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Abstract 
 
 
A surface diffusion coefficient is used in architectural-acoustics to evaluate the 

effectiveness of diffusing surfaces. The inclusion of the diffusion characteristics is also 

important for the accuracy of room prediction models. Another important parameter is 

the absorption or impedance of a surface. In settings with significant low-frequency 

noise, phase effects are important; consequently impedance values of surfaces are 

necessary for accurate modeling. A review of existing models for specular and diffuse 

reflection is made. A new diffusion coefficient is defined and included in three new 

forward models for predicting the steady-state sound-pressure level above a finite-

impedance plane in an otherwise free field. Data are collected for several typical 

architectural surfaces in an anechoic chamber. Inverse methods are utilized in order to 

estimate the diffusion coefficient for surfaces given each of the models. This is done 

without knowledge of the surface impedance, which is simultaneously estimated. The 

models are compared with each other and with independently measured values of the 

surface impedance and diffusion. Inversion is found to be a reasonable way of 

determining the diffusion properties of a surface.  
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Chapter 1 
Introduction 
 

1.1 Objective and motivation 

 

This thesis discusses the determination of the acoustical parameters of room surfaces. 

These can in some cases be measured directly. In other cases direct measurement is not 

possible, and indirect methods are of interest. There is widespread use of inverse methods 

in the discipline of acoustics; however architectural acoustics appears to be under-

represented in their use. This is surprising, as architectural acoustics shares many similar 

problems with underwater and outdoor acoustics, as they all consider sound in somewhat 

bounded spaces. This research applied inverse-method techniques from non-architectural 

fields of acoustics, to facilitate the solution of architectural-acoustic problems. The 

specific problem of interest is the accurate determination of the acoustical-impedance and 

diffusion characteristics of typical architectural surfaces. 

 

This problem is of great importance in architectural acoustics, as accurate knowledge of 

the impedance and diffusion characteristics of surfaces is crucial in the architectural-

acoustical design process. The inclusion of phase information—that is, complex 

impedance instead of energy absorption—is important in industrial settings where a 

significant portion of the background noise is at low frequency. It has been shown that 

failure to accurately include surface-diffusion characteristics in prediction models leads 

to inaccurate predictions of room reverberation times. 

 

The determination of the acoustical impedance and diffusion characteristics of a surface 

does not lend itself well to direct measurement. Conventional, direct methods for 

measuring the acoustical impedance of a surface assume wholly specular reflection. This 

is a significant problem; as such methods interpret non-specular reflection as increased 

absorption, producing inaccurate values. Conventional methods for measuring the 

diffusion characteristics of a surface assume knowledge of the absorption of the surface, 

and are currently based in diffuse-field theory and do not consider phase. 
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1.2 Outline and methodology 

 

Chapter 2 is a tutorial section on the background concepts of acoustics and inverse 

methods. This is followed by a review of methods for determining the acoustical 

properties of surfaces in Chapter 3. Chapter 4 discusses the collection of data and Chapter 

5, the implementation of inverse methods. 

 

Chapter 6 presents the independent research, which consists of three components: the 

development of new forward models, the collection of data, and inversion of the models. 

Three new forward models were developed using the concept of the image-source 

method, and have been modified to include diffuse reflection. They differ from each 

other in their inclusion of phase information. The data were collected in a hemi-anechoic 

chamber with seven different types of architectural surfaces used as the sole reflecting 

surface. The inversion of the models was done in such in a way as to not only gain point 

estimates, but also confidence intervals for the estimates. The models are inverted 

directly and not approximated. 

 

Finally, a comparison of the three forward models is made. The criteria for these 

comparisons were: the ability of a model to predict the observed data, the level of 

conformity of the estimated parameters to direct measurements, and the level of certainty 

of the estimates produced. 
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Chapter 2 
Background concepts and theory 
 

In order to have a discussion on diffuse sound reflection, it is first necessary to have a 

strong understanding of the physical principles of acoustic-wave theory. This will be the 

primary purpose of this chapter; however it will also introduce inverse theory and 

optimization. The acoustics material unless otherwise cited is from Kuttruff [1]. 

 

2.1 Fundamental acoustical relations 

 

The most basic element of acoustics is the acoustical wave. Acoustical waves are 

longitudinal; that is, they displace particles of the propagation medium in the same 

direction as the wave propagates. Acoustical waves are also three dimensional. 

Acoustical waves can be characterized in several ways. First, a wave can be characterized 

by the displacement ζ of the particles of the medium affected by the wave. The wave can 

also be characterized by the velocity of the particles u . A third quantity, that 

characterizes the amplitude of an acoustical wave, is sound pressure p . This value is also 

commonly reported in decibels dB as sound-pressure level pL . Equation (2.1.1) gives 

the sound-pressure level in terms of the pressure, where ∗p  is the reference pressure of 

Pa20µ . 

 

 







= ∗p

p
Lp log20  (2.1.1) 

 

The wave equation is one of the most fundamental acoustical formulas. The wave 

equation Eq. (2.1.2) can be derived from three equations; these are the continuity 

equation, the Euler equation and the equation of state [2]. It is assumed that the fluid 

medium, in which the wave propagates, is homogeneous, isotropic and perfectly elastic. 

It should also be noted that the linearization approximations used in this derivation are 

only valid up to 110 dB. 
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The Laplacian appears on account of the three-dimensional nature of acoustical waves. 

Wave fronts may take a variety of geometries; the simplest of these is a plane. The wave 

front may be non-planar, such as spherical. 

 

2.2 Sound intensity and impedance  

 

Another important attribute of a sound field is the sound intensity. Sound intensity is 

defined as the average rate of flow of acoustical energy through a unit of area normal to 

the direction of sound propagation [2]. Eq. (2.2.1) gives intensity as the product of 

particle velocity and sound pressure. 

 

 upI =  (2.2.1) 

 

The characteristic acoustical impedance •Z  of a medium is defined as the ratio of sound 

pressure to the particle velocity, Eq. (2.2.2). For planar waves the impedance is also equal 

to the product of the density of the material and the speed of sound within it, Eq. (2.2.3). 

For spherical waves the relation is more complicated as sound pressure and particle 

velocity are not in phase. As shown in Eq. (2.2.4), if the radius is large then the 

impedance will be similar to that of a planar wave. This is expected as the curvature of a 

large sphere is less than that of a small sphere. However for small spheres the second 

term in the denominator will dominate and the impedance will be much smaller. The 

models described in Chapter 5 used the specific not characteristic impedance of a surface. 

The specific impedance Z of a surface is the ratio of the characteristic impedance of the 

surface to the characteristic impedance of the reference medium; the admittanceβ  of a 

surface is the inverse of this ratio. 
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u

p
Z =•  (2.2.2) 

 cZ ρ=•  (2.2.3) 

 








 +
=•

ikr

c
Z

1
1

ρ
 (2.2.4) 

 

2.3 Planar waves 

 

Waves with planar wave fronts are called plane waves. The most important properties of 

plane waves are that acoustical pressure and particle velocity have the same phase and 

magnitude at all points on a plane normal to the direction of wave propagation 

(wavefront). Plane waves usually occur in vents, pipes or other long and narrow spaces. 

However a plane wave may be used to approximate a non-plane wave if the curvature of 

the approximated waves is low. This normally occurs if the source of the wave is in the 

far field, at a large distance from the source relative to the wave length.  

 

As noted, the pressure of a plane wave only changes in the direction of its flow. Without 

loss of generality this can be considered the x  axis; consequently Eq. (2.1.1) can be 

rewritten as Eq. (2.3.1). The function,( )txp , , can be solved for the harmonic solution is 

given in Eq. (2.3.2). This can be interpreted as two waves: the first has amplitudeA , and 

is propagating in the positive x  direction, the second has amplitude B  and is propagating 

in the negative x  direction. The strategy of describing a sound field in terms of several 

waves will be repeated throughout this chapter, as this appears to be a conceptually 

simple description of acoustical phenomena. It should be noted, however, that the 

combination or separation of waves is arbitrary. 

 

 ( ) 0,
11 =









∂
∂+

∂
∂










∂
∂−

∂
∂

txp
tcxtcx

 (2.3.1) 

 ( ) ( ) ( ){ }kxtikxti BeAetxp +− += ωωRe,  (2.3.2) 
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2.4 Spherical waves 

 

A spherical wave is any wave such that the acoustical pressure and particle velocity have 

the same phase and magnitude at all points on the surface of a sphere centered on the 

sound source. Not surprisingly, spherical waves are more easily described using a 

spherical coordinate system. Eq. (2.4.1) gives the wave equation, in which the Laplacian 

operator is rewritten in spherical form. On account of the spherical-wave property that 

only radius, not angle, determines pressure, particle velocity, etc. the equation can be 

simplified to yield Eq. (2.4.2). Eq. (2.4.2) is of the same form as Eq. (2.3.1) and therefore 

has a solution of the same form, given in Eq. (2.4.4). This can be solved for p  yielding 

Eq. (2.4.5).  

 

( ) ( )
( )

( ) ( ) ( )
( )

( ) ( )
0

1

sin

1
sin

sin

12
2

2

22

2

2222

2

=
∂

∂−
∂

∂+








∂
∂

∂
∂+

∂
∂+

∂
∂

t

rp

c

rp

r

rprp

rr

rp

rr

rp

φθθ
θ

θθ
 (2.4.1) 

 
( ) ( )

0
1

2

2

22

2

=
∂

∂−
∂

∂
t

rp

cr

rp
 (2.4.2) 

 ( ) rpptxp
tcxtcx

==








∂
∂+

∂
∂










∂
∂−

∂
∂ ∗∗ where0,

11
 (2.4.3) 

 ( ) ( ) ( )kxtikxti BeAetxp +−∗ += ωω,  (2.4.4) 

 ( )
( ) ( )









+=
+−

r

Be

r

Ae
txp

kxtikxti ωω

Re,  (2.4.5) 

 

The spherical-wave equation has a similar interpretation as the plane-wave equation. The 

first term represents a wave of magnitude A  propagating in an outward radial direction; 

the second term represents a wave converging at the origin with magnitudeB . The main 

difference is that the pressure amplitudes of spherical waves do not remain constant as 

the wave propagates; they attenuate at a rate of r1 .  
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2.5 Basic sound reflection 

 
Figure 2.1: Illustration of the 
principle of the image-source model. 

 
To conceptualize sound reflection it is convenient to consider an idealized situation, the 

one displayed in Fig. (2.1). The idealized situation is a single sound source within one, 

and above another, semi-infinite medium separated by a planar interface. The media have 

characteristic impedances 1Z and 2Z , respectively. It is assumed that the sound field at the 

receiver is of the form of Eq. (2.5.1); that is, it is the combination of the contributions of 

the direct 1P  and the reflected 2P  paths.  

  

 2p1tot PRPP +=  (2.5.1) 

 

The quantity pR  in Eq. (2.5.1) is the reflection coefficient. If it is assumed that the 

acoustic waves are planar, then a solution for pR  can be found using the boundary-

element method. This is done by solving the system of equations Eq. (2.5.2) and Eq. 

(2.5.3) that are linear in terms of the amplitudes. It should be noted that Eq. (2.5.2) 

represents the continuity of sound pressure at the interface and that Eq. (2.5.3) requires 

that the normal particle velocity at the interface is zero. The y  terms have been removed, 

as the equations describe interfaces at 0=y . The angles iθ , rθ  and Tθ  are the incident, 



Chapter 2 

 8 

reflected and transmitted angles. These are defined as the angle between the ray and the 

normal not the surface.  

 

 ( ) ( ) ( )Tri xik
T

xik
r

xik
i eAeAeA θθθ coscoscos 211 =+  (2.5.2) 

 ( ) ( ) ( )Tri xik
T

xik
r

xik
i eA

Z

Z
eAeA θθθ cos

2

1coscos 211









=−  (2.5.3) 

  

The solution is given in Eq. (2.5.4). It can be helpful to express PR  in terms of a product 

of terms for magnitude and phase (χ ).  If it is assumed that the interface is locally 

reactive then, by definition, ( )iZ θ2  will be constant for all values of iθ ; as a consequence 

the solution simplifies to Eq. (2.5.5). Another important result of this process is that rθ  

must equal iθ ; that is, the reflection of a planar wave must be specular.  

 

 
( ) ( )
( ) ( )

χ

θθ
θθ i

Ti

Ti

i

r eR
ZZ

ZZ
R

A

A
p

12

12
p coscos

coscos
=

+
−

==  (2.5.4) 

 

( )

( ) 
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















+

−
=

2

1

2

1

p

cos

cos

Z

Z
Z

Z

R

i

i

θ

θ
 (2.5.5) 

If the acoustical waves are assumed to be spherical, then a restricted solution for pR  was 

found by Sommerfeld [3] applying the boundary-element method to Eq. (2.5.6) and Eq. 

(2.5.7). The form of Sommerfeld’s solution is given in Eq. (2.5.8). 

 

 ( ) ( ) 0,0,042 >=−∇− zforhpk sπδ  (2.5.6) 

 0
2

1 =−=
∂
∂

zforp
Z

Z
ik

z

p
 (2.5.7) 

 ( )( ) 2pp121 1 PFRRPQPPPtot −++=+=  (2.5.8)  
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For cases where both the source and the receiver are on the interface between the two 

media, Sommerfeld was able to express the total wave-field solution in the form of Eq. 

(2.5.9). The form of Eq. (2.5.9) allows for the interpretation of F  as a surface-loss factor; 

that is, the additional attenuation of the sound waves as a result of the interface. An 

approximate solution for F  was found, and demonstrated to be dependent on only two 

complex values, the first and second numeric distances (ρ ,τ ). This solution is used by 

Taraldson [3] to find the general solution given in Eq. (2.5.10). It should be noted that the 

Taraldson solution, while general and exact, is not explicit. 

  

 
r

e
FP

ikr

20 =  (2.5.9) 

 w
uu

e
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

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τρ

 (2.5.10) 
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 (2.5.11) 

 ( )







+= θτ cos

2 2

1
2 Z

Z
kr

i
 (2.5.12) 

  

An efficient and reasonably accurate approximation was found by Lawhead and Rubnik 

[3] and is given in Eq. (2.5.13) and Eq. (2.5.14). This approximation is based on the 

observation that F  has only a weak dependency on τ ; consequently it is removed, 

simplifying the equation. Although the erfc function looks computationally intensive 

because of its similarities to the cumulative density of a Gaussian distribution, there are 

many fast ways of calculating its value. Moreover it should be noted that this 

approximation is only good if 2kr , the wave number times the distance from the point of 

incidence to the listener position, is much larger than one.  
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 ( )ρπρ ρ ieiF −+≈ − erfc1  (2.5.13) 

 ( ) ∫
∞

− ∂=
x

x xex
22

erfc
π

 (2.5.14) 

 

So far the sound-pressure level of a point above a surface has only been considered with 

regards to its location—that is, its distance from the sound source along the direct and 

specularly-reflected paths. As for all pure tones, the sound-pressure level will have a 

sinusoidal variation with time. The amplitude of the sinusoid is given by Eq. (2.5.16). 

 

( ) ( )( ) ( )[ ] ( ) ( )( ) ( )[ ]
21

122Re1Im2

21

122Im2Re1

21

sinsincoscossincos

21

rr

krrkrQkrQr
i

rr

krrkrQkrQr

r

e
Q

r

e ikrikr

++
+

+−
=

=+
(2.5.15) 

( ) ( )( ) ( )[ ] ( ) ( )( ) ( )[ ]2
122Re2Im1

2
122Im2Re1

21

sinsincoscossincos
1

rkrrkQrkQrrkrrkQrkQr
rr εεεεεε ++++−=  (2.5.16) 

 

2.6 Diffuse reflections 

 

So far the reflection paradigms that have been considered are derived from physical 

principles. However it has been shown that these reflection rules are inadequate for 

modeling real rooms [4]. A possible improvement is to allow for diffuse reflection; the 

reflected wave is distributed over a range of angles. In order to model diffuse reflection, 

it appears to be common (since Kuttruff [5]) to use a probability-density function (PDF). 

These PDFs are used in two similar but distinct ways. The first method is as follows: a 

sound ray that reflects from a surface is assigned a random reflecting anglerθ  with 

probability of a given rθ  dictated by the PDF. The alternative approach is to assume that 

energy is distributed in all directions, with the proportion of the energy in a given 

direction determined by the PDF. The former is computationally easier to implement; 

however the latter seems closer to reality, with the proviso that neither of the two 

methods is justifiable from physical principles. 
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A common special case for diffuse reflection is Lambert’s Law reflection. Under 

Lambert’s Law it is assumed that the reflected sound intensity is the same in all 

directions. This does not imply that the proportion of energy reflected in all directions is 

equal or, in other terms, that the PDF for Lambert’s Law reflection is non-uniform. For 

the case where the reflected azimuth angle is assumed to be the same as that of the 

incident ray, this is the two-dimensional case. Then the PDF is given in Eq. (2.6.1).  It 

should be noted that PDFs used in this report will be reported up to a multiplicative 

constant.   

 

 ( ) ( )RiRf θθθ cos| ∝  (2.6.1) 

 

Equation (2.6.1) can be derived by considering an arbitrary unit of surface that has been 

excited by a sound beam. If all of the sound energy is reflected into the same anglerθ  

then the width of the reflected beam will be ( )rθcos  times the width of the incident beam. 

This is shown in Fig. (2.2). Consequently the intensity of that beam will have increased; 

however Lambert’s Law reflection assumes that the intensity is the same for all angles of 

reflection, and Eq. (2.6.1) is used to normalize the intensity.   

 

The case where the reflecting sound ray is able to vary with the polar angle but not the 

azimuth angle is unsatisfactory, as the surface has already demonstrated that it reflects 

diffusely. In order to expand Eq. (2.6.1) to three-dimensional diffuse reflection, only two 

observations are necessary. The first is that the ray density does not vary with azimuth 

 

 
Figure 2.2: Shows a sound beam emitted at angle 

rθ  

from an energized region , of the surface. A 
semi-spherical shell centered on the energized 
region is also depicted. 
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 angle. The second is that the point density does change with polar angle. It is simpler to 

describe the three-directional reflection in terms of an azimuth angle that varies from π−  

to π  and a normal angle that varies from 0 to 2π . In this way the PDF for the three-

dimensional case is given in Eq. (2.6.2). 

 

 ( ) ( ) ( ) ( )RRRiRf θθθθθ 2sinsincos| =∝  (2.6.2) 

 

The first point to make about Eq. (2.6.2) is that it has no dependence on the azimuth 

angle; this is as expected. The second point is that the ( )Rθcos  component is present for 

the same reasons as given in the two-dimensional case. In order to justify the ( )Rθsin  

component it is necessary to first consider a shell of arbitrary radius around the excited 

unit of surface.  This is shown in Fig. (2.2). The ray density for reflected waves is 

determined by the radius of a circle parallel to the surface at a height given by rθ . This 

value is ( )Rθsin . 

 

 
Figure 2.3: Illustration of a sound ray 

diffusely reflecting from a sub-surface 

●, with random impedance and roughness. 

The angles displayed are those in Eq. 

(2.6.3). 
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The pressure caused by diffuse reflection of a planar wave incident on a sub-surface with 

randomly rough surface and randomly varying impedance is given in Eq. (2.6.3) [6]. The 

functions ( )yx,β  and ( )yx,ε  are the differences between the values of the admittance 

and height at a point ( )yx,  on the sub-surface, and their average values. These functions 

are the realization of random variables.  
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 (2.6.3) 

 ( ) ( ) ( ) ( )( )rriix k φθφθµ cossincossin −=  (2.6.4) 

 ( ) ( ) ( ) ( )( )rriiy k φθφθµ sinsinsinsin −=  (2.6.5) 

 ( ) ( ) ( ) ( ) ( )ririri φφθθθθγ −−+= cossinsin2sinsin 222  (2.6.6) 

 

If it is assumed that the ( )yx,β  and ( )yx,ε  are isotropic as well as independent of each 

other at a given point, the intensity of the reflected wave DI , is given in Eq. (2.6.7). It is 

also assumed that correlation functions of ( )yx,β  and ( )yx,ε  are given by Eq. (2.6.8) 

and Eq. (2.6.9), respectively. The 2∗σ term in both equations is the standard deviation of 

the ( )yx,β  and ( )yx,ε  functions. The ∗w  term is the correlation length of the ( )yx,β  

and ( )yx,ε  functions. This is the distance that can be traveled without the admittance or 

boundary position substantially changing. 
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w
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The two integrals in Eq. (2.6.7) are the two-dimensional spatial Fourier transforms of the 

surface roughness ( )ωεF  and the spatially varying admittance( )ωβF . Additionally, as 

γk is the length of the vector µ  projected onto the xy plane, the argument of the Fourier 

transforms is replaced withγk . The result of these changes is given in Eq. (2.6.10). 

Under the assumption that the ( )yx,β  and ( )yx,ε are statistically independent of each 

other the cross product of the Fourier functions is zero. Using the identity given in Eq. 

(2.6.11), Eq. (2.6.10) can be rewritten in the form of Eq. (2.6.12). Indeed it is this identity 

that allows the intensity of the sound field to be calculated explicitly and, consequently, is 

the motivation for calculating the intensity of the diffuse wave as opposed to directly 

finding its pressure.  
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The integrals in Eq. (2.6.12) are explicitly solvable because the limits of integration are 

infinite. The computation of the first integral is shown in Eq. (2.6.13) through Eq. 

(2.6.15); the other integral is computed in exactly the same way. Finally the explicit 

intensity formula is given in Eq. (2.6.16). An interesting note is that this is not identical to 

the solution presented in Morse and Ingard [6] which appears to be in error; their solution 

is presented in Eq. (2.6.17).  
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2.7 Inverse theory 

 

Inverse theory is the estimation of the parameters of a postulated model of a physical 

system from observed data. In Eq. (2.7.1), f  is a model, θ  is the set of unknown 

parameters, X  is the observed independent data andY  is the observed dependent data. 

Consequently, Eq. (2.7.2) expresses the inverse-theory estimate of the set of parameters, 

θ  . It should be noted that, in general, the observed data will consist of a set of 

independent data points that are matched with a set of dependent data points by the 

model. 

 

 ( )XfY |θ=  (2.7.1) 

 ( )XYf |ˆ 1−=θ  (2.7.2) 

 

The solution given in Eq. (2.7.2) will, in general, either not exist (have no closed form) or 

be under-specified, thus having an infinite number of solutions. Accordingly, inverse 

theory is solving these two problems. This section will provide some basic solution 

techniques that will be used later in this thesis. These techniques are numerical 

estimation, percentile estimation, and statistical techniques (Bayesian inversion and 

maximum likelihood estimation). 

 

Numerical estimation, in general, involves creating an objective function, and 

maximizing that objective function in an iterative manner. Two common iterative 

algorithms are the Newton Raphson algorithm (NR) and the Conjugate Gradient method 

(CG)[7]. The basic equation of the NR is given in Eq. (2.7.3).  

 

 
( )
( )n

n
nn xf

xf
xx

′
−=+1  (2.7.3) 

 

In Eq. (2.7.3), nx  will approach the value needed to make ( )nxf  equal zero as n  

increases. This is an example of fixed-point iteration. In the context of optimization it is 
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less common that the objective is to find the root of a function; more often the goal is to 

find the maximum or minimum of a function. If the function in question is assumed to be 

smooth then Eq. (2.7.3) can be rewritten as Eq. (2.7.4). This will now locate the extrema 

of the function f , as such values will only occur if the derivative is equal to zero.  

 

 
( )
( )n

n
nn xf

xf
xx

′′
′

−=+1  (2.7.4) 

 

The formulas for the CG method are given in Eq. (2.7.5) through Eq. (2.7.7). The scalar 

multipleβ  shown is the Flecher-Reeves β ; however other choices are available. The nα  

is the step size; this term is given the subscript n , as in many applications it is useful to 

have a varying step size.  

 

 nnnn xxx Λ+=+ α1  (2.7.5) 

 )(1 nnnn xfxx ∇−Λ=Λ −β  (2.7.6) 

 
11 −− ∆∆
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n
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n xx

xxβ  (2.7.7) 

 

A significant problem of numerical estimation on its own is that it is difficult to ascertain 

to what degree of certainty an estimate is valid. Percentile estimation is one solution to 

this problem; percentile estimation is simply a process to estimate an arbitrary percentile 

of the distribution of a parameter. Before continuing, it is useful to go through the short 

proof of this technique. 
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Eq. (2.7.8) can be conceptualized as an absolute-value function, as it will always return a 

positive number. However, unlike a conventional absolute-value function, the slopes of 

the two sides are different. In Eq. (2.7.9), f  is the distribution of the unknown 

parameterθ ; this distribution can also be thought of as the certainty of θ  for parameters 

for which a distribution seems conceptually unsettling. Consequently, Eq. (2.7.9) can be 

thought of as the expectation of ( )θθ ˆ−g . 
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If the integral in Eq. (2.7.9) is decomposed into two pieces such that the difference of 

θ and θ̂  is always positive, then it yields Eq. (2.7.10). This equation can be further 

decomposed into four terms, as given in Eq. (2.7.11). The goal of this process so far has 

been to find the θ̂  that minimizes the error value; such a θ̂  would be a critical value of 

function ( )θ̂Error . Consequently, if the derivative of ( )θ̂Error  is taken with respect to 

θ̂ , and set equal to zero, and this equation is then solved for θ̂ , the solution will be the 

value of θ̂  that minimizes the ( )θ̂Error . 
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 [ ] [ ]θθ ˆ*ˆ*0 FBFAA ++−=  (2.7.13) 
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Eq. (2.7.12) is the derivative of Eq. (2.7.11) with respect to θ̂ . F  is the cumulative 

density function (CDF) associated with the probability function, f . The solution is given 
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in Eq. (2.7.14). This solution can be interpreted as follows: since F  is the CDF of θ , θ̂  

must equal the percentile value associated with the percentage given on the left-hand side 

of Eq. (2.7.14); that is to say, if A  is equal to B , θ̂  would be the 50th percentile of θ , 

the median. Alternatively, if A  were equal to five percent of the sum of A  and B , θ̂  

would be the 5th percentile of θ . 

 

In the case where a model is over-specified, it is normally helpful to assume that each 

measurement has a value that is distributed by some assumed distribution functionf  

around the true value. The true value can then be estimated using standard statistical 

techniques, such as Bayesian inversion, and maximum likelihood estimation.  

 

The first of these to be discussed will be maximum likelihood estimation; in order to do 

this, the likelihood function must first be introduced. A likelihood function is the product 

of the probability of each element of observed data, given the parameter θ . 

Consequently, it can be thought of as the probability of obtaining the sampled dataset. 

For numerical reasons, it is often easier to use the log-likelihood, which is the sum of the 

logged probability of each element of the dataset. Eq. (2.7.15) and Eq. (2.7.16) give a 

generic likelihood function and log-likelihood function, respectively. In order to achieve 

a maximum likelihood estimate, one takes the derivatives of the log-likelihood function, 

with respect to unknown parameters, and sets them equal to zero. The resultant system of 

equations can be solved either directly or through numerical methods to find the 

estimates of the parameters. 

 

 ∏=
i

ixpL )|( θ  (2.7.15) 

 ( ) ( )∑=
i

ixpL )|(loglog θ  (2.7.16) 

 

The Bayesian approach to statistical estimation is a direct result of Bayes’ rule [8], which 

is given in Eq. (2.7.17). This states that, for any two events A  and B , the probability of 
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both A  and B  is equal to the product of the probability of B  and the probability of A  

given B .  

 

 ( ) ( ) ( )BpBApBAp ∗∝ |&  (2.7.17) 

 

For Bayesian estimation, event A  is the sampled data and event B  is a particular value 

of the unknown parameters. In this context Eq. (2.7.17) can be rewritten as Eq. (2.7.18), 

where ( )θπ  is the prior distribution of θ , and L  is the likelihood function of data given 

θ .  

 

 ( ) ( ) ( )θπθθ ∗= |, XLXp  (2.7.18) 

 

The prior distribution is used to represent prior knowledge of a given parameter. For 

example, the acoustical absorption α  of a surface is required to have a value between 0 

and 1. Thus, a reasonable prior distribution would be uniform between 0 and 1, and 0 

elsewhere. If specific knowledge of the absorption is known, as would be the case for a 

sound absorber, then the prior distribution of α  could be non-uniform over the range 

between 0 and 1, assigning a higher probability to values which are closer to the values of 

the manufacturer’s claim of α . The prior distribution is also often chosen for its 

algebraic properties and, ideally, is the conjugate distribution for the likelihood function 

of the data. For example, if the data has a binomial distribution then the prior should have 

a beta distribution, for most efficient estimation. This is a common criticism of the 

Bayesian technique, as computational ease is unrelated to prior knowledge. This concern 

is, in general, ill-founded, as most distributions have a non-informative case that can be 

used for prior distribution without explicit information, and are sufficiently flexible to 

represent all possible cases.  

 

 ( ) ( ) ( )θπθθ ∗∝ |XLf  (2.7.19) 
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Because the data have already been observed, it is reasonable to consider it as an arbitrary 

constant on the left-hand side of Eq. (2.7.18). It is also useful, for computational 

convenience, to consider Eq. (2.7.18) as being a proportionality relation, as opposed to an 

equality (the reasons for this will be discussed later in this section.). This results in Eq. 

(2.7.19), where the left-hand side is the posterior distribution of θ . If the posterior 

distribution has an explicit form, it can be used for point estimates—normally the 

median, mean or mode of θ —and for conference intervals on values of θ . In the cases 

where the posterior distribution does not have an explicit form for these values, there are 

several techniques to sample from an arbitrary function that can be used to generate an 

empirical estimation of the posterior distribution. The techniques discussed in this 

document are based on Markov-Chain Monte-Carlo methods (MCMC). MCMC methods 

work by generating a series of random values that will approximate an independent, 

identically-distributed sample for the desired posterior distribution; the approximation 

will get better as the length of the sequence is increased.  

 

Two techniques for implementing MCMC are Gibbs sampling, and the Hastings 

Metropolis algorithm (HMA). Gibbs sampling is also called alternative conditional 

sampling. Consider a model with K  parameters ( Kθθθ ...21 ). Each iteration of the 

Gibbs sampler algorithm loops from 1 to K , sampling the new value of the kth parameter 

given all of the others. Eq. (2.7.20) gives the distribution of the kth parameter for the tth 

iteration of the Gibbs sampler algorithm. 

 

 ( )1
,, |~ −

−
t
kktkt f θθθ  (2.7.20) 
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It is helpful to note that that Gibbs sampling may be modified to allow for a kth set of 

parameters to be updated at each of the iterations. The Gibbs sampler will sample from a 

distribution that will, in the long term, approximate the desired distribution.  

 

The second technique is the Hastings-Metropolis algorithm. The HMA works in a similar 

manner to Gibbs sampling, but does not require a direct way to sample from the desired 
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distribution, even one parameter at a time. In order to begin the HMA, a set of starting 

values for the parameters is required. The only restriction on the starting values is that the 

posterior density function must be greater then zero for the staring values. The algorithm 

then iterates T  times; each iteration has K  sub-steps, one for each of the K  parameters 

of the model. In order to describe the algorithm it is useful to consider each step as 

composed of three stages.   

 

The first stage for the kth step of the tth iteration of the HMA is to select a new candidate 

value. This can be done in a variety of ways; however the algorithm is fastest if it can be 

sampled from the desired distribution. As this distribution is unknown, it is normally 

efficient to select it from a distribution which is either a “likely suspect” or to add random 

a symmetric random variable to the current value.  

 

 ( )ktx
C
kt xJ ,1, ;~ −θθ  (2.7.22) 

 

 The second stage is to calculate the probability of accepting the proposed value. The 

probability is denoted r  and is given in Eq. (2.7.23). It can be interpreted as the ratio of 

the probability of the candidate value to the current value of the kth parameter. The 

second term is a correction factor to allow the jump distribution to not be symmetric 

about the current value of the parameter. 
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The final stage is to generate a uniform random value (denoted U ) on the interval [ ]1,0 . 

The tth value is then selected given the formula in Eq. (2.7.24).  
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A useful attribute of both the Gibbs sampler and the MHA is that they can be used 

collectively to estimate a set of parameters. Thus, if it is relatively easy to sample from a 

distribution for only one of the K parameters of a model, and it is computationally 

expensive to calculate the likelihood function of the data given the parameters, then it is 

possible to implement Gibbs sampling for the parameter in question and use MHA for the 

other parameters. 
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Chapter 3  
Literature review  
 

As stated in the introduction the objective of the research reported in this thesis was to 

utilize inverse-method techniques from other disciplines in the investigation of 

architectural-acoustics problems. The specific architectural-acoustic problem of interest 

was determining the diffusion of sound as it reflects from a surface of unknown 

impedance. Thus this section will review published literature in two broad categories: the 

application of inverse methods, and the measurement of the acoustical properties of 

surfaces. These categories are not mutually exclusive, as commonly inverse methods are 

used to estimate the acoustical properties of surfaces. The first of these categories to be 

reviewed is the application of inverse methods.  

 

3.1 Inverse methods 

 

Inverse methods are commonly used in many areas of acoustics; consequently a wide 

variety of inverse methods are involved. This section first discusses papers that use 

numerical methods and then papers that use Bayesian inversion. 

 

An application of numerical methods is the paper by Taherzadeh and Attenborough [9]. 

In it the model for the sound field above a semi-infinite impedance surface, Eq. (2.5.8), 

was inverted to find estimates of the impedance for various grounds. The inversion 

method used was to find the root of Eq. (3.1.1) with respect to Ẑ , where obQ  is the 

observed reflection factor given source location, frequency and power. The error is 

optimized using the Newton Raphson algorithm. An interesting aspect of the research is 

that the impedance estimates are later used as observed data in order to estimate soil 

characteristics. 

 

 ( )2ẐQQError ob −=  (3.1.1) 
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Kanzler and Oelze [10] used the congregate-gradient algorithm for improved scatterer-

size estimation using backscatter-coefficient measurements with coded excitation and 

pulse compression. This paper describes a method of estimating the size of acoustically-

hard spherical scatterers located in an otherwise homogenous medium. It also should be 

noted that the inversions done in both Taherzadeh and Attenborough [9] and Kanzler and 

Oelze [10] papers are exact inversion; this is because no approximations to the forward 

models were used. 

 

An example of an approximate inversion is in the paper by Poole, Frisk, Lynch and 

Pierce [11]; this paper describes a method for creating estimates of sea-floor acoustic 

parameters. The estimates are found by solving the system of equations given in Eq. 

(3.1.3) for θ  using the Moore Penrose pseudo-inverse. In Eq. (3.1.3), J  is an n by p 

matrix, where n is the number of data points and p is the number of parameters to be 

estimated. The vector θ  is composed of the p unknown parameters; Y  and [ ]pXXXX ..21=  

are the measured dependent and independent data, respectively, as defined in section 

(2.7).  
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 θJY =  (3.1.3) 

 

With respect to inverse methods (that is, ignoring that different forward models are being 

used to relate different acoustical parameters to different data sets), the difference 

between Poole, Frisk, Lynch and Pierce [11] and Taherzadeh and Attenborough [9] is 

that Taherzadeh and Attenborough [9] has a numerical approximation to the minimum 

error values of the parameters of the forward model, where as Poole, Frisk, Lynch and 

Pierce [11] has an exact solution for the parameters of a linear approximation of the 

forward model. 
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It may seem that having an approximate solution to a problem is better than an exact 

solution to an approximate problem. There are several advantages to the technique used 

in Poole, Frisk, Lynch and Pierce [11]. The first of these is computational time; if the 

forward model is slow it is simply faster to have an explicit solution. Another advantage 

is that if a Gaussian distribution is assumed for the residuals, the process will also return 

standard deviations for the parameter estimates. The third advantage of the process used 

is that the approximation to the model can be polynomial, while still allowing for an 

exact solution. In order to implement this it must also be possible to take additional 

partial derivatives of the model.  

 

The exact and approximate inversions are not mutually exclusive. Goutsias and Mendel 

[12] describes the inversion of a model consisting of the linear combination of four non-

linear models. A more extreme example of a hybrid between exact and approximate 

inversion is Too, Chen and Hwang [13]. In this paper the not-analytically-invertible 

forward model is approximated by an artificial neural network which is invertible. 

Equations (3.1.4) through (3.1.6) give the formula for the quantity lky ,  which is the value 

encoded or stored at the kth neurode in the lth level of the network. The parameters of the 

artificial neural network are the lkmw ,, ’s, and the lmx , ’s are the input values (note that if 

1>2 then the input values for a layer will be the output values of the pervious layer and 

not necessarily the model input values.). In Too, Chen and Hwang [13] the so-called 

transfer function ( )lkv ,ϕ  is the hyperbolic tangent. If the transfer function was the identity 

function and the network had only two levels (an input level and output level), then the 

model would be an average of m linear models. As the transfer function is not the identity 

function and the network has more than two layers it is a model consisting of the linear 

combination of many non-linear models that are themselves the smaller artificial neural 

networks (which are linear combinations of smaller neural networks).  

 

 ( )∑
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−=
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j
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1
1,,,,  (3.1.4) 

 lklklk buv ,,, +=  (3.1.5) 
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 ( ) ( )lklklk vvy ,,, tanh== ϕ  (3.1.6) 

 

Bayesian inversion is a popular tool for creating estimates of unknown parameters, 

although its use seems to be currently limited to underwater acoustics. A strong example 

of an underwater-acoustics paper that uses Bayesian inversion is Dosso and Wilmut [14]. 

This paper describes explicit methods for interpreting the posterior distribution. The 

parameters estimates are defined as the maximum a posteriori distribution (MAP), as 

given in Eq. (3.1.7), where ( )θf is the posterior probability distribution of the 

parametersθ . The one-dimensional and two-dimensional parameter distributions are 

given in Eq. (3.1.8) and Eq. (3.1.9), respectively. 
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Dosso and Wilmut [14] also describes some fast sampling methods. These are based on 

the observation that the best distribution for sampling a proposed value of an unknown 

parameter is the posterior distribution. This choice is not possible since if the posterior 

distribution was known explicitly, then it would not be necessary to estimate it. However 

if a reasonable approximation of the posterior distribution is used, the sampling speed can 

be increased. There is also no possibility that the approximate distribution will create 

error or bias in the estimation process as the MHA will correct any errors in the proposed 

distribution. The proposed distribution used in Dosso and Wilmut [14] is the posterior 

distribution that would have resulted if the inverse problem was linearly approximated in 

similar way to Poole, Frisk, Lynch and Pierce [11]. An additional benefit of this method 

is that a rotation of the parametersϑ  can be sampled from instead of the parameters 

themselves. As a consequence, the algorithm is much faster when trying to estimate 
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highly correlated parameters. The proposed distribution for the rotated parameters is 

given in Eq. (3.1.10). The rotation matrix U is defined as the column eigenvector matrix 

of Σ ; this is why Eq. (3.1.12) is valid, where W is the diagonal matrix of eigenvalues 

corresponding to the eigenvector columns of U . Finally the matrix J is composed of 

partial derivatives of the forward model in a similar manner to Eq. (3.1.2). 
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 θϑ TU=  (3.1.11) 

 ( ) 111 −−− Σ+Σ==Σ priordata
TT JJUWU  (3.1.12) 

 

Of particular interest is the paper de Vries, Joeman and Schreurs [15] as it used inverse 

methods to estimate the scattering coefficient of an architectural surface. The inversion 

process used is the boundary imaging method. An impulse response is measured at each 

point on an array parallel to and offset from the surface of interest. Reflections from the 

boundary are extrapolated to the position of their origin using their Rayleigh 

representation integral. 

 

3.2 Direct surface-acoustic measures  

 

This section reviews conventional direct methods of measuring surface impedance and 

diffusion. The first measurement procedures to be considered are those for impedance (or 

absorption). 

 

A well-known way to measure the impedance of a surface is the impedance-tube method, 

described in ISO 10534-2 [16]. The method utilizes two microphones, a wave guide (or 

impedance tube), a white-noise source, and a digital frequency-analysis system. The 

microphones, loudspeaker and sample of interest are arranged as shown in Fig. (3.1). 

Equation (3.2.1) gives the transfer function 2,1H that is used to calculate the impedance 

values. The quantities 1,1S  and 2,2S are the auto-spectra of the signals received at the first 
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Figure 3.1: Diagram of a typical impedance tube with 
source  on the right-hand side and sample  on the left-
hand side. 

 

 and second microphones, respectively. The quantities 1,2S  and 2,1S are the cross-spectra 

of the signal at the second microphone with respect the first, and of the first microphone 

with respect to the second, respectively. Equation (3.2.2) gives the reflection coefficient 

pR  in terms of the transfer function. Finally Eq. (3.2.3) gives the impedance of the 

surface in terms of reflection coefficient. This is simply solving Eq. (2.5.4) for 

( )ZR TI ,,p θθ , where both the incident and transmitted angles are zero.  
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Another common method of measuring the impedance of a surface is the spherical-

decoupling method (SDM). This method is described in De Geetere [17]. The SDM is 

similar to the impedance-tube method; however it is a free-field method. The transfer 

function 2,1H  is defined as for the impedance-tube method and is given in Eq. (3.2.1). The 

reflection coefficient is given by Eq. (3.2.4). The distances and angles are displayed in 

Fig. (3.2). Equation (3.2.5) gives the impedance of the surface. It also should be noted 

that the sample and microphones should be located in the far field of the source.  
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Figure 3.2: Illustrates a typical spherical-
decoupling measurement setup. The diagram has 
been augmented to include the image receivers 
, which exist only conceptually. 
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A comparison was made by Graves and Hodgson [18] between impedance measurements 

made using the impedance-tube method and the SDM. While the results of the two 

methods were found to be different, neither was considered preferred. A possible reason 

for the discrepancy in the results is that the SDM assumes wholly specular reflection and 

only approximates the contribution of the spherically-reflecting wave. There seems less 

reason why the impedance-tube method would be inaccurate; however it is in general 

impractical to implement, as it requires a disk-shaped sample of the material of interest. 

Also it only can measure the impedance at normal incidence. 

 

If only the absorption averaged over all incident angles is of interest then a third method 

using diffuse-field theory is possible. This method is given in the ASTM C423-07a 

standard [19]. The method works by comparing the reverberation times in a 

parallelepiped reverberation chamber with and without the sample of interest. The total 

area Α  of wholly absorbing material in a parallelepiped is given in Eq. (3.2.6). V  is the 
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volume of the parallelepiped and d is rate of sound decay (dB per second). Let the total 

area of absorption in the reverberation chamber without the sample of interest be denoted 

1Α and the total area of absorption in the reverberation chamber with the sample of 

interest be denoted2Α . If the surface area of the sample of interest is S , then the 

absorption coefficient of the sample is given in Eq. (3.2.7).  
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Direct methods also exist for measuring the diffusion or scattering characteristics of a 

surface. The first method to be considered is taken from ISO 17497 1 [20]; this will be 

referred to as the reverberation-chamber method (RCM). The method described is for 

measuring the random-incidence scattering coefficient of surfaces caused by surface 

roughness. The measurement results can be used to describe what proportion of the sound 

reflecting from a surface deviates from the specular angle. Similar to the previous method 

for measuring sound absorption, measurements take place in a reverberation chamber. 

Indeed it can be viewed as an additional step to the previous method. The additional step 

is that the impulse response of the reverberation chamber is taken a third set of times with 

the sample of interest rotating. This third measurement gives the apparent random-

incidence absorption, denotedSα . The apparent random incidence absorption is larger 

than the conventional absorption; the increase is due to the apparent absorption caused by 

scattering and thus measures the scattering coefficient. The formula for Sα  is given in 

Eq. (3.2.8). As before, V is the reverberation-chamber volume and S  is the surface area. 

The quantities ST  and eT are the reverberation times for the chamber with and without the 

sample; in both cases the turntable used to rotate the sample should be present and 

rotating. It is important to note that ST is not calculated by the standard method of 

Schroeder’s integrated impulse technique [21]; instead 16 impulse responses taken while 
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the sample is rotating are averaged, then the reverberation time is calculated in the 

conventional fashion. The scattering coefficient is then calculated using Eq. (3.2.9).  
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A similar method to the RCM is described Vorlander and Mommertz [22]. This so-called 

free-field method (FFM) is similar to the RCM, as they both utilize the assumption that 

scattered reflections are incoherent for different orientations of the surface. Eq. (3.2.9) is 

still used to calculate the scattering coefficients ; however the formulae for α and sα are 

different and are given in Eq. (3.2.10) and Eq. (3.2.11), respectively. The value iR ,p is the 

complex reflection coefficient measured at the ith orientation of the surface.  
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Chapter 4  
Experimental setup, loudspeaker 
characteristics and data  
 

This chapter consists of three sections. The first describes the experimental setup for 

making steady-state sound-pressure-level pL  measurements. Section 2 gives a detailed 

description of the characteristics of the sound source used in these tests, as well as the 

method by which the characteristics were calculated or estimated. Finally, in the third 

section, the measured pL values are presented. 

 

4.1 Experimental setup 

 

This section describes the method by which steady-state sound-level measurements were 

made. These measurements were used in an inversion process for models described in 

Chapter 5, in order to create estimates of the model parameters—in particular, surface 

impedance and diffusion coefficient. A brief description of the experimental setup and 

procedure is as follows. A 12 ft ×××× 12 ft rigid surface (¾-in-thick painted plywood on 

studs with 24-in spacing) was constructed in the anechoic chamber. Materials of interest 

were placed on top of the rigid surface to create other test surfaces. These surfaces were 

selected to represent typical architectural surfaces. The sound field was irradiated by a 

single loudspeaker that was placed approximately one meter above the centre of the test 

surface. A microphone was then suspended above the surface. Thirty-two pL  

measurements were then taken for each surface at six pure-tone frequencies and once 

with white noise; each of the 32 measurements was conducted at a different location 

within the chamber. 
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Figure 4.1: A plan-view representation 

of the experimental setup. 

 

A plan diagram of the experimental setup is shown in Fig. 4.1. The side length of the 

sample is 3.65 m. The dimensions of the anechoic chamber were 4.7 m by 4.3 m by 2.3 

m. The microphone was placed every 15.02 cm along Track 1 at a height of 16 cm. The 

microphone was placed every 7.56 cm on Track 2 at a height of 58 cm. If the lower left-

hand corner of the sample surface is taken as the reference, with horizontal direction as 

the x axis and the vertical as the y axis, then the ends of Track 1 were at x = 52 cm, y = 

251 cm and x = 228 cm, y = 250 cm. The ends of Track 2 were at  x = 73 cm, y = 64 cm 

and x = 74 cm, y = 179 cm. The source was located at x = 188 cm, y = 170 cm and z = 

100 cm. 

 

Table 4.1: The loudspeaker amplitude for 
the six pure-tone frequencies. 
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4.2 Loudspeaker characteristics 

 

Table 4.2: The loudspeaker amplitude for 
the white noise in octave bands. 

 

 

The amplitude in decibels of the source at the pure-tone test frequencies is given in Table 

4.1. The amplitude in decibels for the white noise in octave bands is displayed in Table 

4.2. These values were calculated by solving for the A  term in the special case with Q  

equal to zero in Eq. (2.5.8), as shown for one measurement in Eq. (4.2.1). The Empty,pL  

term is the observed pL  for the empty anechoic chamber. As one A value would have to 

fit all 32 measurements, the system of equations generated is over-specified; 

consequentlyÂ , the value of A  that minimizes the absolute error, given in Eq. (4.2.2), 

was used. The same process was used to find the amplitudes of the source for white 

noise. The confidence intervals are calculated using the percentile-estimation technique 

described in Chapter 2, Section 7.  
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Figures 4.2 and 4.3 display the measured Empty,pL and the predicted Empty,
ˆ

pL ; the prediction 

is made assuming that there is no loudspeaker directivity. As can be seen, there is poor 

agreement at the higher frequencies. Although there could be many sources of error, it is 

assumed to be a result of loudspeaker directivity.  
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Figure 4.2: The measured ○, and predicted , pure-tone 
sound-pressure levels in the empty anechoic chamber 
assuming no loudspeaker directivity, plotted against the 
direct distance from the source to the measurement 
location. 
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Figure 4.3: The measured ○, and predicted , white-noise 
sound-pressure levels in the empty anechoic chamber assuming 
no loudspeaker directivity, plotted against the direct 
distance from the source to the measurement location. 

 

The directivity is over both the azimuth and polar angles. For the purpose of the work 

presented later in this thesis, the directivity variation with azimuth angle will be assumed 

to be independent of that with polar angle. Additionally they are assumed to be dB 

additive, and are calculated from Eq. (4.2.3). The functions ( )θδθ  and ( )φδφ  are the 

directivity functions. Figure 4.4 shows the polar-angle directivity of the speaker at the six 

pure-tone frequencies of interest with a loess smooth.  
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Figure 4.4: The measured ○, and smoothed , loudspeaker 
directivities (Delta) plotted against the polar angle 
(theta) in radians. 

 

 ( ) ( ) ( ) EmptyPLrA ,1log20ˆ =++− φδθδ φθ  (4.2.3) 

 

Although it would be possible to use a look-up table to account for the functional value of 

( )θδθ , this would inhibit any further analytical work from being conducted. Fortunately, 

knowledge of the directivity is only required in the range( ]2,2 ππ− , and the directivity 

function seems to have a near quadratic relation with θ  in this range. Accordingly, the 

polar directivity was approximated by a quadratic polynomial for each frequency; an  
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Table 4.3: Parameter values 
of the directivity function 
at each frequency. 

 

 

arbitrary quadratic polynomial is shown in Eq. (4.2.4). The parameters of the polynomials 

are listed in Table 4.3.  

 

 ( ) CBA ++≈ θθθδθ
2  (4.2.4) 

 

Once the polar directivity was accounted for, the azimuth directivity of the loudspeaker 

could also be considered. Figure 4.5 shows the relationship between the azimuth angle 

and the loudspeaker directivity. The relationship between the two values is less clear; in 

general there appears to only be a significant relationship at the higher frequencies (4000 

and 8000 Hz); consequently the function ( )φδφ  was assumed to be uniformly zero for all 

frequencies below 4000 Hz. For the higher frequencies, the loess curve shown in Fig. 4.5 

was used. 
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Figure 4.5: The measured ○, and smoothed , loudspeaker 
directivities (Delta) plotted against the azimuth angle (Phi) 
in radians. 

 

4.3 Data description  

 

As noted above, there were seven test surfaces of interest. These were big blocks (BB), 

small blocks (SB), FORESTwall (FW) [manufactured by Morinwood, Inc., 1511 Fell 

Street, Victoria, B.C., V8R 4V9; http://www.forestwall.com/], acoustical baffles (Soft), 

Corelam plywood [available from Corelam Ltd., 715 W 69th Ave, Vancouver BC V6P 

2W2; http://www.corelam.com/] aligned in the x direction (Sine1), Corelam plywood 

aligned in the y direction (Sine2), and the reference surface (Flat). This section describes 

each of these surfaces, and the sound fields measured above them. 
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The Flat surface consisted of ¾-in plywood above studs with 24-in spacing. The plywood 

was painted, to reduce porosity and therefore absorption; however it was composed of 

five separate panels. The BB surface consisted of 30-cm, cubic, varnished wood blocks 

randomly scattered over the top of the reference surface. The SB surface consisted of 10-

cm lengths of unpainted “two by fours” nailed together. These blocks were then 

randomly distributed over the reference surface. A picture of this configuration is shown 

in Fig. 4.6.  

 

The next test surface was the Soft surface. This consisted of 18 acoustical baffles, 

approximately 3-cm thick, covering the reference surface. The surfaces Sine1 and Sine2 

consisted of 2.8-mm thick plywood pressed into a sinusoidal shape along one axis with a 

5-mm amplitude. 

 

For each of the surfaces 224 measurements were made. These measurements were made 

at 32 locations with each of six pure-tone and one white-noise excitations of the sound 

field. The pure-tone sounds were made at 250, 500, 1000, 2000, 4000 and 8000 Hz. Also, 

as noted above, the 32 measurement locations were divided along two measurement 

 

 
Figure 4.6: The experimental setup while the SB 
surface was being evaluated (the longer 
obstacles were not present at the time of 
measurement). 
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tracks. Figures 4.7 and 4.8 display the measured pL  values for Tracks 1 and 2, 

respectively, at the six pure-tone frequencies. Figures 4.9 and 4.10 display the measured 

pL  values for Tracks 1 and 2, respectively, when the sound field was energized by white 

noise. The frequencies in Figs. 4.9 and 4.10 refer to the ⅓-octave band centered at that 

frequency.  

 

 
Figure 4.7: The measured steady-state sound-pressure levels 
(pure-tone excitation) above the surfaces ○f interest, 
plotted against the x (Track 1) coordinate of the 
measurement location (BB , SB , FW , Flat , Soft , 
Sine1 , and Sine2 ). 
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Figure 4.8: The measured steady-state sound-pressure levels 
(pure-tone excitation) above the surfaces ○f interest, 
plotted against the y (Track 2) coordinate of the 
measurement location (BB , SB , FW , Flat , Soft , 
Sine1 , and Sine2 .) 
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Figure 4.9: The measured steady-state sound-pressure levels 
(broad band excitation) above the surfaces ○f interest, 
plotted against the x (Track 1) coordinate of the measurement 
location (BB , SB , FW , Flat , Soft , Sine1 , and 
Sine2 ). 
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Figure 4.10: The measured steady-state sound-pressure levels 
(broad band excitation) above the surfaces ○f interest, 
plotted against the y (Track 2) coordinate of the measurement 
location (BB , SB , FW , Flat , Soft , Sine1 , and 
Sine2 ). 
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Chapter 5  
Forward models and inversion procedure 
 

This chapter describes the three heuristic forward models for predicting the RMS sound-

pressure level above a diffusely-reflecting impedance surface. The models are the image-

surface model (ISM), the image-surface semi-phase model (ISSPM) and the diffuse-

reflection energy model (DREM). Also discussed are the inverse methods that were used 

to find estimates of parameters for each of the models.  

 

Before continuing with an explicit description of the models it seems useful to give a 

general one. All of the models that were considered predict the RMS sound-pressure 

level pL  at a point above an impedance surface in a half-space irradiated by a single 

source. The models take as their arguments the three-dimensional coordinates of the 

receiver, [ ]TLzLyLxL = . The parameters of the models are the source location 

[ ]TSzSySxS = , the source amplitudeA , the surface impedance imre iZZZ += , and 

the surface diffusion coefficientD . The surface diffusion coefficient is a parameter 

defined for use in these models; it will be described in detail later, however it is similar to 

the scattering coefficient described in Vorlander and Mommertz [22]. 

 

The model will be inverted to solve for the parametersZ and D . It was possible to 

directly measure the amplitude and source-location parameters. Therefore they are treated 

as constants, known from their measured values. The estimated parameters were 

restricted to a physically meaningful range. For the surface impedance this meant that the 

real component must be positive, while the imaginary component was unrestricted [1]. As 

the diffusion coefficient was created for the convenience of the models presented in this 

thesis, its physically meaningful range is less obvious. Thus the most conservative set of 

bounds was used; these are zero and one. 
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5.1 Image-surface and image-surface semi-phase models 

 

Both ISM and ISSPM assume that each of the observed pL  values is a random variable. 

The distribution of ipL , , the ith value of pL , is the Gaussian distribution and is given in Eq. 

(5.1.1). There are two important points to observe about Eq. (5.1.1). First is that the mean 

of ipL , , iη , does not in general equal the mean ofjpL , , jη . Second, the variance 2σ  of 

the distribution is constant over all observations. 

 

 
( )











 −
−

2

2
,

, 2
exp

2

1
~

σ
η

πσ
iip

ip

L
L  (5.1.1) 

 

The term iη  is the systematic component of the model. Equation (5.1.2) is the formula 

for η ; note that the subscript has been dropped to avoid the notation becoming too 

cumbersome. η  can also be called predicted,pL .  

 

 ( ) APtotal += 10log20η  (5.1.2) 

 

The quantity totalP  is a heuristically modified version of Eq. (2.5.8). The equation has 

been augmented such that instead of the two waves (direct and reflected) of Eq. (2.5.8), 

there are now three waves. The new wave is the diffusely-reflected wave. Equation 

(5.1.3) gives totalP  for the ISM; this is not the same as for the ISSPM which will be 

described later. 

 

 DifSpecDtotal PPPP ′+′+′=  (5.1.3) 

 

As a result of the significant loudspeaker directivity discussed in Chapter 4 each wave 

must be multiplied by a directivity term ( )φθξ φθ ,, . Equation (5.1.4) gives the formula for 
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the directivity in terms of ( )θδθ and ( )φδφ , the directivity terms from Eq. (4.2.3). The 

values fA , fB  and fC  are frequency dependent and are listed in Table 4.3.  

 

 ( )
( ) ( ) ( )

2020
,

2

1010,
φδθθφδθδ

φθ

φφθ

φθξ
++++

≈=
fff CBA

 (5.1.4) 

 ( ) ( ) DifSpecSpecSpecDDDtotal PPPP ′++= φθξφθξ φθφθ ,, ,,  (5.1.5) 

 

The inclusion of directivity in the diffusely-reflecting wave is more complicated, as it is a 

sum of many waves all radiating from the source at different angles. Its directivity term 

will be described later. The formulae for the direct and reflected pressure contributions 

are displayed in Eq. (5.1.6) and Eq. (5.1.7), respectively. The F term is still the bottom-

loss factor, as described in Eq. (2.5.14); PR is the reflection coefficient defined in Eq. 

(2.5.4). The parameter D is the diffusion coefficient of the surface described in the 

introduction to this chapter.  

 

 
{ }
1

1exp

r

ikr
PD =  (5.1.6) 

 ( ) { }
2

2exp
1

r

ikr
QDPSpec −=  (5.1.7) 

 ( )( )FRRQ pp −+= 1  (5.1.8) 

 

The integral that defines the diffusely-reflected wave is given in Eq. (5.1.9). It is 

important to note that although the integral appears to be free of x andy , the location of 

the reflection of each diffusely-reflecting ray, all of the angles, as well as the reflected 

path lengths, are functions of x andy . Equation (5.1.10) gives Dr , which is the total 

distance from the source to the point [ ]Tyx 0  on the surface and on to the receiver 

position. The diffuse-reflection coefficient( )Ri θθ ,Γ  is given in Eq. (5.1.11); the angles 

are shown in Fig. 5.1, Eq. (5.1.12) and Eq. (5.1.13). The function ( )Ri θθ ,Φ  is displayed 

in Eq. (5.1.14). 



Chapter 5 

 49 
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 ( ) ( ) ( ) ( ) ( ) ( )222222 LzLyyLxxSzSyySxx +−+−++−+−  (5.1.10) 

 ( )
( )( ) ( )( )

( )( ) ( )( )
Z

Z

RiT
RiD

RiT
RiD

Ri θθθ
θθθ

θθθθθθ
θθ

,cos
,cos

,cos
,cos

,

+

−
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 ( )
2

, Ri
RiD

θθθθθ +
=  (5.1.12) 

 ( ) DiRiT θθθθθ −=,  (5.1.13) 

 ( ) ( ) ( )RiRi θθθθ 2sincos, =Φ  (5.1.14) 

 

The ISSPM is similar to the ISM—differing in how totalP  is defined; Eq. (5.1.15) 

displays the definition of totalP  for the ISSPM. The distinction is that the diffuse 

component is always added in phase to the direct and specular components. 

 

  
Figure 5.1: The path of a sound ray 
( ) diffusely reflecting off a 
conceptual surface (···) which is a 
rotation of the actual surface ( ). 
The angles displayed are those in 
Eq. (5.1.9) through Eq. (5.1.14). 
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 DifSpecDtotal PPPP ++=  (5.1.14) 

 

Before continuing, it is important to interpret and heuristically justify the ISM and the 

ISSPM. The inclusion of the parameter D in these models allows the distribution of 

reflected energy to vary from wholly specular to wholly Lambert’s Law diffuse. A short-

coming of the model is that one of the possible diffusely-reflected angles is the specular 

angle; thus D  is not exactly the proportion of energy that is reflected in a non-specular 

direction.  

 

Both the ISM and the ISSPM are based on the concept of the image source. For a 

conventional image-source model, as described in Chapter 2, there is only one image 

source; this source corresponds to the specularly-reflected wave. However if an image 

source is assigned to each point on the surface then, instead of a singular image source, 

there is an image surface. This is similar to the ray-tracing model (version DRAYcube) 

that is used in Hodgson [23]; given enough rays every point of the surface will reflect a 

diffusely-reflecting ray to the receiver, consequently every point on the surface can be 

considered to correspond to an image source. Thus a way of conceptualizing or 

describing the ISM or the ISSPM is as a virtual diffuse-reflecting ray-tracing model.  

 

An example of such an image surface is displayed in Fig. 5.2; the black line is the actual 

2D surface; the blue grid is the 3D image surface. Each grid point displayed on the 

image-surface corresponds to an evenly-spaced grid point of the actual surface. As can be 

seen, the surface elements of the image-surface are not uniformly spaced like the 

corresponding elements on the actual surface. The function ( )Ri θθ ,Φ  is used to attenuate 

the contributions of the regions of the image sources that have the smallest surface 

elements.  
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Figure 5.2: An illustration of an image surface ( ) generated by a 
source and receiver pair above a reflecting surface ( ). The image 
surface is projected into the xz plane, the yz plane and the xy plane. 

 

The diffuse-reflection coefficient ( )Ri θθ ,Γ  can most readily be interpreted by 

considering Fig. 5.1. The surface is replaced by a virtual surface that has the local slope 

required to make the incident and reflected angles equal. However the actual surface is 

assumed to be locally reactive; as a consequence the horizontal speed of sound in the 

actual surface must be much smaller than the vertical speed of sound. Thus the 

transmitted ray must be normal to the actual surface in order to accommodate this; the 

angle of transmission of the virtual surface will not, in general, be zero. The effect of this 

is that, as the difference between angles iθ and Rθ  increases, the surface becomes 

acoustically harder. This is similar to the reflection observed at the plane interface 

between two fluids [1]. 

 

5.2 The diffuse-reflection energy model  

 

The DREM model is similar to the ISM and the ISSPM in that it models the reflected 

sound as the proportionD  of energy reflecting in a non-specular way. It is distinct in that 

it does not account for the phase of the sound waves. As a consequence the DREM is 

only used with the white-noise measurements, for which phase effects would be expected 

to be small. 
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Similarly to the ISM and the ISSPM, each of the observed pL  values is assumed to be a 

random variable. However the distribution of ipL , , the i’th value of pL , is not assumed to 

have an explicit form. As is the case for Eq. (5.1.1), the mean of ipL ,  is iη . The variance 

is 2σ , which is constant over all observations. 

 

 ( )2
,, ,;~ ση iipiP LfL  (5.2.1) 

 

Equation (5.2.2) is the formula forη ; again the subscript has been dropped to avoid the 

notation becoming too cumbersome. 

 

 ( ) APPP DifSpecD +++= 222
10log10η  (5.2.2) 

 

The definitions of DP , SpecP  and DifP  are given in Eqs. (5.2.3), (5.2.4) and (5.2.5), 

respectively. The directivity term ( )φθξ φθ ,,  is as defined in Eq. (5.1.4). The energy-

reflection coefficient ER  is given in terms of the normal-incidence energy absorption 

coefficient of the surface in Eq. (5.2.6). The diffuse-reflection coefficient is displayed in 

Eq. (2.5.7); the values Dθ and Tθ are functions of iθ and Rθ , defined in Eq. (5.1.12) and 

Eq. (5.1.13). 
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5.3 Inversion techniques 

 

The goal of the inversion performed in this research was not only to provide estimates of 

the unknown parameters but also to provide confidence intervals for them. Consequently, 

Bayesian inversion and percentile estimation were used. The ISM and ISSPM have their 

parameters estimated through Bayesian inversion; the DREM has its parameters 

estimated through percentile estimation. The Bayesian inversion will be described first. 

 

The probability distribution of a single data point under the ISM and the ISSPM is 

displayed in Eq. (5.1.1). Consequently the likelihood function of the sampled data is 

displayed in Eq. (5.3.1).  
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Since both models considered here are new, there is no prior information about the 

parameters used within the models; thus it is reasonable to assume a non-informative 

prior distribution for each of the parameters. The non-informative prior distribution used 

was the Jeffrey’s prior, denoted ( )2,, σπ DZJ [8]. Equation (5.3.2) displays the formula 

for a Jeffrey’s prior. The function ( )θI  is the Fisher information of the data with respect 

to the unknown parameters. The function ( )xE  is the expectation of the random 

variablex . The particular Jeffery’s prior for the ISM and the ISSPM is given in Eq. 

(5.3.3). It can be interpreted as a non-normalized uniform distribution over the model 

parameters Z  and D , as well as ( )2log σ . 
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The posterior distribution of the models is given in Eq. (5.3.4). For computational 

efficiently it is useful to consider the log-posterior distribution, which is displayed in Eq. 

(5.3.5). There is no analytical solution for the integral in Eq. (5.1.9), so it is approximated 

numerically, as shown in Eq. (5.3.6). The approximation can be interpreted as giving a 

diffusely-reflected image source to every square centimeter of the surface.  
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Now that the approximation to the posterior distribution is well defined, it is possible to 

describe the inversion procedure. It is important to note that this procedure had to be 

repeated for each surface test sample at each frequency. Additionally it was repeated for 

both the ISM and the ISSPM. 

 

The inversion consisted of three steps. The first step involved finding starting values for 

the optimization procedure. The second step involved iteratively taking samples of the 

parameters. The third step involved summarizing the sampled parameters.  

 

The starting values were point estimates of the parameters that maximized the posterior 

likelihood. The estimates were found through repeat application of the conjugate-gradient 

(CG) algorithm to the function from many random starting locations. When it was 
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reasonable to conclude that a global minimum had been found, these values, denoted0Z , 

0D  and 2
0σ , were used as the starting values of the estimation process.  

 

The iterative samples were obtained by two methods. The Z  and D  values were 

obtained through the application of the Metropolis-Hastings algorithm, while the 2σ  

values were obtained through Gibbs sampling. Gibbs sampling is the faster of the two 

methods but has more restrictions on its use, that Z  and D  fail to meet. The sampling 

process for the arbitrary kth iteration of the inversion process will now be described. 

 

The candidate values of Z  and D  were selected by adding a random value to current 

iteration k-1th of Z  andD . Equations (5.3.7) and (5.3.8) show the candidate values of Z  

andD , CZ  and CD , in terms of their current values. The random variable ZJ , which is 

used to create a candidate value for Z , is defined in Eq. (5.3.9). The distributions of the 

real and imaginary parts are given in Eq. (5.3.10) and Eq. (5.3.11), respectively. The 

meta-parameter τ  was tuned such that the model accepted approximately 50 percent of 

the candidate values. The distribution of the random value DJ , which is used to create a 

candidate value for D , is given in Eq. (5.3.12). The meta-parameter W  was also tuned 

such that approximately 50 percent of the candidate values were accepted. Once the kth 

candidate values for Z  and D  were found they were accepted or rejected as described in 

Chapter 2, Section 7. This method of creating a candidate value was favoured over the 

use of a proposal distribution to reflect the lack of prior knowledge inherent in the 

problem. 
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The second part of the kth iteration is to create a new value for the 2σ . This can be 

acquired directly since 2σ  has a scaled 2inverse χ− distribution. A generic example of 

the distribution is shown in Eq. (5.3.13). The two parameters of this distribution for the 

kth step of the estimation processes are displayed in Eq. (5.3.14) and Eq. (5.3.15). These 

formulas can be found by rewriting the posterior distribution in the form given in Eq. 

(5.1.16). The sampled value is always accepted, as this is Gibbs sampling not Metropolis-

Hastings.  
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The third step of the estimation process was to summarize the sampled parameters. 

Before any summary statistics could be calculated, it was helpful to burn in, or discard, 

the first half of the sampled parameters. This process protected the estimates from being 
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affected by a poorly chosen starting value. The parameter point estimate was, in general, 

taken as the median of the sampled data with respect to the parameter. The confidence 

intervals were found in a similar manner, simply using different percentiles. For the cases 

where the parameter distributions exhibited multi-modality, a subjective decision was 

made on the most representative value and confidence interval. 

 

The optimization that was done for the DREM was significantly simpler than the method 

that has just been described. The simplification is a result of the DREM model only 

having two unknown parameters: α  andD ; the nuisance parameter 2σ  can be ignored. 

Both of these parameters are bounded in the set[ ]10 . As well, the DREM is 

significantly faster to implement. Thus it is possible, with a small number of points, to 

make a brute-force calculation for all combinations of parameters.  

 

The array of all parameter values is created by two lists of 1000 random, uniform values 

on the range[ ]10 . The first list gives the candidate α  values; the second list gives the 

candidate value for D . Equation (5.3.17) shows the objective function, or error function, 

that was evaluated for the kth parameterization of the model.  

 

 ( )∑
=

−=
32

1
, ,

i
kkiipk DLError αη  (5.3.17) 

 

The process was repeated two more times. On each occasion the sample space was 

quartered. The new region was a square of side length, one half the side length of the 

previous iteration. The square was centered on the best-performing parameters found so 

far. 

 

The confidence intervals were found using percentile estimation. This process is only 

defined for one-dimensional problems; consequently the second parameter was held 

constant at its optimal value while the percentile was estimated. Equation (5.3.18) 

displays the objective function that was used to find the lower bound of the confidence 
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interval; Eq. (5.3.19) gives the objective function for the upper bound. These can be 

interpreted as finding a 95 percent confidence interval. The function ( )xI is an indicator 

function; it returns 1 if x  is true and 0 otherwise.  

 

( )( ) ( )( )( ) ( )( )∑
=

−≤−≥=
32

1
,,, ,,5.2,5.97

i
kkiipkkiipkkiipk DLDLIDLIError αηαηαη  (5.3.18) 

( )( ) ( )( )( ) ( )( )∑
=

−≤−≥=
32

1
,,, ,,5.97,5.2

i
kkiipkkiipkkiipk DLDLDLIError αηαηαη  (5.3.19) 

 

The optimization of these objective functions was done though a similar random brute-

force technique to that used to find the point estimates. This time, however, the 

optimization was one-dimensional and was restricted to parameter values that were 

greater for the upper bound, or lower for the lower bound, of the point estimate.   
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Chapter 6  
Results and Discussion 
 

This chapter describes the estimates of the parameters for the ISM, ISSPM and DREM 

for the seven test surfaces of interest. In the discussion, Section 4, the validity of the three 

models is considered; this is done through evaluation of the parameter estimates from 

each model. The estimated values are compared with existing measurements of the test 

surfaces. The precision of the estimates is also considered as well as the model’s ability 

to predict the measured data. 

 

Before continuing there are a few points about the inversion process that could be helpful 

to anyone endeavouring to repeat this work. The runtimes for the estimation process was 

approximately 20 minutes for each estimate for the ISM and ISSPM; this constitutes 

10,000 samples. The DREM estimates took approximately 10 minutes each (this includes 

the time to find the confidence estimates). All of the calculations were completed on a 

computer using an Intel® coreTM Duo processor T2050 (1.6 GHz, 533 MHz FSB, 2MB 

L2 Cache).  

 

6.1 Image-surface-model results 

 

The point estimates and confidence intervals for parameters of the ISM for each surface 

are given in Tables A.1-A.7 and Tables A.8-A.13 located in Appendix A. Tables A.1-A.7 

are grouped by sample; Tables A.8-A.13 are grouped by frequency. Figure 6.1 displays 

the parameter estimates with confidence intervals for ReZ , imZ , D and 2σ . 

 

Figures 6.2 through 6.7 display the marginal empirical posterior distributions for the 

parameters of the ISM inverted on the seven sets of test data. In order to allow for 

multiple parameters to be plotted together, the mean value, over all frequencies, of the 

parameter is subtracted and the values are divided by the data range.   
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Figure 6.1: The parameter estimates and confidence intervals for 
the ISM for all seven surface samples at the six frequencies (250 
Hz, 500 Hz, 1000 Hz, 2000 Hz, 4000 Hz, 8000 Hz). 
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Figure 6.2: Normalized histograms of the 
marginal posterior distributions of the 
parameters for the Flat surface. 

 
Figure 6.3: Normalized histograms of the 
marginal posterior distributions of the 
parameters for the FW surface. 
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Figure 6.4: Normalized histograms of the 
marginal posterior distributions of the 
parameters for the SB surface. 

 
Figure 6.5: Normalized histograms of the 
marginal posterior distributions of the 
parameters for the BB surface. 
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Figure 6.6: Normalized histograms of the 
marginal posterior distributions of the 
parameters for the Sine1 surface. 

 
Figure 6.7: Normalized histograms of the 
marginal posterior distributions of the 
parameters for the Sine2 surface. 
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Figure 6.8: Normalized histograms of the 
marginal posterior distributions of the 
parameters for the Soft surface. 

 

6.2 Image-surface semi-phase model results 

 

The point estimates and confidence intervals for parameters of the ISSPM for each 

surface are given in Tables B.1-B.7 and Tables B.8-B.14 located in Appendix B. Tables 

B.1 through B.7 are grouped by sample; Tables B.8 though B.13 are grouped by 

frequency. Figure 6.9 displays the parameter estimates with confidence intervals for 

ReZ , imZ , D and 2σ . Figures 6.10 through 6.16 display the marginal empirical posterior 

distributions of the parameters of the ISM inverted on the seven sets of data. 
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Figure 6.9: The parameter estimates and confidence intervals for 
the ISSPM for all seven surface samples at the six frequencies 
(250 Hz, 500 Hz, 1000 Hz, 2000 Hz, 4000 Hz, 8000 Hz).  
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Figure 6.10: Normalized histograms of the 
marginal posterior distributions of the 
parameters for the Flat surface. 

 
Figure 6.11: Normalized histograms of the 
marginal posterior distributions of the 
parameters for the FW surface. 
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Figure 6.12: Normalized histograms of the 
marginal posterior distributions of the 
parameters for the SB surface. 

 
Figure 6.13: Normalized histograms of the 
marginal posterior distributions of the 
parameters for the BB surface. 
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Figure 6.14: Normalized histograms of the 
marginal posterior distributions of the 
parameters for the Sine1 surface. 

 
Figure 6.15: Normalized histograms of the 
marginal posterior distributions of the 
parameters for the Sine2 surface. 
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Figure 6.16: Normalized histograms of the 
marginal posterior distributions of the 
parameters for the Soft surface. 

 

6.3 Diffuse-reflecting-energy model results 

 

Tables C.1 through C.7 and Tables C.8 through C.13, located in Appendix C, display the 

point estimates and confidence intervals for the parameters of the DREM. Tables C.1 

through C.7 are grouped by sample; Tables C.8 though C.13 are grouped by frequency. 

Figure 6.17 displays the parameter estimates with confidence intervals for α andD . 
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Figure 6.17: The parameter estimates and confidence intervals for 
the DREM for all seven surface samples at the six frequencies (250 
Hz, 500 Hz, 1000 Hz, 2000 Hz, 4000 Hz, 8000 Hz). 

 

6.4 Discussion  

 

In order to validate the models they need to be evaluated on three criteria. These are the 

ability of the models to fit the observed data, the size of the confidence intervals around 

the parameter estimates and the agreement of the estimates with previously measured 

properties of the surfaces. The first of these comparisons discussed is the agreement of 

the estimates with independently measured values. 

 

As noted in Chapter 5 the diffusion coefficient D  used in all three models was defined 

for them; consequently there is no independent way to validate the estimates of it. 

However some characteristics of the results in Figures 6.1 and 6.9 suggest that the 

estimates created by inverting the ISM and ISSPM are reasonable. First the flat surface 

has the lowest diffusion coefficient while the rough surfaces have higher diffusion 

coefficients. Also the diffusion tends to increase with frequency as expected; this is 

especially visible for the estimates made by inverting the ISM.  
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Table 6.1: The measured and estimated impedance values ( )imre iZZZ +=  

for the Flat and Soft surfaces. The measured values are taken from 
Graves and Hodgson [18]. 

 

 

The impedances of the Flat and Soft surfaces were measured by Graves and Hodgson 

[18] using the spherical-decoupling method; the results are displayed in Table 6.1. The 

estimates from the ISM and ISSPM are also displayed; the DREM does not utilize 

impedance and so it has been excluded. The measured and predicted values have a 

reasonable agreement for the Flat surface and a poor agreement for the Soft surface. This 

result is not surprising as the Soft surface was found to have a large diffusion coefficient, 

and the spherical-decoupling method assumes wholly specular reflection.  

 

The average random-incidence absorptionα  of the surfaces is not affected by 

diffusion—hence its inclusion in ISO 2003, 17497-1 [20]. Consequently it is helpful to 

evaluate the predictions of the models by comparing them with measured α  values. 

These values were measured by Bibby [24].  

 

In order for a comparison to be made the impedance values of the ISM and ISSPM must 

be converted into an average random-incidence absorption coefficient. This is done using 

the so called Paris formula displayed in Eq. (6.4.1), which is evaluated in Eq. (6.4.2) and 

Eq. (6.4.3) [1]. A similar conversion is necessary for the absorption parameter estimated 

by the DREM; this was done using Eq. (6.4.4).  
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Table D.1, in the Appendix D, gives the measured and predicted average absorption 

coefficient values with confidence intervals for the three models. Figure 6.18 displays 

these values.  

 

The ISSPM appears to give the strongest agreement with the measured α  values; it is 

followed by the ISM. The DREM has little or no agreement with the measured values. 

The agreement of the ISSPM estimates is highest at mid frequencies (500 Hz, 1000 Hz, 

and 2000 Hz).  

 

The confidence intervals for the parameter estimates are, on an aggregate level, smallest 

for the inversion of the ISSPM; these are smaller than the equivalent intervals for the 

ISM for approximately 73% of the estimates. The confidence intervals for the DREM are 

so large as to make the estimates almost uniformly uninformative. The intervals of the 

α estimates from the ISSPM are similar to those obtained by direct measurement. This 

means that if only the absorption coefficient is needed there is no penalty (in certainty) to 

using inverse methods as opposed to direct measurement.  

 

The final criterion was the ability of the models to fit the observed data. This is most 

easily evaluated by comparing the model variances2σ . The estimates of 2σ are, on an 

aggregate level, smaller for the ISSPM than for the ISM. The DREM does not have an 
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explicit variance estimate; however there are modal patterns in the white-noise data that 

the model is simply incapable of predicting; consequently it can be considered to be the 

worst at fitting the data. 2σ  increases with frequency; this seems to indicate that none of 

the models is valid at 8000 Hz. Additionally the variance of the model for the BB data set 

has a higher variance than the other models; this also seems to suggest that there is an 

upper limit on the of surface roughness for which the inversion process is valid.  

 

 
Figure 6.18: The measured values and estimates with confidence 
intervals for the acoustical-absorption coeffiecent (Alpha) of seven 
surfaces. Measured value , ISM ,ISSPM  and DREM . 
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For all three of the criteria the ISSPM appears to be the best; this result is surprising as 

the ISM is more physically realistic than the ISSPM. The DREM appears to be wholly 

inadequate for the purpose of estimating the broad-band absorption and diffusion 

characteristics of surfaces. 
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Chapter 7 
Conclusions and suggested further work 
 

7.1 Conclusions 

 

The objective of this research was to develop an inverse-method approach for 

determining the acoustical diffusion properties of surfaces with unknown impedance. To 

this end, three models were created. All three models included a diffusion coefficient 

which represented the proportion of diffuse reflection. Two of the models, the ISM and 

the ISSPM, considered phase effects and were used to estimate single-frequency 

characteristics. The third model, DREM, considered only sound energy and estimate 

broad-band characteristics.  

 

Steady-state sound-pressure-level data were collected above seven test surfaces irradiated 

by a single source in an otherwise free-field. The source was found to have significant 

directivity in both the azimuth and polar angles. Consequently, the three forward models 

were modified to include loudspeaker directivity. 

 

The three models were inverted using the collected data; the ISM and ISSPM were 

inverted using Bayesian inversion, and the DREM was inverted using percentile 

estimation. The estimates produced by the inversion of the three models were evaluated. 

The evaluation considered their ability to match independent direct measurements, their 

ability to produce small confidence intervals, and their ability to model the measured 

data.  

 

The approach of the Bayesian inversion of image-source models was found to be an 

adequate way of determining the acoustical properties of a surface. In particular, the 

inversion of the ISSPM was shown to find single-frequency parameter estimates that are 

in agreement with known values. The inversion of the DREM was found to be wholly 

inadequate at finding broad-band estimates. 
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7.2 Further work 

 

In order to use the inverse methods described in this research with confidence, it would 

be necessary to conduct a more systematic set of tests on surfaces with known impedance 

and diffusion properties. It would be advisable to invest considerable time to either 

ensure that the loudspeaker used has minimal directivity or to measure the loudspeaker 

directivity accurately. 

 

The measurement locations used in this research were selected out of convenience. 

However, future work should optimize their location depending on the anticipated ranges 

of the acoustical parameters of the surface to be tested, as well as the frequency range of 

interest. 

 

An earlier version of the ISM was such that exact knowledge of the measurement and 

loudspeaker locations was unnecessary. These values were optimized in addition to the 

impedances and diffusion coefficients. This proved computationally cumbersome; 

consequently later versions of the model did not allow for unknown measurement and 

loudspeaker locations. However as computer power increases, it may be helpful to revisit 

this technique, as it is not trivial to accurately measure the three-dimensional coordinates 

of a point within an anechoic chamber.  

 

The model did not include any method for estimating the contribution of back-scattering 

from the edges of the sample to the sound field. Although this contribution appears to be 

significantly smaller than the direct and reflected contributions, future work could 

consider a method of estimating this contribution.  

 

All three models considered in this research only considered Lambert’s Law diffuse 

reflection. It would be of interest to relax this assumption and create a more flexible or 

general law of reflection, specifically one that would enable energy to be distributed non-

uniformly in the azimuth angle.  
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The ISM and ISSPM where also inverted (using the same methods that were used on the 

pure-tone data) on the broad-band-noise data. The parameter estimates that were obtained 

were inconsistent with the measured values as well as the other estimates; although it 

should be noted that the variance predicted was lower for the ISM on the broad-band data 

than it was for the pure-tone data. These values are listed in appendix E. It would be 

useful to revisit this as the broad-band data is significantly easier to obtain. To improve 

the results the models could be modified to sum the predictions of several frequencies, 

although this would significantly decrease the speed at which estimates could be 

produced.  

 

Finally future work could consider imposing a frequency-dependent relationship on the 

impedance values and diffusion coefficients. In such a case meta-parameters that would 

determine the impedance given the frequency would be estimated.   
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Appendices  
 
Appendices A, B, C and D contain the tabulated values plotted in Figures 6.1, 6.9, 6.17 
and 6.18, respectively. The values presented in Appendices A, B, and C are displayed 
grouped both by test sample and grouped by frequency. The values in Appendix D are 
only grouped by test sample. 
 
Appendix A 
 
Tabulated parameter estimates and confidence intervals obtained through inversion of the 
ISM. 
 
Table A.1: Estimates (Est) and bounds 

(LB, UB) for DREM with BB data. 
Table A.2: Estimates (Est) and bounds 

(LB, UB) for DREM with flat data. 
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Table A.3: Estimates (Est) and bounds 
(LB, UB) for DREM with FW data. 

Table A.4: Estimates (Est) and bounds 
(LB, UB) for DREM with SB data. 

 
Table A.5: Estimates (Est) and bounds 
(LB, UB) for DREM with Sine1 data. 

Table A.6: Estimates (Est) and bounds 
(LB, UB) for DREM with Sine2 data. 
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Table A.7: Estimates (Est) and bounds 
(LB, UB) for DREM with BB data. 

 
Table A.8: Estimates (Est) and bounds 
(LB, UB) for DREM with 250 Hz data. 

Table A.9: Estimates (Est) and bounds 
(LB, UB) for DREM with 500 Hz data. 
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Table A.10: Estimates (Est) and bounds 
(LB, UB) for DREM with 1000 Hz data. 

Table A.11: Estimates (Est) and bounds 
(LB, UB) for DREM with 2000 Hz data. 

                   
Table A.12: Estimates (Est) and bounds 
(LB, UB) for DREM with 4000 Hz data. 

Table A.13: Estimates (Est) and bounds 
(LB, UB) for DREM with 8000 Hz data. 

                  



 

 84 

Appendix B  
 
Tabulated parameter estimates and confidence intervals obtained through inversion of the 
ISSPM. 
 
Table B.1: Estimates (Est) and bounds 

(LB, UB) for DREM with BB data. 
Table B.2: Estimates (Est) and bounds 

(LB, UB) for DREM with flat data. 
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Table B.3: Estimates (Est) and bounds 
(LB, UB) for DREM with FW data. 

Table B.4: Estimates (Est) and bounds 
(LB, UB) for DREM with SB data. 

 
Table B.5: Estimates (Est) and bounds 
(LB, UB) for DREM with Sine1 data. 

Table B.6: Estimates (Est) and bounds 
(LB, UB) for DREM with Sine2 data. 
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Table B.7: Estimates (Est) and bounds 
(LB, UB) for DREM with BB data. 

 
Table B.8: Estimates (Est) and bounds 
(LB, UB) for DREM with 250 Hz data. 

Table B.9: Estimates (Est) and bounds 
(LB, UB) for DREM with 500 Hz data. 
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Table B.10: Estimates (Est) and bounds 
(LB, UB) for DREM with 1000 Hz data. 

Table B.11: Estimates (Est) and bounds 
(LB, UB) for DREM with 2000 Hz data. 

                  
Table B.12: Estimates (Est) and bounds 
(LB, UB) for DREM with 4000 Hz data. 

Table B.13: Estimates (Est) and bounds 
(LB, UB) for DREM with 8000 Hz data. 
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Appendix C  
 
Tabulated parameter estimates and confidence intervals obtained through inversion of the 
DREM. 
 
 
Table C.1: Estimates (Est) and bounds 

(LB, UB) for DREM with BB data. 
Table C.2: Estimates (Est) and bounds 

(LB, UB) for DREM with flat data. 

 
Table C.3: Estimates (Est) and bounds 

(LB, UB) for DREM with FW data. 
Table C.4: Estimates (Est) and bounds 

(LB, UB) for DREM with SB data. 

 
Table C.5: Estimates (EST) and bounds 
(LB, UB) for DREM with Sine1 data. 

Table C.6: Estimates (Est)and bounds 
(LB, UB) for DREM with Sine2 data. 
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Table C.7: Estimates (Est) and bounds 
(LB, UB) for DREM with Soft data. 

 

 

Table C.8: Estimates (Est) and bounds 
(LB, UB) for DREM with 250 Hz data. 

Table C.9: Estimates (Est) and bounds 
(LB, UB) for DREM with 500 Hz data. 

 
Table C.10: Estimates (Est) and bounds 
(LB, UB) for DREM with 1000 Hz data. 

Table C.11: Estimates (Est) and bounds 
(LB, UB) for DREM with 2000 Hz data. 
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Table C.12: Estimates (Est) and bounds 
(LB, UB) for DREM with 4000 Hz data. 

Table C.13: Estimates (Est) and bounds 
(LB, UB) for DREM with 8000 Hz data. 
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Appendix D  
 
Tabulated average absorption estimates and confidence intervals. 
 
Table D.1: Displays the estimates (Est) and bounds (LB, UB) of the 
average absorption of the surfaces for the ISM, ISSPM and DREM models. 
The values measured by Bibby [23] are also presented. 
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Appendix E  
 
Parameter estimates of the ISM and ISSPM inverted on the broadband data.  
 
Table E.1: Estimates (Est) and bounds 

(LB, UB) for ISM with BB data. 
Table E.2: Estimates (Est) and bounds 

(LB, UB) for ISM with flat data. 
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Table E.3: Estimates (Est) and bounds 
(LB, UB) for ISM with FW data. 

Table E.4: Estimates (Est) and bounds 
(LB, UB) for ISM with SB data. 

 
Table E.5: Estimates (Est) and bounds 
(LB, UB) for ISM with Sine1 data. 

Table E.6: Estimates (Est) and bounds 
(LB, UB) for ISM with Sine2 data. 
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Table E.7: Estimates (Est) and bounds 
(LB, UB) for ISM with BB data. 

 
Table E.8: Estimates (Est) and bounds 

(LB, UB) for ISSPM with BB data. 
Table E.9: Estimates (Est) and bounds 
(LB, UB) for ISSPM with flat data. 
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Table E.10: Estimates (Est) and bounds 
(LB, UB) for ISSPM with FW data. 

Table E.11: Estimates (Est) and bounds 
(LB, UB) for ISSPM with SB data. 

 
Table E.12: Estimates (Est) and bounds 
(LB, UB) for ISSPM with Sine1 data. 

Table E.13: Estimates (Est) and bounds 
(LB, UB) for ISSPM with Sine2 data. 
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Table E.14: Estimates (Est) and bounds 
(LB, UB) for ISSPM with BB data. 

 


