball screw is very pronounced due to the influence of Modes A and 

B. The interference resulting from the interaction between Modes A and B with Mode 1 is 

the reason for the observed drops in the table’s vibration amplitude and modal displacement 

in Mode 1. 

 

Figure 3.20: Simulated Deformed Shapes of Mode 1 with Table at (a) X = 160 [mm] and 
(b) X = 300 [mm] Showing Influence of Mode A and Mode B on Bending of Screw 
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Mode 2: Mode Simulated around 629 Hz (Measured around 613 Hz) 

As shown in Figure 3.15(b), Mode 2 is characterized by the turning of motor (about the 

torsional coupling joint) and twisting of the ball screw resulting in very little axial 

displacement of the table. This simulated shape is in good agreement with the observations of 

other researchers [28][29][54][70]. It also justifies why this mode features prominently in the 

measured/simulated FRF between a torque applied to the motor and the motor’s rotary 

displacement (i.e. Figure 3.12) but it does not show up in any significant way in the other two 

FRFs where excitations are applied to and/or displacements measured from the table. 

Mode 3: Mode Simulated around 813 Hz (Measured around 728 Hz) 

The simulated mode shape shown in Figure 3.15(c) reveals that Mode 3 involves the 

yaw motion of the table (as a result of the guideway joints) together with the bending of the 

ball screw. No turning of the rotor occurs in this mode, which is why it does not appear in 

either of the measured/simulated FRFs involving a torque applied at the motor (i.e. Figures 

3.12 and 3.13). However, as a result of the yaw motion of the table, Mode 3 is excited when a 

force is applied to the table and measurements taken from the table as in the case of Figure 

3.14. The measured shape of the table (Figure 3.21) also confirms this simulated yaw motion 

of the table. Mode shapes resulting from the guideway joints have been reported in [14]. 

 

Figure 3.21: Measured Shape of Table due to Mode 3  
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3.4.4 Implication of Ball Screw Drive Modes on Controller Design 

So far, the modes commonly observed in ball screw drives have been identified and 

analyzed. For the purpose of this thesis, it is now important to determine if and how these 

modes influence high speed controller design for ball screw drives.  

Starting with Mode 3, it is observed from the mode shape of Figure 3.15(c) and the FRFs 

of Figure 3.13 that it is not controllable using the actuation torque from the motor because 

there is no rotation of the motor (rotor) when it is excited. However, since it originates from 

the guideway joint, it can be dealt with easily by stiffening the guideways. For instance, 

based on simulations, increasing the guideway stiffness by using a medium preloaded linear 

guide set instead of a lightly preloaded set, the resonance frequency of the Mode 3 is 

increased by 33 [%]. In this way, it can be pushed out of the frequency range of interest. It is 

therefore considered to be the least critical mode with respect to controller design since it can 

be dealt with by making simple improvements to the mechanical design [54][67]. 

Mode 2, which is due to the torsional vibration of ball screw shaft, is controllable from 

the motor, at the expense of exciting it by the control signals. However, it cannot be excited 

by table disturbance forces and it does not affect the table’s position in any significant way. 

The excitation of this mode by the motor torque command can be prevented by placing a 

notch filter in the control loop [28][29][54][70]. This is possible because it does not have a 

wide variation in frequency as the table position changes. Therefore, a notch filter can be 

tuned to effectively prevent its influence on the feedback control system.  

Mode 1 is also controllable from the motor, so it can be excited by control signals. 

However, it can also be excited by table disturbance forces and it has a wide variation in 

resonance frequency as a function of table position. These factors make it a poor candidate 

for notch filters. Increasing the stiffness of the ball screw by increasing its diameter is also 

not a good choice since it results in a much larger increase in the drive’s inertia which is 

undesirable. Attempts have been made to add damping to this mode passively using a visco-

elastic damper attached to the distal end of the ball screw [79]. However, this method is not 

always effective because of the complex shape of Mode 1 which continually changes 

depending on the position of the table. Furthermore, incorporating a passive damper into the 
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mechanical design often involves costly and cumbersome modifications to the ball screw 

drive.  

Considering the foregoing discussion, coupled with the fact that Mode 1 is usually the 

lowest mode in the open-loop dynamics of ball screw drives [28][29][40][54][70][79], it is  

decidedly the most critical mode in terms of controller design. Consequently, it is selected as 

the candidate for accurate parameter identification in the next section and active vibration 

compensation in the next chapter. 

3.5 Identification of Ball Screw Drive Parameters Needed for Controller Design 

While theoretical models are helpful in understanding the qualitative behavior of the 

open-loop structural dynamics of ball screw drives they are not accurate enough to provide 

the quantitative information needed for controller design. In this section, a simple ball screw 

drive model which captures the dynamics of Mode 1 together with the rigid body dynamics 

of the drive is presented. Then a method for accurately identifying the parameters of the 

model from experimental data is put forward. Finally, the parameters of the test bed 

described in Section 3.4.1 are identified and the results discussed. 

3.5.1 Drive’s Model 

A model which captures the dynamics of Mode 1 together with the rigid body dynamics 

of ball screw drives was proposed by Varanasi and Nayfeh [79]. In their model they 

represented the ball screw by a uniform beam and the other drive components by rigid bodies 

connected by springs. They then transformed the infinite-dimensional beam model into a two 

degree-of-freedom (DOF) discrete system using Galerkin’s reduction procedure. The 

resultant two DOF model is expressed by: 

Mx + Cx + Kx = F&& &  (3.37) 

where M, C and K are mass, viscous damping and stiffness matrices defined as: 

11 12 11 12

12 22 12 22
;   ;   

m m c c k k
m m c c k k

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦⎣ ⎦ ⎣ ⎦

M C K  
 

(3.38) 

while x and F are the displacement and force vectors given by: 
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1 1

2 2
;   

x F
x F

⎧ ⎫ ⎧ ⎫
= =⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

x F  
 

(3.39) 

As shown in Figure 3.22, x1 is the linear displacement of the table while x2 is the 

equivalent linear displacement caused by the angular displacement of the motor (θ2). F1 is the 

resultant force applied to the table and F2 is the equivalent force due to the resultant torque 

applied to the motor shaft (τ2) with the following conversions:  

2
2 2 2;      g

g
x r F

r
τθ= =  

 
(3.40) 

rg is the constant defined in Eq.(3.13). 

 

Figure 3.22: Schematic of a Ball Screw Drive Showing the Displacements and Forces of 
Eq.(3.39) 

The mass matrix, M, has non-zero off-diagonal terms (m12) which originate from the 

distributed inertia of the ball screw. They are very significant because they could introduce a 

non-minimum phase zero into the open-loop transfer function (OLTF) of the drive (from 

motor torque to table position) [79]. A non-minimum phase zero in the OLTF of the drive 

influences the controller dynamics significantly and reduces the attainable closed-loop 

performance of the drive as is illustrated in the next chapter. 

Except the damping and some bearing stiffness constants, Varanasi and Nayfeh [79] 

obtained the parameters of the matrices of Eq.(3.37) from mathematical models and catalog 

values of each drive component. As explained in Section 3.4.2, this approach is often not 

accurate enough for control purposes on an existing machine. Furthermore, their model did 

not consider the lateral deformation effects of the ball screw. As a result, errors are 

introduced to the individual elements of the mass, damping and stiffness matrices of 
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Eq.(3.37). However, the structure of these matrices is not affected by the aforementioned 

shortcomings. Therefore, Eq.(3.37) serves as a simple ball screw drive model whose 

parameters are accurately identified using the methods presented in the following 

subsections. 

3.5.2 Identification of Model Parameters – General Method 

When the three characteristic open-loop (OL) frequency response functions (FRF) 

described in Section 3.4.2 are measurable from the drive, they can be used to extract the 

mass, damping and stiffness matrices of Eq.(3.37). To do this, Eq.(3.37) is transformed to 

frequency domain as: 

2( )( )jω ω ω− + + =G M C K I  
 

(3.41) 

where I is the identity matrix and G(ω) is the transfer function matrix defined as: 

2 1 1 2

11 12 1 2 1 2
11 22 12

12 22 1 2 2 1
( ) 0 ( ) 0 ( ) 0 ( ) 0

( ) ( ) ( ) ( ) ( ) ( )
( ) ; ( ) ; ( ) ; ( )

( ) ( ) ( ) ( ) ( ) ( )
F F F F

G G x x x x
G G G

G G F F F F
ω ω ω ω

ω ω ω ω ω ω
ω ω ω ω

ω ω ω ω ω ω
= = = =

⎡ ⎤
= = = = =⎢ ⎥
⎣ ⎦

G  

 (3.42) 

In other words, G11(ω) represents the FRF of Figure 3.14, while G12(ω) and G22(ω)  represent 

the FRFs of Figures 3.13 and 3.12 scaled by rg and rg
2, respectively. 

Expanding Eq.(3.41) gives: 

( )
( )
( )

2 2
11 11 12 12 11 11 12 12 11 12

2 2
12 11 22 12 12 11 22 12 12 11

2 2
11 12 12 22 11 12 12 22 12 22

12

( ) ( ) ( ) ( ) ( ) ( ) 1

( ) ( ) ( ) ( ) ( ) ( ) 0

( ) ( ) ( ) ( ) ( ) ( ) 0

m G m G c j G c j G k G G

m G m G c j G c j G k G G

m G m G c j G c j G k G G

m

ω ω ω ω ω ω ω ω ω ω

ω ω ω ω ω ω ω ω ω ω

ω ω ω ω ω ω ω ω ω ω

ω

− − + + + − =

− − + + + − =

− − + + + − =

− ( )2 2
12 22 22 12 12 22 22 22 12( ) ( ) ( ) ( ) ( ) ( ) 1G m G c j G c j G k G Gω ω ω ω ω ω ω ω ω− + + + − =

 

 (3.43) 

In many cases, the low frequency data of measured FRFs is not very accurate because of 

the influence of non-linear Coulomb friction and the poor characteristics of some sensors in 

the lower frequency band. This problem tends to affect the quality of the rigid-body 

dynamics information which dominates the lower frequencies of the measured FRFs. To 
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mitigate this problem, the rigid-body dynamics (i.e. the equivalent mass Mr and viscous 

damping factor Br) are estimated accurately in time-domain [27][28]. This identified Mr and 

Br can then be used as a constraint for Eq.(3.43) by noting that during rigid-body motions, x1 

= x2. Substituting this condition in Eq.(3.37) results in: 

11 22 12 11 22 122 ;   2r rm m m M c c c B+ − = + − =  (3.44) 

By separating the real and imaginary parts of Eq.(3.43) and then adding on the constraint 

of Eq.(3.44), the unknown physical parameters of the drive can be evaluated by applying the 

least squares technique on the measured FRFs using the expression: 

T -1 TΘ = (Φ WΦ) Φ WΓ  
 

(3.45) 

where Θ, Γ and Φ are given by: 
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 (3.46) 

and N is the number of frequencies spanning the entire spectrum containing the natural 

modes of interest in the measured FRFs. W in Eq.(3.45) is a diagonal weighting matrix that 

is used to place more emphasis on the frequency bands that contain the mode of interest (i.e. 

Mode 1). 
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3.5.3 Identification of Model Parameters – Simplified Method 

The general identification method presented in the previous section is very useful 

because it extracts the parameters of the drive from the “raw” FRFs measured directly from 

the drive. However, it suffers from two main problems. First of all, it is quite sensitive to the 

quality of the measured data. For instance, if the noise level in the measurements is high 

around the frequencies of interest, the accuracy of the results could be severely affected. 

Secondly, if the frequency range used for the least squares estimation is large, Φ in Eq.(3.45) 

becomes a very large matrix (i.e. 8N+2x7). Consequently, computational problems could 

arise due to insufficient memory space for storing and manipulating the matrices during the 

solution.  

The first problem can be solved by first using a curve fitting method [4][30] to identify 

the modal parameters of Mode 1. Then using the identified modal parameters to synthesize 

the drive’s FRFs in a “cleaner” way as: 

2 2 2
1( ) ;    1; 1..2

2
ij ij

ij
r r n n

j
G i j

M j B j

α ωβ
ω

ω ω ω ω ζω ω

+
= + = =
− + − + +

 
 

(3.47) 

where ωn and ζ are respectively the natural frequency and modal damping ratio of Mode 1, 

and Rij = αij+jωβij is the complex modal constant of Mode 1 for each of the FRFs. Using the 

synthesized FRFs instead of the “raw” FRFs eliminates the adverse effects of noise and other 

distortions on the quality of the least squares estimates. 

Usually, in mechanical structures, the modal damping ratio (ζ) is very low (typically less 

than 3 [%]). This also means that for most cases, the complex modal constant Rij is “almost 

real”. In other words, βij is negligible. Under this circumstance, the system acts as if it is 

undamped and the mode shapes of the drive are orthogonal to its mass and stiffness matrices 

[4][30].  This means that if the mode shape matrix U is mass-normalized, then the M and K 

matrices of Eq.(3.38) can be approximated by: 

1
111 1

2 1
22

0 0
;  ;  ;  

0
rT T

q q
n r

M R

M Rω

−
− − − −

−
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(3.48) 
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If the viscous damping constant Br is negligible, the damping matrix becomes 

proportional to the stiffness matrix and so it can also be approximated in a similar way; i.e.: 

1 0 0
;  

0 2
T

q q
nζω

− − ⎡ ⎤
= = ⎢ ⎥

⎣ ⎦
C U C U C  

 

(3.49) 

However, in most ball screw drives, Br is not negligible. Therefore, Eq.(3.49) does not 

hold true. Consequently, to calculate the damping matrix C, the information from Eq.(3.48) 

is incorporated into Eq.(3.46) leading to a computationally cheaper set of matrices: 
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 (3.50) 

which are solved using the same Least Squares equation expressed in (3.45). 

Another advantage of the simplified method is that if the mode shapes are assumed to be 

real, then the following relationships exist among the modal constants in Eq.(3.47) [4][30]: 

12 11 22α α α=  
 

(3.51) 

If the modal parameters are extracted from any two of the three open-loop FRFs (i.e. G11, G12 

and G22), the third one can be synthesized by combining Eq.(3.47) and Eq.(3.51). In other 

words, only two FRFs need to be measured from the drive in order to accurately identify the 

mass, damping and stiffness matrices of the drive. 
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3.5.4 Numerical Examples 

Two numerical examples are presented here to compare the performance of the general 

method to the simplified approach for under different damping conditions. 

Example 1: Parameter Identification with Weakly-Damped Mode 1 

The mass, damping and stiffness matrices to be identified are given as: 

725.00 2.00 1400 1000 1 1
kg;  kg/s;  3.500 10 N/m

2.00 50.00 1000 1600 1 1
− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = ×⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
M C K

 

(3.52) 

Based on these matrices, the natural frequency and damping ratio of Mode 1 are 225 [Hz] 

and 2.5 [%], respectively, while its mode shape vector is [0.9018 -0.4321+0.0015j]T. Using 

the general method, the mass, damping and stiffness matrices are identified without error. 

The simplified method however identifies them as: 

724.999 2.000 1400 1000 1 1
kg; kg/s; 3.500 10 N/m

2.000 50.001 1000 1600 1 1
− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = ×⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
M C K

 
(3.53) 

As seen, the identification errors are negligible. 

Example 2: Parameter Identification with Heavily-Damped Mode 1 

The mass and stiffness matrices to be identified are exactly the same as those in 

Eq.(3.52) while the damping matrix is modified slightly. The new damping matrix is:  

11000 10000
kg/s;

10000 10000
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
C  

 

(3.54) 

Based on this new damping matrix, the damping ratio of Mode 1 increases to 20 [%] while its 

mode shape vector becomes more complex [0.9028 -0.4300+0.01302j]T. Again, using the 

general method, the mass, damping and stiffness matrices are identified without error. This 

time, the matrices identified by the simplified method are: 
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7

24.935 -2.036 11008 10008
kg; kg/s;

-2.036 50.137 10008 10008

1 1
3.499 10 N/m

1 1

−⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

−⎡ ⎤
= × ⎢ ⎥−⎣ ⎦

M C

K
 

 

(3.55) 

Even though the errors in the identified parameters have increased slightly, the identified 

matrices are still accurate enough for practical purposes. 

These two examples show that the approximations made in the simplified method are 

very reasonable for practical applications. Therefore, the simplified parameter identification 

method is used to identify the test bed’s parameters in the next subsection. 

3.5.5 Experimental Results 

Application of the simplified identification method requires the rigid-body parameters 

(i.e. Mr and Br) to be extracted from time-domain data and then the modal properties of Mode 

1 are identified from measured FRFs. 

To identify Br, the friction characteristics of the drive are obtained by measuring the 

equivalent motor force required to move the table at constant velocities. This equivalent 

motor force is equal to the friction force on the drive (in the absence of any other external 

forces). The resulting curve is shown in Figure 3.23. 

 

Figure 3.23: Friction Curve of Ball Screw Test Bed 
The friction curve of Figure 3.23 exhibits some nonlinear behavior, particularly at low 

velocities. These nonlinearities are associated with the transition from static friction to full 
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viscous friction behavior [28][43]. As a result of this nonlinear behavior, the viscous friction 

coefficient (Br) is not constant. The customary way of tacking this nonlinear friction behavior 

is to separate it into linear viscous friction and nonlinear static and Coulomb friction 

characteristics. The viscous friction is then lumped into a constant value of Br while the 

nonlinear friction is compensated for using feed forward friction cancelation schemes [28] 

[29][43]. For the measured friction curve, however, this separation is not very helpful 

because even in the high speed region, the friction behavior is not perfectly linear. Therefore, 

the viscous friction coefficient Br is set to zero and all of the friction behavior is lumped 

together as the nonlinear Ff shown in Figure 3.23. Consequently, the equivalent inertia Mr 

can be identified by noting that during rigid body motions: 

2r fM x F F= +&&  (3.56) 

where x&&  represents the rigid-body acceleration of the drive and F2 is the equivalent force 

applied by the motor. A least squares technique [27][28] is then used to estimate Mr by 

applying known values of F2 (Figure 3.24(a)) to the drive and measuring x using the encoder 

mounted to the motor shaft. The identified friction curve is used to obtain Ff as a function 

of .x& Figure 3.24(b) compares the measured rigid-body acceleration to the predicted 

acceleration using the estimate value of Mr = 68.9 [kg]. The results indicate that Mr is 

estimated accurately. 

Figure 3.24: (a) Motor Force Applied to Drive (b) Measured and Predicted Acceleration 
of Drive based on Identified Mass 

Using the identified rigid body parameters, the simplified parameter identification 

method (described in Section 3.5.3) is used to extract the drive’s mass, damping and stiffness 
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matrices. The identification is carried at 20 [mm] intervals within the travel range of the table 

(i.e. from X = 30 [mm] to X = 390 [mm]). Figure 3.25 shows the evolution of the identified 

system matrix coefficients as a function of X. It is interesting to note from the plot that the 

lateral deformation of the table has significant influence on the identified parameters 

particularly around X = 150 [mm] and X = 300 [mm]. Figure 3.26 shows the measured and 

predicted FRFs for a sample position of the table (X = 210 [mm]). It can be seen that the 

predicted and measured FRFs are in very good agreement. The slight discrepancies at the low 

frequency range are due to the nonlinear damping characteristics that were not included in 

the model. Furthermore, the slight mismatch in the amplitudes of the predicted and measured 

FRFs for G11 around the resonance frequency is due to the inability of the impact hammer to 

fully excite the dynamics of the drive. But this inaccuracy in the measured G11 does not 

affect the accuracy of the model because the modal parameters used for the identification are 

obtained from only G12 and G22.  

 

Figure 3.25: Evolution of Identified System Matrix Coefficients with Table Position 
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Figure 3.26: Comparison of Predicted and Measured FRFs based on Identified 
Parameters for X = 210 [mm] 

3.6 Summary 

In this chapter, the structural dynamics of ball screw drives has been studied via 

simulation and experiments in order to better understand how it can potentially influence 

controller design for ball screw driven machines. The simulations have been carried out by 

modeling the drive using a hybrid finite element method. A key part of the finite element 

modeling involves the accurate characterization of the behavior of the screw-nut interface. 

Two methods for deriving the stiffness matrix of the screw-nut interface have been put 

forward. One of the methods is more suitable for short nuts while the other is intended for 

use with longer nuts and more flexible ball screws. Both of these new screw-nut interface 

stiffness formulations have been shown to possess cross-coupling terms between the axial, 

torsional and lateral directions that have not been previously reported in literature. As a result 

of these extra cross-coupling terms, the finite element model is able to give good qualitative 

insight into the influence of lateral vibrations on the mode shapes of the ball screw drive and 

the axial positioning of the table.  

Furthermore, it has been determined, based on the simulations and experiments 

conducted, that the first axial-torsional-lateral mode of the ball screw drive potentially wields 
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the most influence on controller design. Therefore, a method for accurately identifying the 

dynamics of this mode (along with the rigid body dynamics of the drive) has been put 

forward. The identified dynamics is used in the next chapter to design a controller that 

achieves good positioning accuracy by actively compensating the vibrations arising from this 

axial-torsional-lateral mode. 
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Chapter 4 

Control of Flexible Ball Screw Drives using a Discrete-Time Sliding Mode 

Controller 

4.1 Overview 

This chapter presents a controller for achieving minimum tracking error and good 

disturbance rejection in ball screw drives with structural flexibility. In Section 4.2, the 

dynamics of ball screw drives, modeled and identified in the previous chapter, is used to 

design a mode-compensating disturbance adaptive discrete-time sliding mode controller. It is 

then shown theoretically that, without using minimum tracking error filters, the reference 

tracking errors of the controlled drive do not go to zero when sliding mode is reached. 

Therefore, a method for designing stable and robust minimum tracking error filters, 

irrespective of the identified open-loop behavior of the drive is developed in Section 4.3. The 

minimum tracking error filters are shown to achieve excellent tracking performance in ideal 

situations. However, in the presence of varying and/or un-modeled dynamics their 

performance deteriorates. In Section 4.4, two methods for improving the performance of the 

minimum tracking error filters in such less-than-ideal situations are presented. Finally, the 

performance and limitations of the proposed controller are demonstrated, through simulations 

and experiments, in Section 4.5. 

4.2 Mode-Compensating Disturbance Adaptive Discrete-time Sliding Mode Controller 

Sliding mode controllers are favored in many applications because of their simplicity, 

high-performance and robustness (e.g. [5][69][75][83]). The disturbance adaptive discrete-

time sliding mode controller (DADSC) was proposed by Won and Hedrick [83], in response 

to drawbacks of other sliding mode controllers [5][69] especially in terms of disturbance 

estimation and control input saturations. It was designed for controlling single-input-single-

output (SISO) systems and was specifically applied in [83] to the speed control of engines. 



 

 67

In order to employ the DADSC for the control of flexible ball screw drives, the original 

DADSC [83] is reformulated here as a single input-multi output controller designed to 

achieve structural vibration mode compensation. 

4.2.1 Sliding Surface Design and Dynamics 

The equation of motion of flexible ball screw drives derived in the previous chapter 

(Eq.(3.37)) is transformed into the following state space form: 

1 1

2 2 1

11 12 13 143 3 11 12 2

21 22 23 244 4 21 22

0 0 1 0 0 0
0 0 0 1 0 0

z z
z z F

a a a az z b b F
a a a az z b b

⎡ ⎤⎧ ⎫ ⎧ ⎫ ⎡ ⎤
⎢ ⎥⎪ ⎪ ⎪ ⎪ ⎢ ⎥ ⎧ ⎫⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥= +⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎩ ⎭⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭ ⎣ ⎦⎣ ⎦

&

&

&

&

 

 

(4.1) 

where the state vector, z, consists of displacements and velocities at the table and motor: 

{ } { }1 2 3 4 1 2 1 2
T Tz z z z x x x x= =z & &  

 

(4.2) 

The state matrix parameters are given as: 

13 1411 12 11 12

23 2421 22 21 22

;  ;  
a aa a b b
a aa a b b
⎡ ⎤⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦

-1 -1 -1-M K -M C M  
 

(4.3) 

The tracking error vector can then be written as: 

re = z - z  (4.4) 

where the error (e) and reference (zr) vectors are given by: 

{ } { }1 2 3 4 1 2 3 4;T T
r r r re e e e z z z z= =re z  

 

(4.5) 

In Eq.(4.5), z1r and z2r represent the desired displacements while z3r and z4r are the 

corresponding desired velocities at the table and motor, respectively. Based on these 

definitions, the error states become: 
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( )
( )

1 3

2 4

3 3 11 1 12 2 13 3 14 4 11 1 12 2

4 4 21 1 22 2 23 3 24 4 21 1 22 2

r

r

e e
e e
e z a z a z a z a z b F b F

e z a z a z a z a z b F b F

=

=

= − + + + + +
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& &

 

 

(4.6) 

The discrete-time equivalent of the drive model is derived by employing the backward 

Euler approximation given as: 

1zp p
Tz
−

=&  
 

(4.7) 

where p is a dummy variable and T is the sampling period. Discretizing Eq.(4.6) with 

Eq.(4.7), the discrete state errors are obtained as: 

( )( )
( )( )

1 1 3

2 2 4

3 3 3 11 1 12 2 13 3 14 4 11 1 12 2

4 4 4 21 1 22 2 23 3 24 4 21 1 22 2

( ) ( 1) ( )
( ) ( 1) ( )

( ) ( 1) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( 1) ( ) ( ) ( ) ( ) ( ) ( ) ( )
r

r

e k e k Te k
e k e k Te k

e k e k T z k a z k a z k a z k a z k b F k b F k

e k e k T z k a z k a z k a z k a z k b F k b F k

= − +

= − +

= − + − + + + + +

= − + − + + + + +

&
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 (4.8) 

The sliding surface is designed to minimize the four state errors at each discrete control 

interval (k) as: 

1 1 2 2 3 3 4 4( ) ( ) ( ) ( ) ( )s k e k e k e k e kλ λ λ λ= + + +  (4.9) 

where λ1...λ4 are gains which together determine the dynamics of the sliding surface after 

sliding mode is reached. By substituting the state errors (Eq.(4.8)) into Eq.(4.9), the sliding 

surface (before any specific control force is defined) is expressed as: 

{
( )( )
( )( )}

1 3 2 4

3 3 11 1 12 2 13 3 14 4 11 1 12 2

4 4 21 1 22 2 23 3 24 4 21 1 22 2

( ) ( 1) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

r

r

s k s k T e k e k

z k a z k a z k a z k a z k b F k b F k

z k a z k a z k a z k a z k b F k b F k

λ λ

λ

λ

= − + +

+ − + + + + +

+ − + + + + +

K

& K

&

 

 

(4.10) 

which is governed by the dynamics of the drive (i.e. M, C and K in Eq.(4.3)), the disturbance 

force (F1), motor command (F2), states, state errors and the reference acceleration signals. 
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The control law can be used to manipulate the equivalent current or torque on the drive (F2). 

According to [83], F2 is designed to cancel all the terms in Eq.(4.10) except s(k−1), while 

introducing a feedback term with gain K into the sliding surface. The resulting F2 is 

expressed as: 

[ ( ) ( )
( ) ( ) ( )

]

2 3 3 4 4 3 11 4 21 1 3 12 4 22 2

3 13 4 23 3 3 14 4 24 4 3 11 4 21 1

1 3 2 4
3 12 4 22

( ) ( ) ( ) ( ) ( )
ˆ( ) ( ) ( )

1( ) ( ) ( )

r rF k z k z k a a z k a a z k

a a z k a a z k b b F k

e k e k Ks k
b b

λ λ λ λ λ λ

λ λ λ λ λ λ

λ λ
λ λ

= + − + − +

− + − + − +

+ + + ⋅
+

& &

 

 

(4.11) 

In Eq.(4.11), 1̂F is the estimated table disturbance force calculated by the adaptation law 

given in [83]: 

1 1 1 2
ˆ ˆ( ) ( 1) ( ) ( 1)F k F k g s k g s k= − − + −  

 

(4.12) 

where g1 and g2 are adaptation gains. If the disturbance adaptation error ( 1F% ) is defined 

as 1 1 1
ˆ( ) ( ) ( )F k F k F k= −% , Eq.(4.12) can be re-written as: 

1 1 1 1 1 2 1 1
ˆ( ) ( ) ( ) ( 1) ( ) ( 1) ( ) ( 1)F k F k F k F k g s k g s k F k F k= − = − − + − − + −% %  

 

(4.13) 

Substituting F2(k), as defined in Eq.(4.11), into Eq.(4.10), and combining the resulting 

equation with Eq.(4.13), the dynamics of the disturbance adaptation and sliding surface 

emerges as: 

( )2
1 1

1 2 1 11 1

( ) 1 ( 1)1 1 ( 1) ( )
( ) ( 1)

s k Rg R s k R
F k F k

F k g Q g Q F k QQ Rg Q Rg
+ −⎧ ⎫ ⎡ ⎤ ⎧ ⎫ ⎧ ⎫

= + − −⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥− −+ + ⎩ ⎭⎩ ⎭ ⎣ ⎦ ⎩ ⎭% %  
 

(4.14) 

where: 

( )3 11 4 211 ;   Q KT R T b bλ λ= + = +  (4.15) 

As explained in [83], the disturbance estimation error ( 1F% ) can be decoupled from the 

sliding surface dynamics in Eq.(4.14) by selecting g2=Q-1g1, thus making the coefficient, 

2 1g Q g− equal to zero. The decoupled dynamics results in better disturbance adaptation in 
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the DADSC compared to the adaptive sliding mode controller [5][69] (as will be 

demonstrated in the next chapter).  

If the disturbance (F1) is constant and bounded, the sliding surface is forced to achieve 

sliding mode (i.e. s(k) = 0) by selecting K and g1 such that the eigenvalues of the sliding 

surface dynamics (in Eq.(4.14)) lie within the unit circle. The two eigenvalues of the sliding 

surface are evaluated from Eq.(4.14) as: 

1 1
1 2 1(1 ) ,  (1 ) (1 ) S SKT KT Rg KTλ λ− −= + = + + +  

 

(4.16) 

These two eigenvalues are forced to lie within unit circle by selecting gain 0K >  and 

1sgn( ) 0R g⋅ >  as: 

1
1

1
2 1 1

(1 ) 1  0  or 0,  since 0 

= (1 ) (1 ) 1  sgn( ) 0

S

S

KT KT K T

KT Rg KT R g

λ

λ

−

−

= + < ⇒ > > >

+ + + < ⇒ ⋅ >
 

 
(4.17) 

which ensures asymptotic stability of the sliding surface and disturbance adaptation 

dynamics.  

4.2.2 Error Dynamics 

The ability of the proposed mode-compensating DADSC (MCDADSC) to push the 

reference tracking errors to zero, when sliding mode is reached, is investigated in this section 

by analyzing the error dynamics of the closed-loop system. 

The error dynamics can be derived by substituting the control law in Eq.(4.11) into the 

open-loop dynamics of Eq.(4.8) then simplifying the result using the sliding surface and 

disturbance force estimate defined in Eq.(4.9) and Eq.(4.13), respectively. The result is: 
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(4.18) 

where Nij are defined as: 

11 11 1 12 12 2 13 13 3 1 14 14 4 2

21 21 1 22 22 2 23 23 3 1 24 24 4 2

1 3 1 4 2 2 3 1 4 2
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 (4.19) 

Σ1(k) and Σ2(k) are functions of the time-step (k) given by: 
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 (4.20) 

From Eq.(4.18), if the controller parameters (λ1…λ4, g1, g2 and K) are chosen such that the 

eigenvalues of the matrix AL
-1AR are all within the unit circle the stability of the controlled 

system is guaranteed. Furthermore, all the errors asymptotically go to zero as time tends to 

infinity, providing that the disturbance force is constant and that the discrete-time forcing 

functions Σ1(k) and Σ2(k) are zero, or become zero with time. However, as long as Σ1(k) and 
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Σ2(k) remain as non-zero forcing functions, the tracking errors do not become zero even if the 

sliding mode is reached. 

4.3 Minimum-Tracking Error Filter (MTEF) 

In [40], Kamalzadeh and Erkorkmaz point out that since the accurate positioning of the 

table is most important in ball screw drives, the position reference command to the motor 

(z2r) can be chosen arbitrarily. They propose a method of generating z2r which focuses on 

offsetting the axial deformations that occur during the acceleration/deceleration of the drive 

and when external forces are applied to the table, providing the value of b12 is zero. 

The problem, however, is that b12 is not normally zero in ball screw drives because of 

the presence of the non-zero off-diagonal terms (m12) in the mass matrix of the drive 

dynamics given in Eq.(3.37). These non-zero m12 terms are by products of the distributed 

inertia of the ball screw [79]. As mentioned in Section 3.5.1, the presence of non-zero m12 (or 

b12) often has the effect of introducing non-minimum phase zeros into the dynamics of ball 

screw-driven machines [79]. Under such circumstances, the method proposed in [40], which 

is based on inverting the ball screw drive’s dynamics, becomes unstable and thus destabilizes 

the whole controller. 

Here, a filter is designed to generate z2r in such a way that, irrespective of the value of 

b12 (i.e. m12), the filter remains stable and minimizes the forcing functions Σ1(k) and Σ2(k), 

thereby minimizing the state tracking errors of the MCDADSC. 

4.3.1 Design and Stability of MTEF 

Consider the following two equations: 

3 11 1 12 2 13 3 14 4 11 1 12 2
ˆ( ) ( ) ( ) ( ) ( ) ( ) ( )r r r r rz k a z k a z k a z k a z k b F k b F k= + + + + +&  

 

(4.21) 

4 21 1 22 2 23 3 24 4 21 1 22 2
ˆ( ) ( ) ( ) ( ) ( ) ( ) ( )r r r r rz k a z k a z k a z k a z k b F k b F k= + + + + +&  

 

(4.22) 

and the linear combination of Eq.(4.21) and Eq.(4.22): 
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 (4.23) 

Σ1(k) is obtained by eliminating F2 from Eq.(4.21) and Eq.(4.23), while Σ2(k) emerges from 

the elimination of F2 from Eq.(4.22) and Eq.(4.23). Consequently, Σ1(k) and Σ2(k) are 

linearly dependent; hence they are also linearly dependent on an equation obtained by 

eliminating F2 from Eq.(4.21) and Eq.(4.22). The elimination is achieved by multiplying 

Eq.(4.21) by a factor 1, and Eq.(4.22) by a factor of r and summing up the resulting 

equations; i.e.:  

3 4 11 21 1 12 22 2 13 23 3

14 24 4 11 21 1 12 22 2
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(4.24) 

By choosing the ratio r = re = –b12/b22, F2 can be eliminated from the equation. For now, r is 

kept as a variable. Applying the relationship between z2r and its derivatives (Eq.(4.7)) to 

Eq.(4.24), the reference signal, z2r, is calculated as: 

2

2 2

2
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Ψ = + + + − + + + +
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&

 

 (4.25) 

where z is the discrete-time forward-shift operator. 

From Eq.(4.25), for the feed-forward filter Gmtef(z) to be stable, its two poles: 

2

1,2 2 2
H H Jp
G G G

⎛ ⎞
= − ± −⎜ ⎟

⎝ ⎠
 

 
(4.26) 

have to lie within the unit circle. If this condition is satisfied for r = re = –b12/b22 then Gmtef(z) 

is stable and z2r can be generated in a way that makes both Σ1(k) and Σ2(k) equal to zero for 

all k. However, because of the aforementioned non-zero off-diagonal terms (m12) in the 
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drive’s mass matrix, a non-minimum phase zero could be introduced into the open-loop 

dynamics of the drive. Under this condition, one of the poles of Gmtef(z) becomes unstable 

when r is selected as –b12/b22. Consequently, z2r becomes unbounded and Σ1(k) and Σ2(k) 

cannot be made equal to zero for all k. In this case, since r = re = –b12/b22 leads to an unstable 

filter, r ≠ –b12/b22  has to be selected such that Gmtef(z) is stable and Σ1(k) and Σ2(k) are 

minimized. The problem, however, is that when r ≠ –b12/b22 is selected, F2 is not cancelled 

out of Eq.(4.25) giving rise to large errors in the generation of z2r. To solve this problem, an 

approximate F2 (i.e. 2̂F ) is calculated from Eq.(4.24) by replacing the ratio r with a special 

ratio r* and then assuming that the motor and table are connected by a perfectly rigid 

transmission such that z2r and its derivatives are equal to z1r and its derivatives, respectively. 

This results in: 

3 11 21 12 22 1
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(4.27) 

The error arising from this approximation can be evaluated by calculating the difference, 

2rz% , between the approximate z2r (i.e. 2ˆ rz ) and the exact z2r. 2ˆ rz  is calculated by substituting 

Eq.(4.27) into Eq.(4.25), while the exact z2r is calculated by substituting Eq.(4.27) (without 

any rigid body approximation) into Eq.(4.25). The result is: 
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(4.28) 

The full expressions of the numerator and denominator coefficients of Gez(z) and GeF(z) as 

functions of r and r* are given in Appendix A.  

If the special ratio (r*) is chosen such that:  

11 12

21 22

* a ar
a a

= − = −  
 

(4.29) 
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then the dc gains of Gez(z) and GeF(z) vanish (i.e. Gez(1) = GeF(1) = 0). As a result, the 

approximation error ( 2rz% ) is minimized at low frequencies. It is noteworthy that the value of 

r* expressed in Eq.(4.29) holds true only because of the relationship among the aij 

parameters as defined in Eq.(4.3).  

To minimize 2rz% at other frequencies (ω) within the desired bandwidth of the controller, 

the parameter r is selected such that Gmtef(z) is stable, i.e. 

1 2max( ( ) , ( ) ) 1p r p r ≤  
 

(4.30) 

and it minimizes the cost function: 

( )1 2max max ( , ) , max ( , )ez eFW G r W G r
ω ω

ω ω  
 

(4.31) 

where W1 and W2 are relative weighting factors which are determined based on the expected 

maximum amplitudes of the reference signal z1r and the disturbance force F1. They could also 

be defined as functions of frequency ω (i.e. W1(ω) and W2(ω)). By minimizing 2rz% in this way, 

the forcing functions, Σ1(k) and Σ2(k), hence the state tracking errors are minimized using 

Gmtef(z). 

4.3.2 Robustness of MTEF 

Sliding mode controllers are known to be robust due to their inherent adaptation to 

unknown/un-modeled dynamics [5][69][75]. However, when the MTEF is added on, its 

effect on the robustness of the MCDADSC has to be investigated. 

Robustness of the MTEF is particularly important in ball screw drives where the 

dynamics (hence the parameters of the model) change from position to position as the table 

moves along the ball screw. It is also important because, no matter how accurately the drive’s 

dynamics is modeled, there always will be some amount of uncertainty in the model. 

To investigate the robustness of the MTEF, let us consider a case where there is 

uncertainty in each of the parameters in Eq.(4.8) such that each parameter aij and bij is 

perturbed by a small amount Δaij and Δbij, respectively, yielding: 
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where Δ1 and Δ2 are defined as: 
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Following the procedure outlined in Section 4.2.1, the new sliding surface dynamics 

becomes: 
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where F1′ is the augmented disturbance force which includes the effect of uncertainties 

perceived as disturbance forces. It is defined as: 
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1 1 1
ˆF F F′ ′= −% while Q′and R′ are the modified gains expressed as: 

( )3 11 4 211 ;   Q KT R T b bθ θ λ λ′ ′= + = +  
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As a result of the uncertainties, the error dynamics of Eq.(4.18) becomes: 
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where N′ij are defined as: 
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The new forcing functions, ΣΔ1(k) and ΣΔ2(k) are given by: 
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where 3rzΔ& and 3rzΔ& are defined as: 
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Because of the additional terms, the new forcing functions, ΣΔ1(k) and ΣΔ2(k), are no longer 

linearly dependent. Therefore, it is not possible to use the MTEF to simultaneously make 

both of them zero for all k. This problem can be mitigated by noting that, if the disturbance 
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force, F1 is zero, then 1̂F → FΔ around their dc value. Consequently, Eq.(4.39) can be re-

written as: 
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where α is a scaling factor for 1̂F  which can be adjusted to change the dynamics of the 

forcing functions. Considering that at constant velocity the dc-value of 3rzΔ& and 3rzΔ& are equal 

to zero, the dc-value of the tracking error at the table, e1, can be made equal to zero by 

selecting α such that: 

1 1 1 1 2 2( ) ( ) 0dc dc dc dc
e eG Gα α∑ Δ ∑ Δ∑ + ∑ =  

 

(4.42) 

In Eq.(4.42), Ge1Σ1(z) and Ge1Σ2(z) are respectively the transfer functions from the table 

tracking error (e1) to the forcing functions ΣΔ1 and ΣΔ2 which can be obtained from Eq.(4.37) 

if the model uncertainties are known. The superscript “dc” denotes the dc value of the 

transfer function or signal. The α value that satisfies the condition in Eq.(4.42) depends on 

which of the two equations in Eq.(4.41) is used to generate z2r. In most cases, α cannot be 

obtained from Eq.(4.42) analytically because the parametric uncertainties of the transfer 

function are not known a priori. However, it can easily be determined through trial and error 

by adjusting α iteratively until the table’s tracking error is eliminated. 

The foregoing analysis has shown that the performance of the MTEF is adversely 

affected by the presence of un-modeled dynamics. It has also shown that the estimated 

disturbance force ( 1̂F ) can be scaled and applied to the MTEF to reduce the deterioration of 

the tracking accuracy of the table (at low frequencies).  

However, employing 1̂F  to improve the tracking performance of the MTEF gives rise to 

some other problems. Firstly, the approximation of Eq.(4.41) assumes that F1=0. When F1≠0, 

scaling 1̂F  by α in order improve the tracking performance of the drive gives rise to 

incomplete cancellation of F1 in the controller. This greatly diminishes of the disturbance 

rejection property of the controller. Furthermore, special care must be taken when 

introducing 1̂F  into the MTEF even when F1≠0. This is because, as a result of the un-
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modeled dynamics, the MTEF can no longer completely cancel 1̂F from ΣΔ1(k) and ΣΔ2(k). As 

shown in Figure 4.1, this introduces an additional feedback loop in the MCDADSC which 

could adversely affect its stability. Consequently, in the following section, two more practical 

methods for improving the performance and robustness of the MCDADSC and MTEF are 

described. 

  

Figure 4.1: Relationship between MTEF and MCDADSC (a) With no Model Mismatch 
(b) With Model Mismatch 

4.4 Improvement of Performance and Robustness of MCDADSC and MTEF 

In this section gain scheduling together with modified disturbance estimation are 

proffered as means of improving the performance and robustness of the MCDADSC and 

MTEF in the presence of parametric and non-parametric model uncertainty. Gain scheduling 

uses the predictable behavior of the plant to reduce the parametric uncertainty while the 

modified disturbance estimation helps to improve the rejection of other un-modeled low- 

frequency dynamics.  

4.4.1 Gain Scheduling 

As explained in Chapter 3, the mass, damping and stiffness matrices of ball screw drives 

vary in a predictable way as a function of the position of the table along the screw, X. This 

information can be used to schedule the parameters of the MCDADSC and MTEF. 

Generally, gain scheduling involves varying parameters of a controller (or varying 

controllers) to provide satisfactory control for various operating points of a plant which 

evolves in some predictable fashion as a function of an observable variable called the 

scheduling variable. In our case, the scheduling variable is X. 



 

 80

There are a couple of ways of scheduling controller gains. In [72], Symens et al. 

compared a simple ad-hoc method with more complicated analytical methods for scheduling 

the gains of a H∞ controller designed to control the vibrations of a beam. In their case, the 

scheduling variable was the length of the beam which influenced the stiffness of the beam in 

a predictable way. They found out that the analytical methods based on linear parameter 

varying (LPV) models of the plant performed very poorly compared to the simple ad-hoc 

one. The reason for this is that the analytical schemes are very conservative because they are 

based on extremely restrictive assumptions [72]. 

Consequently, in this chapter, the simple ad-hoc method is employed. The aij and bij 

parameters of the MCDADSC and MTEF are scheduled as function of X while the controller 

gains, λ1…λ4, g1, g2 and K are kept constant. The functions aij(X) and bij(X) are obtained from 

Eq.(4.3) as: 
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(4.43) 

where M(X), C(X) and K(X) are respectively the mass, damping and stiffness matrices of the 

drive expressed as functions of X. Ad-hoc gain scheduling is achieved by updating aij and bij 

in the MCDADSC control law (Eq.(4.11)) and in the MTEF (i.e. Eq.(4.25), (4.27) and (4.29)) 

based on the instantaneous value of X measured from the drive. The functions aij(X) and 

bij(X) are piecewise continuous, thereby ensuring that the gain scheduling is smooth and that 

unwanted transients are avoided. 

4.4.2 Modified Disturbance Estimation 

Generally, in sliding mode controllers, disturbance estimation is achieved by integrating 

the same sliding surface contained in the control law (e.g. Eq.(4.11) and (4.12)). However, 

Kamalzadeh and Erkorkmaz in [40] observe experimentally that integrating a simpler 1st 

order sliding surface for disturbance estimation instead of the 3rd order sliding surface 

contained in their control law resulted in better performance.  
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In this subsection, the just-described modified disturbance estimation method of 

Kamalzadeh and Erkormaz is implemented on the MCDADSC, and a theoretical explanation 

for improvements observed by using the modified technique is given. 

Firstly, the 1st order primary sliding surface, sP(k), is defined as: 

1 3( ) ( ) ( )Ps k e k e kλ′= +  
 

(4.44) 

where λ' is the sliding surface gain. Next, the sliding surface of Eq.(4.9) is made the 

secondary sliding surface sS(k): 

1 1 2 2 3 3 4 4( ) ( ) ( ) ( ) ( )Ss k e k e k e k e kλ λ λ λ= + + +  
 

(4.45) 

The primary sliding surface is then used for disturbance estimation according to the law: 

1 1 1 2
ˆ ˆ( ) ( 1) ( ) ( 1)P PF k F k g s k g s k= − − + −  

 

(4.46) 

while the secondary sliding surface is employed in the control law as: 
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Based on Eqs. (4.32), (4.44) and (4.46), the primary sliding surface and disturbance 

estimation dynamics can be written as: 

( )2
1 1

1 2 1 11

( ) ( 1) *1 ( 1) ( )
( ) ( 1) *

P Ps k S R g R s k
F k F k

F k g Q S g Q F kQ R g
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(4.48) 

In Eq.(4.48), F1' is the augmented disturbance force which contains all dynamics that 

prevent the primary sliding surface from reaching sliding mode. Q', R' and S' are unknown 

gains which depend on the ball screw drive’s parameters, controller parameters and the 

unknown model errors. 1F ′%  represents the error between 1̂F  and 1F ′  while the asterisks 

indicate that the elements of the input vector do not matter.   If the adaptation gains, g1 and 

g2, are chosen such that the system matrix in Eq.(4.48) is stable, then the sliding surface 
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dynamics converges to zero over time, providing F1' is constant and bounded. This means 

that, in spite of the uncertainties, it is guaranteed that the table will be eventually reach the 

desired position z1r if λ' > 0. It is worth noting that it is no longer possible to select g2 such 

that it decouples the sliding surface dynamics from the disturbance dynamics because Q' and 

S' are unknown. Therefore, g1 and g2 are tuned by trial and error to ensure stable sliding 

surface dynamics. Furthermore, there is no longer any guarantee that the secondary sliding 

surface sS(k) will converge to zero. As will be explained later using Figure 4.2, it will 

converge to zero only if there are no disturbance forces and model uncertainties. 

Since the modified disturbance estimation law forces the table to reach its desired 

position, it is no longer necessary to use the inaccurate 1̂F  to enforce the low-frequency 

tracking performance of the MTEF as done in Section 4.3.2. Therefore, the unwanted 

feedback loop can be eliminated from the MTEF and MCDADSC by setting 1̂ 0F = in Eqs. 

(4.25), (4.27) and (4.28). 

The following example demonstrates using a simple case how the modified MCDADSC 

compares with the original one. 

 

 

 

Figure 4.2: Simple Example Demonstrating Difference between Original 
MTEF/MCDADSC and Modified MTEF/MCDADSC 

A simplified model of the ball screw drive consisting of two masses representing the 

motor and the table connected by a spring is shown in Figure 4.2. The spring is assumed to 

have an actual stiffness of k+Δk but its identified (modeled) stiffness is assumed to be k. In 

the figure, x1 and x2 respectively denote the position of the table and motor measured from 
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the dashed datum lines. The aim of this example is to compare the quasi-static response of 

the original MTEF/MCDADSC (Figure 4.2(a)) to the modified one (Figure 4.2(b)) when a 

disturbance force F1 is applied to the table.  

Initially, in Step 1, both systems are at rest with x1=x2=0. Then in Step 2 F1 is applied to 

the motor causing the MCDADSC to apply an equal and opposite force F2 to the motor. As a 

result, the spring is compressed and an error, e'1 = F1/(k+Δk), occurs in positioning the table 

whose desired position z1r = 0. The positioning error (e'1) is the same for both systems. In 

Step 3, however, the situation is different for the original and modified MTEF/MCDADSC. 

In Figure 4.2(a), the original MTEF realizes this error and calculates the reference position of 

the motor needed to make x1 equal to zero as z2r = 1̂F /k. 1 2 1F̂ F F= − = . Typically, the 

MCDADSC is tuned such that it accurately tracks z2r, therefore a positioning error e1 = F1/k–

F1/(k+Δk) results at the table. This error disappears only when 1 1F̂ F=  (as it is in this case) 

and the model uncertainty Δk=0. On the other hand, in Figure 4.2(b), the modified MTEF 

which does not include 1̂F  calculates z2r = 0. However, as a result of the modified disturbance 

estimation which ensures that z1r is tracked precisely, the table tracking error is e1=0. This 

results in an error e2 = F1/(k+Δk) in tracking z2r. In other words, the secondary sliding surface 

cannot reach sliding mode. This error e2 can only be removed if F1 = 0 or if 1̂F =F1 is included 

into the MTEF and Δk=0. 

The simplified example above provides some insight into how the modified 

MTEF/MCDADSC achieves good disturbance rejection and tracking accuracy at the low-

frequency range.  

4.5 Simulation and Experimental Tests 

4.5.1 Simulation Tests 

Simulation tests are conducted in this section to evaluate the performance of the control 

scheme presented in the preceding sections under ideal conditions. In other words, in this 

section it is assumed that the behavior of the ball screw drive is perfectly governed by 

Eq.(4.8). Other factors such as non-linear friction, amplifier dynamics, higher-frequency 

modes and digital-to-analog conversion delays are not considered. This helps us to validate 
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the theoretical analyses presented in the foregoing sections which were performed based on 

the same idealizations.  

Two sets of mass, damping and stiffness matrices are used for the simulation tests. The 

first set (Eq.(4.49)) represent the matrices identified from the test bed (see Section 3.4.1) at 

the position X = 30 [mm]. Both of its open-loop (OL) zeros are minimum phase. The second 

set (Eq.(4.50)) represent the matrices measured at X = 390 [mm]. However, because none of 

the identified matrices of the test bed exhibit any non-minimum phase characteristics, the m12 

value of this second set of matrices is scaled by -0.1 to artificially create a non-minimum 

phase zero. Thus, Eq.(4.49) represents minimum phase OL dynamics while Eq.(4.50) 

represents non-minimum phase OL dynamics. 

(1) (1) (1) 725.93 -3.61 1 -1 1 1
 [kg]; 1194  [Ns/m]; 4.127x10   [N/m]

-3.61 50.19 -1 1 1 1
−⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦
M C K  

 (4.49) 

(2) (2) (2) 726.47 0.23 1 -1 1 1
 [kg]; 1055  [Ns/m]; 3.3511x10   [N/m]

0.23 46.98 -1 1 1 1
−⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦
M C K  

 (4.50) 

Using these two sets of matrices three scenarios are investigated using simulation tests in 

order to show the effectiveness of MCDADSC combined with MTEF compared to 

MCDADSC without MTEF. The three scenarios are considered for the original 

MCDADSC/MTEF as well as for the modified one. For the MCDADSC without MTEF, the 

reference commands for the motor and table assumed to be equal (i.e. z2r = z1r).  The three 

scenarios are as follows: 

Scenario 1: The controller is designed using the first set of matrices (Eq.(4.49)). The 

parameters of the controller and drive are assumed to be exactly the same (i.e. no parameter 

mismatch). Since the two OL zeros are minimum phase, r = re = –b12/b22 is used to design a 

stable MTEF resulting in perfect cancelation of the forcing functions Σ1 and Σ2. 

Scenario 2: The controller is designed using second set of matrices (Eq.(4.50)). The 

parameters of the controller and drive are assumed to be exactly the same (i.e. no parameter 

mismatch). Since one of the OL zeros is non-minimum phase, r ≠ –b12/b22 and r* = –a12/a22 
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are used to design a stable MTEF resulting in an approximate cancelation of the forcing 

functions Σ1 and Σ2. 

Scenario 3: The controller is designed using the first set of matrices (Eq.(4.49)). However, 

the parameters of the drive are taken as those of the second set of matrices (Eq.(4.50)). 

Therefore there is parameter mismatch. r = re = –b12/b22 is used to design a stable MTEF. 

However, because of the parameter mismatch, α is introduced to the original MTEF to cancel 

out the dc-errors due to the parameter mismatch. 

The controller parameters of the original and modified MCDADSC/MTEFs are 

summarized in Table 4.1 and Table 4.2, respectively. 

Parameter Value   
λ1 0 [1/s] 
λ2 5000 [1/s] 
λ3 0.1 
λ4 1  
K 1x107 [1/s]   
g1 1x105 [kg/s] 
T 50 [μs] 

r (for Scenarios 1 and 3) –b12/b22 
r (for Scenario 2) 0 

r* (Only for Scenario 2) –a12/a22 
α (Only for Scenario 3) -2.7 

Table 4.1: Parameters used in Simulation Tests of Original MCDADSC and MTEF  

Parameter Value   
λ1 0 [1/s] 
λ2 1200 [1/s] 
λ3 0.1 
λ4 1  
λ' 2000 [1/s] 
K 500 [1/s]   
g1 10,000 [kg/s] 
T 50 [μs] 

r (for Scenarios 1 and 3) –b12/b22 
r (for Scenario 2) 0 

r* (Only for Scenario 2) –a12/a22 
α  N/A 

Table 4.2: Parameters used in Simulation Tests of Modified MCDADSC and MTEF  
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Figure 4.3: Comparison of Simulated Table Tracking FRF (z1/z1r) of Original 
MCDADSC Only and Original MCDADSC+MTEF for Three Different Scenarios 

 

 

 

Figure 4.4: Comparison of Simulated Table Disturbance FRF (z1/F1) of Original 
MCDADSC Only and Original MCDADSC+MTEF for Three Different Scenarios 
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Figure 4.5: Comparison of Simulated High Speed Trajectory Tracking Response of 
Original MCDADSC Only and Original MCDADSC+MTEF for Three Different 

Scenarios 
 

 

 

Figure 4.6: Finite-Jerk Reference Command used in Simulation 
Figures 4.3 and 4.4 respectively show the simulated table tracking (z1/z1r) and table 

disturbance (z1/F1) FRFs of the drive controlled by the original MTEF and/or MCDADSC for 

the three scenarios discussed above. Figure 4.5 on the other hand shows the simulated 
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response of the drive to a typical high speed motion command – a finite-jerk feed motion 

(Figure 4.6) with 360 [mm] displacement, 1000 [mm/s] velocity, 1 [g] acceleration and 

200,000 [mm/s3] jerk. From the plots, we see that the original MCDADSC combined with 

MTEF outperforms the original MCDADSC without the MTEF in the first two scenarios. In 

the third scenario where there is parameter mismatch, α = −2.7 has to be used to scale 1̂F  in 

order to obtain a good tracking response in Figure 4.5(c). However, as explained in Section 

4.3.2, this deteriorates the low-frequency disturbance rejection ability of the original 

MCDADSC+MTEF as seen in Figure 4.4(c). Furthermore, in this particular case, the 

controller is destabilized by the additional feedback loop introduced by 1̂F . To stabilize the 

controller, a low-pass filter (with a cut-off frequency of 50 [Hz]) is applied to 1̂F before 

injecting it into the MTEF. However, as a result of the low pass filtering, the original 

MCDADSC+MTEF is no longer able to suppress the mode at around 200 [Hz] (i.e. Mode 1) 

as seen by comparing Figure 4.4(c) to Figure 4.4 (a) and (b). Therefore, even though scaling 

and injecting 1̂F into the MTEF succeeds in improving the low-frequency tracking 

performance of the original MTEF+MCDADSC, it results in the loss of both low-frequency 

and high-frequency disturbance rejection performance. The stability of the controller is also 

adversely affected by the presence of 1̂F in the MTEF. 

Figures 4.7 to 4.9 show the same three plots shown in Figures 4.3 to 4.5 but this time for 

the modified MTEF and/or MCDADSC. It is observed from Figure 4.7 and Figure 4.9 that 

the modified MCDADSC+MTEF also performs better than the modified MCDADSC 

without MTEF in all scenarios in terms of tracking. Furthermore, the MCDADSC+MTEF 

and the MCDADSC without MTEF are both able to achieve equally good low-frequency 

disturbance rejection even in the presence of parameter mismatch (Figure 4.8). The 

elimination of 1̂F from the MTEF also means that there is no additional feedback loop 

introduced in the modified MCDADSC+MTEF. This underscores the advantage of using the 

modified MTEF/MCDADSC over the original one. However, it is worth noting that the 

modified MCDADSC+MTEF is unable to suppress the Mode 1 (occurring at around 200 

[Hz]). To suppress this mode, an accurate estimate of the disturbance force (F1) has to be 

injected into the MTEF in the place of the 1̂F  (which is tainted by un-modeled dynamics). 
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This could be achieved, for instance, by embedding a high-bandwidth force sensor between 

the nut and table to provide a more accurate measurement of F1. 

 

 

 

Figure 4.7: Comparison of Simulated Table Tracking FRF (z1/z1r) of Modified 
MCDADSC Only and Modified MCDADSC+MTEF for Three Different Scenarios 
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Figure 4.8: Comparison of Simulated Table Disturbance FRF (z1/F1) of Modified 
MCDADSC Only and Modified MCDADSC+MTEF for Three Different Scenarios 

 

 

 

Figure 4.9: Comparison of Simulated High Speed Trajectory Tracking Response of 
Modified MCDADSC Only and Modified MCDADSC+MTEF for Three Different 

Scenarios 
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A final simulation test is conducted to demonstrate the influence of gain scheduling on 

the controller performance. The same finite-jerk feed motion used in Figures 4.5 and 4.9 is 

applied to the drive. However, this time, the drive parameters (i.e. the coefficients of M, C 

and K) are assumed to vary as a function of X according to the graphs of Figure 3.25. Figure 

4.10 compares the response of the drive controlled by the original and the modified 

MTEF+MCDADSC for the gain scheduled and non gain scheduled cases. The parameters 

used for both controllers are the same as those of Scenario 1 in Tables 4.1 and 4.2, 

respectively. From the figure, it is seen that gain scheduling reduces the tracking error in both 

cases without any significant difference in the required control energy. 

 

 

 

Figure 4.10: Comparison of Simulated High Speed Trajectory Tracking Response of 
Original and Modified MTEF+MCDADSC with and without Gain Scheduling 

4.5.2 Experimental Tests: Practical Issues  

The control laws presented in this chapter are verified experimentally on the test bed 

described in Section 3.4.1. In order to successfully implement the control laws on the test 

bed, two practical issues, i.e. friction and geometric errors of the ball screw drive, need to be 

compensated as follows: 
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(A) Feed-Forward Friction Compensation 

Since the non-linear friction behavior of the test bed (Figure 3.23) was not included in 

the parameter identification performed in Section 3.5.5, it has to be pre-emptively canceled 

out using feed-forward control action. This is achieved by calculating the friction force (Ff) 

based on the desired velocity of the table (i.e. z3r) and adding it to the MCDADSC control 

force (F2) delivered to the motor. However, special care must be taken in incorporating Ff 

into the MTEF. This is because Ff is a distributed force. Some portion of Ff results from the 

motor bearings while the other portion is mainly due to the nut and guideway bearings. As 

shown in Figure 4.11, this distribution is governed by the parameter η, where 0 1.η≤ ≤  Since 

η effects the table positioning error, it also determines the correct performance of the MTEF 

(compare Figure 4.11 with Figure 4.2). The MTEF can be made more accurate by adding (1–

η)Ff  and ηFf respectively to 1̂F and F2 in Eq.(4.25). 

 

 

 

Figure 4.11: Effect of Distributed Friction on Table Positioning Error 
Although η is extremely difficult to determine analytically, it can be approximated 

experimentally using the original MTEF+MCDADSC. This is achieved by jogging the drive 

controlled by MTEF+MCDADSC back and forth at a constant velocity (so that Ff is 

constant) and adjusting η iteratively while monitoring the table tracking error e1. If the drive 

is assumed to be accurately modeled then the correct value of η is obtained when the table 

tracking error equals zero. Using this procedure, the value of η is found to be 0.6 for the test 

bed.   

(B) Geometric Error Compensation 

Compensation of the imperfections of the ball screw assembly arising from straightness, 

lead, misalignment, flatness and other quasi-static geometric errors play an important role in 

the successful experimental implementation of the MCDADSC+MTEF. This is because such 

geometric errors are picked up by the linear encoder and misinterpreted as static 

deformations of the ball screw by the controllers. As presented in [40], these errors can be 
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identified by moving the table back and forth (at a very slow speed) within its travel range 

and measuring the difference between x1 and x2: 

1 2( )v X x x= −  
 

(4.51) 

where x1 and x2 are respectively the measured displacement of the table and the measured 

equivalent linear displacement of the motor. X is the position of the table within its travel 

range. Since x1=x2 during rigid-body motions, the difference v(X) is taken as the cumulative 

geometric error in the measurement of table position x1. The error is corrected by subtracting 

v(X) from the measured position of the table x1 and also from the reference position for the 

table x1r, such that: 

1 1 1 1( );   ( ) r rz x v X z x v X= − = −  
 

(4.52) 

Figure 4.12 shows the geometric error profile v(X) measured from the test bed by jogging the 

table at a speed of 1 [mm/s]. As seen, the maximum value of v is about 4.5 [μm] in the 

forward direction and then it is offset by about 1 [μm] in the reverse direction causing it to 

peak at 5.5 [μm]. The 1 [μm] offset is mainly due to a backlash-like motion loss at the nut 

during motion reversals [22], The measured geometric error profile, excluding the backlash-

like effect, is represented using a 10th order polynomial in the implemented control laws. 

  

Figure 4.12: Identified Geometric Error Profile of Test Bed 

4.5.3 Experimental Tests: Results 

The real-time implementation of the control laws is achieved using a dSPACE 1103® 

dedicated control board at a sampling frequency of 20 [kHz] (i.e. T = 50 [μs]). In all the 
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experiments, feed-forward friction compensation and geometric error compensation are 

performed as described in the previous subsection. Except in the case of gain-scheduling, the 

original and modified MTEF and MCDADSC are designed using the matrices of Eq.(4.49) 

(i.e. the parameters of the test bed identified for X = 30 [mm]). Tables 4.3 and 4.4 list the 

control parameters used for the original and modified MTEF and/or MCDADSC, 

respectively. 

Figure 4.13 shows the tracking and disturbance FRFs of the original MTEF and/or 

MCDADSC measured with the table located at X = 30 [mm]. As seen from Figure 4.13(a), 

the MCDADSC+MTEF is able to suppress the peak magnitude of Mode 1 from 14.5 [dB] 

(obtained with the MCDADSC alone) to 4.5 [dB]. Consequently, the bandwidth of the 

MCDADSC+MTEF is increased from 110 [Hz] to 142 [Hz]. However, in terms of 

disturbance rejection (Figure 4.13(b)), there is hardly any improvement obtained by using the 

MCDADSC+MTEF over the MCDADSC. Both of them are unable to achieve good 

disturbance rejection in both the low and high frequency regions because 1̂F is not included 

into the MTEF. 1̂F is not included into the MTEF because it destabilizes the 

MCDADSC+MTEF as a result of the additional feedback loop it introduces (see Figure 4.1). 

Figure 4.14 shows the response of the drive controlled by the original MTEF and/or 

MCDADSC to a limited jerk motion command similar to the one in Figure 4.6. The only 

difference is that the jerk limit has been increased from 200,000 [mm/s3] to 1,000,000 

[mm/s3] while the velocity limit has been reduced from 1000 [mm/s] to 450 [mm/s] which is 

the velocity limit of the test bed. The maximum table tracking error is 19.4 [μm] based on the 

original MCDADSC alone. When the MTEF is added on, maximum tracking error reduces to 

16.3 [μm]. The relatively small improvement in tracking error by the MTEF is due to the 

severe vibrations at around 0.9 [s]. These vibrations occur due to the incorrect cancelation of 

Mode 1 by the controller when the table travels to X = 390 [mm] because the controller is 

designed using the parameters for X = 30 [mm]. As shown in Figure 4.15, when gain 

scheduling is performed using the identified parameters of Figure 3.25, the vibrations around 

0.9 [s] are damped. Consequently, the maximum tracking error of the MCDADSC+MTEF 

decreases to 8.6 [μm]. 
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 It is also worth highlighting the large errors in the estimated disturbance force ( 1̂F ) 

shown in Figure 4.14 and Figure 4.15. The only disturbance force on the drive is the 

identified friction dynamics of Figure 3.23. Since this friction dynamics is canceled out in 

feed-forward, the estimated disturbance force ( 1̂F ) should be close to zero. However, from 

the plots, the estimated forces are observed to be up to 1000 [N], which indicates the 

influence of un-modeled dynamics in 1̂F . This is the reason why 1̂F  has not been injected into 

the MTEF because destabilizes the controller. Even when it is low-pass filtered and injected 

into the MTEF, it deteriorates the performance of the controller instead of improving it. 

Parameter Value   
λ1 0 [1/s] 
λ2 550 [1/s] 
λ3 0.1 
λ4 1  
K 450 [1/s]   
g1 40,000 [kg/s] 
T 50 [μs] 
r  –b12/b22 

r*  N/A 
α  0 

Table 4.3: Parameters used in Experimental Tests for Original MCDADSC and MTEF  

Parameter Value   
λ1 0 [1/s] 
λ2 550 [1/s] 
λ3 0.1 
λ4 1  
λ' 550 [1/s] 
K 450 [1/s]   
g1 10,000 [kg/s] 
T 50 [μs] 
r  –b12/b22 

r*  N/A 
α  N/A 

Table 4.4: Parameters used in Experimental Tests for Modified MCDADSC and MTEF  
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Figure 4.13: Comparison of (a) Measured Tracking FRF (b) Measured Disturbance 
FRF of Test Bed Controlled using Original MCDADSC Only and Original 

MCDADSC+MTEF. Measurement Taken with Table Located at X = 30 [mm] 
  

Figure 4.14: Comparison of Measured High Speed Trajectory Tracking Response of 
Original MCDADSC Only with Original MTEF+MCDADSC 
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Figure 4.15: Comparison of Measured High Speed Trajectory Tracking Response of 
Original MTEF+MCDADSC with and without Gain Scheduling 

Figure 4.16 to Figure 4.18 show the same plots shown in Figure 4.13 to Figure 4.15 but 

this time for the modified MTEF and/or MCDADSC. The measured tracking FRF of Figure 

4.16(a) indicates that the modified MCDADSC+MTEF is also able to suppress the peak 

amplitude of Mode 1. Its amplitude is 20 [dB] when the test bed is controlled by the modified 

MCDADSC alone. When the MTEF is added on, Mode 1 is completely damped out thereby 

increasing the usable frequency range of the controller from 154 [Hz] to about 269 [Hz] 

based on the +3 [dB] crossing. The disturbance FRF of Figure 4.16(b) shows the significant 

improvement in low-frequency disturbance rejection in the modified MCDADSC+MTEF 

and the MCDADSC only compared to the original ones (Figure 4.13(b)). However, neither 

controller is able to suppress Mode 1 in the disturbance FRF of Figure 4.16(b). As mentioned 

in Section 4.5.1, the suppression of Mode 1 in the disturbance FRF can be achieved by 

measuring F1 accurately using a force sensor and injecting it into the MTEF in the place 

of 1̂F . 

The tracking FRF of Figure 4.16(a) shows that there is a little bit of overcompensation 

by the MTEF around 100 [Hz] which causes the tracking FRF of the modified 

MTEF+MCDADSC to drop to -7 [dB] before rising back to 0 [dB]. This loss of performance 

is attributed to the low feedback gain K of the secondary sliding surface. This means that the 

modified MCDADSC is not able to track z2r very well thereby leading to loss of performance 
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in the MTEF+MCDADSC. The problem can be mitigated by increasing K but then the gains 

of the primary sliding surface (g1 and g2) will have to be reduced to maintain the overall gain 

of the closed-loop system. Decreasing g1 and g2 will, on the other hand, sacrifice the 

disturbance rejection capability of the controller. This is the design trade off of using the 

modified MCDADSC+MTEF. Again, this design trade off can be reduced by injecting an 

accurate measurement of F1 into the MTEF so that the MCDADSC can be tuned to focus 

more on trajectory tracking. 

 

 

 

Figure 4.16: Comparison of (a) Measured Tracking FRF (b) Measured Disturbance 
FRF of Test Bed Controlled using Modified MCDADSC Only and Modified 

MCDADSC+MTEF. Measurement Taken with Table Located at X = 30 [mm] 
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Figure 4.17: Comparison of Measured High Speed Trajectory Tracking Response of 
Modified MCDADSC Only with Modified MTEF+MCDADSC 

  

Figure 4.18: Comparison of Measured High Speed Trajectory Tracking Response of 
Modified MTEF+MCDADSC with and without Gain Scheduling 

From the high speed trajectory tracking response of Figure 4.17, the modified 

MCDADSC+MTEF and the MCDADSC without the MTEF are seen to perform very 

similarly. The maximum tracking error of the MCDADSC is 14.63 [μm] while that of the 

MCDADSC+MTEF is 13.27 [μm]. Again, an excitation of Mode 1 is noticed when the table 

reaches X = 390 [mm] as a result of the parameter mismatch between the controller (designed 

for X = 30 [mm]) and the plant. Similar to the case of the original MCDADSC+MTEF, when 
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gain scheduling is implemented, this vibration of Mode 1 is damped out as seen in Figure 

4.18. The tracking error of the gain-scheduled modified MCDADSC+MTEF is 11.02 [μm]. 

Again, this error can be reduced by increasing K which increases the ability of the MTEF to 

counteract the static deformations that occur during acceleration/deceleration motions of the 

table. 

4.6 Summary 

This chapter has presented a mode-compensating disturbance adaptive discrete-time 

sliding mode controller (MCDADSC) combined with a minimum tracking error filter 

(MTEF) for effectively controlling ball screw drives with structural flexibility. It has shown 

theoretically that the MCDADSC alone cannot achieve accurate tracking without including 

the MTEF. The MTEF is a plant inversion-based feed-forward filter which becomes unstable 

when the plant possesses non-minimum phase zeros. A method for designing stable and 

effective MTEF in the presence of non-minimum phase zeros (which are common in flexible 

ball screw drives) is proposed. Theoretical analysis is also conducted to show that the 

MCDADSC+MTEF loses its disturbance rejection ability and becomes non-robust in the 

presence of un-modeled dynamics. Therefore, it is modified slightly such that its robustness 

and low-frequency disturbance rejection ability is improved even when there is model 

uncertainty. Moreover, an ad-hoc gain scheduling method is added on to the 

MCDADSC+MTEF to further improve its performance when the dynamics of the ball screw 

drive varies in a known fashion as a function of the table’s position. 

Simulation and experimental tests are used to demonstrate the improvement gained by 

adding the MTEF to the MCDADSC. The improved robustness and low-frequency 

disturbance rejection performance gained by using the modified MCDADSC combined with 

MTEF over the original one are also highlighted through the tests. Finally the benefits of 

incorporating gain scheduling into the controller are demonstrated. 

One drawback of the modified MCDADSC+MTEF is its inability to achieve high-

frequency disturbance rejection around the flexible mode of the ball screw. This shortcoming 

can be eliminated by accurately measuring the disturbance force applied to the table via a 

high-bandwidth dynamometer or an embedded force sensor and incorporating it into the 

controller through the MTEF. This also has the potential of further improving the tracking 
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performance of the modified MCDADSC+MTEF by allowing it to focus more on trajectory 

tracking rather than disturbance rejection. It is also noteworthy that the ad-hoc gain 

scheduling method, even though effective, does not have theoretically guaranteed stability 

conditions. Its stability can only be assured by testing it rigorously via simulation and 

experiments under various operating conditions that the ball screw drive is likely to be 

subjected to. 
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Chapter 5 

Dynamic Stiffness Enhancement of Direct Drives using Sliding Mode 

Control with True Disturbance Recovery 

5.1 Overview 

Direct drives possess a major drawback compared to ball screw drives due to their lack 

of dynamic stiffness from the mechanical structure of the machine.  

In this chapter, a disturbance adaptive discrete-time sliding mode controller is designed 

for feed drives equipped with linear motor direct drives. The designed sliding mode 

controller is shown to be very simple to implement but at the same time more effective than 

similar controllers in increasing the dynamic stiffness of direct-driven machines. True 

disturbance force recovery is also introduced as a means of obtaining better estimates of the 

friction and cutting forces applied to the linear motor. The recovered disturbance forces are 

used to actively compensate low-frequency machine tool structural modes which are within 

the bandwidth of the controller. As a result, the dynamic stiffness of the drive, between the 

tool and workpiece, is further improved. The merits of the disturbance adaptive sliding mode 

controller with true force recovery are demonstrated experimentally on a high speed linear 

drive. 

The rest of the chapter is organized as follows. Section 5.2 explains the controller design 

and highlights the similarities and differences between the proposed controller design and 

similar controllers used for direct drives. Section 5.3 then presents the concept of true 

disturbance recovery and its application to active vibration of low-frequency machine tool 

structural modes. Finally Section 5.4 presents the experimental results followed by a 

summary of the chapter in Section 5.5. 

5.2 Controller Design 

As explained in Chapter 1, linear motor direct drives have very simple mechanical 

designs. They essentially consist of the table (forcer) attached to the machine tool frame 

(stator) by linear bearings. Consequently, the structural dynamics of the mechanical system 
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do not play as much of a role in direct drives as they do in ball screw drives. Direct drives are 

therefore modeled as rigid bodies with mass m and viscous damping b according to the 

equation: 

( ) ( )m dmx bx F t F t+ = +&& &  (5.1) 

where ,x x& and x&&  are the actual position, velocity and acceleration of the drive while Fm and 

Fd are the linear motor force and disturbance cutting forces, respectively.  The position error 

( x re x x= − ) and velocity error of the drive ( v re x x= −& & ) can be represented in discrete time 

intervals T by applying backward Euler approximation: 

( )

( ) ( 1) ( )

( ) ( 1) ( ) ( ) ( )

x x v

v v r m d

e k e k Te k
Te k e k mx bx k F k F k
m

= − + ⎫
⎪
⎬

= − + + − − ⎪⎭
&& &

 
 

(5.2) 

where k is the discrete time step counter while ,rx rx& and rx&&  are the reference position, 

velocity and acceleration, respectively. 

5.2.1 Disturbance Adaptive Discrete-Time Sliding Mode Controller (DADSC) 

The disturbance adaptive discrete-time sliding mode controller (DADSC) [83], 

introduced in the previous chapter, is reformulated here for direct drive control.  This is done 

by designing a first-order sliding surface s(k) such that it minimizes both position and 

velocity errors as [5][83]:  

( ) ( ) ( )x vs k e k e kλ= +  (5.3) 

where λ is a gain indicating the bandwidth of the controller. The control force can be 

obtained by minimizing a Lyapunov function using a similar method as presented previously 

in [5][40][83]: 

( )ˆ( ) ( ) ( ) ( ) ( )m r d vF k mx k mKs k F k bx k m e kλ= + − + +&& &  
 

(5.4) 

where K is a feedback gain and ( )d̂F k  is the estimated disturbance force given by the 

discrete-time transfer function: 
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1 2ˆ ( ) ( )
1d

g z gF k s k
z
−⎛ ⎞= −⎜ ⎟−⎝ ⎠

 
 

(5.5) 

with tunable adaptation gains g1 and g2. Substituting Eqs. (5.2), (5.4) and (5.5) into Eq.(5.3) 

and simplifying the result yields the sliding surface dynamics of the closed-loop system as: 

2

2 1 11

( ) ( 1)11 ( )ˆ ˆ( ) ( 1) d
d d

s k s kg R R R
F k

g Q g Q g RQ g RF k F k

⎛ − ⎞⎧ ⎫ ⎧ ⎫+ −⎡ ⎤ ⎧ ⎫⎪ ⎪ ⎪ ⎪= +⎜ ⎟⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥⎜ ⎟−+ −⎪ ⎪ ⎪ ⎪⎣ ⎦ ⎩ ⎭⎩ ⎭ ⎩ ⎭⎝ ⎠
 

 

(5.6) 

where 11 ;  Q KT R m T−= + = . The term 2 1g Q g− in Eq.(5.6) determines the coupling between 

the disturbance force estimation and the sliding surface. It is eliminated by 

selecting 1
2 1g Q g−= .  This selection of g2 constitutes the main difference between the 

DADSC and the adaptive sliding mode control (ASMC) as will be explained in the next 

subsection. 

5.2.2 Adaptive Sliding Mode Control (ASMC) 

The adaptive sliding mode controller (ASMC) [5][69] is very similar to the DADSC 

presented in the previous subsection. The only difference is the disturbance adaptation law 

which is given as: 

1ˆ ( ) ( )
1d

g zF k s k
z

⎛ ⎞= −⎜ ⎟−⎝ ⎠
 

 

(5.7) 

As a result of this definition of d̂F , the closed-loop sliding surface dynamics expressed in 

Eq.(5.6) for the DADSC becomes: 

1 11

( ) ( 1)11 ( )ˆ ˆ( ) ( 1) d
d d

s k s kR R
F k

g Q g RQ g RF k F k

⎛ − ⎞⎧ ⎫ ⎧ ⎫ −⎡ ⎤ ⎧ ⎫⎪ ⎪ ⎪ ⎪= +⎜ ⎟⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥⎜ ⎟−+ −⎪ ⎪ ⎪ ⎪⎣ ⎦ ⎩ ⎭⎩ ⎭ ⎩ ⎭⎝ ⎠
 

 

(5.8) 

for the ASMC. In other words g2 = 0 in the ASMC. Therefore, the 2 1g Q g− term in the 

DADSC becomes simply –g1 in the ASMC. The effects of this difference on the performance 

of the ASMC compared to the DADSC will be explored in later sections. 
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5.2.3 Cascaded Controller (CC) 

The widely used cascaded controller (CC) [62][63] consists of cascaded velocity and 

position loops as shown in Figure 5.1.  The velocity loop is closed using a proportional 

integral (PI) while the position loop is closed using a proportional (P) controller. Velocity 

and acceleration feed-forward loops are also included in order to improve the reference 

tracking accuracy. Kv, Kp and Ti are the gains of the CC controller shown in Figure 5.1. 

  

Figure 5.1: Block Diagram of P-PI Cascaded Controller with Velocity and Acceleration 
Feed-Forward 

From the block diagram of Figure 5.1, the closed-loop dynamics of the CC is found in a 

similar form as in the DADSC: 

11 11

( ) ( 1)11 ( ) ( )ˆ ˆ( ) ( 1)
v

d v
vd d

s k s k K TR R
F k e k

g K Tg Q g RQ g RF k F k

⎛ ⎞−⎧ ⎫ ⎧ ⎫ − ⎧ ⎫⎡ ⎤ ⎧ ⎫⎪ ⎪ ⎪ ⎪= + +⎜ ⎟⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥⎜ ⎟′′ ′ ′′ ′ −−+ −⎪ ⎪ ⎪ ⎪⎣ ⎦ ⎩ ⎭ ⎩ ⎭⎩ ⎭ ⎩ ⎭⎝ ⎠
 

 
(5.9) 

where 1 1
11 ;  p i pQ m K T g T K T− −′ ′= + = . 

5.2.4 Theoretical Comparison of CC, ASMC and DADSC 

Comparing the dynamics of the CC (Eq.(5.9)) to those of the ASMC (Eq.(5.8)) and 

DADSC (Eq.(5.6)), it is observed that the velocity error term, ev(k), is not completely 

cancelled out of the closed-loop dynamics of the CC. The presence of ev(k) in the CC’s 

closed-loop dynamics introduces errors in both its sliding surface (s(k)) and its estimated 

disturbance force ( ˆ ( )dF k ).   

Furthermore, it is observed that the cross-coupling term 2 1g Q g− in the DADSC’s 

dynamics is replaced by –g1 in both the ASMC and CC. This means that in the latter two 
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controllers, the disturbance estimation ˆ ( )dF k  cannot be decoupled from the equivalent sliding 

surface s(k) except if the disturbance estimation is turned off (i.e. g1 = 0). 

 For the purpose of analytical comparison, it is assumed that the drive is ideal and well 

represented by Eq.(5.2). Under this assumption, the drive position tracking transfer function 

(TF), x(z)/xr(z), is unity for all three controllers. However, the disturbance transfer function, 

x(z)/Fd(z), for the three controllers is given by: 

( )
( ) ( ) ( )( ) ( )( )

2 2

2
1 2 3 4 5 3

1( )
( ) 1 1 1 1 1d

T z zx z
F z m z r z r Tz z r z Tz r z r r z

−
=

− − + − − + − −
 

 

(5.10) 

The coefficients r1 to r5 for the CC, ASMC and DADSC are summarized in Table 5.1.  

Coefficient CC ASMC DADSC  
r1 1 λT+1 λT+1 
r2 Kp mK mK 
r3 KvT+1 λT+1 λT+1 
r4 KpT/Ti g1 g1 
r5 0 0 Q-1r4 

Table 5.1: Definition of Coefficients of Disturbance Transfer Function (Eq.(5.10)) for 
the CC, ASMC and DADSC 

First, to investigate the difference between the CC and the two sliding mode controllers 

as a result of the uncancelled ev(k) term in the CC, the disturbance adaptation gain, r4, is set 

to zero. The feedback gain, r2, is then increased steadily while keeping the other parameters 

constant. As r2 is increased, the poles of the disturbance TF of the CC begin to leave the real 

axes (in other words they become under-damped), see Figure 5.2(a). However, no matter 

how much r2 is increased, the disturbance TF poles of the two SMCs remain over-damped 

and never leave the real-axis. As seen from the disturbance Bode plot (Figure 5.2(b)) this 

makes the CC more susceptible to disturbances than the two SMCs. 
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Figure 5.2: Pole Map and Bode Magnitude Plot of Disturbance Transfer Function of the 
CC, ASMC and DADSC Showing Adverse Effect of Uncancelled Velocity Error Term 

(ev(k)) on the Dynamics of the CC 
Next, the influence of decoupling the disturbance estimation from the sliding surface in 

DADSC is investigated by keeping r1, r2 and r3 constant while the disturbance adaptation 

gain, r4, is increased steadily. This time it is observed that the disturbance TF poles of the 

ASMC also leave the real axes while those of the DADSC remain over-damped no matter 

how high r4 is set (Figure 5.3(a)). This makes the DADSC to have the greatest resistance to 

disturbances compared to the ASMC and the CC as shown in Figure 5.3(b). 

  

Figure 5.3: Pole Map and Bode Magnitude Plot of Disturbance Transfer Function of the 
CC, ASMC and DADSC Showing Adverse Effect of Coupled Sliding Surface and 

Disturbance Estimation on the Dynamics of the CC and ASMC 
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5.3 Disturbance Recovery and its Application to Active Vibration Control 

Although the DADSC has better disturbance rejection than the ASMC and CC, it has a 

gain-dependent bandwidth which is often too low to be useful for practical purposes. 

Therefore, its disturbance estimation property is improved using the disturbance recovery 

(DR) algorithm presented here. The ‘true’ disturbance force ( )dF k  is extracted from Eq.(5.6) 

and expressed as a function of the estimated disturbance ˆ ( )dF k  as: 

( ) ( )1 2 1
1

1 ˆ ˆ( ) ( ) ( 1) ( 1)

0
d d dF k Q g R F k g Q g s k QF k

g R

⎛ ⎞
⎜ ⎟= + − − − − −⎜ ⎟
⎜ ⎟
⎝ ⎠
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(5.11) 

The coefficient of s(k-1) is zero in the DADSC because 1
2 1g Q g−= . Since the ‘true’ 

disturbance here is not exactly the same as the actual one due to factors like modeling errors, 

it is called the ‘recovered’ disturbance, FdR, in this thesis. The transfer function that recovers 

the disturbance from the estimated one is evaluated from Eq.(5.11) as: 

1

1

( ) ( )
ˆ ( )
dR

d

F z Q g R z Q
g RzF z

+ −
=  

 
(5.12) 

This disturbance recovery transfer function essentially converts the low-bandwidth and 

controller gain-dependent disturbance force estimate of the DADSC ( ˆ ( )dF k ) to a higher-

bandwidth disturbance force (FdR(k)) which is theoretically gain-independent. Consequently, 

FdR is more useful in practical feed drive applications, such as cutting force prediction from 

linear motor current and active vibration control of machine tool structural modes. 

Low-frequency modes originate from the vibration of large components of machine tools 

such as columns and beds. Their resonance frequency is usually less than 100 [Hz] and they 

may be excited during high accelerations or machining at low speeds [17]. The DADSC with 

disturbance recovery can be used to actively compensate such low-frequency modes as 

shown in Figure 5.4. The transfer function Gm(s) of the machine tool’s structural mode must 

be measured and its parameters must be identified – which is a relatively straightforward 

procedure in practice. Then, the discrete-time equivalent of Gm(s) is generated as Gm(z). By 

applying the recovered disturbance FdR(z) to Gm(z), the predicted machine tool vibrations, 
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xm_comp(z), are computed and added to the reference command sent to the controller (i.e. feed-

forward compensation). As the machine tries to follow this modified reference command, it 

indirectly reduces the relative vibration between the tool and workpiece, xtcp(s), thereby 

improving the dynamic stiffness of the machining process and the surface quality of the 

machined part. This strategy makes it possible to achieve a robust feed drive controller with 

high bandwidth and strong cutting force disturbance rejection ability, while reducing the 

machine tool vibrations during low speed metal cutting using the same linear motor. 

  

Figure 5.4: Block Diagram of Proposed Active Damping Technique for Low-Frequency 
Machine Tool Structural Modes using the DADSC with Disturbance Recovery 

5.4 Experimental Validation 

A high speed Siemens direct drive test bed shown in Figure 5.5 is used for evaluating the 

performance of the control and disturbance force prediction presented in this article. All the 

control algorithms have been applied to the main slider which can achieve speeds of up to 

200 [m/min]. The open-loop Bode magnitude plot of the drive from motor force (Fm) to table 

position (x) is shown in Figure 5.6. As seen from the plot, the drive’s behavior is dominated 

by rigid-body dynamics until about 400 [Hz] where a resonant is observed. Experimental 

modal analysis conducted on the table reveals that the mode observed at about 400 [Hz] is a 

yaw mode originating from the guideway joint of the table (similar to Mode 3 of the ball 

screw drive – see Figure 3.21). As discussed in Section 3.4, such guideway modes can easily 

be pushed out of the frequency range of interest by adding stiffness to the guideway joint. 

Therefore, only the rigid-body dynamics of the drive is considered for the linear drive. The 
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moving mass and viscous damping constant of the drive are identified from time-domain data 

(using the method of Section 3.5.5) as m = 31 [kg] and b = 52.5 [kg/s]. 

 

 

 

Figure 5.5: Single-Axis High Speed Direct Drive Test Bed 
 

 

 

Figure 5.6: Disturbance Bode Magnitude Plot of Open-loop Dynamics of Direct Drive 
Test Bed (i.e. from Force applied to Table to Displacement Measured from Table) 
All three controllers discussed in Section 5.2 are implemented using dSPACE® at a 

sampling frequency of T = 62.5 [μs]. The parameters for each of the controllers are 

summarized in Table 5.2. 

Controllers  Parameters 
CC ASMC DADSC  

Kv [1/s] 600 N/A N/A 
Kp [kg/s] 30,000 N/A N/A 
Ti [ms] 7.5 N/A N/A 
λ [1/s] N/A 300 300 
K [1/s] N/A 500 500 

g1 [kg/s] N/A 500 20,000 

Table 5.2: Controller Parameters used in Experiments for the CC, ASMC and DADSC 
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5.4.1 Tracking Tests 

Figure 5.7 shows the closed-loop tracking Bode plot for the three controllers. The 

controllers have all been tuned to have very high closed-loop bandwidths (greater than 100 

[Hz]). Consequently, they have a large resonance (resulting from the controller dynamics) at 

around 110 [Hz]. However, since the reference input for the controller is generated internally 

in the CNC (computer numerical controller), it can easily be adjusted or shaped to prevent it 

from exciting such resonance dynamics [37][45][81]. 

To demonstrate the tracking performance of the controllers in time-domain, a finite-jerk 

feed motion (similar to the one shown in Figure 4.6) with 350 [mm] displacement, 1800 

[mm/s] velocity, 1.5 [g] acceleration and 200,000 [mm/s3] jerk is used as a reference position 

command for the table. Figure 5.8 shows the reference position command, reference tracking 

errors and motor force of the DADSC. The results of the other two controllers are omitted 

because, for the most part, there is no significant difference between the DADSC and the 

other two in terms of tracking (as also deduced from the Bode Plot of Figure 5.7). All three 

controllers have a maximum tracking error of about 6 [μm] during the entire motion. 

 

 

 

Figure 5.7: Reference Tracking Bode Plots (x(z)/xr(z)) for the CC, ASMC and DADSC 
The only difference between the responses of the three controllers is that, in the 

DADSC, when the table reaches the commanded position, it begins to oscillate wildly and so 



 

 112

does not settle to the desired position. One of the methods of dealing with this problem, as 

suggested in [45], is to schedule the disturbance adaptation gain, g1, of the DADSC as a 

function of reference velocity. The idea is to keep g1 low when the reference velocity is high 

(i.e. during rapid traverse) so that its high frequency content does not excite the resonance 

dynamics of the controller, and then increase the gains proportionately as the table 

approaches the desired position and the reference velocity decreases. In this particular case 

the gains have been scheduled linearly from g1 = 2,500 [kg/s] when the velocity is highest 

(i.e. 1800 [mm/s]) to g1 = 20,000 [kg/s] when the velocity lowest (i.e. 0 [mm/s]). As seen 

from Figure 5.8, the gain-scheduled DADSC settles nicely when compared to the 

unscheduled one. 

  

Figure 5.8: Reference Command, Tracking Error and Motor Force of DADSC with and 
without Gain Scheduling 

5.4.2 Disturbance Rejection Tests 

The same 110 [Hz] controller resonance dynamics that is seen in the tracking transfer 

function also shows up in the disturbance transfer function, as shown in the disturbance Bode 

plot of the controllers (Figure 5.9). However, in agreement with the theoretical findings of 
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Section 5.2.4, the DADSC shows the best performance in terms of disturbance suppression 

(Figure 5.9). The peak magnitude of the disturbance Bode plot is 0.18 [μm/N] for the CC, 

0.14 [μm/N] for the ASMC and 0.1 [μm/N] for the DADSC. In other words, the dynamic 

stiffness of the linear drive is 5.6 [N/μm], 7.1 [N/μm] and 10 [N/μm], respectively for the 

CC, ASMC and DADSC. This means that the DADSC has a 140 [%] and 178 [%] 

improvement in dynamics stiffness over the ASMC and CC, respectively. 

The improved disturbance rejection capability of the DADSC is also reflected in the 

result of the step disturbance test (snap-the-rope test) shown in Figure 5.10. It can be 

observed that the DADSC has the least peak displacement (9.2 [μm]) of the table due to the 

applied 200 [N] step disturbance force and also its vibrations die out fastest. The same 

disturbance force produces a peak table displacement of 10.8 [μm] and 15 [μm], respectively 

when the CC and ASMC are used to control the linear drive. 

 

 

 

Figure 5.9: Disturbance Bode Plots (x(z)/Fd(z)) for the CC, ASMC and DADSC 
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Figure 5.10: Table Displacement and Control Force for the CC, ASMC and DADSC in 
Step Disturbance Test (Snap-the-Rope Test) 

5.4.3 Disturbance Force Estimation and Suppression of Machine Tool Structural Modes 

The advantage of disturbance recovery is demonstrated by applying an external force 

(Fd), via equivalent current, to the direct drive during frequency response measurements. The 

frequency response of estimated ( d̂F ) and recovered (FdR) disturbance forces against the 

applied external force (Fd) are shown in Figure 5.11 (a) and (b). It is shown that as the 

disturbance adaptation gain (g1) decreases, the bandwidth of the estimated disturbance force 

( d̂F ) drops while the bandwidth of the recovered disturbance force (FdR) remains relatively 

constant and consistently higher than that of d̂F . A sample comparison of predicted and 

measured external forces is given in Figure 5.11 (c) and (d). It demonstrates the effectiveness 

of the proposed controller to predict cutting forces within the bandwidth of the drive. 
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Figure 5.11: Comparison of DADSC Estimated Force ( ˆ
dF ) with Recovered Force (FdR) 

for High and Low Adaptation Gains 
The experimental test bed (Figure 5.5) does not have any significant low-frequency 

structural modes to demonstrate the active damping feature of the proposed controller. 

Therefore, the use of recovered disturbance forces for compensating machine tool vibrations 

is demonstrated using a simulated low frequency structural mode (Gm(s)) between the tool tip 

displacement and external force applied to the tool tip by the table. It is given by: 
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(5.13) 

where the natural frequency is ωn = 308 [rad/s] (49 [Hz]), damping ratio ζ = 3 [%] and modal 

stiffness is ks = 20 [N/μm]. The external forces are exerted on the structure (Eq.(5.13)) and 

the resulting displacements xm(s) are used to calculate the relative displacement between tool 

and workpiece, xtcp(s). Similarly, Gm(z) in Figure 5.4 is obtained by converting Eq.(5.13) to 

discrete-time domain using a zero-order hold equivalent. It can be seen from the frequency 

response function between the tool tip vibration and external force that the dynamic stiffness 

of the machine tool’s structural mode is improved significantly (Figure 5.12). The recovered 
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disturbance (FdR) is used to effectively damp out the mode at 49 [Hz] by attenuating the 

dynamic flexibility from 0.70 [μm/N] to 0.22 [μm/N], leading to a 320 [%] increase in the 

dynamic stiffness of the machine tool, hence its capability to have the same amount of higher 

chatter-free depth of cut. However, the use of the estimated disturbance force ( d̂F ) in active 

damping is hardly effective, which indicates the importance of estimating the cutting and 

inertial forces accurately. It must be noted here that the time delay between the vibration 

measurement and control action must be minimum to avoid the large delay. The control 

frequency was 16,000 [Hz], which is more than 100 times higher than low frequency modes 

of the machines used in practice.   

 

 

 

Figure 5.12: Bode Plot of Transfer Function between Tool and Workpiece (xtcp(s)/Fd(s)) 
– Uncompensated, Compensated using ˆ

dF  and Compensated using FdR. g1 = 2,500 [kg/s] 

5.5 Summary 

This chapter has demonstrated improvement of the dynamic stiffness of direct-driven 

machine tools using a combination of two techniques. The first technique involves designing 

a disturbance adaptive sliding mode controller (DADSC) which is shown (theoretically and 

experimentally) to improve the disturbance rejection capability of the controller compared to 

similar controllers (i.e. the adaptive sliding mode controller and the cascaded controller). The 

DADSC achieves this improvement in disturbance rejection, without sacrificing the 
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bandwidth of the controlled drive, by decoupling disturbance estimation from the sliding 

surface dynamics. True disturbance recovery has also been introduced as a means of 

achieving better estimation of cutting forces applied to the direct drive. Using the recovered 

cutting force disturbances, a feed-forward technique is used to predict and cancel out the 

low-frequency machine tool structural vibrations that are induced during cutting operations. 

Consequently, the dynamic stiffness between the tool and workpiece is further improved. 
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Chapter 6 

Workpiece Mass Estimation in the Presence of Cutting Force Disturbances 

6.1 Overview 

The mass of the table was assumed to be constant while designing controllers for 

flexible ball screw drives and direct drives in the previous two chapters. However, the mass 

of the workpiece, which could initially be up to two or three times the mass of the table, 

changes significantly as material is removed during high speed cutting operations. 

Consequently, the total mass of the table could vary by more than a hundred percent within a 

short period of time. The situation is further complicated by the fact that the rate of mass 

change cannot be easily predicted because it depends on many factors which must be known 

or measured for each tool, workpiece, machine tool and cutting process combination. 

This chapter investigates the effects of the workpiece mass variation on the dynamics of 

flexible ball screw and direct drives and then proposes a method for estimating the table mass 

(including the mass of the workpiece) in a way that does not interrupt the cutting process. 

The estimated table mass can be used to improve the dynamic performance of flexible ball 

screw and direct drives by updating their table-mass-dependent controller parameters as the 

cutting operation progresses. 

6.2 Effects of Table Mass Variation on Dynamics of Feed Drives 

6.2.1 Flexible Ball Screw Drives 

Generally, rigid ball screw drives are not very sensitive to workpiece inertia variation 

due to the gear reduction ratio of the ball screw mechanism. Mathematically, if the mass of 

the table changes by an amount Δmt, the corresponding change in equivalent inertia of the 

drive, ΔJeq, is: 

2
eq g tJ r mΔ = Δ  

 

(6.1) 

where rg is the constant defined in Eq.(3.13). For a typical ball screw drive, rg<<1 so the 

effect of Δmt on ΔJeq is greatly reduced.  
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However, in flexible ball screw drives, the natural frequencies and amplitudes of crucial 

resonant modes are significantly affected by the variation of table mass. The influence of 

table mass variation on the axial-torsional-lateral mode (i.e. Mode 1) of the ball screw drive 

test bed (described in Chapter 3) is shown in Figure 6.1. 

 

 

 

Figure 6.1: (a) FRF between Torque Applied to Motor and Displacement Measured at 
Table Positioned at X = 30 [mm]  (b) Variation of Mode 1’s Natural Frequency and 

Table Vibration Amplitude as a Function of Table Position for Three Values of Table 
Mass. Experiments Performed on Ball Screw Drive Test Bed 

Figure 6.1(a) shows that, as the table mass increases, the natural frequency and 

amplitude of Mode 1 decrease steadily. Figure 6.1(b) indicates that Mode 1’s natural 

frequency decreases with increasing mass at each position of the table within its travel range. 

Also, it demonstrates that the effect of table mass on the natural frequency of Mode 1 is at 

least as significant as the effect of table position (X). However, the effect of table mass on 

Mode 1’s amplitude is not uniform at every position. This is because the locations of the dips 

in amplitude (due to the bending of the ball screw – see Chapter 3) also vary as the table’s 

mass changes. Nevertheless, the general trend is that the amplitude of the table’s vibration 

decreases as the mass of the table increases. 

The effect table mass variation on the parameters of the drive (identified using the 

method presented in Section 3.5) is shown in Figure 6.2. As expected the changes in table 

mass are reflected mainly on m11, which is in agreement with theoretical findings [79]. m12, 

m22 and k are affected by the table mass change to a much lesser degree. It is observed from 
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experiments that the modal damping ratio (ζ) of Mode 1 does not change significantly due to 

the increase in table mass. However, the damping coefficients (c11, c12 and c22) are affected 

indirectly by the influence of m11 on the natural frequency (ωn) and mode shape matrix, U. 

The relationship among the damping coefficients, ωn, ζ and U is expressed in Eq.(3.49). 

  

Figure 6.2: Effects of Table Mass Variation on the Identified Parameters of the Ball 
Screw Drive Test Bed 

Figure 6.3 shows the closed-loop tracking FRFs for the original and modified 

MCDADSC+MTEF (introduced in Chapter 4) under the influence of mass variation. Both 

sets of FRFs are generated with the table located at X=30 [mm]. The two controllers are 

designed using mass, damping and stiffness matrices identified for X=30 [mm] and mt = 20 

[kg] 
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Figure 6.3: Effect of Mass Variation on Closed-loop Tracking FRF (x1/x1r or z1/z1r) of 
Ball Screw Drive Test Bed Controlled using (a) Original MCDADSC+MTEF (b) 

Modified MCDADSC+MTEF. Controllers Designed for mt = 20 [kg] and X = 30 [mm]. 
Table is located at X = 30 [mm] 

Figure 6.3(a) indicates that the peak amplitude of Mode 1 increases from 4.5 [dB] (for mt 

= 20 [kg]) to 6.5 [dB] for mt = 29 [kg]. Consequently, the usable frequency range of the 

controlled drive (based on the +3 [dB] crossing) reduces from 142 [Hz] to 116 [Hz]. 

Similarly, for the modified MCDADSC+MTEF, the peak amplitude of Mode 1 increases 

from –3 [dB] (for mt = 20 [kg]) to 5 [dB] for mt = 29 [kg]. The result is that the +3 [dB] 

crossing drops from 269 [Hz] to 158 [Hz]. However, the dip in amplitude at about 115 [Hz]   

(see Section 4.5.3 for explanation) reduces from –7 [dB] (for mt = 20 [kg]) to –5 [dB] for mt 

= 29 [kg] due to the increased gain brought about by the extra mass. 

6.2.2 Direct Drives 

Unlike ball screw drives, direct drives do not have any gear reduction ratio; therefore 

they “feel” the full impact of every change in the mass of the table even when they are rigid. 

Increase in the mass of the table has the effect of reducing the bandwidth of the drive as 

depicted in the reference tracking FRF – x/xr (which is the same as the disturbance recovery 

FRF – FdR/Fd) as shown in Figure 6.4. 
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Figure 6.4: Effect of Mass Variation on Closed-loop Tracking FRF - x/xr (same as 
Disturbance Recovery FRF - FdR/Fd) of Siemens Direct Drive Test Bed Controlled using 

a DADSC Designed for mt = 31 [kg]. g1 = 2,500 [kg/s] 
It is observed from Figure 6.4 that the bandwidth of reference tracking/disturbance 

recovery FRF of the Siemens direct drive test bed (see Figure Figure 5.5) drops from 104 

[Hz] (for mt = 31 [kg]) to 52 [Hz] for mt = 68.5 [kg]. This 50 [%] drop in bandwidth is due to 

the parameter mismatch caused by the variation of table mass. 

6.3 Estimation of Table Mass during Cutting Operations 

The foregoing section has shown that changes in the mass of the table have a significant 

impact on the closed-loop performance of flexible ball screw and direct drives. This loss of 

performance due to mass variation can be mitigated by updating the table-mass-dependent 

parameters of the controllers as a function of the table mass, similar to the table-position-

dependent gain scheduling described for ball screw drives in Section 4.4.  

However, unlike the position of the table in ball screw drives, accurately measuring the 

mass of the table during metal cutting operations is not a trivial procedure. This is because 

embedding weighing scales into machine tool feed drives is costly and the weight readings 

are likely to be distorted by cutting forces acting in the direction of the weight measurements. 
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Furthermore, since most weighing scales work on measuring some sort of compliance, they 

are likely to reduce the dynamic stiffness of the machine tool. Another option is to calculate 

the removed material from information about the cutter, workpiece and cutting operation. 

Such calculations are advanced topics of research in the computer-aided design (CAD) field 

([7][8][31]). The problem, however, is that the information needed for such calculations are 

not readily available in the commands sent to the computer numeric control (CNC) unit 

which is responsible for machine tool feed drive control.  

As explained in Chapter 2, various methods have been proposed for observing or 

estimating the mass of the table using the equations of motion governing the drive [9][12] 

[24][47]. However, none of these methods are effective when the disturbance forces and 

workpiece mass are both unknown and time varying at fast rates.  

Here, a method for estimating the workpiece mass in the presence of unknown periodic 

cutting forces is proposed. 

6.3.1 Theoretical Basis 

The workpiece identification method proposed in this chapter is based on two theoretical 

premises. Firstly, most single-point or multi-point machining operations are periodic at 

spindle frequency, fsp (or tooth-passing frequency which is an integer multiple of fsp) [4].  

This means that, as shown in Figure 6.5, their frequency spectrum is dominated by harmonics 

at integer multiples of fsp. It also means that the portions in between these harmonics are 

zero-force pockets (i.e. the cutting force can be considered equal to zero in the regions 

between the harmonics). Identifying the mass of the workpiece in these zero-force pockets 

theoretically ensures that the effects of the unknown cutting forces on the estimated mass are 

eliminated.  
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Figure 6.5: Cutting Forces Periodic at Spindle or Tooth Passing Frequency in both 
Time and Frequency Domain. The Transformation from Time to Frequency Domain is 

obtained using the Fast Fourier Transform (FFT) 
Secondly, the low-frequency dynamics of both flexible ball screw drives and direct 

drives is dominated by the rigid-body dynamics of the drive which can be represented by the 

transfer function: 

( ) 1( )
( )r

m r r

vG
F M j B
ωω
ω ω

= =
+

 
 

(6.2) 

where Mr and Br are the equivalent mass and viscous damping constants of the drive. Gr(ω) is 

the transfer function from the force applied to the drive’s motor (Fm) to the velocity (v) of 

table. If Br is assumed to be constant then, as Mr increases (due to increases in table mass), 

the magnitude of Gr(ω) decreases monotonically at all frequencies (see Figure 6.6).  

Based on these two premises, the proposed method estimates the drive’s mass (Mr) by 

tracking the changes in the amplitude of v(ω) per unit force applied to the drive within the 

zero-force frequency range(s) governed by the rigid body dynamics of the drive (i.e. 

Eq.(6.2)). A block diagram of the proposed method is shown in Figure 6.7. 

 



 

 125

 

 

 

 

Figure 6.6: Monotonic Decrease in Magnitude of Gr(ω) as Mass of Table Increases 
 

 

 

 

Figure 6.7: Block Diagram of Frequency Spectrum-Based Mass Estimation 
 

As shown in the block diagram, the velocity (v) of the real feed drive which is subject to 

motor force commands (Fm), unknown cutting forces and workpiece mass variations is 

measured. An approximation of v (i.e. v̂ ) is also calculated by applying the motor force, Fm, 

measured from the real drive, to the approximated rigid body model of the drive (i.e. Eq.(6.2) 

with the estimated mass of the drive, ˆ
rM , substituted in place of Mr). v contains the influence 

the workpiece mass variations while v̂  does not. In order to calculate the FFTs of v and v̂ , 

Nfft discrete samples of both velocities are stored in a buffer; where Nfft = 2n and n is an 

integer. A window function is then applied to the buffered velocities to reduce the effects of 

spectral leakage when their FFTs are taken. The Blackman window (WBM) is preferred for the 
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windowing operation because it results in the least amount of spectral leakage in the 

frequency domain. Its expression is given by [53]: 

2 ( 1) 4 ( 1)( ) 0.42 0.5cos 0.08cos ,    1
1 1BM fft

fft fft

k kW k k N
N N
π π⎛ ⎞ ⎛ ⎞− −

= − + ≤ ≤⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
 

 

(6.3) 

If the feed drive has linear dynamics, the magnitude of the FFT of v (i.e. v(ω)) will be 

dominated by harmonics at integer multiples of the spindle frequency (fsp) due to the 

influence of the unknown cutting forces. ˆ( )v ω  may also contain some harmonics of the 

unknown cutting forces due to the efforts of the controller to cancel them out using Fm, but 

the amplitude of the harmonics in v(ω) and ˆ( )v ω  will be different. Furthermore, both v(ω) 

and ˆ( )v ω  will contain frequency contents of the reference velocity command, rx& . To 

eliminate the portions of v(ω) and ˆ( )v ω  that contain the unknown cutting force harmonics, fsp 

(which is available to the CNC) is used to select the zero-force pockets from the FFTs of 

both velocities. The selection blocks also make sure that only the low-frequency range of the 

FFTs (which agrees with the model of Eq.(6.2)) is selected. In addition, to reduce the effects 

of sensor noise on the estimation, the selection blocks focus on the frequency regions that 

contain useful information (i.e. regions where the FFT of the reference velocity is non-zero). 

If the reference velocity does not have a rich enough frequency spectrum, it can be 

augmented by introducing a small reference velocity signal within the selected frequency 

range. Based on Figure 6.7, if the actual mass of the drive (Mr) is greater than the estimated 

mass ( ˆ
rM ), then the amplitude of v(ω) will be less than that of ˆ( )v ω throughout the selected 

frequency range. The situation is reversed if Mr is less than ˆ
rM . Consequently, the mean 

values ( avgv and ˆavgv ) of the respective amplitudes of v(ω) and ˆ( )v ω  are taken and used to 

calculate a normalized error (en) given by: 
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(6.4) 

where ε is a small positive number which ensures that the denominator of Eq.(6.4) does not 

vanish when the signals are equal to zero. en in Eq.(6.4) is defined such that its typical values 
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range between -1 and 1. en>0 indicates that the mass of the actual drive is greater than that of 

the model while en<0 indicates the opposite situation. During each cycle, the value of en is 

scaled by a gain Kn and is used to calculate the incremental mass ( ˆ
rMΔ ) which must be 

added to (or subtracted from) the estimated mass of the model ( ˆ
rM ) in order to make en 

equal to zero. The rate of change of ˆ
rM  can be controlled by placing a limit on the value 

of ˆ
rMΔ calculated per cycle. When ˆ

rM  is judged to have converged (based on a pre-

determined criterion e.g. the value of en) it can be used to update the table-mass-dependent 

parameters in the controller so as to improve the performance of the feed drive. 

6.3.2 Simulation Results 

To demonstrate the potential of the mass estimation method presented in the preceding 

section, a simulation test consisting of high speed cutting of an aluminum alloy is conducted. 

The feed drive as assumed to be the Siemens direct drive test bed in Chapter 5 and the 

DADSC, whose parameters are given in Table 5.2, is used to control the drive. The specifics 

of the cutting operation are summarized in Table 6.1. 

Material is removed from the workpiece by milling it in back and forth motions using 

the finite-jerk feed trajectory of Figure 4.6 with a 350 [mm] stroke (i.e. the length of the 

workpiece), 400 [mm/s] velocity, 1.5 [g] acceleration and 1,000,000 [mm/s3] jerk. The 

cutting process is simulated using a milling simulation software [20] and the cutting forces in 

the direction of motion are obtained as shown in Figure 6.8. 

The mass estimation method described in the previous section is implemented in 

MATLAB Simulink® using a sampling interval of T = 62.5 [µs]. The mass estimation 

parameters used for the simulation are summarized in Table 6.2. 
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Parameter Value 

Workpiece Material Al 7075 

Tool Type/Material 4-Fluted Helical Endmill/Carbide 

Tool Diameter  20 [mm] 

Tool Helix Angle 30 [deg] 

Spindle Speed 20000 [rpm] 

Feed per tooth 0.3 [mm/flute] 

Axial Depth of Cut 10 [mm] 

Milling type Half Immersion Up Milling 

Initial Mass of Workpiece 53.2 [kg] 

Final Mass of Workpiece  10 [kg] 

Total Volume of Material Removed 16,000 [cm3] 

Metal Removal Rate 40 [cm3/s]  

Table 6.1: Specifics of Cutting Operation Used in Simulation Test 
 

 

 

 

 

Figure 6.8: Cutting Forces Applied To Drive in Direction of Motion 
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Parameter Value 

 Nfft 131,072 (i.e. 8.19 [s]) 

fsp  333 [Hz] 

ε 1x10-6 

Estimation Rate Limits ±5 [kg] 

Mr0 31 [kg] 

Table 6.2: Parameters used for Mass Estimation in Simulation Test 
Figure 6.9 shows the result of the mass estimation. When the workpiece is loaded onto 

the table, the total drive mass (i.e. table+workpiece) is 84.2 [kg]. As the cutting operation 

progresses, this drive mass is reduced at an average rate of 0.108 [kg/s]. After 400 [s], the 

final mass of the table and workpiece (i.e. 41 [kg]) is reached. The mass estimator is 

initialized at 31 [kg] (i.e. the mass of the table without any workpiece). The estimated mass 

increases gradually until it reaches the actual mass of the table and then it continues tracking 

the actual mass as it gradually decreases. There is a small steady-state error of about 3 [kg] in 

tracking the actual mass. This error is attributed to errors in computing the FFT (e.g. spectral 

leakage) and also to the minimal amount of white noise introduced into the “measured” 

velocity signal. The estimated mass is used to update the controller only when the normalized 

error, en, has dropped below a pre-specified value. In this case, en<0.1 is used as the 

convergence criterion. This convergence criterion is satisfied at t = 106 [s]. 

To demonstrate the benefits of updating the controller with mass estimates, in Figure 

6.10, the reference tracking Bode plot of the controlled drive is shown for the three points 

marked in Figure 6.9 (i.e. t = 150 [s], t = 250 [s] and t = 350 [s]). One set of plots represents 

the case where there is no mass update applied to the controllers (i.e. the mass of 31 [kg] is 

kept constant throughout the simulation). In the second set of plots, the controller is updated 

using the estimated mass. The Bode plots show that when mass updates are applied to the 

controller, the tracking bandwidth is consistently high and does not change much as the 

actual table mass changes. Conversely, when mass updates are not applied to the controller, 

the bandwidth of the drive deteriorates with increasing table mass, as formerly seen in Figure 

6.4. 



 

 130

 

 

 

 

Figure 6.9: Actual Mass, Estimated Mass and Estimated Mass Applied to the Controller 
using Proposed Mass Estimation Method 

 

 

 

 

Figure 6.10: Reference Tracking Bode Plots (x/xr) for Controller without Mass Updates 
and Controller with Mass Updates at the Three Points Marked on Figure 6.9 

6.4 Summary 

In this chapter, the effects of workpiece mass change on the dynamics of flexible ball 

screw and direct drives has been studied. It has been shown using experiments that the 

dynamic performance of both types of feed drives deteriorates as a result of changes in the 

mass of the workpiece mounted on to the table. A method for accurately estimating the 

changes in workpiece mass during metal cutting operations has been proposed. The proposed 
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method assumes that the cutting process is periodic at spindle frequency and that the low-

frequency characteristics of the drive is governed by rigid-body dynamics. This allows the 

mass of the workpiece to be estimated accurately in frequency domain even in the presence 

of unknown cutting force disturbances. The potentials of the mass estimation method put 

forward in this chapter have been demonstrated using a simulation test. 
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Chapter 7 

Conclusions 

7.1 Conclusions 

Modeling, parameter identification, high-bandwidth control and online parameter 

estimation techniques addressing key problems encountered in the utilization of ball screw 

and direct drives in high speed machine tools are proposed in this thesis.  

Analytical modeling using finite element methods is carried out to gain a deeper 

understanding of the structural dynamics behavior of high speed ball screw drives. The 

information obtained from the finite element model, together with the results of experimental 

tests on a single-axis ball screw drive test bed, is used to pinpoint the most critical vibration 

mode that limits high bandwidth control of ball screw drives. The parameters of the drive are 

accurately identified and then used to design mode-compensating controllers which 

effectively suppress the critical vibration mode of ball screw drives thereby achieving high-

bandwidth control.  

For linear motor direct drives, a rigid body dynamics-based sliding mode controller is 

designed to achieve high dynamic stiffness without sacrificing the tracking performance of 

the drive. The dynamic stiffness of direct drives is further improved by actively canceling out 

low-frequency machine tool vibrations based on a high bandwidth disturbance force 

estimation method.  

Finally, for both ball screw and direct drives, online estimation of the changing mass of 

the workpiece during machining operations with periodic cutting forces is presented. 

The contributions of this thesis are summarized as follows: 

• A new stiffness matrix, based on rigid ball screw assumptions, is derived for connecting 

the distributed finite element representation of the screw to a lumped-mass 

representation of the nut in hybrid models of ball screw drives. This new screw-nut 

interface stiffness matrix is shown analytically and experimentally to predict the 

coupling between axial, torsional and lateral dynamics in ball screw drives equipped 
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with short nuts. The effect of the dynamic coupling on the positioning of the table is also 

demonstrated with experimental proof.  

• A screw-nut interface model which considers the deformations of the ball screw within 

the nut using the Timoshenko beam shape function matrix is developed for modeling 

ball screw drives with long nuts. A simulation study is used to demonstrate the potential 

merits of the shape function-based screw-nut interface model over the rigid ball screw-

based model for ball screws with long nuts.  

• A simple and accurate least squares-based parameter identification technique is 

introduced for identifying the mass, damping and stiffness matrices of flexible ball screw 

drives based on measured frequency response function data. Its effectiveness is verified 

experimentally. 

• Mode-compensating disturbance adaptive discrete-time sliding mode controllers 

combined with minimum tracking error filters are designed for active suppression of 

structural dynamics and high-bandwidth control of flexible ball screw drives. A method 

for designing the plant-inversion-based minimum tracking error filters even when there 

are non-minimum phase zeros in the identified open-loop dynamics of the drive is 

proposed. The parameters of the designed controller are scheduled in an ad hoc fashion 

to achieve minimum tracking error control in the presence of table position-dependent 

variations in the dynamics of the drive. The effectiveness of the control laws is 

demonstrated numerically and experimentally. 

• A rigid-body dynamics-based disturbance adaptive sliding mode controller is designed 

for linear motor direct drives. This controller is shown, theoretically and experimentally, 

to improve the dynamic stiffness of direct drives compared to the cascaded controller 

and the adaptive sliding mode controller, without any loss in reference tracking 

performance or increase in controller complexity. Disturbance force recovery is also 

introduced as a more accurate way of estimating the cutting forces applied to the drive 

compared to the force estimates obtained directly from the controller. The recovered 

disturbance forces are used to actively cancel out low-frequency vibrations of a 

simulated machine tool thereby further improving the dynamic stiffness of direct-driven 

machines. 
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• A frequency spectrum-based method for online estimation of the changing mass of the 

workpiece during machining operations which are periodic at spindle frequency is put 

forward. The technique exploits the periodicity of the cutting forces and low-frequency 

properties of both ball screw and direct drives to estimate the mass of the workpiece 

without interrupting the cutting operation. The potentials of this technique are 

demonstrated in simulation tests. 

The major contributions of this thesis have been published in journal ([6][57][58]) and  

conference ([55][56]) articles.  

7.2 Future Research Directions 

The potential merits of the shape function-based screw-nut interface model presented in 

this thesis for modeling ball screw drives with long nuts has been demonstrated only in 

simulation tests. It will be useful to conduct experiments on a long-nut ball screw to ascertain 

the validity and significance of the advantages of the shape function-based model over the 

rigid ball screw model observed from simulation results. 

In a similar vein, the practicability of the online mass estimation technique and the active 

vibration cancelation of low-frequency modes of direct-driven machine tools presented in 

this thesis have to be demonstrated experimentally under real cutting conditions. A linear 

drive set-up, equipped with a high speed spindle, is needed for this purpose. 

The ad hoc gain scheduling method presented in Chapter Four, even though effective, 

did not have theoretically guaranteed stability conditions. It will be useful to explore other 

gain scheduling techniques which are effective and have theoretical stability proofs. 

Moreover, it will be interesting to extend the gain scheduling (based on only table position) 

performed in this thesis to one which also incorporates the effects of workpiece mass 

variation in ball screw drives. This will require generating a two-dimensional map for each 

element of the drive’s mass, damping and stiffness matrices as a function of table position 

and workpiece (table) mass. The map can then be used to update the drive parameters based 

on the measured table position and the estimated (or measured) mass of the table. 

Another topic of research which emanates from this thesis is the design of a high-

bandwidth force sensor that can be embedded between the table and nut in ball screw drives. 
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Such a sensor will provide accurate force estimates that can be utilized to achieve better 

disturbance rejection using the minimum tracking error filters designed in this thesis. 

Parallel kinematic machine tools have generated a lot of interest lately because they have 

the potential to be faster, more flexible and more accurate than regular Cartesian machine 

tools. However, quite unlike Cartesian machine tools, they exhibit large rotations; therefore 

their kinematics is non-linear and configuration-dependent. They are actuated using ball 

screws and/or direct drives and so they present new challenges to the modeling and control 

topics tackled in this thesis. 
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Appendix A 

Timoshenko Beam Shape Functions, Current-Frame Rotation Operators 

and Coefficients of MTEF Error Transfer Functions 

A.1 Timoshenko Beam Shape Functions 

The shape function matrix (TBSξ-BSi) which describes the relationship between CSξ and 

the global coordinate systems (CSi-1, CSi and CSi+1) attached to the nodes of the ball screw is 

given in Eq.(3.19). The interpolation functions making up the elements of the shape function 

matrix are all functions of ξ. Their expressions are given as:  
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(A.1) 

Here IElm indicates the second moment of area of the element’s cross section, AElm indicates 

the cross sectional area of the element, E and G respectively represent the Young’s modulus 

and shear modulus of the element while ks is the cross section factor which takes a value of 

9/10 for circular cross sections. 
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A.2 Current Frame Rotation Operators 

The rotation matrix operators used to perform a rotation of a specified angle θ about the 

x, y and z axis of a Cartesian coordinate system are respectively denoted by Rotx(θ), Roty(θ) 

and Rotz(θ). Their expressions are given as: 
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(A.2) 

 

A current-frame rotation operation is one performed such that each subsequent rotation 

is based on the new coordinate system resulting from the preceding rotations. For instance, a 

rotation from a coordinate system (CS1) to another coordinate system (CS2) could involve a 

rotation of α about the x-axis of CS1, then another rotation of β about the y-axis of the new 

intermediate coordinate system resulting from the x-axis rotation. Then the rotation operation 

from CS1 to CS2, T1-2, can be represented by: 

1 2 Rot ( ) Rot ( )x yα β− = ⋅T  (A.3) 

Generally, a rotation operation involving a sequence of current frame rotations from one 

coordinate system to another is performed by multiplying the respective rotation matrices in 

the same sequence as the rotations. 

Another important fact about rotation operations is that a rotation matrix T1-2 from one 

coordinate system CS1 to another CS2 also represents a transformation matrix from CS2 to 

CS1. In order words, a vector expressed in CS2 can be transformed to CS1 by pre-multiplying 

it by T1-2. 
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A.3 Coefficients of MTEF Error Transfer Functions 

The full expressions of the numerator and denominator coefficients of Gez(z) and GeF(z) 

in Eq.(4.28) as functions of r and r* are given below. 
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Appendix B 

Comparison of Rigid Ball Screw and Shape Function-Based Screw-Nut 

Interface Models for Short and Long Nuts 

B.1 Purpose of Study 

This study aims at comparing the performance of the Rigid Ball Screw and Shape 

Function methods presented in Chapter 3 for deriving the screw-nut interface of ball screw 

drives. The Rigid Ball Screw method assumes that the portion of the ball screw within the 

nut translates and rotates as a rigid body while the Shape Function Method considers the 

elastic deformations of the screw within the nut. The formulations for the Rigid Ball Screw 

method are much simpler than those of the Shape Function method. Therefore, it is of 

interest to find out: 

(1) If there exists any significant difference between the predictions of the two 

models in terms of the natural frequency and mode shapes of the ball screw and 

nut assembly; and 

(2) Under what circumstances these differences are likely to occur (if at all they 

do). 

This study is entirely based on simulations and is therefore preliminary to a more 

detailed study including experimental validation. 

B.2 Description of Simulation Test Set-up 

The set-up used for this study (Figure B.1) consists of the ball screw and nut of the test 

bed described in Section 3.4.1. The nut is assumed to be rigidly clamped at a position 150 

[mm] from the left end of the screw while the screw is allowed to freely rotate inside the nut. 

The effective length of the nut (LNut) is considered the variable in the study. Three LNut values 

are considered: LNut = 30 [mm] (which is the length of the actual test bed’s nut), LNut = 60 

[mm] and LNut = 90 [mm]. 
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Figure B.1: Simulation Set-up consisting of Ball Screw attached to Clamped Nut 

B.3 Description of Simulation Test Set-up 

For each LNut value, three frequency response functions (FRF) are simulated: 

(1) Axial FRF between an axial excitation at Point A (see Figure B.1) and axial 

displacement of Point B 

(2) Torsional FRF between a torsional excitation at Point A and torsional 

displacement of Point B 

(3) Lateral FRF between a lateral excitation at Point A and lateral displacement of 

Point B 

The simulated FRFs are shown in Figures B.2, B.3 and B.4 for LNut = 30 [mm], 60 [mm] 

and 90 [mm], respectively. 
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Figure B.2: Simulated FRFs Comparing the Rigid Ball Screw and Shape Function 
Methods for LNut =30 [mm] 

Figure B.3: Simulated FRFs Comparing the Rigid Ball Screw and Shape Function 
Methods for LNut =60 [mm] 
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Figure B.4: Simulated FRFs Comparing the Rigid Ball Screw and Shape Function 
Methods for LNut =90 [mm] 

From the figures it is observed that the two methods give very similar results for both 

axial and torsional modes irrespective of the length of the nut. When the LNut = 30 [mm], 

their predicted lateral FRFs are also very similar. However, as the length of the nut increases, 

significant mismatches in both natural frequency and mode shape (as deduced from the FRF 

amplitude) begin to occur. For instance, when LNut = 90 [mm], there is a difference of about 

70 [Hz] (i.e. 18 [%]) in the prediction of third lateral mode occurring around 400 [Hz]. 

Furthermore, the modes in the lateral FRF predicted by the two methods are out of phase 

with each other. 

Intuitively, the observations made in from the simulated FRFs make a lot of sense. The 

length of the nut is not likely to affect the axial and torsional modes because it does not 

impose a lot of constraint in the axial and torsional directions. Furthermore, the axial and 

torsional modes of the screw are usually much stiffer than the lateral modes. This means that 

there is less likelihood of any significant elastic deformation within the nut in those 

directions. However, length of the nut tends to pose a great deal of constraint on the rotation 

of the screw about the lateral axes. This in turn leads to higher natural frequencies and stiffer 

modes. 
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The effect of the constraint imposed by the longer nuts can be better understood by 

studying the shapes of the screw for the three modes appearing in the simulated lateral FRFs. 

As seen from the composite plot of Figure B.5, when LNut = 30 [mm], the mode shapes 

generated by the two methods are almost identical. However, as LNut increases, the mode 

shapes from the two models begin to differ. The Shape Function method imposes greater 

constraints on the rotation of the screw around the point of attachment of the nut. This is the 

reason for the large discrepancies observed in the lateral FRFs for LNut = 60 [mm] and 90 

[mm]. 

 

Figure B.5: Simulated Shapes of Ball Screw for the Three Modes Observed in the 
Simulated Lateral FRFs 



 

 151

B.4 Conclusion of Study 

This short study has helped to show, through simulations, that there is no significant 

difference between the Rigid Ball Screw and Shape Function methods for modes occurring in 

the axial and torsional directions, irrespective of the length of nut. However, in the lateral 

direction, significant differences in natural frequency and mode shapes begin to arise 

between the predictions of the two models as the length of the nut increases. This is as a 

result of the stricter constraint imposed by the nut on the screw in the Shape Function method 

compared with the Rigid Ball Screw method. Experiments have not been conducted to 

ascertain which of the methods is more accurate for longer nuts but based on sheer intuition, 

the predictions of the Shape Function method seem to be more realistic. A more detailed 

study involving experiments is needed to confirm this hypothesis. One conclusion that can 

however be made from this study is that the two methods give almost identical results for 

short nuts. Therefore, the simpler of the two methods (i.e. the Rigid Ball Screw method) is 

better for use with short nuts, as in the case of the test bed of Chapter 3.  
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