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Abstract 
 

Metabolomics is an emerging field in functional plant biology that attempts to relate 

patterns in the molecular intermediates and products of metabolic pathways with 

genetic, gene expression, environmental and phenotypic traits - at the whole-tissue 

and/or whole-organism level.  There is enormous potential for metabolomics tools to be 

applied in the study of tree species, and the demand for widespread application is 

promoting an ongoing evolution and refinement of newly-developed techniques.  This 

body of research addresses the application of broad-scale, non-targeted metabolomics 

to questions of wood formation and quality in tree systems.  Overall, it was shown that 

variation in metabolite profiles from developing xylem tissue was indeed correlated with 

the strength of specific phenotypic traits.  Frequently, the strength of these relationships 

was such that phenotypic severity could be predicted accurately on the basis of 

metabolite profile data alone.  The specific correlative patterns and metabolite/trait 

pairings observed in each study provided insight into the biological mechanisms by 

which these traits arise.  Studies of secondary xylem development were conducted on 

breeding populations of Douglas-fir and radiata pine, as well as genetically modified 

hybrid poplar.  In the Douglas-fir families studied, environment-induced variation in 

growth rate, fibre morphology and wood chemistry were correlated with metabolite 

profiles from developing xylem; metabolites involved in carbohydrate and lignin 

biosynthesis were primarily implicated in these relationships.  Similarly, in juvenile trees 

from a series of radiata pine families, correlations were observed between metabolite 

profiles of developing xylem and the internal checking wood defect, a known heritable 

trait.  In a different approach, two poplar hybrids, each modified separately with two 

exogenous gene constructs related to lignin biosynthesis, provided controlled model 

systems in which to investigate the interaction between genotype, metabolite profiles of 

developing xylem, and physico-chemical wood traits.  Wood traits and metabolite 

profiles alike were altered by the genetic modifications, and it was found that the 

metabolic impact of the transgenes was not confined to pathways that were directly 

coupled to lignin biosynthesis.  In fact, the scarcity of lignin-related metabolites in 

profiles from either the wild-type or modified genotypes suggested that metabolite 

channelling phenomena operate in the lignin biosynthetic pathway.  Moreover, the 
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analyses demonstrated that transgene-induced gradients in phenotypic traits could be 

associated with similar gradients within broad-scale metabolite profiles, and also that 

the wood-forming metabolisms of different poplar hybrids can respond similarly to the 

influences of genetic manipulation, at a global level.  To conclude, the demonstrated 

associations between genotype, the metabolism of wood formation, and wood 

phenotype, as revealed by metabolite profiles, confirm the value of non-targeted 

metabolomics as a systems biology approach to understanding and modeling growth 

and secondary cell wall biosynthesis in trees.  
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1.1 Scenario 
Human activity has long been associated with tree-derived materials, and wood in 

particular has utility in a plethora of roles.  The specific chemical and physical properties 

of wood influence its suitability for particular end uses (e.g. pulp vs. lumber vs. biofuels 

feedstock).  Ongoing demand to extend the limits of wood’s applicability, both in terms 

of productivity and economics, has promoted the breeding of “elite” families and/or 

genotypes globally in a variety of species (both gymnosperms and angiosperms).  Over 

the past century breeding and plantation-based forestry have brought about gains in 

forest productivity, although the long generation times of many tree species have made 

improvement through classical breeding techniques a relatively slow process, especially 

in conifers.  Furthermore, selection criteria have typically focused on easily determined 

macroscopic properties, such as trunk form and growth rate (wood volume), with the 

effects of breeding on the physico-chemical properties of the wood, and trait stability 

under environmental variation receiving less attention.  New technologies that enable 

the early growth stage assessment of physico-chemical wood traits in mature trees 

could have a profound effect on classical breeding and substantially improve the forest 

industry in its pursuit of both higher productivity and improved quality in trees. 

The technologies of molecular biology have a significant role to play in the 

continued evolution of tree breeding for specific tree and wood properties.  In theory, 

genomic sequences, gene expression, protein biosynthesis and metabolite fingerprints 

are all capable of providing markers for specific phenotypic traits that could then be 

incorporated into low-to-high throughput screening platforms.  The development of 

genetic and gene expression-based markers is technically straightforward.  The 

technology for the broad-scale analysis of DNA and mRNA is therefore fairly mature, 

when compared to similar platforms focussing on protein- and metabolism-based 

markers.  Unfortunately, the complex ‘regulatory space’ between a physical phenotype 

and its molecular marker increases the likelihood of marker inaccuracy, and along the 

continuum from genes to phenotype, genetic and gene expression-based makers are 

the most distant from the final phenotype.  Conversely, the regulatory space between 

phenotypic traits and markers based on metabolic features is much smaller, since 

metabolic changes reflect the cellular activity immediately preceding the emergence of 

a physical phenotype and presumably would integrate inputs from the upstream 
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genotype, gene and protein expression patterns, temporal and spatial subcellular 

localisation of gene products, and the influences of environmental and developmental 

factors.  Markers for wood traits based on metabolite accumulation features therefore 

have the potential for greater accuracy than their upstream counterparts.  Despite this 

potential, full exploitation of such markers has yet to be realised in plant biology, in 

contrast to medical biology, where urinalysis and blood analysis for disease diagnosis 

are commonplace. 

The development and implementation of wood-associated metabolic marker 

systems for tree breeding has been slow because broadscale analyses of plant 

metabolism for the purpose of differentiating wood traits poses considerable technical 

challenges.  Present technology does not permit routine measurement of flux through 

metabolic pathways in vivo, so the only viable option for creating a metabolite 

‘fingerprint’ is to measure the abundance of the intermediates in biochemical pathways 

(metabolites) that exhibit pooling behaviour, and treat this profile as a surrogate 

indicator of metabolic state.  Confounding this is the enormous range in abundance and 

variety of physical properties exhibited by different metabolites involved in the primary 

and secondary metabolism of wood formation, which ensure that, for a specific tissue, 

comprehensive profiles can only be generated by employing a combination of analytical 

techniques.  In addition, custom designed software, extensive statistical analysis and 

substantial computing power are required to process metabolite profile data. 

The greater vision of the research described in this thesis was to assemble a 

platform for generating and analysing metabolite profiles from tree species, and to 

demonstrate correlative associations between physico-chemical wood traits and 

features in metabolite profiles from developing xylem. Confirmation that such 

relationships can be routinely detected and characterised constitutes an initial phase in 

the development of trait screens and diagnostics for wood-related tree breeding based 

on metabolic markers.  Secondly, in order to be viable in the setting of breeding for the 

forest industry, trait screens based on metabolic markers will not only have to be 

accurate, but also efficient and cost effective.  Marker complexity will therefore have to 

be kept to a minimum so that the screening of many individuals can be accomplished in 

a cost and time-effective manner.  As such, an important aspect of this work was to test 

statistical approaches for their ability to identify those metabolite signals that contribute 
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most strongly to correlative relationships with other phenotypic traits of interest (e.g. 

wood chemistry).  The ability to generate refined profiles consisting of the fewest 

elements required to achieve accurate screening will be an essential part of any viable 

screening platform.  In the course of this work, attempts were made to identify the 

metabolites detected in the profiles and to relate the identities of metabolites implicated 

in correlative relationships to their roles in the biological system, although this goal was 

considered secondary to the goal of demonstrating the potential utility of metabolic 

markers for early assessment of wood traits. 

 

1.2 Metabolomics in plant species 
1.2.1 The “metabolome” and “metabolomics” 
In systems biology, the term "metabolome" refers to the complete set of small 

molecules (i.e. metabolites) that participate in, or are products of, metabolic reactions 

within an organism or tissue.  Metabolomics is therefore primarily concerned with the 

identification and quantification of such molecules to better understand their 

biochemical fate in a given pathway or biological response, as well as aiding in the 

development of novel biomarkers.  As an eventual product of gene expression under 

the influence of environment, cellular metabolism is the immediate progenitor of 

phenotype and, as such, the relationships between phenotypic and metabolomic traits 

are potentially less complicated than for the genomic, transcriptomic and proteomic 

counterparts.  However, in comparison to the other “omics”, for which rapid 

technological advances have been seen, the development of methodologies for the 

comprehensive analysis of the metabolome has been slow.  Whereas the genome, 

transcriptome and proteome are each comprised of a single class of polymeric 

molecule, the metabolome exhibits an enormous degree of physico-chemical molecular 

variety such that no single current instrument platform is capable of analysing all 

metabolites.  The consequent need to employ a series of preparative and analytical 

techniques to (imperfectly) span the metabolome, and the technical difficulty of merging 

disparate and/or overlapping data generated by these diverse means have restricted 

the potential of metabolomics to date.  However, the significant technological and 

methodological advances of the past decade’s research are now finally being reflected 

in the abundance of metabolomics studies reported in the plant biology literature.  
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Metabolomics tools now available finally have enough practicality and biological 

resolution to encourage widespread implementation of this technology. 

Metabolomics analyses have been broadly classified as either "targeted" or "non-

targeted".  Targeted analysis, otherwise known as 'metabolite profiling', typically 

focuses on quantifying a defined group of metabolites that are related by either a 

metabolic pathway or a molecule class.  These studies tend towards a higher degree of 

a priori knowledge as far as compound identity and interrelationship are concerned, and 

in their most refined form become 'target analysis' - the measurement of one or very few 

metabolites to serve as, for example, phenotypic biomarkers.  Conversely, non-targeted 

analysis aims to measure as broad a range of metabolites as possible, with the 

intention of creating a global metabolic fingerprint.  In the first instance, global 

fingerprinting is not as concerned with the metabolites’ identity and absolute 

abundance, as it is with their relative abundance and interrelationships, and aims 

primarily to classify samples based on metabolic ‘features’.  Ultimately, though, the 

reductive approaches commonly employed in these analyses usually lead to the 

identification of subsets of discriminating metabolites whose abundances correlate with 

specific treatments or phenotypic traits of interest.  Subsequently, attempts can be 

made to identify those compounds so that their biological significance may be 

rationalised.  Whereas broad-scale metabolomics is a recent development of the last 

ten or so years, targeted analysis of metabolism has a much longer history.  Although, 

due to the narrow focus, it is arguable that targeted analyses are not metabolomics in 

the strict sense, they do comprise the origin from which non-targeted, global 

metabolomics approaches have been derived with the assistance of advancing 

technology.  As such, there is obvious interdependency between targeted metabolite 

profiling and non-targeted metabolic fingerprinting, which has arisen through their 

shared ultimate objectives: improved biological understanding and diagnostic 

capabilities.  Because this conceptual bridge exists, recent metabolomics research in 

plants has frequently fallen into a middle ground, in terms of the degree of prior 

knowledge of the identity and role of the metabolites being analysed, the breadth of 

metabolites being analysed and the basis for their inclusion.  Clearly, the scale and 

rationality of analyses do not allow a practical distinction between modern 

metabolomics and historical metabolic analyses to be made.  In reality, metabolomics is 



6 
 

defined by a new working environment – one in which powerful new analytical tools, 

abundant computing power and powerful data-handling software have made it 

conceivable to tackle metabolic issues at the whole organism or tissue level, with an 

emphasis on deconvoluting biological complexity. 

1.2.2 The analytical process 
Practical metabolomics is concerned with measuring and analysing metabolite pools in 

an attempt to understand metabolic networks and develop biological markers.  An 

expanding range of analytical and software tools are available to assist in this 

endeavour.  In many cases, the rate of flux through metabolic pathways would be a 

more robust and informative measure of metabolic activity.  However, the current 

limitations of metabolite flux analysis make its broad-scale implementation largely 

impractical, and dictate the use of the more easily measured metabolite pooling 

phenomenon as a somewhat ambiguous indicator of metabolic activity. 

1.2.2.1 Sample preparation. 
The source material for samples should be relevant to the research objectives (e.g. 

developing xylem tissue is a good substrate for analysis of xylem biosynthetic 

metabolism), and may be comprised of whole plants (practical only for small species 

such as Arabidopsis), plant fluids (e.g. xylem or phloem sap), compounds released in 

gas exchange (e.g. volatile terpenoids), individual plant organs (e.g. root, leaf, stem or 

inflorescence), and now even laser capture microdissected cell groups (Schad et al., 

2005).  While some of the analytical tools employed in metabolomics permit the 

determination of metabolite composition with minimal sample preparation (e.g. nuclear 

magnetic resonance spectroscopy; NMR), others require active extraction of 

metabolites from the specific tissue, prior to analysis.  This process typically involves -

80°C freezing or freeze-drying of samples and tissue disruption (Fiehn et al., 2000a; 

Shepherd et al., 2007), followed by some form of liquid solvent extraction, and, when 

required, further solvent partitioning of the crude extracts. 

Although metabolite extractions based on single solvents (e.g. methanol or 

chloroform) are applicable, the composition of the extract obtained will exhibit bias 

toward metabolites that are highly soluble in the chosen solvent, which may be either 

desirable or undesirable in particular analyses.  Because of this, sample preparation for 

completely non-targeted chromatography-based metabolomics has frequently employed 
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multi-solvent extractions, typically including water (very polar) and at least one other 

less-polar solvent.  Variations of the extraction and derivatisation protocols for 

Arabidopsis published by Fiehn et al. (2000a; 2000b) are often employed.  The 

extraction is based on a dual-phase water/methanol/chloroform extraction that yields 

polar metabolites in the water/methanol phase and less-polar metabolites in the 

methanol/chloroform phase.  A method for single-phase extraction with these same 

solvents, combined in ratios that do not lead to phase separation, has also been 

established (Gullberg et al., 2004).  In situations where specific metabolite classes are 

being targeted (e.g. phenolics), selective extraction and subsequent metabolite 

partitioning and enrichment can be used to refine samples to achieve better resolution 

and signal-to-noise ratios for the target metabolites.  Such a method involving methanol 

extraction, followed by lyophilisation and subsequent partitioning of the metabolites 

between water and cyclohexane, was employed for the concentration of phenolic 

metabolites in an aqueous phase (Damiani et al., 2005).  Another example of an 

extraction protocol specifically tailored to a subject metabolite class is that employed for 

the specific extraction of membrane phospholipids developed for Arabidopsis (Welti et 

al., 2002; Yang et al., 2007).  Isopropanol with butylated hydroxytoluene (BHT) is used 

as the primary solvent, with various mixtures of chloroform, water and methanol with 

BHT used for subsequent, exhaustive tissue extraction.  Combined extracts are washed 

with KCl solution then purified with water, and finally dried down prior to re-suspension 

in chloroform or a chloroform/methanol mixture. 

When samples are to be analysed by gas chromatography (GC), it is common to 

derivatise the metabolites post-extraction as a way of increasing volatility and therefore 

the high mass cut-off of the analysis.  In the classic approach to metabolite sample 

preparation (Fiehn et al., 2000a; Fiehn et al., 2000b), this involves the protection of 

carbonyl moieties by reaction with an alkoxy-oxyamine hydrochloride, followed by the 

elimination of acidic protons by reaction with a trimethylsilylating agent (e.g. N-methyl-

N-trimethylsilyltrifluoroacetamide (MSTFA)).  Where appropriate, it is also 

recommended that a methanol/chloroform-based trans-methylation of hydrocarbon 

chains be carried out prior to the other derivatisation reactions. 

The documented optimisation of conditions for metabolite extraction and 

derivatisation in Arabidopsis leaves, stems and cell cultures (Gullberg et al., 2004; 
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t'Kindt et al., 2008), developing xylem of loblolly pine (Morris et al., 2004) and potato 

tubers (Shepherd et al., 2007) clearly illustrate the importance of ensuring that the 

process has enough stringency to achieve good metabolite extraction, but is not harsh 

enough to cause degradation of labile compounds.  The susceptibility of the metabolite 

profile to variations in sample handling and analytical conditions is a known limitation of 

metabolomics, which demands consistent processing in order for comparable datasets 

to be generated from individual samples or sample batches. 

1.2.2.2 Tools for measuring metabolites 
A variety of analytical tools are available for the generation of metabolite profiles or 

fingerprints, with specific tools being more appropriate for the determination of 

metabolites having particular physico/chemical properties.  In this regard, the analysis 

of the plant metabolome requires no special consideration over that of other organisms, 

with chromatography, mass spectrometry and NMR spectroscopy being the analytical 

mainstays across the field. 

Gas chromatography (GC) is the chromatographic technique of choice for the 

analysis of smaller (MW < ~1000) molecules, owing to its applicability to a broad range 

of molecular classes and high resolution.  Furthermore, the recent emergence of ultra-

fast gas chromatography offers a significant increase in sample processing efficiency 

that promises to assist the development of very high-throughput metabolomics.  The 

usual approach to sample introduction for GC is the evaporation of liquid phase extracts 

in the injector, although other techniques such as headspace extraction can be effective 

in specific scenarios and may avoid the need for lengthy sample preparation (Kjalstrand 

et al., 1998; Wang et al., 2006).  Alternatively, high pressure liquid chromatography 

(HPLC) is useful for the separation of molecules too large or too labile for GC.  

Furthermore, the advent of ultra-high pressure liquid chromatography (U-HPLC) has 

facilitated the much-needed increases in the resolution of liquid chromatography for 

metabolomics (Grata et al., 2008).  Although the range of metabolites that may be 

analysed by liquid chromatography is frequently limited to a specific polarity range in the 

“middle ground” (Roepenack-Lahaye et al., 2004), variant approaches including 

capillary-based and hydrophilic interaction chromatography (HILC) can be used to 

broaden this specificity (Roepenack-Lahaye et al., 2004; Tolstikov and Fiehn, 2002; 

Tolstikov et al., 2003).  Capillary electrophoresis is another emerging liquid-based 
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separation technology with potential applications in plant metabolomics (Soga et al., 

2003). 

Chromatographic separation systems require an attached quantitative detector, 

and mass spectrometers have achieved widespread popularity in metabolomics 

research.  Quadrupoles, ion traps, Fourier transform (FT) and time-of-flight (TOF) mass 

analysers, combined with various sample introduction methods appropriate for the 

respective spectrometer and the preceding gas or liquid chromatography technique, 

have all been applied in various settings.  The mass spectral data generated can be 

used to deconvolute signals from co-eluting metabolites, effectively increasing the 

resolution of the chromatographic analysis (discussed below), and provide extensive 

molecular structural information.  Also popular are photodiode array (PDA) systems, 

which may be implemented as detectors for liquid chromatography – either alone or in 

combination with a mass spectrometer.  PDAs measure light absorption across the 

ultraviolet and visible wavelengths, generating characteristic spectra for responsive 

analytes such as aromatics. 

NMR spectroscopy is a popular alternative to chromatography/mass 

spectrometry for resolving compounds in metabolomics analyses (Charlton et al., 2004; 

Ott et al., 2003; Ratcliffe and Shachar-Hill, 2001; Sanchez et al., 2008; Terskikh et al., 

2005).  A major benefit of NMR spectroscopy is that it is non-destructive, meaning that 

samples (even living) may be analysed repeatedly over the course of an experiment, or 

studied by alternative approaches once NMR analysis is complete.  Biological NMR 

spectroscopy usually exploits the magnetic properties of 1H or 13C nuclei, but may also 

target 31P or 15N (Bligny and Douce, 2001).  The different nuclei in a molecule resonate 

at slightly different frequencies as a result of differences in local chemical environment, 

so particular compounds have characteristic nuclear resonance patterns for specific 

nuclei.  Thus, an NMR spectrum provides information on the number and type of atomic 

nuclei, for example, 1H nuclei in a mixture of metabolites, and it is possible to resolve 

the contribution of individual molecules to the spectra generated by complex metabolite 

mixtures.  While this technique has been applied directly to intact plant tissues, or crude 

metabolite preparations, it has also seen some application as a detection tool in HPLC-

based analyses (Wolfender et al., 2003). 
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The provision of structural information by the detection system is crucial to the 

success of metabolomics analyses.  Without compound identification, all that can be 

provided by the analysis of metabolite extracts is a metabolic fingerprint, and while 

potentially useful for distinguishing between distinct metabolic systems, a fingerprint 

alone is not at all informative about underlying biological relationships.  This fact has 

fuelled the popularity of photodiode array-, NMR-, and mass spectrometry-based 

detection in metabolomics, as the molecule- or molecular class-specific spectral 

patterns generated by these techniques can facilitate the identification of metabolites, 

via matches with the signatures of standard compounds.  Spectral matches, combined 

with matches for retention times or indices (in analyses that include chromatographic 

separation), can provide a high level of certainty for positive identifications.  

Furthermore, with appropriate spectrometers, elemental composition calculations, soft 

chemical ionisation techniques or MSn analysis can also contribute to the identification 

of compounds in the absence of verified standards (Fiehn et al., 2000b; Tolstikov and 

Fiehn, 2002). 

Obviously, libraries of the spectral and retention index data for biological 

molecules are of enormous use when attempting to identify metabolite compounds, and 

extensive libraries are available for NMR and GC/(EI)MS.  Although it is possible to 

assemble such libraries for LC/MS, the high degree of instrument- and eluent-

dependent variation in analyte fragmentation patterns has meant that these libraries are 

not universally compatible.  For GC/MS, however, inert carrier gases and the standard 

use of a 70eV potential for electron ionisation (EI) and molecule fragmentation have 

meant that not only can libraries be constructed, but they can also be shared between 

instruments and research groups.  This has led to the publishing of extensive 

commercial and freely distributed libraries of EI mass spectra.  While commercial 

libraries represent an extremely broad range of molecules (e.g. the 2008 NIST library 

contains more than 190,000 compounds including various states of derivatisation), 

smaller, free libraries such as those provided by the Gölm Metabolite Database (GMD) 

(Kopka et al., 2005) are tailored specifically to the needs of plant metabolomics.  These 

libraries are less redundant and frequently have more utility.  Despite the growing 

number of available libraries, many compounds resolved from metabolite continue to 

elude identification.  The ongoing expansion of mass spectral library resources is of 
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paramount importance, because the process of compound identification constitutes a 

major limiting factor in the plant metabolomics field. 

 

1.2.2.3 Data processing and analysis. 
In chromatograms of complex biological samples the partial or complete co-elution of 

metabolites is a frequent occurrence that, if not addressed, can limit biological 

resolution and introduce error into downstream data analyses.  Additionally, the 

collation of metabolite profile data from multiple samples is required prior to statistical 

analysis, but manual collation becomes impractical in chromatography-based analyses 

involving large sets of samples and/or metabolites.  This is because unavoidable 

fluctuations in temperature ramps, eluent gradients, column pressure or flow rates lead 

to inter-sample variation in the metabolite separation domain (which is time-based in 

most high-resolution chromatography), ensuring that the retention time of any given 

metabolite is seldom, if ever, a single exact value across all sample runs.  Fortunately, 

however, the pressing need to resolve these issues has led to the development of 

algorithms that are able to deconvolute the signals from co-eluting metabolites. Both 

commercial and free software tools that semi-automate these tasks have emerged, with 

notable non-commercial offerings including NIST AMDIS (for deconvolution only), 

MSFACTs (Duran et al., 2003), metAlign (Tikunov et al., 2005; Tolstikov et al., 2003), 

correlation optimised warping (COW) (Christin et al., 2008; Nielsen et al., 1998), and 

the highly capable XCMS (Smith et al., 2006). 

Data analysis in metabolomics has advanced at a considerable rate, with 

ongoing introduction of statistical analyses and other calculative tools to the field.  Most 

statistical tools have been applied from exploratory or reductive perspectives.  Classic, 

univariate tests between means, such as Student’s t-test, the F-test and more robust 

incarnations like Tukey’s “Honestly Significant Difference” (HSD) test have been used to 

individually identify metabolites exhibiting genotype- or treatment-related differences in 

abundance (Fiehn et al., 2000a; Yeh et al., 2006).  Although useful, these tests deal 

with each metabolite as an isolated entity, and are unable to take the interdependence 

of the components of metabolite profiles into account (i.e. the “network” paradigm).  

Multivariate analyses are better suited to this task.  The multivariate tools initially 

adopted in metabolomics were principal components analysis (PCA) (Chen et al., 2003; 
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Fiehn et al., 2000a) and hierarchical cluster analysis (HCA) (Roessner et al., 2001a; 

Roessner et al., 2001b), and the scope of many classic and contemporary analyses is 

limited to these two techniques.  Both are useful for comparing complete profiles from 

multiple samples, and generate diagrammatic outputs that are visually appealing and 

easily interpreted.  Although PCA does provide some information regarding the 

particular metabolites responsible for any distinction between sample classes, neither 

PCA nor HCA are very diagnostic, as they are unable to provide calculated measures of 

the relationships between metabolite profiles and, for example, phenotypic traits.  

Canonical correlation analysis (CCA) is one method that can better assist in defining the 

relationships between two sets of variables, such as metabolites and quantitative 

phenotypic traits (Meyer et al., 2007).  Essentially, CCA identifies groups of variables in 

one set that are correlated to groups of variables in the other, and indicates the relative 

contributions of individual variables to the relationship.  However, in cases where 

diagnostics are an objective, techniques that generate models for the prediction of 

specific traits on the basis of metabolite profiles typically have more utility.  To this end, 

multiple discriminant analysis (MDA) is useful for distinguishing samples by class (e.g. 

genotype, species), while partial least squares regression (PLSR) (Dijksterhuis et al., 

2005; Meyer et al., 2007) and less conventional “stepwise” variable selection 

procedures (Klukas et al., 2006; Li and Nyholt, 2001; Yamashita et al., 2007) are 

powerful techniques for modeling quantitative phenotypic traits (e.g. the total lignin 

content of wood, or any other measurable property). 

The graphical presentation of biochemical pathways and molecular interactions, 

as supported by metabolomic data, is an important part of metabolomics, and can 

contribute considerably to data interpretation and the derived understanding of 

biological relationships at the molecular level.  Neural networking, as conducted by the 

“Pajek” software (Batagelj and Mrvar, 2002), is a graphical correlative statistical 

approach capable of effectively summarising interactive networks, which uses marker 

size and proximity to visualise the interactions within sets of variables.  In 

metabolomics, the networks generated by this process provide valuable insight into the 

interdependency between specific metabolites, which can reveal hubs or metabolic 

control points within the systems being analysed (Batagelj and Mrvar, 2002; Fiehn, 

2003; Giuliani et al., 2004; Steuer et al., 2003).  Another option is to record the 
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behaviour of various metabolites on conceptual metabolic pathway scaffolds 

established using previous research.  Obviously, this could be done manually, but 

scaffolding and annotation software such as MapMan (Thimm et al., 2004) can expedite 

the process.  These scaffolds are annotated with the contributions of interesting 

metabolites to a given relationship with, for example, a phenotypic trait.  These may be 

represented by numerical scores (Hirai et al., 2004) or colour-coding and heatmap 

output markers (Nikiforova et al., 2005b). 

1.2.3 The effective incorporation of metabolomics into systems biology 
From the turn of the century, at the time when the first reports of broad-scale metabolite 

profiling were made, it has been suggested that metabolomics would evolve into a 

powerful, integrated branch of plant systems biology (Fernie et al., 2004; Fiehn et al., 

2001; Weckwerth, 2003).  Unfortunately, the technical demands of metabolomics have 

dictated that this concept could not be realised in the very short term; however, it has 

become clear that metabolomic data has the greatest utility, and provides the deepest 

insight, only when interpreted in conjunction with its genomic, transcriptomic and 

proteomic counterparts.  This realisation promotes increasingly complex experimental 

scenarios and the accompanying logistical challenges, as it demands concurrent 

analysis of sample sets by multiple “omics” platforms.  It is reassuring then, to see that 

despite the inherent difficulties, “multi-omic” analyses, and the data processing tools 

required to conduct them (Bylesjo et al., 2007; Daub et al., 2003; Klukas et al., 2006; 

van Riel, 2006; Wurtele et al., 2003), are becoming more commonplace, and that data 

from one “omics” can assist the interpretation of that from others.  To date, the staple 

diet has been the combination of metabolomics and transcriptomics analyses 

(Colebatch et al., 2004; Hirai et al., 2004; Nakamura et al., 2007; Osuna et al., 2007; 

Urbanczyk-Wochniak et al., 2005), with some excellent examples of combined data 

being presented in either correlation network (Nikiforova et al., 2005a) or pathway 

scaffold (Tohge et al., 2005) formats.  Combined metabolomics/genetics studies are 

emerging slowly (Lisec et al., 2008; Morreel et al., 2006). 

 

1.3 Application of metabolomics technology in the study of plant species 
Concurrent with the rise of metabolomics technology over the last decade, 

metabolomics analyses have been carried out on numerous plant species, involving a 
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broad range of analytical and data processing techniques.  Frequently, though, 

analyses have been conducted simply to demonstrate the application of new or 

improved technologies in plant systems, without addressing defined biological issues.  

This notwithstanding, applied metabolomics is rapidly becoming an important, highly 

utilised research approach, and many examples of biology-based metabolomics have 

been published.  Here, several areas pertinent to this research project will be 

discussed. 

1.3.1 Development 
One approach to understanding a developmental process is to track the behaviour of 

metabolites through its course, either as it occurs naturally or when perturbed by 

environmental conditions or specific genetic modifications.  Metabolomics techniques 

allow broad observation of metabolism and any unexpected relationships therein, as 

associated with developmental processes.  For example, tomato fruit development, as 

both a naturally occurring and genetically modified process, has been a target for 

metabolomics analyses.  Such studies have helped in developing a comprehensive 

picture of the molecular biology (i.e. the interactions between gene expression, post-

translational mechanisms and metabolic patterns) of tomato ripening (Carrari et al., 

2006), and to define temporal aspects of the role of hexokinase phosphorylation in that 

process (Roessner-Tunali et al., 2003).  Similarly, the extent to which a chromatin 

remodelling factor, PICKLE (PKL), was responsible for the metabolic transitions 

observed upon Arabidopsis seed germination and root formation was defined with the 

assistance of gene knockout-mutants and a metabolomic analysis (Rider et al., 2004).  

In a “lipidomics” analysis following the progression of cellular development, apoptosis, 

and taxol biosynthesis in cell cultures of two Taxus species, Yang et al. (2007) found 

that phospholipid composition in apoptotic cells was markedly different than in living 

cells.  This observation prompted the suggestion that the alternation of these membrane 

phospholipids plays a role in regulating the processes of apoptosis and taxol production 

in at least some Taxus species.  The metabolic sink-to-source transition of developing 

quaking aspen (Populus tremuloides) leaves was followed in the work of Jeong et al. 

(2004), who observed clear distinctions between young, expanded and mature leaves.  

Through ontogeny, multi-fold changes in two-thirds of the identified metabolites were 

observed, with major trends seen in carbohydrate and amino acid metabolism that 
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conformed to the photosynthetic and respiratory shifts associated with a transition from 

carbon heterotrophy to carbon autotrophy, and from rapid synthesis to maturation of cell 

structure. 

An alternative application of metabolomics in developmental biology involves its 

use in identifying markers for polygenic quantitative traits.  Research indicates that it is 

possible to describe complex traits as a function of metabolic composition, and that 

genome-wide metabolic genomics analysis can aid in the search for polygenic traits 

with potential for improvement through breeding.  For example, a combination of 

morphological analysis and metabolic and genetic quantitative trait loci (QTL) analyses 

were used to demonstrate the utility of a multi-omic approach in a tomato fruit breeding 

scenario (Schauer and Fernie, 2006), and in recombinant inbred lines of Arabidopsis, a 

strong, generally negative correlation between biomass and a specific set of (mostly) 

primary metabolites was defined (Meyer et al., 2007). 

1.3.2 Response to growth conditions 
The ability to respond to environmental factors that challenge homeostatic equilibrium 

has far reaching consequences for plant health and survival, and productivity in the 

case of cultivated crops.  Such abiotic pressure demands co-ordinated, system-wide 

adjustment in order for equilibrium to be maintained, and metabolomics technologies 

have become popular tools for investigating the biochemical mechanisms of this 

process.  In fact, environmentally pressured systems continue to be key subjects in the 

development and application of tools for multi-omics analysis in plants. 

1.3.2.1 Nutritional stress 
In the study of nutrient deficiency stress by metabolomics and multi-omic analyses, 

sulphur was the first nutrient to attract attention, with this area seeing one of the first 

attempts to combine broad-scale metabolomics and transcriptomics (Hirai et al., 2004).  

By demonstrating broad genomic and metabolic coherency, and very tight coherency 

for a branch of glucosinolate metabolism, this work set a precedent for multi-omic 

analyses in sulphur-related and other research.  In an elegant implementation of 

dynamic networking, Nikiforova et al. (2005a) integrated complex transcript and 

metabolite data from Arabidopsis plants perturbed by sulphur depletion.  The influence 

of this nutrient on the biological system was shown to act predominantly through 

modulation of particular genes’ expression, which in turn affected metabolic 
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reorganisation.  Specific gene expression and metabolic ‘hubs’ were identified, which 

appeared to control homeostasis with respect to sulphur nutrition, including apparent 

hormone-related regulatory networks.  Parallel work (Nikiforova et al., 2005b), found 

that the co-ordinated adaptive response of Arabidopsis to reduced sulphur availability, 

which involved decreases in sulphurous amino acid pools, total RNA, chlorophylls, 

proteins and plant biomass, was associated with a globally coordinated metabolic 

response involving shifts in elements relating to efficient sulphur assimilation, re-

establishing nitrogen balance, and increases in lipid breakdown, purine metabolism and 

photorespiration. 

Carbon- and phosphorus-based nutritional stress in Arabidopsis have been 

recent targets of metabolomic analyses, in conjunction with genomic scale transcript 

and protein analysis (Morcuende et al., 2007; Osuna et al., 2007).  These analyses 

have provided broad insight into the nature of plant nutrition response mechanisms.  As 

with sulphur, deprivation and resupply of these essential nutrients prompted 

coordinated, system-wide reprogramming of gene expression and subsequently central 

metabolism, with the response to resupply comprised of rapid and gradual components 

in both cases.  The resupply of carbon led to rapid changes in the expression of 

transcription factors, and rapid re-accumulation of sucrose, reducing sugars and starch.  

More gradual recovery was apparent in transcripts, enzyme activities and metabolites 

involved in glycolysis and nitrate assimilation, the shikimate pathway and myo-inositol, 

proline and fatty acid metabolism.  In the case of phosphorus, deprivation led to 

extensive shifts in gene expression and the accumulation of carbohydrates, organic 

acids and amino acids; resupply prompted a rapid recovery of gene expression related 

directly to phosphate processing/allocation and a fairly rapid reduction of amino acid 

pools, but much slower readjustment of the other metabolite classes. 

1.3.2.2 Environmental pressure 
Metabolomics studies of the response of plants to salt stress collectively suggest that 

the acclimation process involves multiple metabolic pathways, and is associated with 

changes in inorganic acid, amino acid and sugar metabolism.  In grape vines exposure 

to salinity stress resulted in a reduction of sucrose and organic acid pools, but an 

increase in fructose, malic acid, and osmoprotectant amino acids (proline and 

asparagine) (Cramer et al., 2007).  Furthermore, mining of metabolite data from 
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Arabidopsis cell cultures suggests that the methylation cycle for the supply of methyl 

groups, the phenylpropanoid pathway, and glycine betaine biosynthesis were 

collectively induced in the short term response to salt stress, whereas the long term 

response (>24h) was characterised by an induction of glycolysis and sucrose 

metabolism, and a reduction of the methylation cycle (Kim et al., 2007).  In a 

comparison of the response of Arabidopsis and the related halophyte Thellungiella 

halophila to short term salt stress, a more extensive metabolic response in the 

halophyte was observed, with greater accumulation of myo-inositol, galactinol and 

raffinose, and greater reductions in pools of fumaric, malic, phosphoric and aspartic 

acids, compared to its glycophytic counterpart (Gong et al., 2005).  More interesting, 

however, was that prior to salt exposure, the steady state pools of many stress-

responsive transcripts and metabolites were notably more abundant in the halophyte, 

which suggests the evolution of constitutive adaptation mechanisms in such species. 

Research in grape vines indicates that the gene expression and metabolic 

responses of plants to high salt and drought may be based on similar foundations, but 

are specialised in order to meet the specific demands of each (Cramer et al., 2007).  In 

this, water deficit appears to be the more demanding state, with an analysis of the 

metabolite composition of maize xylem sap and Arabidopsis leaves under extended 

drought revealing both simple, and temporally more complex changes in separate sets 

of signalling and adaptive metabolites (Alvarez et al., 2008; Rizhsky et al., 2004).  Some 

of the concentration changes in osmoprotectant metabolites were very substantial.  In 

particular, a thirty-fold increase was seen in proline concentration in Arabidopsis leaves 

(Rizhsky et al., 2004).  Additionally, the very positive response of malic and abscisic 

acids in maize lent support to their putative role as root-to-shoot signals for systemic 

response to drought,  while it was postulated that the observed pooling of monolignol 

precursors may relate to a reduction in lignin biosynthesis and stiffening of xylem cell 

walls as structural protection against tension induced buckling of vessels, and stem 

collapse (Alvarez et al., 2008). 

The response of plants to cold-temperature stress is a long-standing, highly 

active field of research, and several recent studies in Arabidopsis have defined a 

systems biology approach that includes metabolomic analyses.  In this, metabolomics 

has shown that as with adaptation to high salt and drought, adaptation to temperature 
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stress involves extensive and complex reconfiguration of the metabolome.  Non-

acclimated cold or freezing tolerance appears to be under the positive control of the 

CBF3 cold-responsive C-repeat/dehydration responsive element binding factor, and is 

more pronounced in cold-tolerant ecotypes that exhibit a higher level of constitutive 

activation and responsiveness in the CBF pathway, and tailoring of metabolome 

architecture (Cook et al., 2004; Hannah et al., 2006).  However, the comparative 

metabolic stability of leaves developed at low temperatures compared to those shifted 

to low temperatures, and the commonly extensive, yet distinct metabolic characters 

generated by these two scenarios suggest that whereas some cold-related metabolic 

networks are modulated by the environment, development under low-temperature 

conditions invokes other constitutive network adjustments (Gray and Heath, 2005).  

Interestingly, the lack of correlation between related transcripts and metabolites in the 

course of cold acclimation suggest that regulatory factors other than transcript 

abundance play important roles in coordinating this process (Kaplan et al., 2007). 

With regard to heat-induced stress, non-targeted analyses have found that the 

metabolic response of Arabidopsis to heat shock shares the majority of its elements 

with the response to cold stress, but is much less intense (Kaplan et al., 2007; Rizhsky 

et al., 2004).  Furthermore, the response to heat appears to be much less temporally 

complex than to cold, with most metabolic shifts in response to heat shock occurring 

quickly while cold response appears to pass through several phases (Kaplan et al., 

2007). 

It has been found that a combination of stress types can prompt a metabolic 

response that is distinct from a combination of those prompted by each type alone.  

Amongst other effects, a combination of drought and heat stress can apparently prompt 

the replacement of one major osmoprotectant with another, presumably as a 

mechanism for avoiding metabolite cytotoxicity at high temperatures (Rizhsky et al., 

2004).  Such mechanisms highlight the ability of the plant system to respond to complex 

environmental conditions that occur in nature. 

1.3.3 Intra-species, and transgenic or non-transgenic line differentiation 
Metabolomics technology is useful in the characterisation and distinction of different 

plant systems, while generating data of sufficient breadth as to allow consideration of 

the biological basis of such distinctions.  Attempts to conduct metabolite profile-based 
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chemotaxonomy have yielded informative results for species in several plant genera, 

including Eucalyptus species of Australia (Merchant et al., 2006), naturally occurring, 

environmentally marginal populations of Arabidopsis lyrata spp., and domesticated 

cultivars of Sesame (Laurentin et al., 2008).  Additionally, some of the seminal research 

of plant metabolomics has been concerned with defining the effects of genetic 

modification at the metabolic level, focussing on the effects of several transgenes 

related to sucrose metabolism in potato (Roessner et al., 2001a; Roessner et al., 2000; 

Roessner et al., 2001b).  As a continuation, differential network analysis of silent 

phenotype potato lines (Weckwerth et al., 2004) highlighted the potential application of 

chemometric analysis in assigning function to genes for isozymes or members of gene 

families appearing to exhibit functional redundancy.  The success of early research 

made it apparent that metabolomic analyses offered an opportunity to assess the 

effect(s) of genetic modification beyond overt phenotypic traits, and would be applicable 

to scenarios such as the determination of “substantial equivalence” and the extent of 

so-called “unintended effects” between transgenic and parental lines in food crop 

species.  Although the potential of this application has long been discussed (Kuiper et 

al., 2003), reports of food safety-related metabolomics research in plants are rare.  

Notable examples include the analysis of mutant and transgenic lines of tomato in 

which dietary antioxidants have been increased (Le Gall et al., 2003; Long et al., 2006), 

of wheat lines containing additional copies of endogenous genes encoding high-

molecular-weight protein subunits of glutein (Baker et al., 2006), and of transgenic 

maize lines harbouring the Cry1Ab gene for biosynthesis of Bt toxin (Levandi et al., 

2008).  These studies indicate that genetic modification can result in significant, 

sometimes extensive changes in metabolism beyond the intended target pathway, 

although these changes may fall within the extent of variation seen for the parental line 

under environmental extremes.  Metabolomics has also been applied with success to 

the analysis of gene misregulation related to phenylpropanoid metabolism, as 

discussed in the following section. 

1.3.4 Secondary xylem biosynthesis 
1.3.4.1 Lignin-related gene misregulation 
Extensive studies focused on the effects of misregulating various genes associated with 

the phenylpropanoid pathway and involved in monolignol biosynthesis have been 
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conducted (Dauwe et al., 2007; Leple et al., 2007; Rohde et al., 2004).  In these 

analyses, metabolomics, and in particular, the co-application of metabolomics and 

transcriptomics, has yielded comprehensive maps of the effects of each misregulation 

that detail gene expression and metabolic responses to altered monolignol 

biosynthesis, and provide insight into the function and breadth of influence of each 

gene, and the plasticity of plant systems.  This work will be discussed in detail.  TDNA-

insertion mutation-based inactivation of two isozymes of the first enzyme of the 

phenylpropanoid pathway, phenylalanine lyase (PAL1 and PAL2), resulted in extensive 

shifts in gene expression and metabolism in stems of Arabidopsis (Rohde et al., 2004).  

The inactivation of either PAL1 or PAL2 caused increases in phenylalanine, tryptophan 

and glutamine-related metabolites involved in the recycling of ammonium via the GS-

GOGAT cycle.  The effects on gene expression were more extensive, with 

transcriptomic evidence suggesting a greater role for PAL1 in phenylpropanoid 

metabolism.  However, the double mutation of these two isozymes was required for the 

emergence of a (minor) physical phenotype, and brought extended effects on the 

metabolome and wood composition.  The elimination of both PAL1 and PAL2 greatly 

reduced flux through the phenylpropanoid pathway, evidenced by increased 

phenylalanine over-accumulation, shifts in several additional amino acids, reduced 

accumulation of flavonol glucosides, glycosylated vanillic acid, scopolin, two coniferyl 

alcohol-coupled feruloyl malates, and a reduction in total cell wall lignin content, with 

increased syringyl:guaiacyl monomer ratio. 

Cinnamoyl-CoA reductase (CCR) catalyses the conversion of feruloyl-CoA to 

coniferaldehyde, in what is considered to be the first committed reaction step in the 

monolignol-specific branch of the phenylpropanoid pathway.  In an analysis of CCR 

down-regulated poplar, the dramatic decrease in lignin content, and observed increase 

in the incorporation of ferulic acid into lignin with an approximate doubling of the ratio 

between ferulic acid or sinapic acid, and coniferaldehyde or sinapaldehyde, suggested 

that the down-regulation caused a shift in flux from monolignol biosynthesis toward 

ferulic acid  (Leple et al., 2007).  LC/MS analysis revealed an increase in the production 

of the glucosylated phenolics, glucopyranosyl sinapic acid and glucopyranosyl vanillic 

acid, while GC/MS analysis identified twenty known metabolites that accumulated 

differentially due to CCR down-regulation, with strong representation from participants 
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in respiration, ascorbic acid, sugar (e.g. glucose, mannose and myo-inositol) and 

hemicellulose and pectin metabolism.  Thus, it was confirmed that the misregulation 

had affected not only phenylpropanoid metabolism, but also various other pathways 

associated with primary metabolism and secondary cell wall biosynthesis.  The 

transcriptomic and metabolomic data from this study, as well as another involving CCR-

down-regulated tobacco (Dauwe et al., 2007), indicated that a down-regulation of 

general carbohydrate metabolism and reduction and remodelling of hemicellulose and 

pectin glycans that cross-link lignin monomers took place in response to signals arising 

from the lignin-related changes in chemical and structural properties of the developing 

secondary wall.  While some of these changes in carbohydrate metabolism could have 

been part of a stress response in the modified lines, the tobacco studies in particular 

indicated an emergence of a stressed state, with metabolite and transcript shifts 

suggesting increases in photo-oxidative stress and photorespiration (Dauwe et al., 

2007).  Furthermore, the accumulation of glycosylated and quinylated derivatives of 

feruloyl-CoA, the usual substrate of CCR, suggests the existence of detoxification 

mechanisms that work to limit the accumulation of this metabolite, and may be the sink 

for carbon made available from the degradation of starch in a situation of reduced cell 

wall biosynthesis. 

Further downstream in the monolignol biosynthetic pathway, cinnamyl alcohol 

dehydrogenase (CAD) catalyses the reduction of coniferaldehyde or sinapaldehyde into 

coniferyl and sinapyl alcohol, respectively.  An “omics” analysis of the stems of tobacco 

down-regulated in the CAD2 enzyme defined a response with similarities to that seen 

with CCR down-regulation, but notably less extensive as far as carbohydrate 

metabolism was concerned (Dauwe et al., 2007).  Proximal to the activity of CAD2, an 

accumulation of its usual substrates, coniferaldehyde and sinapaldehyde, was 

observed.  Although a respective decrease was not seen in the immediate enzymatic 

products, coniferyl alcohol and sinapyl alcohol, and lignin content remained stable, 

decreases were observed in the pools of 16 oligolignols (all consistent with those 

decreasing as a product of CCR down-regulation).  The somewhat puzzling stability of 

lignin content despite CAD2 down-regulation may be explained by redundancy in this 

step of the pathway due to the existence of an isozyme, CAD1, which acts on 

coniferaldehyde and contributes significantly to the biosynthesis of coniferyl alcohol in 
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tobacco (Damiani et al., 2005).  Nevertheless, CAD2 down-regulation had a 

considerable positive effect on the pooling of quinic acid and conjugated phenolics, 

such as 1-caffeoyl quinic acid, vanillic acid glucoside, syringic acid glucoside, and 

sinapic acid glucoside, which are all putative by-products of upstream-of-CAD 

metabolite detoxification mechanisms. 

1.3.4.2 Physico-chemical variation 
In the study of xylem/wood formation, metabolomics has contributed to an improved 

understanding of the systemic rearrangements in cellular metabolism giving rise to 

wood with different physico-chemical properties, either within individuals or species.  

Morris et al. (2004) conducted a GC/MS-based metabolomic analysis of the developing 

xylem of loblolly pine trees, representing two families that produce wood with ~45% and 

~50% alpha cellulose content.  A set of the most abundant metabolites found in the 

GC/FID chromatogram were analysed by PCA, which loosely clustered and partially 

separated the samples of the two families.  Both primary and secondary metabolites 

associated with wood formation were implicated in this distinction, including citric acid, 

shikimic acid, glucose and fructose.  Although limited in terms of sample count and 

metabolic scope, this experiment set a precedent for subsequent, more comprehensive 

research.  To support mounting chemical and structural evidence, and their hypothesis 

that juvenile and compression woods of conifers were not as similar as had previously 

been suggested, Yeh et al. (2006) attempted to distinguish between the metabolism 

involved in biosynthesis of variant wood forms in juvenile loblolly pine by profiling polar 

metabolites extracted from developing xylem.  Tight clustering and clean separation of 

sample treatment groups in PCA and HCA analyses of a set of 25 highly and 

moderately abundant metabolites showed that the formation of normal, wind-exposed, 

compression, and opposite wood were each accompanied by distinct metabolite 

profiles.  The profiles of juvenile and compression wood were clearly distinguished by 

PCA component 1, thus validating their claim.  The separation of reaction wood (wind-

exposed and compression) from non-reaction wood (normal and opposite) in PCA 

component 3 was due to increases in lignin precursors, such as shikimic acid, p-

glucocoumaryl alcohol and coniferin, free sugars and sugar alcohols such as glucose, 

fructose, maltose, inositol and pinitol, and TCA cycle intermediates and amino acid-

related metabolites including malic acid, gluconic acid and glycine.  This profile was 
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consistent with the increase in lignin content and altered lignin composition typically 

seen in the compression wood of gymnosperms.  The nature of the metabolism giving 

rise to reaction wood was further investigated in an analysis of the metabolic and gene 

expression profiles in developing tension wood of poplar (Andersson-Gunneras et al., 

2006).  Although this work was dominated by transcript analysis, the multivariate 

analyses in the metabolomic component did reveal 26 metabolites that differed 

significantly between normal secondary cell wall and G-layer biosynthesis.  Linoleic and 

oleic fatty acids were increased.  Xylose and xylitol increased, whereas other sugars 

and sugar alcohols such as sucrose, arabinose and inositol decreased.  Notably, the 

monolignol precursor shikimate was also decreased, as were other organic and amino 

acids including phosphate, citric acid, pentonic acid, aspartic acid, and galactaric acid.  

When viewed in conjunction with the extensive gene expression data, these metabolic 

shifts suggested the reprogramming of mechanisms for cellulose, lignin and cell wall 

matrix carbohydrate biosynthesis, amongst others.  In particular, the apparent decrease 

in the activity of the pentose phosphate and shikimate pathways, and the concurrent 

increase in UDP-D-glucose biosynthesis were certainly in keeping with the decreased 

lignification and cellulose enrichment typically observed in the G-layer. 

The examples provided demonstrate the effective use of metabolomics to rapidly 

identify the distinguishing components in different metabolic systems related to wood 

formation.  However, it is apparent that a very promising aspect of metabolomics has 

yet to be exploited extensively.  Not only can these types of analyses help to improve 

our understanding of the molecular mechanisms of wood biosynthesis, but there is 

certainly great potential to develop accurate metabolic markers for physico-chemical 

wood traits, and to apply those markers in trait monitoring and prediction scenarios. 

 

1.4 The biology of secondary xylem biosynthesis 
Plant cell walls are complex biological products comprised of a diverse array of 

compounds, which arise from a myriad of primary and secondary metabolic processes.  

However, for the sake of brevity this discussion of secondary xylem biosynthesis will be 

limited to the major carbohydrate and phenolic structural components. 

1.4.1 Temporal and spatial aspects of secondary xylem formation 
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Wood, i.e. secondary xylem, arises from the vascular cambium (meristem) as part of 

secondary growth, which is a process whereby lateral meristematic activity allows 

stems to continue increasing in diameter in regions that are no longer elongating.  

Secondary xylem consists largely of cells that are no longer alive - specifically, the 

mature tracheids in softwoods (gymnosperms), and fibres, vessel elements and 

tracheids in hardwoods (angiosperms).  However, in order to achieve their final, 

functional morphology, xylem cells must go through several developmental stages 

including origin, enlargement, secondary wall thickening and lignification. 

New secondary xylem cells are produced through inward periclinal divisions of 

axially (vertically) orientated fusiform initial cells and their immediate derivatives (mother 

cells) in the vascular cambial zone.  Following origin, an axially orientated cell enters a 

phase of elongation, or ‘apical intrusive growth’.  At this time, the cell has only a thin 

primary cell wall, consisting mainly of radially orientated cellulose microfibrils and cross-

linking hemicellulose glycan.  This wall expands vertically under the pressure of 

protoplast turgor, involving the vertically inclined, yet somewhat chaotic reorientation of 

microfibrils.  At the same time, additional layers of microfibrils, called ‘strata’ are laid 

onto the inside of the primary wall, maintaining its thickness and preventing rupture.  As 

regions of a cell stop growing, the primary wall is cross-linked into its ultimate shape. 

Deposition of secondary cell walls begins once the cell shape is established.  

Since there is no clean seasonal separation between cell elongation and cell wall 

thickening, wall thickening works outwards from the middle of the cell to allow ongoing 

elongation at the ends.  Outer (S1), middle (S2) and inner (S3) sub-walls are 

constructed from layers (lamellae) of microfibrils deposited on the inside of the existing 

primary wall in specific, ordered orientations.  During this process hemicellulose and 

lignin are also deposited into the secondary cell wall matrix.  Hemicellulose binds to 

cellulose, pectin and lignin to form a network of cross-linked fibres in the cell wall, 

establishing lateral rigidity in the process (Helm, 2000; Lawoko et al., 2006; Popper and 

Fry, 2008; Uraki et al., 2007).  In axially orientated xylem, this process continues until all 

reserves in the vacuole and protoplast are consumed and metabolism ceases.  

Depending on ultimate function, different cell types undergo different degrees of 

thickening.  For example, fibres provide strength and are almost a solid mass of walls, 

whereas vessel elements conduct fluid and retain a much larger hollow central core. 
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1.4.2 Cellulose 
Cellulose is a biopolymer of unbranched β-1,4-linked glucan chains in which successive 

glucose residues are inverted 180° to achieve a flat ribbon-like structure, with the β-1,4-

linked glucose dimer, cellobiose, as the repeating biosynthetic subunit (Koyama et al., 

1997).  In higher plants these linear chains achieve lengths of up to 7000 – 15000 

glucose residues (Brett, 2000; Brown, 2004).  When arranged in parallel, these chains 

are able to form extensive hydrogen bond networks with one another. It is believed that 

~36 chains are combined in a cylindrical array to form a cellulose microfibril – a highly 

crystalline structure that is a fundamental constituent of plant cell walls (Delmer and 

Haigler, 2002).  The assembly of microfibrils from monomeric glucose residues is 

apparently conducted by cellulose synthase complex (CSC) “rosette” structures, which 

move across the plasma membrane as they extrude microfibrils into the cell wall (Herth, 

1983).  The CSC rosettes themselves are comprised of specific collections of cellulose 

synthase (CesA) subunit proteins, which are derived from multi-gene families and share 

a conserved structure (Arioli et al., 1998; Holland et al., 2000; Joshi et al., 2004). 

1.4.2.1 Biosynthesis of UDP-glucose 
UDP-glucose is the proposed substrate of the CSC in plants (Delmer and Haigler, 

2002).  As such, a co-ordinated mechanism for the creation and regulation of UDP-

glucose supply to the CSC should exist.  Several enzymes have been implicated in this 

process primarily due to the positive correlation of their activities with the onset and 

progression of secondary cell wall biosynthesis, and also the cell wall-related effects of 

their misregulation.  These enzymes include sucrose synthase (SuSy; sucrose + UDP   

UDP-glucose + fructose) (Robinson, 1996), sucrose phosphate synthase (SPS; UDP-

glucose + fructose 6-phosphate   UDP + sucrose 6-phosphate) (Haigler et al., 2001; 

Park et al., 2008), UDP-pyrophosphorylase (UGPase; UTP + glucose 1-phosphate   

UDP-glucose + PPi) (Carpita and Delmer, 1981; Coleman et al., 2007; Wafler and 

Meier, 1994), sucrose phosphate phosphatase (SPP; sucrose 6-phosphate  sucrose + 

Pi) (Delmer and Haigler, 2002), and invertase (sucrose  glucose + fructose) (Canam 

et al., 2008; Wafler and Meier, 1994).  Although the exact nature of their 

interrelationships remains unclear, a putative model of these interactions has been 

proposed (Delmer and Haigler, 2002); the primary elements of this model will be 

outlined here. 
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A source of carbon is required to feed cellulose biosynthesis. Photosynthetic 

cells have the luxury of locally-generated pools of carbohydrates, while non-

photosynthetic cells that form secondary walls (such as those in developing xylem) 

must derive their carbohydrate supply from transport sugars, such as sucrose.  If the 

transport of sucrose across the plasma membrane is direct, then conversion by SuSy 

(via the reverse reaction) would be the most straightforward mechanism for generating 

UDP-glucose.  Accordingly, there is some evidence that two forms of SuSy exist and 

that one form may associate directly with the CSC at the plasma membrane (Amor et 

al., 1995; Robinson, 1996).  If, however, the translocated molecule is something other 

than sucrose (e.g. raffinose), or if the mechanism by which the translocated dimer 

enters the cytosol is via cleavage into its monomeric constituents by an apoplastic 

invertase, then additional elements must be included in the biosynthetic model.  In any 

case, even though cellulose biosynthesis is a strong sink, mechanisms that partition the 

translocated carbon between that process and other cellular processes must exist in 

order for the primary metabolic core to function, and elements of secondary metabolism 

to be maintained.  Consequently, cytosolic invertase and/or soluble cytosolic SuSy must 

be involved in cleaving sucrose to create hexose pools even in the event that sucrose 

enters the cytosol directly.  Utilisation of these free sugars would first require their 

phosphorylation into a pool of hexose phosphates, which is achieved by the action of 

hexokinases with the assistance of isomerases.  From this hexose pool, glucose 1-

phosphate may be converted to UDP-glucose by UGPase (Wafler and Meier, 1994).  As 

well as a potential feedstock for the CSC (provided there is some mechanism by which 

the two can be associated), this UDP-glucose product can be converted back into 

sucrose either by the forward activity of SuSy, or via an alternative path involving the 

concerted activity of SPS and SPP (Delmer and Haigler, 2002; Haigler et al., 2001).  

Indeed, it has been suggested that the primary mechanism by which cytosolic hexoses 

are made available to the CSC is via conversion into sucrose prior to processing by the 

membrane bound SuSy (Delmer and Haigler, 2002; Haigler et al., 2001).  The fact that 

these enzymes have shared substrates/products, and are generally capable of 

catalyzing both forward and reverse reactions, clearly suggests (1) a provision for cyclic 

metabolic processing within this system, and (2) the existence of regulatory 

mechanisms that balance flux through this cycle according to environmental factors, 
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developmental cues, cell fate, feedback inhibition, etc.  Further work is necessary, 

however, to help determine the biochemical mechanisms and enzymatic interplay that 

underpin the provision of substrate for cellulose biosynthesis. 

 

1.4.3 Hemicellulose 
Hemicellulose is a heterogeneous glycan polymer that is derived from glucose, 

mannose, galactose, rhamnose, arabinose, and xylose.  In contrast to cellulose, the 

polymer chains are branched, and achieve comparatively short lengths of 500 – 3000 

glycan residues.  The biosynthesis of hemicellulose requires glycan synthase and 

glycosyltransferase enzymes for polymer backbone and sidechain formation, 

respectively (Li et al., 2006).  Cellulose synthase-like proteins (CSLs) are also believed 

to be involved, and functional genomics approaches have begun to reveal gene families 

for these enzymes in Arabidopsis and poplar (reviewed by Li et al., 2006; Mellerowicz 

and Sundberg, 2008), and more recently in loblolly pine (Nairn et al., 2008). 

In different plants the structure of hemicellulose varies in terms of sugar 

composition and linkage patterns.  In dicots and many monocots the main hemicellulose 

of the primary wall is xyloglucan.  In contrast, glucuronoxylan is the principal 

hemicellulose in dicot secondary cell walls, while glucomannan and others are minor 

contributors, notably in poplar (Mellerowicz et al., 2001; Sjostrom, 1993; York and 

O'Neill, 2008).  In gymnosperm species the hemicelluloses of secondary cell walls are 

mainly galactoglucomannans, as well as a small proportion of others, such as 

arabinoglucuronoxylan and arabinogalactan (Sjostrom, 1993).  In terms of 

metabolomics analysis, the significance of this variability in hemicellulose composition is 

that in order for particular polymeric structures to be assembled, there must be a flux of 

carbon into activated monomer precursors of that structure.  It might be expected that 

phosphorylated and UDP-conjugated forms of particular pentoses and hexoses would 

be generated to fill this need in specific species, with a prevalence of xylose and 

mannose related molecules in angiosperms, and galactose, mannose, arabinose and 

xylose related molecules in gymnosperms. 

1.4.4 Lignin 
Lignin is an aromatic heterobiopolymer formed primarily in the secondary xylem of 

vascular plants, as one of a wide variety of products of the phenylpropanoid pathway.  It 
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is a principal structural component of woody tissue, and contributes significantly to 

vascular integrity and wood strength (Donaldson, 2001).  Research has sought to 

understand the mechanisms by which lignin is formed in vascular plants, and can be 

summarised into three main areas: 1) the ultrastructure and topochemistry of lignin 

deposition (reviewed by Donaldson, 2001), 2) the identification and characterisation of 

genes, enzymes and regulatory elements involved in monolignol synthesis (reviewed by 

Anterola and Lewis, 2002; Dixon et al., 2001; Humphreys and Chapple, 2002), and 3) 

the elucidation of the mechanisms by which lignin polymers are assembled from 

precursor monomer units (reviewed by Hatfield and Vermerris, 2001). More recently, a 

key review brought the results and models from all three areas together (Boerjan et al., 

2003). 

The core aspects of lignin biosynthesis appear to be conserved within vascular 

plants, with the monomeric units of lignin being modified products of the 

phenylpropanoid pathway.  The constituents of the lignin polymer in gymnosperms are 

primarily derived from p-coumaryl and coniferyl alcohols, whereas in angiosperms a 

third, sinapyl alcohol, is also involved (Lewis and Yamamoto, 1990).  The lignin 

constituents derived from these three ‘monolignols’ are known as p-hydroxyphenyl (H), 

guaiacyl (G) and syringyl (S) units, respectively, and combinations of these monomeric 

components are incorporated into lignin with species, tissue and developmental 

specificity (Donaldson, 2001).  In addition to the three monolignols, other 

phenylpropanoids, such as hydroxycinnamyl aldehydes, acetates, p-hydroxybenzoates, 

p-coumarates and hydroxycinnamate esters are incorporated into the polymer (Ralph et 

al., 2001). 

1.4.4.1 Monolignol biosynthesis 
Lignin biosynthesis has its origin in the shikimate pathway, which is the reaction series 

primarily responsible for linking carbohydrate metabolism to the biosynthesis of 

aromatic compounds in plants.  The shikimate pathway consists of seven metabolic 

steps taking place in plastids, beginning with the condensation of erythrose 4-

phosphate and phosphoenolpyruvate, and terminating with the synthesis of chorismate 

(precursor for phenylalanine, tyrosine and tryptophan)  (Herrmann and Weaver, 1999).  

In photosynthetically active cells the erythrose 4-phosphate and phosphoenolpyruvate 

comes directly from photosynthesis in chloroplasts, via the pentose phosphate and 
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glycolysis pathways, respectively.  Alternatively, in non-photosynthetic cells such as 

those found in developing xylem, these substrates arise from the breakdown of carbon 

source molecules delivered to the cell by source-sink translocation (e.g. carbohydrates 

such as sucrose) (Amthor, 2003).  The initial conversion of transported carbohydrates 

into monomeric sugar phosphates occurs in the cytosol (the generation of the hexose 

phosphate pool is likely common to cellulose biosynthesis), with subsequent conversion 

of glucose 6-phosphate into erythrose 4-phosphate, the ensuing phosphoglycerates into 

phosphoenolpyruvate, and the subsequent reactions of the shikimate pathway occurring 

in non-photosynthetic plastids (Amthor, 2003).  Presumably, the translocated sugars 

also act as substrates for the regeneration of S-adenosylmethionine (the methyl donor 

consumed in monolignol biosynthesis), and the production of the ATP and NADPH (via 

respiration) that are required for monolignol transport and subsequent polymerisation 

(Amthor, 2003). 

The core phenylpropanoid pathway is common to the biosynthesis of a diverse 

range of phenolic compounds, notably the monolignols, coumarins, flavonoids, stilbenes 

and tannins.  The reaction series begins with the conversion of phenylalanine to 

cinnamate, via a deamination of the side-chain catalyzed by phenylalanine ammonia-

lyase (PAL).  Subsequent conversion of cinnamate to p-coumarate is catalyzed by 

cinnamate 4-hydroxylase (C4H), which hydroxylates C4 of the benzene ring.  Finally, 

the addition of co-enzyme A (CoA) to the acid-propane side-chain, by 4-coumaroyl 

CoA-ligase (4CL), yields an activated form of the molecule (Dixon and Paiva, 1995; 

Hahlbrock and Scheel, 1989; Holton and Cornish, 1995). 

Until fairly recently, the model for the monolignol-specific phenylpropanoid 

pathway included a series of hydroxylation and O-methylation reactions on the aromatic 

ring, which converted cinnamate into a set of hydroxycinnamic acids (caffeate, ferulate, 

5-hydroxyferulate and sinapate).  p-Coumarate, ferulate and sinapate were then thought 

to be converted into monolignols via a series of reactions in which the side-chain 

carboxyl group was substituted with CoA, then an aldehyde, and finally a hydroxyl 

group to yield p-coumaryl, coniferyl and sinapyl alcohols, respectively (Freudenberg and 

Neish, 1968).  However, with the identification of a set of enzymes capable of mediating 

the molecular conversions in this pathway, and the discovery that these enzyme are 

responsible for hydroxylation and methylation of hydroxycinnamic acids as well as the in 
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vitro identification of enzymes responsible for conversions at the CoA level, the pathway 

became represented by a ‘metabolic grid’ (Whetten and Sederoff, 1995). 

The metabolic grid of monolignol biosynthesis was the product of in vitro enzyme 

analyses that involved single enzymes, substrates and products.  In its entirety, 

however, this grid constituted an unlikely representation of a biological process in which 

a high degree of spatial and temporal regulation occurs.  With new evidence from many 

sources, reviewers assessed the in vitro grid and scrutinized the original model 

(Anterola and Lewis, 2002; Dixon et al., 2001; Humphreys and Chapple, 2002), and 

concluded that a number of the reactions and chemical intermediates they contained 

were unlikely to play significant roles in monolignol biosynthesis in vivo.  The opinion, 

which continues to be favoured, was that monolignol biosynthesis does not involve 

substitutions of the aromatic ring at the level of hydroxycinnamic acids, and that 

contrary to the “grid” hypothesis, the pathway is more linear, with flux favouring certain 

spatially and energetically preferable reactions. 

The current model proposes a conventional pathway, which represents the 

general trend, but which may not be entirely correct in particular situations or for specific 

species.  Following the final reaction of the core phenylpropanoid pathway (conversion 

of p-coumarate to p-coumaroyl CoA by 4CL), p-coumaroyl CoA is converted into 

caffeoyl CoA via shikimate (primarily) and quinate ester intermediates.  The substitution 

of CoA with a shikimate or quinate group is catalyzed by hydroxycinnamoyl-

CoA:shikimate/quinate hydroxycinnamoyltransferase (HCT) (Franke et al., 2002; 

Hoffmann et al., 2003; Nair et al., 2002; Schoch et al., 2001).  This provides coumaroyl 

shikimate and quinate substrates for coumarate 3′-hydroxylase (C3′H), which generates 

caffeoyl shikimate and quinate by hydroxylation of the aromatic C3 (Schoch et al., 2001; 

Ulbrich and Zenk, 1980).  HCT is a ‘reversible’ acyltransferase, and as such also 

catalyses the resubstitution of shikimate/quinate for CoA to give caffeoyl CoA, thus 

creating the substrate of caffeoyl CoA O-methyl transferase (CCoAOMT), which 

methylates the hydroxyl group on the aromatic C3 to produce feruloyl CoA (Parvathi et 

al., 2001; Ye, 1997).  The CoA moiety of this intermediate would then be cleaved by 

cinnamoyl CoA reductase (CCR) to generate coniferaldehyde (Li et al., 2005), which 

can then be converted to coniferyl alcohol by cinnamyl alcohol dehydrogenase (CAD) 

(Sibout et al., 2005; Sibout et al., 2003) and/or possibly sinapyl alcohol dehydrogenase 
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(SAD).  Coniferyl alcohol is the precursor to guaiacyl lignin monomers.  Coniferaldehyde 

and coniferyl alcohol are also likely intermediates in the biosynthesis of sinapyl alcohol, 

the precursor to syringyl lignin monomers in angiosperms.  The aromatic C5 position of 

both molecules may be hydroxylated by ferulate 5-hydroxylase (F5H) (Humphreys et 

al., 1999; Osakabe et al., 1999), which yields a 5-hydroxylated form that can then be 

methylated by caffeic acid O-methyl transferase (COMT) (Humphreys et al., 1999; Li et 

al., 2000; Osakabe et al., 1999; Parvathi et al., 2001).  When coniferaldehyde, the 

preferred substrate of F5H, is processed, the product of these reactions is 

sinapaldehyde, which is then converted to sinapyl alcohol by SAD (Li et al., 2001) 

and/or CAD.  Alternatively, when coniferyl alcohol is the initial substrate, sinapyl alcohol 

would be the direct product of COMT activity. 

Several systems appear to co-regulate lignin monomer biosynthesis.  Many of 

the genes encoding biosynthetic enzymes (notably PAL, 4CL, CAD and F5H of 

Arabidopsis) belong to multigene families, so specific isoforms may be expressed in 

different cell types, at different developmental stages, or in response to environmental 

conditions (Goujon et al., 2003).  This presumably affords a substantial degree of 

flexibility, allowing the pathway to vary around the constitutive backbone, and possibly 

incorporate other aspects of the metabolic grid as required.  Transcription factors, 

specifically the R2R3 type MYB proteins, are implicated as regulators of gene 

expression for lignin biosynthetic enzymes.  MYB proteins bind cis-acting AC elements, 

which are DNA motifs found in the promoter regions of many genes encoding lignin 

biosynthetic enzymes.  Elevated expression of more than ten of these transcription 

factors has been associated specifically with developing xylem in Arabidopsis (Oh et al., 

2003), and a loblolly pine MYB (ptMYB1) has been shown to activate transcription from 

the PAL2 promoter (Patzlaff et al., 2003).  Gene expression for the monolignol pathway 

is also sensitive to the abundance of substrate and intermediate metabolites.  In 

lignifying suspension cultures of loblolly pine, the transcriptional levels of PAL, 4CL, 

CCoAOMT, CCR and CAD are highly positively correlated to phenylalanine availability, 

while C4H and C3′H are largely stable (Anterola et al., 2002).  Cinnamate inhibits PAL 

at the transcriptional and post-translational levels, and possibly induces the activity of 

HCT (Anterola et al., 2002). 
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An early hypothesis regarding the spatial organisation of monolignol biosynthesis 

was that the core phenylpropanoid pathway is tightly associated with the 

endomembrane network, whereas divergent pathways have only a loose association.  

This idea arose from sub-cellular fractionation studies during the late 1970’s and 

1980’s, when the first discussions concerning the spatial organisation of 

phenylpropanoid metabolism took place (Czichi and Kindl, 1975; 1977; Hrazdina and 

Wagner, 1985; Hrazdina et al., 1987).  Recent studies have shown that although some 

PAL subunits are indeed associated with the lumen face of the endoplasmic reticulum 

(ER), others appear to be associated with the cytosol, Golgi-derived vesicles, or even 

with the lignifying secondary cell wall (Nakashima et al., 1997; Smith et al., 1994).  

Aside from this development, the most recent work continued to support the original 

hypothesis.  C4H appears to be embedded in the ER membrane, and in French bean is 

particularly concentrated in the Golgi bodies (Smith et al., 1994).  4CL, CCoAOMT, 

COMT, CCR and CAD appear to be mainly cytosolic in both monocots and dicots 

(Hrazdina and Wagner, 1985; Kersey et al., 1999), although in cells of Zinnia elegans, 

Nakashima et al. (1997) also detected CAD in the Golgi vesicles and secondary walls. 

Furthermore, the enzymes of monolignol biosynthesis undoubtedly participate in 

complex interactions with other enzymes and/or structural components, in order to bring 

the necessary efficiency to the biosynthetic process.  Evidence suggests that the 

pathway is not simply comprised of a series of isolated single enzyme-assisted 

modifications that produce pools of pathway intermediates.  Rather, the intermediates 

are covalently bound to, and passed between sequential active sites of multi-enzyme 

complexes, and as such no free pools of chemical intermediates are generated.  This 

arrangement is referred to as ‘metabolite channelling’, and typically occurs where 

intermediates have no other cellular function except in a single biosynthetic pathway.  It 

can be seen as a strategy for sparing cellular solvent capacity for the regulation and 

efficiency of the metabolic sequence, and also for the containment of molecules that 

have cytotoxic properties.  Evidence of metabolite channelling exists for a multitude of 

metabolic pathways (Hrazdina et al., 1987; Srere, 1987), now including monolignol 

biosynthesis (Anterola et al., 1999; Rasmussen and Dixon, 1999; Winkel-Shirley, 1999).  

Anterola et al. (1999) supplied exogenous phenylalanine to cell suspension cultures of 

(gymnosperm) loblolly pine, and observed increases in the intracellular pools of 
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cinnamate and p-coumarate, as well as secreted pools of 4-courmaryl alcohol and 

coniferyl alcohol.  There was no evidence of accumulation of any of the other predicted 

intermediates of the pathway.  Additionally, when cells were fed with cinnamate, p-

coumarate, caffeate or ferulate, these were not metabolised, but instead accumulated in 

the cells as glucosides – a conversion that may be part of compound detoxification.  

Together, these results suggest that the series of reactions between p-coumarate and 

ultimately monolignol synthesis are structured as a metabolic channel, and spatially 

distinct from any cytosolic pools that may exist.  This has profound implications for the 

arrangement of the monolignol biosynthetic pathway, in that the existence of channels 

should provide another level of pathway control via specific ordering of sequentially 

acting enzymes, or orchestrated inclusion/exclusion of specific isozymes in order to 

achieve set biosynthetic outcomes. 

1.4.4.2 Lignin polymerisation 
Following their synthesis, lignin precursor monomers (monolignols) are transported to 

the cell wall where they are oxidised and polymerised.  Monolignol transport remains 

one of the most poorly defined aspects of lignin biosynthesis, especially in 

angiosperms.  It has long been held that 4-Ο-β-D-glucosides of the monomers are used 

for storage and/or transportation of these relatively toxic and unstable compounds.  

Genes encoding several UDPG-glycosyl transferases (UGTs) capable of catalyzing the 

transfer of glucose from UDP glucose to the phenolic hydroxyl group of p-coumaryl, 

coniferyl and sinapyl alcohols have been isolated from pine and Arabidopsis (Lim et al., 

2001; Steeves et al., 2001).  Similarly, genes encoding β-glycosidases that are able to 

cleave the glucose residue prior to polymerisation have been identified in pine 

(Dharmawardhana et al., 1995; 1999; Leinhos et al., 1994), and the enzymes localised 

to the secondary walls of lignifying cells (Samuels et al., 2002).  Although large pools of 

coniferin (glycosylated coniferyl alcohol) are readily detectable in gymnosperms, pools 

of similar size have been detected in only some angiosperms (for example, Magnolia 

species) (reviewed by Whetten and Sederoff, 1995).  It is therefore speculated that in 

gymnosperms coniferin is held in the vacuole prior to being transported to the apoplast, 

either in Golgi-derived vesicles or by direct plasma membrane pumping by specific 

transporters (Samuels et al., 2002).  However, aside from the confirmed existence of 

Arabidopsis glycosyl transferases capable of generating sinapyl alcohol-4-O-glucoside 
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(Lim et al., 2001; Steeves et al., 2001), there is no clear indication of the corresponding 

angiosperm mechanism. 

After transport of the monolignols to the cell wall, lignin is formed through 

dehydrogenative polymerisation of the monolignols.  Although not proven outright, it is 

generally agreed that monolignols cleaned of any transport/storage related 

carbohydrate residues freely diffuse though the wall matrix, until they encounter cell 

wall-bound laccases or peroxidases and hydrogen peroxide, which generate radicals at 

the phenolic 4-OH position (Boerjan et al., 2003).  The best-supported mechanism for 

polymerisation of these radicals is known as the ‘random coupling’ model, which was 

reviewed effectively by Hatfield and Vermerris (2001).  In this model, lignin arises 

primarily from the stepwise addition of monolignol radicals to the continually expanding 

polymer. This process is controlled by the diffusion of monolignols through the cell wall 

matrix itself; therefore the type and quantity of monolignols at the lignification site 

determine lignin composition.  While another model for polymerisation, known as the 

“dirigent protein” model, has been proposed (Burlat et al., 2001; Davin and Lewis, 2000; 

Gang et al., 1999), to date there is no compelling evidence that dirigent proteins play 

roles in either the initiation or control of lignin polymerisation.  In any case, it would 

appear that the structure of lignin is such that the random coupling model adequately 

explains its formation, while the dirigent protein model is improbable.  There appears to 

be no requirement for a protein-assisted coupling mechanism, which would be 

exceedingly elaborate.  In order to cover the range of bond types between the three 

monolignols and account for the lack of optical specificity, it has been estimated that 

approximately 100 different dirigent proteins with unique activities would be required 

(Hatfield and Vermerris, 2001). 

 

1.5 Goals and hypotheses 
1.5.1 A metabolomics platform for wood biology 
The overarching technical goal of this research project was to establish a platform for 

the effective metabolomics analysis of wood properties in tree species.  As described, 

such a platform is comprised of a series of elements, related to sample collection, 

preparation and analysis, and subsequent data processing, statistical analysis and the 

presentation of results.  To this end, the intention was to employ liquid solvent-based 
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extraction protocols and analytical technologies such as GC/MS and LC/MS to generate 

broad-scale metabolite profiles from developing xylem tissue.  The data generated were 

handled in a non-targeted manner; they were collated using semi-automated computer 

software, and subsequently analysed in conjunction with relevant genetic and 

phenotypic data via uni- and multi-variate statistical approaches.  The requirement and 

development of this metabolomics infrastructure as part of this research should be 

apparent in the experiments described herein. 

 

1.5.2 Metabolomics analysis of wood traits in industrially cultivated tree species 
The goal of these experiments (Chapters 2 and 3) was to define relationships between 

the metabolite profiles of developing xylem tissue and physico-chemical wood traits in 

industrially relevant tree species.  The subjects of this research, specific cultivated 

populations of Pseudotsuga menziesii (Douglas-fir) and Pinus radiata, were studied in 

isolation.  The Douglas-fir population included a series of high-performance, full-sib 

families replicated on environmentally distinct sites, while the radiata pine population 

included a series of lines exhibiting varying severity in a value-limiting (internal 

checking), heritable wood phenotype.  It was postulated that the heritable and/or 

environmentally influenced variation observed in wood traits would correlate with 

variable elements in the metabolite profiles of the developing xylem tissue from which 

the wood arises. 

1.5.3 Metabolomics analysis of wood traits in genetically modified hybrid poplar 
The goal of these experiments (Chapters 4 and 5) was to investigate the interaction 

between metabolite profiles of developing xylem and phenotypic wood traits, as 

influenced by genetic modification and genetic background.  This involved an analysis 

and comparison between transgenic lines of two distinct poplar hybrids (Populus 

grandidentata × alba and Populus tremula × alba) harbouring the same wood-altering 

genetic construct.  The influences of two transgenes were studied: the Arabidopsis 

thaliana ferulate 5-hydroxylase (F5H) under the control of the Arabidopsis thaliana 

cinnamate 4-hydroxylase promoter (C4H), and a hairpin-loop for RNAi suppression 

targeting p-coumaroyl-CoA 3′-hydroxylase (C3′H) under the control of the tobacco 

mosaic virus 35S promoter.  The postulation was that transformation with wood 

composition-altering genetic constructs would induce detectable and equivalent 
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metabolic shifts in related, yet distinct genetic backgrounds.  Furthermore, it was 

proposed that linear, predictive relationships would exist between elements of the 

metabolite profile and the severity of construct-induced phenotypic disturbance. 
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Metabolite profiling of Douglas-fir (Pseudotsuga menziesii) field trials reveals 
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2.1 Introduction 
Recently, non-targeted metabolite analysis (metabolomics) has evolved into a new 

branch of functional genomics, which complements transcriptomics and proteomics 

technologies.  Ideally, metabolomics aims to identify and quantify the full complement of 

small molecular weight, soluble metabolites in actively metabolising tissues (Fiehn and 

Weckwerth, 2003).  However, in practicality, the narrow molecular specificity of 

individual analytical techniques, and difficulties in amalgamating substantial data sets 

acquired using multiple techniques, have thus far generally restricted analyses to 

“targeted” subsets of the greater metabolite pool (e.g. phenolics, carbohydrates, 

anthocyanins). Once collected, such data may be associated with measurements of 

plant genetic and overt quantitative or qualitative phenotypic traits, permitting correlative 

associations to be drawn between plants’ metabolite “pools” and their genetic 

background, inherent phenotypic characteristics, responses to biotic and abiotic stress 

and/or genetic mutations (e.g. the Arabidopsis ‘pkl’ mutant in which seedlings retain 

some metabolic traits of embryos (Rider et al., 2004)).  Through this connectivity, 

metabolomic data may assist in establishing causal relationships between genetic, 

metabolic and phenotypic phenomena.  In recent years metabolomics has been used 

successfully on numerous plant genera including Arabidopsis (Fiehn et al., 2000a; 

Roepenack-Lahaye et al., 2004), Populus (Jeong et al., 2004; Robinson et al., 2005), 

Medicargo (Huhman and Sumner, 2002), Solanum (Roessner et al., 2001a; Szopa, 

2002), Cucurbita (Fiehn, 2003), Pinus (Morris et al., 2004) and most recently Triticum 

(Baker et al., 2006). 

Metabolomics has demonstrated relationships between plant metabolite pools, 

genotype and phenotype, and helped to elucidate biological processes involving abiotic 

and biotic plant interactions in a variety of species.  It is clear that metabolomics is a 

useful approach and promises to further contribute to our understanding of plant 

systems – specifically in the fields of tree growth and development.  To date, most 

comparative metabolomics investigations have focussed on model plant systems that 

have been subjected to environmental extremes (Rizhsky et al., 2004; Urbanczyk-

Wochniak and Fernie, 2005), mutation, and/or targeted genetic modification (Le Gall et 

al., 2003; Robinson et al., 2005; Roessner et al., 2001a).  This approach has been 

effective to the extent that well-defined systems, which exhibit single-gene alterations 
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and corresponding phenotypes, or acute responses to specific nutritional scenarios or 

environmental stresses, have allowed the underlying concepts and utility of 

metabolomics to be evaluated.  However, experiments involving model systems and 

extreme, controlled conditions bare limited resemblance to the development of plant 

populations in “real-world” contexts.  It is under exposure to variable genetic and 

environmental factors that the plastic nature of plant development is revealed, giving 

rise to observed variability in phenotypic parameters.  Presumably, such variation is 

accompanied by corresponding shifts in metabolism that may be detected in the 

metabolite pools.  Therefore, broad-scale elucidation of metabolic structure and the 

association of this with the genotypic, phenotypic and/or environmental characteristics 

of plant populations may aid in linking these aspects and furthering our understanding 

of plant development as a whole. 

The research described herein evaluated a global metabolomics approach to 

investigating natural variability due to the influence of family and site on wood formation 

and tree growth in multiple full-sib Douglas-fir (Pseudotsuga menziesii) trees selected 

from an advanced second generation breeding population, duplicated by site.  This 

research represents a fundamental, non-targeted assessment of one of the newest 

branches of functional genomics for discerning biological variation in tree species.  It 

demonstrates a technical ability to reveal the expected coherency between metabolic 

traits and other biotic and abiotic parameters, in the context of tree populations. 

 

2.2 Materials and methods 
2.2.1 Plant material and sampling 
Ten, full-sib, 26-year-old Douglas-fir families from the British Columbia Ministry of 

Forests second generation breeding program were employed in this study.  The families 

represent a subset of trees from an extensive multi-family, multi-site progeny study, 

breeding predominantly for superior growth performance.  Each family is represented by 

ten (of a possible 16) individuals randomly selected from four blocks with four-tree row 

plots, randomly planted on each of two sites (total 200 trees).  The two sites, Adam 

River (AR) and Gold River (GR), are located on Vancouver Island, British Columbia, 

and represent a more productive and less productive site, respectively, as defined by 
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Douglas-fir height growth classification.  Nineteen random samples were lost during 

transit and processing resulting in a total of 181 samples over the ten families. 

Sampling was conducted over a four-day period in late summer (August 6th-9th 

2003).  This period represents the latter part of the growing season, when latewood 

formation is occurring, and the cambial tissue was very fluid during sampling and thus 

suggested that wood-forming metabolism was still active.  The developing xylem tissue 

was obtained from each tree by first peeling a section of bark/phloem/outer cambium 

from the main bole of the trunk at breast height, and then scraping the inner cambium 

with a fresh razor blade.  The collected material was immediately transferred to a 

cryovial, snap-frozen in liquid nitrogen and maintained in a cooled liquid nitrogen vapour 

tank in the field, and then at -80°C in the laboratory.  At the same time, a 10 mm 

increment core was extracted at breast height for wood fibre evaluation, and the 

diameter at breast height (DBH) and absolute tree height were recorded. 

2.2.2 Quantitative wood traits 
A concurrent study focussing on genetic mapping of phenotypic growth and wood traits 

used tree measurements and the increment core wood from each sample tree to 

measure a set of 16 quantitative traits, including: tree diameter at breast height (DBH), 

height (HT), and volume (VOL); wood microfibril angle (MFA), fibre length (FL), fibre 

coarseness (Cs), earlywood density (ED), latewood density (LWD), average density – 

density of entire increment core (AD), latewood proportion (LWP); wood chemistry traits 

including total lignin content (TL) 6.3Appendix D.1), and arabinose (Ara), galactose 

(Gal), glucose (Glu), mannose (Man) and xylose (Xyl) contents (6.3Appendix D.2). 

2.2.3 Calculation of site index 
Site index, a measure of site productivity, was employed to characterise each site by 

estimating the height of dominant and co-dominant trees at age 50.  Thirty trees with 

the largest diameter at breast height (DBH) of the sample population at each site were 

used to estimate site index. The breast height age was estimated using increment cores 

and the top height was estimated using a Vertex instrument (Vertex III; Haglöf, 

Sweden). Site index was then assessed for each tree using British Columbia Ministry of 

Forests growth intercept tables for Coastal Douglas-fir (Nigh, 1997). The individual tree 

site index values were then averaged for each site to estimate site productivity. 
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2.2.4 Metabolite sample preparation 
Frozen tissue was macerated to a fine powder with a 15 s burst using a dental amalgam 

mixer, employing a liquid N2-chilled copper/plastic capsule and steel ball bearings.  

Samples were kept frozen at all times and, once ground, were returned to -80°C. 

Metabolites were extracted from tissue samples and prepared for GC/MS using a 

two-phase methanol/chloroform method developed for metabolite extraction from 

Populus cambium and developing xylem (Fiehn et al., 2000a; Fiehn et al., 2000b; 

Robinson et al., 2005).  Approximately 100 mg frozen, ground cambium was accurately 

weighed into a pre-chilled 2 mL lock-cap centrifuge tube.  To this, 600 μL HPLC-grade 

methanol (CH3OH) was immediately added and vortexed for 10 s to halt biological 

activity and minimise degradation.  In addition, 40 μL distilled, deionised water and 10 

μL internal standard mixture (10 mg/mL ribitol in H2O) were added.  The sample was 

then incubated for 15 min at 70°C with constant agitation, and centrifuged at 13 000 

rpm for 5 min.  The supernatant, containing extracted metabolites, was retained.  CHCl3 

(800 μL) was then added to the pellet, vortexed for 10 s to re-suspend, and incubated 

for 5 min at 35°C with constant agitation.  The resultant supernatant recovered, 

following a second 5 min centrifugation at 13 000 rpm, was pooled with the supernatant 

from the initial CH3OH extraction.  H2O (600 μL) was added to the combined 

supernatant, vortexed for 10 s, and then centrifuged for 15 min at 4000 rpm to permit 

the separation of polar (methanol/water) and non-polar (methanol/chloroform) phases.  

This combination and separation of phases allowed metabolites extracted in one phase 

but with greater affinity for the other to repartition.  A 1 mL aliquot of the polar (upper) 

phase was taken, and either processed immediately or stored at -20°C until further 

analysis.  Metabolites in the non-polar phase were not analysed in this study. 

The soluble polar metabolite samples were derivatised prior to GC/MS analyses.  

A 900 μL aliquot of the methanol/water phase was dried using a Vacufuge (Eppendorf) 

(3-4 h, 30°C), and first methoxylated by re-suspending the pellet in 50 μL 

methoxyamine hydrochloride solution (20 mg/mL in pyridine) and incubating with 

constant agitation for 2 h at 60°C in order to protect carbonyl moieties.  Acidic protons 

were then trimethylsilylated with 200 μL N-methyl-N-trimethylsilyltrifluoro acetamide 

(MSTFA) and incubated at 60°C with constant agitation for 30 min.  Samples were left 
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to stand at room temperature overnight to ensure complete derivatisation, and then 

filtered through compacted tissue paper prior to GC/MS analysis. 

2.2.5 GC/MS analysis 
GC/MS analysis was conducted on a ThermoFinnigan Trace GC-PolarisQ ion trap 

system fit with an AS2000 auto-sampler and a split/splitless injector.  The GC was 

equipped with a low-bleed Restek Rtx-5MS column (fused silica, 30 m, 0.25 mm ID, 

stationary phase diphenyl 5% dimethyl 95% polysiloxane). The GC conditions were set 

as follows: inlet temperature 250°C, helium carrier gas flow at constant 1 mL/min, 

injector split ratio 10:1, resting oven temp 70°C, and GC/MS transfer line temperature 

300°C.  Following injection of a 1 μL aliquot of sample, the oven was held at 70°C for 2 

min and then ramped to 325°C at a rate of 8°C/min.  The temperature was held at 

325°C for an additional 6 min before being cooled rapidly to 70°C in preparation for the 

next run. 

Mass spectrometry analysis was conducted in positive electron ionisation (EI) 

mode, with the fore-line evacuated to approximately 40 mTorr, and with helium gas flow 

into the chamber set at 0.3 mL/min.  The source temperature was held at 250°C, with 

an electron ionisation potential of 70 eV. The detector signal was recorded from 3.35 

min after injection until 35.5 min, and ions were scanned across the range of 50-650 

mass units (mu) with a total scan time of 0.58 s. 

2.2.6 Data acquisition and processing 
ThermoFinnigan ‘Xcalibur’ (v1.3) software was used for both GC/MS data collection and 

peak determination and measurement.  GC/MS total ion chromatograms (TIC) of TMS-

derivatives from the developing xylem at breast height, were collected for all full-sib 

Douglas-fir families replicated on two sites, in order to elucidate the common 

“metabolite pools” present in the actively metabolising developing xylem tissue of each 

tree. 

To normalise the raw TIC peak data, the area of each peak in a chromatogram 

was expressed relative to the area of the ribitol internal standard peak, and then again 

standardised across all chromatograms by adjusting for the precise amount of tissue 

(mg fresh weight) used in each sample extraction. 

The alignment of peaks that represented the same compound in multiple 

chromatograms was automated using purpose-built ‘PeakMatch’ software (Robinson et 
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al., 2005).  Once compiled, the dataset consisted of 251 distinct compound peaks 

across all 181 samples (an array of ~45 000).  Peaks are consequently labelled 1-251.  

As a means of minimising artefacts caused by sample processing and analysis, the 

dataset was further reduced to only those peaks that appeared in at least 10% of the 

samples from each site.  This yielded a dataset of 139 peaks across the 181 samples 

(an array of ~25 000), which was used in all statistical analyses. 

Intermediate data handling and manipulation were carried out using Microsoft 

Excel 2000 and Corel Quattro Pro 12. 

2.2.7 Multivariate statistical analyses 
Further reductions of the metabolite and quantitative phenotypic trait datasets were 

carried out by Multivariate Discriminant Analysis (MDA), Factor Analysis (FA), and 

Canonical Correlation Analysis (CCA) and Canonical Discriminant Analysis using the 

‘proc discrim’, ‘proc factor’, ‘proc cancor’ and ‘proc candisc’ procedures of the SAS v9.1 

software (SAS Institute, Inc., Cary, N.C.), respectively. 

Multivariate discriminant analysis, a statistical approach that assesses the 

variation in pre-classified multivariate data and is capable of generating predictive 

models, was applied to the metabolite data array.  The data structure of this research 

project allowed MDA models to be developed using two different classification 

schemes: by site (Adams River, Gold River) or by family (2, 26, 38, 46, 62, 75, 92, 130, 

151, 156).  During the site analysis, the data were split into four equal subsets to build 

the predictive model.  Four models were generated; each model was developed using 

three of the four datasets. The fourth dataset was used as an independent validation 

array to assess the accuracy of the model. This process was repeated until all 

combinations of the four datasets were used and a final accuracy calculated as the 

average of the four models.  For family analysis, the data were equally split into two, 

rather than four sets due to the limited number of samples per class (at most 10 

replicates per site).  In this case, two models were generated, tested, and the average 

accuracy calculated.  For the two-class site model and the 10-class family model, prior 

probabilities of 0.5 and 0.1 (50% and 10%) are expected, respectively.  Higher model 

accuracy than the prior probabilities implies that the MDA is able to distinguish between 

classes at a higher probability than random chance. 
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Factor analysis (FA) allows the variation in metabolite and quantitative trait data 

arrays to be explored without the constraints of data pre-classification (as is the case 

with MDA).  Initial exploratory analyses were carried out without limiting the number of 

factors generated (essentially making the factor analysis a principal components 

analysis).  The Eigenvalues and scree plot slope shifts (Tabachnick and Fidell, 2001) 

were used to select factors that represented significant portions of the variation in a 

dataset.  The FA was then rerun specifying an orthogonal ‘varimax’ rotation and the 

number of factors to be used in the rotation.  Factor scores were plotted on the axes of 

scatter plots to generate a graphical representation of the variation in the original data 

captured by the analysis.  The separation of sample clusters is considered to illustrate 

differences between distinct metabolic systems (Chen et al., 2003; Fiehn, 2003; Fiehn 

et al., 2000a; Morris et al., 2004; Roessner et al., 2001a; Roessner et al., 2001b). 

Canonical correlation analysis is used to investigate the relationship between two 

groups of variables (X and Y), and transforms the data into canonical variables in such 

a way as to maximise the covariance between groups.  Specifically, in our study, this 

technique was used to explore the relationships between the metabolite array and 

quantitative phenotypic traits having relevance to tree growth and wood quality 

characteristics.  The first group of variables was comprised of 139 metabolites for both 

the Adams River and Gold River sites, while the second consisted of the 16 quantitative 

phenotypic traits described above.  Canonical variables were considered important if 

the canonical correlation was large, and significant at an alpha value of 0.05.  It was 

also necessary for the transformed variables to explain a considerable proportion of the 

standardised variation in the original data, as described by canonical redundancy 

analysis.  The structure correlation coefficients (between canonical variables and 

original metabolites or growth trait variables) were used to identify variables in the two 

sets that were related via the canonical correlation.  Variables with correlations >0.3 

explained 10% or more of the variance, and were considered to be part of the canonical 

variable. 

Canonical discriminant analysis (CDA) is a multivariate statistical technique that 

derives linear combinations of groups of variables (metabolites) in such a way that 

maximizes the variation between classes (families or sites). The multivariate analysis of 
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variance (MANOVA) output generated by CDA was used to test the ability to distinguish 

families and sites based on metabolite data and confirm results generated by MDA. 

2.2.8 Calculation of heritabilities 
Broad-sense heritability is an estimate of the total amount of variation that can be 

explained by genetics (additive, dominance and epistatic variation) and is measured on 

a scale between 0 (little genetic control) to 1 (entirely controlled by genetics). These 

estimates are an indication of the amount of variation caused by family versus 

environmental (site) effects. 

SAS was used to generate components of variance for the calculation of 

metabolite heritability values and to test model parameters for family, site and family-by-

site interaction.  ‘Proc GLM’ was used to conduct analysis of variance for all metabolites 

using the following components of variance and linear model: 

 

 

 df Components of Variance 

Family (f-1) σ2E + nσ2FB + bnσ2FS + bcnσ2F 

Site (s-1) σ2E + fnσ2B + fbnσ2S  

Family*Site (f-1)(s-1) σ2E + nσ2FB + bnσ2FS 

Block(site) s(b-1) σ2E + fnσ2B 

Family*Block(Site) s(b-1)(f-1) σ2E + nσ2FB 

Sampling Error sfb(n-1) σ2E 

F = family; B = block; S = site; f = # of families; b = # of blocks; s = # of sites; n = # of 

trees 

 

 

 

 Yijlp = μ + Fi + Sl + Bj(l) + FBij(l) + FSil + Ep(ijl)  

 

 

where, Yijlp is the individual phenotypic observation, μ is the overall mean, Fi is the 

fixed family effect, Sl is the random site effect, Bj(l) is the random block effect, FBij(l) is 
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the random family-by-block interaction nested within site, FSil is the random family-by-

site interaction and Ep(ijl) is the random residual effect. 

Variance components for broad-sense heritability calculations were estimated 

using the REML method of ‘proc VARCOMP’. Broad-sense heritability was calculated 

for all metabolites showing significant family variation (F-test, α = 0.05) using the 

following formula: 

 

 H2  =        2σ2F  

   

σ2F + σ2FS + σ2FB + σ2E 
 

 

where, σ2F is family variance, σ2FS is the variance of family-by-site interaction, σ2FB is 

the variance of family-by-block nested within site and σ2E is the residual variance. 

2.2.9 Compound identification 
National Institute of Standards and Technology (NIST) MS-Search software equipped 

with the NIST mass spectra, as well as the Max Planck Institute Trimethylsilane (TMS) 

(http://www.mpimp-Golm.mpg.de/mms-library/index-e.html), Gölm Metabolome 

Database (http://csbdb.mpimp-Golm.mpg.de/csbdb/gmd/gmd.html) (Kopka et al., 2005) 

and our own (Mansfield UBC laboratory) TMS mass spectral libraries were collectively 

used to identify metabolites of interest, as highlighted by the statistical analyses. 

 

2.3 Results and discussion 
2.3.1 Family-related variation 
Factor analysis (FA) and multivariate discriminant analysis (MDA) were performed on 

the metabolite dataset (181 trees, 10 families, 2 sites, 139 metabolites), focusing on 

family variation.  In the factor analysis, five factors that collectively accounted for 51% of 

the total variance were included in the varimax rotation.  Although marked clustering 

and separation of samples was observed in certain factors, this was not family related 

(Figure 2.1a).  In light of the apparent dominance of site over other effects when both 

sites were analysed together, separate FAs for samples from each site individually were 

conducted as a potential means of revealing distinctions between families, free of the 

complexities of site interactions.  In these analyses, some individual family clusters did 

separate from one another in factor score plots of various factor pairs (data not shown). 
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A family-based factor analysis was also conducted on the data for a set of 16 

quantitative phenotypic traits, which gave very similar results to the metabolite FA 

(Figure 2.2a).  The first four factors, which accounted for 67% of the variation in that 

data, were used in the varimax rotation.  When both sites were analysed together, no 

separation of family clusters was evident.  However, when each site was analysed 

separately, some family separation was apparent, but as with the metabolites, no clear 

distinctions were observed (data not shown). 

When the dataset included samples from both sites (Adam River and Gold River) 

the MDA was only 18% accurate on average and 37% accurate at best (Table 2.2a); 

this represents an improvement over the 10% probability of random chance, and implies 

that family variation can be distinguished.  These findings were supported by the results 

of a canonical discriminant analysis (CDA) which was used to analyze the same data, 

and showed that the MANOVA results could distinguish clearly between families (Figure 

2.3) based on the 139 metabolites used in the analysis (p<0.05). MDA accuracy was 

further improved when samples from the two locations were analysed separately, with a 

moderate improvement for Adams River (37% on average, 67% at best) and a more 

pronounced improvement for Gold River (65% on average, 90% at best).  The 

improvement observed when samples from each location were analysed separately is 

noteworthy and alludes to a confounding influence of site when investigating genetic 

variation in this and other tree populations (i.e. family × site interactions). 

2.3.2 Site-related variation 
Analyses that focused on site-based variation were conducted as a complement to 

those relating to the family variation, described above.  Adam River and Gold River 

differed in site productivity: Adam River was a more productive site with a site index of 

39.7 m, and Gold River was a less productive site with a site index of 35.4 m.  Adam 

River and Gold River are both located on Vancouver Island in the CWHvm and CWHxm 

biogeoclimatic subzones, respectively. Adam River (latitude: 50º 24’ 00; longitude: 126º 

10’ 00) is 576 m above sea level and has very little under story vegetation, while Gold 

River (latitude: 49º 51’ 30; longitude: 126º 04’ 45) is 561 m above sea level and has an 

understory composed primarily of Vaccinium spp. The largest difference in site is 

related to the precipitation regime, with Adam River being classified as a “very wet” (v) 

environment and Gold River located in the “very dry” (x) biogeoclimatic region.  Both 
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sites were on relatively flat terrain, free of stumps and were surrounded by even-age 

stands that did not restrict light access and protected the stands from wind damage.  

The major biogeoclimatic difference was in water availability, which will also influence 

both understory and soil composition.  The site-related factor analysis of the metabolite 

dataset was the same as that used in the family analysis (above), however, the samples 

were labelled by site rather than family (Figure 2.2b-d).  The three highest-ranking 

factors (F-1, F-2 and F-3, accounting for 16.7%, 12.1% and 11.5% of the dataset 

variance, respectively) were responsible for clustering and separation of the samples, 

with site being the dominant influence (Figure 2.1b-d).  F-1 was the primary source of 

separation between site clusters, and a positive relationship between scores in F-1 and 

F-3 improved the separation (Figure 2.2c).  A small cluster of four AR samples that 

grouped with the GR cluster in F-1 is effectively isolated by F-2 (Figures 2.1b and 2.2c), 

and these samples presumably represent a variant metabolic subset. 

The site-related factor analysis of the phenotypic trait dataset was also the same 

as that used in the family analysis (above), involving a varimax rotation of the first four 

factors, which collectively accounted for 0.67 of the total variance.  In this analysis, F-1 

was primarily responsible for clustering and separating the trees based on site, with 

some improvement offered by F-3 and F-4 (Figure 2.2b-d).  These factors accounted for 

25.5%, 14.0% and 8.9% of the dataset variance, respectively. 

The MDA for site, based on the metabolite dataset, showed strong predictive 

accuracy (Table 2.1b), which is indicative of large and/or consistent metabolic 

differences between populations from the two sites.  MANOVA results derived from the 

CDA confirm that sites can be distinguished based on the 139 metabolites used in the 

analysis (p<0.05). 

The results from the MDA and CDA of GC/MS metabolite profiles of developing 

xylem and FA of metabolite profiles and quantitative phenotypic traits indicate that in 

this Douglas-fir population, a much clearer distinction can be made between trees 

based on site, compared to genetic origin (family), however, both can be differentiated.  

It is apparent from the metabolite profiles that differences between sites have had a 

detectable influence on the wood-forming metabolism of the trees.  Although it is 

generally accepted that growing conditions can significantly influence metabolism and 

phenotypic traits in trees, to date there have been few demonstrations of the influences 
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of uncontrolled site (climatic and environmental) factors on global metabolism in plant 

species.  The findings of this study are consistent with those of Baker et al. (2006), for 

whom PCA of NMR-derived metabolic profiles demonstrated a much clearer distinction 

between transgenic and control wheat lines on the basis of site, rather than genotype. 

2.3.3 Interaction between genetic and environmental elements 
The determination of metabolites exhibiting significant family- or site-related variation, 

and subsequent calculation of the broad-sense heritabilities of metabolite pools, 

provided a quantitative representation of the trends observed in MDA, CDA and FA.  Of 

the complete set of 139 metabolites, seventy-eight (56.1%) showed significant family 

variation, 108 (77.7%) had significant site variation, while 53 (38.19%) showed 

significant family-by-site interaction (ANOVA, α = 0.05).  Broad-sense heritability 

estimates of the individual metabolites ranged from 0 to 0.67 with only one being >0.5.  

The generally low values of these estimates (mean = 0.12) further suggests that 

genetics (family) has a smaller influence on the observed variation in cambial 

metabolism, than environmental (site) factors.  Furthermore, greater than 1/3 of all the 

metabolites showed significant family-by-site interaction indicating that families often 

produce different metabolic responses to similar environmental cues.  This analysis 

clearly illustrates that cambial metabolism is a complex response to both genetic and 

environmental stimuli, and the interaction of the two.  This result agrees with a previous 

study of the relative influence of genetic and specific environmental factors in Pinus 

sylvestris, in which significant family × temperature and family × temperature × water 

interactions were observed, in the absence of significant family main effects (Sonesson 

and Eriksson, 2000).  Furthermore, this helps to explain why the MDA family predictions 

were improved when the Adams River and Gold River sites were analysed separately.  

Of the 108 metabolites with significant site variation, 64 (59.3%) showed significant 

family variation but no family-by-site interaction.  For this subset of site-distinguishing 

metabolites, heritability was only slightly lower than that of the complete set (ranging 

from 0.00 to 0.67 and with a mean of 0.11), lending further support to the hypothesis 

that environment (site) was more largely responsible for the observed metabolic 

variation, than genetics (family) origin.  For a complete list of these 64 compounds, with 

mass spectral data and possible chemical class assignments, see the supplemental 

material (Appendix A.1). 
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It was possible to assign positive identities to approximately half of the 64 

compounds that exhibited significant site and family variation with no family-by-site 

interaction, based on GC retention time and mass-spectral matches (Table 2.2a).  

Several aspects of metabolism are represented, with some notable inclusions from 

branches of metabolism involved in wood formation.  The list includes participants in the 

tricarboxylic acid (TCA) cycle (fumaric and malic acids), the major sugar pools and 

pentose phosphates (sucrose, fructose, Fructose-6P, glucose and Glucose-6P), and 

metabolites related to lignin biosynthesis (coniferin and quinic acid).  The identities of 

metabolites with the highest heritabilities are those related to carbohydrate metabolism.  

This is in agreement with the heritabilities calculated for quantitative traits, in which the 

glucan (i.e. cellulose), arabinose and xylose contents of wood were high relative to 

others traits. 

Heritabilities were also calculated for the 16 quantitative phenotypic traits, and 

although they were larger on average than for the metabolites, the estimates were still 

fairly low (Table 2.2b).  Of the heritable traits measured, tree height, arabinose, xylose 

and glucose content, all had heritabilities greater than 0.35.  In particular, arabinose and 

glucose contents were greater than 50%. The broad-sense heritability estimate for 

glucose (1.28) is an over-estimation that is likely a result of the small number of families 

used in the calculations.  It is an indication that these values be used in a relative sense 

for comparison with each other, rather than absolute values.  However, despite this, the 

generally low heritabilities observed for the phenotypic traits should still be applicable.  

As with metabolites, genetics (family) does not appear to have much influence on the 

observed variation in phenotypic traits. 

2.3.4 Interaction between metabolic and phenotypic elements 
A canonical correlation analysis (CCA) including 139 metabolites and 16 phenotypic 

traits was conducted.  In this analysis, the first pair of canonical variables (Metabolite 1 

and Growth 1) was the only relevant set.  The canonical correlations for all 16 variate 

pairs were high (ranging from 0.99 to 0.74), yet only variates one and two were 

significant at an alpha of 0.05 (0.0006 and 0.0282, respectively).  In addition, canonical 

redundancy analysis showed that only the first variate exhibited predictive power with 

regard to both sets of original variables, and that this was limited to prediction of 

variance in growth traits only.  The transformed canonical variables Metabolite 1 and 
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Growth 1 accounted for a small proportion of the variation of the original data (0.2165 

and 0.2207, respectively).  Although low, these values are considerably higher than 

those for the second and subsequent sets of canonical variables. 

The metabolites’ and growth traits’ canonical correlation coefficients (canonical 

factor loadings) for the first canonical variate have been assembled in Tables 2.3a and 

2.3b.  In total, 52 of 139 metabolites and 10 of 16 growth traits were significantly 

correlated with their canonical variate (Metabolite 1 and Growth 1, respectively), 

although the correlation for latewood density was barely below the 0.3 cut-off.  Due to 

space limitations and to aid clarity, only metabolites whose correlation was significant 

(>0.3) and whose identity could be positively determined have been presented here.  

For a complete list of 52 compounds, with mass spectral data and possible chemical 

class assignments see the supplemental material (Appendix A.2). 

For the phenotypic traits (Table 2.3b), measures of wood yield (tree diameter at 

breast height, volume and height) were highly correlated with Growth 1.  Similarly, 

indicators of wood fibre quality (microfibril angle, fibre length and coarseness) were also 

highly correlated.  This suggests that Growth 1 is strongly related to wood yield and 

wood cell morphology.  Additionally, the contents of primary chemical constituents of 

wood (total lignin, glucose, mannose, xylose) show less influence on Growth 1, with 

lower, but significant correlation coefficients.  Correlation coefficients for traits related to 

wood density (latewood and earlywood density, average density, and latewood 

proportion) were less than 0.3, and as such did not significantly influence Growth 1. 

Many metabolite pools are correlated well with Metabolite 1.  A spread of 

metabolites associated with the tricarboxylic acid (TCA) cycle (Fumaric acid), ascorbate 

and aldarate metabolism (threonic acid), amino acid metabolism (glyceric acid, 

pyroglutamic acid, alanine), carbohydrate storage (rhamnose), and stress tolerance 

(pinitol) are present.  Significant correlations are apparent for major (glucose and 

fructose) and minor (xylose, arabinose, and maltose) sugar pools.  The pools of glucose 

and fructose are catabolite products of sucrose the major transportable photoassimilate, 

and represent a starting point for many branches of metabolism, the most notable of 

which is cell wall biosynthesis.  The minor pools observed are involved in ascorbate, 

nucleotide and more specific aspects of cell wall metabolism.  All three have structural 

roles in cell walls, while xylose in particular is a key cell wall carbohydrate associated 
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with primary wall deposition and a component of wood hemicellulose.  Precursors to 

lignin biosynthesis (shikimic acid, coniferin, quinic acid) also correlate well with 

Metabolite 1.  Coniferin is believed to be involved in the transportation and storage of 

the monolignol coniferyl alcohol, and consequently plays an integral role in the process 

of cell wall lignification in softwoods (Samuels et al., 2002).  On the other hand, shikimic 

and quinic acids are more broadly associated precursors, acting as intermediates in the 

synthesis of aromatic amino acids, flavonoids, and a range of other secondary 

metabolites aside from their involvement in lignin biosynthesis.  It is, therefore, fitting 

that both shikimic and quinic acids are seen forming pools in the developing xylem of 

Douglas-fir, a phenomenon frequently associated with roles in alternative downstream 

pathways (Srere, 1987).  Aside from their roles in the broadly-serving shikimate 

pathway (reviewed by Herrmann and Weaver, 1999), there is support for their 

participation in the formation of shikimate and quinate esters of p-coumarate, as part of 

the metahydroxylation of that molecule in the phenylpropanoid pathway specifically 

responsible for monolignol biosynthesis (Humphreys and Chapple, 2002).  The lignin-

related metabolites, shikimic acid and coniferin, are among those most highly correlated 

to Metabolite 1, along with a number of amino acid metabolites and pinitol.  These 

compounds predominate over the precursors of structural carbohydrates, which, 

although relevant, do not have as strong an influence as Metabolite 1. 

Collectively, the correlations between metabolites and growth traits and their 

highly-correlated canonical variates indicate a clear link between wood yield and fibre 

quality of a tree, and the pooling of a series of metabolites related directly to wood 

biosynthesis in the developing xylem.  Firstly, there is an inverse relationship between 

pools of metabolite precursors to significant carbohydrate components of wood and the 

presence of the structural components themselves (glucose, mannose, and xylose).  

This suggests that increased pooling of these metabolites occurs as a consequence of 

limited metabolic flux beyond the pool, and that reduced incorporation into the cell wall 

matrix is not a consequence of limited precursor availability, but rather of low demand.  

A similar but stronger inverse relationship also exists between the pools of lignin 

precursors and the total lignin content of wood, whereby the pools of coniferin, shikimic 

acid and quinic acid become larger as the total lignin content of wood is reduced.  

Again, such a relationship implies that the limiting factor in lignin biosynthesis is 
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deposition, rather than precursor supply.  Finally, there is a simple inverse, but perhaps 

tell-tale relationship between the measures of yield (DBH, VOL, HT) and the pool of 

pinitol.  As a “compatible osmoticum” that has been associated with a response to 

drought stress (Griffin et al., 2004; Keller and Ludlow, 1993), the observed negative 

correlation between this metabolite and wood yield is understandable. 

There is another, more unified relationship that exists within the data of Tables 

2.3a and 2.3b.  Where variability in the chemical composition of wood of a specific 

species is observed, there is typically an inverse relationship between the major 

carbohydrate and lignin contents.  This appears to be the case in these Douglas-fir 

trees, as total lignin content is positively correlated with the growth canonical variate, 

while mannose, xylose and glucose content are all negatively correlated.  Interestingly, 

similar (but opposite) correlations can be seen for the metabolite canonical variate in 

the pools of metabolite precursors to the carbohydrate and lignin polymers.  The 

metabolomics approach applied here has allowed observation of a set of wood 

formation-related phenotypic and metabolic traits broadly reflecting one another.  The 

observation of broad relationships such as this undoubtedly provides a starting point 

from which detailed understanding of specific interactions between metabolism and 

phenotype may be developed. 

The relationships demonstrated by the CCA seem to be rooted in the metabolic 

and phenotypic variation associated with site differences.  Almost all of the metabolites 

that correlated highly in the CCA are high loaders in one or more of the factors 

responsible for site-related sample clustering and separation in the FA.  Furthermore, it 

was possible to calculate broad-sense heritabilities for half of the high-correlating 

metabolites in the CCA (Table 2.3a).  A similar trend is seen for the phenotypic traits in 

the CCA (Table 2.3b), where all traits aside from average density, latewood proportion, 

arabinose and galactose contents load high in at least one of the site-differentiating 

factors F-1, F-3 and F-4.  On average heritabilities were greater than they had been for 

the metabolites, but in general remained low.  These observations all point toward the 

importance of site over family in the CCA, directly supporting the qualitative, visual 

evidence provided by the FA factor score plots (Figures 2.1 and 2.2). 

In summary, this study demonstrates that broad-scale, non-targeted metabolic 

profiles of actively metabolizing cambium can be correlated with extensive phenotypic 
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data that define aspects of tree growth and wood properties in populations of siblings 

from high-growth performance families of Douglas-fir.  Further, a strong relationship 

between associated metabolic and phenotypic variation and environmental (site) factors 

exists, while a similar genetics (family) relationship exists, but is comparatively weak. 

Additionally, significant correlations were observed between phenotypic 

indicators of tree growth (diameter at breast height, tree height and volume), cell 

morphology (microfibril angle, fibre length, fibre coarseness) and cell wall chemistry, 

and metabolite pools related to major components of cell wall biosynthesis including 

cellulose (glucose, fructose), hemicellulose (xylose, arabinose, and maltose), and lignin 

(quinic acid, shikimic acid and coniferin).  The existence of linear, quantitative 

relationships between tree and wood phenotype and wood-forming metabolism, as well 

as associations between the relative influences of family (genetics) and site 

(environment) on phenotype and the metabolite pools in actively growing tissue 

establish a clear biological connection between genetics, metabolism, phenotype and 

the impact or growing environment.  And, as such illustrates the importance of 

metabolomics within the framework of functional biology, and demonstrates the 

potential of metabolic data in a unified approach to studying processes involved in 

tree/plant growth and wood biosynthesis. 

Future studies should aim to increase the sampling population (number of 

families) to better satisfy the requirements of quantitative genetic calculations, as well 

as replication of site conditions to allow relationships between geo-climatic and biotic 

factors to be more clearly defined.  A notable outcome of this research was the weaker 

correlation between genetics (i.e. family) and metabolic or phenotypic traits.  Whether 

this result accurately reflects the situation in tree populations in general, or was simply 

due to characteristics of the specific sample population used in this study is not clear.  

As such, future attempts to demonstrate links between genetic and metabolic factors 

should look to tree populations that include families which exhibit a wider range of 

genetic and/or phenotypic diversity, rather than a somewhat narrow selection of “high 

performance” families, as was employed in the current study.  Alternatively, the use of 

clonal lines in place of full-sib families may be useful in controlling dataset variation, 

although taking this approach would lead away from any goal of understanding tree and 

wood development in situations where genetic variability within families exists.  Further 
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resource-intensive, yet potentially enlightening studies could also involve the tracking of 

wood-forming metabolism in multiple families or clones, under a variety of geo-climatic 

conditions, throughout the growing season.  The metabolic data could then be related 

back to other biotic and abiotic factors as was undertaken in the current study, to 

establish a more complete picture of wood-forming metabolism and how it relates to 

these associated factors.  It is, however, apparent that broad scale metabolic profiling of 

“global” plant metabolism can contribute to our understanding of biological processes in 

trees/plants or be used to diagnose specific genetic or phenotypic characteristics or 

responses. 
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Figure 2.1 Scatter plots of factor analysis (FA) factor scores for metabolite profiles of 
developing xylem from Douglas-fir trees, with plot axes derived from FA factors 1-3.  
Analysis represents the differentiation of 181 individual trees (93× AR and 88× GR), 
across 139 metabolites, and clearly demonstrates the clustering and separation of 
samples based on site.  Dashed lines suggest plane of separation only. a) samples 
classified by family, representing individuals from families 2, 26, 38, 46, 62, 75, 92, 130, 
151, and 156, designated by 0 – 9, respectively.  b-d) samples classified by site, “A” 
indicating Adam River (AR) and “G” indicating Gold River (GR). 
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Figure 2.2 Scatter plots of factor analysis (FA) factor scores for quantitative phenotypic 
traits from Douglas-fir trees, with plot axes derived from FA factors 1-3.  Analysis 
represents the differentiation of 181 individual trees (93× AR and 88× GR), across 16 
quantitative phenotypic traits, and clearly demonstrates the clustering and separation of 
samples based on site.  Dashed lines suggest plane of separation only.  a) samples 
classified by family, representing individuals from families 2, 26, 38, 46, 62, 75, 92, 130, 
151, and 156, designated by 0 – 9, respectively.  b-d) samples classified by site, “A” 
indicating Adam River (AR) and “G” indicating Gold River (GR). 
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Figure 2.3 Scatter plots of canonical discriminant analysis (CDA) canonical scores for 
metabolite profiles of developing xylem from Douglas-fir trees, with plot axes derived 
from canonical factors 1 and 2.  Analysis represents the differentiation of 181 individual 
trees (93× AR and 88× GR), across 139 metabolites, and clearly demonstrates the 
clustering and separation of samples based on genetics (family). Samples classified by 
family, representing individuals from families 2, 26, 38, 46, 62, 75, 92, 130, 151, and 
156, designated by 0 – 9, respectively. 
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Table 2.1. Prediction accuracies of multiple discriminant analyses of metabolite profiles 
of developing xylem from 181 Douglas-fir trees.  The “percent accuracy” represents the 
average frequency with which the discriminant model accurately predicted a) family (out 
of a possible ten) or b) growth site (out of a possible two) of individual known trees, 
based on their metabolite profiles (139 metabolites). 
 

 
a) 

Ave. Prediction Accuracy of MDA by family (%) 

Sites F2 F26 F38 F46 F62 F75 F92 F130 F151 F156 

AR and GR 0 17 12 12 17 37 0 25 37 25 

Adam River 40 45 70 10 10 20 53 67 12 40 

Gold River 37 46 90 70 46 77 70 90 57 70 

 

 
b) 

 Ave. Prediction Accuracy of MDA by site (%) 

Sites Adam River Gold River 

AR and GR 80 92 
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Table 2.2. a) Positively identified metabolites exhibiting significant site variation, for 
which broad-sense heritabilities could be calculated.  b) Broad-sense heritabilities of 
quantitative phenotypic traits. 

 
a) 

Metabolite Information#   Heritability+

Peak# Compound ID   H2 

    

20 Acetic Acid  0.00

54 Acetic Acid, bisoxyl  0.00

60 Phosphoric acid  0.00

92 Alanine, B-   0.00

117 Erythronic acid  0.00

141 Ribose  0.00

169 Pinitol  0.00

173 Quinic acid  0.00

182 Glucose {BP}  0.00

230 Sucrose  0.03

221 Fructose 6P   0.05

175 Fructose  0.06

120 Threonic acid  0.09

73 Glyceric acid  0.10

177 Fructose {BP}  0.11

104 Malic acid  0.11

244 Coniferin  0.13

209 Inositol  0.13

160 Ribonic acid  0.14

74 Fumaric acid  0.15

67 Maleic Acid  0.16

229 Adenosine  0.17

222 Glucose 6P  0.18

223 Glucose 6P {BP}  0.21

178 Glucopyranose  0.23

138 Arabinose  0.31

135 Xylose {BP}  0.34

137 Xylose  0.42
      

 
# Compound identity determined through mass-
spectral and GC retention time matches with 
standard compounds.  {BP} indicates metabolite 
by-product, as suggested by the Gölm 
Metabolite Database.  + Of the metabolites for 
which significant site and family variation existed 
(ANOVA α = 0.05) in the absence of site-by-
family interaction (i.e. G×E effects), allowing  for 
calculation of broad-sense heritability (64 of 
139), only metabolites for which it was possible 
to assign positive identities (28) are presented. 
 

 

 

 

 
b) 

Quantitative trait   Heritability+

    H2 

  
Total Lignin  0.00 

Fibre Coarseness  0.00 

Fibre Length  0.16 

Dia Breast Height  0.20 

Latewood Porosity  0.21 

Latewood Density  0.22 

Tree Volume  0.22 

Galactose  0.25 

Average Density  0.25 

Earlywood Density  0.30 

Mannose  0.31 

Microfibril Angle  0.34 

Xylose  0.37 

Tree Height  0.40 

Arabinose  0.69 

Glucose  1.28 

    

 
+ Quantitative traits are sorted according to their 
heritability score.  Significant family-related 
variation in the absence of site-by-family 
interaction (i.e. G×E effects) was observed in all 
traits, permitting broad-sense heritability to be 
calculated for each.  
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Table 2.3. a) Positively identified metabolites exhibiting significant canonical correlation 
coefficients, presented in conjunction with factor analysis scores and broad-sense 
heritabilities values for the same compounds.  b) Canonical correlation coefficients of 
quantitative traits presented in conjunction with factor analysis scores and broad-sense 
heritabilities. 
 

a) 

Metabolite Information#  CCA$  Factor analyses* Heritability+ 

Peak# Compound ID  Metabolite1  F-1 F-2 F-3 H2  

   
92 Alanine, B- 0.509 0.71 0.00 

178 Glucopyranose 0.397 0.65 0.23 

54 Acetic Acid, bisoxyl 0.372 0.65 0.00 

138 Arabinose 0.363 0.46 0.41 0.31 

24 Ammonium 0.353 0.41 -0.35 -0.43  

120 Threonic acid 0.349 0.49 0.09 

182 Glucose {BP} 0.346 0.00 

135 Xylose {BP} 0.337 0.51 0.34 

111 Pyroglutamic acid 0.333 0.54  

20 Acetic Acid 0.323 0.59 0.00 

175 Fructose 0.310 0.06 

177 Fructose {BP} 0.308 0.11 

235 Maltose 0.302 0.43  

179 Glucose 0.300  

173 Quinic acid -0.304 -0.31 -0.49 0.00 
150 Rhamnose -0.308 0.31  

74 Fumaric acid -0.373 0.35 0.15 

244 Coniferin -0.459 0.66 0.13 

164 Shikimic acid -0.487 -0.45 0.39 0.56  

73 Glyceric acid -0.546 -0.52 0.10 

169 Pinitol -0.659 -0.70 0.32 0.00 

   
 

# Compound identity determined through mass-spectral and retention time matches with standard compounds.  
Compounds sorted by correlation coefficient.  Peak# is the unique numerical identity of a metabolite in the 251 
compound set originally resolved from chromatographic data.  {BP} indicates metabolite by-product, as suggested by 
the Gölm Metabolite Database.  $ Of the 51 metabolites with significant (>+/- 0.3 ) canonical correlation coefficients 
across all 139 metabolites analysed, 21 were positively identified and presented in this table.  * For metabolites 
presented, factor scores in the site-differentiating factors F-1 F-2 and F-3 are presented only where significant (>+/- 
0.3).  + Broad-sense heritabilities were calculated only for metabolites exhibiting significant family and site variation 
(ANOVA α = 0.05) in the absence of family-by-site-interaction (i.e. G×E effects). 
 

Continued on following page… 
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b) 

Quantitative trait   CCA$   Factor analysis*   Heritability+ 

    Growth1   F-1 F-3 F-4   

   

Dia Breast Height 0.867 0.90  0.20 

Tree Volume 0.825 0.91  0.22 

Tree Height 0.783 0.91  0.40 

Microfibril Angle 0.575 0.81  0.34 

Total Lignin 0.484 0.76  0.00 

Arabinose 0.153  0.69 

Galactose 0.107  0.25 

Earlywood Density 0.069 0.33 0.52  0.30 

Latewood Proportion 0.012   0.21 

Average Density -0.076  0.25 

Latewood Density -0.295 -0.69  0.22 

Glucose -0.309 0.73  1.28 

Xylose -0.342 0.90  0.37 

Fibre Coarseness -0.412 -0.49  0.00 

Mannose -0.418 -0.80  0.31 

Fibre Length -0.481 0.43 -0.52  0.16 

      

 
$ Quantitative traits are sorted according to canonical coefficient.  * Factor scores in the site-differentiating factors F-1, 
F-3 and F-4 are presented only where significant (>+/- 0.3).  + Broad-sense heritabilities are presented for each 
quantitative trait. 
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Metabolite profiling reveals complex relationship between developing xylem 
metabolism and intra-ring internal checking in Pinus radiata 
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relationship between developing xylem metabolism and intra-ring internal checking in 

Pinus radiata.  
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3.1 Introduction 
The forest industry has traditionally relied on natural forest resources as its primary 

source of wood; however, due to long-term depletion and intensive harvesting, recent 

efforts have witnessed a shift towards plantation-grown forests as alternative wood 

sources.  Unfortunately, plantation-based forestry, involving mass cultivation of select 

genotypes, has brought about wood quality issues that are only beginning to become 

apparent, as early generations of plantation forests have matured and been processed. 

Intra-ring (a.k.a. within-ring) internal checking is a structural wood quality defect 

that limits the suitability of wood for high-value or value-added applications.  The 

phenomenon is prevalent in the faster-grown, younger-pruned trees from cultivated 

crops of softwood species such as Pinus radiata (radiata pine), and consequently can 

have a significant negative impact on the commercial value of the ensuing lumber.  In 

radiata pine, the intra-ring internal checking phenotype is characterised by the formation 

of longitudinal cracks and voids within the earlywood portion of sapwood annular growth 

rings and is more prevalent in rings adjacent to the heartwood/sapwood boundary.  

These cracks typically occur during rapid kiln drying, but in severe cases may already 

be present in green wood (Ball et al., 2005; Williams, 1981).  It has been proposed that 

the development of internal checks during drying is related to interactions between 

water and the cell wall matrix, and the subsequent exposure of the matrix to tensional 

stresses (Booker et al., 2000).  It appears that certain physico-chemical cell wall 

properties can predispose cells to checking, with the initial failure of the cell wall at the 

interface of the compound middle lamella and the S1 layer of the secondary cell wall 

culminating in a check (Putoczki et al., 2007).  Specifically, it has been proposed that a 

loss of striations in the S1 wall layer accompanies an increased incidence of checking, 

which may be associated with locally altered microfibril organisation and lignin 

distribution that weaken the wall structure (Donaldson, 1995; 1997; Putoczki et al., 

2007).  Less well understood are the genetic, gene regulatory, and metabolic factors 

that underlie and contribute to this predisposition.  There is good evidence, however, 

that genetics are a major contributing factor to checking susceptibility, as the trait 

exhibits fairly strong heritability (Ball and McConchie, 2001; Kumar, 2004). 

It is recognised that an accurate method for predicting the potential for wood to 

check, either at the breeding/sapling stage, immediately pre-harvest, or prior to post-
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harvest processing, would be an invaluable tool in the plantation forestry industry.  The 

possibility of this prompted a SilviScan-based assessment of wood properties for 

checking individuals, and the subsequent development of a generalised linear model in 

which tracheid radial diameter and cell wall thickness could be used to accurately 

predict checking status for these individuals (Ball et al., 2005); however, this method 

required destructive harvesting, making it less ideal for progeny test scenarios in 

breeding trials. 

The research described herein tested a metabolomics approach to elucidate the 

metabolic elements of xylem biosynthesis that may be related to the predisposition for 

wood to check in families of radiata pine.  Integral to this goal was the use of these 

distinctive metabolic elements to distinguish between trees exhibiting distinct levels of 

checking severity, and to predict the severity of the internal checking phenotype in a 

non-destructive manner.  Furthermore, the potential role of a key metabolite, coniferin, 

in the manifestation of the internal checking defect was investigated and its association 

discussed. 

 

3.2 Materials and methods 
3.2.1 Plant material and sampling 
The radiata pine tree population sampled in this research consisted of seven-year-old 

full siblings from multiple families grown in the Puriki trial forest near Rotorua, New 

Zealand.  These families exhibited a range of severity in an “internal checking” wood 

phenotype, determined by previous analysis of other related siblings.  These families 

were taken from the same field trial as used in other contemporary checking-related 

research (Booker et al., 2000; Putoczki et al., 2007).  Sampling was conducted during 

the early growing season, in late October 2004.  Samples were acquired in random 

order between 10 am and 3 pm, under overcast conditions.  A sample of developing 

xylem tissue was obtained from the north-facing side of each tree by first peeling a 

section of bark/phloem/outer cambium from the main bole of the trunk at ~50 cm from 

the base, and then scraping the inner cambium with a clean razor blade.  The collected 

material was immediately transferred to a cryovial, snap-frozen in liquid nitrogen, and 

stored at -80°C until further processing. 
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3.2.2 Metabolite sample preparation 
Frozen tissue was macerated to a fine powder with a 15 s burst using a dental amalgam 

mixer, employing a liquid N2-chilled copper/plastic capsule and steel ball bearings.  

Samples were kept frozen at all times and, once ground, were returned to -80°C. 

Metabolites were extracted from tissue samples and prepared for GC/MS using a 

two-phase methanol/chloroform method developed for metabolite extraction from 

Populus cambium and developing xylem (Robinson et al., 2005).  Approximately 60 mg 

frozen, ground developing xylem was accurately weighed into a pre-chilled 2 mL lock-

cap centrifuge tube.  To this, 600 μL HPLC-grade methanol (CH3OH) was immediately 

added and vortexed for 10 s to halt biological activity and minimise degradation.  In 

addition, 40 μL distilled, deionised water (H2O) and 10 μL internal standard mixture (10 

mg/mL ribitol in H2O) were added.  The sample was then incubated for 15 min at 70°C 

with constant agitation, and centrifuged at 13 000 rpm for 5 min.  The supernatant, 

containing extracted metabolites, was retained.  CHCl3 (800 μL) was then added to the 

pellet, vortexed for 10 s to re-suspend, and incubated for 5 min at 35°C with constant 

agitation.  The resultant supernatant recovered following a second 5 min centrifugation 

at 13 000 rpm, was pooled with the supernatant from the initial CH3OH extraction.  H2O 

(600 μL) was added to the combined supernatant, vortexed for 10 s, and then 

centrifuged for 15 min at 4000 rpm to permit the separation of polar (methanol/water) 

and non-polar (methanol/chloroform) phases.  This combination and separation of 

phases allowed metabolites extracted in one phase but with greater affinity for the other 

to repartition.  The polar (upper) methanol/water phase was taken, and either processed 

immediately or stored at -20°C until further analysis.  Metabolites in the non-polar phase 

were not analysed in this study.  The soluble polar metabolite samples were derivatised 

prior to analysis by GC/MS.  An aliquot (900 μL) of the methanol/water phase was dried 

using a Vacufuge (Eppendorf) (3-4 h, 30°C), and methoxylated by re-suspending the 

pellet in 50 μL methoxyamine hydrochloride solution (20 mg/mL in pyridine) and 

incubating with constant agitation for 2 h at 60°C in order to protect carbonyl moieties.  

Acidic protons were then trimethylsilylated with 200 μL N-methyl-N-trimethylsilyltrifluoro 

acetamide (MSTFA) and incubated at 60°C with constant agitation for 30 min.  Samples 

were left to stand at room temperature overnight to ensure complete derivatisation, and 

then filtered through compacted tissue paper prior to GC/MS analysis. 



84 
 

For HPLC, approximately 100 mg frozen, ground developing xylem was weighed 

accurately into a pre-chilled 2 mL lock-cap centrifuge tube.  To this, 2 mL extraction 

solvent (48.5%vv CH3OH, 48.5%vv H2O, 1.5%vv glacial acetic acid) was added.  The 

extraction was allowed to proceed for 5 h at 40°C with constant agitation at 200 rpm.  

Samples were then centrifuged at 13 000 rpm for 10 min, after which the supernatant 

was transferred to a clean centrifuge tube.  For HPLC, samples were concentrated 5-

fold, reducing 1 mL supernatant to <200 μL in a Vacufuge (Eppendorf), and then 

making it back up to 200 μL with CH3OH. 

3.2.3 HPLC-based analysis 
Analysis of metabolite extracts by HPLC was conducted with a Dionex Summit HPLC 

fitted with a Phenomenex Spherosill ODF C18 250 mm × 4.6 mm column and a UV/VIS 

photodiode array detector.  A 35 μL aliquot of the methanol/water/acetic acid extraction 

described above was injected, and subjected to the chromatographic separation.  

Gradients were based on mixtures of eluents “A” (0.1% trifluoroacetic acid in water) and 

“B” (0.1% trifluoroacetic acid in 75:25 methanol:acetonitrile mix).  Zero min (95% “A”, 

5% “B”), gradient to 38 min (40% “A”, 60% “B”), gradient to 40 min (100% “B”).  Ten min 

column wash (100% “B”), followed by rapid return to 95% “A”, 5% “B” in preparation for 

the next run.  The identity of the coniferin peak was confirmed by the comparison of the 

retention time and UV spectrum with a confirmed chemical standard compound.  

Samples were analysed in random order.  Peak areas were normalised against the 

amount of tissue included in each extraction, and the average relative abundance of 

coniferin in samples from low and severe checkers compared by two-tailed t-test (α = 

0.05). 

3.2.4 GC/MS-based analysis 
3.2.4.1 GC/MS conditions 
GC/MS analysis was conducted on a ThermoFinnigan Trace GC-PolarisQ ion trap 

system fit with an AS2000 auto-sampler and a split/splitless injector.  The GC was 

equipped with a low-bleed Restek Rtx-5MS column (fused silica, 30 m, 0.25 mm ID, 

stationary phase diphenyl 5% dimethyl 95% polysiloxane).  The GC conditions were set 

as follows: inlet temperature 250°C, helium carrier gas flow at constant 1 mL/min, 

injector split ratio 10:1, resting oven temp 70°C, and GC/MS transfer line temperature 

300°C.  Following injection of a 1 μL aliquot of sample, the oven was held at 70°C for 2 
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min and then ramped to 325°C at a rate of 8°C/min.  The temperature was held at 

325°C for an additional 6 min before being cooled rapidly to 70°C in preparation for the 

next run. 

Mass spectrometry analysis was conducted in positive electron ionisation (EI) 

mode, the fore-line was evacuated to approximately 40 mTorr, with helium gas flow into 

the chamber set at 0.3 mL/min.  The source temperature was held at 250°C, with an 

electron ionisation potential of 70 eV. The detector signal was recorded from 3.35 min 

after injection until 35.5 min, and ions were scanned across the range of 50-650 mass 

units (mu) with a total scan time of 0.58 s. 

3.2.4.2 Data acquisition and processing 
ThermoFinnigan Xcalibur v1.3 software was used for both GC/MS data collection and 

peak determination and measurement.  GC/MS total ion chromatograms (TIC) of TMS-

derivatised extracts were recorded for all samples, in order to elucidate the common 

“metabolite pools” present in the developing xylem tissue of each tree.  To normalise 

raw TIC peak data, metabolite peak areas were expressed relative to that of the ribitol 

internal standard peak, and then further standardised across all chromatograms by 

adjusting for the precise amount of tissue (mg fresh weight) used in each sample 

extraction.  A compiled peak data set was generated through semi-automated 

alignment of peaks that represented the same compound in multiple chromatograms by 

the purpose-built ‘PeakMatch’ software (Robinson et al., 2005).  As a means of 

minimising artefacts caused by sample processing and erroneous non-detection of 

small metabolite peaks proximal to baseline noise, all peaks that did not appear in at 

least 5% of the samples were removed from the dataset. 

3.2.4.3 Data reduction by univariate analysis 
Reduction of the metabolite peak set to include only metabolites that showed 

differences between trees having different severity in the internal checking phenotype 

was achieved using Bonferroni F-tests.  This test constitutes the core of ANOVA, and 

allows the comparison of multiple means while taking into account the degrees of 

freedom (i.e. the number of means being compared).  A peak that shows significance in 

this test is considered to be different in at least one of the submitted classes.  Various 

thresholds for significance were set in these tests, as indicated in the results. 
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3.2.4.4 Multivariate statistical analyses 
Other reductions of the metabolite data were carried out by Multiple Discriminant 

Analysis (MDA), and Principal Components Analysis (PCA) using the ‘proc discrim’ and 

‘proc factor’ procedures of the SAS v9.1 software (SAS Institute, Inc., Cary, N.C.), 

respectively. 

Multiple discriminant analysis, a statistical approach that assesses the variation 

in pre-classified multivariate data and is capable of generating predictive models, was 

applied to the metabolite data array.  To generate a cross-validated analysis, the data in 

each class were split into four equal (number of samples) subsets.  Then, three of the 

four subsets in each class are used to build the model, and the fourth used as an 

independent validation array to assess its predictive accuracy.  This building/testing 

process was repeated four times using the different possible combinations of “builders” 

and “testers”, and a final predictive accuracy rate for each class calculated as the 

average over the four models.  For a dataset having three classes, prior probabilities of 

0.333 (33.3%) are expected.  For two-class data these probabilities are 0.5 (50%).  

Higher model accuracy than the prior probability implies that the MDA is able to 

distinguish between classes better than would be the case in random prediction. 

Principal components analysis (PCA) allows the variation in metabolite and quantitative 

trait data arrays to be explored without the constraints of data pre-classification.  Factor 

scores of individual samples from selected principal components were plotted as co-

ordinates on the axes of two-dimensional scatter plots.  This generates a graphical 

representation of the variation in the original data captured by the analysis, and of the 

relationship between individual samples.  In metabolomics analyses, the separation of 

sample clusters in such plots is considered to illustrate differences between distinct 

metabolic systems, (Chen et al., 2003; Fiehn et al., 2000; Fiehn and Weckwerth, 2003; 

Roessner et al., 2001a; Roessner et al., 2001b). 

3.2.4.5 Compound identification 
National Institute of Standards and Technology (NIST) MS-Search software equipped 

with the NIST mass spectra, as well as the Max Planck Institute Trimethylsilane (TMS) 

(http://www.mpimp-Golm.mpg.de/mms-library/index-e.html), Gölm Metabolome 

Database (http://csbdb.mpimp-Golm.mpg.de/csbdb/gmd/gmd.html) (Kopka et al., 2005) 
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and our own (Mansfield UBC laboratory) TMS mass spectral libraries were collectively 

used to identify metabolites of interest, as highlighted by the statistical analyses. 

3.2.5 Scanning electron microscopy 
Air-dried mature secondary xylem was dissected transversely with razor blades and 

wood samples were attached to scanning electron microscope (SEM) stubs using 

double-sided stick tape. Following gold coating, samples were viewed using a Hitachi 

S7600 at 3 kV and images captured digitally. 

 

3.3 Results and discussion 
3.3.1 Sampling, data acquisition and pre-processing 
Samples of developing xylem were collected from five, seven-year-old full-siblings from 

each of 24 families of radiata pine; a total of 120 trees.  Of those families sampled, 8 

were defined as non or very low checkers (0-13 checks per cross section), 8 medium 

level checkers (30-55 checks), and 8 high level checkers (90-140 checks), as previously 

determined by destructive harvests, drying and checking counts in basal cross sections 

of other related siblings.  Taking sample losses during processing into account, the final 

set of analysed samples consisted of 40 low, 39 medium and 40 high checking 

individuals.  Once GC/MS data were collated, the complete dataset consisted of 228 

distinct compound peaks across 119 samples (an array of ~27 000). 

At this point, it bears mentioning that in the tree families studied, the internal 

checking phenomenon has arisen in the course of intensive breeding for tree form and 

growth rate, rather than as a result of transgenic induction.  Additionally, the individual 

tree subjects were siblings, rather than line clones.  As a consequence, the basis of the 

internal checking trait may very well be polygenic, while the phenotypic severity trait is 

unquestionably continuous in nature.  In any case, there is an obvious phenotypic 

distinction between the wood of non-checking and high-checking individuals (Figure 

3.1). 

3.3.2 Analysis of GC/MS metabolite profiles 
Data mining using statistical analyses was conducted on the compiled metabolite array 

with the intention of a) distinguishing the metabolism of tree families displaying a range 

of checking severity, and b) developing a model(s) capable of predicting checking 

severity, on the basis of metabolite profile data.  Statistical analyses were carried out on 
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the complete data array, as well as on array subsets in which the number of checking 

classes and/or metabolite variables were reduced by logical statistical means. 

3.3.2.1 Complete metabolite profiles 
The initial approach was to subject the data array to principal components analysis 

(PCA), a multivariate tool commonly applied in metabolomics that can be used to 

visualise the distribution of metabolic variation within sample sets, by sample.  In a PCA 

involving all three checking classes (high, medium and low) and all 228 variables, the 

best distinction between classes was seen with principal components 1 and 2 (PC-1, 

PC-2), which accounted for 25% and 16% of the variance in the dataset, respectively 

(Figure 3.2a).  However, the clustering and separation of classes was loose and 

incomplete.  A similar PCA involving the same metabolite variable set, but only samples 

in the extreme classes (high and low), yielded improved clustering and separation with 

PC-4 and PC-5 (accounting for 6% and 5% of the variance, respectively), although this 

also remained incomplete (Figure 3.2b).  The results from PCA indicated that 

differences do exist between the metabolisms of families exhibiting different levels of 

checking severity, however, the resolution of this was only moderate when profile data 

were analysed in their entirety, by this means. 

Multiple discriminant analysis (MDA) was then implemented as a tool for 

modeling and predicting checking class on the basis of metabolite profiles.  Cross-

validated MDA models yield an average error rate for the predictive classification of 

samples in each class, and this may be used as an indicator of the overall accuracy of 

the model.  Initially, MDA prediction models were generated using the complete set of 

228 metabolite variables (Table 3.1). The model built around all three classes was 

~85% accurate.  It is notable however, that the accuracy was not consistent across all 

classes, and that greater error was seen in classifying low and medium checkers.  

Three additional models were generated using the complete set of metabolites, each 

including only two of the three checking classes (Table 3.1).  Accuracy was also high in 

these models, at ~90% overall. 

Although predictive accuracy was generally high in the two-class models, the 

greater accuracy of the high-low model, the lesser accuracy of medium class prediction 

in the high-medium model, and the much poorer overall accuracy of the low-medium 

model all suggest that MDA had difficulty classifying the medium checkers.  These 
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specific results suggest that the metabolite profiles (and, by extension, metabolisms) of 

medium-checking genotypes resemble those of genotypes in the low checking class.  

However, additional trends are also apparent in the results, which complicate 

interpretation.  The increased accuracy of the high checker prediction in the high-

medium model, compared to the high-low model, suggests that there is greater 

similarity between low and high checkers than there is between medium and high.  To 

confound this, the decrease in the accuracy of low prediction in the medium-low model 

compared to the high-low model suggests that there is greater similarity between 

medium and low checkers than there is between high and low. 

The most attractive interpretation of the apparently conflicting results in the two-

class models is that there are some strong common elements between high and low 

checkers, and other also strong elements in common between medium and low 

checkers.  Although it would be convenient if the relationships between patterns in 

metabolite abundances and the severity of the checking phenotype were universally 

simple, these results suggest that this is unlikely.  It is also important to note that the 

three classifications used in this study were based on arbitrary criteria (ranges of check 

number in the cross section) that attempted to represent continuous data as discrete.  

The actual ranges used for classification likely have an impact on the statistical 

analysis.  It should not, then, be surprising that the MDA models had the highest error 

rate when predicting medium checkers’ identity, nor that the two-classification models 

perform a little better than the model that included all three. 

3.3.2.2 Reduced metabolite profiles 
A logical progression was to investigate whether it was possible to reduce the number 

of metabolite variables used to generate MDA models, yet retain accuracy.  Although 

the accuracy of models generated using the complete metabolite profiles was excellent 

given the limited sample size and the complexity of the biological system, it was felt that 

a subset of the metabolites might have played a primary role in distinguishing between 

checking phenotypes in the MDAs.  Therefore, statistical tests were employed to select 

metabolites believed to play important roles in the discriminant models.  The datasets 

generated were tested in the three-class MDA model as well as the three, two-class 

models, to assess the effectiveness of the reductions.  However, in the interests of 
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clarity and owing to their greater relevance, only the results from the three-class and 

high-low two-class models will be presented and discussed. 

For the three-class model, F-tests (part of ANOVA) at a given threshold were 

used to identify peaks that changed significantly between at least one of the three 

sample classifications (99% and 99.9% confidence are represented by α values of 0.01 

and 0.001, respectively).  Those that showed significant differences were included in 

the reduced dataset and subsequently included in the MDA model.  The accuracy of the 

prediction model suffered with sequential reduction, particularly in the case of the 

medium checkers (Table 3.2).  Again, the considerable difficulty that the model had with 

this class is indicative of the true continuous nature of checking severity data that has 

been classified as discrete. 

The process of logical reduction for the high-low two-class model was the same 

as for the three-class model except that t-tests instead of F-tests were used to identify 

peaks that were significantly different between the two sample classifications (95%, 

99%, and 99.9% confidence are represented by α values of 0.05, 0.01 and 0.001, 

respectively).  In these MDAs, the accuracy of prediction remained high, and was 

maintained at ~90% under an extreme reduction to 16 of the most clearly different 

metabolites (Table 3.2 and Figure 3.3).  The continued performance of these analyses 

is a clear indication that the critical, distinctive aspects of the metabolite profiles had 

been retained, despite the disposal of a large portion of the original data.  The 

identification of these metabolites as highly differential between high and low checkers, 

and the high accuracy of the ensuing MDA model both suggest that the metabolites 

contained in this small set may be closely related to the generation of the internal 

checking phenomenon. 

Attempts to identify the set of metabolites resulted in positive identities for five, 

and tentative molecular class assignment for another five of the total 16 (Table 3.3).  

Succinic acid is a participant of the tricarboxylic acid cycle, which, in the case of 

developing xylem, generates usable energy from translocated carbohydrates as well as 

precursors for many amino acids.  The hydrophilic amino acid, serine, participates in the 

biosynthesis of purines and pyrimidines and is also a precursor of several other amino 

acids.  Several carbohydrate-based molecules were also found in the list, although only 

inositol could be positively identified.  Additionally, several phenolic metabolites with 
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links to phenylpropanoid metabolism and lignin biosynthesis were identified.  Shikimic 

acid is a participant in the shikimate metabolic pathway, which is ultimately responsible 

for funnelling carbon toward phenylpropanoid metabolism and the lignin-specific 

biosynthetic pathway (Herrmann and Weaver, 1999; Humphreys and Chapple, 2002).  

Also of interest is an unidentified derivative of quinic acid.  Although this metabolite is 

not large enough to be the p-coumaroyl or caffeoyl quinate esters involved in 

phenylpropanoid biosynthesis (Franke et al., 2002; Hoffmann et al., 2003; Schoch et al., 

2001), it could potentially be associated with the generation of quinic acid via the 

shikimate pathway, or the cycling of quinic acid in and out of phenylpropanoid esters 

pools.  Finally, 4-hydroxy benzoic acid, a breakdown product of hydroxycinnamic acids 

or, indirectly, their -CoA derivatives, is another identified metabolite that participates in 

the ‘fringe’ aspects of phenylpropanoid metabolism.  In light of these results, it is 

apparent that several molecule classes are represented in the list of sixteen differential 

metabolites, indicating that a propensity to check is associated with physico-chemical 

wood properties arising via the interaction of elements from distinct aspects of the 

cellular metabolism for wood formation. 

A simple test was conducted to assess coherency between MDA and PCA under 

the conditions of logical reduction.  The reduced peak set that gave the highest 

accuracy in MDA for both the three-class (106 peaks) and high-low two-class (16 

peaks) models were subjected to PCA, and the two components that showed greatest 

clustering and separation of checking classes were plotted for each (Figure 3.4).  In the 

three-class analysis, PC-3 and PC-5 were selected (accounting for 8% and 4% of total 

variance, respectively), whereas in the high-low two-class analysis PC-1 and PC-2 were 

selected (accounting for 30% and 15% of total variance, respectively).  It was 

immediately apparent that the cluster patterns observed in PCA reflected the 

performance of the MDA.  For the three-class analysis, clustering and separation of the 

different classes remained incomplete (Figure 3.4a), although there is a gradient from 

high to low checkers that is sensible in terms of a graduated phenotype.  The high and 

low checking genotypes almost completely separate, while medium checkers are 

scattered, and this provides a visual description as to why the three-class MDA models 

were comparatively inaccurate.  For the high-low two-class analysis, all but complete 
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distinction between checking classes was observed (Figure 3.4b), and this was a result 

that reflected the extremely high accuracy of the MDA. 

The use of MDA modeling in applied, real-world screening situations would involve 

building an accurate prediction model using a set of samples of known checking class, 

and then using this model to predict the checking class of samples of unknown 

phenotype.  Therefore, as a simple assessment of the performance of MDA models in 

this type of situation, the 16 metabolite high-low two-class model was used to predict 

the checking phenotype of the set of 39 medium checkers.  Under this model, 30 of the 

39 samples were classified as low checkers, and the certainty of classification was 

generally very high (average 92%).  This classification spread is in general agreement 

with the results in the two-class MDAs based on complete metabolite profiles (Table 

3.1), which also indicated that in terms of metabolite profiles, medium checkers are 

more similar to low checkers than they are to high checkers.  However, as discussed 

previously, this pattern is likely an artefact of the classification criteria used during 

evaluation.  ‘Medium’ checking has a range that errs heavily on the low side of the 

classification scheme, so it is not that surprising that on average the medium samples 

were found to be more similar to the low than the high. 

3.3.3 Reflection on structure of phenotypic data 
In this research, logistical constraints dictated that the phenotypic data could only be 

collected and analysed in a discrete, classified form.  The analysis of the continuous 

internal checking variable as if it were discrete clearly had drawbacks.  The most 

significant of these was that the limits of phenotypic severity included in each class 

approached those included in the fringe of the neighbouring class(es).  It transpired that 

adjoining classes likely shared metabolic properties to some extent, which confounded 

efforts to consistently distinguish between samples in neighbouring classes via MDA of 

metabolite profile data, and precluded the possibility of cluster separation in the three-

class PCA’s.  Ideally, further metabolomic analysis of the internal checking trait will 

make provisions for the collection of continuous quantitative data based on the 

individual tree (rather that a “per family” class-based assessment), which will open other 

avenues of multivariate statistical analysis such as canonical correlation analysis 

(CCA), partial least squares regression (PLSR), and stepwise modeling. 
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3.3.4 The relationship between coniferin and the internal checking phenotype 
The metabolite coniferin is implicated in the process of cell wall development as the 

proposed glucosylated storage/transport form of coniferyl alcohol (Samuels et al., 2002; 

Savidge, 1989), which is itself the structural precursor of guaiacyl lignin (Humphreys 

and Chapple, 2002).  The observation of localised, subcellular changes in lignin 

composition in checking-prone cell clusters hase been reported (Donaldson, 1995; 

Putoczki et al., 2007), and given the heavy bias towards guaiacyl lignin in coniferous 

species, it seems possible that the metabolism of coniferin could be playing a role in the 

manifestation of the checking phenotype. 

Metabolite extracts of developing xylem from 30 trees from low checking families, 

and 28 trees from severe checking families were analysed by HPLC.  Student’s t-test of 

normalised peak area confirmed a statistically significant increase in the average 

abundance of coniferin in the samples from severe checking families.  The proportional 

increase over low checkers was 0.16 on average which, although mild, was significant 

at α = 0.05.  This apparent increase in the pool of coniferin, in developing xylem from 

families susceptible to severe checking, could be interpreted as evidence of some sort 

of “block” or reduced efficiency in downstream mechanisms of the lignin biosynthetic 

pathway; however, this would not be in agreement with the determination by Putoczki et 

al (2007) that, overall, total lignin content was not reduced in the wood of checking-

prone individuals. 

Instead, the study of scanning electron micrographs showing the fine cellular 

detail of check structure encourages another interpretation.  It appears that checks 

consistently originate from ray cell files, and expand longitudinally from that origin 

(Figures 3.5 and 3.6).  Rays in wood of radiata pine are of both the uniseriate 

(occasionally part biseriate) and fusiform (integrating epithelial cells and a resin canal) 

types, which are typically 1-12 and 1-21 cells in height, respectively (Maddern-Harris, 

1991).  The parenchyma cells that constitute ray tissue are actively involved in the 

transport and storage of metabolites in the sapwood structure, including compounds 

such as starch and, during cambial activity in gymnosperms, coniferin (Savidge, 1989).  

It seems possible that rays may constitute a weak point in the wood structure, so that 

increased ray density would be associated with increased checking, in situations where 

wood composition promotes the defect.  In such case, the putative increase in ray 
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density would be responsible for the increase in coniferin concentration observed in 

high checking individuals, and the metabolism and fate of coniferin itself may not be 

directly involved in generating the physico-chemical wood properties that lead to 

internal checking.  In order for this claim to be substantiated, an assessment and 

comparison of ray density in low and high checkers will be required. 

3.4 Concluding remarks 
It is clear that a relationship exists between the metabolism of wood formation and the 

internal checking phenotype in juvenile radiata pine.  Both of the multivariate analytical 

techniques employed were able to distinguish between the metabolite profiles of trees 

having different levels of internal checking severity, with MDA predicting the checking 

severity class of individual trees considerably better than would be the case with 

random assignment, and PCA differentiating between the low, medium and severe 

checking classes.  Additionally, the combined evidence that the concentration of 

coniferin in the developing xylem of high checking individuals is greater than in low 

checkers, and that checks appear to originate at the ray files where coniferin is stored, 

suggests a role for ray density in the propensity to check, and therefore only an indirect 

association between coniferin concentration and furthermore phenylpropanoid 

metabolism, and this wood defect. 
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Figure 3.1 Radial cross-sections of juvenile radiata pine post-drying from: a) a non-
checking individual, and b) a high-checking individual.  
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Figure 3.2 Factor score plots from PCA of complete metabolite profiles (228 
metabolites) for: a) high, medium and low checking families (119 individuals), and b) 
high and low checking families (80 individuals).  Markers each represent one sample 
with 1 (blue) representing non or low checkers, 2 (green) medium checkers, and 3 (red) 
severe checkers.  
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Figure 3.3 Representative GC/MS chromatogram demonstrating the complexity of the 
metabolite profile and the location of the 16 highly differential metabolites used in the 
MDA model based on high and low checkers. “cps” = counts per second. 
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Figure 3.4 Factor score plots from PCA of reduced metabolite profiles for: a) high, 
medium and low checking families (106 metabolites, 119 individuals), and b) high and 
low checking families (16 metabolites, 80 individuals).  Markers each represent one 
sample with 1 (blue) representing non or low checkers, 2 (green) medium checkers, and 
3 (red) severe checkers.  
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Figure 3.5 Scanning electron micrographs of radial cross-sections of juvenile radiata 
pine from a) a non-checking individual, and b) a high-checking individual. 
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Figure 3.6 Scanning electron micrograph showing the detail of an internal check 
originating at a ray file, in juvenile radiata pine. 
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Table 3.1. Summaries of cross-validated MDA models for the prediction of internal 
checking severity based on complete GC/MS metabolite profiles of developing xylem.  
“Class Set” specifies the sample classes, “Sample#” indicates number of samples, and 
“Metab.” Indicates number of metabolites included in each model. 

 

 

 

 

Table 3.2. Summaries of cross-validated MDA models for the prediction of internal 
checking severity, based on reduced profiles including only those metabolites exhibiting 
significantly different abundances in the sample classes analysed, as judged by logical 
tests.  “Class Set” specifies the sample classes included in each model.  Reduction test 
and criteria for significance specified in “Dataset” and “α”.  “Metab.” indicates number of 
metabolites included in each model. 

 

 

  

92.0- 95.022880CompleteHigh Low 

Class prediction accuray (%)  

Medium Low 

High Medium 

Class Set 

-86.9 87.522879Complete

97.589.2 -22879Complete

95.0 81.4 97.5 228 119 CompleteHigh Medium Low 

HighMediumLowMetab.Sample#Dataset

60.0 44.4 55.0 61 0.001   

82.5- 77.555  0.05Logical t-80 samples 

85.0- 85.030  0.01  

0.001

 

  0.01

 

α

72.535.6 60.0106Logical F-119 samples 

Class prediction accuracy (%)  

 

High Low 

Class Set 

90.0- 97.516 

92.5 - 95.0 228 Complete 

95.0 81.4 77.5 228 Complete High Medium Low 
HighMediumLowMetab.Dataset
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Table 3.3. Detailed list of metabolites having significant difference in abundance 
between high and low checkers (t-test α = 0.001).  “RT avg” indicates average retention 
time of the metabolite in gas chromatography, “Rel abundance” indicates the 
abundance of the metabolite in high checkers, expressed relative to the abundance in 
low checkers. 
 

 

  Peak # RT avg (min)   Metabolite Identity (mass fragments) Rel abundance  
       
 GC-005   6.54  Unidentified 2.64  
 GC-021   9.47  Unidentified 0.69  
 GC-022   9.76  Unidentified 1.22  
 GC-036 11.60  Succinic acid 2TMS 0.67  
 GC-043 12.48  L-Serine 3TMS 1.30  
 GC-060 14.62  Unidentified 0.76  
 GC-082 16.51  4-hydroxybenzoic acid 2TMS 0.70  
 GC-117 19.10  Shikimic acid 4TMS 1.21  
 GC-121 19.37  Unidentified; carbohydrate 1.31  
 GC-124 19.70  Unidentified; sugar alcohol 0.69  
 GC-135 20.55  Unidentified  0.83  
 GC-137 20.70  Unidentified; carbohydrate 0.66  
 GC-158 22.66  Inositol 6TMS 1.23  
 GC-159 22.83  Unidentified; carbohydrate 1.32  
 GC-162 23.37  Unidentified; Quinic acid derivative 1.20  
 GC-171 24.72  Unidentified 0.82  
             

 

 

For unidentified metabolites, fragment mass(relative abundance) of 10 most 

abundant fragments are: 

 

RT(avg) Fragment mass, rel abundance (base peak 100) | 
6.54 131 100 | 73 82 | 147 70 | 149 23 | 75 16 | 132 12 | 148 10 | 133 10 | 74 9 | 219 5 | 
9.47 73 100 | 147 60 | 188 20 | 204 16 | 149 12 | 89 11 | 74 9 | 131 8 | 177 7 | 104 7 |  
9.76 124 100 | 214 62 | 107 21 | 157 16 | 73 15 | 125 11 | 215 11 | 98 10 | 114 9 | 158 6 | 

14.62 73 100 | 147 67 | 202 66 | 230 57 | 229 53 | 215 29 | 227 21 | 149 16 | 235 12 | 155 12 | 
19.37 73 100 | 257 95 | 289 90 | 204 64 | 147 37 | 217 29 | 258 23 | 189 23 | 290 23 | 379 23 | 
19.70 73 100 | 217 63 | 147 47 | 159 42 | 318 32 | 129 22 | 247 22 | 163 22 | 188 17 | 191 15 | 
20.55 147 100 | 73 72 | 205 38 | 189 29 | 149 26 | 148 18 | 117 18 | 273 13 | 133 9 | 89 8 | 
20.70 147 100 | 73 64 | 205 53 | 189 39 | 149 34 | 285 26 | 204 21 | 117 15 | 148 15 | 273 13 | 
22.83 73 100 | 191 96 | 147 75 | 343 62 | 433 43 | 204 35 | 318 28 | 149 19 | 434 18 | 192 18 | 
23.37 345 100 | 255 54 | 346 29 | 73 19 | 191 17 | 256 15 | 239 14 | 147 13 | 347 12 | 217 108 | 
24.72 73 100 | 147 67 | 173 61 | 217 57 | 129 31 | 305 25 | 335 22 | 149 18 | 218 15 | 263 14 | 
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CHAPTER 4 
 

 

 

The potential of metabolite profiling as a selection tool for genotype 
discrimination in Populus 
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Mansfield, S.D. 2005. The potential of metabolite profiling as a selection tool for 

genotype discrimination in Populus. J. Exp. Bot. 56, 2807-2819.  
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4.1 Introduction 
Improvements in plant breeding for the forest industry are reliant on the development of 

new tools that allow the early selection of trees based on inherent wood quality traits, in 

addition to more classical attributes such as growth rate and overall biomass yield 

(volume) (Campbell and Sederoff, 1996).  The demand for this approach to breeding 

has arisen because in many cases the suitability of wood for specific end uses is 

heavily influenced by the inherent physical and chemical attributes that it exhibits.  This 

affects the value of wood in the marketplace, as well as the efficiency and economic 

viability of secondary processes that use wood as a feedstock. 

The aromatic biopolymer, lignin, is a principal structural component in woody 

tissue, and contributes significantly to vascular integrity and wood strength (Donaldson, 

2001).  Lignin is formed as one of the major products of the phenylpropanoid pathway, 

and the mechanisms of its biosynthesis have been the focus of intense research (Dixon 

et al., 2001; Humphreys and Chapple, 2002; Li et al., 2003).  Particular attention has 

been directed towards the identification of relevant biosynthetic enzymes and 

corresponding genetic material, as well as understanding the regulation of gene 

expression (transcription, translation, and enzyme-substrate interactions), and its role in 

developmental and tissue-specific biosynthesis (Anterola and Lewis, 2002; Rogers and 

Campbell, 2004).  In terms of industry, the abundance and variable nature of lignin 

influences wood durability, the suitability of wood for manufacturing, and has 

implications for the use of wood as a feedstock for the production of secondary products 

such as high-grade paper (Huntley et al., 2003). 

In the course of secondary xylem biosynthesis, resources are passed through 

biochemical pathways in order to generate monomeric units, which are subsequently 

assembled into the constituent polymers (e.g. lignin, cellulose and hemicellulose).  This 

process involves spatially and temporally controlled enzymatic activity that causes flux 

through multi-reaction pathways; a component of this may be the pooling of some of the 

chemical intermediates produced. The nature and inherent variability of the constituents 

of wood manifests phenotypes, and in some way must be related to the biosynthetic 

material from which these polymers are constructed and their assembly process.  The 

specificities of both flux and pooling of biosynthetic materials are presumably 

representative of the biosynthetic pathway to which they contribute.  Given this, patterns 
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in the relative abundance of small molecules (metabolites) participating in cellular 

metabolism could be effective indicators of phenotypes related to wood quality traits.  

‘Metabolomics’ or ‘metabolic profiling’, the measurement and comparison of metabolic 

traits, is increasingly being employed as a powerful approach to characterise living 

organisms (Fiehn et al., 2001), and may also prove useful in the selection of trees in the 

context of tree improvement programmes. 

With the advent of routine high-throughput bench-top chromatography-mass 

spectrometry, the ability to resolve and identify the metabolites in crude tissue extracts 

has improved dramatically.  The utility of these techniques has been effectively 

demonstrated in the context of metabolite profiling for plant biology (Fiehn et al., 2000b; 

Fiehn and Weckwerth, 2003; Frenzel et al., 2002; Roessner et al., 2001b; Tolstikov and 

Fiehn, 2002).  Metabolic profiling, however, has yet to be developed and applied widely 

in plant breeding, although such use is inevitable as it is a powerful tool to characterize 

plant phenotypes. 

Herein, we evaluate the ability of metabolite profiling to distinguish between the 

metabolomes of genotypically differentiated lines of the same hybrid tree, expressing 

different phenotypes that relate to industrially relevant wood chemistry attributes.  Due 

to its unique position in active tree-related functional genomics programs (Brunner et 

al., 2004), hybrid poplar was chosen as the tree species, and lignin biosynthesis and its 

associated impact on cell wall formation as the system to demonstrate the use of 

metabolic profiling to differentiate desirable phenotypes in trees.  Transformation of 

Populus tremula × alba with a C4H::F5H genetic construct (comprised of the xylem-

specific cinnamate 4-hydroxylase (C4H) promoter coupled to the ferulate 5-hydroxylase 

(F5H) gene (both from Arabidopsis), has been shown to significantly increase the ratio 

of syringyl (S) to guaiacyl (G) monomers in the lignin of this hybrid (Franke et al., 2000).  

Increases in the S:G ratio are associated with improved chemical (kraft) pulping 

efficiency, and as such, have environmental and economic implications for pulp and 

paper manufacture (Huntley et al., 2003). The results in this study clearly demonstrate 

the ability of metabolite profiling to differentiate between trees differing in industrially 

relevant wood quality traits due to this single gene modification. 
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4.2 Materials and methods 
4.2.1 Plant materials and sampling 
Hybrid poplar P717 (Populus tremula × alba) was selected as the control.  In addition, 

two genetically modified lines that exhibit marked changes in wood chemistry and 

quality attributes were adopted as treatments. These represent separate transformation 

events involving the same construct, which consists of the xylem-specific cinnamate 4-

hydroxylase (C4H) promoter coupled to the ferulate 5-hydroxylase (F5H) gene (both 

from Arabidopsis).  The C4H::F5H construct has been shown to significantly increase 

the ratio of syringyl (S) to guaiacyl (G) monomers in poplar lignin, although the severity 

of the observed phenotype is transformation event specific (Huntley et al., 2003).  The 

unmodified wild-type has 65.6% mol syringyl content, whereas F5H-82 and F5H-64, 

have 82.5% mol and 93.4% mol syringyl content, respectively (Huntley et al., 2003).  It 

should be noted that the modified lines, referred to as F5H-82 and F5H-64 in this work 

and that of Huntley et al. (2003) correspond to those referred to as “B” and “I”, 

respectively, by Franke et al. (2000). 

At their origin, the control and modified lines were regenerated concurrently and 

in an equivalent manner, from leaf blade-derived callus after the tissue had undergone 

Agrobacterium-based transformation.  Lines were subsequently maintained as sterile 

shoot cultures.  To generate plant material for this study, shoot cultures were clonally 

propagated on semi-solid Woody Plant Medium (WPM) (McCown and Lloyd, 1981) 

(6.3Appendix D.3), supplemented with 0.01 mM α-naphthalene acetic acid (NAA), under 

a 16 h / 8 h light/dark regime.  Fluorescent light was supplied at a photon flux density of 

50 μmol/m2/s.  For the generation of test trees, wild-type and F5H-64 plantlets were 

transferred to soil-based medium upon rooting, and then grown in randomised plots in a 

greenhouse under a natural light regime.  Developing xylem was sampled in August 

2003 mid-way through the third growing season, during daylight hours and in full 

sunlight.  Tissue from the cambial zone was obtained from each tree by first peeling a 

rectangular section of bark/phloem/outer cambium from approximately 15 cm above the 

ground on the stem, and then scraping the developing xylem with a fresh razor blade.  

Care was taken to avoid sampling from nodes.  The collected material was quickly 

isolated and transferred to a cryovial, snap-frozen in liquid nitrogen and stored at -80°C. 
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4.2.2 Suspension cultures 
All three lines were propagated as cell suspensions in sterile liquid culture using WPM 

supplemented with 10 μM 2,4-dichlorophenoxyacetic acid (2,4-D).  Cultures were 

initiated using 1-2 mm internode sections (30-50×) and 10mL of medium in sterile 50 

mL Erlenmeyer flasks.  Nodal tissue, which contains meristematic cells, was avoided for 

culture initiation.  Each flask was sealed with a foam bung and foil cap, and placed on 

an orbital shaker at 135 rpm.  The light/dark regime was as described for plantlet 

culture, above.  Half of the spent medium was replaced every seven days until the 

tissue began to proliferate (2-5 weeks).  Following proliferation, 10 mL fresh medium 

was added to the culture to give a total culture volume of 20 mL.  When sub-culturing at 

subsequent weekly intervals, suspensions were first diluted or concentrated so that 

after a settling period of 30 min, tissue occupied half of the culture volume.  A 5 mL 

aliquot of this (~2.5 mL packed cell volume) was then transferred to a new flask 

containing 16 mL fresh medium.  Stability, based on uniform growth and morphology, 

was achieved for all cultures within 2-3 months.  For metabolite profiling of stable lines, 

tissue samples were isolated from the growing medium, quickly transferred to cryovials, 

snap-frozen in liquid nitrogen and stored at -80°C.  To obtain daily measurements for 

the growth rate experiment, cultures were allowed to settle in sterile graduated cylinders 

for 30 min, after which time cell volume data were recorded and cultures were returned 

to their flasks. 

4.2.3 Nucleic acid preparation and semi-quantitative RT-PCR 
Total RNA was extracted from suspension culture tissue using the method of Kolosova 

et al. (2004) (6.3Appendix D.4).  Invitrogen SuperScript II reverse transcriptase was 

used to synthesise first-strand cDNA, which was then used as template in a semi-

quantitative PCR with the following primers, yielding a 71 base-pair fragment.  Forward 

primer 5′-CGTTGTCTCTCTTTTCATCTTC-3′, reverse primer 5′-

CGTGGACCGGGAGGATATG-3′.  PCR products were visualised on an agarose gel 

using ethidium bromide staining. 

4.2.4 Metabolite sample preparation 
Frozen tissue was ground to a fine powder using a dental amalgam mixer, employing a 

liquid N2-chilled copper/plastic capsule containing three steel ball bearings and the 
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sample was shaken violently for 15 s.  Samples were kept frozen at all times and, once 

ground, were returned to -80°C. 

Metabolites were extracted from tissue samples and prepared for GC/MS using a 

scaled-down and re-optimised version of a two-phase methanol/chloroform method 

developed for metabolite extraction from the leaves of Arabidopsis (Fiehn et al., 2000b).  

Approximately 20 mg frozen, ground developing xylem was weighed into a pre-chilled 2 

mL lock-cap centrifuge tube (for suspension cultures 50 mg tissue was used).  CH3OH 

(600 μL) was added immediately and the sample was vortexed for 10 s to halt biological 

activity and minimise degradation.  H2O (40 μL), 10 μL polar internal standard (10 

mg/mL ribitol in H2O) and 10 μL lipophilic internal standard (10 mg/mL nonadecanoic 

acid methyl ester in CHCl3) were added.  Metabolites were extracted from the sample 

by incubation for 15 min at 70°C with constant agitation, and following a 5 min 

centrifugation of the sample at 13 000 rpm the supernatant was transferred to a new 2 

mL tube.  CHCl3 (800 μL) was added to the pellet and vortexed for 10 s to re-suspend.  

The sample was then incubated for 5 min at 35°C with constant agitation, and the 

supernatant recovered following a second 5 min centrifugation at 13 000 rpm, and 

combined with the supernatant from the CH3OH extraction.  Following the addition of 

600 μL H2O to the combined supernatant and 10s vortexing, the mixture was 

centrifuged at 4000 rpm for 15 min to separate the methanol/water (upper) and 

methanol/chloroform (lower) phases.  In theory, metabolites partition themselves 

between the two phases depending on which they have more affinity for – the upper 

phase being more polar and the lower more lipophilic.  A 1 mL aliquot was taken from 

the upper phase with care, to avoid contamination from the interphase, and stored at -

20°C overnight if not processed immediately.  Metabolites contained in the lower phase 

were not analysed in this study. 

Samples were then derivatised for GC/MS.  A 900 μL aliquot of the 

methanol/water phase was dried using a Speedvac (Savant) (3-4 h, low temp).  For the 

protection of carbonyl moieties by methoxylation, the pellet was resuspended in 50 μL 

methoxyamine hydrochloride solution (20 mg/mL in pyridine) and incubated with 

constant agitation for 2 h at 60°C.  Acidic protons were then trimethylsilylated with 200 

μL N-methyl-N-trimethylsilyltrifluoro acetamide (MSTFA) and incubated at 60°C with 

constant agitation for 30 min.  Samples were left to stand at room temperature overnight 
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to ensure the reaction was complete, and then filtered through compacted tissue paper 

to remove particulate matter prior to analysis by GC/MS. 

Metabolites were extracted from tissue samples (cambial scrapings and tissue 

cultures) and prepared for HPLC analysis by extracting 200 mg liquid nitrogen-frozen, 

ground tissue in 1.5 mL methanol: water: acetic acid (48.5: 48.5: 1.5) at 60°C for 4 h. 

Following incubation, the samples were centrifuged for 10 minutes at 13 000 rpm, and 

the supernatant recovered.  Equal volumes of ethyl ether were added and the sample 

mixed and allowed to phase separate.  The upper fraction was removed and retained.  

The sample was then extracted a second time with ethyl ether, collected, pooled and 

dried under vacuum.  Samples were resuspended in 200 μL methanol and analysed 

using reverse phase HPLC. 

4.2.5 GC/MS analysis 
GC/MS analysis was conducted on a ThermoFinnigan Trace GC-PolarisQ ion trap 

system fit with an AS2000 auto-sampler and a split/splitless injector.  The GC was 

equipped with a low-bleed Restek Rtx-5MS column (fused silica, 30 m, 0.25 mm ID, 

stationary phase diphenyl 5% dimethyl 95% polysiloxane). The GC conditions were set 

as follows: inlet temperature 250°C, helium carrier gas flow at constant 1 mL/min, 

injector split ratio 10:1, resting oven temp 70°C, and GC/MS transfer line temperature 

300°C.  Following injection of a 1 μL aliquot of sample, the oven was held at 70°C for 2 

min and then ramped to 325°C at a rate of 8°C/min.  The temperature was held at 

325°C for 6 min before being cooled rapidly to 70°C in preparation for the next run. 

For MS analysis in positive electron ionisation (EI) mode, the fore-line was 

evacuated to approximately 40 mTorr, with helium gas flow into the chamber set at 0.3 

mL/min.  The source temperature was held at 250°C, with an electron ionisation 

potential of 70 eV.  The detector signal was recorded from 3.35 min after injection until 

35.5 min, and ions were scanned across the range of 50-650 mu (mass units) with a 

total scan time of 0.58 s. 

4.2.6 HPLC analysis 
Phenolic metabolite composition was determined by reverse phase high performance 

liquid chromatography (HPLC) on a Summit chromatograph (Dionex, Sunnyvale, CA).  

Separation was achieved on a Symmetry C18 250 mm × 2.0 mm reverse phase column 

(Waters), and detected by a photodiode array detector.  Samples were filtered through 
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compacted tissue paper prior to injection (50 μL).  The column was eluted with a linear 

gradient of 5% 95:5 water:acetic acid (v/v) to 100%, 25% acetonitrile (v/v) in 95:5 

water:acetic acid (v/v) over 70 min at a flow rate of 1.0 mL/min. 

4.2.7 Data processing and statistical analysis 
ThermoFinnigan ‘Xcalibur’ software was used for both GC/MS data collection and peak 

identification and measurement.  The grouping of peaks that represented the same 

compound in multiple chromatograms was automated using the in-house, purpose-built 

‘PeakMatch’ software.  Data reduction by principal components analysis (PCA) was 

carried out using the Statistical Package for the Social Sciences (SPSS) v12.0 (SAS 

Institute, Inc., Cary, N.C.).  All other intermediate data manipulation was carried out 

using Microsoft Excel 2000. 

 

4.3 Results and discussion 
4.3.1 Suspension cultures 
Established suspension cultures generated from wild-type and C4H::F5H modified lines 

(F5H-82 and F5H-64) grew at similar rates, and showed characteristic lag, linear and 

static phases of growth over a 9 d period (Figure 4.1).  As such, samples taken at day 7 

for metabolite profiling were from cultures in the transition from linear growth to the 

static phase.  Expression of the Arabidopsis F5H transgene in suspension cultures was 

confirmed by semi-quantitative RT-PCR (image not shown).  There was no detectable 

expression of the Arabidopsis F5H transgene in the non-transformed wild-type control, 

as expected.  However, even under the highly controlled conditions of suspension 

culture, which did not promote organ-specific differentiation, the modified genotypes 

continued to express the transgene and maintain phenotypes that differed from one 

another as well as from the wild-type control.  The cultures also exhibited distinct 

morphologies, with wild-type cells being white in colour, F5H-82 greenish, and F5H-64 

displaying a distinct brown colour (Figure 4.2).  Furthermore, the wild-type cultures were 

visually finer cultures with smaller cell aggregates, whereas the transgenic cultures 

tended to be composed of larger cellular aggregates.  Colour changes have been 

observed in the wood of trees from modified poplar lines in which the lignin content or 

the S:G ratio has been increased (Pilate et al., 2002), and it is possible that the colour 

changes observed in both wood and suspension-cultured tissue reflect similar 
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biochemical phenomena.  In the case of C4H::F5H, it is likely that the colour is due to 

the product(s) of a pathway fed by an abundance of an over-supplied syringyl lignin 

biosynthetic pathway.  Despite the continued expression of the transgene in suspension 

cultures, ultraviolet microscopy revealed no evidence of secondary wall development 

(images not shown).  A possible explanation for the continued activity of the secondary 

development-specific C4H promoter, in the absence of both secondary development 

and lignin polymer biosynthesis, is that phenylpropanoid biosynthesis is frequently 

induced during times of environmental stress; this is likely the case in these liquid 

cultures. 

4.3.2 Metabolite data acquisition and compiling 
To elucidate the metabolites present in both actively dividing cambial and suspension-

cultured tissue, total ion chromatograms (TIC) of each sample, wild-type and 

transgenic, were obtained by GC/MS analysis of TMS-derivatives from crude tissue 

extracts.  Analysis of the cambial zone included samples from 15 wild-type and 10 F5H-

64 individual tree clones.  The analysis of suspension cultures included samples from 

20 distinct cultures of each of the wild-type, F5H-82 and F5H-64 lines (60 cultures in 

total), which were sampled during the transition from linear to static culture growth, 7 d 

after subculture.  For all recorded peaks, total ion counts remained within the linear 

detection range of the instrument (approximately 1.0e4 - 3.0e8 counts/s). 

In preliminary calculations, each peak in a chromatogram was expressed relative 

to the area of the ribitol internal standard peak.  In addition, peak areas were 

normalised across all chromatograms (of developing xylem or suspension culture 

datasets) by adjusting for the exact amount of tissue (mg fresh weight) used in each 

sample extraction. 

In order to circumvent the wobble in retention time for any given compound, a 

single-pass algorithm (“PeakMatch”) was designed to group peaks from multiple 

chromatograms that have similar retention times based on a user-assigned threshold. It 

has been well recognised that one of the limitations of metabolomics has been the 

difficulty in automating the process of grouping peaks that represent the same 

compound in multiple chromatograms (Fiehn, 2001; 2002; Fiehn et al., 2001; Fiehn and 

Weckwerth, 2003). However, automation is a necessity when analysing large numbers 

of replicates displaying hundreds of peaks typical in GC/MS total ion chromatograms 
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from plant metabolite extracts.  To avoid a total-chromatogram-alignment-by-data-point 

approach such as that used in correlation optimised warping (COW) (Nielsen et al., 

1998), and to identify peaks and use peak area to measure compound quantity without 

warping, alternate software that can match peaks while accommodating the variability in 

retention time must be employed. In this study, PeakMatch served as a highly effective 

tool for rapidly compiling large datasets and accomplishing the needed comparisons of 

the same compound in different samples. 

After being compiled in PeakMatch, but prior to statistical analysis, datasets were 

cleaned of all superfluous peaks not directly related to the sample.  These included the 

internal ribitol standard, solvent impurities, and any peaks from the reagents used in the 

derivatisation process (linear siloxane chains and other silyl compounds).  The retention 

times of such peaks were identified from the TIC chromatograms of pyridine solvent 

blanks, and sample blanks in which the extraction and derivatisation were carried out in 

the absence of any sample tissue.  In addition, all but the most prominent peaks eluting 

after 30 min were excluded from the analysis, as beyond this time the signal to noise 

ratio declined drastically due to the heavy convolution in the high-mass tail end typical 

of GC/MS analyses. 

To maintain uniformity across the dataset, the sensitivity of peak finding must 

remain fixed across all chromatograms, although a particular setting will be more or less 

appropriate for different chromatograms.  As a consequence, minor peaks are often 

detected inconsistently, despite being visible in the chromatogram.  To reduce the noise 

introduced by this erroneous non-detection of minor peaks, peaks sets were thinned in 

two ways.  All peaks detected in <10% of samples from each plant line, and all peaks 

whose average normalised area for each plant line were less than a specific value 

(~1.0E-4 for developing xylem and ~5.0E-5 for suspension culture) were not considered.  

With completion of all adjustments, the final xylem and suspension culture datasets 

contained 143 and 182 peaks, respectively. 

4.3.3 Principal components analysis 
Principal components analysis was conducted separately on developing xylem and 

suspension culture peak sets.  For the xylem dataset, 22 principal components were 

required to account for >99% of the variance between the 143 peaks across all 25 

samples (total 3575 data points) (Figure 4.3).  This represents roughly an 85% 
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reduction in variables.  Similarly, for the suspension dataset, 48 principal components 

were required to account for >99% of the variance between 60 samples across all 182 

peaks (total 10920 data points) (Figure 4.3).  This represents approximately a 74% 

reduction in variables.  The considerable reduction in variables achieved by PCA 

suggests the existence of strong relationships between the variables within datasets. 

Plotting the factor scores of individual samples from selected principal 

components, as coordinates on the axes of two- or three-dimensional scatter plots, can 

generate a graphical representation of the relationship between samples in a PCA.  The 

separation of clusters of samples in such a plot illustrates the existence of differences 

between distinct metabolic systems (Chen et al., 2003; Fiehn, 2003; Fiehn et al., 2000a; 

Morris et al., 2004; Roessner et al., 2001a; Roessner et al., 2001b).  Standard plots are 

limited to three dimensions, and the components plotted should be those that best 

represent the dataset.  This implies that the components plotted are those that account 

for the most variance (i.e. the first, second and third components); however, specific 

latter components have also been shown to be effective in revealing differences 

between sample groups in some situations (Fiehn et al., 2000a).  In such cases, it is 

often more useful to plot factor scores from these discriminating components. 

In this study three, two-dimensional scatter plots were generated for each 

dataset using component pair combinations from the first three principal components 

(Figures 4.4 and 4.5).  Together, these three principal components account for 

approximately 46% and 52% of the variance in the xylem and suspension culture 

datasets, respectively (Table 4.1).  The developing xylem plots (Figure 4.4) clearly 

illustrate that both principal components 2 and 3 (PC-2 and PC-3) distinguished 

between the wild-type and F5H-64 samples, with PC-2 being more effective.  In 

contrast, PC-1 made no such distinction.  It follows that the best visualisation of 

separation between the two lines is achieved when PC-2 and PC-3 are combined 

(Figure 4.4c).  In this case, loose clustering and complete separation of the wild-type 

and F5H-64 samples are observed, with these phenomena derived primarily from PC-2, 

but accentuated by PC-3.  Furthermore, clustering of wild-type samples in this plot is 

visibly a tighter grouping than that of F5H-64 samples.  In comparison, the suspension 

culture plots (Figure 4.5) show that in this PCA, PC-1 distinguished between wild-type, 

F5H-82 and F5H-64, while PC-2 distinguished F5H-82 from the others.  Here, it was 
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PC-3 that failed to effectively distinguish the lines.  Therefore, in this case the best 

visualisation of separation between the three lines is achieved when PC-1 and PC-2 are 

combined (Figure 4.5a). This plot illustrates a tight clustering of the three lines, with 

visible improvement from F5H-82 to F5H-64 and then to wild-type (barring the outlier).  

Furthermore, all three lines separate cleanly and equally from one another, with the 

F5H-82 cluster separating from the others in PC-2 such that there is a very clear overall 

separation. 

It is evident from the scatter plots in Figures 4.4 and 4.5 that the PCA detected 

differences between the metabolisms of the three phenotypically distinct lines, resulting 

from single gene insertion events.  Visual evidence of this can be seen in selected two-

dimensional plots (Figures 4.4c and 4.5a), where samples from each line cluster 

together, and separately from the samples of other lines.  This observation supports the 

theory that differences in wood chemistry can indeed be associated with differences in 

observable metabolic traits; however, what PCA achieves, and what the correct 

interpretation of clustering and separation in PCA scatter plots should be, is not entirely 

simple and warrants discussion.  Clustering does not necessarily indicate that those 

samples in a cluster contain, in this case, a similar abundance of the various 

metabolites detected.  Likewise, neither does the separation of clusters necessarily 

indicate absolute differences.  Rather, clustering of samples in PCA indicates a 

similarity in the behaviour of variables in relation to one another.  Samples that 

clustered together in this study did so because they each contained a similar set of 

metabolites whose abundances were correlated in the same way.  An accurate 

interpretation, therefore, affords the results from PCA greater relevance in the context of 

comparing biochemical systems.  The power of this approach lies in that it is based not 

on isolated comparison of the abundance of individual metabolites in different systems, 

but instead accounts for the dynamic nature of metabolism, and provides insight into 

metabolic relationships. 

A comparison of developing xylem (Figure 4.4c) and suspension culture (Figure 

4.5a) plots reveals differences between the PCA clustering patterns of samples taken 

from the two sources.  It is apparent that clustering and separation is more defined for 

suspension culture samples than it is for xylem samples.  This may be due to 

differences in the degree of environmental variability experienced by the tissues derived 
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from the two sources. Actively growing trees will have experienced long-term and 

recurring differences in temperature, relative humidity, light, water availability, space, 

and insect herbivory, despite greenhouse climate control.  Environmental factors such 

as these can cause variation in the growth, morphology and, presumably, metabolism of 

trees of the same genotype.  In contrast, sterile tissue cultures grown under strictly 

controlled laboratory conditions most probably experience less long-term culture-to-

culture environmental variability and, consequently, exhibit reduced morphological and 

biochemical variation.  As such, replicate samples of the same genotype show less 

variability in suspension cultures than they do as greenhouse-grown trees, as illustrated 

by a comparison of the ”tightness” of clustering in PCA. 

A trend observed across both scatter plots is that the wild-type samples tend to 

cluster more tightly than the modified samples.  This suggests increased metabolic and 

phenotypic variability in the modified genotypes, compared to the non-transformed, 

wild-type control. 

4.3.4 Elucidating individual metabolites 
Having established that metabolite profiling coupled with principal components analysis 

could be employed to distinguish the different lines, the natural progression was to 

characterise the metabolic traits underlying the clustering and separation phenomena.  

For this, the component matrix of the PCA was screened for variables (metabolites) with 

high loadings in the specific principal components that produced clustering and 

separation in the scatter plots.  The greater the loading, the more the variable is a pure 

measure of the component (Tabachnick and Fidell, 2001), and the more influence it has 

on the generation of the principal component; therefore, high-loading variables are 

responsible for generating clusters and separation in principal components where these 

phenomena occur.  It has been suggested that loadings in excess of 0.71 are 

‘excellent’, 0.63 ‘very good’, 0.55 ‘good’, 0.45 ‘fair’, and 0.32 ‘poor’ (Comrey and Lee, 

1992). 

In this study metabolites with at least ‘fair’ loadings were extracted from the 

component matrix for the first three principal components of developing xylem (Table 

4.3) and suspension culture (Table 4.4) datasets.  National Institute of Standards and 

Technology (NIST) MS-Search software equipped with the NIST mass spectra, as well 

as the Max Planck Institute Trimethylsilane (TMS) (http://www.mpimp-
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Golm.mpg.de/mms-library/index-e.html) and our own (Mansfield laboratory) TMS mass 

spectral libraries was used to assist with the identification of these metabolites.  

Compounds with high-scoring matches (based on mass spectrum and retention time) 

were assigned identities and classified as ‘amino acid’, ‘phenolic’, ‘carbohydrate’ or 

‘other’ (including sterols, phosphates, components of the citric acid cycle and adjunct 

pathways) molecules. 

In the PCA for suspension cultures, PC-1 and PC-2 clustered and separated all 

three lines.  In PC-1 (Table 4.4a), 65% of high-loading metabolites were carbohydrates 

(including monomers, dimers and their phosphorylated or acidic derivatives), which, for 

the most part, had loading values better than ‘good’ (as defined by Comrey and Lee, 

1992).  Additionally, there was evidence of the inorganic phosphate pool, with a few 

examples of amino acids, glutamate (primary donor of the α-amino group to most amino 

acids), a participant in the citric acid cycle (malic acid) and a by-product of shikimic acid 

biosynthesis (quinic acid).  Some phenolic compounds were observed, but for the most 

part barely loaded above the cut-off.  With these results, it is appropriate to suggest that 

in PC-2, the clustering and separation of all three lines with minimal overlap was heavily 

related to differences in carbohydrate metabolism.  A similar analysis of high-loading 

metabolites in PC-2 (Table 4.4b) revealed components of the citric acid cycle (succinic 

acid, fumaric acid), components of the triose-phosphate pathway (glyceric and pyruvic 

acids), shikimic acid (precursor of many phenolic amino acids and secondary 

metabolites), myo-inositol phosphate (amongst other things, inositol participates in 

signalling pathways, hormone storage and transport, and the biosynthesis of cell walls 

and stress-related compounds), and a selection of early- and late-eluting carbohydrates 

(monomers, dimers).  Although the loadings of carbohydrates are typically higher than 

those of other molecule types in this principal component, the appearance of a series of 

closely related core metabolites suggests that this aspect of metabolism had a 

significant influence on the clustering and separation observed in PC-2. 

The principal components PC-2 and PC-3 of the developing xylem dataset 

effectively clustered and separated samples of the wild-type and F5H-64 lines, although 

PC-2 alone separated the lines with minimal overlap.  Examples from all molecule 

categories were observed, although as with PC-1 of the suspension culture dataset, 

carbohydrates predominate in the list of high-loading metabolites in xylem PC-2 (Table 
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4.3b).  The list of high-loading metabolites in PC-3 (Table 4.3c) is an even more 

pronounced case of carbohydrate dominance, with 83% of metabolites identified as 

carbohydrates.  The GC breakdown peaks of sucrose (which all represent the same 

compound) feature strongly, and it is understandable that they load highly together.  

Interestingly, inositol and glutamate load highly in this principal component, much as 

they did in suspension culture PC-1 and PC-2; however, no representatives from the 

core citric acid and triose-phosphate pathways were observed.  It again seems 

appropriate to attribute the small amount of separation observed in xylem PC-3 to 

differences in carbohydrate metabolism.  Figure 4.6 reveals the variety in abundance, 

as well as the broad range of retention time of identifiable, high-loading compounds 

present in the differentiating components of the developing xylem dataset, PC-2 and 

PC-3. 

Xylem PC-1 and suspension culture PC-3 are the first in the respective datasets 

that do not distinguish between lines (Figures 4.4 and 4.5).  These components do, 

however, carry considerable interest with regard to high-loading metabolites.  In both of 

these components, high-loading amino acid-related metabolites were prominent (Tables 

4.2, 4.3a and 4.4c).  In suspension culture PC-3, 39% of high-loading metabolites were 

amino acids, all of which were identified.  Likewise, 42% of high-loaders in xylem PC-1 

were amino acid-related (of these, 69% were identified). This clustering of amino acids 

into the first principal components that fail to distinguish between lines suggests that 

amino acid biosynthesis and metabolism maintained a high level of stability, despite 

genetic transformation with C4H::F5H. 

Notably, the aromatic amino acids tyrosine and tryptophan were observed as 

very high loaders in xylem PC-1.  In some plant species, tyrosine can be used as a 

precursor in hydroxycinnamic acid biosynthesis (Alemanno et al., 2003; Deluca et al., 

1988; Whetten and Sederoff, 1995) and as a precursor to pigments and defence 

compounds such as alkaloids (Facchini, 2001), flavonoids (Koch et al., 1995) and 

anthocyanins (Dube et al., 1992; Sakuta et al., 1991).  Tryptophan is used in some plant 

species as a precursor to bioactive alkaloids (Facchini, 2001) and defence phytoalexins 

(Pedras et al., 2003; Zhao and Last, 1996), as well as the phytohormone auxin (indole 

3-acetic acid) (Bartel, 1997).  As major products of the shikimic acid pathway, and 

molecules that are synthesised in close proximity to the usual precursor of monolignol 
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biosynthesis, phenylalanine, the observed behaviour of tyrosine and tryptophan is 

intriguing.  The tight association of tyrosine with a principal component that did not 

distinguish between the wild-type and the transgenic lines suggests that, in this case, 

any flux of resources through this branch of metabolism and into monolignol 

biosynthesis was not affected by the transformation event.  This would agree with the 

wood chemistry of the modified phenotype, in which the total lignin content (as 

determined by Klason analysis) was comparable to the control (Huntley et al., 2003).  

Notably, none of the aromatic amino acids were observed as high-loaders in 

suspension culture PC-3, and their absence may be related to an absence of predation 

in suspension culture.  Interestingly, phenylalanine was not present in either the 

developing xylem or suspension culture datasets. 

A series of amino acids not directly related to phenolic secondary metabolism 

were identified as high-loaders in the non-differentiating principal components.  Three of 

the four major nitrogen assimilation amino acids (Suarez et al., 2002) were observed: 

glutamate in suspension culture PC-3, and aspartate and asparagine in xylem PC-1.  

Also, the aspartate-derived amino acid, threonine, was identified in both xylem PC-1 

and suspension culture PC-3.  This amino acid is the precursor to isoleucine, a 

branched chain amino acid (Giovanelli et al., 1988).  Valine and leucine, two other 

branched chain amino acids, were identified in xylem PC-1 and suspension culture PC-

3, respectively.  Branched chain amino acids are precursors to secondary metabolism, 

and are involved in the biosynthesis of cyanogenic glycosides, glucosinolates and acyl 

sugars (Conn, 1988). 

4.3.5 Metabolite Channelling 
Surprisingly, very few phenolic compounds are found in the lists of high-loading 

metabolites from the PCA.  The GC/MS analysis detected rather few phenolic 

metabolites, and only one compound, sinapyl alcohol, was identified as an intermediate 

of the phenylpropanoid pathway for lignin monomer biosynthesis (reviewed by Dixon et 

al., 2001).  Clearly, however, there is an abundance of small phenolic compounds 

synthesised in living plant tissue as either intermediates in, or endpoints of, metabolic 

pathways.  Hypothetically, the concept of ‘metabolite channelling’ may provide an 

explanation for these observations. 
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A metabolic channel exists when metabolic intermediates are covalently bound 

to, and passed between, sequential active sites of a multi-functional enzyme or a multi-

enzyme complex (Hrazdina and Jensen, 1992; Srere, 1987; Srere, 2000).  It is 

postulated that this arrangement typically occurs where chemical intermediates have no 

other cellular function except in that particular biosynthetic pathway.  When a metabolic 

channel exists, free pools of chemical intermediates are extremely small, if they exist at 

all.  In this way, cellular solvent capacity is spared for the regulation and efficiency of 

the metabolic sequence, and also for containment of molecules having cytotoxic 

properties.  Metabolic channels are thought to exist in many branches of plant 

secondary biosynthesis, and there is good evidence to suggest their participation in the 

complex regulation of resource partitioning from the end of the shikimate pathway into 

and through numerous divergent pathways, notably those of flavonoid and lignin 

biosynthesis (Achnine et al., 2004; Anterola et al., 1999; Rasmussen and Dixon, 1999; 

Winkel-Shirley, 1999).  The results presented here, and those of Achnine et al (2004) 

clearly indicate that analogous channelling mechanisms exist in the biosynthesis of 

phenolic compounds, and specifically in this case in poplar tree species. 

Traditional reverse phase HPLC was employed in order to validate the isolation 

and identification of monolignol precursors (Figure 4.7).  HPLC clearly demonstrated 

and confirmed (GC/MS) that the only lignin pre-cursor that defferentially accumulated 

(pooled) in the C4H::F5H 64 transgenic line when compared to wild-type plants was 

sinapyl alcohol.  Given the location of F5H in the lignin biosynthetic pathway, 5-

hydroxyconiferaldehyde should accumulate in the differentiating cambial zone, should 

channelling not be occurring.  This compound was not identified by either HPLC or 

GC/MS (verified by retention time and mass spectra from synthesised compound). 

Limited detection of phenolic molecules may be related to the choice of analytical 

tools.  Even with sample derivatisation, the molecular weight cut-off of gas 

chromatography ranges between 800-1000 Da.  Once derivatised, many phenolic and 

other compounds produced in plant tissues are larger than this and may not be resolved 

by GC/MS.  Notably, this includes the glycosylated phenylpropanoid molecules thought 

to be storage and/or transportation forms of the monomers for lignin polymer assembly 

(Samuels et al., 2002).  Given the functional role of F5H in lignin biosynthesis, located 

in the latter part of the phenylpropanoid pathway prior to the biosynthesis of 
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glycosylated phenylpropanoids, there is a possibility that the direct metabolic impact of 

F5H up-regulation could be visible in the relative abundances of glycosylated 

monolignols.  In order to resolve such large metabolites from crude tissue extracts, 

further analysis using complementary analytical techniques that have higher mass cut-

offs is currently underway.  To this end, extension of the research presented will focus 

on applying LC/MS-based profiling tools to the study of metabolism in this same poplar 

model system. 

Metabolite profiling of crude extracts derived from the cellular ‘bulk’ phase is 

confounded by another important limitation.  It is not possible to detect, measure or 

identify ‘product’ metabolites that establish physical associations with cellular structural 

components in the course of metabolism, and maintain them during extraction 

procedures.  This point may be of great significance in the study of cell wall and wood 

biosynthesis by metabolite profiling.  Pyrolysis-MS, with its ability to liberate entire 

tissue samples and analyse the resulting compounds may provide a solution to this, and 

is another analytical technique that warrants investigation. 

 

4.4 Concluding remarks 
Metabolite profiling analysis of compounds exhibiting cellular pooling in the developing 

xylem and suspension-cultured tissue of hybrid poplar revealed multiple series of 

metabolites that correlated with one another in terms of relative abundance.  The 

metabolic interaction networks represented by these series were either affected by a 

lignin-related C4H::F5H genetic modification, or remained consistent despite it.  Thus, it 

was possible to distinguish between wild-type and transgenic lines exhibiting a range of 

phenotypic severity, on the basis of observable metabolic traits.  Of particular interest 

were the apparent consistency of the amino acid-related pools between wild-type and 

transgenic lines, and the heavy role of carbohydrates in distinguishing between lines, 

despite a modification that related specifically to lignin biosynthesis. 

Using GC/MS and traditional reverse phase HPLC it was not possible to detect 

any intermediate metabolites (i.e. 5- hydroxyconiferaldehyde) that related directly to the 

C4H::F5H genetic modification.  This suggests that bulk phase pools of such 

metabolites do not exist in vivo, and metabolite channelling occurs during cell wall 

lignification in developing xylem and suspension cultures. 
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This research has established an approach to the investigation of global 

metabolism in a model tree system, poplar.  By analysing the relationships that exist 

between abundances of the small molecules that pool in plant tissue, it has been 

possible to define certain aspects of the metabolic space that links gene expression and 

phenotypic character.  
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Figure 4.1 Growth characteristics of wild-type and two C4H::F5H transformed P. 
tremula × alba suspension cultures based on settled cell volume.  Plots represent the 
mean of twelve replicates, and error bars represent a 95% confidence interval of the 
mean.  Arrow indicates sampling time for metabolite profiling. 
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Figure 4.2 Suspension-cultured tissue of wild-type and two C4H::F5H transformed P. 
tremula × alba lines.  Picture was taken fourteen days after subculture.  Watch glass 
diameter is approximately 6.5 cm.   
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Figure 4.3 Cumulative percentage of dataset variation explained by principal 
components, for both developing xylem and suspension cultures.  
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Figure 4.4 Scatter plots of PCA factor scores for wild-type and F5H-64 modified 
samples from the developing xylem dataset.  Axes of two-dimensional plots are derived 
from a) PC-1 and PC-2, b) PC-1 and PC-3, and c) PC-2 and PC-3.  Plotted points 
represent individual samples, while arbitrary ellipses have been included to assist 
interpretation and simply border all samples of individual lines.  This PCA analysis 
represents the differentiation of 25 individual trees (15× wild-type and 10× F5H-64).
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Figure 4.5 Scatter plots of PCA factor scores for wild-type and C4H::F5H transformed 
P. tremula × alba samples from the suspension culture dataset.  Axes of two-
dimensional plots are derived from a) PC-1 and PC-2, b) PC-1 and PC-3, and c) PC-2 
and PC-3.  Plotted points represent individual samples, while arbitrary ellipses have 
been included to assist interpretation and simply border all samples of individual lines.  
This PCA analysis represents the differentiation of 60 individual suspension cultures (20 
individual samples per line).  
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Figure 4.6 Example of a total ion chromatogram (TIC) from a developing xylem sample.  
Chromatogram has been annotated to indicate identified compounds that loaded highly 
in PC-2 and PC-3 of the PCA. These components played a significant role in 
distinguishing between the metabolism of wild-type and F5H-64 suspension culture 
lines.  Refer label numbers to Tables 4.3b and 4.3c for compound identity.  The detector 
response  (y-axis) is given in counts/s (cps).  
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Figure 4.7 Reverse phase HPLC chromatograph of developing xylem sample of wild 
type and C4H::F5H transgenic plants following acid methanol extraction and detection 
at 280 nm.  
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Table 4.1. Percentage of total variance accounted for by combinations of the first three 
principal components of developing xylem and suspension culture datasets.  
Combinations revealing the greatest distinction between samples of different lines are in 
bold type. 

   

   

Component(s) Dev xylem Suspension 

   
1 24.34% 26.07% 

2 11.22% 13.46% 

3 10.83% 12.33% 

   

1,2 35.56% 39.53% 
2,3 22.05% 25.79% 

   

1,2,3 46.39% 51.86% 
   

 

 

 

Table 4.2. Molecule classification of the metabolites loading highly in PCA component 
matrices for the first three principal components.  Numbers represent the number of 
molecules from the stated class that load high in specific principal components. 

        

       

Molecule type Dev xylem  Suspension 

 PC-1 PC-2 PC-3  PC-1 PC-2 PC-3 
        

Other 8 6 3 12 11 8 

Amino Acid 16 3 1 3 1 7 

Benzene 1 2 0 4 1 0 

Carbohydrate 13 6 19 35 7 3 

Total 38 17 23 54 20 18 
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Table 4.3. Metabolites in the developing xylem dataset that load highly in the PCA 
component matrix.  a) PC-1, b) PC-2, and c) PC-3.  Only metabolites loading >0.45 in 
the component matrix are shown. Metabolites are sorted first by molecule class, and 
then by sequence of elution in gas chromatography (all peaks extracted from 
chromatography for PCA were assigned a number based on elution sequence).  The 
loading of each peak is shown, and, where possible, metabolites are identified.  Those 
that could not be identified are labelled as ‘unknown’, with details in parentheses 
(molecule type, a number based on the elution sequence, and a letter ‘x’ indicating 
developing xylem). 
 
a)  Xylem PC-1    
     

Class Peak# Loading Identity   
     

other 11 0.60 acetimidic acid 2TMS 
 17 0.52 2-amino ethanol 3TMS 
 18 0.75 phosphoric acid 3TMS 
 30 0.54 unknown (other#2c); mz: 73 999 | 154 447 | 174 425 | 86 289 | 59 249 | 227 148 | 100 129 | 156 105 | 74 103 | 82 98 | 
 38 0.65 4-aminobutyric acid 3TMS 
 69 0.70 ornithine 4TMS 
 70 0.65 citric acid 4TMS 
 141 0.55 unknown (other#7c); mz: 73 999 | 217 803 | 194 772 | 169 524 | 388 499 | 147 333 | 105 313 | 191 287 | 243 279 | 361 240 | 
     
amino 15 0.61 valine 2TMS glycine 3TMS 
 21 0.62 serine 3TMS threonine 3TMS 
 27 0.54 unknown asparagine 2TMS 
 28 0.88 aspartic acid 3TMS 
 32 0.74 unknown (amino acid #3c); mz: 73 999 | 218 423 | 261 375 | 162 347 | 147 302 | 100 255 | 113 251 | 141 228 | 215 177 | 74 106 | 
 35 0.49 unknown (amino acid #4c); mz: 73 999 | 216 627 | 147 558 | 142 407 | 215 379 | 188 286 | 214 192 | 149 179 | 241 163 | 217 161 | 
 37 0.82 asparagine 3TMS 
 42 0.89 tyrosine 3TMS 
 44 0.91 valine 2TMS 
 45 0.65 serine 3TMS 
 46 0.75 unknown (amino acid #1c); mz: 174 999 | 73 968 | 86 461 | 156 406 | 59 399 | 79 233 | 100 214 | 175 163 | 74 150 | 147 139 | 
 48 0.72 aspartic acid 3TMS 
 51 0.80 unknown (amino acid #3c); mz: 73 999 | 218 423 | 261 375 | 162 347 | 147 302 | 100 255 | 113 251 | 141 228 | 215 177 | 74 106 | 
 83 0.67 unknown (amino acid #4c); mz: 73 999 | 216 627 | 147 558 | 142 407 | 215 379 | 188 286 | 214 192 | 149 179 | 241 163 | 217 161 | 
 87 0.76 asparagine 3TMS 
 112 0.74 tyrosine 3TMS 
     
benzene 133 0.79 p-nitrophenyl-glucoside 
      

carb 101 0.74 glucaric acid (or galactaric acid) 
 108 0.60 unknown (carb#9c); mz: 73 999 | 204 987 | 205 253 | 129 227 | 189 198 | 131 196 | 217 195 | 191 175 | 75 167 | 169 155 | 
 120 0.65 unknown (carb#12c); mz: 204 999 | 73 747 | 81 295 | 147 203 | 205 186 | 217 175 | 189 169 | 171 121 | 191 98 | 206 95 | 
 121 0.68 melibiose 8TMS 
 122 0.64 unknown (carb#13c); mz: 73 999 | 169 526 | 204 456 | 147 294 | 331 269 | 79 225 | 361 222 | 129 197 | 217 184 | 243 144 | 
 123 0.59 myo-Inositol phosphate 7TMS 
 127 0.61 sucrose TMS sucrose TMS 
 128 0.52 unknown (carb#14c); mz: 73 999 | 147 305 | 219 294 | 274 220 | 75 203 | 129 194 | 143 172 | 285 168 | 535 165 | 358 159 | 
 132 0.52 unknown (carb#15c); mz: 73 999 | 361 832 | 169 677 | 147 417 | 243 370 | 217 327 | 271 315 | 129 265 | 362 249 | 193 184 | 
 135 0.63 unknown (carb#16c); mz: 73 999 | 169 549 | 355 543 | 147 437 | 217 427 | 271 332 | 243 267 | 129 253 | 283 241 | 356 226 | 
 138 0.66 unknown (carb#17c); mz: 73 999 | 361 806 | 169 691 | 147 643 | 443 564 | 217 421 | 129 379 | 243 377 | 271 361 | 362 307 | 
 140 0.73 unknown (carb#18c); mz: 204 999 | 73 909 | 361 330 | 217 307 | 271 305 | 243 287 | 129 278 | 147 258 | 205 216 | 191 197 | 
 143 0.45 raffinose TMS 
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b)  Xylem PC-2   
     

Class Peak# Loading Identity   
     
other 7 0.47 unknown (other#1c); mz: 73 999 | 191 535 | 130 503 | 75 384 | 143 374 | 77 345 | 175 318 | 79 308 | 147 306 | 69 286 | 
 17 0.52 2-amino ethanol 3TMS 
 38 0.48 4-aminobutyric acid 3TMS 
 85 0.58 unknown (other#5c); mz: 73 999 | 147 841 | 172 310 | 133 260 | 303 232 | 117 208 | 100 161 | 149 156 | 243 142 | 205 129 | 
 94 0.49 unknown (other#6c); mz: 389 999 | 347 925 | 147 613 | 73 606 | 299 540 | 463 474 | 189 422 | 259 400 | 348 360 | 390 341 | 
 114 0.54 unknown (other#7c); mz: 73 999 | 147 813 | 284 459 | 189 375 | 149 339 | 285 253 | 217 201 | 194 146 | 129 140 | 268 136 | 
     
amino 35 0.49 asparagine 2TMS 
 46 0.46 unknown (amino acid #4c); mz: 73 999 | 216 627 | 147 558 | 142 407 | 215 379 | 188 286 | 214 192 | 149 179 | 241 163 | 217 161 | 
 59 0.47 unknown (amino acid #6c); mz: 73 999 | 302 289 | 89 191 | 392 138 | 147 114 | 227 106 | 303 89 | 74 87 | 217 68 | 59 65 | 
    
benzene 12 0.52 unknown (benz#1c); mz: 73 999 | 147 668 | 100 395 | 267 351 | 355 150 | 74 141 | 86 137 | 248 136 | 59 134 | 133 132 | 
 102 0.64 sinapyl alcohol 
    
carb 63 0.89 2-deoxy d-glucose 4TMS 
 64 0.67 unknown (carb#2c); mz: 73 999 | 299 469 | 217 422 | 147 352 | 149 235 | 292 225 | 52 166 | 102 158 | 143 155 | 74 145 | 
 67 0.85 unknown (carb#4c); mz: 147 999 | 73 892 | 189 663 | 217 346 | 261 335 | 117 312 | 149 299 | 148 173 | 129 149 | 333 136 | 
 91 0.63 galactitol 6TMS (dulcitol, sorbitol are pseudonyms)  
 95 0.70 unknown (carb#7c); mz: 217 999 | 73 446 | 147 383 | 218 240 | 201 224 | 52 185 | 117 132 | 219 132 | 189 112 | 291 110 | 
 134 0.46 cellobiose TMS 
    

 
c)  Xylem PC-3   
     

Class Peak Loading Identity   
     
other 50 0.51 unknown (other#3c); mz: 69 999 | 245 850 | 147 703 | 73 699 | 83 343 | 55 299 | 189 296 | 217 210 | 97 197 | 149 196 | 
 74 0.62 unknown (other#4c); mz: 73 999 | 147 719 | 379 599 | 157 522 | 247 461 | 131 418 | 205 350 | 219 346 | 380 256 | 129 250 | 
 142 0.46 sitosterol TMS 
     
amino 47 0.58 glutamic acid 3TMS 
     
carb 60 0.60 unknown (carb#1c); mz: 217 999 | 147 569 | 73 331 | 129 194 | 149 176 | 218 160 | 189 136 | 148 114 | 157 101 | 205 92 | 
 61 0.63 galacturonic acid TMS variant 
 65 0.53 unknown (carb#3c); mz: 73 999 | 147 760 | 333 680 | 217 631 | 436 516 | 143 416 | 305 379 | 331 339 | 244 311 | 257 295 | 
 72 0.58 unknown (carb#5c); mz: 73 999 | 217 305 | 147 294 | 128 115 | 129 104 | 89 103 | 291 83 | 133 77 | 214 75 | 218 73 | 
 75 0.68 unknown (carb#6c); mz: 73 999 | 217 318 | 147 280 | 128 148 | 133 121 | 291 114 | 129 111 | 74 82 | 89 76 | 214 73 | 
 78 0.46 sucrose TMS  
 80 0.51 sucrose TMS  
 82 0.50 sucrose TMS  
 86 0.59 sucrose TMS  
 88 0.60 galactitol 6TMS (sorbitol)   
 104 0.61 unknown (carb#8c); mz: 245 999 | 257 955 | 73 750 | 347 335 | 147 318 | 359 274 | 258 266 | 217 263 | 305 223 | 348 216 | 
 107 0.47 inositol 6TMS  
 108 0.49 unknown (carb#9c); mz: 73 999 | 204 987 | 205 253 | 129 227 | 189 198 | 131 196 | 217 195 | 191 175 | 75 167 | 169 155 | 
 113 0.62 unknown (carb#10c); mz: 227 999 | 299 951 | 73 894 | 315 498 | 211 485 | 243 450 | 147 358 | 342 317 | 300 239 | 343 206 | 
 115 0.51 sucrose TMS  
 119 0.58 unknown (carb#11c); mz: 73 999 | 217 641 | 191 596 | 147 526 | 331 395 | 259 227 | 129 185 | 97 176 | 169 175 | 332 141 | 
 122 0.54 unknown (carb#13c); mz: 73 999 | 169 526 | 204 456 | 147 294 | 331 269 | 79 225 | 361 222 | 129 197 | 217 184 | 243 144 | 
 130 0.76 sucrose TMS  
 140 0.48 unknown (carb#18c); mz: 204 999 | 73 909 | 361 330 | 217 307 | 271 305 | 243 287 | 129 278 | 147 258 | 205 216 | 191 197 | 
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Table 4.4. Metabolites in the suspension culture datasets that load highly in the PCA 
component matrix.  a) PC-1, b) PC-2 and c) PC-3.  Only metabolites loading >0.45 in 
the component matrix are shown.  Metabolites are sorted first by molecule class, and 
then by sequence of elution in gas chromatography (all peaks extracted from 
chromatography for PCA were assigned a number based on elution sequence).  The 
loading of each peak is shown, and, where possible, metabolites are identified.  Those 
that could not be identified are labelled as ‘unknown’, with details in parentheses 
(molecule type, a number based on the elution sequence, and a letter ‘s’ indicating 
suspension culture). 
a)  Suspension   
     

Class Peak# Loading Identity   
     
other 25 0.75 unknown (other#2s); mz: 147 999 | 149 194 | 73 165 | 148 141 | 131 50 | 227 43 | 75 24 | 150 24 | 59 24 | 115 17 | 
 27 0.79 propanedioic acid 2TMS 
 36 0.70 phosphoric acid 3TMS 
 50 0.52 unknown (other#5s); mz: 73 999 | 147 402 | 117 315 | 191 266 | 149 126 | 75 122 | 133 88 | 74 84 | 217 73 | 148 64 | 
 56 0.88 2-methylmalic acid 3TMS 
 57 0.71 malic acid 3TMS 
 71 0.61 3-hydroxy-3-methyl-pentanedioic acid 3TMS 
 83 0.48 unknown (other#7s); mz: 272 999 | 82 986 | 182 548 | 73 536 | 55 360 | 273 239 | 154 236 | 147 194 | 346 148 | 256 140 | 
 90 0.81 unknown (other#8s); mz: 73 999 | 302 386 | 392 256 | 89 145 | 147 109 | 303 99 | 74 91 | 393 86 | 59 78 | 217 76 | 
 107 0.67 quinic acid TMS 
 123 0.47 unknown (other#9s); mz: 73 999 | 217 536 | 157 320 | 79 232 | 319 204 | 218 172 | 147 152 | 95 141 | 91 141 | 332 127 | 
 135 0.48 unknown (other#10s); mz: 73 999 | 217 338 | 147 259 | 129 253 | 319 236 | 331 162 | 218 145 | 157 128 | 159 103 | 169 96 | 
     
amino 19 0.58 alanine 2TMS  
 62 0.57 glutamic acid 2TMS 
 66 0.46 unknown (amino acid #1s); mz: 73 999 | 258 894 | 147 398 | 348 230 | 259 214 | 274 195 | 170 127 | 59 118 | 89 102 | 75 93 | 
     
benzene 43 0.47 1-methyl-2-phenyl-ethylamine 2TMS 
 64 0.56 unknown (benz#1s); mz: 263 999 | 73 889 | 147 518 | 264 219 | 278 207 | 348 189 | 172 170 | 158 139 | 148 139 | 149 132 | 
 173 0.48 epicatechin  
 175 0.47 unknown (benz#2s); mz: 73 999 | 368 807 | 355 587 | 559 580 | 560 268 | 621 258 | 369 253 | 265 219 | 356 217 | 648 213 | 
     
carb 74 0.80 xylonic acid lactone 3TMS 
 75 0.52 ribonic acid lactone TMS 
 80 0.52 fucose TMS  
 81 0.69 ribose meox 4TMS 
 86 0.83 xylitol 5TMS  
 87 0.51 n-acetyl glucosamine MEOX 4TMS 
 92 0.56 glucose-1-phosphate oxim TMS 
 96 0.52 unknown (carb#1s); mz: 73 999 | 257 797 | 289 632 | 217 510 | 258 201 | 379 176 | 290 169 | 147 160 | 199 154 | 103 131 | 
 97 0.90 unknown (carb#2s); mz: 73 999 | 147 594 | 319 305 | 148 207 | 117 159 | 149 150 | 217 139 | 133 136 | 163 125 | 131 115 | 
 98 0.83 unknown (carb#3s); mz: 73 999 | 392 412 | 217 298 | 147 189 | 89 174 | 393 137 | 59 92 | 129 86 | 172 77 | 361 77 | 
 116 0.73 sorbitol TMS  
 120 0.72 glucuronic acid 5TMS 
 124 0.63 gluconic acid 6TMS 
 126 0.75 gluconic acid lactone 4TMS 
 127 0.70 inositol 6TMS  
 129 0.74 unknown (carb#4s); mz: 73 999 | 147 559 | 204 374 | 189 311 | 129 190 | 149 184 | 203 183 | 205 144 | 306 137 | 74 136 | 
 130 0.73 unknown (carb#5s); mz: 73 999 | 147 569 | 129 518 | 319 378 | 217 285 | 157 222 | 103 130 | 148 128 | 79 124 | 83 120 | 
 132 0.64 sucrose TMS  
 133 0.70 sucrose TMS  
 137 0.53 unknown (carb#6s); mz: 73 999 | 204 597 | 361 338 | 147 271 | 217 145 | 75 126 | 205 124 | 169 124 | 145 121 | 129 117 | 
 140 0.62 unknown (carb#7s); mz: 73 999 | 204 616 | 361 287 | 147 220 | 191 123 | 205 118 | 217 115 | 169 112 | 362 101 | 189 100 | 
 144 0.58 unknown (carb#8s); mz: 73 999 | 147 251 | 133 176 | 290 98 | 217 95 | 319 93 | 129 77 | 214 65 | 75 63 | 149 61 | 



135 
 

 146 0.65 fructose phosphate MEOX 6TMS 
 147 0.71 glucose-6-phosphate TMS 
 148 0.78 glucose-6-phosphate MEOX TMS 
 149 0.46 unknown (carb#9s); mz: 73 999 | 204 490 | 147 330 | 191 262 | 233 232 | 361 225 | 169 154 | 205 144 | 217 133 | 143 126 | 
 150 0.58 unknown (carb#10s); mz: 73 999 | 147 569 | 129 518 | 319 378 | 217 285 | 157 222 | 103 130 | 148 128 | 79 124 | 83 120 | 
 155 0.92 unknown (carb#11s); mz: 73 999 | 361 590 | 243 452 | 129 389 | 204 373 | 217 299 | 147 267 | 319 237 | 362 216 | 157 159 | 
 156 0.73 unknown (carb#12s); mz: 361 999 | 73 907 | 169 398 | 243 370 | 147 277 | 129 265 | 362 252 | 217 209 | 254 193 | 271 192 | 
 157 0.58 unknown (carb#13s); mz: 73 999 | 437 492 | 243 466 | 361 450 | 333 319 | 147 313 | 129 313 | 207 298 | 362 255 | 218 208 | 
 160 0.59 sucrose TMS  
 161 0.59 mannopyranose phosphate 6TMS 
 168 0.77 turanose 7TMS 
 170 0.79 unknown (carb#17s); mz: 361 999 | 73 825 | 169 373 | 362 334 | 147 290 | 204 218 | 74 184 | 191 170 | 207 162 | 363 151 | 
 172 0.57 melibiose MEOX TMS 
    

 
b)  Suspension  
     

Class Peak# Loading Identity   
     
other 14 0.49 pyruvic acid MEOX TMS 
 39 0.52 succinic acid 2TMS 
 41 0.66 glyceric acid 3TMS 
 42 0.47 fumaric acid 2TMS 
 125 0.77 palmic acid TMS (contamination) 
 131 0.45 stearyl alcohol TMS (contamination) 
 141 0.64 steric acid TMS (contamination) 
 143 0.72 unknown (other#11s); mz: 73 999 | 284 769 | 147 324 | 272 215 | 217 210 | 285 184 | 194 154 | 374 145 | 74 93 | 149 91 | 
 176 0.70 unknown (other#13s); mz: 73 999 | 412 818 | 361 715 | 169 434 | 217 320 | 413 271 | 271 226 | 362 224 | 243 224 | 450 222 | 
 177 0.57 unknown (other#14s)73 999 | 361 904 | 169 610 | 271 368 | 217 339 | 253 319 | 191 289 | 147 269 | 487 254 | 362 254 | 
 181 0.46 sitosterol TMS 
     
amino 79 0.65 indolepropionate TMS 
     
benzene 99 0.51 shikimic acid 4TMS 
     
carb 77 0.62 ribose MEOX 4TMS 
 78 0.60 ribose MEOX 4TMS 
 111 0.55 sucrose TMS sucrose TMS 
 144 0.54 unknown (carb#8s); mz: 73 999 | 147 251 | 133 176 | 290 98 | 217 95 | 319 93 | 129 77 | 214 65 | 75 63 | 149 61 | 
 151 0.53 Myo-Inositol phosphate 7TMS 
 161 0.58 mannopyranose phosphate 6TMS 
 167 0.68 unknown (carb#16s); mz: 361 999 | 73 696 | 362 274 | 147 259 | 169 242 | 204 154 | 243 122 | 271 116 | 480 115 | 363 103 | 
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c)  Suspension   
     

Class Peak Loading Identity   
     
other 17 0.87 unknown (other#1s); mz: 73 999 | 147 763 | 149 180 | 148 124 | 191 121 | 75 94 | 74 87 | 117 75 | 133 60 | 128 49 | 
 28 0.86 unknown (other#3s); mz: 73 999 | 147 763 | 149 180 | 148 124 | 191 121 | 75 94 | 74 87 | 117 75 | 133 60 | 128 49 | 
 42 0.59 fumaric acid 2TMS 
 45 0.73 unknown (other#4s); mz: 73 999 | 116 301 | 147 301 | 75 278 | 306 207 | 143 180 | 149 158 | 117 104 | 245 90 | 79 79 | 
 52 0.57 unknown (other#6s); mz: 73 999 | 147 523 | 110 399 | 228 281 | 75 216 | 217 215 | 77 205 | 134 136 | 149 121 | 148 89 | 
 63 0.77 4-aminobutyric acid 3TMS 
 83 0.80 unknown (other#7s); mz: 272 999 | 82 986 | 182 548 | 73 536 | 55 360 | 273 239 | 154 236 | 147 194 | 346 148 | 256 140 | 
 165 0.49 unknown (other#2s); mz: 399 999 | 203 358 | 400 252 | 95 137 | 81 124 | 327 114 | 73 103 | 97 103 | 83 93 | 267 91 | 
     
amino 19 0.64 alanine 2TMS  
 30 0.82 valine 2TMS  
 35 0.64 leucine 3TMS  
 38 0.80 glycine 3TMS  
 44 0.92 serine 3TMS  
 47 0.46  
 62 0.68 glutamic acid 2TMS 
     
carb 163 0.76 unknown (carb#14s); mz: 361 999 | 73 777 | 362 357 | 169 301 | 204 258 | 75 188 | 271 177 | 129 167 | 147 149 | 363 127 | 
 166 0.61 unknown (carb#15s); mz: 361 999 | 73 723 | 169 492 | 217 405 | 271 297 | 204 284 | 243 249 | 93 244 | 319 237 | 300 226 | 
 172 0.71 melibiose MEOX TMS (or cellobiose) 
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Assessing the between-background stability of metabolic effects arising from 
lignin-related transgenic modifications, in two Populus hybrids 
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and Mansfield S.D. Assessing the between-background stability of metabolic effects 
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5.1 Introduction 
The field of plant metabolomics is currently undergoing a rapid expansion, yet 

fundamental aspects of the global interconnection between genetic, metabolic and 

phenotypic traits remain poorly defined.  Of key interest in the metabolomics-based 

study of plant phenotype, and development of screening tools for trait selection, is the 

stability of broad metabolism/trait relationships within and across various genetic 

backgrounds.  The degree of consistency in such patterns at the whole tissue or 

organism level, across closely related, as well as disparate plant species, will be a 

determining factor in the applicability of metabolite pattern data beyond the plant 

systems in which they are initially defined. 

Reports of the non-targeted metabolomic analysis of phenotypic traits are now 

more frequent in the literature, including landmark analyses that have played important 

roles in establishing the technology and conceptual framework of the field (Andersson-

Gunneras et al., 2006; Le Gall et al., 2003; Meyer et al., 2007; Morris et al., 2004; 

Robinson et al., 2005; Robinson et al., 2007; Roessner et al., 2001a; Roessner et al., 

2001b; Rohde et al., 2004).  For progress to occur in this area, it is essential that the 

scope of such analyses be expanded.  To date, metabolome/trait relationships have 

most frequently been characterised in individual species, or in individual families or 

clonal lines, thus making the specific plant system a fixed element in the analyses.  It 

would be desirable to increase the dimensionality of the analysis by making the plant 

system component a variable in its own right.  For example, collective metabolomic 

analysis of a single, specific phenotypic trait gradient across a series of genetic 

backgrounds (i.e., cultivars, hybrids, species, ecotypes, etc.) could assist in identifying 

and defining broadly applicable relationships. 

Wood is a widely used and complex material fundamental to woody plant 

physiology; therefore, in tree species, many of the most pertinent traits are physico-

chemical wood properties.  The composition of secondary cell walls in xylem tissue 

plays a central role in the character of woody tissue, and in its ultimate utility.  It is for 

this reason that resources have been, and continue to be, applied to traditional breeding 

and transgenic modification efforts, with the intention of effecting desirable wood trait 

outcomes.  The amorphous polymer, lignin, is a primary, integral component of plant 

cell walls (Donaldson, 2001), and research into its structure/function and biosynthesis is 
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ongoing, as is the modification of its properties.  The monolignol branch of the 

phenylpropanoid pathway is responsible for generating the monomeric constituents of 

lignin, and involves the sequential hydroxylation and methylation of phenylalanine-

derived cinnamic acid, as well as conversion of acid functional groups into alcohol via 

an aldehyde intermediate.  These reactions take place under the control of a series of 

well-characterised enzymes (Dixon et al., 2001; Hahlbrock and Scheel, 1989; 

Humphreys and Chapple, 2002, and references therein).  This aspect of plant 

secondary metabolism has been a popular target for transgene-induced disruption and 

modification of lignin and cell wall properties in poplar, including the up-regulation of 

ferulate 5-hydroxylase (F5H) (Franke et al., 2000; Huntley et al., 2003; Robinson et al., 

2005), and down-regulation of cinnamyl 3′-hydroxylase (C3′H) (Coleman et al., 2008a; 

Coleman et al., 2008b). 

In the present study, the consistency of the metabolic and phenotypic effects of 

transgenic constructs targeting lignin biosynthesis, when expressed in similar, yet 

distinct genetic backgrounds, was assessed. The composition analysis of wood and 

non-targeted metabolomic analysis of developing xylem from P717 (Populus tremula × 

alba) and P39 (Populus grandidentata × alba) poplar hybrids, separately transformed 

with each of the C4H::F5H and C3′H-RNAi constructs, allowed a comparison between 

modified physical and metabolic phenotypes generated by the expression of these 

constructs in different genetic backgrounds. 

 

5.2 Materials and methods 
5.2.1 Plant material 
The hybrid poplar genetic backgrounds employed were P717 (Populus tremula × alba) 

and P39 (Populus grandidentata × alba).  Additionally, each hybrid was separately 

modified with the C4H::F5H and C3′H-RNAi genetic constructs via Agrobacterium-

mediated transformation.  The preceding modification and phenotypic analysis of P39 

with the C3′H-RNAi construct was conducted by Coleman et al. (2008a), while that of 

P717 with C4H::F5H was conducted by Franke et al. (2000).  The complementary 

transformations of P717 with C3′H-RNAi and P39 with C4H::F5H were carried out 

according to the previously reported protocols (6.3Appendix D.5).  Thus, the wild-type 

backgrounds, as well as several lines of each of P717 C4H::F5H, P39 C4H::F5H, P717 
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C3′H-RNAi, and P39 C3′H-RNAi, were available for comparative analysis in this study.  

It should be noted that the P717 C4H::F5H modified lines, referred to as “21”, “26”, “37”, 

“41”, “64”, “65”, “82” and “85” in this and other work (Robinson et al., 2005) correspond 

to those referred to as “a” - “h”, respectively, by Franke et al. (2000). 

Plantlets were first grown from apical explants for 4 weeks in sterile tissue 

culture, on WPM medium (McCown and Lloyd, 1981) (6.3Appendix D.3) supplemented 

with 0.01 μM α-naphthalene acetic acid (NAA).  These were then transferred to soil-

based medium in 1 gallon pots, and grown on flood tables in a greenhouse under 

natural summer light and ambient temperature conditions.  Plants were arranged in 

random order to minimise positional effects.  Watering was initially once a day, but after 

8 weeks was increased to twice daily to accommodate the increased biomass load. 

After 16 weeks of growth in the greenhouse, the height and stem diameter 5 cm 

from the root collar was measured for all trees.  Then, in a destructive harvest, the 

bark/phloem was removed from the stem to allow samples of developing xylem to be 

collected from a region approximately two thirds down the stem, as determined by 

plastochron index (leaf #1 was taken as the first leaf down from the apex with a mid-

vein length greater than five centimetres).  These were immediately snap-frozen in 

liquid N2 and stored at -80°C. 

5.2.2 Metabolomic analysis 
5.2.2.1 Metabolite extraction 
Frozen developing xylem samples were ground to a fine powder in capsules containing 

several steel ball bearings, by vigorous agitation for 15 s in a dental amalgam mixer.  

For each sample, approximately 0.5 mL frozen, ground, developing xylem tissue was 

placed in a pre-weighed 2 ml microcentrifuge tube, and extracted in 1300 μL solvent 

mix (3% distilled, deionised water in methanol, with the internal standards ribitol 

(GC/MS) and ortho-anisic acid (LC/MS) added to 0.25 mg/mL and  0.164 mg/mL, 

respectively) for 15 min at 70°C, with orbital shaking at 1400 rpm.  Following 

centrifugation for 10 min at 14 000 rpm, 800 μL (for LC/MS) and 200 μL (for GC/MS) 

aliquots of debris-free supernatant were transferred to fresh 2 mL tubes.  The pellets 

and remaining liquid were dried overnight at 50°C, and the tube/pellet re-weighed, 

allowing the determination of the dry weight of tissue included in the extraction, via 

comparison with the previously recorded tube weight (approximately 50 mg). 
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For GC/MS, 130 μL chloroform and 270 μL distilled, deionised water were 

combined with the 200 μL aliquot of sample extract.  This mixture was vortexed gently, 

followed by centrifugation for 5 min at 14 000 rpm to separate the methanol/water 

(upper) and methanol/chloroform (lower) phases.  An aliquot (320 μL) of the upper 

phase, which preferentially partitions the more polar metabolites, was transferred to a 

fresh tube and dried overnight at 30°C in a Vacufuge (Eppendorf).  To derivatise the 

sample for gas chromatography, the dried pellet was resuspended by vortexing in 50 μL 

pyridine containing 20 mg/mL methoxyamine HCL (to protect carbonyl moieties by 

methoxylation), and then incubated at 37°C for 2 h with orbital shaking at 1100 rpm.  

After a brief centrifugation to settle condensation, 10 μL n-alkane standards mixture 

(C12, C15, C19, C22, C28, C32, and C36 - used to determine retention time indices in 

GC analysis) and 70 μL MSTFA were added, and followed by further incubation at 37°C 

for 30 min, also with shaking.  Samples were then filtered through compacted tissue 

paper to remove particulate matter, and allowed to sit at room temperature for at least 2 

h to ensure complete derivatisation prior to GC/MS analysis. 

For LC/MS, the 800 μL aliquot of sample extract was first dried overnight at 30°C 

in a Vacufuge (Eppendorf).  The pellet was then resuspended by gentle vortexing in a 

combination of 500 μL distilled, deionised water and 500 μL cyclohexane, and then 

centrifuged at 14 000 rpm to separate the lower (water) and upper (cyclohexane) 

phases.  An aliquot (400 μL) of the lower, aqueous phase, which partitions and enriches 

the more polar metabolites (especially phenolics), was transferred to a fresh tube, dried 

to 150 μL in a Vacufuge (Eppendorf) at 30°C, and then filtered through compacted 

tissue paper to remove particulate matter prior to LC/MS analysis. 

5.2.2.2 Metabolite extract analysis 
GC/MS analysis was conducted on a ThermoFinnigan Trace GC-PolarisQ ion trap 

system fit with an AS2000 auto-sampler and a split/splitless injector (Thermo Electron 

Co., Waltham, MA, USA).  The GC was equipped with a low-bleed Restek Rtx-5MS 

column (fused silica, 30 m, 0.25 mm ID, stationary phase diphenyl 5% dimethyl 95% 

polysiloxane). The GC conditions were set as follows: inlet temperature 250°C, helium 

carrier gas flow at constant 1 mL/min, injector split ratio 10:1, resting oven temp 70°C, 

and GC/MS transfer line temperature 300°C.  Following injection of a 1 μL aliquot of 

sample, the oven was held at 70°C for 2 min and then ramped to 325°C at a rate of 
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8°C/min.  The temperature was held at 325°C for an additional 6 min before being 

cooled rapidly to 70°C in preparation for the next run.  Mass spectrometry was 

conducted in positive electron ionisation (EI) mode, the fore-line was evacuated to 

approximately 40 mTorr, with helium gas flow into the chamber set at 0.3 mL/min.  The 

source temperature was held at 230°C, with an electron ionisation potential of 70 eV. 

The detector signal was recorded from 3.35 min after injection until 35.5 min, and ions 

were scanned across the range of 50-650 mass units (mu) with a total scan time of 0.58 

s. 

For LC/MS analysis, a 100 μL aliquot of the concentrated aqueous phase sample 

was injected onto a C18 Luna column (150 × 2.1 mm, 3 μm) (Phenomenex, Torrance, 

CA), using a Waters 2695 Separations module (Waters, Milford, MA, USA).  Separation 

was performed with a mobile phase linearly changing from 83% solvent A 

(H2O:acetonitrile (ACN):formic acid (FA), (100:1:0.1, v/v/v), pH 2.5) to 77% solvent B 

(ACN:H2O:FA, (100:1:0.1, v/v/v), pH 2.5) over 21 min, at a flow rate of 0.3 mL/min and a 

column temperature of 40°C.  Detection was conducted using negative ionization on a 

Micromass Quattro Micro API triple quadrupole mass spectrometer with an APCI source 

(Micromass, Inc., Manchester, UK).  The instrument was operated with the following 

conditions: source temperature, 130°C; APCI probe temperature, 500°C; corona 

current, 5.0 μA; cone voltage, 25 V; extractor voltage, 5 V; radio frequency lens, 0.0V.  

Nitrogen from a nitrogen generator (Domnick Hunter, Ltd., Tyne and Wear, United 

Kingdom) was used as both the cone gas (50 L/h)and the desolvation gas (200 L/h). 

Quadrupole-1 parameters were as follows: low mass (LM) resolution, 14; high mass 

(HM) resolution, 14; ion energy, 0.5 V.  Quadrupole-2 parameters were as follows: LM 

resolution, 14; HM resolution, 14; ion energy, 3.0.  Collision cell entrance and exit 

potential were set at 50 V. Multipliers were set at 650 V.  Scan time was 1 s and 

interscan delay 0.02 s.  Data were acquired in continuous mode.  Data acquisition and 

instrument control were performed using Masslynx 4.0 software. 

5.2.2.3 Data compiling 
Peak finding, peak integration, and retention time correction for GC/MS and LC/MS 

were performed with the R package XCMS (Smith et al., 2006).  The XCMS output of 

integrated peaks was tested for robust integration based on the assumption that each 

metabolite detected by MS is represented by at least two highly correlated m/z signals.  
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Only m/z peaks that showed high intensity correlation (PCC >0.95) and highly similar 

retention time (difference in median retention time (RT) after XCMS RT correction <0.03 

s) with at least one other m/z peak, were retained.  Based on these criteria, groups of 

m/z peaks believed to originate from the same metabolite were formed and the m/z 

signal with the highest intensity of such a group was selected as representative signal 

of the corresponding metabolite.  The accuracy of XCMS was verified visually with the 

deconvolution algorithm embedded in NIST AMDIS. 

5.2.2.4 Metabolite identification 
National Institute of Standards and Technology (NIST) MS-Search software equipped 

with the NIST mass spectra, as well as the Max Planck Institute Trimethylsilane (TMS) 

(http://www.mpimp-Golm.mpg.de/mms-library/index-e.html), Gölm Metabolome 

Database (http://csbdb.mpimp-Golm.mpg.de/csbdb/gmd/gmd.html) (Kopka et al., 2005) 

and our own (Mansfield UBC laboratory) TMS derivatised mass spectral libraries 

(containing 513 known compounds) were collectively used to identify metabolites of 

interest, as highlighted by the statistical analyses of GC/MS metabolite profiles.  

Identification of metabolites in LC/MS chromatograms was based on retention time and 

mass spectral (particularly molecular ion MW) matches with chemical standards 

analysed on site. 

5.2.3 Determination of lignin composition by thioacidolysis 
For each sample, 10 mg ground, extract-free, oven-dried wood flour was weighed into a 

glass 5 ml vial with teflon-lined screw-cap (Wheaton).  One mL of freshly made reaction 

mixture (10% boron trifluoride etherate and 2.5% ethanethiol, in recently distilled 

dioxane (v/v)) was added to each vial and blanketed with nitrogen gas prior to sealing.  

Vials were then collectively placed in a (100°C) dry heating block for 4 h, with periodic 

(hourly) manual agitation.  The reaction was halted by placing the reactions at -20°C for 

5 min.  To each vial were added 0.2 mL internal standard mixture (5 mg/mL tetracosane 

in methylene chloride), and enough 0.4 M sodium bicarbonate to bring reaction pH to 

between 3 and 4 (~0.3 mL, as determined by pH indicator paper).  To extract the 

reaction products from the aqueous mixture, 2 mL distilled, deionised water and 1 mL 

methylene chloride were added to each vial, which was then recapped, vortexed, and 

allowed to settle and phase separate: upper (aqueous) and lower (non-aqueous, and 

containing lignin-breakdown products) phases.  An aliquot (1.5 mL) of the non-aqueous 
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phase was taken by autopipette, and simultaneously cleared of residual water and 

filtered by passing through a Pasteur pipette packed with a compacted tissue paper 

plug and an inch of granular anhydrous sodium sulphate, and transferred directly into a 

2 mL polypropylene microfuge tube.  Samples were then collectively evaporated to 

dryness in a Vacufuge (Eppendorf) (approximately 1.5 hr at 45°C), and resuspended in 

1 mL methylene chloride.  Samples were derivatised by combining a 20 µL aliquot of 

the resuspended sample with 20 µL pyridine and 100 µL N,O,Bis(trimethylsilyl) 

acetamide (Sigma).  After incubation for at least 2 h at 25°C, a 1 µL aliquot  of this 

reaction was analysed by gas chromatography (GC).  For complete details refer to 

Appendix C. 

Gas chromatography was conducted on a Hewlett Packard 5890 series II 

instrument, fitted with an autosampler, splitless injector, flame ionising detector (FID), 

and 30 m RTX5ms 0.25 mm ID capillary column. One microlitre injections were 

processed using helium as a carrier gas at 1 mL/min. Inlet and detector temperatures 

were set to 250°C, with the oven profile consisting of: initial temperature 130°C, hold 3 

min, ramp temperature 3°C/min for 40 min to give a final temperature of 250°C, hold 5 

min, and then cooled to 130°C.  Peak identification for p-hydroxyphenyl-, guaiacyl- and 

syringyl-derived monolignol moieties was consistent with Rolando et al. (1992). 

5.2.4 Estimation of Klason lignin via NIR-based modeling 
The values for wood total lignin content reported in the results are estimations 

calculated by a predictive model.  This model was based on the combination of wood 

near infra-red reflectance (NIR) data, and total lignin contents determined by a modified 

Klason method (Huntley et al., 2003), for a large, unrelated set of 623 hybrid poplar 

individuals.  Via this model, the measurements normally taken by Klason analysis could 

be estimated by recording NIR spectra and submitting them to the predictive model, 

thus circumventing the time and resources required by actual Klason analysis. 

The light reflectance of wood samples across the near infra-red spectrum was 

measured with a Quality Spec Pro near infra-red (NIR) spectrophotometer, equipped 

with a round, 1.5 cm diameter sample window (Analytical Spectral Devices Inc).  The 

wavelength scanning range was from 350 nm – 2500 nm, with 2 nm interval, 

interpolated to 1 nm. 



149 
 

Prediction modeling was conducted using the Partial Least Squares Regression 

(PLSR) package provided in The Unscrambler v9.1 software (Camo Technologies, 

Woodbridge, New Jersey), employing full cross-validation as a modeling option.  Prior 

to PLSR, NIR reflectance data were transformed into the Savitzky-Golay first derivative, 

with the averaging/smoothing process spanning 25 wavelengths either side of each 

data point, and an order of two for the polynomial approximation process.  The model 

generated had the following fit for a comparison between actual and predicted values: 

slope 0.9120; y-intercept 2.0619; correlation coefficient 0.9541; RMSEP (root mean 

standard error of prediction) 0.8491; SEP (standard error of prediction) 0.8498.  The 

accuracy of this model under cross-validation suggests that estimation of total lignin 

content by this means carried with it less than a five percent reduction in accuracy, 

compared to actual determination by wet chemistry. 

5.2.5 Statistical analysis of metabolite profiles and quantitative wood traits 
Statistical reduction of the metabolite and physico-chemical quantitative wood trait 

datasets was carried out using a combination of SAS v9.1 software (SAS Institute, Inc., 

Cary, N.C.) procedures and functions of the R statistics platform (R Foundation for 

Statistical Computing, Vienna, Austria).  All metabolite peak areas were expressed as a 

proportion of the internal standard compound, and normalised against the extracted, dry 

weight of each tissue sample used in the solvent extraction. 

Where required, Student’s t-test was employed to identify metabolites that 

showed statistically significant differences between selected tree line pairs.  The α value 

for significance in these tests was set at 0.01 (99% confidence). 

Models fitting quantitative wood traits in terms of metabolite profiles, capable of 

prediction, were generated using the R glm and step functions.  The initial model in 

each stepwise search was a generalized linear model (glm) with error distribution 

assumed “Poisson”, to permit the use of non-normally distributed data.  To allow for 

direct comparison between metabolites that exhibited unequal range distributions, the 

data of each metabolite were centered and scaled using the R function scale.  The 

range of models examined in the stepwise search consisted of the centered and scaled 

intensity values for all metabolites.  The R step function selected important metabolite 

predictors of the “target” trait by a stepwise procedure which minimized the Bayesian 

information criterion (BIC).  The relative influence of each predictor metabolite in the 
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model was expressed as the coefficient (in this manuscript referred to as the ‘estimate’ 

so as to avoid confusion with coefficients related to other statistical measures) of each 

metabolite in the model equation, which was of the form: log(mu) = (estimate 1) * 

(selected metabolite 1) + ....+ (estimate n) * (selected metabolite n); where ‘mu’ is the 

expected value of response in the target trait.  Cross validation of the stepwise models 

to assess predictive accuracy was conducted using a re-fitted model generated leaving 

one of the samples out, and then using that model to predict the target trait response 

value for the excluded sample, based on the profile of its metabolite profile (R update 

and predict functions).  This process was repeated for each sample involved, and the 

overall predictive accuracy expressed as the Spearman correlation between the 

complete sets of measured and predicted values. 

Principal components analysis (PCA) was carried out on metabolite profile data 

using the R prcomp function, which enabled the extraction of sample factor scores and 

metabolite loading scores for each component.  Sample scores in the first four 

components were plotted on the axes of scatter plots to generate a graphical 

representation of the sample-to-sample variation captured by the analysis, while the 

metabolite loadings in these factors were taken to indicate the relative importance of 

each metabolite to any trends observed in those plots. 

 

5.3 Results 
5.3.1 Data summary 
The analysis of the four background genotype/transgenic construct combinations was 

conducted via two approaches.  The first of these investigated the metabolic trends of 

each combination, including several independent transgenic events for each construct 

and a range of transgene-induced severity in phenotypic traits.  Sample-wise, this 

involved sets of clonal replicates of all of the transformed lines generated for each 

genotype/construct combination, which is referred to here as the “All Lines” set.  In the 

second approach, the shifts in metabolism caused by the same construct in different 

backgrounds were compared and contrasted at the metabolome and individual 

metabolite levels.  To achieve sufficient statistical degrees of freedom, this analysis 

required a single representative line from each of the genotype/construct combinations 

to be grown with ample replication (i.e. ~50 individuals of each line).  This is referred to 
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as the “Select Lines” set.  Both scenarios included P717 and P39 wild-type 

backgrounds as references in the analyses.  The sample structure of these 

experiments, along with summaries of phenotypic data for lignin content and 

composition, is presented in Table 5.1.  For the All Lines data set, phenotypic severity 

for C4H::F5H transformants was primarily graded in terms of the molar ratio of syringyl 

lignin monomer composition, while for C3′H-RNAi lines, secondary xylem cell wall total 

lignin content (as estimated by wood NIR-based modeling of Klason analysis data) was 

the defining attribute.  For P39 C4H::F5H, the syringyl monomer content of the most 

severe phenotype was 12.61% greater than for wild-type, while for P717 C4H::F5H, this 

difference was 24.92%.  Similarly, for P39 C3′H-RNAi, the total lignin content of the 

most severe phenotype was 12.15% less than for the wild-type, while for P717 C3′H-

RNAi this difference was 10.12% (based on total cell wall composition by weight).  For 

the Select Lines set, transformants harbouring the same construct in different genetic 

backgrounds were selected based on both a high level of phenotypic severity, and a 

similar level of severity between the backgrounds.  Of note is the greater line count and 

phenotypic spread observed for transgenics having P717 as the genetic background.  

This bias arose simply from differences in the rate of line recovery from the 

transformation process. 

The metabolite compositions of all samples of developing xylem were analysed 

by both GC/MS and LC/MS.  Once compiled, the GC/MS profiles consisted of 221 

distinct metabolite peaks across all samples, 93 of which could be identified with 

certainty and a further 44 whose molecular class could be assigned (Appendix B.1).  

Equivalent LC/MS profiles consisted of 52 metabolites, of which 9 were tentatively 

identified (Appendix B.2). 

5.3.2 All Lines dataset analysis 
Principal component analyses based on GC/MS and LC/MS data were conducted 

separately for all lines of each genetic background/construct combination.  Factor score 

plot arrays for these analyses are presented in Figure 5.1 for the C4H::F5H construct, 

and Figure 5.2 for the C3′H-RNAi construct. In these plots, individual sample markers 

are coloured as per gradients based on phenotypic severity.  It is immediately apparent 

that a metabolic trend of sample distribution based on syringyl monomer content is not 

present for C4H::F5H in the P39 background, in either GC/MS- or LC/MS-derived 
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profiles (Figure 5.1a,b); however, some evidence of a weak trend is seen for GC/MS 

profiles in the P717 background on account of principal components (PC) 3 and 4 

(Figure 5.1c), and a more pronounced, yet still fairly indistinct trend for LC/MS profiles, 

primarily on account of PC-3, but augmented by PC-1 (Figure 5.1d).  For the C3′H-RNAi 

construct, trends based on total lignin content are notably stronger.  In P39, samples 

from the lone transformed line exhibiting a strong phenotype are clustered towards the 

extremes of the most significant component, PC-1 (Figure 5.2a,b).  In the LC/MS 

profiles this effect is augmented by PC-2 and PC-3, while in GC/MS profiles PC-2 

appears to distinguish an alternative sample subset based on some factor other than 

total lignin content.  C3′H-RNAi in the P717 background shows the strongest trends of 

all genetic background/construct combinations.  For GC/MS profiles, a separation of 

samples in PC-1 is observed, which is very clearly associated with the gradient in total 

lignin content. Principal components 3, 4 and to some extent 2 appear to play roles in 

focusing sample spread as total lignin content decreases.  In the LC/MS profiles a 

strong, but not quite so emphatic trend also exists, and is derived predominantly from 

PC-2, with minor contribution from PC-1.  Across the board, loading scores for 

individual metabolites were low (data not shown), with only the occasional metabolite 

loading higher than 0.32, the level at which variance in a metabolite variable accounts 

for ten percent of the variance in the specific principal component.  It was not possible 

to single out a subset of metabolites with an over-arching influence on the patterns 

observed in the PCAs, even when strong patterns factor score were observed.  This 

result implies that a large proportion of the metabolites analysed have only a small 

relationship with the modified phenotype, and that it is their cumulative effect that 

facilitated the emergence of the trends observed. 

A stepwise modeling procedure, based on the Bayesian Information Criterion 

(BIC), was used to generate linear equations that modeled specific phenotypic traits in 

the C4H::F5H and C3′H-RNAi transformed lines, based on GC/MS and LC/MS 

metabolite profiles.  The performance of these models in predicting the target trait was 

assessed via complete cross-validation, which involved using the model expressed in 

terms of all samples but one to predict the target trait in that individual, repeated for all 

individuals.  In this situation, higher accuracy suggests a more clearly defined linear 

relationship between collective metabolite abundances and the target trait.  The 



153 
 

outcome of such modeling in the collective P39/P717 C4H::F5H transformant lines is 

presented for syringyl monomer content and lignin S:G ratio (Figure 5.3).  When 

modeling either trait, models based on the GC/MS metabolite data were very accurate, 

and notably more so than their LC/MS-based counterparts.  For the collective P39/P717 

C3′H-RNAi transformants, linear modeling outcomes are presented for p-hydroxyphenyl 

monomer content and total cell wall lignin content (Figure 5.4).  The observations in this 

case are similar to those for the models of C4H::F5H, with GC/MS-based models out-

performing their LC/MS-based counterparts once again, and the model for p-

hydroxyphenyl monomer content generated from LC/MS profiles being particularly 

weak.  Additionally, increased variance in predictions of total lignin content should be 

expected, given that in this case the trait data employed to build the linear model was 

itself a predicted estimate, which is subject to error of its own. 

A deeper investigation of the modeling behaviour of the primary phenotypic 

severity traits for C4H::F5H (syringyl monomer content) and C3′H-RNAi (estimated total 

lignin content) lines is presented in Table 5.2.  From these data, it is apparent that for 

both constructs, rather different numbers of metabolites played significant roles in the 

ensuing models, depending on whether genetic backgrounds were dealt with 

collectively or each separately.  Indeed, there appears to be a loose relationship 

between the number of samples processed and the number of significant metabolites, 

although the same could be said for the degree of variance embodied by those sample 

sets.  Also, a higher proportion of submitted metabolites were significant for LC/MS- 

than GC/MS-based models, and of these, the common proportion between models 

separately derived from lines in the P39 and P717 backgrounds, was also greater.  

Overall, the crossover between GC/MS-based models for the two backgrounds was 

surprisingly low. 

5.3.3 Select Lines dataset analysis 
A second round of PCA was conducted, this time on the Select Lines sample set.  

Again, sample distribution by principal component was presented in the form of sample 

factor score plots.  The first comparison was between the two genetic backgrounds, 

P39 and P717 (Figure 5.5).  For both GC/MS and LC/MS metabolite profiles, the 

distinction between the two hybrid genotypes was clear, although there was a small 

degree of overlap between sample clusters.  For GC/MS analysis the dominant 
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distinguishing components were PC-1 and PC-4, whereas for LC/MS PC-2 was 

strongest with contributions from PC-1 and PC-3; however, specific component 

identities aside, the separation patterns were very similar between the GC/MS and 

LC/MS metabolite profiles.  The next comparison was between the C4H::F5H modified 

lines from the two genetic backgrounds, including the backgrounds (control trees) 

themselves (Figure 5.6).  For GC/MS profiles, although the separation between P39 

and P717 wild-type trees was largely retained in combinations of PC-1, PC-3 and to 

some extent PC-4, neither of the modified lines appeared to deviate from their 

backgrounds.  While this was also generally true of the LC/MS profiles, in this case, PC-

2 cleanly distinguished between backgrounds, and both modified lines showed some 

signs of deviation away from their backgrounds in PC-3.  This was most evident in the 

plot combining these two components.  Furthermore, both PC-1 and PC-4 appeared to 

make some distinction between the P39 background and its C4H::F5H modified line, 

but not in the case of their P717 counterparts.  The situation for the similar analysis of 

C3′H-RNAi (Figure 5.7) was different. In this case, the factor score plots from GC/MS 

profiles presented a convergence of the two background genotypes upon modification 

with this construct.  Although not very well defined, PC-1 tightly clusters the P717 

C4H::F5H line at the extreme end of a P717 wild-type “tail”, while PC-4 does the same 

for the P39 background and its modified line.  Interestingly, combinations of PC-1 with 

either PC-4 or PC-2 superimpose the samples of the two modified lines, giving the 

impression of metabolic similarity.  A similar pattern, but with clearer distinction based 

on genetic background, is observed for the LC/MS profiles.  In this case, PC-2 cleanly 

separates samples by genetic background. Principal component 3 separates the P39 

modified line, and to some extent the P717 modified line, from their backgrounds, while 

PC-1 similarly separates the P717 modified line, and to some extent the P39 modified 

line, from the backgrounds.  Consequently, the combined plot of PC-1 and PC-3 

generates a collective and complete separation of the modified lines from their 

associated wild-type backgrounds, and the combination of PC-2 with either of these 

gives tangible distinction between the two backgrounds and between backgrounds and 

modified lines.  Indeed, a three dimensional arrangement of PC-1, PC-2 and PC-3 

would yield clustering and complete 3D separation of all four elements included in this 

particular analysis.  As was the case with the All Lines sample set, the component 
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loadings for individual metabolites in the PCA of the Select Lines set were very low 

across the board (data not shown).  No single metabolite explained ten percent or more 

of the variance in any significant principal component in the analysis of GC/MS profiles, 

neither in the analysis of wild-type backgrounds or in that of either genetic construct.  

This was similar for the analysis of LC/MS profiles, with but few unidentified metabolites 

very occasionally loading right at the ten percent variance cut-off. 

The lack of definition in the loading aspect of PCA necessitated further 

investigation in order to better define the metabolic distinctions between the P39 and 

P717 hybrid poplar backgrounds, the modified lines and their backgrounds, and the 

commonalities in lines of different genetic backgrounds modified with the same genetic 

construct.  To this end, a summary of the results of a t-test-based analysis is presented 

in Table 5.3.  Over one third of metabolites resolved by GC/MS, and nearly two thirds of 

those resolved by LC/MS showed significant differences between the two hybrid poplar 

backgrounds.  Just under a quarter of GC/MS metabolites and half of LC/MS 

metabolites were significantly different in the P39 C4H::F5H modified line, compared to 

the P39 wild-type.  In the case of the P717 C4H::F5H lines, a much smaller proportion, 

less than three percent of GC/MS- and one fifth of LC/MS-derived metabolites, were 

different.  Consequently, very few differential metabolites were common between the 

two lines modified with this construct and, of these, only one could be identified.  The 

situation was more balanced in the comparison of C3′H-RNAi modified lines with their 

backgrounds and each other.  One fifth of GC/MS- and nearly half of LC/MS-derived 

metabolites were differential between the P39 C3′H-RNAi line and its background, and 

for P717 C3′H-RNAi the numbers were close to half, and almost three quarters, 

respectively.  In this case, a fair portion of the collective differential metabolites 

(approximately one third for both GC/MS and LC/MS) were common to both modified 

lines and, of these, a fair number could be identified.  Detailed listings of the differential 

metabolites from the three comparisons outlined are presented in various forms in 

Tables 5.4, 5.5, and 5.6, as well as in Appendices B.3 and B.4.  The implications of 

these data will be addressed in the discussion. 
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5.4 Discussion 
5.4.1 Metabolomics of phenotypic ranges 
The principal component analysis of metabolite profiles from the All Lines sample set 

was intended to reveal global metabolic trends related to transgene-induced phenotypic 

severity.  In the case of the C4H::F5H construct, which influences the balance between 

syringyl and guaiacyl lignin in favour of the syringyl moieties (Huntley et al., 2003), the 

metabolic patterns observed were neither as consistent, nor as clearly defined as might 

have been expected in light of previous analyses (Robinson et al., 2005).  The complete 

absence of phenotype-related gradients in the P39 C4H::F5H modified lines was in 

contrast to the evident, if somewhat indefinite, gradients observed in the P717 

counterparts.  If the view is taken that there should at least have been some distinction 

made between wild-type and modified P39, then one possible explanation might be that 

the analysis had been limited by phenotypic spread.  Even for the P717-based lines, for 

which analysis involved twice the number of samples with twice the phenotypic (syringyl 

monomer content) displacement, the gradient was far from clean.  Therefore, it is 

possible that the variance in metabolite profiles from the P39 lines was not enough for 

such a trend to emerge in PCA.  In the P717 C4H::F5H lines the greater definition in the 

metabolic gradient of LC/MS, compared to GC/MS metabolite profiles, may have 

originated from statistical and/or analytical factors.  From the calculative perspective, 

the statistical analysis of GC/MS data involved many more metabolite variables than for 

LC/MS data, and if the metabolic effects of the modification were limited in scope, then 

the large number of unaffected metabolites could raise the “noise” level and confound 

the analysis; however, the class partitioning of metabolites between GC and LC 

analyses may have played a more important role.  The C4H::F5H construct operates 

downstream in secondary metabolism, and many of its detectable downstream effects 

likely involve larger, more complex metabolites that are more amenable to resolution by 

liquid, rather than gas chromatography.  In any case, the observation of metabolic 

gradients related to the transgene-induced phenotype in P717 validates this concept at 

the metabolomic scale. 

The results for the PCAs of C3′H-RNAi modified lines further support the idea of 

broadscale, transgene-induced metabolic gradients.  Although a smooth metabolic 
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gradient was very unlikely for the P39 lines, given the particularly disjointed structure of 

the phenotypic spread, the evident “peripheral” clustering of samples from the one line 

exhibiting a strong phenotype, for both GC/MS and LC/MS profiles, was a positive 

outcome.  In the case of the P717 C3′H-RNAi modified lines, a situation involving many 

lines and a well graduated phenotypic spread, the evidence for a strong association 

between the phenotypic and metabolic gradients was clearly evident.  That the 

gradients are so clear in this case is likely indicative of the nature of the genetic 

modification.  The severe down-regulation of the native C3′H gene by RNAi-suppression 

has extensive implications for cell wall structure and function, cellular metabolism and 

whole-plant form and physiology, which goes beyond the obvious influences on lignin 

biosynthesis.  The marked reduction in lignin biosynthesis and radical changes in lignin 

composition undoubtedly influence the biosynthesis of other cell wall polymers as well 

as fundamental balances in primary metabolism as they pertain to developing xylem 

sink tissue.  It is therefore likely that the clean phenotype-linked gradients represent 

extensive shifts in global metabolism. 

The initial impression given by the results is that the stepwise linear modeling of 

phenotypic traits, based on metabolite profiles, was an effective means of extracting the 

elements of metabolism that were associated with the target trait.  This was more 

evident for models built upon GC/MS data.  There was a clear demonstration that the 

phenotypic influence of the two constructs could be accurately modeled from metabolic 

data collectively pooled from both genetic backgrounds.  This, in itself, confirmed at 

least some degree of consistency in the effects of these constructs in the two 

backgrounds.  However, deeper investigation of the metabolite structure of such 

models, when based on modified lines from the individual backgrounds, revealed that 

the proportion of significant metabolites that were common between backgrounds was 

not large, for either construct.  The number of metabolites included in a model is heavily 

weighted in favour of the P717 modified lines.  This suggests that, as with the PCA-

based comparisons between modified P39 and P717 lines of the All Lines sample set, 

the lack of comparable phenotypic ranges, and, presumably, metabolic variance, made 

it difficult for the linear models to be used to directly compare the influence of each 

genetic background on the metabolic effects of the transgenic constructs. 
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5.4.2 Direct genetic background comparison 
To properly compare the metabolic effect of the C4H::F5H and C3′H-RNAi constructs, 

operating in the two different genetic backgrounds, it was necessary to assess P39 and 

P717 transformants within the same statistical analyses.  To this end, the Select Lines 

sample set was comprised of the two wild-type backgrounds and a single P39 and P717 

transformant line for each of the transgenic constructs.  These lines were selected for 

their strong, yet fairly well-matched phenotypic severities.  Specifically, for the 

C4H::F5H construct, the P39 and P717 transformants selected had average lignin 

syringyl monomer contents of 84.26% and 84.78%, respectively.  For the C3′H-RNAi 

construct, the P39 and P717 transformant lines selected had average estimated total 

lignin contents of 15.99% and 17.05%, respectively. 

The first point of note was the solid distinction that PCA made between the 

metabolite profiles of the two wild-type hybrid poplar genotypes, and this was 

particularly clear for LC/MS profiles.  Although the PCA was not clear in terms of which 

metabolites were responsible for this distinction, the findings of a stringent t-test 

analysis that large proportions of both GC/MS and LC/MS metabolites were differential 

substantiated the distinction.  Within this list of metabolites, the confirmed identities 

spanned major metabolite classes, and included a participant in the tricarboxylic acid 

cycle (malic acid), a host of small organic and amino acids, primary carbohydrates such 

as fructose, glucose phosphate and inositol, etc.  This division between the two hybrids 

at the metabolic level is an important aspect of this study, because it provides an 

appropriate foundation for properly comparing the influence of background on the 

relationships between metabolic and specific phenotypic traits. 

The genetic background comparisons for the constructs revealed similar patterns 

for C4H::F5H and C3′H-RNAi, although in C3′H-RNAi lines this was better defined.  In 

the PCA, the separation of lines based firstly on genetic background, whether or not 

they were transformed, was consistent with the notion that the background has a 

fundamental influence on the metabolic profile effected by transgenic constructs, or 

associated with particular wood-related phenotypes.  Furthermore, co-ordinated (i.e. 

occurring together in the same direction in common components) separation of P39 and 

P717 transgenics away from their backgrounds would suggest that the nature of the 

construct has its own characteristic influences on metabolism, regardless of 
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background.  Such behaviour was most evident for transformants harbouring the C3′H-

RNAi construct, particularly in LC/MS profiles.  The different degrees to which this was 

observed for the two constructs, and between GC/MS and LC/MS profiles may be 

indicative of construct mode of action, target metabolism, and metabolite partitioning in 

chromatography, as was also noted for the PCA analysis of the All Lines sample set.  It 

seems likely, however, that the selection of lines exhibiting fairly mild phenotypic 

severity, in order for a matched pair to be studied, has been an important limiting factor 

in this analysis of C4H::F5H.  In particular, the P717 C4H::F5H line selected showed 

minimal metabolic differentiation from its background in terms of individual metabolite 

comparisons, especially in GC/MS profiles. 

The simplification of the sample structure, from including All Lines to including 

only the Select Lines, did not improve the loading scores of metabolites in individual 

principal components of PCA.  As such, the best insights into the finer metabolic 

properties of transformants were gained from t-test based analyses. 

For lines transformed with the C4H::F5H construct there was one metabolite that 

was unexpectedly absent from those that were differential between wild-type and 

modified lines.  In a previous analysis of C4H::F5H modified P717, pools of metabolites 

believed to be intermediates in the phenylpropanoid and lignin specific pathways were 

not detected, except for an exceptionally small pool of sinapyl alcohol that was 

somewhat larger in the modified line with the most extreme phenotype (line P717 

C4H:F5H-64) (Robinson et al., 2005).  In the current analysis there was evidence that 

this metabolite was present in the GC/MS chromatograms of at least some of the P717 

C4H::F5H-64 samples from the All Lines sample set (data not shown), but the small 

peak could not be discriminated from the large inositol peak that co-eluted with it. In the 

Select Lines sample set, the two C4H::F5H lines included had been selected for their 

matching phenotypic severity, and the lack of a matching P39 C4H::F5H line meant that 

it was not possible to include the extreme P717 C4H::F5H-64 line.  Given this, and the 

fact that a difference was previously barely detectable in the extreme phenotype 

(Robinson et al., 2005), it seems unlikely that a significant difference in the abundance 

of sinapyl alcohol would have been observed between wild-type and the select 

C4H::F5H lines even if this metabolite had been resolved. 
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The continued general absence of the proposed intermediates in monolignol 

biosynthesis, from metabolite profiles of wild-type and C4H::F5H or C3′H-RNAi modified 

lines, lends support to the existence of metabolic channels in this pathway.  As 

previously suggested in closely related work (Achnine et al., 2004; Anterola et al., 1999; 

Rasmussen and Dixon, 1999; Robinson et al., 2005; Winkel-Shirley, 1999), it appears 

that many intermediates in this pathway may be covalently bound to, and passed 

between sequential active sites of multi-enzyme complexes.  This sort of arrangement 

is proposed as an appropriate mechanism for sparing cellular solvent capacity, 

maximising the efficiency of metabolic pathways, and reducing the liberation and 

pooling of metabolites with cytotoxic potential (e.g., unconjugated phenolics) (Hrazdina 

and Jensen, 1992; Srere, 1987; Srere, 2000). 

The most noteworthy feature of the lists of metabolites common to P39 and P717 

transformants is that the proportional change in abundance of all of these specific 

metabolites, relative to their respective backgrounds, are similar regardless of 

background.  Where a construct induced an increase or decrease in one background, 

the same was true in the other.  This, of course, was most evident in the analysis of 

C3′H-RNAi lines, in which many differential metabolites were common to both 

backgrounds.  In this list, positively identified metabolites included representatives of 

the TCA cycle (succinic and malic acid pools decreased approximately 70% and 50%, 

respectively), other small acids (a host of metabolites including ribonic, gluconic, 

glucaric and galactaric acids all decreased considerably), and carbohydrate source 

molecules and precursors of glycan cell wall polymers (the glucose 6-phosphate pool 

decreased by around 50%).  Such changes are likely indicative of a whole-plant 

reduction in fitness and metabolic activity, itself suggested by the severely altered wood 

and growth traits in these lines (Coleman et al., 2008a).  Furthermore, several larger 

metabolites in GC/MS and LC/MS profiles were seen to increase dramatically in the 

C3′H-RNAi modified lines, and although these metabolites were not identified in this 

analysis, they may be the same as some of those phenolics and phenolic glycosides 

seen to behave similarly in a previous HPLC-based metabolite profile analysis of P39 

C3′H-RNAi lines (Coleman et al., 2008a). 
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5.5 Concluding remarks 
This research attempted to characterise the interrelationships between hybrid poplar 

background genotype, transgenic modification, metabolite profiles and wood-related 

phenotypic traits.  Its findings have demonstrated that transgene-induced phenotypic 

gradients in physico-chemical wood traits can be associated with similar gradients in the 

global metabolism of secondary xylem biosynthesis.  This result implies that the same 

may be true for phenotypic gradients arising through natural genetic variation, intensive 

breeding, or environmental factors. It is also apparent that while distinct, at a global 

level the wood-forming metabolisms of different poplar hybrids can, to some extent, 

respond similarly to the influences of genetic manipulation of lignin-related genes.  This 

further implies that with the correct approach, it may be possible to associate the 

emergence of specific wood traits from different genetic backgrounds – be they 

transgene-induced or otherwise – with stable metabolic signatures. 
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Figure 5.1 Factor score plots from principal components analysis of metabolite profiles 
from wildtype and multiple lines transformed with the C4H::F5H construct.  a) GC/MS 
profiles from P39 wildtype and modified, b) LC/MS profiles from P39 wildtype and 
modified, c) GC/MS profiles from P717 wildtype and modified, d) LC/MS profiles from 
P717 wildtype and modified.  Wild-type samples are represented by triangular markers, 
and genetically modified individuals are represented by circles.  Individual markers are 
coloured according to lignin S monomer content of each sample, with the colour 
gradient spanning the phenotypic range of the sample set.  Numbers in parentheses 
indicate proportion of dataset variance explained by individual principal components.
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Figure 5.2 Factor score plots from principal components analysis of metabolite profiles 
from wildtype and multiple lines transformed with the C3′H-RNAi construct.  a) GC/MS 
profiles from P39 wildtype and modified, b) LC/MS profiles from P39 wildtype and 
modified, c) GC/MS profiles from P717 wildtype and modified, d) LC/MS profiles from 
P717 wildtype and modified.  Wild-type samples are represented by triangular markers, 
and genetically modified individuals are represented by circles.  Individual markers are 
coloured according to wood total lignin content of each sample, with the colour gradient 
spanning the phenotypic range of the sample set.  Numbers in parentheses indicate 
proportion of dataset variance explained by individual principal components.
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Figure 5.3 Comparison of measured versus predicted quantitative traits in C4H::F5H 
modified poplar.  a) Lignin S monomer proportion modeled with GC/MS metabolite 
profile data, b) Lignin S monomer proportion modeled with LC/MS data, c) Lignin S:G 
ratio modeled with GC/MS data, d) Lignin S:G ratio modeled with LC/MS data.  
Predictions were based on linear models generated from metabolite profiles by a 
stepwise modeling procedure, under cross-validation.  Circular markers represent 
individual samples.  Wild-type and modified P39 and P717 samples were combined in 
model building and are not distinguished in the plots.  Fitted line is line of best fit in a 
regression not constrained to the origin.  
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Figure 5.4 Comparison of measured versus predicted quantitative traits in C3′H-RNAi 
modified poplar.  a) Lignin H monomer proportion modeled with GC/MS metabolite 
profile data, b) Lignin H monomer proportion modeled with LC/MS data, c) Total lignin 
content modeled with GC/MS data, d) Total lignin content modeled with LC/MS data.  
Predictions were based on linear models generated from metabolite profiles by a 
stepwise modeling procedure, under cross-validation.  Circular markers represent 
individual samples.  Wild-type and modified P39 and P717 samples were combined in 
model building and are not distinguished in the plots.  Fitted line is line of best fit in a 
regression not constrained to the origin.  
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Figure 5.5 Factor score plots from principal components analysis of metabolite profiles 
from P37 and P717 hybrid poplar wild-types.  a) GC/MS metabolite profiles, b) LC/MS 
metabolite profiles.  Marker designation for individual samples as indicated in figure.  
Numbers in parentheses indicate proportion of dataset variance explained by individual 
principal components.  
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Figure 5.6 Factor score plots from principal components analysis of metabolite profiles 
from P37 and P717 hybrid poplar wild-types and a C4H::F5H modified line of each 
hybrid.  a) GC/MS metabolite profiles, b) LC/MS metabolite profiles. Marker designation 
for individual samples as indicated in figure.  Numbers in parentheses indicate 
proportion of dataset variance explained by individual principal components.
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Figure 5.7 Factor score plots from principal components analysis of metabolite profiles 
from P37 and P717 hybrid poplar wildtypes and a C3′H-RNAi modified line of each 
hybrid.  a) GC/MS metabolite profiles, b) LC/MS metabolite profiles.  Marker designation 
for individual samples as indicated in figure.  Numbers in parentheses indicate 
proportion of dataset variance explained by individual principal components.
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Table 5.1. Sample structure of hybrid poplar datasets and measurements of 
quantitative wood traits, summarised by line.  Modified lines sorted according to 
phenotypic severity, using lignin S monomer content for C4H::F5H and total lignin 
content for C3′H-RNAi, indicated by bold type.  Height and base stem diameter not 
taken for P717 C4H::F5H lines in the All Lines dataset. 
 

Set Background/construct Line ID Sample n height (cm) dia (mm) totallig (%) thioH (%) thioG (%) thioS (%) thioS:G (ratio)

All lines P39 wild-type WT02 4 266.5  (19.9) 13.94  (1.04) 23.27  (0.75) 0.14  (0.05) 28.62  (1.31) 71.24  (1.34) 2.50  (0.16)
P39 C4H::F5H 02 4 277.0  (30.3) 11.85  (2.40) 22.68  (1.48) 0.15  (0.04) 28.40  (0.66) 71.45  (0.64) 2.52  (0.08)

04 4 298.8  (  8.1) 12.49  (0.87) 23.40  (0.21) 0.14  (0.09) 28.15  (0.42) 71.72  (0.35) 2.55  (0.05)
01 5 275.8  (28.2) 12.83  (1.61) 22.86  (1.72) 0.21  (0.11) 23.92  (8.90) 75.86  (8.82) 3.78  (2.06)
03 4 287.3  (16.3) 13.54  (0.82) 22.96  (0.43) 0.17  (0.09) 22.57  (0.30) 77.27  (0.33) 3.43  (0.06)
06 4 265.0  (38.3) 13.41  (4.86) 22.30  (0.77) 0.11  (0.02) 18.41  (5.32) 81.48  (5.32) 4.79  (1.68)
28 5 253.2  (33.3) 12.12  (1.67) 22.17  (1.44) 0.14  (0.06) 16.01  (2.31) 83.85  (2.28) 5.34  (0.90)

P717 wild-type WT02 16 - - 21.89  (1.01) 0.26  (0.08) 32.38  (2.62) 67.35  (2.60) 2.10  (0.26)
P717 C4H::F5H 85 10 - - 20.85  (1.63) 0.28  (0.06) 27.70  (2.08) 72.02  (2.09) 2.62  (0.26)

82 12 - - 20.55  (1.60) 0.27  (0.04) 17.23  (1.17) 82.50  (1.19) 4.82  (0.40)
41 6 - - 20.59  (0.89) 0.26  (0.06) 14.62  (1.54) 85.12  (1.58) 5.88  (0.66)
21 5 - - 19.78  (0.39) 0.24  (0.06) 14.59  (3.59) 85.18  (3.55) 6.17  (1.81)
37 5 - - 20.29  (0.51) 0.26  (0.03) 11.03  (1.16) 88.72  (1.17) 8.13  (0.98)
26 5 - - 20.90  (1.37) 0.32  (0.06) 8.63  (0.73) 91.06  (0.74) 10.63  (1.01)
65 9 - - 21.01  (1.00) 0.28  (0.05) 8.64  (1.10) 91.08  (1.13) 10.71  (1.46)
64 6 - - 22.74  (1.82) 0.34  (0.10) 7.39  (1.95) 92.27  (1.97) 13.32  (3.85)

P39 wild-type WT01 5 317.6  (26.2) 14.56  (1.31) 23.74  (0.88) 0.32  (0.12) 29.34  (0.46) 70.34  (0.4) 2.40  (0.05)
P39 C3'H-RNAi 022 5 301.4  (38.3) 12.54  (3.34) 23.63  (0.41) 0.17  (0.10) 29.56  (0.46) 70.27  (0.47) 2.38  (0.05)

515 4 301.4  (40.8) 13.60  (2.44) 23.27  (0.27) 0.24  (0.14) 30.06  (0.81) 69.70  (0.81) 2.32  (0.09)
510 4 312.5  (37.1) 14.85  (1.17) 23.09  (1.23) 0.26  (0.15) 29.34  (0.27) 70.41  (0.29) 2.40  (0.03)
012 5 289.2  (40.8) 13.58  (3.12) 23.09  (0.86) 0.18  (0.06) 30.33  (0.15) 69.49  (0.12) 2.29  (0.02)
053 5 316.2  (43.8) 13.58  (1.50) 22.97  (0.46) 0.29  (0.06) 28.63  (0.75) 71.09  (0.72) 2.49  (0.09)
064 5 314.8  (28.0) 15.52  (1.68) 22.93  (0.26) 0.32  (0.12) 28.80  (0.58) 70.88  (0.48) 2.46  (0.07)
044 5 302.4  (27.6) 13.98  (1.49) 22.76  (0.54) 0.19  (0.09) 30.22  (0.51) 69.58  (0.45) 2.30  (0.05)
610 4 298.0  (19.1) 14.13  (2.41) 22.65  (0.91) 0.27  (0.11) 29.82  (0.80) 69.91  (0.72) 2.35  (0.08)
014 4   68.0  (26.5)   5.03  (1.60) 11.48  (0.62) 20.01  (2.87) 17.87  (2.21) 62.11  (1.16) 3.51  (0.43)

P717 wild-type WT01 4 250.5    (1.9) 11.20  (2.29) 23.14  (0.47) 0.26  (0.06) 33.63  (1.26) 66.12  (1.25) 1.97  (0.11)
P717 C3'H-RNAi 46 5 275.2  (24.1) 12.41  (1.44) 23.98  (0.74) 0.29  (0.09) 33.04  (1.15) 66.67  (1.22) 2.02  (0.11)

25 5 251.6  (35.8) 11.56  (1.51) 23.84  (1.00) 0.31  (0.06) 36.09  (4.36) 63.61  (4.40) 1.79  (0.30)
10 2 274.0    (1.4) 14.66  (1.23) 23.59  (0.31) 1.00  (0.59) 32.45  (0.35) 66.56  (0.24) 2.05  (0.01)
28 5 197.4  (40.7) 8.38  (2.91) 23.26  (0.78) 0.27  (0.04) 10.31  (0.65) 89.42  (0.65) 8.70  (0.59)
23 4 229.5  (10.8) 9.51  (1.24) 23.24  (0.80) 0.26  (0.05) 11.41  (1.11) 88.34  (1.12) 7.81  (0.83)
09 4 239.8  (14.3) 8.98  (1.38) 23.22  (0.38) 0.29  (0.06) 9.35  (0.52) 90.36  (0.50) 9.69  (0.59)
50 5 257.8  (15.4) 10.72  (1.65) 23.20  (0.77) 0.32  (0.10) 33.09  (1.52) 66.59  (1.56) 2.02  (0.14)
17 5 255.6  (10.4) 11.24  (1.24) 22.93  (0.51) 0.32  (0.10) 34.61  (1.28) 65.07  (1.28) 1.88  (0.11)
40 5 254.4    (7.9) 10.63  (1.15) 22.91  (0.82) 0.24  (0.04) 10.51  (1.27) 89.25  (1.26) 8.59  (1.03)
13 4 232.5  (16.1) 9.97  (1.18) 22.63  (1.58) 0.28  (0.07) 10.53  (0.51) 89.19  (0.55) 8.49  (0.48)
07 3 251.0    (4.4) 12.27  (2.59) 22.55  (1.00) 2.18  (0.73) 37.97  (6.82) 59.85  (7.19) 1.63  (0.43)
03 5 222.6  (18.8) 9.45  (2.27) 22.03  (0.93) 0.29  (0.03) 10.45  (0.87) 89.27  (0.86) 8.59  (0.74)
14 3 236.7    (7.5) 10.88  (0.55) 21.64  (0.92) 2.98  (1.45) 32.72  (0.94) 64.30  (0.52) 1.97  (0.04)
15 5 224.0    (9.3) 12.26  (1.74) 20.83  (0.75) 4.91  (1.28) 31.88  (1.44) 63.21  (1.88) 1.99  (0.14)
32 3 203.0  (15.5) 9.95  (2.13) 20.06  (0.88) 7.76  (1.48) 27.61  (1.73) 64.63  (1.19) 2.35  (0.18)
11 4 231.3    (5.9) 10.87  (2.43) 18.54  (0.83) 9.57  (1.55) 26.51  (0.86) 63.92  (1.78) 2.42  (0.12)
12 5 220.8  (10.7) 11.22  (2.44) 18.35  (1.80) 11.08  (4.27) 27.50  (2.85) 61.42  (1.51) 2.25  (0.19)
33 3 211.7    (9.8) 10.85  (1.93) 18.29  (0.43) 10.79  (1.55) 29.18  (0.86) 60.03  (0.93) 2.06  (0.05)
01 4 256.8  (15.8) 10.43  (2.07) 17.41  (0.97) 14.72  (2.21) 24.67  (0.94) 60.62  (1.82) 2.46  (0.11)
26 5 172.2  (53.5) 7.94  (1.51) 16.72  (1.43) 18.25  (5.26) 24.56  (4.07) 57.20  (1.98) 2.38  (0.39)
34 5 207.0  (37.2) 9.82  (1.77) 15.54  (0.55) 22.86  (6.69) 20.39  (2.26) 56.75  (4.74) 2.79  (0.18)
49 4 228.8  (20.9) 11.93  (1.67) 14.69  (0.68) 22.64  (2.68) 20.13  (1.20) 57.24  (1.59) 2.85  (0.11)
35 3 179.7  (34.2) 9.41  (0.72) 14.08  (1.09) 28.47  (6.87) 19.94  (1.73) 51.59  (5.15) 2.59  (0.05)
04 4 144.0  (32.3) 8.73  (2.63) 13.73  (1.01) 38.86  (2.56) 17.48  (1.03) 43.66  (1.80) 2.50  (0.11)
43 3 189.3  (34.1) 7.92  (1.24) 13.14  (0.30) 32.47  (1.19) 17.78  (0.79) 49.74  (0.39) 2.80  (0.10)

Select linesP39 wild-type WT03 42 140.3  (32.7) 7.50  (1.77) 23.35  (1.32) 0.15  (0.05) 28.63  (3.87) 71.22  (3.89) 2.56  (0.52)
P717 wild-type WT03 40 181.2  (20.9) 9.71  (2.00) 24.79  (1.16) 0.39  (0.07) 28.46  (6.61) 71.15  (6.58) 3.00  (2.24)

P39 C4H::F5H 28 28 175.1  (20.2) 9.11  (1.59) 22.87  (1.01) 0.16  (0.03) 15.58  (1.55) 84.26  (1.55) 5.47  (0.66)
P717 C4H::F5H 82 36 186.8    (8.7) 9.97  (1.59) 22.98  (0.79) 0.46  (0.05) 14.76  (0.71) 84.78  (0.70) 5.76  (0.30)

P39 C3'H-RNAi 14 24 70.1  (19.7) 4.03  (0.64) 15.99  (1.11) 20.00  (3.05) 17.10  (1.90) 62.90  (3.82) 3.73  (0.47)
P717 C3'H-RNAi 26 34 167.7  (15.9) 9.15  (1.50) 17.05  (1.17) 18.49  (3.52) 20.64  (2.55) 60.87  (2.15) 2.99  (0.35)

Mean (Standard Deviation)
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Table 5.2. Summary and comparison of quantitative trait linear models’ structure and 
performance under cross-validation.  a) modeling lignin S monomer proportion in 
C4H::F5H modified P39 and P717 poplar both together and individually, and b) 
modeling lignin H monomer proportion in C3′H-RNAi modified P39 and P717 poplar 
both together and individually.  Data are provided for both GC/MS profile- and LC/MS 
profile-based models in each table.  Analysis based on All Lines dataset. 
 

a)
Model:
Lignin S proportion

sample n peaks in model corr coeff slope P39,P717 P39 P717
P39,P717; C4H::F5H 103  |  103 79  |  33 0.98  |  0.83 1.02  |  0.88 na   8  |  14 18  |  26
P39 C4H::F5H 30  |  30 15  |  19 0.95  |  0.91 0.90  |  0.95   8  |  14 na   2  |  15
P717 C4H::F5H 73  |  73 45  |  36 0.98  |  0.81 1.02  |  0.97 18  |  26   2  |  15 na

b)
Model:
Total lignin content

sample n peaks in model corr coeff slope P39,P717 P39 P717
P39,P717; C3'H-RNAi 153  |  153 90  |  28 0.83  |  0.71 0.96  |  0.70 na   5  |    7 28  |  19
P39 C3'H-RNAi 46  |  46 12  |  16 0.76  |  0.62 0.98  |  1.01  5  |    7 na   5  |  12
P717 C3'H-RNAi 107  |  107 61  |  31 0.92  |  0.68 0.99  |  0.67 28  |  19   5  |  12 na

Common metabolites (GC | LC)Linear model performance under cross-calidation (GC | LC)

Linear model performance under cross-calidation (GC | LC) Common metabolites (GC | LC)
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Table 5.3. Summary of GC/MS- and LC/MS-detected metabolites showing differential 
abundances between P39 and P717 hybrid poplar backgrounds, and between 
C4H::F5H and C3′H-RNAi transformants and these backgrounds.  Analysis based on 
Select Lines dataset.  Significance of differences determined by Student’s t-test (α = 
0.01).  Numbers in parenthesis are the total number of metabolites tested.  “Collectively 
different” indicates total number of unique metabolites identified in the P39- and P717-
based comparisons, combined. “Commonly different” indicates the total number of 
metabolites commonly identified in both the P39- and P717-based comparisons. 
 

 

Genetic construct

Peak set GC (221) LC (52) GC (221) LC (52) GC (221) LC (52)

Different from P39 wild-type - - 50 27 44 22

Different from P717 wild-type - - 6 11 95 37

Collectively different 79 31 54 31 104 40

Commonly different - - 2 7 35 19

Identified "commons" 32 5 1 0 13 3

wild-types C4H::F5H C3'H-RNAi
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Table 5.4. List of identified differential metabolites in the comparison between P39 and 
P717 hybrid poplar backgrounds, based on Select Lines dataset.  Significance of 
differences determined by Student’s t-test (α = 0.01).  Average abundance of 
metabolites in P717 are expressed relative to P39. 
 

Average abundance Average abundance
Peak# Identity P717 rel:P39 Peak# Identity P717 rel:P39

G1_003 Pyruvic acid (1MEOX) (1TMS) 0.52 L2_013 Pinoquercetin; MW316 0.51
G1_005 Glycolic acid (2TMS) 0.68 L2_019 Catechol; MW110 1.81
G1_010 2-Pyrrolidinone (1TMS) 0.04 L2_023 Vitexin; MW432 0.50
G1_018 Urea (2TMS) 0.29 L2_036 3-ferulolquinic acid; MW368 30.40
G1_024 Ethanolamine (3TMS) 1.56 L2_041 Salicortin; MW424 1.64
G1_026 Phosphoric acid (3TMS) 1.81 L2_043 Phenyllactic acid; MW166 21.85
G1_035 Glyceric acid (3TMS) 0.50
G1_045 3-Hydroxymyristic acid (2TMS) 1.71
G1_048 2-Hydroxybenzyl alcohol (2TMS) 1.57
G1_053 Malic acid (3TMS) 0.75
G1_055 L-Asparagine (2TMS) 4.35
G1_059 Pyroglutamic acid (2TMS) 0.66
G1_060 4-Aminobutyric acid (3TMS) 0.65
G1_062 L-Norvaline (3TMS) 3.64
G1_079 4-Hydroxybenzoic acid (2TMS) 1.39
G1_089 D-Ribonic acid lactone (3TMS) 0.27
G1_109 Ribonic acid (5TMS) 0.59
G1_123 Quinic acid (5TMS) 0.13
G1_124 Fructose MEOX (5TMS) 0.29
G1_125 Sorbose MEOX (5TMS) [BP] 0.26
G1_126 Fructose MEOX (5TMS) [BP] 0.21
G1_132 Galactitol (6TMS) 2.27
G1_140 Glutamine (4TMS) rep? 0.60
G1_143 Palmitic acid (1TMS) 1.61
G1_145 Galactaric acid (6TMS) 1.62
G1_151 Inositol (6TMS) 0.37
G1_152 3-Deoxy-arabino-hexaric acid (5TMS) 1.94
G1_169 Glucose-6-phosphate MEOX (6TMS) 0.64
G1_187 Salicin (?TMS) 1.89
G1_196 Sucrose (8TMS) 0.70
G1_204 Trehalose (8TMS) 0.26
G1_215 Digalactosylglycerol (9TMS) 0.62

Comparison between P39 and P717 wild-types
GC/MS metabolites different between backgrounds LC/MS metabolites different between backgrounds
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Table 5.5. Complete list of “collective” differential metabolites in the comparisons 
between P39 C4H::F5H and wild-type background and P717C4H::F5H and wild-type 
background, based on Select Lines dataset.  Significance of differences determined by 
Student’s t-test (α = 0.01).  Average abundance of metabolites in modified lines are 
expressed relative to respective wild-type background. 
 

Peak# Identity P39 P717 Peak# Identity P39 P717

G1_003 Pyruvic acid (1MEOX) (1TMS) 1.53 L2_001 Coumaroyl glucoside; MW326 0.49 0.65
G1_011 Unidentified G1_011 1.34 L2_003 Unidentified L2_001; MW348 0.41 0.67
G1_017 Unidentified G1_017 5.29 L2_004 Unidentified L2_004 0.36 0.63
G1_026 Phosphoric acid (3TMS) 0.45 L2_005 p-Coumaryl shikimate; MW320 0.75
G1_027 Unidentified G1_027 0.20 L2_006 Unidentified L2_006 1.37
G1_031 Succinic acid (2TMS) 1.93 L2_007 Unidentified L2_007 1.32
G1_035 Glyceric acid (3TMS) 1.98 L2_009 Unidentified L2_009 0.60
G1_038 Fumaric acid (2TMS) 1.41 L2_010 Unidentified L2_010 0.60 0.47
G1_047 Unidentified G1_047 1.57 L2_014 Unidentified L2_014; MW324 0.56
G1_049 Unidentified G1_049 0.36 L2_016 Unidentified L2_016 0.57 0.58
G1_053 Malic acid (3TMS) 1.74 L2_017 Unidentified L2_017 0.61
G1_054 Unidentified G1_054 2.91 L2_018 Unidentified L2_018 0.50
G1_055 L-Asparagine (2TMS) 0.17 L2_021 Unidentified L2_021; MW434 0.56
G1_063 Unidentified G1_063 1.62 L2_023 Vitexin; MW432 0.48
G1_066 Unidentified G1_066 0.17 L2_025 Unidentified L2_025 0.33
G1_067 Unidentified G1_067; Organic acid 2.93 L2_026 Unidentified L2_026 0.34 0.59
G1_070 Unidentified G1_070 0.15 L2_027 Unidentified L2_027 0.37
G1_075 Unidentified G1_075; Amino acid 0.23 L2_028 Unidentified L2_028; MW518 0.70
G1_076 Unidentified G1_076; junk 0.25 L2_029 Unidentified L2_029; MW550 0.56
G1_077 Unidentified G1_076; junk 0.24 L2_030 Unidentified L2_030; MW442 0.48
G1_094 Unidentified G1_094 0.53 L2_031 Unidentified L2_031 0.60
G1_096 Unidentified G1_096 1.45 L2_033 Unidentified L2_032; MW286 0.54
G1_104 Unidentified G1_104; Carbohydrate 2.18 L2_037 Unidentified L2_037; MW576 0.43
G1_105 Unidentified G1_105 1.65 L2_038 Unidentified L2_038; MW406 0.52
G1_106 L-Glycerol-3-phosphate (4TMS) 1.32 L2_040 Unidentified L2_040; MW132 0.55
G1_108 Unidentified G1_108 1.71 L2_042 Unidentified L2_042 0.59
G1_109 Ribonic acid (5TMS) 1.72 L2_043 Phenyllactic acid; MW166 0.48
G1_114 Unidentified G1_114; Organic acid 1.62 L2_046 Unidentified L2_046 0.67
G1_128 Glucose MEOX (5TMS) 2.24 L2_048 Unidentified L2_048; MW584 0.63 0.60
G1_130 Glucose MEOX (5TMS) [BP] 2.47 L2_049 Unidentified L2_049; MW466 0.54
G1_138 Unidentified G1_138 0.63 L2_050 Unidentified L2_050; MW506 0.39
G1_141 Gluconic acid (6TMS) 1.68
G1_142 Galactonic acid (6TMS) 1.92
G1_147 Unidentified G1_147 1.91
G1_151 Inositol (6TMS) 1.83
G1_153 Unidentified G1_153 0.34
G1_155 Unidentified G1_155 7.69
G1_160 Unidentified G1_160 1.85
G1_167 Unidentified G1_167 1.41
G1_168 Galactose-6-phosphate MEOX (TMS) 1.76
G1_169 Glucose-6-phosphate MEOX (6TMS) 1.41
G1_174 Unidentified G1_174 0.51
G1_175 Unidentified G1_175; Carbohydrate 0.54
G1_178 Unidentified G1_178 0.46
G1_183 Unidentified G1_183 1.55
G1_191 Unidentified G1_191; Carbohydrate 0.63
G1_196 Sucrose (8TMS) 1.31
G1_198 Unidentified G1_198 1.68
G1_206 Unidentified G1_206; Phenolic 0.67
G1_207 Unidentified G1_207 0.51
G1_208 Unidentified G1_208 1.42
G1_209 Unidentified G1_209 1.56
G1_212 Unidentified G1_212 0.42 0.45
G1_213 Galactinol (9TMS) 1.52 1.68

Transgenic Construct: C4H::F5H
GC/MS metabolites different between Mod and WT LC/MS metabolites different between Mod and WT

Avg abundance rel:WT Avg abundance rel:WT
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Table 5.6. List of “common” differential metabolites in the comparisons between P39 
C3′H-RNAi and wild-type background and P717 C3′H-RNAi and wild-type background, 
based on Select Lines dataset.  Significance of differences determined by Student’s t-
test (α = 0.01).  Average abundance of metabolites in modified lines are expressed 
relative to respective wild-type background. 
 

Peak# Identity P39 P717 Peak# Identity P39 P717

G1_031 Succinic acid (2TMS) 0.27 0.34 L2_001 Coumaroyl glucoside; MW326 24.48 12.40
G1_044 Unidentified G1_044 3.40 4.59 L2_003 Unidentified L2_001; MW348 0.68 0.32
G1_047 Unidentified G1_047 0.47 0.64 L2_004 Unidentified L2_004 0.41 0.28
G1_053 Malic acid (3TMS) 0.54 0.60 L2_005 p-Coumaryl shikimate; MW320 14.63 11.39
G1_054 Unidentified G1_054 0.24 0.30 L2_006 Unidentified L2_006 0.25 0.18
G1_059 Pyroglutamic acid (2TMS) 0.61 0.67 L2_007 Unidentified L2_007 0.36 0.30
G1_060 4-Aminobutyric acid (3TMS) 1.44 0.72 L2_008 Unidentified L2_008 0.61 0.57
G1_063 Unidentified G1_063 0.49 0.56 L2_009 Unidentified L2_009 0.25 0.36
G1_074 Unidentified G1_074; Organic acid 0.47 0.55 L2_014 Unidentified L2_014; MW324 0.35 0.40
G1_096 Unidentified G1_096 0.39 0.59 L2_018 Unidentified L2_018 0.50 0.31
G1_102 Unidentified G1_101; Sugar alcohol 0.26 0.35 L2_024 Unidentified L2_024 0.51 0.24
G1_106 L-Glycerol-3-phosphate (4TMS) 0.64 0.67 L2_029 Unidentified L2_029; MW550 0.67 0.57
G1_109 Ribonic acid (5TMS) 0.41 0.40 L2_030 Unidentified L2_030; MW442 0.55 0.66
G1_110 Unidentified G1_108; Organic acid 0.54 0.46 L2_035 Grandidentatin; MW424 20.45 69.00
G1_114 Unidentified G1_114; Organic acid 0.46 0.49 L2_036 3-ferulolquinic acid; MW368 0.23 0.54
G1_132 Galactitol (6TMS) 0.72 0.57 L2_041 Salicortin; MW424 4.32 1.73
G1_133 Unidentified G1_133; Organic acid 0.50 0.31 L2_043 Phenyllactic acid; MW166 0.65 0.47
G1_141 Gluconic acid (6TMS) 0.06 0.24 L2_047 Unidentified L2_047; MW264 0.37 0.51
G1_144 Glucaric acid (6TMS) 0.15 0.17 L2_048 Unidentified L2_048; MW584 0.03 0.03
G1_145 Galactaric acid (6TMS) 0.20 0.18
G1_147 Unidentified G1_147 0.37 0.33
G1_148 Unidentified G1_148; Organic acid 0.17 0.21
G1_149 Unidentified G1_149; Organic acid 0.15 0.15
G1_150 Unidentified G1_150; Organic acid 0.37 0.46
G1_152 3-Deoxy-arabino-hexaric acid (5TMS) 0.35 0.38
G1_167 Unidentified G1_167 0.65 0.52
G1_169 Glucose-6-phosphate MEOX (6TMS) 0.61 0.52
G1_170 Glucose-6-phosphate MEOX (6TMS) 2nd Pk 0.52 0.54
G1_174 Unidentified G1_174 0.21 0.23
G1_175 Unidentified G1_175; Carbohydrate 0.19 0.22
G1_183 Unidentified G1_183 0.14 0.16
G1_197 Unidentified G1_197; Glycoside 10.50 4.42
G1_205 Unidentified G1_205; Carbohydrate 26.14 3.15
G1_209 Unidentified G1_209 0.56 0.74
G1_212 Unidentified G1_212 0.39 0.20

Transgenic Construct: C3'H-RNAi
GC/MS metabolites different between Mod and WT LC/MS metabolites different between Mod and WT

Avg abundance rel:WT Avg abundance rel:WT
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6.1 Thesis summation 
A great deal of research concerning the nature of plant biochemistry and metabolism 

was conducted prior to the advent of modern metabolomics.  Although the findings of 

this classic research comprise the foundation of, and continue to assist in our 

understanding of plant metabolism, traditional techniques were generally only capable 

of addressing specific aspects of metabolism in a very focused manner.  Over the 

course of the last decade, the greater goal of plant functional genomics, and more 

specifically metabolomics, has been to expand the “window” through which metabolism 

may be viewed.  Consequently, the interrelations within and between entire metabolic 

processes may now be characterised in a collective fashion.  To this end, this body of 

work represents efforts to perform broadscale, non-targeted metabolomics analyses on 

industrially relevant and model system tree species, with a specific focus on the 

relationships between metabolite profiles and physico-chemical wood traits. 

With regard to tree development and wood quality in an industrial context, both 

Douglas-fir and radiata pine were targets for metabolomics analyses.  In Douglas-fir, 

metabolomics was assessed for its capacity to discern biological variation among full-

sib families in a tree breeding population.  The differential accumulation of metabolites 

in profiles derived from developing xylem was examined through a series of statistical 

analyses that incorporated family, site, tree growth and quantitative phenotypic wood 

traits (wood density, microfibril angle, wood chemistry and fibre morphology).  Analyses 

revealed that metabolic and phenotypic traits alike were strongly related to site, while 

similar associations relating to genetic (family) structure were weak in comparison.  

Furthermore, correlations between specific phenotypic traits (i.e. tree growth, fibre 

morphology and wood chemistry) and metabolic traits (i.e. carbohydrate and lignin 

biosynthetic metabolites) were identified, demonstrating a coherent relationship 

between genetics, metabolism, environmental and phenotypic expression in wood-

forming tissue of this species. 

In juvenile radiata pine, metabolomics was used to investigate the relationship 

between the metabolism of developing xylem and the propensity for tree families to 

exhibit an intra-ring internal checking wood defect, which devalues lumber products.  

Based on either complete metabolite profiles, or reduced profiles consisting only of 

metabolites whose abundance was strongly correlated with the trait, it was possible to 
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differentiate between siblings from families having different levels of internal checking 

severity.  Furthermore, it was possible to model the relationship between metabolite 

profiles and internal checking such that the severity of the defect in individual trees 

could be predicted accurately on the basis of profile data alone. 

Investigation of the relationships between metabolism, genotype and phenotype 

was also conducted in a controlled, model system setting involving hybrid poplar 

genotypes transformed with transgenic constructs related to lignin biosynthesis, and 

which affected growth and physico-chemical wood traits.  The initial study demonstrated 

that the expression of the C4H::F5H transgenic construct in Populus tremula × alba, 

which leads to an increased ratio of syringyl to guaiacyl lignin monomers in xylem 

tissue, also resulted in detectable shifts in metabolite profiles from developing xylem or 

non-lignifying suspension tissue cultures.  Transformants were not only distinguished 

from the wild-type in lignin-related metabolism, but also, predominantly, in other 

metabolite classes such as the carbohydrates. 

The comprehensive follow-up to this research assessed the consistency of 

modified physical (i.e. wood properties) and developing xylem metabolic phenotypes 

generated via separate expression of two genetic constructs (C4H::F5H and C3′H-

RNAi) in distinct hybrid poplar genetic backgrounds (Populus tremula × alba and 

Populus grandidentata × alba).  This work demonstrated that transgene-induced 

phenotypic gradients in physico-chemical wood traits can be associated with similar 

gradients in the global metabolism of secondary xylem biosynthesis.  Furthermore, it 

was apparent that while distinct, at a global level the wood-forming metabolisms of 

different poplar hybrids can, to some extent, respond similarly to the influences of 

genetic manipulation.  These findings have significant, positive implications for the 

potential development of broadly applicable metabolic markers for wood traits. 

In 2002, at the time when this research was begun, plant metabolomics as a field 

had only recently been conceived and put to effect (Fiehn et al., 2000; Roessner et al., 

2000).  The intervening years have witnessed the rise of this new branch of functional 

biology, with a rapidly growing body of literature (Dettmer et al., 2007), broadening 

applications, and considerable technical advances - particularly in the quality of 

software tools available for data handling and statistical analysis (Smith et al., 2006; 

Tautenhahn et al., 2008; Thimm et al., 2004).  The progression of this research 
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concurrently with the early growth of plant metabolomics concepts and technology has 

meant that the experiments in this body of work frequently employed state-of-the-art 

approaches, and now comprise a large fraction of the broad-scale, non-targeted 

metabolomics research conducted on tree species to date.  This work has fulfilled the 

initial postulation that, in several scenarios, phenotypic wood traits would correlate with 

the non-targeted metabolite profiles of developing xylem.  In doing so, it has revealed 

that a specific wood trait, which arises from the action of heritable genetic or 

environmental factors, or the effects of gene misregulation, can have a complex 

metabolic basis involving broad aspects of cellular metabolism; however, resource 

availability and the conceptual and technical limitations of contemporary metabolomics 

methodology have constrained these analyses.  As is evident from this research and 

from the literature to date, the derivation of concrete and detailed biological 

understanding from broad-scale metabolic profile data, as well as the extension of 

phenotype-distinguishing correlative relationships between profiles and phenotype into 

practical and robust diagnostic tools, largely remain as challenges for the field of plant 

metabolomics to tackle in earnest. 

 

6.2 Future research 
Throughout this document it has been demonstrated that correlative relationships exist 

between particular wood traits and specific elements in metabolite profiles of developing 

xylem,  and contended that such relationships could have utility in screening 

applications concerned with such traits.  From the applied perspective, the next phase 

of this work should therefore involve intensive validation of this claim of utility.  In 

particular, the carefully considered (re)construction of predictive models, based on 

larger sample sets representing a broad range and even distribution in the severity of 

the trait of interest, is paramount.  The subsequent extension of model testing beyond 

cross-validation scenarios, to include testing against new and diverse sample sets, and 

with model refinement on that basis, will also be required.  Such extensions will 

constitute essential steps in the realisation of metabolomics’ utility in tree breeding and 

assessment applications. 

From the perspective of furthering the understanding of tree biology, all of the 

studies described in this thesis could be repeated or extended under refined conditions.  
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Given the availability or resources, deeper insight could be gained from broader 

analytical scope and additional means of data presentation.  This research has primarily 

focused on the inter-relationships between metabolite profiles and phenotypic traits, 

with some consideration of genetics, gene expression and environment; however, 

because metabolic data is most informative when viewed in conjunction with other 

measurements, the value of metabolomics analyses may be increased when additional 

‘omics‘-scale analyses are conducted in parallel.  As such, increasing the dimensionality 

of these metabolomics-based studies by performing concurrent genetics (i.e. genomic 

sequence data) or gene expression (i.e. micro-array data) analyses could lead to 

increased insight into the biological system(s) under inspection.  Such multi-omics 

studies have begun to appear in the literature, and are set to become a fixture of tree 

functional biology (Dauwe et al., 2007; Leple et al., 2007).  The insight provided by 

metabolomics analyses is also limited by the resolution of metabolite detection, and the 

ability to identify those metabolites resolved.  As such, future efforts might consider 

alternative or additional sample extraction procedures, different classes of analytical 

instrumentation (such as MALDI or FT-MS techniques), and the expansion and 

improvement of standard compound libraries.  Finally, with the powerful combination of 

multi-omics analyses coupled with a high level of metabolite resolution and 

identification, the importance of orderly presentation of the increasingly complex 

data/results is undeniable.  An excellent mode of presentation is metabolic pathway 

scaffolding, in which genetic, gene expression, and metabolomic data are 

superimposed on established pathway diagrams.  The presentation of comprehensive 

data in this manner can bring about considerable improvements in data interpretability, 

for both researchers and readers alike. 
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Appendix A.1. Broad-sense heritabilities and identities of all significant metabolites 
 

Metabolite Information#   Heritability+   Mass Spectra of Unknowns! 
Peak# Compound ID Class   H2 0.05   m/z of ten largest peaks (abundance relative to base peak) 

20 Acetic Acid   0.00   
54 Acetic Acid, bisoxyl   0.00   
56 Unknown   0.00  274(20)228(92)184(67)149(21)147(100)136(21)134(40)110(77)77(27)73(82) 

60 Phosphoric acid   0.00   
92 Alanine, B-    0.00   
117 Erythronic acid   0.00   

141 Ribose   0.00   
148 Unknown Benzene Structure  0.00  369(31)341(36)295(51)281(64)222(30)221(88)209(32)207(100)147(67)73(71) 
159 Unknown Carbohydrate  0.00  333(40)331(27)305(39)292(87)218(30)217(100)189(31)147(83)143(26)73(72) 

169 Pinitol   0.00   
173 Quinic acid   0.00   
182 Glucose {BP}   0.00   

202 Unknown Sugar Acid  0.00  361(25)334(27)333(100)305(35)292(23)243(26)217(25)191(23)147(33)73(55) 
232 Unknown Dimeric Sugar  0.00  437(15)363(18)362(34)361(100)271(18)243(13)217(42)204(14)169(27)147(15) 
237 Phenolic Phenolic  0.00  429(41)355(53)341(19)295(25)282(24)281(100)221(68)207(36)147(47)73(67) 

241 Unknown Phenolic Glycoside  0.00  362(30)361(100)271(30)243(27)235(18)217(37)169(30)147(32)129(26)73(56) 
250 Unknown Unknown  0.00  367(32)361(100)313(20)312(64)271(23)243(26)217(20)169(37)147(24)73(63) 
156 Unknown Carbohydrate  0.00  Gölm Metabolite Database: EITTMS_N12C_ATHR_1770.9_1135EC25_ 

147 Unknown Unknown  0.01  306(21)286(47)245(24)244(83)217(21)163(48)147(59)142(56)129(24)73(100) 
239 Unknown Phenolic Dimer  0.02  429(32)356(31)355(80)341(22)282(22)281(100)221(56)207(34)147(44)73(68) 
186 Unknown Sugar Acid  0.03  Gölm Metabolite Database: EITTMS_N12C_ATHR_1871.9_1135EC44_ 

230 Sucrose   0.03   
82 Unknown Unknown  0.03  289(12)247(11)217(17)149(33)148(14)147(100)127(54)116(18)75(12)73(68) 
139 Unknown Amino Acid  0.05  279(31)246(66)232(26)218(42)174(40)159(100)149(24)147(92)100(36)73(67) 

118 Unknown Amino Acid  0.05  332(20)242(27)230(29)219(32)218(100)174(74)147(71)100(25)86(29)73(93) 
221 Fructose 6P    0.05   
175 Fructose   0.06   

214 Unknown Carbohydrate  0.07  217(72)207(21)205(25)204(100)191(22)189(27)149(26)147(73)129(22)73(72) 
233 Unknown Dimeric Sugar  0.08  399(71)361(100)243(38)237(49)217(45)203(80)169(84)147(84)129(44)73(86) 
218 Unknown Sugar Phosphate  0.08  285(25)284(89)272(84)228(23)217(51)194(20)149(33)148(21)147(42)73(100) 

120 Threonic acid   0.09   
91 Unknown Amino Acid  0.09  218(61)174(42)160(30)149(25)148(15)147(82)130(15)116(16)73(100)10(26) 
22 Unknown Unknown  0.09  366(4)205(5)204(26)150(3)149(22)148(17)147(100)132(3)131(7)73(13) 

187 Unknown Benzene Structure  0.09  429(13)415(13)341(22)283(18)282(25)281(100)221(22)207(16)147(37)73(59) 
81 Unknown Amino Acid  0.10  302(12)290(13)289(30)288(100)148(25)172(30)148(13)147(34)100(33)73(84) 
30 Unknown Benzene Structure  0.10  357(12)356(18)355(54)323(5)285(7)269(27)268(28)267(100)251(8)73(50) 

73 Glyceric acid   0.10   
177 Fructose {BP}   0.11   
104 Malic acid   0.11   

244 Coniferin   0.13   
209 Inositol   0.13   
246 Unknown Phenolic / Glucoside  0.13  450(37)362(33)361(95)297(50)271(33)243(42)217(100)169(45)147(45)73(76) 

160 Ribonic acid   0.14   
85 Unknown Amino Acid  0.15  248(9)176(9)175(16)174(100)147(15)146(7)100(17)86(26)73(37)59(11) 
74 Fumaric acid   0.15   

238 Unknown Phenolic / Sugar  0.15  423(27)362(32)361(100)297(19)271(25)243(29)217(31)169(46)147(27)73(63) 
224 Unknown Carbohydrate  0.16  435(30)434(44)433(100)362(21)361(28)360(53)318(31)217(27)147(41)73(28) 
67 Maleic Acid   0.16   

229 Adenosine   0.17   
222 Glucose 6P   0.18   
183 Unknown Carbohydrate  0.20  319(22)305(21)221(26)217(70)207(18)205(34)204(100)189(22)147(76)73(56) 

115 Unknown Small Acid  0.20  300(16)274(14)246(27)245(62)226(41)149(25)148(16)147(100)134(19)73(46) 
181 Unknown Carbohydrate  0.20  480(18)273(45)205(76)189(74)149(24)148(28)147(100)117(18)73(38)57(22) 
223 Glucose 6P {BP}   0.21   

178 Glucopyranose   0.23   
149 Unknown Amino Acid  0.24  273(14)244(27)219(16)191(15)149(24)147(100)111(45)82(32)73(85)55(21) 

216 Unknown Benzene structure  0.24  430(42)429(79)356(27)255(61)341(30)281(64)221(49)207(31)147(54)73(100) 

192 Unknown Unknown  0.24  292(29)291(75)221(52)217(57)149(34)147(100)133(36)103(30)75(29)73(65) 

165 Unknown Sugar Acid  0.30  334(37)333(100)305(30)292(41)219(23)217(37)147(48)143(36)117(23)73(99) 
138 Arabinose   0.31   

135 Xylose {BP}   0.34   
211 Unknown Carbohydrate  0.35  320(28)319(96)315(24)217(40)205(28)157(52)149(20)147(100)129(66)73(76) 
137 Xylose   0.42   

226 Unknown Phenolic  0.67  429(35)355(31)341(22)283(19)282(32)281(100)221(43)207(26)147(40)73(55) 

 
# Compound identity or class determined through mass-spectral and retention time matches with standard 
compounds.  {BP} Metabolite by-product, as suggested by the Gölm Metabolite Database. 
+

   Only metabolites for which it was possible to calculate broad-sense heritabilities are presented (64 of 139). 
! For unidentified compounds with strong hits onto ‘unidentified’ compounds in the Gölm Metabolite Database, the 
GMD reference is given.  
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Appendix A.2. Comparison of all significant metabolite canonical correlation 
coefficients with factor analysis factor scores and broad-sense heritabilities. 
 
Metabolite Information#  CCA$  Factor analyses*  Heritability+  Mass Spectra of Unknowns! 
Peak# Compound ID Class  Metabolite1  F-1 F-2 F-3  H2 0.05  m/z of ten largest peaks (abundance relative to base peak) 

31 Unknown Unknown  0.615  0.75  -0.35    192(18)191(100)190(14)184(66)149(14)148(13)147(82)134(40)77(22)73(66)

82 Unknown Unknown  0.611  0.82    0.03  289(12)247(11)217(17)149(33)148(14)147(100)127(54)116(18)75(12)73(68)

118 Unknown Amino Acid  0.548  0.86    0.05  332(20)242(27)230(29)219(32)218(100)174(74)147(71)100(25)86(29)73(93)

91 Unknown Amino Acid  0.545  0.84    0.09  218(61)174(42)160(30)149(25)148(15)147(82)130(15)116(16)73(100)10(26)

92 Alanine, B-   0.509  0.71    0.00  
140 Unknown Carbohydrate  0.500  0.64      334(20)320(45)304(22)230(32)191(21)163(19)149(33)48(20)147(100)73(86)

108 Unknown Unknown  0.449  0.38 0.61     293(100)253(57)252(67)251(59)237(76)221(50)191(86)175(63)147(90)73(97)

13 Unknown Benzene Structure  0.434   0.56 -0.44    296(5)295(13)247(3)225(7)210(5)209(32)208(22)207(100)191(8)73(9)

33 Unknown Unknown  0.424  0.56  -0.33    355(6)186(8)185(54)170(10)167(21)153(15)152(100)134(15)86(64)59(42)

62 Unknown Small acid  0.422  0.52      314(9)301(10)300(20)299(100)284(2)283(7)227(3)225(10)211(4)73(3)

214 Unknown Carbohydrate  0.410  0.68    0.07  217(72)207(21)205(25)204(100)191(22)189(27)149(26)147(73)129(22)73(72)

178 Glucopyranose   0.397   0.65   0.23  

96 Unknown Hydrocarbon Chain  0.395  0.60 0.38     314(27)301(22)245(100)193(17)191(64)147(51)116(22)110(18)77(17)73(64)

128 Unknown Carbohydrate  0.384  0.74      231(37)220(48)217(87)203(29)149(33)147(100)133(21)130(24)129(72)73(79)

54 Acetic acid, bis-ox   0.372  0.65    0.00  

241 Unknown Phenolic Glycoside  0.371  0.62    0.00  362(30)361(100)271(30)243(27)235(18)217(37)169(30)147(32)129(26)73(56)

138 Arabinose   0.363  0.46 0.41   0.31  
200 Unknown Phenolic  0.358  0.44      369(24)295(60)282(23)281(83)222(25)221(100)207(73)149(20)147(44)73(46)

24 Ammonium   0.353  0.41 -0.35-0.43    
120 Threonic acid   0.349  0.49    0.09  
182 Glucose {BP}   0.346      0.00  

246 Unknown Phenolic/Glucoside  0.338  0.58    0.13  450(37)362(33)361(95)297(50)271(33)243(42)217(100)169(45)147(45)73(76)

135 Xylose {BP}   0.337  0.51    0.34  
14 Unknown Small Acid  0.334  0.37 -0.34-0.55    218(15)217(14)203(9)163(22)149(43)148(19)147(100)133(29)131(9)73(33)

224 Unknown Carbohydrate  0.334  0.50  0.30  0.16  435(30)434(44)433(100)362(21)361(28)360(53)318(31)217(27)147(41)73(28)

111 Pyroglutamic acid   0.333  0.54      
20 Acetic Acid   0.323  0.59    0.00  

68 Unknown Unknown  0.318    -0.49    256(66)248(47)206(45)186(50)174(100)164(38)120(54)84(38)77(56)73(66)

175 Fructose   0.310      0.06  
177 Fructose {BP}   0.308      0.11  

75 Unknown Benzene Structure  0.305   0.73     355(34)281(56)269(14)268(19)267(65)223(19)222(28)221(100)147(42)73(40)

235 Maltose   0.302  0.43      
179 Glucose   0.300        

173 Quinic acid   -0.304  -0.31 -0.49  0.00  
150 Rhamnose   -0.308    0.31    
115 Unknown Small Acid  -0.311    0.41  0.20  300(16)274(14)246(27)245(62)226(41)149(25)148(16)147(100)134(19)73(46)

81 Unknown Amino Acid  -0.316  -0.37    0.10  302(12)290(13)289(30)288(100)148(25)172(30)148(13)147(34)100(33)73(84)

30 Unknown Benzene Structure  -0.331      0.10  357(12)356(18)355(54)323(5)285(7)269(27)268(28)267(100)251(8)73(50)

190 Unknown Sugar Alcohol  -0.359        273(14)244(27)219(16)191(15)149(24)147(100)111(45)82(32)73(52)55(21)

74 Fumaric acid   -0.373    0.35  0.15  
133 Unknown Benzene Structure  -0.379  -0.39  0.45    402(21)401(51)357(22)256(33)355(100)327(21)281(34)267(35)221(36)73(70)

70 Unknown Benzene Structure  -0.379  -0.55      430(11)429(23)343(19)342(18)341(85)327(12)326(15)325(47)147(34)73(100)

215 Unknown Sugar Phosphate  -0.405    0.68    343(56)342(79)341(87)315(90)299(100)243(85)227(74)211(97)75(67)73(81)

85 Unknown Amino Acid  -0.444  -0.41 -0.34  0.15  248(9)176(9)175(16)174(100)147(15)146(7)100(17)86(26)73(37)59(11)

217 Unknown Carbohydrate  -0.450    0.85    Gölm Metabolite Database: EITTMS_N12C_STUR_2277.7_1135EC29_

205 Unknown Sugar Acid  -0.451  -0.50  0.41    220(17)219(26)217(34)205(23)204(100)189(18)157(17)147(34)129(17)73(91)

210 Unknown Sugar Alcohol  -0.458    0.43    435(15)434(30)433(63)344(20)343(67)318(26)204(25)191(100)147(62)73(86)

244 Coniferin   -0.459    0.66  0.13  

164 Shikimic acid   -0.487  -0.45 0.39 0.56    

73 Glyceric acid   -0.546  -0.52    0.10  
169 Pinitol   -0.659  -0.70  0.32  0.00  

 
# Compound identity or class determined through mass-spectral and retention time matches with standard 
compounds.  {BP} Metabolite by-product, as suggested by the Gölm Metabolite Database. 
$ Only metabolites with canonical correlation coefficients >+/- 0.3 (i.e. significant), across all 139 metabolites are 
presented. 
* Of metabolites with significant canonical correlation coefficients, only significant factor scores (>+/- 0.3) in the site-
differentiating factors are presented. 
+ Of metabolites with significant canonical correlation coefficients, it was only possible to calculate broad-sense 
heritabilities for some. 
! For unidentified compounds with strong hits onto ‘unidentified’ compounds in the Gölm Metabolite Database, the 
GMD reference is given. 
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Appendix B.1. Entire list of metabolites identified in GC/MS profiles.  RT = retention 
time, RI = retention index, BP indicates by-product, as suggested by the Gölm 
metabolite database. 

List of all 221 metabolites resolved from GC/MS chromatograms - Page 1 of 4
Peak# RTime RI Identity.  Where unknown: ten (if possible) most abundant masses (mz: mass relative-abundance basepeak999|)

G1_001 6.31 1026.3 Unidentified G1_001; mz: 152 999 | 166 257 | 153 128 | 167  78 | 122  65 | 78  44 | 97  30 | 83  25 | 136  22 | 96  11 |
G1_002 6.40 1032.0 Unidentified G1_002; mz: 93 999 | 123 619 | 95 385 | 73 231 | 125 212 | 55 107 | 65  97 | 94  79 | 75  75 | 165  72 |
G1_003 6.60 1043.6 Pyruvic acid (1MEOX) (1TMS) 
G1_004 6.77 1054.3 Lactic acid (2TMS) 
G1_005 7.04 1070.3 Glycolic acid (2TMS) 
G1_006 7.54 1100.4 L-Alanine (2TMS) 
G1_007 8.23 1142.4 Oxalic acid (2TMS) 
G1_008 8.23 1142.5 Unidentified G1_007 org acid; mz: 147 999 | 133 425 | 149 324 | 148 215 | 190 192 | 131 166 | 160 141 | 59 123 | 205 114 | 162  99 |
G1_009 8.26 1144.4 3-Hydroxypropanoic acid (2TMS) 
G1_010 8.29 1146.0 2-Pyrrolidinone (1TMS) 
G1_011 8.83 1178.4 Unidentified G1_011; mz: 281 999 | 282 272 | 147 239 | 283 186 | 265 166 | 369 148 | 249 103 | 207  58 | 370  55 | 284  51 |
G1_012 8.86 1180.1 Unidentified G1_012; mz: 209 999 | 193 784 | 210 216 | 211 157 | 194 149 | 97  16 | 65  3 |
G1_013 8.93 1184.6 Monomethylphosphate (2TMS) 
G1_014 8.95 1185.6 Unidentified G1_014; mz: 174 999 | 190 647 | 218 605 | 156 573 | 86 446 | 59 298 |
G1_015 9.50 1219.2 Unidentified G1_015; mz: 228 999 | 110 665 | 73 618 | 184 546 | 134 457 | 77 428 | 69 158 | 136 129 | 75 122 | 229 114 |
G1_016 9.57 1223.3 L-Valine (2TMS) 
G1_017 9.92 1244.3 Unidentified G1_017; mz: 73 999 | 147 831 | 117 719 | 234 693 | 130 493 | 131 349 | 102 300 | 89 205 | 149 190 | 59 190 |
G1_018 10.03 1251.3 Urea (2TMS) 
G1_019 10.08 1254.2 Benzoic acid (1TMS) 
G1_020 10.12 1256.9 Unidentified G1_020; mz: 110 999 |
G1_021 10.29 1266.9 L-Serine (2TMS) 
G1_022 10.39 1273.1 Unidentified G1_022; mz: 84 999 | 56 378 | 186 245 |
G1_023 10.44 1276.0 Unidentified G1_023; mz: 147 999 | 175 972 | 131 393 | 172 177 | 79 166 | 102 116 | 60 111 | 177  99 | 132  97 | 103  93 |
G1_024 10.44 1276.2 Ethanolamine (3TMS) 
G1_025 10.55 1282.6 L-Leucine (2TMS) 
G1_026 10.62 1286.8 Phosphoric acid (3TMS) 
G1_027 10.63 1287.1 Unidentified G1_027; mz: 133 999 | 208 851 | 191 769 | 192 413 | 148 220 | 77 107 | 178  90 | 386  78 | 230  63 | 72  53 |
G1_028 10.93 1305.7 L-Isoleucine (2TMS) 
G1_029 10.97 1306.6 L-Threonine (2TMS) 
G1_030 11.15 1318.5 Glycine (3TMS) 
G1_031 11.22 1323.0 Succinic acid (2TMS) 
G1_032 11.28 1326.6 Unidentified G1_032; mz: 341 999 | 325 652 | 429 471 | 343 242 | 430 210 |
G1_033 11.30 1326.6 Unidentified G1_033; mz: 240 999 | 241 159 |
G1_034 11.33 1329.6 Unidentified G1_034; mz: 73 999 | 254 452 | 239 294 | 151 133 | 255  94 | 74  86 | 166  73 | 136  69 | 256  38 |
G1_035 11.60 1346.0 Glyceric acid (3TMS) 
G1_036 11.62 1347.4 Unidentified G1_036; mz: 184 999 | 285 444 | 77 254 | 174 164 | 185 101 |
G1_037 11.71 1352.9 Unidentified G1_037; mz: 200 999 | 147 544 | 154 489 | 112 265 | 243 247 | 228 206 | 201 206 | 172 153 | 59 115 | 255  98 |
G1_038 11.75 1355.2 Fumaric acid (2TMS) 
G1_039 12.00 1370.2 Unidentified G1_039; mz: 130 999 | 316 815 | 88 587 | 226 272 |
G1_040 12.04 1372.5 L-Alanine (3TMS) 
G1_041 12.09 1375.6 L-Serine (3TMS) 
G1_042 12.39 1393.8 Cytosine (2TMS) 
G1_043 12.54 1402.9 L-Threonine (3TMS) 
G1_044 12.70 1412.1 Unidentified G1_044; mz: 254 999 | 239 981 | 223 247 | 255 230 | 241 228 | 240 217 | 73 101 | 133  94 | 257  93 | 147  58 |
G1_045 13.00 1430.8 3-Hydroxymyristic acid (2TMS) 
G1_046 13.05 1434.0 Unidentified G1_044; mz: 73 999 | 147 737 | 160 710 | 116 478 | 130 410 | 75 300 | 234 163 | 161 146 | 74 146 | 117 131 |
G1_047 13.12 1438.0 Unidentified G1_047; mz: 248 999 | 249 268 | 290 197 | 134  58 |
G1_048 13.26 1446.3 2-Hydroxybenzyl alcohol (2TMS) 
G1_049 12.54 1463.5 Unidentified G1_049; mz: 73 999 | 117 991 | 232 830 | 233 174 | 244 164 | 147 121 | 116 117 | 118 110 | 259 107 | 74 106 |
G1_050 13.65 1470.0 Unidentified G1_050; mz: 135 999 | 134 323 | 209 238 | 165 172 | 77 134 | 179 128 | 105 111 | 91  55 | 194  54 | 79  42 |
G1_051 13.91 1485.6 Pyruvic acid oxime (3TMS) 
G1_052 14.04 1493.8 Unidentified G1_052; mz: 327 999 | 282 540 | 415 341 | 283 326 | 399 165 |
G1_053 14.17 1502.2 Malic acid (3TMS) 
G1_054 14.20 1503.5 Unidentified G1_054; mz: 423 999 | 424 361 | 497 290 | 425 200 | 498 128 | 335 123 | 499  62 | 336  49 | 333  46 | 426  44 |
G1_055 14.31 1511.6 L-Asparagine (2TMS) 
G1_056 14.37 1515.9 Unidentified G1_054; mz: 230 999 | 142 320 | 304 251 | 231 247 |
G1_057 14.59 1532.3 L-Methionine 
G1_058 14.63 1535.2 L-Aspartic acid (3TMS) 
G1_059 14.67 1537.7 Pyroglutamic acid (2TMS) 
G1_060 14.73 1542.4 4-Aminobutyric acid (3TMS) 
G1_061 14.89 1554.0 4-Methyl-5-hydroxy-3-penten-2-one (1TMS) 
G1_062 15.07 1565.4 L-Norvaline (3TMS) 
G1_063 15.13 1569.7 Unidentified G1_063; mz: 258 999 | 348 278 | 274 256 | 259 254 | 163 149 | 100 104 | 349  99 | 260  85 | 59  77 |
G1_064 15.20 1576.6 Unidentified G1_064; mz: 219 999 | 129 516 | 117 254 | 218 151 | 203 121 |
G1_065 15.32 1585.6 Threonic acid (4TMS) 
G1_066 15.37 1588.8 Unidentified G1_066; mz: 261 999 | 162 805 | 243 768 | 100 402 | 113 376 | 141 318 | 215 201 | 207 175 | 116 154 | 91 119 |
G1_067 15.42 1592.4 Unidentified G1_067; mz: 261 999 | 162 805 | 243 768 | 100 402 | 113 376 | 141 318 | 215 201 | 207 175 | 116 154 | 91 119 |
G1_068 15.44 1594.4 Unidentified G1_067; mz: 114 999 | 73 627 | 290 384 | 100 332 | 276 319 | 115 191 | 172 171 | 188 149 | 191 145 | 291 141 |
G1_069 15.53 1600.6 L-Proline (2TMS) 
G1_070 15.68 1611.2 Unidentified G1_070; mz: 218 999 | 261 798 | 162 508 | 141 273 | 262 174 | 219 164 | 56 117 | 263  94 | 232  91 | 363  85 |
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List of all 221 metabolites resolved from GC/MS chromatograms - Page 2 of 4
Peak# RTime RI Identity.  Where unknown: ten (if possible) most abundant masses (mz: mass relative-abundance basepeak999|)

G1_071 15.72 1614.8 Glutamine (4TMS) split peak 1 
G1_072 15.73 1615.2 Glutamine (4TMS) split peak 2 
G1_073 15.79 1619.9 Unidentified G1_073; mz: 244 999 | 154 556 | 147 410 | 73 403 | 243 384 | 241 376 | 211 318 | 245 216 | 149 122 | 246  92 |
G1_074 15.92 1629.5 Unidentified G1_074; mz: 292 999 | 75 562 | 102 444 | 129 374 | 333 358 | 131 348 | 293 338 | 117 331 | 74  90 | 221  46 |
G1_075 15.96 1632.0 Unidentified G1_075; mz: 215 999 | 188 979 | 190 477 | 214 420 | 148 250 | 213 204 | 331 194 | 303 149 | 304 127 | 207  95 |
G1_076 15.96 1632.2 Unidentified G1_076; mz: 147 999 | 148 171 | 149 156 | 200 112 | 225  44 |
G1_077 15.97 1633.1 Unidentified G1_076; mz: 73 999 |
G1_078 16.07 1640.2 L-Glutamic acid (3TMS) 
G1_079 16.12 1643.8 4-Hydroxybenzoic acid (2TMS) 
G1_080 16.18 1648.3 L-Phenylalanine (2TMS) 
G1_081 16.22 1652.9 Unidentified G1_081; mz: 156 999 | 200 828 | 230 588 | 302 159 | 201 130 | 202 115 |
G1_082 16.28 1655.2 Unidentified G1_082; mz: 216 999 | 188 816 | 73 644 | 231 364 | 172 216 | 218 152 | 189 151 | 213 142 | 330  97 | 190  89 |
G1_083 16.28 1655.5 Unidentified G1_083; mz: 147 999 | 217 915 | 149 249 | 204 220 | 203 209 | 148 169 | 131 120 | 130 119 | 219 118 | 133 105 |
G1_084 16.33 1659.3 Unidentified G1_084; mz: 333 999 | 143 978 | 73 565 | 147 399 | 149 170 | 189 121 |
G1_085 16.36 1664.4 Unidentified G1_085; mz: 200 999 | 315 948 | 147 851 | 73 791 | 216 455 | 142 385 | 112 355 | 172 296 | 316 259 | 149 154 |
G1_086 16.41 1668.5 Unidentified G1_086; mz: 221 999 | 295 243 | 399 102 |
G1_087 16.50 1671.5 Unidentified G1_087; mz: 355 999 | 401 396 | 356 371 | 267 247 | 327 235 | 357 229 | 403 178 | 402 177 | 358  79 | 385  67 |
G1_088 16.60 1676.7 2 4 5-Trihydroxypentanoic acid (4TMS) 
G1_089 16.65 1680.0 D-Ribonic acid lactone (3TMS) 
G1_090 16.86 1695.4 L-Asparagine (3TMS) 
G1_091 16.88 1697.0 Unidentified G1_091; mz: 217 999 | 307 213 | 218 182 | 290 174 | 103 129 | 277  83 |
G1_092 17.05 1611.8 Unidentified G1_092; mz: 193 999 | 271 605 | 194 221 | 272 173 | 195 170 | 211  93 | 273  72 | 286  50 | 165  44 | 255  39 |
G1_093 17.09 1714.6 Unidentified G1_093; mz: 200 999 | 147 437 | 315 386 | 233 365 | 204 245 | 177 227 | 201 212 | 261 131 | 130 121 | 189 116 |
G1_094 17.15 1718.5 Unidentified G1_094; mz: 147 999 | 73 716 | 217 535 | 319 379 | 149 225 | 133 181 | 83 157 | 221 148 | 55 139 | 148 132 |
G1_095 17.21 1722.9 1H-Indole-2 3-dione  1-(tert-butyldimethylsilyl)-5-isopropyl-  3-(O-methyloxime) 
G1_096 17.27 1727.2 Unidentified G1_096; mz: 231 999 | 73 770 | 147 646 | 143 402 | 220 267 | 149 166 | 232 137 | 233 125 | 229 110 | 144  84 |
G1_097 17.30 1729.8 Xylitol (5TMS) 
G1_098 17.32 1730.9 Unidentified G1_098; mz: 147 999 | 73 937 | 129 749 | 217 702 | 218 232 | 75 117 | 205 115 | 130 105 | 74 104 | 159  79 |
G1_099 17.41 1737.8 2-Aminoadipic acid (3TMS) 
G1_100 17.65 1752.7 Rhamnose MEOX (4TMS) [BP] 
G1_101 17.79 1756.3 Unidentified G1_101; mz: 221 999 | 401 576 | 355 290 | 475 242 | 489 229 | 403 167 | 563 167 | 223 121 | 476  90 | 430  87 |
G1_102 17.94 1776.2 Unidentified G1_101; mz: 217 999 | 147 957 | 73 324 | 218 180 | 149 173 | 189 151 | 205 136 | 148 126 | 129 116 | 117 100 |
G1_103 17.98 1779.1 Unidentified G1_103; mz: 147 999 | 155 993 | 73 871 | 273 580 | 229 425 | 183 327 | 149 232 | 167 202 | 148 179 | 133 138 |
G1_104 18.10 1787.7 Unidentified G1_104; mz: 73 999 | 217 832 | 147 776 | 129 368 | 143 309 | 157 242 | 102 161 | 149 155 | 221 114 | 148 111 |
G1_105 18.10 1788.3 Unidentified G1_105; mz: 333 999 | 305 199 | 307 149 | 294 137 | 346  75 | 207  46 | 348  45 | 422  40 | 295  37 | 52  19 |
G1_106 18.16 1792.3 L-Glycerol-3-phosphate (4TMS) 
G1_107 18.20 1795.5 L-Glutamine (3TMS) 
G1_108 18.26 1799.8 Unidentified G1_108; mz: 293 999 | 333 634 | 148 555 | 218 505 | 331 425 | 294 424 | 133 417 | 219 373 | 205 178 | 231 177 |
G1_109 18.27 1800.1 Ribonic acid (5TMS) 
G1_110 18.47 1814.8 Unidentified G1_108; mz: 293 999 | 333 634 | 148 555 | 218 505 | 331 425 | 294 424 | 133 417 | 219 373 | 205 178 | 231 177 |
G1_111 18.65 1828.2 Unidentified G1_111; mz: 147 999 | 281 935 | 73 461 | 369 335 | 282 328 | 557 242 | 370 228 | 283 226 | 200 223 | 149 214 |
G1_112 18.71 1832.1 Shikimic acid (4TMS) 
G1_113 18.80 1839.1 Unidentified G1_113; mz: 420 999 | 335 740 | 231 655 | 149 561 | 128 526 | 492 490 | 291 469 | 201 449 | 421 422 | 331 268 |
G1_114 18.81 1839.7 Unidentified G1_114; mz: 333 999 | 292 383 | 334 300 | 305 190 | 293  99 | 217  90 | 306  84 | 75  70 | 171  63 | 346  58 |
G1_115 18.90 1846.2 Citric acid (4TMS) 
G1_116 19.01 1854.1 Unidentified G1_116; mz: 333 999 | 73 427 | 147 385 | 292 380 | 305 317 | 334 257 | 345 175 | 335 148 | 217 116 | 130 105 |
G1_117 19.05 1857.3 Tagatose methoxyamine [BP] (5TMS) 
G1_118 19.15 1864.5 Unidentified G1_118; mz: 156 999 | 318 232 | 73 229 | 147 204 | 157 117 | 230  99 | 346  72 | 128  71 | 319  65 | 302  49 |
G1_119 19.17 1866.1 Unidentified G1_119; mz: 267 999 | 345 686 | 268 295 | 346 293 | 197 288 | 135 199 | 207 192 | 269 191 | 347 189 | 57 125 |
G1_120 19.28 1874.1 Unidentified G1_120; mz: 379 999 | 73 764 | 147 761 | 247 487 | 131 445 | 157 430 | 146 307 | 219 255 | 261 215 | 380 202 |
G1_121 19.34 1878.3 Unidentified G1_121; mz: 129 999 | 147 552 | 319 521 | 306 453 | 191 326 | 190 307 | 320 139 | 305 127 | 175 123 | 207 106 |
G1_122 19.39 1881.9 Unidentified G1_122; mz: 70 999 | 302 593 | 186 437 | 303 191 | 212 160 | 158 153 | 68  84 | 103  83 | 122  76 | 219  69 |
G1_123 19.51 1890.5 Quinic acid (5TMS) 
G1_124 19.68 1903.3 Fructose MEOX (5TMS) 
G1_125 19.75 1909.8 Sorbose MEOX (5TMS) [BP] 
G1_126 19.81 1914.5 Fructose MEOX (5TMS) [BP] 
G1_127 19.85 1918.4 Mannose MEOX (5TMS) 
G1_128 20.00 1931.5 Glucose MEOX (5TMS) 
G1_129 20.08 1938.4 L-Lysine (4TMS) 
G1_130 20.24 1951.6 Glucose MEOX (5TMS) [BP] 
G1_131 20.32 1959.0 L-Tyrosine (3TMS) 
G1_132 20.39 1964.5 Galactitol (6TMS) 
G1_133 20.48 1972.5 Unidentified G1_133; mz: 217 999 | 73 447 | 147 404 | 307 404 | 331 260 | 191 232 | 218 218 | 308 131 | 306 131 | 103  90 |
G1_134 20.73 1990.6 Unidentified G1_134; mz: 217 999 | 73 948 | 361 664 | 147 618 | 169 370 | 129 270 | 243 269 | 189 200 | 271 193 | 362 192 |
G1_135 20.75 1995.8 Unidentified G1_135; mz: 389 999 | 183 840 | 147 410 | 189 329 | 390 322 | 257 241 | 149 236 | 267 217 | 188 205 | 299 175 |
G1_136 20.84 2003.0 Gulonic acid (6TMS) 
G1_137 20.88 2006.5 Unidentified G1_135; mz: 295 999 | 310 900 | 251 463 | 177 455 | 221 274 | 311 226 | 236 224 | 296 206 | 252  97 | 191  94 |
G1_138 20.93 2011.2 Unidentified G1_138; mz: 239 999 | 415 789 | 143 206 | 209 185 | 204 170 | 157 155 | 417 147 | 241 140 | 240 131 | 83 118 |
G1_139 21.00 2016.8 Unidentified G1_139; mz: 217 999 | 147 349 | 73 254 | 218 196 | 189 104 | 219  97 | 129  76 | 149  75 | 394  70 | 307  60 |
G1_140 21.06 2022.4 Glutamine (4TMS) repeat? 
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List of all 221 metabolites resolved from GC/MS chromatograms - Page 3 of 4
Peak# RTime RI Identity.  Where unknown: ten (if possible) most abundant masses (mz: mass relative-abundance basepeak999|)

G1_141 21.16 2031.0 Gluconic acid (6TMS) 
G1_142 21.22 2035.7 Galactonic acid (6TMS) 
G1_143 21.41 2051.8 Palmitic acid (1TMS) 
G1_144 21.43 2054.1 Glucaric acid (6TMS) 
G1_145 21.44 2055.0 Galactaric acid (6TMS) 
G1_146 21.63 2067.7 Unidentified G1_146; mz: 204 999 | 73 787 | 147 356 | 319 295 | 217 289 | 205 254 | 189 236 | 157 194 | 129 172 | 220 158 |
G1_147 21.66 2070.6 Unidentified G1_147; mz: 147 999 | 73 570 | 217 392 | 143 332 | 149 329 | 449 222 | 191 182 | 148 168 | 229 121 | 190 102 |
G1_148 21.68 2072.2 Unidentified G1_148; mz: 333 999 | 334 415 | 143 310 | 73 238 | 292 236 | 335 222 | 305 172 | 447  94 | 419  88 | 373  72 |
G1_149 21.79 2084.8 Unidentified G1_149; mz: 333 999 | 73 374 | 334 315 | 147 291 | 143 250 | 292 204 | 305 167 | 447 158 | 335 126 | 189 113 |
G1_150 21.98 2105.5 Unidentified G1_150; mz: 333 999 | 73 835 | 147 469 | 143 396 | 305 311 | 334 284 | 189 208 | 292 196 | 335 160 | 217 133 |
G1_151 22.33 2127.8 Inositol (6TMS) 
G1_152 22.59 2149.7 3-Deoxy-arabino-hexaric acid (5TMS) 
G1_153 22.58 2152.2 Unidentified G1_153; mz: 352 999 | 147 916 | 157 708 | 148 357 | 217 332 | 205 278 | 353 225 | 320 201 | 158 161 | 117 143 |
G1_154 22.61 2155.6 Unidentified G1_154; mz: 147 999 | 157 615 | 129 466 | 205 464 | 320 408 | 149 379 | 133 278 | 221 237 | 130 224 | 352 195 |
G1_155 22.72 2164.4 Unidentified G1_155; mz: 221 999 | 147 809 | 207 364 | 129 240 | 319 213 | 157 178 | 131 174 | 223 150 | 204 150 | 402 131 |
G1_156 22.79 2170.5 Unidentified G1_156; mz: 310 999 | 295 952 | 251 380 | 177 312 | 221 235 | 311 223 | 296 193 | 236 164 | 252  76 | 297  70 |
G1_157 22.87 2177.8 L-Histidine (?TMS) 
G1_158 23.30 2217.0 Octadecadienoic acid (1TMS) 
G1_159 23.36 2223.1 Unidentified G1_159; mz: 204 999 | 73 411 | 147 312 | 205 231 | 191 229 | 189 203 | 217 194 | 235 189 | 117 111 | 206 101 |
G1_160 23.42 2229.3 Unidentified G1_160; mz: 357 999 | 315 603 | 299 536 | 445 379 | 373 271 | 358 261 | 503 214 | 446 175 | 359 169 | 316 154 |
G1_161 23.61 2248.9 Octadecanoic acid (1TMS) 
G1_162 23.64 2252.3 Unidentified G1_162; mz: 299 999 | 315 341 | 317 326 | 148 250 | 587 246 | 369 190 | 228 160 | 433 156 | 301 153 | 207 149 |
G1_163 23.88 2271.0 Unidentified G1_163; mz: 429 999 | 355 868 | 281 654 | 430 430 | 221 331 | 341 292 | 431 286 | 401 239 |
G1_164 24.20 2308.6 Unidentified G1_164; mz: 73 999 | 217 699 | 371 442 | 189 354 | 157 318 | 211 295 | 642 222 | 314 204 | 641 195 | 462 181 |
G1_165 24.30 2320.5 Unidentified G1_165; mz: 73 999 | 147 967 | 214 407 | 129 270 | 319 222 | 258 218 | 133 162 | 148 157 | 204 154 | 290 149 |
G1_166 24.45 2335.4 Unidentified G1_166; mz: 73 999 | 147 379 | 290 330 | 133 253 | 217 220 | 129 177 | 319  92 | 74  77 | 117  59 | 284  52 |
G1_167 24.76 2367.8 Unidentified G1_167; mz: 315 999 | 316 244 | 317 128 | 301  48 |
G1_168 24.76 2368.2 Galactose-6-phosphate MEOX (TMS) 
G1_169 24.89 2381.7 Glucose-6-phosphate MEOX (6TMS) 
G1_170 25.08 2401.2 Glucose-6-phosphate MEOX (6TMS) [BP] 
G1_171 25.15 2408.6 Unidentified G1_171; mz: 309 999 | 526 616 | 471 518 | 383 355 | 294 266 | 527 244 | 472 222 | 498 198 | 528 164 | 542 157 |
G1_172 25.28 2421.9 Unidentified G1_172; mz: 343 999 | 203 381 | 211 253 | 344 248 | 95 105 | 109  88 | 147  88 | 345  78 | 81  71 | 137  68 |
G1_173 25.35 2428.2 Unidentified G1_173; mz: 217 999 | 73 952 | 147 670 | 191 640 | 259 346 | 169 282 | 129 210 | 97 202 | 189 190 | 192 159 |
G1_174 25.54 2448.5 Unidentified G1_174; mz: 204 999 | 73 348 | 205 211 | 147 145 | 217 111 | 191  91 | 206  87 | 169  45 | 218  36 | 75  33 |
G1_175 25.69 2463.9 Unidentified G1_175; mz: 204 999 | 73 978 | 169 905 | 147 460 | 217 361 | 79 312 | 129 277 | 191 250 | 205 223 | 189 212 |
G1_176 25.78 2473.2 Unidentified G1_176; mz: 324 999 | 204 704 | 217 614 | 73 470 | 299 312 | 205 239 | 129 234 | 243 221 | 455 219 | 513 198 |
G1_177 25.84 2479.5 Myo-Inositol-2-phosphate (7TMS) 
G1_178 25.89 2484.8 Unidentified G1_178; mz: 376 999 | 286 747 | 377 305 | 556 209 | 261 160 |
G1_179 25.98 2494.4 Unidentified G1_179; mz: 361 999 | 169 415 | 73 399 | 271 241 | 362 162 | 363 138 | 155  91 | 255  86 | 245  86 | 272  81 |
G1_180 26.26 2522.8 Unidentified G1_180; mz: 204 999 | 73 693 | 147 520 | 219 455 | 218 358 | 143 287 | 245 267 | 217 267 | 189 225 | 75 211 |
G1_181 26.32 2529.4 Unidentified G1_181; mz: 243 999 | 149 879 | 73 719 | 129 707 | 407 695 | 187 655 | 147 653 | 203 471 | 217 458 | 247 391 |
G1_182 26.42 2543.2 Unidentified G1_182; mz: 327 999 | 461 944 | 535 652 | 255 575 | 473 504 | 537 502 | 295 466 | 459 390 | 415 381 | 463 371 |
G1_183 26.45 2542.3 Unidentified G1_183; mz: 473 999 | 474 393 | 327 337 | 446 323 | 461 169 | 256 167 | 373 141 |
G1_184 26.56 2553.4 Unidentified G1_184; mz: 361 999 | 73 903 | 363 764 | 362 224 | 163 162 | 315 161 | 319 156 | 387 142 | 299 128 | 345 125 |
G1_185 26.57 2554.2 Unidentified G1_185; mz: 361 999 | 273 667 | 73 596 | 217 481 | 191 343 | 362 302 | 169 277 | 147 259 | 349 252 | 243 234 |
G1_186 26.69 2567.2 Unidentified G1_186; mz: 446 999 | 415 899 | 447 422 | 416 329 | 214 302 | 327 234 | 245 208 | 313 198 | 347 186 | 81 168 |
G1_187 26.78 2576.6 Salicin (?TMS) 
G1_188 26.82 2581.2 Unidentified G1_188; mz: 203 999 | 217 458 | 313 413 | 131 364 | 544 268 | 218 254 | 148 252 | 242 172 | 387 168 | 109 159 |
G1_189 27.18 2613.0 Unidentified G1_189; mz: 371 999 | 372 322 | 373 102 | 459  40 | 238  11 | 342  8 | 311  5 | 385  4 |
G1_190 27.19 2613.7 Unidentified G1_190; mz: 203 999 | 147 513 | 73 263 | 109 258 | 95 237 | 83 189 | 125 129 | 137 124 | 148 118 | 57 117 |
G1_191 27.18 2618.0 Unidentified G1_191; mz: 361 999 | 204 986 | 73 681 | 243 541 | 217 512 | 331 499 | 319 489 | 129 376 | 362 349 | 169 347 |
G1_192 27.35 2634.9 Salicylic acid glucopyranoside (5TMS) 
G1_193 27.37 2637.4 Hydroquinone-B-D-glucopyranoside (5TMS) 
G1_194 27.53 2648.6 Unidentified G1_194; mz: 73 999 | 535 928 | 147 912 | 536 434 | 246 426 | 274 332 | 333 326 | 537 310 | 285 305 | 375 295 |
G1_195 27.77 2678.8 Unidentified G1_195; mz: 259 999 | 73 711 | 191 698 | 217 684 | 147 584 | 204 353 | 260 230 | 243 209 | 189 182 | 160 140 |
G1_196 27.99 2707.6 Sucrose (8TMS) 
G1_197 28.16 2722.0 Unidentified G1_197; mz: 73 999 | 361 635 | 169 596 | 243 460 | 217 399 | 268 389 | 147 386 | 129 281 | 271 264 | 149 244 |
G1_198 28.34 2737.0 Unidentified G1_198; mz: 73 999 | 433 933 | 343 513 | 434 333 | 129 254 | 225 196 | 353 192 | 204 189 | 344 175 | 345 164 |
G1_199 28.50 2753.4 Unidentified G1_199; mz: 356 999 | 73 815 | 169 681 | 194 547 | 217 524 | 357 316 | 450 266 | 147 248 | 267 166 | 451 154 |
G1_200 28.55 2759.2 Unidentified G1_200; mz: 361 999 | 362 251 | 437 251 | 169 250 | 271 115 | 347  94 | 331  45 | 245  40 | 439  40 | 230  23 |
G1_201 28.66 2769.8 Unidentified G1_201; mz: 361 999 | 147 533 | 73 337 | 362 269 | 363 223 | 217 213 | 271 209 | 243 177 | 319 115 | 331 114 |
G1_202 28.84 2788.8 Unidentified G1_202; mz: 361 999 | 73 325 | 362 314 | 169 305 | 271 248 | 243 180 | 363 152 | 217 139 | 244  44 | 257  42 |
G1_203 28.89 2794.0 Unidentified G1_203; mz: 399 999 | 203 315 | 400 250 | 267  77 | 129  66 | 401  53 | 73  52 | 204  38 | 123  31 | 341  27 |
G1_204 28.98 2804.3 Trehalose (8TMS) 
G1_205 29.21 2832.0 Unidentified G1_205; mz: 361 999 | 73 308 | 362 284 | 169 232 | 217 228 | 147 211 | 363 129 | 271  81 | 191  72 | 149  68 |
G1_206 29.49 2867.7 Unidentified G1_206; mz: 355 999 | 361 713 | 73 606 | 217 476 | 169 422 | 362 385 | 356 336 | 147 264 | 243 259 | 283 241 |
G1_207 29.77 2902.0 Unidentified G1_207; mz: 361 999 | 73 759 | 169 608 | 312 594 | 147 445 | 243 422 | 297 411 | 217 388 | 271 342 | 362 293 |
G1_208 29.97 2927.7 Unidentified G1_208; mz: 361 999 | 342 976 | 169 938 | 73 772 | 327 702 | 217 695 | 147 629 | 362 567 | 343 455 | 129 443 |
G1_209 30.04 2935.4 Unidentified G1_209; mz: 373 999 | 374 250 | 539 121 | 207  99 | 257  95 | 332  69 | 133  64 | 131  50 | 449  48 | 157  42 |
G1_210 30.10 2943.4 Unidentified G1_210; mz: 361 999 | 73 769 | 169 534 | 443 473 | 243 342 | 271 308 | 362 275 | 281 260 | 129 250 | 444 193 |
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List of all 221 metabolites resolved from GC/MS chromatograms - Page 4 of 4
Peak# RTime RI Identity.  Where unknown: ten (if possible) most abundant masses (mz: mass relative-abundance basepeak999|)

G1_211 30.50 2992.6 Unidentified G1_211; mz: 427 999 | 203 407 | 428 287 | 147 267 | 429 111 | 97 107 | 81 102 | 129  91 | 111  72 | 83  54 |
G1_212 30.99 3053.0 Unidentified G1_212; mz: 297 999 | 217 395 | 450 339 | 73 262 | 362 250 | 243 220 | 169 184 | 225 170 | 207 164 | 299 133 |
G1_213 31.09 3065.2 Galactinol (9TMS) 
G1_214 31.50 3116.1 Populin (?TMS) 
G1_215 32.13 3194.1 Digalactosylglycerol (9TMS) 
G1_216 32.28 3212.8 Unidentified G1_216; mz: 119 999 | 133 772 | 207 383 | 73 376 | 147 180 | 105 167 | 134 140 | 117 139 | 205 139 | 171 129 |
G1_217 33.06 3316.2 Unidentified G1_217; mz: 73 999 | 217 940 | 147 527 | 389 503 | 450 430 | 195 391 | 105 390 | 243 307 | 232 248 | 271 240 |
G1_218 33.09 3320.8 Unidentified G1_217; mz: 361 999 | 73 476 | 169 377 | 362 306 | 147 301 | 271 203 | 129 179 | 363 155 | 155 110 | 191  96 |
G1_219 33.62 3392.4 B-Sitosterol (1TMS) 
G1_220 34.21 3470.9 Raffinose (11TMS) 
G1_221 34.57 3518.0 Unidentified G1_221; mz: 361 999 | 362 348 | 204 210 | 73 196 | 169 170 | 243 118 | 437 105 | 257  90 | 135  80 |
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Appendix B.2. Entire list of metabolites identified in LC/MS profiles.  RT = retention 
time, MW = apparent molecular weight of molecular ion. 

List of all 52 metabolites resolved from LC/MS chromatograms
Peak# RT (min) Identity

L2_001 3.19 Coumaroyl glucoside; MW326
L2_002 3.24 Unidentified L2_002
L2_003 3.38 Unidentified L2_001; MW348
L2_004 3.51 Unidentified L2_004
L2_005 3.60 p-Coumaryl shikimate; MW320
L2_006 3.81 Unidentified L2_006
L2_007 4.00 Unidentified L2_007
L2_008 4.51 Unidentified L2_008
L2_009 4.66 Unidentified L2_009
L2_010 4.72 Unidentified L2_010
L2_011 5.24 Unidentified L2_011
L2_012 5.39 Unidentified L2_012
L2_013 5.37 Pinoquercetin (b); MW316
L2_014 5.55 Unidentified L2_014; MW324
L2_015 5.69 Salicin?; MW123?
L2_016 6.20 Unidentified L2_016
L2_017 6.16 Unidentified L2_017
L2_018 6.49 Unidentified L2_018
L2_019 6.61 Catechol; MW110
L2_020 6.81 Unidentified L2_020; MW402
L2_021 6.89 Unidentified L2_021; MW434
L2_022 7.09 Unidentified L2_022
L2_023 7.23 Vitexin; MW432
L2_024 7.37 Unidentified L2_024
L2_025 7.46 Unidentified L2_025
L2_026 7.55 Unidentified L2_026
L2_027 7.97 Unidentified L2_027
L2_028 7.97 Unidentified L2_028; MW518
L2_029 8.26 Unidentified L2_029; MW550
L2_030 8.58 Unidentified L2_030; MW442
L2_031 8.66 Unidentified L2_031
L2_032 8.69 Unidentified L2_032; MW404
L2_033 8.81 Unidentified L2_032; MW286
L2_034 8.83 Dihydromyricetin; MW320
L2_035 8.89 Grandidentatin; MW424
L2_036 9.19 3-ferulolquinic acid; MW368
L2_037 9.86 Unidentified L2_037; MW576
L2_038 10.36 Unidentified L2_038; MW406
L2_039 10.68 Salireposide; MW406
L2_040 10.90 Unidentified L2_040; MW132
L2_041 11.25 Salicortin; MW424
L2_042 11.31 Unidentified L2_042
L2_043 11.43 Phenyllactic acid; MW166
L2_044 11.77 Unidentified L2_044; MW454
L2_045 12.66 Unidentified L2_045; MW562
L2_046 12.76 Unidentified L2_046
L2_047 13.43 Unidentified L2_047; MW264
L2_048 13.71 Unidentified L2_048; MW584
L2_049 14.26 Unidentified L2_049; MW466
L2_050 14.99 Unidentified L2_050; MW506
L2_051 16.81 Unidentified L2_051; MW528
L2_052 20.29 Unidentified L2_052; MW666
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Appendix B.3. List of all differential metabolites in the comparison between P39 and 
P717 hybrid poplar backgrounds, based on Select Lines dataset.  Significance of 
differences determined by Student’s t-test (α = 0.01).  Average abundance of 
metabolites in P717 are expressed relative to P39. 
 

Average abundance Average abundance
Peak# Identity P717 rel:P39 Peak# Identity P717 rel:P39

G1_002 Unidentified G1_002 1.70 L2_002 Unidentified L2_002 0.31
G1_003 Pyruvic acid (1MEOX) (1TMS) 0.52 L2_005 p-Coumaryl shikimate; MW320 0.53
G1_005 Glycolic acid (2TMS) 0.68 L2_007 Unidentified L2_007 0.72
G1_010 2-Pyrrolidinone (1TMS) 0.04 L2_008 Unidentified L2_008 0.73
G1_012 Unidentified G1_012 1.68 L2_012 Unidentified L2_012 0.65
G1_014 Unidentified G1_014 1.27 L2_013 Pinoquercetin; MW316 0.51
G1_015 Unidentified G1_015 1.70 L2_016 Unidentified L2_016 0.67
G1_017 Unidentified G1_017 0.29 L2_017 Unidentified L2_017 0.11
G1_018 Urea (2TMS) 0.29 L2_018 Unidentified L2_018 2.55
G1_023 Unidentified G1_023 1.55 L2_019 Catechol; MW110 1.81
G1_024 Ethanolamine (3TMS) 1.56 L2_020 Unidentified L2_020; MW402 2.81
G1_026 Phosphoric acid (3TMS) 1.81 L2_021 Unidentified L2_021; MW434 0.44
G1_035 Glyceric acid (3TMS) 0.50 L2_023 Vitexin; MW432 0.50
G1_036 Unidentified G1_036 1.59 L2_024 Unidentified L2_024 0.55
G1_037 Unidentified G1_037 1.74 L2_025 Unidentified L2_025 0.39
G1_039 Unidentified G1_039 1.71 L2_027 Unidentified L2_027 14.66
G1_045 3-Hydroxymyristic acid (2TMS) 1.71 L2_028 Unidentified L2_028; MW518 0.47
G1_046 Unidentified G1_044 0.11 L2_029 Unidentified L2_029; MW550 0.47
G1_048 2-Hydroxybenzyl alcohol (2TMS) 1.57 L2_030 Unidentified L2_030; MW442 1.28
G1_049 Unidentified G1_049 3.70 L2_031 Unidentified L2_031 0.43
G1_050 Unidentified G1_050; Phenolic 1.42 L2_032 Unidentified L2_032; MW404 0.47
G1_053 Malic acid (3TMS) 0.75 L2_033 Unidentified L2_032; MW286 1.79
G1_054 Unidentified G1_054 0.40 L2_036 3-ferulolquinic acid; MW368 30.40
G1_055 L-Asparagine (2TMS) 4.35 L2_040 Unidentified L2_040; MW132 17.68
G1_059 Pyroglutamic acid (2TMS) 0.66 L2_041 Salicortin; MW424 1.64
G1_060 4-Aminobutyric acid (3TMS) 0.65 L2_042 Unidentified L2_042 0.19
G1_062 L-Norvaline (3TMS) 3.64 L2_043 Phenyllactic acid; MW166 21.85
G1_063 Unidentified G1_063 0.63 L2_044 Unidentified L2_044; MW454 2.93
G1_067 Unidentified G1_067; Organic acid 0.42 L2_045 Unidentified L2_045; MW562 2.28
G1_075 Unidentified G1_075; Amino acid 3.14 L2_049 Unidentified L2_049; MW466 7.06
G1_076 Unidentified G1_076; junk 3.00 L2_050 Unidentified L2_050; MW506 10.77
G1_077 Unidentified G1_076; junk 3.17
G1_079 4-Hydroxybenzoic acid (2TMS) 1.39
G1_089 D-Ribonic acid lactone (3TMS) 0.27
G1_092 Unidentified G1_092 1.68
G1_096 Unidentified G1_096 0.69
G1_104 Unidentified G1_104; Carbohydrate 0.52
G1_105 Unidentified G1_105 0.65
G1_108 Unidentified G1_108 0.61
G1_109 Ribonic acid (5TMS) 0.59
G1_113 Unidentified G1_113 4.39
G1_119 Unidentified G1_119 9.08
G1_120 Unidentified G1_120 0.41
G1_123 Quinic acid (5TMS) 0.13
G1_124 Fructose MEOX (5TMS) 0.29
G1_125 Sorbose MEOX (5TMS) [BP] 0.26
G1_126 Fructose MEOX (5TMS) [BP] 0.21
G1_132 Galactitol (6TMS) 2.27
G1_133 Unidentified G1_133; Organic acid 0.67
G1_135 Unidentified G1_135 0.36
G1_137 Unidentified G1_135; Phenolic 1.55
G1_138 Unidentified G1_138 1.75
G1_140 Glutamine (4TMS) rep? 0.60
G1_143 Palmitic acid (1TMS) 1.61
G1_145 Galactaric acid (6TMS) 1.62
G1_147 Unidentified G1_147 0.46
G1_149 Unidentified G1_149; Organic acid 1.95
G1_151 Inositol (6TMS) 0.37
G1_152 3-Deoxy-arabino-hexaric acid (5TMS) 1.94
G1_156 Unidentified G1_156; Phenolic 1.39
G1_160 Unidentified G1_160 0.26
G1_162 Unidentified G1_162 0.70
G1_167 Unidentified G1_167 0.75
G1_169 Glucose-6-phosphate MEOX (6TMS) 0.64
G1_171 Unidentified G1_171; Phenolic 0.25
G1_173 Unidentified G1_173; Carbohydrate 0.44
G1_176 Unidentified G1_176 42.86
G1_178 Unidentified G1_178 0.36
G1_182 Unidentified G1_182 0.26
G1_183 Unidentified G1_183 1.63
G1_187 Salicin (?TMS) 1.89
G1_196 Sucrose (8TMS) 0.70
G1_198 Unidentified G1_198 4.81
G1_199 Unidentified G1_199 0.31
G1_204 Trehalose (8TMS) 0.26
G1_206 Unidentified G1_206; Phenolic 1.92
G1_208 Unidentified G1_208 0.79
G1_210 Unidentified G1_210 0.38
G1_215 Digalactosylglycerol (9TMS) 0.62

Comparison between P39 and P717 wild-types
GC/MS metabolites different between backgrounds LC/MS metabolites different between backgrounds
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Appendix B.4. List of all “collective” differential metabolites in the comparisons 
between P39 C3′H-RNAi and wild-type background and P717 C3′H-RNAi and wild-type 
background, based on Select Lines dataset.  Significance of differences determined by 
Student’s t-test (α = 0.01).  Average abundance of metabolites in modified lines are 
expressed relative to respective wild-type background. 

 

Peak# Identity P39 P717 Peak# Identity P39 P717

G1_002 Unidentif ied G1_002 0.84 L2_001 Coumaroyl glucoside; MW326 24.48 12.40
G1_003 Pyruvic acid (1MEOX) (1TMS) 0.56 L2_002 Unidentif ied L2_002 2.10
G1_005 Glycolic acid (2TMS) 0.44 L2_003 Unidentif ied L2_001; MW348 0.68 0.32
G1_006 L-Alanine (2TMS) 2.08 L2_004 Unidentif ied L2_004 0.41 0.28
G1_011 Unidentif ied G1_011 0.63 L2_005 p-Coumaryl shikimate; MW320 14.63 11.39
G1_014 Unidentif ied G1_014 0.83 L2_006 Unidentif ied L2_006 0.25 0.18
G1_017 Unidentif ied G1_017 0.27 L2_007 Unidentif ied L2_007 0.36 0.30
G1_018 Urea (2TMS) 0.59 L2_008 Unidentif ied L2_008 0.61 0.57
G1_030 Glycine (3TMS) 0.51 L2_009 Unidentif ied L2_009 0.25 0.36
G1_031 Succinic acid (2TMS) 0.27 0.34 L2_010 Unidentif ied L2_010 1.44
G1_033 Unidentif ied G1_033 0.65 L2_011 Unidentif ied L2_011 3.06
G1_034 Unidentif ied G1_034 0.69 L2_013 Pinoquercetin; MW316 0.55
G1_035 Glyceric acid (3TMS) 0.41 L2_014 Unidentif ied L2_014; MW324 0.35 0.40
G1_036 Unidentif ied G1_036 0.70 L2_015 Salicin?; MW123? 0.63
G1_038 Fumaric acid (2TMS) 0.72 L2_016 Unidentif ied L2_016 0.32
G1_041 L-Serine (3TMS) 2.48 L2_017 Unidentif ied L2_017 0.59
G1_042 Cytosine (2TMS) 0.76 L2_018 Unidentif ied L2_018 0.50 0.31
G1_044 Unidentif ied G1_044 3.40 4.59 L2_019 Catechol; MW110 0.64
G1_047 Unidentif ied G1_047 0.47 0.64 L2_020 Unidentif ied L2_020; MW402 0.65
G1_050 Unidentif ied G1_050; Phenolic 0.73 L2_021 Unidentif ied L2_021; MW434 0.61
G1_053 Malic acid (3TMS) 0.54 0.60 L2_023 Vitexin; MW432 0.57
G1_054 Unidentif ied G1_054 0.24 0.30 L2_024 Unidentif ied L2_024 0.51 0.24
G1_059 Pyroglutamic acid (2TMS) 0.61 0.67 L2_025 Unidentif ied L2_025 0.58
G1_060 4-Aminobutyric acid (3TMS) 1.44 0.72 L2_026 Unidentif ied L2_026 0.25
G1_063 Unidentif ied G1_063 0.49 0.56 L2_029 Unidentif ied L2_029; MW550 0.67 0.57
G1_065 Threonic acid (4TMS) 0.62 L2_030 Unidentif ied L2_030; MW442 0.55 0.66
G1_067 Unidentif ied G1_067; Organic acid 0.31 L2_031 Unidentif ied L2_031 0.61
G1_071 Glutamine (4TMS) split peak 1 0.36 L2_032 Unidentif ied L2_032; MW404 0.51
G1_072 Glutamine (4TMS) split peak 2 0.34 L2_034 Dihydromyricetin; MW320 1.70
G1_074 Unidentif ied G1_074; Organic acid 0.47 0.55 L2_035 Grandidentatin L2_034; MW424 20.45 69.00
G1_079 4-Hydroxybenzoic acid (2TMS) 0.57 L2_036 3-ferulolquinic acid; MW368 0.23 0.54
G1_081 Unidentif ied G1_081 0.36 L2_037 Unidentif ied L2_037; MW576 0.52
G1_088 2,4,5-Trihydroxypentanoic acid (4TMS) 0.44 L2_038 Unidentif ied L2_038; MW406 0.58
G1_096 Unidentif ied G1_096 0.39 0.59 L2_040 Unidentif ied L2_040; MW132 0.70
G1_097 Xylitol (5TMS) 0.63 L2_041 Salicortin; MW424 4.32 1.73
G1_102 Unidentif ied G1_101; Sugar alcohol 0.26 0.35 L2_043 Phenyllactic acid; MW166 0.65 0.47
G1_103 Unidentif ied G1_103 0.46 L2_046 Unidentif ied L2_046 0.59
G1_104 Unidentif ied G1_104; Carbohydrate 0.52 L2_047 Unidentif ied L2_047; MW264 0.37 0.51
G1_105 Unidentif ied G1_105 0.48 L2_048 Unidentif ied L2_048; MW584 0.03 0.03
G1_106 L-Glycerol-3-phosphate (4TMS) 0.64 0.67 L2_049 Unidentif ied L2_049; MW466 0.58
G1_108 Unidentif ied G1_108 0.40
G1_109 Ribonic acid (5TMS) 0.41 0.40
G1_110 Unidentif ied G1_108; Organic acid 0.54 0.46
G1_111 Unidentif ied G1_111 0.61
G1_112 Shikimic acid (4TMS) 8.55
G1_114 Unidentif ied G1_114; Organic acid 0.46 0.49
G1_119 Unidentif ied G1_119 3.01
G1_120 Unidentif ied G1_120 1.54
G1_123 Quinic acid (5TMS) 0.23
G1_124 Fructose MEOX (5TMS) 0.29
G1_125 Sorbose MEOX (5TMS) [BP] 0.44
G1_126 Fructose MEOX (5TMS) [BP] 0.24
G1_128 Glucose MEOX (5TMS) 0.22
G1_130 Glucose MEOX (5TMS) [BP] 0.18
G1_132 Galactitol (6TMS) 0.72 0.57
G1_133 Unidentif ied G1_133; Organic acid 0.50 0.31
G1_135 Unidentif ied G1_135 0.32
G1_137 Unidentif ied G1_135; Phenolic 0.76
G1_139 Unidentif ied G1_139; Carbohydrate 0.26
G1_140 Glutamine (4TMS) rep? 0.51
G1_141 Gluconic acid (6TMS) 0.06 0.24
G1_142 Galactonic acid (6TMS) 0.08
G1_143 Palmitic acid (1TMS) 0.76
G1_144 Glucaric acid (6TMS) 0.15 0.17
G1_145 Galactaric acid (6TMS) 0.20 0.18
G1_147 Unidentif ied G1_147 0.37 0.33
G1_148 Unidentif ied G1_148; Organic acid 0.17 0.21
G1_149 Unidentif ied G1_149; Organic acid 0.15 0.15
G1_150 Unidentif ied G1_150; Organic acid 0.37 0.46
G1_151 Inositol (6TMS) 0.73
G1_152 3-Deoxy-arabino-hexaric acid (5TMS) 0.35 0.38
G1_154 Unidentif ied G1_154 0.28
G1_156 Unidentif ied G1_156; Phenolic 0.64
G1_158 Octadecadienoic acid (1TMS) 0.59
G1_160 Unidentif ied G1_160 0.22
G1_162 Unidentif ied G1_162 0.59
G1_167 Unidentif ied G1_167 0.65 0.52
G1_168 Galactose-6-phosphate MEOX (TMS) 0.54
G1_169 Glucose-6-phosphate MEOX (6TMS) 0.61 0.52
G1_170 Glucose-6-phosphate MEOX (6TMS) 2nd Pk 0.52 0.54
G1_172 Unidentif ied G1_172 0.76
G1_173 Unidentif ied G1_173; Carbohydrate 0.70
G1_174 Unidentif ied G1_174 0.21 0.23
G1_175 Unidentif ied G1_175; Carbohydrate 0.19 0.22
G1_178 Unidentif ied G1_178 0.20
G1_181 Unidentif ied G1_181 0.34
G1_183 Unidentif ied G1_183 0.14 0.16
G1_186 Unidentif ied G1_186 0.13
G1_187 Salicin (?TMS) 0.38
G1_189 Unidentif ied G1_189 0.70
G1_190 Unidentif ied G1_190; Fatty acid 0.72
G1_194 Unidentif ied G1_194 0.67
G1_196 Sucrose (8TMS) 0.62
G1_197 Unidentif ied G1_197; Glycoside 10.50 4.42
G1_198 Unidentif ied G1_198 0.08
G1_203 Unidentif ied G1_203; Phenolic 0.72
G1_204 Trehalose (8TMS) 0.22
G1_205 Unidentif ied G1_205; Carbohydrate 26.14 3.15
G1_208 Unidentif ied G1_208 0.35
G1_209 Unidentif ied G1_209 0.56 0.74
G1_210 Unidentif ied G1_210 0.34
G1_212 Unidentif ied G1_212 0.39 0.20
G1_213 Galactinol (9TMS) 0.38
G1_219 B-Sitosterol (1TMS) 0.65

Avg abundance rel:WT Avg abundance rel:WT

Genetic Construct: C3'H-RNAi
GC/MS metabolites different between Mod and WT LC/MS metabolites different between Mod and WT
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Rapid analysis of poplar lignin monomer composition by a streamlined 
thioacidolysis procedure and NIR-based prediction modeling 
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monomer composition by a streamlined thioacidolysis procedure and NIR-based 
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Summary 
Determination of the physico-chemical attributes of plant cell walls, such as lignin 

content and composition, is of paramount importance in germplasm screening, and for 

evaluating the results of plant breeding and genetic engineering.  There are escalating 

needs for analyses to be robust, reproducible, accurate, and efficient.  We have recently 

modified an established protocol for lignin monomer discrimination, thioacidolysis, with 

the goal of increasing sample throughput while maintaining accuracy and reducing 

equipment load and reagent consumption. 

Numerous methodological changes related to volume scaling, processing vessel 

selection, and sample handling were addressed. The revised protocol permitted rapid 

processing of ca. 50+ samples per person per day.  A direct comparison between 

methods using hybrid poplar (P. alba x tremula) wood samples, resulted in p-

hydroxyphenyl (H), guaiacyl (G) and syringyl (S) lignin monomer quantities that were 

equivalent to those derived from the original protocol.  The revised methodology was 

then applied to quickly generate phenotypic trait data from 267 hybrid poplar trees 

(including wild-type, and eight C4H::F5H transgenic lines), for the development of an 

NIR-based model for predicting lignin monomer proportion across a broad phenotypic 

range of S:G.  The resulting PLSR model performed well under full cross-validation, 

giving strong, linear relationships between actual and predicted monomer proportions, 

and very high predictive accuracy for the predominant G and S monomers.  This 

research brings considerable refinement to the thioacidolysis procedure, and 

establishes a method for rapidly and accurately quantifying cell wall lignin composition 

that could effectively be employed in routine phenotypic screening platforms. 
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Introduction 
The lignin heteropolymer is an integral cell wall constituent that significantly influences 

the physical properties of plants, via its involvement in architectural support, water 

transport and defence.  Lignins comprise the second most abundant polymer class in 

the biosphere, and their combinatorial biosynthesis renders these polymers among the 

more complex biomacromolecules synthesized by plants.  This intricate macromolecule 

is assembled via the combinatorial free radical coupling of monolignol precursors 

derived from three p-hydroxycinnamyl alcohols varying in their degree of methoxylation 

(Ralph et al. 2004), resulting in varying proportions of p-hydroxyphenyl (H), guaiacyl 

(G), and syringyl (S) lignin sub-units according to plant species, tissue type and 

response to environmental stress (Campbell and Sederoff, 1996).  The effective use of 

plants for a range of natural and industrial purposes is largely dependent on the extent 

to which the plant cell wall is lignified.  This is particularly true when considering 

biomass conversion for bioenergy, forage digestibility in ruminants, or processes such 

as pulping and papermaking from woody materials.  The effective removal of lignin is 

expensive and often the limiting factor to many applications. Lignin is therefore a key 

plant breeding or genetic engineering target to provide improvements in cell wall 

conversion.  Consequently, analytical techniques that permit the precise determination 

of the abundance and chemical attributes of lignin have become important tools in the 

analysis of plant cell walls.  Advances in lignin analysis, in terms of both the efficiency 

and accuracy of determination, are necessary now due to the demand for medium- to 

high-throughput phenotypic screens to identify valuable plant germplasm for specific 

applications (e.g. bioenergy crops), especially in the case when the individuals originate 

from large breeding studies, mutant populations or mapping families. 

One important aspect of lignin composition that can affect the utility of the plant 

cell wall is the proportional content resulting from the different monomeric units.  For 

example, in chemical pulping, lignin monomer ratio has been shown to significantly 

impact delignification efficiency (both pulp yield and residual lignin content) and pulp 

bleachability (Huntley et al., 2003; Stewart et al., 2006).  An established technique for 

determining monomeric composition is the thioacidolysis reaction.  By this approach, 

the uncondensed arylglycerol-β-aryl ether linked p-hydroxyphenyl (H), guaiacyl (G) and 

syringyl (S) monomers of lignin may be cleaved from the polymer and the abundances 
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determined (Rolando et al., 1992).  Although proven and valuable, the established 

protocol for this analysis is time, reagent, and equipment intensive, especially where the 

processing of large sample batches is concerned, and is therefore not suitable for high-

throughput screens. 

In contrast, several spectroscopic techniques have been employed to 

analyse/screen plant cell walls, including near infrared reflectance (NIR) (Blakeney and 

Flinn, 2005; Huang et al., 2007; Via et al., 2007) and Fourier-Transform Infrared (FT-IR) 

spectroscopies (Carpita and McCann, 2002; Chen et al., 1998).  NIR uses infrared 

overtones and combination vibrations, while FT-IR employs mid-infrared regions based 

primarily on functional and fundamental vibrations.  NIR is a promising technique for the 

rapid determination of physical and chemical wood properties, based on calibration and 

estimation rather than direct measurement.  Although, the NIR signatures are often 

overlapping and make direct structural assignment difficult, there are several good 

examples of NIR-based modeling in the determination of lignin composition, in terms of 

both monomer ratio and total lignin content (Alves et al., 2006; Bailleres et al., 2002; 

Huang et al., 2007; Jones et al., 2006; Li et al., 2007; Maranan and Laborie, 2008; Poke 

and Raymond, 2006; Sykes et al., 2005; Takayama et al., 1997; Yamada et al., 2006; 

Yeh et al., 2004).  However, this trait prediction process still first requires the 

measurement of NIR spectra and compositional trait(s) (e.g. the determination of H, G 

and S monomer composition of lignin by wet chemical techniques, such as 

thioacidolysis or nitrobenzene oxidation) in a ‘calibration’ population that covers the 

phenotypic range of interest, in order for a predictive model to be generated.  

Furthermore, distinct prediction models are typically required for each plant species, or 

at least for each genus of interest.  However, once an accurate model is established, 

the easily obtained NIR reflectance data is all that will be required to allow the 

estimation of compositional traits in samples with undetermined characteristics. 

The research herein describes a modified thioacidolysis protocol that enables the 

medium- to high-throughput screening of plant cell wall lignin monomer composition.  

We describe the details of a series of simple revisions to the original thioacidolysis 

protocol that reduce its resource demand while permitting a marked increase in sample 

throughput.  Furthermore, we utilise the described wet-chemical procedure to rapidly 
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develop an accurate NIR-based prediction model for lignin monomer composition in 

hybrid poplar. 

 

Materials and methods 
Plant material and sample preparation 
All trees were propagated from apical explants by sterile tissue culture techniques 

(three weeks growth cycle), and then re-potted into a soil medium. Trees were then 

grown in a temperature-controlled greenhouse under a fixed 16 h photoperiod with 

supplemental lighting (radiant flux density of 300 W m-2).  Daily watering with fertigated 

water was achieved by flood table irrigation.  The trees were harvested twelve weeks 

after transfer to the greenhouse, and individual wood samples collected from each 

stem, 10 cm above the base of the root collar.  The samples were then stripped of bark 

and pith and oven-dried (50 °C) for two days.  Once dry, the wood was ground to a flour 

in a Wiley mill (40 mesh), and extracted for 12 h with hot acetone in a Soxhlet 

apparatus to remove extractives. 

Thioacidolysis procedure 
Wood samples involved in the comparison between thioacidolysis procedures were 

initially processed as per Rolando et al. (1992) (Appendix D.6), using 10 mg of ground, 

extract-free, oven-dried wood flour as the substrate, and a ratio of 1 ml of reaction 

mixture to 1 mg of sample.  The same samples, as well as those used in NIR-based 

predictive modeling, were also processed according to the following revised protocol.  

For each sample, 10 mg of ground, extract-free, oven-dried wood flour was weighed 

into a glass 5 ml Wheaton vial with teflon-lined screw-cap.  One ml of freshly made 

reaction mixture (10% boron trifluoride etherate and 2.5% ethanethiol, in recently 

distilled dioxane (v/v)) was added to each vial and blanked with nitrogen gas prior to 

sealing.  Vials were then placed together in a dry heating block (100 °C) for 4 h, with 

periodic (hourly) manual agitation.  The reaction was halted by placing the reactions at -

20 °C for 5 min.  Internal standard (5 mg/ml tetracosane in methylene chloride, 0.2 ml) 

was then added to each vial, and enough 0.4 M sodium bicarbonate to bring reaction 

pH to between 3 and 4 (~0.3 ml, as determined by pH indicator paper).  To extract the 

reaction products from the aqueous mixture, 2 ml of water and 1 ml of methylene 

chloride were added to each vial, which was then recapped, vortexed, and allowed to 



200 
 

settle, phase-separating the upper (aqueous) and lower (organic, and containing lignin 

breakdown products) phases.  An aliquot (1.5 ml) of the organic phase was removed by 

autopipette, and simultaneously cleared of residual water and filtered by passing 

through a Pasteur pipette packed with a small tissue paper plug and an inch (~50 mg) 

of granular anhydrous sodium sulphate, and transferred directly into a 2 ml 

polypropylene microfuge tube.  Samples were then collectively evaporated to dryness in 

a Vacufuge (Eppendorf) (approximately 1.5 h at 45 °C), and resuspended in 1 ml of 

methylene chloride.   

Samples prepared by both conventional and optimised methods were derivatised 

by combining 20 µl of resuspended sample with 20 µl of pyridine and 100 µl of N,O-

bis(trimethylsilyl) acetamide (Sigma).  After incubation for at least 2 h at 25 °C, 1 µl of 

this reaction product was analysed by gas chromatography (GC). 

Gas chromatography 
Gas chromatography was conducted on a Hewlett Packard 5890 series II instrument, 

fitted with an autosampler, splitless injector, flame ionising detector (FID), and 30 m 

RTX5ms 0.25 mm ID capillary column.  One microlitre injections were separated using 

helium as a carrier gas at 1 ml/min.  Inlet and detector temperatures were set to 250 °C, 

while the oven profile consisted of: initial temperature 130 °C, hold 3 min, ramp 

temperature 3 °C/min for 40 min to give a final temperature of 250 °C, hold 5 min, cool.  

Peak identification was consistent with that in Rolando et al. (1992).  The yield and 

relative concentration of hydroxyphenyl, guaiacyl, and syringyl lignin was determined 

from the response factor for each, as the ratio of relative concentration to the relative 

peak area of the internal standard. 

NIR Spectroscopy 
The light reflectance of wood samples across the near infrared spectrum was measured 

with an Analytical Spectral Devices Inc., QualitySpec Pro near infrared (NIR) 

spectrophotometer, equipped with a round 1.5 cm diameter sample window (Muglite).  

The scanning range was from 350–2500 nm, with a 2 nm interval, interpolated to 1 nm. 

Statistical analysis 
Prediction modeling was conducted using the Partial Least Squares Regression (PLSR) 

package provided in ‘The Unscrambler 9.1’ software (Camo Technologies, Woodbridge, 

New Jersey), employing full cross-validation as a modeling option.  Prior to PLSR, NIR 
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reflectance data were transformed into the Savitzky-Golay first derivative, with the 

averaging/smoothing process spanning 25 wavelengths either side of each data point, 

and an order of 2 for the polynomial approximation process. 

 

Results 
Thioacidolysis reaction 
An initial experiment comparing the performance of the original (Lapierre et al. 1985; 

Rolando et al., 1992) and our revised thioacidolysis method was conducted to 

determine the relative efficacy of p-hydroxyphenyl, guaiacyl and syringyl lignin 

monomer subunit quantification, in woody plant tissue.  In order to estimate the 

monomer proportions and total monomers yield (as determined by both methods) 

ground, extract-free wood samples from single trees of three lines of hybrid poplar P717 

(P. alba x tremula) were analysed, with five technical replicates conducted on each 

sample.  These trees represent two transgenic lines, both of which exhibit markedly 

altered wood lignin chemistry, and the wild-type control.  The transgenic lines included 

an overexpressing C4H::F5H line, which exhibited a considerable increase in the S:G 

ratio of lignin, without significant effect on p-hydroxyphenyl monomers or the relative 

lignin content of the wood, as previously determined by thioacidolysis (Franke et al., 

2000; Huntley et al., 2003; Meyer et al., 1996; Meyer et al., 1998), and an RNAi-

suppressed line targeting p–coumaroyl-CoA 3-hydroxylase (C3′H), with substantially 

reduced levels of cell wall lignification and elevated levels of p-hydroxyphenyl units 

(Coleman et al., 2008). 

The intention was to detect, measure and combine the contributions from all of 

the three major lignin monomer subunits liberated from the cell wall lignin, where H 

monomers represent 4-hydroxyphenyl, G monomers represent 4-hydroxy-3-

methoxyphenyl, and S monomers represent 4-hydroxy-3,5-dimethoxyphenyl subunits.  

The monomers were detected as both the erythro- and threo-isomers of (H, G or S)–

CHR-CHR-CH2-R, and (H,G or S)-CHR-CHR-CHR2, as per Rolando et al. (1992).  In 

practice, clean, discrete, measurements of each form was only possible for the G- and 

S-derived monomers, as the H-derived monomers were at trace-levels in most samples, 

and the peaks frequently did not resolve well from one another in gas chromatography.  

Approximate elution times under the conditions described herein were:  22.2–23.5 min 
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for H-derived monomers, 23.8–24.3 min for G-derived monomers, and 25.8–26.4 min 

for S-derived monomers (Figure 1). 

Lignin subunit ratios and total monomer yield differed between the lines, with the 

wild-type exhibiting an S:G ratio of ~70:30 as is typical of many angiosperm deciduous 

species, the over-expressing C4H::F5H transgenic line exhibiting an elevated S:G ratio 

(~84:15), and the C3H:RNAi transgenic line exhibiting a decrease in total monomer 

yield of ~40% (compared to wild-type), with a concurrent increase (~10%) in H 

monomers largely at the expense of G monomers (Table 1). 

It is apparent from Figure 2 and Table 1 that the averaged composition of lignin 

monomers, liberated as a result of thioacidolysis, was very similar when comparing the 

original and revised methods, with differences generally falling within a single standard 

deviation.  Similarly, thioacidolysis yield (as measured by the sum of the threo- and 

erythro-isomers of H, G, and S-monomers) was very similar when.  Furthermore, the 

level of error does not appear to favour any monomer over another. 

Traditional thioacidolysis techniques permit, on average, the preparation of ~6-10 

samples per day prior to monomer quantification by GC analysis.  In contrast, the 

modified method permits upwards of 50 individual samples to be prepared in a single 

day, which can then be run on the GC for analysis the subsequent day.  This 

substantially increases preparation number, and offers a medium- to high-throughput 

analytical protocol for accurately determining plant cell wall lignin monomer subunit 

composition.  Furthermore, the reduced volumes of reaction solvents (5- to 10-fold 

reduction in dioxane, BF3 and ethane thiol) and purifying steps (up to 20-fold reduction 

in methylene chloride rinse volume etc.) offer added savings in preparation costs. 

Prediction of lignin monomer proportion via NIR spectroscopy 
Following confirmation that the modified thioacidolysis protocol was suitable to quantify 

lignin monomer composition of plant cell wall moieties, 267 independent thioacidolysis 

reactions were run to determine the monomer composition of wild-type and transgenic 

wood samples originating from individual trees exhibiting a board spectrum of lignin 

monomer compositions.  These same samples were then NIR-scanned and the 

relationship between H, S and G lignin proportions and the NIR reflectance data (both 

raw and derivative transformed) modelled by PLSR analysis, with complete cross-

validation.  Substantial variation in monomer composition was achieved by including 
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trees from eight C4H::F5H transformed lines originating from independent 

transformation events, and that displayed a change in S:G ratio when compared with 

the wild-type control trees.  These were the same lines previously analysed by Huntley 

et al. (2003).  The sample and phenotypic structures of the dataset are described in 

Table 2. 

A predictive model including the first eight (of 15 calculated) principal 

components  was deemed most suitable, as this model accounted for 95.896% of 

variance in the response variables, while the addition of subsequent components 

resulted in only marginal improvement (97.669% with all 15 components).  The resultant 

NIR prediction model proved to be highly accurate under cross-validation as indicated in 

the plots of measured versus predicted monomer proportion (Figure 2), and in the 

corresponding table of regression descriptors (Table 3).  As anticipated (due to the low 

level and quantification difficultly for H-monomers), the accuracy of prediction was 

notably less for H proportion than for G and S. 

 

Discussion 
Revised thioacidolysis procedure 
In this post-genomic era, there is a pressing need to develop high-throughput 

phenotyping tools to work in parallel with, and complement, the rapidly advancing 

functional genomics toolbox (i.e. transcriptomics, proteomics and metabolomics).  

Furthermore, advanced breeding programs, mapping populations and mutant 

populations, as well as our traditional plant resources, require techniques that permit 

the accurate rapid characterization of plant cell walls, with minimal inputs (time, 

reagents and equipment).  Thus, the principal aim of this research was to modify an 

accepted protocol (i.e. thioacidolysis) to improve throughput, while concurrently 

maintaining accuracy.  The resultant protocol could then serve as a standalone platform 

for plant cell wall monomer compositional analysis, or as the wet chemical procedure 

required to establish predictive models based on other analytical tools, such as 

spectroscopy.  Because independent models are typically required on a species by 

species basis, due to the substantial variation in chemical and ultrastructural 

architecture of plants, extensive calibrations sets continue to be needed and the greater 

the number of samples, the higher the statistical accuracy. 
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Revisions to the procedure were attempted to increase the efficiency of the 

traditional thioacidolysis reaction employed to liberate lignin monomers for quantification 

by gas chromatograph.  Several iterations and modifications were attempted (data not 

shown) but, attesting to the development by the procedures originators, in the end the 

established chemical reaction was retained, and most revisions were methodological 

rather than empirical.  Essentially, the reaction volume was scaled down with as few 

changes to chemical ratios as possible.  Volume scaling was central to achieving higher 

efficiency, as this allowed simultaneous processing of many samples via the use of 

alternative equipment.  Simply reducing the reaction volume to small-scale 1 ml levels 

facilitated large-scale incubation of several reactions together in a temperature-

controlled heating dry-block.  Furthermore, the reduction in reaction volumes permitted 

the aqueous quenching and the subsequent organic solvent extraction procedures to be 

conducted in a single 5 ml glass vial, without the need for a separatory funnel.  

Additionally, the final volume of extract in organic solvent was less than 2 ml, which 

allowed for the rapid evaporation of a large number of samples together in a Vacufuge 

(Eppendorf).  Ultimately, these simple modifications now permit 50 or more samples to 

be processed per person, per day, without the need for specialized equipment and with 

substantially lower chemical input. 

Equivalence of results from original and revised thioacidolysis protocols 
Although the procedural revisions involved mainly scaling and equipment choice, there 

were some changes that potentially could have affected the analysis results.  

Comparison between the performance of the original and revised protocols, as applied 

to samples with highly deviating lignin monomer composition, was intended to assess 

any possible effects. 

One major concern during scaling was the decision to supply the same amount 

of sample (as the traditional method) to the modified reaction in order to maintain 

weighing accuracy and good sample representation and homogeneity.  This meant that, 

in the revised protocol, the ratio between reaction volume and sample weight was 

decreased ten-fold compared to the original method.  In their discussion of the analysis 

of lignocellulose residues (i.e. extractive-free wood flour) using thioacidolysis, Rolando 

et al. (1992) suggest that because the reagent is quickly consumed through reaction 

with glycosidic units in the sample, it is advisable to provide surplus reagent in order to 
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ensure that this does not become a limiting factor.  They suggest a minimum of 0.5 ml 

of reagent per mg of tissue – a ratio that was reduced considerably in the revised 

protocol.  Another concern was the decision to reduce both the relative volume and 

number of organic solvent extraction cycles to isolate the lignin breakdown products 

from the aqueous mixture, post-reaction.  This was done primarily to reduce sample 

handling time, and to keep the final extract volume within the 2 ml capacity needed for 

ease of sample handling (single glass vial) and evaporation by Vacufuge (Eppendorf). 

However, this carried with it the risk of decreasing product yield or skewing monomer 

representation. 

The results indicate that the revisions did marginally reduce yield (~5%), but had 

a limited influence on monomer quantification (Table 1).  Yield in thioacidolysis is 

ascribed to the β–O–4-ether content and the extent of its cleavage; only β-ether units 

that are either free-phenolic or are further 4–O–β-etherified will release the 

thioacidolysis monomers. However, it has been shown that thioacidolysis does not 

completely cleave all existing β-ethers (Ralph and Grabber, 1996), and as such the 

minor reductions in observed yield in the revised protocol may be a function of using 

lower reagent loadings.  Furthermore, in poplar, some lignin units are gamma-p-

hydroxybenzoylated; these units do not completely release the (unacylated) monomer 

(Grabber et al. 1996), and therefore as a consequence of reagent scaling may account 

for the under-quantification.  The yield is therefore always an underestimate of β-ether 

content, but  if linkage analysis is the objective, then the modified protocol will deliver a 

further slight underestimation compared to the traditional method.  However, monomer 

proportion, rather than yield, is the primary concern of the thioacidolysis method. As 

long as the yield is high enough to facilitate accurate measurement of relative 

abundance, this analysis has achieved its goal.  The shifts observed in monomer 

proportion were small enough (and frequently statistically insignificant) that the 

measurements generated by the original and revised protocols could be considered 

‘substantially equivalent’.  This study therefore indicates that for wood of varied lignin 

composition, from 12 week-old hybrid poplar, as little as 0.1 ml of reaction mixture per 

mg of tissue is sufficient to maintain a good yield, and accurate quantification.  From a 

purely pragmatic point of view, especially for use as a large population screening tool, 

the slight decrease in yield and minimal shifts in monomer proportions observed under 
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the revised protocol are suggested to be acceptable, given the considerable resource- 

and time-related benefits it provides. 

 

Predictive modeling of lignin monomer proportion 
According to visual and numerical indicators, the performance of the NIR-based 

predictive model for lignin monomer proportion was excellent, and comparable to the 

results achieved in other species and applications (Alves et al., 2006; Bailleres et al., 

2002; Maranan and Laborie, 2008; Yamada et al., 2006).  Notably, for G and S 

monomers prediction in cross-validation exhibited minimal error across the range of 

phenotypic extremes.  Because the correlation coefficients and slopes of the regression 

lines of these monomers’ predicted value against their measured value are approaching 

one, a high level of confidence could be placed in further predictions made by this 

model for additional, similar wood specimens.  The comparatively low accuracy of 

prediction for H monomers is likely related to the ordinarily low abundance of this 

monomer in poplar in combination with the error possibly introduced when measuring 

near the baseline of GC traces, and the limited variation observed in H monomer 

abundance across the samples modeled (the C4H::F5H construct had little effect on 

relative H monomer content). 

The cross-validation regression plots (Figure 2) supports the relationship existing 

between G and S monomer proportion in angiosperm wood of C4H::F5H modified trees, 

as has previously been shown (Huntley et al. 2003) by thioacidolysis (Table 2).  This is 

most apparent in the plots of regression coefficients for NIR wavelengths against the 

prediction model, in which the strength and importance of individual NIR wavelengths 

for G and S monomer prediction are complementary (Figures 1E and 1F).  It is probable 

that the strength of this relationship contributed substantially to the accuracy of the 

predictive model, as PLSR involving multiple response variables takes implicit 

advantage of such patterns. 

 

Concluding remarks 
It is apparent from these findings that the revised thioacidolysis protocol described is a 

useful alternative to the classic procedure.  This new protocol promotes a substantial 

increase in sample processing efficiency while markedly reducing equipment load and 
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reagent consumption, and achieves this with little effect on the determination of lignin 

composition.  The increased performance under this protocol makes thioacidolysis an 

effective tool for rapidly generating the large sets of phenotypic data required for NIR-

based predictive modeling of lignin compositional traits.  In applying such modeling to 

the wood of hybrid poplar, it was confirmed that data generated via the revised 

thioacidolysis protocol was of sufficient quality to allow accurate modeling of the 

relationships existing between NIR reflectance spectra and the proportion of the primary 

monomeric constituents in lignin (as measured by thioacidolysis), across a broad 

phenotypic range. 
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Figures 
 

 
 
Figure 1. Typical GC FID traces for wild-type P717 poplar thioacidolysis samples 
prepared by  A) original, large-scale method, and B) revised, small scale method.  H1: p-
hydroxyphenyl-CHR-CHR-CH2R erythro.  H2: p-hydroxyphenyl-CHR-CHR-CH2R threo.  
G1 =  Guaiacyl-CHR-CHR-CH2R erythro.  G2 =  Guaiacyl-CHR-CHR-CH2R threo.  G3 = 
Guaiacyl-CH2-CHR-CHR2.  S1 =  Syringly-CHR-CHR-CH2R erythro.  S2 =  Syringyl-
CHR-CHR-CH2R threo.  S3 = Syringyl-CH2-CHR-CHR2. 
 
 
(Overleaf) 
Figure 2. NIR-based PLSR prediction modeling of lignin monomer proportion in P717 
poplar exhibiting variation in S:G ratio due to transgene activity.  Results presented are 
derived from a model using the first eight principal components, under cross-validation.  
Figures A-C are plots of measured vs. predicted values for lignin monomer proportion 
for p-hydroxyphenyl, guaiacyl and syringyl monomers, respectively.  Solid line 
represents regression lines of best fit, while dashed line represents optimal 1:1 
relationship between measured and predicted values.  Figures D-F are the 
corresponding plots of regression coefficients for the first derivative NIR wavelengths 
with the PLSR-derived prediction model, for p-hydroxyphenyl, guaiacyl and syringyl 
monomers, respectively (also based on the first eight principal components).  
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Tables 
 

Line/
treatment Mean Std dev H G S H G S
P7-WT-R 1798.30 19.32 0.0037 0.3128 0.6835 0.0002 0.0034 0.0033
P7-WT-O 1941.93 89.14 0.0031 0.3161 0.6808 0.0002 0.0023 0.0024
P7-CF-R 2013.52 108.50 0.0039 0.1490 0.8471 0.0006 0.0015 0.0013
P7-CF-O 2129.42 326.68 0.0043 0.1527 0.8430 0.0009 0.0007 0.0004
P7-CR-R 1574.62 54.67 0.1212 0.2355 0.6433 0.0038 0.0049 0.0023
P7-CR-O 1649.18 254.84 0.1053 0.2413 0.6534 0.0035 0.0018 0.0033

Thio lignin yield Thio lignin composition (proportion)
(μMol/g Klason lignin) Mean StdDev

 
 
Table 1.  Lignin yield and proportion measured by original and revised thioacidolysis 
reaction procedures.  Line/treatment descriptors: P7 = P717 hybrid poplar, WT = wild 
type, CF = C4H::F5H, CR = C3H:RNAi, and suffixes ‘O’ and ‘R’ indicate the use of 
‘original’ or ‘revised’ protocol.  ‘H’, ‘G’ and ‘S’ = p-hydroxyphenyl, guaiacyl and syringyl 
lignin liberated by thioacidolysis.  Mean and standard deviation values are based on five 
technical reaction replicates conducted with homogenised, ground and extracted wood 
samples.  ‘StdDev’ = standard deviation. 
 

 

 

 

Tree Tree
line count Mean Std dev Mean StdDev Mean StdDev Mean StdDev
P7-WT 104 2321.59 280.12 0.0028 0.0010 0.3158 0.0209 0.6814 0.0206
P7-CF-A 9 2519.57 100.95 0.0028 0.0006 0.2753 0.0197 0.7219 0.0196
P7-CF-B 82 2504.30 275.10 0.0033 0.0012 0.1556 0.0116 0.8411 0.0110
P7-CF-C 7 2750.77 152.40 0.0025 0.0006 0.1473 0.0143 0.8502 0.0146
P7-CF-D 5 2634.48 76.71 0.0023 0.0006 0.1360 0.0381 0.8617 0.0379
P7-CF-E 5 2771.64 147.65 0.0026 0.0003 0.1103 0.0116 0.8872 0.0117
P7-CF-F 12 2790.52 150.8 0.0028 0.0005 0.0883 0.0125 0.9089 0.0126
P7-CF-G 6 2773.49 116.35 0.0032 0.0006 0.0854 0.0069 0.9114 0.0069
P7-CF-H 37 2707.53 242.47 0.0028 0.0009 0.0803 0.0390 0.9169 0.0393
Total 267

Proportion of lignin monomers by classThio lignin yield
(μMol/g Klason lignin) Hydroxyphenyl Guaiacyl Syringyl

 
 

Table 2.  Lignin properties and sample counts of tree lines employed in NIR-based 
modeling of lignin monomer proportions by PLSR. Tree line descriptors: P7 = P717 
hybrid poplar, WT = wild type, CF = C4H::F5H, and an alphabetic suffix denotes identity 
of transgenic lines derived from single transformation events.  Lines have been ordered 
according to increasing S:G ratio.  Lignin monomer proportions were determined by the 
revised thioacidolysis procedure, described herein.  ‘StdDev’ = standard deviation. 
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Table 3.  Performance indicators of NIR-based PLSR model for prediction of lignin 
monomer proportion, as determined by a comparison between actual measured and 
model-predicted values.  Indicators are provided for both model calibration and model 
cross-validation scenarios.  Corresponding graphical representation of cross-validation 
scenario is provided in Figures 1A-C.  ‘Descriptor’ explanations are as follows: ‘Slope’ = 
slope of the regression line between measured and predicted values (ideally = +/-1), 
‘Offset’ = Y-intercept of the regression line, ‘Correlations’ = correlation coefficient 
between measured and predicted values, ‘R-square’ = coefficient of determination (a 
measure of the degree of fit of the regression), RMSEC/RMSEP = root mean square 
error of calibration/prediction (the average modeling error). 
 

Descriptor H G S H G S
Slope 0.731 0.956 0.968 0.721 0.956 0.956
Offset 0.008 0.090 0.255 0.008 0.090 0.346
Correlation 0.855 0.979 0.984 0.843 0.979 0.979
R-square 0.731 0.957 0.968 0.710 0.957 0.958
RMSEC/RMSEP 0.005 0.202 0.176 0.005 0.202 0.201

Model calibration Model validation
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Appendix D.1. Klason procedure for the determination of total lignin content 
 

Extractive-free, oven-dried wood equivalent to 0.2 g and 0.15 g of oven-dried pulp was 

treated with 3 mL of cold (4 ºC), 72% H2SO4 (Fisher Scientific) at 20°C.  The mixture 

was initially macerated continuously for 2 minutes, and then stirred every 10 minutes for 

2 hours.  Acid hydrolysis was stopped with the addition of cold deionized water, 

whereby the wood mixture was diluted with 112 mL of deionized water and the pulp with 

112.5 mL of deionized water, to achieve a final acid concentration of 4% (w/w) H2SO4.   

The mixture was then transferred to a serum bottle, which was sealed with a septa cap 

and autoclaved (Castle Thermatic 60) at 121°C for 1 h. 

 Klason lignin was determined gravimetrically with the hydrolysates filtered 

through pre-weighed, medium coarseness, sintered-glass crucibles.  The filtrate was 

added back to the septa bottles and re-filtered to ensure recovery of all solids, and the 

filtrate retained.  The solids were then washed with 100 mL of 40°C deionized water and 

oven-dried at 105°C for 12 hours.  The oven-dried crucibles with acid-insoluble lignin 

were then weighed. 

The Klason lignin filtrate was further analysed using TAPPI Useful Method UM-

250 to determine the portion of acid soluble lignin.  30 μL of wood hydrolysate samples 

were diluted with 970 μL of 4% H2SO4 in a test-tube and mixed thoroughly, such that 

spectophotometer (Milton Roy Spectronic 1001 Plus) absorbance readings were 

between 0.2 and 0.7 absorbance units (AU) at 205 nm.  The solution was transferred to 

a quartz cuvette, 4% H2SO4 was used to calibrate the spectrophotometer and then 

absorbance values for each sample was taken.  An expression of Beer’s Law is used to 

calculate the percent of acid-soluble lignin as follows: 

 

Acid-soluble lignin % = B·V·100/1000·W 

Where: 

B = Absorbance · volume of diluted filtrate / 110 · volume of original filtrate 

V = Total volume of filtrate 

W = Oven-dry weight of wood 
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Appendix D.2. Carbohydrate analysis of woody material 
 

The Klason lignin filtrate was filtered through 0.45 mm HV filters (Millipore, MA, USA) 

prior to injection of a 20 μL sample volume.  The HPLC system (Dionex DX-600, 

Dionex, CA, USA) was equipped with an ion exchange PA1, 4 × 250 mm, (Dionex) 

column, an ED50 Electrochemical detector (Dionex), and an AS 50 autosampler 

(Dionex).  The column was equilibrated with 250 mM NaOH (BDH), eluted with 

deionized water at a flow rate of 1.0 mL/min., and post-column wash of 200 mM NaOH 

at a flow rate of 0.5 mL/min.  Fucose (Sigma) (5 mg/mL) was used as an internal 

standard.  Cell wall carbohydrates analysed in this manner included arabinose, 

galactose, glucose, mannose and xylose. 
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Appendix D.3. Preparation of Woody Plant Medium (WPM) (McCown and Lloyd, 1981) 
 

WPM Medium (pH 5.6) 
all units either mL or g; stock concentrations are as below 

To volume dH20 0.5 L 1 L 5 L 10 L 
WPM A 10 20 100 200 
WPM B 10 20 100 200 
WPM C 2.5 5 25 50 
WPM D 2.5 5 25 50 
WPM E 2.5 5 25 50 
LM FeEDTA 5 10 50 100 
WPM Vitamins 0.5 1 5 10 
MS Glycine 0.5 1 5 10 
Ca gluconate 0.325 0.65 3.25 6.5 
sucrose 10 20 100 200 
 
pH 5.6, NaOH 

500ml to each 1 ml autocalve bottle 

to each 500 mL bottle add: 
Agar 1.5 
Phytagel 0.55 

Steam autoclave for 20 min at 121°C  at 15 psi,  
plus time for heating, cooling, and pressure adjustment 
              

WPM A (50X) 1 L WPM Vitamins (1000X) 1 L 
NH4NO3 20.0 g myo-inositol 100 g 
Ca(NO3)2*4H2O 27.8 g   thiamine-HCl 100 mg 

nicotinic acid 500 mg 
WPM B (50X) 1 L pyridoxine-HCl 500 mg 
K2SO4 49.5 g 

MS Glycine (1000X) 1 L 
WPM C (200X) 1 L glycine 2 g 
CaCl2*2H2O 19.2 g 

LM FeEDTA (100X) 1 L 
WPM D (200X) 1 L FeSO4*7H2O 2.78 g 
KH2PO4 34 g Na2EDTA*2H2O 3.74 g 
H3BO3 1.24 g 
Na2MoO4*2H2O 50 mg 

WPM E (200X) 1 L 
MgSO4*7H2O 74 g 
MnSO4*4H2O 4.46 g 
ZnSO4*7H2O 1.72 g 
CuSO4*5H2O 50 mg 
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Appendix D.4. RNA extraction (Kolosova et al 2004), and cDNA synthesis protocols 
 
Treenomix  - Total RNA Isolation and Quality Control Protocol – Version 1.0 March 30th, 2004 

 

1.  Total RNA isolation chemical and reagent inventory 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

Chemical Name Formula Weight Company Catalogue  
Tris (Hydroxymethyl) aminoethane (500g) 121.14 VWR 9210 
Lauryl sulfate lithium salt (50g) 272.3 Sigma L-9781 
Lithium chloride (500g) 42.39 Sigma L-9650 
Disodium salt EDTA (500g) 372.24 VWR EX0539-1 
Deoxycholate acid, Sodium Salt (100g) 414.5 Fisher BP349-100 
Tergitol (100g)  Sigma NP-40 
Aurintricarboxylic acid 422.35 Sigma A1895-5G 
Dithiothreitol (10g) 154.2 Sigma D-9779 
Thiourea (100g) 76.12 Sigma T-8656 
2% PVPP (100g)  Sigma P-6755 
Sodium chloride (5Kg) 58.44 VWR 7760 
Sodium acetate trihydrate (500g) 136.08 VWR 7610 
CTAB (500g) 364.5 Sigma H-5882 
Isoamyl alcohol (500mL) 88.15 Sigma I-9392 
Agarose (500g)  Invitrogen 15510-027 
Boric acid (1Kg) 61.83 VWR 2710 
Glacial acetic (2.5L)  Fisher A38-212 
Ethidium Bromide (10mg/mL) (10mL)  BioRad 161-0433 
Diethyl pyrocarbonate (100mL) 162.1 Sigma D-5758 
dATP (100mM)  Invitrogen 55082 
dCTP (100mM)  Invitrogen 55083 
dGTP (100mM)  Invitrogen 55084 
dTTP (100mM)  Invitrogen 55085 
Oligo (dT)18 (500 ng/µL)  Qiagen N/A 
RNaseOUT (5,000U @ 40U/µL)  Invitrogen 10777019 
M-MLV RT (40,000U @ 200U/µL)  Invitrogen 28025-013 
5x First Strand Buffer (1mL)  Invitrogen Y00146 
0.1 M DTT (500µL)  Invitrogen Y00147 
5x T4 DNA polymerase buffer (1mL)  Invitrogen Y02284 
T4 DNA polymerase (50U @ 5U/µL)  Invitrogen 18005-017 
1 Kb Ladder (250µg)  Invitrogen 15615-016 
100 bp Ladder (50µg)  Invitrogen 15628-019 
Microspin S-300 columns (50)  Amersham 27-5130-01 
Alpha dGTP (32P) 250 µCi (10µCi/µL) 3000 µCi/mmol)  Amersham AA0006 
100% ethanol   N/A 
70 % ethanol   N/A 
100% isopropanol   N/A 
Chloroform (4 L)  Fisher C298-41 
Liquid Nitrogen   N/A 
Sodium Dodecyl Sulfate (500 g) 288.38 VWR 7910 
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2.  Total RNA isolation from spruce and poplar tissues 
 
The following methods for total RNA isolation and quality control analysis were developed in the 
Treenomix laboratory by Natalia Kolosova, Dr. Barbara Miller, Dawn Cooper, Sharon Jancsik, Hesther 
Yueh and Dr. Steven Ralph.   The total RNA isolation protocol is based on Wang et al. (2000) Isolation 
and purification of functional total RNA from woody branches and needles of Sitka and White Spruce.  
Biotechniques 28(2):292 and Chang et al. (1993) A Simple and Efficient Method for Isolating RNA from 
Pine Trees.  Plant Molecular Biology Reporter 11(2):113. 
 
a.  Preparation of solutions for total RNA isolation 
 
All glassware, stir bars, metal spatulas, etc. for preparing solutions, or for use during total RNA isolation 
should be baked for at least 4 hours at 180°C prior to use.  Likewise, mortars and pestles should be 
treated in the same manner.  This will inactivate any RNases that are present.   
 
0.1% DEPC-treated H2O – 1 L  Volume Added 
DEPC     1 mL 
Milli-Q H2O    999 mL 
 
Handle DEPC in fume hood.  Mix for 1 hour at room temperature (closed bottle) and then autoclave.  
Store at room temperature. 
 
Stock extraction buffer – 500 mL  Volume Added   Final Concentration 
1 M Tris-HCl (pH 8.5)   200 mL    0.4 M 
Lauryl sulfate lithium salt  7.5 g    55 mM 
Lithium chloride (10 M)   15 mL    0.3 M 
Disodium salt EDTA (0.5 M)  10 mL    10 mM 
Sodium deoxycholate, Sodium Salt 5 g    24 mM 
Tergitol NP-40     5 mL (solid-microwave to melt)  
DEPC-treated H2O   to 500 mL     
 
Do not autoclave and store at 4°C. 
 
Working extraction buffer 
     200 mL  100 mL  150 mL  Final Conc. 
Aurintricarboxylic acid   0.0844 g 0.0422 g 0.0633 g 1 mM 
Dithiothreitol    0.3084 g 0.1542 g 0.2313 g 10 mM 
Thiourea    0.0763 g 0.03815 g 0.057225 g 5 mM 
PVPP*     4 g  2 g  3 g  2 % 
 
*PVPP is insoluble.  Addition of PVPP will cause the extraction buffer to become opaque.  Also note that 
PVP and PVPP are NOT the same chemical.  Do not autoclave working extraction buffer.  Prepare and 
use the same day. 
 
TE buffer pH 8.0 – 1 L    Volume Added  Final Concentration 
1 M Tris (pH 8.0)     10 mL   10 mM 
500 mM Disodium salt EDTA (pH 8.0)   2 mL   1 mM 
 
Adjust to 1 L using DEPC-treated H2O  
Autoclave, aliquot and store at -20°C. 
  
5 M sodium chloride 
sodium chloride 146.1 g 
Milli-Q H2O  to 500 mL 
 
Add stock DEPC to 0.1%.  Handle DEPC in fume hood.  Mix for 1 hour at room temperature (closed 
bottle) and then autoclave.  Aliquot and store at -20°C. 
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3.3 M sodium acetate pH 6.1 
Sodium acetate trihydrate 224.5 g 
Milli-Q H2O   to 500 mL 
 
pH to 6.1 with HCl.  Add stock DEPC to 0.1%.  Handle DEPC in fume hood.  Mix for 1 hour at room 
temperature (closed bottle) and then autoclave.  Aliquot and store at -20°C. 
 
10% CTAB 
CTAB   50 g 
DEPC-treated H2O to 500 mL 
 
Do not autoclave.  Heat to 65°C to dissolve prior to use.  Store at room temperature. 
 
10 M LiCl  
Lithium chloride  211.9 g 
DEPC-treated H2O to 500 mL 
 
Filter sterilize, do not autoclave.  Store at 4°C. 
 
500 mM Disodium salt EDTA (pH 8.0) 
Disodium salt EDTA  186.12 g 
Mill-Q H2O    to 1 L 
 
pH to 8.0 with 5 M NaOH.  Add stock DEPC to 0.1%.  Handle DEPC in fume hood.  Mix for 1 h at room 
temperature (closed bottle) and then autoclave.  Aliquot and store at -20°C. 
 
Chloroform:isoamyl alcohol (IAA)  (24:1) - 1L 
Chloroform    960 mL 
Isoamyl alcohol   40 mL 
 
Mix and store at room temperature. 
 
100% ethanol 
Store at -20°C. 
 
Chilled isopropanol 
Store at -20°C. 
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b.  Isolation of total RNA 
 
This protocol has been used to successfully isolate high quality total RNA from a variety of tissues from 
spruce (e.g. xylem, phloem, needles, roots, bark, cones) and poplar (e.g. xylem, phloem, leaves, stems, 
bark, flowers, roots).  These RNA samples have been used to construct full-length cDNA libraries and for 
RNA expression analysis using cDNA microarrays and RT-PCR.  This protocol is designed for tissue 
samples of wet weights between 0.5 g and 1.5 g.  For samples of this size, 15 mL of working extraction 
buffer per sample is suitable.  For tissues exceeding 1.5 g, the quantity of working extraction buffer must 
be scaled accordingly (15 mLs per 1.5 g) and the tissue must be divided after grinding into multiple units 
for processing.  This protocol may not be suitable for tissue weights less than 0.5 g. 
 

Protocol:  (Note:  store all fractions at 4oC until RNA isolation has been verified) 
 1. Pre-chill mortar and pestle at –20oC. 
 2. Weigh & add tissue to chilled mortar, add sufficient liquid N2 to freeze and grind tissue 

to powder using mortar.  Do not allow powder to thaw during grinding. 
 3. Add 7.5 mL of working extraction buffer and mix well.  Note that tissue and buffer will 

freeze solid.  Continue to add more liquid N2 and grind until tissue is again reduced to a 
powder.   

** 4. Transfer powder to 50 mL Falcon tube, add remaining 7.5 mL working extraction buffer, 
and vortex vigorously until consistent solution is achieved.  Snap freeze in liquid N2 for 
10 seconds.  

 5. Place samples in waterbath at 37oC just until thawed, then invert 2 or 3 times to ensure 
a consistent solution. 

 6. Spin in Sorvall (RTH-750 rotor) at 4,000 rpm or Beckman (JS-5.3 rotor) at 3,000x g for 
20 minutes at 4oC. 
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7. Filter supernatant through a folded kimwipe (placed in a funnel) into a 50 mL Falcon 
tube (keep tube buried in ice). This step is only required if there are large visible 
particles in the supernatant. 

8. Add 1/30 volume of 3.3 M NaAcetate pH 6.1 and 1/10 volume 100% ethanol.  If step 7 
is omitted, transfer supernatant directly from step 6 into a new 50 mL Falcon tube and 
then add NaAcetate and ethanol.  Step 8 is required for tissues with a high 
polysaccharide content, which must be determined for each tissue.  If after 
centrifugation (step 11), the polysaccharide pellet is very small then step 8 may be 
omitted.  Examples of issues with high polysaccharide content include poplar leaves 
and some xylem samples, whereas spruce leader tissue is generally low in 
polysaccharides and does not require steps 7-10. 

9. Incubate on ice for 10 minutes. 
10. Spin in Sorvall (RTH-750 rotor) at 4,000 rpm or Beckman (JS-5.3 rotor) at 3,000x g for 

30 minutes at 4oC. 
 11. Transfer supernatant to new 50 mL Falcon tube and add 1/10 volume 3.3 M NaAcetate 

pH 6.1 and 100% volume chilled isopropanol.  Invert several times to mix thoroughly.  If 
solution is not clear, filter through kimwipe as in step 7. 

** 12. Store at –80oC for at least 30 minutes.  
 13. Thaw samples at room temperature and spin in Sorvall (RTH-750 rotor) at 4,000 rpm or

Beckman (JS-5.3 rotor) at 3,000x g for 40 minutes at 4oC.  
 14. Pour off supernatant and resuspend pellet in 2 mL TE and 2 mL 5 M NaCl with periodic 

vortexing, until pellet is completely resuspended (minimum of 30 minutes on ice).  
Transfer to 15 mL Falcon tube. 

 15. Add 1 mL of 10% CTAB and mix by vortexing at room temperature. 
 16. Incubate 5 minutes in 65oC water bath.  
 17. Add an equal volume (5 mL) of chloroform:IAA and mix thoroughly with vortexing (20-30 

seconds).  Separate phases by centrifugation in Sorvall (RTH-750 rotor) at 4,000 rpm or 
Beckman (JS-5.3 rotor) at 3,000x g for 20 min at 4oC.  Transfer aqueous phase (top) to 
a new Falcon tube and repeat extraction by adding another 5 mL of chloroform:IAA. 

 18. Add ¼ volume 10 M LiCl to aqueous phase and mix by vortexing.  
 19. Incubate overnight in –20oC freezer.  Samples may be left at –20°C for a few days if 
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necessary. 
 20. Centrifuge in Sorvall (RTH-750 rotor) at 4,000 rpm or Beckman (JS-5.3 rotor) at 3,000x 

g for 30 minutes at 4oC.  
 21. Pour off supernatant and carefully remove all remaining liquid with pipette.  Dissolve 

pellet in 900 μL TE buffer on ice, vortexing occasionally (note that resuspension may 
take up to 1 hour).  Transfer sample into a 2 mL microfuge tube.  

** 22. Add 900 μL of chilled isopropanol (1 volume) and 100 μL of 3.3 M NaAcetate pH 6.1 
(1/9 volume) to each tube.  Mix by inversion and precipitate for 30 minutes at –80oC.   

 23. Spin in Hettich microfuge at 14,000 rpm for 30 minutes at 4oC to pellet RNA.  Remove 
supernatant and wash pellet with 1 mL of 70% ethanol.  Repeat spin for 10 minutes.  
Remove supernatant by pipette without disturbing pellet.  Repeat spin for 1 minute.  
Remove any remaining liquid with pipette.  Dry pellet for 5-10 minutes at room 
temperature and resuspend in 500 μL autoclaved DEPC-treated H2O on ice for 20 - 30 
minutes, vortexing occasionally.  After QC analysis, divide into aliquots of 125 µL per 
1.5 mL tube. 

 
** At these steps samples may be stored overnight or up to a few days at –80oC. 
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The quality and quantity of total RNA samples is determined by first measuring UV absorbance, followed 
by gel electrophoresis analysis on a standard agarose gel. 
 
c.  UV absorbance quantification of RNA samples 
 

a. While samples are resuspending in 500 μL of DEPC-H20, turn spectrophotometer on (located in 
GDC Rm 3342).  The spectrophotometer requires ~15 minutes to warm up before it is 
operational.  An error message will appear regarding one failed diagnostic/calibration test; simply 
press enter to continue.  Record your name and period of use on the diagnostic test report that is 
generated each time the spectrophotometer is turned on (place on lower shelf directly above 
spectrophotometer). 

 
b. Vortex RNA samples briefly to ensure pellet is thoroughly resuspended.  Use tabletop 

microcentrifuge to collect liquid at the bottom of the microfuge tube.  Prepare a dilution of each 
RNA sample in a 1.5 mL microfuge tube as follows: 

 
Samples.   99 μL of TE Buffer (pH 8.0) and 1 μL of RNA sample  (vortex briefly and 

 centrifuge briefly to collect liquid at the bottom of the microfuge tube). 
 Keep on ice. 

Reference. 100 μL of TE Buffer (pH 8.0). 
 

c. Once the instrument calibration is complete, initiate set-up by selecting “nucleic” and then “enter”.  
Then choose “scan” and press “enter”.  The scan range for “nucleic” acids has a default setting of 
200-350 nm and set points of 260 nm and 280 nm.  This is appropriate for RNA scans and does 
not need to be adjusted.   The “background on” option may be selected if additional set points are 
desired.  For RNA analysis, the correction “factor” option must be set to 40 µg/mL in order to 
correctly determine the concentration of RNA from your scan.  Press “enter” twice more to 
proceed to the next screen. 

 
d. The instrument will prompt you to then press “run” on reference once the cuvette containing your 

reference sample has been placed in the holder (note that the measurement windows must be 
oriented from left to right).  After your reference measurement is complete remove the cuvette 
from the instrument, rinse with distilled water, carefully tap the cuvette dry, add your first sample 
and place the cuvette back into the holder. 

 
e. The instrument will then prompt you to press “run” on sample.  If a chromatogram is required be 

sure to select “print” prior to measuring your next sample.  The spectrophotometer does not save 
any record of your results.  Additional samples may then be quantified after the cuvette is cleaned 
with distilled water and dried between samples.   
 

f. Quality RNA samples will typically have absorbance measurements at 230 nm (polysaccharide 
peak) of less than 0.1 and a 260 nm/280 nm ratio of 2.0-2.4.  A lower ratio is indicative of either 
protein and/or DNA contamination. 
i. The stock RNA concentration may be calculated by multiplying the “concentration” taken 

from the chromatogram by your dilution factor. 
ii The total yield is then obtained by multiplying your stock RNA concentration by the total 

volume of your stock RNA.   The yield varies by tissue but typically ranges from 50-500 
µg total RNA/g of tissue. 
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d.  Gel electrophoresis analysis of RNA quality 
 
Total RNA samples are resolved on standard agarose gels to determine if any RNA degradation has 
occurred.  We have not found it necessary to use denaturing formaldehyde gels for RNA analysis as 
these are labour intensive to produce and dangerous to handle.     
 

a. First clean gel combs and trays with either RnaseZap or a 1% Sodium Dodecyl Sulphate (SDS) 
solution to remove any RNases that may be present and lead to RNA degradation.  Use only gel 
trays and combs that are reserved for RNA analysis and select sizes appropriate for the number 
of samples being processed. 

 
b. All gels are prepared using a 1% agarose matrix (1 g of agarose per 100 mL buffer) in either 0.5X 

TBE or 1X TAE buffer (see below for buffer composition).  Note that the buffer used to prepare 
the gel must be the same as the running buffer in the gel box.  For small gels, use 10 mL of 
liquefied agarose and for large gels use 20 mL.  Allow at least 30 minutes at room temperature 
for the gel to solidify. 

 
c. Transfer gel into gel box and cover with appropriate buffer.  Load 300 ng (6 μL) of 1 Kb ladder 

(Invitrogen) and 2 μg of sample (sample volume between 5-10 µL, adjusted with DEPC-H2O – 
add 1 μL of 10x Loading Dye per sample).  Run at 100 volts until the bromophenol blue (purple) 
dye has migrated ¾ of the length of the gel. 

 
d. Transfer gel to ethidium bromide (carcinogen – wear nitrile gloves) RNA staining solution and 

leave in the dark for 20-30 minutes. 
 

e. Transfer gel to RNA destain container (DEPC-H20) for an additional 20-30 minutes. 
 

f. Photograph gel using the UVP gel imaging system. 
i. Adjust image using coarse and fine focuses under white light, with aperture set to 14 and 

then switch to UV light (302 nm) and adjust integration time until foreground and 
background intensity are optimal.  If signal intensity is unsatisfactory, repeat staining 
and/or destaining steps. 

 
ii. Dispose of all ethidium bromide contaminated materials (i.e. gel, gloves, paper towels 

etc.) in the ethidium bromide solid waster container adjacent to the gel electrophoresis 
station. 

 
iii. Quality RNA samples will have prominent ribosomal RNA bands with no sign of 

degradation (bright smear trailing below prominent  ribosomal band).  The number of 
ribosomal bands will vary (between 2 and 10) depending on the tree species and tissue 
source.  There should be no evidence of genomic DNA present (high molecular weight 
bands greater than 10 Kb). 

 
 

g. Solutions used in gel electrophoresis procedure 
 

5X TBE (1 L)     50X TAE (1 L) 
54 g Tris base     242 g Tris base 
27.5 g boric acid    57.1 g glacial acetic 
20 mL 0.5 M pH8.0 EDTA   100 mL 0.5 M pH8.0 EDTA 
Bring to 1 L with distilled H2O.   Bring to 1 L with distilled H2O. 

 
 Do not autoclave.    Do not autoclave. 
 Store at room temperature.   Store at room temperature. 
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Ethidium bromide staining solution 
100 mL DEPC-H2O 
10 μL of Ethidium Bromide solution (Biorad-10mg/mL) 
 
Store in dark at room temperature. 
 
Destaining Solution (0.1% DEPC-H2O) 
DEPC   1 mL 
Milli-Q H2O  999 mL 
 
Handle DEPC in fume hood.  Mix for 1 hour at room temperature (closed bottle) and then 
autoclave.  Store at room temperature. 

 

 

3.  cDNA synthesis from total RNA 
 

DNA digest (if required): DNase I DIGEST (AMBION TURBO) 
1. add 5 uL of TURBO 10X buffer to 10 ug of RNA in 44 uL (bring up with DEPC water) 
2. add 1 uL of TURBO DNase (total volume now 50 uL) 
3. incubate at 37oC for 30 minutes 
4. add 5 uL of Inactivation solution (vortex this before using); vortex samples at setting 5 briefly to 

mix; let stand for 2 minutes at room temperature 
5. spin at 10 000 g for 2 minutes at  4oC 
6. transfer the supernatant to a fresh 1.5 mL microtube 
7. freeze in -80oC, or use immediately; quantify using GeneQuant 

 

First-strand cDNA synthesis: SUPERSCRIPT II RT (INVITROGEN) 
Cat #: 18064-014 (10,000 units) 

1. add 1 ug of RNA to a PCR tube, bring to 10 uL with DEPC water 
a. for triplicates, pool 0.33ug of RNA from each triplicate to give 1 ug 

2. add 1 uL of oligo(dT18 500 ug/mL) to mixture 
3. add 1 uL dNTP (10 mM stock) 
4. total volume now 12 uL 
5. heat to 65oC for 5 minutes using in thermal cycler 
6. add 4 uL of 5X First-Strand Buffer 
7. add 2 uL of 0.1 M DTT 
8. incubate 42oC for 2 min in thermal cycler 
9. add 1 uL (200 units) of SuperScript II RT (mix by pipetting) 

10. incubate @ 42oC for 50 minutes, then kill @ 70oC for 15 minutes, then 4oC hold 
11. place cDNA in -20oC until needed 
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Appendix D.5. Poplar transformation 
 

The protocol for transforming the two poplar hybrids P. grandidentata × alba (P39) and 

P. tremula × alba (P717), with the two constructs C4H::F5H and C3′H-RNAi, was as 

follows.  Wild-type lines were transformed with Agrobacterium tumefaciens harbouring 

an appropriate binary plasmid, by a standard leaf disk inoculation technique. For C3′H-

RNAi, this involved the Agrobacterium tumefaciens EHA105 strain harbouring the 

pCC600 binary.  For C4H::F5H, this involved the Agrobacterium tumefaciens EHA105 

strain harbouring the PCC153 (pGA482+C4H::F5H) binary.   Plasmid-harbouring 

bacteria were incubated overnight in liquid woody plant medium with 2% sucrose 

(WPM) and 100 μM acetosyringone. Leaf disks were cut and cocultured with EHA105 

for 1 h, blotted dry, plated onto WPM solidified with 3% (wt/vol) agar and 1.1% (wt/vol) 

phytagel, and supplemented with 0.1 μM each α-naphthalene acetic acid (NAA), 6-

benzylaminopurine (BA), and thiadiazuron (TDZ) (WPM+NAA/BA/TDZ).  After 3 days, 

the discs were transferred to WPM+NAA/BA/TDZ containing carbenicillin disodium (500 

mg/L) and cefotaxime sodium salt (250 mg/L). After 3 additional days of selective 

growth, the discs were transferred to WPM+NAA/BA/TDZ containing carbenicillin, 

cefotaxime, and kanamycin (25 mg/L). After two consecutive 5-week periods on this 

medium, shoot tips were isolated to WPM with no antibiotics.  For C3′H-RNAi, plants 

were confirmed as transgenic by PCR using 35S promoter (5′-

gcagctgacgcgtacacaacaag-3′) and poplar CYP98 (C3′H-3)-specific primer 

oligonucleotides (5′-caattggggtaccgcagtgatca-3′), generating a 1.508 Kb amplicon.  

PCR amplification was achieved under the following conditions: hot start at 94°C for 3 

min, 35 cycles of 94°C for 30 s, 60°C for 30 s, and 72°C for 2 min, followed by 10 min at 

72°C.  For C4H::F5H, plants were confirmed as transgenic by PCT using F5H-specific 

primer oligonucleotides “cc14” (5′-GGTCCGGTCGGTCTCTTG-3′) and “cs278” (5′-

TATCTCACCCGGAATTGCCT-3′), generating a ~1 Kb amplicon.  PCR amplification was 

achieved under the following conditions: hot start at 95°C for 5 min, 35 cycles of 95°C 

for 30 s, 55°C for 30 s, and 72°C for 1 min, followed by 10 min at 72°C. 
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Appendix D.6. Traditional method for thioacidolysis (Ronaldo et al 1992) 
 
Rolando, C., Monties, B., and LaPierre, C. (1992). Thioacidolysis. in Lin, S. and Dence, 

C. (Eds), Methods in Lignin Chemistry. Springer-Verlag, Berlin, pp. 334-349. 
 

In some cases, the lignin monomer composition of woody material was determined 

following the traditional thioacidolysis procedure of Ronaldo et al (1992).  Briefly, the 

solvolysis step began with extract-free wood ground through a 40-mesh screen using a 

Wiley mill and extracted for 12 hours with acetone in a Soxhlet apparatus.  A 10 mg 

sample was weighed into a 25 mL Kimax test tube fitted with a Teflon coated cap.  A 10 

mL aliquot of freshly prepared reaction mixture (1:4:40 ratio of boron trifluoride diethyl 

etherate (Sigma), ethanethiol (Sigma), and dioxane (Fisher Scientific), respectively) was 

added to the wood.  Nitrogen gas was used to evacuate the air, and the cap was closed 

tightly.  The reaction was allowed to proceed in a 100°C silicon oil (Aldrich) bath for 

exactly 4 hours and was mixed by shaking every 30 min.  Afterwards, the mixture was 

removed to an ice bath for 5 min to stop the reaction.  3 mL of deionised water and 2 

mL of internal standard composed of 0.25 mg/mL tetracosane (Aldrich) in 

dichloromethane (Fisher Scientific), were then added to a separation funnel followed by 

the addition of the reaction mixture.  The tubes were rinsed twice with 10 mL of 

deionised water and the contents emptied into the separation funnel.  Approximately 4 

mL of 0.4 M sodium bicarbonate in water was added to attain a pH of 3-4.  Next, 30 mL 

of dichloromethane was added and the mixture in the separation vial was shaken well, 

left to separate for 5 minutes and then the lower fraction collected into an Erlenmeyer 

flask.  The addition of 30 mL of dichloromethane was repeated twice more and the 

lower fractions pooled.  The mixture was dried over excess Na2SO4 (Fisher Scientific), 

and filtered through Watman #4 filter paper into a 250 mL round bottom flask.  The 

Erlenmeyer flask was rinsed twice with 15mL dichloromethane and the contents of the 

filter paper rinsed once with 30 mL dichloromethane.   

The total pooled dichloromethane mixture was evaporated at ~40°C under 

reduced pressure (using a Büchi RE III (Switzerland) rotovap) until approximately 3 mL 

remained.  4 mL of methanol (Fisher Scientific) was added to the 3 mL mixture and 

evaporated (as described) to dryness.  The residue in the round bottom flask was re-
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suspended in 2 mL dichloromethane, transferred to a 5 mL vial fitted with a Teflon cap, 

wrapped with aluminium foil and stored at 4°C.   
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