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Abstract

This thesis presents a theoretical study of strongly-interacting Fermi systems
with population imbalance, which is motivated by some differences in cold
atoms experiments. We calculate the energy of a single fermion interacting
resonantly with a Fermi sea of different species fermions in anisotropic traps,
and show that finite particle numbers and the trap geometry impact the
phase structure and the critical polarization, the limit of resonance super-
fluidity in traps. Our findings contribute to understanding some experimen-
tal discrepancies as finite-size and confinement effects. For an imbalanced
gas in the uniform system, we calculate the energy of adding an impurity,
and construct the equation of state of the partially-polarized normal Fermi
liquid. Finally, we study the properties of a spin-down polaron in a trapped
gas containing arbitrary numbers of spin-up and spin-down fermions, and
derive a self-consistent equation for the polaron energy.
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Chapter 1

Introduction

Over the past ten years, there has been an impressive progress in the study
of ultracold atoms. The ability to achieve low temperatures is necessary to
bring dilute atomic gases into quantum degeneracy, where the matter wave-
length λ = ~/p is comparable to the typical separation distance. The first
realization of Bose-Einstein condensates in 1995 for rubidium [1], lithium [8],
and sodium [23] demonstrated that atomic gases have a strong potential to
study quantum phenomena on a macroscopic scale. Quantum degeneracy
in Fermi gases was first obtained in 1999 for 40K atoms [25]. Since then, the
field of ultracold Fermi gases has been rapidly expanding. A typical exper-
iment with Fermi gases studies N ∼ 106 atoms at a temperature T ∼ 100
nK, with density 1013 − 1014 atoms/cm3 [32]. Such dilute, ultracold atoms
provide an accessible and controllable system where quantum many-body
phenomena can be studied experimentally.

In a cold Fermi gas, the populations in different hyperfine states can
be controlled experimentally, with nearly complete freedom. Therefore, it
is possible to study phenomena in two-component Fermi systems, similar
to those in spin-1/2 electrons and nucleons. Each of the two hyperfine
states can be labeled as the spin-up or spin-down component. Recently,
experiments with spin-polarized Fermi gases [40, 41, 51, 52, 54, 55, 58,
59] open up the frontier in exploring superfluidity and universal properties
in strongly-interacting asymmetric Fermi systems, and provide insights to
problems in condensed matter, nuclear and particle physics. A great deal of
theoretical effort has also been devoted to understanding asymmetric Fermi
gases1, and this effort is still ongoing to fully elucidate the physics behind
the experimental results. In this thesis, I will present our work on strongly-
interacting Fermi gases with population imbalance. In the introduction,
I will first briefly discuss strongly-interacting fermions and condensates of
fermionic atoms. A motivation to study asymmetric Fermi gases will follow.
In the end of the introduction, I will give an outline of the thesis.

1Ref. [29] reviews the theory of Fermi gases, and provides an introductory discussion
on the current theory of asymmetric Fermi gases.
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1.1. Strongly-Interacting Fermi Gases

1.1 Strongly-Interacting Fermi Gases

In a two-component Fermi gas at low temperatures, interactions are re-
stricted to atoms in different spin-states due to Pauli exclusion. In the
regime of low energies and long wavelengths, atomic interactions can be de-
scribed by S-wave scattering. The S-wave scattering length a characterizes
the two-body low-energy collision process. In cold Fermi gases, the scatter-
ing length a can be tuned by making use of Feshbach resonances [26, 27].
In particular, one can achieve large scattering lengths, |a| → ∞, by tuning
an external magnetic field to a resonant value B = B0. The resulting Fermi
gas with large scattering length is strongly interacting.

Consider a dilute, strongly-interacting Fermi gas, where the effective in-
teraction range re is much smaller than the Fermi wavelength k−1

F ∼ n−1/3,
and whose scattering length diverges. The only remaining length scale is the
Fermi wavelength. Therefore, only the Fermi momentum or the density sets
the scale, and the physics is independent of interaction details. In this uni-
tary or universal regime, the physics is said to be universal [4]. For example,
consider a two-component Fermi gas with equal populations in the unitary
regime. As we will see in Section 3.1.3, it is a resonant superfluid for low
temperatures. At T = 0, the internal energy of the gas must be proportional
to the Fermi energy up to a universal constant, E/N = 3/5 ξ EF , and the su-
perfluid gap must also be set by the Fermi energy, ∆ ∼ EF . These universal
proportionality constants must be the same across different unitary systems
regardless of densities. An example of such universality is demonstrated
in the experimental measurement of the average energy [3, 33, 40, 56, 57],
which is found to be ξ ∼ 0.4, independent of the atomic species used (see,
e.g., Table 2.1).

Large scattering lengths are found in many fields of physics. For ex-
ample, nuclear matter is strongly interacting, and dilute neutron matter in
nuclei or the crust of neutron stars is expected to have universal properties.
Experiments with cold atoms provide a clean and controllable system to
investigate the universal regime of strongly-interacting Fermi systems, and
thus provide insights to problems in condensed matter, nuclear and particle
physics.

1.2 Condensates of Fermionic Atoms

Particles are classified as either bosons or fermions. Fermions are particles
with half-integer spin and obey the Pauli exclusion principle, which states

3



1.2. Condensates of Fermionic Atoms

(a) (b)

T ≪ Tc T ≪ TF

EF

Spin ↑

Spin ↓

Figure 1.1: Non-interacting systems of ultracold bosonic and fermionic
atoms in a confining harmonic potential. (a) Below a critical temperature Tc,
bosonic particles occupy the lowest-energy state and form a Bose-Einstein
condensate (BEC). The BEC is a superfluid, and is described by a many-
body wave function in which all the particles occupy the same single-particle
state. (b) Fermionic atoms obey the Pauli exclusion principle. At low tem-
peratures, T ≪ TF = EF/kB , they fill up the lowest-energy single-particle
states up to the Fermi energy EF , forming the Fermi sea.

that two indistinguishable fermions cannot occupy the same quantum state.
Bosons, which have integer spin, are able to occupy the same state. For
neutral atoms, the number of neutrons determines whether it is a fermion
or boson. An example of a bosonic atom is 7Li, while 6Li is a fermionic
atom.

At low temperatures, the distinction between bosons and fermions be-
comes important, see Fig. 1.1. Because bosons are not constrained by the
Pauli exclusion principle, below a critical temperature, a large number of
bosons occupies the ground state. This forms a Bose-Einstein condensate
(BEC), which is a superfluid state. On the other hand, due to the Pauli ex-
clusion principle, non-interacting fermions will simply fill the lowest-energy
single-particle levels at low temperatures, with one fermion in each level, up
to the Fermi energy EF = k2

F /2m, where kF is the Fermi momentum. This is
the arrangement known as the Fermi sea. Since spin is also a degree of free-
dom, in a two-spin component system, each energy level can accommodate
two fermions, with one in each spin state.

4



1.2. Condensates of Fermionic Atoms

Figure 1.2: The BEC-BCS Crossover (Figure taken from Ref. [32]). The ef-
fective interatomic interaction can be controlled with a magnetic Feshbach
resonance. The scattering length diverges, a = ±∞, at a resonant field
B = B0. Away from the resonance, the scattering length can take on either
positive or negative values. (a) In the regime where a > 0, the strongly-
attractive interaction causes one spin-up and one spin-down atom to form
a bound molecule in free space with binding energy Eb = ~

2/ma2. These
molecules are bosons, and will condense to form a Bose-Einstein condensate
(BEC). Therefore, this is known as the BEC regime. (c) On the side where
a < 0, the interaction is not strong enough to bind atoms into molecules.
However, since the Fermi surface is unstable to any attractive interaction,
two atoms near the Fermi surface with back-to-back momenta will pair up
to form a Cooper pair. The pairs are localized in momentum space and thus
delocalized in coordinate space. The bosonic Cooper pairs also condense to
form a superfluid, and this is the BCS mechanism through which conven-
tional superconductivity occurs. Therefore, this side is referred to as the
BCS regime. (b) In the unitary regime (large scattering length), resonant
pairs and resonance superfluidity occur in the BEC-BCS crossover regime.

Interparticle interactions change this picture considerably. As discussed
previously, the effective interaction can be controlled by a magnetic Feshbach
resonance, which enables cold atoms to access different regimes of interaction
strength. The effective interaction is characterized by the scattering length
a. At a resonant external field, B = B0, the scattering length diverges, a =
±∞. Away from resonance, the scattering length takes on either positive
or negative values, and decreases in magnitude as the magnetic field moves
away from B0. Here, we will briefly discuss the T = 0 ground states of a
symmetric two-component Fermi gas (N↑ = N↓) in the different regimes of
interactions.

5



1.3. Asymmetric Fermi Gases

In the regime away from B = B0, where a is positive and small, the
interaction is strongly attractive, so two atoms in free space with opposite
spins will form a bound, bosonic molecule with binding energy Eb = ~

2/ma2.
The effective interaction between these molecules is repulsive. In this regime,
molecules form in a many-body Fermi system with two spin states. These
bosonic molecules condense to form a BEC at low temperatures, and there-
fore, this is called the BEC regime, see Fig. 1.2 (a).

On the other side, where a is negative and small in magnitude, the
fermionic atoms attract weakly. The interaction is not strong enough to
bind a pair of atoms into a molecule in free space. However, as Bardeen,
Cooper, and Schrieffer (BCS) have shown, the Fermi surface is unstable
to pairing in the presence of an attractive interaction [2]. Therefore, in a
many-body system, a pair of spin-up and spin-down fermions near the Fermi
surface with back-to-back momenta form a large (delocalized in coordinate
space) bound-state known as Cooper pair. These Cooper pairs are bosonic,
and condense to form a superfluid at low temperatures. This is the same
mechanism through which conventional superconductivity occurs. This is
called the BCS regime, see Fig. 1.2 (c).

The scattering length diverges at the Feshbach resonance, B = B0. Here,
resonant pairs of spin-up and spin-down fermions form, at the crossover
between a molecule and a Cooper pair, see Fig. 1.2 (b). These resonant
Cooper pairs are highly delocalized molecules with free-space binding energy
Eb = 0. In an equal two-component mixture, the crossover is smooth, and
superfluidity persists for all regimes of interaction at low temperatures.

1.3 Asymmetric Fermi Gases

Naturally, one can ask what are the effects of population asymmetry, with
N↑ > N↓. Asymmetric Fermi systems are a recurring theme in nature. In
magnetized superconductors, an external magnetic field can imbalance the
spin densities [28, 36, 50]. Cold neutron matter in neutron stars contains a
highly imbalanced population of neutrons and protons. Most stable nuclei
also contain a higher number of neutrons than protons. Therefore, asym-
metric Fermi systems are a highly relevant subject in many fields of physics.

Spin-polarized ultracold Fermi gases provide a novel tool to study strongly-
interacting asymmetric Fermi systems. There are exciting experimental re-
sults from the MIT [54, 58, 59] and the Rice University [40, 41] groups.
The two groups found differences in the observed phase structure and crit-
ical polarization at which superfluidity ceases to exist. The MIT experi-
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1.3. Asymmetric Fermi Gases

ment [54, 58, 59] observed phase separation in the trap, which contains an
equal-density core, surrounded by a partially-polarized shell and an outer
region of majority atoms. The equal-density core is confirmed to be super-
fluid by the presence of vortices [58], and exists up to a critical polarization
Pc = (N↑−N↓)/Ntot = 0.70(3) [54, 58, 59]. The Rice experiment [40, 41] also
observed phase separation, with a fully-paired core surrounded by normal
majority fermions, but with an extremely thin partially-polarized shell, and
a high critical polarization Pc & 0.9. The two experiments employed har-
monic traps with cylindrical symmetry (ωx = ωy = αω, ωz = ω). The
MIT experiment has an aspect ratio α ∼ 5 and total particle numbers
Ntot = N↑+N↓ ∼ 106−107. The Rice experiment was in a highly elongated
trap, with α ∼ 35 − 45 and for lower Ntot ∼ 105.

These experiments have led to a number of theoretical investigations (see
Ref. [29] and references within). The critical polarization is influenced by
the energies of the superfluid and the polarized normal gas. The universal
superfluid energy parameter ξ = 0.42 [13, 43] has been determined using
Monte Carlo (MC) calculations. For large asymmetries, the energy of the
polarized normal state is governed by the energy of a spin-down fermion
interacting resonantly with a spin-up Fermi sea. In the uniform system, the
energy E = ηEF of this Fermi polaron has been calculated variationally
including one-particle–one-hole excitations, with η = −0.607 [17, 18]. This
agrees very well with the Monte Carlo results [13, 38, 43, 45, 46], and 2p2h
contributions were shown to be small [21].

The variational value of η = −0.607 requires the existence of at least one
partially-polarized phase in the uniform system2. With the local-density ap-
proximation (LDA), the polaron energy can be used to estimate the critical
concentration xc = n↓/n↑ and the critical polarization Pc in traps with large
particle numbers. The variational value η = −0.607 leads to Pc = 0.74 and
xc = 0.47 [47]. These results are in good agreement with Pc = 0.70(3)
of the MIT experiment [54, 58, 59] and with a tomography measurement
xc ≈ 0.47 [55].

In summary, the results in the uniform system agree well with the MIT
experiment, whose trap contained a larger number of particles. Understand-
ing how finite-size and confinement effects influence the polaron energy, as
well as the equation of state for the normal phase, can contribute to under-
standing the MIT-Rice differences. This forms the motivation behind our
work described in this thesis.

2For a detailed discussion, we refer to Chapter 3, see also Refs. [9, 17].

7



1.4. Outline

1.4 Outline

In this thesis, I will summarize our work on strongly-interacting Fermi gases
with population imbalance. This work was done in collaboration with Jens
Braun, who is now at the Friedrich Schiller University, Jena, Germany, and
with Achim Schwenk. This work has led to a paper in Phys. Rev. Lett. [34],
and another paper is in preparation.

In Chapter 2, I will provide an overiew of interactions in cold atoms. A
brief review of low-energy scattering will be provided, and its application
to atomic interactions will be discussed. I will then introduce the concept
of regularized contact interactions, and review the renormalization of the
coupling constant, an important result for the later chapters. Lastly, the
strongly-interacting regime will be discussed.

In Chapter 3, I will review the theory of unitary asymmetric Fermi gases
in the uniform system. I will begin with a review on the condensates of
fermionic atoms. Next, a discussion on the theory of unitary asymmetric
Fermi gases in the uniform system will be provided. I will then introduce
Chevys variational solution to the N + 1 body problem. Application to
trapped gases will then be discussed. Lastly, I will review the experimental
work on spin-polarized Fermi gases in greater detail.

In Chapter 4, I will present our work on the N + 1 body problem in
trapped Fermi gases. The variational calculation of the polaron energy in
anisotropic traps will be described, and the numerical results will be pre-
sented. I will then discuss the impact of the polaron energy on the critical
polarization and the critical concentration, and show that the MIT-Rice
differences can be understood partially based on our microscopic results.

In Chapter 5, I will present our study on the N + M body problem,
which is the natural next step towards general asymmetry. I will describe the
variational calculation of the N+M body energy in the uniform system, and
show the numerical results. The equation of state of the normal Fermi liquid
is constructed based on the variational N +M body energy, and applied to
traps with large particle numbers to compute the critical polarization and
the critical concentration. Lastly, I will describe the derivation of the N+M
body energy in trapped Fermi gases. The numerical evaluation of this energy
in traps is to be left for future work.

Finally, in Chapter 6, I will summarize our work, and present an out-
look.
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Chapter 2

Interactions in Cold Atoms

Interactions give rise to the rich phenomena observed in cold atoms. Effects
of interactions in quantum degenerate, dilute Fermi gases with two com-
ponents can be accurately described by the physics of two-body scattering.
The goal of this chapter is to provide an overview of interactions in cold
atoms, and to present results that will be essential to the later chapters.
We will begin with a brief review of the scattering problem. For a detailed
treatment, we refer to standard textbooks on quantum mechanics, such as
Refs. [35, 49]. Next, we will apply two-body scattering to atomic interac-
tions, and discuss the regularized contact interaction, which serves as the
standard low-energy Hamiltonian in dilute Fermi gases. Lastly, we will re-
view the strongly-interacting regime of cold Fermi gases with discussions on
Feshbach resonances and the universal regime.

Throughout this work, we will be working with the following units

~ = c = kB = 1 , (2.1)

and the normalization

〈x|x′〉 = δ3(x − x′) ,
〈x|k〉 = eik·x ,
〈k|k′〉 = (2π)3δ3(k − k′) .

(2.2)

2.1 Two-Body Scattering

In the non-relativistic limit, the quantum mechanical two-body process can
be decomposed into center-of-mass and relative components, just as in the
case of the classical two-body problem. The center-of-mass momentum is
conserved, and the problem reduces to the solution of Schrödinger equa-
tion for the relative motion. In the relative frame, two-body scattering
is equivalent to a free particle of relative momentum k and reduced mass
mr = m1m2/(m1 +m2) incident upon a scattering potential V (r), where r
is the interparticle distance, and m1, m2 are the masses of the two particles.

9



2.1. Two-Body Scattering

Incident eik·r Scattered f(k,k′) eikr

r

Figure 2.1: General scattering geometry. An incident plane wave, eik·r,
scatters off a potential, V (r), located at the origin. The asymptotic scattered

wavefunction is a spherical wave eikr

r , with scattering amplitude f(k,k′).

The qualitative picture describing potential scattering is illustrated in
Fig. 2.1. A plane wave ψ0 = eik·r is incident upon a scattering potential,
V (r), located at the origin. We assume the potential is spherically symmet-
ric. In the far field limit r ≫ R0, where R0 is the range of the potential,
the scattered wavefunction looks like a spherical wave, which is a function
of the incident momentum k and direction r̂ only. In other words, the total
wavefunction, in the asymptotic limit, has the form

ψ(r) = eik·r + f(k,k′)
eikr

r
, (2.3)

where f(k,k′) is the scattering amplitude, and k′ = kr̂.
In this section, we will review two-body scattering at low energies, rele-

vant to cold dilute atomic gases, and the T -matrix.

2.1.1 Scattering at Low Energies

The scattering amplitude can be expanded in terms of partial waves, which
are labeled by angular momentum quantum numbers l = 0, 1, 2, .... These
partial waves are eigenstates of L2, where L = r×k is the angular momentum
operator, with eigenvalues l(l+1). At low collisional energies E = k2/2mr ∼
0, the main contribution to the scattered wavefunction comes from S-wave

10



2.1. Two-Body Scattering

states, which have an l = 0 component. In the absence of scattering, the
total wavefunction of Eq. (2.3) is ψ(r) = eik·r, whose S-wave component is

∫
dΩ

4π
eik·r =

1

kr

(
eikr

2i
− e−ikr

2i

)
, (2.4)

consisting of an inward and an outward propagating spherical wave. Scatter-
ing only affects the outward propagating wave. In addition, since particles
are conserved, at large distance, the only possible change to the outgoing
wave due to scattering is a change of phase, eikr → ei(kr+2δ0(k)). The quan-
tity δ0(k) is the S-wave phase shift (the factor of 2 is a convention). This

results in an additional term ei(kr+δ0(k))

kr sin δ0(k) in Eq. (2.4) due to scat-
tering. Therefore, in the presence of scattering at low energies, the total
wavefunction is

ψ(r) = eik·r +
eiδ0(k) sin δ0(k)

k

eikr

r
. (2.5)

Thus, the S-wave scattering amplitude is given by

f0(k) =
1

k cot δ0(k) − ik
. (2.6)

At low momenta, the S-wave phase shift has the scaling δ0(k) ∼ k (see,
e.g., Ref. [49]). Therefore, in the k → 0 limit, the S-wave scattering ampli-
tude tends to a constant value, and we define the S-wave scattering length
a by f0(k → 0) = −a. The S-wave scattering length plays an important
role in low-energy scattering. For positive scattering lengths a > 0, bound
states form with the binding energy

Eb =
1

2mra2
. (2.7)

Expanding cot δ0(k) up to O((R0k)
2) terms, we obtain the S-wave scat-

tering amplitude at low energies,

f0(k) = − 1
1
a − re

2 k
2 + ik

. (2.8)

This relation defines the effective range re of the interaction. Typically,
one has re ∼ R0; however, in some cases, e.g., close to a narrow Feshbach
resonance, re can become much larger than R0, and thus provides a new
length scale [29].
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2.1. Two-Body Scattering

2.1.2 The T -Matrix

The previous section dealt with scattering at low energies. A useful tool to
study scattering theory in general is the transition matrix, or the T -matrix.
To begin, we define our problem with the Hamiltonian

H = H0 + V , (2.9)

where H0 = p2

2mr
is the non-interacting Hamiltonian. Let E be an energy

eigenvalue of H, |ψ〉 be the corresponding eigenstate of H, and |ψ0〉 be a
free-particle eigenstate of H0 with the same energy. This choice is possible
because both H0 and H exhibit continuous energy spectra. Then, one can
check that the following solution,

|ψ〉 = |ψ0〉 +
1

E −H0 ± iǫ
V |ψ〉 , (2.10)

where ǫ → 0+, satisfies the Schrödinger equation (H0 + V − E)|ψ〉 = 0.
The ±iǫ is necessary to ensure convergence. The physical meaning of ±
will become explicit shortly. By applying Eq. (2.10) to the right-hand side
iteratively, one obtains

|ψ〉 =

(
1 +

1

E −H0 ± iǫ
V +

1

E −H0 ± iǫ
V

1

E −H0 ± iǫ
V + ...

)
|ψ0〉 .

(2.11)
This expression can be written as

|ψ〉 = |ψ0〉 +
1

E −H0 ± iǫ
T |ψ0〉 , (2.12)

where the T -matrix is defined by

T = V

∞∑

n=0

(
1

E −H0 ± iǫ
V

)n

. (2.13)

The T -matrix has the property

V |ψ〉 = T |ψ0〉 , (2.14)

and hence its name, the transition matrix.
To relate the T -matrix to the scattering amplitude, let us turn to Eq. (2.10).

Choosing the plane wave |ψ0〉 = |k〉 as the incident free-particle, and mak-
ing the use of the normalization Eq. (2.2), we can write Eq. (2.10) in the
following form,

ψ(r) = eik·r − mr

2π

∫
d3r′

e±ik|r−r′|

|r− r′| 〈r′|V |ψ〉 , (2.15)

12



2.1. Two-Body Scattering

where the ± corresponds to the choice of ±iǫ in Eq. (2.10).
In the asymptotic limit r ≫ R0, one can expand |r− r′| ≃ |r| − r̂ · r′ for

r ≫ r′. With the help of Eq. (2.14), Eq. (2.15) becomes

ψ(r) = eik·r − mr

2π

e±ikr

r
〈±kr̂|T |k〉 . (2.16)

At this point, the physical meaning of ±iǫ in Eq. (2.10) becomes clear. The
solution with +iǫ corresponds to an incident plane wave plus an outgoing
spherical wave. On the other hand, the solution with −iǫ consists of a plane
wave plus an incoming spherical wave. Therefore, the physical choice is +iǫ.

Eq. (2.16) gives the following relation of the scattering amplitude to the
T -matrix:

f(k,k′) = −mr

2π
〈k′|T |k〉 . (2.17)

One way to understand the structure of the T -matrix is to look at its
momentum-space representation. Recall that the free-particle Green’s func-
tion is

〈k′| 1

E −H0 + iǫ
|k〉 = (2π)3δ3(k − k′)

1

E − k2

2mr
+ iǫ

. (2.18)

For n = 1, 2, ..., each of the terms in Eq. (2.13) has the following form in
momentum space:

〈k′|V
(

1

E −H0 + iǫ
V

)n

|k〉

=

∫
Vk′,q1

(
n∏

i=1

d3qi
(2π)3

G0(E,qi)Vqi,qi+1

)∣∣∣∣
qn+1=k

, (2.19)

where Vq′,q = 〈q′|V |q〉, and G0(ω,q) =
(
ω − q2

2mr
+ iǫ

)−1
. Therefore, the

T -matrix in momentum space can be written as the following series of Feyn-
man diagrams,

4

1k

k2

k3

k

= + + + · · · ,

(2.20)
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2.2. Interactions in Cold Fermi Gases

where k1, k2 (k3, k4) are the momenta of the incident (outgoing) particles
pair, and k (k′) is the corresponding relative momentum. By momentum
conservation, k1+k2 = k3+k4. The interpretation of Eq. (2.20) is as follow:
the incident particles can interact with each other for an arbitrary number
of times, and the scattering amplitude is the sum of all such contributions.

In the next section, we will apply scattering theory to describe interac-
tions in cold atoms.

2.2 Interactions in Cold Fermi Gases

In this section, we will apply the theory of two-body scattering to exper-
iments with cold Fermi gases. In the relevant regime of low densities and
low temperatures, the range R0 of the interatomic potential is much smaller

than both the thermal wavelength λT =
√

2π
mkBT and the Fermi wavelength

k−1
F ∼ n−1/3,

R0 ≪ λT , R0 ≪ k−1
F . (2.21)

As discussed above, in such a regime where the typical collisional energy is
low, the dominant contribution to the collisional process is S-wave scatter-
ing. Since we will be working in the T = 0 limit, only the S-wave scattering
will be considered in this work. Furthermore, the antisymmetry of the wave-
function of identitical fermions exclude S-wave scattering between particles
of the same species. In another word, only atoms in different hyperfine states
will interact.

In the study of many-body physics, it is often convenient to use an ef-
fective potential instead of a more complicated atomic potential. In dilute
Fermi gases, where the Fermi wavelength is much larger than the effective
range, k−1

F ≫ re, the particles do not probe the internal structure of the
interaction. Therefore, one can model atomic interactions with an effective
potential in dilute Fermi gases. Different effective potentials can be con-
sidered, as the low-energy process is independent of the short-range details.
One model potential is the attractive square-well:

V (r) =

{
−V0 r < R0,
0 r > R0.

(2.22)

This potential is sometimes used in Monte Carlo simulations [38].
Another important effective potential is the regularized contact interac-

tion,
V (r) = g(Λ)δ3Λ(r) , (2.23)
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2.3. Regularized Contact Interaction

Figure 2.2: Momentum cutoff schemes. Left : Sharp momentum cutoff given
by R(k/Λ) = Θ(1 − k/Λ). Right : Smooth momentum cutoff given by
R(k/Λ) = e−k2/Λ2

. Plots are shown for increasing Λ, with the blue curves
having a larger value of Λ.

where g(Λ) is the coupling constant, and Λ is a momentum cutoff necessary
to regularize the potential. This is the interaction we will consider in the
subsequent chapters.

2.3 Regularized Contact Interaction

The contact interaction introduced in Eq. (2.23) is given by a constant in
momentum space and requires regularization. We use a momentum cutoff Λ
to avoid divergences at large momenta. This is called regularization. Once
a regularization scheme has been introduced, one proceeds to calculate the
scattering amplitude using the T -matrix. This scattering amplitude is then
compared to the low-energy form, Eq. (2.8), and we match the coupling
constant, g(Λ), to the physical scattering length for arbitrary cutoff. The
renormalized coupling constant consequently absorbs the cutoff dependency,
and physical observables are independent of the regularization scheme and
cutoff for large Λ.

In the rest of this section, we will match the renormalized coupling con-
stant g(Λ) of the contact interaction, Eq. (2.23), to the physical scattering
length. We will consider a general cutoff scheme of the form

〈k′|V |k〉 = g(Λ)R(k/Λ)R(k′/Λ) , (2.24)

where the function R(u) has the property R(0) = 1 and limu→∞R(u) =
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2.3. Regularized Contact Interaction

q0
γ

√
2mrE + iǫ

Figure 2.3: Contour used to evaluate Eq. (2.28). The contour is counter-
clockwise and encloses the pole at q =

√
2mrE + iǫ.

0, and g(Λ) is the renormalized coupling constant. There are two cutoff
schemes that we will consider. One is the sharp cutoff, given by

〈k′|V |k〉 = g(Λ)Θ(1 − k/Λ)Θ(1 − k′/Λ) , (2.25)

with R(u) = Θ(1 − u), where Θ(x > 0) = 1, and Θ(x < 0) = 0. This cutoff
scheme is useful when one considers uniform systems. For Fermi gases in
harmonic oscillator traps, it is more convenient to use a smooth Gaussian
cutoff

〈k′V |k〉 = g(Λ)e−k2/Λe−k′2/Λ , (2.26)

with R(u) = e−u2
. These two cutoff schemes are depicted in Fig. 2.2.

To renormalize the coupling constant, we first calculate the scattering
amplitude, and then define the coupling constant so it absorbs the divergent
contribution due to the cutoff. Therefore, we proceed to evaluate the T -
matrix element in momentum space, which is given by Eq. (2.20). The nth

term, where n = 0, 1, 2, ..., is given by

〈k′|V
(

1

E −H0 + iǫ
V

)n

|k〉

= (g(Λ))n+1R(k/Λ)R(k′/Λ)

(∫
d3q

(2π)3
R2(q/Λ)

E − q2

2mr
+ iǫ

)n

. (2.27)

The integral in the above equation can be evaluated using the contour
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2.3. Regularized Contact Interaction

shown in Fig. 2.3:
∫

d3q

(2π)3
R2(q/Λ)

E − q2

2mr
+ iǫ

=
1

2π2

(∫ ∞

0
dq

q2R2(q/Λ)

E − q2

2mr

+
1

2
2πi Res

[
q2R2(q/Λ)

E − q2

2mr

,
√

2mrE + iǫ

])
,

(2.28)

where Res[f(z), z0] is the residue of the function f(z) at z = z0. The residue
in Eq. (2.28) is given by

1

2
2πi Res

[
q2R2(q/Λ)

E − q2

2mr

,
√

2mrE + iǫ

]

= −iπmr

√
2mrE R2

(√
2mrE
Λ

)
−→
Λ→∞

−iπmr

√
2mrE . (2.29)

Because we are only interested in the leading E terms, we expand the inte-
grand as a geometric series for small E. After a change of variable q/Λ → u,
we obtain

∫ ∞

0
dq

q2R2(q/Λ)

E − q2

2mr

= −2mrΛ

∫ ∞

0
duR2(u) +O(E) . (2.30)

Combining the results of Eqs. (2.27)-(2.30), we obtain

〈k′|V
(

1

E −H0 + iǫ
V

)n

|k〉

= (g(Λ))n+1R(k/Λ)R(k′/Λ)

(
−mr

π2
Λ

∫ ∞

0
duR2(u) − i

mr

2π

√
2mrE

)n

.

(2.31)

Summing the series and taking R(k/Λ) −→
Λ→∞

1 give us 〈k′|T |k〉. By con-

servation of energy, the scattered wave carries the energy E = k2/2mr.
Therefore, we have

〈k′|T |k〉 =
1

1
g(Λ) + mr

π2 Λ
∫∞
0 duR2(u) + imr

2π k
, (2.32)

and according to Eq. (2.17), the scattering amplitude is

f(k,k′) = − 1
2π

mrg(Λ) + 2
πΛ
∫∞
0 duR2(u) + ik

. (2.33)
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2.4. Strongly-Interacting Regime in Cold Fermi Gases

Recall that the low-energy scattering amplitude is given by Eq. (2.8). We
see that in this case, the scattering amplitude of Eq. (2.33) indeed has
the form f(k,k′) = − 1

a−1+ik
, with an effective range re ∼ O(1/Λ) → 0 for

the contact interaction, which is expected. The scattering length and the
renormalized coupling constant are therefore matched by

g(Λ) =
2π

mr

1
1
a − 2

πΛ
∫∞
0 duR2(u)

. (2.34)

With the sharp cutoff scheme of Eq. (2.25), R(u) = Θ(1 − u), one finds

g(Λ) =
2π

mr

1
1
a − 2

πΛ
. (2.35)

With the smooth cutoff given by Eq. (2.26), R(u) = e−u2
, the renormalized

coupling constant is

C(Λ) =
2π

mr

1
1
a − Λ√

2π

, (2.36)

where we use C(Λ) to distinguish this from the case of sharp cutoff.

2.4 Strongly-Interacting Regime in Cold Fermi

Gases

The ability to tune the scattering length a is an important experimental tool
that enables the study of strongly-interacting Fermi gases. In this section,
we will briefly discuss Feshbach resonances, a phenomenon that enables
experimental control of the scattering length. We will also describe the
universal regime, in which low density, strongly-interacting Fermi systems
share universal properties, independent of interaction details.

2.4.1 Feshbach Resonances

The possibility to tune the scattering length a enables much of the recent
experimental progress with cold Fermi gases. In particular, the ability to
achieve large scattering lengths, |a| ≫ 1/kF by making the use of Fesh-
bach resonances [26, 27], allows experiments with Fermi gases to explore the
strongly-interacting regime.

Due to the hyperfine interaction, two colliding atoms can form a bound
state whose magnetic moment is different from the total magnetic moment
of the pair. Consequently, the bound state (referred to as the closed channel)
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2.4. Strongly-Interacting Regime in Cold Fermi Gases

Figure 2.4: Experimental measurement of the scattering length vs. B
by measuring a mean-field energy shift with radio frequency (RF) spec-
troscopy [48]. The measurement was taken for T/TF = 0.4 and two different
densities: n = 1.8 × 1014cm−3 (circles) and n = 5.8 × 1013cm−3 (squares).
The cold gas consisted of about 105 atoms of 40K. The characteristic diverg-
ing scattering length near the resonance is observed.

and the scattering state (the open channel) can have different Zeeman shift
in the presence of an external magnetic field. In the absence of coupling
between the two channels, the closed channel has no effect on scattering in
the open channel. However, in cold atoms the channels are coupled, and the
scattering length becomes large when the bound state energy of the closed
channel and the scattering energy of the open channel are close to each other.
This resonance occurs at a magnetic field B0, and one can parametrize the
scattering length as

a = abg

(
1 − ∆B

B −B0

)
, (2.37)

where abg is a background scattering length away from the resonance, and
∆B is the width of the resonance. Fig. 2.4 shows an experimental realization
for 40K atoms, with a resonance at B0 ≃ 224 G.

2.4.2 Universal Regime

Consider the regime of large scattering lengths, |a| → ∞, and low densities,
where the Fermi wavelength is much larger than the range of the interaction
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2.4. Strongly-Interacting Regime in Cold Fermi Gases

and the effective range3:

re, R0 ≪ k−1
F ∼ n−1/3 ≪ a→ ∞ . (2.38)

In this limit, Eq. (2.6) becomes f0(k) = −i/k. This is called the unitary or
the universal regime, where the scattering amplitude is at the unitary limit,
independent of the interaction [4].

In the unitary regime, the Fermi wavelength k−1
F is the only length scale,

and the only energy scale is the Fermi energy EF = (6π2n)2/3/2m set by the
density. All other thermodynamic quantities are proportional to the Fermi
energy up to a universal constant. For example, consider a T = 0 unitary
two-component Fermi gas containing spin up (↑) and spin down (↓) fermions
with equal densities, n↑ = n↓. In Section 3.1.3, we will see that this is a
crossover superfluid. The chemical potential µ = µ↑ = µ↓ at unitarity has
the scaling relation

µ = ξEF , (2.39)

where ξ is a universal parameter. This parameter is also related to the energy
per particle and the pressure. Using the relation µσ = (∂E/∂Nσ)S,V , where

σ =↑, ↓, one has µ = 1
2

(
∂N
∂N↑

∂
∂N + ∂N

∂N↓

∂
∂N

)

S,V
E =

(
∂E
∂N

)
S,V

. Integrating

over the density, one finds E
N = 1

n

∫
µdn. Therefore, the universal scaling

for the energy per particle is

E

N
= ξ

3

5
EF . (2.40)

Similarly, using the thermodynamic relation E = TS−PV +
∑

σ µσNσ, one
finds the pressure at T = 0 to obey the scaling law

P = ξ
2

5
nEF . (2.41)

Presently, there is no analytic solution to the many-body problem of two-
components Fermi gases with equal-densities in the unitary regime, because
the large scattering length kF |a| ≫ 1 prevents any known systematic ex-
pansion. Instead, numerical simulations with fixed-node Monte Carlo (MC)
methods are used to study the unitary regime, leading to the universal
ξ = 0.42(1) [13, 43]. The most recent calculation gives ξ = 0.40(1) [14].

3Typically, experiments with cold Fermi gases achieve large scattering lengths near
broad Feshbach resonances, where re ∼ R0, and kF re ≪ 1. However, near a narrow

resonance, the effective range is large and negative, so that |kF re| ≫ 1.
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ξ
6Li Innsbruck (2005) [3] 0.27+0.09

−0.12

Duke (2005) [33] 0.51(4)

Rice (2006) [40] 0.46(5)

ENS (2007) [57] 0.41(15)
40K JILA (2006) [56] 0.46+0.12

−0.05

Theory QMC [13, 43] 0.42(1)

Table 2.1: Experimental and theoretical values of the universal parameter
for the superfluid energy ξ.

The MC value of ξ = 0.42(1) is consistent with experimental measure-
ments [3, 33, 40, 56, 57], given in Table. 2.1. The recent experiments with
6Li [40, 57] and 40K [56] give ξ ∼ 0.4. The fact that the value of ξ does not
depend on the atomic species demonstrates the universal behavior of these
unitary systems.

Large scattering lengths play a prominent role in many fields of physics.
For example, the neutron-neutron scattering length is ann = −18.5± 0.3 fm
(1 fm=10−15 m), which is about 20 times larger than the interaction range
R0 ≈ 1.4 fm. Therefore, the universal regime, characterized by Eq. (2.38),
is relevant to dilute neutron matter in nuclei or the crust of neutron stars.
Experiments with cold Fermi gases provide a clean and controllable system
to investigate the physics of the universal regime, and thus give insights into
condensed matter, nuclear and particle physics.
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Chapter 3

N + 1 Body Problem in the

Uniform System

In the absence of interactions, the ground state of a Fermi system is simply
the Fermi sea. With tunable interactions in two-component Fermi gases, it
is possible to form bosonic bound states of different-species fermions. These
bound states may be molecular dimers in the a > 0 regime, or Cooper
pairs in the a < 0 regime. In a symmetric gas with equal populations, the
ground state at T = 0 is a superfulid condensate of these bosonic pairs.
Superfluidity is a remarkable phenomenon found in many different fields of
physics, and the ability to study fermionic superfluidity in a controllable
manner makes cold Fermi gases a highly valuable experimental tool.

The key to fermionic superfluidity is pairing. Naturally, one can ask
what happens to superfluidity in a gas with imbalanced spin populations,
N↑ 6= N↓, where not every particle can find a partner. The ability to freely
choose the populations in different hyperfine states allows cold Fermi gases to
explore such asymmetric Fermi systems, and to provide insights in many dif-
ferent fields of physics where the problem of population imbalance arises. For
example, an external magnetic field can, in principle, change the spin den-
sities in superconductors4 [28, 36, 50]. Another example are neutron stars,
which are composed of mostly neutrons, with proton fractions typically of
the order 10% [15]. Most stable nuclei also contain an asymmetric popula-
tion of protons and neutrons. In neutron-rich nuclei, neutrons leak out to
form neutron skins. Examples of nucleon densities are shown in Fig. 3.1, and
they show striking similarities to the spin densities in resonantly-interacting
cold atoms (see Fig 3.7).

The purpose of this chapter is to provide a background to our studies of
trapped asymmetric Fermi gases in the next chapter. We will begin with a
review of condensates of fermionic atoms. Next, we will discuss the theory

4In a typical superconductor, imbalancing spin densities by a magnetic field is hindered
by the Meissner effect. Below a critical field, the magnetic field is either expelled from
the superconductor, or enters in the form of quantized flux. Above this critical field,
equal-density superconductivity breaks down [16, 19]
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3.1. Symmetric Fermi Gases

Figure 3.1: Calculated densities of protons and neutrons in 100Sn (Z = N =
50, top) and 100Zn (Z = 30, N = 70, bottom). This figure is taken from
Ref. [7]. The neutron density extends much further out in 100Zn (neutron
skin). The calculations were done in the framework of density functional
theory.

of unitary asymmetric Fermi gases in the uniform system, and introduce
Chevy’s variational solution to theN+1 body problem. We will then discuss
the application to trapped gases. Finally, we will review the experimental
work on spin-polarized Fermi gases.

Throughout this chapter, we will refer to the atoms in different hyperfine
states as spin-up (↑) and spin-down (↓) atoms. Nσ denotes the particle
number of the σ =↑, ↓ species, and nσ denotes the density. In the case
of asymmetric systems, we assume N↑ > N↓, and define the concentration
x = n↓/n↑. The polarization is defined as P = (N↑ −N↓)/(N↑ +N↓), and it
measures the asymmetry of the system.

3.1 Symmetric Fermi Gases

The ability to control the scattering length with Feshbach resonances allows
cold Fermi gases to probe different regimes of superfluidity. In this section,
we will reviwe the theory of two-component Fermi gases with equal popula-
tion. We will briefly describe fermionic superfluidity in the molecular BEC
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3.1. Symmetric Fermi Gases

(kF a ≪ 1) and the weakly attractive BCS (−kFa ≪ 1) regimes, and then
discuss superfluidity in the unitary limit (|a| → ∞).

3.1.1 Molecular BEC Regime

As discussed in the previous chapter, across Feshbach resonance, a positive
scattering length a > 0 is associated with the formation of a bound state
in low-energy two-body collisions. Therefore, in a two-component Fermi
gas on the a > 0 side of the resonance, two atoms with opposite spins will
form a bound, bosonic molecule5. The size of these molecules is given by
the scattering length a. Since they are bosonic in nature, these molecules
condense to form a Bose-Einstein condensate (BEC) at low temperatures.
Therefore, the limit kFa≪ 1 is called the molecular BEC regime.

The theory of a non-interacting BEC in the uniform system is well es-
tablished, and can be found in standard many-body physics textbooks, such
as Ref. [39]. For bosons of density n and mass M , the critical temperature

is given by Tc = (2π/(kBM)) (n/ζ(3/2))2/3, where ζ(3/2) ≃ 2.612. In the
case of symmetric Fermi gases, n = n↑ = n↓, and M = 2m, so in terms of
the Fermi temperature TF = EF , one has

Tc = 0.218TF . (3.1)

Below this temperature, a superfluid BEC forms, and the condensate frac-
tion is given by [39]:

NC

N0
=

{
1 − (T/Tc)

3 forT ≤ Tc ,
0 forT > Tc .

(3.2)

3.1.2 Weakly-Attractive BCS Regime

In the regime of weak attraction, −kFa ≪ 1, the interaction is not strong
enough to bind a pair of atoms into a molecule. However, as Bardeen,
Cooper, and Schrieffer (BCS) have shown, the Fermi surface is unstable to

5Experimentally, two different regimes can be achieved with positive scattering lengths,
representing two different branches of the many-body problem for a > 0 [44]. If one starts
from a = 0, and adiabatically ramps up the scattering length, the configuration of a
weakly repulsive gas is achieved [6], provided that one stays far away from the resonance.
On the other hand, if one starts from a negative scattering length a < 0, and crosses the
resonance adiabatically to the side a > 0, conversion of atomic pairs into molecules is
ensured. Alternatively, molecular formation can be achieved by cooling down a gas with
a fixed a > 0. In this work, the molecular regime will be assumed for a > 0.
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3.1. Symmetric Fermi Gases

pairing in the presence of an arbitrarily weak attraction [2]. Therefore, spin-
up and spin-down atoms near the Fermi surface with back-to-back momenta
form bosonic bound states, known as Cooper pairs. The Cooper pairs are
localized in momentum space, and thus delocalized in coordinate space, in
contrast to the tightly bound molecules on the BEC side. Due to back-to-
back pairing near the Fermi surface, Cooper pairs have zero center-of-mass
momentum.

At low temperatures, these Cooper pairs condense to form a superfluid.
This is the same mechnism through which conventional BCS superconductiv-
ity occurs. Therefore, the regime of negative scattering lengths, −kFa≪ 1,
away from resonance is called the BCS regime. Condensation occurs be-
low a critical temperature Tc, and fermionic superfluid excitations display a
gap in the spectrum

√
(ǫp − µ)2 + ∆2, where ǫp is the free-particle disper-

sion, and ∆ the superfluid gap. The critical temperature and superfluid gap
for a BCS superfluid in the weakly-interacting limit have been calculated
perturbatively [30]. The critical temperature is given by

Tc =

(
2

e

)7/3 eγ

π
TF

π/2kF a ≈ 0.28TF e
π/2kF a , (3.3)

where γ ≈ 0.577 is the Euler-Mascheroni constant. Note that the critical
temperature grows exponentially with 1/kFa. Due to the exponential sup-
pression and low densities, the ability to obtain large scattering lengths with
Feshbach resonances is crucial to achieving superfluidity in fermionic atoms
away from the BEC regime.

The gap in the BCS theory at T = 0 is given by

∆ =
π

eγ
Tc ≈ 1.76Tc . (3.4)

The gap can be thought of as the energy necessary to break a Cooper pair.

3.1.3 Crossover Regime at Unitarity

As the magnetic field is tuned towards the resonance from either side, B →
B0, the scattering length diverges, |a| → ∞, and the Fermi gas enters the
unitary regime. If one begins from the BCS side, as the Fermi gas approaches
the resonance, the spin-up and spin-down atoms feel an increasingly strong
attraction that bind them into Cooper pairs. If one approaches the resonance
from the BEC side, the molecules formed by atoms of opposite spins increase
in size, with a decreasing binding energy Eb → 0. The transition between
the BEC and BCS superfluids is smooth. Resonant pairs of spin-up and
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3.2. Unitary Asymmetric Fermi Gases: Uniform System

spin-down fermions form, which are a crossover between a molecule (with
the binding energy Eb = 0) and a delocalized BCS Cooper pair.

The physics of the crossover superfluid is universal. As discussed in
Section 2.4.2, the energy per particle is E/N = ξ 3/5EF , where EF is the
non-interacting Fermi energy. The universal parameter ξ = 0.42(1) has
been calculated by Monte Carlo (MC) methods [13, 43], and an improved
value of ξ = 0.40(1) has been obtained [14]. This is in good agreement with
experimental values [3, 33, 40, 56, 57]. The superfluid gap at unitarity has
also been calculated using MC methods [13], and is found to be

∆

EF
= 0.50(2) . (3.5)

3.2 Unitary Asymmetric Fermi Gases: Uniform

System

The fully-paired superfluid is the ground state of a unitary Fermi gas with
N↑ = N↓. An imbalance in the spin population, e.g. N↑ > N↓, is created by
a mismatch in the chemical potentials, µ↑ > µ↓. When an asymmetry in the
population is introduced, it may result in the breakdown of the Cooper pairs
that form the condensate, and other phases can be energetically favoured.
Therefore, the phase diagram of unitary asymmetric Fermi gases can be very
rich. This section will discuss the effects of asymmetry on the phases in the
uniform system. We will begin by discussing a maximal extent of the fully-
paired superfluid in the presence of mismatched chemical potentials. Next,
we will discuss the phase diagram of unitary asymmetric Fermi gases in the
uniform system. The discussion of this section serves to motivate Chevy’s
N + 1 body problem, which we will describe in the next section.

3.2.1 Breakdown of the Fully-Paired Superfluid

In an asymmetric gas, the presence of a chemical potential difference, µ↑ >
µ↓, creates stress on pairing. Due to the pairing gap, Cooper pairs are
robust to a certain extent of the mismatch. The maximal possible extent
of fully-paired superfluidity corresponds to the point where the mismatch is
large enough to destroy the Cooper pairs:

µ↑ − µ↓ ≥ 2∆ . (3.6)

This is a more conservative limit than the Clogston-Chandrasekhar result
in the weakly-interacting BCS regime kF |a| ≪ 1, which has the critical
condition µ↑ − µ↓ ≥

√
2∆ [16, 19].
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3.2. Unitary Asymmetric Fermi Gases: Uniform System

Dividing both sides of Eq. (3.6) by µ↑ +µ↓, and using the relation (µ↑ +
µ↓)/2 = ξEF , Eq. (3.6) becomes (1−µ↓/µ↑)/(1+µ↓/µ↑) ≥ ∆/ξEF . Solving
the inequality for µ↓/µ↑ with ξ = 0.42(1) and Eq. (3.5), one finds that the
fully-paired superfluid is has to cease for [9, 20]

µ↓
µ↑

≤ ηc ≡
ξ − ∆/EF

ξ + ∆EF
= −0.09(3) . (3.7)

The condition of Eq. (3.6) sets the most conservative limit for the su-
perfluid. It is purely based on energetics consideration, without taking in-
teractions into account. The actual limit on the right hand side of Eq. (3.6)
may be less than 2∆. As a result, the actual extent of the superfluid phase
may be limited to larger µ↓/µ↑. Therefore, the range of the fully paired
superfluid is

ηc ≤ ηα <
µ↓
µ↑

≤ 1 , (3.8)

where ηα is the actual phase boundary for the superfluid, see Fig. 3.2.

3.2.2 Phases in Asymmetric Fermi Gases

Despite the lack of analytic solution, it is possible to investigate the T = 0
phase diagram of unitary asymmetric Fermi gases based on very general
arguments. The most general phase diagram possible for unitary asymmetric
Fermi gases is given by Fig. 3.2 a). It consists of the following three regions: a
fully-polarized region (FP) extending for µ↓/µ↑ < ηβ, a partially-polarized
region (PP) for ηβ < µ↓/µ↑ < ηα, in which different partially-polarized
phases may be realized, and a fully-paired region (SF) for ηβ < µ↓/µ↑ ≤ 1.
If the true phase diagram would have an empty PP region, then one has
ηβ = ηα.

At T = 0, the ground state of a fully-polarized gas is simply the spin-
up Fermi sea. In the fully-paired case, the ground state is the crossover
superfluid. Therefore, each of these two regions consists of a single phase.

Multiple partially-polarized phases and phase transitions may be present
in the PP region. At any given ηβ < µ↓/µ↑ < ηα, the gas is in the config-
uration with the minimal energy. One of the most natural configurations
for consideration is the partially-polarized Fermi liquid, in which the mi-
nority species interact resonantly with the majority species without forming
pairs. Polarized superfluid states have also been proposed, such as the Fulde-
Ferrell-Larkin-Ovchinnikov (FFLO or LOFF) state [28, 36]. The FFLO
state possesses Cooper pairs with nonzero center-of-mass momenta, and it
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ηcηβ η′β ηα
µ↓/µ↑

a)

b)

c)

SF

SF

SF

PP

PP

FP

FP

Figure 3.2: Phase Diagram of Unitary Fermi Gases. a) The most generic
phase diagram, which consists of a fully-polarized normal phase (FP), for
µ↓/µ↑ < ηβ, a partially-polarized region with one or more phases (PP)
across ηβ < µ↓/µ↑ < ηα, and a fully-paired superfluid phase (SF) for ηα <
µ↓/µ↑. b) An approximation that assumes the PP region consists of only
the partially-polarized normal Fermi liquid . In this approximation, the PP
region extends to a smaller range of µ↓/µ↑, and the FP-PP phase boundary
η′β is larger, η′β ≥ ηβ. c) The superfluid phase has a maximal range −0.09 ≈
ηc < µ↓/µ↑, which is the conservative limit of Eq. (3.8).

has also been suggested that a supersolid FFLO phase may be found in uni-
tary Fermi gases [10]. Other proposals include the breached pair or Sarma
state [37, 50], states with a deformed Fermi surface [53], and an induced
intraspecies p-wave superfluid [11].

An important question is whether the phase diagram Fig. 3.2 a) contains
an empty PP region. The lack of knowledge of the PP region hinders us
from knowing the exact values of ηα and ηβ. However, if one can establish
bounds on these values, then it is possible to determine whether the phase
diagram contains partially-polarized phases.

In Section 3.2.1, we found the maximal limit of the fully-paired super-
fluid, ηc < µ↓/µ↑, and Eq. (3.8) sets a lowerbound −0.09 ≈ ηc ≤ ηα <
µ↓/µ↑. The natural next step is to establish an upper bound on ηβ . To
do so, we make an approximation that the PP region contains only the
partially-polarized normal Fermi liquid, see Fig. 3.2 b). The actual phase
diagram can contain a larger PP region. In this approximation, the FP-PP
transition, η′β, must satisfies ηβ ≤ η′β. This transition point corresponds to
the addition of a single spin-down atom to a fully-polarized spin-up Fermi
sea, which is referred to as the N+1 body problem. If one can show η′β < ηc,
then the inequality ηβ ≤ η′β < ηc ≤ ηα requires the existence of one or more
partially-polarized phases. On the other hand, if η′β > ηc, then one cannot
make any conclusion.

In the next section, we will outline Chevy’s variational solution to the
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3.3. N + 1 Body Problem in the Uniform System

N + 1 body problem.

3.3 N + 1 Body Problem in the Uniform System

In this section, we discuss the problem a single spin-down atom interact-
ing resonantly with a spin-up Fermi sea in the uniform system. This is
referred to as the N + 1 body problem. This is the x → 0 limit of the
partially-polarized normal state, and the corresponding chemical poten-
tial ratio, η′β = η ≡ (µ↓/µ↑)N+1, denotes the transition point between a
partially-polarized normal Fermi liquid and the fully-polarized normal state.
As discussed previously, due to competitions with other phases, the actual
extent of the fully-polarized region may be shorter, µ↓/µ↑ < ηβ ≤ η. There-
fore, the knowledge of the N + 1 body energy may establish whether one
or more partially-polarized phases are found in unitary asymmetric Fermi
gases. In this section, we describe Chevy’s variational calculation of the
N + 1 body energy in the uniform system.

3.3.1 Variational Calculation of the N + 1 Body Energy

In the unitary regime 1/kF a = 0, the energy of adding a single impurity to
the majority Fermi sea is universal, E = µ↓ = ηµ↑, where µ↑ = EF . Here we
outline the variational calculation of the N+1 body problem in the uniform
system, an approach introduced by Chevy6 [17, 18, 22]. We consider the
addition of a single spin-down fermion carrying a momentum p to a Fermi
sea of the spin-up fermions.

For S -wave interactions, the Hamiltonian H is given by

H =
∑

k,σ

ǫka
†
k,σak,σ +

g(Λ)

V

∑

k,k′,∆k

a†k+∆k,↑a
†
k′−∆k,↓ak′,↓ak,↑ , (3.9)

where ǫk = k2/2m, ak,σ annihilates a particle of spin σ and momentum k,
and g(Λ) is the S -wave coupling constant. As discussed in Section. 2.3,
the contact interaction of Eq. (3.9) requires a renormalization of the cou-
pling constant. Therefore, in the subsequent calculation, we introduce an
ultraviolet cutoff Λ in momentum space. Then, according to Eq. (2.35), the

6 The first calculation was performed for the addition of a single impurity at zero
momentum p = 0 [17, 18]. The calculation can be generalized to p 6= 0 [22], and provides
additional insight. We will consider general p.
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Figure 3.3: Graphical representation of the components of the trial wave-
function Eq. (3.11). On the left is the state |Ω〉, which is a spin-up Fermi
sea with a spin-down impurity at momentum p. On the right is the state
|k,q〉, in which a spin-up atom with momentum q below the Fermi surface
(q < kF ) is excited to a momentum k above the Fermi surface (k > kF ). The
impurity now has a momentum p+q−k to satisfy momentum conservation.

renormalized coupling constant can be written as

1

g(Λ)
=

m

4πa
− 1

V

∑

k

1

2ǫk
. (3.10)

Keeping up to one-particle-one-hole excitations, the trial state has the
following form

|ψ〉 = φ0|Ω〉 +
∑

k,q

φk,q|k,q〉 . (3.11)

where |Ω〉 is a spin-up Fermi sea with a spin-down impurity at momentum p,
and |k,q〉 is the perturbed Fermi sea where a spin-up atom with momentum
q below the Fermi surface (q < kF ) is excited to a momentum k above the
Fermi surface (k > kF ). The impurity then has a momentum p + q −
k to satisfy momentum conservation. The components of the trial state
wavefunction are represented graphically in Fig. 3.3.

We write Eq. (3.9) as H = H0 + V , where H0 is the non-interacting
Hamiltonian, and V is the interacting part. We proceed to calculate the
energy of the trial state 〈H〉 = 〈H0〉 + 〈V 〉, with

〈H0〉 = |φ0|2ǫp +
∑

k,q

|φk,q|2 (ǫk + ǫp+q−k − ǫq) , (3.12)
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where we have subtracted the energy of the non-interacting ground state∑
q<kF

ǫq, and

〈V 〉 =
g(Λ)

V



∑

q

|φ0|2 +
∑

q,k

(φ0φ
∗
k,q + φ∗0φk,q) +

∑

q,k,k′

φk,qφ
∗
k′,q




+
g(Λ)

V

∑

q,q′,k

φ∗k,qφk,q′ .

(3.13)

The sums over q and k are implicitly restricted to q < kF and kF < k.
As we will check later, φk,q ∼ 1/k2 for large k. Most of the unrestricted
sums over k diverge as Λ → ∞. This divergent behavior is regularized by
the renormalization of the coupling constant g(Λ) ∼ −1/Λ for 1/a = 0.
However, the last sum of 〈V 〉 converges, and gives zero contribution when
multiplied by g(Λ). Therefore, this term does not contribute to the energy,
and we can omit it from the rest of the calculation.

Minimizing 〈H〉 with respect to φ0 and φk,q yields the following set of
equations:

Eφ0 =
g(Λ)

V

∑

q<kF


φ0 +

∑

k>kF

φk,q


+ ǫpφ0 , (3.14)

Eφk,q = φk,q(ǫk + ǫp+q−k − ǫq) +
g(Λ)

V


φ0 +

∑

k′>kF

φk′,q


 ,(3.15)

where E is the N + 1 body energy, and also the Lagrange multiplier asso-
ciated with the variational calculation. To solve these equations, we define
χ(q) ≡ φ0 +

∑
k>kF

φk,q, and solve for φk,q in Eq. (3.15):

φk,q =
g(Λ)

V

χ(q)

E − (ǫk + ǫp+q−k − ǫq)
. (3.16)

This verifies the large k behavior for φk,q ∼ 1/k2. Inserting Eq. (3.16) in
the definition of χ(q) allows us to eliminate φk,q. Finally, we can use Eq.
(3.14) to obtain the self-consistent equation for E:

E = ǫp +
1

V

∑

q<kF

1
1

g(Λ) + 1
V

∑
k>kF

1
ǫk+ǫp+q−k−ǫq−E

. (3.17)
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Using Eq. (3.10) for the expression of g(Λ) leads to

E = ǫp +
1

V

∑

q<kF

1

m
4πa + 1

V

∑
k

(
Θ(k2/k2

F−1)
ǫk+ǫp+q−k−ǫq−E − 1

2ǫk

) . (3.18)

Alternatively, we can write the above equation in the following form,

E = ǫp + Σ

(
1

kFa
, ǫp, E

)
, (3.19)

where the self-energy Σ(1/kF a, ǫp, E) is the second term in the right-hand
side of Eq. (3.18) [22]. The self-energy has the following form

Σ

(
1

kFa
, ǫp, E

)
=

(
2π2

mkF

)
1

V

∑

q<kF

1

π
2kF a + I0

(
|p+q|

kF
,

ǫq+E
EF

) , (3.20)

where we have defined I0(|v|, ω) ≡ 1
2π

∫
d3k

(
Θ(k2−1)

k2+|v−k|2−ω
− 1

2k2

)
. For p = 0,

we have v < 1, and the dimensionless function I0(v, ω) has the following
analytic expression7:

I0(v < 1, ω) = −1

2
−

√
v2 − 2ω

2
ArcCot

(
2 + v√
v2 − 2ω

)

+

√
v2 − 2ω

4

[
ArcTan

(
2 − v√
v2 − 2ω

)
− ArcTan

(
2 + v√
v2 − 2ω

)]

+
2 − ω

8v
log

(
2 − 2v + v2 − ω

2 + 2v + v2 − ω

)
.

(3.21)

3.3.2 BEC and BCS Limit of the Chevy Equation

In the case of p = 0, we can check that the trial state recovers the correct re-
sult in the limits a→ 0− and a→ 0+. First, consider the weakly-interacting
BCS limit, a→ 0−. For a < 0, the self-energy Σ of Eq. (3.20) has no poles.
Therefore, the energy of the impurtiy in the limit 1/kF a→ −∞ is

E =
4πa

m

N

V
+O(a2) , (3.22)

7A generalized form of this integral, I(γ, |v|, ω), is discussed in Section 5.1.2, and
I0(|v|, ω) = I(0, |v|, ω) for v < 1. For the derivation of the analytc form of I(γ, |v|, ω), we
refer to Section 5.1.2.
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where N =
∑

q<kF
1 is the number of the majority atoms. Therefore,

we recover the mean-field correction to the energy, 4πa
m

N
V , in the limit of

weak interactions. For 1/kF a ≫ 1, the self-energy Σ develops poles at
−E/EF ≫ 1, which correspond to the emergence of molecular bound states.
For |E|/EF ≫ 1,

Io

( |p + q|
kF

,
ǫq − |E|
EF

)
= − π

2
√

2

√
|E|
EF

+O

(( |E|
EF

)−1/2
)
. (3.23)

Therefore, the poles occur at

E = −EB = − 1

ma2
, (3.24)

and we recover the molecular binding energy in the BEC limit.

3.3.3 N + 1 Body Energy at p = 0

Due to resonant interactions, the spin-down particle dressed in a spin-up
Fermi sea acts as a quasiparticle with a polaron energy and effective mass
that differs from those of a bare particle. This quasiparticle is referred to
as a Fermi polaron [45, 46, 51]. In the case of p = 0, Eq. (3.17) gives
the ground state energy of the polaron, and has the following diagrammatic
representation:

E = + + + · · · . (3.25)

The self-consistent equation, Eq. (3.17), at p = 0 can be solved easily
with the aid of Eqs. (3.19)-(3.21), and yields η = −0.607, confirming the
value found in Chevy’s calculation [17].

The variational 1p1h η value agress very well with the fixed-node dif-
fusion Monte Carlo result η ≈ −0.59 [13, 38, 43] and the diagrammatic
Monte Carlo result η ≈ −0.615 [45, 46]. In addition, Combescot and Giraud
showed that 2p2h and higher-order contributions are small due to nearly
perfect destructive interference in the higher order contributions [21]. In
their full many-body treatment, they found the second-order contribution
brings typically a 10−2 correction to the first order one, and estimated the
third order correction to be at most of the order 10−4. Based on these find-
ings, one can conclude that the variational wavefunction gives a very good
estimate to the ground-state energy of the N + 1 body system.
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Figure 3.4: RF spectroscopy on polarons. The figure is taken from Ref. [51].
The spectra are spatially resolved and 3D reconstructed. The majority (|1〉)
spectrum is shown in blue, and the minority (|3〉) spectrum is shown in
red. The local concentration was x = 0.05(2) for all spectra. (a) Spectra for
1/kF a = 0.76(2) in the molecular regime. The overlap of both spectra signals
molecule pairing. (b) Spectra for 1/kF a = 0.43(1) and (c) 1/kFa = 0.20(1)
show the emergence of the polaron, signaled by a distinctive peak in the
minority spectrum. (d) Spectra for 1/kF a = 0 at unitarity. The peak
location gives the polaron energy. The dashed lines in (d) give the spectra
when |1〉 and |3〉 are switched.

In addition to the theoretical results, the polaron energy has also been
measured experimentally via RF spectroscopy [51]. In this experiment, the
lowest hyperfine state |1〉 of 6Li atoms is used as the majority atoms, and
the hyperfine state |3〉 is used as the impurity. About 5 × 106 atoms were
prepared at T = 0.14(3)TF . At resonance, RF spectroscopy was performed
by transferring the impurity atoms and the majority atoms into an empty
state |2〉, accessible to both species. RF transitions for a local concentration
x = n↓/n↑ = 0.05(2) are measured for both species, and shown in Fig. 3.4.
In all cases, the bulk of the majority spectrum is found at zero offset. At-
tractions between the two species leads to a shift in the spectra: the RF
photon must supply additional energy to transfer a particle into the final
state. At unitarity, a narrow peak in the minority spectrum, which is not
matched by the majority spectrum, see Fig. 3.4 (d), reveals the formation
of the Fermi polaron. The location of the peak gives the polaron energy,
E = −0.64(7)EF . In the case where |1〉 serves as the impurity, the po-
laron energy is E = −0.72(9)EF . The experimental values agree well with
η = −0.607, and gives further support to the validity of the variational
wavefunction.
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3.3.4 On the Existence of Partially-Polarized Phases

Following the discussion of Section 3.2.2, we now have the folloing inequality:

ηβ ≤ η′β = η = −0.607 < −0.09(3) ≤ ηα . (3.26)

The strict inequality ηβ < ηα requires the existence of one or more partially-
polarized phases in the uniform system.

3.3.5 Effective Mass of the Fermi Polaron

The ground state energy of the quasiparticle is ηEF < 0, differing from
E = 0 of the bare particle. The small p behavior in the dispersion relation of
the spin-down impurity is modified by the effective mass m∗. The dispersion
relation for the polaron has the form

E(p) ≈ ηEF +
p2

2m∗ . (3.27)

To find the effective mass, one can expand the left hand side of Eq. (3.19)
in small p, E(p) ∼ ηEF + p2/2m∗, and take derivatives of both sides. This
gives the following equation for the effective mass [22]:

m∗

m
=

1 − ∂Σ
∂E

1 + ∂Σ
∂ǫp

, (3.28)

where the derivatives are taken for p = 0 and E = ηEF . In the unitary limit
1/kF a→ 0, the effective mass is found to be m∗/m = 1.17 [22].

3.4 Towards General Asymmetry: The N + M

Body System as a Landau Fermi Liquid

The discussion of the Fermi polaron in an N+1 body system gives us insight
into the nature of the partially-polarized normal state. As one continues to
add minority atoms into the system, these particles become quasiparticles
dressed by resonant interactions with the surrounding majority Fermi sea.
This is in contrast with the BEC and BCS limit. In the BCS regime, each
spin-down impurity feels only a weak mean-field attraction from the spin-up
Fermi sea, while in the BEC regime, the attraction is strong enough that
each spin-down atom picks a spin-up partner to form a molecule.

The quasiparticles retain their Fermi statistics, but have a modified en-
ergy and effective mass. The addition of spin-down atoms build up a Fermi
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Figure 3.5: Equation of state of the asymmetric Fermi gas based on the
MC results of Ref. [38]. This figure is taken from Ref. [38]. The circles are
the MC results. The solid line is a polynomial best fit. The dashed line
corresponds to the expansion, Eq. (3.29), with η = −0.58(1) and m∗/m =
1.04(3) obtained from the single-impurity MC calculations at N↑ = 33. The
dot-dashed line is the coexistence line between the normal and fully-paired
superfluid states, and the arrow indicates the critical concentraction xc at the
transition point. For x = 1, the energies of both the normal and superfluid
(diamond) states are shown.

sea of these quasiparticles. Therefore, for x ≪ 1, the energy of the normal
state can be approximated by the form [38]

EN (x, n↑) =
3

5
N↑EF

(
1 +

5

3
η x+

m

m∗x
5/3 + ...

)
, (3.29)

where EF = (6π2n↑)2/3/2m is the Fermi energy of the spin-up particles.
The first term of the energy expansion corresponds to the energy of the
non-interacting spin-up Fermi gas. The second term is the energy of adding
the spin-down impurities, and the third term corresponds to the Fermi pres-
sure of the quasiparticles with effective mass m∗. The next terms in this
expansion are terms that account for the interactions between quasiparticles.

The solution to the N +M body problem using a variational approach
will be considered in Chapter V. Here, we will review the Monte Carlo
(MC) calculations of N +M body system [38, 43]. In Ref. [38], the energy
of the Hamiltonian, Eq. (3.9), is obtained using MC methods for closed-
chell configurations M = N↓ = 7, 19, 27, 33 and N = N↑ = 27, 33. The
equation of state obtained from the calculations is shown in Fig. 3.5. The
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Figure 3.6: Equation of state of the asymmetric Fermi gas based on the
MC results of Ref. [43]. This figure is taken from Ref. [43]. The solid lines
correspond to best fits to the energy expansion, Eq. (3.30), with the values
of η and m∗ obtained from the single-impurity calculations. The energy is
shown for several values of 1/kF a.

result is compared with the expansion, Eq. (3.29), with η = −0.58(1) and
m∗/m = 1.04(3) obtained from the N + 1 body calculations at N = 33.
We see that the expansion agrees well with the MC results up to values of
x where the transition to the fully-paired superfluid phase takes place (see
Section 3.5.2).

Ref. [43] performed very similar MC calculations, show in Fig. 3.6. The
values η = −0.59(1) and m∗/m = 1.09(2) were extracted from single-
impurity calculations, in agreement with Ref. [38], and the MC results of
the equation of state are fitted to the form

E =
3

5
N↑EF

(
1 +

5

3
η x+

m

m∗x
5/3 +Bx2

)
, (3.30)

with a higher-order term B = 0.14 that accounts for interactions between
quasiparticles. From Fig. 3.6, we see this expansion agrees with the MC
results up to large x. The MC results for the normal state indicate that the
Landau Fermi-liquid seems to be an accurate description of the partially-
polarized normal state.
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3.5 Application to Trapped Fermi Gases

The discussion so far focuses on Fermi gases in the uniform system. Ex-
perimental studies employ harmonic traps to confine atomic gases, which
introduce spatial variations of the densities and therefore separate phases in
traps. In this section, we discuss the theory of trapped Fermi gases based
on the Local Density Approximation (LDA). Next, we will apply the re-
sults obtained in the uniform system to traps in the limit of large particle
numbers.

3.5.1 Local Density Approximation

In a trap containing a large number of particles, the density changes slowly
on the length scale of the confining potential. Therefore, gradient terms may
be neglected from the energy density functional. One can then approximate
the energy density at each point by the one corresponding to a uniform gas
at the local value of the density. The Local Density Approximation (LDA)
introduces an effective local chemical potential

µσ(r) = µ0
σ − V (r) , (3.31)

where σ =↑, ↓, and µ0
σ fix the total numbers of spin-up and spin-down par-

ticles.
Near phase boundaries where the densities can change rapidly, the LDA

may cease to be accurate. Gradient terms will spread out these transition
regions and result in surface tension near the boundaries [24]. The LDA also
ceases to be accurate at small particle numbers. As we will discuss later,
the breakdown of the LDA was observed experimentally in Refs. [40, 41].

3.5.2 Phase Separation and Density Profile in Trapped

Fermi Gases

The effective chemical potentials of the LDA imply that a confining potential
separates phases. The most general scenario contains a fully-paired super-
fluid core, and shells of polarized phases, where the inner shell is partially-
polarized, and the outermost region is fully-polarized. This picture is con-
sistent with the phase diagram discussed in Section 3.2.2, and agrees well
with the experimental findings, see Fig. 3.7, which we will discuss in Section
3.6.

Before we move on to derive the density profile, we first discuss the
qualitative picture as a trapped gas moves from being fully-polarized, P = 1,
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to being symmetric, P = 0. For small concentrations of spin-down particles,
N↓ ≪ N↑, the superfluid phase does not exist. When the local concentration
of spin-down particles at the center reaches a critical value, x(r = 0) = xc,
a superfluid core emerges. The critical polarization, Pc, sets the maximum
asymmetry for the superfluid core to exist. The superfluid needs to be in
equilibrium with the surrounding phase, which therefore has to have the
same concentration x = xc at the phase boundary. As P → 0, the entire
system becomes superfluid at T = 0.

The density profile of a trapped Fermi gas can be derived in the LDA,
provided that one knows the equation of states of the phases. We follow
Ref. [47] to construct the density profiles. Recall the unitary superfluid has
the following energy density,

ǫS(nS) ≡ ES

NS
= ξ

3

5

1

2m
(6π2nS)2/3 , (3.32)

where ξ = 0.42(1), and nS = n↑ = n↓ for the superfluid phase. We assume
a generic form for the equation of state of the normal phase,

EN

N↑
≡ 3

5
EF ǫ(x) , (3.33)

where EF = (6π2n↑)2/3/2m is the local Fermi energy of the majority gas. We
will assume an isotropic trap, V (r) = mω2r2/2. In this trap, the superfluid
core extends for 0 < r < RS . The normal shell is partially-polarized for
RS < r < R↓, and fully polarized for R↓ < r < R↑. In the case of an
anisotropic trap, V (r) = 1/2mω2

∑
i=x,y,z α

2
i x

2
i , a simple rescaling x̃i = αixi

permits us to apply the same results in the coordinates x̃.
In the LDA, the free energy is given by [47],

E = 2

∫

r<RS

d3r (ǫS(nS(r)) − µS + V (r))nS(r)

+

∫

RS<r<R↑

d3r

(
3

5
EF ǫ(x(r))n↑(r) − µ↑(r)n↑(r) − µ↓(r)n↓(r)

)
,

(3.34)

where µσ(r) = µ0
σ − V (r), and µS = (µ0

↑ + µ0
↓)/2.

The ground state of the system is determined by requiring that the
energy functional, Eq. (3.34), is stationary with respect to variations of the
densities and the phase boundary RS . By varying the densities, Eq. (3.34)

39



3.5. Application to Trapped Fermi Gases

yields the following equations,

µS = ξ
1

2m
(6π2nS)2/3 + V (r) , (3.35)

µ0
↑ = EF

(
ǫ(x) − 3

5
xǫ′(x)

)
+ V (r) , (3.36)

µ0
↓ =

3

5
EF ǫ

′(x) + V (r) . (3.37)

Requiring the energy functional, Eq. (3.34), to be stationary with respect
to variation of RS gives the following,

(
n2

S

∂ǫS
∂nS

)

RS

=
1

2

(
n2
↑
∂ǫN
∂n↑

+ n↑n↓
∂ǫN
∂n↓

)

RS

, (3.38)

where ǫN ≡ EN

N↑
= 3

5EF ǫ(x). This condition indicates that the pressure of

the two phases must be equal at the boundary. With Eqs. (3.35)-(3.37),
and µS = 1

2(µ↑ + µ↓), Eq. (3.38) yields the following,

ǫ(xc) +
3

5
(1 − xc)ǫ

′(xc) − (2ξ)3/5 (ǫ(xc))
2/5 = 0 , (3.39)

where xc is the critical concentration of the normal phase at the phase
boundary.

The conditions of chemical equilibrium, Eqs. (3.35)-(3.37), determine
the densities. The superfluid density, n↑ = n↓ = nS for r < RS , can be
determined from Eq. (3.35). Eqs. (3.36)-(3.37) determine the concentration
x in the partially-polarized region, RS < r < R↓. In the fully-polarized
region that extends to R↓ < r < R↑, x = 0. Given x, Eq. (3.36) determines
n↑(r) and n↓(r)

Next, we summarize the results. The spatially-independent quantities
are ξ, xc, µ

0
↓, µ

0
↑, RS , R↓, and R↑. They are related by

0 = ǫ(xc) +
3

5
(1 − xc)ǫ

′(xc) − (2ξ)3/5(ǫ(xc))
2/5, (3.40)

RS =

(
2

mω2

)1/2

√√√√µ0
↑ǫ

′(xc) − 5
3µ

0
↓δǫ(xc)

ǫ′(xc) − 5
3δǫ(xc)

, (3.41)

R↓ =

(
2

mω2

)1/2

√√√√µ0
↑ǫ

′(0) − 5
3µ

0
↓

ǫ′(0) − 5
3

, (3.42)

R↑ =

(
2µ↑
mω2

)1/2

, (3.43)
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where we have defined δǫ(x) ≡ ǫ(x) − 3
5xǫ

′(x).
The density profile is then given by

0 =

(
µ0
↑ǫ

′(x) − 5

3
µ0
↓δǫ(x)

)
−
(
ǫ′(x) − 5

3
δǫ(x)

)
V (r) , (3.44)

n↑(r) =





nS(r) ≡ 1
6π2

(
m(µ0

↑
+µ0

↓
−2V (r))

ξ

)3/2

0 < r < RS ,

1
6π2

(
2m(µ0

↑
−V (r))

δǫ(x(r))

)3/2

RS < r < R↓ ,

1
6π2

(
2m(µ0

↑ − V (r))
)3/2

R↓ < r < R↑ ,

(3.45)

n↓(r) =





nS(r) 0 < r < RS ,
x(r)n↑(r) RS < r < R↓ ,
0 R↓ < r < R↑ .

(3.46)

3.5.3 Trapped Fermi Gases Containing Large Particle

Numbers

In Section 3.4, we have constructed the equation of state for the normal
Fermi liquid, ǫ(x) = 1 + 5/3ηx +m/m∗x5/3 + Bx2. The polaron energy η
constrains the equation of state for large asymmetries, and thus the phase
structure in traps with large particle numbers. In the uniform system, η =
−0.607, and in conjunction with m∗/m = 1.09 and B = 0.14 from Ref. [43],
it leads8 to a critical concentration xc = 0.47, and a critical polarization
Pc = (N↑ − N↓)/Ntot = 0.74. These results are valid in traps containing
large particle numbers.

3.6 Experiments with Spin-Polarized Fermi

Gases

Experimental studies have been performed with spin-polarized Fermi gases
by the MIT [54, 58, 59] and the Rice University [40, 41] groups. The two
groups found differences in the observed phase structure and the critical
polarization. The MIT experiment [54, 58, 59] observed phase separation
in the trap, which contains a core with equal densities, surrounded by a

8Lobo et al. performed the first calculations of critical concentration and critical po-
larization. They obtained η = −0.58(1) and m∗/m = 1.04(3) (and set B = 0) from MC
calculations of the N +1 body problem (see Section 3.4), and with these values, xc = 0.44
and Pc = 0.77 [38]. Ref. [47] obtained the same values using slightly different parameters,
η = −0.59(1), m∗/m = 1.09(2), and B = 0.14 from Ref. [43].
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Figure 3.7: Density profiles of spin-polarized Fermi gases. (a) Center-line
axial density n(r = 0, z) in the Rice experiment [41]. The density of the
majority atoms is given by the upper curve and the lower curve is for the
minority atoms. The trap frequencies are fr = 325 Hz and fz = 7.2 Hz. The
system contains N ≈ 105 6Li atoms at a polarization P = (N↑ −N↓)/N =
0.35. The system is found to contain a fully-paired core with equal densities,
surrounded by a normal shell containing only the majority atoms. (b) Radial
density profile n(r, z = 0) measured at MIT [58]. The density of the majority
atoms is given by the upper curve and the lower curve is for the minority
atoms. The trap frequencies are fr = 110 Hz and fz = 23 Hz. The system
contains N ≈ 107 6Li atoms at a polarization P = 0.46. In this case,
there exists a superfluid core of equal densities and an outer normal shell
with only the majority atoms, as well as an intermediate partially-polarized
phase containing both species. The figures are taken from Ref. [41, 58].

partially-polarized shell and an outer region of normal majority fermions.
The equal-density core is confirmed to be superfluid by the presence of vor-
tices [58]. Fig. 3.7 (b) shows a density profile from the MIT experiment.
The study of vortices [58], in situ density distributions [59], and the con-
densate fraction [54, 58] established a critical polarization Pc = 0.70(3). In
addition, a tomography measurement found xc ≈ 0.47 [55].

The Rice experiment [40, 41] also observed phase separation, with a fully-
paired core surrounded by normal majority fermions, but with a sharp phase
boundary and extremely thin partially-polarized shell for low temperatures.
Fig. 3.7 (a) shows a sample of the density profile from the Rice experiment.
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The unplarized core was found to exist to high polarization Pc & 0.9.
These experiments were performed in harmonic traps with cylindrical

symmetry (ωx = ωy = αω; ωz = ω). The MIT experiment had aspect ratio
α ∼ 5 and total particle numbers Ntot = N↑ + N↓ ∼ 106 − 107. The Rice
experiments are in a highly elongated trap, with aspect ratio α ∼ 35 − 45,
and for lower Ntot ∼ 105. For these conditions, the core deformation and the
double-peak structure in the axial density imply a breakdown of the LDA
in Refs. [40, 41].

The critical polarization is influenced by the energy of the competing
normal polarized phase. For large asymmetries, this is governed by the
polaron energy E = ηEF . In the uniform system, η = −0.607, and it
requires the existence of at least one partially-polarized phase, and in LDA,
leads to Pc = 0.74 and xc = 0.47 in traps with large particle numbers. These
results are in good agreement with the MIT experiment. In comparison, the
Rice experiment uses smaller particle numbers and more elongated trap,
so the effects of particle number and anistotropic confinement may have
significant influence on the phase structure. In traps, the polaron energy
is a universal function of α and N . In the next chapter, we study the
polaron energy in anisotropic traps for different particle numbers and show
that the experimental differences can be understood partially based on our
microscopic results.
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Chapter 4

N + 1 Body Problem in

Trapped Fermi Gases

The critical polarization of trapped Fermi gases is influenced by the ener-
gies of the fully-paired superfluid and the polarized normal gas. For large
asymmetries, the latter is governed by the energy of a spin-down fermion
interacting resonantly with a spin-up Fermi sea. In this chapter, we study
the energy of this Fermi polaron in anisotropic traps for different parti-
cle numbers, and show that the MIT-Rice differences can be understood
partially based on our microscopic results. We will begin by deriving the
self-consistent equation for the N + 1 body energy in traps. Next, we will
present the results for the polaron energy. Lastly, we will apply the LDA to
explore the impact of the polaron energy to the phase structure. The work
described in this chapter is published in Ref. [34].

4.1 Evaluation of N + 1 Body Energy in

Harmonic-Oscillator Traps

The formalism of our problem is as follow. We assume a trap with cylindrical
symmetry, ωx = ωy = αω = αωz. The strongly-interacting Fermi gas in a
harmonic-oscillator trap is given by the Hamiltonian

H =
∑

n,σ

εn a
†
n,σ an,σ +

∑

n↑,n↓,n′
↑
,n′

↓

〈n′
↑,n

′
↓|V |n↑,n↓〉 a†n′

↑
,↑ a

†
n′
↓
,↓ an↓,↓ an↑,↑ ,

(4.1)
where εn = αω(nx+ny+1)+ω(nz+1/2) are the harmonic oscillator energies.
The operator an,σ annihilates a particle with spin σ =↑, ↓ in a state with
quantum numbers n = (nx, ny, nz). We use a contact interaction regulated
by smooth cutoff in momentum space (see Section 2.3),

〈p,P|V |p′,P′〉 = C(Λ)(2π)3δ3(P − P′)e−
p2+p′2

Λ2 with C(Λ) =
4π/m

1
a − Λ√

2π

,

(4.2)
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where p, P (p′, P′) are the incoming (outgoing) relative and center-of-mass
momenta, m is the fermion mass and Λ a momentum cutoff. In this section,
we adopt Chevy’s variational method to study the N + 1 body problem in
harmonic-oscillator traps.

4.1.1 Interaction Matrix Elements in a Harmonic-Oscillator

Basis

The first step is to evaluate the interaction matrix 〈n1,n2|V |n3,n4〉. We will
divide this problem into two steps. First, we will study the basis transfor-
mation between a harmonic-oscillator two-body eigenstate, |n1,n2〉, and a
center-of-mass and relative eigenstate, |S,n〉. We will then apply the result
to evaluate the interaction matrix elements.

Harmonic-Oscillator Basis Transformation

We first study the basis transformation bracket 〈n1,n2|S,n〉, where |n1,n2〉
is a harmonic-oscillator two-body eigenstate, and |S,n〉 is a center-of-mass
and relative eigenstate.

The Hamilonian for two partcles of mass m in a harmonic oscillator with
ωx, ωy, ωz is given by

H =
∑

i=x,y,z

(
p2
1i

2m
+

1

2
mω2

i x
2
1i

+
p2
2i

2m
+

1

2
mω2

i x
2
2i

)

=
∑

i=x,y,z

ωi

(
a†1i
a1i

+ a†2i
a2i

+ 1
)
, (4.3)

where pσi
and xσi

are the i = x, y, z component of momentum and coordinate
of the σ = 1, 2 particle. The lowering operators are aσi

=
√
mωi/2(xσi

+
ipσi

/(mωi)). The two-body eigenstates are given by

|n1,n2〉 =
∏

i=x,y,z

1√
n1i

!
(a†1i

)n1i
1√
n2i

!
(a†2i

)n2i |0〉 , (4.4)

and have energies εn1 + εn2 .
The Hamiltonian can be decomposed into the center-of-mass and the

relative components,

H =
∑

i=x,y,z

(
P 2

i

2M
+

1

2
Mω2

iX
2
i +

p2

2mr
+

1

2
mrω

2
i r

2
i

)

=
∑

i=x,y,z

ωi

(
a†iai +A†

iAi + 1
)
, (4.5)
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where X = 1
2 (x1 + x2), P = p1 + p2 are the center-of-mass coordinate and

momentum, r = x1 − x2, p = 1
2(p1 − p2) are the relative coordinate and

momentum, M = 2m is the total mass, and mr = m/2 is the reduced mass.
The corresponding lowering operators are Ai =

√
Mωi/2(Xi + iPi/(Mωi))

for the center-of-mass component, and ai =
√
mrωi/2(ri + ipi/(mrωi)) for

the relative component. Equation (4.5) allows us to construct the center-of-
mass and relative eigenstates

|S,n〉 =
∏

i=x,y,z

1√
Si!

(A†
i )

Si
1√
ni!

(a†i )
ni |0〉, (4.6)

with energies εS + εn, where S and n are the center-of-mass and relative
quantum numbers.

We are ready to evaluate the basis transformation 〈n1,n2|S,n〉. First, we
note that the center-of-mass and relative lowering operators can be written
as

Ai =
1√
2
(a1i

+ a2i
) ,

ai =
1√
2
(a1i

− a2i
) . (4.7)

Equations (4.4) and (4.7) allow us to express Eq. (4.6) in terms of the
two-body eigenstates,

|S,n〉 =
∏

i=x,y,z

Si∑

ji=0

ni∑

ki=0

(−1)ki

√(
Si + ni

ji + ki

)−1
(Si + ni)!

2Si+niSi!ni!

×
(
Si

ji

)(
ni

ki

)
|(S + n) − (j + k), j + k〉 .

(4.8)

In the evaluation of 〈n1,n2|S,n〉, only the terms with n1 + n2 = S + n

and k = n2 − j give non-trivial contributions. We can therefore eliminate k,
and j are summed over the range

max{n2i
− ni, 0} ≤ ji ≤ min{n2i

, Si} . (4.9)

The basis transformation is then given by

〈n1,n2|S,n〉 =
∏

i=x,y,z

(−1)n2i

√
n1i

!n2i
!

2n1i
+n2iSi!ni!

f(ni, Si, n2i
)δn1i

+n2i
,Si+ni

,

(4.10)
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where we have defined

1

ni!
f(ni, Ni, n2i

) =

min{n2i
,Si}∑

ji=max{n2i
−ni,0}

(−1)jiSi!

ji!(Si − ji)!(n2i
− ji)!(ni − n2i

+ ji)!
.

(4.11)

Evaluation of the Interaction Matrix Elements

Now, we are ready to evaluate 〈n1,n2|V |n3,n4〉. Inserting the identities

1 =
∫

d3P
(2π)3

d3p
(2π)3

|p,P〉〈p,P| and 1 =
∑

S,n |S,n〉〈n,S|, we find

〈n1,n2, |V |n3,n4〉 = C(Λ)
∑

S

F (n1,n2,S)F (n3,n4,S) , (4.12)

where we have defined

F (n1,n2,S) =
∑

n

〈n1,n2|S,n〉
∫

d3p

(2π)3
〈p|n〉e−

p2

Λ2 . (4.13)

The momentum-space harmonic-oscillator wavefunction for the relative com-
ponent9 is

〈p|n〉 =
∏

i=x,y,z

1√
2nini!

(
4π

mrωi

)1/4

Hni

(
pi√
mrωi

)
e
− p2

i
2mrωi , (4.14)

where mr = m/2, and Hn(u) are the Hermite polynomials. Eq. (4.13)
requires the integral

∫∞
−∞Hn(u)e−u2(1/2+λ2)du/2π, which is given by [31]

∫ ∞

−∞

du

2π
Hn(u) e−u2(1/2+λ2) =

{
(n− 1)!!

√
2n(1−2λ2)n

2π(1+2λ2)n+1 n even,

0 n odd.
(4.15)

Together with Eqs. (4.10), (4.14), and (4.15), Eq. (4.13) yields

F (n1,n2,S) =
∏

i=x,y,z

(mωi)
1/4F̃ (n1i

, n2i
, Si, λi =

√
mωi/2/Λ), (4.16)

9The commutation relation [x, p] = i implies x = i d
dp

. Therefore, the harmonic-
oscillator wavefunction in momentum-space is identital to the real-space wavefunction,

with
√
mωx→ p/

√
mω and

R

d3x|ψ(x)|2 = 1 →
R

d3p

(2π)3
|ψ(p)|2 = 1.
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and the dimensionless function F̃ is given by

F̃ (n1i
, n2i

, Si, λi) = (−1)n2i

(
1

2π

)1/4
√

n1i
!n2i

!(1 − 2λ2
i )

n1i
+n2i

−Si

2n1i
+n2iSi!(1 + 2λ2

i )
n1i

+n2i
−Si+1

×f(n1i
+ n2i

− Si, Si, n2i
)
(n1i

+ n2i
− Si − 1)!!

(n1i
+ n2i

− Si)!
,

(4.17)

where the relative quantum numbers ni = n1i
+ n2i

− Si have to be even
and positive.

At this point, it is useful to discuss the form of the function f . A direct
evaluation of Eq. (4.11) gives

f(ni, Si, n2i
) =

(
ni

n2i

)
2F1(−n2i

,−Si, 1 − n2i
+ ni,−1) (4.18)

for n2i
≤ ni, with hypergeometric function 2F1, and

f(ni, Si, n2i
) = (−1)n2i

+ni

(
Si

n2i
− ni

)
2F1(−ni, n2i

−ni−Si, 1+n2i
−ni,−1)

(4.19)
for n2i

> ni.
The above form is useful for numerical evaluations. We will derive an-

other form of F̃ , which will be useful in Section 4.1.3. The expression of Eq.
(4.11) can be simplified with the identity 1

(−n)! = 0 for any postive integer

n. One can check that Eq. (4.11) remains the same for all ni, Ni, and n2i
,

if the upper limit of the summation is extended to ji ≤ Si, and the lower
limit to 0 ≤ ji. To meet the requirement that ni has to be even, we insert
the factor (1 + (−1)ni)/2. Then, we obtain

1

ni!
f(ni, Si, n2i

) =
1 + (−1)ni

2

Si∑

ji=0

(−1)jiSi!

ji!(Si − ji)!(n2i
− ji)!(ni − n2i

+ ji)!
.

(4.20)
Since ni = n1i

+ n2i
− Si is even, we can use the idenity Γ(ni + 1

2) =
√
π (2ni−1)!!

2ni
. We will define ui ≡ 1−2λ2

i

1+2λ2
i

to simplify the expression. This
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4.1. Evaluation of N + 1 Body Energy in Harmonic-Oscillator Traps

Figure 4.1: Graphical representation of the components of the trial wave-
function Eq. (4.22) in traps. Left : the unperturbed majority Fermi sea with
the spin-down particle in the n = 0 level. This is the state |Ω〉. Right : the
state |m,h,p〉 consist of a spin-up fermion in h excited to a level p above
the Fermi energy εF , and the spin-down particle occupies the level m.

gives an alternative form for the function F̃ ,

F̃ (n1i
, n2i

, Si, λi)

= (−1)n2i

(
1 + (−1)n1i

+n2i
−Si

2

)(
1

2π

)1/4
√
n1i

!n2i
!Si!

2Siπ

u
(n1i

+n2i
−Si)/2

i√
1 + 2λ2

i

×Γ

(
n1i

+ n2i
− Si + 1

2

) Si∑

ji=0

(−1)ji

ji!(Si − ji)!(n2i
− ji)!(n1i

− Si + ji)!
.

(4.21)

4.1.2 Variational Solution to the N + 1 Body Ground State

Energy in Harmonic-Oscillator Traps

In this part, we derive the self-consistent equation for the N + 1 body en-
ergy in harmonic-oscillator traps. Following the variational wavefunction of
Refs. [17, 18], we calculate the energy E of an impurity in a majority Fermi
sea, including 1p1h in the wave function (see Fig. 4.1),

|ψ〉 = φ0|Ω〉 +
∑

m,h,p

φm,h,p|m,h ,p〉, (4.22)

where |Ω〉 denotes the Fermi sea with the spin-down particle in the n = 0

level10, and |m,h,p〉 consist of a spin-up fermion in h excited to a level p

10The restriction to n = 0 (justified for large N) enables our still involved numerical
solution.
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4.1. Evaluation of N + 1 Body Energy in Harmonic-Oscillator Traps

above the Fermi energy εF , and the spin-down particle occupies the level
m. Therefore, the sum over h is restricted to occupied states, whereas p is
over unoccupied states above εF .

We write the Hamiltonian Eq. (4.1) as H = H0+V , whereH0 is the non-
interacting harmonic-oscillator Hamiltonian, and V gives the interacting
part. We proceed by calculating 〈ψ|H0|ψ〉:

H0|ψ〉 = φ0

(
∑

n

εna
†
n,↑an,↑|Ω〉 +

∑

n

εna
†
n,↓an,↓|Ω〉

)

+
∑

m,h,p

φm,h,p

(
∑

n

εna
†
n,↑an,↑|m,h,p〉 +

∑

n

εna
†
n,↓an,↓|m,h,p〉

)
.

(4.23)

The operators act on the states to yield

a†n,↑an,↑|Ω〉 =

{
0 εn > εF ,
|Ω〉 εn ≤ εF ,

(4.24)

a†n,↓an,↓|Ω〉 =

{
0 n 6= 0,
|Ω〉 n = 0,

(4.25)

a†
n,↑an,↑|m,h,p〉 =





|m,h,p〉 n = p,
|m,h,p〉 εn ≤ εF andn 6= h,
0 else,

(4.26)

a†n,↓an,↓|m,h,p〉 =

{
0 n 6= m,
|m,h,p〉 n = m.

(4.27)

Therefore, we find

〈ψ|H0|ψ〉 = ε0|φ0|2 +
∑

m,h,p

|φm,h,p|2(εp + εm − εh) +
∑

εn≤εF

εn . (4.28)

The last term gives the energy of the non-interacting spin-up fermions and
is subtracted when we study the energy gain.

Next, we calculate 〈ψ|V |ψ〉, making use of the result 〈n1,n2|V |n3,n4〉 =
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C(Λ)
∑

S F (n1,n2,S)F (n3,n4,S) from Section 4.1.1:

V |ψ〉 = C(Λ)φ0

∑

S

∑

n↑,n↓,n′
↑
,n′

↓

F (n↓,n↑,S)F (n′
↓,n

′
↑,S)

×a†
n′
↑
,↑a

†
n′
↓
,↓an↓,↓an↑,↑|Ω〉

+C(Λ)
∑

S

∑

n↑,n↓,n′
↑
,n′

↓

F (n↓,n↑,S)F (n′
↓,n

′
↑,S)

×
∑

m,h,p

φm,h,pa
†
n′
↑
,↑a

†
n′
↓
,↓an↓,↓an↑,↑|m,h,p〉 .

(4.29)

Keeping up to one-particle-one-hole excitations, the relevant terms are

a†
n′
↑
,↑a

†
n′
↓
,↓an↓,↓an↑,↑|Ω〉 =





|Ω〉 n↓ = 0, εn↑
≤ εF ,

n′
↑ = n↑, n′

↓ = 0,

|n′
↓,n↑,n′

↑〉 n↓ = 0 , εn↑
≤ εF ,

εn′
↑
> εF ,

(4.30)

a†
n′
↑
,↑a

†
n′
↓
,↓an↓,↓an↑,↑|m,h,p〉 =





|n′
↓,h,n

′
↑〉 n↓ = m, n↑ = p,

εn′
↑
> εF ,

|Ω〉 n↓ = m, n↑ = p,
n′
↑ = h, n′

↓ = 0,

|n′
↓,n↑,p〉 n↓ = m, εn↑

≤ εF ,

n↑ 6= h, n′
↑ = h,

|n′
↓,h,p〉 n↓ = m, εn↑

≤ εF ,

n↑ 6= h, n′
↑ = n↑.

(4.31)

Making the following change of indices n↑ → h′, n′
↑ → p′, n′

↓ → m′, we
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obtain

V |ψ〉 = C(Λ)φ0

∑

S

∑

h′

F 2(0,h′,S)|Ω〉

+ C(Λ)φ0

∑

m′,h′,p′

F (0,h′,S)F (m′,p′,S)|m′,h′,p′〉

+ C(Λ)
∑

S

∑

m,h,p

φm,h,pF (m,p,S)F (0,h,S)|Ω〉

+ C(Λ)
∑

S

∑

m,h,p

φm,h,p

∑

m′,p′

F (m,p,S)F (m′,p′,S)|m′,h,p′〉

+ C(Λ)
∑

S

∑

m,h,p

φm,h,p

∑

m′,h′ 6=h

F (m,h′,S)F (m′,h,S)|m′,h′,p〉

+ C(Λ)
∑

S

∑

m,h,p

φm,h,p

∑

m′,h′ 6=h

F (m,h′,S)F (m′,h′,S)|m′,h,p〉 .

(4.32)

Each of the sums over m′, h′, and p follow the same convention as those
over m, h, and p, respectively. We then have

〈ψ|V |ψ〉 = C(Λ)
∑

S

∑

h

F 2(0,h,S)|φ0|2

+ C(Λ)
∑

S

∑

m,h,p

φ∗0φm,h,pF (m,p,S)F (0,h,S)

+ C(Λ)
∑

S

∑

m,h,p

F (0,h,S)F (m,p,S)φ∗m,h,pφ0

+ C(Λ)
∑

S

∑

m,h,p,m′,p′

F (m,p,S)F (m′,p′,S)φ∗m′,h,p′φm,h,p

+ C(Λ)
∑

S

∑

m,h,p,m′,h′ 6=h

F (m,h′,S)F (m′,h,S)φ∗
m′,h′,pφm,h,p

+ C(Λ)
∑

S

∑

m,h,p,m′,h′ 6=h

F (m,h′,S)F (m′,h′,S)φ∗m′,h,pφm,h,p .

(4.33)

The cutoff dependence of the sum is cancelled by the coupling constant
C(Λ) . In the limit of large cutoffs, the last two sums are convergent and
when multiplied by C(Λ), will give a zero contribution. Therefore, they do
not contribute to the energy gain, and will be omitted in the rest of the
calculation.
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Combining Eqs. (4.28) and (4.33), the energy to be minimized is

〈ψ|H|ψ〉 = ε0|φ0|2 +
∑

m,h,p

|φm,h,p|2(εp + εm − εh)

+ C(Λ)
∑

S

∑

h

F 2(0,h,S)|φ0|2

+ C(Λ)
∑

S

∑

m,h,p

F (m,p,S)F (0,h,S)(φ∗0φm,h,p + φ0φ
∗
m,h,p)

+ C(Λ)
∑

S

∑

m,h,p

∑

p′,m′

F (m,p,S)F (m′,p′,S)φm,h,pφ
∗
m′,h,p′ .

(4.34)

Minimizing 〈ψ|H|ψ〉 with respect to φ0 and φm,h,p yields the following
set of equations:

Eφ0 = ε0φ0

+C(Λ)
∑

S

∑

h

F (0,h,S)

[
F (0,h,S)φ0 +

∑

m,p

F (m,p,S)φm,h,p

]
,

(4.35)

Eφm,h,p = (εp + εm − εh)φm,h,p

+C(Λ)
∑

S

F (m,p,S)


F (0,h,S)φ0 +

∑

m′,p′

F (m′,p′,S)φm′,h,p′


 .

(4.36)

To simplify these equations, we define

χ(h,S) = F (0,h,S)φ0 +
∑

m,p

F (m,p,S)φm,h,p . (4.37)

Then Eqs. (4.35) and (4.36) can be written as

φ0 =
C(Λ)

E − ε0

∑

h

∑

S

F (0,h,S)χ(h,S) , (4.38)

φm,h,p =
C(Λ)

E − (εp + εm − εh)

∑

S

F (m,p,S)χ(h,S) . (4.39)
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Substituting Eq. (4.39) into the definition for χ(h,S) yields

χ(h,S) = F (0,h,S)φ0

+
∑

L

∑

m,p

F (m,p,S)

E − (εp + εm − εh)
C(Λ)F (m,p,L)χ(h,L) ,

(4.40)

which can be written in the form of a matrix equation

χ(h,S) = F (0,h,S)φ0 +
∑

L

AS,Lχ(h,L) , (4.41)

where the matrix AS,L is given by

AS,L =
∑

m,p

C(Λ)

E + εh − (εp + εm)
F (m,p,S)F (m,p,L) . (4.42)

Then, the solution to χ(h,S) is straightforward:

χ(h,S) =
∑

L

[
(1 −A)−1

]
S,L

F (0,h,L)φ0 . (4.43)

Substituting this into Eq. (4.38) yields the self-consistent equation for
E in anisotropic traps,

E − ε0 =
∑

εh≤εF

∑

S,L

F (0,h,S)
[
M−1(εF , E + εh)

]
S,L

F (0,h,L) , (4.44)

where E is measured from the energy of the Fermi sea, in weak coupling
E ≈ ε0, and the matrix M is given by

M(εF , E + εh)S,L

=
δS,L

C(Λ)
−Mu(α,E + εh)S,L +

∑

εp≤εF

∑

m

F (m,p,S)F (m,p,L)

E + εh − (εp + εm)
,

(4.45)

where Mu(α,E+εh)S,L is identical to the last term of Eq. (4.45) with unre-
stricted sum over p. The unrestricted sum of Mu(α,E + εh)S,L is divergent
for large Λ. As we will see shortly, the divergent behavior ofMu(α,E+εh)S,L

for large Λ cancels with the cutoff in the 1/C(Λ) term in Eq. (4.45). There-
fore, E is cutoff independent for large Λ.
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4.1.3 Evaluation of the Unrestricted Sum Mu(α, E + εh)S,L

In this part, we study Mu(α, E = E+ εh)S,L in detail. We will demonstrate
that Mu(α, E)S,L is diagonal, and δS,L/C(Λ) −Mu(α, E)S,L is cutoff inde-
pendent for large Λ. We will also produce expressions for Mu(α, E)S,L that
are useful for numerical evaluation.

The form for F (m,p,S) given by Eq. (4.16) allows us to write

Mu(α, E)S,L

=
α(mω)3/2

ω

∑

m,p

1

Ẽ − (ε̃m + ε̃p)

∏

i=x,y,z

F̃ (mi, pi, Si, λi)F̃ (mi, pi, Li, λi) ,

(4.46)

where ε̃n = α(nx +ny +1)+nz +1/2 and Ẽ = E/ω. We have also previously
defined λi =

√
mωi/2/Λ. A Laplace transform on Eq. (4.46) with analytic

continuation for all E yields

Mu(α, E)S,L = −α(mω)3/2

ω

∫ ∞

0
e(Ẽ−(2α+1))s

∏

i=x,y,z

Fs(Si, Li, λi, αis)ds ,

(4.47)
where αx = αy = α, αz = 1, and we have defined

Fs(Si, Li, λi, t) =
∞∑

mi=0

∞∑

pi=0

e−(mi+pi)tF̃ (mi, pi, Si, λi)F̃ (mi, pi, Li, λi) .

(4.48)
We want to derive an analytic expression for Fs(Si, Li, λi, t). Using the

form of F̃ (mi, pi, Si, λi) given by Eq. (4.21) and the identity for the gamma
function Γ(t) = 2

∫∞
0 dx e−x2

x2t−1, we find

Fs(Si, Li, λi, t) =
2(2π)−3/2

1 + 2λ2
i

√
Si!Li!

(2ui)Si+Li

∫ ∞

0

∫ ∞

0
dx dy e−x2−y2

x−Siy−Li

×
[
(1 + (−1)Si+Li)g(Si, Li, xyuie

−t)

+((−1)Si + (−1)Li)g(Si, Li,−xyuie
−t)

]
,

(4.49)
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where ui = (1 − 2λ2
i )/(1 + 2λ2

i ), and we have defined

g(Si, Li, t) =

Si∑

j=0

Li∑

k=0

(−1)j

j!(Si − j)!

(−1)k

k!(Li − k)!
PF (Si − j, Li − k, t)PF (j, k, t) ,

(4.50)
with PF (j, k, t) =

∑∞
p=0

p!tp

(p−j)!(p−k)! . The function PF is symmetric in j, k,
and for j ≥ k has a closed form

PF (j, k, t) =
tjj!

(j − k)!
1F1(1 + j, 1 + j − k, t) , (4.51)

where 1F1 is the confluent hypergeometric function of the first kind (also
known as Kummer’s function of the first kind).

With the help of Eqs. (4.49)-(4.51), we evaluate the function Fs and find

Fs(Si, Li, λi, t) = δSi,Li

e−Sit

(1 + 2λ2
i )
√

2π
√

1 − u2
i e

−2t
. (4.52)

After a change of variable z = e−s, Eq. (4.47) becomes

Mu(α, E)S,L = D(α,∆Ẽ)δS,L , (4.53)

with

D(α,∆Ẽ)

= − α(mω)3/2

ω(2π)3/2(1 + 2αλ2)2(1 + 2λ2)

∫ 1

0
dz

z∆ eE−1

(1 − u2
rz

2α)(1 − u2z2)1/2
,

(4.54)

where ∆Ẽ = α(Sx +Sy + 2) +Sz + 1− Ẽ , u = uz = (1− 2λ2)/(1 + 2λ2) and
ur = ux = uy = (1 − 2αλ2)/(1 + 2αλ2).

At this point, we make two observations. First, the unrestricted matrix
Mu(α, E)S,L is diagonal in S and L. Second, it does not depend on the
components of center-of-mass quantum numbers S, but only the center-of-
mass excitation ε̃S = α(Sx + Sy + 1) + Sz + 1/2.

For ∆Ẽ > 0, this integral is well-defined. It is divergent for large Λ,
and is regularized by the subtraction of the cutoff −(2π)−3/2mΛ/2 in the
1/C(Λ). The cutoff can be written as

− mΛ

2(2π)3/2
= − 1

ω

(mω
2π

)3/2 1

1 + 2λ2

∫ 1

0

dz

(1 − u2z2)3/2
. (4.55)
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We can then write Eq. (4.54) in the following form,

D(α,∆Ẽ) =

− mΛ

2(2π)3/2
− 1

ω

(mω
2π

)3/2
∫ 1

0
dz

(
αz∆E−1

(1 − z2α)(1 − z2)1/2
− 1

(1 − z2)3/2

)
,

(4.56)

where we have taken the limit Λ → ∞ in the integral. The subtraction of
the second term in the integral regulates the singular behavior near x = 1.
To see it explicitly, we note 1/(1 − z2α) ≃ −(z − 1)−1/2α + O(z − 1) for
x ≈ 1. The subtraction removes the part of the integrand that behaves as
−(z − 1)−1(1 − z2)−1/2/2, leaving only finite contributions.

For ∆Ẽ ≤ 0, the integral in Eq. (4.54) cannot be used directly. Instead,
we expand 1/(1 − u2

rz
2α) using a geometric series, and find

D(α,∆Ẽ) = −α
ω

(mω
2π

)3/2 1

(1 + 2αλ2)2(1 + 2λ2)

×
∞∑

n=0

1

2
u−2nα−∆ eEu2n

r β

(
u2, nα+

∆Ẽ

2
,
1

2

)
,

(4.57)

where β(x, a, b) is the incomplete Beta function. This form is valid for all
∆Ẽ. However, Eq. (4.56) allows a much faster numerical computation of
D(α,∆Ẽ) in the case ∆Ẽ > 0. The cancellation of Eq. (4.57) with the
cutoff of 1/C(Λ) for large Λ is not explicit. However, we have verified that
this is the case for all studied α and use Λ > 104

√
mω/2.

For an isotropic trap α = 1, Eq. (4.56) gives a simple analytic form

D(1,∆Ẽ) = − mΛ

2(2π)3/2
+

1

ω

(mω
2π

)3/2
√
πΓ(∆Ẽ/2)

Γ((∆Ẽ − 1)/2)
, (4.58)

which can be analytically extended for all (∆Ẽ − 1)/2 6= −1, −2, ...

4.2 Polaron Energy in Traps

In this section, we present the numerical results of the N + 1 body energy
Eq. (4.44). We consider only closed shells, which allows us to define the
Fermi level nF = 0, 1, 2, ... and the Fermi energy εF = ω(αnF + (2α+ 1)/2).
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Figure 4.2: Examples of closed-shell configurations, shown for α = 2. Only
one spin-up particle exists for nF = 0. The particles colored in blue fill the
Fermi sea to the next Fermi level nF = 1. The particles colored in red fill
the Fermi sea to the level nF = 2.

Fig. 4.2 shows examples of closed-shell configurations. Closed shells are
convenient because any sum over the occupied states can be written as

∑

εn≤εF

≡
∑

α(nx+ny)+nz≤αnF

=

nF∑

nx=0

nF−nx∑

ny=0

α(nF−nx−ny)∑

nz=0

. (4.59)

The majority particle number is then given by

N =
∑

εn≤εF

1 =
1

6
(1 + nF )(2 + nF )(3 + αnF ) . (4.60)

4.2.1 Generalized Energy Scaling in Traps

For large scattering lengths, 1/a = 0, the energy E is a universal function
of the aspect ratio and the spin-up particle number N = N↑. We look for a
generalized scaling relation in traps which, in the large-N limit, reproduces
the scaling relation in the uniform system, E = µ↓ = ηµ↑ where µ↑ = EF .
The natural way to proceed is to use the Local Density Approximation
(LDA) discussed in Section 3.5.1. In a trapped non-interacting system, the
spin-up chemical potential µ0

↑ that determines N is equal to the local Fermi

energy at the center of the trap, µ0
↑ = k2

F (0)/2m. Therefore, we generalize
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Figure 4.3: Local Fermi energy EF (α,N) at the center of the trap divided by
the large-N expression EF,∞(α,N) as a function of spin-up particle number
N .

the scaling for the uniform system to anisotropic traps,

E = η(α,N)EF (α,N) , (4.61)

where EF (α,N) = (6π2n↑(r = 0))2/3/2m is the local Fermi energy of the
spin-up particles at the center of the trap. The local density n↑(0) at the
center of the trap is given by

n↑(0) = α
(mω
π

)3/2 ∑

εn≤εF

∏

i=x,y,z

H2
ni

(0)

2nini!
, (4.62)

where Hn(x) are the Hermite polynomials.
In Fig. 4.3, we show EF (α,N) divided by the large-N expression

EF,∞(α,N) = ω (6α2N)1/3 [42] for α = 1 and 35. The points are for alter-
nating odd-even values of the Fermi level nF . For both α, the local Fermi
energy approaches EF,∞(α,N) from above (below) for odd (even) nF . With
increasing α, this effect decreases and the envelopes approach the large-N
result faster.

4.2.2 Results for the Polaron Energy

Direct evaluation of Eq. (4.44) is extremely involved. This is due to the mul-
tiple nested sums, and also the need to find the inverse matrix M−1(εF , E+
εh). To enable numerical solution, we take the matrix M(εF , E + εh) to
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nF N η: MC [5] η: Variational

0 1 0.246

1 4 −2.89 × 10−2 1.09 × 10−3

2 10 −0.135 −0.137

3 20 −0.274 −0.273

4 35 −0.278 −0.282

Table 4.1: Polaron energy η(1, N) in isotropic traps for the five lowest
closed-shell configurations. The MC results are taken from Ref. [5].

be diagonal, which is correct in the large-N limit. We have also checked
numerically that the off-diagonal elements are considerably smaller than
the diagonal ones for all studied values of N . Furthermore, we have found
numerically that the diagonal elements depend only on the center-of-mass
excitation εS.

Using Eq. (4.61), we solve Eq. (4.44) iteratively for η(α,N), with a nu-
merical precision better than 1%. We first consider isotropic traps with α =
1. For one spin-up fermion, we find η = 0.246. The exact ground-state en-
ergy in a trap11 [12] is E(1, 1) = ω/2 > 0, thus η(1, 1) = (36π)−1/3 = 0.207.
In Table 4.1, we show η(1, N) for the five lowest closed-shell configurations,
N = 1, 4, 10, 20, 35, in comparison with the Monte-Carlo (MC) results12

of Ref. [5]. We see that the variational wavefunction and approximation
scheme produce excellent agreement with the MC results even for small N .

In Fig. 4.4, we show η(1, N) for an isotropic trap as a function of
N . The effects due to particle numbers and trapping confinement are
clearly present: The odd-even systematics seen in the local Fermi energy
EF (1, N) is small compared to the decrease of η(1, N) with particle num-
ber. Therefore, the decrease is not due to the change in the local Fermi
energy. With increasing N , η(1, N) decreases and saturates. Using the
Ansatz, η(α,N) = a(α)(1 + b(α)N−c(α)), we fit our numerical results for
odd (even) nF separately and find a(1) ≈ −0.61 and c(1) ≈ 0.34 (0.32).
This is in very good agreement with η = −0.607 for the uniform system [17]

11The exact two-body ground-state energy [12] is reproduced, if we generalize the first
term in Eq. (4.22) to include a sum over the spin-down particle in level n,

P

n
φn|n〉. This

calculation is found in Appendix A.
12In Ref. [5], the results are given as total energies. We have converted the results to

η(1, N) using Eq. (4.61).
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Figure 4.4: Polaron energy η(1, N) for an isotropic trap, with fits to our
numerical results (see text). The horizontal line represents η = −0.607 for
the uniform system [17].

and large-N scaling 1/EF,∞(1, N) ∼ N−1/3. Therefore, ∼ 10% changes of η
are natural for N ∼ 104.

In Fig. 4.5, we show η(α,N) as a function of the spin-up particle number
for various aspect ratios from α = 1 to α = 35. The polaron energy depends
significantly on the aspect ratio, as well as the particle number. The odd-
even Fermi level effect decreases with increasing N,α and is negligible for
α & 10. For fixed N , η(α,N) increases with increasing α. For each α,
η(α,N) decreases for increasing N and saturates, and the dependence on N
is stronger for larger aspect ratio. For each α, we fit our combined results
(including odd and even nF ) with the power-law Ansatz and show the fits
in Fig. 4.5. We find a(α) ≈ −0.61(1), consistent with the uniform result for
all studied aspect ratios, and c(α) ranges from c(1) ≈ 0.36 to c(35) ≈ 0.31.
The results of the fits are shown in Table 4.2.

To summarize, the polaron energy increases for lower particle numbers
or higher elongation. In the uniform system, the spin-down fermion has
the maximum phase space available for interactions, which lowers the en-
ergy. Therefore, reducing particle numbers or increasing elongation, which
effectively lowers dimensions, moves the system away from the uniform limit
and increases the polaron energy. This is expected to increase the critical
polarization and decrease the critical concentration, because the polarized
normal gas becomes less favored. We find that finite-size effects are stronger
in highly elongated systems, while trap geometry becomes less important at
higher particle numbers.
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Figure 4.5: Energy η(α,N) as a function of N for various aspect ratios α,
compared to η = −0.607 for the uniform system [17] (horizontal lines). The
fits are discussed in the text and shown separately in the lower panel.

α Fit

1 −0.61(1 − 2.00N−0.36)

3 −0.61(1 − 2.21N−0.36)

9 −0.62(1 − 2.22N−0.32)

15 −0.61(1 − 2.67N−0.32)

35 −0.62(1 − 3.12N−0.31)

Table 4.2: Fit results to the combined (odd and even nF ) results for η(α,N)
using the Ansatz a(α)(1 + b(α)N−c(α)).

4.3 Phase Structure in Trapped Fermi Gases

We now apply the Local Density Approximation (LDA) to explore the im-
pact of the calculated finite-size and confinement effects on the phase struc-
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ture. In Section 3.5, we discussed the validity of the LDA, and constructed
the density profile, given by Eqs. (3.40)-(3.46). As discussed in Section 3.6,
the LDA breaks down for the Rice experiment [40, 41]. Here, we only use
the LDA to explore the impact of η(α,N) on the critical polarization. In
a full density-functional calculation, this can also be combined with surface
tension [24] or gradient terms.

Eqs. (3.40)-(3.46) require the knowledge of the energy densities for both
the superfluid and the normal phase. For the uniform system at unitarity,
the energy density of the superfluid ǫs is given by (following the discussion
of Section 2.4.2)

ǫS(nS) = ξ
3

5

(6π2nS)2/3

2m
, (4.63)

with superfluid density nS and universal energy ξ = 0.42 of the symmetric
system [13, 43]. In principle, ξ = ξ(α,N) in traps. In this work, we assume
the uniform value because we are interested in the impact of the change
in polaron energy due to particle number and trap geometry effects. In
addition, the use of the uniform value is consistent with ξ = 0.46 ± 0.05 in
the Rice experiment [40].

The energy density of the partially-polarized normal Fermi liquid ǫN is
given by [47]

ǫN (x) =
3

5

(6π2n↑)2/3

2m
ǫ(x) . (4.64)

We construct the equation of state following the discussion of Section 3.4.
Assuming x ≪ 1, the energy of adding spin-down fermions to the normal
phase is determined by η(α,N), with corrections due to a spin-down quasi-
particle effective mass m∗ and due to quasiparticle interactions B [47]:

ǫ(x) =

[
1 +

5

3
η(α,N)x +

m

m∗ x
5/3 +B x2

]
. (4.65)

We take η(α,N) from Fig. 4.5, but for simplicity consider two cases for the
quasiparticle spectrum: the non-interacting values m∗/m = 1, B = 0, as
well as the MC values m∗/m = 1.09, B = 0.14 [43], which show these are
corrections to the leading effects from η. This however does not include the
effects of Fermi statistics of the minority particles on η.

In Fig. 4.6, we show the dependence of the critical polarization Pc(α,Ntot)
and the critical concentration xc(α,Ntot) as a function of aspect ratio, for
total particle numbers Ntot = 104 and Ntot = 105, where the experimen-
tal differences from the uniform system exists. They are also displayed in
Table 4.3, which includes an additional set of data for Ntot = 103. For
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Figure 4.6: Upper panel: Critical polarization Pc(α,Ntot) as a function of
aspect ratio α for Ntot = 104 (upper) and Ntot = 105 (lower set of curves).
Lower panel: Critical density ratio xc(α,Ntot) for Ntot = 104 (lower) and
Ntot = 105 (upper set of curves). Results are shown for two approximations
to the quasiparticle spectrum and interaction.

α = 1, Ntot = 107 and the MC m∗, B values, we reach the uniform system
Pc = 0.74 and xc = 0.47. For fixed Ntot = 104 and MC parameters, Pc

changes by ∼ 9% and xc by ∼ 23% as α increases from 1 to 35. For fixed
α = 35 and MC parameters, Pc increases by ∼ 8 − 9% for every factor 10
decrease of Ntot, and xc decreases by ∼ 21 − 42%. In addition, we show in
Fig. 4.6 the dependence on the quasiparticle parameters. For given α and
Ntot, Pc is larger and xc smaller for the MC m∗, B values, compared to the
non-interacting values m∗/m = 1, B = 0, but as expected, the uncertainty
due to m∗, B is smaller than the variation of Pc and xc with α, Ntot. This
dependence also becomes weaker with increasing α and decreasing Ntot.

In summary, for lower particle numbers and more elongated traps, the
energy of the normal polarized phase increases and the superfluid extends
to larger population imbalances. Finite-size effects are stronger in highly-
elongated systems as the dimensionality of the problem is continuously re-
duced with increasong aspect ratio. This provides a microscopic understand-
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Ntot α Pc Pc xc xc

(MC m∗, B) (m∗/m=1, B=0) (MC m∗, B) (m∗/m=1, B=0)

103 1 0.88 0.88 0.31 0.33

3 0.90 0.89 0.29 0.31

9 0.92 0.92 0.25 0.26

15 0.94 0.94 0.23 0.23

35 0.96 0.96 0.18 0.18

104 1 0.82 0.80 0.40 0.43

3 0.82 0.81 0.39 0.41

9 0.85 0.84 0.36 0.38

15 0.86 0.85 0.34 0.36

35 0.89 0.88 0.31 0.33

105 1 0.77 0.76 0.44 0.48

3 0.78 0.76 0.43 0.47

9 0.79 0.78 0.42 0.46

15 0.80 0.79 0.41 0.45

35 0.82 0.81 0.39 0.42

Table 4.3: Critical polarization Pc and critical concentration xc as a function
of aspect ratio α and total particle numbers Ntot. Results are shown for the
MC values m∗/m = 1.09 and B = 0.14 in the uniform system, and for the
non-interacting values m∗/m = 1 and B = 0.

ing of the MIT-Rice differences due to the dependence of the polaron energy
on the particle number and the trap geometry.

4.4 Outlook: Towards the N + M Body System

The N +1 body problem is a natural first step towards general asymmetries
and towards contributions to the total energy beyond η(α,N). The study
of a general N +M body system will allow for a better quantitative under-
standing of the critical polarization and the MIT-Rice differences. The next
chapter will outline the work on N +M body problem in both the uniform
system and trapped Fermi gases.
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Chapter 5

N + M Body Problem

In Chapter 4, we saw that finite-size and confinement effects due to the
variations of the polaron energy lead to significant changes in the phase
structure: for lower particle numbers or higher elongation, the polaron en-
ergy decreases, lowering the energy of the normal state, which leads to a
decrease in the critical concentration and an increase in the critical polar-
ization. This trend is in agreement with the experimental results. The
natural next step is to microscopically study finite-size and confinement ef-
fects for general asymmetry. This will allow for a better understanding of
the trapped system and of the experimental differences.

In this chapter, I will present results for the N +M body problem. To
study general asymmetry, one can consider the formation of a partially-
polarized normal gas by building a Fermi sea of spin-down quasiparticles.
We will generalize the variational Ansatz beyond a single minority particle
to calculate the energy gain E = µ↓(N↑, N↓) of adding the N th

↓ spin-down
fermion. In the following sections, I will present our work on the N+M body
problem in the uniform and the trapped systems, and provide an outlook.

5.1 N + M Body Problem in the Uniform System

In this section, I will present our work on the N + M body problem in
the uniform system. First, we investigate N + M body problem in the
uniform system. We will derive the self-consistent equation for the energy
gain, construct the equation of state of the partially-polarized normal Fermi
liquid, and apply the result to compute the critical concentration and critical
polarization for traps containing large particle numbers.

5.1.1 Derivation of the N + M Body Energy

The formalism of the N + M body problem in the uniform system is as
follow. We consider a two-component Ferm gas with Fermi energies EF,σ =
k2

F,σ/2m, where kF,σ = (6π2nσ)1/3 and σ =↑, ↓. We assume the asymmetric

configuration kF,↓ < kF,↑, and define γ = kF,↓/kF,↑ = x1/3, which measures
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Figure 5.1: Graphical representation of the components of the trial wave-
function Eq. (5.1). On the left is the state |Ω〉, which consists of a spin-up
Fermi sea with the majority Fermi momentum kF,↑ and a spin-down Fermi
sea with the minority Fermi momentum kF,↓. On the right is the state
|k,q, r〉, in which a spin-up fermion with momentum q below the majority
Fermi surface (q < kF,↑) is excited to a momentum k above the Fermi sur-
face (k > kF,↑), and a spin-down fermion with momentum r = r̂kF,↓ on the
spin-down Fermi surface now has momentum r+q−k to satisfy momentum
conservation. The state |k,q, r〉 has to satisfy |r+q−k| > kF,↓ due to Pauli
exclusion.

the asymmetry of the system. The Hamiltonian is given by Eq. (3.9), with
the coupling constant Eq. (3.10). In the unitary regime 1/kF,↑a = 0, we
study the energy E = µ↓(N↑, N↓) of adding a single impurity. In the unitary
regime, this energy is a universal function of x = γ3, E = µ↓ = η(x)µ↑, where
µ↑ = EF,↑ and x = n↓/n↑.

We generalize the Chevy Ansatz [17, 18, 22] to include general asymme-
try γ. Keeping up to one-particle–one-hole excitations, the trial state has
the following form

|ψ〉 = φ0|Ω〉 +
∑

k,q,r

φk,q,rΘk,q,r|k,q, r〉 . (5.1)

Here, |Ω〉 is the non-interacting ground state with the spin-up fermions
filled up to k < kF,↑ level, and spin-down fermions filled up to k < kF,↓
level. In the state |k,q, r〉, a spin-up fermion with momentum q below the
majority Fermi surface (q < kF,↑) is excited to a momentum k above the
majority Fermi surface (k > kF,↑), and a spin-down fermion with momentum
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r = r̂kF,↓ on the spin-down Fermi surface now has momentum r + q − k to
satisfy momentum conservation. The sums over k, q, and r are implicitly
restricted to q < kF,↑, kF,↑ < k, and |r| = kF,↓. A prefactor Θk,q,r =
Θ(|r+q−k|2−k2

F,↓) in the second sum ensures the restriction |r+q−k| > kF,↓
to satisfy Pauli exclusion.

We write Eq. (3.9) as H = H0 + V , where H0 is the non-interacting
Hamiltonian, and V is the interacting part. We first evaluate 〈ψ|H0|ψ〉:

H0|ψ〉 = φ0

(
∑

k′

ǫk′a†
k′,↑ak′,↑|Ω〉 +

∑

k′

ǫk′a†
k′,↓ak′,↓|Ω〉

)

+
∑

k,q,r

φk,q,rΘk,q,r

∑

k′

ǫk′

(
a†
k′,↑ak′,↑|k,q, r〉 + a†

k′,↓ak′,↓|k,q, r〉
)
.

(5.2)

Here, the sums over k′ run over all levels. The operators act on the states
to yield:

a†
k′,↑ak′,↑|Ω〉 =

{
|Ω〉 ǫk′ ≤ EF,↑,
0 else,

(5.3)

a†
k′,↓ak′,↓|Ω〉 =

{
|Ω〉 ǫk′ ≤ EF,↓,
0 else,

(5.4)

a†
k′,↑ak′,↑|k,q, r〉 =





|k,q, r〉 ǫk′ ≤ EF,↑ andk′ 6= q,
|k,q, r〉 k′ = k,
0 else,

(5.5)

a†
k′,↓ak′,↓|k,q, r〉 =





|k,q, r〉 ǫk ≤ EF,↓ andk′ 6= r,
|k,q, r〉 k′ = r + q − k,
0 else.

(5.6)

Therefore, we find

〈ψ|H0|ψ〉 =
∑

k,q,r

Θk,q,r|φk,q,r|2 (ǫk + ǫr+q−k − ǫq − EF,↓)

+




∑

ǫk≤EF,↑

ǫk +
∑

ǫk≤EF,↓

ǫk


 . (5.7)

The last term gives the energy of the non-interacting system, and is sub-
tracted when we study the energy gain.
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Next, we proceed to calculate 〈ψ|V |ψ〉:

V |ψ〉 =
g(Λ)

V

∑

k′,k′′,∆k

a†
k′+∆k,↑a

†
k′′−∆k,↓ak′′,↓ak′,↑|Ω〉

+
g(Λ)

V

∑

k,q,r

φk,q,rΘk,q,r

∑

k′,k′′,∆k

a†
k′+∆k,↑a

†
k′′−∆k,↓ak′′,↓ak′,↑|k,q, r〉 .

(5.8)

Here, the sums over k, k′′ are over all levels. Keeping up to one-particle–
one-hole excitations, the relevant terms are

a†
k′+∆k,↑a

†
k′′−∆k,↓ak′′,↓ak,↑|Ω〉

=





|Ω〉 ǫk′ ≤ EF,↑, ǫk′′ ≤ EF,↓,
∆k = 0,

Θk,q,r|k = k′ + ∆k,q = k′, r〉 ǫk′ ≤ EF,↑, |k′′| = kF,↓,
ǫk′+∆k > EF,↑, ǫk′′−∆k > EF,↓,

0 else,

(5.9)
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a†
k′+∆k,↑a

†
k′′−∆k

ak′′,↓ak′,↑|k,q, r〉

=





|k,q, r〉 ǫk′′ ≤ ǫF,↓ andk′′ 6= r,
ǫk′ ≤ EF,↑ and k′ 6= q, ∆k = 0,

|k,k′ = q + r − r′, r′〉 k′′ = r′ 6= r, r′ − ∆k = r,
k′ + ∆k = q and ǫk′ ≤ EF,↑,

|k + r′ − r,q, r′〉 k′′ = r′ 6= r, r′ − ∆k = r,
k′ = k and ǫk′+∆k > EF,↑,

|Ω〉 k′′ = r + q− k, k′′ − ∆k = r, k′ = k,

Θp,q,r|p = k′ + ∆k,q, r〉 k′′ = r + q− k, ǫk′′−∆k > EF,↓,
k′ = k, and ǫk′+∆k > EF,↑,

Θk,q′r|k,q′ = k′, r〉 k′′ = r + q− k, ǫk′′−∆k > EF,↓,
k′ + ∆k = q, ǫk ≤ EF,↑ and k′ 6= q,

0 else.

(5.10)

Making the following change of indices k′′ → q↓ and p → k, we obtain

V |ψ〉 =
g(Λ)

V
φ0



∑

q,q↓

|Ω〉 +
∑

k,q,r

Θk,q,r|k,q, r〉


+

g(Λ)

V

∑

k,q,r

Θk,q,rφk,q,r

×




∑

q′ 6=q,q↓ 6=r

|k,q, r〉 +
∑

q′ 6=q

Θk,q′,r|k,q′, r〉 +
∑

q′,r′ 6=r

|k,q′, r′〉

+
∑

r′ 6=r

|k + r′ − r,q, r′〉 + |Ω〉 +
∑

k′

Θk′,q,r|k′,q, r〉


 ,

(5.11)

where the sums over q′, k′, and r′ follow the same convention as those over
q, k, and r respectively, and the sum over q↓ is restricted to q↓ < kF,↓.
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Finally, we obtain

〈ψ|V |ψ〉 =
g(Λ)

V
|φ0|2

∑

q,q↓

1 +
g(Λ)

V

∑

k,q,r

Θk,q,r

(
φ0φ

∗
k,q,r + φk,q,rφ

∗
0

)

+
g(Λ)

V

∑

k,q,r,k′

Θk,q,rΘk′,q,rφk,q,rφ
∗
k′,q,r

+
g(Λ)

V

∑

k,q,r,q′ 6=q

Θk,q,r



∑

q↓ 6=r

|φk,q,r|2 + Θk,q′,rφk,q,rφ
∗
k,q′,r




+
g(Λ)

V

∑

k,q,r,r′ 6=r

Θk,q,r(φk,q,rφ
∗
k,q+r−r′,r′ + φk,q,rφ

∗
k+r′−r,q,r′) .

(5.12)

As we will check later, φk,q,r ∼ 1/k2, for large k. Therefore, all but the sums
in the last two lines diverge as Λ → ∞. The divergent sums are regularized
by the renormliaztion of the coupling constant g(Λ). However, the sums in
the last two lines converge, and give zero contribution when multiplied by
g(Λ). Therefore, we can omit them from the rest of the calculation.

Combining Eq. (5.7) and Eq. (5.12), the energy to be minimized is

〈ψ|H|ψ〉 =
∑

k,q,r

Θk,q,r|φk,q,r|2(ǫk + ǫr+q−k − ǫq − EF,↓) +
g(Λ)

V
|φ0|2

∑

q↓,q

1

+
g(Λ)

V

∑

k,q,r

Θk,q,r

(
φ0φ

∗
k,q,r + φk,q,rφ

∗
0 +

∑

k′

Θk,q,rφk,q,rφ
∗
k′,q,r

)
.

(5.13)

Minimizing 〈ψ|H|ψ〉 with respect to φ0 and φk,q,r yields the following sets
of equations:

Eφ0 =
g(Λ)

V

∑

q,q↓

φ0 +
g(Λ)

V

∑

q,r

(
φ0 +

∑

k

Θk,q,rφk,q,r

)
, (5.14)

Eφk,q,r = (ǫk + ǫr+q−k − ǫq −EF,↓)φk,q,r +
g(Λ)

V

(
φ0 +

∑

k′

Θk′,q,rφk′,q,r

)
.

(5.15)

To simplify these equations, we define

χ(q, r) = φ0 +
∑

k′

Θk′,q,rφk′,q,r , (5.16)
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and solve for φk,q,r in Eq. (5.15):

φk,q,r =
1

E + ǫq + EF,↓ − ǫk − ǫr+q−k

g(Λ)

V
χ(q, r) . (5.17)

This verifies the large k behavior for φk,q,r ∼ 1/k2. Inserting Eq. (5.17)
back into Eq. (5.16) allows us to eliminate φk,q,r, and we find

χ(q, r) =
φ0

1 − g(Λ)
V

∑
k

Θk,q,r

E+ǫq+EF,↓−ǫk−ǫr+q−k

. (5.18)

Then, we can use Eq. (5.14) to obtain the following,

E − g(Λ)

V

∑

q,q↓

1 =
g(Λ)

V

∑

q,r

1

1 − g(Λ)
V

∑
k

Θk,q,r

E+ǫq+EF,↓−ǫk−ǫr+q−k

. (5.19)

The coupling constant cancels the converging sum in the left-hand side. We
then write the self-consistent equation for the energy E,

E =
1

V

∑

q<kF,↑

∑

r=kF,↓

1
1

g(Λ) + 1
V

∑
k>kF,↑

Θk,q,r

ǫk+ǫr+q−k−E−ǫq−EF,↓

. (5.20)

Finally, using Eq. (3.10) for the expression of g(Λ) leads to the self-consistent
equation for the energy gain:

E =
1

V

∑

q<kF,↑

∑

r=kF,↓

1

m
4πa + 1

V

∑
k

(
Θ(k2−k2

F,↑)Θ(|r+q−k|2−k2
F,↓)

ǫk+ǫr+q−k−E−ǫq−EF,↓
− 1

2ǫk

) .

(5.21)
The Chevy equation Eq. (3.18) for the N + 1 body energy at p = 0 is
reproduced for kF,↓ = 0.

5.1.2 Analytic Expression of the N + M Body Energy in the

Uniform System

Here, we will derive a form of Eq. (5.21) that is useful for numerical eval-
uation. First of all, we want to transform the sums into integrals. For the
surface sum, we have

∑

r=r̂kF,↓

f(r) =
∑

r

δ3(r2 − k2
F,↓)f(r) =

∫
dΩr

4π
f(kF,↓r̂) , (5.22)
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a) b)

dγ
γ

v
2

v
2

v
2
v
2

1
1

Figure 5.2: Geometries for the angular integral Eq. (5.27). a) The circle
|k − v

2 |2 = γ2 is completely inside the circle |k + v
2 |2 = 1. This is for the

condition 0 ≤ v ≤ 1− γ. b) The circle centered at |k− v
2 |2 = γ2 has partial

overlap with the circle |k + v
2 |2 = 1, and d = 1 + γ − v from the geometry.

This is for the condition 1 − γ < v ≤ 1 + γ.

where
∫
dΩr =

∫
sin θrdθrdφr with (φr, θr) describing the spherical coor-

dinates of a unit vector r̂, and we have used the identity δ3(r2 − R2) =
δ(r − R)/(4πR2). In order to solve Eq. (5.21), we divide both sides by
EF,↑ = k2

F,↑/2m, and replace each sum with an integral

1

V

∑

k

f(k) →
∫

d3k

(2π)3
f(k) . (5.23)

After a change of variables q/kF,↑ → q, k/kF,↑ → k, r/kF,↑ → r = γr̂, we
obtain

η =

∫

q<1
d3q

∫
dΩr

4π

1
π2

kF,↑a + 2πI(γ, |r + q|, η + q2 + γ2)
, (5.24)

where we have defined

I(γ, |v|, ω) =
1

2π

∫
d3k

(
Θ(|k− v|2 − γ2)Θ(k2 − 1)

k2 + |v− k|2 − ω
− 1

2k2

)
. (5.25)

We want to produce an analytic expression of I(γ, |v|, ω). To do so,
we symmetrize the first term of the integrand with a change of variable
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α

β

Figure 5.3: Graphical illustration of the angular integral Iθ(γ, k, v). For
a given set of k, v, and γ, the circle of radius k centered at the origin is
outside both circles |k − v

2 |2 = γ2 and |k + v
2 |2 = 1 for the angular interval

0 ≤ α ≤ θ ≤ β ≤ π. If this interval is empty, then α = β.

k → k + v
2 , and obtain

I(γ, |v|, ω) =

∫ ∞

0
dk

(
k2

2k2 + v2

2 − ω
Iθ(γ, k, v) − 1

)
, (5.26)

where we have defined the angular integral

Iθ(γ, k, v) =

∫ π

0
sin θdθΘ(|k− v

2
|2 − γ2)Θ(|k +

v

2
|2 − 1) . (5.27)

The angular integral Iθ(γ, k, v) can be understood in the following way.
For given parameters k, v, γ, and integration variable θ, the integrand of
Iθ(γ, k, v) is 1 if the circle of radius k centered at the origin lies outside of
both circles |k− v

2 |2 = γ2 and |k + v
2 |2 = 1 at the point θ, and 0 otherwise.

The two geometries to be considered are given in Fig. 5.2. We note that
since |v| = |γr̂ + q|, v must satisfy 0 ≤ v ≤ 1 + γ for 0 ≤ q ≤ 1. Then, the
conditions for each of the two cases are given by:

a) 0 ≤ v ≤ 1 − γ ,
b) 1 − γ < v ≤ 1 + γ .

(5.28)
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 I)

III)
a) b)

II)

v
2

v
2

1

1

1

β
k

Figure 5.4: The integration region of the angular integral Iθ(γ, v, k) for
v < 1 − γ. a) The domain for each of the three subcases I)-III). The solid
circle is |k + v

2 |2 = 1. The dashed circles are the boundaries that separate
the subcases, and the domain of the subcases are labeled accordingly. For
subcase I), it is clear that α = β. For subcase III), α = 0, and β = π.
b) Subcase II) has α = 0, and β can be found by with the relation 1 =
k2 + v2/4 + kv cosβ.

Suppose for a given set of k, v, and γ, the circle of radius k centered
at the origin is outside both circles |k − v

2 |2 = γ2 and |k + v
2 |2 = 1 for the

angular interval 0 ≤ α ≤ θ ≤ β ≤ π. Then, the angular integral is given by

Iθ(γ, k, v) =

∫ β(γ,k,v)

α(γ,k,v)
sin θdθ = cos(α(γ, k, v)) − cos(β(γ, k, v)) . (5.29)

If this angular interval is empty, then α = β, and Iθ(γ, k, v) = 0.
We first investigate case a), with the three subcases shown in Fig. 5.4

a). Subcase I) is for the condition k < 1 − v/2, with α = β. Subcase II),
shown in Fig. 5.4 b), is for the condition 1− v/2 < k < 1+ v/2, with α = 0,
and cos β = (1− k2 − v2/4)/kv. Subcase III) is for 1 + v/2 < k, with α = 0
and β = π. Therefore, we have

Iθ(γ, k, v < 1 − γ) =





0 k < 1 − v
2 ,

1 − 1−k2− v2

4
kv 1 − v

2 < k < 1 + v
2 ,

2 1 + v
2 < k .

(5.30)
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a) b)

I)II)III)IV)

v
2

v
2

v
2

v
2 1

1

β

α

k

k

γ
γ

k0

θ0

Figure 5.5: The integration region of the angular integral Iθ(γ, v, k) for
1 − γ < v < 1 + γ. a) The domain for each of the three subcases I)-IV).
The solid circles are |k + k

2 |2 = 1 and |k− v
2 |2 = γ2. The dashed circles are

the boundaries that separate the subcases, and the domain of the subcases
are labeled accordingly. The boundary that separates subcase I) and II) is
a circle with radius k0, and θ0 is the angular position of the intersection of
the two solid circles. For subcase I), it is clear that α = β. For subcase IV),
α = 0, and β = π. b) For subcase II), α and β can be found geometrically
according to the diagram shown. For subcase IV), α = 0, and β is found in
the same manner as subcase II).

Next, we investigate case b), with the four subcases shown in given by
Fig. 5.5 a). We first investigate subcase I), which occurs for k < k0, where

k0 is defined in Fig. 5.5 a). The geometry requires γ2 = k2
0 + v2

4 − vk0 cos θ0

and 1 = k2
0 + v2

4 + vk0 cos θ0, and together they yield

k0 =

√
1

2

(
1 + γ2 − v2

2

)
. (5.31)

For subcase I), clearly α = β, and thus the integral is zero.
Subcase II), shown in Fig. 5.5 b), occurs for k0 < k < γ+ v

2 , with cosα =
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k2+ v2

4
−γ2

kv and cos β =
1−k2− v2

4
kv . Subase III) occurs for γ + v

2 < k < 1 + v
2 ,

with α = 0, and cos β =
1−k2− v2

4
kv is the same as in the subcase II). Subcase

IV) occurs for 1 + v
2 < k, with α = 0 and β = π. Therefore, we have

Iθ(γ, k, 1 − γ < v < 1 + γ) =





0 0 < k < k0,

2k2+ v2

2
−γ2−1

kv k0 < k < γ + v
2 ,

1 − 1−k2− v2

4
kv γ + v

2 < k < 1 + v
2 ,

2 1 + v
2 < k,

(5.32)
where k0 is given by Eq. (5.31). Then, Eq. (5.24) becomes

η =

∫ 1

0
dq

∫ 1

−1
dx

Θ(1 − γ − v(γ, q, x))q2

π
2kF,↑a + I1(γ, v(γ, q, x), η + γ2 + q2)

+

∫ 1

0
dq

∫ 1

−1
dx

Θ(γ + v(γ, q, x) − 1)Θ(1 + γ − v(γ, q, x))q2

π
2kF,↑a + I2(γ, v(γ, q, x), η + γ2 + q2)

,

(5.33)

where we have defined v(γ, q, x) =
√
γ2 + q2 + 2qγx, and the functions

I1(γ, v, ω) = I(γ, v < 1 − γ, ω) and I2(γ, v, ω) = I(γ, 1 − γ < v < 1 + γ, ω).
The analytic expressions for these functions are

I1(γ, v, ω) =

2 − ω

8v
log

(
2 − 2v + v2 − ω

2 + 2v + v2 − ω

)
−

√
v2 − 2ω

2
ArcCot

(
2 + v√
v2 − 2ω

)

+

√
v2 − 2ω

4

[
ArcTan

(
2 − v√
v2 − 2ω

)
− ArcTan

(
2 + v√
v2 − 2ω

)]
− 1

2
,

(5.34)

I2(γ, v, ω) =

2 − ω

8v
log

(
v2 + 2vγ + 2γ2 − ω

2 + 2v + v2 − ω

)
−

√
v2 − 2ω

2
ArcCot

(
2 + v√
v2 − 2ω

)

+

√
v2 − 2ω

4

[
ArcTan

(
2γ + v√
v2 − 2ω

)
− ArcTan

(
2 + v√
v2 − 2ω

)]

+
ω − 1 − γ2

4v
log

(
v2 + 2vγ + 2γ2 − ω

1 + γ2 − ω

)
− 1 + v + γ

4
.

(5.35)
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We can further simplify Eq. (5.33) by rewriting the limits of integration
to remove the step functions. Frst consider the term in Eq. (5.33) involving
I1(γ, v, ω). The integrand has the domain 0 ≤ q ≤ 1 and −1 ≤ x ≤ 1, with
the constraint v(γ, q, x) ≤ 1 − γ. Solving these three inequalities subject to
0 ≤ γ ≤ 1 allows us to split the first term in Eq. (5.33) in the following way:

γ < 1/2 :

∫ 1−2γ

0
dq

∫ 1

−1
dx

q2

π
2kF,↑a + I1(γ, v(γ, q, x), η + γ2 + q2)

+

∫ 1

1−2γ
dq

∫ 1−2γ−q2

2γq

−1
dx

q2

π
2kF,↑a + I1(γ, v(γ, q, x), η + γ2 + q2)

,

1/2 < γ :

∫ 1

2γ−1
dq

∫ 1−2γ−q2

2γq

−1
dx

q2

π
2kF,↑a + I1(γ, v(γ, q, x), η + γ2 + q2)

.

(5.36)

Next, we consider the term in Eq. (5.33) involving I2(γ, v, ω). The integrand
has the domain 0 ≤ q ≤ 1, −1 ≤ x ≤ 1, with the constraint 1 − γ ≤
v(γ, q, x) ≤ 1 + γ. Solving these three inequalities subject to 0 ≤ γ ≤ 1
allows us to split the second term in Eq. (5.33) in the following way:

γ < 1/2 :

∫ 1

1−2γ
dq

∫ 1

1−2γ−q2

2γq

dx
q2

π
2kF,↑a + I2(γ, v(γ, q, x), η + γ2 + q2)

,

1/2 < γ :

∫ 1

2γ−1
dq

∫ 1

1−2γ−q2

2γq

dx
q2

π
2kF,↑a + I2(γ, v(γ, q, x), η + γ2 + q2)

+

∫ 2γ−1

0
dq

∫ 1

−1
dx

q2

π
2kF,↑a + I2(γ, v(γ, q, x), η + γ2 + q2)

.

(5.37)

The quantity 1−2γ−q2

2γq has a singularity at γ = 0. Therefore, we make the
following change of variables (1 − q)/2γ → q and 2xγ → x. Finally, we can
write the self-consistent equation for the N +M body energy η,

η(x) = Σ(γ = x1/3, η) , (5.38)
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where the dimensionless self-energy is given by

Σ(γ, η) =
∫ 1−2γ

0
dq

∫ 1

−1
dx

q2

π
2kF,↑a + I1(γ, v(γ, q, x), η + γ2 + q2)

+

∫ 1

0
dq

∫ xf (γ,q)

−2γ
dx

(1 − 2γq)2

π
2kF,↑a + I1(γ, ṽ(γ, q, x), η + γ2 + (1 − 2γq)2)

+

∫ 1

0
dq

∫ 2γ

xf (γ,q)
dx

(1 − 2γq)2

π
2kF,↑a + I2(γ, ṽ(γ, q, x), η + γ2 + (1 − 2γq)2)

(5.39)

for γ < 1/2, and

Σ(γ, η) =
∫ (1−γ)/γ

0
dq

∫ xf (γ,q)

−2γ
dx

(1 − 2γq)2

π
2kF,↑a + I1(γ, ṽ(γ, q, x), η + γ2 + (1 − 2γq)2)

+

∫ 2γ−1

0
dq

∫ 1

−1
dx

q2

π
2kF,↑a + I2(γ, v(γ, q, x), η + γ2 + q2)

+

∫ (1−γ)/γ

0
dq

∫ xf (γ,q)

−2γ
dx

(1 − 2γq)2

π
2kF,↑a + I2(γ, ṽ(γ, q, x), η + γ2 + (1 − 2γq)2)

(5.40)

for 1/2 < γ, with v(γ, q, x) = (γ2 + q2 + 2γqx)1/2, and we have defined
ṽ(γ, q, x) = (γ2 + (1 − 2γq)2 + (1 − 2γq)x)1/2, and xf (γ, q) = 2γ(1 −
2q + 2γq2)/(2γq − 1). The functions I1(γ, v, ω) and I2(γ, v, ω) are given
by Eqs. (5.34) and (5.35).

5.1.3 Equation of State of the Normal Fermi Liquid

We are now ready to construct the equation of state for the polarized normal
Fermi liquid. In a normal gas with N↑ spin-up and N↓ spin-down particles,
the energy is given by

E(N↓, N↑) = E0(N↑) +E0(N↓) + Eint(N↓, N↑) , (5.41)

where E0(Nσ) is the non-interaction energy for the species σ =↑, ↓, and
Eint(N↓, N↑) is the energy due to interactions. By definition, the N + M
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energy is E = EF,↑η(N↓/N↑) = Eint(N↓, N↑)−Eint(N↓ − 1, N↑). Therefore,
the energy of the normal state is

E(N↓, N↑) = N↑
3

5
EF,↑


1 +

E0(N↓)

E0(N↑)
+

5

3

N↓∑

Ni=0

1

N↑
η

(
Ni

N↑

)
 . (5.42)

In the uniform system, E0(Nσ) = 3EF,σNσ/5, and we have

E(N↓, N↑) = N↑
3

5
EF,↑ǫ(x) , (5.43)

where the equation of state ǫ(x) is given by

ǫ(x) = 1 + x5/3 +
5

3

∫ x

0
η(y) dy . (5.44)

For small γ = x1/3 ≪ 1, the minority quasiparticles have the dispersion
relation η(γ = x1/3) ≃ η0 + (m/m∗ − 1)γ2 + ..., and Eq. (5.44) reproduces
the small-x expansion ǫ(x) ≃ 1 + 5

3η0x+ m
m∗x

5/3 + ... of Eq. (3.29).

5.1.4 Results and Comparison

We now solve the self-consistent equation Eq. (5.38) for η(x) with general
x. For x = 0, we reproduce the N + 1 body energy η0 = η(0) = −0.607
and effective mass m∗/m = 1.17. In Fig. 5.6, we show the result for η(x).
For comparison, we also show the parametrization η0 + (m/m∗ − 1)x2/3 +
6Bx/5, with the polaron energy η0 = −0.607, andm∗, B taken from different
calculations. The variational η(x) is lower than the parametrization with
the MC values m∗/m = 1.09 and B = 0.14 [43]. For small x, η(x) is
well-described by a correction due to an effective mass, m∗/m = 1.17 [22].
For x & 0.1, higher-order corrections beyond the effective mass become
important. However, the form 6Bx/5 is not adequate to describe these
corrections for all x.

In Fig. 5.7, we show the equation of state Eq. (5.44) obtained from
the variational η(x), as well as based on the small-x expansion ǫ(x) ≃
1+ 5

3η0x+ m
m∗x

5/3+Bx2 of Eq. (3.30) for several combinations of η0, m
∗, and

B. The equation of state based on variational η(x) is lower than the small-x
parametrization with MC values, m∗/m = 1.09 and B = 0.14 [43], regard-
less whether the MC value for the polaron energy η0 = −0.594 [43] or the
variational value η0 = −0.607 [17] is used. For comparison, we also include
two parametrizations with the diagrammatic MC value η0 = −0.615 [45]
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Figure 5.6: Results for η(x) and the parametrization η0 +(m/m∗−1)x2/3 +
6Bx/5 for η0 = −0.607 and several combinations of m∗ and B. Although
the plot is shown for 0 ≤ x ≤ 1, one should remember that the normal-to-
superfluid transition takes place at x = xc. Blue curve: the variational η(x).
Green curve: MC results given by m∗/m = 1.09 and B = 0.14 [43]. Red
curve: analytic result for the effective mass m∗/m = 1.17 [22] and B = 0.
Purple curve: analytic result for the effective mass m∗/m = 1.17 and the
MC result B = 0.14. The variational η(x) is lower than the parametrization
with the MC values m∗/m = 1.09 and B = 0.14 (green curve). For small x,
η(x) is well-described by a correction due to an effective mass, m∗/m = 1.17.
For x & 0.1, higher-order corrections beyond m∗ become important, which
are not well-described by 6Bx/5.

and the analytic result m∗/m = 1.17, with different B = 0 and B = 0.14. In
both cases, the small-x parametrizations describe the variational ǫ(x) well
up to x . 0.3.

In summary, the equation of state ǫ(x) based on the variational η(x) is
well-described by 1 + 5/3η0x+m/m∗x5/3 for small x, with η0 ≈ −0.61 and
m∗/m = 1.17. Also, the energy for the polarized normal Fermi liquid ob-
tained with variational η(x) is lower than the one based on the parametriza-
tion with the MC m∗ and B. Next, we will discuss the consequence of the
variational energy on the phase structure of trapped Fermi gases containing
large particle numbers.
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Figure 5.7: Equation of state for the polarized normal Fermi liquid in the
uniform system. Blue curve: results for ǫ(x) given by Eq. (5.44), based
on variational η(x). Also shown are the small-x parametrization ǫ(x) ≃
1 + 5

3η0x + m
m∗x

5/3 + Bx2 of Eq. (3.30) for several combinations of η0, m
∗,

and B . Orange curve uses the MC results [43] η0 = −0.594, m∗/m =
1.09, and B = 0.14. Green curve has the variational η0 = −0.607 with
MC results for the effetive mass m∗/m = 1.09 and B = 0.14. Red curve
employs the diagrammatic Monte Carlo result η0 − 0.615 [45] and analytic
m∗/m = 1.17 [22], without higher-order corrections, B = 0. Purple curve is
same as the red curve, but with B = 0.14.

5.1.5 Phase Structure of Trapped Fermi Gases with Large

Particle Numbers

With Eqs. (3.40)-(3.46) and the equation of state based on variational η(x),
Eq. (5.44), we find the critical concentration xc and critical polarization
Pc for trapped Fermi gases with large particle numbers. In Fig. 5.8, we
show xc(ξ) as a function of the superfluid energy parameter, ξ. The critical
concentration reaches the maximum value, xc = 1, for ξ = 0.45(1). The
critical concentration is sensitive to the superfluid energy ξ. For the MC
value ξ = 0.42(1) [13, 43], we have xc = 0.66(5), and for the most recent
value ξ = 0.40(1) [14], we obtain xc = 0.58(4). These values are higher than
the experimental result xc ≈ 0.47 [55] of the MIT group. The uncertainties
cited in our values do not take into account the uncertainty of the equation
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Figure 5.8: Critical concentration xc(ξ) as a function of ξ for trapped Fermi
gases with large particle numbers. The result is based the equation of state
obtained from variational η(x).
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Figure 5.9: Critical poncentration Pc(ξ) as a function of ξ for trapped Fermi
gases with large particle numbers. The result is based the equation of state
obtained from variational η(x).
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of state obtained from variational η(x).
In Fig. 5.9, we show Pc(ξ) as a function of ξ. The critical polarization

is also sensitive to the value of ξ. For ξ = 0.42(1), we obtain Pc = 0.58(7).
For the most recent value ξ = 0.40(1), we have Pc = 0.68(5), in agreement
with the MIT result Pc = 0.70(3) [54, 58, 59] . Once again, the uncertainties
cited in our values do not take into account the uncertainty of the equation
of state obtained from variational η(x).

5.2 N + M Body Problem in Traps

Figure 5.10: Graphical representation of the components of the trial wave-
function Eq. (5.45) in traps. Left : |Ω〉 is the non-interacting ground state.
It consists of a majority Fermi sea with N spin-up fermions occupying the
levels εn ≤ εF,↑, a minority Fermis sea with M − 1 spin-down fermions oc-
cupying the levels εn ≤ εF,↓, and an additional impurity at the level nF+1,↓
with the energy εF+1,↓. Right : the state |m,h,p〉 consists of a spin-up
fermion in h excited to a level p above the majority Fermi energy εF,↑, and
the additional impurity occupies the level εm > εF,↓.

To allow for a better quantitative understanding of the MIT-Rice differ-
ences, it is necessary to include general asymmetry in the study of trapped
Fermi gases. The N +M body problem in traps enables us to study finite-
size and confinement effects to the energy contributions beyond η(α,N).
In this section, we present the derivation of N + M body energy gain in
traps. The numerical evaluation of the energy and the analysis of the phase
structure are to be left for future work.

The formalism of our problem is as follow. We assume a trap with
cylindrical symmetry, ωx = ωy = αω = αωz. The Hamiltonian of a strongly-
interacting Fermi gas in a harmonic oscillator-trap is given by Eq. (4.1), with
the interaction Eq. (4.2). We consider a trap with N spin-up fermions and
M − 1 spin-down fermions. In the absence of interactions, the σ =↑, ↓
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fermions occupy the levels εn = α(nx + ny + 1) + nz + 1/2 ≤ εF,σ, and
we assume εF,↓ < εF,↑. We calculate the energy gain E of an additional
spin-down fermion, including 1p1h excitations in the trial wavefunction,

|ψ〉 = φ0|Ω〉 +
∑

m,h,p

φm,h,p|m,h ,p〉. (5.45)

Here, |Ω〉 denotes the non-interacting ground state. It consists of a majority
Fermi sea withN spin-up fermions occupying the levels εn ≤ εF,↑, a minority
Fermis sea withM−1 spin-down fermions occupying the levels εn ≤ εF,↓, and
an additional impurity occupying the level nF+1,↓ with the energy εF+1,↓.
The state |m,h,p〉 consists of a spin-up fermion in h excited to a level p

above the spin-up Fermi energy εF,↑, and the additional impurity occupying
the level m above the spin-down Fermi energy εF,↓. Therefore, the sum over
h is restricted to occupied states εh ≤ εF,↑, p is over εp > εF,↑, and m is
over εm > εF,↓.

We write the Hamiltonian Eq. (4.1) as H = H0+V , where H0 is the non-
interacting harmonic-oscillator Hamiltonian, and V gives the interacting
part. We proceed by calculating 〈ψ|Ĥ0|ψ〉:

Ĥo|ψ〉 = φ0

(
∑

n

εna
†
n,↑an,↑|Ω〉 +

∑

n

εna
†
n,↓an,↓|Ω〉

)

+
∑

m,h,p

φm,h,p

(
∑

n

εna
†
n,↑an,↑|m,h,p〉 +

∑

n

εna
†
n,↓an,↓|m,h,p

)
.

(5.46)

The operators act on the states to yield

a†
n,↑an,↑|Ω〉 =

{
0 εn > εF,↑,
|Ω〉 εn ≤ εF,↑,

(5.47)

a†n,↓an,↓|Ω〉 =





|Ω〉 n = nF+1,↓,
|Ω〉 εn ≤ εF,↓,
0 else,

(5.48)

a†n,↑an,↑|m,h,p〉 =





|m,h,p〉 n = p,
|m,h,p〉 εn ≤ εF,↑ andn 6= h,
0 else,

(5.49)

a†n,↓an,↓|m,h,p〉 =





|m,h,p〉 εn ≤ εF,↓,
|m,h,p〉 n = m,
0 else.

(5.50)
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Therefore, we find

〈ψ|Ĥ0|ψ〉 = εF+1,↓|φ0|2+
∑

m,h,p

|φm,h,p|2(εp+εm−εh)+
∑

εn≤εF,↑

εn+
∑

εn≤εF,↓

εn .

(5.51)
The last two terms give the energy of the non-interacting system and are
subtracted when we study the energy gain.

Next, we calculate 〈ψ|V |ψ〉, making use of the result 〈n1,n2|V |n3,n4〉 =
C(Λ)

∑
S F (n1,n2,S)F (n3,n4,S) from Section 4.1.1:

V |ψ〉 = C(Λ)φ0

∑

S

∑

n↑,n↓,n′
↑
,n′

↓

F (n↓,n↑,S)F (n′
↓,n

′
↑,S)

×a†
n′
↑
,↑a

†
n′
↓
,↓an↓,↓an↑,↑|Ω〉

+C(Λ)
∑

n↑,n↓,n′
↑
,n′

↓

F (n↓,n↑,S)F (n′
↓,n

′
↑,S)

×
∑

m,h,p

φm,h,p

∑

S

a†
n′
↑
,↑a

†
n′
↓
,↓an↓,↓an↑,↑|m,h,p〉 . (5.52)

Keeping up to one-particle–one-hole excitations, the relevant terms are

a†
n′
↑
,↑a

†
n′
↓
,↓an↓,↓an↑,↑|Ω〉

=





|Ω〉 n↓ = nF+1,↓, εn↑
≤ εF,↑,

n′
↑ = n↑, n′

↓ = n↓,

|Ω〉 εn↓
≤ εF,↓, εn↑

≤ εF,↑,
n′
↑ = n↑, n′

↓ = n↓,

|n′
↓,n↑,n′

↑〉 n↓ = nF+1,↓, εn↑
≤ εF,↑,

εn′
↑
> εF,↑, εn′

↓
> εF,↓,

|nF+1,↓,n↑,n′
↑〉 εn↓

≤ εF,↓, εn↑
≤ εF,↑,

n′
↓ = n↓, εn′

↑
> εF,↑,

(5.53)
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a†
n′
↑
,↑a

†
n′
↓
,↓an↓,↓an↑,↑|m,h,p〉

=





|Ω〉 n↓ = m, n↑ = p,
n′
↑ = h, n′

↓ = nF+1,↓

|Ω〉 εn↓
≤ εF,↓, n↑ = p,

n′
↑ = h, n′

↓ = n↓,
and m = nF+1,↓,

|n′
↓,h,n

′
↑〉 n↓ = m, n↑ = p,

εn′
↑
> εF,↑, εn′

↓
> εF,↓,

|n′
↓,n↑,p〉 n↓ = m, εn↑

≤ εF,↑
andn↑ 6= h,
n′
↑ = h, εn′

↓
> εF,↓

|n′
↓,h,p〉 n↓ = m, εn↑

≤ εF,↑
andn↑ 6= h,
n′
↑ = n↑, εn′

↓
> εF,↓

|m,h,n′
↑〉 εn↓

≤ εF,↓, n↑ = p,

εn′
↑
> εF,↑, n′

↓ = n↓,

|m,n↑,p〉 εn↓
≤ εF,↓, εn↑

≤ εF,↑
andn↑ 6= h,
n′
↑ = h, n′

↓ = n↓

|m,h,p〉 εn↓
≤ εF,↓, εn↑

≤ εF,↑
andn↑ 6= h,
n′
↑ = n↑, n′

↓ = n↓.

(5.54)

Making the following change of indices n↓ → h↓, n↑ → h′, n′
↑ → p′, and
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n′
↓ → m′, we obtain

V |ψ〉 = C(Λ)φ0

∑

S

∑

h′



∑

h↓

F 2(h↓,h
′,S) + F 2(nF+1,↓,h

′,S)


 |Ω〉

+ C(Λ)φ0

∑

S

∑

m,h,p

F (nF+1,↓,h,S)F (m,p,S)|m,h,p〉

+ C(Λ)φ0

∑

S

∑

h,p

∑

h↓

F (h↓,h,S)F (h↓,p,S)|nF+1,↓,h,p〉

+ C(Λ)
∑

S

∑

h,p

∑

h↓

φnF+1,↓,h,pF (h↓,p,S)F (h↓,h,S)|Ω〉

+ C(Λ)
∑

S

∑

m,h,p

φm,h,pF (m,p,S)F (nF+1,↓,h,S)|Ω〉

+ C(Λ)
∑

S

∑

m,h,p

φm,h,p

∑

m′,p′

F (m,p,S)F (m′,p′,S)|m′,h,p′〉

+ C(Λ)
∑

S

∑

m,h,p

φm,h,p

∑

h↓,p′

F (h↓,p,S)F (h↓,p
′,S)|m,h,p′〉

+ C(Λ)
∑

S

∑

m,h,p

φm,h,p

∑

m′,h′ 6=h

F (m,h′,S)F (m′,h,S)|m′,h′,p〉

+ C(Λ)
∑

S

∑

m,h,p

φm,h,p

∑

m′,h′ 6=h

F (m,h′,S)F (m′,h′,S)|m′,h,p〉

+ C(Λ)
∑

S

∑

m,h,p

φm,h,p

∑

h′ 6=h,h↓

F (h↓,h
′,S)F (h↓,h,S)|m,h′,p〉

+ C(Λ)
∑

S

∑

m,h,p

φm,h,p

∑

h′ 6=h,h↓

F (h↓,h
′,S)F (h↓,h

′,S)|m,h,p〉 .

(5.55)

Each of the sums over h′, p′, and m′ follow the same convention as the sums
over h, p, and m, respectively. The sums over h↓ are over εh↓

≤ εF,↓. We
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then have

〈ψ|V |ψ〉
= C(Λ)

∑

S

∑

h

F 2(nF+1,↓,h,S)|φ0|2

+C(Λ)
∑

S

∑

m,h,p

F (m,p,S)F (nF+1,↓,h,S)(φ∗0φm,h,p + φ0φ
∗
m,h,p)

+C(Λ)
∑

S

∑

h,h↓

F 2(h↓,h,S)|φ0|2

+C(Λ)
∑

S

∑

m,h,p,m′,p′

F (m,p,S)F (m′,p′,S)φ∗m′,h,p′φm,h,p

+C(Λ)
∑

S

∑

h,h↓

∑

p

F (h↓,h,S)F (h↓,p,S)(φ0φ
∗
nF+1,↓,h,p + φ∗0φnF+1,↓,h,p)

+C(Λ)
∑

S

∑

m,h,p,p′,h↓

F (h↓,p,S)F (h↓,p
′,S)φm,h,pφ

∗
m,h,p′

+C(Λ)
∑

S

∑

m,h,p,m′,h′ 6=h

F (m,h′,S)F (m′,h,S)φ∗
m′,h′,pφm,h,p

+C(Λ)
∑

S

∑

m,h,p,m′,h′ 6=h

F (m,h′,S)F (m′,h′,S)φ∗m′,h,pφm,h,p

+C(Λ)
∑

S

∑

m,h,p

∑

h′ 6=h,h↓

F (h↓,h
′,S)F (h↓,h,S)φm,h,pφ

∗
m,h′,p

+C(Λ)
∑

S

∑

m,h,p

∑

h′ 6=h,h↓

F (h↓,h
′,S)F (h↓,h

′,S)|φm,h,p|2 .

(5.56)

The cutoff dependence of the sum is cancelled by the coupling constant
C(Λ) . In the limit of large cutoffs, the sums in the last six lines are conver-
gent and when multiplied by C(Λ), will give a zero contribution. Therefore,
they do not contribute to the energy gain, and will be omitted in the rest
of the calculation.
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Combining Eqs (5.51) and (5.56), the energy to be minimized is

〈H〉 = εF+1,↓|φ0|2 +
∑

m,h,p

|φm,h,p|2(εp + εm − εh)

+ C(Λ)
∑

S

∑

h

F 2(nF+1,↓,h,S)|φ0|2

+ C(Λ)
∑

S

∑

m,h,p

F (m,p,S)F (nF+1,↓,h,S)(φ∗0φm,h,p + φ0φ
∗
m,h,p)

+ C(Λ)
∑

S

∑

h,h↓

F 2(h↓,h,S)|φ0|2

+ C(Λ)
∑

S

∑

m,h,p,m′,p′

F (m,p,S)F (m′,p′,S)φ∗m′,h,p′φm,h,p .

(5.57)

Minimizing 〈ψ|H|ψ〉 with respect to φ0 and φm,h,p yields the following
set of equations

(E − εF+1,↓)φ0 =

C(Λ)
∑

S

∑

h

F (nF+1,↓,h,S)

[
F (nF+1,↓,h,S)φ0 +

∑

m,p

F (m,p,S)φm,h,p

]

+C(Λ)
∑

S,h,h↓

F (h↓,h,S)F (h↓,h,S)φ0 ,

(5.58)

(E − εp − εm + εh)φm,h,p =

C(Λ)
∑

S

F (m,p,S)


F (nF+1,↓,h,S)φ0 +

∑

m′,p′

F (m′,p′,S)φm′,h,p′


 .

(5.59)

To simplify the equations, we define

χ(h,S) = F (nF+1,↓,h,S)φ0 +
∑

m′,p′

F (m′,p′,S)φm′,h,p′ , (5.60)

and also
G = C(Λ)

∑

S

∑

h,h↓

F 2(h,h↓ ,S). (5.61)
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Then Eq. (5.58) and (5.59) can be written as

φ0 =
C(Λ)

E − εF+1,↓ −G

∑

h

∑

S

F (nF+1,↓,h,S)χ(h,S) , (5.62)

φm,h,p =
C(Λ)

E − (εp + εm − εh)

∑

S

F (m,p,S)χ(h,S) . (5.63)

Substituting Eq. (5.63) into Eq. (5.60) yields

χ(h,S) = F (nF+1,↓,h,S)φ0

+ C(Λ)
∑

S′

∑

m,p

F (m,p,S)F (m,p,S′)
E − (εp + εm − εh)

χ(h,S′) .

(5.64)

This equation can be written in the form of a matrix equation

χ(h,S) = F (nF+1,↓,h,S)φ0 +
∑

L

AS,L χ(h,L) , (5.65)

where the matrix AS,L is given by

AS,L =
∑

m,p

C(Λ)

E + εh − εp − εm
F (m,p,S)F (m,p,L) . (5.66)

Then, the solution to χ(h,S) is straightforward:

χ(h,S) =
∑

L

[
(1 −A)−1

]
S,L

F (nF+1,↓,h,L)φ0 . (5.67)

Substituting this into Eq. (5.62), yields the following equation

E − εF+1,↓ −G = C(Λ)
∑

h

∑

S,L

F (nF+1,↓,h,S)(1 −A)−1
S,LF (nF+1,↓,h,L) .

(5.68)
For large cutoffs, the coupling constant vanishes, and therefore G → 0. We
then arrive at the equation for the N+M body energy gain E in anisotropic
traps,

E − εF+1,↓

=
∑

h

∑

S,L

F (nF+1,↓,h,S)
[
M−1(εF,↑, εF,↓, E + εh)

]
S,L

F (nF+1,↓,h,L) ,

(5.69)
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where E is measured from the energy of the non-interacting ground state,
in weak coupling E ≈ εF+1,↓, and the matrix M is given by

M(εF,↑, εF,↓, E + εh)S,L =
δS,L

C(Λ)
−Mu(α,E + εh)S,L

+
∑

εp≤εF,↑

∑

m

F (m,p,S)F (m,p,L)

E + εh − εm − εp

+
∑

εp≤εF,↓

∑

m

F (m,p,S)F (m,p,L)

E + εh − εm − εp

−
∑

εp≤εF,↓

∑

εm≤εF,↑

F (m,p,S)F (m,p,L)

E + εh − εm − εp
,

(5.70)

where Mu(α,E+εh)S,L is identitcal to the other sums in Eq. (5.70) with un-
restricted sum over p and m, and has the analytic form Mu(α,E+εh)S,L =

D(α,∆Ẽ)δS,L, where D(α,∆Ẽ) is given by Eqs. (4.56) and (4.57), and

∆Ẽ = α(Sx + Sy + 2) + Sz + 1 − (E + εh)/ω.

5.3 Outlook

Eq. (5.69) yields the N +M body energy gain E in anisotropic traps. The
next step is to evaluate Eq. (5.69) for different particle numbers N = N↑,
M = N↓, and aspect ratio α. The results for E can be used to compute the
critical concentration xc(α,N,M) and critical polarization Pc(α,N,M) in
the Local Density Approximation. For further improvement, a full density-
functional calculation with surface tension [24] or gradient terms is needed.
The resulting critical polarization will provide prediction that can be com-
pared with experimental data, and may shed light for a better understanding
of the MIT-Rice differences.
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Chapter 6

Summary and Outlook

In summary, we studied the properties of strongly-interacting Fermi gases
with population imbalance. We first investigated finite-size and confine-
ment effects in trapped Fermi gases by studying the polaron energy in traps,
η(α,N). The polaron energy provides the leading contributions to the en-
ergy of the polarized normal Fermi liquid phase for large asymmetries. We
calculated the polaron energy variationally using a trial wavefunction in-
cluding one-particle–one-hole excitations. For small particle numbers and
isotropic traps, the variational η(1, N) agrees well with the Monte Carlo
results of Ref. [5]. The polaron energy was computed for α = 1, 3, 9, 15, 35
and for particle numbers up to N . 105. Based on the results for η(α,N),
we computed the critical concentration xc(α,N) and the critical polarization
Pc(α,N) in traps. For lower particle numbers and more elongated traps, the
change in polaron energy increases the energy of the normal Fermi liquid,
and the superfluid extends to larger population imbalances. Finite-size ef-
fects are stronger in highly-elongated systems as the dimensionality of the
problem is continuously reduced with increasing aspect ratio. This provides
a microscopic understanding of the MIT-Rice differences due to the depen-
dence of the polaron energy on the particle number and the trap geometry.

For general asymmetries, we studied the N + M body problem in the
uniform system. We evaluated the energy of adding an impurity to an
imbalanced Fermi gas variationally. Based on the variational N +M body
energy, we constructed the equation of state of the partially-polarized normal
Fermi liquid. With the Local Density Approximation (LDA), we applied the
results for the equation of state to traps with large particle numbers and
computed the critical concentration xc(ξ) and critical polarization Pc(ξ) as
a function of the superfluid energy ξ. Finally, we studied the N +M body
problem in traps, and obtained the self-consistent equation for the energy
E, Eq. (5.69).

For future investigation, the next step is to evaluate Eq. (5.69) and ob-
tain the N+M body energy for different particle numbersN = N↑, M = N↓
and aspect ratio α. With the LDA, the results for the energy can be used to
compute the critical concentration xc(α,N,M) and the critical polarization

93



Chapter 6. Summary and Outlook

Pc(α,N,M) for different particle numbers N , M , and trap aspect ratio α.
Experimentally, the aspect ratio α can be varied, and it is possible to obtain
data for the critical polarization Pc as a function of α and particle numbers.
The calculated xc(α,N,M) and Pc(α,N,M) provide predictions that can
be compared with experimental data. For further improvement, the effects
from a full density-functional calculation, combined with surface tension [24]
or gradient terms, needs to be studied. These studies will enable a better
quantitative understanding of the phase structure and the MIT-Rice differ-
ences. The goal is to fully elucidate the mechanism behind the experimental
differences. In the future, one may be able to study finite-size and con-
finement effects in other strongly-interacting asymmetric systems, such as
nuclei and condensed matter systems in lower dimensions, and explore the
rich properties of unitary asymmetric Fermi gases, which is highly relevant
to many fields of physics.
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Appendix A

1 + 1 Body Problem in

Harmonic-Oscillator Traps

The two-body problem of strongly-interacting fermions is solved in Ref. [12].
In this appendix, we derive the exact ground state energy of two cold atoms
in a harmonic trap with a variational calculation. We generalize the first
term in Eq. (4.22) to include a sum over the spin-down particle in level n,∑

n φn. The complete-basis variational Ansatz for the two-body problem is
then given by

|ψ〉 =
∑

m,p

φm,p|m,p〉 , (A.1)

where |m,p〉 consists of a spin-down particle in the state m, and a spin-up
particle in the state p. Both quantum numbers run over all levels. Because
this Ansatz includes all possible particle-hole excitations, it gives the exact
ground state energy. We evaluate 〈H〉, with H given by Eq. (4.1) and the
interaction matrix given by Eq. (4.12). Minimizing the expectation value
yields the following equation,

Eφm,p = (εp +εm)φm,p +C(Λ)
∑

S,m′,p′

F (m,p,S)F (m′,p′,S)φm′,p′ , (A.2)

where E is the total energy of the 1 + 1 body system. We define

χ(S) =
∑

m,p

F (m,p,S)φm,p , (A.3)

and solve for φm,p in Eq. (A.2) to obtain

φm,p =
C(Λ)

E − (εp + εm)

∑

S

F (m,p,S)χ(S) . (A.4)

Substituting this into Eq. (A.3) yields

χ(S) = C(Λ)
∑

m,p,L

F (m,p,S)F (m,p,L)

E − (εp + εm)
χ(L) . (A.5)
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Appendix A. 1 + 1 Body Problem in Harmonic-Oscillator Traps

We can rewrite this equation in matrix form,

χ(S) = C(Λ)
∑

L

Mu(1, E)S,Lχ(L) , (A.6)

withMu(α,E)S,L defined in Eq. (4.47). It has the analytic formMu(α,E)S,L =

D(α,∆Ẽ)δS,L given by Eq. (4.53).
Eq. (A.6) leads to δS,L/C(Λ) = Mu(1, E)S,L, and in the unitary regime

1/a = 0, it is equivalent toD(1,∆Ẽ) = 0, withD(1,∆Ẽ) given by Eq. (4.58),
and ∆Ẽ = Sx +Sy +Sz + 3−E/ω. Then the solution to Eq. (A.6) is given
by

0 =
Γ ((S + 3 − E/ω) /2)

Γ ((S + 2 − E/ω)/2)
, (A.7)

whose root is given by
E = ω (2 + S + 2n) , (A.8)

where S and n are integers. Therefore, we find the ground state energy is
E = 2ω, which corresponds to the exact ground state energy for the relative
motion Erel = ω/2, in agreement with the exact solution of Ref. [12].
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