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Abstract

A surface diffusion coefficient is used in archttgal-acoustics to evaluate the
effectiveness of diffusing surfaces. The inclusiéthe diffusion characteristics is also
important for the accuracy of room prediction madé@nother important parameter is
the absorption or impedance of a surface. In gttimith significant low-frequency
noise, phase effects are important; consequenggdance values of surfaces are
necessary for accurate modeling. A review of exgsthodels for specular and diffuse
reflection is made. A new diffusion coefficientdefined and included in three new
forward models for predicting the steady-state sepressure level above a finite-
impedance plane in an otherwise free field. Dat¢acatlected for several typical
architectural surfaces in an anechoic chamberréevmethods are utilized in order to
estimate the diffusion coefficient for surfacesagiveach of the models. This is done
without knowledge of the surface impedance, whechimultaneously estimated. The
models are compared with each other and with intdgaly measured values of the
surface impedance and diffusion. Inversion is fotmde a reasonable way of

determining the diffusion properties of a surface.
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Chapter 1

Chapter 1
| ntroduction

1.1 Objective and motivation

This thesis discusses the determination of thestimall parameters of room surfaces.
These can in some cases be measured directlyhén cases direct measurement is not
possible, and indirect methods are of interestrd iewidespread use of inverse methods
in the discipline of acoustics; however architegt@coustics appears to be under-
represented in their use. This is surprising, ebitactural acoustics shares many similar
problems with underwater and outdoor acousticth@gall consider sound in somewhat
bounded spaces. This research applied inverse-oh&thbniques from non-architectural
fields of acoustics, to facilitate the solutionas€hitectural-acoustic problems. The
specific problem of interest is the accurate deireation of the acoustical-impedance and

diffusion characteristics of typical architectusakfaces.

This problem is of great importance in architedtaustics, as accurate knowledge of
the impedance and diffusion characteristics ofasi@$ is crucial in the architectural-
acoustical design process. The inclusion of phafeemation—that is, complex
impedance instead of energy absorption—is importaimdustrial settings where a
significant portion of the background noise isat frequency. It has been shown that
failure to accurately include surface-diffusion d@eristics in prediction models leads

to inaccurate predictions of room reverberatiore8m

The determination of the acoustical impedance afifigstbn characteristics of a surface
does not lend itself well to direct measuremennv@ational, direct methods for
measuring the acoustical impedance of a surfacereswholly specular reflection. This
is a significant problem; as such methods intempoet-specular reflection as increased
absorption, producing inaccurate values. Conveatiorethods for measuring the
diffusion characteristics of a surface assume kadgg of the absorption of the surface,

and are currently based in diffuse-field theory dodhot consider phase.
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1.2 Outline and methodology

Chapter 2 is a tutorial section on the backgrowntepts of acoustics and inverse
methods. This is followed by a review of methodsdetermining the acoustical
properties of surfaces in Chapter 3. Chapter 4idses the collection of data and Chapter

5, the implementation of inverse methods.

Chapter 6 presents the independent research, wbidists of three components: the
development of new forward models, the collectibdata, and inversion of the models.
Three new forward models were developed using dheept of the image-source
method, and have been modified to include diffeskection. They differ from each

other in their inclusion of phase information. Tdea were collected in a hemi-anechoic
chamber with seven different types of architectstafaces used as the sole reflecting
surface. The inversion of the models was done ¢h sua way as to not only gain point
estimates, but also confidence intervals for thienases. The models are inverted

directly and not approximated.

Finally, a comparison of the three forward modglsiade. The criteria for these
comparisons were: the ability of a model to prethetobserved data, the level of
conformity of the estimated parameters to direchsneements, and the level of certainty

of the estimates produced.
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Chapter 2
Background concepts and theory

In order to have a discussion on diffuse sounecén, it is first necessary to have a
strong understanding of the physical principleaaustic-wave theory. This will be the
primary purpose of this chapter; however it wi@introduce inverse theory and

optimization. The acoustics material unless othgeveited is from Kuttruff [1].
2.1 Fundamental acoustical relations

The most basic element of acoustics is the ac@listiave. Acoustical waves are
longitudinal; that is, they displace particles lod propagation medium in the same
direction as the wave propagates. Acoustical waveslso three dimensional.

Acoustical waves can be characterized in severgéwrrst, a wave can be characterized
by the displacemeritof the particles of the medium affected by the &vahhe wave can
also be characterized by the velocity of the piagia. A third quantity, that

characterizes the amplitude of an acoustical wiav&und pressure . This value is also

commonly reported in decibetB as sound-pressure levie] . Equation (2.1.1) gives

the sound-pressure level in terms of the pressuhere p” is the reference pressure of

20uPa.

L, = 20|og(%) 2.1.1)

The wave equation is one of the most fundamentalsical formulas. The wave
equation Eq. (2.1.2) can be derived from three &g these are the continuity
equation, the Euler equation and the equationadé¢ $2]. It is assumed that the fluid
medium, in which the wave propagates, is homoges)esotropic and perfectly elastic.
It should also be noted that the linearization apipnations used in this derivation are
only valid up to 110 dB.
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P _ oo 0°p,9°p 0°p_10°p
— =cd or + + -— =0 2.1.2
ot? P 9°x 0%y 0%z c* 9% ( )

The Laplacian appears on account of the three-diroeal nature of acoustical waves.
Wave fronts may take a variety of geometries; thpkest of these is a plane. The wave

front may be non-planar, such as spherical.

2.2 Sound intensity and impedance

Another important attribute of a sound field is #waind intensity. Sound intensity is
defined as the average rate of flow of acoustinalgy through a unit of area normal to
the direction of sound propagation [2]. Eq. (2.3)iles intensity as the product of

particle velocity and sound pressure.

| = pu (2.2.1)

The characteristic acoustical impedar#;eof a medium is defined as the ratio of sound

pressure to the particle velocity, Eq. (2.2.2). planar waves the impedance is also equal
to the product of the density of the material arelspeed of sound within it, Eq. (2.2.3).
For spherical waves the relation is more complatai® sound pressure and patrticle
velocity are not in phase. As shown in Eq. (2.2f4he radius is large then the
impedance will be similar to that of a planar wavkis is expected as the curvature of a
large sphere is less than that of a small spheyeieMer for small spheres the second
term in the denominator will dominate and the ingeze will be much smaller. The
models described in Chapter 5 used the specificimatacteristic impedance of a surface.
The specific impedancg of a surface is the ratio of the characteristicedgnce of the

surface to the characteristic impedance of theeafee medium; the admittanBeof a

surface is the inverse of this ratio.
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z. =P (2.2.2)

u
Z. = pc (2.2.3)
z. = _ (2.2.4)

2.3 Planar waves

Waves with planar wave fronts are called plane waVbe most important properties of
plane waves are that acoustical pressure and lparétocity have the same phase and
magnitude at all points on a plane normal to theatiion of wave propagation
(wavefront). Plane waves usually occur in ventgepior other long and narrow spaces.
However a plane wave may be used to approximatsglane wave if the curvature of
the approximated waves is low. This normally occtitise source of the wave is in the

far field, at a large distance from the sourcetradato the wave length.

As noted, the pressure of a plane wave only chaingée direction of its flow. Without
loss of generality this can be considered thaxis; consequently Eq. (2.1.1) can be
rewritten as Eq. (2.3.1). The functiql’(,x,t), can be solved for the harmonic solution is

given in Eq. (2.3.2). This can be interpreted as Wwaves: the first has amplitude and

is propagating in the positive direction, the second has amplituBeand is propagating
in the negativex direction. The strategy of describing a soundifialterms of several
waves will be repeated throughout this chaptethissappears to be a conceptually
simple description of acoustical phenomena. It ghba noted, however, that the

combination or separation of waves is arbitrary.

0 100 10
oot oo e =0 @3
p(x.t) = R Agil“) + Bellt} (2.3.2)
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2.4 Spherical waves

A spherical wave is any wave such that the acalgpiessure and particle velocity have
the same phase and magnitude at all points orutfece of a sphere centered on the
sound source. Not surprisingly, spherical wavesraree easily described using a
spherical coordinate system. Eq. (2.4.1) givesathee equation, in which the Laplacian
operator is rewritten in spherical form. On accaofrthe spherical-wave property that
only radius, not angle, determines pressure, panelocity, etc. the equation can be
simplified to yield Eq. (2.4.2). Eq. (2.4.2) istble same form as Eg. (2.3.1) and therefore

has a solution of the same form, given in Eq. @.4Chis can be solved fop yielding

Eq. (2.4.5).

D B o (O et o T =0 @

9*(rp) _ 1 9*(rp)
- =0 2.4.2
ar? c* ot? ( )

0 100 10) O
——-=— | =—+=—|p"(x,t)=0 where =r 2.4.3
[ax cdt}(dx catjp ( ) P P ( )
p(x,t) = Ag'@™) + Bellatthd) (2.4.4)
i (at—kx) i (at+kx)

p(x.t) = R% Ae —+ Be : } (2.4.5)

The spherical-wave equation has a similar integpiet as the plane-wave equation. The
first term represents a wave of magnitullgoropagating in an outward radial direction;
the second term represents a wave converging arigia with magnitud® . The main
difference is that the pressure amplitudes of spalewaves do not remain constant as

the wave propagates; they attenuate at a ratg of
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2.5 Basic sound reflection

Source
U]
Recewver
[:]
, 1

2

Helght

Source Image

Distance

Figure 2.1: Illustration of t he
principle of the inmage-source nodel.

To conceptualize sound reflection it is conventertonsider an idealized situation, the
one displayed in Fig. (2.1). The idealized situai®a single sound source within one,
and above another, semi-infinite medium separayes idanar interface. The media have
characteristic impedanceg§andZ, , respectively. It is assumed that the sound f¢ldhe
receiver is of the form of Eq. (2.5.1); that isisithe combination of the contributions of

the directP, and the reflectedp, paths.

Poa =R+ RP, (2.5.1)

The quantityr, in Eqg. (2.5.1) is the reflection coefficient. tfis assumed that the
acoustic waves are planar, then a solutionRpcan be found using the boundary-

element method. This is done by solving the sysieaguations Eq. (2.5.2) and Eq.
(2.5.3) that are linear in terms of the amplitudeshould be noted that Eq. (2.5.2)
represents the continuity of sound pressure anteeface and that Eq. (2.5.3) requires

that the normal particle velocity at the interféceero. They terms have been removed,

as the equations describe interfacey at0. The anglesd,, 6. and &, are the incident,
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reflected and transmitted angles. These are defisg¢de angle between the ray and the

normal not the surface.

Aeiklxcos(e,) + Aeiklxcos(e,) — Areikzxcos(e-r) (2_5_2)
Aei kxcod8) _ Aeiklxcos(é’,) — (%] Areikzxcos(er) (253)
2

The solution is given in Eq. (2.5.4). It can beptfied to expressR, in terms of a product
of terms for magnitude and phase) If it is assumed that the interface is locally
reactive then, by definitioriZ,, (6, ) will be constant for all values @ ; as a consequence
the solution simplifies to Eq. (2.5.5). Another ionfant result of this process is thét

must equald ; that is, the reflection of a planar wave musspecular.

i — _Z, COE(Hi )_Zl COiHT) — i
A TR T2 codg) ez cod) I @54
cogd8) -7
R=|—=% (2.5.5)
codg )+ 2

2

If the acoustical waves are assumed to be sphetiieal a restricted solution f&®, was

found by Sommerfeld [3] applying the boundary-elatmaethod to Eq. (2.5.6) and Eq.
(2.5.7). The form of Sommerfeld’s solution is givarEg. (2.5.8).

(0% -k)p=4m(00,n,) for z>0 (2.5.6)
op_ .2 3
—-=-ikt = 2.5.7
% ik Z, p for z=0 (2.5.7)
Pu =P +QP, =P +(R, +{1-R,JF P, (2.5.8)
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For cases where both the source and the recew@nathe interface between the two
media, Sommerfeld was able to express the totagyiald solution in the form of Eq.
(2.5.9). The form of Eq. (2.5.9) allows for thedniretation ofF as a surface-loss factor;
that is, the additional attenuation of the soundegaas a result of the interface. An
approximate solution foF was found, and demonstrated to be dependent griveal
complex values, the first and second numeric destaifo, 7 ). This solution is used by
Taraldson [3] to find the general solution giverEig. (2.5.10). It should be noted that the

Taraldson solution, while general and exact, isexgticit.

P =2F— (2.5.9)

F =1—j ow (2.5.10)
0

(2.5.11)

7= |—2 krz(i—: + cos(@)j (2.5.12)

An efficient and reasonably accurate approximatvas found by Lawhead and Rubnik
[3] and is given in Eqg. (2.5.13) and Eq. (2.5.14)is approximation is based on the
observation thaF has only a weak dependency bpnconsequently it is removed,
simplifying the equation. Although therfc function looks computationally intensive
because of its similarities to the cumulative dignsi a Gaussian distribution, there are
many fast ways of calculating its value. Moreoveshiould be noted that this

approximation is only good ikr,, the wave number times the distance from the pfint

incidence to the listener position, is much larian one.
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F =1+iﬁe‘perfc(—i\/;) (2.5.13)

erfq(x) = X (2.5.14)

He

So far the sound-pressure level of a point abosarface has only been considered with
regards to its location—that is, its distance fritve sound source along the direct and
specularly-reflected paths. As for all pure toribs,sound-pressure level will have a
sinusoidal variation with time. The amplitude oétsinusoid is given by Eg. (2.5.16).

ik, ikr,

e e
o (2.5.15)
_ [ (Qg. codkr,)-Q,, sinlkr, )) +r, codkr,)] . [r,(Qy, codkr,)+ Qg sinlkr, ))+ r, sin{kr, )]

1P 1P

= \/[r (Qrecodk.r,) = Qp, sinlk.r,)) + 1, codk.r, )] +[1,(Qy, codk,r,) + Qusin(k.r,)) + r, sin(k.r, )| (2.5.16)

12

2.6 Diffuse reflections

So far the reflection paradigms that have beenidered are derived from physical
principles. However it has been shown that theBleateon rules are inadequate for
modeling real rooms [4]. A possible improvemertbigllow for diffuse reflection; the
reflected wave is distributed over a range of amdleorder to model diffuse reflection,
it appears to be common (since Kuttruff [5]) to agerobability-density function (PDF).
These PDFs are used in two similar but distinctavd¥e first method is as follows: a

sound ray that reflects from a surface is assignethdom reflecting angéé with
probability of a givend. dictated by the PDF. The alternative approach sssume that

energy is distributed in all directions, with theportion of the energy in a given
direction determined by the PDF. The former is caotaponally easier to implement;
however the latter seems closer to reality, withghoviso that neither of the two

methods is justifiable from physical principles.

10
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A common special case for diffuse reflection is bemt’'s Law reflection. Under
Lambert’s Law it is assumed that the reflected slantensity is the same in all
directions. This does not imply that the proportafrenergy reflected in all directions is
equal or, in other terms, that the PDF for Lamlsdrdw reflection is non-uniform. For
the case where the reflected azimuth angle is asdtionbe the same as that of the
incident ray, this is the two-dimensional case.mntiee PDF is given in Eq. (2.6.1). It
should be noted that PDFs used in this reportheilieported up to a multiplicative
constant.

f(6,16)0coddy) (2.6.1)

Equation (2.6.1) can be derived by consideringraitrary unit of surface that has been

excited by a sound beam. If all of the sound enesggflected into the same angle
then the width of the reflected beam will bedd,) times the width of the incident beam.

This is shown in Fig. (2.2). Consequently the istgnof that beam will have increased;
however Lambert’s Law reflection assumes that mibenisity is the same for all angles of

reflection, and Eq. (2.6.1) is used to normalizeititensity.

The case where the reflecting sound ray is ablatg with the polar angle but not the
azimuth angle is unsatisfactory, as the surfaceaslmaady demonstrated that it reflects
diffusely. In order to expand Eq. (2.6.1) to thokeensional diffuse reflection, only two

observations are necessary. The first is thatahelensity does not vary with azimuth

B,

Figure 2.2: Shows a sound beam enitted at angle g
from an energized region ==, of the surface. A
sem -spherical shell <centered on the energized
region is al so depicted.

11
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angle. The second is that the point density dbasge with polar angle. It is simpler to
describe the three-directional reflection in teohan azimuth angle that varies frofv

to n and a normal angle that varies from Orif2. In this way the PDF for the three-

dimensional case is given in Eg. (2.6.2).
f(6516) 0 codd,)sin(dy) = sin(26) (2.6.2)

The first point to make about Eq. (2.6.2) is thdtas no dependence on the azimuth
angle; this is as expected. The second point tsthleaod6,) component is present for
the same reasons as given in the two-dimensiosal ¢a order to justify thein(6,)

component it is necessary to first consider a siferbitrary radius around the excited
unit of surface. This is shown in Fig. (2.2). Thag density for reflected waves is

determined by the radius of a circle parallel t® srface at a height given Iy. This

value issin(dy) .

et

Figure 2.3: Illustration of a sound ray
diffusely reflecting from a sub-surface
e, with random inpedance and roughness.
The angles displayed are those in Eq.
(2.6.3).

12
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The pressure caused by diffuse reflection of agylarave incident on a sub-surface with
randomly rough surface and randomly varying impedas given in Eq. (2.6.3) [6]. The

functionsf(x, y) and £(x, y) are the differences between the values of the teimoe
and height at a poir(ix, Y) on the sub-surface, and their average valuesertumctions

are the realization of random variables.

_ e codd )cod8,)
I oty 2 o) 2]

Il )+ 2y y)lexelias,x+ 1,y oray

N \

14, = k(sin(6 )codg) -sin(6, )cod )) (2.6.4)
u, =k(sin(6)sin(@) -sin(8, )sin(@ ) (2.6.5)
y? =sin?(@ ) +sin?(8, ) - 2sin(g, )sin(6, )codw - @) (2.6.6)

If it is assumed that th@(x, y) and £(x, y) are isotropic as well as independent of each
other at a given point, the intensity of the refiéelcwavel , is given in Eq. (2.6.7). It is
also assumed that correlation functions@{k, y) and £(x, y) are given by Eq. (2.6.8)
and Eq. (2.6.9), respectively. Tz term in both equations is the standard deviation of
the B(x, y) and £(x, y) functions. Thew,, term is the correlation length of th&(x, y)

and £(x, y) functions. This is the distance that can be texv&lithout the admittance or

boundary position substantially changing.

A2 1 ‘ cod6 )cod8,)

e Prie ( od8)+ j(cos(gr)Jr 2 j
(|ikﬂ/3’(x, v)extli{uox+ 1,) axay|2 +[k2? [T el y)exed (#XX+,uyy)}axay|2j

Iy =

(2.6.7)

13
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r,(d)=03 ex%—ld—Z} (2.6.8)
2wy
2

r.(d)=o? exp{—%%} (2.6.9)

The two integrals in Eq. (2.6.7) are the two-dimenal spatial Fourier transforms of the

surface roughness (w) and the spatially varying admittaneg(w). Additionally, as
kyis the length of the vectqu projected onto they plane, the argument of the Fourier
transforms is replaced willy . The result of these changes is given in Eq. 1R)6.

Under the assumption that th#x, y) ands(x, y)are statistically independent of each

other the cross product of the Fourier functionsei®. Using the identity given in Eq.
(2.6.11), Eq. (2.6.10) can be rewritten in the farieq. (2.6.12). Indeed it is this identity
that allows the intensity of the sound field todaéculated explicitly and, consequently, is
the motivation for calculating the intensity of ttiéfuse wave as opposed to directly

finding its pressure.

A1 ‘ cod8)codé))

ID = 2,2
oc 1Pr 2] (Cos(gi)+ 2z, j(cos(a% zZ, j (2.6.10)
Z, Z,
><(k2|Fr,J,(ky)|2 % (ky)|)2
%F(w)f = _]iexp{i wrll (r)or (2.6.11)
I _A 1 ‘ codd )cod8,) Area
2y IS (cos(ﬁi)+§1j(cos(ﬁr)+§lJ 4 (2.6.12)

(kz _]iexp[i kyr}r ;(r)or +k*y* _]iexp[i kyr}r, (r)o TJ
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The integrals in Eq. (2.6.12) are explicitly solie@because the limits of integration are
infinite. The computation of the first integralseown in Eq. (2.6.13) through Eq.
(2.6.15); the other integral is computed in exatlty same way. Finally the explicit
intensity formula is given in Eq. (2.6.16). An irgsting note is that this is not identical to
the solution presented in Morse and Ingard [6] Wiappears to be in error; their solution
is presented in Eq. (2.6.17).

00 0 2
J'exp{ikyr}rﬁ (r)or = J'exp{ikyr}af,, exp{—%r—z}ar (2.6.13)
b i Wps
= —02\/Eexp{—lk2y2w2 }w erf im _ (2.6.14)
55 5 5 (Wg ow, | 0.
=+2no}, exp{— % k? yzwj}wﬁ (2.6.15)

_ A2 217 Area cos(6, )cos(é, )
pc At rir} Z YA
’ (COS(& )+ le(COS(Hr )+ Zl] (2.6.16)

I D

2 2

(kzwﬁaz exp{—%kzyzwf;} +Kk?y*w, o’ exp{—%kzyzwf}]

_A Area ‘ codd,)cogd, )

- 2,2
2T code) s 2 [ codo)+ 2
Z, Z

2

(kzwzaf} ex;{— % kzyzwf,} +k*y'wo? ex;{— % k?y?w? }j

X

D

(2.6.17)
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2.7 Inverse theory

Inverse theory is the estimation of the parameieespostulated model of a physical

system from observed data. In Eq. (2.7.11)is a model @ is the set of unknown

parameters X is the observed independent data“and the observed dependent data.
Consequently, Eg. (2.7.2) expresses the inversmthestimate of the set of parameters,
@ . It should be noted that, in general, the obskdaga will consist of a set of
independent data points that are matched with afsigpendent data points by the

model.

Y = f(8] X) (2.7.1)
6=1"Y|X) (2.7.2)

The solution given in Eq. (2.7.2) will, in genereither not exist (have no closed form) or
be under-specified, thus having an infinite numifesolutions. Accordingly, inverse
theory is solving these two problems. This sectilhprovide some basic solution
techniques that will be used later in this theEigese techniques are numerical
estimation, percentile estimation, and statistieahniques (Bayesian inversion and

maximum likelihood estimation).

Numerical estimation, in general, involves creatmgobjective function, and
maximizing that objective function in an iteratiw@nner. Two common iterative
algorithms are the Newton Raphson algorithm (NR) thie Conjugate Gradient method
(CQ)[7]. The basic equation of the NR is given op E2.7.3).

X =X — f(x") (2.7.3)

In Eq. (2.7.3),x, will approach the value needed to mak(a<n) equal zero as

increases. This is an example of fixed-point iteratin the context of optimization it is

16
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less common that the objective is to find the fa function; more often the goal is to
find the maximum or minimum of a function. If thenfction in question is assumed to be
smooth then Eq. (2.7.3) can be rewritten as E@.42.This will now locate the extrema

of the function f , as such values will only occur if the derivatigseequal to zero.

=X, - )) (2.7.4)

The formulas for the CG method are given in E¢7.8).through Eq. (2.7.7). The scalar

multiple 8 shown is the Flecher-Reevgs however other choices are available. The

is the step size; this term is given the subsaripas in many applications it is useful to
have a varying step size.

Xn+l = Xn +an/\xn (275)
AX, = BNX,, —0Of (x,) (2.7.6)
DX DX,
B, =—" (2.7.7)
AX;lr—len—l

A significant problem of numerical estimation os @wn is that it is difficult to ascertain
to what degree of certainty an estimate is valedcéntile estimation is one solution to
this problem; percentile estimation is simply agass to estimate an arbitrary percentile
of the distribution of a parameter. Before contigyjiit is useful to go through the short

proof of this technique.

_[Ax if(x>=0)
g(x)_{—Bx if (x<0) (2.7.8)
Error = Tg(@—@)f (6)06 (2.7.9)

17



Chapter 2

Eq. (2.7.8) can be conceptualized as an absolute-fanction, as it will always return a
positive number. However, unlike a conventionaloditg-value function, the slopes of
the two sides are different. In Eq. (2.7.9),is the distribution of the unknown
parameteé; this distribution can also be thought of as tegainty of & for parameters

for which a distribution seems conceptually ungegtlConsequently, Eq. (2.7.9) can be

thought of as the expectation g(@— é).

Error = A* T(H—é)f (6)06 + B* f(é—e)f (8)08 (2.7.10)
é —00
Error = A* Tef (6)06 - Aé*T f (6)06 +BO* f f (8)06-B* Tsr (6)06 (2.7.11)
é é —00 —00

If the integral in EqQ. (2.7.9) is decomposed into pieces such that the difference of

fand @ is always positive, then it yields Eq. (2.7.10hisTequation can be further
decomposed into four terms, as given in Eq. (2)7.THe goal of this process so far has

been to find thed that minimizes the error value; suctfavould be a critical value of
function Error(é). Consequently, if the derivative &rror (@) is taken with respect to
8, and set equal to zero, and this equation is sbéred for@, the solution will be the

value of & that minimizes theError (é)

5 - L L0 8
0= E(A* .gﬁf (6)06 - AH*! f (6)06 + BO* _Lf (6)06-B* :[06\‘ (e)aeJ (2.7.12)
0=-A+A*F|§|+B* F|g] (2.7.13)
AN _[:
:(M BJ_ F[H] (2.7.14)

EqQ. (2.7.12) is the derivative of Eq. (2.7.11) wiélspect tod. F is the cumulative

density function (CDF) associated with the prolkigbfunction, f . The solution is given

18
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in Eq. (2.7.14). This solution can be interpretedallows: sinceF is the CDF ofg, i

must equal the percentile value associated witlpéneentage given on the left-hand side
of Eq. (2.7.14); that is to say, # is equal toB, 6 would be the 50th percentile éf,

the median. Alternatively, iA were equal to five percent of the sumAfand B, ]

would be the 5th percentile &f.

In the case where a model is over-specified,nbisnally helpful to assume that each

measurement has a value that is distributed by smsiemed distribution functidn

around the true value. The true value can thersbmated using standard statistical

techniques, such as Bayesian inversion, and maxilikeithood estimation.

The first of these to be discussed will be maxinikelihood estimation; in order to do
this, the likelihood function must first be intrazid. A likelihood function is the product
of the probability of each element of observed dgitaen the parameted.

Consequently, it can be thought of as the prolgmfiobtaining the sampled dataset.
For numerical reasons, it is often easier to usddy-likelihood, which is the sum of the
logged probability of each element of the datasqt.(2.7.15) and Eqg. (2.7.16) give a
generic likelihood function and log-likelihood furan, respectively. In order to achieve
a maximum likelihood estimate, one takes the daviga of the log-likelihood function,
with respect to unknown parameters, and sets tlyeral ¢0 zero. The resultant system of
equations can be solved either directly or thromgmerical methods to find the

estimates of the parameters.

L= |—| p(x |6) (2.7.15)

log(L) = > log(p(x |6)) (2.7.16)

The Bayesian approach to statistical estimati@andsect result of Bayes’ rule [8], which

is given in Eq. (2.7.17). This states that, for amy eventsA and B, the probability of
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both A and B is equal to the product of the probability Bfand the probability ofA
given B.

p(A& B)O p(A|B)Tp(B) (2.7.17)

For Bayesian estimation, eveAt is the sampled data and evdhtis a particular value
of the unknown parameters. In this context Eq..1Z)/can be rewritten as Eq. (2.7.18),
where 71(6) is the prior distribution o#, and L is the likelihood function of data given

6.

p(X,8)=L(X |8)0r(0) (2.7.18)

The prior distribution is used to represent prioowledge of a given parameter. For
example, the acoustical absorptionof a surface is required to have a value between 0
and 1. Thus, a reasonable prior distribution wdaddiniform between 0 and 1, and O
elsewhere. If specific knowledge of the absorptgoknown, as would be the case for a
sound absorber, then the prior distributiomottould be non-uniform over the range
between 0 and 1, assigning a higher probabilityalaes which are closer to the values of
the manufacturer’s claim af . The prior distribution is also often chosen tgr i

algebraic properties and, ideally, is the conjughg&ibution for the likelihood function

of the data. For example, if the data has a binbdms#ibution then the prior should have
a beta distribution, for most efficient estimatidiis is a common criticism of the
Bayesian technique, as computational ease is tedeia prior knowledge. This concern
is, in general, ill-founded, as most distributidr@/e a non-informative case that can be
used for prior distribution without explicit inforation, and are sufficiently flexible to
represent all possible cases.

f(6)0L(X |8)0m() (2.7.19)
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Because the data have already been observede#dsnable to consider it as an arbitrary
constant on the left-hand side of Eq. (2.7.18} &lso useful, for computational
convenience, to consider Eq. (2.7.18) as beingpgstionality relation, as opposed to an
equality (the reasons for this will be discusseerlan this section.). This results in Eq.
(2.7.19), where the left-hand side is the postatistribution of 6. If the posterior
distribution has an explicit form, it can be usedfoint estimates—normally the
median, mean or mode éF—and for conference intervals on valueséofin the cases
where the posterior distribution does not havexgi@t form for these values, there are
several techniques to sample from an arbitrarytfandhat can be used to generate an
empirical estimation of the posterior distributidiine techniques discussed in this
document are based on Markov-Chain Monte-Carlo au=tliMCMC). MCMC methods
work by generating a series of random values thlaapproximate an independent,
identically-distributed sample for the desired pastr distribution; the approximation

will get better as the length of the sequencedsei@sed.

Two techniques for implementing MCMC are Gibbs skmgp and the Hastings
Metropolis algorithm (HMA). Gibbs sampling is alsalled alternative conditional
sampling. Consider a model witk parametersq, &, ... 6, ). Each iteration of the
Gibbs sampler algorithm loops from 1 ko, sampling the new value of th& parameter
given all of the others. Eq. (2.7.20) gives theriistion of the K' parameter for thd't

iteration of the Gibbs sampler algorithm.

b, ~ (6, 16) (2.7.20)
6.=(6.6.....8..6:.67) (2.7.21)

It is helpful to note that that Gibbs sampling nbeymodified to allow for a’kset of
parameters to be updated at each of the iterafidresGibbs sampler will sample from a

distribution that will, in the long term, approxiteahe desired distribution.

The second technique is the Hastings-Metropolisralgn. The HMA works in a similar

manner to Gibbs sampling, but does not requirgextiivay to sample from the desired
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distribution, even one parameter at a time. In otdd®egin the HMA, a set of starting
values for the parameters is required. The onlyioti®en on the starting values is that the
posterior density function must be greater theo farthe staring values. The algorithm
then iteratesI’ times; each iteration has sub-steps, one for each of tKe parameters

of the model. In order to describe the algorithims iiseful to consider each step as

composed of three stages.

The first stage for the'kstep of the't iteration of the HMA is to select a new candidate
value. This can be done in a variety of ways; hawelre algorithm is fastest if it can be
sampled from the desired distribution. As thisriisttion is unknown, it is normally
efficient to select it from a distribution whiche#ther a “likely suspect” or to add random

a symmetric random variable to the current value.
a5 ~3,(x6.,,) (2.7.22)

The second stage is to calculate the probabificoepting the proposed value. The
probability is denoted and is given in Eq. (2.7.23). It can be interpileds the ratio of
the probability of the candidate value to the cotrkalue of the R parameter. The
second term is a correction factor to allow thepudrstribution to not be symmetric

about the current value of the parameter.

[ = Min( p(gt(,:k |Y’Ht,1’91,2""’et—Lk—l’Ht—l,kﬂ’“') * ‘](Ht—l,k |91Ck)

1|  (2.7.23)
PO 1Y.0.2.8 20 Bt Bror) IO 1 6ics) J

The final stage is to generate a uniform randoroevédtienotedJ ) on the interva[O;L].

The t" value is then selected given the formula in Eq7.2).

65 U<
0, ={gt’k ! >r (2.7.24)
t-1k r
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A useful attribute of both the Gibbs sampler arelMMHA is that they can be used
collectively to estimate a set of parameters. THusis relatively easy to sample from a
distribution for only one of the K parameters ahadel, and it is computationally
expensive to calculate the likelihood functionlod tlata given the parameters, then it is

possible to implement Gibbs sampling for the patemea question and use MHA for the
other parameters.
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Chapter 3
Literaturereview

As stated in the introduction the objective of tesearch reported in this thesis was to
utilize inverse-method techniques from other dilsegs in the investigation of
architectural-acoustics problems. The specific igctural-acoustic problem of interest
was determining the diffusion of sound as it rdBfoom a surface of unknown
impedance. Thus this section will review publistisetature in two broad categories: the
application of inverse methods, and the measureofehe acoustical properties of
surfaces. These categories are not mutually exeluas commonly inverse methods are
used to estimate the acoustical properties of sestarl he first of these categories to be

reviewed is the application of inverse methods.
3.1 Inverse methods

Inverse methods are commonly used in many areasoofstics; consequently a wide
variety of inverse methods are involved. This setfirst discusses papers that use

numerical methods and then papers that use Bay@siarsion.

An application of numerical methods is the papeil Bjerzadeh and Attenborough [9].
In it the model for the sound field above a serfirite impedance surface, Eq. (2.5.8),

was inverted to find estimates of the impedance/émious grounds. The inversion
method used was to find the root of Eq. (3.1.1hwéspect taZ whereQ,, is the

observed reflection factor given source locatioegéiency and power. The error is
optimized using the Newton Raphson algorithm. Aenesting aspect of the research is
that the impedance estimates are later used as/elds#ata in order to estimate soil

characteristics.

Error =

Qo -Q(AZ] (3.1.1)
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Kanzler and Oelze [10] used the congregate-gradigotithm for improved scatterer-
size estimation using backscatter-coefficient mesmants with coded excitation and
pulse compression. This paper describes a methestiofiating the size of acoustically-
hard spherical scatterers located in an otherwoseolgenous medium. It also should be
noted that the inversions done in both TaherzaddnAdtenborough [9] and Kanzler and
Oelze [10] papers are exact inversion; this is beeano approximations to the forward

models were used.

An example of an approximate inversion is in thpgradby Poole, Frisk, Lynch and
Pierce [11]; this paper describes a method forterg@&stimates of sea-floor acoustic
parameters. The estimates are found by solvingystem of equations given in Eq.

(3.1.3) for @ using the Moore Penrose pseudo-inverse. In E§.33.J is an n by p

matrix, where n is the number of data points aigithe number of parameters to be
estimated. The vectd is composed of the p unknown paramet&sand x :B X .. >gJ

are the measured dependent and independent dadactigely, as defined in section
2.7).

szkﬂ)ﬂ&@"”ﬂég (3.1.2)
26, 20, 6

Y =36 (3.1.3)

With respect to inverse methods (that is, ignotheg different forward models are being
used to relate different acoustical parametersfterdnt data sets), the difference
between Poole, Frisk, Lynch and Pierce [11] andefaddeh and Attenborough [9] is
that Taherzadeh and Attenborough [9] has a numegaoximation to the minimum
error values of the parameters of the forward madleére as Poole, Frisk, Lynch and
Pierce [11] has an exact solution for the paramseita linear approximation of the

forward model.
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It may seem that having an approximate solutioa pooblem is better than an exact
solution to an approximate problem. There are s¢aglvantages to the technique used
in Poole, Frisk, Lynch and Pierce [11]. The firbtleese is computational time; if the
forward model is slow it is simply faster to haveexplicit solution. Another advantage
is that if a Gaussian distribution is assumedHierresiduals, the process will also return
standard deviations for the parameter estimatestfind advantage of the process used
is that the approximation to the model can be patyial, while still allowing for an

exact solution. In order to implement this it malsto be possible to take additional

partial derivatives of the model.

The exact and approximate inversions are not miytaatlusive. Goutsias and Mendel
[12] describes the inversion of a model consistihthe linear combination of four non-
linear models. A more extreme example of a hybethieen exact and approximate
inversion is Too, Chen and Hwang [13]. In this pape not-analytically-invertible
forward model is approximated by an artificial reduretwork which is invertible.

Equations (3.1.4) through (3.1.6) give the fornfolathe quantityy, , which is the value
encoded or stored at th® keurode in thélevel of the network. The parameters of the
artificial neural network are they, , ,’s, and thex,, 's are the input values (note that if

1>2 then the input values for a layer will be thiepait values of the pervious layer and
not necessarily the model input values.). In TdeeifCand Hwang [13] the so-called

transfer function;ﬁ(vky,) is the hyperbolic tangent. If the transfer funectiwas the identity

function and the network had only two levels (gouilevel and output level), then the
model would be an average of m linear models. &grdnsfer function is not the identity
function and the network has more than two layeissa model consisting of the linear
combination of many non-linear models that are welues the smaller artificial neural

networks (which are linear combinations of smatleural networks).

U, = Zwm,k,l Xin,(1-2) (3.1.4)
=1

Vi) = Uy +kaI (3.1.5)
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Y1 = ¢(Vk,l ) = tan}(Vk,| ) (3.1.6)

Bayesian inversion is a popular tool for creatistireates of unknown parameters,
although its use seems to be currently limitedrideuwater acoustics. A strong example
of an underwater-acoustics paper that uses Bayesiarsion is Dosso and Wilmut [14].
This paper describes explicit methods for inteipgethe posterior distribution. The
parameters estimates are defined as the maxiaypogeriori distribution (MAP), as

given in Eq. (3.1.7), wherd (Q)is the posterior probability distribution of the
parameterd. The one-dimensional and two-dimensional paranwstributions are

given in Eq. (3.1.8) and Eq. (3.1.9), respectively.

6= Arg,.(f(6) (3.1.7)

,6)=[sler-4 [)de

=[[-f]-[1(6.6;..6.,.8...6.)08,.06.06.,.0608|

,(6.6,)=[ole -4 )l -4, ( e (3.1.9)

(3.1.8)

Dosso and Wilmut [14] also describes some fast Sagymethods. These are based on
the observation that the best distribution for slamgpa proposed value of an unknown
parameter is the posterior distribution. This ceogcnot possible since if the posterior
distribution was known explicitly, then it would nioe necessary to estimate it. However
if a reasonable approximation of the posteriorritigtion is used, the sampling speed can
be increased. There is also no possibility thabthgroximate distribution will create

error or bias in the estimation process as the M¥Acorrect any errors in the proposed
distribution. The proposed distribution used in 8mand Wilmut [14] is the posterior
distribution that would have resulted if the ilveemoblem was linearly approximated in
similar way to Poole, Frisk, Lynch and Pierce [JAn. additional benefit of this method

is that a rotation of the parametérgan be sampled from instead of the parameters

themselves. As a consequence, the algorithm is ffiastér when trying to estimate
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highly correlated parameters. The proposed didtabdor the rotated parameters is
given in Eq. (3.1.10). The rotation mattikis defined as the column eigenvector matrix
of Z; this is why Eq. (3.1.12) is valid, wheY& is the diagonal matrix of eigenvalues
corresponding to the eigenvector column&JafFinally the matrixJ is composed of

partial derivatives of the forward model in a sanimanner to Eq. (3.1.2).

g (2° ) p/2|z|]/2 exp{ (9° - o) =(° ﬁ)} (3.1.10)

9=U79 (3.1.11)
s=uwuT =075 0 +5 2 ) (3.1.12)

Of particular interest is the paper de Vries, Jaearad Schreurs [15] as it used inverse
methods to estimate the scattering coefficieninaduzhitectural surface. The inversion
process used is the boundary imaging method. Anlgegesponse is measured at each
point on an array parallel to and offset from theface of interest. Reflections from the
boundary are extrapolated to the position of thegin using their Rayleigh
representation integral.

3.2 Direct surface-acoustic measures

This section reviews conventional direct methodseasuring surface impedance and
diffusion. The first measurement procedures todesidered are those for impedance (or
absorption).

A well-known way to measure the impedance of aaméris the impedance-tube method,
described in ISO 10534-2 [16]. The method utilizgs microphones, a wave guide (or
impedance tube), a white-noise source, and a tigiguency-analysis system. The
microphones, loudspeaker and sample of interestraaeged as shown in Fig. (3.1).

Equation (3.2.1) gives the transfer functibin, that is used to calculate the impedance

values. The quantitie§,, and S, , are the auto-spectra of the signals received dtrtte
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Figure 3.1: Diagram of a typical inpedance tube wth

source M on the right-hand side and sanple M on the left-
hand si de.

and second microphones, respectively. The quesi®j, and S ,are the cross-spectra
of the signal at the second microphone with resgecfirst, and of the first microphone
with respect to the second, respectively. EqugBaa 2) gives the reflection coefficient
R, in terms of the transfer function. Finally Eq.43) gives the impedance of the
surface in terms of reflection coefficient. Thisimply solving Eq. (2.5.4) for

R,(6,.6;.Z), where both the incident and transmitted anglesaro.

12
S, S
H,, :(ﬁﬁl =Hg, +iH,, (3.2.1)
S1,1 S2,1
Hy,—H, .
=22 ™ exf2iks} (3.2.2)
Rp Hee = Hy,
1+
z=] :: (3.2.3)

Another common method of measuring the impedaneesoirface is the spherical-
decoupling method (SDM). This method is descrilveDeé Geetere [17]. The SDM is
similar to the impedance-tube method; however dt fiee-field method. The transfer

functionH , is defined as for the impedance-tube method agivén in Eq. (3.2.1). The

reflection coefficient is given by Eq. (3.2.4). THistances and angles are displayed in
Fig. (3.2). Equation (3.2.5) gives the impedancthefsurface. It also should be noted
that the sample and microphones should be locatdtkifar field of the source.

29



Chapter 3

Spaeakear

Mi rr‘.II r2

Mic2

&

Figure 3.2: Illustrates a typical spherical-

decoupling neasurenent setup. The diagram has

been augnented to include the image receivers
, Wwhich exist only conceptually.

I

exdikrl}_H exdikr,}
r Moo

— 1 2
R = exdikr,} H exgikr,} (3.2.4)
T T e '
rl rZ
IR 1

£=1C R, cod8)L-ikr,) (3.2.5)

A comparison was made by Graves and Hodgson [18jde® impedance measurements
made using the impedance-tube method and the SOMe\tthe results of the two
methods were found to be different, neither wastared preferred. A possible reason
for the discrepancy in the results is that the S&¥gumes wholly specular reflection and
only approximates the contribution of the spheheggflecting wave. There seems less
reason why the impedance-tube method would be umatx; however it is in general
impractical to implement, as it requires a diskpthsample of the material of interest.
Also it only can measure the impedance at nornzadl@nce.

If only the absorption averaged over all incidemglas is of interest then a third method
using diffuse-field theory is possible. This methsdiven in the ASTM C423-07a
standard [19]. The method works by comparing tenteeration times in a
parallelepiped reverberation chamber with and witlibe sample of interest. The total

aread of wholly absorbing material in a parallelepipsdjiven in Eq. (3.2.6)V is the
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volume of the parallelepiped artiis rate of sound decay (dB per second). Let ttad tot
area of absorption in the reverberation chambérowit the sample of interest be denoted
4,and the total area of absorption in the reverbemathamber with the sample of
interest be denoted, . If the surface area of the sample of interes jgshen the

absorption coefficient of the sample is given in E32.7).

4=09210% (3.2.6)
C
_(4-4), S 4 (3.2.7)
S Sec

Direct methods also exist for measuring the difiasor scattering characteristics of a
surface. The first method to be considered is tdik@n 1SO 17497 1 [20]; this will be
referred to as the reverberation-chamber method)RThe method described is for
measuring the random-incidence scattering coefficé surfaces caused by surface
roughness. The measurement results can be useddole what proportion of the sound
reflecting from a surface deviates from the specamgle. Similar to the previous method
for measuring sound absorption, measurements take m a reverberation chamber.
Indeed it can be viewed as an additional stepegthvious method. The additional step
is that the impulse response of the reverberati@mber is taken a third set of times with
the sample of interest rotating. This third measwaet gives the apparent random-
incidence absorption, denotegd. The apparent random incidence absorption is targe
than the conventional absorption; the increaseiéstd the apparent absorption caused by

scattering and thus measures the scattering ceeifid he formula fora is given in

Eq. (3.2.8). As beforeV is the reverberation-chamber volume ahds the surface area.

The quantitiesTg and T, are the reverberation times for the chamber withwaithout the

sample; in both cases the turntable used to rtdtateample should be present and

rotating. It is important to note thatis not calculated by the standard method of

Schroeder’s integrated impulse technique [21]eadtl6 impulse responses taken while
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the sample is rotating are averaged, then the bevation time is calculated in the

conventional fashion. The scattering coefficierthisn calculated using Eq. (3.2.9).

Vil 1)
a, =553~ — +—= |- (m -m 3.2.8
s S(ch CJJ S (m-m,) (328)
s=2 79 (3.2.9)
1-a

A similar method to the RCM is described Vorlanded Mommertz [22]. This so-called
free-field method (FFM) is similar to the RCM, &gy both utilize the assumption that
scattered reflections are incoherent for diffex@mngntations of the surface. Eq. (3.2.9) is

still used to calculate the scattering coefficeenhowever the formulae fo and a are
different and are given in Eq. (3.2.10) and ER.@L), respectively. The valug,; is the

complex reflection coefficient measured at fAeiientation of the surface.

2

a=1- %z R (3.2.10)
i=1
1 n

a, =1—EZ:1:|RPJ|2 (3.2.11)
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Chapter 4
Experimental setup, loudspeaker
characteristics and data

This chapter consists of three sections. Thediestribes the experimental setup for

making steady-state sound-pressure-ldyemeasurements. Section 2 gives a detailed

description of the characteristics of the sound@®used in these tests, as well as the
method by which the characteristics were calculatesstimated. Finally, in the third

section, the measurdd, values are presented.

4.1 Experimental setup

This section describes the method by which stegatg-sound-level measurements were
made. These measurements were used in an inv@rsioass for models described in
Chapter 5, in order to create estimates of the immt@ameters—in particular, surface
impedance and diffusion coefficient. A brief deption of the experimental setup and
procedure is as follows. A 12%t12 ft rigid surface (34-in-thick painted plywood on
studs with 24-in spacing) was constructed in thechaic chamber. Materials of interest
were placed on top of the rigid surface to crethteratest surfaces. These surfaces were
selected to represent typical architectural sugatae sound field was irradiated by a
single loudspeaker that was placed approximatetyroeter above the centre of the test

surface. A microphone was then suspended abowaitfece. Thirty-twol |

measurements were then taken for each surface atisa-tone frequencies and once
with white noise; each of the 32 measurements waducted at a different location

within the chamber.
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Microphone Track 1

]
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o
=

Sample

Anechoic Chamber

Figure 4.1: A plan-view representation
of the experinental setup.

A plan diagram of the experimental setup is shawhig. 4.1. The side length of the
sample is 3.65 m. The dimensions of the anech@mbler were 4.7 m by 4.3 m by 2.3
m. The microphone was placed every 15.02 cm algagKT1 at a height of 16 cm. The
microphone was placed every 7.56 cm on Track Zhaight of 58 cm. If the lower left-
hand corner of the sample surface is taken asfeeence, with horizontal direction as
the x axis and the vertical as the y axis, theretius of Track 1 were at x =52 cm, y =
251 cm and x = 228 cm, y = 250 cm. The ends ofKieawere at x =73 cm, y = 64 cm
and x =74 cm, y = 179 cm. The source was located=al88 cm,y =170 cm and z =
100 cm.

Table 4.1: The | oudspeaker anplitude for
the six pure-tone frequencies.

Frequency |Lower Bound A |Estimate A |Upper Bound A
250 Hz 95.17 95.19 95.64
500 H=z 96.23 96.32 96.53
1000 Hz 97.43 97.63 95.05
2000 Hz 95 382 96.25 96.50
4000 H=z 93.05 93.75 94.91
8000 Hz 75.56 76.65 51.22
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4.2 Loudspeaker characteristics

Tabl e 4.2: The | oudspeaker anplitude for
the white noise in octave bands.

Frequency |Lower Bound A |Estimate A |Upper Bound A
250 Hz 72.75 7284 72.99
500 Hz 73.12 73.35 73.40
1000 Hz 78.07 75.81 79.42
2000 Hz 82 28 83.17 33.65
4000 Hz 80 .36 51.57 82.19
8000 Hz 74.31 75.07 78.27

The amplitude in decibels of the source at the{pome test frequencies is given in Table
4.1. The amplitude in decibels for the white narsectave bands is displayed in Table

4.2. These values were calculated by solving ferAhterm in the special case with

equal to zero in Eq. (2.5.8), as shown for one mmremsent in Eq. (4.2.1). The, .,

term is the observed ; for the empty anechoic chamber. As ohealue would have to

fit all 32 measurements, the system of equationgigeed is over-specified;

consequentIyA\, the value ofA that minimizes the absolute error, given in EqR. @),
was used. The same process was used to find théwdep of the source for white
noise. The confidence intervals are calculatedgugia percentile-estimation technique

described in Chapter 2, Section 7.

20Iogm(

exdikr,}

1

(4.2.1)

p.Empty

J+ A= A-20log,,(r,) =L

ey Lo +3220Ioglo(fu ) (4.2.2)

i=32

Figures 4.2 and 4.3 display the measukgd, . and the predicteﬂ the prediction

p,Empty;
is made assuming that there is no loudspeakertiditgcAs can be seen, there is poor
agreement at the higher frequencies. Although tbeuéd be many sources of error, it is

assumed to be a result of loudspeaker directivity.
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Figure 4.2: The neasured o, and predicted —, pure-tone
sound-pressure levels in the enpty anechoic chanber
assum ng no |oudspeaker directivity, plotted against the
direct distance from the source to the measurenent
| ocati on.
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Figure 4.3: The neasured o, and predicted —, white-noise
sound-pressure levels in the enpty anechoic chanber assum ng
no |oudspeaker directivity, plotted against the direct
di stance fromthe source to the neasurenent | ocation.

The directivity is over both the azimuth and paagles. For the purpose of the work
presented later in this thesis, the directivityiaton with azimuth angle will be assumed
to be independent of that with polar angle. Adaidélly they are assumed to be dB
additive, and are calculated from Eq. (4.2.3). ftveetions J,(6) and J,(¢) are the

directivity functions. Figure 4.4 shows the polagke directivity of the speaker at the six

pure-tone frequencies of interest with a loess smoo
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Figure 4.4: The neasured o, and snobothed =—, | oudspeaker
directivities (Delta) plotted against the polar angle
(theta) in radians.

A_ 20|Og(r1) + 59 (0) + 5¢(¢) = LP,Errpty (423)

Although it would be possible to use a look-up ¢atol account for the functional value of

%,(6),

this would inhibit any further analytical workofin being conducted. Fortunately,

knowledge of the directivity is only required iretmnge(— 2, 77/2], and the directivity

function seems to have a near quadratic relatiom @iin this range. Accordingly, the

polar directivity was approximated by a quadrattypomial for each frequency; an
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Table 4.3: Paranmeter values
of the directivity function
at each frequency.

Frequency| A B iz
250 Hz -0.8401-0.077| 1.904
500 Hz -0 694|-0593] 2239
1000 Hz -2 085(-0.130] 3.907
2000 Hz -5.138|-0.032] 8774
4000 Hz -5 7210 -0.415) 10 415
8000 Hz -7 45| 2.212) 14 662

arbitrary quadratic polynomial is shown in Eq. (4)2The parameters of the polynomials

are listed in Table 4.3.
5,(8)= AG* +BO+C (4.2.4)

Once the polar directivity was accounted for, thienaith directivity of the loudspeaker
could also be considered. Figure 4.5 shows théaoakhip between the azimuth angle
and the loudspeaker directivity. The relationshepAzen the two values is less clear; in
general there appears to only be a significantiosiship at the higher frequencies (4000

and 8000 Hz); consequently the functidq;((p) was assumed to be uniformly zero for all

frequencies below 4000 Hz. For the higher frequesche loess curve shown in Fig. 4.5

was used.
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Figure 4.5: The measured o, and snoothed =—, |oudspeaker
directivities (Delta) plotted against the azinmuth angle (Phi)

in radians.

4.3 Data description

As noted above, there were seven test surfacesesest. These were big blocks (BB),
small blocks (SB), FORESTwall (FW) [manufacturedMgrinwood, Inc., 1511 Fell
Street, Victoria, B.C., VB8R 4V9; http://www.foresillicom/], acoustical baffles (Soft),
Corelam plywood [available from Corelam Ltd., 71568th Ave, Vancouver BC V6P
2W2; http://www.corelam.com/] aligned in tRedirection (Sinel), Corelam plywood
aligned in they direction (Sine2), and the reference surface YFldtis section describes
each of these surfaces, and the sound fields nexhabove them.
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The Flat surface consisted of ¥%-in plywood abouesivith 24-in spacing. The plywood
was painted, to reduce porosity and therefore @isor however it was composed of
five separate panels. The BB surface consiste®-@in3 cubic, varnished wood blocks
randomly scattered over the top of the referencase. The SB surface consisted of 10-
cm lengths of unpainted “two by fours” nailed tdgat These blocks were then
randomly distributed over the reference surfacpicture of this configuration is shown
in Fig. 4.6.

The next test surface was the Soft surface. Thmsisted of 18 acoustical baffles,
approximately 3-cm thick, covering the referencdagie. The surfaces Sinel and Sine2
consisted of 2.8-mm thick plywood pressed intonaisoidal shape along one axis with a

5-mm amplitude.

For each of the surfaces 224 measurements were Miaglge measurements were made
at 32 locations with each of six pure-tone and white-noise excitations of the sound
field. The pure-tone sounds were made at 250, B000, 2000, 4000 and 8000 Hz. Also,

as noted above, the 32 measurement locations waded along two measurement

Figure 4.6: The experinental setup while the SB
surface was being evaluated (the |onger
obstacles were not present at the tine of
neasur erment) .
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tracks. Figures 4.7 and 4.8 display the measlrestalues for Tracks 1 and 2,

respectively, at the six pure-tone frequenciesuréig 4.9 and 4.10 display the measured

L, values for Tracks 1 and 2, respectively, whersthend field was energized by white

noise. The frequencies in Figs. 4.9 and 4.10 teféne!s-octave band centered at that

frequency.
2000 H=z 4000 Hz BO0OO Hz
TN
100 @_‘9% f};‘(vh
L' P !
) A\ 2 i\}f\ A
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Figure 4.7: The neasured steady-state sound-pressure |evels
(pure-tone excitation) above the surfaces of interest,
plotted against the x (Track 1) coordinate of the
nmeasurenment |ocation (BB =, SB =, FW —, Flat =, Soft
Sinel , and Sine2 ).
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Figure 4.8: The neasured steady-state sound-pressure |evels
(pure-tone excitation) above the surfaces of interest,
plotted against the 'y (Track 2) coordinate of the
nmeasurenment |ocation (BB =, SB =, FW —, Flat =, Soft
Sinel , and Sine2 .)
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Figure 4.9: The neasured steady-state sound-pressure |evels
(broad band excitation) above the surfaces of interest,
plotted against the x (Track 1) coordinate of the neasurenent
|l ocation (BB =, SB ==, FW —, Flat ==, Soft , Sinel , and
Sine2 ).
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Figure 4.10: The neasured steady-state sound-pressure |evels
(broad band excitation) above the surfaces of interest,
plotted against the y (Track 2) coordinate of the neasurenent
location (BB =, SB ==, FW =, Flat ==, Soft , Sinel , and
Sine2 ).
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Chapter 5
Forward models and inversion procedure

This chapter describes the three heuristic forwmaodels for predicting the RMS sound-
pressure level above a diffusely-reflecting impesasurface. The models are the image-
surface model (ISM), the image-surface semi-phasge(ISSPM) and the diffuse-
reflection energy model (DREM). Also discussedtareinverse methods that were used

to find estimates of parameters for each of theetsd

Before continuing with an explicit description betmodels it seems useful to give a
general one. All of the models that were consid@redict the RMS sound-pressure

levelL, at a point above an impedance surface in a hatfespradiated by a single
source. The models take as their arguments the-thmensional coordinates of the
receiver,L =[Lx Ly Lz|". The parameters of the models are the sourcedacat
S=[x & &, the source amplitude, the surface impedanc@=Z,, +iZ,,, and
the surface diffusion coefficiedt. The surface diffusion coefficient is a parameter

defined for use in these models; it will be desediln detail later, however it is similar to

the scattering coefficient described in Vorlanded Mommertz [22].

The model will be inverted to solve for the paraengZ and D . It was possible to

directly measure the amplitude and source-locgiamameters. Therefore they are treated
as constants, known from their measured valuese$timated parameters were
restricted to a physically meaningful range. Far shrface impedance this meant that the
real component must be positive, while the imagir@mponent was unrestricted [1]. As
the diffusion coefficient was created for the cameeace of the models presented in this
thesis, its physically meaningful range is lessiobs. Thus the most conservative set of

bounds was used; these are zero and one.
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5.1 Image-surface and image-surface semi-phaselsnode

Both ISM and ISSPM assume that each of the obsel::gedalues is a random variable.

The distribution of__ ., the I" value ofL,, is the Gaussian distribution and is given in Eq.

p.i?

(5.1.1). There are two important points to obseveut Eq. (5.1.1). First is that the mean

ofL,;, 77;, does not in general equal the meah gf, 7,. Second, the varianag® of

the distribution is constant over all observations.

L, ~—— exp{—w} (5.1.1)

20

The termys, is the systematic component of the model. Equdtdh?2) is the formula
for n7; note that the subscript has been dropped to dkeidotation becoming too
cumbersomey can also be called, . yceq

I7 = 2Ologloqptotal |)+ A (512)

The quantityP,,, is a heuristically modified version of Eqg. (2.5.8he equation has

otal
been augmented such that instead of the two waexi and reflected) of Eq. (2.5.8),
there are now three waves. The new wave is thasgilj-reflected wave. Equation

(5.1.3) givesP,,, for the ISM; this is not the same as for the ISSkiich will be

described later.
Pow = P5 + PS’pec + Py (5.1.3)

As a result of the significant loudspeaker diratgidiscussed in Chapter 4 each wave

must be multiplied by a directivity terﬁ;#,(é’,(o). Equation (5.1.4) gives the formula for
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the directivity in terms o8, (6)andd, (¢), the directivity terms from Eq. (4.2.3). The

valuesA; , B, andC, are frequency dependent and are listed in TaBle 4.

5(6)+3,(9) A 8°+B6+C( +3,(9)
&,0.9)=10 ® =10 20 (5.1.4)
Ptotal = EH,;a(eD ’ ¢)D )PD + 59@(93)&’ ¢)Spec )Pspec + Pl;if (515)

The inclusion of directivity in the diffusely-refténg wave is more complicated, as it is a
sum of many waves all radiating from the sourceifférent angles. Its directivity term
will be described later. The formulae for the diracd reflected pressure contributions
are displayed in Eq. (5.1.6) and Eq. (5.1.7), regpely. The F term is still the bottom-
loss factor, as described in Eq. (2.5.1R);is the reflection coefficient defined in Eq.
(2.5.4). The parametdD is the diffusion coefficient of the surface desedbn the

introduction to this chapter.

P - _eXpPkrl} (5.1.6)
Py = (1- D)Qw (5.1.7)
Q=(R, +{1-R,)F) (5.1.8)

The integral that defines the diffusely-reflecteave is given in Eq. (5.1.9). Itis

important to note that although the integral appéatbe free ofkandy , the location of
the reflection of each diffusely-reflecting rayl @il the angles, as well as the reflected
path lengths, are functions afandy . Equation (5.1.10) gives,, which is the total
distance from the source to the po[im y O]T on the surface and on to the receiver
position. The diffuse-reflection coefficielﬁ(é?i ,HR) Is given in Eq. (5.1.11); the angles
are shown in Fig. 5.1, Eq. (5.1.12) and Eq. (51.1Be functionCD(Hi,HR) Is displayed
in Eq. (5.1.14).
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uby ub, i
k
Pyir =D J. I Ee,w(gDif ' it )"(9. ’gR)q)(gi ’QR)M‘?X‘W (5.1.9)
Ib, 1b, D

\/(x— X +(y-9y) +(x2) + \/(x— Lx)? +(y - Ly)* +(L2)? (5.1.10)

r.6:)= Z (5.1.11)
codg, (6,6,))+ “4 - %)

6,(6.6,)=2 J;QR (5.1.12)

6,(6,.6:)=6 -6, (5.1.13)

»(8,,6,) = cod8 )sin(26,) (5.1.14)

The ISSPM is similar to the ISM—differing in ho\R,, | is defined; Eq. (5.1.15)

displays the definition o|tPtma,| for the ISSPM. The distinction is that the diffuse

component is always added in phase to the diretspacular components.

Figure 5.1: The path of a sound ray
(=) diffusely reflecting off a
conceptual surface (---) which is a
rotation of the actual surface (=—).
The angles displayed are those in
Eq. (5.1.9) through Egq. (5.1.14).
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IPoca| =|Po + Pepec| | Post | (5.1.14)

Before continuing, it is important to interpret dmelristically justify the ISM and the
ISSPM. The inclusion of the paramet@iin these models allows the distribution of
reflected energy to vary from wholly specular toolf Lambert’s Law diffuse. A short-
coming of the model is that one of the possibléud#ly-reflected angles is the specular
angle; thusD is not exactly the proportion of energy that ide@ted in a non-specular

direction.

Both the ISM and the ISSPM are based on the cormtept image source. For a
conventional image-source model, as described aptén 2, there is only one image
source; this source corresponds to the speculeflgeted wave. However if an image
source is assigned to each point on the surface th&ead of a singular image source,
there is an image surface. This is similar to thetracing model (version DRAYcube)
that is used in Hodgson [23]; given enough raysyepeint of the surface will reflect a
diffusely-reflecting ray to the receiver, consediyeavery point on the surface can be
considered to correspond to an image source. Thws/af conceptualizing or

describing the ISM or the ISSPM is as a virtualusié-reflecting ray-tracing model.

An example of such an image surface is displayddgn5.2; the black line is the actual
2D surface; the blue grid is the 3D image surf&e@eh grid point displayed on the
image-surface corresponds to an evenly-spaceggiid of the actual surface. As can be
seen, the surface elements of the image-surfaceoareniformly spaced like the

corresponding elements on the actual surface. dieibn (4,6, ) is used to attenuate

the contributions of the regions of the image sesithat have the smallest surface

elements.
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Receiver

Figure 5.2: An illustration of an inmage surface (=) generated by a
source and receiver pair above a reflecting surface (=—). The inage
surface is projected into the xz plane, the yz plane and the xy pl ane.

The diffuse-reflection coefficient (6?i ,GR) can most readily be interpreted by

considering Fig. 5.1. The surface is replaced fytaal surface that has the local slope
required to make the incident and reflected angtggl. However the actual surface is
assumed to be locally reactive; as a consequeprdaotiizontal speed of sound in the
actual surface must be much smaller than the atrjmeed of sound. Thus the
transmitted ray must be normal to the actual serfaorder to accommodate this; the
angle of transmission of the virtual surface wdtnn general, be zero. The effect of this

is that, as the difference between andlemnd &, increases, the surface becomes

acoustically harder. This is similar to the reflentobserved at the plane interface

between two fluids [1].
5.2 The diffuse-reflection energy model

The DREM model is similar to the ISM and the ISSPPMhat it models the reflected
sound as the proportid of energy reflecting in a non-specular way. Wistinct in that

it does not account for the phase of the sound svéd®a consequence the DREM is
only used with the white-noise measurements, fdchkwvphase effects would be expected

to be small.
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Similarly to the ISM and the ISSPM, each of theesbied L, values is assumed to be a
random variable. However the distributionlof; , the i'th value ot , is not assumed to
have an explicit form. As is the case for Eq. (B),lthe mean oL ; is 77,. The variance

is g2, which is constant over all observations.
Lo, ~ f(Lp,i 117 102) (5.2.1)

Equation (5.2.2) is the formula f@r again the subscript has been dropped to avoid the

notation becoming too cumbersome.
1 =10log,,(PZ + PZ_ + P2 )+ A (5.2.2)

The definitions ofR,, Py, and Ry, are given in Egs. (5.2.3), (5.2.4) and (5.2.5),
respectively. The directivity terrﬂm(e, ¢1) is as defined in Eqg. (5.1.4). The energy-
reflection coefficienR. is given in terms of the normal-incidence energgoaaption
coefficient of the surface in Eq. (5.2.6). The aig-reflection coefficient is displayed in
Eqg. (2.5.7); the value§, and &, are functions off andd,, defined in Eq. (5.1.12) and
Eq. (5.1.13).

P, = 59,4/;(0;040) (5.2.3)
Py =(1-D)R —59*‘”(53;*’%*) (5.2.4)
uby ub,
P = D”.!- l‘b" fe,ai(gDif ' Dot )r:D(H. !HR)CD(Hi !HR)aXay (5.2.5)
a
) 005(9)—[2_0/)
R, = a (5.2.6)
005(6)+(2_aj
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re(6.6;)= (5.2.7)

cod@,) - cod8, )(zi’aj\
codd, ) +cod6, )(Ziraj‘

5.3 Inversion techniques

The goal of the inversion performed in this reskavas not only to provide estimates of
the unknown parameters but also to provide condentervals for them. Consequently,
Bayesian inversion and percentile estimation weezgluThe ISM and ISSPM have their
parameters estimated through Bayesian inversienDREM has its parameters

estimated through percentile estimation. The Bayesiversion will be described first.

The probability distribution of a single data poumtder the ISM and the ISSPM is
displayed in Eq. (5.1.1). Consequently the liketitidunction of the sampled data is
displayed in Eqg. (5.3.1).

5 1 _(Lp,i —/ )2
L= D \/Zmexp{ By } (5.3.1)

Since both models considered here are new, there psior information about the
parameters used within the models; thus it is reasle to assume a non-informative
prior distribution for each of the parameters. Tioa-informative prior distribution used

was the Jeffrey’s prior, denotewd, (Z, D,Jz)[8]. Equation (5.3.2) displays the formula
for a Jeffrey’s prior. The functiom(g) is the Fisher information of the data with respect
to the unknown parameters. The functix) is the expectation of the random

variablex. The particular Jeffery’s prior for the ISM anett8SPM is given in Eq.

(5.3.3). It can be interpreted as a non-normalir@tbrm distribution over the model

parameterZ andD, as well adog(az).
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m,(6) 0 \/del1 (8)] = \/de{E(aiQIog(L(Q))ﬂ (5.3.2)

m,(z,0,0%)0 % (5.3.3)

The posterior distribution of the models is givarEq. (5.3.4). For computational
efficiently it is useful to consider the log-posterdistribution, which is displayed in Eq.
(5.3.5). There is no analytical solution for theegral in Eq. (5.1.9), so it is approximated
numerically, as shown in Eq. (5.3.6). The approtiomacan be interpreted as giving a

diffusely-reflected image source to every squargioeter of the surface.

N1 &2 1 ey -n)
log f (Z, D,az) = —34log(c) -16log(27) - i(%} (5.3.5)

365 365 ikr 2
Poir = Dzzfew(@mf » Pt )r(el 19R)q)(9i ’BR)M(ﬁ)j (5.3.6)
=1 j=L D

Now that the approximation to the posterior disttibn is well defined, it is possible to
describe the inversion procedure. It is importamadte that this procedure had to be
repeated for each surface test sample at eachefneguAdditionally it was repeated for
both the ISM and the ISSPM.

The inversion consisted of three steps. The ftegt 8wvolved finding starting values for
the optimization procedure. The second step invbiteratively taking samples of the

parameters. The third step involved summarizingstimapled parameters.
The starting values were point estimates of tharpaters that maximized the posterior

likelihood. The estimates were found through repgalication of the conjugate-gradient

(CG) algorithm to the function from many randonrttag locations. When it was
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reasonable to conclude that a global minimum haa tfeund, these values, denofgd

D, ando;, were used as the starting values of the estimatiocess.

The iterative samples were obtained by two methddds.Z and D values were

obtained through the application of the Metrop#iistings algorithm, while the?
values were obtained through Gibbs sampling. Gdalospling is the faster of the two
methods but has more restrictions on its use,Zhand D fail to meet. The sampling

process for the arbitrarykiteration of the inversion process will now be atézed.

The candidate values & and D were selected by adding a random value to current
iteration k-1" of Z andD . Equations (5.3.7) and (5.3.8) show the candidaltees ofZ

andD, Z. andD., in terms of their current values. The randomatalgJ, , which is

used to create a candidate value Zgris defined in Eq. (5.3.9). The distributions loé t
real and imaginary parts are given in Eq. (5.3d@) Eq. (5.3.11), respectively. The
meta-parameter was tuned such that the model accepted approxdyr&EQepercent of

the candidate values. The distribution of the ramdalued; , which is used to create a

candidate value foD, is given in Eq. (5.3.12). The meta-param&tewas also tuned
such that approximately 50 percent of the candidaliees were accepted. Once tie k
candidate values faz and D were found they were accepted or rejected as idesicin
Chapter 2, Section 7. This method of creating alickate value was favoured over the
use of a proposal distribution to reflect the la€lprior knowledge inherent in the
problem.

Z.=Z,+J, (5.3.7)

D. =D, +J, (5.3.8)

J, =ReJ,)+Im(J,)i (5.3.9)
1 _ReJ, )

Re(J,) o exp{ o } (5.3.10)
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2
Im(3,)~ ﬁex%— %} (5.3.11)
L |-W<J, W
Jo ~ 12w -Te (5.3.12)
0| otherwise

The second part of thdliteration is to create a new value for #é. This can be
acquired directly sincer” has a scalethverse- y”distribution. A generic example of
the distribution is shown in Eq. (5.3.13). The tparameters of this distribution for the
k™ step of the estimation processes are display&ditf5.3.14) and Eq. (5.3.15). These
formulas can be found by rewriting the posteriatmbution in the form given in Eq.

(5.1.16). The sampled value is always acceptethisaiss Gibbs sampling not Metropolis-

Hastings.
2 % 2
ki PR
inverse- x? (6’; v, c2)= 0 exp{— ﬁ} (5.3.13)
vV 12 17 20
r(z g 2 g 2
V=32 (5.3.14)
32
, (Lp,i _’7ik)2
== 5.3.15
q ™ ( )
32
Ly -n)
p.i i
1 2 1 (Lp -n, )2 1 3214 -
— exp - —2—" 0 exp - 5.1.16
o’ D 2o 20°? g2+ g 20°? ( )

The third step of the estimation process was tonsanze the sampled parameters.
Before any summary statistics could be calculdatedas helpful to burn in, or discard,

the first half of the sampled parameters. This ess@rotected the estimates from being
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affected by a poorly chosen starting value. Thaip&ter point estimate was, in general,
taken as the median of the sampled data with respéite parameter. The confidence
intervals were found in a similar manner, simplinggdifferent percentiles. For the cases
where the parameter distributions exhibited mulbidiality, a subjective decision was

made on the most representative value and conkdieterval.

The optimization that was done for the DREM wasigicantly simpler than the method
that has just been described. The simplificatica riesult of the DREM model only

having two unknown parameters: andD ; the nuisance parameter’ can be ignored.
Both of these parameters are bounded in tHe sd}. As well, the DREM is

significantly faster to implement. Thus it is pddsj with a small number of points, to

make a brute-force calculation for all combinatiohgparameters.

The array of all parameter values is created byliste of 1000 random, uniform values
on the rangk) 1]. The first list gives the candidate values; the second list gives the

candidate value fob . Equation (5.3.17) shows the objective functiaremor function,

that was evaluated for th& barameterization of the model.
32
Error, =Y "|L,; =7(a,.D,) (5.3.17)
i=1

The process was repeated two more times. On ea&easioa the sample space was
guartered. The new region was a square of sideéHeage half the side length of the
previous iteration. The square was centered obakeperforming parameters found so
far.

The confidence intervals were found using percemgtimation. This process is only
defined for one-dimensional problems; consequeh#ysecond parameter was held
constant at its optimal value while the percentites estimated. Equation (5.3.18)

displays the objective function that was usednd the lower bound of the confidence
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interval; Eq. (5.3.19) gives the objective functionthe upper bound. These can be
interpreted as finding a 95 percent confidencewale The functionl (x) is an indicator

function; it returns 1 ifx is true and O otherwise.

32

Error, = (9751 (L,, 27,(a,,D,))- 251 (L,; <7 (a.D))L,, -7 (@..Dy)) (5.3.18)

i=1

32

Error, :Z(Z.5I (Lp,i 217, (ak!Dk))_97'5(Lp,i s, (ak’Dk)))(Lp,i —17; (aka)) (5.3.19)

i=1

The optimization of these objective functions wase&lthough a similar random brute-
force technique to that used to find the pointnestes. This time, however, the
optimization was one-dimensional and was restritdgquarameter values that were

greater for the upper bound, or lower for the lolund, of the point estimate.
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Chapter 6
Results and Discussion

This chapter describes the estimates of the paeasietr the ISM, ISSPM and DREM

for the seven test surfaces of interest. In theudision, Section 4, the validity of the three
models is considered; this is done through evalnati the parameter estimates from
each model. The estimated values are comparedewisting measurements of the test
surfaces. The precision of the estimates is alasidered as well as the model’s ability

to predict the measured data.

Before continuing there are a few points aboutnkiersion process that could be helpful
to anyone endeavouring to repeat this work. Thémes for the estimation process was
approximately 20 minutes for each estimate forl8M and ISSPM; this constitutes
10,000 samples. The DREM estimates took approxigna@eminutes each (this includes
the time to find the confidence estimates). Altloé calculations were completed on a
computer using an Intel® cdfé Duo processor T2050 (1.6 GHz, 533 MHz FSB, 2MB
L2 Cache).

6.1 Image-surface-model results

The point estimates and confidence intervals foapeters of the ISM for each surface
are given in Tables A.1-A.7 and Tables A.8-A.13ked in Appendix A. Tables A.1-A.7
are grouped by sample; Tables A.8-A.13 are grolnyddequency. Figure 6.1 displays

the parameter estimates with confidence intena@l<f,., Z,,, Dando?.

im?
Figures 6.2 through 6.7 display the marginal eroglirposterior distributions for the
parameters of the ISM inverted on the seven sdissbflata. In order to allow for
multiple parameters to be plotted together, themvedue, over all frequencies, of the

parameter is subtracted and the values are diligélde data range.
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Figure 6.1:
the | SM for
Hz, 500 Hz,

Frequency (Hz)
The paraneter estinmates and confidence intervals for
all seven surface sanples at the six frequencies (250
1000 Hz, 2000 Hz, 4000 Hz, 8000 Hz).
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6.2 Image-surface semi-phase model results

The point estimates and confidence intervals foampeters of the ISSPM for each
surface are given in Tables B.1-B.7 and TablesEB18t located in Appendix B. Tables
B.1 through B.7 are grouped by sample; Tables IBo8gh B.13 are grouped by

frequency. Figure 6.9 displays the parameter egtisnaith confidence intervals for

Z...Z., Dando?. Figures 6.10 through 6.16 display the margingpieical posterior

Re?’ =im?

distributions of the parameters of the ISM inverbedthe seven sets of data.
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Figure 6.16: Nornal i zed histogranms of the
mar gi nal posterior di stributions of t he
paraneters for the Soft surface.

6.3 Diffuse-reflecting-energy model results

Tables C.1 through C.7 and Tables C.8 through Qotated in Appendix C, display the
point estimates and confidence intervals for thap&ters of the DREM. Tables C.1
through C.7 are grouped by sample; Tables C.8 th@u#3 are grouped by frequency.

Figure 6.17 displays the parameter estimates witifidgence intervals foor andD .
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Figure 6.17: The paranmeter estimates and confidence intervals for
the DREM for all seven surface sanples at the six frequencies (250
Hz, 500 Hz, 1000 Hz, 2000 Hz, 4000 Hz, 8000 Hz).

6.4 Discussion

In order to validate the models they need to béuatad on three criteria. These are the
ability of the models to fit the observed data, sl of the confidence intervals around
the parameter estimates and the agreement of tiheag=ss with previously measured

properties of the surfaces. The first of these @ammspns discussed is the agreement of

the estimates with independently measured values.

As noted in Chapter 5 the diffusion coefficiebtused in all three models was defined
for them; consequently there is no independentteasalidate the estimates of it.
However some characteristics of the results inféig6.1 and 6.9 suggest that the
estimates created by inverting the ISM and ISSPMr@asonable. First the flat surface
has the lowest diffusion coefficient while the rougurfaces have higher diffusion
coefficients. Also the diffusion tends to increagth frequency as expected; this is

especially visible for the estimates made by inmgrthe ISM.
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Table 6.1: The neasured and estimated inpedance val ues (Z=Zre+iZim)

for the Flat and Soft surfaces. The neasured values are taken from
Graves and Hodgson [ 18].

Flat Soft
Frequency | Measured Value[1SM Prediction [ ISSPM prediction | Measured Value[1SM Prediction [ ISSPM prediction
250 3 5.63 0.32 35 50.6 242
_ 500 -2 13.64 4.1% 1.4 1.23 1.24
i 1000 0 0.08 0.04 1.4 7.65 14.82
| 2000 0 2.89 0.04 1.5 1.32 1.29
4000 0 0.1 0.09 1.7 0.88 7.7
) 250 -14 -13.82 -20.61 0 31.07 514
= 500 -12 -20.82 -33.61 2.5 248 241
| 1000 -10.5 6.73 -10.44 1 -14.8 204
2 2000 -6 712 -8.55 0.5 -2.39 2497
B 4000 -3 -1.77 -6.39 0.5 0.25 38

The impedances of the Flat and Soft surfaces wessured by Graves and Hodgson
[18] using the spherical-decoupling method; thelltesare displayed in Table 6.1. The
estimates from the ISM and ISSPM are also displayesdDREM does not utilize
impedance and so it has been excluded. The measndegredicted values have a
reasonable agreement for the Flat surface and rsagoeement for the Soft surface. This
result is not surprising as the Soft surface wasdato have a large diffusion coefficient,

and the spherical-decoupling method assumes whpé#gular reflection.

The average random-incidence absorpfionf the surfaces is not affected by
diffusion—hence its inclusion in ISO 2003, 174972@]. Consequently it is helpful to
evaluate the predictions of the models by compatieg with measured@ values.

These values were measured by Bibby [24].

In order for a comparison to be made the impedaakees of the ISM and ISSPM must

be converted into an average random-incidence ptigorcoefficient. This is done using
the so called Paris formula displayed in Eq. (§,4xhich is evaluated in Eq. (6.4.2) and
Eq. (6.4.3) [1]. A similar conversion is necessfanythe absorption parameter estimated
by the DREM,; this was done using Eq. (6.4.4).

R 72 47,.cod0) .
a=2|al8)sinl28)08 =2 e sin(26)08 6.4.1
! (@)sin(z6) ! 1Z|” cos?(8) + 22, cod8) +1 (20) ( )
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c—r=%cos(u)[z+C°42”)arcta{i‘”))j-cos(ﬂ>|og@+azcos(u>+zZ)} (642

Z sin(u) 1+(Z|cody
z
M= arctarEZ—"“J (6.4.3)

v (227 )eode)

7=8] a ~sin(26)06

o ((2;0’] cod6) +1] (6.4.4)

e (5 e L

a

Table D.1, in the Appendix D, gives the measuratimedicted average absorption
coefficient values with confidence intervals foe ttnree models. Figure 6.18 displays

these values.

The ISSPM appears to give the strongest agreenignthe measured values; it is
followed by the ISM. The DREM has little or no agneent with the measured values.
The agreement of the ISSPM estimates is highestcafrequencies (500 Hz, 1000 Hz,
and 2000 Hz).

The confidence intervals for the parameter estisnate, on an aggregate level, smallest
for the inversion of the ISSPM; these are smaliantthe equivalent intervals for the
ISM for approximately 73% of the estimates. Theftamce intervals for the DREM are
so large as to make the estimates almost unifoamiyformative. The intervals of the

a estimates from the ISSPM are similar to those abthby direct measurement. This
means that if only the absorption coefficient isded there is no penalty (in certainty) to

using inverse methods as opposed to direct measatem

The final criterion was the ability of the modaetsfit the observed data. This is most

easily evaluated by comparing the model variandesThe estimates of®are, on an
aggregate level, smaller for the ISSPM than forl8M. The DREM does not have an
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explicit variance estimate; however there are mpdé#krns in the white-noise data that
the model is simply incapable of predicting; conss=gly it can be considered to be the
worst at fitting the datag?® increases with frequency; this seems to indidaderione of
the models is valid at 8000 Hz. Additionally theigace of the model for the BB data set
has a higher variance than the other models; thissseems to suggest that there is an

upper limit on the of surface roughness for whiwd inversion process is valid.
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Figure 6.18: The nmeasured values and estimates wth confidence
intervals for the acoustical -absorption coeffiecent (Al pha) of seven
surfaces. Measured value =, |SM =, | SSPM = and DREM —.
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For all three of the criteria the ISSPM appearsddhe best; this result is surprising as
the ISM is more physically realistic than the ISSPMe DREM appears to be wholly
inadequate for the purpose of estimating the bimat absorption and diffusion

characteristics of surfaces.
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Chapter 7
Conclusions and suggested further work

7.1 Conclusions

The objective of this research was to develop aarge-method approach for
determining the acoustical diffusion propertiesaiffaces with unknown impedance. To
this end, three models were created. All three nsadeluded a diffusion coefficient
which represented the proportion of diffuse reflatt Two of the models, the ISM and
the ISSPM, considered phase effects and were osestimate single-frequency
characteristics. The third model, DREM, considessly sound energy and estimate

broad-band characteristics.

Steady-state sound-pressure-level data were cadletiove seven test surfaces irradiated
by a single source in an otherwise free-field. $berce was found to have significant
directivity in both the azimuth and polar anglesn€equently, the three forward models

were modified to include loudspeaker directivity.

The three models were inverted using the colledttd; the ISM and ISSPM were
inverted using Bayesian inversion, and the DREM iwasrted using percentile
estimation. The estimates produced by the inversidhe three models were evaluated.
The evaluation considered their ability to mataotheipendent direct measurements, their
ability to produce small confidence intervals, dnelr ability to model the measured

data.

The approach of the Bayesian inversion of imageesmodels was found to be an
adequate way of determining the acoustical progedf a surface. In particular, the
inversion of the ISSPM was shown to find singlegfrency parameter estimates that are
in agreement with known values. The inversion efIlREM was found to be wholly

inadequate at finding broad-band estimates.
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7.2 Further work

In order to use the inverse methods describedsréisearch with confidence, it would
be necessary to conduct a more systematic sestsfda surfaces with known impedance
and diffusion properties. It would be advisablénwest considerable time to either
ensure that the loudspeaker used has minimal titgadr to measure the loudspeaker

directivity accurately.

The measurement locations used in this researoh sebected out of convenience.
However, future work should optimize their locatidepending on the anticipated ranges
of the acoustical parameters of the surface tested, as well as the frequency range of
interest.

An earlier version of the ISM was such that exawiviedge of the measurement and
loudspeaker locations was unnecessary. These wakresoptimized in addition to the
impedances and diffusion coefficients. This progedhputationally cumbersome;
consequently later versions of the model did nletxafor unknown measurement and
loudspeaker locations. However as computer povegeases, it may be helpful to revisit
this technique, as it is not trivial to accuratelgasure the three-dimensional coordinates
of a point within an anechoic chamber.

The model did not include any method for estimathegcontribution of back-scattering
from the edges of the sample to the sound fielthddigh this contribution appears to be
significantly smaller than the direct and reflecteatributions, future work could

consider a method of estimating this contribution.

All three models considered in this research oolystdered Lambert’'s Law diffuse
reflection. It would be of interest to relax thssamption and create a more flexible or
general law of reflection, specifically one thatucenable energy to be distributed non-
uniformly in the azimuth angle.
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The ISM and ISSPM where also inverted (using tmeesmethods that were used on the
pure-tone data) on the broad-band-noise data. ateneter estimates that were obtained
were inconsistent with the measured values asasdlhe other estimates; although it
should be noted that the variance predicted wasidor the ISM on the broad-band data
than it was for the pure-tone data. These valuesisied in appendix E. It would be

useful to revisit this as the broad-band datagsiicantly easier to obtain. To improve
the results the models could be modified to sunptidictions of several frequencies,
although this would significantly decrease the sipgtewvhich estimates could be

produced.
Finally future work could consider imposing a frequy-dependent relationship on the

impedance values and diffusion coefficients. Inhsacase meta-parameters that would

determine the impedance given the frequency woelddtimated.
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Appendices

Appendices A, B, C and D contain the tabulatedesjplotted in Figures 6.1, 6.9, 6.17
and 6.18, respectively. The values presented ireAgiges A, B, and C are displayed
grouped both by test sample and grouped by frequéie values in Appendix D are
only grouped by test sample.

Appendix A

Tabulated parameter estimates and confidence alteobtained through inversion of the
ISM.

Table A 1: Estinmates (Est) and bounds Table A 2: Estimates (Est) and bounds

(LB, UB) for DREM with BB data. (LB, UB) for DREMwith flat data.
Sample| Freq|Parameter] LB | EST | UB Sample| Freq|[Parameter] LB | EST | UB

BB 250 Zre 032 775 3359 Flat 250 Zre 051 563 16.95
BE 500 Z.re 042 1541 4112 Flat 500 Zre 0.28 1364 25.03
BB 1000 Zre 05 727 1937 Flat 1000 Zre 001 009 034
BE 2000 Z.re 011 315 1496 Flat 2000 Zre 016 289 479
BB 4000 Zre 049 92 2348 Flat 4000 Zre 001 011 1.08
BE 8000 Z.re 011 179 11.33 Flat  &000 Zre 217 365 5516

BE 240 Zim -b4.64 3729 1038 Flat 250 Zim -28.27 13682 -T.46
BE 500 Zim 4498 2445  -6.02| Flat 500 Zim -32.42 -2082 442

BE 1000  Zim 218 1174 027 Flat 1000  Zim -f26 -6.73 -6.29
BE 2000 Zim 2144 112 1M Flat 2000  Zim -8.87 712 352
BE 4000 Zim 1506 2567 371 Flat 4000  Zim 287 77 183

BE 8000 Zim -18.06 417 0.06)[ Flat 8000 Zim 2246 795 232

BE 240 D 001 006 015 Flat 250 D 001 011 019
BE 500 D 0 013 045 Flat 500 D 001 015 038
BE 1000 D 002 017 035 Flat 1000 D 0 0 003
BE 2000 D 0 01 076)| Flat 2000 D 005 029 0.4
BE 4000 D 034 063 093] Flat 4000 D 0 004 018
BE 8000 D .06 082 1 Flat 3000 D D64 0493 1

BE 230 SigmaZ 193 368 926|| Flat 250 SigmaZ 101 182 429
BE 500 SigmaZ 313 592 1364|| Flat 500 SigmaZ D08 015 035
BE 1000 Sigma2 g.69 1661 3675 Flat 1000 SigmaZ 1.9 366 8.73
BE 2000 SigmaZ 922 1813 4057 Flat 2000 SigmaZ 061 119 267
BE 4000 SigmaZ 293 5498 12382 Flat 4000 SigmaZ 781 1561 371
BE 8000 SigmaZ | 1629 31585 7T1.38[| Flat 8000 SigmaZ 964 1847 4315
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Table A 3: Estimates (Est) and bounds

(LB, UB) for DREM with FW data.

Table A 4: Estimates (Est) and bounds
(LB, UB) for DREMwith SB data.

Sample| Freq[Parameter] LB | EST | UB Sample| Freq[Parameter| LB | EST | UB
W 250 Zre 016 275 11.18 SB 250 Zre 024 711 1464
W 500 Zre 031 643 1432 SB 500 Zre 722 2572 48195

Fvw 1000 Zore 001 017 234 SB 1000 Zre 004 077 34
Fvw 2000 Zre 147 1946 23.54 SB 2000 Zre 049 1473 543
Fv 4000 Zore 017 223 421 SB 4000 Zore 0.3 13.65 41.18
Fvww 8000 Zre 0.23 749 2055 SB 8000 Zre 015 3.6 1432
W 250 Zim -1899 -985 -566 SB 250 Zim -30.49 1629 -7.97
Fvw 500 Zim -50.72 -30.92 1253 SB 500 Zim 2584 1553 876
Fvw 1000 Zim 834 22 189 SB 1000 Zim 152 54 413
Wooo2000  Zim 2229 725 1506 SB 2000 Zim 223 -6 682
FvW 4000 Zim 46 683 529 SB 4000 Zim -33.31 1928 1069
Wooa000 Zim -16.35  -B.65  -3.08 SB 8000 Zim -3.9 696 2514
W 250 D 002 013 021 SB 250 D 0.04 013 0.21
Fvw 500 D 044 0B3 075 SB 500 D 011 03% 052
W 1000 D 0 008 053 SB 1000 D 001 00% 028
v 2000 D 061 04585 1 SB 2000 D 002 014 033
FwW 4000 D 04 047 054 SB 4000 D 0.09 053 0486
VW 8000 D 04 053 0863 SB 8000 D 047 092 1
Fvw 250 Sigma2 08 177 394 SB 250  SigmaZ 0.7 134 2453
Fw 500  Sigma2 034 063 137 SB 500 SigmaZ 017 032 071
Fvw 1000 Sigmaz 449 599 35388 SB 1000 SigmaZ 423 8.2 1947
FWw 2000 Sigma2 | 13.57 2614 5712 SB 2000 SigmaZ 135 252 556
W 4000 SigmaZ 042 079 176 SB 4000 Sigma2 | 22389 4315 9537
Fvww 8000  Sigma2 145 283 638 SB 8000  Sigma2 | 1378 2624 61.93

Table A 5. Estimtes
(LB, UB) for DREM wi

(Est) and bounds
th Sinel data.

Table A 6: Estinmates
(LB, UB) for DREM with Sine2 data.

(Est) and bounds

Sample|Freq|Parameter] LB | EST | UB ||Sample|Freq|Paramster] LB | EST | UB
Sine1l 250 Zre 634 426 B237|| Sine2 250 Zre 005 139 1217
Sinel 500 Zre 021 235 1208|| Sine2 500 Zre 021 242 8948
Sinel 1000  Zre 013 312 B89 | Sine2 1000 Zre 097 1811 4404
Sinel 2000  Zre 0.17 53 A7) | Sine2 2000  Zre 0 0z 519
Sinel 4000  Zre 041 321 917|| Sine2 4000 Zre 0.08 0og 14
Sinel 8000 Zre 105 695 1717|| Sine2 {000  Zre 026 6593 1963
Sinel 250 Zim 4143 -26.08 -1113] | Sine? 250 Zim 3343 1485 175
Sinel 500 Zim 1234 34 2728 | Sine? 500 Zim 1467 387 024
Sinel 1000  Zim 2298 742 30148|| SineZ 1000  Zim -1676 -168 766
Sinel 2000  Zim 178 <779 6.08|| SineZ 2000  Zim -1366 052 063
Sinel 4000  Zim 11686 466 -1.06|| Sine2 4000  Zim 23 163 123
Sinel 8000 Zim -1031 269 1204|| Sine2 8000 Zim -11.31 -329 662
Sinel 250 D 004 013  021)|| Sine2 250 D 001 043 068
Sinel 500 D 011 039 052|| Sine2 500 D 035 08% 0499
Sine1 1000 D 001 009 028|| Sine2 1000 D 042 096 1
Sine1 2000 O 0oz 014 0.33]| Sine2 2000 b 001 018 033
Sine1 4000 D 009 0A3 086|| Sine2 4000 D 001 025 042
Sine1 8000 O 047 0892 1 | SineZ 8000 D 056 0488 1
Sinel 250  SigmaZz 3.33 62 1333|| Sine2 250 Sigmaz 1.44 33 707
Sinel 500 SigmaZ 037 069  205)| Sine2 500  Sigma? 056 107 248
Sinel 1000 SigmaZ | 1484 2837  656|| Sine? 1000 Sigma2 | 1922 36.01 8319
Sinel 2000 Sigma? | 2144 4245 1185|| Sine? 2000 Sigma? 418 1005 1444
Sine1 4000 SigmaZ 314 584 1351 | Sine2 4000  Sigma2 185 362 863
Sinel 8000 Sigma2 | 1125 2147 4783|| Sine? 8000 Sigma2 | 1187 2207 4931
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Table A 7: Estimates (Est) and bounds
(LB, UB) for DREMwith BB data.

Sample| Freq[Parameter] LB | EST | UB
Soft 250 Zre 9.72 506 9919
Soft 500 Zre 018 123 1385
Soft 1000 Zre 044 765 191
Soft 2000 Zre 012 132 1.98
Soft 4000  Zre 056 083 1.1
Soft 8000 Zre 013 088 36.12
Soft 250 Zim 1478 3107 4104
Soft 500 Zim 1.2 248 38
Soft 1000 Zim 225 1438 2.3
Soft 2000  Zim 341 239 084
Soft 4000  Zim 045 025 -0.02
Soft 8000 Zim 1344 037 203
Soft 250 D 0.09 014 0.2
Soft 500 D 011 043 081
Soft 1000 D 036 052 056
Soft 2000 ; 006 061 074
Soft 4000 D 003 023 043
Soft 8000 D 0.07 059 1
Soft 250 SigmaZ 086 163 385
Soft 500 SigmaZ 006 011 024
Soft 1000 SigmaZ 01 019 042
Soft 2000 SigmaZ 018 035 079
Soft 4000 SigmaZ 081 174 398
Soft 8000 SigmaZ | 13.51 2628 6B1.31

Table A 8: Estinmates (Est) and bounds Table A 9: Estimates (Est) and bounds

(LB, UB) for DREM with 250 Hz data. (LB, UB) for DREMwi th 500 Hz data.
Sample Freq Parameter] LE  EST UB Sample Freq Parameter] LB EST UB
BB 250 Zre 032 T7.75 3389 (=] =] 500 Zre 042 16541 4112
flat 250 Zre 0&1 &R3 16095 flat 500 Zre 028 1364 2503
FW 980 Zre 016 275 11.18 FW  &00 Zre 03 643 1432
SB 250 Zre 024 711 14564 SB 500 Zre 7122 2572 4595
Sinel 250 Zre 6.34 426 62.37 Sine1 500 Zre 021 235 1204
Sine2 250 Zre 005 139 1217 Sine2 300 Zre 021 252 046
Soft 250 Zre 9.72 506 9919 Soft 400 Zre 019 123 19
BB 250 Zim -54.64 -37.29 -10.38 BB 500 Zim 4495 2445 -6.02
flat 250 Zim 2827 1382 746 flat 500 Zim -3242 2082 442
W 280 Zim -18.93 -985 -5F66 FW 500 Zim A0.72 -30.92 1258
SB 280 Zim -30.49 1623 -7.97 5B 500 Zim 2554 1553 BTR
Sinel 250 Zim 5143 -26.08 -1113 Sinel 500 Zim 1234 34 228
Sine2 250 Zim -3343 1485 175 Sine2 500 Zim -1467 387 024
Soft 250 Zim 1478 3107 4104 Soft  &00 Zim 12 248 36
BB 250 SigmaZ | 193 363 926 BE 500 Sigma2 | 313 592 1364
flat 250 SigmaZ | 101 192 429 flat 500 Sigma2 [ 008 015 035
Fw 250  SigmaZ 0.9 177 394 FW 500 Sigma2 | 034 063  1.37
SB 250  Sigma2 0.7 134 293 SB - 500 Sigma2 | 017 032 0N
Sine1l 250 Sigma2 | 333 62 1333 Sine1l 500 Sigma2 | 037 063 205
Sine2 250  SigmaZ | 144 3.3 7T Sine2 500 Sigma2 | 056 107 249
Soft 250 SigmaZ | 086 163 385 Soft  A00 Sigma2 | 006 011 024
BB 250 D 001 006 015 BE 500 D 0 013 045
flat 250 D 001 o1 019 flat 500 D 001 015 038
Fw 250 D 002 013 0.21 FW  &00 D 044 063 075
SB 250 D 004 013 021 SB 500 D 011 039 042
Sinel 250 D 049 062 078 Sinel 500 D 004 09 099
Sine2 250 D 001 053 068 Sinez 500 D 03 089 099
Soft 250 D 0.09 014 0.2 Soft  A00 D 011 045 061




Tabl e A 10: Estimates (Est) and bounds Table A 11: Estinmates (Est) and bounds

(LB, UB) for DREMw th 1000 Hz data.
Sample Freq Parameter| LB EST UB
BE 1000  Zre 05 727 1937
flat 1000  Zre 0.1 009 034
FW 1000 Zre 0.0 017 234
SB 1000 Zre 0.04 077 3.1
Sinel 1000 Zre 013 312 888
SineZ 1000  Zre 097 1811 44.04
Soft 1000 Zre 044 765 19.11
BE 1000 Zim 218 1174 027
flat 1000  Zim -1.26 673 -6.29
W 1000 Zim 93 22 188
58 1000 Zim -1.52 64 413
Sinetl 1000 Zim -22.9% 782 3015
Sine2 1000 Zim 1576 -168 766
Soft 1000 Zim 225 148 23
BE 1000 Sigma2 | 8.63 1661 3675
flat 1000 Sigma2 19 366 873
FW 1000 SigmaZ | 449 5.99 3588
SB 1000 SigmaZ | 423 82 1947
Sinet 1000 SigmaZ | 14.84 2337 G656
Sine2 1000 SigmaZ | 19.22 36.01 8819
Soft 1000  SigmaZ 01 0198 042
BE 1000 D 0.02 047 035
flat 1000 D 0 0 0.03
FW 1000 D 0 0.08 053
SB 1000 D 0.01 009 023
Sine1 1000 D 069 095 1
SineZ 1000 D 042 096 1
Soft 1000 D 036 0452 056

Table A 12: Estimates (Est) and

(LB, UB) for DREM with 4000 Hz data.
Samgple Freq Parameter| LB EST UB
BB 4000  Zre 049 92 2349
flat 4000  Zre 001 011 1.08
FW 4000  Zre 017 228 421
SB 4000 Zre 0.3 1365 4116
Sinel 4000  Zre 041 321 947
Sine2 4000  Zre 008 09 1.4
Soft 4000  Zre 056 088 1M
BB 4000  Zim 1506 2567 371
flat 4000  Zim 297 477 143
FW 4000  Zim 96 688 -52%
SB 4000 Zim 3331 19258 1069
Sinel 4000  Zim -11.56 466 -1.08
Sine2 4000  Zim 23 <163 123
Soft 4000 Zim 045 025 -0.02
BB 4000 SigmaZ | 29.3 5495 12382
flat 4000 Sigma2 | 7.81 1561 371
FW 4000 Sigma2 | 042 079 176
SB 4000 Sigma2 | 2289 4315 9837
Sine1 4000 Sigma2 | 314 594 1351
Sine2 4000 Sigma2 | 185 362 863
Soft 4000 Sigma2 | 091 174 398
BB 4000 D 03 063 0893
flat 4000 D 0 004 018
FW 4000 D 04 047 054
SB 4000 D 00% 058 086
Sine1 4000 D 007 043 0.62
Sine2 4000 D 001 025 052
Soft 4000 D 003 023 053

(LB, UB) for DREM with 2000 Hz data.

Sample Freq Parameter| LB EST UB
BB 2000 Zre 011 315 1496
flat 2000  Zre 016 289 479
FWw 2000 Zre 147 1946 2854
SB 2000 Zre 049 1478 543

Sine1 2000  Zre 017 53 1741
Sine2 2000  Zre 0 02 519
Soft 2000  Zre 012 132 1.9§
BB 2000 Zim 2144 112 124
flat 2000  Zim 897 712 352
Fw 2000 Zim 2229 T.25 1506
SB 2000 Zim -223 -6 682
Sine1 2000  Zim 178 -T.79  6.05
Sine2 2000  Zim -13.66 052 (.68
Soft 2000 Zim 341 239 084
BB 2000 SigmaZ | 9.22 1813 40.57
flat 2000 Sigmaz | 0.61 119 267
W 2000 Sigma2 | 13.57 26.14 &7.12
SB 2000 SigmaZ | 1.35 252 556
Sine1 2000 Sigma2 | 2144 4245 1185
Sine2 2000 Sigma2 | 418 1005 1444
Soft 2000 SigmaZ | 018 035 079
BB 2000 D 0 01 076
flat 2000 D 0.05 029 041
Fw 2000 D 061 095 1
S8 2000 D 0.02 014 033
Sine1 2000 D 0.03 095 1
Sine2 2000 D 000 018 033
Soft 2000 D 0.06 061 074
bounds Table A 13: Estinmates (Est) and bounds
(LB, UB) for DREM with 8000 Hz data.

Sample Freq Parameter| LB EST UB
BE 8000  Zre 01 178 133
flat 8000  Zre 217 365 5516
FW 8000 Zre 023 749 2055
5B 8000 Zre 01a 36 1432
Sinetl 8000  Zre 105 695 1717
SineZ 8000  Zre 026 683 19.68
Soft 8000 Zre 013 086 3612
BE 8000 Zim -18.56 417 0.06
flat 8000  Zim -2246 -T895 232
FW o 8000 Zim -16.35 -8.65 -3.08
SB 8000 Zim -39 696 2514
Sinet 8000  Zim -10.31 269 1204
Sine2 8000  Zim 1131 -3.29 662
Soft 8000 Zim -1344 -0.37 203
BE 8000 SigmaZ | 1629 3155 7138
flat 8000 SigmaZ | 964 1847 4315
FW 8000 SigmaZz | 1.45 288 6.39
SB 8000 SigmaZ | 1378 2624 5198

Sinetl 8000 Sigmaz | 11.25 2147 47.83
Sine2 8000 Sigma2 | 11.87 2207 4931
Soft G000 SigmaZ | 13.51 26.26 61.31
BE 8000 D 0.06 082 1
flat 8000 D 064 0.93 1
FW 8000 D 04 053 063
SB 8000 D 047 092 1
Sine1 8000 D 042 092 1
SineZ 8000 D 0.56  0.88 1
Soft 8000 D 0.07  0.59 1
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Appendix B

Tabulated parameter estimates and confidence alseobtained through inversion of the
ISSPM.

Table B.1: Estimates (Est) and bounds Table B.2: Estimates (Est) and bounds
(LB, UB) for DREMwith BB data. (LB, UB) for DREMwith flat data.
Sample Freq Parameter| LB EST UB Sample Freq Parameter| LB EST UB
BB 250 Zre 287 1359 3813 flat 250 Zre 032 325 743
BB 500 Zre 18.21 27.38 4274 flat 500 Zre 418 16.07 31.83
BB 1000 Zre 056 623 1579 flat 1000 Zre 0.04 0.9 1.98
BB 2000 Zre 1.62 1983 3278 flat 2000 Zre 0.04 082 243
BB 4000 Zre 033 815 1636 flat 4000 Zre 003 108 197
BB 8000 Zre 001 0365 1.69 flat 8000 Z.re 004 0458 208
BB 250 Zim -68.76 -29.24 -15.61 flat 250 Zim -20.61 -14.69 -11.61
BB 500 Zim 697 4251 2455 flat 500 Zim -33.61 1857 67
BB 1000  Zim -39.24 2255 1822 flat 1000  Zim 1044 985 9.3
BB 2000 Zim 4767 -36.37 -28.22 flat 2000  Zim -8.85 -T58 674
BB 4000  Zim 1733 233 305 flat 4000  Zim -6.39 591 53
BB 8000 Zim -3.01 225 -1.68 flat 8000 Zim -f49 A8 A3

BE  2i0 D 058 069 079 flat 240 D 0 0.03 008
BB 500 D 011 044 067 flat 500 D D08 037 053
BB 1000 D 0 0.03 0407 flat 1000 D 0 .02 005
BB 2000 D 0.04 039 045 flat 2000 D 0 Doe 012
BB 4000 D 0 0.03 0407 flat 4000 D 0 Do 012
BB  §000 D 0.02 014 049 flat 8000 D 0 D05 015

BE 250 SigmaZ | 1.69 32 T.02 flat 250 SigmaZ | 019 037 0.85
BB 500 SigmaZ | 112 208 455 flat 500 SigmaZ | 022 041 088
BE 1000 SigmaZ | 125 241 549 flat 1000 SigmaZ | 024 044 0597
BB 2000 SigmaZ | 1.07 207 465 flat 2000 Sigma2 02 03 0.3
BE 4000 SigmaZ | 208 411 852 flat 4000 SigmaZ | 032 053 128
BE 8000 SigmaZ | 261 489 1146 flat 8000 Sigma? | 1563 286 632
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Table B.3: Estimates (Est) and bounds Table B.4: Estimates (Est) and bounds
(LB, UB) for DREM with FW data. (LB, UB) for DREMwith SB data.

Sample Freq Parameter| LB EST UB Sample Freq Parameter| LB EST UB

W 250 Zre 318 631 969 SB 250 Zre 0.24 317 T7Aa2
Fw 500 Zre 1.27 9 31.66 SB 500 Zre 1.88 1357 33585
FW 1000 Zre 033 354 576 SB 1000 Zre 008 172 298
FW 2000 Zre 0.24 265 456 SB 2000 Zre 0.06 087 294

W 4000 Zre 012 324 499 SB 4000 Zre 011 308 1574
FWW 8000 Zre 1766 29.37  41.51 SB 8000 Zre 0.2 388 7.4

FWw 250 Zim -12.68 787 -5.16 5B 250 Zim 1772 1297 -6.58
Fw 500 Zim 4243 2791 585 SB 500 Zim 4216 -33.68 -24.67
FW 1000 Zim -11.83 678 -242 SB 1000 Zim -11.29 1037 -9.57
W 2000 Zim -10.25 637 -2.51 SB 2000 Zim -11.66 -B8 -T.56
FW 4000  Zim 108 -558 178 5B 4000 Zim 643 932 1059
WV 8000 Zim -T4.84 -63.34 -55.27 SB 8000 Zim 44 B65 1292

FWw 250 D 0 0.07 015 5B 250 D 002 015 019
FWw 500 D 013 042 054 5B 500 D 0.37 0.5 0.6

W 1000 D 029 048 056 SB 1000 D 0 0.04 009
FW 2000 D 017 044 053 SB 2000 D 0 0.03 0.1
FW 4000 D 015 042 054 SB 4000 D 003 012 029
FWW 8000 D 043 058 068 SB 8000 D 0.01 014 033

Fw 250 SigmaZ2 | 015 023 064 5B 250 SigmaZ | 012 023 052
FWw 500 Sigmaz | 015 028 063 SB 500 SigmaZ | 015 029 0.63
FW 1000 SigmaZ2 | 017 033 077 SB 1000 SigmaZ | 022 D42 092
FW 2000 Sigmaz | 035 067 1485 SB 2000 SigmaZ | 039 074 158
FW 4000 SigmaZ2 | 044 085 195 SB 4000 SigmaZ | 026 052 8934

W B000 Sigma?2 | 1.74 324 751 SB 8000 Sigma? | 135 255 554
Table B.5: Estimates (Est) and bounds Table B.6: Estimates (Est) and bounds
(LB, UB) for DREMwith Sinel data. (LB, UB) for DREMwith Sine2 data.

Sample Freq Parameter| LB EST UB Sample Freq Parameter| LB EST UB

Sinet 250 Zre 037 618 11.02 Sine2 250 Zre 0z 37T 925
Sinet 500 Zra g.01 25838 4075 Sine2 500 Zra 4.01 1238 2364
Sinet 1000 Zre 008 114 282 Sine2 1000 Zre 0.0 191 4453
Sinet 2000 Zre 005 097 251 Sine2 2000 Zre 233 31585 4477
Sinel 4000 Zre 011 163 268 Sine2 4000 Zre 015 168 255
Sinel 8000 Zre 015 326 b.A3 Sine2 8000 Zre 017 326 1354

Sinet 250 Zim 2221 1493 498 Sine2 250 Zim -16.48 -11.3% -6.62
Sinet 500 Zim -14.29 376 625 SineZ 500 Zim -3419 1422 4N
Sinet 1000 Zim 1228 1141 1081 Sine2 1000 Zim -13.61 1096 -9.07
Sinet 2000 Zim -10.61 892 -T.52 Sine2 2000 Zim 464 -36.11 -27.29
Sinet 4000  Zim 596 63 57§ SineZ 4000  Zim 533 5454 475
Sinel 8000 Zim 126 778 426 Sine2 8000 Zim -16.65 -G8 247

Sinet 250 D 003 018 024 Sine2 250 D 0.0 018 022
Sinet 500 D 025 045 058 SineZ 500 D 0.0z 024 049
Sinet 1000 D 0 0.04 008 Sine2 1000 D 001 003 0714
Sinet 2000 D 0 0.03 009 Sine2 2000 D 0 0.05 012
Sinet 4000 D 001 007 017 Sine2 4000 D 0.01 0.1 0.21
Sinet 8000 D 0.1 0.26 0.4 Sine2 8000 D 0.05 033 047

Sinel 250 SigmaZ | 018 034 074 Sine2 250 SigmaZ | 057 107 245
Sine1l 500 SigmaZ | 026 051 1.1 Sine2 500 SigmaZ | 051 085 208
Sinel 1000 SigmaZ | 018 033 077 Sine2 1000 SigmaZ | 078 143 322
Sinel 2000 SigmaZ | 025 047 104 Sine2 2000 Sigma2 14 262 5A&7
Sine1 4000 SigmaZ | 047 086 196 Sine2 4000 Sigma? | 065 123 28

Sinel 8000 SigmaZ | 1.71 317 698 Sine2 8000 Sigma2 [ 235 462 1053




Table B.7: Estimtes (Est) and bounds

(LB, UB) for DREMwith BB data.

Sample Freq Parameter| LB EST UB
Soft 250 Zre 011 242 3486
Soft 500 Zre 0.0 124 3N
Soft 1000  Z.re 9.61 143582 3414
Soft 2000  Zre 0.07 129 205
Soft 4000  Zre 433 707 1482
Soft 8000  Zre 0.21 1167 2484
Soft 250 Zim 3 514 B4
Soft 500 Zim 3% 541 679
Soft 1000  Zim -28.25 -204 963
Soft 2000  Zim 1,33 297 383
Soft 4000  Zim 113 38 1158
Soft 8000  Zim 3.2 467 1127
Soft 250 D 005 026 039
Soft 500 D 011 028 04
Soft 1000 D 0.74 079 0483
Soft 2000 D 029 053 069
Soft 4000 D 042 057 0865
Soft 8000 D 082 093 099
Soft 250 Sigma2 | 009 0153 04
Soft 800 Sigma2 | 007 013 028
Soft 1000 SigmaZ | 025 049 1.06
Soft 2000 Sigma2 [ 011 021 046
Soft 4000 SigmaZ | 022 042 095
Soft 8000 SigmaZ [ 091 172 396

Tabl e B.8: Estinmates (Est) and bounds

(LB, UB) for DREMwith 250 Hz data.

Sample Freq Parameter| LB EST UB
BB 230 Zre 287 1359 3813
Flat 250 Zre 032 325 749
P 250 Zre 318 631 969
S8 230 Zre 024 317 T.4a2

Sine1 250 Zre 037 618 1102
Sine2 250 Zre 0.2 371 925
Soft 250 Zre 011 242 386
BB 230 Zim -68.76 -29.24 -15.61
Flat 250 Zim -20.61 -14.69 -11.61
P 250 Zim -12.66 -7.87 516
SB 230 Zim S17.72 1297 658
Sinel 250 Zim 2221 1493 493
Sine2 250 Zim -18.48 -11.39 662
Soft 250 Zim 3 514 674
BB 230 D 058 069 079
Flat 250 D 0 003 003
FW 250 D a 0.07 015
5B 230 D 002 015 019
Sine1 250 D 003 018 024
Sine2 250 D 005 016 022
Soft 250 D 0.05 026 039
BB 250 SigmaZ [ 16% 32 T.02
Flat 250 SigmaZ | 019 037 0383
FW 250 SigmaZ | 015 029 064
S8 230 SigmaZ | 012 023 052
Sinel 250 Sigma2 | 018 034 074
Sine2 250 Sigma2 | 057 107 245
Soft 250 SigmaZ | 009 015 04

Table B.9: Estimates (Est) and bounds
(LB, UB) for DREMwi th 500 Hz data.
Sample Freq Parameter| LB EST UB
BE 500 Zre 18.21 2738 4274
Flat 500 Zre 418 1607 3183
FWw 500 Zre 1.27 9 31.66
SB 500 Zre 188 1357 3345
Sine1 500 Zre 801 2888 4075
Sine2 500 Zre 401 1238 2364
Soft 500 Zre 008 124 3N
BE 500 Zim 697 4251 2455
Flat 500 Zim -33.61 1857 6.7
Fw 500 Zim 4243 2791 585
SB 500 Zim 4216 -33.68 -2467
Sine1 500 Zim -1429 376 6.25
Sine2 500 Zim =349 1422 42
Soft 500 Zim 3% 541 679
BE 500 D 011 044 067
Flat 500 D 008 037 0453
FWw 500 D 013 042 054
SB 500 D 0.37 04 0.6
Sine1 500 D 025 045 053
Sine2 500 D 002 024 049
Soft 500 D 011 0.28 04
BE 500 Sigmaz | 112 208 455
Flat 500 Sigma2 | 022 041 0389
FW 500 Sigmaz | 015 028 063
SBE 500 Sigmaz | 015 029 0.63
Sine1l 500 Sigma2 | 026 0.51 1.1
Sine2 500 Sigma2 | 051 085 208
Soft 500 Sigma2 | 007 013 028
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Tabl e B.10: Estimates (Est) and bounds Table B.11: Estinmates (Est) and bounds

(LB, UB) for DREM wi th 1000 Hz data. (LB, UB) for DREM with 2000 Hz dat a.
Sample Freq Parameter] LB EST  UB Sample Freq Parameter] LB EST  UB
BB 1000 Zre 056 623 1579 BB 2000 Zre 1.62 1983 3278
Flat 1000 Zre 0.04 0.9 1.98 Flat 2000 Zre 004 082 243
FyW 1000 Zre 033 354 5786 Fw 2000 Zre 024 265 456
SB 1000 Zre 008 172 293 SB 2000 Zre 0.06 097 294
Sine1 1000 Zre 009 114 2862 Sine1 2000 Zre 005 0487 241
SineZ2 1000 Zre 007 191 453 Sine2 2000 Zre 233 3N55 4477
Soft 1000 Zre 961 1482 3414 Soft 2000 Zre 007 129 205
BE 1000 Zim -39.24 2255 -183.22 BB 2000 Zim |-475A7 -36.37 -28.22
Flat 1000 Zim -1044 985 93 Flat 2000 Zim -5.55 -7h3 674
W 1000 Zim 1193 678 242 FW 2000 Zim |-1025 637 -2451
SB 1000 Zim -11.29 1037 -9.57 SB 2000 Zim -11.66 88 -7.56
Sine1 1000 Zim 1228 1141 1061 Sinel 2000 Zim -1061 -3.92 7482
Sine2 1000  Zim -13.61 1096 -9.07 Sine2 2000  Zim 464 3611 2729
Soft 1000 Zim 2928 204 -963 Soft 2000  Zim 133 2897 363
BB 1000 D 0 0.03 007 BB 2000 D 004 033 045
Flat 1000 D 0 002 005 Flat 2000 D 0 006 012
W 1000 D 029 048 056 W 2000 D 017 044 053
SB 1000 D 0 0.04 0.09 SB 2000 D 0 0.03 01
Sine1 1000 D 0 004 006 Sine1 2000 D 0 003 008
Sine2 1000 D 001 003 014 Sine2 2000 D 0 0.05 012
Soft 1000 D 074 079 033 Soft 2000 D 029 058 069
BB 1000 SigmaZ 125 241 548 BB 2000 Sigma2 107 207 465
Flat 1000 Sigma2 | 024 044 097 Flat 2000 Sigma2 02 036 081
FW 1000 Sigma2 | 017 033 077 FW 2000 Sigma2 | 0.35 067 155
SB 1000 SigmaZ | 022 042 092 SB 2000 Sigma2 | 039 074 153
Sine1 1000 Sigma2 | 018 033 077 Sine1 2000 SigmaZ | 025 047 1.04
Sine2 1000 Sigma2 | 078 145 322 Sine2 2000 Sigma2 14 262 HBAT
Soft 1000 Sigma2 [ 025 049 1.06 Soft 2000 Sigmaz | 011 021 046
Tabl e B.12: Estimates (Est) and bounds Table B.13: Estimates (Est) and bounds
(LB, UB) for DREM with 4000 Hz data. (LB, UB) for DREM with 8000 Hz data.
Sample Freq Parameter| LB EST UB Sample Freq Parameter] LB EST UB
BE 4000 Zre 033 815 1636 BB 8000 Zre 001 036 169
Flat 4000  Zre 009 108 1497 Flat &000  Zre 0.04 058 208
FvY 4000 Zre 012 324 499 Fwy 8000 Zre 17.66 29.37 41.51
SB 4000 Zre 011 308 1574 SB 8000 Zre 02 389 74
Sinel 4000  Zre 011 163 268 Sinel 8000  Zre 015 326 G663
Sine2 4000 Zre 015 166 285 Sine2 3000 Zre 017 326 1354
Soft 4000 Zre 433 707 1482 Soft 3000 Zre 021 1167 24384
BE 4000 Zim 17.33 233 3054 BB 8000 Zim 301 228 168
Flat 4000 Zim 533 591 53 Flat 8000 Zim -743 58 5.3
W 4000 Z.im 108 563 -1.78 W 8000 Zim -74.84 6334 5527
SB 4000  Zim 43 932 1059 SB 8000 Zim 44 865 1292
Sine1 4000 Zim 696 63 528 Sine1 3000 Zim 126 779 4326
Sine2 4000  Zim 633 AA54 475 SineZ 8000  Zim |-1665 86 247
Soft 4000 Z.im 1.13 38 11.58 Soft 3000 Zim -3.12 467 1127
BB 4000 D 0 003 007 BB 8000 D 002 014 048
Flat 4000 D 0 006 012 Flat 3000 D 0 0.05 015
FW 4000 D 015 042 0584 FwWy 8000 D 043 048 063
SB 4000 D 003 012 029 SB 8000 D 001 014 033
Sinel 4000 D 0.01 007 017 Sine1 8000 D 01 028 041
Sine2 4000 D 0.01 01 021 Sine2 3000 D 005 033 047
Soft 4000 D 042 057 065 Soft G000 D 082 093 099
BE 4000 Sigma2 | 208 411 8492 BE 8000 Sigmaz | 261 493 1136
Flat 4000 Sigma2 | 032 059 128 Flat 8000 Sigma2 | 153 286 632
FW 4000 Sigma2 | 044 085 195 FV 8000 SigmaZ | 174 324 751
SB 4000 Sigma2 | 026 052 934 SB G000 SigmaZ | 135 255 564
Sinel 4000 SigmaQ 0.47 088 1 96 Sine1 8000 SigmaE 1.71 37 .98
Sine2 4000 SigmaE 065 1.23 28 SineZ 8000 Sigmaz 2.35 452 10.53
Soft 4000 SigmaZ [ 022 042 095 Soft 8000 Sigma2 | 091 172 396
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Appendix C

Tabulated parameter estimates and confidence aiseobtained through inversion of the
DREM.

Table C. 1. Estimates (Est) and bounds Table C. 2: Estimates (Est) and bounds
(LB, UB) for DREM with BB dat a. (LB, UB) for DREMwith flat data.
Sample  Freq  Parameter]| LB EST UB | |Sample  Freq Parameter]| LB EST UB
BB 240 Alpha (0000 0.013 0.721 flat 250 Alpha [0.000 0.014 0721
BB 500 Alpha [0.000 0.824 1.000 flat 500 Alpha [0.000 0882 1.000
BB 1000 Alpha [0.000 0.303 1.000 flat 1000 Alpha [0.000 0.797 1.000
BB 2000 Alpha [0.000 0.973 1.000 flat 2000 Alpha [0.020 0.934 1.000
BB 4000 Alpha [0.000 0117 0.754 flat 4000 Alpha [0.000 0.055 0.733
BB 5000 Alpha  [0.000 0.019 0.821 flat a000 Alpha [0.000 0.009 0.8580

BB 240 D 0.000 0.100 1.000 flat 240 D 0.000 0.003 1.000
BB 500 D 0.570 0.996 1.000 flat 500 D 0.000 0162 1.000
BB 1000 ] 0.000 0.023 1.000 flat 1000 ] 0.000 0.047 1.000
BB 2000 D 0.000 0.081 1.000 flat 2000 D 0.000 0.001 1.000
BB 4000 D 0.000 0.005 1.000 flat 4000 D 0.000 0.014 1.000
BB 2000 D 0.000 0.015 1.000 flat 2000 D 0.000 0.027 1.000
Table C. 3. Estimates (Est) and bounds Table C. 4. Estimates (Est) and bounds
(LB, UB) for DREM with FW dat a. (LB, UB) for DREMwith SB data.
Sample  Freq Parameter| LB EST UB |[([Sample Freq Parameter| LB EST LB
Fi 240 Alpha [0.000 0.036 0.718 SB 240 Alpha [0.000 0.000 0.717
Fi 500 Alpha (0430 0.990 1.000 SB 500 Alpha [0.000 0160 0.499

W 1000 Alpha  |0.000 0.817 1.000 sB 1000 Alpha |0.000 0.771 1.000
W 2000 Alpha |0.000 0.966 1.000 SB 2000 Alpha |0.272 0.996 1.000

W 4000 Alpha |0.000 0.002 0.950 SB 4000 Alpha |0.000 0.030 0.716
FWW a000 Alpha  [0.000 0.021 0.871 SB a000 Alpha  |0.000 0.037 0.893

Fi 240 D 0.000 0.037 1.000 SB 240 D 0.000 0.041 1.000
WY 500 b, 0150 0.999 1.000 sB 500 b, 0.999 0992 1.000
Fi 1000 D 0.450 0997 1.000 SB 1000 D 0.000 0.036 1.000
Fi 2000 D 0.000 0.032 1.000 SB 2000 D 0.000 0.007 1.000
i 4000 D 0.000 0.014 1.000 SB 4000 D 0.000 0.024 1.000
i a000 D 0.000 0.024 1.000 SB 8000 D 0.000 0.022 1.000
Table C.5: Estimates (EST) and bounds Tabl e C. 6: Estinmates (Est)and bounds
(LB, UB) for DREMwith Sinel data. (LB, UB) for DREMwith Sine2 data.

Sample  Freq  Parameter]| LB EST UB | |Sample  Freq Parameter]| LB EST UB
Sine1 250 Alpha |0.002 0031 0.706] [ Sine2 250 Alpha |0.000 0.015 0.711
Sine1 500 Alpha |0.000 0.025 0803 [ Sine2 500 Alpha | 0.000 0120 0.840
Sine1 1000 Alpha |0.000 0.016 0841 [ Sine2 1000 Alpha |0.000 0.013 0.841
Sinel 2000 Alpha |0.000 0.272 1.000| [ Sine2 2000 Alpha | 0.000 0.302 1.000
Sinel 4000 Alpha |0.000 0.003 0789 [ Sine2 4000 Alpha |0.000 0.002 0733
Sinel G000 Alpha  |0.000 0.005 0879 [ Sine2 5000 Alpha  |0.000 0.032 0.902

Sinet 250 D 0.000 0.021 1.000(| Sine2 250 D 0.000 0.035 1.000
Sinet 500 D 0.000 0130 1.000(| Sine2 500 o 0.000 0.010 1.000
Sine 1000 D 0.000 0007 1.000(( Sine2 1000 D 0.000 0.015 1.000
Sinel 2000 D 0.000 0.004 1.000(( Sine2 2000 D 0.000 0.002 1.000
Sinel 4000 D 0.000 0.004 1.000(( SineZ2 4000 D 0.000 0.032 1.000
Sinel #8000 D 0.000 0.016 1.000f | Sine2 5000 D 0.000 0.043 1.000
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Table C.7: Estimates (Est) and bounds
(LB, UB) for DREMwith Soft data.

Sample Freq  Parameter| LB EST UB
Soft 250 Alpha |0.000 0.002 0.713
Soft 500 Alpha |0.096 0.951 1.000
Soft 1000 Alpha | 0.000 0.693 1.000
Soft 2000 Alpha | 0.000 0.994 1.000
Soft 4000 Alpha |0.000 0.008 0.520
Soft 8000 Alpha |0.000 0.005 0.369
Soft 250 D 0.000 0.030 1.000
Soft 500 D 0.340 0.993 1.000
Soft 1000 D 0.000 0.014 1.000
Soft 2000 D 0.000 0.067 1.000
Soft 4000 D 0.000 0.010 1.000
Soft 2000 D 0.000 0.010 1.000

Table C. 8: Estimtes (Est) and bounds
(LB, UB) for DREMwith 250 Hz data.

Table C. 9: Estimtes (Est) and bounds
(LB, UB) for DREMwith 500 Hz data.

Sample  Freq Parameter| LB EST UB | |Sample  Freq Parameter| LB EST LUB
BB 250 Alpha  [0.000 0.013 0.721 BB 500 Alpha |0.000 0.824 1.000
flat 250 Alpha  [0.000 0.014 0.721 flat 500 Alpha |0.000 0.882 1.000
Fuy 250 Alpha [0.000 0036 0.713 FW 500 Alpha |0.430 0.990 1.000
SB 250 Alpha [0.000 0.000 0.717 SB 500 Alpha |0.000 0160 0499

Sine1 250 Alpha (0002 0031 0708| [ Sine1 500 Alpha |0.000 0025 0803
SineZ 250 Alpha  [0.000 0.015 0.711) | SineZ 500 Alpha |0.000 0120 0.340
Soft 250 Alpha  [0.000 0002 0.713 Soft 500 Alpha  [0.096 0.851 1.000
BB 250 D 0.000 0.100 1.000 BB 500 D 0.570 0.996 1.000
flat 250 D 0.000 0.003 1.000 flat 500 D 0.000 0162 1.000
Fuy 250 D 0.000 0.037 1.000 FW 500 D 0.150 0.999 1.000
SB 250 D 0.000 0.041 1.000 SB 500 D 0.999 0.999 1.000
Sine1 250 D 0000 0021 1.000|| Sine1 500 D 0000 D130 1.000
SineZ 250 D 0.000 0.035 1.000]|| SineZ 500 D 0.000 0.010 1.000
Soft 250 D 0.000 0.030 1.000 Soft 500 D 0.340 0.995 1.000

Table C. 10: Estimates (Est) and bounds
(LB, UB) for DREMw th 1000 Hz data.

Table C. 11: Estimates (Est) and bounds
(LB, UB) for DREMw th 2000 Hz data.

Sample  Freq  Parameter] LB EST UB | [Sample  Freq Parameter| LB EST UB
BB 1000 Alpha |0.000 0803 1.000 BB 2000 Alpha |0.000 0.978 1.000
flat 1000 Alpha |0.000 0.797 1.000 flat 2000 Alpha | 0.020 0.984 1.000

WY 1000 Alpha (0000 0.817 1.000 Wy 2000 Alpha | 0.000 0.966 1.000
SB 1000 Alpha (0000 0.771 1.000 SB 2000 Alpha (0272 0.996 1.000
Sine1 1000 Alpha |0.000 0.016 0.841] | Sinel 2000 Alpha |0.000 0.272 1.000
Sine2 1000 Alpha  |0.000 0.015 0.841| | Sine2 2000 Alpha | 0.000 0.302 1.000
Soft 1000 Alpha  |0.000 0.695 1.000 Soft 2000 Alpha  ]0.000 0.994 1.000
EB 1000 D 0.000 0.023 1.000 EB 2000 D 0.000 0.081 1.000
flat 1000 D 0.000 0.047 1.000 flat 2000 D 0.000 0.001 1.000
Fi 1000 D 0.450 0.997 1.000 Fiy 2000 D 0.000 0.032 1.000
SB 1000 D 0.000 0.036 1.000 SB 2000 D 0.000 0.007 1.000
Sine1 1000 D 0.000 0.007 1.000[ | Sine1 2000 D 0.000 0.004 1.000
Sine2 1000 D 0.000 0.015 1.000( | Sine2 2000 D 0.000 0.002 1.000
Soft 1000 D 0.000 0.014 1.000 Soft 2000 D 0.000 0.067 1.000
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Table C. 12: Estimates (Est) and bounds
(LB, uB) for DREM with 4000 Hz dat a.

Table C. 13: Estimates (Est) and bounds
(LB, uB) for DREM with 8000 Hz dat a.

Sample  Freq Parameter| LB EST UB | |Sample  Freq Parameter]| LB EST LUB
BB 4000 Alpha (0,000 0117 0.758 BB 8000 Alpha |0.000 0.019 0.921
flat 4000 Alpha [0.000 0.055 0.733 flat 8000 Alpha |0.000 0.009 0.830
Fuy 4000 Alpha [0.000 0.002 0950 FWy 8000 Alpha |0.000 0.021 0.871
5B 4000 Alpha (0,000 0.030 0.716 SB 8000 Alpha |0.000 0.037 0.893

Sine1 4000 Alpha (0000 0003 0789 [ Sinel 8000 Alpha |0.000 0005 0879
Sine2 4000 Alpha [0.000 0002 0.738| | Sine2 3000 Alpha |0.000 0.032 0902
Soft 4000 Alpha  [0.000 0.009 0520 Soft 8000 Alpha  [0.000 0.006 0889
BB 4000 D 0.000 0.005 1.000 BB 8000 D 0.000 0.013 1.000
flat 4000 D 0.000 0.014 1.000 flat 8000 D 0.000 0.027 1.000
Fuy 4000 D 0.000 0.014 1.000 FWy 8000 D 0.000 0.024 1.000
5B 4000 D 0.000 0.024 1.000 SB 8000 D 0.000 0.022 1.000
Sine1 4000 D 0000 0004 1000|| Sinel 8000 D 0000 D016 1.000
Sine2 4000 D 0.000 0.032 1.000| | Sine2 3000 D 0.000 0.043 1.000
Soft 4000 D 0.000 0.010 1.000 Soft 8000 D 0.000 0.010 1.000
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Appendix D

Tabulated average absorption estimates and cocfdeatervals.

Table D. 1:

aver age absorption of

Di spl ays

the estimates (Est)
t he

t he

surfaces for

and bounds (LB,
| SSPM and DREM nodel s.

| SM

The val ues neasured by Bi bby [23] are al so presented.

UB) of the

Measured Estimated I1SM Estimated ISSPM Estimated DREM
Sample  Freq LB Est LB LB Est UB LB Est B LB Est UB

BB 125 000 D063 1.00 [sysmis sysmis sysmis|sysmis sysmis sysmis|sysmis sysmis sysmis
BB 250 .00 021 058 | 000 006 015 | 001 006 016 000 005 095
BB 500 .00 001 019 ) 001 010 039 ) 003 009 020 000 095 095
BB 1000 | 000 000 011 | 001 022 048 [ 001 007 011 000 095 095
BB 2000 | OO0 004 014 (000 013 072 ) 001 008 017 000 092 095
BB 4000 | 000 001 0415 | 000 009 078 [ 000 011 047 000 035 095
BB 8000 |sysmis sysmis sysmis| 0.02 0.39 0.93 0.01 0.21 0.74 0.00 0.07 0.93
Flat 125 000 029 1.00 |sysmis sysmis sysmis|sysmis sysmis sysmis|sysmis sysmis sysmis
Flat 250 o000 041 085 ) 001 016 035 | 001 009 018 000 005 095
Flat 500 006 021 037 ) 000 014 036 | 008 0716 035 000 094 095
Flat 1000 | 000 010 022 ) 000 001 004 | 000 0068 012 000 095 095
Flat 2000 | 000 042 023 [ 000 027 053 | 000 009 023 007 082 093
Flat 4000 | 000 002 027 | 001 041 0BO ( 002 017 028 000 019 095
Flat 8000 |sysmis sysmis sysmis| 0.11 016 060 [ 0.D1 010 025 000 003 094
F 125 0.00 0.22 1.00 [sysmis sysmis sysmis|sysmis Sysmis Sysmis|sysmis sysmis sysmis
W 250 000 025 068 | 001 013 043 | 011 033 046 000 013 095
Fw 500 p00 017 034 ) 001 007 030 | 001 018 027 082 091 095
Fwy 1000 | 013 027 041 | 001 013 039 [ 003 030 064 000 08 095
W 2000 | 020 034 047 | 002 024 043 | 002 026 067 000 0982 095
W 4000 | 020 043 066 | 002 023 041 ) 001 038 074 000 001 093
Fi 3000 |sysmis sysmis sysmis| 002 029 043 [ 002 005 003 000 0058 094
SB 124 000 003 1.00 [sysmis sysmis sysmis|sysmis Sysmis Sysmis|sysmis sysmis sysmis
SB 250 .00 002 042 ) 001 015 033 | 001 013 040 0.00 000 095
SB 500 .00 007 023 ) 008 018 036 | 001 010 047 0.00 045 087
SB 1000 | 000 001 043 | 001 013 045 [ 000 008 017 000 095 095
SB 2000 | 000 003 013 ) 001 016 031 | 001 008 021 064 091 095
SB 4000 | 000 001 01 | 004 014 066 | 001 019 036 000 011 0.95
SB 3000 |sysmis sysmis sysmis| 002 028 082 | 0.1 023 042 000 013 094
Sine1 125 000 015 1.00 [sysmis sysmis sysmis|sysmis sysmis sysmis|sysmis sysmis sysmis
Sine1 250 000 037 087 ) 004 011 021 001 015 044 001 011 095
Sine1 500 003 013 033 ) 003 046 0595 | 015 024 052 000 009 095
Sine1 1000 | 000 002 043 | 000 008 067 [ 001 006 016 000 006 095
Sinet 2000 | 000 004 016 | 003 025 086 | 000 008 018 000 0B84 09
Sinel 4000 | 003 020 038 | 005 045 082 | 001 019 037 000 001 095
Sine 3000 |sysmis sysmis sysmis| 0.19 0.40 0.90 0.02 0.31 0.67 0.00 0.02 0.94
Sine? 124 0.00 015 1.00 |sysmis sysmis sysmis|sysmis sysmis sysmis|sysmis sysmis sysmis
Sine? 250 000 037 087 | 000 012 064 | 001 015 041 000 006 095
Sine? 500 003 018 033 ) 002 042 084 | 005 017 040 000 036 095
Sine2 1000 | 0.00 002 013 ) 006 025 043 | 000 01 036 0.00 007 095
Sine2 2000 | 0.00 004 046 ) 001 022 057 | 007 010 018 000 0B 09
Sine2 4000 | 003 020 038 | 006 060 079 | 003 027 041 000 001 095
Sine2 {000 |sysmis sysmis sysmis| 006 038 085 [ 0.01 018 (065 000 0N 0.94
Soft 125 0.00 0.36 1.00 [sysmis sysmis sysmis|sysmis Sysmis Sysmis|sysmis sysmis sysmis
Soft 250 .00 035 075 ) 007 010 021 | 002 035 063 000 001 095
Soft 500 0585 075 092 ) 007 050 083 | 041 061 0388 030 093 09
Soft 1000 | 067 079 081 | 001 047 057 | 047 055 068 000 084 095
Soft 2000 | 066 077 089 | 007 056 089 | 003 0583 0483 0o 091 09
Soft 4000 | 051 064 076 | 073 087 092 ( 021 048 073 000 003 095
Soft B000 |sysmis sysmis sysmis| 017 054 082 | 007 032 083 000 002 094
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Appendix E

Parameter estimates of the ISM and ISSPM invemetth® broadband data.

Table E. 1: Estinmates (Est) and bounds Table E.2: Estimates (Est) and bounds
(LB, UB) for ISMwith BB data. (LB, UB) for ISMwith flat data.

Sample Freq Parameter| LB EST  UB Sample Freq Parameter| LB EST  UB
BE 250 Zre 3421 4527 G684 Flat 250 Zre 174 1183 2506
BE 500 Zre 089 1376 2402 Flat 500 Zre 023 556 2793
BE 1000 Zre 797 2566 4067 Flat 1000 Zre 015 187 394
BE 2000 Zre 932 1731 2524 Flat 2000 Zre 013 256 7
BE 4000 Zre 15.81 3025 3762 Flat 4000 Zre 011 107 275
BB 8000 Zre 021 456 3965 Flat 8000 Zre 011 364 1259
BE 250 Zim -18.88 512 131 Flat 250 Zim -33.13 2386 -15.97
BE 500 Zim -38.08 22387 97 Flat 500 Zim 2784 1517 1116
BE 1000  Zim -4003 -3013 -2151 Flat 1000  Zim 845 -T25 539
BE 2000 Zim -2584 852 092 Flat 2000  Zim -3343 2448 A7.23
BE 4000  Zim 055 979 17 Flat 4000  Zim 358 131 048
BE 8000 Zim -17.95 912 2515 Flat 8000  Zim -19.27 422 866

BB 250 D .06 012 047 Flat 250 D 011 0186 0.2
BE 500 D 001 012 041 Flat 500 D 0 0258 048
BB 1000 D 0.3 037 045 Flat 1000 D 0.01 014 022
BB 2000 D 0.87 096 1 Flat 2000 D 0 0.02 0.1
BE 4000 D 09 097 1 Flat 4000 D 0.3% 077 092
BE 8000 D 0.7 0.97 1 Flat 8000 D 0.7 0.97 1

BB 250 SigmaZz | 099 191 405 Flat 250 Sigma2 | 038 071 145
BB 500 Sigma2 | 225 419 584 Flat 500 Sigma2 | 007 014 029
BB 1000 Sigma2 | 1.34 2.5 b4 Flat 1000 Sigma2 | 033 064 143
BB 2000 SigmaZz | 082 154 336 Flat 2000 Sigma2 589 1093 2588
BB 4000 Sigma2 | 182 335 T.62 Flat 4000 SigmaZ | 077 146 331
BE 8000 Sigma2 | 286 543 121 Flat 8000 Sigma2 | 0.84 177 381




Table E. 3: Estimates (Est) and bounds Table E.4: Estimates (Est) and bounds
(LB, UB) for ISMw th FWdata. (LB, UB) for ISMwith SB data.

Sample Freq Parameter| LB EST UB Sample Freq Parameter| LB EST UB
Fw 250 Zre 029 4455 1342 SB 250 Zre 8.13 2051 2873
Fw 500 Zre 743 1541 3067 SB 500 Zre 1.02 2321 433
Fw 1000 Zre 1094 2247 33876 SB 1000 Zre 0.1 322 T48
Fw 2000 Zre 007 042 0895 SB 2000 Zre 034 964 2058
FwW 4000 Zre 045 1437 2115 SB 4000 Zore 56 188 2697
FW 3000 Zre 061 &H47 206 SB 8000 Zre 16.36 2693 434
Fw 250 Zim -22.58 1376 -6.39 SB 250 Zim 5767 5143 -306
Fw 500 Ziim -26.18 1793 -11.56 SB 500 Zim -38.09 2773 579
FW 1000  Zim 8283 5918 -2382 SB 1000 Zim 1367 825 442
FWw 2000  Zim 034 003 0N SB 2000 Zim 2403 4731 -31.3
Fw 4000  Zim -3.38 17T 2534 SB 4000 Zim 4219 2013 -1.73
FW 8000  Zim -36.17 2566 -19.04 SB 8000 Zim 2039 828 12

Fw 250 D 003 014 021 5B 250 D 016 02 023
Fw 500 D 061 068 074 SB 500 D 032 043 053
FW 1000 D 039 054 073 5B 1000 D 0.2 037 048
Fw 2000 D 0.3 067 082 SB 2000 D 0 0.02 009
Fw 4000 D 091 098 1 SB 4000 D 0.3 0497 1
FWW 8000 D 0.8 097 1 SB 8000 D D86 095 1

FW 250 Sigma2 [ 059 113 259 SB 250 SigmaZ2 | 031 057 1.28
Fw 500 Sigma2 [ 009 017 038 SB 500 Sigma2 | 011 022 047
FW 1000 Sigma2 | 7.62 1444 3127 SB 1000 SigmaZz | 144 275 508
FW 2000 Sigma2 [ 152 294 672 SB 2000 Sigma2 | 563 1081 237
FWw 4000 Sigma2 [ 184 361 7486 SB 4000 Sigma2 | 207 402 847
FW 8000 Sigma2 [ 3.02 585 1316 SB 8000 SigmaZ2 | 1.67 319 6582
Table E. 5: Estimates (Est) and bounds Table E.6: Estimates (Est) and bounds
(LB, UB) for ISMwith Sinel data. (LB, UB) for ISMwth Sine2 data.

Sample Freq Parameter| LB EST UB Sample Freq Parameter| LB EST B

Sine1 250 Zre 095 1034 2444 Sine2 250 Zre 001 023 145

Sinet 500 Zre 012 183 1142 Sine2 500 Zre 049 1041 2965
Sine? 1000 Zre 041 057 075 Sine2 1000 Zre 021 051 058

Sine1 2000 Zre 3132 4076 49388 Sine2 2000 Zre 53 3812 496

Sinet 4000 Zre 0.24 1.9 1071 Sine2 4000 Zre 0.26 124 281

Sine! 8000 Zre 041 802 17.G8 Sine2 B000 Zre 998 2233 349
Sine1 250 Zim -3658 2963 -3.06 Sine2 250 Zim -388 225 178
Sinet 500 Zim -16.26 437 -0.76 Sine2 500 Zim -27.2 -2089 477
Sinet 1000 Zim 08 073 -0.61 Sine2 1000 Zim 067 -0.59 -0.54
Sinel 2000 Zim 5255 4254 22216 | Sine2 2000 Zim 5481 4373 -319
Sinet 4000 Zim -8.52 188 033 Sine2 4000  Zim 47 -082 028
Sinel 8000 Zim 2287 603 &M Sine2 8000 Zim -09.52 4831 -37.88

Sinet 250 D 047 053 0.71 Sine2 250 D 001 017 044
Sine1 500 D 0.58 093 1 Sine2 500 D 083 0498 1
Sinet 1000 D 006 016 0.23 SineZ 1000 D 008 014 035
Sinet 2000 D 0 0.91 1 Sine2 2000 D 0.76 096 1
Sine1 4000 D 0.52 0.8 0488 Sine2 4000 D 0.1 05 083
Sinel 8000 D 0.85 096 1 Sine2 8000 D 067 095 1

Sinel 250 Sigma2 | 218 416 907 Sine2 250 Sigma2 | 087 191 435
Sinel 500 Sigma2 | 023 045 106 Sine2 500 Sigma2 | 035 063 145
Sinet 1000 SigmaZ | 039 075 175 Sine2 1000 SigmaZ | 027 052 116
Sinel 2000 Sigma2 | 1381 2794 7053 Sine2 2000 SigmaZ | 12891 2393 5145
Sine! 4000 Sigma2 | 081 173 394 Sined 4000 SigmaZ | 132 246 578
Sine! 8000 Sigma2 | 294 553 1195 Sine2 8000 Sigma2 | 324 604 1334




Table E. 7: Estinmates (Est) and bounds
(LB, UB) for ISMwith BB data.

Sample Freq Parameter| LB EST UB

Soft 250 Zre 16.85 26.7 37.78
Soft 500 Zre 008 103 247
Soft 1000 Zre 14.66 2244 3647
Soft 2000 Zre 003 074 285
Soft 4000 Zre 115 128 1.4

Soft. 8000 Zre 033 148 7T.k9

Soft 250 Zim 9.2 21453 4206
Soft 500 Zim 257 394 527
Soft 1000 Zim 2422 1258 -0.93
Soft 2000 Zim 4.07 146 -0.57
Soft 4000 Zim 002 017 037
Soft 8000 Zim -3.65  -0.08 107

Soft 250 D 015 013 023
Soft 500 D 04 053 081
Soft 1000 D 055 058 0.61
Soft 2000 D 076 041 098
Soft 4000 D 025 042 057
Soft G000 D 026 0492 1

Seoft 250  SigmaZz | 0.21 04 0.9
Soft 500 SigmaZ | 005 01 022
Soft 1000 SigmaZ | 0.05 01 0.21
Soft 2000 SigmaZ | 025 048 1.1
Soft 4000 SigmaZ | 028 052 117
Soft 8000 Sigma2 | 1.04 202 44

Table E. 8: Estinmates (Est) and bounds Table E.9: Estimates (Est) and bounds
(LB, UB) for ISSPMwi th BB data. (LB, UB) for ISSPMwi th flat data.

Sample Freq Parameter| LB EST UB Sample Freq Parameter| LB EST UB
BB 250 Zre 047 2016 3633 Flat 250 Zre 363 1355 2068
BB 500 Zre 909 2373 3989 Flat 500 Zre 01 216 779
BB 1000  Zre 0.7 961 2032 Flat 1000  Zre 0.04 124 369
BB 2000 Zre 035 699 2837 Flat 2000 Zre 007 252 1147
BB 4000 Zre 029 803 1612 Flat 4000  Zre 007 103 55
BB 8000 Zre 214 1558 2812 Flat 8000  Zre 1 14.62  39.33
BB 250 Zim 4774 2207 2069 Flat 250 Zim 4323 -33.82 -2267
BB 500 Zim 106 212 1033 Flat 500 Zim -20.37 1373 -7 87
BB 1000  Zim -38.36 -23.71 -12.94 Flat 1000  Zim 924 -F67 -5.83
BB 2000  Zim -24.07 -867 4386 Flat 2000  Zim -43.75 -30.36 -17.14
BB 4000  Zim 12.07 1918 31.06 Flat 4000  Zim 401 147 938
BB 8000 Zim -1.B5 267 137 Flat 8000  Zim -28.3 -18.54 033

BB  2a0 D 005 012 0.2 Flat 250 D 013 017 0.2
BE 500 D 0.01 02 053 Flat 500 D 0 011 035
BE 1000 D 023 038 045 Flat 1000 D 003 017 023
BB 2000 D 086 0.96 1 Flat 2000 D 0 0.02 0.08
BB 4000 D 0.82 093 1 Flat 4000 D 061 084 098
BB &000 D 0.85 0.96 1 Flat 5000 D 0.8% 057 1

BB 250 Sigmaz | 1.02 209 472 Flat 250 Sigma2 | 033 071 158
BB 500 Sigmaz | 226 422 912 Flat 500 Sigma2 | 006 012 027
BB 1000 Sigma2 | 129 242 533 Flat 1000 Sigma2 | 034 066 1.51
BB 2000 SigmaZ | 081 152 347 Flat 2000 SigmaZ | 583 11.03 2455
BB 4000 SigmaZ 18 335 765 Flat 4000 Sigma2z | 079 159 376
BB 8000 SigmaZ | 287 543 1236 Flat 8000 Sigma2 | 084 175 393




Tabl e E. 10: Estimates (Est) and bounds

Table E. 11: Estimates (Est) and bounds

(LB, UB) for ISSPMw th FW dat a. (LB, UB) for ISSPMw th SB dat a.
Sample Freq Parameter| LB EST UB Sample Freq Parameter| LB EST UB
Fww 250 Zre 025 384 1689 SB 250 Zre 13.83 2421 3695
FWw 500 Zre 0.71 41 1753 SB 500 Zre BETT 6895 8793
Fi 1000 Zre 003 032 0893 SB 1000 Zre 0.3 453 1143
F 2000 Zre 003 043 105 SB 2000 Zre 019 259 954
W 4000 Zre Da8 116 146 SB 4000 Zre 535 2154 3572
FWW 8000 Zre 574 1696 23.07 SB 8000 Zre 494 201 513
Fw 250 Zim 2135 1154 645 SB 250 Zim -5.79 131 1338
Fw 500 Zim -15.04 867 039 SB 500 Zim -39.92 1249 015
Wooo1000  Zim 281 244 205 SB 1000 Zim 1456 328 -237
FWw 2000  Zim 053 003 041 SB 2000 Zim -3953 328 -2498
Woo4000  Zim 016 017 0.4 SB 4000 Zim 4049 -2545 -17.93
FW 8000 Zim 57 38 4552 -30.67 SB 8000 Zim 2037 314 1067
Fw 250 D 002 013 0.2 SB 250 D 006 014 019
Fw 500 D 005 057 0.7 SB 500 D 039 049 056
F 1000 D 004 0195 032 SB 1000 D 013 036 046
Fw 2000 D 048 065 0893 5B 2000 D 0 002 009
W 4000 D 0oz 021 0.5 SB 4000 D 089 0497 1
FWw 8000 D 091 098 1 5B 8000 D 085 094 1
W 250 Sigma2 | 058 114 248 SB 250 SigmaZ2 | 032 061 134
FW 500 Sigma2 | 009 016 036 SB 500 Sigma2 | 012 022 04
FW 1000 Sigma2 | 177 331 758 SB 1000 Sigma2 | 147 2384 613
FWw 2000 Sigma2 | 153 299 698 SB 2000 Sigma2 | 575 1085 2402
FW 4000 Sigma2 | 162 302 669 SB 4000 SigmaZ | 214 4 8.7
FW 8000 Sigma2 | 307 575 1266 SB 8000 Sigma2 | 171 318 7.1
Table E. 12: Estimates (Est) and bounds Table E. 13: Estimates (Est) and bounds

(LB, UB) for ISSPMw th Sinel data. (LB, UB) for ISSPMwith Sine2 data.
Sample Freq Parameter| LB EST UB Sample Freq Parameter| LB EST UB
Sinel 250 Zre 025 602 17.28 Sine2 250 Zre 0 023 154
Sine1 500 Zre 1.08 1364 2163 Sine2 500 Zre 0oy 1.0 23
Sinel 1000  Zre 042 0589 07 Sine2 1000 Zre 034 053 063
Sinel 2000  Zre 15.35 2631 4542 Sine2 2000  Zre 2035 3086 4306
Sinel 4000  Zre 016 273 1483 Sine2 4000  Zre 043 134 864
Sinel 8000  Zre 241 3837 5025 Sine2 8000 Zre 1038 19.77 29.36
Sinel 250 Zim 6376 -5246 -3535 Sine2 250 Zim -3.39 209 174
Sine1 500 Zim 212 123 41 Sine2 500 Zim 285 -168 -036
Sinel 1000  Zim 081 072 0863 Sine2 1000  Zim 067 06 -054
Sinel 2000  Zim 2183 972 G456 Sine2 2000  Zim 6076 -50.71 -31.81
Sinel 4000  Zim -30.58 -2065 -0.86 Sine2 4000  Zim 413 -0.55 1038
Sinel 8000  Zim -23.74 1546 065 Sine2 8000 Zim -36.19 1757 782
Sinel 250 o 049  058% 0 Sine2 250 D 0 006 037
Sine1 500 D 091 098 1 Sine2 500 D 013 073 098
Sine1 1000 o 001 014 0. Sine2 1000 D 0ov 012 036
Sine1 2000 D 0oz 0493 1 Sine2 2000 D 0 004 015
Sine1 4000 o 083 095 1 Sine2 4000 D D0z 025 093
Sine1 8000 D 033 0497 1 Sine2 8000 D 035 095 1
Sinel 250 Sigma2 | 217 423 943 Sine2 250 SigmaZ | 093 178 412
Sinel 500 Sigma2 | 025 051 177 Sine2 500 SigmaZ | 027 053 113
Sinel 1000 Sigma2 | 038 072 1458 Sine2 1000 SigmaZ | 027 052 116
Sinel 2000 Sigma2 | 13.56 2624 6745 Sine2 2000 Sigma2 | 2341 4369 9435
Sinel 4000 Sigma2 [ 096 179 39 Sine2 4000 SigmaZ | 143 263 6.09
Sinel 8000 Sigma2 | 299 564 1259 Sine? 8000 SigmaZ | 315 603 127
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Tabl e E. 14: Estimates (Est) and bounds
(LB, uB) for ISSPMwith BB dat a.

Sample Freq Parameter| LB EST B

Soft 250 Zre 1184 2158 318
Soft 500 Lre 002 133 318
Soft 1000 Zre 522 264 3161
Soft 2000 Zre 014 1062 1585
Soft 4000 Zre 055 483 1316
Soft 8000 Zre 114 7.58 2045

Soft 250 Zim -0 353 164
Soft 500 Zim 208 379 5.3
Soft 1000 Zim 4127 -35.44 18.07
Soft 2000 Zim 2711 -89 -0.88
Soft 4000 Zim -2.53 851 1503
Soft 8000 Zim 0.85 587 M3

Soft 250 D 006 015 019

Soft 500 D 03 052 061
Soft 1000 D 0.58 06 062
Soft 2000 D 088 097 1
Soft 4000 D 095 099 1
Soft 8000 D 0.2 097 1

Soft 250 SigmaZ | 021 042 097
Soft 500 SigmaZ | 0.05 0.1 0.23
Soft 1000 SigmaZ | 0.05 0.1 0.22
Soft 2000 SigmaZ 03 059 132
Soft 4000 Sigma2 | 035 067 152
Soft 8000 SigmaZ [ 1.06 201 432




