
MCCA

A Communication Architecture for Online Multiplayer
Games

by

Armin Bahramshahry

B.A.Sc., The University of British Columbia, 2007

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

in

The Faculty of Graduate Studies

(Electrical and Computer Engineering)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

August 2009

c© Armin Bahramshahry 2009



Abstract

Over the last decade the ability of the Internet infrastructure to carry traffic has not

improved at the same rate as the desktop technology. This imbalance has increased the

perceived difference in the quality of service (QoS) offered by online multiplayer games

compared to single player games.

This thesis introduces MCCA, a communication architecture for online multiplayer

games to improve the observed QoS and to lower the development complexity. MCCA

takes advantage of online game’s relaxed state consistency and predictable workload.

MCCA enables a game to label its traffic as belonging to different classes, each with

different priorities and requirements. Such labelling, in turn, enables differentiated traf-

fic management, efficient use of available network resources, and ultimately, improved

perceived QoS. In addition, MCCA enables a game to adapt to network conditions,

through distributed quality aggregation, for each of the game’s generated network traf-

fic. Consequently, MCCA supports a set of generic group communication and quality

estimation techniques, and yet it enables a game to define customized methods.

This thesis presents the MCCA architecture and its simulation-based evaluation us-

ing Quake III, Voice-Over-IP (VoIP), and file transfers. Experiments demonstrate that

workload classification, prioritization, and class targeted QoS improve user experience

and lower the generated network traffic, while quality aggregation and reporting enable

game adaptation to network conditions.

ii



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Traffic Prioritization . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Differentiated Transfer Policies . . . . . . . . . . . . . . . . . . . 4

1.2.3 Targeted Message Forwarding Policies . . . . . . . . . . . . . . . 5

1.2.4 Distributed Quality Aggregation and Reporting . . . . . . . . . 5

1.3 Evaluation Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 6

iii



Table of Contents

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Online Games Structure and Generated Network Traffic . . . . . . . . . 10

2.2 Game-Level Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Transport Protocols for Online Games . . . . . . . . . . . . . . . . . . . 13

2.4 Players Tolerance to Degraded Network Conditions . . . . . . . . . . . 14

2.4.1 Online Multiplayer Games . . . . . . . . . . . . . . . . . . . . . 14

2.4.2 Voice Over IP (VoIP) . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Network Quality of Service . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6 Application Level Multicast . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Differentiated Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Network Traffic Class Definition . . . . . . . . . . . . . . . . . . 25

3.1.2 Flows and Network Traffic Labeling . . . . . . . . . . . . . . . . 28

3.2 Group Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 MCCA Supported Forwarding Policies . . . . . . . . . . . . . . 31

3.2.2 Custom Forwarding Policy . . . . . . . . . . . . . . . . . . . . . 32

3.3 Quality Aggregation and Reporting . . . . . . . . . . . . . . . . . . . . 33

3.3.1 Quality Aging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.2 MCCA Supported Quality Estimation . . . . . . . . . . . . . . . 36

3.3.3 Custom Quality Estimation . . . . . . . . . . . . . . . . . . . . 40

3.4 MCCA’s Internal Implementation Details . . . . . . . . . . . . . . . . . 40

3.4.1 Communication Layer . . . . . . . . . . . . . . . . . . . . . . . . 41

iv



Table of Contents

3.5 Usability Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.6.1 Comparison to Game-Level Optimizations . . . . . . . . . . . . 44

3.6.2 Comparison to Network Quality of Service (QoS) . . . . . . . . 45

4 Evaluation Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1 Communication Infrastructure . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.1 Network Simulator . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Workload Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.1 Generating Game Traffic . . . . . . . . . . . . . . . . . . . . . . 56

4.2.2 Generating Voice-Over-IP (VoIP) Traffic . . . . . . . . . . . . . 56

4.2.3 File Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.4 System Messages . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1.1 Simulated Deployment Environment . . . . . . . . . . . . . . . . 61

5.1.2 Network Traffic Workloads . . . . . . . . . . . . . . . . . . . . . 63

5.1.3 Game-Level Optimizations . . . . . . . . . . . . . . . . . . . . . 63

5.2 Quality Estimation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2.1 Game Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2.2 Voice-Over-IP (VoIP) . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2.3 File Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3 Naming Conventions for Experiments . . . . . . . . . . . . . . . . . . . 68

5.4 Experiments with Class Definitions . . . . . . . . . . . . . . . . . . . . 69

5.4.1 Experiments with Workloads and Classification . . . . . . . . . 69

v



Table of Contents

5.4.2 Experiments with Workload Window-Size . . . . . . . . . . . . . 79

5.4.3 Experiments with Redundancy . . . . . . . . . . . . . . . . . . . 82

5.4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.5 Experiments with Workload Variations . . . . . . . . . . . . . . . . . . 84

5.6 Experiments with Real-Time Changes in the Number of Players and

Network Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.6.1 Cross Network Traffic . . . . . . . . . . . . . . . . . . . . . . . . 88

5.6.2 Changes in the Number of Players . . . . . . . . . . . . . . . . . 90

5.6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.7 Experiments with Various Network Conditions . . . . . . . . . . . . . . 92

5.8 Game Quality Variability Among Players . . . . . . . . . . . . . . . . . 95

5.9 Comparison to The Optimal and Idealized Solution . . . . . . . . . . . 95

5.10 Summary of Experiment Results . . . . . . . . . . . . . . . . . . . . . . 97

6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . 100

6.1 Problem with Current Approaches . . . . . . . . . . . . . . . . . . . . . 100

6.2 Contributions of this Work . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.3 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.3.1 Real-World Deployment . . . . . . . . . . . . . . . . . . . . . . . 103

6.3.2 Incorporating Observed Network Conditions in MCCA . . . . . 103

6.3.3 Mechanisms for Simplifying Class Definition . . . . . . . . . . . 104

6.3.4 Cheat Detection and Prevention . . . . . . . . . . . . . . . . . . 104

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

vi



Table of Contents

Appendices

A MCCA’s API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

B Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

vii



List of Tables

2.1 Voice-Over-IP (VoIP) Transmission Quality Classes and Corresponding

Rating Value Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1 Experiment Configurations for Network Simulator Evaluation . . . . . . 52

4.2 Talkative and Quiet VoIP Source Configurations . . . . . . . . . . . . . 57

5.1 Deployment Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 Details of Experiments on Analysis of “Game Quality Distribution” (Fig-

ure 5.12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

B.1 Technical Terms and Acronyms . . . . . . . . . . . . . . . . . . . . . . . 119

B.2 Experiment Names and Acronyms . . . . . . . . . . . . . . . . . . . . . 120

viii



List of Figures

2.1 IP Multicast vs. Application Level Multicast . . . . . . . . . . . . . . . 20

3.1 MCCA Communication Architecture . . . . . . . . . . . . . . . . . . . . 24

3.2 Network Traffic Flows and Class Structure in MCCA . . . . . . . . . . . 28

3.3 End-to-End Message Latency . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Game Message Quality vs. Message Latency . . . . . . . . . . . . . . . . 39

4.1 Main Deployment Layers . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Network Simulator’s Relative Error Histogram . . . . . . . . . . . . . . 53

4.3 Network Simulator’s Relative Error with Respect to Network Capacity

(Bandwidth) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4 Network Simulator’s Relative Error with Respect to Packet Interval . . 55

4.5 VoIP State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1 Experiment Results for Game Only Workload . . . . . . . . . . . . . . . 72

5.2 Experiment Results for Game with VoIP Workload . . . . . . . . . . . . 75

5.3 Experiment Results for Game with VoIP and File Transfer Workloads . 78

5.4 Results of Experiments with Window-Size . . . . . . . . . . . . . . . . . 81

5.5 Result of Experiments with Game Redundancy . . . . . . . . . . . . . . 83

5.6 Experiment Results for Talkative vs. Quiet VoIP Sources . . . . . . . . 86

ix



List of Figures

5.7 Experiment Results for Large vs. Small File Packet Sizes . . . . . . . . 87

5.8 Game Adaptation to Network Conditions . . . . . . . . . . . . . . . . . 89

5.9 Game Adaptation to Player Presence . . . . . . . . . . . . . . . . . . . . 91

5.10 Experiment Results for Various Network Losses . . . . . . . . . . . . . . 93

5.11 Experiment Results for Various Network Capacities . . . . . . . . . . . . 94

5.12 Game Quality Distribution at Unacceptable Average Game Quality . . . 95

5.13 MCCA vs. Optimal Solution . . . . . . . . . . . . . . . . . . . . . . . . 97

x



List of Programs

3.1 Network Traffic Class Creation and Destruction . . . . . . . . . . . . . . 27

3.2 Register and Unregister a Flow . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 MCCA’s Interface for Sending Messages . . . . . . . . . . . . . . . . . . 30

3.4 Forwarding Policy Interface . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 Setting the Forwarding Policy for a Network Traffic Flow . . . . . . . . 34

A.1 Types and Enumerations . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

A.2 Interface for Receiving Message and Notifications . . . . . . . . . . . . . 115

A.3 Custom Forwarding Policy Creator . . . . . . . . . . . . . . . . . . . . . 116

A.4 Quality Aggregation Interface . . . . . . . . . . . . . . . . . . . . . . . . 117

A.5 Consecutive Loss Reporting Interface . . . . . . . . . . . . . . . . . . . . 118

xi



Acknowledgments

I had the privilege of receiving guidance and support from my supervisor, Dr. Matei

Ripeanu. His insight, support, and enthusiasm are very much appreciated.

I would like to also thank Dr. Sathish Gopalakrishnan for his effort in reviewing

this work and providing helpful comments and technical advice. I am also thankful

to the Networked Systems research group students for their friendship, support, and

insightful comments.

I am thankful to my friends and family, specially my parents Rashid Bahramshahry

and Rohangiz Khosraviani, for their support, encouragement, and confidence in my

abilities throughout my education. I am also thankful for having the support of my

sister, Anahita, and brother, Abtin, at all times. I would like to foremost thank Arshia

Mandegarian for her assistance, encouragement, and unconditional love.

xii



Dedicated to my parents:

Rashid Bahramshahry

Rohangiz Khosraviani

xiii



Chapter 1

Introduction

The revenues of the computer game industry are two times larger than those of the movie

industry [64] and have been growing faster over the past decade [25] (expecting to reach

$48.9 billion worldwide in 2011 [61]). In recent years, online multiplayer games (i.e.,

games where several players interact simultaneously over networks like the Internet)

have become increasingly popular as multiplayer games such as World of Warcraft

(WoW), Halo, Quake, and Counter-Strike have attracted millions of players [8]. These

games provide an online virtual playground that offers players the tools to interact with

one another. This social online environment has attracted more players to online games

as competing with human counterparts is typically more interesting and challenging

than playing against a computer.

The interesting game-plays, growing demand, and popularity of online games have

attracted a large number of game development companies. Most importantly, online

multiplayer games provide new sources of revenue such as virtual item sales, subscription

tiers, advertising, auctions, player trades, expansion packs, and event or tournament

fees for developers and publishers. These new opportunities introduce a heterogeneous

workload that, in addition to critical game–generated events, include advertisement

banners, Voice-Over-IP (VoIP) and text messages, player statistics, and other types of

data that are transferred among players and servers.

1



1.1. The Problem

Online multiplayer games traditionally have strict network communication require-

ments in order to run a smooth game. In addition, game development companies tend to

support wide range of players around the world, with different network infrastructure,

to maximize their profit. Challenges for supporting the required game features, revenue

streams, and their generated network traffic that uses such a diverse network environ-

ment, motivates the study of a communication infrastructure that efficiently utilizes the

network resources, and enables multiplayer games to improve the user perceived QoS,

and furthermore enables games to adapt to real-time network conditions.

1.1 The Problem

Most online multiplayer games support a wide range of players, irrespective of their

network capacity, as a result online multiplayer games are designed to saturate the

narrowest last–mile links [21]. In fact, online multiplayer games developed for PS3 and

XBOX 360 are mandated to support the range of players specified by Microsoft and

Sony. As a result, player’s upload capacity has been a key scaling limitation for online

multiplayer games [4], as each player needs to frequently send critical game updates to

every other player for the game to run smoothly. As a game’s scale increases, the upload

capacity of each player remains constant, yet the requirement to distribute game events

to all participants makes the upload traffic grow linearly with the number of players.

The other major problem of network-based multiplayer games is caused by the

network transmission delay. This means that it takes a while until information (e.g.,

about the movement or action of the opponents’ objects) reaches the receivers. This

delay causes several difficulties and may lead to paradoxical situations.

Due to scaling limitations caused by low network capacities, game designers have

2



1.2. Approach

been exploring game– or genre–specific solutions to decrease the amount of generated

traffic using group communications and interest management techniques [3, 23, 54], or

to reduce the volume of generated traffic using interest management techniques [4, 5,

24, 28, 30, 36, 55], or by decreasing the game update rate by using various prediction

and multi-resolution simulation techniques [27, 29, 41, 42]. Such improvements are only

possible due to a game’s state and behavior predictability, game’s ability to manage its

event generation, and games’ pre-hand knowledge about its generated workload and

requirements.

The strict online multiplayer game’s characteristics and network requirements have

motivated this research. This thesis focuses on challenges resulting from a combination

of bandwidth limitations in game’s deployment platform, and soft real-time constraints

for the game traffic. To address these challenges, we explore optimization alternatives

that exploit traffic differentiation to: 1) reduce the volume of generated traffic, and 2)

independently fine-tune the QoS delivered for each service class.

1.2 Approach

Online multiplayer games’ workload consists of multiple types of data (e.g., game events,

advertisements, VoIP traffic, etc), each with different requirements and inherently dif-

ferent importance for a good game-play experience. The key to deal with such workload

is to separate the traffic into multiple classes and treat each class independently. This

thesis presents Multi-Class Communication Architecture (MCCA), a communication

architecture for online multiplayer games that takes advantage of games’ heterogeneous

workload characteristics to provide communication layer optimizations that improve

the players’ online game experience. The following techniques allow MCCA to better

3



1.2. Approach

utilize network resources, manage network traffic, and serve user demand to improve

the observed QoS:

1. Traffic prioritization

2. Differentiated message loss, ordering, and transfer policies for different classes of

traffic

3. Targeted message forwarding policies, leading to message distribution overlays,

optimized for the requirements of each flow of network traffic

4. Flow–specific distributed quality estimation, aggregation, and reporting to enable

game adaptation to network conditions

1.2.1 Traffic Prioritization

The demand for communicating a large and diverse workload can easily downgrade the

observed game quality (e.g., VoIP or file transfer traffic can interfere with critical game

events/updates). To least degrade a player’s experience when network resources are

constrained, and to favor the more important network traffic, MCCA enables a game

to prioritize its network traffics. In order to do so, the game is required to label its

messages as belonging to different classes with different priorities.

1.2.2 Differentiated Transfer Policies

Online multiplayer games support a number of non-core functionalities such as text

chats, voice chats, live advertisements, custom player looks and more. Each of these

functionalities has its own behavior and data transfer requirements. For example, game

4



1.2. Approach

events require the transfer of a large number of small packets at fixed time inter-

vals [18, 20–22, 38, 39], while VoIP traffic has different packet size and frequency [46, 52].

Additionally, players tolerate the delay and loss of game events differently than those for

VoIP packets. To provide targeted QoS, MCCA allows the game to define the charac-

teristics of each class of data, and assign each of its network traffic flows (such as game

updates, VoIP, or text messages, and referred to as a “flow” in this thesis), to a class of

network traffic. Satisfying each class’s requirements in isolation from other classes, as

oppose to treating all data transfers similarly, to satisfy every class’s requirements, not

only reduces the overall generated network traffic but can also improve the observed

QoS.

1.2.3 Targeted Message Forwarding Policies

Network traffics with tight latency requirements prevent the use of efficient message

broadcast techniques, such as multicast trees, for other network traffics. In turn, net-

work traffic classification enables a game to employ a multicast tree for broadcasting

messages of classes of traffic with relaxed latency constraints. This message dissemina-

tion approach lowers the total volume of the generated network traffic, and migrates

some of the network traffic from players with low network capacity to others. Traffic

classification and the insight to each class’s latency requirements enable this optimiza-

tion.

1.2.4 Distributed Quality Aggregation and Reporting

MCCA enables a game to adapt to network conditions by providing a set of mechanisms

to measure and aggregate each flow’s observed quality. Furthermore, MCCA reports

the observed quality and other flow specific network transfer information to the game,

5



1.3. Evaluation Methodology

for the game to make adjustments (e.g., disable VoIP) that could preserve/improve the

observed QoS, when facing changes in the network conditions.

1.3 Evaluation Methodology

To evaluate our assumptions, and to analyze MCCA we have developed a prototype

implementation of the MCCA. In addition, we have developed a network simulator and

traffic generators for game, VoIP, and file transfers. Through experiments with various

configuration of network traffics, network deployment conditions, and network traffic

class definitions, we demonstrate the flexibility and potential performance improvements

of the proposed communication architecture for online multiplayer games.

We measure the correctness of the implemented network simulator by comparing it

with a network emulator, running various workload and network deployment configu-

rations. In addition, we compare MCCA with other online multiplayer game optimiza-

tions, as well as the optimal case.

To demonstrate the flexibility of MCCA, and the benefits of the proposed guidelines

and mechanisms in MCCA, we define and implement game-level optimizations built

on top of MCCA, and use MCCA’s quality and network reports to adapt to various

real-time conditions such as the player’s network capacity, number of players, and the

generated network traffic.

1.4 Contributions

The main contributions of this work is the introduction of new mechanisms that enable

the use of game-level information on the characteristics of the generated traffic and

requirements that drive players’ quality of experience, to improve communication layer

6



1.4. Contributions

efficiency. In addition, this research takes the first step toward providing a general pur-

pose game communication layer taking advantage of game-level information, workload

predictability, and flexibility.

More concretely, the work presented makes five main contributions with respect to

problems facing online multiplayer games (as described in Section 1.1). The following

is an overview of these contributions:

• Design and evaluation of MCCA, a communication architecture supporting game

workload classification for providing targeted QoS (providing a combination of

reliable/unreliable, in-order/out-of-order message delivery, as well as mechanisms

for supporting low latency communication)

• Design and evaluation of an efficient group communication, evolving over time,

for the game generated network traffic

• Design and evaluation of distributed quality estimation, aggregation, and report-

ing for online multiplayer games based on a flow of network traffic’s communica-

tion statistics and more

• Design, implementation, and evaluation of a few game-level optimizations taking

advantage of MCCA’s design; demonstrating potential for new types of game-level

optimizations using MCCA

• Validation of the following ideas based on experimental result using emulation of

Quake III, VoIP, and file transfer traffic: 1) game workload classification, prioriti-

zation, and targeted QoS improve observed game and voice quality, 2) classifica-

tion is even more beneficial at higher number and amount of network traffics, 3)

application-level multicast reduces network capacity requirements and improves

7



1.5. Overview

overall quality, 4) distributed quality estimation, as a feedback mechanism, can

enable online multiplayer games to adapt to network conditions

1.5 Overview

The remaining chapters of this thesis are laid out as follows: Chapter 2 presents the

background on online multiplayer games as well as previous research on online games

and efficient network communication. Chapter 3 presents our proposed communica-

tion architecture, MCCA, and compares it to other solutions. Chapter 4 discusses

the methodology for evaluating MCCA, and presents some of the implementation de-

tails. Chapter 5 explains the set of experiments performed and discusses the results.

Chapter 6 is the conclusion that summarizes the problem, the approach, and the con-

tributions of this work, and it also presents a future direction for the continuation of

this research.

8



Chapter 2

Background and Related Work

MCCA builds on past work on network QoS and application layer multicast. Our work

differentiates from the above mainly due to the focus on online multiplayer games with

tight latency requirements. We exploit the different characteristics and requirements

for the categories of generated traffic, to efficiently use network resources and improve

the perceived quality of gaming experience. Furthermore, we propose distributed qual-

ity aggregation and reporting (described in Section 3.3) at the communication layer,

to enable game adaptation to network conditions. The combination of generic and yet

powerful services at the communication layer can benefit many types of online multi-

player games.

This chapter presents the generic structure of online multiplayer games and their

communication related requirements (Section 2.1), previously proposed game-level op-

timizations (Section 2.2), an analysis of transport protocols’ efficiency for online multi-

player games (Section 2.3), players tolerance to network conditions for game and VoIP

(Section 2.4), and finally, previous research on network QoS (Section 2.5) and applica-

tion level multicast (Section 2.6).

9



2.1. Online Games Structure and Generated Network Traffic

2.1 Online Games Structure and Generated Network

Traffic

Games build virtual environments, known as “game worlds”, where players interact

with each other and with small set of objects. The game state is typically structured as

a collection of game objects representing a part of the game world. Game objects, such

as the game world’s terrain, player’s avatars, computer controlled players (i.e., bots),

and items (e.g., guns) are defined by their state and behavior. Games run a discrete

event loop and update game objects: First Person Shooter (FPS) games execute 10 to

20 such iterations each second, while Real Time Strategy (RTS) games can afford a

lower iteration frequency.

When running on separate machines, online multiplayer games attempt to update

the game objects for all players similarly to have the same game state on every player’s

machine. There are two methods for achieving this goal:

1. Deterministic model: In this model, every player calculates the position and

actions of all players in the game (the model mainly used for multiplayer sport

games). Each player broadcasts its controller inputs to all other players for every-

one to update the game objects exactly the same. Consistent and exact updates

are crucial in this model as game state on each device can quickly diverge.

2. Non-deterministic model: In this model, players send updates of their game

objects (e.g., position in the virtual world, velocity, etc) to others as opposed to

their controller inputs. In this model the game state is weakly consistent and

frequent state updates, exchanged between players, are used to make it converge.

This thesis focuses on non-deterministic multiplayer games as they have a more

10



2.2. Game-Level Optimizations

diverse communication workload.

Network games generate a significant share of today’s Internet traffic. McCreary et

al. [43] report that 3-4% of all packets in the Internet backbone can be associated with

only six popular games. In addition, it is expected that game traffic will account for

25% of all LAN traffic by the year 2010 [43]. Network game traffic tends to employ

small, highly periodic UDP packets [18, 20–22, 38, 39]. Periodicity is due to game’s

dynamics, which require frequent state updates from each player; additionally the low

latency requirement of online multiplayer games makes message aggregation impractical

leading to a large number of messages.

2.2 Game-Level Optimizations

Most online multiplayer games are designed to saturate the narrowest last-mile links

in order to support wide range of players irrespective of their network capacity [21].

As a result, game designers have been exploring game-specific solutions to decrease the

amount of generated traffic, by using group communications and interest management

techniques such as the ones presented in AMaze [3], Mercury [54], and Fiedler et al. [23].

Game updates, that is, messages that include information about changes in game

objects’ state, account for a large part of generated network traffic. For FPS games

such as Quake III, game updates are broadcast every 50ms and include information

such as the game objects’ position, health, and state. Since most objects’ attributes

are rarely changed, delta-encoding [4, 5] is used to efficiently compress the generated

game updates.

Another effective method to reduce the volume of generated traffic is to eliminate the

transmission of irrelevant and unnecessary information. Most games leverage players’

11



2.2. Game-Level Optimizations

limited Area of Interest (AOI): players are only interested in a subset of the entire game

world, typically in their local area or field of view. Consequently, to run a smooth game,

players only need to receive updates only from other players in the same AOI. As a

result, AOI filtering reduces bandwidth demand to the extent that players have limited

proximity to each other. A widely adopted solution is interest filtering by partitioning

the game world into predefined [24, 30, 36, 55] or arbitrarily specified (e.g., Colyseus [5],

VON [28]) disjoint AOIs.

Filtering based on AOI works well for games that have an upper limit for the num-

ber of players in any given area; however, naturally the object density in games follows

a power law [51]. This has introduced a new challenge as game designers have to dis-

courage players from clustering, a limitation that eliminates some classes of interesting

game play such as epic battles [9, 59]. To circumvent this limitation Bharambe et a. [4]

build on the intuition that human attention span is limited and introduce the notion

of “size bounded player’s interest set”, defined as the set of players to whom a player

is paying attention.

Finally, another method to reduce the volume of generated traffic is decreasing

the game update rate. Two proposed techniques are Predictive Contract Mechanisms

(PCM) [29] and multi-resolution simulation [27]. PCM requires the sender and re-

ceiver to use a shared model for predicting the object’s state. The sender only sends

state updates if the predictor’s error exceeds a threshold. The most common PCM

uses dead reckoning, extrapolating an object’s position based on its past position, ve-

locity, and sometimes other movements [49]. Other predictors include a hybrid dead-

reckoning/shortest-path predictor [41] and neural networks [42].

In contrast to the past work which focuses on game-level and mostly game-specific

optimizations we propose a generic communication layer that enables broad class of

12



2.3. Transport Protocols for Online Games

games to efficiently use network resources, and integrate such game-level optimizations.

2.3 Transport Protocols for Online Games

The first fundamental decision in designing online games is selecting the transport

protocol. Chen et al. [14] evaluate TCP performance in the context of online games

by analyzing a 1,356 million packet trace from ShenZhou, a commercial, mid-sized

Massively Multiplayer Online Role-Playing Game (MMORPG). They conclude that

TCP is “unwieldy and inappropriate” for online multiplayer games due to online games’

traffic characteristics: 1) tiny packets, 2) low packet rate, 3) application-limited traffic

generation, and 4) bidirectional traffic. In addition, TCP’s window-based congestion

control and the fast retransmit algorithm for loss recovery are ineffective and an overkill

since not all game packets need to be transmitted reliably and in-order.

Chen et al. [14] recommend that a transport protocol specialized for online multi-

player games should:

i) Support both reliable and unreliable delivery

ii) Support both in-order and out-of-order delivery

iii) Support accumulative delivery

iv) Allow multiple streams

v) Implement a coordinated congestion control mechanism.

13



2.4. Players Tolerance to Degraded Network Conditions

2.4 Players Tolerance to Degraded Network Conditions

The growth in the popularity of online interactive tools and applications such as in-

teractive network games and VoIP has motivated researchers to better understand the

effects of degraded network conditions (e.g., packet loss and increased latency) on users’

perceived QoS.

This section presents past research on user perceived quality for online multiplayer

games and VoIP, both highly correlated to the end to end delay. Within this thesis,

and for quality estimation purposes, the communication delay for all network traffics is

considered to be the time from event generation to the moment the consequent resulting

updates are presented to users. To avoid extra memory and computation overheads,

average event recognition and presentation delays are used. For example, a workload

generating updates every 20ms has an average delay of 10ms for recognizing an event,

and a 10ms delay for presenting it to the player once events are received.

2.4.1 Online Multiplayer Games

Player tolerance to message loss and delay varies from game to game. Generally, games

where a player guides an avatar, rather than directly controls the game action, better

tolerate latency. For example, strategy-oriented or role-playing games tolerate message

latencies up to several seconds [2, 57] since the player controls the game by “telling”

his avatar what to do such as “pick up object” or “attack monster”, rather than how

to do it (e.g. aiming and firing a gun in FPS games).

Sheldon et al. [57] showed that network latency up to several seconds has a minimal

effect on the overall players’ performance in Warcraft III (RTS game). Nichols et al. [45]

achieved similar results with Online Madden NFL Football for delays below 500ms, while

14



2.4. Players Tolerance to Degraded Network Conditions

latencies higher than this threshold degrade performance by almost 30%. Pantel and

Wolf [48] analyzed another sports game, a car racing simulation, and found that delay

above 50ms affects game results, while delays above 100ms prevents a realistic driving

behavior.

Players in FPS games move rapidly and must react quickly to their surroundings.

Consequently, limiting lag, the time difference between a player’s visible state and his

actual state, is crucial for a satisfactory game experience. Beigbeder et al. [2] examined

the effects of loss and delay on users’ performance in Unreal Tournament 2003. They

explain that players were able to notice delays as low as 75ms and found game play less

enjoyable at latencies over 100ms. They find that precision shooting is very sensitive

to latency, with a steady decrease in hit accuracy for latencies of 100ms or over. The

authors suggest to keep the delay below 150ms and the packet loss below 3%. Finally,

Quax et al. [53] notice two groups of players, the “complainers” and the “optimists”

which perceive the game quality differently.

From all of the existing research, we conclude that degraded network conditions in

general have a negative effect on how players perceive a game, while the exact threshold

varies between games of different categories. Furthermore, findings for all games are

similar in a sense that for every game latencies lower than a game specific threshold

don’t affect players, and latencies higher than a certain game specific threshold can be

completely intolerable, while perceived quality decreases in between.

2.4.2 Voice Over IP (VoIP)

Past literature on end-to-end VoIP measurements has often focused on the study of net-

work loss patterns and delay characteristics [10, 11, 35, 50, 63]. For example, Kostas [37]

studied the feasibility of real-time voice over the Internet and discussed measured delay

15



2.4. Players Tolerance to Degraded Network Conditions

and loss characteristics. In order to evaluate the quality of VoIP, Marsh [40] provided

network performance data (in terms of delay and losses) collected from a wide range of

geographically distributed sites. All these studies were based on round-trip delay mea-

surements. While information about delay and losses can give valuable insights about

the quality of VoIP, they do not characterize the actual subjective quality experienced

by VoIP users. Cole et al. [17] propose a method for monitoring the quality of VoIP

applications based upon a reduction of the E-model [34] to measurable transport level

quantities (such as delay and loss).

The classic way to evaluate speech quality is Mean Opinion Score (MOS) [31].

However, it is time consuming, costly, and not repeatable, as human experts are involved

in the evaluation. Speech Quality Measure (PSQM) [32] and Perceptual Evaluation of

Speech Quality (PESQ) [33] are the most common objective measurement methods for

voice quality. Both still require a reference signal to compare a degraded speech signal

against and predict a MOS value. They are called psychoacoustic models.

The Telecommunication Standardization Sector (ITU-T) E-model does not depend

on a reference signal, but uses a computational model to predict voice quality directly

from network measurements. The output of the E-model is a single value, called an

“R-factor”, derived from delays and equipment impairment factors. To present the

correlation between the “R–factor” and VoIP quality, the ITU-T G.107 [34] defines

the relationship between the R-Factor and MOS as below (Equation 2.1) resulting in

Table 2.1:

MOS =



























1, R ≤ 0

1 + 0.035R + R (R − 60) × (100 − R) × 7 × 10−6, 0 < R < 100

4.5, R ≥ 100

(2.1)

16



2.4. Players Tolerance to Degraded Network Conditions

R-Value Range MOS VoIP Quality

100 – 90 4.50 – 4.34 Best

90 – 80 4.34 – 4.03 High

80 – 70 4.03 – 3.60 Medium

70 – 60 3.60 – 3.10 Low

60 – 0 3.10 – 1.00 Very Poor

Table 2.1: VoIP Transmission Quality Classes and Corresponding Rating Value Ranges

The R-Factor calculated by the E-model ranges from 0 (poor) to 100 (excellent) and

can be obtained by the following expression:

R = Ro − Is − Id − Ie−eff + A (2.2)

where

Ro : Basic signal-to-noise ratio

Is : All impairments that occur simultaneously with the voice signal

Id : Delay impairment factor

Ie−eff : Effective equipment impairment factor caused by packet loss

A : Advantage factor

Cole et al. have reduced Equation 2.2 to Equation 2.3 after taking default values

for those parameters other than delay and loss [17].

R = 94.2 − Id − Ie−eff (2.3)

In this thesis, we use Equation 2.3 simplified according to [17] for translating one-

way delay (d), in milliseconds, and loss rate (e) to Id and Ie−eff in order to measure

the quality of the transmitted VoIP.

17



2.5. Network Quality of Service

Id = 0.024d + 0.11(d − 177.3)H(d − 177.3) (2.4)

Ie−eff = 0 + 30ln(1 + 15e) (2.5)

where

H(x) =











0, if x < 0

1, if x ≥ 0
(2.6)

2.5 Network Quality of Service

Today’s Internet infrastructure provides one simple service: best effort datagram deliv-

ery. This minimalist service allows the Internet to be stateless, that is, routers do not

need to maintain any fine grained information about traffic. As a result of this stateless

architecture, the Internet is both highly scalable and robust. However, as the Internet

evolves into a global commercial infrastructure that supports a many new applications

such as online games, IP telephony, interactive TV, the existing best effort service is

extended to provide more powerful services such as guaranteed services, differentiated

services, and flow protection.

IntServ [7] and DiffServ [58] provide differentiated services that classify and man-

age network traffic to provide network QoS guarantees; howerver, these services re-

quire network infrastructure support as opposed to application-level solutions such as

OverQoS [60].

Among the solutions that do not require network support, OverQoS uses Controlled

Loss Virtual Links (CLVL) to smooth packet losses, prioritize packets within an ag-

gregate, and provide statistical bandwidth and loss guarantees. One of CLVL’s main

18



2.6. Application Level Multicast

features is supporting “Bundle Loss Control”, which prevents losing many packets in a

row.

The network QoS solutions generally filter, duplicate, and send packets based on

certain heuristics to provide different classes of service. MCCA uses similar ideas to

provide targeted network QoS and differentiated services for a game to properly manage

its heterogeneous network traffic and improve gaming experience.

2.6 Application Level Multicast

Multicasting is a mechanism for packet delivery in one-to-many data transfer applica-

tions. Multicasting can be provided at network infrastructure (IP–Multicast) or at the

application level (Application Level Multicast). IP–Multicast is the optimal multicast

protocol that eliminates redundant packet replication in the network infrastructure;

however, deployment of IP multicast has not been widely adopted by most commercial

ISPs.

Application Level Multicast protocols do not require support from the network in-

frastructure, instead they implement multicast forwarding functionality exclusively at

end-nodes. Such application level multicast protocols are increasingly being used to im-

plement efficient commercial content distribution networks. Consequently, application

level multicast and overlay construction has been extensively studied [12, 13, 26, 51, 56].

The basic idea of application level multicast is shown in Figure 2.1. Unlike IP mul-

ticast, where data packets are replicated at routers inside the network, in application

level multicast data packets are replicated at end nodes. Since application level multi-

cast protocols must send the identical packets over the same link, they are less efficient

than IP multicast. Two intuitive measures of “goodness” for application level multicast

19



2.6. Application Level Multicast

1 2

3 4

A B

(a) IP Multicast

1 2

3 4

A B

(b) Application Level Multicast

Figure 2.1: IP Multicast vs. Application Level Multicast. Square nodes are routers,
and circular nodes are end-nodes.

overlays, namely stress and stretch, are defined in [15].

1. Stress: Defined per-link and counts the number of identical packets sent by a

protocol over each underlying link in the network.

2. Stretch: Defined per-member and is the ratio of transfer delay from the source

to the member along the overlay to the delay of the direct unicast transfer.

Overlay construction algorithms are generally categorized as mesh-based or tree-

based. Mesh-based overlays provide multiple paths, while tree-based overlays provide

a single path between any pair of nodes. In the mesh-based approach, group members

first organize themselves into the overlay mesh topology. Multiple paths exist on the

mesh between a pair of members. Each member participates in a routing protocol on

this control topology to compute unique overlay paths to every other member. A source

specific tree rooted at any member can then be created using the well-known Reverse

Path Forwarding (RPF) based construction used by many IP multicast protocols (e.g.,

Distance Vector Multicast Routing Protocol (DVMRP) [62]). In contrast, tree-based

protocols that distributedly construct a shared data delivery tree at first. Subsequently,

20



2.6. Application Level Multicast

each member discovers a few other members of the multicast group that are not its

neighbors on the overlay tree and establishes and maintains additional control links

to these members. This enhanced overlay (the data delivery tree with the additional

control links) is the control topology in the tree-first approach.

Online multiplayer game event delivery requires four properties from a multicast

scheme: 1) a strict bound on end-to-end latency, 2) support for frequent group mem-

bership changes, 3) support for heterogeneous client capacity, and 4) ability to scale

with the number of groups and total number of participants.

Structured (DHT-based) multicast designs [13, 51] allow nodes to join quickly and

minimizes control overhead. Thus, such schemes handle the points above 2 and 4 well.

However, it is difficult to optimize latency or handle node heterogeneity effectively [6].

At the other end, unstructured approaches [1, 15, 47] allow clients to join anywhere and

try to optimize the tree structure. As a result, they are better at supporting (1) and

(3) but worse at (2) and (4) due to control overhead. Unstructured, source controlled

tree structures [4] minimize control overheads and can still scale to large number of

players. CoopNet [47], used for multicasting video frames, uses source-controlled trees

and requires Multiple Description Coding to encode video frames over multiple trees to

handle churn and packet loss. Game updates as opposed to video frames are too small

relative to packet headers to be efficiently encoded in this way.

MCCA is designed for online multiplayer games with tens to hundreds of players per

session, and uses application level multicast (tree-based overlays) to reduce the volume

of generated traffic for classes of data with relaxed latency requirements.

21



Chapter 3

Architecture

Most soft real-time distributed applications require a combination of reliable/unreli-

able, in-order/out-of-order message delivery. Online multiplayer games are one of the

most complex real-time distributed applications that benefit from concurrently using

multiple communication modes, as some messages have tight latency requirements and

require only limited transmission reliability (e.g., game updates), while others have

more relaxed latency requirements (e.g., VoIP) and require reliable and in-order deliv-

ery (e.g., file transfer). Consequently, online multiplayer games require a combination

of reliable/unreliable, in-order/out-of-order delivery with latency requirements varying

depending on the type of data transferred.

Online multiplayer games, as described in Section 2.1, essentially present a controlled

environment, simulating virtual worlds, which allows players to interact with the world’s

objects and one another. Simulating and controlling the virtual world enables game–

level decision making, which can be exploited to improve game quality and/or to support

higher number of players (Section 2.2). MCCA, the architecture presented in this

chapter, is designed to exploit game–level opportunities, and use game insight at the

communication layer to efficiently utilize network resources.

To effectively utilize network resources, support a diverse set of requirements and

network traffics generated by online multiplayer games, and to enable games to dynam-

22



3.1. Differentiated Services

ically adapt to the network conditions, MCCA supports:

1. The ability to define different classes of service in order to provide targeted net-

work QoS (differentiated services)

2. The ability to label messages, and consequently assign different game generated

network flows (i.e., game updates, VoIP, text messages, etc) to a class of service

3. Flow specific efficient group communication/message dissemination to distribute

network traffic according to player’s network resources and flow’s requirements

4. Flow specific quality estimation, aggregation, and reporting to enable game adap-

tation to network conditions

The remaining sections of this Chapter present the MCCA’s support for differenti-

ated services (Section 3.1), group communication (Section 3.2), and distributed qual-

ity aggregation (Section 3.3). Following which, the internal implementation details of

MCCA are presented (Section 3.4), and MCCA’s usability issues are discussed (Sec-

tion 3.5). Finally, Section 3.6 compares MCCA to other existing solutions for online

multiplayer games.

3.1 Differentiated Services

To support a diverse set of flows (i.e., game updates, VoIP, text messages, etc) and

their requirements, MCCA allows games to define their own classes of service and to

label the generated network messages with the appropriate class information. The game

specifies each class’s priority, communication model (e.g., unreliable and out-of-order),

latency constraints, and other information (described in Sections 3.1.1). Following the

23



3.1. Differentiated Services

class definition, each flow of network traffic is assigned to a class of service (described

in Section 3.1.2) with a flow specific group communication (described in Section 3.2)

and quality estimation (described in Section 3.3). From this point, the communication

infrastructure uses a separate virtual channel for each class to manage and transfer

messages: it reads the outgoing message queues, processes messages based on their

class definition, and attempts to meet each class’ requirements in the order of their

priorities in a best effort fashion (Figure 3.1).

Physical Link

Game Platform

MCCA

C
la

ss A

C
la

ss B

C
la

ss C

C
la

ss A

C
la

ss B

C
la

ss C

Game

Message

Figure 3.1: MCCA Communication Architecture

24



3.1. Differentiated Services

3.1.1 Network Traffic Class Definition

MCCA is a communication architecture targeted for game developers, who usually have

a great deal of insight into the game’s network generated workload and requirements.

In order to take advantage of such game-level knowledge at the communication layer,

MCCA requires the following set of parameters for defining a class of network traffic:

• Priority: To differentiate messages based on their importance to the game, and

to decide the order in which messages are serviced; MCCA requires a game to

specify each class’s priority.

• Reliable/Unreliable, In-Order/Out-of-Order: Reliable and in-order com-

munication is a required characteristic for many classes of data such as file transfer

and game patches. This requirement often implies higher latency, due to queu-

ing, and higher bandwidth consumption because of message retransmission. Most

game messages, however, do not need in-order processing and/or reliable trans-

mission as newer messages overwrite the older ones. Separating the reliable and

in-order traffic from the rest helps games in using the network resources efficiently,

and reduces the communication latency.

• Bit-rate: To limit the amount of pending traffic, and to provide rate control

for each class of network traffic, MCCA requires games to specify each class’s

maximum bit–rate (i.e., maximum bandwidth associated to the class). Bit–rate

is represented by the communication window–size (described in Section 3.4) in

MCCA, which limits the number of unacknowledged network messages. Such

limitation, in conjunction with the packet size limit, acts as a bit–rate limiter for

each class of network traffic.

25



3.1. Differentiated Services

• Latency Requirements and Loss Rates: On a lossy communication chan-

nel, redundant message transmissions is a common method to increase reliability

without increasing transfer latency (as it avoids waiting for acknowledgments to

detect message loss). This technique however introduces obvious overheads: in-

creased traffic volume. MCCA introduces the concept of redundancy level: the

number of times a duplicate message is transmitted. In addition, to avoid bursty

losses and lower the redundancy overhead, MCCA introduces the concept of re-

dundancy interval: the duplicate messages are spread over time with the specified

intervals to lower the chance of losing all duplicate messages due to a network

loss burst. The redundancy interval also provides an amount of time to possibly

receive acknowledgments from the receiver to avoid unnecessary retransmissions:

the game specifies the amount of time that is required to pass prior to resending

the message. The redundancy interval affects the average communication latency;

however, a game developer can make informed choices on the redundancy interval

for each class based on the knowledge about the game’s workloads and behavior.

Message redundancy increases the potential of successfully transmitting a message

to the receiver, and avoid message timeouts and re-transmition. Such technique

in combination with the described redundancy interval, provide the means to the

game to define the loss and latency requirements of its network traffics.

Program 3.1 demonstrates the MCCA’s API for creating and destroying a class of

network traffic1:

1Refer to Program A.1 in Appendix A for the definition of types and enumerations

26



3.1. Differentiated Services

Program 3.1 Network Traffic Class Creation and Destruction

// Precondition: The class specified by the ‘classId’ should be

// undefined.

// Postcondition: The class specified by the ‘classId’ will be defined.

// Upon unrealistic parameters, or predefined class, an

// error message is returned; otherwise, Error_OK is

// returned.

Error createNetworkTrafficClass(

__in ClassId classId,

__in unsigned int priority,

__in bool isReliable,

__in bool isInOrder,

__in unsigned int communicationWindowSize,

__in unsigned int redundancyLevel,

__in double redundancyInterval );

// Precondition: The class specified by the ‘classId’ should be defined

// Postcondition: The specified class will be destroyed, and

// Error_OK will be returned. If the class is undefined

// an error message will be returned.

Error destroyNetworkTrafficClass(

__in ClassId classId );

27



3.1. Differentiated Services

3.1.2 Flows and Network Traffic Labeling

MCCA enables network traffic differentiation by enabling a game to assign each of

its network traffic flows (referred to as a “flow” in this thesis) to a defined class of

service (Section 3.1.1). Due to such separation, multiple flows could belong to the same

class (presented in Figure 3.2) and benefit from a flow specific group communication

(described in Section 3.2) and quality estimation (described in Section 3.3).

Class A

Class A

Flow 1

Flow 1

Flow 2

Flow 3

Class A

Flow 2

Message

Figure 3.2: Network Traffic Flows and Class Structure in MCCA

Consequently, MCCA requires a flow to be registered with a defined class of service.

The game is then required to specify a set of required and optional callbacks for receiving

messages, notifications, and more. Program 3.2 presents the MCCA’s API for flow

registration 2.

Upon class definitions and flow registration, the game can begin pushing messages

labeled with their Class–ID and Flow–ID to the communication layer (Program 3.3

presents the API for sending messages). MCCA pushes received and ready–to–process

messages to the game through the flow’s registered message receiver (see “FlowCall-

2Refer to Program A.2 in Appendix A for the detailed interface of the FlowCallback

28



3.1. Differentiated Services

back::OnReceive” in Program A.2).

Program 3.2 Register and Unregister a Flow

// Precondition: The class specified by the ‘classId’ should be

// defined, and the flow of ‘flowId’ should not be

// registered, and the callback should not be null.

// Postcondition: The flow and its callback of the ‘flowId’ will

// be registered with the specified class. An error

// message is returned if conditions are not met;

// otherwise, Error_OK is returned.

Error registerFlow(

__in ClassId classId,

__in FlowId flowId,

__in FlowCallback* callback );

// Precondition: The specified class and the flow should be

// defined and registered respectively.

// Postcondition: The specified network traffic is unregistered,

// and Error_OK is returned. An error message is

// returned if conditions are not met.

Error unregisterFlow(

__in ClassId classId,

__in FlowId flowId );

The presented hierarchy of “classes of service” and “flows” can reduce the number

of classes defined by the game, which reduces the amount of memory and execution

overhead in such communication architecture, which is highly beneficial to any game.

To simplify and achieve a flat hierarchy, a one-to-one mapping of flows to classes could

be applied; however, we believe such hierarchy can be beneficial to online multiplayer

games as it decouples the class of service from the broadcast and quality estimation

techniques. For example, in a given online multiplayer game all game updates can

share the same class definition, while the game can benefit from a one-to-one mapping

between the categories of game updates and flows. In turn, the game may use a different

29



3.2. Group Communication

Program 3.3 MCCA’s Interface for Sending Messages

// Precondition: The class specified by the ‘classId’ and the flow

// specified by the ‘flowId’ has to be defined.

// Postcondition: The message is placed in the appropriate send

// queue and is essentially sent. Error is returned

// if the class or network traffic is not defined

// and/or the communication window is full; otherwise,

// Error_OK is returned.

Error send(

__in ClassId classId,

__in FlowId flowId,

__in void* message,

__in unsigned int messageSize );

broadcast technique depending on the game update’s urgency (e.g., using a multicast

tree for broadcasting player’s health, points, etc), or target group (e.g., disseminating

group messages in capture the flag games to group members only).

3.2 Group Communication

Online multiplayer games require the ability to send messages to a single target (point-

to-point/private) or to a set of targets (group broadcast). Considering that all com-

munications are based on a series of point-to-point communication, every message in

MCCA is tagged with a “MessageType” 3 indicating whether it is a private or group

broadcast message. Private messages are messages transfered only among two play-

ers/nodes, while a forwarding policy, specified by the game, is used to propagate a

broadcast message to all group members.

Efficient group communication is an essential step in decreasing the network traffic

3Refer to Program A.1 in Appendix A for the definition of types and enumerations

30



3.2. Group Communication

and better utilizing network resources. Using MCCA, the game can specify a customized

forwarding policy (e.g., a two level multicast tree optimized for bandwidth) for each of its

flows. Supporting a flow specific forwarding policy can be extremely beneficial to games

considering different flows have different requirements, behavior, and characteristic.

Furthermore, the game can assign one of the general forwarding policies supported by

MCCA to a flow, or define and re-use forwarding policies of its own.

3.2.1 MCCA Supported Forwarding Policies

A communication layer for online multiplayer games, such as MCCA, can internally

build and support a few relatively general broadcast topologies for the game. MCCA

supports the following broadcast topologies:

• Star: Simply a one-to-all message broadcast policy. “Star” is a network band-

width consuming policy. “Star” does not scale as its generated network traffic

grows linearly with the number of players; however, it is potentially the best

forwarding policy for network traffics with extremely tight latency constrains.

• Two–level multicast tree: Two–level multicast tree uses other players/nodes

as relay agents to propagate messages. MCCA incorporates two level multicast

trees to minimize the introduced delay/latency in propagating messages. Other

multicast trees with deeper hierarchies can also be supported and become available

to games; however, they are not explored in this thesis considering the online

multiplayer games’ latency constraints.

In order to support players joining and leaving the game quickly, the multicast

overlay is created randomly at the beginning. The overlay adjusts itself as time

31



3.2. Group Communication

goes on, when more information about players’ network conditions (e.g., upload

capacity and latency) are gathered.

In building multicast trees different factors such as player’s bandwidth, latency or

even group membership can be taken into account. MCCA supports the following

two types of multicast trees:

– Optimized for available bandwidth: The primary factor for building

the multicast overlay is players’ available bandwidth for forwarding. This

policy will essentially migrate the network load from players with low upload

bandwidth capacities to players with higher upload bandwidth capacities.

– Optimized for latency: The primary factor for building the multicast

overlay in this case is the end-to-end latency.

Ping messages, sent frequently, are used to carry information such as the amount

of available forwarding bandwidth, and measuring communication latencies. The

updated information are used to adjust and re-build multicast trees. Potential

changes in a tree translate to requests for a new forwarder. Once the request

is accepted by the forwarder, the tree is updated and the previous forwarder

is released through notifications. A forwarder accepts a request only if it has

enough resources, and if the requester has the most up-to-date information about

the forwarder. Upon an out-of-date requests, a forwarder rejects the requests and

provides updated information in order for the requester to make a new decision.

3.2.2 Custom Forwarding Policy

Using MCCA a game can define its own forwarding policy. This can be useful as games

are able to use network information and/or game-level information (e.g., players’ team

32



3.3. Quality Aggregation and Reporting

affiliations) to build a forwarding policy, which better fits the needs and requirements of

their corresponding workloads. Program 3.4, presented on the next page, demonstrates

the forwarding policy interfaces, essentially answering two questions:

1. To whom a new broadcast message, using this forwarding policy, should be sent

to?

2. To whom a received broadcast message should be forwarded to?

A reasonable forwarding policy for online games has to adapt to new changes, con-

sidering the frequent changes in the game state (e.g., players leaving or joining the game)

and network conditions (e.g., updated information about the latency between players

as well as their available forwarding bandwidth). Consequently, MCCA requires the

game to register a forwarding policy creator 4 with it, which is used to create, update,

and manage a game defined forwarding policy. Program 3.5 presents the forwarding

policy.

3.3 Quality Aggregation and Reporting

One of the characteristic features of online multiplayer games is their generated traffic

volume predictability, and their ability to dynamically adapt and adjust to improve

the perceived QoS. Some of the mechanisms such as AOI and PCM that exploit these

opportunities have been discussed in Section 2.2. Such optimizations could be altered

to dynamically adjust the game generated network traffics and their interpretation,

depending on the observed network quality, to improve players’ experience. In order to

do so, a game needs to estimate the observed QoS for its flows. Consequently, MCCA

4Refer to Program A.3 in Appendix A for the interface of the forwarding policy creator

33



3.3. Quality Aggregation and Reporting

Program 3.4 Forwarding Policy Interface

class ForwardingPolicy {

// Postcondition: Returns the list of players that a broadcast message

// using this forwarding policy should be send to.

Error GetSendListFor(

__out PlayerId** forwardees,

__out int* numForwardees );

// Postconditions: Returns the list of nodes that a broadcast message,

// received from ‘‘fromPlayerId’’, should be send to

// via this node.

Error GetForwardListFor(

__in PlayerId fromPlayerId,

__out PlayerId** forwardees,

__out int* numForwardees );

};

Program 3.5 Setting the Forwarding Policy for a Network Traffic Flow

// Precondition: The class specified by the ‘classId’ and the flow

// specified by the ‘flowId’ has to be defined. The

// forwarding policy type has to be one of the MCCA

// supported types, with ‘‘customForwardingPolicy’’

// set to NULL; otherwise, the game has to specify

// its custom forwarding policy.

// Postcondition: The forwarding policy for the specified network

// traffic is set. Error_OK is returned if the pre-

// conditions are met, and if the forwarding policy

// is set properly; otherwise, an error message is

// returned.

Error setFlowForwardingPolicy(

__in ClassId classId,

__in FlowId flowId,

__in ForwardingPolicyType forwardingType,

__in CustomForwardingPolicy* customForwardingPolicy = NULL );

34



3.3. Quality Aggregation and Reporting

treats the game as an intelligent, and most importantly, an adaptable entity that can

change its behavior to improve the estimated quality. This is done by estimating and

aggregating each flow specific quality; to report the estimated perceived quality to the

game.

Many have studied the effects of network conditions on the player’s perceived QoS [2,

45, 48, 53, 57] (presented in Section 2.4). Based on these studies, MCCA provides a

set of standard and targeted quality estimation techniques for the game. In addition,

MCCA enables a game to define its own quality estimation technique (Section 3.3.3).

A game can specify the quality estimation type (see “QualityEstimationType” in

Program A.1, and Program A.4 in Appendix A for the interface) each of its flows.

MCCA tracks latency distribution, average loss, and average jitter of messages for

a flow that requires quality estimation (i.e., for flows with quality estimation type

set to other than “QualityEstimationType None”) for estimating the player perceived

quality. Program A.4 in Appendix A presents the detailed interface for setting the

quality estimation type, the quality estimation interface, and the latency distribution

interface.

MCCA periodically gathers the observed quality from all players by essentially mea-

suring each player’s estimated observed quality for the flow X and player Y combination

for the last period. To consider the quality of previous periods, MCCA applies an aging

factor described in Section 3.3.1, and finally reports the gathered quality to the game

via the game’s registered callback (see “FlowCallback::OnObservedQualityUpdate” in

Program A.2 for the notification callback interface).

Furthermore, MCCA provides information about the number of consecutive message

losses to better facilitate delta-encoding (described in Section 2.2) that is a common

mechanism to decrease the amount of generated network traffic. Consequently, the game

35



3.3. Quality Aggregation and Reporting

can register for a notification on N-consecutive message losses for a flow. Program A.5

in Appendix A presents the interface for registering and unregistering such notifications

(see “FlowCallback::OnNConsequetiveLosses” in Program A.2 of Appendix A for the

notification callback interface).

This section details the quality aging in MCCA (Section 3.3.1), the method for

estimating VoIP, game, and file quality (Section 3.3.2), and the interface for defining a

game specific quality estimation method (Section 3.3.3).

3.3.1 Quality Aging

MCCA periodically gathers the estimated quality (i.e., the average of other players’

perceived quality of the local player’s updates) for different flows, and presents it to the

game. To provide a realistic view of the current estimated quality, MCCA calculates

the estimated quality as a combination of the current and previous periods’ qualities.

An aging factor is applied to degrade the effect of a period’s quality as time goes on. To

decrease the required state for calculating the final estimated quality, the “exponentially

weighted moving average” is calculated, where a period’s quality factor is cut to half

every period. Consequently, final quality could be measured based on old average

quality and current period’s quality (Equation 3.1).

New Average Quality =
Current Period′s Quality + Old Average Quality × 0.5

1.5

(3.1)

3.3.2 MCCA Supported Quality Estimation

MCCA internally supports three generic quality estimation types: 1) for VoIP, 2) for

the game (based on the model proposed in this thesis), and 3) for bandwidth constraint

36



3.3. Quality Aggregation and Reporting

workloads (e.g., file transfer). In addition, MCCA enables games to define their own

quality estimation techniques, based on network conditions (reported by MCCA), and

other game–level information.

VoIP Quality Estimation

Effects of network conditions on VoIP have been extensively studied in the past [10, 11,

35, 50, 63] (presented in Section 2.4.2). Consequently, Equations 2.3, 2.4, 2.5, and 2.6

are used to estimate the observed quality for VoIP.

Game Quality Estimation

Many have studied the effects of network conditions such as loss, latency and jitter on

online multiplayer games [2, 45, 48, 53, 57] (presented in Section 2.4.1); however, there

has not been a standard method for estimating the perceived quality as opposed to

VoIP, as research have found that players’ tolerance to network conditions is different

from game to game.

To estimate the value of each game update message, in order to measure the user

perceived quality, this thesis makes the following propositions:

1. A lost message has no value.

2. A message latency is considered to be the latency between the time of an event

occurrence to the time that the event is processed (presented in Figure 3.3).

The game has to specify the average delay between an event occurrence to its

corresponding time–of–send. Such information can be estimated based on the

games periodicity (e.g., such delay for game updates is 1

2
of the game update

interval).

37



3.3. Quality Aggregation and Reporting

Event 

Occures
Message 

Queued 

for Send
Message 

Sent

Message 

Received

Message 

Queued 

for Receive

Message 

Processed

Time

Send Latency

Network Latency

End to end Message Latency

Figure 3.3: End-to-End Message Latency

3. The effect of jitter is found to be neglible [53]; thus, jitter is discarded in quality

estimation as queuing penalties shown in Figure 3.3 are added (similar to VoIP).

4. A message has full value at latencies lower than the game’s tolerated latency

(α) and has no value at latencies higher than the game’s un–tolerated latency (β)

(based on the previous research [2, 45, 48, 53, 57], discussed in Section 2.4.1). The

α and β values are estimated, based on user studies, for many online multiplayer

games, demonstrating the ability for game developers to either estimate such

values or measure via user studies.

5. A message value decreases linearly between the α and β latencies. There are

other possibilities such as exponential or logarithmic value depredation; however,

considering that the message latency measurement in distributed systems can not

be completely accurate, linear value depredation is arguably the better choice as

it avoids any abrupt changes in the message value.

Figure 3.4 demonstrates the effect of latency on the game message quality in MCCA.

Consequently, the game quality can be estimated using the Equation 3.4.

H(a, b) =











0, if a ≤ b

1, if a > b
(3.2)

38



3.3. Quality Aggregation and Reporting

G
a

m
e

 M
e

ss
a

g
e

 Q
u

a
li

ty

Latency

Max Quality

No Quality

(α) latency

(β) latency

Figure 3.4: Game Message Quality vs. Message Latency

H ′(a, b) = 1 − H(a, b) (3.3)

Quality = (1 − σ) ×
λn
∑

λ=λ0

(

H(λ, α) × H(β, λ) ×

(

λ − α

β − α

)

+ H ′(λ, α)

)

(3.4)

where

σ : Message loss rate for the period

λ0 : Latency of the first message received in the period

λn : Latency of the last message received in the period

α : Perfectly tolerated latency

β : maximum tolerated latency (always > α)

Observed Bandwidth as a Quality Measure

The success of operations such as file transfer can be measured in terms of the observed

bandwidth. This is a special case of quality estimation and aggregation, where the

quality is calculated based on the amount of time messages spend in one of MCCA’s

queues until they are discarded.

39



3.4. MCCA’s Internal Implementation Details

3.3.3 Custom Quality Estimation

Using MCCA a game can define its own quality estimation methods by setting a

flow’s quality estimation type to custom (“QualityEstimationType Custom” in Pro-

gram A.4) and specifying the quality estimation callback (“QualityEstimationCallback”

in Program A.4 of Appendix A) while specifying a flow’s quality estimation type (“set-

FlowQualityEstimation” in Program A.4 of Appendix A).

MCCA internally gathers the network level information of the messages, and pro-

vides them to the game, in order for it to calculate a period’s observed quality (“Quali-

tyEstimationCallback:: GetQuality” in Program A.4). A game can use such information

in combination with its game-level stats to report a quality back to MCCA. The re-

ported quality is then propagated and reported as described in Section 3.3. Appendix A

presents more details of the MCCA’s API.

3.4 MCCA’s Internal Implementation Details

MCCA internally uses a communication window for every player per class of data to

manage network traffic. The communication window is variable, and it is specified upon

class definition (described in Section 3.1.1). The communication window is used to 1)

assign a unique ID to each message, 2) orderly queue received messages, 3) recognize

missing or duplicate messages, and 4) track and acknowledge received messages. A com-

munication window is essentially constructed from a Start ID, cursor ID, and window–

size. The specified parameters are used to track the current state of the communication

window: the valid ID range (“start” to “start + size”, using circular increments where

the ID following “2 × size” is ‘0’), the available window-size, and the next available

ID. MCCA sends acknowledgment, which is the ID of the last successfully processed

40



3.4. MCCA’s Internal Implementation Details

message, to advance the communication window.

The class specific communication window is used for rate limiting (i.e., limit the

amount of pending network traffic) that is discussed in Section 3.1.1. Fixed timeouts

are used to resend unacknowledged messages of reliable classes of network traffic, or to

simply detect and report lost messages for unreliable classes. For unreliable classes of

network traffic, a timer is set when an out of order message (one that is not at the head

of the communication window) is received. Once the timer expires without receiving

the missing messages, the communication window advances, essentially declaring the

messages lost.

Finally, considering that a game services different game components (such as the

communication layer) at fixed intervals, for optimization purposes, MCCA places mes-

sages requiring redundancy in time buckets to track and retransmit them once needed.

Following section describes the implementation details of the MCCA’s communication

layer.

3.4.1 Communication Layer

The implemented communication layer attempts to satisfy each class’s requirements

in a best effort fashion, by sequentially serving the highest priority messages in send

queues. Such prioritization is also applied for sending redundant messages (i.e., a re-

dundant message of a higher priority class is served prior to new messages of a lower

priority class). Finally, the communication layer is implemented based on the interfaces

discussed in Chapter 3 and Appendix A.

The communication layer handles the communication window for each class of data,

and piggy-backs acknowledgments. Messages are retransmitted, if acknowledgments

are not received within a certain amount of time (time-out), for classes of service re-

41



3.5. Usability Issues

quiring reliability. Furthermore, message IDs are used to correctly deliver the messages

requiring in-order processing.

The communication layer frequently pings other players, to check for premature

disconnections. Ping messages are used to carry other information such as the estimated

qualities (described in Section 3.3). Ping messages are used to measure the Round

Trip Time (RTT) between players, which are also used to build and update the two

level multicast tree optimized for latency (described in Section 3.2.1). In addition, to

construct the two level multicast tree optimized for available forwarding bandwidth

(Section 3.2.1), each player broadcasts its own available forwarding bandwidth to other

players. Based on such informations, each player builds a multicast tree optimized for

itself, and sends requests (to assign forwardees to a forwarder) and responses (accept

or deny). Once a player joins, leaves, or receives updated information of other players,

multicast trees are adjusted.

Since game messages are relatively small (tens to hundreds of bytes) the communica-

tion layer combines the available outgoing messages that share the same target into one

packet as long as the combined packet size does not exceed the UDP packet limit. This

reduces generated traffic as for example packet headers and security keys add about 44

bytes of overhead in Xbox 360 [46].

3.5 Usability Issues

The experiments described in Chapter 5 demonstrate the benefits of the proposed com-

munication architecture, MCCA, for online multiplayer games. This section focuses on

challenges involved in using MCCA and discusses a few potential solutions.

Improving the efficiency, and better managing the network resources, is an important

42



3.5. Usability Issues

requirement for any communication layer for online multiplayer games; however, it is not

the only factor. The communication layer should also provide flexibility and usability

to developers, without requiring a developer’s knowledge of the communication layer’s

internal details. In order to evaluate MCCA with regards to these conditions, it is

important to outline this thesis’s assumptions in designing MCCA:

1. A game’s major and frequent network traffics use the MCCA for network com-

munication

2. Game developers have an understanding of the game behavior and the generated

network traffic

3. Game developers have minimal background in network application development

In general, MCCA supports traffic classification and prioritization, and provides

efficient group communication, as well as reports on network traffic loss and estimated

quality. Fine-tuning the class definitions is arguably the most complex step in using

MCCA, as developers need to consider the five parameters that define a traffic class:

1) order, 2) reliability, 3) redundancy level, 4) redundancy interval, and 5) window-

size. Order and reliability are dependent on the network traffic’s semantics, which are

relatively easy to infer from game requirements, while the other three options require

a better understanding of networked applications. Background in network application

development and clear understanding of application requirements, help in correctly

defining each traffic class; however, the following generic solutions can reduce the com-

plexity and result in better traffic classification:

1. Simulation based parameter search: Game developers can accurately model

and/or trace a games’s network traffic based on their insight and control of the

43



3.6. Discussion

game. Such information can be the input data for a simulator that searches

different class parameters, at various deployment conditions, to find the best

possible class definition. In addition, the result can specify the best class definition

for different number of players and/or known network conditions, which provides

flexibility to game developers, and potentially improves player experience.

2. Machine learning algorithms: Neural networks and machine learning algo-

rithms are actively used in Artificial Intelligence (AI) for games, to provide higher

user satisfaction, and for the game to adapt to the player’s skills and habits. Con-

sidering that online multiplayer games traditionally support players with last-mile

links, using neural networks in combination with MCCA to define and change

class definitions at runtime would enable player specific solutions (similar to AI

for games). For example, players with access to high network capacities can send

redundant messages, to account for network loss, while players with lower network

capacities would avoid message redundancy to reduce network traffic.

3.6 Discussion

This section compares MCCA to existing game-level optimizations (Section 3.6.1) and

network QoS solutions (Section 3.6.2).

3.6.1 Comparison to Game-Level Optimizations

Game-level optimizations are a key factor in supporting higher number of players and

improving the user perceived quality. In fact, certain game-level optimizations discussed

in this thesis are developed on top of MCCA (Section 5.1.3). The following presents the

main factors differentiating MCCA from previous research on game-level optimizations

44



3.6. Discussion

described in Section 2.2:

1. Game-level optimizations are generally game or genre specific, as opposed to

MCCA that is designed to support wide range of online multiplayer games

2. Game-level optimizations generally focus on reducing the network traffic, through

predictions and are highly coupled with the game, and don’t differentiate among

different types of network traffics

3. Online game optimizations [3–5, 23, 54] proposed in the past, do not, to the best

of our knowledge, support class specific targeted network QoS to optimize the

generated network traffic at the infrastructure level for online multiplayer games

The goal of this research is to provide a generic yet flexible solution that can benefit

many types of online multiplayer games. As a result, MCCA attempts to better manage

network traffic, utilize network resources, and provide further communication layer and

network traffic specific information for the game. Consequently, this thesis presents

new game-level optimizations, only possible due to MCCA.

3.6.2 Comparison to Network QoS

MCCA takes advantage of network QoS concepts such as message prioritization, dupli-

cation, and rate limiting. However, MCCA is less restrictive compared to network QoS

solutions (e.g., OverQoS [60]) to provide a classified and yet best effort communication

layer for online multiplayer games. Consequently, MCCA is more dependent on the

game to properly define its classes of network traffic to perform efficiently.

MCCA is targeted for online multiplayer games where the workload behavior can

be predicted and is fully managed by the game. In fact, MCCA works with the game

45



3.6. Discussion

(e.g., through game quality reports) for adapting to real-time conditions and improving

the user perceived quality.

Finally, MCCA allows a game to specify its group communication and quality es-

timation techniques for each of its network traffic flows. Such game–defined group

communication can play an important role in cheat prevention for online multiplayer

games (e.g., in capture the flag type of games, important group information could be

efficiently broadcasted to the group, through group members, in isolation from intrud-

ers).

46



Chapter 4

Evaluation Methodology

This chapter discusses the overall evaluation methodology for studying the effects of:

game workload prioritization, classification, and support for targeted QoS. In addition,

this chapter discusses the methodology for studying the effects of the proposed group

communication and distributed quality aggregation and reporting. Chapter 5 presents

the experiment setup and results, and discusses the findings.

The proposed communication architecture, MCCA (described in Chapter 3), is a

standalone layer in between the game and the network layer (Figure 4.1). This layer sep-

aration is exploited, when evaluating MCCA, to extensively study various combinations

of workload and network layer properties.

To evaluate MCCA, we had to model the behavior of the two layers surrounding

MCCA. The rest of this chapter details the communication infrastructure (Section 4.1),

and the set of workloads (Section 4.2) used for evaluating MCCA.

4.1 Communication Infrastructure

This section presents the set of communication infrastructures that could be used for

evaluating MCCA. In addition, this section compares the potential communication

infrastructures, and presents the implementation details and evaluation of the chosen

communication infrastructure in Section 4.1.1.

47



4.1. Communication Infrastructure

Communication Infrastructure

Real Network
Network 

Emulator

Network 

Simulator

MCCA

Game

Workload α ... Workload β

Figure 4.1: Main Deployment Layers

Clear layer separation permits the use of either of the following communication

infrastructures (shown in Figure 4.1) to evaluate MCCA:

1. Real Networks: Provide a realistic deployment environment with higher con-

fidence in the final results; however, it requires a lot of resources. In addition,

the deployment environment is uncontrolled, which prevents reproducible experi-

ments.

2. Packet–Level Network Emulator: Provides a relatively realistic deployment

environment. The deployment environment can be controlled, where experiments

of various deployment configurations could be performed relatively easily.

3. Network Simulator: Simulate the network communication among network

nodes, by simulating packet or message transfers. Network simulators introduce

certain error rates compared to real or emulated networks, as network upload

capacity and communication latencies are all simulated. The deployment config-

48



4.1. Communication Infrastructure

urations can be easily changed, and experiments can be performed faster using

virtual time.

Considering the wide range of workload and deployment configurations studied in

this thesis (described in Chapter 5), we used a network simulator as the communication

infrastructure, to speed-up the evaluation process (as more than 3.5 years worth of real

time experiments are performed). Consequently, we developed and evaluated a network

simulator to mimic the conditions that players generally experience on the Internet

(Section 4.1.1). This network simulator operates at the message level since most game

messages are small and fit within one packet. We evaluated the implemented network

simulator (described in Section 4.1.1), and compared it to an emulator that operates

at the packet level. Based on these evaluations, we infer that the network simulator

introduces negligible error rates compared to a real network or a packet–level emulator.

To evaluate MCCA, the experiments presented in this thesis simulate Quake III, a

Peer-to-Peer (P2P) online multiplayer game, in an environment where the game traffic

competes with VoIP traffic and file transfers. VoIP traffic is selected as a workload

for evaluation, primary due to its strict network requirements and the fact that a

large number of online multiplayer games support VoIP as a communication mean.

Furthermore, file transfer is selected for its bandwidth intensive workload that helps

evaluating the effects of workload prioritization and classification.

4.1.1 Network Simulator

The primary factor affecting the feasibility of online multiplayer games is the upload

capacity of each player [4], as the backbone infrastructure is generally well over pro-

visioned for online multiplayer games. Based on this assumption, we developed and

49



4.1. Communication Infrastructure

evaluated a network simulator for point-to-point communication among players. The

network simulator uses a specification of network characteristics (capacity and latency)

to mimic the conditions that players generally experience on the Internet. Additionally,

the simulator mimics packet loss and corruption (packet corruption is modeled as a

loss). The following discusses the details of the network simulation and its evaluation .

Network Simulation

The developed network simulator works at the message level, and operates in rounds

of 10µs intervals. Considering that all experiment messages (Section 4.2) are smaller

than maximum IP packet size, we believe simulating at the message level is reasonable.

The network simulator models the outgoing and incoming network links of all players,

and manages the flow of messages based on each player’s network capacity and link’s

configuration. At each round, the simulator calculates the time of a message leaving the

outgoing link, and frees the buffer accordingly; it then applies possible loss, corruption,

and delay to the message, calculates the arrival time, and, if it is the case, places the

message in the receiver’s queue.

The primary factor affecting the feasibility of online multiplayer games is the upload

capacity at each node [4]. Bharambe et al. [4] conclude that access link bandwidth for

broadband residential clients in the U.S. is modeled by a log-normal distribution (with

mean of 1Mbps and a range of 256Kbps to 5Mbps), a result we use in our simulations.

Since the access link capacities are generally much smaller than core links’ capacity, the

simulator does not model contention and cross traffic in the network core.

50



4.1. Communication Infrastructure

Network Simulator Evaluation

We evaluated the simulator by comparing the observed transfer rate and communication

latency of a network traffic generator, which uses the network simulator, to the one

that uses the network emulator (NetEm [44]), under the same conditions. The network

emulator used for these experiments, NetEm, allows filtering of any two (IP, Port)

combinations and applies network delay, loss, and rate limit. Overall, NetEm allows

emulation of the same network conditions as real networks, or the presented network

simulator.

The network traffic generator, mentioned above, has a sender and a receiver entities.

The sender attempts to send a fixed sized packets at fixed intervals to the receiver, where

all packets are marked with the time of send. The receiver reads packets and measures

the observed bandwidth and latency to later evaluate the network simulator’s error

compare to the network emulator.

Measuring the latency for the network traffic generator running on the network

simulator is accurate since it uses a virtual clock/time. On the other hand, for the

network traffic generator using NetEm, the sender and receiver are placed on the same

device in order to accurately measure the latency and avoid clock inconsistencies among

different devices.

To measure the network simulator’s relative error at different conditions, we per-

formed experiments using different combinations of packet size, time interval, and net-

work upload capacity (bandwidth). Each experiment is performed multiple times in

order to achieve high confidence in every data point. Table 4.1 presents combinations

of experiments performed. For each experiment, the sender sends packets until 5GB

worth of data is successfully transfered to the receiver.

51



4.1. Communication Infrastructure

Parameter Values

Network Capacity (Bandwidth) 256Kbps, 512Kbps, 1Mbps, 2Mbps, 4Mbps

Packet Size 64B, 128B, 256B, 512B, 1024B

Packet Interval 0ms, 2.5ms, 5ms, 10ms, 20ms, 40ms

Table 4.1: Experiment Configurations for Network Simulator Evaluation

Equation 4.1 presents the formula used to calculate the network simulator’s relative

error (absolute value of the difference of the two values over the network emulator’s

value):

RelativeError = abs

(

S − E

E

)

(4.1)

where

S : Value from the experiment using the network simulator

E : Value from the experiment using the network emulator

In this thesis the network simulator’s error refers to the simulator’s bandwidth error,

as it is consistently higher than the simulator’s error in transfer latency. Figure 4.2

presents the network simulator’s error histogram for all performed experiments. More

than 85% of the experiments show less than 2% margin of error, while less than few

percentages of experiments show errors as high as 8%. Overall the average error for

all experiments is 0.9% with standard deviation of 1.20%, while the minimum observed

error is 0.13% and the maximum observed error is 6.88%.

To better understand the simulator’s strengths and weaknesses, Figures 4.3, and

4.4 present the average error distribution and 95% confidence interval with respect to

the network upload capacity (Bandwidth) and packet interval respectively.

Results show that the network simulator’s error increases as the network capacity

increases, and it rapidly decreases as the packet interval is increased. The highest

errors are observed when the network traffic generator attempts to send messages back

52



4.1. Communication Infrastructure

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2% 4% 6% 8%

P
e

rc
e

n
ta

g
e

 o
f 

E
p

x
e

r
im

e
n

ts

Relative Error 

Figure 4.2: Network Simulator’s Relative Error Histogram

to back (at packet interval of 0ms). Such workload generates a high processing overhead

compared to network simulator, where no processing, IO, or kernel time is modeled.

This processing overhead is increased as the number of I/O operations (socket send

and receive), in short amount of time, is increased. Such overhead affects the overall

observed bandwidth, and is higher at larger network capacities, where more packets are

sent faster.

It is unrealistic to assume that any game would attempt to send packets back–to–

back, as games have many other components such as graphics, audio, AI, physics and

more. Due to the periodical behavior of the workloads (Section 4.2) used in experiments

(presented in Chapter 5) and based on the network simulator’s evaluation, the packet

interval, at the worst case scenario, is anticipated to be between 2.5ms to 5ms.

Online multiplayer games are CPU intensive applications requesting a large number

of IO operations frequently. Considering that the network simulator does not simulate

processing overheads, the following experiment is performed to study the effects of a

53



4.2. Workload Generators

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

0 1024 2048 3072 4096 5120

R
e

la
ti

v
e

 E
r

ro
r

Bandwidth(  Kbps )

Figure 4.3: Network Simulator’s Relative Error with Respect to Network Capacity
(Bandwidth)

CPU intensive application on the network simulator’s error. Firstly, a CPU intensive

application is developed to run as a separate process (unrelated to the network traffic

generator). Secondly, the CPU intensive application is run on all available cores in

the background, while the experiment is performed. Experiment with these conditions

are performed for 2.5ms packet intervals, showing an average error of 1.9% (about 71%

increase compare to the normal scenario), still resulting in relatively low and acceptable

error rates.

4.2 Workload Generators

To evaluate the communication architecture, its prioritization, classification, and the

affects of optimized group communication as well as benefits of quality aggregation, the

following workload generators were developed:

54



4.2. Workload Generators

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

0 5 10 15 20 25 30 35 40 45

R
e

la
ti

v
e

 E
r

r
o

r

Packet Interval ( ms )

Figure 4.4: Network Simulator’s Relative Error with Respect to Packet Interval

• Game Updates

• VoIP Traffic

• File Transfer

• System Messages

MCCA is targeted for online multiplayer games with multiple ongoing workloads

with different behaviors, characteristics, and requirements. Consequently, aside from

game updates, VoIP traffic and file transfer workloads are used for evaluation pur-

poses. These are among the most common types of workloads for online multiplayer

games, and are also different in behavior and requirements. The fourth type of work-

load is system messages, as it is the byproduct of managing the distributed state of

players. This section discusses workload generation for each workload: game updates

(Section 4.2.1), VoIP traffic (Section 4.2.2), file transfer (Section 4.2.3), and system

messages (Section 4.2.4).

55



4.2. Workload Generators

4.2.1 Generating Game Traffic

The game workload used in all experiments of this thesis, is the simulation of Quake

III workload (as a P2P online multiplayer game) based on the model developed by

Bharambe et al. [4]. Quake III presents a typical online multiplayer game, where small

game updates are broadcasted regularly, and delta-encoding is used to reduce the gen-

erated network traffic. Quake III is a First Person Shooter (FPS) game with tighter

latency requirements compared to other game genres (such as Real-Time Strategy (RTS)

games). The following describes the delta encoding model for Quake III:

1. The game periodically sends updates at 50ms intervals.

2. The game sends a one-frame delta encoded update with mean size of 32 bytes, if

the last message is acknowledged by the target player.

3. The game sends a two-frame delta encoded update with a mean size of 36 bytes,

if the second last message is acknowledged by the target player.

4. The game sends a complete update (raw data) without any delta encoding, which

is 196 bytes long, if none of the last two messages are acknowledged.

4.2.2 Generating Voice-Over-IP (VoIP) Traffic

Traditionally VoIP sources can be modeled as an on-off Markov process. The alternating

periods of activity and silence are exponentially distributed with average durations of

µ and λ respectively [16]. When the source is in the “talk” state, fixed-size packets are

generated at a constant interval, while no packets are transmitted when the source is

in the “silent” state. The size of the packet and the rate at which the packets are sent

depends on the voice codec and compression scheme.

56



4.2. Workload Generators

Source Type Configuration Parameter

Talkative
µ = 5s
λ = 10s

Quiet
µ = 5s
λ = 20s

Table 4.2: Talkative and Quiet VoIP Source Configurations

Experiments in this thesis are based on Padungkrit et al.’s model [52] for VoIP

traffic in real networks. This model adds one extra “short silence” state demonstrated

in Figure 4.5. Once the source is in the “talk” state, it goes back and forth between

the “talk” and “short silence” states. In addition, the VoIP traffic generator developed

use the codec size, frequency, and state probabilities described by Padungkrit et al’s

model [52]. Consequently, VoIP messages are 78 bytes long, generated every 20ms

during the “talk” state. The probability of changing state from “talk” state to “short

silence” state is 32% every half a second, and the probability of returning to the “talk”

state from the “short silence” state is 71% every half a second.

Talk
Short 

Silence

Long

Silence

Figure 4.5: VoIP State Machine

The mean talk (µ) and mean silence (λ) durations are varied in experiments to simu-

late a talkative and a relatively quiet VoIP sources (Table 4.2 presents the configuration

parameters).

57



4.2. Workload Generators

4.2.3 File Transfer

Experiments involving file transfer (file workload) assume that the game sends a 500KB

file to other players every five minutes. The file size is selected based on a normal distri-

bution with mean of 500KB and standard deviation of 32KB. Games usually have their

required files and assets loaded into memory; thus, DVD or storage device bandwidth

limitations are not modeled. Furthermore, files are split into fixed sized chunks that

are sent frequently until the file is fully transmitted. The file chunk size is varied in

experiments to evaluate their affect on the perceived quality of VoIP and game updates.

4.2.4 System Messages

System workload is the byproduct of the messages transmitted among players to manage

their distributed state. These messages are mainly consist of:

• Pings: Sent every few seconds to all other players as a mechanism to detect for

premature disconnections. In addition pings carry useful information such as the

amount of available forwarding bandwidth.

• Control Messages: Messages mainly used to manage the multicast tree state,

such as registering or unregistering forwardees, and/or accepting or denying reg-

istration requests. Such messages are more frequent upon a player joining or

leaving, and they are less frequent once players’ trees are built and adjusted.

58



Chapter 5

Experiments and Results

This chapter presents details and results of experiments performed for evaluating MCCA

and its components. Each experiment is performed multiple times, each time with a

different random seed number, in order to achieve high confidence interval in the results;

all figures present the 95% confidence interval. We anticipate satisfactory results with

a small number of players (as player’s upload capacity is plentiful), and unacceptable

results with a large numbers of players (as network is severely under-provisioned). In

order for the techniques explored in this thesis to have an effect, experiments focus on

the region that the network is not severely over– or under–provisioned. Consequently,

the number of players are steadily increased for every experiment configuration until

unacceptable quality levels are achieved.

To properly evaluate MCCA as a communication architecture; number of players,

characteristics of the deployment platform (loss rate, bandwidth, and latency), as well

as the number and definition of game workloads are varied in experiments. In addition,

different group communication mechanisms, and game-level optimizations (based on

distributed quality aggregation, and flow specific reports) are presented and evaluated.

The following presents the types of experiments we performed to evaluate MCCA:

1. Various Workload Generator Combinations: To study effects of VoIP and

file transfer on online multiplayer games, and to evaluate MCCA’s support for

59



Chapter 5. Experiments and Results

multiple ongoing network traffics

2. Network Traffic Class Definitions: To evaluate MCCA’s support for network

traffic classification

3. Group Communication: To evaluate MCCA’s support for efficient message

dissemination

4. Game-Level Optimizations: To evaluate MCCA’s distributed quality aggrega-

tion, and to demonstrate the potential for new types of game-level optimizations

using MCCA

5. Real-Time Changes in the Number of Players and Network Conditions:

To demonstrate online multiplayer game’s ability to adapt to variable number of

players and network conditions using MCCA

6. Various Network Conditions: To evaluate MCCA at other network conditions

with higher loss rates, and lower network capacities

The types of experiments presented above are designed to: 1) individually evaluate

each of MCCA’s components, and 2) evaluate the MCCA as a whole. As a result,

some experiments study the effects of group communication, while others evaluate net-

work traffic classification and/or distributed quality aggregation through game-level

optimizations.

The following section describes the experiment setup (Section 5.1), including details

of the deployment environment (Section 5.1.1), and certain game-level optimizations

(Section 5.1.3). Following which, the evaluation metric for each type of workload (Sec-

tion 5.2), and the experiment naming convention (Section 5.3) are presented. This chap-

ter then presents experiments with class definitions (Section 5.4), workload variations

60



5.1. Experiment Setup

(Section 5.5), real-time player and deployment variations (Section 5.6), and network

conditions (Section 5.7). In addition, the study of quality variability among players

(Section 5.8) are presented. Finally, MCCA’s comparison with the optimal and ideal-

ized solution (Section 5.9), and the summery of the experiment results (Section 5.10)

are presented.

5.1 Experiment Setup

To evaluate MCCA, the experiments presented in this chapter use different combinations

of workloads described in Section 4.2. In addition, all experiments use MCCA (described

in Chapter 3) as a communication layer. Finally, all experiments are performed using

the network simulator described in Section 4.1.1.

The following sections present the details of the simulated deployment environment

for experiments (Section 5.1.1), the details of the configuration parameters for the

network traffic workloads (Section 5.1.2), and the game-level optimizations that are

based on MCCA and its distributed quality aggregation (Section 5.1.3).

5.1.1 Simulated Deployment Environment

The network simulator (described in Section 4.1.1) is used as the communication infras-

tructure for all experiments. Following sections present the details for selecting every

player’s network capacity, as well as inter node latencies and loss rates. Players’ upload

capacity and latencies are randomly selected based on distributions found by Bharambe

et al. [4]. Every experiment is performed multiple times using a different random seed

number until high confidence intervals are achieved.

The default network parameters for experiments are based on the Table 5.1, with

61



5.1. Experiment Setup

Network Characteristic Values

Bandwidth
µ = 1Mbps
Range = [256Kbps,5Mbps],[768Kbps,3.5Mbps]

Corruption 0.1%

Latency µ = 30ms, and σ = 30ms

Loss 0.1%, 1%, 5%

Table 5.1: Deployment Variations

the network capacity ranging from 768Kbps to 3.5Mbps, and network loss of 0.1%.

Experiments with other network conditions are described in Section 5.7.

Bandwidth

The player’s network capacities are randomly selected based on the log-normal dis-

tribution described in Section 4.1.1. Furthermore, by changing the variance in the

model but keeping the mean the same, two network capacity distributions, one varying

from 256Kbps to 5Mbps (Low Bandwidth), and another one varying from 768Kbps to

3.5Mbps (High Bandwidth), are used in the experiments.

Loss, Latency, and Corruption

To reduce inter-node latency and to combine players speaking the same language, online

multiplayer games use matchmaking services that group (in the same game instance)

players based on their geographical location [9]. Using data from a real game, Bharambe

et al. [4] note that the mean, median, and standard deviation for inter-player RTT is

81ms, 64ms, and 63ms respectively. We use the same values for our experiments.

Additionally, we conservatively fix the packet corruption rate at 0.1% and vary the loss

rate from 0.1% to 5%. Table 5.1 shows the various deployment configurations under

62



5.1. Experiment Setup

which experiments are peformed.

5.1.2 Network Traffic Workloads

Workload generators (described in Section 4.2) are used for evaluation, where the

VoIP workload generator (described in Section 4.2.2) by default simulates relatively

quiet sources (specified in Table 4.2), and the file transfer workload (described in Sec-

tion 4.2.3) uses a default file chunk–size of 256 bytes. Section 5.5 evaluates MCCA using

other workload variations such as talkative VoIP sources and a larger file chunk-size.

Observed game and VoIP qualities are estimated based on techniques described in

Section 3.3. To estimate the observed game quality, the perfectly tolerated latency

(α), and the maximum tolerated latency (β) of respectively 100ms and 200ms are used

(based on the result of a user study by Matthias Dick et al. [19] for Quake III).

5.1.3 Game-Level Optimizations

To evaluate MCCA’s flexibility and its ability to support game-level optimizations, we

developed the following game-level optimizations: 1) Optimistic Game, 2) Adaptive

Game Update Interval, and 3) VoIP Optimization.

Optimistic Game

The First Person Shooter (FPS) game, described in Section 4.2.1, uses delta-encoding

to decrease its generated network traffic. The presented model is a pessimistic model,

which assumes that unacknowledged messages are lost. Due to network latencies and

the network traffic, as the number of players grows, acknowledgments may be received

too late resulting in an unnecessary increase in the network traffic. This increase is due

to the game sending complete updates as opposed to much smaller one– or two–frame

63



5.1. Experiment Setup

delta encoded updates. This thesis explores the optimistic game model, where messages

are assumed to be received, and a player only sends a complete update once it detects

a two consecutive message loss for a receiving player (i.e., two consecutive message loss

in the game “flow”).

In this approach a receiving player missing two or more consecutive updates sends

a request for a complete update, and would have an invalid state until it is received. To

account for such conditions, updates received during the invalid game state contribute

zero value to the estimated game quality. Finally, to better understand the game

status, the percentage of players’ invalid–state time are tracked for optimistic Quake

III experiments.

Adaptive Game Update Interval

The presented peer-to-peer FPS generates a game update every 50ms, which is sent

to all other players. Consequently, increasing the number of players results in a much

higher network traffic compared to experiments with lower number of players, finally

reaching conditions where 1) it takes too long to propagate a game update (updates

lose their value due to large delay) or 2) updates are generated faster than they are

transfered. Such circumstances result in a low game quality and are not acceptable.

This thesis proposes a variable game update interval, based on the aggregated game

quality, as opposed to the fixed game update interval of 50ms. At low game qualities, a

game could increase its game update interval, which reduces the amount of generated

network traffic, to achieve higher sustainable game qualities. Such approach introduces

a delay penalty for increasing the game update interval, as the time between an event

occurrence and its corresponding game update transfer increases (Figure 3.3). Increas-

ing the game update interval results in a lower rate of game updates, and reduces

64



5.1. Experiment Setup

network traffic. Such optimization is feasible in online multiplayer games, considering

the game’s control of the game update generation and interpretation.

This optimization can slightly reduce the game quality due to the extra delay;

however, experiments show that the quality gained due to lower network traffic is much

higher than the quality penalty due to the extra delay.

In experiments using the proposed adaptive game update interval, the game update

interval is increased once the aggregated quality falls below the low quality threshold.

Upon such event, the game update interval is increased periodically until the estimated

quality reaches above the okay quality threshold. Experiments in this thesis use the

low quality threshold of 8.0, and okay quality threshold of 9.0. In addition, to avoid

unrealistic game update intervals, the maximum allowed update interval is set to 100ms

(which in combination with the average network latency results in acceptable end-to-

end delay, based on user studies of Matthias Dick et al. [19]). In addition, considering

that the game update interval could be increased to higher levels than required, the

game slowly reduces the update interval while the game quality is not significantly

reduced. Finally, to provide a realistic model, game update intervals are rounded up to

the nearest 5ms.

Aside from increasing the game update interval, online multiplayer games can use

other techniques such as Area–of–Interest (AOI) and Predictive Contract Mechanisms

PCM (described in Section 2.2) in combination with the distributed game quality ag-

gregation for adapting to the number of players, and their network conditions. The

following describes how AOI or PCM could implement such techniques to improve the

perceived quality, and support higher number of players:

• AOI: Recognizing the game quality degradation, a game can further reduce the

65



5.2. Quality Estimation Metrics

game update frequency for players outside the area of interest to reduce the gen-

erated network traffic.

• PCM: PCM is a technique where updates are sent once a prediction error is

higher than a certain threshold. Recognizing game quality degradation, using the

MCCA’s distributed quality aggregation, a game can increase the prediction error

threshold to reduce the number of generated game updates (network traffic).

VoIP Optimization

The aggregated VoIP quality provides a good perception on effectiveness of the VoIP

communication. VoIP at low qualities is essentially a network traffic that does not

provide any useful functionality to the game or the player. A game recognizing low

VoIP qualities can notify the player, and disable the VoIP communication, in order to

use the network resources for other useful purposes.

Low VoIP qualities could be temporary and due to cross network traffic (i.e., other

applications using the player’s network resources). Consequently, a game using such

optimization should enable the VoIP communication at some point in future based on

player’s preference and network conditions. To achieve this behavior, an experiment

using VoIP optimization automatically disables VoIP at low qualities for a duration of

time measured based on the last observed quality. In this model, lower VoIP qualities

result in longer off durations.

5.2 Quality Estimation Metrics

The quality of game, VoIP, and file transfer are measured respectively in terms of

the game quality estimation (described in Section 3.3.2), R-Factor (described in Sec-

66



5.2. Quality Estimation Metrics

tion 2.4.2), and transfer rate (KBps). This section describes the quality metric, as well

as the acceptable and unacceptable quality ranges for each of the mentioned workloads.

5.2.1 Game Traffic

Game quality is estimated based on the model presented in Section 3.3.2, where α

and β latencies (of respectively 100ms and 200ms) are chosen based on user studies of

Matthias Dick et al. [19]. These user studies also suggest that the average player’s idea

of “maximum tolerable latency” for Quake III is about 150ms. Assuming a reliable

network, and based on this thesis’s quality estimation model for Quake III, such end-

to-end latency results in an estimated game quality of 5.0.

This thesis assumes that game developers intend to ensure that no player observes

a game quality of lower than the average tolerated game quality. Considering that the

experiment results in Chapter 5 demonstrate the average quality, experiment results

are investigated to find the smallest average game quality that satisfies the above re-

quirement (i.e., the acceptable quality threshold). As a result, smallest average game

quality of 7.0 is found to be acceptable, at which the game quality distribution satisfies

the above requirement. Section 5.8 presents the details of this investigation.

5.2.2 Voice-Over-IP (VoIP)

The VoIP quality estimation is based on the E-Model presented in Section 2.4.2 that

also presents a quality metric shown in Table 2.1. Experiment results in Chapter 5

demonstrate the R-Factor value for VoIP, which based on Table 2.1 represent poor and

unacceptable qualities at R-Factor values of 60 or below.

67



5.3. Naming Conventions for Experiments

5.2.3 File Transfer

Experiment results in Chapter 5 demonstrate the observed transfer rate (KBps) for

experiments with file workload. Estimating the acceptable transfer rate is dependent

on the characteristic of its application; however, due to lack of information on file

transfer requirements, the observed transfer rate is proposed as a comparison metric.

5.3 Naming Conventions for Experiments

Considering the long description names of performed experiments (e.g., Optimistic game

using adaptive game update interval with VoIP and file transfer workloads), and a many

number of experiment configurations, the following naming convention is used in figures

and tables for labeling experiments. All abbreviation are also listed in Table B.2 and

mentioned in their respective sections. The following presents the naming convention

rules:

1. ‘G’ represents the word “Game” (an experiment with game workload)

2. ‘V’ represents the word “VoIP” (an experiment with VoIP workload)

3. ‘F’ represents the word “File” (an experiment with file transfer workload)

4. An ‘O’ before ‘G’ represents “Optimistic Game” (an experiment with optimistic

game workload, described in Section 5.1.3)

5. An ‘A’ after ‘G’ represents “Addaptive Game Update Interval” (an experiment

using adaptive game update interval, described in Section 5.1.3)

6. An ‘O’ after ‘V’ represents “VoIP Optimization” (an experiment using VoIP

optimization, described in Section 5.1.3)

68



5.4. Experiments with Class Definitions

Different combinations of the mentioned naming convention rules are used to label

experiments. For example, “OGAVO” represents an optimistic game using an adaptive

game update interval, with VoIP workload that uses VoIP optimization.

5.4 Experiments with Class Definitions

This section presents experiments with various workload combinations and class defi-

nitions (Section 5.4.1), as well as experiments evaluating the effects and usefulness of

workload window-size (Section 5.4.2), and message redundancy (Section 5.4.3).

5.4.1 Experiments with Workloads and Classification

To evaluate the effectiveness of network traffic classification and prioritization pro-

posed in this thesis, this section presents experiments with different workload combi-

nations. In addition, experiments involving the proposed group communications are

presented to validate the intuition that class specific group communication benefits

online multiplayer games. Finally, experiments with various game-level optimizations

are presented to evaluate the usefulness of distributed quality aggregation for online

multiplayer games.

To understand MCCA’s behavior and its potential benefits, variations of each work-

load combination are analyzed in separate groups, where effects of network traffic clas-

sification, efficient group communication, and game–level optimizations are evaluated.

The following presents experiments with the following workloads:

1. Game only workload

2. Game with VoIP workload

69



5.4. Experiments with Class Definitions

3. Game with VoIP and file transfer workloads

Game Only Workload

To evaluate the new game-level optimizations (only possible due to MCCA), and to

understand the quality and behavior of the base scenario, this section presents the ex-

periments with the game only workload. Experiments with game only workload include

the following combinations of game-level optimizations (described in Section 5.1.3):

1. Game (G)

2. Game with adaptive game update interval (GA)

3. Optimistic game (OG)

4. Optimistic game with adaptive game update interval (OGA)

Figure 5.1 presents the result of above experiments and includes the 95% confi-

dence interval, where every experiment (resulting in a data point) is performed many

times with a different seed number, until a 95% confidence interval of lower than 5% is

achieved. The figure presents the estimated observed game quality, which is calculated

based on the techniques described in Section 3.3.2. As the game quality is correlated

to the game update time and the invalid game state time, Figure 5.1 presents these

information for their corresponding experiments.

The OGA5 configuration provides the highest game quality (Figure 5.1a), while it

results in lower game update intervals compare to GA configuration (Figure 5.1b), and

lower invalid game state durations compared to OG configuration (Figure 5.1c). In

5Section 5.3 and Table B.2 in Appendix B describe the experiment naming convention

70



5.4. Experiments with Class Definitions

general, experiments that include a game-level optimization perform much better than

the simple game at higher number of players.

To correctly understand the result of experiments with adaptive game update inter-

val, it is important to fully understand its behavior (described in Section 5.1.3). The

model for changing the game update interval does not produce the most optimal so-

lution (i.e., achieving the highest game quality possible). This model attempts to find

the smallest game update interval at which the game can operate properly. Addition-

ally, in this model, the game update interval is periodically increased when the game

quality is in a specific game quality range. Consequently, as a result of the presented

model’s behavior, the game quality for GA experiment increases between 26 players to

38 players.

71



5
.4

.
E

x
p
erim

en
ts

w
ith

C
la

ss
D

efi
n
itio

n
s

0

1

2

3

4

5

6

7

8

9

10

0 8 16 24 32 40 48 56 64 72 80 88 96 104

O
b

s
e

r
v

e
d

 G
a

m
e

 Q
u

a
li

ty

Number of Players

G

GA

OG

OGA

(a) Game Update Quality

0

10

20

30

40

50

60

70

80

90

100

0 8 16 24 32 40 48 56 64 72 80 88 96 104

G
a

m
e

 U
p

d
a

te
 I

n
te

r
v

a
l 

( 
m

s
 )

Number of Players

GA

OGA

(b) Game Update Interval

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 8 16 24 32 40 48 56 64 72 80 88 96 104

P
e

rc
e

n
ta

g
e

 o
f 

T
im

e
 w

it
h

 I
n

v
a

li
d

 G
a

m
e

 S
ta

te
 

Number of Players

OG

OGA

(c) Invalid Game State

Figure 5.1: Experiment Results for Game Only Workload

72



5.4. Experiments with Class Definitions

Game with VoIP Workload

To study the effects of VoIP on online multiplayer games, and also evaluate MCCA for

supporting a game with VoIP communication, this section focuses on experiments with

game and VoIP workloads. Experiments with game and VoIP workloads include the

following combinations of group communication (described in Section 3.2) and game-

level optimizations (described in Section 5.1.3):

1. Game with VoIP, without any prioritization, classification, or efficient group com-

munication (labeled GV Single Class)

2. Game with VoIP, using prioritization and classification, without any efficient

group communication (GV Using Broadcast)

3. Game with VoIP, using prioritization, classification, and a two-level multicast tree,

optimized for bandwidth, for its VoIP traffic (GV)

4. The above configuration (#3), using different game-level optimizations (GVO,

GAV, GAVO, OGV, and OGAVO).

Figure 5.2 presents the result of these experiments, including the estimated game

and VoIP qualities, as game and VoIP are competing traffics that affect one another.

In addition, Figure 5.2b and Figure 5.2d respectively present the game update interval

and the VoIP’s activity (i.e., on/off) as they significantly affect the game quality.

Results in Figure 5.2a show that prioritization on its own can slightly improve

game quality (“GV Using Broadcast” vs. “GV Single Class”), while in combination

with efficient group communication for VoIP it can significantly improve both VoIP

and game qualities (“GV” vs. “GV Single Class”). In addition, we infer that the

VoIP optimization alone has little impact (“GVO” vs. “GV”), as game updates alone

73



5.4. Experiments with Class Definitions

saturate all available network resources. On the other hand, VoIP optimization in

combination with adaptive game update interval has a much higher impact at higher

number of players (“GAVO” vs. “GAV”). Finally, and as expected, the optimistic game

that uses all the presented game–level optimizations outperforms all other experiments,

provides higher game and VoIP qualities, and operates at lower game update intervals

(Figure 5.2b) with more players having their VoIP enabled (Figure 5.2d).

74



5
.4

.
E

x
p
erim

en
ts

w
ith

C
la

ss
D

efi
n
itio

n
s

0

1

2

3

4

5

6

7

8

9

10

0 8 16 24 32 40 48 56 64 72 80 88 96

O
b

s
e

r
v

e
d

 G
a

m
e

 Q
u

a
li

ty

Number of Players

GV Single Class GV Using Broadcast GV GVO

GAV GAVO OGV OGAVO

(a) Game Update Quality

0

10

20

30

40

50

60

70

80

90

100

0 8 16 24 32 40 48 56 64 72 80 88 96

G
a

m
e

 U
p

d
a

te
 I

n
te

r
v

a
l 

( 
m

s
 )

Number of Players

GAV

GAVO

OGAVO

(b) Game Update Interval

0

10

20

30

40

50

60

70

80

90

100

0 8 16 24 32 40 48 56 64 72 80 88 96

O
b

se
rv

e
d

 V
o

ic
e

 Q
u

a
li

ty

Number of Players

GV Single Class

GV Using Broadcast

GV

GVO

GAV

GAVO

OGV

OGAVO

(c) VoIP Quality

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 8 16 24 32 40 48 56 64 72 80 88 96

P
e

rc
e

n
ta

g
e

 o
f 

P
la

y
e

r
s 

W
it

h
 V

o
ic

e
 D

is
a

b
le

d

Number of Players

GVO

GAVO

OGAVO

(d) Disabled VoIP Ratio

Figure 5.2: Experiment Results for Game with VoIP Workload: Figures on the left present the game and VoIP
qualities. Figures on the right present the changes in game update interval, and disabled VoIP ratio, cause by their
corresponding game-level optimizations; as a result, figures on the right only present the values for experiments
with such game-level optimizations.75



5.4. Experiments with Class Definitions

Game with VoIP and File Transfer Traffic

To study the effects of multiple types of network traffics on online multiplayer games,

and to evaluate MCCA’s ability to support such conditions, this section presents the

experiments using game with VoIP and file workloads. File transfer requires in-order

and reliable communication, and is network intensive. To support file transfer without

network traffic prioritization and classification, all flows of network traffic would need

to be treated orderly and reliably. Such a scenario causes unnecessary overhead, and

lowers the observed QoS; however, using MCCA, the file transfers can be serviced in

isolation from other network traffic flows.

Experiments with game, VoIP, and file workloads include the following combinations

of group communication and game–level optimizations:

1. Game with VoIP and file transfer workloads, without any efficient group commu-

nication (“GVF Using Broadcast”)

2. Game with VoIP and file workloads, using a two level multicast tree, optimized

for bandwidth, for its VoIP and file transfer workloads (GVF)

3. The above configuration (#2), using various combinations of game-level optimiza-

tions (GAVF, GAVOF, and OGAVOF)

Figure 5.3 presents the results of the above experiments. Results include the es-

timated game and VoIP qualities, and the observed bandwidth for file transfers. In

addition, Figure 5.3 presents the average percentages of players with disabled VoIP

because of its impact on other workloads.

Results show that a network intensive workload such as file transfer can significantly

reduce game and VoIP qualities, while it also reaches low transfer rates at higher number

76



5.4. Experiments with Class Definitions

of players (Figure 5.3d). Such bandwidth consuming network traffic quickly results in

unacceptable game qualities as the number of players increased, while it also introduces

latencies at low numbers of players degrading the game and VoIP qualities. Similarly to

experiments with game and VoIP workloads, efficient group communication improves

the quality (GVF vs. “GVF Using Broadcast”). The optimistic game using both game

and VoIP optimizations presents the best solution (shown in Figure 5.3), as it manages

to maintain the game quality while player’s VoIP communications are disabled as the

number of players increased, and file transfer rates are significantly reduced.

77



5
.4

.
E

x
p
erim

en
ts

w
ith

C
la

ss
D

efi
n
itio

n
s

0

1

2

3

4

5

6

7

8

9

10

0 8 16 24 32 40 48 56 64 72 80 88 96 104

O
b

s
e

r
v

e
d

 G
a

m
e

 Q
u

a
li

ty

Number of Players

GVF Using Broadcast GVF GAVF GAVOF OGAVOF

(a) Game Update Quality

0

10

20

30

40

50

60

70

80

90

100

0 8 16 24 32 40 48 56 64 72 80 88 96 104

O
b

se
r

v
e

d
 V

o
ic

e
 Q

u
a

li
ty

Number of Players

GVF Using Broadcast

GVF

GAVF

GAVOF

OGAVOF

(b) VoIP Quality

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 8 16 24 32 40 48 56 64 72 80 88 96 104

P
e

rc
e

n
ta

g
e

 o
f 

P
la

y
e

rs
 W

it
h

  V
o

ic
e

 D
is

a
b

le
d

Number of Players

GVF Using Broadcast

GVF

GAVF

GAVOF

OGAVOF

(c) Disabled VoIP Ratio

0.1

1

10

100

0 8 16 24 32 40 48 56 64 72 80 88 96 104

F
il

e
 T

ra
n

sf
e

r
 R

a
te

 (
 K

B
y

te
s 

/
 S

e
c

o
n

d
s 

)

Number of Players

GVF Using Broadcast

GVF

GAVF

GAVOF

OGAVOF

(d) File Transfer Rate

Figure 5.3: Experiment Results for Game with VoIP and File Transfer Workloads

78



5.4. Experiments with Class Definitions

5.4.2 Experiments with Workload Window-Size

To evaluate effects of the window-size for classes of network traffic, the window-size for

VoIP and file workloads are varied in the following experiments:

1. Experiment with the default window-size of half a second for VoIP (message

window-size of 25, considering VoIP messages are generated every 20ms) is com-

pared to another experiment with window-size of one second for VoIP (message

window-size of 50).

2. Experiment with the default window-size of 4KB for file transfer (message window-

size of 16, considering the file chunk–size of 256B) is compared to the experiment

with window-size of 8KB for file transfer (message window-size of 32).

Figure 5.4 presents the result of these experiments. Results show that a larger

window-size for VoIP slightly degrades the game quality (Figure 5.4a). In addition,

results show that the VoIP quality is also degraded in the experiment without game–

level optimizations (Figure 5.4c), and is slightly improved in other scenarios (GAV, and

GAVO). Furthermore, results show that the game update interval, and the percentage

of players with disabled VoIP are higher in experiments with one second window–size

(Figure 5.4b, 5.4d).

Results of experiments with variations of file workload’s window-size show that both

game and VoIP qualities are significantly degraded when a larger (8KB) file transfer

window-size (Figure 5.4a, 5.4c) is used. Results also show that the file transfer rate

is higher for the experiment with 8KB window-size at two players; however, same ex-

periment at higher number of players result in lower transfer rates compared to the

experiment with 4KB window-size (Figure 5.4e). Such behavior is due to the larger file

transfer window-size’s negative effect on game updates’ and acknowledgments’ transfer

79



5.4. Experiments with Class Definitions

latencies. Higher latencies result in larger game updates, as the game sends full frame

updates instead of one- or two-frame delta encoded updates. Consequently, the extra

higher priority traffic reduces the file transfer rate.

Results of experiments presented in this section demonstrate the benefits of correctly

specifying the transfer rate (i.e., window-size in MCCA) for each class of network traffic.

In addition, experiment results validate the intuition that specifying the transfer rate

is essential for defining a class of network traffic, as unnecessarily large window-sizes

result in lower estimated game qualities.

80



5
.4

.
E

x
p
erim

en
ts

w
ith

C
la

ss
D

efi
n
itio

n
s

0

1

2

3

4

5

6

7

8

9

10

0 8 16 24 32 40 48

O
b

s
e

r
v

e
d

 G
a

m
e

 Q
u

a
li

ty

Number of Players

GV GV With 1 Sec. VoIP Transfer Window

GAV GAV With 1 Sec. VoIP Transfer Window

GAVO GAVO With 1 Sec. VoIP Transfer Window

GVF With 4KB File Transfer Window GVF With 8KB File Transfer Window

(a) Game Update Quality

0

10

20

30

40

50

60

70

80

90

100

0 8 16 24 32 40 48

G
a

m
e

 U
p

d
a

te
 I

n
te

r
v

a
l 

( 
m

s
 )

Number of Players

GAV

GAV With 1 Sec. VoIP Transfer Window

GAVO

GAVO With 1 Sec. VoIP Transfer Window

(b) Game Update Interval

0

10

20

30

40

50

60

70

80

90

100

0 8 16 24 32 40 48

O
b

s
e

r
v

e
d

 V
o

ic
e

 Q
u

a
li

ty

Number of Players

GV
GV With 1 Sec. VoIP Transfer Window

GAV

GAV With 1 Sec. VoIP Transfer Window

GAVO

GAVO With 1 Sec. VoIP Transfer Window

GVF With 4KB File Transfer Window

GVF With 8KB File Transfer Window

(c) VoIP Quality

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 8 16 24 32 40 48

P
e

rc
e

n
ta

g
e

 o
f 

P
la

y
e

r
s 

w
it

h
 V

o
ic

e
 D

is
a

b
le

d

Number of Players

GAVO GAVO With 1 Sec. VoIP Transfer Window

(d) Disabled VoIP Ratio

Figure 5.4: Results of Experiments with Window-Size

81



5.4. Experiments with Class Definitions

0.1

1

10

100

0 8 16 24 32 40 48

F
il

e
 T

r
a

n
s

fe
r

 R
a

te
 (

 K
B

y
te

s
 /

 S
e

c
o

n
d

s
 )

Number of Players

GVF With 4KB File Transfer Window

GVF With 8KB File Transfer Window

(e) File Transfer Rate

Figure 5.4: Results of Experiments with Window-Size (cont’d)

5.4.3 Experiments with Redundancy

To understand effects of the redundancy level and the redundancy interval, we per-

formed experiments using the game workload only, without any game level optimiza-

tions, using different combinations of redundancy level and interval. Figure 5.5 presents

the results of these experiments. The results confirm that the redundancy overhead sig-

nificantly degrades the game quality as the number of players increases. In addition,

results validate the intuition that message redundancy improves the game quality at

lower number of players with higher network loss rates. Finally, results show that higher

redundancy intervals can slightly decrease the overhead cost and improve quality.

82



5.4. Experiments with Class Definitions

0

1

2

3

4

5

6

7

8

9

10

0 4 8 12 16 20 24 28 32 36 40 44 48 52

O
b

s
e

r
v

e
d

 G
a

m
e

 Q
u

a
li

ty

Number of Players

No Redundancy

Redundancy Level 1, Interval 0ms

Redundancy Level 2, Interval 0ms

Redundancy Level 1, Interval 25ms

Redundancy Level 1, Interval 50ms

No Redundancy at 5% Network Loss

Redundancy Level 1, Interval 0ms, at 5% Network Loss

Figure 5.5: Result of Experiments with Game Redundancy

5.4.4 Summary

Experiments using MCCA consistently result in higher estimated game and VoIP qual-

ities, and at the same time they result in higher file transfer rates. Results of experi-

ments with VoIP and file transfers, presented in Section 5.4.1, validated the intuition

that network traffic classification can reduce the generated network traffic and enable

a game to efficiently use player’s network resources. In addition, results show that

experiments using flow specific group communication for VoIP and file transfers result

in higher estimated qualities. Furthermore, experiments that use game-level optimiza-

tions (described in Section 5.1.3) result in higher game and VoIP qualities. These results

demonstrate the benefits of distributed quality aggregation, and flow specific network

quality estimation for online multiplayer games, as they enable new types of game-level

optimizations.

Experiments in Section 5.4.2 demonstrate the benefits of correctly specifying the

83



5.5. Experiments with Workload Variations

window-size for each class of network traffic. Results show that the window-size that

is selected based on the network traffic’s requirements and behavior can reduce the

generated network traffic without effecting the network traffic’s estimated QoS. Finally,

experiments in Section 5.4.3 study effects of the redundancy level and the redundancy

interval. As expected, results show that redundancy can reduce the observed loss rate

and the communication latency (by avoiding retransmissions), while it generates higher

network traffics. As a result, we conclude that specifying each class of network traf-

fic’s redundancy requirements separately can help online multiplayer games in better

utilizing player’s network resources.

5.5 Experiments with Workload Variations

This section presents the result of experiments with the following workload variations:

1. Talkative versus quiet VoIP sources (described in Section 4.2.2)

2. Large versus small file chunk–sizes (1KB and 256B respectively)

These experiments are necessary to better understand MCCA’s behavior, in order

to develop a set of guidelines for defining classes of network traffic. Figure 5.6 presents

the experiment result for talkative versus quiet players, which are generally similar to

experiments with variations in VoIP window-size (described in Section 5.4.2). Figure 5.7

presents the experiment result for large versus small file chunk–sizes, where results

are generally similar to experiments with variations in file window-size (described in

Section 5.4.2).

Results of experiments with talkative players demonstrate that the game using

MCCA can relatively maintain the game and VoIP qualities at higher network traffics.

84



5.5. Experiments with Workload Variations

In addition, results of experiments with larger file chunk-sizes demonstrate the negative

effect of large and low priority messages on higher priority classes of network traffic.

Based on these results, we conclude that splitting large messages at the communication

layer can help MCCA in better supporting network traffic classification.

85



5
.5

.
E

x
p
erim

en
ts

w
ith

W
o
rk

lo
a
d

V
a
ria

tio
n
s

0

1

2

3

4

5

6

7

8

9

10

0 8 16 24 32 40 48

O
b

se
r

v
e

d
 G

a
m

e
 Q

u
a

li
ty

Number of Players

GV Using Broadcast GV Using Broadcast (Talkative Players)

GV GV (Talkative Players)

GAVO GAVO (Talkative Players)

(a) Game Update Quality

0

10

20

30

40

50

60

70

80

90

100

0 8 16 24 32 40 48

G
a

m
e

 U
p

d
a

te
 I

n
te

r
v

a
l 

( 
m

s 
)

Number of Players

GV Using Broadcast GV Using Broadcast (Talkative Players)

GV GV (Talkative Players)

GAVO GAVO (Talkative Players)

(b) Game Update Interval

0

10

20

30

40

50

60

70

80

90

100

0 8 16 24 32 40 48

O
b

se
r

v
e

d
 V

o
ic

e
 Q

u
a

li
ty

Number of Players

GV Using Broadcast

GV Using Broadcast (Talkative Players)

GV

GV (Talkative Players)

GAVO

GAVO (Talkative Players)

(c) VoIP Quality

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 8 16 24 32 40 48

P
e

rc
e

n
ta

g
e

 o
f 

P
la

y
e

r
s 

w
it

h
 V

o
ic

e
 D

is
a

b
le

d

Number of Players

GAVO

GAVO (Talkative Players)

(d) Disabled VoIP Ratio

Figure 5.6: Experiment Results for Talkative vs. Quiet VoIP Sources

86



5
.5

.
E

x
p
erim

en
ts

w
ith

W
o
rk

lo
a
d

V
a
ria

tio
n
s

0

1

2

3

4

5

6

7

8

9

10

0 4 8 12 16 20 24 28

O
b

s
e

r
v

e
d

 G
a

m
e

 Q
u

a
li

ty

Number of Players

GVF (256B Packet Size)

GVF (1024B Packet Size)

(a) Game Update Quality

0

10

20

30

40

50

60

70

80

90

100

0 4 8 12 16 20 24 28

O
b

se
r

v
e

d
 V

o
ic

e
 Q

u
a

li
ty

Number of Players

GVF (256B Packet Size)

GVF (1024B Packet Size)

(b) VoIP Quality

0.1

1

10

100

0 4 8 12 16 20 24 28

F
il

e
 T

r
a

n
sf

e
r

 R
a

te
 (

 K
B

y
te

s
 /

 S
e

c
o

n
d

s 
)

Number of Players

GVF (256B Packet Size)

GVF (1024B Packet Size)

(c) File Transfer Rate

Figure 5.7: Experiment Results for Large vs. Small File Packet Sizes

87



5.6. Experiments with Real-Time Changes in the Number of Players and Network Conditions

5.6 Experiments with Real-Time Changes in the

Number of Players and Network Conditions

This section describes the experiments, which use an adaptive game update interval

(described in Section 5.1.3), designed to study the potential benefits of distributed

quality aggregation proposed by MCCA. These experiments evaluate the game quality

and the game update interval for the following two scenarios: 1) experiment with real-

time changes in cross network traffic (Section 5.6.1), and 2) experiment with real-time

changes in the number of players (Section 5.6.2). These experiments aim to demonstrate

the game’s ability to adapt to network conditions, and number of players, by using

MCCA’s distributed quality aggregation to adjust the game’s behavior and generated

network traffic.

5.6.1 Cross Network Traffic

This experiment is designed to study the effects of cross network traffic on the game.

The game quality and the game update interval are traced every five seconds for the

lifetime of the experiment. This experiment simulates a 22 player game, where a cross

network traffic that uses 30% of every player’s upload capacity is introduced at the 4th

minute mark. The cross network traffic is then removed at the 8th minute mark, and the

game continues for another 4 minutes. Figure 5.8 shows the result of this experiment

for a game only workload, as well as a game with VoIP workload. Results clearly

demonstrate the game’s ability to adapt to the network conditions, as the game quality

quickly recovers (by modifying the game update interval) following a sharp reduction

of the upload capacity.

88



5.6. Experiments with Real-Time Changes in the Number of Players and Network Conditions

5

6

7

8

9

10

0 240 480 720

O
b

se
r

v
e

d
 G

a
m

e
 Q

u
a

li
ty

Time ( Seconds )

GA GAV

(a) Game Update Quality

0

10

20

30

40

50

60

70

80

90

100

0 240 480 720

G
a

m
e

 U
p

d
a

te
 I

n
te

r
v

a
l 

( 
m

s
 )

Time ( Seconds )

GA GAV

(b) Game Update Interval

Figure 5.8: Game Adaptation to Network Conditions

89



5.6. Experiments with Real-Time Changes in the Number of Players and Network Conditions

5.6.2 Changes in the Number of Players

This experiment is designed to study the effects of changes in the number of players

on the game (i.e., players leaving and joining the game). The game quality and the

game update interval are traced every five seconds for the lifetime of the experiment.

This experiment simulates a 30 player game where 18 players leave the game at the 4th

minute mark, and then the game continues as a 12 player game for 4 minutes. Then 18

players join the game, and then the game continues for another 4 minutes. Figure 5.9

shows the result of this experiment for a game only workload, as well as a game with

VoIP workload. Results clearly demonstrate the game’s ability to adapt to the number

of players, as the game quality quickly recovers (by modifying the game update interval)

following a large increase in the number of players.

5.6.3 Summary

Experiments presented in this section demonstrate that an online multiplayer game

using the proposed distributed quality aggregation can adapt to real-time changes in

network conditions and the number of players. These experiments demonstrate the vast

potential for new types of game-level optimizations, such as “adaptive game update

interval” (Section 5.1.3), based on the distributed quality aggregation presented in

MCCA. In addition, results of experiments with players rapidly leaving and joining the

game, demonstrate the proposed group communication’s (Section 3.2) ability to support

rapid group membership changes.

90



5.6. Experiments with Real-Time Changes in the Number of Players and Network Conditions

5

6

7

8

9

10

0 240 480 720

O
b

s
e

r
v

e
d

 G
a

m
e

 Q
u

a
li

ty

Time ( Seconds )

GA GAV

(a) Game Update Quality

0

10

20

30

40

50

60

70

80

90

100

0 240 480 720

G
a

m
e

 U
p

d
a

te
 I

n
te

r
v

a
l 

( 
m

s
 )

Time ( Seconds )

GA GAV

(b) Game Update Interval

Figure 5.9: Game Adaptation to Player Presence

91



5.7. Experiments with Various Network Conditions

5.7 Experiments with Various Network Conditions

We performed the experiments presented in Sections 5.4, 5.5, and 5.6 using the default

settings presented in Section 5.1.1. This section presents the experiments evaluating

MCCA in other network conditions. Figure 5.10 presents the result of experiments

with network loss ranging from 0.1% to 5%, and Figure 5.11 presents the result of

experiments with different upload capacity ranges (presented Table 5.1).

Figures present the estimated game and VoIP qualities, average game update in-

terval, and percentage of players with disabled VoIP due to VoIP optimization. Such

figures are presented to clarify the effects of competing traffic (game and VoIP), as well

as their corresponding game–level optimizations (demonstrated in form of the game

update interval, and the percentage of players with disabled VoIP).

Results from experiments using various network conditions demonstrate the same

trends, where network traffic prioritization, classification, and efficient group communi-

cation clearly improve quality. Similarly, game-level optimizations significantly improve

the estimated game and VoIP qualities.

92



5
.7

.
E

x
p
erim

en
ts

w
ith

V
a
rio

u
s

N
etw

o
rk

C
o
n
d
itio

n
s

0

1

2

3

4

5

6

7

8

9

10

0 8 16 24 32 40 48 56 64 72 80

O
b

se
rv

e
d

 G
a

m
e

 Q
u

a
li

ty

Number of Players

G    (Loss 0.1%) G    (Loss 1%) G    (Loss 5%)

GA (Loss 0.1%) GA (Loss 1%) GA (Loss 5%)

OG (Loss 0.1%) OG (Loss 1%) OG (Loss 5%)

(a) Game Update Quality (No VoIP)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 8 16 24 32 40 48 56 64 72 80

P
e

rc
e

n
ta

g
e

 o
f 

T
im

e
 w

it
h

 I
n

v
a

li
d

 G
a

m
e

 S
ta

te

Number of Players

OG (Loss 0.1%)

OG (Loss 1%)

OG (Loss 5%)

(b) Invalid Game State (No VoIP)

0

1

2

3

4

5

6

7

8

9

10

0 8 16 24 32 40 48 56 64 72 80 88 96

O
b

se
r

v
e

d
 G

a
m

e
 Q

u
a

li
ty

Number of Players

GV Single Class (Loss 0.1%) GV Single Class (Loss 1%) GV Single Class (Loss 5%)
GV (Loss 0.1%) GV (Loss 1%) GV (Loss 5%)
GAVO (Loss 0.1%) GAVO (Loss 1%) GAVO (Loss 5%)
OGAVO (Loss 0.1%) OGAVO (Loss 1%) OGAVO (Loss 5%)

(c) Game Update Quality

0

10

20

30

40

50

60

70

80

90

100

0 8 16 24 32 40 48 56 64 72 80 88 96

O
b

se
rv

e
d

 V
o

ic
e

 Q
u

a
li

ty

Number of Players

GV Single Class (Loss 0.1%)
GV Single Class (Loss 1%)
GV Single Class (Loss 5%)
GV (Loss 0.1%)
GV (Loss 1%)
GV (Loss 5%)
GAVO (Loss 0.1%)
GAVO (Loss 1%)
GAVO (Loss 5%)
OGAVO (Loss 0.1%)
OGAVO (Loss 1%)
OGAVO (Loss 5%)

(d) VoIP Quality

Figure 5.10: Experiment Results for Various Network Losses

93



5
.7

.
E

x
p
erim

en
ts

w
ith

V
a
rio

u
s

N
etw

o
rk

C
o
n
d
itio

n
s

0

1

2

3

4

5

6

7

8

9

10

0 8 16 24 32 40 48 56 64 72 80 88

O
b

se
r

v
e

d
 G

a
m

e
 Q

u
a

li
ty

Number of Players

G G (Low Bandwidth)

GA GA (Low Bandwidth)

OG OG (Low Bandwidth)

(a) Game Update Quality (No VoIP)

0

10

20

30

40

50

60

70

80

90

100

0 8 16 24 32 40 48 56 64 72 80 88

G
a

m
e

 U
p

d
a

te
 I

n
te

r
v

a
l 

( 
m

s 
)

Number of Players

GA

GA (Low Bandwidth)

(b) Game Update Interval (No VoIP)

0

1

2

3

4

5

6

7

8

9

10

0 8 16 24 32 40 48 56 64 72 80 88 96 104

O
b

se
r

v
e

d
 G

a
m

e
 Q

u
a

li
ty

Number of Players

GV Single Class GV Single Class (Low Bandwidth)

GV GV (Low Bandwidth)

GAVO GAVO (Low Bandwidth)

OGAVO OGAVO (Low Bandwidth)

(c) Game Update Quality

0

10

20

30

40

50

60

70

80

90

100

0 8 16 24 32 40 48 56 64 72 80 88 96 104

O
b

s
e

r
v

e
d

 V
o

ic
e

 Q
u

a
li

ty

Number of Players

GV Single Class GV Single Class (Low Bandwidth)

GV GV (Low Bandwidth)

GAVO GAVO (Low Bandwidth)

OGAVO OGAVO (Low Bandwidth)

(d) VoIP Quality

Figure 5.11: Experiment Results for Various Network Capacities

94



5.8. Game Quality Variability Among Players

5.8 Game Quality Variability Among Players

Considering that so far we have presented the average observed game quality, we inves-

tigated the game quality variability among players at various average game qualities.

Figure 5.12 and Table 5.2 presents the result of this investigation, presenting the game

quality distribution, where the average game quality is closest to 7.0 (the acceptable

quality threshold, described in Section 5.2). This study also shows that a game using

the suggested game-level optimizations, results in a less diverse game quality distribu-

tion (smaller standard deviations in Table 5.2). Consequently, we conclude that a game

using MCCA can better manage its generated network traffic.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8 9 10

P
e

rc
e

n
a

te
g

e
 o

f 
P

la
y

e
rs

Average Observed Game Quality

Normal Game (G)

Game with Adaptive Game Update Interval (GA)

Optimistic Game (OG)

Optimistic Game with Adaptive Game Update 

Interval (OGA)

Figure 5.12: Game Quality Distribution at Unacceptable Average Game Quality

5.9 Comparison to The Optimal and Idealized Solution

MCCA is unique in providing a customizable communication layer for online multi-

player games, which complicates its comparison to other game-level or network QoS

95



5.9. Comparison to The Optimal and Idealized Solution

Name Number of Players Average Quality Standard Deviation

G 28 6.71 0.96

GA 40 6.85 0.53

OG 74 7.01 0.37

OGA 100 6.71 0.36

Table 5.2: Details of Experiments on Analysis of “Game Quality Distribution” (Fig-
ure 5.12)

solutions. This section compares the prototype implementation of MCCA to an opti-

mal communication layer for Quake III.

The optimal and idealized solution is defined as an optimistic game that perfectly

predicts network loss, in order to send duplicate messages, and avoid any invalid game

states. Such prediction reduces the overall network traffic, by only transferring delta

encoded updates, and improves the game quality by avoiding invalid game states. In

addition, the optimal solution selects the best possible game update interval to achieve

the highest game quality, and benefits from the exact knowledge of the network capacity

and the network traffic.

Figure 5.13 presents the the game update quality for an experiment using the im-

plemented MCCA communication layer, and the Quake III game using the optimal

solution. The quality difference is mainly due to optimal solution’s network loss predic-

tion, which presents the area that MCCA requires improvement. For example, MCCA

can use heuristics (similar to OverQos [60]) for message replication to provide statistical

loss guarantees.

96



5.10. Summary of Experiment Results

0

1

2

3

4

5

6

7

8

9

10

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144 152 160 168

O
b

se
rv

e
d

 G
a

m
e

 Q
u

a
li

ty

Number of Players

G

OGA

Optimal

Figure 5.13: MCCA vs. Optimal Solution

5.10 Summary of Experiment Results

Experiments with various workload combinations and class definitions (Section 5.4)

validate the benefits of network traffic prioritizations, classification, and flow specific

efficient group communication. These results demonstrate that by using MCCA, a game

can improve its estimated game quality, and use network resources more efficiently. Ad-

ditionally, the experiments presented in Section 5.4.1 demonstrate MCCA’s ability to

support many types of network traffics with different requirements (e.g., system mes-

sages, game updates, VoIP packets, and file chunks). These workloads present a wide

range of behaviors (i.e., message frequency and message size), while their latency, or-

dering, and reliability requirements are vastly different. Furthermore, experiments with

real-time changes in the number of players and the cross network traffic (Section 5.6),

demonstrate that distributed quality aggregation and reporting, such as proposed by

MCCA, enables a game to adapt to dynamic network and workload conditions.

97



5.10. Summary of Experiment Results

Experiments with class definition variations (Section 5.4.1), as well as, experiments

with different window-size (Section 5.4.2), and message redundancy (Section 5.4.3)

demonstrate MCCA’s ability to support differentiated services at the communication

layer. MCCA’s class parameters are designed to support a wide range of class require-

ments, and results validate that a finely tunned class definition can reduce the network

traffic, and at the same time satisfy a class’s QoS requirements.

Experiments with workload variations (Section 5.5), such as the use of talkative VoIP

sources, demonstrate the importance of network traffic classification and prioritization.

Results show that a game using MCCA can maintain its game quality at higher VoIP

traffics, while the game that does not use MCCA loses some game quality in the same

conditions.

Furthermore, based on experiments with variations in file chunk–size (Section 5.5),

smaller network messages are recommended in order to satisfy the game’s strict la-

tency requirements. Results show that a larger file chunk–size is potentially better for

transmitting files, as it yields to higher file transfer throughput; however, a larger file

chunk–size results in higher game message latencies that can severely degrade the game

quality, as higher latencies result in higher network traffic, which reduces the overall

file transfer throughput, at higher number of players.

Furthermore, experiments validate the intuition that network traffic classification

and prioritization are more beneficial with more diverse workloads. Comparing the

experiment results of 1) game only workload, 2) game with VoIP workload, and 3)

game with VoIP and file workloads, shows that the experiment taking advantage of

MCCA can support respectively 275%, 375%, and 600% more players.

Finally, experiments using a wide set of network deployment conditions such as

higher network losses, and lower upload capacities, demonstrate the same trends in

98



5.10. Summary of Experiment Results

results. Such experiments demonstrate the MCCA’s strengths under wide range of

network deployments.

99



Chapter 6

Conclusion and Future Work

This chapter revisits the material of this thesis in three respects. Firstly, Section 6.1

summarizes the problem addressed throughout the thesis. Secondly, Section 6.2 states

the approach and summarizes the contributions of this work. Finally, Section 6.3 pro-

poses a number of suggestions for the continuation of this work.

6.1 Problem with Current Approaches

This research is mainly motivated by the imbalance between the Internet infrastructure

compared to the computer hardware. Over the last decade, the ability of the Internet

infrastructure to carry network traffic has not improved at the same rate as the desk-

top technology. This imbalance has increased the perceived difference in the quality of

service (QoS) offered by online multiplayer games compared to single player games. In

addition, online multiplayer games are required to support many more functionalities,

leading to transmission of VoIP messages, files, and more over communication networks.

Such imbalance and additional workloads pose a significant challenge to online multi-

player game developers, and results in games supporting lower number of players in

order to maintain quality.

In the past, researches have proposed a number of game-level optimizations for

supporting a higher number of players [3–5, 23, 24, 28, 30, 36, 54, 55]; however, these

100



6.2. Contributions of this Work

solutions are mainly game specific and focus on decreasing the game generated network

traffic, or relaxing game’s latency requirements. Online multiplayer games can also take

advantage of research on network QoS [7, 58, 60] that provide statistical guarantees for

the communication quality among players; however, such solutions don’t take advantage

of online multiplayer games’ knowledge and control of the generated network traffic.

The combination of challenges and potentials have motivated the research on a generic

communication architecture targeted for online multiplayer games.

6.2 Contributions of this Work

This thesis focuses on a communication infrastructure optimized for online multiplayer

games, and builds on past work in network QoS [7, 58, 60] as well as application layer

multicast [12, 13, 26, 51, 56]. The main contribution of this thesis is the introduction of

new mechanisms for using game-level information, such as the characteristics of a game’s

network traffics and requirements that drive players’ quality of experience, to improve

the communication layer’s efficiency. In addition, this research takes the first step

towards providing a general purpose game communication layer that takes advantage of

game-level information, workload predictability, and flexibility. The following presents

the main contributions of this research:

• Design and evaluation of MCCA, a communication architecture that supports

network traffic classification, and targeted network QoS (providing a combination

of reliable/unreliable, in-order/out-of-order message delivery, and mechanisms for

supporting low latency communication). The experiment results validate our

claim that a game using network traffic classification, prioritization, and targeted

QoS can better support multiple types of network traffic such as game updates,

101



6.2. Contributions of this Work

and VoIP.

• Design and evaluation of an efficient group communication protocol. Results

show that even a randomly initialized multicast overlay, which evolves overtime

can provide a more efficient network communication, mitigate network load of

players with low network capacity, and handle rapid group membership changes.

• Design and evaluation of distributed network traffic quality aggregation for online

multiplayer games based on a traffic’s communication statistics and more. Exper-

iment with game-level optimizations, demonstrating the game’s ability to adapt

to network conditions to maintain and/or improve the estimated game quality.

• Design and evaluation of new game-level optimizations based on MCCA, taking

advantage of network traffic classification, group communication, and distributed

quality aggregation. These examples demonstrate the potential for new types of

game-level optimizations using MCCA.

• Experimental evaluation of MCCA using Quake III workload, VoIP, and file trans-

fers, and evaluation of the affects of VoIP and file transfer on an online multi-

player game. Results also validate the following concepts: 1) game workload

classification, prioritization, and targeted QoS improve the estimated game and

VoIP quality, 2) classification is more beneficial at higher number and amount of

network traffics, 3) application-level multicast reduces the network traffic and im-

proves the overall quality, 4) distributed quality estimation, as a quality feedback

for a game, can enable online multiplayer games to adapt to network conditions,

and 5) classification and game-level optimizations, which use distributed quality

estimation, result in lower quality variability among players.

102



6.3. Future Directions

In summary, this research proposes MCCA, a communication overlay that enables a

game to classify its workload and benefit from targeted network QoS. Additionally, the

proposed solution essentially enables new types of game-level optimizations, through

distributed quality aggregation, to support higher number of players, improve quality,

and/or adapt to network conditions. Finally, this thesis demonstrates that the proposed

communication architecture, as a layer between the game and network infrastructure,

can support most game-level optimizations proposed to date.

6.3 Future Directions

During the course of this research, a number of future directions have emerged for the

continuation of this research topic. This section summarize these directions.

6.3.1 Real-World Deployment

Integrating the proposed communication architecture with an online multiplayer game,

and implementing some of the discussed game-level optimizations. Such evaluation

provides higher assurance in the results. In addition, having a working implementation

of the solution, open to the research community, can better facilitate the research on

online multiplayer games.

6.3.2 Incorporating Observed Network Conditions in MCCA

Over time, the communication layer gathers information about each player’s network

conditions as well as statistics such as loss, latency, and available upload capacity. Such

information can be incorporated in the communication layer to better prioritize traffic,

provide network QoS, and use network resources. For example, recognition of a lossy

103



6.3. Future Directions

communication can help in more efficient management of message redundancy.

6.3.3 Mechanisms for Simplifying Class Definition

Engineering class definitions pose a new challenge to game developers, and taking steps

in reducing such complexity is essential. Developing guidelines for splitting and defining

game workload is an essential research in reducing MCCA’s complexity for developers,

while the following general purpose solutions can be explored to provide a dynamic

solution for game developers:

• Simulation Based Parameter Search: Given the developers’s control over the

generated network traffic, a simulator could be developed to find the best class

definition for the given workloads. Game’s network traffic traces and informations

on the target deployment can be used in the simulator, which is responsible for

finding the best possible configuration at various number of players and network

conditions.

• Neural Networks: Integrating neural networks with MCCA to define, and man-

age network traffics, to achieve the highest game quality. Such solution would

essentially reduce the developer’s difficulty in defining different classes of network

traffic, and can dynamically converge to the best configuration for the number of

players and their network conditions.

6.3.4 Cheat Detection and Prevention

One of the main challenges, for online multiplayer games, is cheat detection and pre-

vention. Extending the MCCA’s network traffic classification, the communication layer

can support a set of mechanisms for targeted cheat detection and prevention.

104



Bibliography

[1] Suman Banerjee, Seungjoon Lee, Ryan Braud, Bobby Bhattacharjee, and Aravind

Srinivasan. Scalable resilient media streaming. In NOSSDAV ’04: Proceedings

of the 14th international workshop on Network and operating systems support for

digital audio and video, pages 4–9, New York, NY, USA, 2004. ACM.

[2] Tom Beigbeder, Rory Coughlan, Corey Lusher, John Plunkett, Emmanuel Agu,

and Mark Claypool. The effects of loss and latency on user performance in unreal

tournament 2003 R©. In NetGames ’04: Proceedings of 3rd ACM SIGCOMM work-

shop on Network and system support for games, pages 144–151, New York, NY,

USA, 2004. ACM.

[3] Eric J. Berglund and David R. Cheriton. Amaze: A multiplayer computer game.

IEEE Software, 2(3):30–39, 1985.

[4] Ashwin Bharambe, John R. Douceur, Jacob R. Lorch, Thomas Moscibroda, Jeffrey

Pang, Srinivasan Seshan, and Xinyu Zhuang. Donnybrook: enabling large-scale,

high-speed, peer-to-peer games. SIGCOMM Comput. Commun. Rev., 38(4):389–

400, 2008.

[5] Ashwin Bharambe, Jeffrey Pang, and Srinivasan Seshan. Colyseus: a distributed

architecture for online multiplayer games. In NSDI’06: Proceedings of the 3rd

105



Bibliography

conference on Networked Systems Design & Implementation, pages 12–12, Berkeley,

CA, USA, 2006. USENIX Association.

[6] Ashwin R. Bharambe, Sanjay G. Rao, Venkata N. Padmanabhan, Srinivasan Se-

shan, and Hui Zhang. The impact of heterogeneous bandwidth constraints on

dht-based multicast protocols. In in The Fourth International Workshop on Peer-

to-Peer Systems, 2005.

[7] Steven Blake, Mark Carlson, Elwyn Davies, Nortel Uk, Borje Ohlman, Dinesh

Verma, Zheng Wang, and Walter Weiss. An architecture for differentiated services.

IETF RFC, 2475, 1998.

[8] Blizzard entertainment, world of warcraft reaches new milestone: 10 million sub-

scribers. http://eu.blizzard.com/en/press/080122.html.

[9] Blizzard entertainment. wow pvp battlegrounds. http://www.worldofwarcraft.

com/pvp/battlegrounds.

[10] Jean-Chrysotome Bolot. End-to-end packet delay and loss behavior in the inter-

net. In SIGCOMM ’93: Conference proceedings on Communications architectures,

protocols and applications, pages 289–298, New York, NY, USA, 1993. ACM.

[11] Michael S. Borella. Measurement and interpretation of internet packet loss. Journal

of Communication and Networks, 2:93–102, 2000.

[12] Miguel Castro, Peter Druschel, Anne-marie Kermarrec, Animesh Nandi, Antony

Rowstron, and Atul Singh. Splitstream: High-bandwidth content distribution in a

cooperative environment. In IPTPS ’03, 2003.

106



Bibliography

[13] Miguel Castro, Peter Druschel, Anne-marie Kermarrec, and Antony Rowstron.

Scribe: A large-scale and decentralized application-level multicast infrastructure.

IEEE Journal on Selected Areas in Communications (JSAC), 20:2002, 2002.

[14] Kuan-Ta Chen, Chun-Ying Huang, Polly Huang, and Chin-Laung Lei. An empirical

evaluation of tcp performance in online games. In ACE ’06: Proceedings of the 2006

ACM SIGCHI international conference on Advances in computer entertainment

technology, page 5, New York, NY, USA, 2006. ACM.

[15] Yang-hua Chu, Sanjay G. Rao, Srinivasan Seshan, and Hui Zhang. A case for end

system multicast. In in Proceedings of ACM Sigmetrics, pages 1–12, 2000.

[16] Chen-nee Chuah, Randy H. Katz, Jean Walr, and George Shanthikumar. Provid-

ing end-to-end qos for ip-based latency-sensitive applications. Technical report,

Berkeley, 2006.

[17] R. G. Cole and J. H. Rosenbluth. Voice over ip performance monitoring. SIG-

COMM Comput. Commun. Rev., 31(2):9–24, 2001.

[18] Alberto Dainotti, Antonio Pescape, and Giorgio Ventre. A packet-level traffic

model of starcraft. In HOT-P2P ’05: Proceedings of the Second International

Workshop on Hot Topics in Peer-to-Peer Systems, pages 33–42, Washington, DC,

USA, 2005. IEEE Computer Society.

[19] Matthias Dick, Oliver Wellnitz, and Lars Wolf. Analysis of factors affecting players’

performance and perception in multiplayer games. In NetGames ’05: Proceedings

of 4th ACM SIGCOMM workshop on Network and system support for games, pages

1–7, New York, NY, USA, 2005. ACM.

107



Bibliography

[20] Johannes Färber. Network game traffic modelling. In NetGames ’02: Proceedings

of the 1st workshop on Network and system support for games, pages 53–57, New

York, NY, USA, 2002. ACM.

[21] Wu-chang Feng, Francis Chang, Wu-chi Feng, and Jonathan Walpole. Provisioning

on-line games: A traffic analysis of a busy counter-strike server. In in Internet

Measurement Workshop, pages 151–156, 2002.

[22] Wu-chang Feng, Francis Chang, Wu-chi Feng, and Jonathan Walpole. A traffic

characterization of popular on-line games. IEEE/ACM Trans. Netw., 13(3):488–

500, 2005.

[23] Stefan Fiedler, Michael Wallner, and Michael Weber. A communication archi-

tecture for massive multiplayer games. In NetGames ’02: Proceedings of the 1st

workshop on Network and system support for games, pages 14–22, New York, NY,

USA, 2002. ACM.

[24] Laurent Gautier and Christophe Diot. Design and evaluation of mimaze, a multi-

player game on the internet. In ICMCS ’98: Proceedings of the IEEE International

Conference on Multimedia Computing and Systems, page 233, Washington, DC,

USA, 1998. IEEE Computer Society.

[25] Growth of gaming in 2007 far outpaces movies. http://arstechnica.com/news.ars/

post/20080124-growth-of-gaming-in-2007-far-outpaces-movies-music.html.

[26] Anjali Gupta, Barbara Liskov, and Rodrigo Rodrigues. Efficient routing for peer-

to-peer overlays. In First Symposium on Networked Systems Design and Imple-

mentation (NSDI), San Francisco, CA, March 2004.

108



Bibliography

[27] John A. Hamilton, David A. Nash, and Udo W. Pooch. Distributed Simulation.

CRC Press, Inc., Boca Raton, FL, USA, 1996.

[28] Shun-Yun Hu, Jui-Fa Chen, and Tsu-Han Chen. Von: A scalable peer-to-peer

network for virtual environments. IEEE Network, 20(4):22–31, 2006.

[29] IEEE. Ieee standard for distributed interactive simulation application protocols.

IEEE Standard 1278.1-1995, September 1995.

[30] IEEE. Standard for modeling and simulation high level architecture. IEEE stan-

dard 1516-2000, September 2000.

[31] ITU-T. Methods for subjective determination of transmission quality. ITU-T

standard P.800, August 1996.

[32] ITU-T. Objective quality measurement of telephoneband (3003400 hz) speech

codecs. ITU-T standard P.861, August 1996.

[33] ITU-T. Perceptual evaluation of speech quality (pesq): An objective method

for end-to-end speech quality assessment of narrow-band telephone networks and

speech codecs. ITU-T standard P.862, February 2001.

[34] ITU-T. The e-model, a computational model for use in transmission planning.

ITU-T standard G.107, March 2005.

[35] Wenyu Jiang and Henning Schulzrinne. Modeling of packet loss and delay and

their effect on real-time multimedia service quality. In Proceedings of NOSSDAV

’2000, 2000.

[36] Bjorn Knutsson, Honghui Lu, Wei Xu, and Bryan Hopkins. Peer-to-peer support

for massively multiplayer games, 2004.

109



Bibliography

[37] Thomas J. Kostas, Michael S. Borella, Ikhlaq Sidhu, Guido M. Schuster, Jacek

Grabiec, and Jerry Mahler. Real-time voice over packet-switched networks. IEEE

Network, 12:18–27, 1998.

[38] J Lakkakorpia, A Heinerb, and J Ruutuc. Measurement and characterization of

internet gaming traffic. Helsinki University of Technology, Networking Laboratory,

2002.

[39] Tanja Lang, Grenville Armitage, Phillip Branch, and Hwan-yi Choo. A synthetic

traffic model for half-life. In in Australian Telecommunications, Networks and

Applications Conference (ATNAC), 2003.

[40] Ian Marsh. Measuring Internet telephony quality: Where are we today? In

Proceedings of IEEE Globecom: Global Internet, Rio De Janeiro, Brazil, December

1999.

[41] Aaron McCoy, Declan Delaney, Seamus McLoone, and Tomas Ward. Dynamic

hybrid strategy models for networked multiplayer games. In In Proceedings of the

19th European Conference on Modelling and Simulation (ECMS), 2005.

[42] Aaron McCoy, Tomas Ward, Seamus Mcloone, and Declan Delaney. Multistep-

ahead neural-network predictors for network traffic reduction in distributed inter-

active applications. ACM Trans. Model. Comput. Simul., 17(4):16, 2007.

[43] Sean McCreary and Kc Claffy. Trends in wide area ip traffic patterns: A view

from ames internet exchange. In In ITC Specialist Seminar on IP Traffic Modeling,

Measurement and Management, 2000.

[44] Net:netem - the linux foundation. http://www.linuxfoundation.org/en/Net:Netem.

110



Bibliography

[45] James Nichols and Mark Claypool. The effects of latency on online madden nfl

football. In NOSSDAV ’04: Proceedings of the 14th international workshop on

Network and operating systems support for digital audio and video, pages 146–151,

New York, NY, USA, 2004. ACM.

[46] Vance ONeill. Adding creamy nougat and a crisp candy coating to the network

xrnm & qnet. In XNA GameFest, 2007.

[47] Venkata N. Padmanabhan and Kunwadee Sripanidkulchai. The case for cooperative

networking. In IPTPS ’01: Revised Papers from the First International Workshop

on Peer-to-Peer Systems, pages 178–190, London, UK, 2002. Springer-Verlag.

[48] Lothar Pantel and Lars C. Wolf. On the impact of delay on real-time multiplayer

games. In NOSSDAV ’02: Proceedings of the 12th international workshop on Net-

work and operating systems support for digital audio and video, pages 23–29, New

York, NY, USA, 2002. ACM.

[49] Lothar Pantel and Lars C. Wolf. On the suitability of dead reckoning schemes for

games. In NetGames ’02: Proceedings of the 1st workshop on Network and system

support for games, pages 79–84, New York, NY, USA, 2002. ACM.

[50] Vern Paxson. End-to-end routing behavior in the internet. SIGCOMM Comput.

Commun. Rev., 26(4):25–38, 1996.

[51] Daniel Pittman and Chris GauthierDickey. A measurement study of virtual popu-

lations in massively multiplayer online games. In NetGames ’07: Proceedings of the

6th ACM SIGCOMM workshop on Network and system support for games, pages

25–30, New York, NY, USA, 2007. ACM.

111



Bibliography

[52] Padungkrit Pragtong, Kazi M. Ahmed, and Tapio J. Erke. Analysis and model-

ing of voice over ip traffic in the real network. IEICE - Trans. Inf. Syst., E89-

D(12):2886–2896, 2006.

[53] Peter Quax, Patrick Monsieurs, Wim Lamotte, Danny De Vleeschauwer, and Na-

talie Degrande. Objective and subjective evaluation of the influence of small

amounts of delay and jitter on a recent first person shooter game. In NetGames

’04: Proceedings of 3rd ACM SIGCOMM workshop on Network and system support

for games, pages 152–156, New York, NY, USA, 2004. ACM.

[54] Sanjay Rao and Srinivasan Seshan. Mercury: a scalable publish-subscribe system

for internet games. In In Proceedings of the first workshop on Network and system

support for games, pages 3–9. ACM Press, 2002.

[55] Phillip Rosedale and Cory Ondrejka. Enabling player-created online worlds with

grid computing and streaming. Technical report, Gamasutra, September 2003.

[56] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized object loca-

tion, and routing for large-scale peer-to-peer systems. In Lecture Notes in Computer

Science, pages 329–350, 2001.

[57] Nathan Sheldon, Eric Girard, Seth Borg, Mark Claypool, and Emmanuel Agu. The

effect of latency on user performance in warcraft iii. In NetGames ’03: Proceedings

of the 2nd workshop on Network and system support for games, pages 3–14, New

York, NY, USA, 2003. ACM.

[58] Scott J. Shenker, Lixia Zhang, Deborah Estrin, Sugih Jamin, John Wroclawski,

and Shai Herzog. Integrated services in the internet architecture: an overview.

internet rfc 1633, 1994.

112



[59] Sony online entertainment. planetside faq. http://planetside.station.sony.com/faq.

vm.

[60] Lakshminarayanan Subramanian, Ion Stoica, Hari Balakrishnan, and Randy H.

Katz. Overqos: An overlay based architecture for enhancing internet qos. In

1st Symposium on Networked Systems Design and Implementation (NSDI), San

Francisco, CA, March 2004.

[61] Video game industry growth still strong: Study. http://www.reuters.com/article/

industryNews/idUSN2132172920070623.

[62] D. Waitzman, C. Partridge, and S. E. Deering. Distance vector multicast routing

protocol, 1988.

[63] M. Yajnik, Sue Moon, J. Kurose, and D. Towsley. Measurement and modelling

of the temporal dependence in packet loss. In INFOCOM ’99. Eighteenth Annual

Joint Conference of the IEEE Computer and Communications Societies. Proceed-

ings. IEEE, volume 1, pages 345–352 vol.1, 1999.

[64] YVG, video game sales break records. http://videogames.yahoo.com/feature/

video-game-sales-break-records/1181404.

113



Appendix A

MCCA’s API

Program A.1 Types and Enumerations

typedef int PlayerId, ClassId, FlowId;

enum Error {

Error_OK,

...

};

enum MessageType {

MessageType_Unicast,

MessageType_Broadcast

};

enum ForwardingPolicyType {

ForwardingPolicyType_Star,

ForwardingPolicyType_TwoLevelBandwidthTree,

ForwardingPolicyType_TwoLevelLatencyTree,

ForwardingPolicyType_Custom

};

enum QualityEstimationType {

QualityEstimationType_None,

QualityEstimationType_ObservedBandwidth,

QualityEstimationType_VoIP

QualityEstimationType_Game,

QualityEstimationType_Custom

};

114



Appendix A. MCCA’s API

Program A.2 Interface for Receiving Message and Notifications

class ObservedUserQualityMap {

int GetNumPlayers( );

Error GetQuality(

__in PlayerId playerId,

__out double* quality );

};

class FlowCallback {

virtual void OnReceive(

__in ClassId classId,

__in FlowId flowId,

__in PlayerId from,

__in MessageType messageType,

__in void* data,

__in unsigned int dataSize ) = 0;

virtual void OnNConsequetiveLosses(

__in ClassId classId,

__in FlowId flowId ) {};

virtual void OnObservedQualityUpdate(

__in ClassId classId,

__in FlowId flowId,

__in ObservedUserQualityMap qualityMap ) {};

};

115



Appendix A. MCCA’s API

Program A.3 Custom Forwarding Policy Creator

class NetworkTopology {

int GetNumPlayers( );

void GetPlayerNetworkInfo(

__in PlayerId playerId,

__out double* bandwidth,

__out double* roundTripTime );

};

class CustomForwardingPolicy {

Error CreateTopology(

__in const NetworkTopology* networkTopology,

__out ForwardingPolicy* forwardingPolicy );

Error UpdateTopology{

__in const NetworkTopology* networkTopology );

Error OnPlayerJoin(

__in const NetworkTopology* networkTopology,

__in PlayerId joinedPlayerId );

Error OnPlayerLeave(

__in const NetworkTopology* networkTopology,

__in PlayerId leftPlayerId );

};

116



Appendix A. MCCA’s API

Program A.4 Quality Aggregation Interface1

class LatencyHistogram {

void Begin();

bool Next(

__out double* latencyRangeLow,

__out double* latencyRangeHigh,

__out double* average,

__out int* count );

};

class QualityEstimationCallback {

double GetQuality(

__in const LatencyHistogram* latencyHistogram,

__in double averageLatency,

__in double observedLossRate,

__in double averageJitter,

__in int numberOfMessages );

};

Error setFlowQualityEstimation(

__in ClassId classId,

__in FlowId flowId,

__in QualityEstimationType qmType,

__in QualityEstimationCallback* qmCallback = NULL,

__in double qmLatencyHistogramInterval = 0.05 );

1Refer to Program A.2 for the interface of the FlowCallback, and the aggregated quality callback

117



Appendix A. MCCA’s API

Program A.5 Consecutive Loss Reporting Interface1

Error setOnNConsecutiveLossesCallback(

__in ClassId classId,

__in FlowId flowId,

__in int numLosses );

Error clearOnNConsecutiveLossesCallback(

__in ClassId classId,

__in FlowId flowId );

1Refer to Program A.2 for the interface of the FlowCallback, and the consecutive loss callback

118



Appendix B

Abbreviations

Acronym Description

AI Artificial Intelligence

AOI Area of Interest

API Application Programming Interface

CLVL Controlled Loss Virtual Links

DVMRP Distance Vector Multicast Routing Protocol

FPS First Person Shooter

IO Input/Output

IP Internet Protocol

ITU-T Telecommunication Standardization Sector

MCCA Multi-Class Communication Architecture

MMORPG Massively Multiplayer Online Role-Playing Game

MOS Mean Opinion Score

P2P Peer-to-Peer

PCM Predictive Contract Mechanisms

PESQ Perceptual Evaluation of Speech Quality

PSQM Perceptual Speech Quality Measure

QoS Quality of Service

RPF Reverse Path Forwarding

RTS Real Time Strategy

RTT Round Trip Time

TCP Transmission Control Protocol

UDP User Datagram Protocol

VoIP Voice-Over-IP

WoW World of Warcraft

Table B.1: Technical Terms and Acronyms

119



Appendix B. Abbreviations

Acronym Description

G Game

GA Game with Adaptive Game Update Interval

OG Optimistic Game

OGA Optimistic Game with Adaptive Game Update Interval

GV Game + VoIP Workload

GVO Game + VoIP Workload with Optimization

GAV Game with Adaptive Game Update Interval + VoIP Workload

GAVO Game with Adaptive Game Update Interval + VoIP Workload
with Optimization

OGV Optimistic Game + VoIP Workload

OGVO Optimistic Game + VoIP Workload with Optimization

OGAV Optimistic Game with Adaptive Game Update Interval +
VoIP Workload

OGAVO
Optimistic Game with Adaptive Game Update Interval +
VoIP Workload with Optimization

GVF Game + VoIP Workload + File Transfer Workload

GVOF
Game + VoIP Workload with Optimization +
File Transfer Workload

GAVF Game with Adaptive Game Update Interval + VoIP Workload +
File Transfer Workload

GAVOF
Game with Adaptive Game Update Interval + VoIP Workload
with Optimization + File Transfer Workload

OGVF Optimistic Game + VoIP Workload + File Transfer Workload

OGVOF
Optimistic Game + VoIP Workload with Optimization +
File Transfer Workload

OGAVF
Optimistic Game with Adaptive Game Update Interval + VoIP
Workload + File Transfer Workload

OGAVOF
Optimistic Game with Adaptive Game Update Interval + VoIP
Workload with Optimization + File Transfer Workload

Table B.2: Experiment Names and Acronyms

120


