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ABSTRACT

The oil sands industry is a developing sector of Canada’s economy; one area of focus for

oil sands companies is to improve plant maintenance and overall plant availability.

Although considerable progress has been made in the improvement of plant maintenance

in other industries, oil sands and mining companies in general do not significantly benefit

from this due to variable feed supply that impacts plant performance. As well historically

for mining maintenance has not been done well.

The work presented in this thesis develops a framework for understanding oil sands

processing plant key equipment failures by utilizing data collected over two years at

Albian Sands Energy mc, an operator of an oil sands mine in Alberta, Canada. The data

is used to calculate mean time between maintenance for key pieces of oils sand

processing equipment. As well various statistical techniques are applied to the data to

identify the best maintenance strategies for the site. Finally the efficacy of advanced

statistical techniques, such as Power Law modeling, for predicting time to next failure for

equipment is demonstrated.
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I INTRODUCTION

1.1 Background

Canada’s oil sands are one of the largest known hydrocarbon resources in the world.

According to the Oil & Gas Journal and Cambridge Energy Research Associates (2002),

Canada’s oil sands resources are estimated to contain about 178 billion barrels (28.3

billion cubic meters) of recoverable oil with current technology (National Energy Board

of Canada, 2004), which ranks second only to Saudi Arabia, as shown in Figure 1-1.

Figure 1-1 World Oil Reserves — Top 20 (Notional Energy Board, 2004)
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are expected to generate 2 million barrels of crude oil per day to provide more than 67%

of Canada’s total daily oil production (National Energy Board, 2006).

Oil sands extraction has historically been an unprofitable business because revenues from

selling the extracted oil from oil sands could not cover operation costs. In the middle of

2006, the National Energy Board of Canada estimated that the operating costs of new oil

sands mining and crude bitumen extraction operation were $9 to $12 per barrel; and the

cost of an in-situ SAGD (Steam-Assisted Gravity Drainage) operation was $10 to $14 per

barrel for crude bitumen. The employment of huge mining machines and process plants

in oil sands mines make capital cost a major part of the total cost. The total cost of crude

bitumen production will rise to $18 to $20 per barrel in a new oil sands mining and

extraction operation, and $18 to $22 per barrel in a SAGD. The cost of oil sands

extraction is not comparable to conventional oil wells, which is about $1 per barrel in the

Middle East, and $6 to $9 in the US and Canada. The high oil prices make oil sands

extraction a booming industry; however, oil sands extraction is still a high-risk business

because of the high operation costs.

The development of oil sands greatly contributes to Canada’s economic development. At

present, 28 petroleum companies and developers have invested $37 billion in 81 oil

sands-related projects; 33,000 “direct, in-direct and conduced jobs” have been created,

according to Athabasca Regional Issues Working Group (ARIWG). It is predicted that a

total of 240,000 new jobs will be created by 2008. The Alberta government will receive

$7.2 billion in taxes annually from oil sands businesses by 2015; the federal corporate
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and personal tax revenues from the oil sands industry are estimated at $5 billion per year

(ARIWG, 2006).

Oil sands process plants are located at remote, cold locations in northern Alberta. The

operation and maintenance of the mining process is facing great challenges due to the

severe site-working environment (+40 °C to —60 °C), the abrasiveness of ore, the

application and configuration of new equipment, and the shortage of workers.

1.2 Importance of Equipment Reliability, Availability, and

Maintainability in Plant Production and Maintenance

Oil sands companies are facing great challenges in oil sands production and process plant

maintenance. Oil sands production is very different from conventional crude oil

production. The process of mining, extracting and upgrading an oil sands resource is

complex and involves high operating costs. In addition, being a developing industry, oil

sands process plants require many new parts, materials and processes. New technologies

are available to improve oil sands production. At the same time, “many of the new

technologies are not fully understood; operation systems are becoming increasing

complex; and reliability of operation is considerably less than the expected” (Lewis,

2004).

“Industrial plants are under more pressure than ever to produce reliably and predictably”

(Matusheski, 1999). In 2003, Syncrude Canada Ltd., an important oil sands company, had

two maintenance tumarounds in a single year, even though the annual plant equipment
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maintenance costs had been in an excess of 450 million dollars before the tumarounds

(Anderson, 2005). Maintenance had the greatest impact on production. During 2003,

production was reduced by 10%. Operation reliability performance has become an index

that investors pay attention to. More and more plants are applying Reliability Centered

Maintenance to improve operation and maintenance performance. Suncor Energy mc,

another important oil sands company, began operations in 1967, and its main focus in the

early years was to strengthen operational reliability and achieve steady production

capacity. In 2006, its production capacity reached 260,000 barrels a day with plans to

expand to more than half a million barrels per day by 2010 to 2012 (Fort McMurray

Today, 2006). It is recognized that plant equipment reliability, availability and

maintainability is an essential factor in achieving good production and business

performance.

The reasons that equipment Reliability, Availability and Maintainability (RAM) is

important to plant operation are based on the following:

> Production: High equipment reliability, maintainability and availability increase

operational availability, reduce downtime, improve operating performance, and

increase production capacity.

> Cost: Although initial RAM improvement could be costly, from an equipment life

cycle cost consideration, early investment in achieving reliability growth is

valuable and reduces the entire life-cycle cost.
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> Competitive advantage: A continued effort towards improving plant RAM is a

key strategy for business success. RAM improvement involves using new

technologies, new materials and new processes, to reduce costs, improve product

quality, and ensures competitiveness.

> Environment and Safety. High equipment reliability and maintainability would

improve operational safety and reduce equipment-related safety and

environmental hazards.

1.3 Research Objectives

This research aims develop an understanding of the key maintenance challenges for

processing plants operating in an oil sands environment. This will include quantitative

and qualitative assessment of challenges and opportunities

The specific objectives of this research are:

> Identify and quantity the key issues for Reliability, Availability and Maintenance

(RAM) improvement in an oil sands operation;

> Identify failure characteristics of oil sands processing equipment. Such as time

between failure, time to repair;

> Characterize the RAM performance of key equipment for oil sands processing;

> Enhance the understanding of the dominant influences on equipment RAM in the

oil sands environment;

> Develop a method for prediction of pending failures of key equipment.

5



2 LITERATURE REVIEW

2.1 Reliability, Availability, and Maintainability (RAM)

The primary objective of plant maintenance is to ensure that equipment is running at low

cost and high operation efficiency to satisfy plant operational needs. Impressive progress

has been made in maintaining plant equipment in an effective manner; however,

maintenance costs as a percentage of operating costs in the mining industry have not

changed much over the last decade. Ten years ago maintenance costs averaged between

25 to 45% of operating costs (Campbell, 1997), and today they are still the same (Hall,

2007). One could argue the various reasons that account for this, such as increasing

equipment size, larger production rates, rising complexity of equipment, higher

availability requirement, and so on (Ebrahimi, 2004). The fact remains that maintenance

costs still represent an opportunity for increased profitability. Industry professionals and

researchers have realized that an important approach to reducing maintenance costs and

improving operation efficiency is to improve three related characteristics of operating

equipment: Reliability, Availability, and Maintainability (DOD, 2006, Shell Canada

1994, NIST, 2006, Crow, 1994 & 2005, Kumar 1990, Hall, 1997, Barringer, 2004 &

2006).

Reliability, Availability, and Maintainability (RAM) is defined by the U.S. Department

of Defense (U.S. DOD, 2005):

6



Reliability is the probability of an item to perform a required function under

stated conditions for a specified period of time.

Availability is a measure of the degree to which an item is in an operable

state and can be committed at the start of a mission when the mission is

called for at an unknown (random) point in time.

Maintainability is the ability of an item to be retained in, or restored to, a

specified condition when maintenance is performed by personnel having

specified skill levels, using prescribed procedures and resources, at each

prescribed level of maintenance and repair.

Significant improvements have been made in achieving satisfactory levels of RAM by

implementing reliability-centered maintenance strategies in some industries; however,

RAM problems always persist. Some problems in oil sands industry may be as follows:

> Confusion in RAM requirements, and setting unrealistical RAM improvement

goals

> Lack of RAM data collection and analysis

> Poorly defined priority of RAM improvement actions

> Poor understanding of RAM theory and improvement methods

> Poor management in achieving RAM improvement

7



Numerous attempts at strategies and philosophies for plant equipment RAM

improvements have been put into practice. Figure 2-1 shows the categories of

maintenance activities in relation to the equipment repair policy (see Appendix A for

details). With respect to a holistic approach to maintenance management, the following

management strategies are in practice (see Appendix B for details):

> Reliability-Centred Maintenance

> Total Production Maintenance

> Six Sigma

> Lean Maintenance
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Figure 2-1 Overall Equipment Maintenance Strategies (Modified from Hall et a!., 1997)

Overall Equipment
Maintenance Strategies

- Non-critical components - Critical units by FMEA
- Redundant units - Human error
- Exceeding long - Equipment design faults

life parts - Safety and Environment

Scheduled Condition-based
Maintenance Maintenance

- Wear-out - Subject to varying impact
- Low replacement cost - Random failure
- Steady warranty lifetime - High breakdown cost
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While these maintenance strategies are implemented to improve equipment RAM,

equipment RAM analysis must be performed to support maintenance management. To

fulfill the requirement of plant maintenance, RAM analysis should be related to the

particular program and the facilities (Civil Aviation Advisory Publication, 2001).

Based on the maintenance knowledge literature review (Appendix A, B and C), onsite

investigation, and Albian reliability group work experience, it is clear that two primary

plant maintenance improvement approaches are equipment physical reliability

improvement and maintenance management improvement.

Figure 2-2 illustrates an integrated RAM improvement program workflow for an oil

sands plant. The workflow is an Evaluation-Planning-Acting-Modification (EPAM)

cycle. It encourages implementation of continuous improvement and fulfills the

improvement approaches in plant maintenance. In this workflow, RAM analysis is

conducted by the initial downtime and maintenance data analysis to identify where RAM

improvement can be made, and to indicate how the improvement is processing so as to

facilitate maintenance improvement.
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Figure 2-2 RAM Improvement Program Workflow
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2.2 RAM Analysis Methods

To analyze RAM, the RAM analysis methods must be selected. Analysis and reporting

on plant equipment RAM acts as an information source for plant maintenance

effectiveness. Maintenance management and operation may have specific requirements

for the RAIVI analysis; however, the following should be taken into account (Civil

Aviation Advisory Publication, 2001):

> Current reliability performance and defects

> Gap between current and the required reliability

> Reliability trend or survival characteristics

> Confidence level for expected improvement results

> Engineering judgment to evaluation results

> Correlation with operation and maintenance

While maintenance data is analyzed to identify equipment RAM information, the general

analysis methods can be classified into two categories (Key performance indicator

analysis and parametric analysis) with respect to the depth of the analysis and the

intended audience.

Key performance indicator (KPI) analysis lists or graphs factors that are treated by simple

mathematics, without complex statistical analysis. KPI analysis is widely used in industry

practice. It can be quickly and routinely carried out to provide information for

management.
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Parametric analysis intends to perform statistical analysis to explore the behavior of

equipment failure for the use of reliability engineering. In plant maintenance, the time

between repairs for complex systems is stochastic because equipment reliability is

affected by various factors, such as its design, operation environment, maintenance

quality, and the age. This situation is different than non-repairable systems, which is

treated as renewal processes in modeling. It is clear that the analysis procedures for non-

repairable systems are not suitable for analyzing data from repairable systems (Tobias

and Trindade, 1995). Some reliability analysis models for repairable system have been

developed (Crow, 1990, 1993; Bain and Engelhardt, 1991). The Power Law model is a

widely recognized repairable system statistical analysis model (Kumar, 1990; Tobias and

Trindade, 1995; U.S. NIST, 2006). Researchers have used the Power Law model to solve

maintenance problems, such as failure prediction, maintenance optimization, and

reliability evaluation (Kumar, 1989; Nelson, 1986; Crow, 1990; and Tobias and

Trindade, 1995).
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2.3 Reliability, Availability, and Maintainability Analysis

Techniques

2.3.1 Pareto Analysis

Pareto analysis is a method used to identify the proportion of events that result in the

most significant downtime cost (Kumar, 1990). It is based on the Pareto principle, which

states that “80% of problems are from 20% of the events”. In maintenance analysis, the

Pareto method is implemented to determine maintenance priorities according to

downtime, maintenance cost, or number of failures. Pareto analysis allows engineers to

focus on maintenance events with the best return on effort.

A Pareto histogram is a graphical representation of the results of a Pareto analysis. It lists

data in descending order of value, and displays a cumulative percentage curve through

the right side of the first bar. The Pareto histogram chart can be used successfully for

identification of the events with major downtime or maintenance costs; however, the

deficiencies of this method are (Knights, 2001):

> The Pareto histogram analysis is based on downtime (cost, or failure frequency)

alone and cannot identify which factors are dominant.

> Frequently occurring failures impact productivity, and are key reliability

improvement tasks; however, a Pareto histogram may miss identifying the events

with low downtime or maintenance cost and high failure frequency.
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Some new methods for Pareto analysis have been developed to implement multi-factors

analysis. Boudreau et al. (1999) presented an Excel macro to carry out three-dimensional

plotting so as to determine the most important factor on the abundance of a species with

respect to the three environmental impacts: PH, salinity and oxygen content. Knights

(2001) used an x-y dispersion plot of repair time versus numbers of failures to find which

factor, failure numbers or downtime, has the dominant impact on equipment availability.

Furthermore, Knights developed log scatter plots to classify the unplanned shovel

electrical downtime into acute, acute & chronic, and chronic according to repair time and

number of failures.

2.3.2 Key Performance Indicators (KPI) Analysis

In practice, the field data are summarized into key performance indicators (KPIs) for

providing information on how the equipment is behaving in the operation process. Four

basic requirements for the development of KPI are (Reh, 2007):

> KPIs must reflect the organizational goal so as to track the work progress.

> KPIs must be measurable and quantifiable so as to compare and control process

improvement.

> The development of KPIs must be based on a long-term consideration.

> The meaning of KPIs should easily be understood by all members of the

organization.

15



KPI analysis has been widely used to identify industrial operation and maintenance

targets and measure maintenance effectiveness. (Reh, 2007; Paraszczak et al., 2005) In

maintenance performance analysis, KPIs can be broken down into two categories:

equipment RAM KPIs and maintenance cost KPIs. These KPIs indicate maintenance

goals and detect the progress of maintenance actions and strategy development.

A key performance indicator closed-loop process has been presented by Beck and Oliver

(1999) to identify the process of selecting performance indicators, as shown in Figure 2-

3. Tn a logical maintenance system (LMS) developed for a Japanese LNG terminals

maintenance, KPI was one of five maintenance efficiency evaluation tools, including

RBM (Risk-Based maintenance), RBQC (Risk-Based Quality Control), Long-Term

Maintenance Standard, and Asset Management. These evaluation tools are used to

approach a PDCA (Plan, Do, Check, and Action) cyclic management system (Aoki,

2006).

Figure 2-3 Key Performance Indicator Closed-Loop Process (Beck and Oliver, 1999)

Figure 2-3 has been removed due to copyright restrictions. The

information removed is a closed-loop process, including select

KPIs & set targets, Plan & execute, Analyze & identify

improvement area, and Evaluate & revise strategy.
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2.3.3 Reliability Modeling

An important analysis tool is reliability modeling, which has been widely used for

predicting the reliability trend of a component or system. For reliability modeling

purposes, systems are classified into two categories: non-repairable and repairable

systems (U.S. NIST, 2006).

Non-Repairable System Modeling

Non-repairable systems are those that are replaced when they fail. Lifetime distribution

models are used for analyzing such non-repairable components with a single failure mode

by identifying the probability of the component surviving in a time interval under certain

operating environments. These distributions include:

> Exponential distribution

> Lognormal distribution

> Gamma distribution

> Normal distribution

> Weibull distribution

The Weibull distribution has been widely used for product lifetime analysis (Relisoft,

2006). The advantage of Weibull analysis is “its ability to forecast failures in small

samples” (Abernethy, 2002). The three-parameter Weibull probability density function

(pdj) is expressed by (Relisoft, 2006):
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f(t) =
, t>o, >0, i1>o

where

y : Location parameter

fi: Shape parameter

i: Scale parameter,

The characteristics of these three parameters provide important information for

identifying failure behavior:

> The location parameter, y, indicates the position of Weibull pdf curve along the

abscissa.

> The scale parameter, i, estimates a characteristic lifetime. When t i, 63.2% of

the population is likely to have failed.

> The shape parameter, / indicates the failure rate characteristic (Abemethy,

2002):

• ,8<1: infant mortality

• ,6=1: random failures

• j3>1: wear-out failures

Repairable System Modeling

Repairable systems are those that are repaired or restored when they fail during operation.

When failure occurs at a certain system age, maintenance is implemented to restore the

18



initial function. These maintenance actions may impact the overall behavior of the system

and affect the system function due to variable maintenance resources involved, such as

human errors, part quality, and preventive maintenance (Mattes & Zhao, 2005).

Consequently, the maintenance effectiveness may be the same as new, better, or worse,

so the frequency of failure may be increasing, decreasing, or staying at a constant rate.

An approach is used for modeling “the rate of occurrence of failure (ROCOF)” for a

repairable system. The rate is also called “repair rate” (U.S. NIST, 2006). For building a

model to simulate the repair rate of a repairable system, “let N(t) be a counting function

that keeps track of the cumulative number of failures that a given system has had from

time zero to time t; if the N(t) curves for a large number of similar systems are

‘averaged’, an estimate of M(t) = the expected number of cumulative failures by time for

the system defined. The derivative of M (t), m (t), is defined to be the repair rate or

ROCOF (U.S., NIST, 2006).”

Most plant equipment is repairable. After repair, the reliability of equipment may be

better or worse. An analysis of equipment reliability trends is necessary for maintenance

management to identif’ maintenance needs. According to the Engineering Statistics

Handbook of NIST (2006), the rate models used for repairable systems are:

> Homogeneous Poisson Process

> Non-Homogeneous Poisson Process following a Power Law

Non-Homogeneous Poisson Process following an Exponential Law

19



If the interarrival times between failures are “independent and identically distributed

according to the exponential distribution with parameter 2”, the simplest and most useful

model for M(t) = ?t and the repair rate is the constant m(t) = . Based on this model, the

following formulas apply:

The CDF of the waiting time to the next failure:

F(t)=1—e

The probability of N(t), the cumulative number of failures from time 0 to t:

P{N(t) = k} =______

The expected number of failures by time t:

M(t) =

The repair rate:

M’(t) m(t)

The mean time between failures:

MTBF= 1/?.

The HPP model has a constant repair rate, m(t) ?. If 2 is substituted by A(t), HPP model

becomes a NHPP with a power intensity function.

If the time to the first failure has a Weibull distribution with shape parameter b and

characteristic parameter a, a model for the expected number of failures in the first hours,

M(t), is given by

20



M(t) = at” , for a, b>O

The repair rate for this model is

m(t) = 2(t) = abtbi
, for a, b>O

If b>1, the failure rate is increasing;

If O<b<1, the failure rate is decreasing;

If b= 1, the model reduces to the HPP constant repair rate model.

This model is called a Power Law model, Duane model or Crow-AMSAA (U.S. Army

Materials System Analysis Activity) model.

Under this model, the function

MTBF(t) =
= 1

= L
2(t) abt”1 Nb

is interpreted as the instantaneous MTBF of the system at time t.

The probability of a given number of failures for the power law process is,

k kbk _aib

P[N(t) = k]
= M(t)

e_M
= a t e

k!

A brief description of Non-Homogeneous Poisson Process following an Exponential Law

is

m(t) = e”

If f3<O, the repair rate is decreasing; if j3>O, the repair rate is improving; and if 3 0, the

exponential law reduces to the HPP constant repair rate model. According to the
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Engineering Statistics Handbook (NIST, 2006), this model has seldom been used in

industrial applications.

Besides the identification of the U.S. National Institute of Standards and Technology

using a power law process for repairable system reliability modeling, A U.S. military

handbook introduced AMSAA models for reliability growth management of repairable

complex weapon systems during their development stages (U.S. DOD, 1981). A recent

U.S. military document advised Non-Homogenous Poisson Process and AMSAA models

be used in RAM analyses, and put together a reliability modeling selection scheme as

shown in Figure 2-4 (U.S. DOD, 2005).
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Figure 2-4 Selecting the Appropriate Process Model (U.S., DOD, 2005)

Figure 2-4 has been removed due to copyr:ight restrictions. The

information removed is a process to select a reliability analysis

model by chronologically ordered Time to system failure and

trend test.

2.3.4 Power Law Model Parametric Estimation and Hypothesis Test

The power law process model is a good tool to analyze the effect of successive

maintenance actions, and to estimate a quantified deteriorating rate. Several studies have

focused on the Power law model parametric estimation and hypothesis test (U.S. DOD,

1981, 2005; U.S. NIST, 2006; Frenkel, 2004; Gaudoin et al., 2003; Crow, 2005; Mettas,

2005; Sun et al. 2005; Guo et al, 2006).
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Parameter Estimation for Power Law Model

If the assumption that a failure rate of m(t) = 2(t) = abt in the power law model is

appropriate, the unbiased maximum likelihood estimate for b and a is (U.S. DOD, 1981)

A N—2 A N
b=N_l ,

ln(TN/7) TNb

where

N= number of observed failures

T = failure time

Hypothesis Testing Methods for Power Law Process

The methods used to determine whether the model is appropriate to describe the data

characteristics and whether the parameter estimation is acceptable are:

> Duane plots

> Goodness of fit tests

> Trend tests

An acceptable graphical estimation for the Power Law model is Duane Plots. Taking

logarithms in the expression for the model M(t)= atb yields

Log M(t)= Log a + b Log t
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If cumulative number of failures versus cumulative TBM is plotted on log-log paper, the

points tend to line up following a straight line if the power law model applies (U.S. NIST,

2006). These “Duane plots” can be easily implemented by Excel functions. When

cumulative number of failures against cumulative TBM is plotted on logarithmic scale

charts in Excel, the trend line following the power law can be drawn by Excel functions,

at the same time the power law equation and R-squared value of this trend line are given.

By plotting in Excel, the Power Law model parameter estimation and hypothesis are

completed.

A goodness-of-fit test indicates whether it is reasonable to assume that a random sample

comes from a specific distribution. Goodness-of-Fit (GOF) tests include (Donadio et at.,

2006):

> Chi-square test: for continuous and discrete distributions;

> Kolmogorov-Smimov test: for continuous distributions based on the empirical

distribution function;

> Cramer-von Mises test: for symmetric and right-skewed distributions;

> Anderson-Darling test: for any data-set with any skewness (symmetric

distributions, left or right skewed).

> R-squared test.

Based on the coefficient of determination of the regression line in Duane plots, Gaudoin

et al. (2003) developed critical values of the R-squared GOF test for different sample
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sizes, and stated “R-squared GOF is simple and powerful for Power law model”. The R

squared goodness-of-fit test estimates a significant regression trend so as to answer the

PLM hypothesis.

In MIL-HDBK- 189, goodness-of-fit tests for the Crow-AMSAA model, namely the

power law model, are tested by the use of a Cramer-von Mises test. The Cramer-von

Mises statistic is

2

c 2 1 2i—1
M 12M 2M

where

N=number of observed failures

M=N —1 for AMSAA model

T = jth failure arrival time.

If the statistic CL exceeds the critical value for some specified level of significance c’

(see Appendix E), the hypothesis is rejected.

Trend tests are used to determine whether the pattern of failures is significantly changing

with time. This test can be conducted with a null hypothesis that the system failure

pattern is a renewal process, in which the system is restored as “good as new” (Wang and

David, 2005), If this hypothesis can be rejected at some appropriate significance level, it
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can be concluded that some level of reliability improvement or deterioration is occurring.

Trend tests that are commonly used include:

> CrowIAMSAA Test

> Laplace Test

> PCNT (pair-wise comparison nonparametric test)

The Crow/AMSAA test is based on the assumption that the repair rate is

mQ) = 2(t) = abt”1. When b = 1, the repair rate is equal to 1, the process begins to

follow a HPP. The test is used to determine whether an estimate of b is significantly

different from 1 .The maximum likelihood estimate for b is:

A N—2

— ln(l 17)

where

Nnumber of observed failures

T1 = 1th failure arrival time

The test statistic is - . According to MIL-HDBK-189 (U.S. DOD, 1981), it is
b

distributed as a chi-squared random variable. So considering the null hypothesis, the

rejection criteria are given by:
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2N 2 2N 2Reject H0, if
—,--- <X2(N_1),1_a/2 or > X2(N_1),a/2•

b b

The Laplace test assumes a system is run until N failures have occurred. Under the HPP

assumption, the first N-i arrival times, designated as T1, T2, ..., TNI, are uniformly

distributed (O,TN). The test statistic is

2

N 12

where

N=number of failures

T= i” failure arrival time

The Laplace statistic, U, renders the evaluations below (U.S. DOD, 2005):

> If U is approximately equal to zero, it indicates a lack of trend,

> If U is greater than zero, the TBFs are decreasing,

> If U is less than zero, the TBFs are increasing.

For a high (for improvement) or low (for degradation) value the normal distribution can

be used to assign a significance interval to the estimate.
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2.3.5 Simulation of Power Law Model

A sample PLM simulation is based on the estimated power law equation. The expected

number of failures in the first hours in the Power Law model is given by:

M(t) = at”

Then,

Here,

a, b are the estimated PLM parameters

m is the number of failures

By simulating the expected number of failures, the cumulative TBM is predicted.

However, in plant maintenance, the time to failure for a piece of equipment is a function

of many variables, including the failures of different components, the operation

condition, and training experience of maintainers. Thus, the probability of failures for

repairable systems is neither independent nor identical; the maintenance needs for a

repairable system may be a stochastic process (Tobias & Trindade, 1994). To simulate a

stochastic process, Tobias (1994) used an approach for simulating a Poisson process

described by Ross (1993):

If the repair is a renewal process, the interarrival times are independent and have a

distribution F,

F= 1-exp(-t)
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A NHPP has intensity 2(t) for 0 t . For the Power Law model,

(t) = ab/’

Then

t t
f2(y + r)dr = fab(y + = a[(y + t)b — yb]

0 0

So,

= 1_exp{_a[(y+t)” _ybj}

t=[Yb _!1n(l_)]b
-y

Substitute the random unit uniform variable I — U for F by the inverse transform

method,

(u) = [yb
- ! ln(u)]b

-

By generating random unit pseudo-random numbers Ui, U2, .., to simulate the

successive ages Y1,Y2,..., using the formula below:

y _[y
_iln(U)]b

The simulation results can be used to estimate the probability that a failure for a

repairable system will occur at a specific operating hour.
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2.4 Literature Review Summary

The literature review has covered the current approaches to measuring, modeling and

understanding equipment behaviors using parametric and non-parametric techniques. It

has revealed that there have been limited publications on the application of these

techniques to the mining industry in general and little if any work has been published on

the applicability of these techniques to an oil sands processing plant.
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3 CASE STUDY

3.1 Albian Process Plant

The case study presented in this thesis was carried out at Albian Sands Energy (ASE)

processing plant. Albian Sands Energy Inc. was created by a joint venture to operate the

Muskeg River Mine. The mine sits in the Athabasca oil sands region of northern Alberta,

75 km north of Fort McMurray. The mine contains in excess of 5 billion barrels of

mineable bitumen, and at full production, it produces in excess of 155,000 barrels of

bitumen per day (ASE, 2006).

The process plant consists of four primary operation areas:

> Mine: the mining operation system uses open pit mining techniques to supply

approximately 15,000 tons/hour oil sands to the process plant.

> Ore Preparation: The ore preparation system receives mined oil sand from the

haul truck and shovel operation. Crushers are used to reduce the oil sands ore’s

size. The crushed ore is conveyed to rotary breakers, where warm water is added

to liberate the bitumen, and oversized waste rock is rejected. The slurry at a

consistent and even feed rate is delivered to the extraction system.
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> Extraction: The function of this system is to separate bitumen from the

conditioned oil sand feed. The extraction system receives raw feed (oil sands)

slurry from the ore preparation area via two conditioned slurry pipelines. Each

conditioned slurry line feeds directly into the feed distributor of the Primary

Separation Cells of Train 1 & 2, in which the slurry separates into three phases or

layers. The upper layer is bitumen-rich froth and is pumped to the froth operation;

the middle layer is withdrawn continuously and flown by gravity to the primary

flotation cells; the lower layer consists of tailings (mainly fine sand) that are

withdrawn and pumped to the tailings treatment area.

> Froth: The froth system removes entrained air from the bitumen froth by

cascading it over a shed deck in the presence of steam. The deaerated bitumen is

transported by pipeline to the Scotford refining station.

The process is shown in Figure 3-1.
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Figure 3-1 Albian Plant Process (ASE, 2005)
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> Implementing root cause failure analysis to improve equipment and system

reliability

> Developing design-associated priorities that can facilitate preventive maintenance

(PM).

It is suggested by Dabbs (2004) that “specific performance indicators must be

established, measured and reported in order to provide operation and maintenance

supervision with pertinent and detailed information that they can effectively use to mange

their business unit”. Unfortunately, until recently existing system at Albian has lots of

data but no easy to determine RAM information from it.
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3.2 Data Collection and Assumptions

During RAM analysis, two major influences on the results are the accuracy of the data

and the selection of analysis models. RAM analysis and evaluation will be effective only

if the data are accurate and the model is applicable.

Most modern industrial plants have plant information systems. However, data collection

must be specified according to the analysis requirements. It has been determined that the

RAM information collection system should be designed to “collect, store, and retrieve the

RAM information and to provide the means for displaying the data in a meaningful form

(U.S. DOD, 1981).” In addition, the database must be routinely updated and checked to

satisfy the requirements for analyzing any new problems. At Albian, RAM Reports are a

plant equipment reliability, availability, and maintainability event database, which is

integrated into the plant operation shift log. When a downtime event occurs, the

downtime is captured by the plant information system, related information is input by the

control room operators, and the downtime event information is finally stored in a

database, which is accessible for RAM Reports. The data used in this case study is

downloaded from this database.

For facilitating the selection of the analysis models, the assumptions of parameter

analysis on maintenance efficiency have been classified in terms of “the degree to which

the operation of an item is restored by maintenance” in the following ways (Mettas et a!.,

2004):
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> Perfect repair or maintenance: the system is restored “as good as new”.

> Minimal repair or maintenance: after implementing maintenance actions, the

system operating state is still “as bad as old”.

> Imperfect repair or maintenance: the system operating state is between “as good

as new” and “as bad as old” after implementing maintenance actions.

> Worse repair or maintenance: maintenance action makes “the operating condition

worse than that just prior to failure”.

Since the reliability of a repairable system is subject to various impacts, including

system design, operating conditions and maintenance quality, time between failures

for a repairable system are variable. One purpose of system reliability analysis is to

evaluate the reliability trend, with the aim to eliminate the decreasing reliability trend

and enhance the increasing trend. To quantify the reliability trend, a non

homogeneous Poisson process model is appropriate. As an important non

homogeneous Poisson process model, the Power Law model has been commonly

used in modeling repairable system reliability.

The Power Law model uses failure intervals and number of repairs to identify

equipment RAM characteristics. However, due to the implementation of preventive

maintenance, some components are replaced before they fail. Some assumptions have

to be made so as to understand the limitation of the modeling analysis. The

assumptions in this case study are:
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> All equipment is repairable;

> Equipment is subjected to imperfect repair and maintenance;

> PM is carried out just before the failure: TBF TBM; therefore, TBM data can be

used in failure modeling analysis.

The TBM data presented in the case study and considered as TBF data is net operating

time between maintenances. It is calculated by:

TBM = Time between two maintenances - Standby time between two maintenances

- Operational delay time between two maintenances

3.3 Non-Parametric Analysis: Results and Discussion

In the Albian process plant, equipment downtime information is collected and sorted in

RAM Reports. RAM Reports have no advanced analysis function yet, so it is necessary to

analyze the data in this database to indicate equipment reliability, availability and

maintainability information. To analyze the data at a low level, KPI’s were calculated

and basic graphing was performed. Specifically the following was done.

> Downtime composition: This KPI identifies the major reasons causing plant

downtime by summing up downtime by reason. Each unit’s downtime is shown

in a graph to provide detailed downtime information.

> Mechanical Availability (MA): MA measures the percentage time that a unit is

available for production. MA is expressed by
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__

- TH - MH

TH

Where

TH = total hours of the measurement period

MH = maintenance hours in the measurement period

> Pareto analysis: This analysis is used for identifying critical maintenance units

according to maintenance hours.

> Time between maintenance and time to repair (TBM & TTR): Time between

maintenance is an important index for evaluating equipment reliability; and time

to repair is an index of maintainability. TBM and TTR trends can identify whether

equipment reliability and maintainability have improved or deteriorated.

> Breakdown repair time: This indicator tracks the breakdown hours of a unit under

preventive maintenance (PM), and indicates whether PM procedures are valid in

preventing breakdown.

> Maintenance hours per million tons (MHJMt): This KPI estimates the relationship

between maintenance hours and production, and indicates the maintenance

effectiveness. It is calculated as

MHJMt = (Maintenance Hours /(Production Tonnage)

The initial downtime data in the analysis are downloaded from RAM Reports. The

downtime reasons in this database are classified as:
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> Maintenance: equipment is down for maintenance due to planned maintenance,

opportune maintenance, or breakdown.

> Operational: equipment is shut down for operational related reasons.

> False event: this event is not a downtime event.

> Unspecified: this is to capture empty cells.

> Unknown: indicates that no valid reason was put in. It is used to track the

operators’ effectiveness in inputting data.

Having a database of down time reasons with specific classification for the reason

allowed assessment of the equipment history using the non-parametric techniques

discussed earlier for Ore Prep, Extraction, and Froth. The analysis was done using data

from March 2005 to March 2006. The results are presented next.

3.3.1 Ore Prep Units RAM KPI

Downtime Composition

Table 3-1 summarizes downtime hours in ore prep by reasons. It is noted that identified

maintenance caused just 36% of downtime; operational delay caused 20% of downtime,

and a significant portion of downtime was classified as Unknown reason downtime,

which impacts the accuracy of this analysis.
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Table 3-1 Downtime Summary by Reasons for All Equipment in Ore Prep

Downtime Reason Downtime Hours Percentage

False Event 70.15 0.49%

Maintenance 5127.47 35.88%

Operational 2976.22 20.83%

Unknown 6109.59 42.75%

UNSPECIFIED 7.08 0.05%

Downtime is also shown in graphic form by units and by month, to provide downtime

information in this analysis, as shown in Figure 3-2 and Figure 3-3.

Figure 3-2 Downtime of P421 Crusher Train 1
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Figure 3-3 Downtime of Ore Prep for 2005 March

Mechanical Availability (MA)

Mechanical availability analysis of each ore prep unit is shown via graphs by unit and by

month. It is obvious which unit had low MA in a certain month, or which months had the

lowest unit MA. Figure 3-4 and Figure 3-5 show MA of ore prep by month and by unit.
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Figure 3-4 MA of Ore Prep Units for March
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Pareto Analysis

Pareto analysis was carried out for identification of major maintenance downtime units.

In the Ore Prep area, Pareto analysis shows that the top three units (Slurry condition

pump 1, 2 & 3) caused 80% of total Ore Prep downtime (Figure 3-6).

Figure 3-6 Ore Prep Downtime Pareto Analysis

TBM and TTR

The TBM and TTR of Ore Prep units were calculated, and trend lines are drawn using

Excel functions. TBM and TTR analysis in Ore Prep show the reliability of some of the
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listed below:
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> P473 Slurry Condition Pump Train 3 (Figure 3-7)

> P472 Slurry Condition Pump Train 2 (Figure 3-8)

> P471 Slurry Condition Pump Train 1(Figure 3-9)

> RAM Surge Conveyer (Figure 3-10)

Figure 3-7 TBM and TTR of P473 Slurry Condition Pump Train 3
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Figure 3-8 TBM and TTR of P473 Slurry Condition Pump Train 2
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Figure 3-9 TBM and TTR of P471 Slurry Condition Pump Train 1
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Figure 3-10 TBM and TTR of RAM Surge Conveyor
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Breakdown Time

Breakdown time analysis was implemented for the critical units identified by Pareto

analysis. Figure 3-11 shows these units had an increasing trend in breakdown hours after

October. The slurry condition pump train 2 peaked in November and December, but

breakdown time was reduced after January. Train 1 had a continuously increasing trend

after December, and the slurry train had significant breakdown hours in January and

February 2006. Table 3-2 shows the percentage time the feed was at over-design capacity

of 7,000 tons per hour. This may have impacted equipment reliability.
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Figure 3-11 Ore Prep Critical Units Breakdown Time Analysis

Ii. I
n

Ii

0
x

0
.

400

350

300

250

200

150

1oo —

50

0

_‘g_i

• P471 Slurry Cond Pump
Train 1

• P472 Slurry Cond Pump
Train 2

D P473 Slurry Cond Pump
Train 3

]

48



Table 3-2 Percentage of Ore Prep Production at over 7000 tph by time

Data Train I Train 2 Train 3 TOTAL

Jan-05 0.00% 0.00% 0.20% 0.20%

Feb-05 0.08% 0.71% 14.21% 15.00%

Mar-05 0.81% 0.77% 6.98% 8.56%

Apr-05 1.66% 0.50% 5.76% 7.92%

May-05 0.49% 0.28% 7.34% 8.11%

Jun-05 0.28% 0.91% 1.76% 2.95%

Jul-05 1.21% 11.25% 1.29% 13.74%

Aug-05 0.76% 1.27% 2.15% 4.18%

Sep-05 0.85% 2.05% 3.22% 6.12%

Oct-05 6.12% 14.89% 9.79% 30.80%

Nov-05 3.85% 2.19% 11.62% 17.65%

Dec-05 0.96% 7.11% 19.17% 27.24%

Jan-06 1.64% 10.02% 20.04% 31.69%

Feb-06 0.00% 1.01% 2.69% 3.70%
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Maintenance hours per million-ton Ore Prep Production Analysis

Maintenance hours per 1 million ton ore production were calculated to estimate the

relationship between maintenance hours and production quantity. The maintenance hours

per Mt for three ore Prep trains increased, as shown in Figure 3-12. The availability of

equipment decreased consequentially.

Figure 3-12 Maintenance Hours per Million-ton Ore Preparation
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3.3.2 Extraction Area RAM KPI Analysis

Downtime Composition Analysis

Table 3-3 shows maintenance causes 41% of total downtime, operational downtime is

17% of the total downtime, and Unknown reasons occupied 38% of the total. Unknown

reason downtime has a major impact on the accuracy of the results. Figure 3-13 and

Figure 3-14 are a part of the results of extraction units’ downtime summary by unit and

by month.

Table 3-3 Downtime Summary by Reasons for Extraction

Downtime Reason Downtime Hours Percentage

False Event 1067.39 3.33%

Maintenance 13190.38 41.10%

Operational 5536.5 17.25%

Unknown 12300.59 38.33%

51



Figure 3-13 2005 Downtime of P552 PSC2
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Mechanical Availability Analysis

Mechanical availability of extraction units was assessed by month and by unit from 2005

March to December. The MA charts identified some units with low mechanical

availability. Figure 3-13 and Figure 3-16 are examples of extraction units MA by month

and by unit.

Figure 3-15 Mechanical Availability of Extraction Units for 2005 April
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Figure 3-16 Mechanical Availability of P542 MRP Secondary Flot 1 Bank A

Pareto Analysis

Figure 3-17 shows the Pareto analysis of extraction units’ maintenance hours. The Pareto

analysis shows that 4 of 31 units caused 40% of total maintenance hours. The 4 critical

maintenance units are:

> P542 MRP 2nd Flot 1 Bank B

> P542MRP2ndF1ot I BankA

> P544 Banana Screen 2

> P548 Tails Cyclone 2
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Figure 3-17 Pareto Analysis of Extraction Units

TBM and TTR Results

In extraction, the equipment for which reliability is decreasing based on TBM and TTR

chart analysis is:

> P552 PSC 2 (Figure 3-18)

> P552 PSC 1 (Figure 3-19)

> P533 Primary flot 1(Figure 3-20)

> P543 Banana Screen 1(Figure 3-21)
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Figure 3-18 TBM and TTR of P552 PSC2

Figure 3-19 TBM and TTR of P521 PSC1
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Figure 3-20 TBM and TTR of P553 Primary FIot 1
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Figure 3-21 TBM and TTR of P543 Banana Screen 1
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Breakdown Hours Analysis

Critical unit breakdown hour analysis in Figure 3-22 shows that P542 MRP second Flot 2

bank B had high breakdown risk. It required over 200 hours to repair. P542 MRP second

Flot 2 back A and P544 banana screen 2 also had significant breakdowns that caused long

repairs.

Figure 3-22 Extraction Critical Unit Breakdown Time

3.3.3 Froth treatment RAM KPI Analysis

Downtime Composition Analysis

Due to comparably high reliability, froth treatment units have 16% of downtime in

maintenance, and 52% of downtime is operational delay as shown in Table 3-4. Figure 3-

23 and Figure 3-24 shows examples of froth unit downtime hours by unit and by month.
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Table 3-4 Downtime Summary by Reasons for Froth Treatment

Downtime Reason Downtime Hours Percentage

Maintenance 1416.25 16.32%

Operational 4568.14 52.66%

Unknown 2691.2 31.02%

Figure 3-23 Downtime of RAM Product Tank and Pump 2
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Figure 3-24 2005 Downtime Hours of Froth Units for May

Mechanical Availability Analysis

Froth units have high mechanical availability. The mechanical availability analysis is

shown by units and by months, as in Figure 3-25 and Figure 3-26, to monitor the

availability of froth units for production.
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Figure 3-25 Mechanical Availability of Froth Units for 2005 May

Figure 3-26 Mechanical Availability of RAM TSRU Stage 1
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Pareto Analysis

Froth units downtime Pareto analysis identified RAM Settlers Train 1 as a critical

maintenance item, which caused 40% of total Froth downtime.

Figure 3-27 Pareto Analysis for Froth Units Downtime

TBM and TTR Analysis

TBM and TTR analysis for Froth units shows the reliability of froth units is increasing, as

indicated in Figure 3-28 and Figure 3-29. Due to long maintenance intervals, TBM and

TTR in a year do not show reliability information for some froth units.
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Figure 3-28 TBM and TTR of RAM TSRU Stage 1
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Breakdown Hours Analysis

The RAM product Tank & pump 2 reveal an increasing trend in breakdown repair, as

shown in Figure 3-30; however, after September 2005, breakdown was prevented.

Figure 3-30 Breakdown Hours Analysis for Froth Critical Units
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3.3.4 Non-Parametric Analysis Results Discussion

The non- parametric analyses have been carried out based on available data. According to

the analysis result, the following is noted:

> The downtime composition analysis shows that over 30% of downtime has not

been given a reason by the operator, which limits the validity of the analysis

results. It also identifies an easy win for the company in encouraging the

operators to input the reasons.

> Downtime composition analysis indicates that operational delay is a major part of

downtime. Operational delay hours indicate the opportunity cost of the idle

equipment. However, given the level of detail of the analysis it is not possible to

determine how much of this is due to true operational delays and how much is due

to redundant units being on standby. Thus, a more detailed analysis should be

performed to determine the amount of operational delay versus standby

downtime.

> The Pareto analysis shows that some units have caused a significant part of total

plant downtime. These units should have priority for any improvement initiatives.

> Calculation of MA sets a baseline for equipment and allows measurement of the

impact of potential changes in practices and procedures. It also allows

comparison amongst like equipment and potentially with other oil sands

processing plants.

> MTBM indicates the reliability may be decreasing. This would indicate an

opportunity to implement different strategies for equipment management.
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However this also could be an artifact of the data caused by the high percentage

of unknown downtime.

> Maintenance hours per million-ton ore preparation appears to indicate that

operating above design capacity has a negative impact on equipment availability.

Overload may increase the production in the short-term; however, it causes an

increase in maintenance breakdown hours and a decrease in production in the

long-term. A stable and uniform loading may provide a better production

improvement approach that can ensure equipment reliability and can benefit long

term production.

66



3.4 Power Law Model Analysis: Results and Discussion

The Pareto analysis has indicated that Slurry pump train 1, 2 & 3 had significant

downtime in 2005. For achieving detailed reliability information, the Power Law model

analysis is carried out across the cumulative TBM of Slurry pump train 1, 2 & 3 yearly

from 2005 to 2007 in this section. The analysis first is to obtain maximum likelihood

estimates of the Power Law model parameters. According to the estimated parameters,

Graphical trend test, Goodness-of-Fit test, and Laplace trend test are employed to check

whether the Power Law model is acceptable. The estimated parameters are further used to

understand reliability characteristics, to project the MTBM, and to predict maintenance

needs if the Power Law model is accepted.

To track the data trend, maintenance event No. versus Cumulative TBM plotting is

carried out as shown in Figure 3-3 1, Figure 3-32, and Figure 3-33. The plots show that

maintenance event No. versus cumulative TBM have a yearly trend, which indicates it is

appropriate to carry out the analysis by year.
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Figure 3-31 Plot of Pump Train 1 Cumulative TBM
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Figure 3-32 Plot of Pump Train 2 Cumulative TBM
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Figure 3-33 Plot of Pump Train 3 Cumulative TBM
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The PLM parameter estimation results are shown in Table 3-5. The parameters indicate

that the TBMs in 2005 were trending down; the TBMs in 2006 had an increasing trend;

and the TBM trend in 2007 is approximately renewal. The mean time between

maintenance (MTBM) can be used to evaluate the effect of the trend.
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Table 3-5 Parameter Estimation Results of Slurry Pump Train Cumulative TBM

PLM Parameter PLM Parameter PLM Parameter
Estimation Estimation Estimation

Unit Name for 2005 TBM for 2006 TBM for 2007 TBM (the
first 6 months)

b a b a b a

Slurry Pump
Train 1 1.196 0.001269 0.7810 0.01610 0.9160 0.00484

Slurry Pump
Train 2 1.021 0.005816 0.8610 0.00885 1.054 0.002251

Slurry Pump
Train3 1.228 0.0007219 0.7531 0.02114 1.0120 0.00272

Table 3-6, Table 3-7 and Table 3-8 show MTBM at the end of each year. They indicate,

following the increasing trend of TBM in 2006, the MTBM increased to around 450 at

the end of 2006 from 150 at the end of 2005; however, the increasing trend was

terminated in 2007. This evaluated the effect of maintenance improvement programs that

was implemented in 2006.
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Table 3-6 PLM Shape Parameter b Values and Indications for 2005 Pump Train Cumulative TBM

Maintenance MTBM at the end
2005 b Trend of 2005

Pump train 1 1.196 Decreasing 130

Decreasing!
Pump train 2 1.021 Renewal 140

Pump train 3 1.228 Decreasing 190

Table 3-7 PLM Shape Parameter b Values and Indications for 2006 Pump Train Cumulative TBM

Maintenance MTBM at the end
2006 b Trend of 2006

Pump train 1 0.6768 Increasing 450

Pump train 2 0.7534 Increasing 410

Pump train 3 0.5564 Increasing 460
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Table 3-8 PLM Shape Parameter b Values and Indications for 2007 Pump Train Cumulative TBM

Maintenance MTBM at the end
2007 b Trend of 2007

Pump train 1 0.9 16 Increasing / 450
Renewal

Pump train 2 1.054 Decreasing 270

Pump train 3 1.012 Decreasing 330

The hypothesis test results show there is some doubt that the 2005 data fit the Power Law

model as the Goodness-of-Fit test for 2005 pump train 1 data indicates a lack of

confidence in fitting the model; and the Laplace trend test for the 2005 pump train 2 data

demonstrates a contrary trend with the trend that the parameter b indicates, although other

tests show the evidences of fitting the Power Law model, as show in Table 3-9. A

possible reason for failing to fit the Power Law model is the TBM data for 2005 are not

accurate, since downtime reasons were not completely and correctly inputted (there is

30% of unknown downtime in 2005) when the RAM Reports database just started

collecting downtime data in 2005; consequently, the inaccuracy of downtime reasons

affected the calculation of TBM.

However, Table 3-10 and Table 3-11 show the hypothesis test results for 2006 and 2007

data the Power Law model is accepted for characterizing the data. An important fact is
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that RAM event information collection has improved by routine data checking since

2006. Thus, the data is more accurate.

Table 3-9 Hypothesis Test Result of 2005 Slurry Pump Train Cumulative TBM

Hypothesis testing
for Statistical Estimation Result

Unit
Name b

Graphical Trend test Goodness-of-Fit
test test

Duane plot Laplace test Cramer-von Mises test
test

Significance Test Significance Test Critical
(R2) Statistic Statistic Value

(c=0.10)

Slurry Pump 0.22899
Train 1 1.196 0.9597 0.2 56.6% (Rejected) 0.172

Slurry Pump -0.3908
Train 2 1.021 0.9849 (Rejected) 65.2% 0.077299 0.171

Slurry Pump
Train 3 1.228 0.9737 0.4694 68.1% 0.070325 0.169
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Table 3-10 Hypothesis Test Result of 2006 Slurry Pump Train Cumulative TBM

Hypothesis testing
for Statistical Estimation Result

b
Unit

Name

Graphical Trend test Goodness-of-Fit
test test

Duane plot Laplace Test Cramer-von Mises test
test

Significance Test Test Critical
(R2) Statistic Significance Statistic Value

(c=O.1O)

Slurry Pump
Train 1 0.6768 0.9592 -0.6 72.6% 0.03876 0.169

Slurry Pump
Train 2 0.7534 0.9675 -0.2773 61.0% 0.03692 0.167

Slurry Pump
Train 3 0.5564 0.8953 -0.1306 55.2% 0.06816 0.165
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Table 3-11 Hypothesis Test Result of 2007 Slurry Pump Train Cumulative TBM

b

Hypothesis testing
for Statistical Estimation Result

Unit
Name

Graphical Trend test Goodness-of-Fit
test test

Duane plot Laplace Test Cramer-von Mises test
test

Significance Test Significance Test Critical
(R2) Statistic Statistic Value

(c=O.1O)

Slurry Pump
Train 1 0.916 0.976 -0.3616 64.1% 0.06601 0.165

Slurry Pump
Train 2 1.054 0.9758 0.1 54.0% 0.02393 0.169

Slurry Pump
Train 3 1.012 0.8956 0.4837 68.6% 0.08409 0.167
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3.4.1 Simulation Results and Discussion

The simulation is carried out based on the estimated power law equation and the

stochastic process PLM simulation method. The estimated PLM equation is able to

generate a series of regular cumulative TBMs by giving the expected number of failures.

The first approach using simulation is to attempt to predict the next failure based on

previous failure rate of occurrence. For this the simulation was implemented by using the

first 6 TBM of 2007 to estimate the PLM parameters, and then to predict the 7th and 8th

TBM. Table 3-12 shows the actual data and the simulation results by the estimated PLM

equation. From these tables it can be seen that the prediction of the first (Seventh) failure

time was reasonably accurate. However, the second (eighth failure time) was not

accurate.

Table 3-12 Comparison of the Actual TBM to the Predicted TBM by the Estimated PLM

Predicted Actual TBM
TBM (Hours)

(Hours)

Pump Train 1 7th TBM 344 347

8tTBM 337 749

Pump Train 2 7th TBM 269 311

8thTBM 276 455

Pump Train 3 7th TBM 545 410

8thTBM 512 300
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For bounding the next time to maintenance the stochastic process PLM simulation is

carried out 100 times to simulate the 7th TBM using the data for the first 6 TBM to

estimate PLM parameters from the first 6 TBM of 2007. These results can be used to

assign a probability to the time of the next failure occurrence. This allows management

to understand the potential risk associated with maintenance decisions. As well,

according to the histograms shown in Figure 3-34, Figure 3-35 and Figure 3-36, it

appears that the simulation results follow a lognormal distribution.

Figure 3-34 Stochastic Process Simulation Results of Pump Train 1 p7th TBM in 2007
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Figure 3-35 Stochastic Process Simulation Results of Pump Train 2 7th TUM in 2007

Figure 3-36 Stochastic Process Simulation Results of Pump Train 3 7th TBM in 2007
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histograms show that the logarithm values of the simulation results appear to follow the

normal distribution as shown in Figure 3-37, Figure 3-38 and Figure 3-39.

Figure 3-37 Logarithmic Value of Simulated Pump Train 1 7th TBM in 2007
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Figure 3-38 Logarithmic Value of Simulated Pump Train 2 7th TBM in 2007
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Figure 3-39 Logarithmic Value of Simulated Pump Train 3 7th TBM in 2007
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The Chi-Square Goodness-of-Fit Test is employed to further test if the simulation results

follow a lognormal distribution. The test results do not reject the hypothesis with a 0.05

significance level as shown in Table 3-13.

Table 3-13 Chi-Square Goodnees-of-Fit Test Results

Train 1 Train 2 Train 3

Statistic (X2) 18.2 17 14.7

ritical Value (Xa(a=O.O5)) 25 26.3 23.7
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Based on the estimation above, the final conclusion is that the simulation results are

following a lognormal distribution. The probability evaluation can be conducted using the

lognormal distribution. Table 3-14 shows the probability evaluation results for the 7th

TBM of 2007.

Table 3-14 Probability Evaluation for the TBM for pumps in 2007

Probability Train 1 (h) Train 2 (h) Train 3 (h)

20% 99.6 69.1 251.6

25% 118.3 83.0 281.3

30% 138.1 97.9 311.0

35% 159.3 114.1 341.4

40% 182.4 132.0 372.8

45% 208.0 151.9 406.1

50% 236.7 174.5 441.7

55% 269.4 200.4 480.4

60% 307.2 230.6 523.2

65% 351.8 266.7 571.5

70% 405.9 310.8 627.2

75% 473.6 366.7 693.4

80% 562.4 440.8 775.4

85% 687.1 546.3 883.3

90% 884.0 715.5 1040.6

95% 1284.3 1067.5 1326.8
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3.4.2 Discussion of Power Law Model Analysis

> Although the hypothesis tests for the 2005 data show some doubt in fitting the

Power Law model due to the inaccurate data, the tests for the 2006 and 2007 data

provide evidence that the Power Law model is acceptable for repairable system

RAM analysis.

> The Power Law Model provided a reasonable estimate of the next time to

maintenance for 2007. However, the accuracy of predictions is impacted by the

changes in operational condition and maintenance practices.

> Using a simulation approach with the Power Law process model can lead to

probability of time to next failure, which will allow assessment of the risk

associated with competing maintenance alternatives.
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4 CONCLUSIONS AND RECOMMENDATIONS

This thesis explored plant equipment RAM evaluation and analysis methods to facilitate

oil sands plant maintenance improvement. A RAM improvement workflow has been

developed to integrate these tools into the work practice. The case study focuses on the

first and second steps of this workflow to evaluate equipment RAM using parametric and

non-parametric analysis techniques. In general this thesis has contributed to the body of

knowledge for equipment maintenance as follows:

> Enhanced the understanding of the reliability, availability and maintainability

behaviors of processing equipment in an oil sands plant.

> Developed a RAM improvement workflow process and demonstrated the

effectiveness of it,

> Determined baseline mechanical availabilities for key oil sands processing

equipment

> Demonstrated the usefulness of the application of the Power Law model to

equipment in an oil sands processing plant.

With respect to specific results and conclusions for Albian Sands process plant, based on

this analysis the follow can be concluded:

> The downtime composition analysis has shown that over 30% of downtime has

not been given a reason by the operator, which limits the validity of the analysis

83



results. It also identifies an easy win for the company in encouraging all workers

to cooperate in RAM works

The Pareto analysis shows that some units have caused a significant part of total

plant downtime. These units should have priority for in improvement.

> Calculation of MA has set a baseline for equipment and allows measurement of

the impact of potential changes in practices and procedures. It also allows

comparison amongst like equipment and potentially with other oil sands

processing plants.

> MTBM indicates the reliability may be decreasing this would indicate an

opportunity to implement different strategies for equipment management.

However this also could be an artifact of the data caused by the high percentage

of unknown downtime.

> Maintenance hours per million-ton ore preparation analysis appears to indicate

that operating above design capacity has a negative impact on equipment

availability. Overload may increase the production in the short-tenn; however, it

causes an increase in maintenance breakdown hours and a decrease in production

in the long-term. A stable and uniform loading may provide a better production

improvement approach that can ensure equipment reliability and can benefit long

term production.

> The Power Law Model provided a reasonable estimate of the next time to

maintenance for 2007. It is believed that using time between failures instead of

time between maintenance would lead to a more accurate result.
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> Using a simulation approach with the Power Law process model can lead to

probability of time to next failure which will allow assessment of the risk

associated with competing maintenance alternatives

Some recommendations are:

The work of this thesis was focused on Albian equipment reliability improvement

practice, and the evaluation methods were specifically tailored for available

Albian maintenance data. Based on the developed methods, the RAM analysis

and reporting should be implemented as a procedure.

RAM evaluation reporting should be integrated into the management information

> Data collection is still a critical issue in RAM analysis. The inaccuracy of data has

caused a lack of confidence in results presented in this thesis. RAM evaluation

can not present an accurate RAM report without accurate data resources. Thus

Albian should continue to take the necessary steps to ensure that quality data is

captured in the database.
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5 FURTHER WORK

In this research, some RAM improvement approaches have been identified, and

equipment reliability indicators are used. The Power law model parameter analysis is

explored in a case study to assist the accomplishment of the first and second steps of

analysis in the RAM improvement workflow. However, the remaining contents of the

workflow should be implemented as a detailed application study so as to tailor these

RAM improvement application techniques at Albian’s oil sands process.

In addition, through this research, RAM data collection has been improved; and some

RAM analysis techniques are tailored based on Albian maintenance practice. It will assist

the Albain maintenance management improvement to continue to work these works and

integrity these research experience into Albian maintenance improvement works. Some

work that should be implemented in the future are:

> Base on the KPIs used in this research, some Six Sigma techniques could be

applied, so that sources of the variation in equipment RAM performance can be

identified, quantified, prioritized, and eliminated.

> Power Law model is a tool to evaluate plant equipment reliability. It could be

used to track Albian equipment reliability trend and benchmark the maintenance

interval so as to avoid a degradation trend in equipment reliability.

> Some standardized analysis procedures must be developed and implemented as

soon as possible so as to support maintenance management.
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> Maintenance data collection should be considered as a core business function.

Good data will assist management decision-making and result in overall

improvements to the business.

> Engineers should be trained to use maintenance data analysis for identif’ing the

maintenance problems and tracking reliability improvement.

With good data and management support Albian should build upon the analyses

presented in this thesis as follows:

> A more detailed analysis should be performed to determine the amount of

operational delay versus standby downtime so as to indicate the opportunity cost

of the idle equipment.

> As described previously, the KPI development must reflect the organizational

goals. The KPIs developed in this case study provide equipment reliability

information. However, each KPI should have a goal value for comparison to

identify reliability shortfall and improvement. The exact KPI’s needed by Albian

management should be developed and implemented into an automatically

generated report function in the database.

> Reliability improvement cost analysis is an important part in the reliability

improvement decision-making process. Decreasing equipment reliability can

result in an increase in maintenance costs. Thus, a cost KPI should be included in

the KPI analysis to identify opportunities for maintenance improvements.
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> Minimizing human error is important to the improvement of maintenance and

equipment reliability. Due to the lack of human error information in the database,

human error analysis cannot be implemented in this research. A process should

be set up to capture and store human error data into the database so that it can be

analyzed.

> This case study explored the application of the power law process in analyzing

equipment RAM trend; however, it did not integrate such information to indicate

the overall plant RAM information. Further work would include development of

a Reliability Block Diagram simulation of the plant RAM using the RAM

information.
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Appendix A: Equipment Maintenance Strategies
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Maintenance data analysis is performed to provide information for maintenance decision-

making in RAM improvement. It requires detailed knowledge of maintenance so as to

understand the data collection and analysis requirements. Figure 2-2 illustrates common

maintenance strategy options. In general, a combination of these maintenance actions is

used in maintenance practice. The specific application of each depends on a cost-benefit

analysis.

Run-To-Failure Maintenance

Run-to-failure maintenance is the oldest maintenance strategy. Due to the lack of

equipment diagnosis or cost considerations, run-to-failure maintenance is used in

maintenance practice, and equipment is run until failure. “The consequence of failure

may be 3 to 4 times the planned maintenance cost’ (Mobley, 1990) because of unplanned

downtime, cascading damage to machinery, and overtime expenditure. However, if the

consequence of failure under run-to failure maintenance is less than the maintenance cost

and risk salvage cost, run-to-failure is still a valid maintenance option (Hall, 1997).

To properly implement run-to-failure maintenance, a corresponding management activity

is necessary. For example, inventory level needs to be managed to ensure that spare parts

are available when a failure occurs, while at the same time minimizing inventory costs.

Continuous life cycle analysis using failure data is an approach to achieve this.
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Scheduled Preventive Maintenance

In order to control unplanned downtime that occur under run-to-failure maintenance,

scheduled preventive maintenance is applied. In modem factories, a large amount of

equipment’s maintenance is performed under scheduled preventive maintenance.

Scheduled maintenance involves a periodically planned inspection, part replacement or

repair, and lubrication and adjustment of a piece of equipment.

A drawback with scheduled maintenance is that it is performed without regard for

equipment condition (Dhillon, 2002), and maintenance actions are planned at a set

interval to reduce possible failures. Studies show equipment is over-serviced during

scheduled preventive maintenance due to frequent replacements and inspections (Kelly,

1997). Recent surveys report that unnecessary or improperly implemented maintenance

wastes one-third of all maintenance costs (Invensys, 2005).

An effective scheduled preventive maintenance system relies on maintenance interval

optimization. Maintenance history data analysis can be used for setting an optimized PM

interval to reduce unnecessary maintenance and breakdown. In addition, “an effective

preventive maintenance program needs regular review and updating in order to remain

viable and effective, when equipment grows old or operation condition is changed”

(University of Michigan, 2005). An equipment maintenance database is essential for

improving scheduled preventive maintenance efficiency.
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Condition-Based Maintenance (CBM)

In order to reduce the amount of unnecessary maintenance that can occur with scheduled

maintenance, condition-based maintenance (CBM) is used for maintaining equipment

with high breakdown costs. It has been defined as “maintenance actions based on actual

condition obtained from in-situ, non-invasive tests, and operating and condition

measurement” (Mitchell, 1998). Condition-based maintenance (CBM) is a maintenance

strategy that strives to identify the real equipment operating status with respect to the

operating situation, so as to enable more accurate planning of maintenance.

The implementation of CBM relies on techniques, such as vibration monitoring and

analysis, thermography, electrical condition monitoring, lubricant and wear particle

analysis, passive ultrasonic, and nondestructive testing. Generally, plants select 2 to 3

condition-based parameters to monitor because of high initial costs and the complexity of

monitoring techniques. Higgs et al. (2004) performed a comprehensive survey on CBM

use in the oil and gas, chemical, and manufacturing industries in fifteen countries. Their

work found that 77% of respondents agreed that CBM was a predictive approach to

maintenance; as well, 46% of respondents agreed that the benefits of CBM were greater

than the costs.

A challenge with CBM is how to integrate CBM monitoring parameters for the prediction

of failures. Condition monitoring predicts the maintenance needs of a piece of

equipment, so that there is enough time for maintenance planning. Simulation and

modeling are a technique to complete this task. Some researchers in CBM have focused
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on condition-based maintenance system modeling. Research in a belt conveyor system in

a garment distribution center (Contreras et at., 2002) shows that through integration of

CBM monitoring parameters with a simulation model, “the conveyor downtime was

reduced by more than 50% and work in process inventory was reduced by more than

65%.” Liu (2002) provides an integrated CBM system field service model with integrated

equipment condition and field activity to evaluate the benefit of a CBM system, as shown

inFigureA- 1.

Figure A - 1 A Generic Field Service Model (Lin, Hsu, and Rajamani, 2002)
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usage condition
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Scheduler
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Field Service

Proactive Maintenance

Maintenance is reactively carried out in run-to-failure, scheduled, and condition-based

maintenance. Proactive maintenance involves taking active steps to eliminate the

potential failures.
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Proactive maintenance performs reliability engineering analysis, root cause failure

analysis (RCA), failure mode and effect analysis (FMEA), design optimization, operation

procedure modification, and risk analysis. The goal of proactive maintenance is to reduce

maintenance needs, increase equipment lifetime, and minimize risk. This type of

maintenance is carried out in advance to deal with the expected difficulties, such as the

failure of critical units, safety and environmental accidents, human error, and design

faults.
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Appendix B : Maintenance Management Strategies
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The production of process plants depends on the reliability of the production equipment.

The reliability performance of equipment in turn relies on two factors: inherent reliability

and operating condition. On the other hand, it is also influenced by maintenance

management, which is responsible for arranging resources to implement maintenance and

improve equipment reliability.

Reliability-Centered Maintenance

Reliability-Centered Maintenance was first developed by the airline industry. Tests by the

airlines in 1965 showed that scheduled overhaul of complex equipment was not an

effective way to improve equipment reliability; many items could not benefit from

scheduled maintenance because preventive maintenance actions might threaten a

system’s reliability due to unnecessary interference and cumulative human errors (Kelly,

1997).

The goal of Reliability-Centered Maintenance is to provide a systematic process to allow

maintenance engineers to work on “what has to be accomplished to ensure that

equipment is able to continuously meet its reliability requirement in its current operating

context” by identif’ing the following seven questions (Moubray, 1997):

> What are the functions and associated desired standards of performance of the

equipment in its present operating context?

> In what ways can it fail to fulfill its functions?

> What causes each functional failure?
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> What happens when each failure occured?

> In what way does each failure matter?

> What should be done to predict or prevent each failure?

> What should be done if a suitable proactive action can not be identifyed?

An RCM program is used to implement reliability improvement tools, such as data

recording and analysis, condition monitoring, failure mode effects and criticality analysis

(FMECA), and root cause failure analysis (RCFA). The use of these tools lead to the

determination of the most effective maintenance strategies.

An RCM case study in an Australian mine (Dunn, 1997) showed the overhaul interval of

caterpillar Grader engines has been extended from 12,000 hours to 18,000 hours; the

large electrical shovel’s availability has been improved, and an air compressor trip

problem in production drills has been removed by implementing RCM procedures. A

strategic resource management consulting company (Strategic Technologies, Inc., 2004)

stated that “an oil refinery had a $12,000,000 annual revenue increased” by implementing

RCM, and “the planned shutdown in a plant had been reduced 33%.”

However, the application of RCM is not always successful. Dhillon (2002) says some

causes of the failure may be due to:

> Not enough maintenance analysis conducted,

> Too much emphasis placed on a failure data analysis to force the process,
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> The application was too hurried to conduct,

> The maintenance department is individually engaging on the RCM application;

other departments do not integrate their own resources in the RCM process.

Total Productive Maintenance

When the fixed-interval scheduled maintenance procedures are applied, equipment often

is over-serviced in an attempt to improve RAM. Manufacture maintenance schedules are

obeyed with little thought about the realistic maintenance requirement of the equipment

(Roberts, 1997); on the other hand, operators that really know the equipment situation do

not have enough training and responsibility in equipment inspection and maintenance, so

they can not play an active role in its maintenance.

Total Productive Maintenance, a technique originating in Japan, can be adopted to solve

these problems. TPM is considered “a people-oriented approach to resolve maintenance

and reliability problems at sources” (Kelly, 1999). A simple understanding of TPM is that

it encourages operators to participate in maintenance, and transfer a part of maintenance

work to operators. Roberts (1997) describes TPM activities as follows:

“Routine daily maintenance checks, minor adjustments, lubrication, and
minor part change out become the responsibility of the operator. Extensive
overhauls and major breakdowns are handled by plant maintenance
personnel with the operator assisting. Even if outside maintenance or factory
experts have to be called in, the equipment operator must play a significant
part in the repair process.”
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An early application of TPM at Toyota Gadei was to reduce the unnecessary maintenance

delay, and implement “a small maintenance circle”. As a result, the replacement

maintenance time of moldings machines was reduced from 49 minutes to 40 seconds at

this plant by promoting autonomous maintenance (Kelly, 1997).

Being a maintenance program, TPM still focuses on equipment RAM control. The

concept of autonomous maintenance is promoted in TPM to allow operators to monitor

and implement maintenance to ensure the accomplishment of the plant production goals.

Generally, TPM should be used in maintaining equipment with a constant failure rate.

For such kinds of equipment, the major improvements in reliability have been completed;

most of the maintenance is routine maintenance, so a part of it can be transferred to the

operators.

While autonomous maintenance is implemented, the control of its actions depends on

effective evaluation and reporting, which will assist operators and management to

improve and integrate maintenance resources. For example, management will know

whether the autonomous maintenance is responsive or effective, and whether new

maintenance resources need to be added from maintenance analysis.

Six Sigma Theory in Plant Maintenance

The Six Sigma concept has been used by industry as a problem solving model to improve

maintenance. It has been demonstrated that Six Sigma is not only a data-driven quality
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control technique for managing process variations that cause waste, but a methodology

for reducing defects based on process improvement (Matchette, 2006).

The main components of the Six Sigma methodology are Define, Measure, Analyze,

Improve, and Control (DMAIC). To apply Six Sigma theory to maintenance, DMAIC can

be defined as (Milosavljevic and RaIl, 2005):

> Defining goals of improvement activity by identif’ing problems and

requirements,

> Measuring the current maintenance perfonnances and resources,

> Analyzing the gap between current practice and the desired goal, to map and

arrange resources,

> Improving the maintenance process by engineering, statistics, and management

techniques,

> Controling the improvements that have been achieved.

The Six Sigma concept emphasizes improvement of the maintenance process and the

control of defects in maintenance actions (VanHilst et al., 2005). The goal of Six Sigma

maintenance is to provide maintenance with no error. In practice, Six Sigma traces

defects and normalizes them so as to improve plant maintenance. A continual

improvement in the maintenance process will result in reduced maintenance costs and

increased maintenance effectiveness and efficiency.
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The implementation of Six Sigma maintenance is not through replacing the existing

maintenance management strategy, but through improving the current maintenance

management and maintenance process (Quinello, 2004). Six Sigma techniques should be

applied based on RCM or TPM to improve maintenance practice. Milosavijevic and Rail

(2005) presented a model of a World-Class Maintenance Process (WCMP) by integrating

Total Productive Maintenance and Six Sigma maintenance, as shown in Figure B — 1.

Figure B - 1 Model of World-Class Maintenance Process (Milosavijevic and Rail, 2005)

Figure B -1 has been removed due to copyright restrictions.

The information removed is 8 steps to achieving a world

class maintenance process.
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Lean Maintenance

When management tries to improve plant maintenance, an unexpected result may be the

waste of maintenance resources: oversized maintenance teams are set up; equipment is

over-serviced and over-inspected; and unused inventory of parts, equipment, and

materials are purchased. For eliminating these problems in maintenance management, the

Lean concept is introduced into maintenance management. The philosophy of Lean is to

avoid actions that do not add value to products and services.

Lean maintenance is based on RCM or TPM, but it emphasizes the improvement of

maintenance effectiveness and efficiency. The implementation of lean maintenance

eliminates waste from maintenance activities, and controls maintenance resources to

actions that can add value to plant production, mainly plant RAM improvement. The

achievement of these goals first is to quantify and analyze such resources. For example,

lean maintenance is involved in analyzing “setup time, profit goals, cost saving, capacity

constraints, production objectives, product mix, and inventory issues” (Johnson, 2005) to

optimize these sources and to reduce waste.

Computerized maintenance management systems (CMMS), enterprise asset management

systems and Just-In-Time inventory management systems are tools to facilitate the

implementation of Lean maintenance. Engineers implement autonomous maintenance to

perform Condition-Based-Maintenance using Lean tools as follows (Smith, 2004):
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> 5S (Sort, Set in Order, Shine, Standardize, and Sustain) process: a program to

improve workplace tidiness, organization, cleanliness, standardization, and

discipline, so as to achieve a safer and more productive operation.

Kaizen (Continuous improvement action): “an on-going, never-ending continual

improvement process”, to encourage workers to look for every improvement

opportunity day by day, and invite other workers to modify their work procedures

and implement improvement strategies.

> Lean Performance Indicator (LPI) analysis: mearsure of the effectiveness of lean

effort; as a way of monitoring the lean improvement process.

> One-piece Flow: to move parts step-by-step through every workcell, in which all

necessary equipment and other parts are available with just-in-time supply to

reduce waste.

> Workflow Diagram: to clarify the work process by a graphic representation of the

major process steps so as to eliminate disturbances among the process.
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Appendix C: Other Maintenance Analysis Techniques
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Reliability Block Diagram Simulation

As an important reliability simulation technique, Reliability Block Diagram (RBD) has

been recognized as a practical reliability modeling method. For system reliability

simulation, components of a system are configured into functional blocks, which may be

combined in series, parallel, k-out-of-n parallel, load sharing, or standby configurations,

to simulate system function. “RBD is a graphical presentation of a system diagram in

reliability-wise or functional logic” (Wang, 2003). Reliability Block Diagram Simulation

enables maintenance engineers and managers to study the factors that impact system

reliability and performance, and to predict system behavior according to current status or

reset configurations.

The advantage of RBD includes the following, as Wang et al. (2004) describe:

> It easily models large and complex systems;

> It is easy to construct, modify, and incorporate any system component;

> All reliability indexes can be included;

> It is easy to identifS’ time-based system reliability characteristics.

A proper construction of RBD relies on many facts, such as understanding the system

configuration, the adoption of assumption and modeling methods, and the measurement

of each component reliability characteristic (Wang et a!., 2004). During the construction

of RBD, detailed reliability studies on each component are necessary to determine block

restrictions, which may include failure and repair distribution, failure mode and effects,
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operation environment impacts, maintenance strategies, and design configuration. This

requires collecting equipment data to provide necessary reliability information that RBD

needs.

The RBD technique has been widely used in military equipment systems, industrial and

commercial power systems, and in the chemical industry (Wang, 2004; J.A van Luijk,

2003). RBD software has been developed to provide a comprehensive platform for

complete system analysis utilizing reliability block diagrams. Van Luijk (2003)

investigated RBD software and provided an evaluation as shown in Table C - 1.

Table C - 1 RBD Software Packages and their Characteristics (Luijk, J.A., 2003)

Table C —1 has been removed due to copyright restrictions.

The inforrnatio:n removed is an evaluation of RBD software,

including BlcokSim, SPAR, Titan, MAROS, TARO, Toolkit,

.AvSim, SPARC, and Optagon, by model type, Simulation

engine, Flow/storge, Spares, Costs, Resources, and

Programming.
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Life Cycle Cost Analysis

The improvement of equipment RAM can be costly. Life cycle cost analysis provides an

approach to estimating costs when planning equipment RAM growth. The total lifetime

cost of a piece of equipment includes research and development, construction and

installation, operation and maintenance, and disposal. Up to 80% of the total life cycle

cost of a product occurs after the product has entered operation (DOD, 2005). A full

understanding of the total costs is important for decision-making in equipment RAM

improvement.

Since many factors affect equipment life cycle costs, the cost analysis needs to be

comprehensive. In the oil and chemical industries, it may include Reliability, Availability

and Maintainability (RAM) analysis, economic analysis, and risk analysis (Kawauchi &

Rausand, 1999). The implementation of life cycle cost analysis will identif’ and promote

RAM improvement opportunities. For instance, the analysis indicates what caused the

high cost, and how much it will be reduced by the improvements. This is a direct driver

for RAM improvement.

Kawauchi and Rausand (2002) tailored six basic processes for the oil and chemical

industries’ Life Cycle cost analysis from IEC, ISO, NORSOK, and SAE documents. The

processes are “closely linked” to RAM analysis, and focus on identifying the costs of

equipment unavailability. The six processes are below, as shown in Figure C - 1:

> Problem definition
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> Evaluation

> Cost profile development

> Data collection

> System modeling

> Cost element definition

Figure C - 1 A LCC Concept Map (Kawauchi and Rausand, 1999)

Figure C - 1 has been removed due to copyright

restrictions. The information removed is key points for

implementing each process.

Reliability Growth Management

In the oil sands industry, new technologies and materials are constantly put into use.

When new equipment is used, the initial reliability is usually lower than expected. In

order to identify and correct deficiencies in the equipment, a program is established for

achieving equipment reliability growth. A reliability growth program may include the

following procedures, as described in <MIL-HDBK-189> (1981):
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> Manage reliability growth process

> Identify failure mode root cause

> Test for weakness and improvement effectiveness

> Implement corrective action

> Activate valid reliability improvement

When contractors and plant engineers work together to test and achieve the required

reliability, project managers must prepare plant resources, such as finances, labour, and

time. This preparation requires foreseeing a reliability growth progress.

To set up a reliability growth program, a growth task or potential must first be identified,

as shown in Figure C — 2. The growth potential can be determined from design

requirements, maintenance benchmarking, or a reliability database. Then, an idealized

growth curve is used to indicate progress.

Figure C -2 Key Basic Reliability Tasks Out Parameters (Crow, 2005)

Figure C - 2 has been removed due to copyright

restrictions. The figure shows how to use an idealized

growth curve to identify the relationship between growth

potential and reliability development/growth test time.
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A parametric equation for the idealized curve of reliability growth has been developed to

guide reliability growth management in the U.S. military department (U.S. DOD, 1981).

It is estimated as follows:

Where

M(t) = M1 (--)a (1 —

t = the cumulative test time over the program

ti = the test time for the first test phase

M1 = the average MTBF over the first test phase

a - = Growth parameter (from similar experiences)

This curve provides an approach to planning reliability growth. An example of an

idealized growth curve is shown in Figure C-3.

Figure C -3 An Example of Idealized Growth Curve

Resource: MIL-HDBK-189, 1981
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After the general construction of an idealized growth curve, further testing is divided into

test phases, as shown in Figure C-4. In the U.S. military department, these test phases

may be included in the contract, the contractors implement and detail the reliability

procedures, and the program management will track the development of each phase, since

the oil sands companies are working with contractors to achieve equipment reliability

growth. These procedures provide a valuable guide for the oil sands industry to achieve

reliability growth in an efficient and effective way.

Figure C - 4 An Example of Planned Growth Curve
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Human Error Control in Maintenance Operation

During equipment maintenance operation, two major causes of breakdown of equipment

are (Kumar, 1992):
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> Poorly designed reliability

> Human factors

The improvement of poorly designed reliability can be achieved by redesign, preventive

maintenance, predictive testing and inspection, Root Cause Failure Analysis (RCFA), and

so on, but human errors should be improved by maintenance quality management and

control.

In maintenance analysis, “the contribution of the human error is not negligible in many

cases” (Kawauchi & Rausand 1999). Many studies have been developed to reduce

human error in maintenance. As Dhillon (2000) summarized, reducing human error in

maintenance may be achieve by:

> Ensuring standard work procedures carry through maintenance operations, and

implementing maintenance operation quality control.

> Periodically evaluating and updating maintenance procedures.

Ensuring that management receives regular and structured feedback from

maintenance operation.

> Offering checklists to assist maintenance persons in performing routine

maintenance operations.

> Double-checking the implementation of maintenance procedures and quality.
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When such actions are taken to reduce human error, the effectiveness of improvement

actions must be measured. This approach reduces human errors in maintenance, allowing

human error information to be properly collected and integrated into a maintenance

database, so as to be analyzed as part of the maintenance management function.

However, human error is hard to quantif’, and the recording of human error is difficult in

practice; however, some human reliability quantification techniques have been developed

(Kriwan, 1998). These methods of recording and analyzing human error need to be

applied in practice.
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Appendix D: Time Between Maintenance Data
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Table D - 1 Time between Maintenance of Slurry Pump Train 1,2, & 3 for 2005

No. of Maintenance TBM of Slurry Pump TBM of Slurry Pump TBM of Slurry Pump
Events Train 1 Train 2 Train 3

1 312 236 328

2 160 131 426

3 308 24 79

4 436 205 157

5 38 186 132

6 97 82 217

7 122 249 32

8 74 65 23

9 93 79

10 21 138

11 13 32

12 308 221

13 53 59

14 15 230

15 26 83

16 73 94

17 146 13

18 56 324

19 613 78

20 236 372

21 176

115



Table D - 2 Time between Maintenance of Slurry Pump Train 1,2, & 3 for 2006

No. of Maintenance TBM of Slurry Pump TBM of Slurry Pump TBM of Slurry Pump
Events Train 1 Train 2 Train 3

1 178 160 137

2 20 326 5

3 763 763 959

4 533 27 376

5 62 156 44

6 390 433 618

7 376 698 365

8 44 332 553

9 618 124 45

10 1,013 490

11 441

12 866

13 541

14 712

15 257

16 76
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Table D - 3 Time between Maintenance of Slurry Pump Train 1,2, & 3 for 2007

No. of Maintenance TBM of Slurry Pump TBM of Slurry Pump TBM of Slurry Pump
Events Train 1 Train 2 Train 3

1 326 381 392

2 541 115 23

3 459 406 129

4 282 203 1012

5 100 570 668

6 457 27 116

7 347 311 410

8 749 455 300

9 68 98

10 327 189

11 297
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Appendix E: Critical Values for Cramer-von Mises
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Goodness-of-Fit Test

Table E - 1 Critical Values for Cramer-Von Mises Goodness of Fit Test

Ne
MNN, .20 .15 .10 .05 .01

2 .138 .149 .162 .175 .186

3 .121 .135 .154 .184 .23

4 .121 .134 .155 .191 .28

& .121 .137 .160 .199 .30

6 .123 . .139 .162 .204 .31

7 .124 .140 .165 .208 .32

8 .124 .141 .165 .210 .32

9 .125 .142 .167 .212 .32

10 .125 .142 .167 .212 .32

11 .126 .143 .169 .214 .32

12 .126 .144 .169 .214 .32

13 .126 .144 .169 - .214 .33
14 .126 .144 .169 .214 .33

15 .126 .144 .169 .215 .33

16 .127 .145 .171 .216 .33
7

.127 .145 .171 .217 .33
Is .121 .146 .171 .217 .33

19 .127 .171 .217 .33

20 .128 .146 .172 .217 .33

30 .128 .146 .112 - .218 .33

60 .128 .147 .173 .220 .33

100 .129 .147 .113 .220 .34

For 14 > ‘100 use values for 14 a

Sources : MIL-HDBK-189
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KPI analysis has been widely used to identify industrial operation and maintenance

targets and measure maintenance effectiveness. (Reh, 2007; Paraszczak et a!., 2005) In

maintenance performance analysis, KPIs can be broken down into two categories:

equipment RAM KPIs and maintenance cost KPIs. These KPIs indicate maintenance

goals and detect the progress of maintenance actions and strategy development.

A key perfonnance indicator closed-loop process has been presented by Beck and Oliver

(1999) to identif’ the process of selecting performance indicators, as shown in Figure 2-

3. In a logical maintenance system (LMS) developed for a Japanese LNG terminals

maintenance, KPI was one of five maintenance efficiency evaluation tools, including

RBM (Risk-Based maintenance), RBQC (Risk-Based Quality Control), Long-Term

Maintenance Standard, and Asset Management. These evaluation tools are used to

approach a PDCA (Plan, Do, Check, and Action) cyclic management system (Aoki,

2006).

Figure 2-3 Key Performance Indicator Closed-Loop Process (Beck and Oliver, 1999)
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Figure 2-4 Selecting the Appropriate Process Model (U.S. DOD, 2005)
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2.3.4 Power Law Model Parametric Estimation and Hypothesis Test

The power law process model is a good tool to analyze the effect of successive

maintenance actions, and to estimate a quantified deteriorating rate. Several studies have

focused on the Power law model parametric estimation and hypothesis test (U.S. DOD,

1981, 2005; U.S. NIST, 2006; Frenkel, 2004; Gaudoin et at., 2003; Crow, 2005; Mettas,

2005; Sun et at. 2005; Guo et at, 2006).
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The implementation of Six Sigma maintenance is not through replacing the existing

maintenance management strategy, but through improving the current maintenance

management and maintenance process (Quinello, 2004). Six Sigma techniques should be

applied based on RCM or TPM to improve maintenance practice. Milosavljevic and Rall

(2005) presented a model of a World-Class Maintenance Process (WCMP) by integrating

Total Productive Maintenance and Six Sigma maintenance, as shown in Figure B — 1.

Figure B - 1 Model of World-Class Maintenance Process (Milosavijevic and Rail, 2005)
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operation environment impacts, maintenance strategies, and design configuration. This

requires collecting equipment data to provide necessary reliability information that RBD

needs.

The RBD technique has been widely used in military equipment systems, industrial and

commercial power systems, and in the chemical industry (Wang, 2004; Luijk, 2003).

RBD software has been developed to provide a comprehensive platform for complete

system analysis utilizing reliability block diagrams. Luijk, J.A. (2003) investigated RBD

software and provided an evaluation as shown in Table C - 1.

Table C - 1 RBD Software Packages and their Characteristics (Luijk, J.A., 2003)

Model Sun. Flow! Spares Costs Resources Programming?
type engine storage?

BlockSitu RBD MC! + - + N
AN

SPAR RBD MC + + + + Y

Titan RBD MC ++ + y
MAR05 RBI) MC + ± + + N
TARO RBD MC - + + + N

Toolkit MKV MC - + + - N
RBD
FT

AvSirn+ RBD MC + + + + N
FT

SPARC RBD AN - - - - N
Optagon RBD MC ++ + + + N
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> Evaluation

> Cost profile development

> Data collection

> System modeling

> Cost element definition

Figure C - 1 A LCC Concept Map (Kawauchi and Rausand, 1999)
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Reliability Growth Management

In the oil sands industry, new technologies and materials are constantly put into use.

When new equipment is used, the initial reliability is usually lower than expected. In

order to identif’ and correct deficiencies in the equipment, a program is established for

achieving equipment reliability growth. A reliability growth program may include the

following procedures, as described in <MIL-HDBK-189> (1981):
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> Manage reliability growth process

> Identify failure mode root cause

> Test for weakness and improvement effectiveness

> Implement corrective action

> Activate valid reliability improvement

When contractors and plant engineers work together to test and achieve the required

reliability, project managers must prepare plant resources, such as finances, labour, and

time. This preparation requires foreseeing a reliability growth progress.

To set up a reliability growth program, a growth task or potential must first be identified,

as shown in Figure C — 2. The growth potential can be determined from design

requirements, maintenance benchmarking, or a reliability database. Then, an idealized

growth curve is used to indicate progress.

Figure C -2 Key Basic Reliability Tasks Out Parameters (Crow, 2005)
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