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ABSTRACT 

The problem of face recognition has been studied widely in the past two decades. Even though 

considerable progress has been made, e.g. in achieving better recognition rates, handling difficult 

environmental conditions etc.,  there has not been any widespread implementation of this 

technology. Most probably, the reason lies in not giving adequate consideration to practical 

problems such as communication costs and computational overhead. 

The thesis addresses the practical face recognition problem – e.g. a scenario that may arise in 

client recognition in Automated Teller Machines or employee authentication in large offices. In 

such scenarios the database of faces is updated regularly and the face recognition system must 

be updated at the same pace with minimum computational or communication costs. Such a 

scenario can not be handled by traditional machine learning methods as they assume the training 

is offline.  We will develop novel methods to solve this problem from a completely new 

perspective. 

Face recognition consists of two main parts: dimensionality reduction followed by classification. 

This thesis employs the fastest possible dimensionality reduction technique – random projections. 

Most traditional classifiers do not give good classification results when the dimensionality of the 

data is reduced by such method. This work proposes a new class of classifiers that are robust to 

data whose dimensionality has been reduced using random projections. The Group Sparse 

Classifier (GSC) is based on the assumption that the training samples of each class 

approximately form a linear basis for any new test sample belonging to the same class. At the 

core of the GSC is an optimization problem which although gives very good results is somewhat 

slow. This problem is remedied in the Fast Group Sparse Classifier where the computationally 

intensive optimization is replaced by a fast greedy algorithm. The Nearest Subspace Classifier is 

based on the assumption that the samples from a particular class lie on a subspace specific to 

that class. This assumption leads to an optimization problem which can be solved very fast. In 

this work the robustness of the said classifiers is proved theoretically and is validated by thorough 

experimentation. 
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CHAPTER 1: INTRODUCTION AND OVERVIEW 

1.1 Introduction 

Face recognition is a typical problem in classification. One or more training images of each 

person under study are available to the classifier along with their identities. The problem is to 

identify a person from a new (test) image. There are two slight variations to the basic problem. 

The first one is face authentication – this is a binary classification problem, and the classifier has 

to decide whether or not the new image belongs to the training set. The second one is face 

recognition – this is a more difficult multiclass problem, where the identity of the new image must 

be decided. Face recognition can also be carried out with videos, but in this work the focus is on 

image based face recognition. 

Face recognition had been an active field of research over the last two decades. A detailed 

review of face recognition research can be found in [1]. Any face recognition system consists of 

three interconnected modules as shown in Figure 1-1. The pre-processing module comprises of 

tasks like face detection, illumination normalization, pose estimation etc. The feature extraction 

block, extracts features that are relevant for representing a face for recognition problems. The 

classification block is either designed to carry out authentication or recognition, or sometimes 

both. 

 

Figure 1-1: Face Recognition Modules 

The main task of the preprocessing module is face detection. This is a problem in its own class 

where the challenge is to detect and separate faces from images with varying scales, 

backgrounds and poses. There are several methods to address the problem [2]; perhaps the 

most popular one (owing to its reasonable accuracy and high speed) is the Viola Jones algorithm 
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[3]. This is the algorithm used nowadays in digital cameras for detecting faces in real-time. The 

preprocessing block also handles other problems like illumination normalization, pose estimation 

etc. There have been previous studies [4] in low complexity algorithms to handle such problems 

at the preprocessing level.  

Feature extraction is the most well researched problem in face recognition. There are three broad 

approaches towards feature extraction (Figure 1-2) – holistic, local and hybrid. In the holistic 

recognition approach, features are extracted from the whole face. Eigenfaces, Fisherfaces are 

examples of this approach. These extracted features are used by a classifier for recognition. In 

local methods, the entire face is divided into several patches. These patches may be regular grids 

(as shown in Figure 1-2) or may depend on interesting regions of the face like eyes, nose, mouth 

etc. Features are extracted from these patches. Corresponding to each patch there is one 

classifier. These classifiers are weak and try to distinguish the face from the patch information. 

Finally, the output of the weak classifiers is fused to arrive at the final decision. Hybrid methods 

believe that global and local methods carry complementary information. So, an approach that 

hauls both types of information may provide better recognition accuracy. In hybrid methods, first, 

the local features are extracted. Discriminative information is extracted from all the local features 

taken together. These discriminative features are fed into the classifier for recognition. 
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Figure 1-2: Face Recognition Approaches 

In the classification module, the extracted features form the input to the classifier for recognition. 

Generally, standard classification tools like Nearest Neighbor (NN), Support Vector Machine 

(SVM) and Artificial Neural Networks (ANN) are employed for face recognition. The NN is the 

most widely used classifier. This owes to the fact that face recognition suffers from the problem of 

insufficient training samples, and under such conditions, parametric classifiers like SVM and ANN 

overfit the training data thus losing their generalization ability due to over-fitting. This leads to 

poor recognition accuracy for new test samples. NN is a non-parametric classifier and does not 

suffer from the problem of over-fitting and hence is preferred over the others. 

1.2 Face Recognition Challenges 

From the perspective of a machine, faces are specific objects that look similar, but subtle features 

make one different from the other. Human beings are easily able to recognize faces but automatic 

recognition of faces by machine is a challenging job. From the point of view of computer vision, 

face recognition poses the following challenges: 

• Head pose: Rotation or tilt of the head; even if the appearance is frontal, it significantly affects 

the performance of the recognition system significantly. 
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• Illumination change: The direction of light illuminating the faces greatly affects the recognition 

accuracy. It has been noticed that illuminating a face image bottom up reduces the accuracy 

of the system. 

• Facial expression change: Minor expression changes like smiling to extreme expression 

variations, like shouting or crying or making grimaces, has some effect on recognition. 

• Aging: Images taken at long interval or even at different days may seriously affect the correct 

recognition rate of a system. 

• View: Profile images can be difficult to recognize, when mostly frontal faces are available for 

matching. 

• Occlusion: Even partial occlusion of faces due to objects or accessories like sunglass or 

scarf, makes identification a difficult task. 

• Miscellaneous: Other issues like variations in background, changes in hairstyle also add to 

the problem of face recognition to a certain extent. 

All the aforementioned problems have been at the forefront of face recognition research for the 

better part of the last two decades. While the challenges are still pertinent, the current work does 

not address them. The interested reader is directed to [5], where all the classic works in face 

recognition are archived. The main purpose of this work is to address a practical recognition 

problem which has been overlooked previously.  

1.3 Purpose of Thesis 

Face images (with column/row concatenation) form very high dimensional vectors, e.g. a 

standard webcam takes images of size 320x240 pixels, which leads to a vector of length 76,800. 

All the pixel values of the face image may be used as features for classification. The 

computational complexity of most classifiers is dependent on the dimensionality of the input 

features. If the dimensionality is large, the classifier takes a long time to operate. This prohibits 

direct usage of pixel values as features for face recognition. 
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To overcome this problem, different dimensionality reduction techniques (i.e. the feature 

extraction block of Figure 1-1) has been proposed over the last two decades – starting from 

Principal Component Analysis (Eigenface [6]) and Fisher Linear Discriminant (Fisherface [7]). A 

comprehensive study in different dimensionality reduction techniques can be found in [8]. All such 

dimensionality reduction techniques have a basic problem – they are data-dependent adaptive 

techniques, i.e. the projection function from the higher to lower dimension can not be computed 

unless al the training samples are available. Thus the system cannot be updated efficiently when 

new data should be added. 

Data dependency is the major computational bottleneck of such dimensionality reduction 

methods. Consider a situation where a bank intends to authenticate a person at the ATM, based 

on face recognition. So, when a new client is added to its customer base, a training image of the 

person is acquired. When that person goes to an ATM, another image is acquired by a camera at 

the ATM and the new image is compared against the old one for identification. Suppose that at a 

certain time the bank has 200 customers, and is employing a data-dependent dimensionality 

reduction method. At that point of time it has computed the projection function from higher to 

lower dimension for the current set of images. Suppose that at a later time, the bank has 10 more 

clients, then with the data-dependent dimensionality reduction technique the projection function 

for all the 210 samples must be recomputed from scratch; in general there is no way the previous 

projection function can be updated with results of the 10 new samples only. This is a major 

computational bottleneck for the practical application of current face recognition research. 

For an organization such as a bank, where new customers are added regularly, it means that the 

projection function from higher to lower dimension will have to be updated regularly. The cost of 

computing the projection function is intensive and is dependent on the number of samples. As the 

number of samples keeps on increasing, the computational cost keeps on increasing as well (as 

every time new customers are added to the training dataset, the projection function has to be 

recalculated from scratch). This is a major issue for any practical face recognition system.  
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One way to work around this problem is to skip the dimensionality reduction step. But as 

mentioned earlier this increases the classification time. With the ATM scenario there is another 

problem as well. This is from the perspective of communication cost. There are two possible 

scenarios in terms of transmission of information – 1) the ATM sends the image to some central 

station where dimensionality reduction and classification are carried out or 2) the dimensionality 

reduction is carried out at the ATM so that the dimensionality reduced feature vector is sent 

instead. The latter reduces the volume of data to be sent over the internet but requires that the 

dimensionality reduction function is available at the ATM. With the first scenario, the 

communication cost arises from sending the whole image over the communication channel. In the 

second scenario, the dimensionality reduction function is available at the ATM. As this function is 

data-dependent it needs to be updated every time new samples are added. Periodically updating 

the function increases the communication cost as well. 

In this work we propose a dimensionality reduction method that is independent of the data. 

Practically this implies that the dimensionality reduction function is computed once and for all and 

is available at all the ATMs. There is no need to update it, and the ATM can send the 

dimensionality reduced features of the image. Thus both the computational cost of calculating the 

projection function and the communication cost of updating it are reduced simultaneously. 

Our dimensionality reduction is based on Random Projection (RP). In the past, RP has been 

proposed as a non-adaptive (data-independent) alternative to adaptive data-dependent 

dimensionality reduction techniques in machine learning problems [9-15]. Two of these studies 

[14, 15] were aimed at face recognition. In [14] RP was employed for dimensionality reduction 

followed by NN classification. A new classifier was proposed in [15] for use with RP 

dimensionality reduction. It was called the Sparse Classifier (SC). SC was found to give better 

recognition results than NN or SVM. In this work, a class of novel classifiers is proposed which 

are robust to RP. ‘Robustness’ implies that the classification accuracy in the original dimension 

(before dimensionality reduction) and in the randomly projected reduced dimension is nearly the 

same. 



 7 

Another way to generate a data-independent dimensionality reduction matrix is to generate a 

PCA (or LDA) projection matrix for a large number of selected samples and use this projection 

matrix for reducing the dimensionality of any new data without updating it. Such a scheme may 

give good results, but it will not be possible to prove the robustness of such an ad hoc 

dimensionality reduction scheme without making strong assumptions on the distribution of the 

data. 

1.4 Contribution of the Thesis 

This thesis aims at proposing a class of new classifiers that are robust to dimensionality reduction 

via Random Projections (RP). By robust, it is meant that the classification accuracy does not vary 

much when the RP dimensionality reduced samples are used in classification instead of the 

original samples (without dimensionality reduction). The traditional NN classifier is robust to RP. 

Other classifiers like SVM has been shown to be somewhat robust to RP as well, but there is a 

problem with using classifiers like SVM and ANN in the current scenario. Both SVM and the ANN 

have a data-driven training phase, where all the training data must be available to the classifier in 

order to learn how to classify (e.g. in the ATM scenario, SVM and ANN need to be retrained 

whenever new samples are available). The computational cost of training these classifiers 

increases when the number of samples increases. This is a computational bottleneck that needs 

to be avoided for practical recognition systems. Moreover, with limited number of samples in each 

class (as in face recognition) SVM and ANN do not show good recognition accuracy, since both 

of them are parametric classifiers which suffer from the problem of over-fitting when the training 

samples are scarce, consequently they lose their generalization ability leading to poor accuracy 

while testing. 

The NN is robust to RP dimensionality reduction; it does not require training so new data can be 

added anytime. Unfortunately the recognition accuracy of NN is not very high. The Sparse 

Classifier (SC), [15] is shown to have better recognition accuracy (17% more compared to NN). 

But there are certain shortcomings with the SC implementation. In Chapter 2, the shortcomings of 
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the SC are addressed and a new classifier called the Group Sparse Classifier (GSC), is 

proposed. The results from GSC are better than SC by about 3%. 

The GSC algorithm is based on optimization techniques which are slow. To overcome the 

limitations in speed, fast approximate algorithms are proposed in Chapter 3 as an alternate to 

optimization. These classifiers based on the greedy approximate algorithms are called the Fast 

Group Sparse Classifiers (FGSC). FGSC has a marginally less (0.5%) classification accuracy 

compared to GSC but is about 2 orders of magnitude faster. 

The Nearest Subspace Classifier (NSC) is proposed in Chapter 4. It can be looked upon as a 

generalization of the NN algorithm or a special case of the GSC. The operational speed of NSC is 

much faster compared to the sparse classifiers (SC, GSC and FGSC). 

All the novel classification algorithms (including SC) are analyzed in detail in Chapter 5. 

Theoretical proofs regarding the robustness of these classifiers under random projections are 

also provided in this chapter.  

Chapter 6 shows a practical application of the techniques developed so far for the problem of 

video based face recognition in ATMs. It shows how the non-adaptive techniques developed in 

this thesis can be extended to the problem of video based face recognition. Our proposed method 

leads to significant reduction in recognition error (65%) when compared with other recent 

methods in video based face recognition. The conclusions of this work are discussed in the final 

chapter 7. 
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CHAPTER 2: CLASSIFICATION VIA GROUP SPARSITY 

PROMOTING REGULARIZATION1 

2. 1 Introduction 

Recently a new classifier was proposed in [1]. The work makes a novel classification assumption. 

It assumes that the training samples of a particular class approximately form a linear basis for a 

new test sample belonging to the same class. The classification algorithm built upon this 

assumption gave good recognition results on the Extended Yale B face recognition database [2].  

The assumption made in [1] is novel and departs largely from the assumptions of conventional 

machine learning. Although this assumption led to good results, the intuition behind this 

assumption is lacking in the previous work [1]. We propose a logical interpretation of this 

assumption. Geometrically, this assumption means that training samples for each class can lie on 

different subspaces, and the test sample can be expressed as a union of these subspaces. For 

faces, it is likely that different head poses constitute different subspaces, e.g. frontal view may be 

one subspace, left profile view may be another subspace while the right profile view may be the 

third one. It is not difficult to assume that any new head pose may be constructed as a linear 

combination of these three fundamental views. The mathematical form of this interpretation leads 

to the assumption in [1]. If vk,test is the test sample belonging to the kth class then, 

, ,1 ,1 ,2 ,2 , ,...
k kk test k k k k k n k nv v v vα α α ε= + + + +       (1) 

where vk,i are the training samples and ε is the approximation error. 

In a classification problem, the training samples and their class labels are provided. The task is to 

assign the given test sample with the correct class label. This requires finding the coefficients αk,i 

in equation (1). In [1] the solution is framed as a sparse optimization problem. In this work we 

                                                 
1 A version of this chapter has been published. A. Majumdar, and R. K. Ward, “Classification via 
Group Sparsity Promoting Regularization”, IEEE International Conference on Acoustics, Speech, 
and Signal Processing, Taipei, Taiwan, Apr. 2009, pp. 873-876. 
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propose alternate solutions and show that our solutions give better results compared to the 

previous one [1]. 

Equation (1) expresses the assumption in terms of the training samples of a single class. 

Alternately, it can be expressed in terms of all the training samples (of C classes) so that 

,k testv Vα ε= +           (2) 

where 1,1 ,1 ,1 , ,1 ,[ | ... | | ... | | ... | | ... | ... | ]
k Cn k k n C C nV v v v v v v=  and 

11,1 1, ,1 , ,1 ,[ ... ... ... ... ... ] '
k Cn k k n C C nα α α α α α α= . 

There are two implications that follow from the assumption expressed in equation (2): 

1. The vector α should be sparse. 

2. All (or most of) the training samples corresponding to the correct class should have non-zero 

values in α.  

The above implications demand that α should be ‘group sparse’ - meaning that the solution of the 

inverse problem (2) should have non-zero coefficients corresponding to a particular group of 

correlated training samples and zero elsewhere. The solution in [1] is based on the first 

implication only. It imposes Lasso regularization on equation (2). Lasso promotes a sparse 

solution of α but does not favor grouping of correlated samples. Consequently the non-zero 

values in α do not necessarily correspond to training samples belonging to the same group. Our 

work proposes two alternate regularizations that promote group sparsity in α. Experimental 

evaluation shows that our method provides better recognition results compared to [1]. 

The rest of the paper will be organized into several sections. In Section 6.2.2, we will discuss the 

background of the problem. Section 6.2.3 will detail our proposed methods. In Section 6.2.4 we 

will show the experimental results. Finally in Section 6.2.5, conclusions and future scope of work 

will be discussed.  
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2.2 Review of Previous Work 

 

The novel classification assumption was first proposed in [1]. The first step towards classification 

is to solve for the coefficient vector α in equation (2). The simplest solution to equation (2) 

involves the pseudo-inverse of V and is expressed as 1
,ˆ ( ' ) ' k testV V V vα −= . However, in most 

cases the matrix V is ill-conditioned or ill-posed. So the simple solution involving the pseudo-

inverse is not stable. 

To obtain a stable solution, one requires regularizing equation (2) in order to find an approximate 

stable solution. Since the solution α̂ should be sparse, an l0-norm regularizer is required and the 

following optimization problem needs to be solved 

0 , 2min || ||  such that || ||k testv V
α

α α ε− <        (3) 

In [1], it is argued that solving the l0-norm is an NP hard problem and there is no tractable 

algorithm to solve it. Citing studies in Compressive Sampling [3], they argued that for large 

systems the l0-norm can be replaced by the l1-norm (Lasso regularization) which also leads to a 

sparse solution. 

1 , 2min || ||  such that || ||k testv V
α

α α ε− <         (4) 

The optimization problem in equation (4) can be solved by quadratic programming methods.  

Once a sparse solution of α is obtained, the following classification algorithm was proposed to 

determine the class of the test sample. 

Algorithm 1 

1. Solve the optimization problem expressed in (4). 

2. For each class i repeat the following two steps: 
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a. Reconstruct a sample for each class by a linear combination of the training samples 

belonging to that class by the equation , ,
1

( )  
in

recon i j i j
j

v i vα
=

=∑ . 

b. Find the error between the reconstructed sample and the given test sample by 

, ( ) 2( , ) || ||test k test recon ierror v i v v= − .  

3. Once the error for every class is obtained, choose the class having the minimum error as the 

class of the given test sample. 

l1-norm minimization leads to a sparse solution, but there are spurious coefficients in the vector α 

associated with the samples that do not belong to the class of the test sample. Step 2 is required 

to eliminate the effects of these coefficients. The coefficients in αi,j corresponding to each class i 

are used to reconstruct a sample. For each class the error between the reconstructed sample and 

the given test sample is calculated. The assumption in equation (1) says that the error between 

the reconstruction and the test sample will be the least for the correct class. Based on this 

assumption, the identity of the test sample is decided by the minimum error. 

 

2.3 Proposed Classification Methods 

We mentioned in Section 6.2.1 that the assumption in [1] leads to two implications. The previous 

work [1] based their solution on the first implication, i.e. on the sparsity of the solution. It did not 

account for the group sparsity of α. In this section we will introduce regularizations that make α 

group sparse, i.e. it has non-zero coefficients corresponding to a particular group of correlated 

training samples and zero elsewhere.  

2.3.1. Disadvantage of Lasso Regularization 
 

There is a limitation to the Lasso (l1-norm) regularization. If there is a group of samples whose 

pair-wise correlations are very high, then Lasso tends to select one sample only from the group 

[5].  
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In a classification problem, training samples belonging to the same class are correlated with each 

other. In such a situation the Lasso regularization proposed in [1] tends to select only a single 

training sample from the entire class. Thus, in the extreme case, the classifier in [1] becomes a 

scaled version of the Nearest Neighbour (NN) classifier. 

For explaining this effect of the Lasso regularization we rewrite the assumption expressed in 

equation (1): 

α α α ε= + + + +, ,1 ,1 ,2 ,2 , ,...
k kk test k k k k k n k nv v v v  

where the vk’s belong to the same class and are correlated with each other. If algorithm 1 is 

employed for classifying the test sample, then (in the extreme case) we find that 

1. The Lasso regularization tends to select only one of the training samples from the group. We 

call it vk,best. 

2. Step 2 is repeated for each class. 

a. The reconstructed vector becomes a scaled version of the selected sample, i.e. 

, ,( )recon i best i bestv i vα= . 

b. The error from the reconstructed vector is calculated  

, , , 2( , ) || ||test k test i best i besterror v i v vα= − . 

3. The class with the minimum error is assumed to be the class of the test sample.  

The minimum Lasso error in step 2.b is , , , 2|| ||Lasso Lasso
k test k best k bestv vα− . In NN classification the criterion 

for choosing the class of the test sample is , , 2|| ||   j  class ik test i jv v− ∀ ∈ . This error is minimized 

when , ,
NN

i j k bestv v=  and is given by , , 2|| ||NN
k test k bestv v− . The Lasso error and the NN error are the 

same except for the scaling factor ( ,
Lasso
k bestα ). 

When the training samples are highly correlated (which generally is the case in classification), 

employing Lasso regularization forms a serious limitation to the sparse classification problem. 

Decision regarding the correct class of the test sample should depend on all the training samples 
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belonging to a class. Lasso however, favors selecting a single training sample from the entire 

class. We look for alternate regularization methods to overcome this problem. 

 

2.3.2 Elastic Net Regularization 
 

The problem of selecting a sparse group is studied in [5, 6] where an alternate regularization 

called ‘Elastic Net’ that promotes selection of sparse groups is proposed. We apply this 

regularization to the classification problem. 

We repeat the optimization problem used in [1] 

1 , 2min || ||  such that || ||k testv V
α

α α ε− <  

This has the equivalent (Lasso) expression 

, 2 1min || ||  such that || ||k testv V
α

α α τ− <  

The unconstrained form of Lasso regularization is 

, 2 1min || || || ||k testv V
α

α λ α− +         (5) 

To promote group sparsity, Elastic Net regularization, proposes the following optimization 

problem  

2
, 2 1 2 2 1min || || || || || ||k testv V

α
α λ α λ α− + +        (6) 

The l1 penalty in the above expression promotes sparsity of the coefficient vector α, while the 

quadratic l2 penalty encourages grouping effect, i.e. selection of a group of correlated training 

samples. The combined effect of the mixed penalty term is that it enforces group-sparsity, i.e. the 

recovery of one or very few groups of correlated samples. 

The classification is performed by algorithm 1, but instead of solving the optimization problem in 

equation (4) we need to solve the problem in equation (6). The Elastic Net regularization problem 

was solved using the ‘elasticnet’ package [7]. 



 17 

2.3.3 Sum-Over-l2-norm Regularization 
 

In Section 6.2.1, we mentioned two implications of the assumption expressed in equation (1). The 

Lasso exploits only the first implication while Elastic Net exploits both. The Elastic Net 

regularization is better than the Lasso in the sense that it promotes the selection of one or very 

few groups of samples. Elastic Net regularization however, does not exploit the labels of the 

training samples (columns of V). When the labels are known a stronger group sparsity constraint 

than the Elastic Net can be imposed. 

When the column labels of the matrix V is known, a stronger group sparsity promoting 

regularization [8, 9] can be employed 

1 2 2 2 2

, 2

,1 ,2 ,

min || || || || ... || ||  

such that || ||

where [ , ,..., ],  for i = 1,2,...,C
i

C

k test

i i i i n

v V
α

α ε
α α α

Α + Α + + Α

− <

Α =

      (7) 

The formulation is similar to the Elastic Net regularization. The l2-norm over the group of 

correlated variables (Ai’s) enforces the selection of the entire group of samples whereas the 

summation over the l2-norm (∑Ai) enforces group sparsity, i.e. the selection of one or very few 

classes.  

The optimization problem (7) requires the label of each column in the matrix V, i.e. the class the 

column belongs to. In classification tasks, the labels of the training samples are always available, 

and hence we can use the Sum-Over-l2-norm regularization (7) for our problem. We propose a 

slightly modified version of algorithm 1 in this case.  

Algorithm 2 

1. Solve the optimization problem expressed in (7). 

2. Find those i’s for which ||Ai||2 > 0.  

3. For those classes i satisfying the condition in step 2, repeat the following two steps: 



 18 

a. Reconstruct a sample for each class by a linear combination of the training samples 

in that class via the equation , ,
1

( )
in

recon i j i j
j

v i vα
=

=∑ . 

b. Find the error between the reconstructed sample and the given test sample by 

, ( ) 2( , ) || ||test k test recon ierror v i v v= − .  

4. Once the ( , )testerror v i for every class i is obtained, choose the class having the minimum 

error as the class of the given test sample. 

The computational cost of algorithm 2 is less than algorithm 1, because step 3 is not repeated for 

all the classes. Instead we evaluate only those classes for which there are non-zero entries in the 

coefficient vector α (step 2). 

 

2.4 Experimental Results 
 

We performed two sets of experiments. In the first set we apply the sparse classification 

algorithms on some benchmark databases from the University of California Irvine Machine 

Learning (UCI ML) repository [8]. Databases that do not have missing values in feature vectors or 

unlabeled training data were chosen.  

In the second set of experiments, we compared the recognition accuracy on the different sparse 

classifiers for the face recognition task on the Extended Yale B face database. The sparse 

classification algorithm [1] was originally proposed to address the face recognition problem. 

Table 2-1, shows the classification results on the UCI ML databases. The results are obtained by 

Leave-One-Out validation. We compare the classification algorithm in [1] against ours. We use 

the Nearest Neighbour (NN) classifier as a benchmark. 
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Table 2-1: Recognition Accuracy of Different Methods 

Recognition Accuracy (%) Name of 
Dataset Lasso [1] Elastic Net Sum-Over-l2-norm NN 
Page Block 94.78 95.32 95.66 93.34 
Abalone 27.17 27.17 27.17 26.67 
Segmentation 96.31 94.09 94.09 96.31 
Yeast 57.75 58.23 58.94 57.71 
German Credit 69.32 72.67 74.54 74.54 
Tic-Tac-Toe 78.89 84.41 84.41 83.28 
Vehicle 65.58 72.34 73.86 73.86 
Australian Cr. 85.94 85.94 86.66 86.66 
Balance Scale 93.33 94.57 95.08 93.33 
Ionosphere 86.94 90.32 90.32 90.32 
Liver 66.68 69.04 70.21 69.04 
Ecoli 81.53 82.06 82.88 80.98 
Glass 68.43 69.11 70.19 68.43 
Wine 85.62 85.62 85.62 82.21 
Iris 96.00 96.00 96.00 96.00 
Lymphography 85.81 86.04 86.42 85.32 
Hayes Roth 40.23 41.01 41.01 33.33 
Satellite 80.30 80.30 82.37 77.00 
Haberman 40.52 43.28 43.28 57.40 

 

In Table 2-1, the best results for each dataset are highlighted in bold. Experiments were run on 

19 datasets. Our proposed Sum-Over-l2-norm regularization gave the best results 17 times. 

Results from our Elastic Net regularization closely followed our Sum-Over-l2-norm regularization. 

The recognition results from the Lasso regularization [1] were better than our methods for one 

case (Segmentation).  

For the face recognition experiments, we repeat the experimental set-up in [1]. The experiments 

are carried on the Extended Yale B Face Database. For each subject, we randomly select half of 

the images for training and the other half for testing. Table 2-2 contains the results for face 

recognition. The features are selected using the Eigenface method. To compare our results with 

[1], we select the same number of Eigenfaces as proposed in [1]. 

Table 2-2: Recognition Accuracies on Extended Yale B 

Number of Eigenfaces Method 
30 56 120 504 

Lasso [1] 86.49 91.71 93.87 96.77 
Elastic Net 86.96 92.05 94.26 97.13 
Sum-Over-l2-norm 89.40 93.37 95.14 97.79 
NN 74.48 81.85 86.08 89.47 
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The best recognition results are highlighted in bold. It is seen from Table 2-2 that our proposed 

Sum-Over-l2-norm regularization gives the best recognition results for any number of Eigenfaces 

selected. The Elastic Net regularization is little lower than the Sum-Over-l2-norm regularization 

but better than the Lasso.  

2.5 Conclusion 
 

A novel classification assumption: states that the training samples of a class approximately form a 

linear basis for any new test sample” was proposed in [1]. Based on this assumption, a classifier 

using LASSO regularization was built. We argued that the Lasso regularization is not an ideal 

choice for the classifier based on the aforesaid assumption as it selects one training sample only 

to form the basis. To select a basis with many training samples, we proposed two alternate 

regularizations techniques, Elastic Net and Sum-Over-l2-norm for selecting a group of samples. 

Results on 20 different datasets (19 from the UCI ML repository and Yale Face Database) show 

that the sparse classifier based on our alternate regularizations yield better recognition results. 

The previous work [1] used the sparse classifier for face recognition only. We however, show that 

the sparse classifier can be used for general purpose classification tasks including face 

recognition. Using many benchmark datasets from the UCI ML repository, our proposed sparse 

classifiers is shown to consistently outperform the classifier in [1] and also the NN classifier (see 

Table 2-1). For face recognition tasks, our proposed methods, on average, yield around 2% and 

11% better recognition accuracy than the classifier in [1] and NN respectively. 
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CHAPTER 3: FAST GROUP SPARSE CLASSIFICATION2 

3. 1 Introduction 

Recently a new classifier was proposed [1]. It assumes that the training samples of a particular 

class approximately form a linear basis for a new test sample belonging to the same class.  The 

logic behind this assumption is already mentioned in Chapter 1. This assumption can be 

represented formally. If vk,test is the test sample belonging to the kth class then, 

, ,1 ,1 ,2 ,2 , ,...
k kk test k k k k k n k nv v v vα α α ε= + + + +       (1) 

where vk,i are the training samples of the kth class and ε is the approximation error. 

Equation (1) expresses the assumption in terms of the training samples of a single class. Thus 

can be expressed in terms of all the classes 

,k testv Vα ε= +           (2) 

where
11,1 1, ,1 , ,1 ,[ | ... | | ... | | ... | | ... | ... | ]

k Cn k k n C C nV v v v v v v=  and 

1 2

1 2

1,1 1, 2,1 2, ,1 ,[ ,..., , ,..., ,... ,..., ]
C

C

T
n n C C n

α α α

α α α α α α α=
������������ �������

. 

where ,k iv is the ith training sample of the kth class. 

The above assumption demands that α should be ‘group sparse’ - meaning that the solution of 

the inverse problem (2) should have non-zero coefficients corresponding to a particular group of 

training samples 

and zero elsewhere (i.e. 0α ≠i for only one of the αi’s, i=1,…,C). This requires the solution of 

2,0 2min || ||  such that ||v ||test V
α

α α ε− <        (3) 

                                                 
2 A version of this chapter has been accepted for publication. A. Majumdar and R. K. Ward, “Fast 
Group Sparse Classification”, IEEE Pacific Rim Conference on Communications, Computers and 
Signal Processing, Victoria, B.C., Canada, August 2009. 
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The mixed norm 2,0|| ||i is defined for
1 2

1 2

1,1 1, 2,1 2, ,1 ,[ ,..., , ,..., ,... ,..., ]
C

k

T
n n C C n

α α α

α α α α α α α=
������������ �������

 . 

as 2,0 2
1

|| || (|| || 0)
C

l
l

Iα α
=

= >∑ , where 2,0(|| || 0) 1lI α > = if 2,0|| || 0lα > . Solving (3) is an NP hard 

problem; to overcome this problem [1] proposes a convex relaxation of the above problem by 

solving the following problem  

2,1 2min || ||  such that ||v ||test V
α

α α ε− <        (4) 

where 2,1 1 2 2 2 2|| || || || || || ... || ||Cα α α α= + + + . 

The conditional equivalence of the 2,0|| ||i and 2,1|| ||i minimization has been studied previously [2]. 

Even though in many cases (4) is a good approximation of (3), the computational time required 

for solving (4) is large. Consequently the time required for classification is also large. To 

overcome this problem, in this paper we propose greedy approximate solutions to (3).  

We propose 12 greedy algorithms, with various degrees of accuracy and computational 

complexity that will approximate the solution to (3). They are based on the Orthogonal Matching 

Pursuit method. All of them are faster than the GSC [1]. Among these, eight algorithms are as 

accurate as the previous GSC. Five of these algorithms are significantly faster (2 orders of 

magnitude) than the GSC. 

The idea of approximating a test sample by a linear combination of the training samples of a class 

was originally proposed in [3]. However the optimization problem in [3] did not account for group-

sparsity (more discussion on this topic can be found in [1]). Therefore the recognition results from 

[3] were a little worse than [1]. 

The rest of the paper consists of several sections. The following section discusses the 

background of the problem. The proposed algorithms are described in Section 3.3. In Section 3.4 

the experimental results are shown. Finally in Section 3.5, conclusions and future scope of work 

are discussed. 
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3. 2 Background 

3.2.1 Group Sparse Classification 

Group Sparse Classification (GSC) [1] assumes that a test sample can be represented as a linear 

combination of the training samples belonging to its correct class. We repeat equation (2) 

testv Vα ε= +       

where 1,1 ,1 ,1 , ,1 ,[ | ... | | ... | | ... | | ... | ... | ]
k Cn k k n C C nV v v v v v v=  and 

1 2

1 2

1,1 1, 2,1 2, ,1 ,[ ,..., , ,..., ,... ,..., ]
C

C

T
n n C C n

α α α

α α α α α α α=
������������ �������

. 

As discussed above, a group sparse solution α, can be obtained by 

2,0 2min || ||  such that ||v ||test V
α

α α ε− <  

Since this is an NP hard problem, a convex relaxation of the above optimization is employed. 

This is represented in equation (4) 

2,1 2min || ||  such that ||v ||test V
α

α α ε− <  

where 2,1 1 2 2 2 2|| || || || || || ... || ||  Cα α α α= + + +  

The 2,1|| ||i minimization is the actual work-horse behind the GSC [1]. We repeat the GSC algorithm 

[1] here for the sake of completeness: 

1. Solve the optimization problem expressed in (4). 

2. Find the i’s for which ||αi||2 > 0.  

3. For all classes satisfying the condition in step 2, repeat the following two steps: 

a. Reconstruct a sample for each class by a linear combination of the training samples 

in that class via the equation , ,
1

( )  
in

recon i j i j
j

v i vα
=

=∑ . 
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b. Find the error between the reconstructed sample and the given test sample by 

( ) 2( , ) || ||test test recon ierror v i v v= −   

4. Once the ( , )testerror v i for every class i is obtained, choose the class having the minimum 

error as the class of the given test sample. 

The convex relaxation of the NP hard problem is still slow for practical classification purposes. 

In this paper, we propose 12 greedy algorithms (based on the Orthogonal Matching Pursuit 

method) to approximate the 2,0|| ||i minimization problem. But before proposing our greedy group 

sparse algorithms, it will be appropriate to briefly discuss about the sparse optimization – the 

precursor of group sparse optimization. 

3.2.2 Sparse Optimization 

Group sparse optimization is a successor of the problem of sparse optimization. Ideally, sparse 

optimization takes the form 

0 2min || ||  such that || ||
x

x b Ax ε− <        (5) 

Where 0|| ||x is defined as the number of non-zero terms in the vector ‘x’. 

Minimizing the l0 norm finds widespread applications in signal processing (compressed sensing) 

[4] and machine learning (regression) [5].  

Solving the l0-norm is an NP hard problem. There are two approaches to approximate (5) – 

convex optimization and greedy algorithms. In the former, the l0-norm is replaced by its nearest 

convex surrogate the l1-norm and the resulting form is solved by quadratic programming 

techniques. Greedy (sub-optimal) algorithms try to find an approximate solution for (5). 

Researchers in signal processing and machine learning use two slightly varied versions of the l1-

norm minimization problem. In signal processing the following form, called basis pursuit denoising 

(BPDN) is commonly employed 

1 2min || ||  such that || ||
x

x b Ax ε− <        (6) 
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Where as in machine learning, the Least Angle Shrinkage and Selection Operator (LASSO) form 

is more common 

2 1min || ||  such that || ||
x

b Ax x τ− <        (7) 

For particular choices of ε and τ, equations (6) and (7) are equivalent and can be solved by 

quadratic programming in the form 

2
2 1min || ||  + || ||

x
b Ax xλ−         (8) 

A seminal study [6] studies the conditions under which the l1-norm minimization is equivalent to 

the l0-norm minimization. Solving the l1 norm minimization problem is computationally expensive. 

Where as greedy approximate algorithms for solving (5) are computationally fast. They do not 

have the same theoretical guarantees as of convex optimization, but practically they have been 

found to be quite accurate. 

There are two classes of greedy approaches for solving (5) – Matching Pursuit [7-10] and 

Thresholding [11]. Both are iterative schemes. The former starts with a zero vector and identifies 

the position of the sparse coefficients at each iteration and their values thereof. The latter starts 

with a full vector and at each iteration thresholds the coefficients to arrive at a sparse solution.  

The matching pursuit method is suited when selecting grouped variables. Our algorithms are all 

modifications of the Orthogonal Matching Pursuit [9] method. We will discuss our proposed 

methods in Section 3.3. But before that we will briefly discuss the convex group sparse 

optimization methods that have been developed so far. 

3.2.3 Group Sparse Classification 

The problem of group sparsity is relatively new. Researchers in machine learning became 

interested in the problem mainly for applications in regression [12]. The signal processing 

community is more interested in the theoretical aspects of the problem [2]; mainly the conditions 

under which the convex optimization yields reasonable results. 
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The group sparsity optimization is an extension of the LASSO method [8] popularly known as 

Group LASSO. For the following inverse problem 

,   (0, )b Ax normal Nη η σ= + →          (9) 

and 
1 2

1 2

1,1 1, 2,1 2, ,1 ,[ ,..., , ,..., ,... ,..., ]
k

k

T
n n k k n

x x x

x x x x x x x=
������������ �������

 

then Group LASSO takes the form 

2 2
1

min || ||  such that || ||
k

j
x

j

b Ax x τ
=

− <∑        (10) 

In [12], three algorithms to solve (10) – Group LASSO, Group LARS and Group Non-negative 

Garrote are discussed in detail. Recently a faster implementation to the above problem has been 

proposed [13]. 

3. 3 Greedy Group Sparsity 

Previous studies indicate that greedy sparsity promoting algorithms like Orthogonal Matching 

Pursuit (OMP) and its variants are much faster than the solutions obtained via convex 

optimization. Until now there are only a few scattered greedy group sparse algorithms like Block 

Orthogonal Matching Pursuit [14] and Group Matching Pursuit [15]. In this paper we propose 12 

variants of greedy group sparsity promoting algorithms within the OMP framework. Therefore 

before proceeding into our algorithms we analyze the OMP briefly. The OMP is a greedy solution 

to (5). 

OMP Algorithm 

Given – Matrix A and vector b. 

Required – estimate sparse vector x 

Initialize – t = 1; r0 = y; L0 = []; 

Repeat until a stopping criterion met 



 28 

1. ct = ATrt-1 

2. lt = {j: max|ct(j)|} 

3. Lt = [Lt-1 lt] 

4. xt = arg minx ||y-ALtxt||2 

5. rt = y – Axt 

The OMP algorithm finds a greedy solution to the sparse optimization problem (6). Initially (i.e. at 

t=1) the residual (r0) is set to the vector b and the index set L is empty. Steps 1 to 5 are repeated 

until some stopping criterion is met. Generally the stopping criterion is a minimum bound on the 

residual or the maximum number of steps. 

In step 1 of the tth iteration a vector (c) is formed by multiplying the matrix AT with the current 

residual. This step basically finds the correlation between the current residual and each column of 

AT. The index with the highest correlation is selected in step 2. This index is added to the current 

index set L in step 3. AL represents the columns of A indexed in L. The current signal estimate is 

obtained via least squares as shown in step 4. In step 5 of the OMP algorithm, the residual for the 

next iteration is obtained. 

There are three major stages in each OMP iteration – the selection stage (steps 1-2); the 

minimization stage (step 4) and the update (stage 5). There are several variants of the OMP 

algorithm based on the variations in these stages. Greedier algorithms like Stagewise OMP 

(StOMP) [10] and Regularized OMP (ROMP) [9] selects more than one index in the selection 

stage. In Matching Pursuit (MP) [7] the minimization stage is skipped altogether. Therefore MP is 

really fast but not quite as accurate as OMP. In a recent study [16] approximate fast algorithms 

based on gradient updates have been proposed to reduce the complexity of OMP. 

3.3.1. Greedy Algorithms for Group Sparsity 

The main contribution of this paper is the approximate solution of equation (3).  

2,0 2min || ||  such that ||y ||
x

x Ax ε− <  
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where
1 2

1 2

1,1 1, 2,1 2, ,1 ,[ ,..., , ,..., ,... ,..., ]
k

k

T
n n k k n

x x x

x x x x x x x=
������������ �������

 

In addition to the vector y and the matrix A, the group label, for each column in A are also 

needed. 

We will now discuss different greedy solutions to the above group sparsity problem (equation (3)). 

The first proposed greedy algorithm to solve (3) is the Block Orthogonal Matching Pursuit 

(BOMP) [14]. It was first proposed by the name Group Matching Pursuit (GMP) in [15]. In this 

work the name GMP refers to a different algorithm.   

BOMP Algorithm 

Given – Matrix A, vector y and group labels of each column in A. 

Required – estimate a block sparse vector x 

Initialize – t = 1; r0 = y; L0 = []; 

Repeat until a stopping criterion is met 

1. ct = ATrt-1 

2. lt = {j: group(max|ct(j)|)} 

3. Lt = [Lt-1 lt] 

4. xt = arg minx ||y-ALtxt||2 

5. rt = y – Axt 

The BOMP algorithm is similar to the OMP algorithm except for step 2. In this step, instead of 

selecting only the index having the highest correlation (as in OMP) the indices of the entire group 

containing the highest correlation is selected. 

We propose an alternate algorithm called the Group Orthogonal Matching Pursuit (GOMP). The 

group selection criterion in GOMP is slightly different from that of BOMP. 
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GOMP Algorithm 

Given – Matrix A, vector y and group labels of each column in A. 

Required – estimate a block sparse vector x 

Initialize – t = 1; r0 = y; L0 = []; 

Repeat until a stopping criterion is met 

1. ct = ATrt-1 

2. lt = {j: group(max(group-mean|(ct(j)|))} 

3. Lt = [Lt-1 lt] 

4. xt = arg minx ||y-ALtxt||2 

5. rt = y – Axt 

GOMP differs from the previous algorithm only in step 2. In the Group version of the algorithm, at 

each iteration the group average of the correlations are calculated and the group with the highest 

average is selected. In the rest of the paper whenever an algorithm’s name starts with ‘Block’ it 

will mean that selection strategy is similar to BOMP, i.e. the groups are selected based on the 

highest individual correlation. Also when some algorithm’s name starts with ‘Group’ we mean that 

the groups are selected based on the highest average group-wise correlation. 

The OMP based algorithms require the solution of a least squares problem (step 4). Depending 

upon the size of the problems this may be expensive. Now we will discuss some algorithms that 

reduce the computational cost of the algorithm by either skipping that step (matching pursuit) or 

approximately solving that step (gradient pursuit). 

First we discuss the Block Matching Pursuit (BMP); this is based on the Matching Pursuit (MP) 

algorithm [7]. It is the cheapest (least computational effort) possible group sparse estimation 

algorithm. 

BMP Algorithm 

Given – Matrix A, vector y and group labels of each column in A. 
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Required – estimate a block sparse vector x 

Initialize – t = 1; r0 = y; 

Repeat until a stopping criterion is met 

1. ct = ATrt-1 

2. lt = {j: group(max|ct(j)|)} 

3. xt(lt) = xt-1(lt) + ct(lt) 

4. rt = rt-1 – A(lt)xt(lt) 

The first step is similar to the OMP based algorithms. It calculates the correlations between the 

current residual and the columns of AT. In the next step it selects the group indices having the 

highest correlation according to the ‘Block’ selection criterion. In step 3, it only updates the sparse 

estimate at the group indices selected in the previous step. Step 4 updates the residual by 

subtracting the product of the matrix A and the sparse estimate x indexed in step 2 from the 

previous residual. 

As before, we can also have a Group Matching Pursuit (GMP) in which the indices are selected in 

step 2 according to the ‘Group’ selected method. Note that our proposed GMP algorithm bears no 

semblance with the so called Group MP in [15]. As mentioned earlier, their algorithm is actually 

BOMP. 

Although the MP based algorithms are very fast, they are relatively inaccurate compared to those 

based on OMP. There is always a trade-off between computational expense and accuracy. A 

recent work [16] proposes gradient pursuit algorithms to ‘approximately’ solve the least squares 

problem in OMP to keep the computational cost low (but at the same time does not compromise 

much on the accuracy). 

There are different ways to approximate the least squares problem in the gradient pursuit 

framework. We give the Block version of the general gradient pursuit algorithm called Block 

Gradient Pursuit. 
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BGP Algorithm 

Given – Matrix A, vector y and group labels of each column in A. 

Required – estimate a block sparse vector x 

Initialize – t = 1; r0 = y; L0 = []; 

Repeat until a stopping criterion is met 

1. ct = ATrt-1 

2. lt = {j: group(max|ct(j)|)} 

3. Lt = [Lt-1 lt] 

4. Calculate update direction dLt 

5. ut = ALtdLt 

6. at = ut’ rt/||ut||2 

7. xLt = xLt-1 + atdLt 

8. rt = rt-1 – atut 

The gradient pursuit algorithm has update steps similar to MP (steps 7 and 8). But the update is 

more accurate compared to MP. All the steps apart from 4, in the BGP algorithm are self 

explanatory. There can be three different ways to update the gradient direction in step 4; this 

gives rise to three different algorithms [16] – gradient pursuit (GP), partial conjugate gradient 

pursuit (PCGP) and approximate conjugate gradient pursuit (ACGP) or nearly orthogonal 

matching pursuit (NOMP). Due to limitations in space, we can not go into the details of each 

algorithm. We can have separate ‘Block’ and ‘Group’ versions of each algorithm. 

We have been discussing how to reduce the complexity of the least squares step in the OMP 

based algorithms. There is another way to reduce the overall complexity of the algorithm, i.e. in 

each step the new algorithms may be more expensive than OMP based ones but will terminate 



 33 

faster. This is achieved by selecting multiple groups in each iteration instead of selecting only 

one. We propose two such algorithms – Stagewise Block Orthogonal Matching Pursuit (StBOMP) 

and Regularized Group Orthogonal Matching Pursuit (ReGOMP). 

StBOMP Algorithm 

Given – Matrix A, vector y and group labels of each column in A. 

Required – estimate a block sparse vector x 

Initialize – t = 1; r0 = y; L0 = []; 

Repeat until a stopping criterion is met 

1. ct = ATrt-1 

2. lt = {j: group(|ct(j)|>ktαt)} 

3. Lt = [Lt-1 lt] 

4. xt = arg minx ||y-ALtxt||2 

5. rt = y – Axt 

σt = ||rs||2/n
½ and 2<k<3 

StBOMP is a greedier algorithm than BOMP. It is based on the concepts of StOMP [10]. At the 

selection step 2, it greedily selects more than one group at a time. It selects all the groups that 

have correlations greater than a threshold. At each step the StBOMP algorithm selects more than 

one group and consequently terminates faster than the previous ones. 

Our last algorithm is the Regularized Group Orthogonal Matching Pursuit (ReGOMP). This is also 

a greedy algorithm like StOMP – it selects more than one group at each iteration. But this 

algorithm is more cautious, it selects the groups based on a regularization test. Consequently the 

algorithm is more accurate than StBOMP. 
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ReGOMP Algorithm 

Given – Matrix A, vector y, group labels of each column in A and s = estimate of the # sparse 

groups. 

Required – estimate a block sparse vector x 

Initialize – t = 1; r0 = y; L0 = []; 

Repeat until a stopping criterion is met 

1. ct = ATrt-1 

2. gt(k) = sort(group-mean(ct(j))); k = 1 to # groups 

3. J = {j: group(gt(1:s))} 

4. Among all subsets J0 belonging to J perform regularization: |gt(m)| < 2|gt(n)| for all m, n in J0. 

Among all the J0’s satisfying the regularization, choose the one with maximum energy. 

5. Lt = [Lt-1 J0] 

6. xt = arg minx ||y-ALtxt||2 

7. rt = y – Axt 

The ReGOMP’s regularization criterion has been discussed in the ROMP algorithm [9]. Step 1 is 

similar to all other algorithms discussed so far. In step 2, the group wise mean is stored in a 

vector after sorting. The top ‘s’ groups are selected in J (step 3). Step 4 performs the 

regularization. Step 5, selects the indices of the regularized groups. Step 6 solves the least 

squares problem for the selected groups. Finally in step 7 the residual is updated based on the 

current signal estimate. 

We have implemented all the algorithms discussed here in Matlab. It is named GroupSparseBox 

and the latest version can be downloaded from [26]. 
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3. 4 Experimental Evaluation 

In Section 3.2.1 the (GSC) classification algorithm proposed in [1] is discussed. Step 1 of GSC 

requires the solution of the NP hard problem (3). In [1] a convex relaxation of (3) is employed. In 

this work, we replace the convex optimization by our greedy group sparse algorithms. We call our 

classifiers as Fast Group Classification (FGSC) algorithms. The FGSC algorithms are compared 

with GSC [1] is terms of recognition accuracy and speed. 

This study uses some benchmark classification datasets from the UCI Machine Learning 

repository. We use the same datasets and experimental procedure as in [1]. 

For each of the algorithms, we perform a simple non-parametric t-test to test the hypothesis that 

the mean classification accuracy from the FGSC is significantly different from GSC. The results 

are in Table 3-1. 

Table 3-1: Results of Hypothesis Testing 

FGSC 
Algorithm 

95% 
Significance 

99% 
Significance 

BMP Yes No 
GMP Yes No 
BOMP Yes Yes 
GOMP Yes Yes 
BGP Yes No 
GGP Yes No 
BNOMP Yes Yes 
GNOMP Yes Yes 
BPCGP Yes Yes 
GPCGP Yes Yes 
StBOMP Yes Yes 
ReGOMP Yes Yes 

 

The results of Hypothesis Testing (Table 3-1) shows that at 95% significance level, the results 

from all the FGSC algorithms are the same as GSC. As the significance level is increased (made 

stricter) – at 99%, differences between the FGSC and the GSC algorithms are observed. 

As the name suggests – FGSC is significantly faster than GSC. The values in Table 3-2 reflect 

the run times required for one classification by the different FGSC algorithms relative to GSC. In 
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Table 3-2 the datasets are arranged such that the size of the dataset decreases from top to 

bottom. 

Tables 3-1 and 3-2 indicate that 5 algorithms – BOMP, GOMP, BNOMP, GNOMP and ReGOMP 

are the fastest and most accurate (in terms of recognition accuracy compared with GSC) 

algorithms. The computational advantage of the FGSC algorithms become more evident as the 

size of the dataset increases.  

Table 3-2: FGSC Run-Times as Percentage of GSC Run-Time 

Dataset BMP GMP BOMP GOMP BGP GGP BNOM
P 

GNOM
P 

BPCG
P 

GPCG
P 

StBO
MP 

ReG
OMP 

Satellite 4.97 5.63 0.72 0.95 11.07 8.55 0.19 0.19 9.91 9.17 17.78 0.47 
Page Block 8.71 10.99 0.94 1.03 3.86 3.16 0.22 0.23 8.55 7.38 5.43 0.69 
Abalone 2.34 3.93 1.05 1.20 4.51 3.68 0.78 0.78 23.82 12.59 16.44 1.01 
Segment. 3.66 3.80 1.54 1.57 17.69 4.28 0.25 0.25 17.80 4.29 20.11 0.87 
Yeast 17.46 20.10 8.34 9.03 79.17 23.92 4.08 4.80 81.89 23.13 71.25 3.95 
German Cr. 2.79 3.94 1.17 1.31 6.23 4.75 0.23 0.33 6.57 4.79 3.66 0.73 
Tic-Tac-Toe 12.59 18.37 1.86 2.49 29.07 21.43 2.22 3.29 31.20 21.10 13.82 1.49 
Vehicle 14.51 21.73 1.76 2.27 32.56 24.75 5.72 9.45 32.56 25.38 15.49 1.53 
Aus. Cr. 5.37 31.29 2.14 4.05 18.97 37.62 7.62 18.30 20.63 30.11 13.29 2.39 
Bal. Scale 5.86 30.82 1.98 4.64 10.27 39.51 7.14 20.81 11.64 33.27 11.86 3.06 
Ionosph. 9.27 42.56 2.33 9.15 13.56 52.67 9.53 33.76 21.81 47.91 10.64 5.78 
Liver 9.83 40.11 2.94 10.71 16.85 51.74 9.72 39.64 19.62 51.79 7.51 4.62 
Ecoli 8.08 45.69 2.58 8.54 14.63 49.88 10.90 35.57 17.57 50.32 8.96 4.81 
Haberman 8.66 44.13 3.11 9.62 15.83 51.10 11.65 38.47 9.76 52.17 8.62 5.08 
Glass 9.24 42.57 3.64 10.70 17.03 52.31 12.40 41.36 1.94 54.01 8.27 5.35 
Wine 11.60 52.76 2.76 9.66 15.74 66.85 14.91 45.30 20.44 68.50 11.87 5.81 
Iris 13.02 66.28 1.53 6.13 11.11 52.10 12.26 38.69 16.09 54.78 6.51 6.89 
Lymphogr. 9.61 51.28 1.92 7.37 12.50 58.97 13.14 43.91 17.94 63.14 6.70 6.08 
Hayes Roth 10.43 58.58 2.35 10.43 13.47 61.61 13.13 44.78 18.18 62.62 6.39 7.74 

Table 3-2 shows that the BOMP, GOMP, BNOMP, GNOMP and the ReGOMP are the fastest 

algorithms. Computational speed from the aforementioned greedy algorithms is two orders of 

magnitude higher than convex optimization.  

3. 5 Conclusion 

This work proposes novel algorithms for greedy group sparsity promoting optimization. These 

algorithms are applied to the problem of group sparsity promoting classification. Experimental 

results indicate that our greedy algorithms are as accurate as the previous one [1] but are 

significantly faster. Apart from the Matching Pursuit (GMP, BMP) and the Gradient Pursuit (GGP, 

BGP) methods, all other algorithms show the same accuracy as GSC even at 99% confidence 
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interval. The GNOMP and the BNOMP algorithms are the fastest of all (closely followed by 

GOMP, BOMP and the ReGOMP). For large databases they are faster by more than 2 orders of 

magnitude. 

We have applied the group sparse algorithms for the classification problem. Such algorithms 

however also finds applications in other areas – signal processing [2, 14], communications [15] 

and regression [12]. We encourage the interested reader to use our algorithms [17] to these 

problems. 
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CHAPTER 4: NEAREST SUBSPACE CLASSIFIER3 

4. 1 Introduction 

In a classification problem, the task is to find the class of the test sample given the classes of the 

training samples. This work makes a novel classification assumption – samples from each class 

lie on a hyper-plane specific to that class. According to this assumption, the training samples of a 

particular class span a subspace. When a sample becomes available, the problem is to 

determine, to which subspace it belongs. 

 

Figure 4-1: Subspaces 

Let us consider a three-class classification problem, where each input is represented by a 2 

dimensional vector. Figure 4-1. shows the three two dimensional subspaces (corresponding to 

three classes) embedded in three dimensional Euclidean space. According to our assumption, 

samples from each class will lie in one of these 3 subspaces.  

Generally, the term ‘subspace’ is associated with ‘dimensionality reduction’ in machine learning 

where the problem is to project the original high dimensional data to a lower dimension 

(subspace) in a smart fashion so that certain properties of the original data are maintained. Our 

work is completely different and is in no way related to dimensionality reduction. In our work the 

subspaces participate in the classification. 

                                                 
3 A version of this chapter has been submitted for publication. A. Majumdar and R. K. Ward, 
“Nearest Subspace Classifier”. 
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The assumption for the Nearest Subspace Classifier (NSC) is a simplification of the assumption 

made in Chapters 1 and 2. According to the previous assumption, the training samples can lie on 

different subspaces and the test sample can be expressed as a union of these subspaces. The 

assumption for NSC is more restrictive, it assumes that all the training samples lie on the same 

subspace. We will see in Section 4.2, the slight simplification in assumption leads to huge 

reduction in computational time. 

The proposed classification assumption appears restrictive, but it has a distinct advantage over 

previous classifiers in the ‘small number of training samples’ scenario. Most previous classifiers 

(NN, SVM, ANN) work well when the number of training samples is much larger than the 

dimensionality of the inputs. But our proposed classifier works well when the number of training 

samples is less than the dimensionality of the inputs.  The ‘small number of training sample’ 

problem arises in many real world classification tasks, especially in image classification. In this 

work, we will show that, with this assumption the proposed Nearest Subspace Classifier (NSC) 

can yield better recognition results than traditional classifiers like Nearest Neighbour (NN), 

Support Vector Machine (SVM) and new classifier like Sparse Classifier [1]. 

Section 4.2 will be on our proposed classification algorithm. Section 4.3 will have the results. 

Finally in Section 4.4, we will discuss conclusions of this work. 

4. 2 Proposed Classifier 

We assume that the samples of a particular class lie in a subspace. Additionally, we assume that 

the training samples of each class are sufficient to span its subspace. Therefore any new test 

sample belonging to that class can be represented as a linear combination of the test samples, 

i.e.  

, , ,
1

kn

k test k i k i k
i

v vα ε
=

= ⋅ +∑          (1) 

where ,k testv is the test sample (i.e. the vector of features) for the kth class, ,k iv is the ith test 

sample for the kth class, and kε is the approximation error for the kth class. 
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Figure 4-2: Nearest Subspace Classifier 

Owing to the error term in equation (1), the relation holds for all the classes k=1:C. In such a 

situation it is reasonable to assume that for the correct class the test sample has the minimum 

error kε .  

To find the class that has the minimum error in equation (1), the coefficients ,k iα k=1:C must be 

estimated first. This can be performed by rewriting (1) in matrix-vector notation 

,k test k k kv V α ε= +          (2) 

where ,1 ,2 ,[ | | ... | ]
kk k k k nV v v v= and ,1 ,2 ,[ , ... ]

k

T
k k k k nα α α α= . 

In our problem the matrix Vk is tall since we are interested in the ‘small sample’ problem where 

the dimensionality of the feature vector is typically greater than the number of training samples in 

each class. Equation (2) expresses an over-determined system of equations. Therefore the 

column-space of Vk is not rank deficient and a solution to (2) can be obtained by minimizing 

2
, 2ˆ argmin || ||k k test kv V

α
α α= −         (3) 

The analytical solution of (3) is 

1
,ˆ ( )T T

k k k k k testV V V vα −=          (4) 

Plugging this expression in (2), and solving for the error term, we get 

1
,( ( ) )T T

k k k k k k testV V V V I vε −= −         (5) 
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The advantage of (5) is that the expression within the brackets (the orthoprojector) can be 

computed before hand (for all classes) since it does not depend on the test sample.  

Based on these simple derivations, we devise a very efficient algorithm for classification 

Training 

1. For each class ‘k’, compute the orthoprojector (the term in brackets in equation (5)). 

Testing 

2. Calculate the error for each class ‘k’ computing matrix vector product between the 

orthoprojector and vk,test. 

3. Classify the test sample as the class having the minimum error ( || ||kε ). 

4.2.1. Relationship with Previous Classifiers 

Conceptually our classification assumption is somewhere between the Nearest Neighbor (NN) 

and the Sparse Classifier (SC) [1]. The NN classification algorithm is based on distances from 

individual samples. According to the assumption in SC [1] is based on the distance from a union 

of subspaces. The proposed classifier is based on distances from a subspace and can classify 

correctly if all the samples (for a class) lie on a single subspace. Our classifier is less generalized 

than SC but more generalized than NN.  

The operational aspects of our algorithm are better than both NN and SC. Both of these 

classifiers are ‘lazy learning’ algorithms – they do not have a training phase thus all the 

computation is performed during run-time, where as in our case, the bulk of the work (finding the 

orthoprojectors for each class) is performed before the testing-task. Consequently the proposed 

method has a distinct operational advantage compared to NN and SC. 

4.2.2. Properties of Nearest Subspace Classifier 

Our classification algorithm has two important properties – i) invariance to orthogonal and tight-

frame projections and ii) approximate invariance to restricted isometric projections. These 

invariance properties are analytically proven in the following two sub-sections. 
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4.2.2.1. Orthogonal and Tight-Frame Projections 

For an orthogonal projection matrix, say W (e.g. wavelets, DCT, Fourier Transform) the following 

relation holds 

T TWW W W I= =          (6) 

The forward transform followed by the backward transform produces the same effect as obtained 

by applying these transforms in the reverse order. 

For tight-frame projections, say C (e.g. curvelets, stationary wavelets) 

T TC C I CC= ≠           (7) 

The forward transform followed by the backward transforms preserves the original data, but the 

operations in reverse do not. 

For orthogonal and tight-frame projections, the classification results from the proposed method 

will be invariant. i.e. the same as those from the original data. Let Φ be the projection matrix 

(orthogonal or tight-frame), the projected samples are used instead of the original ones then 

x v= Φ            (8) 

Denote the vector of coefficients related to x’s by βk. First we show that the coefficient remains the 

same (αk = βk) before and after orthogonal or tight-frame projections (when x’s are used instead 

of v’s). When x’s are used instead of v’s, the solution of the least square error problem turns out 

to be 

2
, 2

ˆ argmin || ||k k test kx X
β

β β= −         (9) 

The orthoprojector will remain the same if the solution to (3) and (9) are the same. 

1
,

,

,
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     =( )

     =( )   

ˆ     =

T T
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The class-wise error is of the form 

,

,

,

   

   ( )

k k test k k

k test k k

k test k k

x X

v V

v V

δ β
α

α

= −

= Φ − Φ

= Φ −

         (10) 

The norm of the error becomes 

2 , 2

, 2

2 , 2

, 2 2

|| || || ( ) ||

         || ( ) ||

         || || || ( ) ||

         || ( ) ||   || || 1

k k test k k

k test k k

k test k k

k test k k

v V

v V

v V

v V

δ α
α

α
α

= Φ −

= Φ −

= Φ −

= − Φ =∵

 

The error for each class is preserved, therefore the classification results too will remain as before. 

4.2.2.2. Restricted Isometric Projections 

A matrix A is supposed to be a Restricted Isometric Projection (RIP) matrix if for a vector I, the 

following holds 

2 2(1 ) || || || || (1 ) || ||I AI Iδ δ− ≤ ≤ +          

where, δ is small. The RIP property is defined in the Compressed Sensing [2] literature. 

If RIP holds, then we can show that the classification results will be approximately preserved 

before and after RIP projection. The proof is similar to the previous one. First we show that the 

solution to the least squared error problem is approximately preserved. 

Instead of using the original samples, let the RIP projected vectors r Av= be used in 

classification. Then  

2
, 2

ˆ argmin || ||k k test kr R
λ

λ λ= −         (11) 

2
, 2

2
, 2

2
, 2

    argmin || ||

    argmin || ( ) ||

ˆ    (1 )argmin || ( ) || (1 )  by RIP

k test k

k test k

k test k k

Av AV

A v V

v V

λ

λ

λ

λ

λ

δ λ δ α

= −

= −

≈ ± − ≈ ±
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The solution to the least squared error problem is approximately the same, before and after the 

RIP projection. We will show that the norm of the error is also approximately preserved after RIP 

projection; the class-wise error now takes the form 

1
,((1 ) ( ) )T T

k k k k k testA V V V Iσ δ δ−= ± −        (12) 

and the norm of the error is 

1
2 , 2

1
2 , 2

2 1
, 2

2

|| || || ((1 ) ( ) ) ||

          (1 ) || || || ( ( ) ) ||

          (1 ) || ( ( ) ) ||

          (1 2 ) || ||

T T
k k k k k k test

T T
k k k k k test

T T
k k k k k test

k

AV V V V I r

A V V V V I v

V V V V I v

σ δ

δ

δ
δ ε

−

−

−

= ± −

= ± −

= ± −

= ±

 

Since the norm of the error is approximately preserved the classification results will be 

approximately preserved as well.  

The Compressed Sensing literature shows that dimensionality reduction by Random Projection 

(RP) matrices follow the RIP property for images. RP is a cheap and data-independent 

dimensionality reduction method scarcely used in machine learning. There has been only a few 

previous work in face recognition that used RP with NN [3] and SC [1] classification. Since, RP 

satisfies the RIP property for images, it can be used as dimensionality reduction technique prior 

to Nearest Subspace Classification. 

4. 3 Experimental Evaluation 

The proposed Nearest Subspace Classifier works well in the ‘small sample’ problem – i.e. when 

the number of training samples per class is less than the dimensionality of the feature vector. This 

scenario is typically faced in image recognition problems. In this work, we test the proposed 

classifier on an optical character recognition (OCR) problem. 

Standard OCR datasets like USPS and MNIST have more samples than the dimensionality of the 

features. Moreover previous studies in OCR have reached near perfect recognition accuracy on 

these datasets; therefore there is not much room for improvement. In this work, we use the 

dataset of [4] which addresses the problem of Bengali OCR. It is a challenging dataset, and the 
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number of samples in each class is much less than the dimensionality of the input features. The 

printed character recognition dataset (corpus) consists of 12 different fonts (f) and each font has 5 

different sizes (s). During experimentation, the images are normalized to 16X16 pixels. The fonts 

were downloaded from [5]. 

There may be two different scenarios with printed character recognition i) Pessimistic and ii) 

Optimistic (realistic). In the pessimistic scenario, the classifier is trained with a subset of all the 

fonts while in the optimistic scenario it is trained with all the fonts. In the pessimistic scenario, the 

training set comprises p (<f) fonts and each font has all the s sizes; the test set has the remaining 

(f-p) fonts with all the s sizes. In the optimistic case the training set comprises of all the f fonts but 

with only q (<s) sizes and the test set consists of all the f fonts but with the remaining (s-q) font 

sizes.  

For our experiments f = 12, s = 5, p = 9 and q = 3. For the pessimistic scenario, we created 5 

different datasets. Each training set is formed by randomly selecting 9 of the 12 fonts from the 

corpus and the corresponding testing set consists of the remaining 3 fonts. For the optimistic 

scenario we created 3 different datasets. Each dataset is formed by randomly selecting 3 font 

sizes from the corpus for training and the remaining 2 font sizes for testing. 

We compare our classification results with three other classifiers – Nearest Neighbor, Sparse 

Classifier [1] and Support Vector Machine. In Table 4-1 and 4-2, the results for the pessimistic 

and the optimistic scenarios are provided respectively. The inputs for these experiments were the 

raw pixel values. The best results are shown in bold. 

Table 4-1: Recognition Error for Pessimistic Scenario 

Set No. KNN Proposed SC SVM 
1 0.1529 0.0667 0.1085 0.1200 
2 0.3660 0.2157 0.2967 0.3507 
3 0.4065 0.2549 0.3098 0.3720 
4 0.4157 0.3150 0.3699 0.3853 
5 0.2706 0.2065 0.2314 0.2507 
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Table 4-2: Recognition Error for Optimistic Scenario 

Set No. KNN Proposed SC SVM 
1 0.0253 0.0074 0.0114 0.0204 
2 0.0376 0.0082 0.0188 0.0302 
3 0.0596 0.0245 0.0384 0.0474 

Tables 4-1 and 4-2 show that our classifier outperforms all classifier for every set by a large 

margin. The reason SVM fails to yield good results is probably due to the scarcity of samples. 

Ideally, SC should have given the same accuracy as the proposed classifiers, since the former is 

based on a more powerful assumption – classification from a union of subspaces. However, in 

practice SC is only little better than NN [6]; therefore it falls behind the Nearest Subspace 

Classifier (NSC) in practice. 

The previous experiment used pixel values as features for recognition. In Section 4.2 we proved 

that the results from an orthogonal transformation will remain the same as in pixel domain. We 

carried out the recognition process on the different datasets but this time with wavelet coefficients 

as input features. The results from KNN, SC and our proposed NSC were exactly the same. The 

results from SVM were considerably worse. Due to limitations in space, we do not show the 

results from wavelets since they will be largely repetitive of the values in Tables 4-1 and 4-2.  

In Tables 4-3 and 4-4, we tabulate the results of RIP projection. The projection matrix was 

created by normalizing the columns of a matrix whose columns comes from i.i.d Normal 

distribution. The original data is a feature vector of length 256. We make RIP projections to 120 

dimensions. Since a single RP is not stable, we follow the methodology proposed in [1, 2]. 

Table 4-3: Recognition Error for Pessimistic Scenario after RP 

Set No. KNN Proposed SC SVM 
1 0.1582 0.0928 0.1098 0.1895 
2 0.3516 0.2667 0.3033 0.3908 
3 0.4183 0.2941 0.3255 0.4300 
4 0.4275 0.3477 0.3673 0.4405 
5 0.2863 0.2222 0.2392 0.3000 
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Table 4-4: Recognition Error for Optimistic Scenario after RP 

Set No. KNN Proposed SC SVM 
1 0.0253 0.0074 0.0114 0.0278 
2 0.0368 0.0082 0.0172 0.0408 
3 0.0596 0.0278 0.0392 0.0621 

Tables 4.3 and 4.4 empirically corroborate our results from Section 4.3. The results after random 

projection are approximately the same as before projection. The superiority of our classifier is 

maintained. Due to limitations in space we have only proved the approximate invariance of NSC 

for RIP projections. It is possible to show that both NN and SC also enjoy the same properties, 

however SVM is not robust to such projections. 

4. 4 Conclusion 

In this paper we propose a Nearest Subspace Classifier. The classifier is based on a simple 

assumption and is quite easy to implement. Our proposed classifier works well in the ‘small 

sample’ scenario (training samples in each class being less than the number of input features). 

The NSC is invariant to orthogonal (or tight frame) projection of the inputs and is also 

approximately invariant to random projections following the Restricted Isometric Property. 

We applied this classifier for the problem of Bengali isolated basic character recognition. Our 

classifier outperforms both traditional (NN and SVM) and state-of-the-art classifiers (SC) by a 

significant margin. 
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CHAPTER 5: COMPRESSIVE CLASSIFICATION4 

5. 1 Introduction 

The term ‘Compressive Classification’ (CC) was first coined in [1]. It originated with a new 

paradigm in signal processing called ‘Compressive Sampling’ or ‘Compressed Sensing’ (CS) [2, 

3]. CS combines dimensionality reduction with data acquisition by collecting a (random) lower 

dimensional projection of the original data instead of sampling it. Compressive Classification (CC) 

refers to a new class of classification methods that are robust to data acquired using CS. Only a 

few properties are preserved by CS data acquisition, and Compressive Classifiers are designed 

to exploit these properties so that the recognition accuracy on data acquired by CS is 

approximately the same as that on data acquired by traditional sampling. 

There is a basic difference that separates CC from conventional classification methods. In 

conventional classification, the data are acquired by traditional (Nyquist) sampling. Once all the 

data are obtained, a data-dependent dimensionality reduction technique is employed; the data 

acquisition and dimensionality reduction are disjoint activities. CC operates on data acquired by 

CS technique where the dimensionality reduction occurs simultaneously with data acquisition. 

Thus CC works with a dimensionality reduction method that is data-independent, whereas the 

dimensionality reduction techniques in traditional classification are data-dependent (e.g., Principal 

Component Analysis, Linear Discriminant Analysis, etc.).  

For some practical situations, data-dependent dimensionality reduction methods are not efficient. 

Consider a practical scenario of face authentication in a bank or an office. In a bank, new clients 

are added daily to the database, and in some offices, employees are also added on a regular 

basis. Suppose at a certain given time, face images of 200 people are available, and following 

conventional face recognition methods (e.g., Eigenface, Fisherface) a data-dependent 

dimensionality reduction is employed, resulting in a high-to-low dimensional projection matrix. 

                                                 
4 A version of this chapter has been submitted for publication. A. Majumdar and R. K. Ward, 
“Compressive Classification”. 
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When images of 10 more people are added (e.g., the next day), the projection matrix from the 

high-to-low dimension must be recalculated for all 210 people. Unfortunately, there is no way for 

the old projection matrix to be updated by the new data. For such cases, a data-independent 

dimensionality reduction method is desirable. Such a scenario can be easily handled by CC. CC 

uses a random projection matrix for dimensionality reduction. The projection matrix is data 

independent (it can be a Gaussian or Bernoulli type random matrix or a partial Fourier matrix). 

Compressive Classifiers are data-independent in the sense that they do not require re-training 

(like Support Vector Machines or Artificial Neural Networks) whenever new data are added. 

Dimensionality reduction by random projection (i.e. CS data acquisition) gives good results only if 

the classifier is based on a distance-based measure (e.g. Euclidean or cosine). Consequently, 

the Nearest Neighbour (NN) classifier is robust to such randomly projected data and can be used 

as a Compressive Classifier. Other studies have shown empirically that random projection can 

also be used in conjunction with certain Artificial Neural Networks (ANN) [4] and Support Vector 

Machines (SVM) [5]. However, both ANN and SVM have a data dependent training phase, i.e., 

they need to be retrained whenever new data are added. As a result, ANN or SVM are not 

computationally efficient solutions to the aforementioned problem. Hence, we will not consider 

these classifiers in this work. The idea behind Compressive Classification is to provide data-

independent solutions for dimensionality reduction and classification problems. 

Traditionally it is assumed that the training phase is offline, so constraint on the time/computation 

during training is weak. In this case, the existing sophisticated methods related to dimensionality 

reduction [6-12] and classification [13, 14] can be employed. It should be mentioned that some 

effort in online-training is discernible in current face recognition research. Traditionally it was 

assumed that the training phase is offline, and the training samples are fixed, i.e. do not change 

with time. However practical scenarios dictate updating of the recognition system on a regular 

basis. Some studies aim at modifying the existing dimensionality reduction [15, 16] and 

classification methods [17] to accommodate incremental training. In this paper we do not try to 

modify the established machine learning techniques and make them amenable for online training. 

We address the problem from a new perspective altogether. 
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Compressive Sampling is a new area of signal processing and Compressive Classification is 

even newer. There are only a handful of studies that classify data acquired by CS techniques and 

thus fall under the CC framework. The first work on Compressive Classification aims at target 

recognition, i.e., identifying objects from translated and/or rotated versions [1]. It applies the 

Generalized Maximum Likelihood Ratio Test (GMLRT) to compressed samples for the purpose of 

target recognition. This approach shows good results on some toy examples. Another work that 

collects data by CS techniques but does not really fall under the purview of CC is [18]. In [18], a 

CS type data acquisition is employed, but instead of working on the compressed samples, the 

original high dimensional data is reconstructed before classification, therefore the computational 

advantage of working on low dimensional data is lost. This work also uses synthesized toy 

examples for experimental verification. A third work addresses face recognition [19]. It is based 

on the assumption that the test sample can be approximately represented as a linear combination 

of the test samples belonging to the correct class. This study shows that robust recognition 

results can be obtained by taking random lower dimensional projection (CS type projection) of 

face images followed by a new compressive classification algorithm (the details of this work will 

be discussed in Section 5.3). This was the first work to propose a CC algorithm (Sparse 

Classifier) that parallels traditional classifiers like Artificial Neural Networks, Support Vector 

Machines or Nearest Neighbor. In [19], it was shown that the new compressive classifier yields 

better results than NN or SVM on real world face recognition datasets. The other works in this 

field are by the authors of the current paper [20-23]. The work in [20] is a generalization of the 

sparse classifier (SC) developed in [19], with the original assumption extended to include cases 

where test samples can be represented by a non-linear combination of test samples. The work in 

[21] has the same assumption as [19], but proposes a more refined group sparse optimization 

(instead of ordinary sparse optimization [19]) technique for increasing classification accuracy; this 

method is called Group Sparse Classifier (GSC). Recently, we have proposed a faster version of 

the GSC based on approximate greedy algorithms rather than group sparse optimization; these 

are called the Fast Group Sparse Classifiers (FGSC) [22]. In a separate but related work [23] we 

proposed the Nearest Subspace Classifier (NSC), which is based on the assumption that training 
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samples for a particular class span a sub-space for representing any new test sample belonging 

to that class. The NSC is not based on any optimization approach and is operationally faster than 

the rest. The previous studies [19-23] were proposed as independent classifiers. In this paper, we 

will (in Section 5.4) prove that why all these methods fall under the category of Compressive 

Classifiers.  

The Fast Group Sparse Classifier [22] increases the operation speed of the Group Sparse 

Classifier [21], by replacing an optimization problem by a greedy approximate algorithm. In a 

similar manner, it is possible to speed up the Sparse Classifier [19] by replacing its sparse 

optimization step by greedy approximate algorithms. We propose this variation of the SC in this 

paper and call it the Fast Sparse Classifier (FSC). In our previous work on FGSC [22], the greedy 

group algorithms were based on Orthogonal Matching Pursuit; in this paper we will show that 

similar algorithms can be based on Orthogonal Least Squares as well.  

The aim of Compressed Sensing is signal reconstruction from compressed samples (random 

projections of the original signal). Compressive Classification, on the other hand, aims at directly 

classifying such compressed samples, i.e., without the need to reconstruct the original signals. 

The following section provides a very brief introduction to the basic tenets of CS. Section 5.3 

discusses the recently proposed Compressive Classification algorithms. As mentioned above, of 

the traditional classification methods, Nearest Neighbour can be employed as a CC. In Section 

5.4, we prove that NN and the other algorithms perform Compressive Classification. The 

experimental results are shown in Section 5.5. The first set of results obtained using general 

purpose classification databases shows that the proposed classification algorithms are good for 

these tasks. The second set of results experimentally validates the robustness of these classifiers 

to CS data acquisition. Finally, in Section 5.6 we conclude the work. 

5. 2 Compressed Sensing: A Brief Overview 

Compressed Sensing, or Compressive Sampling (CS), is a new paradigm in signal processing. It 

studies the reconstruction of a sparse signal from its under-sampled projections (compressed 

samples). There are many natural signals where CS is a desirable alternative to conventional 
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Nyquist sampling, as the signals can be made sparse by representations in another domain such 

as DCT or Wavelets.  

CS data acquisition is very simple and involves obtaining under-sampled projections of the signal. 

The challenge is in the signal reconstruction. Let x be the underlying sparse signal, which has 

been under-sampled by a projection matrix A to collect the compressive sample y: 

= × × ×,  where A is m n (n>m), y is m 1 and x is n 1y Ax     (1) 

During reconstruction, the problem is to solve an under-determined system (1); the system is 

under-determined because the projection matrix A has more columns than rows. This system of 

equations in general does not have a unique solution. But if the solution is known to be sparse, 

studies in CS literature say that the sparse solution is unique as well, i.e., an under-determined 

system of equations does not have more than one sparse solution. If it is assumed that the signal 

x is k sparse, then there are 2k unknowns (k-positions and k-non zero values). With enough 

computing resources, it would be possible to solve this problem by an exhaustive search of all 

possible combinations. This would require m=O(k) observations for solving (1). 

Even though in principle it is possible to solve (1) from O(k) equations, (1) is known to be an NP 

hard problem requiring an exhaustive search of all the possible combinations. Mathematically, 

this problem is expressed as 

=
=

0

0

min || ||  subject to 

||x||  number of non-zeroes in x

x y Ax
       (2) 

Solving the l0 minimization problem although possible theoretically, is impractical since it requires 

an exhaustive search. CS literature indicates that, when x is sparse and the matrix A follows 

certain properties, it is possible to solve (1) via a convex optimization (l1 minimization) problem of 

the form 

=1min || ||  subject to x y Ax         (3) 

This is a tractable solution which can be easily solved by linear programming. But the number of 

observations needed to solve (1) via an optimization of the form (3) requires about m=O(k logn) 
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and is larger than that required by (2). This theoretical estimate is pessimistic; practically it has 

been found that (1) can be solved via l1 minimization with fewer observations. There are other 

greedy (suboptimal) solutions to the sparse inversion problem. They are faster, but the solution 

requires more samples (equations). 

The condition on matrix A that guarantees a unique solution of (1) via l1 minimization is called the 

Restricted Isometric Property (RIP). This is written as 

δ δ δ− ≤ ≤ +2 2 2(1 ) || || || || (1 ) || || ,  where  is a small constantx Ax x     4) 

In general, it is not possible to find deterministic matrices following RIP. But matrices with i.i.d 

Gaussian columns, Bernoulli matrices and partial Fourier matrices have been proven to follow 

RIP with a very high probability. 

Many naturally occurring signals are not sparse in the physical domain but can be made sparse 

by some linear transform, e.g. images are sparse in the Discrete Cosine Transform or Wavelet 

domain, Distributed Sensor Network (DSN) data are sparse in network wavelets and Orthogonal 

Frequency Division Multiplexing (OFDM) channels are sparse in the time domain. Recent studies 

have applied CS techniques to such signal estimation problems.  

Let t be a naturally (not sparse) occurring signal. Orthogonal transforms (Φ) can sparsify t to 

obtain sparse coefficients (α) i.e. 

α
α

Φ −
= Φ −
=  analysis equation

 synthesis equation

T t

t
        (5) 

Let us assume that a Gaussian RIP matrix A is used for sampling the signal t in physical domain, 

i.e. 

α= = Φs At A           (6) 

where s is the vector of collected samples (compressed samples) and A is a RIP matrix. 

As Φ is an orthogonal transform, the matrix AΦ (formed by a linear combination of i.i.d Gaussian 

columns) also satisfies RIP. This implies that it is possible to sample the naturally occurring signal 
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t via a RIP matrix to obtain the observation vector s, and then solve for the sparse coefficients in 

α: 

α αΦ1min || ||  subject to s = A  

Once α is obtained, the signal t can be reconstructed by the synthesis equation t α= Φ . 

The fact that RIP holds for linearly sparsifiable signals (i.e. signals that are not sparse in the 

original domain but are sparse in an orthogonal domain) makes CS a practical tool for signal 

processing.  

5. 3 Classification Algorithms 

The classification problem involves finding the identity of an unknown test sample given a set of 

training samples and their class labels. Compressive Classification addresses the case where 

compressive samples (random projections) of the original signals are available instead of the 

original signal. Compressive Classifiers have two challenges to meet: 

1. The classification accuracy of CC on the original signals should be at par with classification 

accuracy from traditional classifiers (SVM or ANN or KNN). 

2. The classification accuracy from CC should not degrade much when compressed samples 

are used instead of the original signals. 

Recently some classifiers have been proposed that can be employed as compressive classifiers. 

We discuss those classification algorithms in this section. 

5.3.1 The Sparse Classifier 

The Sparse Classifier (SC) is proposed in [19]. It is based on the assumption that the training 

samples of a particular class approximately form a linear basis for a new test sample belonging to 

the same class. If ,k testv is the test sample belonging to the kth class, then 

 α α α ε α ε
=

= + + + + = +∑, ,1 ,1 ,2 ,2 , , , ,
1

...
k

k k

n

k test k k k k k n k n k k i k i k
i

v v v v v     7) 



 58 

where , 'k iv s are the training samples of the kth class and ε is the approximation error (assumed to 

be Normally distributed). 

Equation (7) expresses the assumption in terms of the training samples of a single class. 

Alternatively, it can be expressed in terms of all the training samples such that 

1

, 1,1 ,1 ,1 , , , ,

1, 1, , , , ,
1 1

... ... ...

        ... ...

k k C C

Ck

k test k k k n k n C n C n

nn n

i i k i k i C i C i
i i k i

v v v v

v v v

α α α α ε

α α α ε
= = =

= + + + + + +

= + + + +∑ ∑ ∑
     (8) 

where C is the total number of classes.  

In matrix vector notation, equation (8) can be expressed as 

,k testv Vα ε= +           (9) 

where 1,1 ,1 , ,[ | ... | | ... | | ... | ]
k Ck k n C nV v v v v= and 1,1 ,1 , ,[ ... ... ... ] '

k Ck k n C nα α α α α= . 

The linearity assumption in [19] coupled with formulation (9) implies that the coefficients vector α 

should be non-zero only when it corresponds to the correct class of the test sample. 

Based on this assumption, the following sparse optimization problem was proposed in [19] 

,0 2min || ||  subject to || || ,   is related to 
k test

v Vα α η η ε− ≤     (10) 

As previously mentioned, (10) is an NP hard problem. Consequently in [19], a convex relaxation 

to the NP hard problem was made and the following problem was solved instead 

,1 2min || ||  subject to || ||
k test

v Vα α η− ≤        (11) 

The formulation of the sparse optimization problem as in (11) is not ideal for this scenario, as it 

does not impose sparsity on the entire class as the assumption implies. The proponents of the 

Sparse Classifier [19] ‘hope’ that the l1-norm minimization will find the correct solution even 

though it is not explicitly imposed in the optimization problem. We will speak more about group 

sparse classification in the subsection 5.3.3. 

The sparse classification (SC) algorithm proposed in [19] is as follows: 
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Sparse Classifier Algorithm 

1. Solve the optimization problem expressed in (11). 

2. For each class (i) repeat the following two steps: 

2.1 Reconstruct a sample for each class by a linear combination of the training 

samples belonging to that class using , ,
1

( )  
in

recon i j i j
j

v i vα
=

=∑ . 

2.2 Find the error between the reconstructed sample and the given test sample by 

, ( ) 2( , ) || ||test k test recon ierror v i v v= − .  

3. Once the error for every class is obtained, choose the class having the minimum error as 

the class of the given test sample. 

5.3.2 Fast Sparse Classifiers 

The above sparse classification (SC) algorithm yields good classification results, but it is slow. 

This is because of convex optimization (l1 minimization). It is possible to create faster versions of 

the SC by replacing the optimization step (step 1 of the above algorithm) by a fast greedy 

(suboptimal) alternative that approximates the original l0 minimization problem (10). Such greedy 

algorithms serve as a fast alternative to convex-optimization for sparse signal estimation 

problems. In this work, we apply these algorithms in a new perspective (classification).  

We will discuss two basic greedy algorithms that were employed to speed-up the SC in [19]: the 

Orthogonal Matching Pursuit (OMP) and the Orthogonal Least Squares (OLS) [24]. We repeat 

these algorithms here for the sake of completeness. Both of these algorithms approximate the NP 

hard problem, 0 2min || ||  subject to || ||x y Ax η− ≤ . 

OMP Algorithm 

Inputs: measurement vector y (mX1), measurement matrix A (mXn) and error tolerance η.  

Output: estimated sparse signal x. 
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Initialize: residual 0r y= , the index set 0Λ = ∅ , the matrix of chosen atoms 0Φ = ∅ , and the 

iteration counter t = 1. 

1. At the iteration = t, find 1
1...

argmax | , |t t j
j n

rλ ϕ−
=

= < >  

2. Augment the index set 1t t tλ−Λ = Λ ∪ and the matrix of chosen atoms 1[  ]
tt t Aλ−Φ = Φ .  

3. Get the new signal estimate 2
2min || ||t t

x
x y− Φ . 

4. Calculate the new approximation and the residual t t ta x= Φ and tr y a= − . 

Increment t and return to step 1 if || ||r ε≥ . 

OLS Algorithm 

Inputs: measurement vector y (mX1), measurement matrix A (mXn) and error tolerance η.  

Output: estimated sparse signal x. 

Initialize: residual 0r y= , the index set 0Λ = ∅ , the matrix of chosen atoms 0Φ = ∅ , and the 

iteration counter t = 1. 

1. At the iteration = t, find 
1

†
2

1...
argmin || ||j j

t t
t

t
j n

xλ
−

Λ Λ= ∉Λ
= − Φ Φ . 

2. Augment the index set 1t t tλ−Λ = Λ ∪ and the matrix of chosen atoms 1[  ]
tt t Aλ−Φ = Φ .  

3. Get the new signal estimate 2
2min || ||t t

x
x y− Φ . 

4. Calculate the new approximation and the residual t t ta x= Φ and tr y a= − . 

Increment t and return to step 1 if || ||r ε≥ . 

The inputs, output and the initialization process of the OLS and the OMP algorithms are the 

same. The problem is to estimate the sparse signal. The residual is initialized to the 

measurement vector. The index set and the matrix of chosen atoms (columns from the 

measurement matrix) are empty. In both algorithms, the first step of each iteration is to select a 
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non-zero index of the sparse signal. The OLS and the OMP algorithms differ from each other only 

in the selection strategy (step 2). In OMP, the current residual is correlated with the measurement 

matrix and the index of the highest correlation is selected. In OLS, the index is selected such that 

it leads to the minimum residual error after orthogonalization. In the third step of the iteration, the 

selected index is added to the current index set and the set of selected atoms (columns from the 

measurement matrix) is also updated from the current index set. In the fourth step, the estimates 

of the signal at the given indices are obtained via least squares. In step 4, the residual is updated. 

Once all the steps are performed for the iteration, a check is done to see if the norm of the 

residual falls below the error estimate. If it does, the algorithm terminates; otherwise it repeats 

steps 2 to 4. 

The FSC algorithm differs from the SC algorithm only in step 1. Instead of solving the l1 

minimization problem, FSC uses either OMP or OLS for a greedy approximation of the original l0 

minimization problem. There may be variants of the FSC algorithm depending on the variations of 

the basic OMP or OLS algorithms. 

5.3.3 Group Sparse Classifier 

As mentioned in subsection 5.3.1, the optimization algorithm formulated in [19] does not exactly 

address the desired objective. A sparse optimization problem was formulated in the hope of 

selecting training samples of a particular (correct) class. It has been shown in [25] that l1 

minimization cannot select a sparse group of correlated samples (in the limiting case it selects 

only a single sample from all the correlated samples). In classification problems, the training 

samples from each class are highly correlated, therefore l1 minimization is not an ideal choice for 

ensuring selection of all the training samples from a group. To overcome this problem of [19] the 

Group Sparse Classifier was proposed in [21]. It has the same basic assumption as [19] but the 

optimization criterion is formulated so that it promotes selection of the entire class of training 

samples.  

The basic assumption of expressing the test sample as a linear combination of training samples 

is formulated in (9) as ,k testv Vα ε= +  
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where
11,1 1, ,1 , ,1 ,[ | ... | | ... | | ... | | ... | ... | ]

k Cn k k n C C nV v v v v v v= and 

1 2

1 2

1,1 1, 2,1 2, ,1 ,[ ,..., , ,..., ,... ,..., ]
C

C

T
n n C C n

α α α

α α α α α α α=
������������ �������

. 

The above formulation demands that α should be ‘group sparse’, meaning that the solution of the 

inverse problem (2) should have non-zero coefficients corresponding to a particular group of 

training samples, and zero coefficients elsewhere (i.e. 0iα ≠ for only one of the αi’s, i=1,…,C). 

This requires the solution of 

2,0 2min || ||  such that ||v ||test V
α

α α ε− <       (12) 

The mixed norm 2,0|| ||i is defined for 
1 2

1 2

1,1 1, 2,1 2, ,1 ,[ ,..., , ,..., ,... ,..., ]
k

k

T
n n k k n

α α α

α α α α α α α=
������������ �������

 

as 2,0 2
1

|| || (|| || 0)
k

l
l

Iα α
=

= >∑ , where 2(|| || 0) 1lI α > = if 2|| || 0lα > . 

Solving the l2,0 minimization problem is NP hard. We proposed a convex relaxation in [23], so that 

the optimization takes the form 

2,1 2min || ||  such that ||v ||test V
α

α α ε− <       (13) 

where 2,1 1 2 2 2 2|| || || || || || ... || ||kα α α α= + + + . 

Solving the l2,1 minimization problem is at the core of the GSC. The classification algorithm is as 

follows: 

Group Sparse Algorithm 

1. Solve the optimization problem expressed in (13). 

2. Find those i’s for which ||αi||2 > 0.  

3. For those classes (i) satisfying the condition in step 2, repeat the following two steps: 
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3.1 Reconstruct a sample for each class by a linear combination of the training samples in 

that class via the equation , ,
1

( )  
in

recon i j i j
j

v i vα
=

=∑ . 

3.2 Find the error between the reconstructed sample and the given test sample by 

, ( ) 2( , ) || ||test k test recon ierror v i v v= −  . 

4. Once the error for every class is obtained, choose the class having the minimum error as 

the class of the given test sample. 

5.3.4 Fast Group Sparse Classification 

The Group Sparse Classifier [21] gives better results than the Sparse Classifier [19] but is slower. 

In a very recent work [23], we proposed alternate greedy algorithms for group sparse 

classification and were able to increase the operating speed by two orders of magnitude. These 

classifiers were named Fast Group Sparse Classifiers (FGSC).  

FSC is built upon greedy approximation algorithms of the NP hard sparse optimization problem 

(10). Such greedy algorithms are a well studied topic in signal processing. It was therefore 

straightforward to apply some known greedy algorithms (OMP and OLS) to the sparse 

classification problem. Group sparsity-promoting optimization, however is not a vastly researched 

topic, unlike sparse optimization. Since previous work in group sparsity solely rely on convex 

optimization [26-31]. We had to develop a number of greedy algorithms as (fast and accurate) 

alternatives to convex group sparse optimization [21].  

Twelve greedy algorithms were proposed in [21], based on the Orthogonal Matching Pursuit 

(OMP) algorithm [32]. Alternatively, similar algorithms can be based on the Orthogonal Least 

Squares (OLS) [24] as well. In this work, we propose two new group-sparse optimization 

algorithms based on OLS. It is not possible to discuss each of the OMP and the OLS based 

algorithms in detail. Instead, we describe the basic framework for these algorithms and discuss 

two specific algorithms (one from OMP and the other from OLS) in detail.  
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All greedy group sparse algorithms approximate the 

problem 2,0 2min || ||  subject to || ||x y Ax η− ≤ . They work in a very intuitive way – first they try to 

identify the group which has non-zero coefficients. Once the group is identified, the coefficients 

for the group indices are estimated by some simple means. 

Framework for Greedy Group Sparse Approximation Algorithm 

Inputs: measurement vector y mX1, measurement matrix A (mXn), group labels and the error 

tolerance η.  

Output: estimated sparse signal x. 

Initialization: As the estimated signal (vector) is sparse, therefore it is initialized to all zeros. At 

each iteration, one group of indices is selected and updated to have non-zero coefficients. The 

residual is the measure of misfit between the sparse signal and its estimate. But since the sparse 

signal is not available, the algorithm calculates the residual between the projection of the current 

estimate of the signal and the measurement vector, i.e. ˆcurrentr y Ax= − . The residual is initialized 

to the current measurement vector 0r y= .The index set Λ contains the indices of all the selected 

groups that have been chosen so far, i.e., up to the current iteration. Initially the set is empty, 

0Λ = ∅ . The matrix Φ contains the group of selected columns (atoms) from A that are indexed in 

Λ; initially the matrix of selected atoms 0Φ = ∅ . 

Iteration Steps –  

1. The first step in any iteration t is the selection criterion for choosing the sparse group. Two 

selection strategies can be employed here – OMP based or OLS based. In the OMP based 

methods, the correlations between the current residual and the measurement matrix A are 

stored in tλ . In the OLS based methods the mismatch between the vector y and the selected 

columns of A are stored as tλ . 

2. The second step chooses the groups. There can be two strategies for selecting the group – 

Block selection and Group selection. Block selection for OMP was proposed in [31]. We 
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proposed the group selection criterion in [23]. In block selection, the entire group is selected 

based on the highest correlation or lowest mismatch (between the current residual with the 

measurement matrix) of a single index, whereas in group selection the group is selected 

based on the average correlation or mismatch of the group. Whichever selection strategy is 

employed, at the end of step 2, the class of selected samples is stored as ( )tclass λ . 

3. The third step updates the index set and the matrix of selected atoms. The index set is 

updated as 1 ( )t t tclass λ−Λ = Λ ∪ and the matrix of chosen atoms is then 1 ( )[  ]
tt t classA λ−Φ = Φ .  

4. The fourth step calculates the current estimate of the signal. It is most common to use least 

squared estimation for the current signal x̂ yielded by 2
2min || ||t t

x
y x− Φ . 

5. Finally the residual is updated as t tr y x= − Φ . 

The stopping criterion: after each iteration, the algorithms checks whether a stopping criterion is 

met. The stopping criterion may be a bound on the norm of the residual or on the sparsity of the 

estimated signal. 

It is not possible to discuss all the proposed greedy algorithms here. In this paper, we will use the 

Block/Group OMP and the Block/Group OLS algorithms. We discuss one algorithm of each type. 

The Block OMP was proposed in a different context in [33], therefore we do not discuss it here. 

We describe our Group OMP (GOMP) algorithm (for other OMP based algorithms please refer to 

[23]). The GOMP algorithm explains the Group selection strategy using the OMP based method. 

Next we discuss the Block OLS since it explains both the OLS selection strategy at the same 

time. 

GOMP Algorithm 

Inputs: measurement vector y (mX1), measurement matrix A (mXn), group labels and the error 

tolerance η.  

Output: estimated sparse signal x. 



 66 

Initialize: residual 0r y= , index set 0Λ = ∅ , matrix of chosen atoms 0Φ = ∅ , and iteration counter 

t = 1. 

1. At iteration t, compute 1( ) | , |, 1...t jj r j nλ ϕ−= < > ∀ =  

2. Group selection – select the class with the maximum average correlation 

1... 1

1
argmax( ( ))

in

t
i C i j

j
n

τ λ
= =

= ∑ , denote it by ( )tclass τ . 

3. Augment the index set 1 ( )t t tclass τ−Λ = Λ ∪  and the matrix of the chosen atoms 

1 ( )[  ]
tt t classA τ−Φ = Φ .  

4. Get the new signal estimate using 2
2min || ||t t

x
y x− Φ . 

5. Calculate the new approximation and the residual t t ta x= Φ and tr y a= − . 

Increment t and return to step 1 if || ||tr ε≥ . 

As mentioned earlier, one algorithm will be discussed from each of the OMP and the OLS based 

methods. Since we have already described the GOMP, we discuss the Block OLS (BOLS) next 

since it will explain both the OLS selection criterion and the block strategy. 

BOLS Algorithm 

Inputs: measurement vector y (mX1), measurement matrix A (mXn), group labels and the error 

tolerance η.  

Output: estimated sparse signal x. 

Initialize: residual 0r y= , index set 0Λ = ∅ , matrix of chosen atoms 0Φ = ∅ , and iteration counter 

t = 1. 

1. At iteration t, find 
1

†
2

1...
argmin || ||j j

t t
t

t
j n

xλ
−

Λ Λ= ∉Λ
= − Φ Φ . 

2. Block selection: select the class which includes the minimum residual, call it ( )tclass λ . 
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3. Augment the index set 1 ( )t t tclass λ−Λ = Λ ∪ and the matrix of chosen atoms 

1 ( )[  ]
tt t classA λ−Φ = Φ .  

4. Get the new signal estimate using 2
2min || ||t t

x
y x− Φ . 

5. Calculate the new approximation and the residual t t ta x= Φ and t tr y a= − . 

Increment t and return to step 1 if || ||tr ε≥ . 

5.3.5 Nearest Subspace Classifier 

The Nearest Subspace Classifier (NSC) [20] makes a novel classification assumption – samples 

from each class lie on a hyper-plane specific to that class. According to this assumption, the 

training samples of a particular class span a subspace. When a sample becomes available, the 

problem is to determine to which subspace it belongs. Any new test sample belonging to that 

class can thus be represented as a linear combination of the test samples, i.e.,  

, , ,
1

kn

k test k i k i k
i

v vα ε
=

= ⋅ +∑          (14) 

where ,k testv is the test sample (i.e., the vector of features) assumed to belong to the kth class, 

,k iv is the ith training sample of the kth class, and kε is the approximation error for the kth class.  

Owing to the error term in equation (14), the relation holds for all the classes k=1…C. In such a 

situation, it is reasonable to assume that for the correct class the test sample has the minimum 

error kε .  

To find the class that has the minimum error in equation (14), the coefficients ,k iα  k=1…C must 

be estimated first. This can be performed by rewriting (14) in matrix-vector notation 

,k test k k kv V α ε= +          (15) 

where ,1 ,2 ,[ | | ... | ]
kk k k k nV v v v= and ,1 ,2 ,[ , ... ]

k

T
k k k k nα α α α= . 
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The solution to (15) can be obtained by minimizing 

2
, 2ˆ argmin || ||k k test kv V

α
α α= −         (16) 

The previous work on NSC [20] directly solves (16). However, the matrix Vk may be under-

determined, i.e., the number of samples may be greater than the dimensionality of the inputs. In 

such a case, instead of solving (16), Tikhonov regularization is employed, so that the following is 

minimized: 

2 2
, 2 2ˆ argmin || || || ||k k test kv V

α
α α λ α= − +        (17) 

The analytical solution of (17) is 

1
,ˆ ( )T T

k k k k k testV V I V vα λ −= +         (18) 

Plugging this expression into (15) and solving for the error term, we get 

1
,( ( ) )T T

k k k k k k testV V V I V I vε λ −= + −        (19) 

Based on equations (15-19), the Nearest Subspace Classifier algorithm has the following steps. 

Training: 

1. For each class ‘k’, by computing the orthoprojector (the term in brackets in equation (19)). 

Testing: 

2. Calculate the error for each class ‘k’ by computing the matrix vector product between the 

orthoprojector and vk,test. 

3. Classify the test sample as the class having the minimum error ( || ||kε ). 

5. 4 Classification Robustness to Data Acquired by CS 

The idea of using random projection for dimensionality reduction of face images was proposed in 

[19]. It was experimentally shown that the Sparse Classifier is robust to such dimensionality 

reduction. However the theoretical understanding of why the SC is robust to such dimensionality 
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reduction was lacking in [19]. In this section, we will prove why the SC and all the other classifiers 

discussed in the previous section can be categorized as Compressive Classifiers. The two 

conditions that guarantee the robustness of CC under random projection are the following: 

Restricted Isometric Property (RIP) [3] – The l2-norm of a sparse vector is approximately 

preserved under a random lower dimensional projection, i.e., when a sparse vector x is projected 

by a random projection matrix A, then 2 2 2(1 ) || || || || (1 ) || ||x Ax xδ δ− ≤ + . The constant δ is a RIP 

constant whose value depends on the type of matrix A and the number of rows and columns of A 

and the nature of x. An approximate form (without upper and lower bounds) of RIP 

states 2 2|| || || ||Ax x≈ . 

Generalized Restricted Isometric Property (GRIP) [34] – For a matrix A which satisfies RIP for 

inputs ix , the inner product of two vectors ( 2 2, || || || || cosw v w v θ< >= ⋅ ) is approximately 

maintained under the random projection A, i.e. for two vectors x1 and x2(which satisfies RIP with 

matrix A), the following inequality is satisfied: 

1 2 2 2 1 2 1 2 2 2(1 ) || || || || cos[(1 3 ) ] , (1 ) || || || || cos[(1 3 ) ]m mx x Ax Ax x xδ δ θ δ δ θ− ⋅ + ≤ ≤ + ⋅ − .  

The constants δ and δm depend on the dimensionality and the type of matrix A and also on the 

nature of the vectors. Even though the expression seems overwhelming, it can be stated simply 

as: the angle between two sparse vectors (θ) is approximately preserved under random 

projections. An approximate form of GRIP is 1 2 1 2, ,Ax Ax x x≈ . 

RIP and the GRIP were originally proven for sparse vectors. For sparse vectors, the random 

dimensionality reduction matrix (A) is formed by normalizing the columns of an i.i.d Gaussian 

matrix with zero mean and unit covariance. Such matrices also follow RIP and GRIP for linearly 

sparsifiable vectors, i.e. vectors that are not sparse but can be sparsified by an orthogonal 

transform (such as Wavelet or DCT for images or by STFT for speech). Therefore if a vector y is 

not sparse but can be sparsifibale by a linear orthogonal transform such that y x= Φ , where x is 

sparse, RIP and GRIP holds for y. This fact (RIP holds for sparsifiable signals) is the main 

cornerstone of all compressed sensing imaging applications [26]. 
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5.4.1 The Nearest Neighbor Classifier 

The Nearest Neighbor (NN) is a compressive classifier. The criterion for NN classification 

depends on the magnitude of the distance between the test sample and each training sample. 

There are two popular distance measures:  

Euclidean distance ( , 2|| || , 1...  and 1...test i j iv v i C j n− = = )  

Cosine distance ( ,, , 1...  and 1...test i j iv v i C j n= = ) 

It is easy to show that both these distance measures are approximately preserved under random 

dimensionality reduction, assuming that the random dimensionality reduction matrix A follows RIP 

with samples v. Then following the RIP approximation, the Euclidean distance between samples 

is approximately preserved, i.e. 

, 2 , 2 , 2|| || || ( ) || || ( ) ||test i j test i j test i jAv Av A v v v v− = − ≈ −  

The fact that the Cosine distance is approximately preserved follows directly from the GRIP 

assumption 

, ,, ,test i j test i jAv Av v v≈  

 

5.4.2 The Sparse Classifier and the Group Sparse Classifier 

In this subsection it will be shown why the Sparse Classifier and the Group Sparse Classifier can 

act as compressive classifiers. At the core of the SC and GSC classifiers are the l1 minimization 

and the l2,1 minimization optimization problems, respectively: 

1 , 2

2,1 , 2

SC-min || ||  subject to || ||

GSC-min || ||  subject to || ||
k test

k test

v V

v V

α α η
α α η

− ≤

− ≤
      (20) 

In compressive classification, all the samples are projected from a higher to a lower dimension by 

a random matrix A. Therefore, the optimization is as follows: 
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1 , 2

2,1 , 2

SC-min || ||  subject to || ||

GSC-min || ||  subject to || ||
k test

k test

Av AV

Av AV

β β η
β β η

− ≤

− ≤
     (21) 

The objective function does not change before and after projection, but the constraints do. We will 

show that the constraints of (21) and (20) are approximately the same; therefore the optimization 

problems are the same as well. The constraint in (21) is: 

 
, 2

, 2

, 2

|| ||

|| ( ) ||

|| ( ) || ,  following RIP

k test

k test

k test

Av AV

A v V

v V

β η
β η

β η

− ≤

= − ≤

≈ − ≤

 

Since the constraints are approximately preserved and the objective function remains the same, 

the solution to the two optimization problems (20) and (21) will be approximately the same, i.e., 

β α≈ . 

In the classification algorithm for SC and GSC (and for FSC, FGSC and NSC), the deciding factor 

behind the class of the test sample is the class-wise error, 

, , , 2
1

( , ) || || , 1...
in

test k test i j i j
j

error v i v v i Cα
=

= − =∑ . This class-wise error is approximately preserved 

after random projection. 

, , , 2
1

, , , 2
1

, , , 2
1

( , ) || ||

                       || ( ) ||

                       || ( ) || ,  due to RIP

i

i

i

n

test k test i j i j
j

n

k test i j i j
j

n

k test i j i j
j

error Av i Av A v

A v v

v v

α

α

α

=

=

=

= −

= −

≈ −

∑

∑

∑

 

As the class-wise error is approximately preserved under random projections, the recognition 

results will also be approximately the same. 
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5.4.3 Fast Sparse and Fast Group Sparse Classifiers 

In the FSC and FGSC classifiers, the following NP hard optimization problem is solved greedily: 

0 , 2

2,0 , 2

SC-min || ||  subject to || ||

GSC-min || ||  subject to || ||
k test

k test

v V

v V

α α η
α α η

− ≤

− ≤
      

Problem (22) pertains to the case of original data. When the samples are randomly projected, the 

problem has the following form: 

0 , 2

2,0 , 2

SC-min || ||  subject to || ||

GSC-min || ||  subject to || ||
k test

k test

Av AV

Av AV

β β η
β β η

− ≤

− ≤
      

We need to show that the results of greedy approximation for the above problems yields β α≈ . 

The OMP and OLS algorithms vary from their block/group versions only in the number of indices 

chosen at each iteration. The criterion for choosing the indices (step 1 of all algorithms) is the 

same for both the basic and the block/group versions. Therefore, it is sufficient to show that the 

selection step in the OMP and OLS algorithms are approximately invariant to random projections. 

The other important step in these greedy algorithms is the least squares signal estimation step 

(before the last step in all algorithms), which is the same for both OLS and OMP. We need to 

show that the least squares estimate is also robust to random projections. 

As the least squares signal estimation step is common to both the OLS and the OMP based 

algorithms, we will first show its robustness to random projections. The least squares estimation 

is performed as: 

2min || ||y x− Φ         (22) 

The problem is to estimate the signal x, from measurements y given the matrix Φ.  

Both y and Φ are randomly sub-sampled by a random projection matrix A which satisfies RIP. 

Therefore, the least squares problem in the sub-sampled case takes the form 
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2

2

2

min || ||

min || ( ) ||

min || || ,  since RIP holds

Ay A x

A y x

y x

− Φ
= − Φ
≈ − Φ

 

Thus the signal estimate x, obtained by solving the original least squares problem (22), and the 

randomly sub-sampled problem are approximately the same. 

Therefore the signal estimation step for the OMP and OLS based algorithms remains 

approximately invariant under random projections. Now we will show how the selection step in 

these algorithms remains invariant to such projections as well. We first show it for OMP based 

algorithms. 

In OMP, the selection is based on the correlation between the measurement matrix Φ and the 

observations y, i.e. T yΦ . If we have 1 and m n my× ×Φ , then the correlation can be written as inner 

products between the columns of Φ and the vector y, i.e., , , 1...i y i nφ = . After random 

projection, both columns of Φ and the measurement y are randomly sub-sampled by a random 

projection matrix A. The correlation can be calculated as , , 1...iA Ay i nφ = , which by GRIP can 

be approximated as , , 1...i y i nφ = .n Since the correlations are approximately preserved before 

and after the random projection, the OMP selection is also robust under such random sub-

sampling. 

OLS differs from OMP in its selection criterion. In OLS, the selection is based on the following 

expression 

1
2|| ( ) ||T Ty y−− Φ Φ Φ Φ         (23) 

After random sub-sampling, it takes the form 

1
2|| ((A ) ( )) ( ) ||T TAy A A A Ay−− Φ Φ Φ Φ        (24) 

In expression (24) the term ((A ) ( ))T AΦ Φ is the inner product between the columns of Φ, therefore 

according to GRIP ((A ) ( )) ( )T TAΦ Φ ≈ Φ Φ . Similarly, ( )T TA Ay yΦ ≈ Φ . With these approximations, 

(24) can be approximated as 
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1
2

1
2

1
2

|| ( ) ||

|| ( ( ) ) ||

|| ( ) || , since RIP holds

T T

T T

T T

Ay A y

A y y

y y

−

−

−

− Φ Φ Φ Φ

= − Φ Φ Φ Φ

≈ − Φ Φ Φ Φ

 

Therefore, the selection criterion for OLS is also approximately preserved under random 

projections. The main steps of the OLS algorithm are the selection and the signal estimation 

steps. It has already been shown that the least squares estimation step is robust to random sub-

sampling. As the selection step is also approximately robust, we can claim that the OLS algorithm 

is also approximately robust to random projections. 

The block/group versions of the OMP and OLS algorithms have the same selection criterion but 

instead of choosing one index a group of indices are chosen. As the selection criterion does not 

change for the group/block versions, these algorithms are thus robust to random dimensionality 

reduction as well.  

The main criterion of the FSC and the FGSC classification algorithms is the class-wise error. It 

has already been shown that the class-wise error is approximately preserved after random 

projection. Therefore, the classification results before and after projection will remain 

approximately the same. 

5.4.4 Nearest Subspace Classifier 

The classification criterion for the NSC is the norm of the class-wise error expressed as 

1
2 , 2|| || || ( ( ) ) ||T T

k k k k k k testV V V I V I vε λ −= + −  

We need to show that the class-wise error is approximately preserved after a random 

dimensionality reduction. When both the training and the test samples are randomly projected by 

a matrix A, the class-wise error takes the form 
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1
, 2

1
, , 2

1
, , 2

1
, , 2

|| ( (( ) ( ) ) ( ) ) ||

|| (( ) ( ) ) ( ) ||

|| ( ) || ,  since GRIP holds

= || ( ( ) ) ||

|| (

T T
k k k k k test

T T
k k k k k test k test

T T
k k k k k test k test

T T
k k k k k test k test

k

AV AV AV I AV I Av

AV AV AV I AV Av Av

AV V V I V v Av

A V V V I V v v

V V

λ

λ

λ

λ

−

−

−

−

+ −

= + −

≈ + −

+ −

≈ 1
, , 2) || ,  since RIP holdsT T

k k k k test k testV I V v vλ −+ −

 

Since the norm of the class-wise error is approximately preserved under random dimensionality 

reduction, the classification results will also remain approximately the same. 

5. 5 Experimental Results 

In subsection 5.5.3, we mentioned the two challenges that Compressive Classifiers should meet. 

First and foremost, they should have classification accuracy comparable to traditional classifiers.  

Experiments for general purpose classification were carried out on some benchmark databases 

from the University of California Irvine Machine Learning (UCI ML) repository [36] to compare the 

new classifiers (SC, FSC, GSC, FGSC and NSC) with the well-known NN. We chose those 

databases that do not have missing values in feature vectors or unlabeled training data. The 

results are tabulated in Table 5-1. The results show that the classification accuracy from the new 

classifiers is better than that of NN. 
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Table 5-1: Recognition Accuracy 

Dataset SC FSC-
OMP 

FSC-
OLS 

GSC FGSC-
BOMP 

FGSC-
GOMP 

FGSC-
BOLS 

FGSC-
GOLS 

NSC NN-
Euclid 

NN-
Cosine 

Page Block 94.78 94.64 94.48 95.66 95.66 95.66 95.66 95.66 95.01 93.34 93.27 
Abalone 27.17 27.29 27.05 27.17 26.98 26.98 26.98 26.98 27.05 26.67 25.99 
Segmentation 96.31 96.10 95.58 94.09 94.09 94.09 94.09 94.09 94.85 96.31 95.58 
Yeast 57.75 57.54 57.00 58.94 58.36 58.36 58.01 58.01 59.57 57.71 57.54 
German Credit 69.30 70.00 70.06 74.50 74.50 74.50 74.50 74.50 72.6 74.50 74.50 
Tic-Tac-Toe 78.89 78.28 78.89 84.41 84.41 84.41 84.41 84.41 81.00 83.28 82.98 
Vehicle 65.58 66.49 66.80 73.86 71.98 71.98 72.19 72.19 74.84 73.86 71.98 
Australian Cr. 85.94 85.94 85.94 86.66 86.66 86.66 86.66 86.66 86.66 86.66 86.66 
Balance Scale 93.33 93.33 93.33 95.08 95.08 95.08 95.08 95.08 95.08 93.33 93.33 
Ionosphere 86.94 86.94 86.94 90.32 90.32 90.32 90.32 90.32 90.32 90.32 90.32 
Liver 66.68 65.79 67.24 70.21 70.21 70.21 70.21 70.21 70.21 69.04 69.04 
Ecoli 81.53 81.53 81.53 82.88 82.88 82.88 82.88 82.88 82.88 80.98 81.54 
Glass 68.43 69.62 68.43 70.19 71.02 71.02 71.02 71.02 69.62 68.43 69.62 
Wine 85.62 85.62 84.83 85.62 85.95 85.95 84.83 84.83 82.58 82.21 82.21 
Iris 96.00 96.00 96.00 96.00 96.00 96.00 96.00 96.00 96.00 96.00 96.00 
Lymphography 85.81 85.81 85.46 86.42 86.42 86.42 86.42 86.42 86.42 85.32 85.81 
Hayes Roth 40.23 43.12 43.12 41.01 43.12 43.12 43.12 43.12 43.12 33.33 33.33 
Satellite 80.30 80.30 80.99 82.37 82.37 82.37 82.37 82.37 80.30 77.00 77.08 
Haberman 40.52 40.85 40.85 43.28 43.28 43.28 43.12 43.12 46.07 57.40 56.20 

The best recognition result for each database is shown in bold. Table 5-1 shows that the 

classification accuracy from the proposed classifiers is better than NN almost always (except 

yeast and vehicle). The GSC and the FGSC classifiers give the best results in most number of 

cases. 

The second challenge the Compressive Classifiers should meet is that their classification 

accuracy should approximately be the same, when sparsifiable data is randomly sub-sampled by 

RIP matrices. In Section 5.4, we proved the robustness of these classifiers. The experimental 

verification of this claim is shown in Tables 5-2 and 5-3. It has already been mentioned (Section 

5.4) that images follow RIP with random matrices having i.i.d Gaussian columns normalized to 

unity. In this paper, we validate our work using two well known image based recognition problems 

– face and handwriting recognition, with compressive classification. The face recognition 

experiments were carried out on the Yale B face database. The images stored as 192X168 pixel 

grayscale images. We followed the same methodology as in [5]. Only the frontal faces were 

chosen for recognition. One half of the images (for each individual) were selected for training and 

the other half for testing. The experiments were repeated 5 times with 5 sets of random splits. 
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The average results of 5 sets of experiments are shown in Table 5-2. The first column of the 

following table indicates the number of lower dimensional projections (1/32, 1/24, 1/16 and 1/8 of 

original dimension). 

Table 5-2: Recognition Results on Yale B 

Dimensionality SC FSC-
OMP 

FSC-
OLS 

GSC FGSC-
BOMP 

FGSC-
GOMP 

FGSC-
BOLS 

FGSC-
GOLS 

NSC NN-
Euclid 

NN-
Cosine 

30 82.73 82.08 82.08 85.57 83.18 83.18 82.73 82.73 87.68 70.39 70.16 
56 92.60 92.34 92.34 92.60 91.83 91.83 91.44 91.44 91.83 75.45 75.09 
120 95.29 95.04 95.04 95.68 95.06 95.06 93.22 93.22 93.74 78.62 78.37 
504 98.09 97.57 97.19 98.09 97.21 97.21 95.06 95.06 94.42 79.13 78.51 
Full 98.09 98.09 98.09 98.09 98.09 98.09 95.29 95.29 95.05 82.08 82.08 

Table 5-2 shows that the new compressive classifiers are far better than the NN classifiers in 

terms of recognition accuracy. The Group Sparse Classifier gives by far the best results (at a 

relatively higher computational cost). All the classifiers are relatively robust to random sub-

sampling. The results are at par with the ones obtained from the previous study on Sparse 

Classification (SC) [19]. We do not compare these classifiers with the Support Vector Machine 

(SVM), since it is already shown in [19] that the SC outperforms SVM (in terms of recognition 

accuracy) with random projections. 

Finally, the experiments on handwritten character recognition were carried out on the well-known 

United States Postal Service (USPS) database of handwritten numerals. The images are of size 

16X16 pixels. In the following table, dimensionality reduction is carried from the original 

dimension to 40, 80, 120 and full.  

Table 5-3: Recognition Results on USPS 

Dimensionality SC FSC-
OMP 

FSC-
OLS 

GSC FGSC-
BOMP 

FGSC-
GOMP 

FGSC-
BOLS 

FGSC-
GOLS 

NSC NN-
Euclid 

NN-
Cosine 

40 94.47 94.41 94.17 92.02 92.02 92.02 92.02 92.02 90.14 94.02 93.33 
80 94.77 94.77 94.46 94.66 94.66 94.66 93.97 93.97 93.33 94.17 94.17 
120 94.77 94.77 94.77 94.77 94.66 94.66 94.66 94.66 95.91 95.01 95.01 
Full 94.77 94.77 94.77 94.77 94.77 94.77 94.77 94.77 95.91 95.01 95.01 

Table 5-3 shows that the NSC gives the best recognition results. The results are very robust to 

random dimensionality reduction, even for a very small number of projections (40).  

Results from Table 5-1 indicate that these classifiers can be used for general purpose 

classification. Tables 5-2 and 5-3 experimentally corroborate the fact that the proposed classifiers 



 78 

are robust to dimensionality by random projection for inputs that follow the RIP (and 

consequently) the GRIP conditions. 

5. 6 Conclusion 

This paper proposes alternatives to data-dependent dimensionality reduction and classification 

methods. Data-dependency poses certain practical problems as mentioned in the Introduction. To 

overcome these problems, we advocate employing Random Projections (RP) as a means of 

data-independent dimensionality reduction. Previous studies have employed RP dimensionality 

reduction but only in conjunction with Nearest Neighbour (NN) classification. Recently, some 

classifiers [5, 19-21] have been proposed that perform better than NN when used with RP 

dimensionality reduction. These classifiers are analyzed in this paper, and a new one is proposed 

which we term as Fast Sparse Classifier. We formally prove the robustness of these classifiers to 

RP dimensionality reduction.  

In traditional classification, data are first collected and dimensionality reduction is then applied on 

these data. Classification is then carried out on the dimensionally reduced data. Compressive 

Classification can be applied in this fashion, but to save resources, it is more effective to 

incorporate it within the data acquisition process. This procedure precludes unnecessary 

collection of high-dimensional samples; the classification can thus be applied directly on the 

compressed (random lower dimension projected) samples. The Compressive Sampling Camera 

[37] is one such device that can directly collect compressed samples of natural scenes. 

A seminal study revealed that face recognition by humans is a holistic process [38], i.e. we 

remember the entire face image simultaneously instead of remembering in parts. Moreover, the 

human visual system employs random projections to reduce aliasing [39]. Motivated by this work, 

random projection was employed in computer vision tasks to reduce aliasing as well [40, 41]. In 

this work, the random projection mimics the data acquisition step of the human visual system.  

This study shows that compressive classifiers can be effectively employed for general 

classification tasks, but emphasizes that their main advantage over other classifiers is their 
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robustness to data that are dimensionally reduced by random projections.  Compressive 

classifiers are here shown to yield robust recognition results for different image classification 

tasks such as face and character recognition. Among the different classifiers discussed, there is 

no clear winner. The recognition accuracy of a classifier depends on the problem it is applied to. 

For example, the Group Sparse Classifier gives the best results for face recognition problems, 

whereas the Nearest Subspace Classifier gives the best results for the character recognition task. 

What we can conclude is that all the classifiers discussed are robust to RP dimensionality 

reduction. 
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CHAPTER 6: FACE RECOGNITION FROM VIDEO: 

RANDOM PROJECTIONS AND HYBRID 

CLASSIFICATION5 

6. 1 Introduction 

This paper focuses on face recognition from video sequences. The aim is to develop a face 

recognition system for high-security applications such as person authentication in bank ATMs or 

automatic access control in offices. Such a recognition system should fulfill the following practical 

constraints: 

1. The system should have very high recognition accuracy (above 99%). 

2. The computational speed of the system should be near real-time. 

3. The cost of updating (dimensionality reduction and training) the system with new data 

should be minimal. 

The first requirement is obvious. The second requirement constrains the system to have a fast 

testing (operational) time. The third requirement constrains the system to have a fast training 

time. When new data are added, the third constraint is best satisfied if the dimensionality 

reduction and training on this new data are adaptive in the sense that they do not require access 

to previous data. This precludes use of all data-dependent dimensionality reduction methods 

such as Principal Component Analysis, Linear Discriminant Analysis, Locally Linear Embedding, 

etc., as well as standard classification tools like Support Vector Machine and Artificial Neural 

Network, since they all need to retrain the system every time new data are added. 

There are two standard approaches to address the problem of face recognition from video. The 

first is the image-to-image approach – this approach applies image-based face recognition 

                                                 
5 A version of this chapter has been submitted for publication. A. Majumdar, R. K. Ward and P. 
Nasiopoulos, “Face Recognition from Video: Random Projections and Hybrid Classification”. 
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techniques to the video sequence on a frame-by-frame basis. The second approach is the video-

to-video approach which uses dynamic machine learning techniques for face recognition.  

All previous methods, unfortunately, fail to satisfy all three constraints simultaneously. Earlier 

studies in video-based face recognition like [1-6] use PCA for dimensionality reduction. In [7] a 

Singular Value Decomposition based dimensionality reduction is employed while [8], use 

Independent Component Analysis for the same purpose. All these studies use data dependent 

dimensionality reduction methods and do not satisfy constraint 3. A recent work [9] uses Support 

Vector Machine for classification, and also violates constraint 3. 

Video-to-video based recognition approaches (10-11) satisfy constraints 1 and 3. However, these 

methods are computationally expensive and do not satisfy constraint 2.  

Some previous studies [13 and 14] use Active Appearance Models (AAM) for face recognition in 

video and they achieve high recognition accuracy. However, AAM is a semi-automatic technique 

and requires human intervention; therefore it can not be used for automatic face authentication. 

There are no existing methods that can satisfy all the three constraints. In this paper, we propose 

a new video-based face recognition method that satisfies all three constraints. We propose the 

use of a lesser popular dimensionality reduction technique – Random Projection. The Random 

Projection method is very cheap to compute and is data-independent. Our classification algorithm 

is based on a fusion of results from video-to-video and image-to-image based methods, with each 

of these approaches being data-independent.  

In the rest of the paper we first discuss our proposed dimensionality reduction. In Section 6.3, we 

discuss our classification method. Section 6.4 describes the implementation details of our 

proposed method. In Section 6.5, we show the experimental results. Finally in Section 6.6, we 

discuss the conclusions of this work. 

6. 2 Non-Adaptive Dimensionality Reduction 

Adaptive dimensionality reduction methods such as PCA, LDA and LLE have been traditionally 

widely used in face recognition. Such techniques preserve the structure of the original data 



 86 

required for classification. However, such dimensionality reduction techniques are adaptive and 

cannot, thus, be employed in practical scenarios for the reasons mentioned above. We are 

seeking a dimensionality reduction step that is non-adaptive, i.e., independent of previous training 

data, but at the same time preserving the structure of the data that is necessary for classification.  

A survey of dimensionality reduction methods [17] provides the detailed information pertaining to 

adaptive linear methods like PCA, Factor Analysis, Projection Pursuit and their non-linear 

counterparts, but cursorily mentions Random Projection (RP). We are interested in a RP as it is a 

non-adaptive method. Since, RP is not a much explored field in dimensionality reduction, a few 

theoretical and applied studies that use RP for dimensionality reduction will be briefly reviewed.  

Almost all theoretical studies on RP dimensionality reduction are extensions of the Johnson-

Lindenstrauss lemma. In [16] it is showed that by setting each column of the projection matrix to 

be i.i.d (independently and identically distributed) Gaussian and orthonormalizing the columns by 

Gram-Schmidt lead to a RP projection matrix well suited for dimensionality reduction of Gaussian 

mixtures. In [17] it is proposed a novel method to create an RP matrix from a Bernoulli type 

distribution. It is shown in [18] that, by creating a simple RP matrix with its column drawn from i.i.d 

(independently and identically distributed) Gaussian and projecting it to a suitable number of 

dimensions, it is possible to preserve some important structure in the data, like pairwise 

distances, distances from a line, areas of triangles etc. In [19] it is showed that, similarity (cosine 

distances) is approximately preserved under RP.  

Theoretical studies in RP [16 and 20] compares RP with PCA as a dimensionality reduction 

scheme for machine learning problems. These studies find that PCA is better than RP for 

moderate number of lower dimensional projections. However, for a very low number of 

projections, PCA cannot preserve the structure of the data and the results are drastically worse. 

The results from RP degrade smoothly as the number of projections is decreased. As the number 

of projections increase the recognition results obtained from RP become comparable to that of 

PCA. These theoretical findings are corroborated by practical studies [21-23]. However, while 
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applying RP for practical problems [21-23], it was found that a single RP is unstable and multiple 

RP matrices are required for stabilizing the results.  

Random projection is a lesser used dimensionality reduction method. Previous studies do not 

indicate how many projections are required for good classification results. Theoretical work 

advocates a pessimistic (large) number of projections, thus previous practical studies have fixed 

the number of lower dimensional projections by trial and error. To determine the number of 

projection, we consult the Compressive Sampling (CS) literature [24, 25]. First we discuss how 

CS dimensionality reduction can be employed for sparse signals. Then, we describe how to 

practically achieve RP dimensionality reduction following CS concepts. 

Compressive Sampling (CS) states that if a signal is sparse, then all the information in the original 

signal remains embedded after the signal undergoes a lower dimensional random projection. This 

is in the sense that the original signal can be reconstructed from its random projections by 

tractable algorithms. Consider an ‘n’ dimensional signal ‘x’ that is k-sparse. All the information in 

the original signal x can be conserved after it undergoes a lower dimensional (m) random 

projection A : 

,  A  Random Projection matrixm m nb Ax ×= ∈ ∈ −ℝ ℝ  

To reconstruct the original signal x from its lower random projection b, [26], has recently shown 

that ( 2 1)m k≥ + projections are sufficient.  The reconstruction is done by the following 

optimization process: 

0min || ||    x such that Ax b=  

Thus ( 2 1)m k= +  is the theoretical lower limit of the minimum number of projections which ensure 

that all the information in the original k-sparse signal is retained in its projected vector. Solving the 

above l0 minimization problem, however, is an NP hard problem. Approximate methods to solve 

the l0 problem typically require a larger number of samples than 2k+1. Practical studies [27] have 

demonstrated that perfect signal reconstruction can be obtained with 

,  (where C=5)m C k= ⋅ random projections.  
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The above applies to signal construction. This is a more ambitious goal than signal classification, 

which is our interest. In [28] it is shown that it is possible to achieve good classification at a much 

lower dimensional random projection than indicated by the CS literature for signal reconstruction.  

 To apply CS techniques for dimensionality reduction, the first step would be to sparsify the image 

vector I via some orthogonal transform Φ: 

y I= Φ            (1) 

where y is the resulting sparse vector. 

The sparsity of the signal y is estimated by looking at the energy concentration of its coefficients. 

Figure 6-1 shows the sparsity of a face image in the DCT domain. About 98% of the signal 

energy is concentrated in the top 10% DCT coefficients. 

 

Figure 6-1: Sparsity of a Face Image in DCT Domain 

To reduce the dimensionality of the sparsified vector y by a random projection matrix A, we use 

the Restricted Isometric Property [25]:  

2 2 2(1 ) || || || || (1 ) || ||y Ay yδ δ− ≤ ≤ +        (2) 

where A is the RP matrix. Condition (2) ensures that all the information in the sparse high 

dimensional vector could be retained in the lower dimensional projection when δ is zero. The 

energy in the projected signal Ay could thus be made very close to that of the original y, by 
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increasing the number of projections until δ is small enough. This would determine the number of 

projections needed. 

Condition (2) holds for all sparse vectors. We show below that this condition also holds for 

images represented in the pixel domain, even though these are not sparse. 

Let A be a RIP matrix for the sparse vector coefficient vector y: 

2 2 2(1 ) || || || || (1 ) || ||y Ay yδ δ− ≤ ≤ +        (3) 

Substituting y from (1) 

2 2 2(1 ) || || || || (1 ) || ||    is orthogonalI A I Iδ δ− ≤ Φ ≤ + Φ∵      (4) 

The original RIP matrix A is i.i.d Gaussian. Therefore, the linear combination B  (=AΦ) of it is also 

i.i.d Gaussian, i.e., the matrix B = AΦ is i.i.d Gaussian. Instead of creating A and then post-

multiplying it by Φ, we can directly create an i.i.d Gaussian matrix B and use it for random 

dimensionality reduction of the original image I; there will always be a matrix TA B= Φ which will 

be a RIP matrix for y. Therefore, (4) can be re-written as: 

2 2 2(1 ) || || || || (1 ) || ||y BI yδ δ− ≤ ≤ +          (5) 

In equation (5), the value of δ depends on the dimensionality of the original vector, its sparsity 

and the number of lower dimensional projections made [25]. Empirical studies have shown that, if 

the number of lower dimensional random projections is equal to greater than 5 times the sparsity 

of the original signal, the value of δ is sufficiently small. In this work, we have used random 

projections about 6 times the sparsity of the signal. 

Equation (5) ensures that the RIP condition holds for random projection of the non-sparse image 

as well. Thus, it is not required to apply the intermediate sparsifying step. Once we are aware of 

the sparsity of the image, RP dimensionality reduction can be directly applied to the image. The 

sparsity of the signal must be known for determining how many lower dimensional projections are 

to be made. 
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6. 3 Classification 

We employ a fusion of results from 2 methods – an image-to-image based method that we 

proposed and a video-to-video based scheme. We employ a Hidden Markov Model for the video-

to-video based method. Our image-to-image method is based on a group sparsity promoting 

optimization which we call GOMP. 

6.3.1 Video-to-Video Method 

Liu and Chen’s, 2003 HMM based recognition method is fast and highly accurate, but it uses PCA 

dimensionality reduction. Consequently, the overall system does not satisfy constraint (3). To 

overcome this problem we use Random Projection (RP) for dimensionality reduction. Previous 

studies [22 and 23] employed RP image-based face recognition methods. In our work, RP 

dimensionality reduction is applied for the first time in a dynamic learning framework (HMM). 

We use the same HMM scheme proposed by [3] in our work. HMM is parameterized by the triplet 

, and has a finite number of states (N) - 1 2,...{ , }NS S S  which are hidden from the observer. At each 

instant of time, the chain occupies one of the states given by tq , 1 t T≤ ≤ , where T is the total 

length of the sequence. 

The initial state distribution is given by π, where 1( ),  1 to Ni iP q S iπ = = = . 

From one instance to the next, the transition occurs according to a Markov state transition matrix 

A. ,{ }i jA a= , where 

, 1

,
1

( | ),  1 ,

and 1

i j t j t i

N

i j
j

a P q S q S i j N

a

−

=

= = = ≤ ≤

=∑
 

These state vectors (S) are not observable; only the observation vectors O is measurable. In [3] 

the observation vector ‘O’ is comprised of Principal Components of a frame. In our case ‘O’ is the 

RP of a frame.  



 91 

B ( ( )ib O= ) is the observation probability density function where 

( ) ( | )i t t t ib O p O q S= =  

Generally, ( )ib O is modeled as a Gaussian Mixture Model (GMM).  

The problem now is to estimate the triplet ( , , )A B π , given a sequence of observations 

,  1 to TtO t = . This can be done by the Expectation Maximization algorithm, which is the standard 

method for HMM parameter estimation. 

Suppose there are video sequences of C people. During training, one video sequence for each 

person is available (if we consider the bank ATM scenario, this video sequence is shot when a 

customer opens a new bank account). Each frame is projected to a lower dimensional subspace 

by an RP projection matrix. We fit an HMM for each video sequence and obtain a triplet 

( , , ),  where 1 to Ck k kA B kπ = . 

During testing, the video sequence of the person is recorded (e.g., by a camera at the ATM) and 

the frames are projected to a lower dimensional subspace by the same RP matrix. Then, the 

likelihood score of the observation vectors (O), given each HMM, is computed as 

(O | ( , , ))k k kP A B π . The video sequence is assigned to a person having the maximum likelihood 

score.  

6.3.2 Proposed Image-to-Image Method 

The aim is to design a classifier which does not require re-training when new data are added. The 

Nearest Neighbour (NN) classification is an option. However, NN does not yield very good 

recognition results. A classifier that does not need to be trained and gives much better recognition 

results than NN was recently proposed in [29]. This classifier gives good results, but its 

optimization function is relatively slow. In this work, we propose an alternate optimization 

procedure that keeps the accuracy of the previous work but is considerably faster. 

Using all the video frames for training is not efficient as they contain redundant information. In [2] 

it is suggested that instead of using all the frames from the video sequence, one can randomly 
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select the frames for classification. The classification accuracy is shown not to degrade much; at 

the same time the classification speed is considerably improved. Following this work, random 

selection of frames is employed for our image-to-image classification algorithm. 

The method in [29] is based on the assumption that the training samples of a particular class 

approximately form a linear basis for a new test sample belonging to the same class. If testv is the 

test sample that belongs to the kth class then, 

 
, ,1 ,1 ,2 ,2 , ,

,1 ,2 , ,1 ,2 ,

...

       , where [ | | ... | ] and [ , ,..., ] '
k k

k k

k test k k k k k n k n k

k k k k k k k n k k k k n

v v v v

V V v v v

α α α ε

α ε α α α α

= + + + +

= + = =
  (6) 

where ,k iv are the training sample vectors and εk is the approximation error vector. 

The above equation expresses the assumption in terms of the training samples of a single class. 

Alternately, it can be expressed in terms of all the training samples so that 

,k testv Vα ε= +           (7) 

where matrix 1 2[ | | ... | ]CV V V V= and the coefficient vector 1 2[ ' | ' | ... | ' ] 'Cα α α α= . 

The problem is to identify the class testv given the training samples in V. This requires solving the 

above equation, with a constraint that the only αk corresponding to the actual class should have 

finite values and the rest should be all zeros, i.e., in other words solution α is group-sparse. 

Mathematically, this constraint is expressed as the l1,2 norm minimization problem [30]: 

1 2 2 2 2

, 2

,1 ,2 ,

min || || || || ... || ||  

such that || ||

where [ , ,..., ],  for i = 1,2,...,C
i

C

k test

i i i i n

v V
α

α α α

α ε
α α α α

+ + +

− <

=

      (8) 

Solving the l1,2 optimization problem is the workhorse behind the classification algorithm. 

However, even the fastest solver of the l1,2 minimization problem [30] is comparatively slow for 

our task. To ameliorate this problem we propose a new approximate group sparsity promoting 

inversion algorithm which we call Group Orthogonal Matching Pursuit (GOMP). 
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6.3.2.1. Group Orthogonal Matching Pursuit 

Our objective is to find a computationally fast solution to the equation 

testv Vα ε= + , where 1 2[ | | ... | ]CV V V V= , and 1 2[ ' | ' | ... | ' ] 'Cα α α α=  

such that, the solution is group sparse.  

The greedy solution algorithm we propose (called Group Orthogonal Matching Pursuit (GOMP)) 

follows a notation similar to [31]). 

The inputs of the algorithm are: 

• An dXn dimensional matrix V – d is the dimensionality of the inputs and n is the number of 

training samples. 

• An d dimensional test vector vtest. 

• The class (1 to m) of each column in V. 

• An error estimate ε. 

The outputs from this algorithm are: 

• A group sparse estimate of the solution α. 

The different steps of the GOMP algorithm are as follows: 

5. Initialize the residual 0r v= , the index set 0Λ = ∅ , the matrix of chosen atoms 0Φ = ∅ , and 

the iteration counter t = 1. 

6. At the iteration = t, find 1
1...

argmax (| , |)t t j
j m

avg rλ ϕ−
=

= < >  

7. Augment the index set 1 { ( )}t t tclass λ−Λ = Λ ∪ and the matrix of chosen atoms 

1 ( )[  ]
tt t classV λ−Φ = Φ . Here class( )tλ refers to all the indices between 1 and N that belong to 

the class of tλ . 

8. Get the new signal estimate †
t tx v= Φ . Here †

tΦ denotes the pseudo inverse of tΦ . 
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9. Calculate the new approximation and the residual t t ta x= Φ and tr v a= − . 

10. Increment t and return to step 2 if || ||r ε≥ .  

The proposed GOMP algorithm is a fast approximation of the l1,2 problem. The algorithm is based 

on the similarity (inner product) of the residual vector with the columns of V. In [19] it is showed 

that inner products between two vectors are approximately preserved under random projection. 

We already know that the group sparsity promoting inverse problem (l1,2 minimization) gives good 

classification results. Hence, it is realistic to assume that its approximation GOMP will have a 

performance. Following, [19] result, we are also assured that GOMP will give good results under 

RP dimensionality reduction as well. Therefore, our classification algorithm is of the form: 

1. Solve GOMP given V and ,k testv . 

2. Repeat the following steps for all the classes: 

a. Reconstruct a sample for each class by a linear combination of the training samples 

in that class via the equation , ,
1

( )  
in

recon i j i j
j

v i vα
=

=∑ . 

b. Find the error between the reconstructed sample and the given test sample by 

, ( ) 2( , ) || ||test k test recon ierror v i v v= −  . 

3. Once the ( , )testerror v i for every class i is obtained, choose the class having the minimum 

error as the class of the given test sample. 

6. 4 Proposed Method 

In this section, we will discuss the actual implementation of a fast and accurate face recognition 

system. 

6.4.1 Pre-Processing 

The first step is to detect the face image in each frame. Let us consider the scenario of a bank 

ATM. When a customer comes in, his/her face is detected. This is achieved by employing the [32] 
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face detection algorithm which detects only the face part from the forehead to the chin. 

Consequently, the recognition system becomes invariant to changes in hairstyle. This algorithm 

runs real time and can process more than 30 frames per second. Once the face is detected in a 

frame, it is normalized to a 48X48 pixel square.  

For the video-to-video approach, face detection is the only necessary pre-processing step. For 

the image-to-image approach as mentioned earlier, we need one more step so that only a few 

frames from the entire sequence are selected. We randomly select the frames from the video 

sequence. We use random jitter sampling [33] in place of ordinary random sampling to guarantee 

that the chosen frames are not temporally very close to each other. 

6.4.2 Dimensionality Reduction 

The first step towards classification is dimensionality reduction. For this step, we use RP 

dimensionality reduction. Five sets of random projections were used for stabilizing the 

classification results as suggested by [22 and 23].  

Five random projection matrices are created by normalizing the columns of an i.i.d Gaussian 

matrix. After pre-processing, each 48X48 frame is concatenated to form a vector of length 2304. 

The vector is projected to a lower dimension by the RP projection matrices. Thus, 5 sets of lower 

dimension vectors are obtained for each frame. 

6.4.3 Classification 

We propose a fusion of results from two classification methods – the video-to-video and the 

image-to-image. The theory behind the two classification algorithms has been discussed in 

Section 6.4. Here, we explicitly discuss how we mix the outputs from the two approaches to come 

up with the final decision regarding the test sequence. 

6.4.3.1 HMM Classification 

Let each training video sequence be denoted by S be the sequence (after pre-processing and 

concatenation to vector). Therefore, S is a matrix with 2304 rows (dimensionality of the input 
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vector) and columns equal to the number of frames in the video sequence. Let ,  1 to 5iR i = be 

the RP matrices.  

1. Make the 5 lower dimensional projections of the sequence S by ,  i=1 to 5i il R S= . 

2. For each projection, create a Hidden Markov Model for the person whose video sequence is 

S. The model is parameterized by , , ,( , , )c i c i c iA B π , where i=1:5 and c denotes the person 

(class). 

3. During testing, the pre-processing and dimensionality reduction steps of the test sequence 

are the same as during training. There are 5 sets of lower dimensional test sequences ltest,i 

i=1:5. 

4. For each lower dimensional projection of the test sequence, compute the likelihood of ltest,i for 

each of the 5 sets of HMM parameters for each person, , , , ,( , ) ( | , , )test i c i c i c iL c i P l A B π= , i=1:5 

and c=1:C. 

6.4.3.2 GOMP Classification 

Let P be the number of frames randomly selected for classification.  Let ,  1 to 5iR i = be the RP 

matrices. 

1. For each frame ,  p = 1 to PpI , repeat the following steps. 

2. Project Ip to lower dimension ( )p i pl i R I= . 

3. For each projection, solve the GOMP problem and find the error ( , )pe c i  for all the classes 

1 to Cc = .  

4. Find the aggregate error for all the frames 
1

( , ) ( , )
P

p
p

error c i e c i
=

=∑ . 

6.4.3.3 Hybrid Classification: Mixing outputs of HMM with GOMP 
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Now we need to combine the results of HMM and GOMP. There are several ways to combine the 

results. Performance evaluations have shown that the following combination gave the best 

recognition results. 

1. Find the score for each projection for each person ( , ) ( , ) 1/ ( , )score c i L c i error c i= × . 

2. Find the aggregate the score for each projection 
5

1

( ) ( , )
i

AggScore c score c i
=

=∑  

3. The test sequence is assigned to the class having the maximum aggregate score. 

6.5 Performance Evaluation and Discussion 

We tested our hybrid recognition approach on the CMU Faces in Action (FIA) database [34]. This 

database has both indoor and outdoor shots of each person. We envisage the application of our 

work in indoor environments, viz. client authentication in ATMs or employee authentication in 

offices. Therefore, we test our method with the indoor video sequences from the FIA database. 

The indoor database consists of 20-second videos of face data from 153 participants mimicking a 

passport checking scenario. There are three video sequences for each person. The gap between 

video sequences was around 3 months to emulate realistic conditions. 

It was mentioned in Section 6.2 that if k be the sparsity of a vector, then at least 2k+1 random 

projections are required to capture all the information of the sparse vector. We found that, the top 

20 highest values DCT transform coefficients of 48X48 pixel images carry over 98% of the signal 

energy. Even though not strictly sparse, we can assume face images to be highly compressible in 

the DCT domain. Therefore, we start with 40 random projections and keep increasing in multiples 

of 40 until we are satisfied with the results. 

In our image-to-image method, instead of using all the frames in the video sequences, we use 

jitter sampling to randomly choose the frames. The following graph shows the recognition 

accuracy from image-to-image approach for different numbers of randomly selected frames. The 

X-axis shows the number of selected frames and the Y-axis shows the recognition accuracy. 
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Figure 6-2: Recognition Accuracy vs Number of selected frames 

From Figure 6-2, we observe that keeping the dimensionality (number of projections) fixed and 

increasing the number of frames results in an initial increase in recognition accuracy, but 

saturates after a while. This is because, with too many frames, some frames look very similar to 

others and do not add value to the training set in terms of variability. 

For the video-to-video approach, the number of hidden states in the HMM must be decided. The 

number of hidden states is varied to study the effect on overall recognition accuracy keeping the 

number of observations fixed. From Figure 6-3, we observe that the recognition accuracy 

increases to a certain extent after which it either stops increasing or begins to fall. This is 

because, the more the number of hidden states the better is the modeling, but at the same time 

the greater is the number of HMM parameters to be estimated. Since the length of the video 

sequence is fixed, as the number of parameters to be estimated increases, the model begins to 

overfit and consequently the recognition accuracy decreases. 
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Video - To - Video Approach
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Figure 6-3: Recognition Accuracy vs Number of Hidden States 

For our hybrid approach, we combine the results from Figures 6-1 and 6-2. For the image-to-

image approach, the best results can be obtained at 120 frames or more. To keep the 

computational cost minimal we use 120 dimensions and 120 frames. For the video-to-video 

approach, the best results are obtained for 120 dimensions with 45 hidden states. These are the 

setting used in our proposed approach.  

In Table 6-1 our hybrid recognition methods are compared with 2 video-to-video [3 and 12] based 

methods and 2 image-to-image [9 and 1] based methods.  

Our proposed method outperforms the previous methods by a considerable margin. Compared to 

state-of-the-art method [3] our approach reduces error by 65%. Moreover, we achieve this high 

recognition accuracy in spite of the three practical constraints. 
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Table 6-1: Recognition Accuracy from Different Methods 

Method Recognition Accuracy (%) 
Liu and Chen 98.0 
Aggarwal et al 96.0 
Majumdar and Nasiopoulos 96.7 
Price and Gee 92.8 
Proposed 99.3 

6.6 Conclusion 

This paper studies a practical problem in video based face recognition, where new video 

sequences of new faces are added any time. We propose a computationally feasible method, 

where the recognition system is data-independent, i.e. cost of updating the system with new data 

(dimensionality reduction and training) is independent of previous data. The proposed method is 

shown to give better recognition results compared to other state-of-the-art data-dependent 

methods in this field. We are able to cut the error by at least 65% from the previous ones. 

The data-independence in dimensionality reduction is achieved via Random Projections. Random 

projections – an alternative to data-driven dimensionality reduction methods that has never been 

used for video based face recognition before. Our classification method is hybrid, in the sense 

that it combines video-to-video and image-to-image based recognition results. The video-to-video 

method uses a person specific Hidden Markov Model. The image-to-image method uses a fast 

group-sparsity promoting classification method based on a greedy algorithm which we call Group 

Orthogonal Matching Pursuit – GOMP. The video-to-video and the image-to-image methods are 

each data-independent, i.e. updating the system does not depend on previous data. We fused the 

results from these two methods in such a way that the combination is also data-independent. 

The proposed GOMP algorithm is a greedy version of the l1,2 minimization problem [30]. Although 

proposed here for classification, GMPL can find potential use in other areas of machine learning 

where the requirement is to select a group of variables. Such examples arise in multi-response 

linear regression and multinomial logistic regression; linear models augmented with higher-order 
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interactions; multiple kernel learning; and multi-class Markov random fields and conditional 

random fields.  
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CHAPTER 7: CONCLUSION 

7.1 Introduction 

This thesis proposes a new approach for automated face recognition. The approach is specially 

suited for practical face recognition systems in dynamic environments (situations where new data 

is added regularly). Given the difficulty of the problem, commendable recognition accuracy has 

been achieved by this approach.  

It can be argued that the recognition accuracy is still not ‘perfect’ – if perfection is defined as 

‘100%’ recognition rate. But that ‘perfect’ recognition rate can not be achievable by humans as 

well. In recent studies [1-3] it was found that human recognition accuracy was vastly over rated. 

The following points were observed: 

• Human beings are only good at recognizing familiar faces from different views (profile, frontal, 

tilted etc.) 

• For faces with illumination variation, automatic recognition algorithms surpass human 

recognition rate. 

• Human beings are not consistent in their recognition results. 

In situations where our proposed approach is to be deployed, human beings are not suitable for 

face recognition because of the large scale of the problem. Automated face recognition is the only 

possibility. It has been shown in the thesis that the proposed methods fare better over state-of-

the-art methods in computer-based face recognition. 

As mentioned in Chapter 1, the three different approaches towards feature extraction for face 

recognition are global, local and hybrid. Although there are many proponents of local and hybrid 

methods, in a seminal work [4] it was pointed out that contrary to popular belief, human vision is 

primarily global; that is we do not remember parts of the face and assimilate this information to 

recognize a person, rather we remember the person’s face as a whole. This thesis is based on a 
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global feature extraction scheme – random projection; the entire face image is projected onto a 

lower dimensional random subspace and classification is carried out on this subspace. 

Random projections are also intimately connected with human vision. The vision system has two 

phases – i) acquisition, and ii) learning. The data acquisition phase is a better understood topic of 

the two. An early work [5] finds that the human visual system employs random projections for 

acquiring the data, thereby reducing the aliasing effects during reconstruction. This phenomenon 

is emulated in computer simulations in [6]. A recent work in image demosaicing [7] is based on 

the human visual model and uses random projections as well.  

The aim of this thesis is to emulate human vision for recognition of human faces. Most studies 

treating this problem consist of three phases – data acquisition, feature extraction and 

classification/recognition. This thesis follows the human visual system more closely and has 

exactly the two phases (acquisition and learning) mentioned above. In the experiments the data 

acquisition via random projections was simulated. In section 7.4, as a course of future work, we 

will discuss how such data can be acquired from the real world. 

7.2 Summary of Contribution 

This work proposes a combined data acquisition and feature extraction scheme which was 

simulated by randomly projecting the already acquired data onto a lower dimensional space. 

Once the random projections of the face images are obtained they need to be classified for 

recognition. The classification results need to be consistent, i.e. the results should be 

approximately the same no matter which random projection matrix is used for dimensionality 

reduction. Of the known traditional classifiers the Nearest Neighbour (NN) classifier and the 

Support Vector Machine (SVM) are known to be robust to dimensionality reduction by random 

projections. SVM is however not a suitable classifier in our scenario, because it suffers from the 

problem of over-fitting when limited number of training samples are available and leads to poor 

generalization ability during testing. Therefore the only traditional classifier which can be 

considered in the present context is the NN. However the classification accuracy from NN needs 

improvement. This motivated us to propose a class of new classifiers which is consistent to 
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dimensionality reduction via random projections and at the same time provide higher recognition 

rate compared to NN. 

The Sparse Classifier (SC) [9] was the first work that proposed an improvement over NN for 

randomly projected face images. The recognition accuracy from SC was about 17% better than 

that of NN. The work in [9] was an experimental study and did not provide any theoretical proof 

regarding the robustness of the classifier; besides it had two shortcomings. The major 

shortcoming was regarding the optimization function employed during classification. The other 

issue was related to the speed of classification. 

The classification assumption made in [9] did not reflect in the optimization function. We corrected 

this issue in Chapter 2 [11] by proposing an alternate optimization function which followed the 

assumption accurately. Consequently, the recognition accuracy was improved from that of [9] by 

about 3%. The classifier proposed in Chapter 2 is named Group Sparse Classifier (GSC).  

GSC is however fraught with the same problem as SC in terms of speed. Both of them solve an 

optimization problem during the classification stage which is time consuming. The limitation in 

speed was overcome by replacing the optimization problem by fast greedy (approximate) 

algorithms in Chapter 3 [12]. The classifiers proposed in Chapter 3 are named the Fast Group 

Sparse Classifiers (FGSC). The FGSC classifiers are faster than GSC by about two orders of 

magnitude but at the cost of 0.5% reduction in recognition accuracy. 

In our related work [13] the Nearest Subspace Classifier (NSC) is proposed as discussed in 

Chapter 4. The basis of NSC is a simplified form of the assumption made in Chapter 2 and 3. 

This slight simplification of the classification assumption led to a great reduction in the 

computational complexity during optimization. Consequently the NSC is faster than its peers (SC, 

FSC, GSC and FGSC). 

Chapters 2-4 propose three new classifiers (GSC, FGSC and NSC). In Chapter 5, the robustness 

of these classifiers (along with that of SC) to dimensionality reduction via random projection is 

theoretically proved. The different classifiers are also compared on a common platform (Yale B 

and USPS databases). 
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Chapter 6 shows how the ideas of dimensionality reduction via random projection can be 

extended to address the problem of video-based face recognition. Our method gives considerably 

better result (99.3% accuracy) than comparable algorithms (98% or less). 

 

7.3 Discussion 

The objective of this thesis is to search for an alternate face recognition method than those 

provided by traditional machine learning tools. Conventional machine learning solutions to 

dimensionality reduction and classification require all the data to be present beforehand, i.e. 

whenever new data is added, the system can not be updated in online fashion, rather all the 

calculations need to be re-done from scratch. This creates a computational bottleneck for large 

scale implementation of face recognition systems.  

The face recognition community has started to appreciate this problem in the recent past and 

there have been some studies that modified the existing dimensionality reduction methods for 

online training [14, 15]. The classifier employed along with such online dimensionality reduction 

methods has been the traditional Nearest Neighbour. 

One way to reduce the data-dependency of the dimensionality reduction step is to find the high-

to-low dimensional projection matrix for a large sample and use this projection function for 

reducing the dimensionality of new data. In [16], the Fisher Linear Discriminant projection matrix 

was computed for a particular dataset, and this projection matrix was used to reduce the 

dimensionality of new samples. Thus the dependency of the projection function on new data was 

removed. NN classification was used in [16]. In place of NN, one may use the classifiers 

proposed in this work. It remains to be seen how such a dimensionality reduction method 

performs. However, it will not be possible to prove the robustness of such an ad hoc 

dimensionality reduction scheme without making strong assumptions on the distribution of the 

data. 

This work addresses the aforesaid problem from a completely different perspective. It is based on 

recent theoretical breakthroughs in signal processing [17, 18]. The non-adaptive dimensionality 
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reduction method proposed in this thesis is computationally more efficient than modified adaptive 

methods such as [14, 15]. This work proposed several classifiers in Chapters 2-5 which we 

proved to be robust to the proposed dimensionality reduction via random projections.  

7.4 Future Work 

Although the work is nearly complete, there are two areas to be studied in the future. The first is 

on the theoretical front. In Chapter 5, the approximate robustness of the compressive classifiers 

to dimensionality reduction via random projections is theoretically proven. In the future we would 

like to work on theoretically quantifying the bounds arising out of the approximations. The other 

area we intend to concentrate is on is the data acquisition problem. This work simulated the data 

acquisition process by taking random projections of the images. Recently practical hardware has 

been built to acquire the projections directly. The Single Pixel camera [8] is such a device. 

 

Figure 7-1: Single Pixel Camera 

The prototype single pixel camera was developed for experiments on signal reconstructions from 

random projections. The schematic view of the camera is shown in Figure 7-1. The scene is 

projected (via a lens) onto a digital micromirror device (DMD). The flipping of the mirrors in the 

DMD, is controlled by a pseudorandom number generator (RNG). At each instant some of the 

mirrors are directed towards the projector lens and some of the mirrors are directed away from it. 
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There is a single optical sensor (PD) at the focal point of the lens. This optical sensor sends the 

acquired information for further processing.  

The objective of the camera is to obtain a random projection of the original scene ‘x’ of the form 

y Ax=  

where A is a random projection matrix. 

The projected data (y) is acquired sequentially. At each instant the pseudorandom number 

generator outputs a binary pattern which randomly flips the mirrors. The projection of the scene 

onto the flipped mirrors is optically added at the photo sensor (PD) to give one element of the 

vector ‘y’. At the next instant, the RNG generates a new random binary pattern and the next 

element of the vector ‘y’ is obtained. This process is repeated until a suitable number of random 

projections is obtained. 

The camera was built for signal reconstruction applications; Figure 7-1 shows a DSP block at the 

end. Generally DSP block contains algorithms for image reconstruction. We intend to have a DSP 

block comprising of Compressive Classification algorithms so that there is an integrated system 

for classification. 
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