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Abstract

In this thesis, a constraint-aware visual servoing control law is proposed.
The control law is designed for a robot manipulator with an uncalibrated
camera mounted on its end-effector. This control law allows the robot to
execute large, collision-free motions with closed-loop positional accuracy.
A reference image visually describes the desired end-effector position with
respect to a target object whose location is initially unknown. The control
law uses this reference image with online feedback from the camera to direct
the trajectory of robot towards the completion of the positioning task. The
control law generates feasible and realistic robot trajectories that respect
the robot’s joint position and velocity limits, even in the presence of large
control gains. The control law also explicitly keeps the target object within
the camera’s field of view to provide uninterrupted visual feedback. The
control law avoids potential whole-arm collisions with workspace obstacles
via planning and control strategies.

The visual servoing control law is implemented in a nonlinear model
predictive control framework, using an estimated model of the eye-in-hand
configuration and an estimated location of the target object. Two meth-
ods of approximating the object’s location for joint-space path planning are
demonstrated in simulations and experiments. The first uses homography
estimation and decomposition on an un-modelled object. The second uses
an extended Kalman filter with a prior object model to improve robustness
against image noise and disturbances.

Two planning and control strategies are presented. The first strat-
egy uses an offline plan-then-servo approach that integrates probabilistic
roadmaps with visual servoing. A method to construct paths between two
robot configurations that keep the target object within the camera’s field
of view is demonstrated, allowing feasible transitions from planned mo-
tion to visual servoing. A method to address pose uncertainty to ensure
collision-free, closed-loop motion is statistically tested with multiple posi-
tioning tasks. The second strategy uses an online iterative plan-and-servo
approach that dynamically updates its estimate of the collision-free space
while visual servoing. Experiments using an uncalibrated eye-in-hand plat-
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Abstract

form demonstrate the ability of the visual servoing control law to achieve
closed-loop positioning via collision-free trajectories, even when the object
location is highly uncertain.
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mP An object model consisting of the 3-D coordinates of all feature points
expressed in frame m,

mPj The 3-D coordinates of feature point j expressed in frame m in ho-
mogeneous form

PBVS Position-Based Visual Servoing
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Nomenclature

PCI Periheral Component Interconnect Bus

φ Roll; the angle of rotation about the z-axis, applied in the order z-y-x
about current frames

π A plane defined by three 3-D points

PID Proportional Intergal Derivative

p A vector of the image coordinates of all feature points in the MPC
visual servoing framework

pd A vector of the desired image coordinates of all features in the MPC
visual servoing framework

pi|k A vector of the image coordinates of all features at time i predicted
at time k in the MPC visual servoing framework

pk A vector of the observed image coordinates of all features at time k
in the MPC visual servoing framework

PRM Probabilistic Roadmap

ψ Yaw; the angle of rotation about the x-axis, applied in the order z-y-x
about current frames

Q A weighting matrix whose elements determine the weight given to the
errors associated with each image feature in the MPC visual servoing
control law

q The robot joint position vector

qmaxDCC The upper bound vector on the hyperrectangular collision-free space
returned from DCC

qminDCC The lower bound vector on the hyperrectangular collision-free space
returned from DCC

qmaxDCCk
The upper bound vector on the dynamically updated hyperrectan-

gular collision-free space returned from DCC at time k

qminDCCk
The lower bound vector on the dynamically updated hyperrectan-

gular collision-free space returned from DCC at time k

Qdesired The set of all robot joint configurations that satisfy the desired end-
effector position; Set of all inverse kinematic solutions to the robot
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Nomenclature

qdesired The desired robot joint configuration; the goal configuration in path
planning

Qfree The collision-free space, representing the set of all robot configura-
tions that do not result in physical collisions with workspace obstacles

qIBVS(ζ) The joint space path, parameterized by ζ, resulting from IBVS

qi|k The robot joint positions at time i predicted at time k in the MPC
visual servoing framework

qinitial The initial robot joint configuration; the start configuration in path
planning

Q̃ The disturbance covariance matrix used in EKF pose estimation, rep-
resenting of the covariance of the disturbances in the state difference
equations

q̇ The robot joint velocity vector

q̇i|k The robot joint velocities at time i predicted at time k in the MPC
visual servoing framework

q̈ The robot joint acceleration vector

∆qj The change in position of joint j between two robot configurations

q̇max An upper bound vector on feasible robot joint velocities

q̇min A lower bound vector on feasible robot joint velocities

q̂ The estimated open-loop joint position, resulting from MPC path
planning

qmax An upper bound vector on feasible robot joint positions

qmin A lower bound vector on feasible robot joint positions

QP Quadratic Programming

r The unit vector defining the axis of rotation of mRn in axis-angle
representation

rj The greatest distance between the line defined by the axis of joint
rotation zj and a point P; a “moment arm”
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Nomenclature

R̃ The noise covariance matrix used in EKF pose estimation, represent-
ing the covariance of the noise in the output equations

mRn A rotation matrix expressing the coordinates of frame n in the coor-
dinates of frame m

ρ1 A parameter used in the 21/2-D visual servoing control law, defined
as Z

d∗

ROI Region of Interest

RTX Real Time Extension

s A feature vector selected to define the error vector to be minimized
in visual servoing

ScaleKey A SIFT parameter describing the image scale at which the key
feature is detected

ScaleKeyMatch A SIFT parameter describing the image scale at which the
key’s matched feature is detected

ScaleNeighbor A SIFT parameter describing the image scale at which the
neighbour feature is detected

ScaleNeighborMatch A SIFT parameter describing the image scale at which
the neighbour’s matched feature is detected

SIFT Scale-Invariant Feature Transform

σi The ith singular value of a matrix, resulting from SVD

σxyzφαψ The standard deviation vector corresponding to the object pose
perturbation vector

SQP Sequential Quadratic Programming

SVD Singular Value Decomposition

mTn A homogeneous transformation expressing the coordinates of frame
n in the coordinates of frame m

mtn A translation matrix expressing the coordinates of frame n in the
coordinates of frame m

TRx(ψ) A homogeneous transformation expressing a rotation of ψ about x
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Nomenclature

TRy(α) A homogeneous transformation expressing a rotation of α about y

TRz(φ) A homogeneous transformation expressing a rotation of φ about z

Txyz(x, y, z) A homogeneous transformation expressing a translation of x,
y, z

τ The robot joint torque vector

θ The angle of rotation about r of mRn in axis-angle representation

θerror The rotation estimation error defined as the angle of rotation of
cRc∗

cR̂−1
c∗ in axis-angle representation

U The set of possible inputs in the general MPC framework

u A vector of the horizontal image coordinates of all feature points

u0 The horizontal image coordinate of the principal point

ui|k The system input at time i predicted at time k in the general MPC
framework

uj The horizontal image coordinate of feature point j

uobsv The inputs to the observer model used for pose estimation

umax The maximum pixel coordinate of the camera CCD array in the hor-
izontal direction

umin The mininum pixel coordinate of the camera CCD array in the hor-
izontal direction

v A vector of the vertical image coordinates of all feature points

v0 The vertical image coordinate of the principal point

vj The vertical image coordinate of feature point j

ε The size of the singular region for singularity avoidance; used in the
damped least-squares inverse to determine the damping factor

vc The spatial velocity of the camera with respect to the global frame

vo The spatial velocity of the target object with respect to the global
frame, tracked as states in the pose observer

xxi



Nomenclature

W A weighting matrix whose elements determine the weight given to
the velocities associated with each robot joint in the MPC visual
servoing control law

cωo The pose vector of the target object expressed in the current camera
frame, tracked as states in the pose observer

X The set of possible states in the general MPC framework

xi|k The system state at time i predicted at time k in the MPC framework

xj The normalized metric image coordinates of feature point j in the
horizontal direction, expressed in the current camera frame; (*) . . .
in the desired camera frame

mXj The x-coodinate of the origin of frame j (or feature point j) expressed
in frame m

xobsv The states of the observer model used for pose estimation

X The 3-D coordinates of a feature point expressed in the current cam-
era frame; (*) . . . in the desired camera frame

yd The desired system output in the general MPC framework

y(xi|k) The system output at time i predicted at time k in the general MPC
framework

yj the normalized metric image coordinates of feature point j in the
vertical direction, expressed in the current camera frame; (*) . . . in
the desired camera frame

mYj The y-coodinate of the origin of frame j (or feature point j) expressed
in frame m

zj The axis of rotation of revolute joint j

Zj The “depth” of feature point j; the Z-coodinate of feature point j
expressed in the current camera frame; (*) . . . in the desired camera
frame

mZj The z-coodinate of the origin of frame j (or feature point j) expressed
in frame m

zobsv The outputs of the observer model used for pose estimation
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Nomenclature

ζ A path variable where ζ = 0 corresponds to the beginning of the
path and ζ = 1 corresponds to the end of the path

xxiii



Acknowledgements

I would like to thank my supervisors, Dr. Elizabeth A. Croft and Dr. James
J. Little, for their guidance and support throughout the thesis. I am very
grateful for all the useful advice and learning opportunities that have re-
sulted from their patient mentoring.

I would also like to thank Dr. Ryozo Nagamune and Dr. Bob Woodham
for their guidance and suggestions on the thesis.

I would like to thank Dr. Simon Leonard for the many hours of fruitful
discussions on visual servoing, and for help on setting up the experiments.

To my colleagues in the CARIS lab, thank you for your friendship and
support, and for giving me a healthy perspective on life, when things get a
little hectic.

A special thanks goes to my parents for their love, support and encour-
agement, and for always giving me the freedom to pursue my interests. To
my sister, thank you for being there for the family, while I am temporarily
away for my studies.

Finally, I would like to thank Theresa for her love, support, encourage-
ment. The many hours spent on editing my thesis, listening to my presenta-
tions, and patiently waiting for me to come home on late nights, are greatly
appreciated.

To the faculty and staff of the Mechanical Engineering Department,
thank you for your assistance and support throughout my learning expe-
rience here at UBC. I would also like to acknowledge the financial support
of the Natural Sciences and Engineering Research Council of Canada.

xxiv



Chapter 1

Introduction

The ability to teach real robots how to carry out physical positioning tasks
safely and accurately, using a set of natural human commands, has been a
life-long goal of many robotic system designers. Vision is naturally used by
humans for demonstrating to each other spatial locations and multi-body
motions. As a natural extension of this teach-by-showing paradigm, a human
user can present a robot with a visual description of a positioning task, which
can be readily captured using an imaging sensor. The approach removes the
need for tedious and cumbersome numerical robot programming, so that
complex tasks can be easily taught to robots by non-technical users.

Often, a robot manipulator is required to position its end-effector with
respect to a target object for grasping. A digital camera can be used by the
user to teach the required task to the robot. Given that this task requires
relative positioning, it is often advantageous to mount the camera near the
end-effector in an eye-in-hand configuration, to provide a close-up, non-
occluded view of the target object for feedback purposes. The user initiates
the visual command by showing the robot a reference image of the desired
grasping position. This image describes what the camera should see when
the end-effector is correctly positioned relative to the target object. The
robot then compares the current image against the reference image, and
generates a trajectory that efficiently reduces the difference between the two
images at each time step. The task is complete when the observed image is
in agreement with the reference image, resulting in the correct positioning
of the end-effector relative to the target object. This method of end-effector
position control using feedback from an arm-mounted camera is known as
eye-in-hand visual servoing. An example of a positioning task achieved via
eye-in-hand visual servoing is shown in Figure 1.1.

This teach-by-showing method is not only intuitive to human users, but
also offers several technical advantages over traditional, position-based robot
programming. Vision-based feedback allows the generalization of manipu-
lator programming to accommodate frequent changes in the target object’s
location. Exact knowledge of the object’s location and precise camera-robot
calibrations are not required, due to the closed-loop control structure. Ex-
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Figure 1.1: Visual servoing uses the image differences observed by the cam-
era as feedback to drive the end-effector towards a desired position relative
to the target object.

pressing the Cartesian positioning task using an image-based metric effec-
tively cancels out calibration errors in the intermediate reference frames.
The position of the end-effector relative to the target object is guaranteed
to be accurate, provided the currently observed image corresponds to the
reference image.

Despite a large body of existing work in this area [1], a fundamental gap
still exists between the current capability of visual servoed robotic systems
and the requirements of real world robotic applications. Beyond its use for
correcting small planar motions, there has been limited commercial adoption
of visual servoing for manipulator control, primarily due to concerns around
reliability, safety, and stability. Most research to-date in visual servoing
has focused on the control aspect from the perspective of a free-floating
camera, paying little or no attention to the physical robot that is used
to drive camera motion. However, robots have mechanical joint limits and
finite performance capabilities which restrict where a camera mounted to the
robot can go and how fast it can move. Cameras themselves have limited
fields and depths of view. During servoing, the image-based control law
can become unstable if the camera loses sight of the target object, or if
the required trajectory exceeds the robot’s physical limits. Furthermore,
the image-based control law could result in dangerous whole-arm collisions,
if the system is unaware of the physical relationships between the robot
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manipulator and its environment. These issues must be addressed before
visual servoing can be reliably used in applications that demand a full range
of robot motions.

This work aims to address the aforementioned practical issues which im-
pede the application of manipulator visual servoing in real life applications.
For non-trivial robot motions, the stability of a visually servoed system de-
pends upon a prudent awareness of the robot’s sensing, control, and physical
limits. Successful design of a visual servoing control law, that can effectively
manage these constraints while carrying out its positioning task, will lead to
a versatile robotic system that can execute large-range, safe motions while
adapting to observed changes in the target object’s pose.

1.1 Motivation

As described above, manipulator visual servoing provides a powerful method
to compensate for uncertainties that exist in robotic systems and their envi-
ronments. In an ideal world where system parameters are precisely known
and there are no expectations of disturbances, one can simply use an open-
loop approach without the need to servo. However, many engineering sys-
tems cannot be simply realized with this approach. In manufacturing appli-
cations, costs tend to increase exponentially with increases in required open-
loop accuracy, stemming from the need to reduce tolerances recursively at
each design layer. In surgical applications involving complex biological sys-
tems, it may not be possible to obtain an accurate open-loop model. Finally,
for human-in-the-loop applications, it is impractical to design a system that
relies upon precise numeric inputs from human users. For such systems,
visual servoing provides a natural way for humans to functionally communi-
cate with machines without demanding meticulous precision. Some specific
examples that illustrate the need for reliable visual servoing approaches are
provided in this section.

1.1.1 Industrial Automation: Reduced Setup Costs

Industrial robots perform a variety of automated tasks such as component
assembly, pick-and-place, inspection, cutting, painting, welding, and lifting
of heavy loads. All of these tasks require the robot end-effector to be accu-
rately positioned with respect to a target object prior to the execution of
the task. Traditionally, manufacturers have employed record-and-playback
programming methods, which rely on mechanical fixtures, positioning de-
vices and human labour to present objects to the robot’s pre-programmed
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interfacing locations. However, the use of structured work-cells demand
substantially higher costs stemming from engineering development, capital
investment, and system maintenance. For the manufacture of goods with
high volumes and long lifecycles, these costs are still justified. However,
the growing demand for mass-customization of durable and non-durable
consumer goods poses a major challenge to this approach. Where produc-
tion volume is sensitive to changing customer demands, manufacturers must
move towards flexible and adaptive production systems that can be quickly
reconfigured to produce a wide array of products using the same infrastruc-
ture. Reduction in equipment costs and work-cell setup time are the main
advantages for using visual servoing in manufacturing environments.

Manipulator visual servoing provides a low-cost, highly adaptive, and
calibration-free solution to the relative end-effector positioning problem.
Commercial off-the-shelf cameras are available at a fraction of the cost of a
robot, while providing sufficiently rich sensory data for the robot to make
decisions for intelligent control. Using software to detect and correct for
positional errors allows the system to be quickly adapted to suit a variety of
different robots, cameras and industrial parts without extensive retooling.
The use of direct image-based feedback for trajectory correction makes the
robot’s positional accuracy robust to calibration errors.

Unfortunately, the reliability of manipulator visual servoing methods
must be proven before manufacturers will consider adopting them for in-
dustrial use. Manufacturers do not have the luxury of employing solutions
that have appreciable chances of failure, since frequent downtimes can in-
terrupt workflow and negate the productivity that is gained by automation.
A necessary requirement is that the chance of visual servo failure must re-
main near zero. One frequently voiced concern is that visual servoing in
uncertain conditions may generate unsafe robot motions resulting in costly
damage to equipment. The visual servo control law must be made aware
of its position, velocity, and acceleration limits and provide a guarantee for
safe, collision-free robot motions. The system must be designed such that
if visual input is interrupted due to unforeseen conditions, the position task
can continue to operate in a stable manner until visual input is restored.

1.1.2 Medical Robotics: Adaptive Trajectories

The ability to generate robot trajectories that can adapt to patient move-
ment is one of the main motivations for using manipulator visual servoing in
medical applications. Advanced robotic surgical systems, such the Intuitive
Surgical da Vinci c© shown in Figure 1.2, assist surgeons in performing min-
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Figure 1.2: The da Vinci c© surgical system uses robotic arms to control
the position of cameras and surgical tools to assist surgeons in performing
minimally invasive procedures [2].

imally invasive surgeries (MIS) by using its robotic manipulators to control
cameras and laparoscopic tools. The use of a master-slave robotic system
eliminates the awkward inverted manipulation of laparoscopic instruments
that is required of the surgeon. However, in MIS, the surgeon cannot di-
rectly see the surgical field and must rely on scans of the patient’s anatom-
ical structures to plan the surgery. Magnetic resonance imaging (MRI) and
computed tomography (CT) are generally used to provide high resolution
images of the surgical site prior to the operation. During the surgery, how-
ever, any previously identified structures may have shifted in location due
to the patient’s movements. Real-time imaging devices, such as ultrasound
and endoscopic cameras, are used to provide visual feedback to the surgeons
to correct for such deviations.

Throughout the surgery, the position of these imaging devices must be
actively managed in order to provide useful information to the surgeon. The
imaging planes of ultrasound transducers have finite effective thicknesses and
cameras have limited fields of view. The position of these sensors must be
frequently adjusted to compensate for patient motion which may bring the
surgical field outside of the sensor’s effective limits. Visual servo control
of these sensors can free the surgeon from tedious adjustments, so that
attention can be redirected towards the surgical task. When a new sensor
viewpoint is required, the surgeon needs only to move the sensor in the
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correct position once to obtain a reference image. The sensor maintains this
viewpoint through visual servoing, providing the surgeon with a consistent
frame of reference, despite patient motions.

The proposed visual servoing system for sensor position control must be
safe and reliable. In medical applications, any chance of visual servo failure
is simply not acceptable because of the inherent dangers to the patient. At
the most basic level, the manipulator and sensor should be able to maintain
a safe distance from its defined limits during servoing. In the case of an
in-vivo sensor, the movement of the sensor should not cause further damage
to the surgical site. The ideal servo system should incorporate information
from high-fidelity models built from offline CT or MRI images to constrain
the robot’s movement from operating in unsafe regions.

1.1.3 Domestic Service Robots: Ease of Programming

The ease of robot programming and re-programming is one of the main
advantages of using visual servoing for domestic robot applications. Do-
mestic robots must be designed with usability in mind. Unlike industrial
robots, domestic robots do not have the luxury of precise calibration, nor
the dedicated support of engineering teams when robot re-programming is
required. Without resorting to low-level numerical programming, the user
must be able to efficiently re-program the robot when new interaction sce-
narios arise. The robot may need to interact with objects that it has not
encountered before. For example, the user may want to command the robot
to push a light switch, turn a door knob, or pick up a household object, the
precise location of which is unknown. The robot must be able to achieve
sufficient positional accuracy in the absence of precise camera-robot calibra-
tions and without exact a priori knowledge of the target object’s location.
If the robot has visual servoing capabilities, the user can train the robot
using a reference image. The user obtains this image first, by showing the
robot what the finished task looks like. This image captures the desired
relative position between the robot and the object of interest. Coupled with
visual servoing, this teach-by-showing method allows the robot to generalize
its programming to accommodate for changes in the target object’s location,
permitting task generalization. As in the case with manufacturing and med-
ical surgery, the visually servoed manipulator must be aware of its physical,
sensing, and control limits in order to ensure safe operation.

6



Chapter 1. Introduction

Figure 1.3: Robot bin-picking requires the accurate positioning of the robot
end-effector with respect to randomly located parts, without causing colli-
sion with workspace objects, such as the container shown. Image courtesy
of Braintech Inc. [3].

1.2 Robot Bin-Picking: An Example

This thesis will return frequently to the following example of robot bin-
picking to provide a useful context for manipulator visual servo control.

Consider the common industrial task that is required when a container of
unfinished parts is presented to a robot for further handling and processing.
This task is typically referred to as robot bin-picking. Bins and containers
are widely used to store, protect and transport products ranging from au-
tomotive parts to agricultural produce. Manufacturers spend considerable
effort and energy on the loading and unloading of parts into and out of bins
and constainers, so automation of this repetitive task using programmable
robotic manipulators is highly desirable. An example of a robot bin-picking
prototype is shown in Figure 1.3.

Three different robot bin-picking implementations are presented below
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(in the order of increasing use of vision as feedback) to compare the ad-
vantages and disadvantages of visual servoing with other commonly used
approaches. These illustrative examples are representative of the contin-
uum of robotic automation in bin-picking applications.

The first implementation uses a record-and-playback approach, where the
robot blindly executes a set of pre-programmed bin-picking motions. This
requires prior organization of parts, using pallets or carriages to structure
the parts into rows and columns inside the container. Mechanical fixtures
must be designed for each part variant; as a result, robotic automation
costs are very high. Such automation is limited to long-term, high-volume
production lines with limited part changes. Robot manipulation will fail if
the part-to-part positional tolerances are too large.

The second implementation uses a look-then-move approach, where a
fully calibrated camera and a precise CAD model of the part are used to
estimate the part’s pose (position and orientation) from a single sensed
image. In this implementation, a fully calibrated robot is commanded to
move its end-effector into a calculated configuration to pick up the part. The
robot’s workspace must be free of obstacles, in order to guarantee collision-
free motion. Robot manipulation will fail if there are significant calibration
errors in the camera or in the robot (resulting in errors in pose estimation
or in robot position control), or if the part has shifted in location since the
last image was taken.

The third implementation uses a visual servoing approach to further
eliminate the dependency on precise camera and robot calibration. Exact
offline computations of the part’s pose and the robot’s desired configuration
are not required. Rather, the robot uses online visual feedback to contin-
uously correct its trajectory as it approaches the part. The robot has full
control of its trajectory, though it must not exceed the sensing, control, and
physical collision limits of the system in order to provide safe robot motion.
This approach ensures that the manipulator achieves a positional accuracy
that is robust to modelling errors and disturbances.

1.3 Problem Statement

The goal of this research is to enable the use of manipulator visual servoing
for teaching practical robot motions. While traditional visual servoing meth-
ods perform well for correcting small planar deviations, they cannot be used
for teaching general positioning tasks because, by the design of their control
law, they are inherently unaware of the sensing, control, and physical limits
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of the robotic-camera system. Naive application of traditional visual ser-
voing methods to large robot motions could result in dangerously unstable
trajectories, due to: (i) the target object leaving the sensor’s field-of-view;
(ii) the robot being commanded to move beyond its mechanical limits, or
beyond it performance limits; or (iii) the robot arm physically colliding into
other objects within its workspace. This work will address all three of the
above problems that are typically encountered when using visual servoing
to drive non-trivial robot motions.

1.4 Research Objectives

The objectives of this work are to design a visual servo control law that:

1. Keeps the target object within the camera’s field-of-view at all times
during servoing.

2. Generates realistic camera-robot motions that remain within the robot’s
dexterous workspace and mechanical limits.

3. Generates time-efficient, but safe robot trajectories. These trajectories
should not exceed the robot’s velocity limits, but should allow the use
of high feedback gains while servoing.

4. Avoids manipulator singularities, which affect the controllability of the
robot’s end-effector position.

5. Generates collision-free robot motion, given some knowledge of the
robot’s environment.

The above objectives are integrated, where possible, in a unified frame-
work. Further, the research aims to provide insight into the following ques-
tions:

• For an eye-in-hand robot, how should the trajectory be specified to
provide a good balance between an ideal robot trajectory (joint coor-
dinates follow a straight line) and an ideal image trajectory (features
move in straight lines on the image plane), while ensuring feasibility
and task convergence?

• How does one design a robotic system that incorporates both model-
based robot path planning methods (which are computationally effi-
cient, but calibration-dependent) and reactive visual servoing methods
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(which are robust to calibration errors, but may get stuck in local min-
ima)?

• Should planning and servoing take place simultaneously, or in sepa-
rate stages? If separate stages are required, then when should the
positioning task be handed off from one stage to the next?

• When using vision-based path planning methods, how does one ensure
that the target object stays within the camera’s field of view, when
the target object’s location is uncertain?

1.5 Thesis Outline

The thesis is organized as follows:
This chapter (Chapter 1) outlines the main research questions and gives

concrete examples to motivate why the constraints of an eye-in-hand sytem
must be addressed by the visual servo control law, when it is used to drive
large robot motions.

Chapter 2 contains a review of the state of the art in constraint-aware
visual servoing, and in other related work that has influenced the contents
of this thesis.

The core of the thesis is divided into four main chapters. Chapters 3
and 4 contain minor contributions to improvements in visual servoing. In
addition, these chapters contain methodological work (on the partial and
complete pose estimation a target object from eye-in-hand images) that is
the basis of the joint-space path planning and visual servoing methods pre-
sented in Chapters 5 and 6. Chapters 5 and 6 contain the main contributions
of the thesis, as outlined in Section 7.2. Experiment and simulation results
are presented within each individual chapter after the appropriate discus-
sions on methods. The core chapters of this thesis contain work in each of
the following areas:

• Chapter 3 discusses the use of the image homography to improve the
predictability of visual servoing motion. Scaled Euclidean parameters
are recovered using feature point correspondences from images only,
and are used in visual servoing to provide a decoupled control law.
A method of estimating a homography when observing planar and
non-planar objects is discussed. A method of decomposing the ho-
mography into its constituent parameters, and of selecting the correct
solution amongst many that are possible, is also discussed. The per-
formance of the proposed hybrid visual servo controller is evaluated in
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simulation against the image-based visual servoing (IBVS) approach.
Experiments are performed using images obtained from an eye-in-hand
camera, to evaluate the accuracy of homography estimation and ho-
mography decomposition.

• Chapter 4 discusses the use of an extended Kalman filter (EKF) with
a model of the target object, to improve the robustness of pose estima-
tion with respect to image noise and disturbances. Position-based vi-
sual servoing (PBVS) is implemented with an adaptive gains controller
to manage the camera’s field-of-view limits. A method of generating
acceptable robot trajectories while visual servoing near joint singu-
larities is described. The performance of the adaptive gains PBVS
controller working in conjunction with the EKF is evaluated in the
presence of severe image noise and model disturbances.

• Chapter 5 discusses use of path planning as a prerequisite to visual
servoing for managing robot-related constraints. A method for evalu-
ating inverse kinematic solutions that considers the trajectory of the
eye-in-hand camera is presented. An offline plan-then-servo collision-
avoidance method is discussed, integrating probabilistic roadmaps (PRM)
with visual servoing. A method to construct paths between two robot
configurations that keep the target object within the camera’s field of
view is demonstrated to allow feasible transitions from planned motion
to visual servoing. The performance of this path planning method is
evaluated through simulations. A dynamic collision checking (DCC)
algorithm and a dynamic visibility checking (DVC) algorithm is pre-
sented for ensuring that system constraints are satisfied during the
motion between two robot configurations.

• Chapter 6 presents a unifying framework for constraint-aware visual
servo control. An image-based visual servo controller is proposed us-
ing the model predictive control (MPC) framework, to allow planning
and servoing to be executed simultaneously. Simulation results are pre-
sented to demonstrate the ability of the MPC visual servoing controller
to manage eye-in-hand constraints while completing large-motion po-
sitioning tasks in closed-loop. A discussion on the tuning parameters
in the visual servoing controller is given. A method to address pose
uncertainty to ensure collision-free, closed-loop motion is statistically
tested with multiple positioning tasks. An online iterative plan-and-
servo collision-avoidance method is implemented using dynamically
updated estimates of the collision-free space. Experimental results are
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shown on a CRS-A465 robot with a Sony XC-HR70 camera perform-
ing an end-effector positioning task without calibration, demonstrating
collision-free robot motions in the presence of pose uncertainty.

Chapter 7 presents the conclusions of this research. It summarizes the
main contributions of the thesis and provides recommendations for future
work in this area.
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Chapter 2

Literature Review

This chapter provides a summary of related work done by other researchers
to improve the performance characteristics of visually servoed systems. Vi-
sual servo control of robotic manipulators has been an active area of research
for over 30 years and it is a topic that spans many disciplines. A good in-
troduction for visual servo control can be found in [4], while a more recent
survey paper covering many classes of visual servoing methods can be found
in [1].

This literature review will focus on visual servoing methods that are
most relevant to the goals of this research; that is, methods that are capable
of handling large-range robot motions without violating system constraints.
In this context, the review commences with a description of the major ad-
vances in the two main domains of visual servoing, namely image-based and
position-based servoing. Next, two visual servoing methods that exploit the
known camera structure to improve servo motion are discussed: epipolar-
based servoing and homography-based servoing. Then, image path planning
and image trajectory tracking methods are presented as extensions to clas-
sical robot control for minimizing system constraint violation. The chapter
ends with a discussion of explicit constraint-avoidance in visual servoing for
redundant manipulators and predictive control.

2.1 Advances in Image-Based Visual Servoing

Image-based visual servoing (IBVS) uses direct image measurements as feed-
back to control the motion of the robot. The robot’s positioning task is
expressed as an image-based error function to be minimized using a suitable
control law. Because IBVS does not explicitly solve for the Cartesian pose
of the target object, its performance does not depend on the accuracy of a
priori models. However, since the domain of the control law is in image-
space, there is no direct control over the Cartesian or joint-space trajectory
of the robot end-effector. Application of IBVS to control large-range robot
motions typically results in trajectories that are desirable in image space,
but are convoluted in the robot’s joint-space and may result in physical
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trajectories exceeding the workspace of the robot. To address this prob-
lem, researchers have designed some image features and error functions that
are tailored specifically for certain classes of positioning tasks and target
objects, which are described below.

Classical IBVS uses the displacement between corresponding image fea-
ture points expressed in planar Cartesian coordinates to define the error
function. Chaumette [5] describes the camera retreat problem encountered
when classical IBVS is used to control a positioning task that requires a
rotation about the camera’s optical axis (denoted as the z-axis in the frame
centered at and moving with the camera). Rather than commanding cam-
era rotation while holding the camera position constant, the control law
forces the camera to translate backward and forward along its optical axis
while completing the rotation. Not only is such motion not time-optimal, it
greatly increases the potential for robot collision, since this type of motion
is neither intended nor expected by the user. In the worst case when the
rotation required is exactly 180 degrees about the optical axis, the camera
retreats to a distance of infinity and the servoing never reaches its goal.
Iwatsuki et al. [6] propose the use of cylindrical coordinates in the defini-
tion of the image error function to avoid camera retreat. Unfortunately, this
method forces the camera to rotate even for pure translational tasks, result-
ing in a problem similar to the original camera retreat, but for translational
motions. An improvement to the cylindrical coordinate method is presented
in [7] that allows the position of the origin to shift. However, determining
the correct shift parameters requires an estimation of the rotational motion
from the differences between the initial and the desired image, resulting in
a partial pose estimation problem.

If the target object is known to be planar (and the object and camera
planes are parallel at the desired position), then several other image fea-
tures can be chosen for IBVS to achieve decoupled control. Corke et al. [8]
introduce a partitioned approach that decouples the control of z-axis rota-
tional and translational components from the remaining degrees of freedom.
Z-axis translation is controlled by the square root of the area of the regular
polygon whose vertices are the image feature points, while z-axis rotation is
controlled by the angle subtended by the line segment connecting the two
chosen feature points that are furthest apart. The use of image moments
as visual features is proposed in [9] to avoid the problems of singularities
and local minima. Good decoupling and stability properties are obtained
through careful selection of combinations of moments to control the six de-
grees of freedom of the camera, although moments of higher orders tend to
be more sensitive to image noise.
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Cervera et al.[10] introduce the use of three-dimensional features in IBVS
via a stereo camera mounted on the robot end-effector. A linear control law
is obtained, resulting in a motion of the object along a straight path in
the camera frame. For target objects that are symmetric (e.g., tetrahedron,
square, cube), an exact computation of the velocity screw for any rotation
can be obtained. In this formulation, the resulting motion of the camera is
the same regardless of the 3-D model of the object.

2.2 Advances in Position-Based Visual Servoing

Position-based visual servoing (PBVS) uses an estimation of the pose of
the target object with respect to the camera as feedback to control the
motion of the robot. The robot positioning task is expressed as an error
function composed of pose parameters. Computing that pose from a set of
measurements in one image requires full knowledge of the camera intrinsic
parameters and a 3-D model of the target object. This is closely related to
the 3-D localization problem in classical computer vision and many solutions
have been presented in the literature [11] [12]. PBVS allows the decoupled
control of translational and rotational motions. The resulting camera tra-
jectory is a straight line in Cartesian space, while the image trajectories are
less satisfactory than those in IBVS. The domain of the control law is in
Cartesian-space, so there is no direct control over the trajectory of feature
points on the image plane.

From the perspective of practical robot servoing, one of the main draw-
backs of PBVS is that the target object (and its image features) may par-
tially or entirely exit the camera’s field of view during the servoed motion.
Servoing can still continue when the feature losses are partial and where
redundant features are still available for pose estimation. Wilson et al. [13]
suggest the detection of feature losses to avoid errors in pose estimation
and appropriate modification to the extended Kalman filter for tracking.
The lost feature’s entry in the covariance matrix is increased to a very large
value, which has the effect of eliminating its influence on the pose estimate.
The entry is returned to its normal value when the feature is detected to
have returned back into the field of view. Lippiello et al. [14] [15] suggest
the selection of an optimally-defined subset of image features for PBVS that
is updated online to minimize the loss of image features. Several quality
indices are proposed to take into account the spatial distribution, angular
distribution, visibility and non-coplanarity of the image features, and the
product of these indices is used as the basis of selection. However, both
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of these approaches are passive and they do not prevent the target object
from leaving the field of view entirely, resulting in pose estimation failure
and servo failure. Servo failure occurs quite frequently in PBVS when large
translations and large out-of-plane rotations are simultaneously required.

Chesi et al. [16] propose a switching control approach to keep the target
within the field of view of the camera. PBVS is selected when all feature
points are inside the field of view, implemented as a region of interest (ROI)
in the image. When at least one feature point lies on the ROI boundary, a
set of rotational and translational control laws is applied to push that fea-
ture point back into the region. If all of the above methods fail, the camera
is sent away from the target object through a backward translational motion
along the optical axis by a specified gain. One drawback of this method is
that appropriate gains and hysteresis bands must be used to avoid chatter-
ing, a phenomenon resulting from frequent switching when feature points
reside near the image boundary. Thuilot et al. [17] propose the use of a
reference trajectory to coordinate the rate of convergence between transla-
tion and rotation motions in PBVS. Rotation errors are allowed to decrease
exponentially without any reference trajectory, while the translational ref-
erence frame is adjusted to keep the geometric center of the feature points
in the camera field of view.

Cervera [10] and Deng [18] explore the use of alternative coordinate
frames for defining the PBVS error vector to obtain improved servoing char-
acteristics. Two methods are discussed. The first method defines the pose
error vector in the stationary target frame. Here, the shortest straight-line
translation of the camera is achieved at the expense of a highly nonlinear
target pose sequence where image trajectories can easily leave the camera’s
field of view. The second method defines the pose error vector in the current
camera frame. If a reference point close to the geometric center of all feature
points is chosen as the target frame origin, the chances of image trajectories
leaving the camera field of view is significantly minimized. However, the
ability to generate straight-line Cartesian trajectories is lost.

Another difficulty associated with PBVS is that the stability of the ser-
voing system is difficult to study, since it is sensitive to pose estimation
errors. Zanne et al. [19] suggest using sliding mode control to design a
PBVS controller that is robust to bounded parametric estimation errors. A
switching controller is proposed using an appropriate selection of the slid-
ing surface, based on the quaternion representation for rotations, to ensure
stability.
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2.3 Epipolar-Based Visual Servoing

When a camera views a 3-D object from two distinct positions, there exists a
number of geometric relations between the 3-D points and their projections
onto the 2-D images that lead to some additional constraints between the
two sets of observed image points. The epipolar geometry describes such
relationships between the two resulting views. Conversely, if a set of corre-
sponding features in the current image and in the desired image is available,
the epipolar geometry can be recovered and used for visual servoing [20].
Piazzi [21] and Marotta [22] propose a visual servoing algorithm that uses
the observed epipolar geometry to construct a series of translations and
rotations that iteratively bring the camera to the desired position. An ad-
vantage of this method is that no model of the scene is required and that
the servoing is compatible with uncalibrated cameras. However, it is shown
that recovering epipoles is often sensitive to image noise. Moreover, near
the servo target, the epipolar geometry becomes degenerate and it is not
possible to estimate accurately the partial pose between the two views. An
alternative is to use homography-based methods which provide more stable
estimations when the current and desired images are similar.

2.4 Homography-Based Visual Servoing

A homography is an invertible transformation that maps points from one
3-D plane to another 3-D plane. Since a camera sensor is also a projective
plane in space, each 3-D plane that is observed by the camera in the current
image is related to its projection in the desired image by an image homog-
raphy. If all the feature points of a target object lie on a 3-D plane, then
there is a single homography matrix that holds for all the observed feature
points. This homography can be estimated using a minimum of four point
correspondences between the current and desired image. If all feature points
do not belong to the same 3-D plane, then three points can be used to define
a virtual plane, and a minimum of five additional supplementary points are
needed to estimate the homography [23].

Knowledge of this homographic relationship is advantageous because it
can be decomposed to give a partial pose estimation that is useful for visual
servoing. The camera rotation and the camera translation (up to a scale
factor) can be recovered from the homography matrix via decomposition
[24] [25] without requiring a model of the target object. Thus, some of the
useful properties of PBVS such as decoupled control of camera rotation and
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translation can be obtained using only point correspondences from images.
Another advantage of this method is that it works universally for both planar
and non-planar target objects.

There exist several related approaches that use the recovered rotation
and scaled translation parameters for visual servoing. Deguichi et al. [26]
use the recovered direction of translation with feedback control to bring
the camera towards its goal in a straight line. Rotation is controlled to
compensate the effects on the image caused by translation, to keep the target
object in the field of view, and at the same time, to minimize the difference
between the current image and the desired image. Malis et al. [27] propose a
method known as 21/2-D visual servoing with a decoupled control law similar
to PBVS. Image errors of a chosen reference point are used to control in-
plane camera translation, while camera approach and rotation are controlled
using parameters recovered from the homography matrix. Due to the simple
structure of the system, the conditions for global asymptotic stability can
be established. An alternative hybrid visual servoing scheme proposed in
[28] is similar to 21/2-D visual servoing, but can tolerate a larger amount of
calibration errors. However, this method is more sensitive to measurement
errors since the task function is not directly computed as a difference of
image data. In [29], the camera is controlled using the recovered direction
of translation, while a single image point is chosen to control the x-axis
and y-axis rotation, with the rotation matrix controlling the z-axis rotation.
This approach results in the image point having a straight line trajectory so
that it always remains in the field of view.

Homography estimation and decomposition based on three points defin-
ing a virtual plane (and additional points to solve for the relationship) can
be extremely sensitive to image noise. In the above cases, the recovered
motion is used as an approximation for servoing only, rather than for one-
step position control. All servoing methods must continuously update the
estimate on the homography as new images become available, in order to
minimize the impact of estimation errors on the final servoing accuracy. As
a result, these hybrid approaches tend to be more computationally intensive
than PBVS and IBVS.

2.5 Image Path Planning

Many classical visual servoing methods work well when the initial and de-
sired robot positions are close together. The idea behind image path plan-
ning methods is to use intermediate reference images to influence the path

18



Chapter 2. Literature Review

of the servoing and to divide the required servoing task into smaller incre-
mental tasks. Such intermediate reference images are typically not available
from the camera (unless the user has the patience to teach the robot at ev-
ery intermediate reference position!) so, in practice, the intermediate feature
positions are generated via partial Euclidean reconstruction of intermediate
camera poses using the initial image and the desired image. In the continu-
ous case, an image-based reference trajectory is formed using interpolation
in the image, combined with a suitable timing law to produce a time-varying
reference for the visual servo controller to track. This significantly improves
the robustness of visual servoing with respect to calibration and modelling
errors, since the feedback error is always kept small.

An image-based path planning method that uses artificial potential fields
and homography-based reconstruction to help avoid camera field-of-view
limits and robot joint limits is used in [18] [30] [31] [32]. The path planning
takes place at the beginning of the motion, starting with an estimation of a
homography from the initial image to the desired image. The desired camera
pose is found by decomposing the homography matrix into its rotation and
translation components. A potential-fields approach [33] [34] is used to
generate a path from the initial camera pose to the desired camera pose.
An attractive potential field is used to bring the camera to its goal, while a
repulsive potential field pushes the camera away from robot joint limits and
another repulsive potential field pushes the camera away from positions that
bring the target object out of view. The planned path is then re-projected
back into the image and interpolated to give a reference image trajectory
that is tracked using IBVS.

One disadvantage of the above approach is that the effectiveness of the
potential field planning for camera and robot limit avoidance is highly de-
pendent on the accuracy of the initial homography estimation. As discussed
above, homography decomposition for scaled Euclidean reconstruction is
known to be very sensitive to image noise. Unlike the hybrid visual servoing
methods, there is no update to the homography estimation upon subsequent
image observations, as there is no intermediate re-planning step. The actual
camera path may deviate significantly from the initially reconstructed cam-
era path, so that any repulsive potentials applied to the latter may not be
effective in pushing the actual camera path away from the real robot joint
limits and the real camera field-of-view limits.

If only the camera field-of-view visibility is of concern, Schramm et al.
[35] propose an alternative path planning approach that does not require ho-
mography decomposition. The algorithm uses the properties of affine spaces
to design a path that ensures the target object is always visible within the
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camera’s field of view. In [36], a helical trajectory is proposed to harmonize
translation with rotation to maintain target visibility, without the use of
potential field-based planning.

2.6 Image Trajectory Tracking

Close tracking of the image reference trajectory is important to ensure that
the actual image trajectory does not exit the camera’s field of view during
servoing, despite the original path planning efforts. Close tracking of the
planned trajectory is also important for ensuring predictable camera motion
for avoiding robot joint limits. To minimize tracking errors, the visual servo
control law must be modified to correctly anticipate the time-variation of
the reference trajectory. Morel [37] and Zanne [38] propose a robust tracking
controller for visual servoing that guarantees bounded tracking errors, with
a bound that can be specified by the user to ensure visibility. Rather than
naively increasing the control gains to achieve the desired precision, the
reference velocity is modulated to satisfy an inequality relationship between
the error bound, the parametric uncertainties in calibration, and the control
gain. This method achieves bounded tracking errors without the use of large
control gains and is robust to calibration errors. The only real drawback is
that the resulting reference velocity may be conservative at times, so this
method may be more suited to tasks that require precise geometric path
tracking, but at low speeds.

2.7 Constraint Avoidance with Redundant
Manipulators

If the required positioning task does not use up all degrees of freedom (DoF)
available to the robot, the remaining DoF can be exploited by the visual
servoing controller to avoid camera field-of-view limits, robot joint limits,
singularities and obstacles. Redundancy-based solutions for eye-in-hand po-
sitioning and for visual tracking are discussed below.

For highly redundant robots completing 6-DoF positioning tasks, a gra-
dient projection method is proposed for avoiding constraints related to visual
servoing [39][40]. The constraints imposed by the environment are embed-
ded as a cost function, and the gradient of this cost function is computed
as a secondary task that moves the robot away from these constraints. This
gradient is then projected onto the set of motions that keep the main task
invariant and added to the control law that executes the main task. Because
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the secondary task cannot have any effect on the main task in this formu-
lation, only the degrees of freedom not controlled by the main task can be
exploited to perform constraint avoidance. Mansard et al. [41] propose a
method to improve the performance of the secondary task by enlarging the
number of DoF available. An equality relationship in the classical redun-
dancy formalism is replaced with a norm inequality relationship, to allow
the execution of motions produced by the secondary control law that also
help the main task to be completed faster. The amount of secondary mo-
tion that is gained by using this approach depends greatly on the degree of
opposition between the task and the constraint.

Several methods have been proposed for handling 2-DoF tracking tasks
via visual servoing while avoiding constraints. In [42], an object is visually
tracked with an eye-in-hand camera while the robot simultaneously avoids
kinematic singularities and joint limits by moving in directions along which
the tracking task space is unconstrained or redundant. A manipulability
measure is introduced into the visual tracking task function, such that the
control law is able to take into account the configuration of the robot while
the object is visual tracked. It is shown that for tracking objects with planar
motions, the tracking region of the robot can be greatly increased using this
method. In [43], a frequency-based framework is used to control a 5-DoF
robot (a 2-DoF pan-tilt unit plus a 3-DoF Cartesian gantry) for tracking an
operator as he walks around a workcell. A partitioning control law is used
to exploit the kinematic and dynamic attributes of each DoF. The high-
bandwidth pan-tilt unit is employed for tracking so that the fast-moving
human target stays within camera’s field of view, while the low-bandwidth
gantry is used to reduce the bearing angle between the camera and the
target, reducing the demand on the pan-tilt unit’s range of motion. Analysis
of phase characteristics show that the large bandwidth DoF that are visually
servoed act as lead compensators for the remaining DoF with slow response
times.

2.8 Predictive Control for Visual Servoing

Visual servoing can be formulated as an optimization procedure that com-
putes the appropriate control input to the robot given a cost function that
defines measured image errors. A linear quadratic Gaussian (LQG) control
design can also be used to choose gains that minimize a linear combina-
tion of state and control input [44]. This approach explicitly balances the
trade-off between tracking errors and robot motion. A more recent develop-
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ment is the use of predictive control in visual servoing so that path planning
and control can be solved simultaneously. Predictive control makes explicit
use of a process model to obtain a control signal by minimizing an objec-
tive function. Generalized Predictive Control (GPC) is principally suited for
single-variable linear control, since the process model is presented in the form
of a polynomial transfer function, while Model Predictive Control (MPC)
is formulated in state space and is designed for multi-variable control. In
[45], GPC is used to provide improved tracking characteristics for a one-DoF
profile-following task, while the remaining DoF are controlled using visual
servoing. Sauvee et al. [46] presents a framework for controlling a robot
positioning task using MPC with image feedback from a stationary camera.
Successful avoidance of field-of-view limits (for the stationary camera ob-
serving the robot) and avoidance of joint limits (for the robot completing
the task) are demonstrated in simulation. This approach is extended in [47]
to a medical robot controlling a surgical instrument using MPC with image
feedback from an stationary ultrasound transducer. In both [46] and [47],
the imaging sensor is stationary with respect to the robot, and the geometry
of the end-effector tool and the transformation from the camera frame to
the robot base frame are assumed to be known.

2.9 Summary

The chapter presented an overview of the state-of-the-art in constraint-aware
visual servoing. A description of the major advances in the two main do-
mains of visual servoing are discussed. When large-range motions are re-
quired, it is shown that representing a positioning task as a minimization
of image feature errors, as in IBVS, results in camera motions that natu-
rally keep the target object within the field of view, but are convoluted in
the joint-space of the robot. On the other hand, representing the position-
ing task as a minimization of rotation and translation errors, as in PBVS,
produces efficient Cartesian trajectories (but the resulting joint-space mo-
tion can still be poor), which may cause the target object to exit the field of
view. Some approximate knowledge of the pose of the target object, obtained
through homography decomposition or pose estimation, is beneficial for im-
proving visual servo motion since it allows path planning to occur. How-
ever, path planning must occur in the joint-space of the robot, if avoidance
of robot joint limits and avoidance of whole-arm collisions with workspace
obstacles is required. An explicit representation of system constraints in
the visual servoing control law helps to ensure that robot positioning and
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constraint avoidance can be simultaneously achieved.
This thesis will build on top of the strengths and weaknesses of the above

approaches to arrive at a method for achieving collision-free and constraint-
aware visual servo control of an eye-in-hand robot. Homography decom-
position and online pose estimation are discussed in Chapters 3 and 4, as
practical methods of obtaining an approximate pose of a target object for
servoing and planning purposes. Path planning methods are discussed in
Chapter 5, using a method inspired by IBVS to address camera field-of-
view and robot joint-limit constraints, and combined with probablistic road
maps to address collision constraints. Chapter 6 presents a unifying visual
servoing framework that solves the problem of planning and servoing simul-
taneously, resulting in a visual servo control law that achieves close-loop
positioning while being explicitly aware of system constraints. The cumula-
tive goal is a visual servo control law that can be used to drive large-range
robot motions without losing sight of the target object, violating robot joint
limits or velocity limits, or colliding with workspace obstacles.
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Image Homography

3.1 Introduction

The objective of this chapter is to evaluate the suitability of homography-
based methods for constraint-aware visual servoing. In particular, the abil-
ity of homography-based methods to extract Euclidean motion parameters
without requiring a model of the observed object is quite attractive for use
in the joint-space path planning methods that are presented in Chapter 5
and Chapter 6. The method of visual servoing presented and implemented
in this chapter is known as 21/2-D visual servoing and it is based on meth-
ods proposed in [27]. The goal is to take advantage of the properties of the
homography (as described in Section 2.4) to improve the predictability of
visual servoing and to minimize the chance that the resulting motion will
violate system contraints. The first section gives an overview of the visual
servo control law. The second section describes how the requirements of the
control law are met using images with matched feature points. In particu-
lar, the methods of homography estimation from observations of non-planar
objects and of homography decomposition to recover scaled Euclidean pa-
rameters are discussed. Simulation results are shown for several positioning
tasks that require large visual servoing motions. The performance of this
homography-based visual servoing method is compared to that of traditional
image-based visual servoing (IBVS). Finally, experimental results are ob-
tained to assess the accuracy of homography estimation and decomposition
using images from an eye-in-hand camera.

3.2 Homography-Based Visual Servoing

3.2.1 Overview

As explained in Chapter 1, the goal of eye-in-hand visual servoing is to con-
trol the 6-DoF position and orientation of the wrist-mounted camera relative
to a target object, through the regulation of an error function defined by
a set of visual features. This error metric describes the difference between
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the current camera frame, Fc, and the desired camera frame, Fc∗ . When
expressed purely in image space, this error is the difference in the observed
pixel locations of the visual features. When expressed purely in Cartesian
space with respect to the current camera frame, this error is the transla-
tion, ctc∗ , defined in Fc and the rotation, cRc∗ , that describes Fc∗ in the
coordinates of Fc .

In 21/2-D visual servoing, the error metric consists of a combination of
2-D image features and 3-D parameters. To take advantage of the accuracy
and the robustness of image-based techniques, the x-y translation of the
camera is controlled by aligning the projected image coordinates of a real-
world reference point P to that of the reference image. To capitalize on the
decoupled nature of position-based techniques, the required camera rotation
and the rate of approach in the z direction of the camera frame are estimated
from the image using scaled Euclidean reconstruction. This approach does
not require a model of the target object. All it requires is a minimum of
eight matched points between the two images to estimate the homography
of a virtual plane attached to the object defined by any three points.

3.2.2 Feature Selection

It is assumed that the object of interest remains rigid during visual servoing
and that it can be represented as a distribution of feature points in 3-D
space. A target point cPj is selected on the object to provide the required
2-D image coordinates (x, y) for measuring in-plane camera translations. An
additional three points cP1, cP2, cP3 are selected on the object to define a
virtual plane π to act a 3-D reference for measuring the rotation cRc∗ and
the depth Z.

In 21/2-D visual servoing, the feature vector s consists of 6 parameters
that derived are from a combination of 2-D and 3-D metrics:

s =
[
X
Z

Y
Z logZ θrT

]T =
[
x y logZ θrT

]T
, (3.1)

where:

• (X,Y, Z) are the real-world coordinates of a 3-D target point cPj with
respect to the camera frame.

• (x, y) are the normalized metric coordinates of the image point corre-
sponding to cPj .

• θ and r are, respectively, the angle and axis of rotation matrix cRc∗

associated with the virtual plane π defined by three target points cP1,
cP2, cP3.
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Knowledge of the intrinsic camera parameters is required, since the nor-
malized metric coordinates mj =

[
x y 1

]T of point cPj are related to its

measured pixel coordinates pj =
[
u v 1

]T by the camera matrix, C:

mj = C−1pj , (3.2)

where,

C =

fku fku cotβ u0

0 fkv( 1
sinβ ) v0

0 0 1

 , (3.3)

where (u0, v0) are the images coordinates of the principal point, f is the focal
length, β is the perpendicular skew angle, and ku and kv are the number of
pixels per unit distance in x and y, respectively.

The current camera frame Fc is aligned with the desired camera frame
Fc∗ when the error function e21/2-D = (s−s∗) is zero in all of its components.
Here, s∗ corresponds to the feature measurements that are observed at the
desired camera pose:

e21/2-D = (s− s∗) =
[
x− x∗ y − y∗ log( ZZ∗ ) θrT

]T
. (3.4)

The depth component Z of the reference point cPj cannot be recovered
from a single image. However, if the projective homography H of the virtual
plane π is available (relating the observed image points of cP1, cP2, cP3 in
the two camera frames), then the ratio log( ZZ∗ ) and the rotation cRc∗ (or θr)
can be recovered to complete the last 4 components of the error function.
In summary, the goal of the 21/2-D visual servo control scheme is to regulate
this error function, Equation 3.4, to zero.

3.2.3 Control Scheme

Most vision-based control approaches consider only robot kinematics, since
the bandwidth for visual control is usually limited by the camera frame rate
and image processing times. Robot dynamics are generally handled with a
low-level PID controller using joint encoder feedback.

The 21/2-D visual servoing controller is designed at the velocity level,
based on Jacobian matrices which relate the rate of change between the vi-
sual measurements and the robot joint angles. The Jacobian relationship be-
tween the spatial velocity of the camera vc =

[
xvc yvc zvc xwc ywc zwc

]T
and the time variation of the error function ė21/2-D is described by the inter-
action matrix L21/2-D:

ė21/2-D = L21/2-Dvc, (3.5)
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where,

L21/2-D =
[

1
d∗Lv L(v,ω)

0 Lω

]
. (3.6)

The 21/2-D error function gives rise to an interaction matrix that is
upper triangular, meaning that translation and rotation are decoupled in
the control law. Expressions for the sub-matrices Lv, L(v,ω), Lω are derived
as follows, where the parameter ρ1 is recovered from the homography H of
a virtual plane π:

Lv =
1
ρ1

−1 0 x
0 −1 y
0 0 −1

 , (3.7)

where
ρ1 =

Z

d∗
, (3.8)

L(v,ω) =

 xy −(1 + x2) y
(1 + y2) −xy −x
−y x 0

 , (3.9)

Lω = I3 −
θ

2
[
r
]
× +

(
1− sinc(θ)

sinc2( θ2)

)[
r
]2
× , (3.10)

where
[
r
]
× is defined as the skew of the vector r =

[
r1 r2 r3

]T :

[
r
]
× =

 0 −r3 r2

r3 0 −r1

−r2 r1 0

 . (3.11)

Here, a proportional velocity control law is designed to ensure the ex-
ponential convergence of each component in the error function towards zero
by imposing:

ė21/2-D = −λe21/2-D, (3.12)

where λ is the convergence rate. Substituting the Jacobian relationship
ė21/2-D = −λe21/2-D into the rate of change of error, an expression for the
desired camera velocity is obtained:

vc = −λL−1
21/2-De21/2-D. (3.13)

The above expression is always valid because L21/2-D is free of singu-
larities in the entire workspace in front of the virtual plane (and is always
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invertible). The desired camera velocity command is converted to robot
joint velocities q̇ using the robot Jacobian relationship Jrobot(q). The in-
verse relationship is valid when Jrobot(q) is non-singular in the robot joint
space:

q̇ = −λJ−1
robot(q)L−1

21/2-De21/2-D. (3.14)

Finally, the robot joint velocities q̇ commanded to the robot controller
can be written as a function of the measured error components in e21/2-D:

q̇ = −λJ−1
robot(q)

[
d∗L−1

v −d∗L−1
v L(v,ω)

0 I3

]
x− x∗
y − y∗
log( ZZ∗ )
θr

 . (3.15)

The parameter d∗ represents the distance from virtual plane π to the
desired camera frame Fc∗ . Unfortunately, it cannot be recovered from the
images, so it must be approximated off-line when the desired training im-
age is acquired. Within reasonable bounds, this parameter only affects the
relative convergence rate of the camera’s translational and rotational com-
ponents.

3.2.4 Servoing Requirements from Images

To summarize, the parameters that must be estimated from the images to
be used as input into the control law, discussed in Section 3.2.3, are:

1. cRc∗ (or in angle-axis form, [θ, r] )

2. log(Z/Z∗)

3. ρ1 = Z/d∗

The first two metrics define the error in 3-D rotation and the error in
depth, respectively, between the current camera frame Fc and the desired
camera frame Fc∗ . They are required in order to evaluate the error function
e21/2-D. The last metric is used to control the rate of translational conver-
gence of the camera and it is required in the sub-matrix Lv of the interaction
matrix L21/2-D. These parameters can be recovered from two images if the
homography H for a common virtual plane π is available.

Obtaining an accurate estimate of H is not trivial for images of non-
planar objects, where a virtual plane is defined by three feature points, and
additional feature points that do not necessarily lie on the virtual plane
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are used to recover the homography relationship. The interested reader
is directed to Appendix A for a discussion on the homography estimation
method implemented in the simulations and experiments.

Once H is determined, it is decomposed to recover the Euclidean param-
eters that are used in the visual servoing control law. The interested reader
is directed to Appendix B for a discussion on the homography decomposition
methods implemented in the simulations and experiments. The decomposi-
tion solution has the following form, where up to 8 possible solutions exist:

H = d∗(cRc∗) + (ctc∗)n
∗T . (3.16)

where

• cRc∗ is the rotation matrix from frame Fc∗ to Fc,

• n∗ is the unit vector normal to π expressed in Fc∗ ,

• ctc∗ is the direction of translation from Fc∗ to Fc, and

• d∗ is the signed distance from π to Fc∗ .

In Appendix B.3, a method is presented that uses visibility constraints
to reduce the number of decomposition solutions from 8 to 2. A method
that is specific for visual servoing, to determine which of the two remaining
solutions is correct, is presented in Appendix B.4. Once cRc∗ is extracted
from the homography, θ and r can be computed to complete the last three
components of the error function e21/2-D. Since H is only defined up to
a scale, the vector ctc∗ only gives the direction of translation (but not its
magnitude), so ctc∗ cannot be used to directly control camera translation.
The remaining parameters ρ1 and log(Z/Z∗) that are required in the control
law are determined from H as follows:

ρ1 =
Z

d∗
=

1
d∗

(
d

nTm

)
=

d

d∗
1

nTm
= det(H)

(
1

ntm

)
(3.17)

log

(
Z

Z∗

)
= log

(
d

d∗
n∗Tm∗

nTm

)
= log

(
det(H)

(
n∗Tm∗

nTm

))
(3.18)

In addition to the direct use of these recovered parameters in the 21/2-D
visual servoing control law, an accurate knowledge of cRc∗ , n∗, ctc∗ and d∗

is useful for robot path planning, as discussed in Chapter 5.
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3.3 Simulation Results

3.3.1 Purpose and Setup

The purpose of these simulations is to evaluate the image trajectories, the
Cartesian trajectories and the robot trajectories that result from visual ser-
voing using homography-based Euclidean reconstruction. These trajectories
are compared against those obtained using IBVS to discern any improve-
ments to the observed motion. Two different positioning tasks with signif-
icant displacements are considered. The first is a translational task that
requires the robot end-effector to approach the target object with some out-
of-plane rotations. The second is a pure rotational task of 180 degrees about
the optical axis. The observed target is a non-planar object with 9 identifi-
able feature points. The target object is positioned above the robot in these
experiments to increase the effective range of motion available to the robot
for servoing, since robot joint limits are not explicitly managed in the servo-
ing control law. The simulations are performed on a 6-DoF CRS-A465 robot
with a Hitachi KP-D8 camera amounted on the end-effector to reflect the
equipment available in the Collaborative Advanced Robotics and Intelligent
Systems (CARIS) Lab at UBC.

3.3.2 Image-Based Visual Servoing

The error to be minimized in image-based visual servoing (IBVS) is the dif-
ference between current image feature location (u, v) and the desired image
feature location (u∗, v∗), for n chosen feature points:

eIBVS =
[
(u1 − u∗1) (v1 − v∗1) · · · (un − u∗n) (vn − v∗n)

]
. (3.19)

A proportional control law is used to drive image coordinates exponen-
tially towards their desired locations, with λ as the convergence rate:

ėIBVS = −λeIBVS. (3.20)

To achieve the above closed-loop behaviour, the control law for IBVS
has the following form:

q̇ = −λJ+
robot(q)L+

IBVS(x,y,Z)eIBVS (3.21)

where Jrobot(q) is the robot Jacobian corresponding to the eye-in-hand con-
figuration, and LIBVS is the image Jacobian of the feature points. For mul-
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Figure 3.1: IBVS of a task requiring translations and out-of-plane rotations:
image trajectory (left) and Cartesian trajectory (right).

tiple feature points, LIBVS is a stacked matrix composed of the following
[4]:

LIBVS =
[
LT1 · · · LTn

]T (3.22)

where

Li(xi, yi, Zi) =
[
− 1
Zi

0 xi
Zi

xiyi −(1 + y2
i ) yi

0 − 1
Zi

yi

Zi
1 + x2

i −xiyi −xi

]
. (3.23)

The distance Z of a feature point to the image plane is obtained from
the model of the object. The normalized coordinates (x, y) are calculated
from (u, v) using the camera matrix from Equation 3.2.

Figure 3.1 shows the results from the first robot positioning task as
described in Section 3.3.1 using IBVS for control. The point ‘o’ designates
the start of the motion and the point ‘x’ designates the end of the motion.
The image trajectories of the feature points are near-straight lines from the
start-position to the end-position which keeps the target within the field of
view. The Cartesian trajectory is also acceptable, due to the simplicity of the
task, which mainly involved translations with some out-of-plane rotations.
These results show that the trajectories generated from IBVS are sometimes
acceptable for large motions.
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Figure 3.2: IBVS of a task requiring a rotation of 180 degrees about the
optical axis: image trajectory (left) and Cartesian trajectory (right). The
task is not completed successfully due to the camera retreat problem, which
violates robot joint limits.

Figure 3.2 shows the results from the second robot positioning task as de-
scribed in Section 3.3.1 using IBVS for control. The feature points approach
their desired positions in straight-line trajectories. However, the visual ser-
voing stops before the feature points reach their goal, and the positioning
task does not converge. Examination of the Cartesian trajectory shows that
under IBVS control, the camera is forced to retreat away from the target
object until a joint limit is reached. These results demonstrate the problem
of camera retreat, and illustrate why IBVS cannot be used for positioning
tasks involving significant rotation about the optical axis.

3.3.3 21/2-D Visual Servoing

The method of 21/2-D visual servoing is described in Sections 3.2, while
the methods of homography estimation and decomposition are described in
Appendix A and Appendix B, respectively. Figure 3.3 shows the results
from the first robot positioning task as described in Section 3.3.1 using 21/2-
D visual servoing for image feedback control. The point ‘o’ designates the
start of the motion and the point ‘x’ designates the end of the motion. In
21/2-D visual servoing, the image trajectories of the feature points are more
curved than the near-straight-line trajectories that are obtained using IBVS.
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Figure 3.3: 21/2-D visual servoing of a task requiring translations and out-
of-plane rotations: image trajectory (left) and Cartesian trajectory (right).

This is due to the decoupling between image-based translation control and
homography-based rotation control. The Cartesian trajectory is shown to be
acceptable, as it does not deviate too far from a simple straight-line motion.
The robot joint positions and velocities of the resulting motion are shown in
Figure 3.4. They exhibit exponential convergence towards the desired robot
configuration, at a rate that is proportionally to the control gain. These
results show that while the path generated from 21/2-D visual servoing is
acceptable for large translational tasks with some out-of-plane rotations, its
timing must be addressed through the use of a reference trajectory, since
it is sub-optimal over large-range motions. The joint velocities decreases
exponentially with the image error, resulting in high velocities at the start
and negligible velocities towards the end.

Figure 3.5 shows the results from the second robot positioning task as
described in Section 3.3.1 using 21/2-D visual servoing for image feedback
control. Unlike IBVS, which forces the camera to retreat (resulting in the
violation of joint limits), 21/2-D control is able to correctly recognize that a
180-degree rotation is required, using the homography-based methods out-
lined in Appendix A and Appendix B. The Cartesan trajectories show that
21/2-D visual servo control executes the required rotational motion without
requiring any extra translational motion. This property of decoupled con-
trol illustrates one of the many benefits of using partial pose information
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Figure 3.4: 21/2-D visual servoing of a task requiring translations and out-of-
plane rotations: robot joint positions (top) and robot joint velocities (bot-
tom).
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Figure 3.5: 21/2-D visual servoing of a task requiring a rotation of 180 de-
grees about the optical axis: image trajectory (left) and Cartesian trajectory
(right).

to supplement visual servoing in order to simplify motion. An additional
advantage of homography estimation and decomposition is that it does not
require a 3-D model of the observed target object.

3.4 Experimental Results

3.4.1 Purpose and Setup

This section outlines a method for evaluating the accuracy of homography
estimation and decomposition from image observations of real target objects.
This step is important for two reasons. First, the accuracy of the partial
pose estimation from the image homography affects the convergence rate
of all visual servoing methods that use these parameters as part of their
control schemes. Secondly, the recovered Euclidean parameters must be
sufficiently accurate if they are to be used for path planning for robot joint-
limit avoidance and camera limit avoidance, as proposed by several authors
[18] [30] [31] [32].

Experiments are performed using real images obtained from an eye-in-
hand camera to evaluate the accuracy of the scaled Euclidean parameters
(cRc∗ ,

ctc∗) recovered from the homography H of a virtual plane. In these
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experiments, a Hitachi KP-D8 miniature CCD camera is attached the end of
a CRS-A465 robot arm to observe a non-planar target object. As the images
are captured, the corresponding robot joint encoder measurements are also
recorded so that the change in camera position and orientation are known.
The scaled Euclidean parameters (cRc∗ ,

ctc∗) that are recovered from vision
are compared against the ground truth provided by the kinematics of the
robot.

3.4.2 Extracting and Matching Image Features

The Scale Invariant Feature Transform (SIFT) [48] is used to characterize
the target object into a set of features points. These SIFT feature points
are used to establish point-to-point correspondences between subsequent
images. SIFT is particularly well-suited to this task, since it generates well-
localized features that work well on textured objects. An added advantage
is that they are invariant to scale changes and are somewhat invariant to
small changes in viewpoint, so that the camera is not restricted to move
in a planar 2-D fashion. Features between two images are matched using
the nearest-neighbor algorithm and outliers are removed using semi-local
constraints. For each matched candidate, K out of its N nearest neighbors
must agree with its scale, orientation, and location in order for it to be con-
sidered a valid match. K = 8 is chosen because the subsequent estimation
of the homography requires at least eight matched points. N = 16 is chosen
experimentally to give good detection rates while minimizing computation
times. The thresholds for scale, orientation, and location consistency are
chosen as follows:

2
3
≤

(
ScaleKey

ScaleKeyMatch

)
(

ScaleNeighbor

ScaleNeighborMatch

) ≤ 3
2
, (3.24)

−30◦ ≤ diff
(

diff(Orikey, OriKeyMatch),
diff(OriNeighbor, OriNeighborMatch)

)
≤ 30◦, (3.25)

2
3
≤ Scale

(Distancematch&neighbor)
(Distancekey&neighbor)

≤ 3
2
. (3.26)

These parameters were experimentally tested with images and shown to
provide good outlier removal.
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Figure 1: Sequence of images used for evaluating the accuracy of the Euclidean parameters (R, t) recovered from 
the homography of a virtual plane defined by three image points on the object. 

View 1 View 2 View 3 View 4

View 5 View 6 View 7 View 8

View 9 View 10 View 11 View 12

Figure 3.6: Sequence of images used to assess the accuracy of homography-
based methods for visual servoing.

3.4.3 Error Assessment

The method of estimating cRc∗ ,
ctc∗ from the homography of a virtual plane

is tested on several household and industrial 3-D objects such as coffee mugs,
key chucks, motors, and computer cooling fans. The most comprehensive
results are obtained from a series of twelve images of a tea box taken at
approximately 10- to 15-degrees increments of out-of-plane 3-D rotations.
This sequence of images is shown in 3.6 for visual reference. Although the
object has several planar surfaces, no effort is spent on ensuring that all
matched features belong to a common plane. In fact, many of the SIFT
features matched between the images belong to different faces on the tea
box. The advantage of homography estimation based on the virtual parallax
is that it applies to both planar and non-planar objects. Regardless of the
structure of the object, three points are automatically selected to define a
reference plane which maximizes the surface area of corresponding triangles
in both images.

Figure 3.7 shows the number of matched SIFT features for each image
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Figure 3.7: Number of feature matches available for non-planar homography
estimation for the image sequence shown.

pair with viewpoint 7 as the reference. The number of matched SIFT fea-
tures between two images decreases quickly as the camera deviates from the
reference viewpoint. For out-of-plane rotations greater than 25 degrees, it
is difficult to obtain the required number of matching features to accurately
estimate H. In fact, because only six SIFT features are matched between
viewpoint 1 and viewpoint 7, in this case, the rotational and translational
parameters cannot be recovered. The quality of the matched SIFT features
also decreases in the sense that the locations of the matches are less accu-
rate. Since SIFT features are not truly affine invariant, distortions due to
changes in viewpoints (even for planar features) will cause the location of
the SIFT features to shift, resulting in an incorrect estimate of H. This is
problematic since in the virtual plane homography estimation method [23]
since, regardless of the number of matched features available for homog-
raphy estimation, only three feature points are used to define the virtual
plane.

Figure 3.8 show the magnitude of errors in the estimated rotation cR̂c∗

for the image sequence shown in Figure 3.6. The magnitude of the actual
rotation cRc∗ corresponding to each viewpoint is also shown for comparison.
Viewpoint 7 is used as the reference image for establishing the canonical
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frame of reference. The rotation error is defined as the shortest length of
the geodesic starting at cRc∗ and ending at cR̂c∗ , which corresponds to
the rotation angle θerror of the rotation matrix cRc∗

cR̂−1
c∗ . Note that the

rotation errors cannot be simply subtracted from the actual camera rotation
to obtain the rotation estimate, since their respective axes of rotation do not
align. Finite 3-D rotations are, in general, not vectors and therefore cannot
be summed up vectorially. It is found that the magnitude of errors in cR̂c∗

increases quickly as the camera deviates from the reference viewpoint. For
small camera motions throughout viewpoints 4-9, the rotation estimation
errors are less than 5◦. The largest error is 15◦ for viewpoint 12, which also
has very few matched features.

Figure 3.9 show the magnitude of errors in the estimated translation ct̂c∗
for the image sequence shown in 3.6. The magnitude of the actual trans-
lation ctc∗ corresponding to each viewpoint is also shown for comparison.
Viewpoint 7 is used as the reference image for establishing the canonical
frame of reference. Since the recovered translation is valid only in direction
(not magnitude), the translational error is defined as the angle θt between
the normalized vectors ctc∗/‖ctc∗‖ and ct̂c∗/‖ct̂c∗‖. It is found that errors in
the direction of translation (10◦− 20◦) are generally greater than the errors
in rotation (average 3◦ − 8◦). However, the magnitudes of the errors in ct̂c∗
appear to settle at a constant level (20 degrees on the left, 10 degrees on the
right) even as the camera deviates from the reference viewpoint, except for
viewpoint 12, for which there is a low number of matched features.

One direction for future work is to investigate whether affine invariant
image features would improve the estimate of H for large changes in camera
viewpoint. If not, then multiple training images of the target object taken
at 10- to 20-degree increments of rotation may be required to generate good
estimates of H over large viewing angles. Another direction is to investigate
whether Kalman filtering would improve the estimates of cRc∗ and ctc∗ by
incorporating tracking through successive frames. The current implementa-
tion only uses the previous solution to cRc∗ and ctc∗ to help determine the
correct solution to the decomposition of H. It does not track the pose of
the virtual plane, nor the rotation and translation parameters of the cam-
era. It remains to be verified whether additional information provided by
the Kalman filter would improve the robustness of the estimations in the
presence of image noise.
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Figure 3.8: Rotational accuracy of homography decomposition for visual
servoing.

Figure 3.9: Translational accuracy of homography decomposition for visual
servoing.
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3.5 Summary

Experiments using an eye-in-hand camera validate homography-based Eu-
clidean reconstruction as a useful method for recovering from images, rota-
tional and scaled translation parameters that can be used to improve the
predictability of visual servoed motion. The definition of a virtual plane
formed by any three feature points on an object allows an image-to-image
homography to be associated with any 3-D object, planar or non-planar.
The virtual parallax method uniquely solves for that homography when 5
or more additional feature points are available. Analysis and simulations of
visual servoing tasks in this chapter validate homography-based visual ser-
voing as a useful method for positioning a robot to target objects without
a priori models. The 2-D/3-D hybrid definition of the error metric in 21/2-
D visual servoing results in an upper triangular Jacobian so that camera
translation and rotation can be decoupled in the control law, resulting in
efficient camera motion, as shown in simulation reults.

However, experimental results using images also show the limits of using
homography decomposition for open-loop path planning, especially when
precise Cartesian or joint-space trajectories are required for obstacle avoid-
ance. The accuracy of the rotation and translation estimated from a ho-
mography tends to suffer when the camera displacement is large due to:
i) an insufficient number of matched feature points between very different
viewpoints; and ii) the sensitivity of homography decomposition to image
noise and to real-image deviations from projections produced by the clas-
sical pinhole-camera model. Regardless of the number of matched features
available for homography estimation, only three feature points are used by
the homography estimation to define the virtual plane. The reliance of the
virtual parallax method on these three chosen feature points explains why
the recovered parameters are so sensitive to image noise. The next chapter
discusses an improved method of pose estimation, using a model of the tar-
get object with an extended Kalman filter (EKF) to obtain pose estimates
that are more robust against image noise and modelling errors.
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Robust Pose Estimation

4.1 Introduction

In the previous chapter, it was shown that the partial recovery of Euclidean
parameters from images could be used to significantly improve the perfor-
mance of visually servoed motion. Specifically, knowledge of the required
rotation and the direction of translation (recovered from a homography) al-
lowed the visual servoing controller to execute the positioning task in a near
straight-line motion in Cartesian space, resulting in efficient camera mo-
tions. Not only did this approach minimize the chance of exceeding robot
joint limits during servoing, it improved the predictability of the servoed mo-
tion and avoided the problem of camera retreat. However, the rotation and
translation parameters recovered from homography estimation and homog-
raphy decomposition were found to be extremely sensitive to image noise.
One reason for this sensitivity is that the partial pose estimates were ob-
tained without tracking and that the estimation was executed without any
assumptions regarding the structure of the observed scene (except that a
virtual plane could be formed by any three feature points).

This chapter discusses the use of an extended Kalman filter (EKF), in
conjunction with a model of the target object, to improve the robustness of
the pose estimates against image noise and model disturbances. The EKF
is an nonlinear extension of the classical Kalman filter, which is a linear
optimal estimator. The EKF directly estimates the states of a nonlinear
system using a bootstrap method. The nonlinear system is linearized around
the current Kalman filter estimate, while the Kalman filter estimate of the
nominal trajectory is, in turn, based on the linearized system. A nonlinear
observer is required for pose tracking, due to the nonlinearity in the camera
photogrammetric equations and in the parametric representations of 3-D
rotations. An added benefit of the EKF is that it can be implemented to
track the velocity of the target object, thus enabling the use of position-
based visual servoing (PBVS) with respect to a moving object.

The focus of the chapter is the control of an eye-in-hand robot using the
PBVS approach. The EKF is used to estimate the pose of a (potentially)
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moving target object from images, while a state-feedback controller is used
to drive the eye-in-hand robot to a desired pose with respect to the object.
Analysis and synthesis of the observer and the controller is performed within
the framework of state-space control. The PBVS controller is described in
the first section, while the observer is derived in the second section. Follow-
ing, the performance of PBVS is compared against that of standard methods
using a number of visual servoing tasks. A section is devoted to the discus-
sion of the transient performance of the EKF in the presence of image noise
and modelling errors, and its effect on the PBVS controller.

A well-known problem encountered in PBVS is that the position-controlled
camera trajectory may cause the target object to exit the field of view during
servoing, resulting in pose estimation failure and servo failure. A method us-
ing adaptive control gains for PBVS (borrowed from hybrid servoing [27]) is
proposed in this chapter to address the field-of-view problem. This method
exploits the decoupled control of camera translation and rotation available
in PBVS to ensure that the target stays within the camera’s field of view,
under the assumption of a sufficiently fast image frame rate.

Another common problem that is encountered in PBVS is that full con-
trollability of the camera is lost when its position is at a robot singularity.
Near the singularity, the required servoing motion may also result in large
joint velocities. A practical method of restoring the controllability of visual
servoing methods near robot singularities is discussed in this chapter.

4.2 Controller Design

4.2.1 Plant Model

In position-based visual servoing (PBVS), the 6-dimensional state vector is
an error function, ePBVS(t), consisting of the following Euclidean parame-
ters:

ePBVS(t) =
[
c∗tc, θr

]T (4.1)

where

• c∗tc are the x-y-z coordinates of the current camera frame expressed
in the desired camera frame.

• θ and r are, respectively, the angle and axis of rotation extracted from
c∗Rc, the rotation matrix that expresses the coordinates of the current
camera frame in the coordinates in the desired camera frame.
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When the norm of the error function, ePBVS(t), is zero, the current
camera frame is aligned with the desired camera frame. Since the translation
and orientation errors between the current and the desired camera frame do
not naturally correct themselves, the autonomous system has the following
form:

ėPBVS(t) = AcontrolePBVS(t), (4.2)

where
Acontrol = 06×6. (4.3)

The inputs to the system are the rate of change of the joint angles con-
trolled by the motors of the 6-DoF eye-in-hand robot:

q̇ =
[
q̇1 q̇2 q̇3 q̇4 q̇5 q̇6

]T
. (4.4)

Most vision-based control approaches consider only robot kinematics,
since the bandwidth for visual control is usually limited by the camera frame
rate (in Hertz) and image processing times (in milliseconds). Robot dynam-
ics are generally taken into account with a low-level PID controller using
joint encoder feedback.

To solve for the state differential equations, it is necessary to derive
the relationship between the input, q̇, and the rate of change of the error
function ėPBVS(t). At the position level, the error space, the camera space
and the robot space are all related by nonlinear mappings that are neither
surjective nor injective. Fortunately, the controller is designed at the velocity
level where they are related by linear Jacobian matrices that are functions
of only the positional state variables. The velocity of the camera has the
following three translational and three rotational components:

vc =
[
xvc yvc zvc xwc ywc zwc

]T
. (4.5)

The velocity of the camera vc is related to the velocity of the joint angles
q̇ by the robot-manipulator Jacobian:[

vc
]

= Jrobot|q
[
q̇
]
. (4.6)

The exact form of Jrobot is a function of the kinematic structure of the
eye-in-hand robot. Methods for determining Jrobot can be found in texts
such as [49]. The rate of change of the error function ėPBVS(t) is related to
the velocity of the camera vc by the interaction matrix LPBVS:[

ėPBVS

]
= LPBVS|e

[
vc
]
. (4.7)
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For this definition of ePBVS(t), the interaction matrix has a simple de-
coupled form between translational and rotational motions [13]:

LPBVS =
[
c∗Rc 0

0 Lθr

]
, (4.8)

where

Lθr = I3×3 −
θ

2
[
r
]
× +

(
1− sinc(θ)

sinc2( θ2)

)[
r
]2
× . (4.9)

Substituting for ėPBVS(t) in terms of q̇ using the Jacobian relationships,
the state differential equation for the non-autonomous system is obtained
as follows:

ėPBVS(t) = AcontrolePBVS(t) + BcontrolFcontrolq̇(t), (4.10)

where

Acontrol = 06×6, (4.11)
Bcontrol = I6×6, (4.12)

Fcontrol =
[
LPBVS|e

] [
Jrobot|q

]
. (4.13)

4.2.2 Analysis of Controllability

The system is completely controllable if, and only if,[
λI6×6 −Acontrol BcontrolFcontrol

]
(4.14)

has rank n = 6. Since the eigenvalues of Acontrol are all zero, this matrix
evaluates to: [

06×6 LPBVS|eJrobot|q
]
. (4.15)

Thus, LPBVS|e and Jrobot|q are required to have full rank in order for
the system to be completely controllable. Due to the nature of the decou-
pled form of LPBVS|e and the definition of the rotation matrix c∗Rc and its
constituents θr, LPBVS|e has no singularities for the entire error space. In
fact, the inverse of LPBVS|e always exists and is constant:

L−1
PBVS =

[
c∗RT

c 0
0 I3×3

]
. (4.16)

However, the same cannot be said for the robot-manipulator Jacobian.
For example, when the configuration of the robot is such that two rotational
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axes (or two translational axes) are collinear, there is redundant motion
along the collinear direction. Since the robot only has 6 DoF in total, a
DoF must be lost in another direction, reducing the rank of the Jacobian.
The Jacobian relationship is also undefined for camera poses that are outside
the dexterous workspace of the robot. Therefore, the system is completely
controllable if and only if the commanded camera pose is not at a manipu-
lator singularity (i.e. Jrobot|q has full rank) and does not exceed the robot’s
joint limits or reach. A method to address this partial loss of controllability
is discussed in Appendix C.

4.2.3 State-Feedback Controller with Adaptive Gains

The purpose of PBVS is to introduce state feedback to ensure exponential
convergence towards zero of each component in the error function:

ėPBVS = −λePBVS, (4.17)

where λ > 0 is the convergence rate. The input to the system from the state-
feedback controller is chosen to achieve the closed-loop behaviour defined by
Equation 4.17 for the open-loop system defined by Equation 4.10. Combin-
ing the two equation results, the required input from the state-feedback
controller is:

q̇ = −λ
[
J−1

robot|q
] [

L−1
PBVS|e

]
ePBVS(t) (4.18)

From Equation 4.17, −λ corresponds to the desired eigenvalues of the
system, which must be in the open left-half plane to achieve asymptotic sta-
bility. Due to visual constraints, however, a constant value for λ is typically
insufficient over the entire course of visual servoing. When the initial cam-
era pose differs significantly from the desired camera pose, the target object
has a large chance of leaving the camera’s field of view during the servoing
trajectory, leading to a discontinuity and subsequent failure in the control
law. An adaptive control law is implemented here to address this issue:

ėPBVS = −λDadaptiveePBVS (4.19)

where Dadaptive is a positive diagonal gains matrix of the following form:

D =


1 0 0 0
0 fu(u) 0 0
0 0 fu(u)fv(v) 0
0 0 0 Ifu(u)fv(v)

 . (4.20)
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Each diagonal element of Dadaptive is a function of the pixel coordinates
(u, v) of the object’s center. The bell-curve function f(x) is defined as:

f(x) =

exp

(
−

(
x− 1

2
[xmin+xmax]

)2n

(x−xmin)m(xmax−x)m

)
if xmin < x < xmax

0 otherwise

(4.21)

with 0 ≤ f(x) ≤ 1 and two parameters m and n are used to design the form
of the bell-curve. The parameters umin, umax, vmin, vmax correspond to the
size of the CCD array of the camera.

Combining Equation 4.19 with Equation 4.10, the input to the system
from the state-feedback controller with adaptive gains has the following form:

q̇ = −λ
[
J−1

robot|q
] [

L−1
PBVS|e

] [
Dadaptive

]
ePBVS(t) (4.22)

4.2.4 Camera Field-of-View Constraints

The elements of Dadaptive are used to establish hierarchical control for each
component in the error function. They act as a band-pass filter, ensuring
that the image coordinates (u, v) of the target frame are well away from the
periphery of the image before large changes in depth and orientation are
allowed to occur. In other words, if at any point in time during servoing
the target object is about to leave the field of view, then the degrees of
freedom corresponding to camera rotation and approach in the z direction
are temporarily frozen, so that x− y translational correction can bring the
object back towards the center of the image.

The resulting system using Dadaptive is stable in the sense of Lyapunov
for a sufficiently fast camera frame rate. 0 ≤ f(x) ≤ 1 does not affect the
sign of the original eigenvalues. The largest Jordan block is of size 1, so
even if more than one eigenvalue is set to zero, the system will not become
unstable. At worst, all gains may be severely attenuated and visual servoing
may be brought to a halt. The transient performance of the control may
suffer due to the adaptive gains, but at least it will not become unstable due
to the object exiting the field of view.

4.3 Observer Design

4.3.1 Plant Model

Given the decoupled form of the control law in Equation 4.22, the challenge
of PBVS is in obtaining an accurate estimate of the target pose. Even when
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the complete calibration of the camera is given and an accurate model of
target object is known, the pose estimate can still be very sensitive to image
noise in the components related to out-of-plane translations and rotations.
Since the image measurements are only available on a frame-by-frame basis,
a discrete-time state-space dynamic model is proposed to track the pose over
successive image frames to increase the robustness of the pose estimates to
image noise and disturbances.

The relative pose of the target object is affected independently by the
motion of the camera and by the motion of the target object. Although the
motion characteristic of the target object is generally unknown, the camera
self-motion can be calculated from robot kinematics and encoder measure-
ments. Therefore, only 12 states are required to represent the relative object
pose and the motion of the target object:

xobsv =
[
cwo vo

]T (4.23)

where cwo is the relative pose of the object with respect to the camera,
parameterized as x-y-z translation and roll-pitch-yaw orientation angles:

cwo =
[
cXo

cYo
cZo

cφo
cαo

cψo
]T
. (4.24)

The second part of the state vector consists of vo, the velocity of the
target object with respect to a global reference frame. It is expressed in
terms of its linear and angular velocity in the x-y-z directions:

vo =
[
xvo yvo zvo xwo ywo zwo

]T
. (4.25)

The velocity of the camera vc is modelled as an input into the system,
since the camera self-motion can be determined with high certainty from
the robot kinematics and the joint encoder measurements:

uobsv = vc =
[
xvc yvc zvc xwc ywc zwc

]T
. (4.26)

Note that vo and vc have the same form. From linear superposition,
they can be subtracted from one another to obtain relative velocities:

cvo =
[
vo
]
−
[
vc
]
. (4.27)

During visual servoing, the measurement outputs used for pose estima-
tion are the image pixel coordinates of the feature points of the object that
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are visible in the camera’s field of view. If n feature points are being used,
then the output vector is:

zobsv =
[
u1 v1 u2 v2 · · · un vn

]T
. (4.28)

The state difference equations and output equations are derived in the
next section based on these definitions of states, inputs and outputs.

4.3.2 State Difference Equations

The relative pose (cwo)k of the object with respect to the camera at iteration
k is a function of its pose at iteration k− 1 and its higher order derivatives.
Using a Taylor series expansion and a sampling period δt, a constant velocity
model is chosen where derivatives of 2nd order or higher are approximated
as a zero-mean Gaussian disturbance vector 1γk−1:

((cwo)k) ≈ ((cwo)k−1) + δt((cẇo)k−1) + 1γk−1. (4.29)

The above approximation is valid under the assumption that both the
object and the camera have smooth motions and experience low accelera-
tions. It is assumed that most accelerations remain near zero and that the
probability of high accelerations fall off with a Gaussian profile. This model
generally results in dynamic modelling errors when there are large changes
in the relative velocity. These errors are represented by disturbance inputs
1γk−1 to the state equations.

The following Jacobian relationship exists between the change of the pose
parameters (cẇo)k−1 and the relative velocity of the object with respect to
the camera :

(cẇo)k−1 =
(
J−1
φαψ|(cwo)k−1

)
(cvo)k−1 (4.30)

cẊo
cẎo
cŻo
cφ̇o
cα̇o
cψ̇o


=



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 cosφ sinα

cosα sinφ sinα
cosα 1

0 0 0 − sinφ cosφ 0
0 0 0 cosφ

cosα
sinφ
cosα 0





c
xvo
c
yvo
c
zvo
c
xwo
c
ywo
c
zwo

 . (4.31)

The Jacobian is nonlinear in terms of the state variables, and its inverse
is undefined for α = ±π

2 , known as the gimbal lock configuration. This issue
is further addressed Section 4.3.5. Using the Jacobian relationship, the state
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difference equation can be expressed in terms of the states (xobsv)k−1, inputs
(uobsv)k−1 and disturbance variables γk−1:

((cwo)k) ≈ ((cwo)k−1) + δt

(
J−1
φαψ|(cwo)k−1

)
((cvo)k−1) + 1γk−1 (4.32)

= ((cwo)k−1) + δt

(
J−1
φαψ|(cwo)k−1

)
((vo)k−1 − (vc)k−1) + 1γk−1.

(4.33)

Similarly, the velocity of the object with respect to the global reference
frame at iteration k is a function of its pose at iteration k− 1 and its higher
order derivatives. Using a Taylor series expansion and a sampling period δt,
a constant velocity model is chosen where derivatives of 2nd order or higher
are approximated as a zero-mean Gaussian disturbance vector 2γk−1. The
second part of the state difference equations is as follows:

(vo)k = (vo)k−1 + 2γk−1. (4.34)

4.3.3 Output Equations

To derive the output equations for pose estimation, a 3-D model of the target
object is required. An object frame must be established so that its pose can
be defined and so that the 3-D geometric relationships between its feature
points can be described. Let (oXj ,

oYj ,
oZj) be the coordinates of feature

point j with respect to the object frame in the model. The coordinates
(oXj ,

oYj ,
oZj) of feature point j in the camera frame is a function of the

relative target object pose cwo with respect to the camera:


cXj
cYj
cZj
1

 =


cφcα cφsαsψ − sφcψ cφsαcψ + sφsψ

cXo

sφcα sφsαsψ + cφcψ sφsαcψ − cφsψ cYo
−sα cαsψ cαcψ

cZo
0 0 0 1



oXj
oYj
oZj
1

 . (4.35)

Given the camera calibration parameters, a predictive model for the pixel
coordinates (uj , vj) corresponding to the projection of feature point j onto
the image plane can be found:

uj =
f(cXj)
ku(cZj)

+ u0; vj =
f(cYj)
kv(cZj)

+ v0 (4.36)

50



Chapter 4. Robust Pose Estimation

where (u0, v0) are the images coordinates of the principal point, f is the
focal length, and ku and kv are the number of pixels per unit distance in x
and y, respectively.

Finally, an output model describing the relationship between the output
measurement (zobsv)k and the states (xobsv)k is obtained, with the image
noise ηk modeled with zero-mean Gaussian probability distributions:

zk = G((xobsv)k) + ηk, (4.37)

where
G(xobsv) =

[
u1 v1 · · · un vn

]T
, (4.38)

and the subscript k denotes the kth observation. Since the measurable pixel
coordinates of the image features are nonlinear functions of the 6-DoF pose of
the target object, a nonlinear observer is required. Since the measurements
arrive frame-by-frame at fixed sampling intervals, the nonlinear observer
must be implemented in discrete-time.

4.3.4 Observer Model Summary

In summary, the nonlinear discrete state-space model for pose estimation
and tracking has the following parts:

States: (xobsv)k =
[
(cwo)k (vo)k

]
Input: (uobsv)k =

[
(vc)k

]
Disturbance: γk =

[
1γk 2γk

]T
Noise: ηk =

[
ηk
]T

Nonlinear State Difference Equations:

(xobsv)k = F((xobsv)k−1, (uobsv)k−1) + γk−1 (4.39)

=

[
((cwo)k−1) + δt

(
J−1
φαψ|(cwo)k−1

)
((vo)k−1 − (vc)k−1)

((vo)k−1)

]
+
[

1γk−1

2γk−1

]
(4.40)

Nonlinear Output Equations:

(zobsv)k = G((xobsv)k) + ηk. (4.41)
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4.3.5 Analysis of Observability

It is difficult to obtain a closed form analytic solution for the conditions
that guarantee complete observability for this nonlinear discrete system.
Nonetheless, conditions for which it is not completely observable can be
derived from the nonlinear difference equations. Specifically, the system will
not be fully observable when α = ±π

2 , since the Jacobian
(
J−1
φαψ|(cwo)k−1

)
loses rank and its inverse does not exist. Physically, when α = ±π

2 , the
axis of rotation of φ and the axis of rotation of ψ are collinear. From the
image output point of view, the two orientation states are indistinguishable
from each other. Therefore, not all states are completely observable in this
singular configuration. To retain observability near singularities, a damped-
least squares inverse [50] of the Jacobian is used, similar in form to the
method of restoring controllability (Appendix C).

4.3.6 Extended Kalman Pose Estimation

An extended Kalman filter is implemented to provide a near-optimal recur-
sive update for the nonlinear discrete observer for the system presented in
this section. The complete set of equations for the implementation of EKF is
described in Appendix D for the reader’s convenience. For this EKF pose es-
timation model, both the state difference equations F((xobsv)k−1, (uobsv)k−1)
and the output equations G((xobsv)k) must be linearized about the current
state estimate at each iteration k.

4.4 Relationship Between Observer & Controller
States

The states of the controller and the states of the observer are expressed us-
ing different parameterizations, each in their own reference frames to best
suit its own development and analysis. Recall:

Controller States: ePBVS =
[
c∗tc θr

]
Observer States: xobsv =

[
cwo vo

]T
The final step is to derive the relationship between the two sets of states.

The reference signal for the controller is defined as cw∗o, the desired relative
pose of the object with respect to the camera frame:

cw∗o =
[
cX∗o

cY ∗o
cZ∗o

cφ∗o
cα∗o

cψ∗o
]T
. (4.42)
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The observed states can be converted into the states required by the
controller using the following relationships:

c∗tc =

cX∗ocY ∗o
cZ∗o

−Rdiff

cXo
cYo
cZo

 , (4.43)

θr =
cos−1

(
1
2Tr(Rdiff)− 1

)
2 sin

(
cos−1

(
1
2Tr(Rdiff)− 1

)) , (4.44)

where

Rdiff = R−1(cφo,c αo,c φo)R(cφ∗o,
c α∗o,

c φ∗o) =

r11 r12 r13

r21 r22 r23

r31 r32 r33

 . (4.45)

Note that vo does not appear in the calculation of ePBVS(t). Strictly
speaking, the state-feedback controller only requires cwo to be observed.
The purpose of including the velocity of the target object vo as part of the
states in the observer is to allow the observer to track a potentially moving
target object. Camera self-motion is also incorporated as input into the
Kalman state prediction, so that it can better track the pose of the object
during fast camera motions. Experimental results show that this method
offers an improvement over the traditional approach of modeling all motions
as random disturbances.

4.5 Simulation Results

4.5.1 Purpose and Setup

The purpose of these simulations is to evaluate the image trajectories, the
Cartesian trajectories and the robot trajectories that result from visual ser-
voing using online pose estimation. The observed target is a non-planar
object with 9 identifiable feature points. The target object is positioned
above the robot in these experiments to increase the effective range of mo-
tion available to the robot for servoing, since robot joint limits are not ex-
plicitly managed in the servoing control law. The simulations are performed
on a 6-DoF CRS-A465 robot with a Hitachi KP-D8 camera amounted on
the end-effector to reflect the equipment available in the lab.

The first two robot positioning tasks are similar to those defined in Sec-
tion 3.3.1. The first is a translational task that requires the robot end-
effector to approach the target object with small out-of-plane rotations. The
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second is a rotational task of 180 degrees about the optical axis. Both tasks
are executed by applying PBVS with respect to the stationary target frame.
The resulting trajectories are compared against those obtained using IBVS,
as presented in Section 3.3.2, to discern any improvements to the observed
motion.

The third robot positioning task presents the camera field-of-view prob-
lem that commonly affects PBVS. This task is executed by applying PBVS
with respect to the camera frame, and involves significant out-of-plane rota-
tions and coupled with large translational motions. Due to an initially poor
pose estimate, the target object is brought outside of the camera’s field of
view during PBVS. An adaptive gains controller is tested with PBVS to de-
termine whether the camera field-of-view constraints can be satisfied, while
simultaneously completing the servoing task.

The fourth robot positioning task evaluates the tracking performance
of PBVS with an EKF in the presence of severe image noise. The robot
is commanded to maintain a relative pose with respect to a moving target
object. The target object moves with a constant velocity of 0.1m/s in the
x direction and the image noise has a standard deviation of ±2 pixels.

4.5.2 Position-Based Visual Servoing

The form of the state-feedback adaptive gains controller and that of the EKF
observer for position-based visual servoing (PBVS) is described in Sections
4.2 and 4.3 respectively.

Figure 4.1 shows the results from the first robot positioning task as de-
scribed in Section 4.5.1 using PBVS for feedback control. The point ‘o’
designates the start of the motion and the point ‘x’ designates the end of
the motion. For this task (mainly translation with some small out-of-plane
rotations), PBVS generates acceptable image trajectories and Cartesian tra-
jectories. Using PBVS, the image trajectories of the feature points are more
curved than the near-straight-line trajectories that are obtained using IBVS,
so there is a significant chance that the image trajectories will exit the field-
of-view. Recall that in PBVS, the control metric is expressed purely in the
position domain, so there is no direct control over the image trajectories.
Nonetheless, the resulting Cartesian trajectory is extremely efficient, as it
is a straight line connecting the camera start-position to the camera end-
position. This property makes it easier to predict the motion of the camera
using PBVS for the purpose of collision avoidance and joint-limit avoidance.
These results show that the trajectories generated with PBVS are sometimes
acceptable, for large translational tasks with some out-of-plane rotations.
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Figure 4.1: PBVS of a task requiring translations and out-of-plane rotations:
image trajectory (left) and Cartesian trajectory (right).

Figure 4.2 shows the results from the second robot positioning task as
described in Section 4.5.1 using PBVS for feedback control. Unlike IBVS
which forces the camera to retreat (resulting in the violation of joint limits),
PBVS is able to correctly recognize that a 180-degree rotation is required,
using the pose estimation obtained from the EKF. PBVS successfully avoids
the problem of camera retreat. The Cartesan trajectories show that PBVS
executes the required rotational motion, without inducing any extra trans-
lational motion. This property of decoupled control illustrates one of the
many benefits of using pose estimation, when a model of the target object
is available, to simplify visual servoing motion. An additional advantage of
obtaining an accurate pose estimation through a robust method like EKF is
that it can be subsequently used for path planning.

4.5.3 Camera Field-of-View Constraints

Results from the third robot positioning task show that the adaptive-gains
PBVS controller presented in Section 4.2.3 works well for keeping the target
object within the camera’s field of view. Figure 4.3 shows a visual servoing
task in which the target object exits the camera’s field of view when PBVS is
used. In contrast, when the adaptive gains are applied, the rotational veloc-
ities of the camera become severely attenuated as the object moves towards
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Figure 4.2: PBVS of a task requiring a rotation of 180 degrees about the
optical axis: image trajectory (left) and Cartesian trajectory (right).

the camera’s periphery. The object is brought back towards the center of
the image by the remaining translational degrees of freedom. Control of the
camera’s rotation resumes when the target object returns back to the center
of the region of interest. Although there are partial losses of visual features
during the motion, pose estimation is still possible through the modification
to the EKF. The entries in the covariance matrix that correspond to the lost
features are increased to eliminate their influence on the pose estimate. The
entries are returned to their normal values when the features return back
into the field of view. In order for this adaptive-gains approach to work,
the visual updates from the camera must be sufficiently fast, in order to
capture the violating image point as it enters into the high penalty region
of the camera’s periphery prior to its exit from the field of view. Using an
excessively wide penalty region tends to slow down the convergence of the
overall trajectory. The bell-curve parameters m = 5 and n = 5 were chosen
experimentally to give acceptable results.

4.5.4 Visual Servoing Near Robot Singularities

Simulations show that the visual servo control schemes become ill-conditioned
and may result in large joint velocities when the camera is driven near the
kinematic singularities of the robot. Path planning methods can be used to
set up singularity-free waypoints for visual servoing. However, this requires
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Figure 4.3: Using adaptive gains with hierarchical control of camera trans-
lation and rotation to keep the target object within the field of view: initial
image (top left); desired image (top right); target object leaves the field of
view under PBVS control (bottom left); target object remains in view using
adaptive gains with PBVS (bottom right).
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the robot trajectory to be known ahead of time. In many visual servoing
applications, the trajectory of the camera is not known prior to servoing, so
measures must be taken to account for unexpected trajectories through robot
singularities. In the simulations, robot singularities were addressed for vi-
sual servoing using the damped least squares inverse method using Equation
C.1 and Equation C.3 (from Appendix C). The maximum damping factor,
κmax, was experimentally chosen to be 0.02, with the size of the singular
region, ε, defined to be 0.04 to give acceptable results. Larger values tend
to bring the target object out of the field of view near singularities. This
method did not suffer from numerical drift even when the inverse kinematics
was implemented in discrete time. The visual inputs acted as feedback to
correct for positional errors, so that additional feedback correction terms
were not required.

4.5.5 Tracking performance of EFK and PBVS

To further evaluate the tracking performance of PBVS, a tracking task is
simulated with a moving target object. The target object moves with a
constant velocity of 0.1m/s in the x direction and the image noise has a
standard deviation of ±2 pixels.

The transient behavior of the EKF observer in the presence of image
noise is shown in Figure 4.4. At the start of the task, the pose estimate tends
to oscillate about the true solution, indicating that the initialization for the
state covariance matrix is inaccurate. As the covariance matrix is refined
over the next iterations, the Kalman gain becomes more conservative, and
the estimates become more robust as they gradually converge towards the
real solution. It is found that an arbitrary initiation of the state covariance
matrix to the identity matrix is sufficient to achieve convergence. Figure 4.5
shows the evolution of errors in the pose estimation.

The transient behavior of the state-feedback adaptive gains PBVS con-
troller while tracking a moving object is shown in 4.6. The oscillations in
the camera motion are directly related to the oscillations in the estimate of
the object pose, caused by measurement noise in the images. It can be seen
that the accuracy of the camera pose (controller) is limited by the accuracy
of the pose estimates (observer). The pose estimates converge quickly and
the camera motion becomes smoother as the true pose solution is reached.
Unfortunately, a state-steady error still exists in the X component of the
camera pose due to the form of the proportional velocity controller. This
error can be reduced by the use of a proportional-integral controller in visual
servoing. Figure 4.7 shows the evolution of pose-following errors.
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Finally, the transient behavior in the EKF estimate of the target object’s
velocity is shown in Figure 4.8. Because the velocity states are not directly
observable from the output equations, the estimates take many more itera-
tions to converge. The target object’s velocity estimate is shown to converge
to 0.1 m/s in the X direction.

4.6 Summary

An extended Kalman filter (EKF) is implemented in this chapter to provide
robust estimates of the target’s 6-D pose from 2-D image measurements.
Simulation results show the ability of the EKF observer to obtain accurate
pose estimates despite the presence of large image noise and disturbances.
The use of an object model and state tracking to regularize the pose estima-
tion problem shows that significant improvements can be obtained over the
method of homography estimation and decomposition. The EKF observer
also produces a state covariance matrix, which is useful for quantifying the
level of uncertainty in the target object’s pose. In contrast to the EKF ob-
server implemented by Wilson et al. in [13], the EKF observer implemented
here incorporates camera self-motion as an input into the state prediction
to improve tracking during fast camera movements. The absolute velocity
of the target object is also tracked as a state, so that the object does not
have to be assumed to be stationary.

Simulation results validate position-based visual servoing (PBVS) as a
useful method for positioning an eye-in-hand robot with respect to a target
object. The definition of the error metric based on 3-D parameters results in
an upper triangular Jacobian that permits the decoupled control of camera
translation and rotation. Decoupled control allows an adaptive control law
to be designed to ensure that the target object remains within the field of
view during visual servoing. PBVS results in efficient Cartesian motions,
although the robot’s joint-space may still be unfeasible. A method of han-
dling robot singularities during visual servoing is also presented, using a
damped least-squares inverse kinematic solution to restore controllability.
However, the remaining issues related to the robot-related constraints such
as joint-limits constraints, joint-velocity constraints, and whole-arm colli-
sion constraints still need to be addressed. In the next chapter, the pose
estimate that is obtained from EKF will be used to enable joint-space path
planning for satisfying these constraints.
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Figure 4.4: Transient behaviour of the EKF pose estimate: translation pa-
rameters (top) and rotation parameters (bottom).
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Figure 4.5: Transient behaviour of pose estimation errors in the EKF: trans-
lation errors (top) and rotation errors (bottom).
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Figure 4.6: Transient behaviour of the PBVS controller with an EKF ob-
serving a target object moving at 0.1m/s in the X direction: camera position
(top) and camera orientation (bottom).
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Figure 4.7: Pose-following errors in the PBVS controller with an EKF ob-
serving a target object moving at 0.1m/s in the X direction: camera position
errors (top) and camera orientation errors (bottom).
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Figure 4.8: Transient behaviour in the EKF estimate of the target object’s
velocity: translation rate of change (top) and rotational rate of change (bot-
tom).
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Chapter 5

Path Planning for Constraint
Avoidance

5.1 Introduction

In the previous chapters, it was shown that pose estimation can be used to
provide significant improvements to the predictability of the visual servoed
robot motion. Camera field-of-view constraints were addressed through the
use of an adaptive controller that acted as a filter to establish hierarchi-
cal control of the six degrees of freedom of the camera to restore visibility.
A damped least-squares inverse Jacobian method was implemented to gen-
erate acceptable trajectories while servoing near robot joint singularities.
However, despite these improvements to the visual servo control law, the
avoidance of constraints that are related to the robot, such as joint limits
and whole-arm collisions, could not be formally guaranteed.

The chapter explores the use of path planning as a prerequisite to visual
servoing for managing robot-related constraints. The idea is to execute
as much of the required motion as possible using planned motion, while
using visual servoing to compensate for uncertainties in the target object’s
pose, executed in two separate stages. A path planning stage is useful since
there are a variety of techniques [51] [52] for handling constraints when the
robot’s joint-space motion is known a priori, while the same problem is much
more difficult for visual servoing since the generated motion is difficult to
predict. Using this two-stage approach, the servoing motion can be kept to
a minimum to avoid possible violations of constraints. The path planning
methods presented in this chapter work well for solving difficult problems
in collision avoidance, such as navigating a manipulator arm in a tightly
cluttered workspace. In contrast, the next chapter considers a method that
allows planning and servoing to be executed simultaneously using model
predictive control (MPC), to avoid whole-arm collisions with obstacles that
do not tightly constrain the robot motion.
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5.2 Path Planning Requirements

The objective of path planning is to define a sequence of configurations
that a robot should follow in order to accomplish its positioning task, while
satisfying field-of-view, joint-limit, and collision constraints. Path planning
is typically executed offline based on some knowledge of the relationship
between the robot and its environment. Typically, path planning occurs
in the robot’s joint-space, rather than in image-space, since many of the
physical constraints (such as whole-arm collision and robot joint-limits) are
less sensitive to errors when they are expressed in the joint-space of the
robot. Image-based planning techniques [30] [31] [32] based on homography
decomposition, potential fields planning in Cartesian-space, and reprojection
back into the image, may work well for keeping the image trajectory in
the field of view, but they are insufficient for the avoidance of complicated
robot-related constraints. Homography decomposition is shown to suffer in
accuracy when the camera displacement is large. In the presence of errors,
motion that is planned in the image-space may not correspond to the desired
motion in the robot’s joint-space. Even if the homography decomposition is
completely accurate, repulsive potential fields applied to the position of the
camera can only prevent camera collisions with obstacles, while whole-arm
collisions can still occur. Discussions on path planning in this chapter will
concern the joint-space of the robot.

The planning of robot joint-space motion for camera positioning requires
a rough estimate of the target object’s pose. The methods for partial pose
estimation using homography decomposition or complete pose estimation
using an extended Kalman filter were discussed in the previous chapters.
The estimated pose may or may not be accurate, so visual servoing must
be used at the end of the planned motion to compensate for any modelling
errors. However, visual servoing can only be initiated with the target object
in view. The ideal scenario for the two-stage approach is where the target
object is in the camera’s field of view at the end of the planned motion.
However, there is no way of knowing this at the planning stage, since by the
nature of the problem, the object’s actual location is uncertain. The desired
path must be planned to keep the target object in view (based on its best
known position) while reaching the goal, such that if the target object exits
a region of interest representing the field of view (due to poor initial assump-
tions about it pose), the robot controller can immediately switch to visual
servoing to resume control and “close the loop” to the end goal. To allow
switching at anytime, the robot uses a series of linearly interpolated way-
points to achieve its planned motion, which can be interrupted between the
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Figure 5.1: Two-stage approach for planning and servoing: joint-space path
planning addresses collision and joint-limit constraints; visual servoing com-
pletes the motion correcting for uncertainties.

execution of waypoints. This two-stage approach for planning and servoing
is summarized in Figure 5.1.

5.3 Pose Calculations and Modeling

Let Fo be the canonical frame attached to the target object. The eye-in-hand
robot starts at an initial configuration qinitial and provides an initial view
of the target object with a pose, represented by Fo, that may vary for each
instance of robot servoing. For the purpose of the planning algorithm, it is
assumed that the target object remains stationary with respect to the robot
base frame Fb during all robot motion. The goal is to position the camera
Fc at a desired pose with respect to the target object Fo. This desired
pose is specified via an offline teach-by-showing method. The pose of the
object in the camera frame in the initial and desired images, respectively
(cTo)initial and (cTo)desired, are calculated using methods described in the
previous chapters (EKF pose estimation, homography decomposition with
known scale). There exists a fixed geometric relationship between the end-
effector frame Fe and the camera frame Fc, described by the homogeneous
transformation eTc. The target object is within the field of view of the
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Figure 5.2: Homogeneous transformations between coordinate frames used
for path planning: initial end-effector position (left) and desired end-effector
position (right). The corresponding images observed by the camera are
shown at the bottom.

camera at the start and at the end of the robot motion. A diagram of the
relationship between coordinate frames is shown in Figure 5.2.

The pose of the object with respect to the robot frame, bTo, can be
computed by the following:

bTo = (bTe)initial
eTc(

cTo)initial, (5.1)
bTo = (bTe)desired

eTc(
cTo)desired, (5.2)

where bTe is the homogeneous transformation mapping the robot base frame
Fb to the end-effector frame Fe. This relationship is a function of the well-
known forward kinematics of the industrial robot. The initial transformation
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is computed from the vector of the measured joint angles, q, as:

(bTe)initial = frobot(qinitial). (5.3)

It is necessary to determine the set of joint configurations Qdesired which
correctly position the camera relative to the target object. As discussed
in the following section, typical industrial robots have closed-form analytic
solutions to the inverse kinematics of its end-effector. Let there be p distinct
inverse kinematic solutions available:

Qdesired = {q1,q2, . . . ,qp} (5.4)

= f−1
robot(

bTe)desired (5.5)

where (bTe)desired is computed through the following expression:

(bTe)desired = (bTe)initial
eTc(

cTo)initial(cTo)
−1
desired(eTc)

−1 (5.6)

5.4 Inverse Kinematic Solutions for Path
Planning

The inverse kinematic calculations allow the path planning problem to be
expressed in the joint-space of the robot. For anthropomorphic robots with
with revolute joints such as the one depicted in Figure 5.2, there may be
multiple robot joint-space configurations that satisfy the desired relative
camera pose. If collision constraints are satisfied for the motion between
the start and end robot configurations (using a dynamic collision check-
ing method presented in Section 5.5.2), then a linear joint interpolation
method can be used to naturally satisfy robot joint-limit constraints, while
ensuring efficient robot motion towards the chosen robot configuration. For
given upper-bounds on joint velocities set by the manufacturers of industrial
robots, this solution minimizes the travel time required for the motion.

The method presented here is similar to the look-then-move approach
discussed in Section 1.2 for robot bin-picking, with the exception that visual
servoing is used at the end of the planned motion to correct for any mod-
elling errors or pose estimation errors. In the presence of errors, the chosen
inverse kinematic solution must attempt to provide continuous visibility of
the target object throughout the interpolated path, so that if the target ob-
ject exits a region of interest (ROI) representing the camera’s field of view
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at any time when the planned motion is executed, visual servoing can be
immediately activated to “close the loop” to the end goal.

It is well known that, due to the robot’s mechanical joint limits, not all
closed-form inverse kinematic solutions correspond to physically realizable
configurations. Once a mathematical solution is identified, it must be fur-
ther checked to determine whether it satisfies all constraints on the robot’s
range of joint motions. An extension of this requirement, for eye-in-hand
robots visual servoing, is to check whether the planned interpolated trajec-
tory for each inverse kinematic solution satisfies the field-of-view constraints
of the camera for a given target object. Although the final camera pose is
identical for all inverse kinematic solutions, the resulting interpolated cam-
era trajectories are quite different for each of these joint configurations, and
some of the interpolated trajectories may bring the target object outside of
the field of view.

A criterion for selecting an appropriate inverse kinematic solution for
joint-space path planning is that its interpolated trajectory must keep the
target object within the camera’s field of view, preferably in manner that is
robust to disturbances. The most robustly visible inverse kinematic solution
is defined as the one that maximizes the distance between the target object
and the camera field-of-view limits during the interpolated motion. The aim
is to select a robot configuration, which provides the largest buffer against
target pose estimation errors, to ensure that a continuously visible path will
most likely result during the execution of the planned path. This selection
criteria is described more rigorously in the next section.

5.4.1 Visibility Modelling

Let the target object consist of a number of visual features. The image co-
ordinates (u, v) of the n visual features are functions of the joint coordinates
of the robot, where:

u =
[
u1(q) · · · un(q)

]T
, (5.7)

v =
[
v1(q) · · · vn(q)

]T
. (5.8)

Let the robot path be parameterized by q(ζ) with ζ as the path vari-
able, where qinitial = q(0) and qdesired = q(1). Continuous visibility con-
straints require that all features remain within the field of view of the camera
throughout the interpolated robot path. The problem of selecting the most
robustly visible inverse kinematic solution is formulated as follows:
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argmax
qdesired∈Qdesired

min


|u(q(ζ))− umin|,
|u(q(ζ))− umax|,
|v(q(ζ))− vmin|,
|v(q(ζ))− vmax|


 , (5.9)

such that

umin ≤ u(q(ζ)) ≤ umax, ∀ζ, (5.10)

vmin ≤ v(q(ζ)) ≤ vmax, ∀ζ, (5.11)

where umin, umax, vmin, vmax are defined by the image region of interest
(ROI) representing the field of view of the camera.

To extend this method for handling objects with complicated features
(such as areas, lines, and image moments), an oriented bounding box is
defined with respect to the target object frame Fo such that it encloses the
target object and all its relevant visual features, as shown in Figure 5.3. A
union of bounding boxes is used to increase the planning resolution where
possible. In the presence of possible self-occlusion by the target object,
this method implicitly assumes that minimum subsets of visual features can
always be observed around the object (when it is within the field of view) for
use in visual servoing. The location of the corners of the bounding box(es)
are tracked to bound the visual location of the target object. The target
object is guaranteed to remain within the field of view of the camera if the
corners of the bounding box(es) are continuously visible.

71



Chapter 5. Path Planning for Constraint Avoidance

5.4.2 Simulation Results

A vision-guided positioning task is simulated using a model of the CRS-
A465 robot with a Sony XC-HR70 camera mounted on its end-effector. The
target object is a 20cm×20cm×20cm box made up of eight corner features
plus the geometric centroid. The goal is to select an inverse kinematic so-
lution that keeps all these features inside the camera’s field of view during
the interpolated robot motion. The camera starts from an initial overhead
view, and is required to approach the target object while performing sig-
nificant out-of-plane rotations. Of the eight closed-form inverse kinematic
solutions that are geometrically available to the CRS-A465 robot to achieve
the desired camera pose, four are outside of the robot’s mechanical joint
limits. The image trajectories corresponding to the remaining four inverse
kinematic solutions are shown in Figure 5.4. The point ‘o’ designates the
start of the motion and the point ‘x’ designates the end of the motion. The
motion is executed using linear joint-space interpolation. Note that only
two of the four solutions give satisfactory visual trajectories. Following the
constrained optimization criteria defined in Section 5.4.1, the solution in the
bottom left is chosen for joint-space path planning.

If no feasible trajectory (for ensuring target visibility) exists among the
inverse kinematic solutions, then additional intermediate robot configuration
must be specified to guide the robot towards its goal, while positioning the
target object within the camera’s field of view at each configuration. The
insertion of an additional visible robot configuration divides the field-of-view
problem into two sub-problems of the same form but of lesser difficulty, since
the robot’s interpolation distance is reduced. The problem of generating
intermediate robot configurations that position the target object within the
field of view is discussed in Section 5.6 within the framework of probabilistic
roadmaps (PRM).

5.5 Probabilistic Roadmaps

Probabilistic roadmaps (PRM) [51] [52] have emerged, over the past decade,
as one of the popular methods for robot path planning to simultaneously
manage multiple constraints. The intuition behind PRM consists of ran-
domly generating a large sample of robot configurations in joint-space, so
that various paths can be planned between these configurations for con-
straint avoidance. The sampled robot configurations make up the vertices
in an undirected graph. In the graph, two vertices are connected by an edge
if the trajectory between the two vertices satisfies a set of constraints. For
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Figure 5.4: Image trajectories resulting from four different inverse kinematic
solutions: two solutions result in the target object leaving the field of view
(top), two solutions result in a satisfactory image trajectories (bottom).
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Figure 5.5: PRM representation of the robot path planning problem: nodes
represent feasible robot configurations, edges represent feasible robot mo-
tions.

each type of constraint, there exists an efficient algorithm to check whether
the constraint is satisfied, as presented in the next section. Once several con-
nections of vertices exist between the starting robot configuration and the
goal robot configuration, the problem becomes a path search in a undirected
graph with edges weighted by joint-space distance or some other metric. Di-
jkstra’s algorithm, a well-known graph search technique, is used to provide
the most efficient path through the roadmap. An illustration of the PRM
framework in two-dimensional joint-space is presented in Figure 5.5.

5.5.1 Robot Joint-Limit Constraints

Path planning in the joint-space of the robot allows a natural representation
of joint-limits as a hyper-rectangular region in which feasible robot config-
urations exists. Robot joint-limit constraints are handled by restricting the
sampling of vertices to within the hyper-rectangular region. A separate al-
gorithm is not required to check whether robot-limit constraints are satisfied
between two adjacent vertices.
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5.5.2 Whole-Arm Collision Constraints

A dynamic collision checking (DCC) algorithm proposed by Schwarzer et
al. [53] is used to test for collisions between the robot and obstacles in the
workspace. DCC determines if a robot collides with the environment during
a motion between two configurations. Specifically, given the initial configu-
ration qi and the final configuration qf , DCC determines if the trajectory
defined by q(t) = qi + (qf − qi)t for 0 ≤ t ≤ 1 results in a collision.

As a prerequisite, DCC requires the robot configurations at the two ver-
tices to be collision-free. To guarantee collision-free motion in between the
configurations, DCC exploits the relationship between the shortest distance
between the robot and any obstacle, and the longest distance traveled by
any point on the robot during a trajectory. Let d(qi) be the shortest dis-
tance between an obstacle and the robot in the configuration qi. Similarly,
let d(qf ) be the shortest distance between an obstacle and the robot in the
configuration qf . Also, given a trajectory q(t), let `(q(t)) be the the longest
distance traveled by any point on the robot during the trajectory. That is,
as the robot moves according to q(t) each point on the hull of the robot
describes a 3-D curve and `(q(t)) represents the length of the longest of
these curves. Then, given d(qi), d(qf ) and `(q(t)), DCC determines that
the manipulator does not collide with the obstacle if

`(q(t)) < d(qi) + d(qf ) (5.12)

The intuition behind this inequality is that if every point on the robot
travels a short distance during q(t) and the robot is far enough from an
obstacle, then it is impossible for the robot to collide with the obstacle.
Equation (5.13) is a sufficient condition, but it is not a necessary condition.
If Equation (5.13) is not satisfied, the algorithm proceeds by dividing the
trajectory q(t) in two trajectories q(u) for 0 ≤ u < t/2 and q(v) for t/2 ≤ v ≤
1 and Equation (5.13) is evaluated for both trajectories. This procedure is
applied recursively until every trajectory satisfies Equation 5.13 or a collision
is detected in the process.

Further details on the DCC algorithm are presented in the next chapter,
where the specific form of `(q(t)) is discussed within the context of model
predictive control (MPC).

5.5.3 Camera Field-of-View Constraints

A dynamic visibility checking (DVC) algorithm proposed by Leonard et al.
[54] is used to test for visibility of a target object within the camera’s field of
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view. The hollow frustum formed by the camera’s field of view is modelled
as an physical extension of the robot manipulator. Using a method based
on the DCC algorithm, DVC determines if the hollow frustum “collides”
with the target object of interest, bringing the target object outside of the
camera’s field of view. Specifically, given the initial configuration qi and the
final configuration qf , DVC determines if the trajectory defined by q(t) =
qi + (qf − qi)t for 0 ≤ t ≤ 1 results in a “collision” between the camera’s
frustum and the target object.

A visible vertex is defined here as a static robot configuration that has
the target object within the camera’s field of view. DVC requires the two
vertices of interest to be visible, similar in form to the prerequisite of the
DCC algorithm for collision-free motion. To guarantee visibility between the
configurations, DVC exploits the relationship between the shortest distance
between the target object and the camera frustum, and the longest distance
traveled by the target object with respect to the camera’s moving frame of
reference during a trajectory. Let d̃(qi) be the shortest distance between
the target object and the camera frustum in configuration qi. Similarly, let
d̃(qf ) be the shortest distance between the target object and the camera
frustum in configuration qf . Also, given a trajectory q(t), let ˜̀(q(t)) be the
the longest distance traveled by any point on the target object with respect
to the camera’s frame of reference during the trajectory. That is, as the
camera moves according to q(t), each point on the target object describes
a 3-D curve with respect to the camera and ˜̀(q(t)) represents the length
of the longest of these curves. Then, given d̃(qi), d̃(qf ) and ˜̀(q(t)), DVC
determines that the target object does not “collide” with the frustum formed
by the camera’s field of view if

˜̀(q(t)) < d̃(qi) + d̃(qf ) (5.13)

The intuition behind this inequality is that if every point on the target
object travels a short distance with respect to the camera during q(t) and the
target object is far enough from frustum representing the field of view limits,
then it is impossible for the target object to “collide” with the frustum and
leave the camera’s field of view. Equation (5.13) is a sufficient condition,
but it is not a necessary condition. If Equation (5.13) is not satisfied, the
algorithm proceeds by dividing the trajectory q(t) into two trajectories q(u)
for 0 ≤ u < t/2 and q(v) for t/2 ≤ v ≤ 1 and Equation (5.13) is evaluated for
both trajectories. This procedure is applied recursively until every trajectory
satisfies Equation 5.13 or a “collision” with the frustum is detected in the
process.
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5.6 Dynamic Generation of Visible Robot
Configurations

5.6.1 Motivation

In many PRM implementations, a static roadmap is constructed only once
(or very infrequently) to capture the relationship between the robot and
the configuration of obstacles in the workspace. Assuming that the robot’s
workspace does not change and that is not extremely cluttered, it is not
difficult to find static robot configurations (vertices) that are collision-free by
random sampling. Many implementations of PRM generate their vertices by
method of uniform random sampling, or by biased random sampling based
on a proximity metric. Collision-free vertices are prerequisites to the DCC
algorithm for determining if the motions in between the vertices are also
collision-free. So, only vertices that correspond to collision-free static robot
configurations are retained in the graph.

Visible vertices are prerequisites to the DVC algorithm, which deter-
mines if the motions in between vertices keep the target object within the
camera’s field of view. This prerequisite is more difficult to satisfy in prac-
tice, especially if the target object’s location changes very frequently. In
many vision-based applications, such as robot bin-picking as described in
Section 1.2, the target object’s location changes at every pick instance, while
the workspace of the robot remains static. Removal of all vertices that are
not visible with respect to a specific target object typically results in a rather
sparse graph for path planning. Continued use of the PRM may require the
generation of new vertices (robot configurations) that are specific to the pose
of the target object. These new vertices correspond to robot configurations
that position the target object within the camera’s field of view, while pro-
viding a visible joint-space path to connect the start configuration to the
goal configuration. A method of generating and selecting these new vertices
dynamically for a target object in any given pose is presented in the next
section.

5.6.2 Vertices Generation using Virtual IBVS

The goal of dynamic vertex generation is to provide a systematic method of
creating, in the PRM, robot configurations that:

1. Keep the target object within the camera’s field of view;

2. Provide a connecting path from the starting configuration to the end
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goal configuration.

These vertices must be subsequently checked for the satisfication of col-
lision constraints, using the DCC algorithm discussed in Section 5.5.2. A
secondary purpose of these vertices is to act as location biases for further
configuration sampling in the surrounding joint-space region if the collision
constraints cannot be met using the original vertices.

With respect to camera field-of-view constraints, the ideal image trajec-
tory of a given feature point is one that travels in a straight line from its
location within the initial image to its location within the desired image. If
such a trajectory could be realized, then the convexity of the image-space
guarantees that the feature point remain inside the camera’s field of view;
namely the IBVS approach.

Here, the idea is to apply IBVS virtually with respect to the target
object, in order to generate candidate visible vertices for PRM planning.
However, the joint-space motion imposed by IBVS can be extremely con-
voluted; the sequence of configurations do not necessarily bring the robot
closer to its joint-space goal configuration, as in the problem of camera re-
treat. Thus, it is desirable to “short circuit” the IBVS path in joint-space
whenever possible, in order to generate feasible and efficient robot motion.
A discussion of virtual IBVS failure is given in Section 5.6.4

IBVS is virtually applied with respect to the object’s feature points to
generate a set of candidate visible vertices for selection. In the case of
complex objects, the corners of the oriented bounding box enclosing the
target object are used as the image features, as discussed in Section 5.4.1.
The control law for IBVS is described in Section 3.3.2.

5.6.3 Vertices Selection using a Joint-Space Metric

Let the IBVS trajectory be parameterized by qIBVS(ζ) with ζ as the path
variable, where qinitial = qIBVS(0) and qdesired = qIBVS(1). The problem of
vertex selection can be formulated as:

argmax
qIBVS(ζ)

ζ (5.14)

such that

‖qIBVS(ζ)− qIBVS(0)‖ =
1
2
‖qIBVS(1)− qIBVS(0)‖. (5.15)
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A backward search algorithm is initiated from the end robot configura-
tion, selecting the first point along the IBVS trajectory where the joint-space
error is half of that between the start and end configuration. If the joint-
space path is convoluted, the waypoint is asymmetrically biased towards to
the end configuration rather than the start configuration. Due to the linear
approximation used in the proportional control law in IBVS, joint-space tra-
jectories near the end configuration are typically less convoluted than those
at the start of the servoing path. A graphical illustration of this vertex
selection method in two-dimensional joint-space is shown in Figure 5.6.

The two joint-space segments created by the selected vertex are checked
for continuous visibility using DVC. The backward search algorithm is ap-
plied recursively for each segment, generating new visible vertices with re-
spect to a joint-space metric, until the continuous visibility criterion is met
in DVC. Typically, one or two visible vertices (selected from the IBVS path)
are all that are required to bring the target back into view and to provide
continuous target visibility between robot configurations. In the presence of
uncertainties in the pose estimate and in the planning model, the robustness
of this planning method is increased by reducing the size of the region of
interest (ROI) representing the camera’s field of view. The reduced field of
view creates additional vertices to sub-divide the joint-space motion, forc-
ing the camera to take more conservative motions. The advantage of the
method of vertex selection over the execution of the entire IBVS path is
that the joint-space motion can be shortened whenever possible, resulting
in feasible and efficient robot motion.

5.6.4 Addressing Virtual IBVS Failure

Simulations show that virtual IBVS fails to converge if the trajectory passes
near robot singularities, even though actuation limits do not exist in simula-
tion. In the presence of numerical integration errors, the high joint velocities
that are generated near singularities tend to bring the trajectory (both in
image-space and in joint-space) away from the desired solution, bringing the
target object outside of the field of view. A damped least-squares inverse
kinematics solution [50] is implemented to allow virtual IBVS near robot
singularities. Details on the implementation of this method is discussed in
Section 4.5.4.

Nonetheless, virtual IBVS will fail if joint limits are reached (due to
infinite camera retreat), or if the trajectory gets stuck in a local minima (due
to poor selection of image features). In all planning scenarios, the camera
pose that is achieved by virtual IBVS is compared with the desired camera
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pose to determine whether the solution converges. In the event of virtual
IBVS failure, the vertex selection algorithm is modified and applied to the
partial IBVS trajectory. Let the partial IBVS trajectory be parameterized
by qIBVS(ζ) with ζ as the path variable, where qinitial = qIBVS(0) and qfail =
qIBVS(1). The problem of vertex selection from a partial IBVS trajectory is
formulated as:

argmin
qIBVS(ζ)

‖qIBVS(ζ)− qdesired‖ (5.16)

A forward (regular) search algorithm is applied to the partial IBVS tra-
jectory, selecting the configuration that is closest to the goal configuration in
joint-space as the new vertex. The two joint-space segments created by the
selected vertex are checked for continuous visibility using DVC. Where a full
trajectory exists, Equation 5.14 is used to select the visible vertex; where
a partial trajectory exists, Equation 5.16 is used. Because the selection of
visible vertices is based on a joint-space metric, useful vertices can still be
found amongst candidates that bring the robot closer to its configuration
goal from a partial IBVS trajectory. A graphical illustration of this vertex
selection method in two-dimensional joint-space is shown in Figure 5.7.

5.7 Simulation Results

The vision-guided positioning task is simulated using a model of the CRS-
A465 robot with a Sony XC-HR70 camera mounted on its end-effector. The
target object is a 20cm×20cm×20cm box made up of eight corner features
plus the geometric centroid. The goal is to plan a path, via the insertion
of visible robot configurations, to keep all these features inside the camera’s
field of view during the interpolated robot motion. The camera starts from
an initial overhead view, and is required to approach the target object while
performing significant out-of-plane rotations. To account for uncertainties in
the pose estimate and in the planning model, the focal length of the camera
model used for planning is modified to reduce the camera’s field of view
by 1/3 in each dimension. This has the same effect as defining a region of
interest (ROI) representing the camera’s reduced field of view for visibility
planning in the presense of increased uncertainty.

With the reduced field of view, all inverse kinematic solutions fail to
maintain continuous visibility on the target object, when using linear in-
terpolation to generate robot motion. The inverse kinematic solution that
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Figure 5.6: Using the IBVS joint-space trajectory to select candidate visible
vertices while reducing joint-space motion.
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Figure 5.7: Using a partial IBVS joint-space trajectory to select candidate
visible vertices while reducing joint-space motion.
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Figure 5.8: Image trajectories resulting from direct joint-space interpolation:
target object partially exits the field of view

best keeps the target with the camera’s field of view during most of the
robot motion is shown in Figure 5.8. The point ‘o’ designates the start of
the motion and the point ‘x’ designates the end of the motion. Note that
several feature trajectories exit the field of view at the bottom of the image.
Virtual IBVS is applied to the target object to generate visible robot config-
urations for vertices selection in PRM planning. The corresponding IBVS
image trajectory is shown in Figure 5.9. All features trajectories remain
inside the field of view by the design of the control. Using the vertices se-
lection method outlined in Section 5.6.3, a visible robot configuration from
the IBVS trajectory is chosen as a vertex for path planning. This vertex
brings the target object back into the field of view. In this example, the cho-
sen vertex also provides continuous target visibility during the interpolated
robot motion between the three robot configurations (start, intermediate,
end). The image trajectory resulting from the insertion of this intermediate
robot configuration is shown in Figure 5.10.

5.8 Summary

The use of path planning is discussed in this chapter, as a prerequisite to
visual servoing, for managing the multiple constraints that an eye-in-hand
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Figure 5.9: Image trajectories resulting from virtual IBVS: target object
stays within the field of view

Figure 5.10: Image trajectories resulting from the insertion of a visible ver-
tex, chosen from the virtual IBVS trajectory using the proposed joint-space
metric: target object stays within the field of view.
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system may encounter when the required robot motion is large. A two-stage
approach is presented for planning and servoing. Path planning is used to
address collision and joint-limit constraints, while visual servoing is used
at the end of the planned motion to correct for uncertainties. Since visual
servoing can only be initiated with the target object in view, the planned
path must continuously keeps the target object within the camera’s field
of view to allow a feasible transition. In the presence of modelling errors,
continuous visibility allows the robot controller to switch to visual servoing
to “close the loop” to the end goal, in the event that the target object
unexpectedly begins to leave the camera’s field of view during the execution
of the planned path. A visible robot configuration is defined in this chapter
as a robot configuration that positions the target object of interest within
the camera’s field of view.

Path planning must occur in the robot’s joint-space, rather than in
image-space, in order to accurately capture the constraints related to workspace
collision and robot joint-limits. Selection of an appropriately visible in-
verse kinematic solution allows vision-guided path planning to occur in the
joint-space of the robot. Probabilistic roadmaps (PRM) provide an efficient
framework for path planning in the presence of multiple constraints. For a
target object in any given pose, a method of generating new vertices in the
PRM that correspond to visible robot configurations is presented. These
vertices act as location biases for further configuration sampling in the sur-
rounding joint-space region if collision constraints are not met. This method
of vertices generation is inspired by image-based visual servoing (IBVS),
and it uses a joint-space metric to select visible robot configurations that
also bring the robot closer to its end goal configuration. Simulations show
that the insertion of a small number of visible intermediate robot configura-
tions provide the sufficient conditions to ensure continuous target visibility
throughout the entire planned path. The resulting continously visible path
allows a feasible transition from planned motion to visual servoing.

In summary, the idea behind this two-stage approach is to execute as
much of the positioning task as possible using planned joint-space motion,
so that the remaining visual servoing motion can be kept to a minimum,
thus reducing unexpected motions that may violate robot joint constraints.
However, two problems still exist in this approach:

1. If the target object exits the field of view early on during the planned
path (due to an extremely poor initial estimate of the target object’s
pose), then all path planning is voided, since the remaining robot
motion must be executed using visual servoing;
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2. When standard visual servoing techniques are used at the end of the
planned motion to “close the loop” to the end goal, there is still no
guarantee that the resulting motion will not violate constraints.

These two issues are addressed in the next chapter, using a visual servo
control law based on Model Predictive Control (MPC).
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Model Predictive Control

6.1 Introduction

In the previous chapters, it was shown that pose estimation coupled with an
inverse kinematic solution that satisfied path visibility constraints, allowed
a part of the visual servoing task to be planned in joint-space to address
robot-related constraints. One drawback with the proposed two-stage ap-
proach was that the uncertainty in the pose of the target object makes it
impossible to predict how much of the vision-guided task will be executed
using planned motion and how much will be executed using visual servo-
ing. More importantly, despite the constant availability of visual feedback
and availability of constraint-based models, errors still remained uncorrected
throughout the first stage (planned motion), and avoidance of constraints
was still not guaranteed in the second stage (visual servoing).

This chapter presents a novel visual servo control law, based on Model
Predictive Control (MPC), to address the deficiencies of previous planning
and servoing approaches. MPC visual servoing provides a unified framework
for managing both camera-related (field of view) and robot-related (joint-
limit, joint-velocity, whole-arm collision) constraints associated with eye-in-
hand robotic systems. MPC solves the problem of joint-space path planning
and eye-in-hand visual servoing simultaneously, by formulating the visual
servoing task as a finite horizon, open-loop, optimal control problem with
constraints that is solved online. At each control iteration, visual feedback
is used to compensate for errors and to refine the prediction model. The
iterative process of planning and servoing in MPC results in trajectories that
are far less sensitive to the propagation of modelling errors, compared with
the two-stage approach. The MPC framework produces a truly constraint-
aware visual servo control law, which can be used to drive large-range robot
motions to achieve close-loop positioning.

Although the use of predictive control for visual servoing has been pro-
posed recently in [45], [46], [47], none of these methods address the problem
of constraint avoidance for eye-in-hand visual servoing. To the author’s
knowledge, the use of MPC for simultaneous visual servoing and joint-space
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planning to avoid whole-arm collisions (amongst other system constraints
related to an eye-in-hand robot) is a first contribution in the field. This
chapter also presents original work in methods for addressing uncertainty in
the target object’s location when using vision-guided path planning methods
(such as PRM, as presented in Chapter 5) with MPC.

This chapter opens with a basic review of the MPC formulation for the
control of a multiple-input multiple-output (MIMO) system. Following, the
modelling of the system and the implementation of a MPC controller for
eye-in-hand visual servoing is described. Simulation results are given for
an eye-in-hand positioning task to demonstrate the successful avoidance of
constraints during MPC visual servoing. The effects of the various tuning
parameters are discussed. The next section describes a method which ex-
ploits the DCC algorithm (previously discussed in 5.5.2) to obtain a useful
representation of the collision-free space for MPC visual servoing. Integra-
tion of MPC with PRM, including a method to address uncertainty in the
target object’s pose is presented next. Integration of MPC with DCC to
arrive at an online iterative planning and servoing method is also presented.
Experimental results are given for an eye-in-hand visual servoing task in the
presence of workspace obstacles and uncertainty in the target object’s pose
to demonstrate the efficiency of the approach.

6.2 MPC Formulation

The basic idea of MPC is to use the predictive power of a model to choose
a sequence of control actions that is optimal (according to some criterion)
for achieving a desired output, while compensating for any prediction er-
rors using feedback generated from the observation of the real plant. MPC
is formulated to solve, online, a finite horizon, open-loop, optimal control
problem. This optimization is subject to the system dynamics and the con-
straints related to the states and inputs of the system. An illustration of
the basic principle of MPC is shown in Figure 6.1.

The MPC problem for computing an optimal control sequence is formu-
lated as follows:

min
ui|k

C(εi|k,ui|k), (6.1)
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Figure 6.1: The basic principle of model predictive control.

subject to

xi+1|k = f(xi|k,ui|k) (6.2)

εi|k = (y(xi|k)− yd) + dk, i ∈ [1, Np] (6.3)

xi|k ∈ X, i ∈ [1, Np] (6.4)

ui|k ∈ U, i ∈ [1, Nc] (6.5)

where

x0|k = xk (6.6)

ui|k = uNc|k, ∀i ≥ Nc (6.7)

dk = y(xk|k−1)− yk (6.8)

At each iteration k, the MPC controller uses an internal dynamic model
(Equation 6.2) to predict the behaviour of the plant over a future prediction
horizon Np of fixed length. The predicted behaviour depends on the current
state xk and on the assumed sequence of inputs ui|k that are applied over
a control horizon Nc, where X and U are the sets of feasible inputs and
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states, respectively. The idea is to select the sequence of inputs that best
forces the predicted outputs y(xi|k) to converge to the desired set-point yd,
subject to a set of constraints related to the plant. When evaluating the
sequence of prediction errors εi|k, a disturbance (model) correction term dk
is applied to capture the discrepancy between the latest plant output yk and
the latest model output y(xk|k−1). Once an optimal sequence of inputs is
chosen, only the first element of the sequence is applied as the input signal
to the plant. The whole cycle of output measurement, prediction, and input
trajectory selection is repeated one sampling interval later. The prediction
horizon remains the same length as before, but slides along by one sampling
interval.

The main advantage of MPC lies in its ability to routinely handle con-
straints. MPC is the only advanced control technique (that is, more ad-
vanced than standard PID control) to have had a significant impact in in-
dustrial process control, especially where control update rates are infrequent
and operation near constraints is necessary to obtain efficient processes.
However, it should be noted that proof of closed-loop stability of MPC con-
trol of a nonlinear system is still an open research problem. Further details
on MPC theory and analysis can be found in [55].

6.3 Eye-in-Hand Visual Servoing using MPC

The MPC framework is implemented to produce a constraint-aware con-
trol law for eye-in-hand visual servoing. This section describes the various
components of the MPC visual servoing controller, including the modelling
(robot model, camera model, object model), the constraints of the system,
and the cost function to be optimized.

6.3.1 System Modelling

The following shorthand notation is used to refer to coordinate frames that
are used for system modelling:

• Robot base frame, Fb;

• Robot end-effector frame, Fe;

• Camera frame, Fc;

• Target object frame, Fo.
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Object Model

The object model consists of number of feature points, whose coordinates
(oXj ,

o Yj ,
o Zj) are define with respect to a canonical object frame. For

a target object made up of n feature points, the object model used for
prediction is:

oPj =


oXj
oYj
oZj
1

 , j ∈ [1, n]. (6.9)

Let bTo define the homogeneous transformation that expresses the co-
ordinates of the object frame in the coordinates of the robot base frame.
Alternatively, where it is more convenient for eye-in-hand pose estimation,
cTo can be used to define the homogeneous transformation that expresses
the coordinates of the object frame in the coordinates of the camera frame.

Robot Model

A forward kinematic model of the robot is used to describe the homogeneous
transformation bTe that expresses the coordinates of the end-effector frame
in the coordinates of the robot base frame. bTe is a function of robot joint
positions:

bTe = frobot(q). (6.10)

For MPC controller design, it is assumed that a low-level controller exists
to stabilize the internal dynamics of the robot. This is achieved through the
control of motor torques to satisfy the generalized equations of motion for
robots with revolute joints and serial links:

τ = Dq(q)q̈ + Cq(q, q̇) + g(q). (6.11)

For industrial robots with highly-geared joints to reject external torque
disturbances, independent PID controllers are used to generated the appro-
priate torque τ to track a smooth position reference signal for each joint.
For proposed service robots, which have back-drivable joints that are not
geared (for safety reasons), an inverse dynamic model of the robot is used
to provide feedback linearization. Within this context, the objective of the
MPC controller is to generate feasible robot trajectories in the form of joint
positions, velocities, or accelerations that efficiently drive the robot towards
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Figure 6.2: A system diagram illustrating the input and output requirements
of the MPC controller.

completion of the positioning task using visual feedback. These joint com-
mands generated by MPC are used as reference signals for the low-level
torque controllers to track. A system diagram for each of the controllers
described is shown in Figure 6.2. Taking into account the low frame-rate
of the camera with respect to the high bandwidth of the inner stabilization
loop, most visual servoing researchers use a kinematic model for controller
design. The following first-order discretization is used for MPC prediction:

qk+1 = qk + δtq̇k. (6.12)

Camera Model

A classical pin-hole camera model is used to describe the projection of the
target object on the camera CCD array. Let C be the camera matrix defined
as:

C =

fku fku cotβ u0

0 fkv( 1
sinβ ) v0

0 0 1

 , (6.13)
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where (u0, v0) are the images coordinates of the principal point, f is the
focal length, β is the perpendicular skew angle, and ku and kv are the
number of pixels per unit distance in x and y, respectively. The camera is
mounted on the robot’s distal link, where the position and orientation of its
canonical frame is controlled by the robot. Let eTc define the homogeneous
transformation that expresses the coordinates of the end-effector frame in
the coordinates of the camera frame. The images coordinates (uj , vj) of the
feature points can be modelled as:

(pj) =

ujvj
1

 = C[I3×3|03×1]cTe
eTb

bTo
oPj , j ∈ [1, n]. (6.14)

Finally, a vector consisting of the image coordinates of all feature points
is used for image-based feedback control:

p =
[
(p1)T (p2)T · · · (pn)T

]T
. (6.15)

6.3.2 Constraint Modelling

Robot Joint-Limit Constraints

For a robot with N independent joint actuators, the robot joint-limit con-
straints are modelled as lower bounds qmin and upper bounds qmax on the
range of feasible joint positions:

q ∈ [qmin,qmax], qmin,qmax ∈ RN . (6.16)

Robot Joint-Velocity Constraints

For a robot with N independent joint actuators, the robot joint-velocity
constraints are modelled as lower bounds q̇min and upper bounds q̇max on
the range of feasible joint velocities:

q̇ ∈ [q̇min, q̇max], q̇min, q̇max ∈ RN . (6.17)

Camera Field-of-View Constraints

For a camera with a rectangular imaging sensor array, whose maximum and
minimum coordinates are umin and umax in the horizontal axis and vmin and
vmax in the vertical axis, the camera field-of-view constraints for a target
object with n features are:
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uj(pj) ∈ [umin, umax] ∀j ∈ [1, n], (6.18)

vj(pj) ∈ [vmin, vmax] ∀j ∈ [1, n]. (6.19)

Whole-Arm Collision Constraints

For a robot with N independent joint actuators, let Qfree be the collision-
free space, where Qfree ∈ RN . Qfree is the set of joint configurations which
do not cause the robot to occupy the same physical space as a workspace
object. In this context, whole-arm collision constraints are represented as:

q ∈ Qfree. (6.20)

A exact closed-form solution to Qfree is typically not available, except in
the case of trivially simple workspace objects (such as points) with kinemat-
ically simplified robots (such as Cartesian gantry robots, or robots where
N is limited). The discussion of a representation of collision-free space that
is useful for MPC visual servoing is defered until Section 6.6, where it is
discussed within the context of the dynamic collision checker (DCC).

6.3.3 Control Law Design

The error function for MPC visual servoing is chosen to be similar in form to
IBVS. At time k, the predicted error at time k+ i is the difference between
the predicted image coordinates pi|k and the desired image coordinates,
plus a disturbance (model) correction term dk. The correction term is also
expressed in terms of image errors, capturing the difference between latest
plant output pk and the latest model output p(qk|k−1):

εi|k = (pi|k − pd) + dk, (6.21)

dk = p(qk|k−1)− pk. (6.22)

The control law for MPC visual servoing is designed to take advantage of
the robustness of IBVS for error correction while penalizing large joint-space
motions to give efficient trajectories. Similar to the visible vertex generation
and selection algorithm presented in Chapter 5, the idea is to take advantage
of the natural ability of IBVS to keep the target within the field of view (to
avoid local minimas resulting from the nonlinear field-of-view constraints)
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while minimizing joint motion. The cost function C to be minimized is a
quadratic function of image errors ε and of joint velocities q:

C =
1
2

(
Np−1∑
i=1

εTi|kQεi|k + q̇Ti|kWq̇i|k), (6.23)

where Q and W are two symmetric positive definite matrices, weighting
the predicted image errors against the predicted joint control efforts at time
instant k as in [47]. The penalization of joint velocities helps to avoid joint
singularities where the control and the prediction of eye-in-hand camera
motion is more sensitive to errors.

6.4 Summary of the MPC Visual Servo Control
Law

From the perspective of manipulator visual servoing, the proposed MPC
visual servoing control law can be seen simultaneously as:

1. An optimal controller using IBVS with penalization on large joint mo-
tions;

2. An online open-loop motion planner that takes into account the future
dynamics and constraints of the robotic system, based on an approxi-
mate pose of the target object.

The approximate object pose that is required for online open-loop plan-
ning in MPC is obtained from one of the following:

• From the user, in the form of a rough “ballpark” pose of the target
object, when initiating the robot positioning task;

• From homography decomposition, in the form of scaled Euclidean pa-
rameters with an estimated depth provided by the user (Chapter 3);

• From EKF pose estimation, in the form a 6-D pose vector and a co-
variance matrix describing the uncertainty of the estimated pose in
each dimension (Chapter 4).

In this formulation, the cost function can be minimized over a sequence of
qi|k or q̇i|k, depending on the type of input that is accepted by the low-level
robot controller. Typical industrial controllers accept only joint positions
as input, so minimization over qi|k is used for experimental validation here.
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An added advantage of optimizing over qi|k is that the sequence of planned
joint configuration inputs can be checked for collision-free motion, using the
DCC algorithm as outlined in Section 6.8.2. Furthermore, by using qi|k
as the input for optimization, the MPC controller can be programmed to
solve off-line for the approximate robot joint configuration that completes
the positioning task, based only on the prediction model. The MPC visual
servoing formulation is summarized as:

min
qi|k

1
2

(
Np−1∑
i=1

εTi|kQεi|k + q̇Ti|kWq̇i|k), (6.24)

subject to

qi|k+1 = qi|k + δtq̇i|k, (6.25)

εi|k = (pi|k − pd) + dk, (6.26)

q̇i|k ∈ [q̇min, q̇max], (6.27)

qi|k ∈ [qmin,qmax], (6.28)

qi|k ∈ Qfree, (6.29)

uj((pj)i|k) ∈ [umin, umax], j ∈ [1, n] (6.30)

vj((pj)i|k) ∈ [vmin, vmax], j ∈ [1, n] (6.31)

(6.32)

where

q0|k = qk, (6.33)

pi|k =
[
(p1)Ti|k (p2)Ti|k · · · (pn)Ti|k

]T
, (6.34)

(pj)i|k = C[I3×3|03×1]cTe
eTb

bTo
oPj , j ∈ [1, n] (6.35)

eTb = frobot(qi|k), (6.36)

dk = p(qk|k−1)− pk. (6.37)

6.5 Simulation Results

6.5.1 Setup

The MPC eye-in-hand visual servoing controller is implemented in simula-
tion to test its ability to perform large-motion robot positioning tasks in
the presence of constraints and pose estimation errors. The simulations are
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designed to reflect, as closely as possible, the parameters of the actual ex-
perimental test-bed that is used for performing eye-in-hand visual servoing
experiments. In order to avoid repeating the same material, details on the
simulation model (and on the experimental test-bed) can be found in Section
6.9.1. The minimization of the cost function for predictive control is solved
using a sequential quadratic programming (SQP) optimization algorithm
[56][55]. This method solves a quadratic programming (QP) subproblem at
each iteration using the method of active sets. To speed up computations,
the gradients to the cost function and to the constraints are provided via
a closed-form analytic function composed of the robot Jacobian, the image
Jacobian and the measured errors. In the simulations, the actual pose of
the target object is:

bTo = Txyz(−0.28, 0.51, 0.14)TRz(145◦)TRx(−55◦)[m],

whereas the estimated pose of the target object used by the MPC controller
for joint-space planning, is:

bTô = Txyz(−0.30, 0.50, 0.15)TRz(135◦)TRx(−45◦)[m].

A desired view of the target object is shown to the robot to describe the
required positioning task, and the robot starts the visual servoing task with
an initial view containing the target object in sight. The initial view and
desired view corresponding to the positioning task are shown in Figure 6.3
and 6.4, respectively. The prediction horizon Np is set to 5 and the control
horizon Nc is set to 1. The time step δt of 10ms is used for simulations. Q is
chosen to be the identity matrix, while W is chosen to be a diagonal matrix
with its diagonal entries equal to 2,500. Note that collision constraints
are not modelled in these simulations. The purpose of these simulations is
to demonstrate the ability of MPC visual servoing to manage constraints
that are represented in the controller: field-of-view constraints, joint-limit
constraints and joint-velocity constraints. An appropriate representation of
collision constraints qi|k ∈ Qfree that is useful for MPC visual servoing will
be discussed in Section 6.6. The demonstration of collision avoidance with
MPC visual servoing will be shown in experiments with a physical robot
setup in Section 6.9.2).

6.5.2 Camera Field-of-View Constraints

Figure 6.5 shows the trajectory of the target object (as seen by the eye-in-
hand camera) for the positioning task achieved via MPC visual servoing.
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Initial View Desired View 

Figure 6.3: Overhead image describing the initial position of the eye-in-hand
camera with respect to a target object.

Initial View Desired View 

Figure 6.4: Reference image describing the desired position of the eye-in-
hand camera with respect to the target object.
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Figure 6.5: Image trajectory generated by MPC visual servoing, demon-
strating the avoidance of camera field-of-view limits and the completion of
the visual servoing task

The target object, which resembles the conrod shown in Figure 6.18, con-
sists of ten non-coplanar feature points. The point ‘o’ designates the start
of the motion and the point ‘x’ designates the end of the motion. Through
the use of an image-based cost function with an eye-in-hand robot configu-
ration, the control law generates motions that naturally satisfy the camera’s
field-of-view constraints. In contrast, this is not true for a stationary camera
observing a robot completing a position task. Figure 6.5 shows the comple-
tion of the task in Cartesian space. The positioning task requires significant
translation towards the target object, and additional in-plane and out-of-
plane rotations to correct for the orientation errors. All of the above is
completed in an efficient manner, without camera retreat, despite the use of
an image-based control law. With a high visual update rate, the prediction
model is quickly corrected to account for the initial pose estimation errors.
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Figure 6.6: Camera Cartesian trajectory generated by MPC visual servoing,
demonstrating reasonable camera motions.
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6.5.3 Robot Joint-Limit Constraints

Figure 6.7 shows the joint-space trajectory of the 6-DoF CRS-A465 robot
for the positioning task achieved via MPC visual servoing. The joint limits
of the robot are shown as dotted lines, where as the joint trajectories are
shown as solid lines. The joint trajectories respond to the robot’s joint limits
by approaching them conservatively, while not violating them. The result is
that the robot’s joint-limit constraints are always satisfied throughout the
servoing motion. Note that the avoidance of joint-limit constraints cannot
be naively achieved with the use of a joint-position saturator. The differ-
ence between the constraint-aware MPC motion and a simple joint-position
saturator is that the MPC motion continues to complete the task while man-
aging constraints, while a joint-position saturator will likely bring the target
object outside of the field of view, causing instability in the control law.

6.5.4 Robot Joint-Velocity Constraints

Figure 6.8 shows the joint velocities of the 6-DoF CRS-A465 robot for the
positioning task achieved via MPC visual servoing. The velocity limits of
the robot are shown as dotted lines, where as the actual joint velocities are
shown as solid lines. Unlike the exponentially decreasing velocity profiles
observed in other visual servoing control laws (which tend to violate joint
velocity limits. See Figure 3.4), MPC visual servoing makes maximum use
of the robot’s output capabilities by keeping the joint velocities near their
limits, while not violating them. This is a rather aggressive controller. The
insufficient weight given to the velocity weighting matrix W allows the mag-
nitude of pixel errors to dominate the magnitude of joint velocities in the
cost function. Note that the avoidance of velocity-limit constraints cannot
be naively achieved with the use of a joint-velocity saturator. The differ-
ence between the constraint-aware MPC motion and a simple joint-velocity
saturator is that the MPC motion continues to complete the task while man-
aging constraints, while a joint-velocity saturator will likely bring the target
object outside of the field of view, causing instability in the control law. The
joint velocities still tend to change abruptly in the given simulations. Where
acceleration limits are available for the robot, a higher-order model can be
used in the MPC controller, to provide a smoother trajectory for tracking.
This is not a major concern in the actual experimental implementation for
visual servoing, since the update rate of the camera is limited, and a tra-
jectory interpolator must be used, in any case, to match the update rate of
the inner PID loop.
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Joint Position History

7Figure 6.7: Robot joint trajectory generated by MPC visual servoing,
demonstrating the avoidance of robot joint position limits.
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Figure 6.8: Robot joint velocities generated by MPC visual servoing, demon-
strating the avoidance of robot joint velocity limits.
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6.5.5 Tuning Parameters

The following section describes insights on tuning parameters obtained from
simulations.

Switching Control vs. MPC

The problem with expressing robot joint-limits, field-of-view limits, collision
limits, as explicit constraints in the form of a typical switching visual servo
control law is that the controller is not aware of the constraints until they
are active. The need to avoid immediate constraints requires large controller
efforts. Since the controller does not plan ahead to avoid constraints, many
constraints will indeed become active, so the modelled constraints must
closely match the boundaries of the real limits of the plant in order to
guarantee safe operation. In the presence of nonlinear constraints, without
planning, the system trajectory can easily get stuck in a local minima within
an infeasible region.

The motivation for predictive control is to allow the controller to plan
ahead to compute the best sequence of control inputs to avoid these con-
straints, while completing the task. Although many of the constraints will
become active in the prediction model, the control input produced by the
predictive controller that is applied to the plant several steps ahead may ac-
tually prevent them from becoming active in the real plant. The prediction
in MPC allows significant margins of errors in the modelling of the plant
for control. The MPC visual servoing framework allows gains to be tuned
to match the controller with the degree of uncertainty in the model (i.e.
robot calibration, camera calibration, target object pose). For example, the
prediction horizon is a gain that can be tuned to control the aggressiveness
of the control scheme to match the precision of the model that is used for
planning. If the model is precise, then a very aggressive control scheme can
be used (short prediction horizon, long time step). The MPC controller can
be interpreted as a constraint-aware switching controller in the limiting case
where the prediction horizon and control horizon are zero. The following
section describes the effect of each tuning parameter within the MPC visual
servoing controller when the cost function is optimized over a sequence of
joint positions qi|k.

Prediction Horizon

The length of the prediction horizon Np determines the aggressiveness of the
control law with respect to constraints. When the prediction horizon is long,
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the controller predicts further ahead to become aware of constraints that
may become active in the near future. The controller reacts by producing
control actions that avoid those constraints, many steps before they actually
become active in the real plant. The result is a conservative control law that
maintains a wide distance from constraints. The prediction horizon also
affects the control efforts, since it is typically chosen to be much longer than
the control horizon. For a prediction horizon that is longer than a given
control horizon, the last control input is held constant for the remainder of
the prediction horizon. Therefore, a very long prediction horizon tends to
produce more conservative control efforts.

Control Horizon

The length of control horizon Nc determines the degrees of freedom that the
controller has, for choosing how a task is to be completed. When the control
horizon is long, the controller can afford to be more aggressive in minimizing
the image errors when required, without fear of violating constraints. But
the controller can also afford to be more conservative when required, so as to
minimize joint actuation efforts in the cost function, when given the option to
complete the task in several steps with different control inputs. The control
horizon is typically chosen to be much shorter than the prediction to increase
the speed of computations. When the prediction horizon is longer than the
control horizon, the last control input is held constant for the remainder of
the prediction horizon. A short control horizon (in the presence of a much
longer prediction horizon) tends to produce more conservative control efforts,
since the last control input must be held constant for the remainder of the
prediction horizon without overshooting the goal, or violating constraints.

Time step

The length of the time step determines the aggressiveness of the control
law with respect to the certainty in the target object’s pose. The length
of the time step is inversely proportionally to the frequency of the visual
update. When the time step is large, the controller has the opportunity
to execute large robot motions in the absence of feedback correction (since
planning and servoing are executed iteratively). In the extreme case where
the time step very large, the controller can be programmed to execute the
position task in a one-step open-loop motion. This is analogous to an open-
loop constraint-aware path planner. However, this one-step planner suffers
the same problem as the PRM planner presented in Chapter 5. When the

104



Chapter 6. Model Predictive Control

pose of the target object is uncertain, a large time step tends to bring the
target object outside of the field of view, before close-loop corrections can
have any effect on the prediction model. MPC visual servoing addresses this
field-of-view problem by allowing the frequency of re-planning and servoing
to be tuned (by adjusting the length of the time step) to match the level of
uncertainty in the target object’s pose.

Cost Function: Q and W

The weighting matrices Q and W determine the aggressiveness of the control
law with respect to the servoing task and control efforts, as inspired from
LQR (Linear Quadric Regulator) control theory. The elements with the
matrix Q determine the weight given to the errors associated with each
image feature, while the elements with the matrix W determine the weight
given to the velocities associated with each robot joint.

6.6 Whole-Arm Collisions Constraints

Performance evaluations of the proposed MPC visual servoing controller
(Section 6.5) shows that it is capable of visual servoing over large robot
motions without violating the constraints related to an eye-in-hand system.
System limits can be avoided as long as the corresponding constraint is
included the model. The following section describes the modelling of whole-
arm collisions constraints, which must be addressed and included in the
MPC controller to ensure collision-free visual servoed motion.

6.6.1 Representation of the Collision-Free Space

The representation of whole-arm collision constraints in joint-space from
known Cartesian-space geometry is a non-trivial problem. Unlike the inverse
kinematic solutions for the robot configurations that solve for a Cartesian
frame of a particular point on the robot, there is typically no closed-form
solution to the set of robot configurations that are collision-free. Collisions
can occur between any combination of points on the obstacle and on the
robot. The collision boundary is a complex manifold that depends not only
on the geometry of the obstacle, but also on the relative geometry of the
robot arm. It is easy to check for the absence or presence of collision at a
particular robot configuration, but further information regarding the topol-
ogy of the manifold is difficult to obtain. Unfortunately, MPC requires the
use of gradients to effectively solve the constrained optimization problem.
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Figure 6.9: Joint-space representation of the collision-free space (right) for a
particular manipulator and obstacle configuration (left). The collision-free
space is represented in 3-dimensional space for 3 joints only.

Therefore, point-based representations of the collision-free space, derived
from sampling robot configurations that are free of collisions, cannot be used
as constraints for MPC visual servoing. Figure 6.9 depicts a hypothetical
set of collision-free robot configurations, represented as a three-dimensional
manifold in joint-space for 3 out of the 6 available robot joints.

6.6.2 Exploiting DCC for Collision Bounds

This section presents a method to exploit the properties of the dynamic
collision checking (DCC) algorithm to obtain a closed-form approximation
of the collision-free space, which can be used for MPC visual servoing. The
DCC algorithm was previously presented in Section 5.5.2 to test for the
feasibility of whole-arm collisions with obstacles during the trajectory q(t)
between two robot configurations, qi and qf . The DCC inequality test has
the following form:

`(q(t)) < d(qi) + d(qf ) (6.38)

where

• `(q(t)) is the the longest distance traveled by any point on the manip-
ulator during the trajectory q(t).

• d(qi) is the shortest distance between an obstacle and the manipulator
in the configuration qi.
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• d(qf ) is the shortest distance between an obstacle and the manipulator
in the configuration qf .

Collision-free motion can be guaranteed if the inequality in Equation 6.38
holds for a chosen trajectory q(t). Given a trajectory q(t) and the set of
3-D points H representing the hull of the manipulator, `(q(t)) is determined
by

`(q(t)) = max
P∈H

∫ 1

0
|Ṗ|2dt. (6.39)

Solving Equation 6.39 is tedious but much can be gained given that
Equation 5.13 is an inequality and it still holds if `(q(t)) is replaced by an
upper bound [53]. For a manipulator with N actuators, suppose that the
trajectory q(t) only involves rotating the jth actuator by an amount ∆qj .
Then, it is possible to find a configuration for the actuators qj+1, . . . , qN
such that

`(q(t)) ≤ max
qj+1,...,qN

`(q(t))

= `j(q(t)).

If the jth actuator is a revolute joint around the axis zj , then

`j(q(t)) = max
qj+1,...,qN

P∈Hj∪···∪HN

∫ 1

0
|Ṗ|2dt (6.40)

= rj |∆qj | (6.41)

where P ∈ Hj ∪ · · · ∪ HN are the points on the hulls of the links j to N
and rj is the greatest possible distance between the line zj and a point P.
Finally, generalizing Equation 6.40 to trajectories involving N actuators we
obtain

`(q(t)) ≤
N∑
j=1

rj |∆qj |. (6.42)

Notice that the right hand side of Equation 6.42 is “trajectory-free”. That is,
it does not depend on qi, qf or the trajectory q(t). One notable constraint is
that any trajectory must be bounded within the hyperrectangle with corners
qi and qf .

Replacing Equation 6.42 in Equation 5.13 results in

N∑
j=1

rj |∆qj | < d(qi) + d(qf ). (6.43)
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In [53], Equation 6.43 is used to determine if a manipulator collides with
obstacles during a trajectory q(t). The conservativeness of the upper bound,
however, can be used for trajectories other than the linear interpolation de-
fined by q(t). Indeed, if Equation 6.43 is true, then any trajectory bounded
by the hyperrectangle with corners qi and qf is collision-free. This is de-
termined from Equation 6.40 where any trajectory that is bounded between
qji and qjf will result in the same upper bound `j .

Equation 6.43 is used to find the collision-free hyperrectangle from the
initial configuration qi. The algorithm is based on evaluating Equation 6.43
with the trajectories q(t/2i) for 0 ≤ i. Starting with i = 0, the entire
trajectory is tested. If DCC succeeds, then the entire hypperrectangle from
qi to qf is collision-free. If it fails, then the interval is split in half and DCC
is evaluated between 0 ≤ t ≤ 0.5. The procedure is applied recursively until
DCC succeeds, and a hypperrectangluar region of collision-free joint space
is found.

The region of collision-free space between qji and qjf , as obtained from
DCC, can be expressed in the form of joint-limit constraints in the formu-
lation of the MPC controller, such that the resulting visual servoed motion
can be guaranteed to be collision-free. In the following sections, this char-
acteristic of Equation 6.43 will be used by the MPC controller in two imple-
mentations: MPC with PRM for offline path planning and MPC with DCC
for online collision-avoidance.

6.7 MPC with Offline Path Planning

6.7.1 Motivation

The ability of the MPC visual servoing controller to handle constraints sug-
gests that it should be used in the two-stage planning-then-servoing ap-
proach discussed in Chapter 5 to avoid collisions during visual servoing.
However, the appropriate bounds on the constraints must still be deter-
mined in order for the controller to be effective. Specifically, it is desirable
to guarantee that the robot will not collide with obstacles or violate joint-
limits when visual servoing is activated to “close the loop”. Unfortunately,
this closed-loop position is typically unknown. The next section discusses
a method to determine the appropriate joint-motion constraints to be im-
posed on the MPC controller, given a measure of uncertainty in the object’s
estimated pose, to achieve collision-free closed-loop motion.
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Figure 6.10: Hyperrectangular collision-free spaces obtained from DCC as a
byproduct of the form chosen for `(q(t)).

6.7.2 Pose Uncertainty Modelling

Let δxyzφαψ = [δx, δy, δz, δφ, δα, δψ]T such that [−δxyzφαψ, δxyzφαψ] repre-
sents the bounds on the uncertainty in the 6-D pose of the target object,
expressed with respect to the estimated target object frame. If the pose
variation has a Gaussian distribution, this bound can be conservatively esti-
mated in terms of a number of standard deviations from the pose estimate,
derived from the state covariance matrix from EKF pose estimation.

Let q̂ be the estimated robot joint position which completes the posi-
tioning task. Let q̂ + δq be the actual robot position which completes the
positioning task, where δq is the change in robot joint positions when the
loop is closed. These joint positions are used to define the transformation
from the robot end-effector frame to the robot base frame:

bTê = frobot(q̂), (6.44)
bTe = frobot(q) = frobot(q̂ + δq). (6.45)

Let bTô represent the estimated pose of the target object with respect
to the base frame. Let bTo represent the actual pose of the target object
with respect to the base frame. Then,
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bTô = bTê
eTc

cTô, and (6.46)
bTo = bTe

eTc
cTo. (6.47)

(6.48)

Let ôTo represent the deviation of the actual target object frame from
the estimated target object frame:

ôTo = bT−1
ô

bTo, (6.49)

=


cφcα cφsαsψ − sφcψ cφsαcψ + sφsψ

ôXo

sφcα sφsαsψ + cφcψ sφsαcψ − cφsψ ôYo
−sα cαsψ cαcψ

ôZo
0 0 0 1

 . (6.50)

The parameters ôXo,
ô Yo,

ô Zo,
ô φo,

ô αo,
ô ψo describe the deviation of the

actual target object frame from the estimated target object frame, which
causes a change in the robot joint positions δq when the loop is closed.
These parameters can be checked to determine whether they are within the
bounds defined by δxyzφαψ. Note that cTo = cTô when the eye-in-hand
visual servoing is complete, regardless of the actual pose of the target object
bTo with respect to the robot base.

6.7.3 Bounds on Closed-Loop Motion

Let bJô(q̂) be the Jacobian for bTô evaluated at q̂. Then an estimate of the
lower bounds and upper bounds on the change in joint positions (resulting
from the closed-loop motion) can be found using the following first-order
approximation:

δq = bJ−1
ô (q̂)δxyzφαψ. (6.51)

To solve for an exact solution for the lower bounds and the uppers bounds
on the change in joint positions resulting from the closed-loop motion, a
nonlinear constrained optimization problem is formulated and solved using
the solution to linear Jacobian approximation as the initial state. This
optimization is solved twice for each joint qi (once for the lower bound and
once for the upper bound):
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min
q

δqi , i ∈ [1, N ], (6.52)

max
q

δqi , i ∈ [1, N ], (6.53)

subject to,

ôXo ∈ [−δx, δx], (6.54)
ôYo ∈ [−δy, δy], (6.55)
ôZo ∈ [−δz, δz], (6.56)
ôφo ∈ [−δφ, δφ], (6.57)
ôαo ∈ [−δα, δα], (6.58)
ôψo ∈ [−δψ, δψ]. (6.59)

Therefore, bounds on the change in joint positions resulting from the
closed-loop motion can be expressed in the form of a hyperrectangular re-
gion δq ∈ [δminq , δmaxq ]. Unlike the symmetric bounds estimated from the
linear approximation, the nonlinear bounds describing this hyperrectangular
region can be asymmetric about the estimated open-loop joint position q̂.

6.7.4 Simulation Results

Simulations were performed on a 6-DoF CRS-A465 robot with a Sony XC-
HR70 camera in an eye-in-hand configuration, completing a positioning task
using MPC visual servoing. The visual servoing task was repeated 100
times, while the pose of the target object was perturbed about its initially
estimated position by a random pose vector with a zero-mean Gaussian
distribution and standard deviation σxyzφαψ. To test the performance limits
of the methods presented in Section 6.7, the value of σxyzφαψ was chosen to
represent a fairly high level of uncertainty in each of the pose dimensions:

σxyzφαψ =
[
0.025m 0.025m 0.050m 20◦ 20◦ 10◦.

]T
/3

The bounds on the maximum uncertainty in the pose are set as δxyzφαψ =
±3σxyzφαψ to encapsulate 99.7% of all samples. The methods outlined in
Section 6.7 are applied to determine the appropriate bounds on the change in
joint positions that result from the closed-loop motion (executed to compen-
sate the perturbation in the target object’s pose). The results are presented
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on 2-D plots for easy visualization. Figure 6.11 shows the results for joints
1 and 2, Figure 6.12 shows the results for joints 3 and 4, and Figure 6.13
shows the results for joints 5 and 6. The open-loop estimates of the desired
joint positions are shown in the center of the figures (as dotted red lines).
The closed-loop joint positions resulting from the object pose perturbation
are shown as sample points (in green). The bounds obtained from the linear
Jacobian approximation (shown as dotted green lines) provide good initial
estimates, though they fail to encapsulate possible joint positions that re-
sult from close-loop motion. These bounds are used to influence the search
region in the nonlinear constrained optimization problems. Results from
the nonlinear constrained optimization formulation (shown in solid green)
show that this method provides bounds that closely match the shape of the
sample distribution. More importantly, the bounds encapsulate all samples
generated. The bounds obtained from nonlinear constrained optimization
are used to define the hyperrectangular region δq ∈ [δminq , δmaxq ].

6.7.5 Integration with PRM

The hyperrectangular region δq ∈ [δminq , δmaxq ] obtained from Equations 6.52
and 6.53 describing the bounds on the change in joint positions resulting
from closed-loop motion, can be used with the PRM path planning methods
(previously discussed in Section 5) to guarantee collision-free visual servoing
during the second stage of the planning then servoing approach. Since the
closed-loop position qf is unknown during planning, setting d(qf ) = 0 in
Equation 6.43 results in a modified form of the inequality:

N∑
j=1

rj |∆qj | < d(qi). (6.60)

If appropriate collision-free joint bounds can be established by the DCC
algorithm (Equation 6.60) to include the hyperrectangular region δq ∈
[δminq , δmaxq ], then collision-free motion can be achieved in closed-loop by
expressing these bounds as the new joint-limit constraints for MPC servo-
ing. In the MPC implementation for closed-loop visual servoing, qi|k ∈ Qfree

(Equation 6.29 from Section 6.4) is replaced with the following collision-free
joint bounds obtained from DCC:

qi|k ∈ [qminDCC ,q
max
DCC ]. (6.61)

The integration of MPC with PRM using the updated collision-free joint
boundaries is illustrated in Figure 6.14 in 2-dimensional joint space. If
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Figure 6.11: Closed-loop positions for joints 1 & 2 resulting from MPC
visual servoing with object pose perturbations: closed-loop positions (green
points, n = 100), open-loop position (dotted red), linear bounds (dotted
green), nonlinear bounds (solid green).
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Figure 6.12: Closed-loop positions for joints 3 & 4 resulting from MPC
visual servoing with object pose perturbations: closed-loop positions (green
points, n = 100), open-loop position (dotted red), linear bounds (dotted
green), nonlinear bounds (solid green).
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Figure 6.13: Closed-loop positions for joints 5 & 6 resulting from MPC
visual servoing with object pose perturbations: closed-loop positions (green
points, n = 100), open-loop position (dotted red), linear bounds (dotted
green), nonlinear bounds (solid green).
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Figure 6.14: Integration of PRM path planning with MPC visual servoing.
Visual servoing is restricted to stay within the collision-free space determined
by DCC algorithm.

appropriate collision-free joint bounds cannot be established by the DCC
algorithm (Equation 6.60) to include the hyperrectangular region δq ∈
[δminq , δmaxq ], then the current pose estimate of the target object is too un-
certain for the execution of the two-stage planning then servoing approach.
Subsequent observations of the target object are required to reduce the un-
certainty in the target object’s pose in order to guarantee collision-free mo-
tion when closed-loop positioning is achieved. Pose uncertainty can be re-
duced through additional observations with the EKF using images generated
from new camera positions (as previously discussed in Chapter 4).

6.8 MPC with Online Collision-Avoidance

6.8.1 Motivation

The two-stage planning then servoing approach (using PRM with MPC) al-
lows difficult collision-avoidance problems to be solved offline in the absence
of computational time constraints. In contrast, for positioning tasks where
collision-avoidance is necessary, but not the primary issue at hand, an on-
line approach can be used. This online approach uses MPC with DCC for
iterative planning and servoing to ensure collision-free visual servoing over
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Figure 6.15: Integration of MPC, DCC and adaptive bisection for collision-
free visual servoing.

large robot motions.

6.8.2 Integration with Online DCC

The integration of MPC with DCC using a dynamically updated collision-
free joint boundary is illustrated in Figure 6.15. During MPC prediction
at time instance k, the sequence of planned joint input configurations qi|k
is checked to determine if it satisfies collision constraints using the DCC
algorithm (Section 6.6.2). If DCC determines that the planned motion is
collision-free, then the first element of the sequence is applied as the input
signal to the plant. If DCC determines that the planned motion cannot
be guaranteed to be collision-free, then the hyperrectangular region that is
determined to be collision-free by the DCC bisection algorithm, is applied
as new joint-limit constraints for MPC optimization. Specifically, Equa-
tion 6.29 from Section 6.4 is replaced with the following collision-free joint
bounds obtained from the hyperrectangular region returned by DCC bisec-
tion algorithm:

qi|k ∈ [qminDCCk
,qmaxDCCk

]. (6.62)

The bounds on the collision-free space are dynamically updated at each
iteration k, as denoted by the subscript.

117



Chapter 6. Model Predictive ControlMECH 598 Seminar

Experimental Validation: 
Collision-Free Servoing for Object Graspingg j p g

Experimental Setup

Connecting Rod  g
(Engine Part)

CRS-A465 Robot XC-HR70 Camera Two-fingered 
Servo Gripper

Collision-Free Visual Servoing using Model Predictive Control (MPC) 
with Probabilistic Road Maps (PRM)

Ambrose Chan 
M.A.Sc. Candidate 23

Figure 6.16: Eye-in-hand platform for MPC visual servoing experiments.

6.9 Experiments: Collision-Free Visual Servoing

6.9.1 Experiment Setup

An overview of the experimental test-bed is shown in Figure 6.16. The goal
of the experiment is to position the eye-in-hand robot with respect to the
connecting rod (which is located at some random location in the workspace),
such that the two-fingered gripper is in the correct position for grasping the
connecting rod. MPC visual servoing allows this positioning task to be
completed, without requiring prior hand-eye calibration of the system. The
following sections describe the robot and camera subsystem, as well as the
approximate models that are used in the MPC visual servoing controller.

Initial Image and Desired Image

Figure 6.17 shows the initial image that the robot observes, prior to the start
of the positioning task. The robot initially observes the workspace from a
“bird’s eye” view, with its gripper positioned away from the target object.
The robot positioning task is communicated to the robot via an image that
shows the correct relative positioning between the camera and the target
object, when the desired positioning task is achieved. This reference image
is shown in Figure 6.18. Note that this image also corresponds to the correct
pre-grasp position for the two-fingered gripper, which is used to pick up the
conrod. The two-fingered gripper can be seen at the bottom of the desired
image, enclosing the neck of the conrod.
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Figure 6.17: Overhead image describing the initial position of the camera
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(3) Accurate object pose NOT required

Figure 6.18: Reference image describing the desired position of the end-
effector with respect to a target object.
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Table 6.1: Uncalibrated Camera Parameters
f 0.0048 [m]
(umin, umax) (1,1023)
(vmin, vmax) (1,767)
(u0, v0) (512,384)
ku (4.65× 10−6)−1 [pixels/m]
kv (4.65× 10−6)−1 [pixels/m]
β 90◦

Camera

The imaging sensor that is used in the experiments is a Sony XC-HR70
monochrome CCD camera, with a 4.8mm lens, as shown in Figure 6.16.
The camera acquires images at a resolution of 1024 × 768 at a maximum
frame rate of 30fps. An estimate of the camera’s intrinsic parameters is
required by the MPC controller to model the image projections in the camera
for predictive control. The camera parameters that are used in the MPC
controller for experiments can be found in Table 6.1. These parameters are
obtained from the product manual without calibration.

An estimate of the homogeneous transformation eTc from the camera
frame to the end-effector frame is also required by the MPC controller,
to model the position and orientation of the camera for prediction. This
typically requires extrinsic camera calibration. An approximate camera-
to-end-effector transformation is obtained using measurements by hand and
roughly estimating the location of the camera’s optical center. The following
transformation is used in MPC controller for experiments:

eTc = TRz(90◦)TRx(−12.5◦)Txyz(0,−0.085, 0.070)[m]

Robot

The robot used in this experiment is a CRS-A465 anthropomorphic robot.
It has six independently controlled revolute joints that are highly geared
and not backdrivable. A low-level PID controller controls the output torque
for each joint to track reference trajectories at 1kHz. The low-level trajec-
tory interpolator accepts inputs in the form of joint positions at 10Hz and
accepts velocities when specified as end conditions for smooth trajectory
interpolation. A forward kinematic model of the robot is used in the MPC
controller to estimate for the location of the camera frame, given a set of

120



Chapter 6. Model Predictive Control

Table 6.2: Joint-position limits of the CRS-A465 6-DoF robot
q1 q2 q3 q4 q5 q6

[rad] [rad] [rad] [rad] [rad] [rad]
qmin -2.9845 0.0000 -3.5605 -3.1416 -1.8151 -3.1416
qmax 2.9845 3.1416 0.4189 3.1416 1.8151 3.1416

Table 6.3: Joint-velocity limits of the CRS-A465 6-DoF robot
q1 q2 q3 q4 q5 q6

[rad/s] [rad/s] [rad/s] [rad/s] [rad/s] [rad/s]
q̇min -3.14 -3.14 -3.14 -2.99 -3.02 -2.99
q̇max +3.14 +3.14 +3.14 +2.99 +3.02 +2.99

joint configurations. Geometric models of the robot, the camera and the
gripper (constructed using geometric primitives) are used for the collision
tests. The joint-position limits of the CRS-A465 robot can be found in Table
6.2. The joint-velocity limits of the CRS-A465 robot can be found in Table
6.3. For the purpose of the experiment, the velocities of the CRS-A465 robot
have been limited to 5% of their maximum.

Target Object

The target object is a conrod (a connecting rod used in a reciprocating
piston engine) consisting of ten feature points as shown in Figures 6.17 and
6.18. A rough point-based model is constructed by measuring the centroid
location of the feature points on the object. The approximate target object
model that is used by the MPC controller can be found in Table 6.4.

An estimate of the pose of the target object is required by the MPC
controller for joint-space path planning. In the experiments, a human user
determined that the target object has the following “ball-park” pose, ex-
pressed with respect to the robot’s base:

• Translation: (10cm, 40cm, 15cm) in (x, y, z).

• Rotation: 90◦ about z.

Therefore, the following approximate target object pose is used by the
MPC controller for joint-space path planning:

121



Chapter 6. Model Predictive Control

Table 6.4: Feature point coordinates of the target object model
oXj

oYj
oZj

[m] [m] [m]
oP1 0.076 0.031 0
oP2 0.064 0.031 -0.003
oP3 0.058 0.015 0
oP4 0.054 0 0
oP5 0.058 -0.015 0
oP6 0.064 -0.031 -0.003
oP7 0.076 -0.031 0
oP8 0.037 0 -0.008
oP9 0.019 0 -0.008
oP10 0 0 -0.008

bTô = TRz(90◦)Txyz(0.100, 0.400, 0.150)[m]

Significant errors have been introduced to this pose estimate in order to
demonstrate the efficacy of MPC visual servoing in correcting for modelling
errors. The actual (x, y, z) location of the conrod with respect to the robot
based is closer to (0.130, 0.460, 0.170)[m]. Also, note that one side of the
conrod actually rests on top of another object, as shown in Figure 6.17,
resulting in significant out-of-plane rotation in the y axis with respect to
the robot’s base. However, this is not captured in the pose estimate that is
used by the MPC controller, which only has a rotation of 90◦ about the z
axis. Also, the rotation the conrod about the z axis is actually closer to 135◦.
These significant pose estimation errors (in addition to the approximation
errors introduced by the rounded “ball-park” figures, estimated by a human
user) are designed to test the ability of the MPC controller to compensate
for large errors in its prediction model.

Workspace Obstacles

The obstacles in the workspace include the two textbooks, the black binder
and the set of pliers, which are located around the connecting rod. The
obstacles are modelled as simple polygons for collision detection. The di-
mensions of the workspace obstacles can be found in Table 6.5. The ho-
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Table 6.5: Dimensions of workspace obstacles
Length Width Height

[m] [m] [m]
Textbook 1 0.255 0.175 0.025
Textbook 2 0.235 0.190 0.025
Binder 0.290 0.270 0.040
Pliers 0.165 0.075 0.020

Table 6.6: Location of workspace obstacles
Homogeneous Transformation
[m]

Textbook 1 bTwo1 = TRz(60◦)Txyz(−0.030, 0.570, 0.185)
Textbook 2 bTwo2 = TRz(95◦)Txyz(−0.025, 0.450, 0.160)
Binder bTwo3 = Txyz(−0.040, 0.440, 0.120)
Pliers bTwo4 = TRz(60◦)Txyz(0.110, 0.440, 0.150)

mogeneous transformations from the workspace obstacle centroidal frame to
the robot base frame can be found in Table 6.6.

Control System Implementation

The MPC controller is implemented on Pentium Dual-Core 2.0 GHz CPU
running Windows XP. A Matrox Meteor II acquisition board acquires images
from the Sony XC-HR70 at a frame rate of 30Hz. A visual tracker using
adaptive windowing and thresholding is implemented to track the centroid
location of the feature points. The maximum control rate that is achieved,
with SQP optimization running on one thread and feature tracking running
on another, is 10Hz. The low-level PID, independent joint controller is
implemented on a Pentium 4, 2.8 GHz computer operating with a Windows
RTX extension. The hardware is controlled through a Quanser Multi-Q PCI
card and WinCon software. The inner control loop runs at 1kHz. Quintic
polynomial interpolation is used to provide smooth reference signals for PID
tracking, to account for the difference in control rates between the inner and
the outer control loops. Communication between controllers is handled via
the Quanser serial block.
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Tuning Parameters

For the eye-in-hand visual servoing experiments, the prediction horizon Np

is set to 10 and the control horizon Nc is set to 1. The use of a longer
prediction horizon in the MPC controller is intended to account for the
(possibly significant) discrepancy between the real eye-in-hand system and
the approximate model used by the MPC controller for planning. The MPC
controller time step, δt, is set at 0.1 seconds. Q is an identity matrix and
W is a diagonal matrix with its diagonal entries equal to 10,000.

6.9.2 Experiment Results

Figure 6.19 shows the trajectory of the target object, seen from the eye-
in-hand camera, as the robot completes the visual servoing task. The ex-
periment is designed to test the ability of the image-based visual servoing
controller to compensate for uncertainties in the model and to efficiently
complete the positioning task without violating constraints. The image-
based control law successfully handles both the significant rotation that is
required about the camera’s optical axis and the translational motion that
is required towards the target object. The camera approaches the target ef-
ficiently without invoking the camera retreat phenomenon observed in other
image-based control laws. The MPC controller is able to recognize the out-
of-plane rotation required to properly align the gripper with the conrod.

Figure 6.20 shows the trajectory of the robot as the visual servoing task is
executed. The initial robot motions in frames 1 to 7 are very aggressive; the
DCC algorithm is able to guarantee collision-free motion several prediction
steps ahead. Robot motions are more conservative when the robot gripper
is in proximity to the workspace obstacles next to the conrod. In frames
8 to 12, collision-free motion can no longer be guaranteed by the DCC
algorithm between large changes in robot configurations. As the regular
DCC algorithm fails (inequality not satisfied), the MPC controller replaces
its joint-limits with the dynamically updated collision-free bounds provided
by the DCC bisection algorithm. The MPC controller is optimized over
a smaller region in joint-space where collision-free robot motion is feasible.
The last few frames show the robot taking very small steps and maintaining a
good distance away from the obstacles. The final gripper position is achieved
conservatively, despite the incorrect object pose and the incorrect eye-in-
hand calibration that is used in the MPC prediction model.

With such a poorly estimated initial target object pose, the same task
cannot be executed using a one-step look-then-move approach (i.e., using
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Figure 6.19: Sequence of camera motions generated by MPC visual servo-
ing to complete a difficult positioning task. The resulting image feature
trajectories satisfy the camera field-of-view constraints.

a very large time step δt in the MPC controller). Not only does the DCC
algorithm fail to guarantee collision-avoidance for such a large robot motion,
it actually detects robot-collision at the open-loop end goal. The poorly
estimated location of the target object puts the robot in virtual collision
with the surrounding workspace obstacles, so the robot is unable to execute
its motion. This problem can be solved by: (i) improving the pose estimate
with the EKF through further observations; (ii) using a smaller time step
δt, thus allowing the MPC-DCC controller to gradually correct the pose
estimate while approaching the target object, as demonstrated above.

A similar problem affects the two-stage planning-then-servoing approach
(PRM and MPC, Section 6.7) when the pose of the target object is highly
uncertain.

6.9.3 Discussion on Stability

As previously noted, the proof of closed-loop stability for MPC control of
a nonlinear system with constraints is still an open research problem. Of
particular interest is the proof of stability when the model is not assumed to
be perfect. Stability is surprising easy to prove under the assumption of a
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Figure 6.20: Sequence of robot motions generated by MPC visual servoing to
complete a difficult positioning task. The resulting robot trajectory satisfies
joint position, joint velocity, and workspace collision constraints.

perfect model. Keerthi and Gilbert [57] show that the addition of a “termi-
nal constraint” forces the state to take a particular value at the end of the
prediction horizon. The equilibrium point can then be proved stable via a
given Lyapunov function, provided that the optimization problem is feasible
and is solved at each step. In MPC visual servoing, the fact that a non-
linear eye-in-hand model is used for predictions makes the robust stability
analysis of the system quite challenging. In contrast, predictive controllers
that are based on linear models behave linearly provided that the plant is
operating safely away from constraints (however, they behave nonlinearly
when constraints are nearby). Unfortunately, for eye-in-hand systems that
exhibit severe nonlinearities, the usefulness of predictive control based on
a linearized model is very limited. For short prediction horizons, the MPC
controller can be approximated as a family of switching controllers, with
each controller designed to correspond to the set of constraints which are
active. In this approximation, the key is the find a common Lyapunov func-
tion for all switching controllers to guarantee stability.

In practice, the nominal stability of the closed-loop system is not an issue
when an accurate model of the plant is available. It is quite easy to obtain
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stability by tuning the parameters in the problem formulation and very
easy to check that the designed system is stable (assuming the correct plant
model). This is the typical situation with current applications of predictive
control in industrial processes [55].

6.9.4 Insights from Simulations and Experiments

Local Minima from Nonlinear Optimization

The eye-in-hand visual servoing experiments demonstrate that parameter
tuning and feedback correction in the MPC controller provide a significant
degree of robustness against modelling errors. Stability of the MPC visual
servoing controller is demonstrated for a real robotic system completing po-
sitioning tasks that require large-range robot motions, in the presence of
object pose uncertainty and system constraints. However, each iteration of
the MPC eye-in-hand visual servoing requires the optimization of a quadratic
cost function, subject to constraints that are non-convex. Specifically, the
camera field-of-view constraints are nonlinear functions of the joint configu-
rations of the robot, over which the cost function is minimized. Fortunately,
the image-based cost function is designed to naturally keep the image trajec-
tories away from the camera’s field-of-view constraints, as in the case with
IBVS. Simulations show very few instances where the robot controller runs
into local minima due to the nonlinear field-of-view constraints.

Local Minima from Collision Avoidance

The avoidance of collision constraints is also a problem that may cause the
visual servoing trajectory to get stuck in local minima. Specifically, the
avoidance of collision constraints may be in direct conflict with the visual
servoing goal. In the absence of a random sampling of additional collision-
free robot configurations (such as in PRM path planning) or random per-
turbations applied to the current robot configuration (such as in simulated
annealing), the control law may not be able to “side-step” the obstacle,
since it requires the trajectory to temporary diverge away from the goal.
The collision constraints obtained from DCC are dynamically updated at
each iteration. Using DCC as part of the MPC formulation, the magnitude
of the robot’s joint-space motion is naturally scaled to match the robot’s
proximity to obstacles. Collision constraints obtained from DCC are ini-
tially designed to be conservative to keep the robot away from obstacles, in
order to prevent the MPC trajectory from getting into a local minimum.
On the other hand, integration of MPC with the DCC adaptive bisection
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algorithm is designed to allow the robot to take smaller steps in an attempt
to get out of a local minimum, before the trajectory becomes enclosed by the
collision-constraints in the direction of the goal. In cases where the obstacle
avoidance problem is very complex, as in maze solving, the two-stage plan-
ning and servoing approach (using PRM for obstacle avoidance and MPC
for closed-loop correction) is recommended over the MPC-DCC approach.
An analysis of the MPC-DCC approach within the framework of the Active
Set method is proposed for future work in Section 7.3.2.

6.10 Summary

Experiment and simulation results in this chapter demonstrate the efficacy
of MPC visual servoing in managing the contraints related to an eye-in-
hand robot. Using MPC visual servoing formulation, large-range positioning
tasks can be completed without violation of field-of-view, joint-limit, joint
velocity, or collision constraints, even in the presence of large uncertainties
in the initial estimation of the target object’s pose. Closed-loop positional
accuracy is achieved with an uncalibrated eye-in-hand system, using the
teach-by-showing method with a rough model of the system for prediction.
Eye-in-hand visual servoing experiments show that parameter tuning and
feedback correction in the MPC controller provide a significant degree of
robustness against modelling errors. Stability of the MPC visual servoing
controller is demonstrated for a real robotic system completing a difficult
positioning task.

Insights from simulations have been provided for each of the tuning pa-
rameters in the MPC visual servoing. The prediction horizon Np determines
the aggressiveness of the control law with respect to constraints. The control
horizon Nc determines the degrees of freedom the controller has for choosing
how to complete the task. The length of the time step δt determines the
aggressiveness of the controller with respect to the uncertainty in the target
object’s location. The matrices Q and W weight the priority given to image
error minimization and control effort in terms of joint velocities.

A method of modelling an eye-in-hand robot and its associated contraints
is presented. A method of modelling collision constraints that is used for
MPC visual servoing is also presented. This method exploits a property of
the DCC algorithm to obtain a hyperrectangular region in joint-space that
is collision-free. The form of these bounds allows them to be included as
constraints in the MPC visual servoing controller for trajectory optimization.

Two approaches have been demonstrated for handling collision con-
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straints from a path planning perspective. The first approach integrates
MPC with a PRM path planner to allow it to handle complicated obsta-
cle avoidance scenarios. The generation of visible vertices within the PRM
allows a feasible transition from the PRM path planner to MPC visual ser-
voing. A method of estimating the upper bounds on the changes in joint
positions resulting from closed-loop motion is discussed. Simulations of a
large number of MPC positioning tasks with perturbations to the target
object’s pose validate the accuracy of these upper bounds. The bounds are
used with the DCC algorithm to ensure collision-free visual servoing after
the planned motion is executed. The second approach integrates MPC with
DCC to iteratively plan and servo. This method uses DCC to check for
collisions and uses the joint bounds obtained from the DCC adaptive bi-
section algorithm to modify the constraints expressed in the MPC visual
servoing controller. Experiments demonstrate the ability of this method
to provide efficient visual servoing over large motions, without collisions
with workspace obstacles, and without violating joint-limit, joint-velocity
and camera field-of-view constraints, even when the target pose’s location
is uncertain.

To provide a point of reference, typical eye-in-hand systems using the
look-then-move approach (discussed in Section 1.2) rely on complete cal-
ibration of the robot, the camera, the eye-in-hand transformation, and a
completely accurate object pose to achieve its positioning task. The MPC
visual servoing controller is able to achieve the same with an uncalibrated
system, while compensating for uncertainties in the object’s pose and avoid-
ing workspace collisions.
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Conclusions and
Recommendations

7.1 Summary Remarks

This thesis represents the design process for a constraint-aware visual servo-
ing control law that can be used to drive large-range robot motions. Unique
insights can be gained by examining the improvements that were made at
each stage of the research. First, an estimation of pose (through homogra-
phy decomposition or extended Kalman filter pose estimation) is necessary
for improving the predictability of image-based control laws when the vi-
sually servoed motion is large. However, the direct use of these Euclidean
parameters in the visual servoing control law (as implemented in 21/2-D vi-
sual servoing and position based visual servoing) may not result in the best
robot motion. Path planning must occur in the joint-space of the robot,
rather than in image-space, to produce feasible trajectories that successfully
avoid joint limits, velocity limits, and whole-arm collisions with workspace
obstacles. A two-stage planning and servoing approach (using probabilis-
tic roadmaps with MPC visual servoing) allows difficult collision-avoidance
problems to be solved, but suffers from the accumulation of errors during
the execution of the planning stage. An online iterative planning and servo-
ing approach (using MPC visual servoing with dynamic collision checking)
results in trajectories that are far less sensitive to the propagation of mod-
elling errors. Only a rough estimate of the target object’s pose is required
for planning purposes. In applications where collisions with workspace ob-
stacles are of concern and the target object’s pose is uncertain, MPC visual
servoing with dynamic collision checking can be implemented to generate
collision-free robot motions while closing the visual loop. The final result of
this research is a versatile, constraint-aware visual servoing control law that
can be used to teach practical robot motions.
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7.2 Contributions

The contributions of this thesis are in three main areas:

7.2.1 MPC Eye-in-Hand Visual Servoing

Contribution 1: A visual servo control law for eye-in-hand robots that ef-
fectively manages camera field-of-view, robot joint-limit, robot velocity-limit,
and whole-arm collision constraints while visual servoing over large motions.

1. A method to include whole-arm collision constraints in the MPC op-
timization problem.

2. A method to correct for uncertainty in the target object’s pose using
image-based feedback.

3. A method to optimize the predictions over joint positions as inputs,
such that future inputs can be checked against collision constraints.

7.2.2 Integration of MPC Visual Servoing with PRM

Contribution 2: A method to address complicated obstacle avoidance prob-
lems while ensuring closed-loop eye-in-hand accuracy, using a two-stage
planning-then-servoing approach.

1. A method to ensure a feasible transition between the PRM path plan-
ner and MPC visual servoing controller in the presence of large uncer-
tainties in the pose of the target object.

2. A method to generate new vertices in a PRM that provide visible paths
connecting the initial robot configuration to the goal robot configura-
tion. The visible path consists of robot configurations that keep the
target object within the camera’s field of view throughout the entire
planned path.

3. A method to address uncertainty in the pose of the target object to
guarantee collision-free closed-loop motion during the visual servoing
stage.

7.2.3 Integration of MPC Visual Servoing with DCC

Contribution 3: A method to address peripheral obstacle avoidance problems
while enabling the use of visual servoing over large motions, using an online
iterative planning and servoing approach.
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1. A method to ensure collision-free motion using DCC with MPC visual
servoing.

2. A method to obtain dynamically updated collision-free bounds for
MPC visual servoing using the results from the adaptive DCC bi-
section algorithm.

7.2.4 Minor Contributions

Other minor contributions of this thesis include:

• A method of selecting the most robustly visible kinematic solution for
joint-space path planning for eye-in-hand robots.

• A method of keeping the target within the field of view using adaptive
gains for PBVS.

• A method of selecting the correct homography decomposition solution
for visual servoing.

• An experimental evaluation of the accuracy of homography estimation
and decomposition techniques.

• An PBVS implementation with EKF which also tracks the velocity of
the target object.

7.3 Future Work

7.3.1 Interruption of Visual Loop

One advantage of MPC visual servoing is its ability to handle interruptions
to its visual feedback loop, without becoming unstable like other visual ser-
voing controllers. In the presence of temporary object occlusions, the MPC
controller can be programmed to continue its positioning task by operating
in open-loop (using the latest updated prediction model) until the tempo-
rary occlusions have passed and the controller regains sight of the target
object. The same also applies if the target object temporarily falls outside
of the camera’s field of view. However, in the presence of a poorly estimated
initial target pose and an extended interruption to the visual feedback loop,
there is no guarantee that the latest prediction model is correct and that
the controller will regain sight of the target object. (It may very well be
looking at the wrong place!). In the event that the controller cannot see the
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target object for an extended period of time, it must begin an active search
for the target object based on its last known location while continuing its
positioning task. A method to handle to these two conflicting goals for an
eye-in-hand robot remains to be explored.

7.3.2 Stability Analysis of MPC-DCC

A method to formally guarantee the convergence of the eye-in-hand posi-
tioning task when facing difficult collision-avoidance problems is desirable.
The current MPC-DCC method for handling collision constraints is similar
to the Active Set method that is used for solving QP optimization problems.
The Active Set method assumes that a feasible solution is initially available,
where some inequality constraints are active and some are inactive. (For
example, collision constraints are inactive when the robot is far away from
obstacles). At each iteration, the Active Set method finds an improved solu-
tion by taking a step in the direction which minimizes the cost while satisfy-
ing the active contraints, without worrying about the inactive constraints.
If this new solution is feasible, then it is accepted as the next iteration. (This
is analogous to when the DCC inequality holds and the MPC controller is
able to directly apply the input signal to the plant.) If it is not feasible, then
a line-search is made in the direction of the step to locate the point at which
feasibility is lost - namely the point at which one of the inactive constraints
becomes active. (This is analogous to when the DCC inequality fails, and
the bisection algorithm is applied to determine the collision-free bounds.)
The solution at this point is accepted as the next iteration and the newly ac-
tive constraint is added to the active set (just as the collision-free bounds are
added as new constraints to the MPC controller.) Note that the collision-
free bounds are approximations to the actual collision-free boundaries in the
robot’s joint-space. These collision-free bounds are updated dynamically at
each iteration. In this aspect, the MPC-DCC formulation is most similar to
the SQP algorithm for solving nonlinear optimization problems. The SQP
algorithm solves a QP sub-problem at each iteration by making a local linear
approximation of the nonlinear constraints, with a modification to the orig-
inal cost function using a quadratic approximation of the Lagrangian. The
current MPC-DCC algorithm does not make modifications to the cost func-
tion when using dynamically updated approximations to the collision-free
joint bounds. Further analysis is required to determine how the MPC-DCC
formulation can be modified to take advantage of its similarities to the SQP
and QP algorithms.
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7.3.3 Model Correction Methods

In addition to using an image-based approach for model correction in MPC,
the model correction can also take the form of a partial pose correction using
homography decomposition or a full pose correction using EKF. The former
method requires a very good estimation of depth and relatively noise-free
images, while the later requires a calibrated camera. Both increase the com-
putation burdens of the MPC controller. These three differing approaches
(image-based model correction, homography-based model correction, pose-
based model correction) remain to be validated in experiments to determine
their practical merits as well as stability requirements.

7.3.4 Further Evaluation Metrics

To date, there has been little research on how to evaluate the relative
strengths and weaknesses of the different visual servoing approaches pre-
sented in the field. Specifically, there is a lack of a formal method for
comparing the performance of visual servoing controllers in a quantitative
manner for practical systems that must satisfy constraints. The difficulty in
evaluation lies in the large combination of configurations that are possible
in the parameter-space and state-space (positioning tasks, robot configu-
rations, target object poses, workspace obstacles, and tuning parameters),
and the dependency of visual servoing performance on the specific config-
uration chosen. In [58], Gans et al. posit a set of preliminary servoing
tests and metrics to measure quantitatively the performance of a visual
servo controller. However, these metrics are more concerned with the tran-
sient performance of the controllers, rather than their ability to react in a
stable manner to system constraints. The limits imposed by the physical
eye-in-hand system (field of view, joint-limits, collision, etc.) in practical ap-
plications often render the transient performance of visual servo controllers
of secondary importance. For example, for visual servoing systems that
are not constraint-aware, very conservative control gains must be chosen
to ensure safe operation, which results in poor transient performance. Fu-
ture work remains to derive common metrics to evaluate the performances
of constraint-aware visual servoing approaches against the performance of
those that are not constraint-aware.
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Appendix A

Homography Estimation for
Non-Planar Objects

A.1 Virtual Plane Definition

Recall that three 3-D points cP1, cP2, cP3 are selected on the target object
to define a common virtual plane π for each pair of images to act as references
for visual servoing. In order to ensure numeric stability, these points are
chosen (among all possible combination of available feature points) such that
they maximize the surface of the corresponding triangles in both images.
The resulting three image points m1, m2, m3 in the current camera frame
F are related to the corresponding image points m∗1, m∗2, m∗3 in the desired
camera frame F∗ by a projective homography H such that:

mi ∝ Hm∗i , (A.1)

where H is a homogeneous 3 × 3 matrix. Note that H is only defined up
to a scale factor, so that one of its elements can be set to 1 without loss of
generality.

A.2 Planar vs. Non-Planar Objects

If the target object is known to be planar, then all pairs of image points
belonging to the object are related exactly by the projective homography
H. Using an additional feature point on this plane, the 8 unknown elements
of H can be estimated by solving the simple linear homogeneous system of
the form:

mi ×Hm∗i = 0, ∀i = 1, 2, 3, 4. (A.2)

Standard methods exist for solving the homography related to planar
objects where at least 4 feature points are available [59]. However, this
planar assumption severely restricts the type of target objects that can be
used for visual servoing.
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In the general case where the structure of the object is not planar, the
estimation of H is a nonlinear problem which is difficult to solve online at the
rate required for visual servoing. However, if at least 8 points are available
(3 to define π, and 5 not belonging to π), then it is possible to estimate the
homography matrix H using a linearized algorithm based on the principle
of virtual parallax, exploiting the property that all epipolar lines intersect
at the epipole. (A point in one view projects onto an epipolar line in the
other view. An epipole is the image in one view of the camera centre of the
other view.) The next section briefly describes the application of this linear
algorithm, as developed in [23].

For each 3-D target point cPj which does not belong to the commonly
defined virtual plane π, its projection m∗j in the desired camera frame and
its projection mj in the current camera frame are not related by the homog-
raphy H. If the homography relationship H is virtually applied to m∗j (that
is, by virtually moving cPj to the plane π while preserving its projection m∗j
in the first camera frame), the virtual projection Hm∗j would not coincide
with the observed projection mj in the second camera frame, due to the
parallax effect. But since m∗j is preserved in the first camera frame, the
virtual projection Hm∗j must lie on its epipolar line lj in the second camera
frame. By definition, the same is also true for the observed projection mj .
Therefore, the equation of the epipolar line lj can be written as the cross-
product of the observed coordinates mj and the virtual coordinates Hm∗j
in projective space:

lj = mj ×Hm∗j , ∀j /∈ π. (A.3)

A.3 Estimation using the Virtual Parallax

The estimation of H is based on the constraint that all the epipolar lines
must meet at the epipole. For each set of three epipolar lines, a constraint
can be generated by setting the area of the bounded triangle to be zero:

det
[
lj lk ll

]
= 0, ∀j 6= k 6= l. (A.4)

Using the results from the virtual parallax analysis, this constraint can
be expressed in terms of the 8 unknown elements of the homography matrix
H:

det
[
(mj ×Hm∗j ) (mk ×Hm∗k) (ml ×Hm∗l )

]
= 0, ∀i, j, k /∈ π.

(A.5)
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Although the above constraint is non-linear in H, a change of projection
coordinates can be performed to reduce the number of unknowns to a mini-
mum, such that the solution can be solved linearly in two steps. Let M and
M∗ be 3 × 3 transformation matrices formed by the projective coordinates
of the three reference points which define the virtual plane:

M =
[
m1 m2 m3

]
, (A.6)

M∗ =
[
m∗1 m∗2 m∗3

]
. (A.7)

(A.8)

In the new coordinate systems, the projective coordinates of all remain-
ing feature points m̃j and m̃∗j are given by:

m̃j = M−1mj , (A.9)

m̃∗j = M∗−1m∗j . (A.10)

By definition, the coordinates of the three reference points form a canon-
ical basis in the new coordinate systems:

(m̃1, m̃2, m̃3) = (m̃∗1, m̃
∗
2, m̃

∗
3) =

1
0
0

 ,
0

1
0

 ,
0

0
1

 . (A.11)

The homography relationship relating the three reference points in the
two images can be re-expressed in the new coordinate systems as:

m̃i ∝ H̃m̃∗i , ∀i = 1, 2, 3. (A.12)

Since m̃1, m̃2, m̃3 are orthogonal (and similarly m̃∗1, m̃∗2, m̃∗3), the num-
ber of unknowns to solve for in H̃ are reduced from the original 8 to 3 in
the new coordinate systems. That is:

m̃i = h̃im̃∗i , (A.13)

and

H̃ = M−1HM∗ =

h̃1 0 0
0 h̃2 0
0 0 h̃3

 . (A.14)

The constraint requiring all the epipolar lines to meet at the epipole can
be written in the new coordinate system as:

det
[
(m̃j × H̃m̃∗j ) (m̃k × H̃m̃∗k) (m̃l × H̃m̃∗l )

]
= 0. (A.15)
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Since the above constraint is homogeneous and of polynomial degree
three, it can be rearranged to form a measurement matrix C

h̃
relating the

seven unknown degree-three polynomials:

C
h̃
x = 0, (A.16)

where

xT =
[
h̃1h̃2 h̃2h̃1 h̃1h̃3 h̃2h̃3 h̃3h̃1 h̃3h̃2 h̃1h̃2h̃3

]
. (A.17)

Given n matched feature points that do not belong to the virtual plane,
there are C(n, 3) ways to choose the three different epipolar lines. This
method generates C(n, 3) equations for the 7 unknowns, where:

C(n, 3) =
n!

3!(n− 3)!
. (A.18)

Therefore, a minimum of eight matched feature points are required to
uniquely solve for x (with five points not belonging to the plane). Since the
constraints are homogeneous, the solution is found by performing a singular
value decomposition (SVD) of C

h̃
= USVT . The solution to x is the column

of V corresponding to the smallest singular value. The unknowns h̃1, h̃2, h̃3

are found by solving the following linear homogeneous system, again using
SVD: 

−x̃2 x̃1 0
x̃5 0 −x̃3

−x̃7 x̃3 0
x̃7 0 −xt1
−x̃4 x̃7 0
x̃4 0 −x̃2

x̃6 0 −x̃7

0 −x̃6 x̃4



h̃1

h̃2

h̃3

 = 0. (A.19)

Finally, the homography matrix H is obtained by transforming H̃ back
into the original coordinate system:

H = MH̃M∗−1 = M

h̃1 0 0
0 h̃2 0
0 0 h̃3

M∗−1. (A.20)
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Homography Decomposition

B.1 Geometric Interpretation

A 3-D target point cPj expressed in the current camera frame Fc as X =[
X Y Z

]
projects onto the image point m =

[
x y 1

]
in the current

image through the following relation:

X

x
=
Y

y
= Z. (B.1)

When expressed in the desired camera frame Fc∗ , the same 3-D target
point c∗Pj expressed as X∗ =

[
X∗ Y ∗ Z∗

]
projects onto the image point

m∗ =
[
x∗ y∗ 1

]
in the desired image through the following relation:

X∗

x∗
=
Y ∗

y∗
= Z∗. (B.2)

The projection m∗ in the desired image is related to the projection m
in the current image by a linear homography H:

m = Hm∗, (B.3)

xy
1

 =

h11 h12 h13

h21 h22 h23

h31 h32 h33

x∗y∗
1

 . (B.4)

Let the 3-D target point be located on the plane π, defined by the plane
normal n∗ expressed in the desired camera frame Fc∗ . The signed perpen-
dicular distance d∗ of the plane to the desired camera frame Fc∗ is given by:

d∗ = n∗TX∗. (B.5)

The 3-D coordinates X and X∗ of the 3-D target point in the two canon-
ical coordinate frames Fc and Fc∗ are related by a rotation cRc∗ and a
translation ctc∗ :

X = cRc∗X
∗ + ctc∗ . (B.6)
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Substituting the relationship n∗X∗

d∗ =1:

X =

(
cRc∗ +

(ctc∗)n
∗T

d∗

)
X∗. (B.7)

The above equation can be rewritten in projective coordinates as:

m = (d∗(cRc∗) + (ctc∗)n
∗T )m∗. (B.8)

By comparing the above projective relationship to the homography rela-
tionship between m and m∗, the homography matrix H can be decomposed
into an outer product and sum of four Euclidean entities:

H = d∗(cRc∗) + (ctc∗)n
∗T . (B.9)

where

• cRc∗ is the rotation matrix from frame Fc∗ to Fc,

• n∗ is the unit vector normal to π expressed in Fc∗ ,

• ctc∗ is the direction of translation from Fc∗ to Fc, and

• d∗ is the signed distance from π to Fc∗ .

B.2 Decomposition Solutions

The inverse problem of matrix decomposition (to obtain cRc∗ , n∗, ctc∗ and
d∗ from H) may contain multiple solutions and is a non-trivial problem.
The method was originally proposed by Faugeras [24] and Zhang [25]. To
simplify subsequent decompositions, H is first re-expressed (using SVD) in
a diagonalized form:

H = UΛVT , (B.10)

where Λ is a diagonal matrix consisting of the singular values of H,
which are positive and sorted in decreasing order λ1 ≥ λ2 ≥ λ3:

Λ =

λ1 0 0
0 λ2 0
0 0 λ3

 . (B.11)

The new decomposition equation is

Λ = d′R′ + t′n′T . (B.12)
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where d′, R′, t′, n′ are related to the original d∗, cRc∗ ,
ctc∗ , n∗ by:

cRc∗ = sUR′VT
, (B.13)

ctc∗ = Ut′, (B.14)
n∗ = Vn′, (B.15)
d∗ = sd′, (B.16)
s = det(U) det(V). (B.17)

Writing n′ in terms of its components n′ =
[
n′1 n′2 n′3

]
and defining a

set of canonical basis:

(e1, e2, e3) =

1
0
0

 ,
0

1
0

 ,
0

0
1

 . (B.18)

The decomposition of Λ gives three vector equations:

λiei = d′R′ei + t′n′i, ∀i = 1, 2, 3. (B.19)

Eliminating t′ through multiplication by n′j followed by subtraction gives:

d′R′(n′jei − n′iej) = λi n
′
jei − λjn′iej . (B.20)

Since R′ preserves the vector norm, taking the norm of the above equa-
tion ∀i, j = 1, 2, 3 gives a set of linear equations in the unknowns n′21 , n′22 ,
n′23 :

(d′2 − λ2
2)n′21 + (d′2 − λ2

1)n′22 = 0, (B.21)

(d′2 − λ2
3)n′22 + (d′2 − λ2

2)n′23 = 0, (B.22)

(d′2 − λ2
1)n′23 + (d′2 − λ2

3)n′21 = 0. (B.23)

Using the property that n′ has unit norm, the system of equations can
be combined to give 4 different solutions to n′ depending on the chosen signs
of n′1 and n′3:

n′1 = ε1

√
λ2

1 − λ2
2

λ2
1 − λ2

3

, (B.24)

n′2 = 0, ε1, ε3 = ±1, (B.25)

n′3 = ε3

√
λ2

2 − λ2
3

λ2
1 − λ2

3

. (B.26)
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To solve for d′, note that the determinant of the system of equations
must be zero to give a non-trivial (non-zero) solution to n′21 , n′22 , n′23 :

(d′2 − λ2
1)(d′2 − λ2

2)(d′2 − λ2
3) = 0. (B.27)

However, the solutions d′ = ±λ1 or d′ = ±λ3 are impossible, since they
require n′1 = n′2 = n′3 = 0 in the system of equations (due to the relative
sizes of λ1 ≥ λ2 ≥ λ3). Therefore, only two solutions to d′ remain:

d′ = ±λ2. (B.28)

If d′ = +λ2, then the solutions to R′ and t′ are:

R′ =

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 ; t′ = (λ1 − λ3)

 n′1
0
−n′3

 , (B.29)

where

sin θ =
λ1 − λ3

λ2
n′1n

′
3 = ε1ε3

√
(λ2

1 − λ2
2)(λ2

2 − λ2
3)

(λ1 + λ3)λ2
, (B.30)

cos θ =
λ1n

′2
3 + λ3n

′2
1

λ2
=

λ2
2 + λ1λ3

(λ1 + λ3)λ3
. (B.31)

If d′ = −λ2, then the solutions to R′ and t′ are:

R′ =

cosφ 0 sinφ
0 1 0

sinφ 0 − cosφ

 ; t′ = (λ1 + λ3)

n′10
n′3

 , (B.32)

where

sinφ =
λ1 + λ3

λ2
n′1n

′
3 = ε1ε3

√
(λ2

1 − λ2
2)(λ2

2 − λ2
3)

(λ1 − λ3)λ2
(B.33)

cosφ =
λ3n

′2
1 − λ1n

′2
3

λ2
=

λ1λ3 − λ2
2

(λ1 − λ3)λ2
. (B.34)

The indeterminate signs of n1, n3 and d∗ give a total of 8 different
possible solutions to the decomposition of H. The solution to the original
Euclidean components d∗, cRc∗ ,

ctc∗ , n∗ can be obtained by transforming
d′, R′, t′, n′ back into the original coordinate system using U and V from
the SVD of H.
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Appendix B. Homography Decomposition

B.3 Reinforcing Visibility Constraints

Fortunately, the knowledge of one point m∗ =
[
x∗ y∗ 1

]
on the plane,

combined with visibility constraints, can be used to reduce the overall num-
ber of solutions from 8 to 2. The visibility constraints of a physical camera
require Z > 0 and Z∗ > 0, so that the sign of d∗ can be determined from
the following relationship:

Z

Z∗
=
h31x

∗ + h32y
∗ + h33

d∗
> 0. (B.35)

Only 4 solutions remain once the sign of d∗ is determined. The following
constraint for Z∗ > 0 leaves only 2 of the 4 possible solutions for n∗:

n∗Tm
d∗

> 0. (B.36)

B.4 Solution for Visual Servoing

Only one of the two remaining solutions correctly describes the relative
geometry between the desired camera frame Fc∗ , the current camera frame
Fc, and the plane π. If the incorrect decomposition of H is chosen as
input into the control law, there is no guarantee that visual servoing will
converge. Therefore, a robust method must be devised to eliminate the
incorrect solution.

One method is to use a third image to determine the common plane
normal n∗. Unfortunately, this strategy cannot be used in the first iteration
of the control law, since the eye-in-hand robot must be commanded to move
based on the currently observed image and the original training image. To
overcome this deficiency, another virtual reference plane is chosen among
the available feature points, so that a common solution to cRc∗ and ctc∗
can be determined. In subsequent iterations, the solution nearest to the
previous one is chosen, assuming that the camera motion is small between
image frames.
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Appendix C

Damped Least-Squares
Inverse

In section 4.5.4, the problem of robot singularities arose, reducing the com-
plete controllability of visual servoing methods. A damped least-squares
inverse kinematics solution [50] is implemented to address robot singulari-
ties. This method provides the possibility of ensuring complete controlla-
bility throughout the entire robot workspace at the expense of increased
tracking errors. Recall that complete controllability is lost when the inverse
of the robot Jacobian J−1

robot|q does not exist. J−1
robot|q can be redefined as

a pseudo-inverse with the insertion of a small positive diagonal matrix κ2I
before the matrix inversion to restore its rank. The solution to the modified
inverse always exists, but in a slightly inaccurate form:

J−1
robot|q ≡

([
Jrobot|q

]T [Jrobot|q
]

+ κ2I
)−1 [

Jrobot|q
]T
. (C.1)

The damping factor κ determines the degree of approximation intro-
duced with respect to the pure least-squares solution. Small values of κ give
accurate solutions but are not very robust to near-singular configurations,
while large values are robust but result in large tracking errors. Using a
constant value for κ is, therefore, inadequate for obtaining a satisfactory
performance over the entire workspace. κ can be adjusted as a function of
a measure of closeness to the singularity. The singular value decomposi-
tion of the Jacobian matrix gives insight into the condition of the Jacobian
relationship: [

Jrobot|q
]

=
6∑
i=1

σiũiṽTi , (C.2)

where ũi and ṽi are the input and output singular vectors and σi are the
singular values, ordered by size so that σ1 ≥ σ2 ≥ · · · ≥ σ6. The damping
factor κ is adjusted based on the proximity of the smallest singular value σ6

to ε (the size of the singular region). A smooth function is chosen so that
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Appendix C. Damped Least-Squares Inverse

continuity of joint velocity is ensured during the transition at the border of
the singular region [50]:

κ2 =

{
0 when σ6 ≥ ε,(

1− (σ6
ε )2
)
κ2

max otherwise.
(C.3)
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Appendix D

Extended Kalman Filter

A nonlinear system can be approximated by linearizing it about the current
state from which infinitesimally small changes occur. The linearized Kalman
filter is based on finding a linear system whose states represent the devia-
tions from a nominal trajectory of a nonlinear system. After linearization,
a Kalman filter can be used to estimate the deviations from the nominal
trajectory and obtain an estimate of the states of the nonlinear system. An
improved version of the linearized Kalman filter is the extended Kalman
filter (EKF), which directly estimates the states of a nonlinear system us-
ing a bootstrap method. That is, the nonlinear system is linearized around
the Kalman filter estimate, and the Kalman filter estimate of the nominal
trajectory is, in turn, based on the linearized system. The complete set of
equations used for the implementation of EKF pose estimation is outlined
below:

Prediction of State Estimate:

(x̂obsv)k,− = F((x̂obsv)k−1, (uobsv)k−1) (D.1)

Linearization of State Difference Equations:

Ãk =
∂F(xobsv,uobsv)

∂xobsv

∣∣∣∣∣
xobsv=(x̂obsv)k,−

(D.2)

Prediction of Covariance Estimate:

P̃k,− = Ãk−1P̃k−1ÃT
k−1 + Q̃k−1 (D.3)

Linearization of Output Equations:

C̃k =
∂G(xobsv)
∂xobsv

∣∣∣∣∣
xobsv=(x̂obsv)k,−

(D.4)

Correction of Covariance Estimate:

P̃k =
[
P̃−1
k−1 + C̃T

k R̃−1
k C̃k

]−1
(D.5)
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Appendix D. Extended Kalman Filter

Kalman Gain:
K̃k = P̃kC̃kR̃−1

k (D.6)

Correction of State Estimate:

(x̂obsv)k = (x̂obsv)k,− + K̃k((zobsv)k −G((x̂obsv)k,−)) (D.7)
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