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ABSTRACT

Although aggregating retail outletsinto retail districtsis an important academic and practical
issue in marketing and retailing, only limited academic work has been done on this problem.
The growing availability of detailed location data through Geographic Information Systems
makes this a particularly timely problem. Cluster analysisis a sound and well established
approach for reducing data dimensionality. However, the existing clustering approaches do not
handle the complicated geospatial structure that istypical of retailing data well, largely due to
the high variation in observation density. One problem is that the “epsilon radius,” a measure
of how close stores need to be to each other in order to be classified as belonging to the same
cluster, is assumed to be constant in methods such as density-based clustering. However, this
turns out not to be a good assumption in practice. In addition existing methods of judging the
quality of aclustering solution, so called cluster validation methods, do not provide sound
guidance as to the best clustering solution for the type of retailing data we study. Consequently,
we propose a new two-step clustering approach in which Variable Epsilon Spatial Density
Clustering (VESDC) is developed, and anew clustering validation measure, the CpSp index,

asoisintroduced.

VESDC effectively clusters data by systematically adjusting the epsilon radius to adapt to the
local market environment. In particular, using the logistic transformation function, we propose
amodel in which the epsilon radius is determined by the population density in asmall area.
Cpp, which is scaled from 0 to 1, balances the compactness and separation of a proposed
clustering solution. Extensive testing demonstrated that CpSp performed well as a cluster

validation method.



Wetested VESDC' s performance on synthetic data. The underlying pre-specified data patterns
were accurately recovered. Existing methods were not as successful in these tests. We then
applied the two-step approach to Greater Victoria since Greater Victoriaisatypical

metropolitan city with large variation in store density.
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1. Introduction and Motivation
Recent advances in geodemographic coding have provided an impressive amount of data about
the characteristics of individual commercial outlets (e.g., stores) and their locations. For
example, location information for more than 16,000 retail storesin Vancouver isavailable. In
addition, those stores can be easily and accurately located on maps using Geographic
Information System (GIS) technology, making it easier to understand the marketing
environment among the retailers. The distance between stores, for example, can be calculated
after identifying the map locations using GIS. The availability of this considerable amount of
data should potentialy be useful for marketing, specifically for retailing. For example, when
choosing sites for new stores and evaluating the performance of existing stores, retailers have
access to extensive data on competitors, complementary stores that might build traffic in an
area of interest, and other local geographic characteristics.

While local managers have always had some of this knowledge, the availability of such
vast quantities of data allows for a much more systematic and comprehensive analysis than was
previously possible. Recent research, such as that conducted by Ellickson and Misra (2008),
demonstrate the potential usefulness of this data. However, for the data to be most useful, itis
necessary to understand its structure. For example, rather than knowing the locations of each
individual store when determining the attractiveness of an areafor a new store location, it is
more important to know whether there is an agglomeration of storesin a certain area, creating a
retail center or retail district that might serve to draw traffic. In other words, when estimating
the sales volume of anew store, the estimate is likely to depend on more than simply summing
up the current sales of stores within a certain geographical distance of the new location.

Obtaining such information from a large data set, especially location information, is



challenging. For example, there are more than 16,000 retail outlets differentially distributed in
the Greater Vancouver area, and reducing the data dimension quickly becomes an issue during
theinitial process of investigating the area further.

The challenge, then, isto provide ways to cluster datain ways that provide meaningful
information to researchers and managers. In thisthesis, we focus on the use of cluster analysis
in marketing to understand the patterns in geographic data. As we will show, while a number
of new techniques have been developed in computer science and other areas, these techniques
have not yet been tested and developed for the type of geodemographic data commonly used in
understanding marketing, distribution, and retailing issues. Moreover, as we will show, the
existing techniques need substantial modification to be useful in such settings. In thisthesis
then, we will first review the technigues commonly used in marketing and then introduce the
newer techniques from other literatures. Using both simulated and actual data from the
Victoria, British Columbia metropolitan area, we will show why both the existing and newer
techniques have difficulty when confronting geodemographic data typical of the retail sector of
the economy. The greater Victoria areais a mid-size metropolitan area with a strong downtown
core and a surrounding set of retail districts that vary widely in store density. We next will
introduce modifications to these techniques and demonstrate their usefulness. By using actua
datafrom Victoria, we will be able to test the robustness of our new approach to clustering data

and testing the structure that our clustering approach produces.

1.1 Illustrative Settings
Ellickson and Misra (2008) provide arecent example of the use of clustering in aretail setting.

They grouped supermarkets into “competing clusters’ to investigate how firms react to the

pricing strategies of their competitors. Since competitors who are relatively far away are



unlikely to provoke strong reactions by the focal store in terms of pricing, the authors need to
find away to cluster the more than 28,000 supermarkets in the US into meaningful retail
clusters. To accomplish this, Ellickson and Misra (2008) use a clustering method called
K-means (described below) to group the stores into “ competing” markets. This serves asthe
first step in identifying the actual competitors among US supermarkets, and then the pricing
strategy of the focal store is studied within the relevant competition area. Reducing the
dimensionality of the data by clustering the stores into different “competing” markets alows
for effective investigation of pricing strategy.

The K-Means approach used by Ellickson and Misra (2008) is useful for handling large
data sets. However, the number of clustersis an input parameter that must be determined
before the clustering process can begin. Given the size of such a dataset, it is difficult to
determine the appropriate number of clusters based on a priori reasoning. Thus the optimal
number of clustersis determined by iterating through alarge number of potential alternatives.
As we show below, the choose of the optimal number of clusters can be highly sensitive to the
criterion chosen (that is, the cluster validation method) and the structure of the clustersisvery
sensitive to the number of clusters that chosen to represent the data. A particular problem
occurs when some stores are located in relatively isolated areas. Since K-means and other
techniques used in marketing tend to force al stores into clusters, sometimes the clusters
generated appear to be unreasonable. In other words, isolated supermarkets that should not
belong to any competing market are identified within the competing market.

Understanding the geographic structure of an areais particularly important for store
location decisions. In estimating sales potential of a proposed new outlet, it is often crucial to

know whether the existing stores can be grouped together to form aretail district. By a“retail



district”, we mean a business area where a numbers of commercia outlets can be aggregated
together to form a multifunctional center. Given GIS technology, the location of commercia
outlets can be identified accurately, and the possibility of identifying retail districts has been
improved significantly in recent years. Asthefirst step toward investigating an areafor a
possible store location, we need to understand the local commercial structure in the area by
reducing the data dimension and understanding the volume of traffic generated. For example,
Vancouver’s Robson Street (comprising approximately 200 stores) can attract around 80,000
visitors on aweekend, thus demonstrating the significant effect that agglomeration can have.
As noted above, the problem addressed here is how to accurately agglomerate individual
storesinto retail districts. Depending on the application, retail districts may consist of similar
stores, asin the case of an auto mall, or different stores, as in the case of a shopping district
such as Robson Street. The retail structure provides critical information on market demand and
market competition that cannot be obtained otherwise. While an individua observer familiar
with an area may be able to intuitively group together retail outletsinto retail districts (for
example, by being able to indicate which stores on Vancouver’ s west side fall into the Dunbar
area), such an approach is neither feasible nor reliable on awide scale basis. For example,
Vancouver aone has more than 16,000 retail and service outlets, and devel oping reliable and
consistent information on retail districts by using unaided intuition would clearly be infeasible.
Therefore, a method needs to be developed that allows for structuring the datainto retail
districts accurately and efficiently in order to gain enough understanding about the retail
structure. As discussed below, existing methods in marketing are unable to deal effectively
with spatial clustering, particularly for large data sets. Methods devel oped in computer science

and elsewhere appear to be promising, but make assumptions about the data structure that, as



this thesis demonstrates, are unreaistic in the context of retail locations, and cannot handle

retail district identification accurately.

1.2 Approachesto Clustering Datain Marketing
Although aggregating commercial outletsinto retail districtsis an important issue in marketing

in general and retailing in particular for both marketing researchers and marketing managers,
only limited academic work has been done on this problem. In genera, there are three
approaches for reducing the data dimension to form retail districts: predefined geographic areas
such as those indicated by postal codes, human judgment, and forma methods of cluster
anaysis.

Postal codes cannot provide accurate information about retail districts. First, there are more
commercia concentrations than postal areas. Second, postal areas are essentially random
gpatia units imposed across a complex spatial system. Therefore, they are only useful asan
initial step toward understanding the general picture of an area. The use of human judgment
takes advantage of GIS development and involves drawing retail districts on maps by hand
(Simmons et al., 2000). The GIS can locate retail stores accurately and improve upon the
innate human ability to identify patternsin visua displays. However, thisis very labor
intensive and cannot be updated easily if the data set is large. Thislabor-intensive work can be
avoided by finding other computer-based or algorithmic approaches that can aggregate alarge
number of retail outlets into a manageable number of groups (retail districts) quickly and
accurately. One reasonable solution for handling the issue is to reduce data dimensions by
forming retail districts via cluster analysis. Cluster analysis, which covers a wide range of
techniques, has emerged as a computer-based approach to grouping data on the basis of pre-

defined criteria, and has been successful in anumber of applications.



Cluster analysisis a statistical method for classification. It has been increasingly employed
in the design and implementation of marketing strategy (see Table 1.1 for a summary of
clustering studies in the marketing literature, based in part on Punj and Stewart, (1983)). The
primary use of cluster analysis in marketing has been for market segmentation. All
segmentation research, regardless of the method used, is designed to identify groups of entities,
including consumers, markets, and firms, that share certain characteristics, such as attitudes,
purchase behavior, geographical location, or business type. For example, based on
characteristics such as demographics, transaction history, and benefits sought, consumers can
be segmented by their similarity into different groups using a clustering method (Anderson et
al., 1976; Schaninger et al., 1980; Sexton 1974; Lessig and Tollefson 1971; Landon 1974;
Greeno et al., 1973), thereby helping marketing managers choose the proper targets. In another
setting, relevant and competing markets are identified based on store features and geographic
information (Sethi 1971; Day and Heeler 1971; Hooley et a., 1990; Ellickson and Misra 2008).
For the firm, different types of firms are identified based on their business type, attitude
towards innovation, and marketing practices (Moriarty and Venkatesan 1978; Kerin and Cron
1987; Bowen 1990; Coviello et a., 2002; Hollenstein 2003).

Cluster analysis has also been used to seek a better understanding of buyer behaviors by
identifying homogeneous groups of buyers. It has been applied less frequently to this type of
theory-building problem, possibly because of theorists' discomfort with a set of procedures that
appear ad hoc (Punj and Stewart 1983).

Severa studies use cluster analysis to improve predictions related to consumer buying
decisions (Morrison and Sherman 1972; Kiel and Layton 1981; Kernan 1968; Claxton et al.,

1974; Hagerty 1985; Krieger and Green 1996). Cluster analysis has also been used in the



identification of potential new product opportunities. After determining the competing brands

or products through cluster analysis, a firm can examine its current offerings and determine

how the current or new products are positioned against other competing products (Srivastava et

al., 1981, Srivastavaet al., 1978).

Cluster analysis has al so been employed in test market selection (Green et al., 1967). Using

cluster analysis, marketers can choose markets that are similar to the larger geographic areato

which the results of the test are to be applied, thereby reducing the number of test markets

required.

Finally, cluster analysis has been used to devel op aggregates of datathat are well defined

and managed more easily than individual observations. As discussed above, Ellickson and

Misra (2008) clustered al the supermarkets in the United States into a manageable number of

competing markets/areas to further study firms' pricing strategies.

Table1.1 Cluster Analysisin Marketing Applications

Papers

Pur pose of research

Clustering method
used

Anderson, Cox, and | To identify the determinant attributesin bank | Partitioning
Fulcher (1976) decisions and use them for segmenting

commercial bank customers
Bowen (1990) To identify different service types Partitioning
Claxton, Fry, and To classify furniture and appliance buyersin Hierarchical
Portis (1974) terms of their information search behavior
Covidllo, Brodis, To identify the relative emphasis on Partitioning
Danaher, and transactional and relational across firm type
Johnston (2002)
Day and Hedler To classify storesinto similar strata Partitioning &
(1971) Hierarchical
Ellickson and Misra | To identify the competing market where the Partitioning
(2008) focal storeislocated
Green, Frank, and To identify matched cities for test marketing Hierarchical

Robinson (1967)




Papers

Pur pose of research

Clustering method
used

Greeno, Sommers, To identify market segments with respect to Hierarchica
and Kernan (1973) personality variables and implicit behavior
patterns
Hagerty (1985) To group customers with similar preferencesto | Hierarchical
improve the predictive accuracy of conjoint
analysis
Hollenstein (2003) To identify five clusters of firmswith different | Partitioning
innovation modes in Switzerland
Hooley, Lynch, and To group firms with different perspectiveson | Partitioning
Shepherd (1990) the role of marketing
Kerin and Cron To determine how marketing executives group | Hierarchical
(1987) their trade show programs on the selling and
non-selling performance dimensions
Kernan (1968) To identify groups of people along several Hierarchica
personality and decision behavior
characteristics
Kiel and Layton To develop consumer taxonomies of search Hierarchical
(1981) behavior by Australian new car buyers
Krieger and Green To enhance the prediction of an exogenous Partitioning
(1996) variable for the segmented customers (modified K-Means)
Landon (1974) To identify similar groups of people using Partitioning
purchase intention and self-concept variables
Lessigand Tollefson | Toidentify similar groups of consumersalong | Hierarchical
(1971) several buyer behavior variables
Moriarty and To segment educational institutionsintermsof | Partitioning
Venkatesan (1978) benefits sought when purchasing financial-aid
Management Information System
Schaninger, Lessig, To identify segments of consumers on the Partitioning
and Panton (1980) basis of product usage variables
Sethi (1971) To classify world markets Partitioning
Sexton (1974) To identify homogeneous groups of families Type not specified
using product and brand usage data
Thisthesis To identify retail districts based on retail store | Variable Epsilon
locations Spatial Density
Clustering

1.3 Summary and Outline of Thesis
While the marketing field has largely used traditional methods of clustering, new methods of

cluster analysis have been developed (primarily in computer science) to address issues




encountered in clustering spatial data. For example, as discussed in subsequent sections of this
thesis, a density-based approach can identify outliers and is free from cluster shape restriction;
amodel-based approach can be used to choose the optimal multivariate model and number of
clusters using BIC value (Ward' sis one specia case of the general model-based approach);
and fuzzy clustering allows observations to belong to different clusters with different degrees
of probability. These methods can partially overcome the problems with the K-Means and
Ward' s approaches to clustering. While the new methods provide a starting point for spatial
point data clustering, they have largely been devel oped and tested using only simulated data.
Attempts to apply these methods to actual marketing data demonstrate the need to extend the
existing methods for use in practical applications. The extensions of the methods and the

applications of those extensions form the basis of thisthesis.

The remainder of thisthesisis organized as follows. In Chapter 2, we provide areview of
the existing clustering methods and cluster validation methods, and indicate potential problems
in their applications to retail location data. In Chapter 3, we develop a new method for cluster
validation and apply this approach to simulated data. In Chapter 4, we illustrate the
performance of current approaches on the city of Victoria. In Chapter 5, we introduce a new
two-step cluster approach, in which “Variable Epsilon Spatial Density Clustering (VESDC)” is
developed. In Chapter 6, we show the result of the two-step approach on Greater Victoriain

British Columbia. The summary and conclusionsis the final chapter.



2 Literature Review
Since this thesis focuses on clustering methodology and cluster validation measurement, it will
be helpful to first review the literature on cluster analysis, and then turn to areview of cluster

validation measurements.

2.1 Cluster Analysis
Cluster analysisis one of the most useful toolsin the data mining process for discovering

groups and identifying similar observations in the underlying data. The main function of
clustering is dividing a given data set into groups (clusters) such that the data pointsin a cluster
are more similar to each other than to pointsin different clusters (Guhaet a., 1998). Thus, the
main concern in the clustering processisto reveal the organization of patternsinto “sensible’
groups, which allow usto discover similarities and differences, as well as to derive useful
conclusions about them (Halkidi et al., 2001). In general, cluster algorithms can be broadly
classified into the following types according to the method adopted to define clusters (Jain et
a., 1999; Yeung et d., 2001):

e Partitioning clustering attemptsto directly decompose the data set into a set of
digoint clusters. More specifically, it attempts to determine an integer number of
partitions that optimize a certain criterion function. The criterion function may
emphasize the local or global structure of the data, and its optimization is an iterative
procedure.

e Hierarchical clustering proceeds successively by either merging smaller clustersinto
larger ones, or by splitting larger clustersinto smaller ones. The result of the algorithm

isatree of clusters, caled a“dendrogram”, which shows how the clusters are related.

10



By cutting the dendrogram at adesired level depending on the clustering purpose, a
clustering of the dataitems into digjointed groups is obtai ned.

o Density-based clustering groups neighboring objects within a data set into clusters
based on density conditions. The objects with lower than required density are classified
asoutliers.

e Grid-based clustering is mainly proposed for spatial data mining. The spaceis divided
into afinite number of cells and the clustering operation is conducted on a segmented
data space grid structure.

e Model-based clustering assumes that the data are generated by afinite mixture of
underlying probability distributions such as multivariate normal distributions. The
issues of selecting a“good” clustering method and determining the “ correct” number of
clusters are reduced to model selection problems on the probability framework.

e Fuzzy clustering uses fuzzy techniques to cluster data and alows for an object to be
classified into more than one clusters. These types of algorithms lead to clustering
schemes that are compatible with everyday life experience, as they handle the
uncertainty of real data.

In addition to applications in marketing, cluster analysis has been used in many fields, such
asthe life sciences, medicine, business, and engineering. The most widely used cluster analysis
approaches in marketing are the partitioning approach and hierarchical approach. We will start
with these two basic methods, providing only a brief review, as these approaches are well-

known. See Theodoridis and Koutroubas (1999) for a more detailed review.

11



2.1.1 Partitioning Approach
Partitioning algorithms construct a partition of a database D of n objectsinto aset of k

clusters. k isan input parameter that must be specified a priori, (i.e. some domain knowledge
isrequired, which unfortunately is not available for many applications). The partitioning
algorithm typically starts with aninitia partition of D and then uses an iterative control
strategy to optimize an objective function. Each cluster is represented by the gravity center of
the cluster (k-means agorithms) or by one of the objects located near the center of the cluster
(k-medoid agorithms). The objective function is typically the sum of the Euclidean distances
between a point and the gravity center of a cluster (for K-Means) within each cluster for all the
clusters. Consequently, partitioning algorithms use a two-step procedure. First, determine k
representatives, minimizing the objective function initially. Second, assign each object to the
cluster with its representative “ closest” to the considered object, and re-compute the centers.
The process continues until the centers of the clusters stop changing. It deals efficiently with
large data sets. However, it also requires prior knowledge about the data set, since the number
of clustersis a parameter in the method and must be determined before the clustering
procedure. It is difficult to determine such information, especially for alarge and unfamiliar
data set. Sometimes, an inaccurate input can lead to unexpected clustering results. For
example, if the number of clustersis set too small, some clusters will be very large, even
including very isolated observations in order to accommodate the input parameter while
ignoring the data structure. Although one can run K-Means clustering multiple times with
different numbers of clusters, the returned clusters are not guaranteed to be structurally related.
In addition, because the objective function is typically based on the Euclidean distance, the

shape of al clusters found by a partitioning algorithm is convex, which is very restrictive. For
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example, if the datawere based on locations of retail outlets, the stores may be located aong
streets, around an intersection, or in a shopping center; these configurations do not lend
themselves well to convex shapes. Outliersin the dataset are not uncommon and they should
not be classified into any cluster. However, the partitioning approach cannot identify outliers,
and all data points are classified into clusters, which at times does not reflect the underlying
data structure. The partitioning approach can handle large data sets well with computation cost

of O(n)

2.1.2 Hierarchical Approach
Hierarchical agorithms create a hierarchical decomposition of D . The hierarchical

decomposition is represented by a“dendrogram”, atree that iteratively splits D into smaller
subsets until each subset consists of only one object. A frequently used hierarchical approachis
Ward' s method. In such a hierarchy, each node of the tree represents acluster of D. The
dendrogram can either be created from the leaves up to the root (agglomerative approach) or
from the root down to the leaves (divisive approach) by merging or dividing clusters at each
step. It is common practice to begin with each observation in a cluster by itself, although the
procedure could be initialized from a coarser partition if some groupings are known, apriori. In
contrast to partitioning algorithms, hierarchical algorithms do not need k as an input.

However, atermination condition must be defined, indicating when the merge or division
process should be stopped. One example of atermination condition in the agglomerative

approach isthe critical distance D,;, between al the clusters. In contrast to the partitioning

method, the cluster shape can be arbitrary. However, the computational cost is very high due to
the distance calculation for each pair of points. Thisis acceptable for applications such as

character recognition with moderate values for n, but the computation burden istoo high for a
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large database with computation cost of O(n?) . Aswith the partitioning approach, outliers
cannot be identified by the hierarchica approach.
Neither partitioning nor hierarchical methods directly address the issue of determining the

number of groups within the data.

2.1.3 Density-Based Approach
Since the proposed new approach is developed from a density-based approach (DBSCAN is

the basic algorithm of density-based approach), a more detailed explanation of density-based
cluster analysisis provided here. Density-based cluster analysis was devel oped primarily by
researchers in the Computer Science sub-discipline of Machine Learning. It was proposed first
by Ester et al., (1996) for discovering clustersin large spatial databases with noise, and has
been continually modified over time (e.g. Zaiane and Lee 2002). The density-based a gorithm
recognizes that within each cluster thereisatypical density of pointsthat is considerably
higher than the density outside the cluster and, furthermore, the density within the areas of
noiseis lower than the density in any of the clusters. “Noise” refersto a point that isisolated
and does not belong to any cluster. The key ideais that for each point of a cluster the
neighborhood of a given radius has to contain at |east a minimum number of points, (i.e. the
population in the neighborhood must exceed some threshold). The shape of a neighborhood is
determined by the choice of a maximum distance for two points. So, the density-based
approach requires the specification of both MinPts and epsilon radius. MinPts refers to the
minimum number of points that aqualified cluster can have in an epsilon radius neighborhood
of that point. If the members of the groups are fewer than the MinPts, that point will be
classified as noise. “Epsilon radius’ refers to the maximum distance between two adjacent

points that enables them to be considered reachable from one another.
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Using the above principles, the density-based approach employs several constructs to
describe the relationships within and among clusters; these concepts are based on the epsilon
radius and MinPts. A point p isdirectly density reachable from apoint g if p iswithinthe
epsilon radius neighborhood of the point q and there are more than MinPts within the epsilon
radius neighborhood of the point q. Directly density reachable is not always symmetric. Figure
2.1 illustrates the concept. In Figure 2.1, the circles indicate the epsilon radius neighborhoods.
MinPtsis set to be 4. Wefind that B is directly density reachable from A, but A is not directly
density reachable from B, since within the epsilon radius neighborhood of point B there are

only 3 points, which does not meet the requirement of MinPts.

Figure 2.1 An lllustration of Directly Density Reachable Points

A point p isdensity reachable from apoint q if thereisachain of points p,, p,, ..., p,,
p, =0, p, = p suchthat p,,, isdirectly density reachable from p,.Aswith the directly

density reachable concept, density reachable is not always symmetric. Figure 2.2 illustrates the
concept. In Figure 2.2, the circles indicate the epsilon radius neighborhoods. MinPtsis set to be
4. B isdensity reachable from C, but C is not density reachable from B, since within the
epsilon radius neighborhood of point B there are only 3 points, which does not meet the

requirement of MinPts.
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Figure2.2 An lllustration of Density Reachable Points

A point p isdensity connected to apoint q if thereisapoint o such that both p and g

are density reachable from 0. In contrast to the previous two concepts, density connectivity is
asymmetric relation. Figure 2.3 illustrates the concept. In Figure 2.3, the circles indicate the
epsilon radius neighborhoods. MinPtsis set to be 4. We can say that points D and E are density

connected.

Figure 2.3 An Illustration of Density Connected Points

Based on these three concepts, the density-based cluster is defined to be a set of density
connected points which is maximal with regard to density reachability. Noiseis defined
relative to a given set of clusters. It is simply the set of pointsin the database not belonging to
any of its clusters. To find a cluster, the density-based approach begins with an arbitrary point

p and retrieves all points density reachable from p with regard to epsilon radius and MinPts.
16



The density-based approach overcomes some of the problems associated with the
traditional partitioning and hierarchical methods quite well. First, it can separate noise points
from clustered points. So, it is possible but not necessary to cluster all the points. Second, it
does not require domain knowledge in advance to determine the number of the clusters. Based
on MinPts and epsilon radius setting, it can do the clustering automatically. Such advantages of
the density-based approach are especially useful when the database is large and the domainis
complicated, because it is difficult to know the number of clustersin advance. However, the
choice of MinPts and epsilon radius is challenging. These issues are discussed more fully
below.

The shape of acluster is arbitrary, since determining whether a point can be clustered into a
group is based on the density connectivity. This can overcome the convex shape restriction of
the K-Means method, thus better reflecting reality in many settings. Finaly, the density based
approach can handle large databases very well with computation cost of O(nlog(n)) (Ester et
al., 1996). These advantages are particularly important in relation to the problem studied in this
thesis. For retail district identification, we know it is common to observe isolated commercial
outlets (outliers); retail districts can appear in any shape; the number of commercial outlets can
be extremely large; and outlet density can vary significantly. Therefore, the density-based
approach can be helpful in accommodating the above special features associated with retail

district identification.

2.1.4 Grid-Based Approach
The grid-based approach is another method for clustering spatial data. It divides the space into

afinite number of cells and then does al operations within the cells. Sinceit considers cells

rather than data points, the computation is generally more efficient. But, determining how to
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divide the space into a definite number of cellsis achallenge at the start. The STING
(Statistical information grid-based method) is representative of this category. It divides the
gpatial areainto rectangular cells using a hierarchical structure. STING (Wang et a., 1997)
goes through the data set and computes the statistical parameters (such as mean, variance,
minimum, maximum and type of distribution) of each numerical feature of the objects within
cells. Then it generates a hierarchical structure of the grid cells so as to represent the clustering
information at different levels. Based on this structure, STING enables the usage of clustering
information to search for queries or to conduct the efficient assignment of a new object to the
clusters.

WaveCluster (Sheikholeslami et al., 1998) is arecent grid-based agorithm based on signal
processing techniques (wavel et transformation) to convert spatial datainto frequency domain.
More specifically, it first summarizes the data by imposing a multidimensional grid structure
onto data space (Han and Kamber 2001). Each grid cell summarizes the information of a group
of points that map into the cell. The approach then uses a wavelet transformation to transform
the original feature space. A prior knowledge about the exact number of clustersis not required
in WaveCluster. The two grid-based approaches above deal well with low-dimensional data,
Hinneburh and Keim (1999) and Pilevar and Sukumar (2005) proposed new grid-based
approaches (OptiGrid and GCHL ) to accommodate high-dimensional data.

A grid-based approach can handle arbitrarily shaped collections of points, for example,
ellipsoidal, spiral, and cylindrical. Aswith the density-based approach, the grid-based approach
can aso identify the noise (outliers). Although grid-based techniques have some features that
density-based approach lacks, a density-based procedure can better mimic the retail district
intrinsic network. Since the way the density-based approach forms clusters shares similarities
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with customers walking in the retail district, the inherent network structure within aretail
district can be captured to some degree by a density-based approach. In addition, our newly
devel oped approach based on density-based approach can accommodate the special patterns.
Therefore, we apply a density-based approach in retail district identification and develop

advanced approach from the basic algorithm.

2.1.5 Model-Based Approach
The model-based approach, arelatively recent development (Banfield and Raftery 1993; Fraley

and Raftery 2002), has demonstrated good performance in many applications on small- to
moderate-sized data sets (MCLUST is the most common agorithm of model-based approach).
However, it does not perform efficiently in terms of computer time and memory. In model-
based clustering, it is assumed that the data are generated by a mixture of underlying
probability distributions in which each component represents a different group or cluster.
Given observations (X;, X,,..., X,) , the mixture model with density f is

n G

Hsz f (% 10,),

i=1 k=1
where f, (x |6,) isaprobability distribution with parameters 6, , and 7, isthe probability of
belonging to the k™ component or cluster. G is the number of componentsin the mixture and
will be determined by the BIC value. In most cases, f, (x |6,) istaken to be multivariate
normal distribution with the parameters of mean p, and covariance 2., . The parameters of the

model are often estimated by maximum likelihood using the expectation-maximization (EM)
algorithm (Mclachlan and Krishnan 1997). Each EM iteration consists of two steps, an E-step

and an M-step. The E-step computes the conditional probability that object i belongs to cluster
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K from the data with the current parameter estimates. In the M-step, parameters are estimated
from the data given the conditional probabilities calculated in the E-step. The E-Step and M-
Step are iterated until convergence, after which an observation can be assigned to the
component or cluster corresponding to the highest conditional or posterior probability. Ward’'s
method (Ward 1963) is the special case of general model-based approach in which the clusters
arerestricted to be spherical and identical in volume (size) (Fraley et al., 2005). Good initial
values for EM can be obtained efficiently for small to moderate sized data sets via model-based
hierarchical clustering (Banfield and Raftery 1993). Based on different parameterizations of

the covariance matrix 2., , the approach can test different modelsin terms of distribution

(Spherical, Diagonal, and Ellipsoidal), volume (Equal and Variable), shape (Equal and
Variable), and orientation (Coordinate Axes, Equal, and Variable). A model-based approach is
effective for determining the number of clusters, dealing with the outliers, and selecting the
best clustering method in small- to moderate-sized data sets. But, this method cannot handle
large data sets efficiently. Fraley et a., (2005) proposed an incrementa approach to improve
the computation efficiency by drawing a random sample of data, selecting and fitting a
clustering model to the sample, and extending the model to the full data set by additional EM

iterations.

2.1.6 Fuzzy Approach
The clustering approaches described above result in crisp clusters, meaning that a data point

either belongs to a specific cluster or not. In other words, the clusters are non-overlapping.
Unlike the crisp methods that force the points to belong exclusively to one cluster, fuzzy
clustering alows points to belong to multiple clusters with varying degrees of membership.

This approach allows additional flexibility. A typical fuzzy clustering algorithm is the Fuzzy
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C-Means (FCM) (Bezdek et d., 1987). The FCM is an iterative optimization algorithm that

minimizes the cost function

J= ﬂiT||Xk _Vi||2

n C
k=1 i=1
where n isthe number of data points, ¢ isthe number of clusters, x, isthe k™ datapoint, v,
isthe i™ cluster center, 1, isthe degree of membership of the k™ datainthe i" cluster, and

m isthe quantity controlling clustering fuzziness (typicaly m= 2). The degree of

1
&=l s
Alx-vil)

Starting with adesired number of clusters ¢ and an initial guess for each cluster center

membership ;. isdefined by p, =

v, =12,..,c, FCM will convergeto asolution for v; that represents either alocal minimum

or asaddle point of the cost function. The quality of the FCM solution, like that of most
nonlinear optimization problems, depends highly on the choice of initial values (i.e. the
number of ¢ and theinitia cluster centers). Based on classic FCM, some extensions have been
done by researchers in modifying the objective functions (Pham and Prince 1999; Ahmed et
a., 2002; Zhang and Chen 2003) and in improving initial value choosing efficiency (Chiu
1994; Kolen and Hutcheson 2002). Nevertheless, the sensitivity of this method to initial
conditions makes it of limited value for the problem of establishing retail districts. Table 2.1

compares those cluster methods.
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Table 2.1 Cluster Analysis Comparison

Identification of | Cluster shape Knowledge Dealswith
outliers about cluster lar ge data sets
number in
advance
Partitioning (K- | No Convex Yes Yes
Means)
Hierarchical No Polygon withno | No No
(Ward's) shape
restrictions
Density-based Yes Polygon withno | No Yes
(DBSCAN) shape
restrictions
M odel-based Yes Polygon withno | No No
(MCLUST) shape
restrictions
Grid-based Yes Polygon withno | No Yes
(STING) shape
restrictions
Fuzzy (FCM) No Convex Yes Yes

2.2 Cluster Validation
Since clustering agorithms discover clusters and identify groups with similarities, neither of

which are known apriori, the final clusters of a data set require evaluation (Rezaee et d.,

1998). This evaluation serves at least two purposes. One is determining when the best set of

clustersis obtained with a given algorithm or set of input parameters. The other istesting

whether the clustering algorithm is a good representation of the underlying reality. For

example, answering questions like “How many clusters are there in the data set?’ and “Is there

a better clustering result for the data set?’” and “Does the resulting clustering match the data

reality?’ requires what we call a clustering validation technique. The quantitative evaluation of

the results of the clustering algorithms is preferable to visual validation (applying to a
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maximum of two dimensions) and is called cluster validity methods. However, comparative
studies on clustering algorithms are difficult to conduct in general due to the lack of universaly
agreed upon quantitative performance eval uation measures (Jain et al., 1999). Subjective
(human) evaluation is often difficult and expensive, yet is still valuable in many real
applications. There are three general approaches to investigating cluster validity (Theodoridis
and Koutroubas 1999). Thefirst is based on external criteria. Thisimplies that the result of a
clustering algorithm is compared with the pre-specified structure, which isimposed on a data
set, then to evaluate the clustering performance. The second approach is based on internad
criteria. The result of a cluster algorithm is evaluated in terms of quantities and features that
involve the vectors of the data set themselves (e.g. proximity matrix). The third clustering
validity approach is based on relative criteria. Clustering structure is evaluated by comparing it
to other clustering schemes that result from the same algorithm but involve different parameter
values.

The first two approaches are based on statistical tests, and their major drawback is their
high computation cost. Moreover, the indices related to these approaches aim at measuring the
degree to which a data set confirms a scheme specified a priori. On the other hand, the third
approach aims at finding the best clustering scheme that a clustering algorithm can be defined

under certain assumptions and parameters (Halkidi et al., 2001).

2.2.1 External Criteria
External criteriatest whether or not the points of the data set are randomly structured. This can

work in two ways. First, we can evaluate the resulting clustering structure C by comparing it

to an independent partition of the data P built according to our intuition about the clustering
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structure of the data. Second, we can compare the proximity matrix to the partition P (Halkidi

et al., 2001).

2.2.2 Internal Criteria
Internal criteria evaluate the clustering result of an algorithm using only quantities and features

inherent to the data set (Halkidi et al., 2001). For low-dimensional vector data, the average (or
summed) distance from cluster centers (e.g. the sum-squared error criteria used for the standard

K-Means algorithm) is a common criterion (Zhong and Ghosh 2003).

2.2.3 RelativeCriteria
The external and interna criteria are statistical testing and need high computation in general. In

addition, the data structure needs to be specified by external and internal criteria. This can be
done for the simulated data under a specified simulating mechanism. For the real data, for
exampleretail outlet location data, we do not know the data structure in advance and must try
to find the data pattern. Therefore, we cannot use external and internal criteriafor avalidation
test using the real data. The relative criteriado not involve statistical tests (Halkidi et al.,
2001). Theideaisto choose the best clustering scheme of a set of defined schemes according
to a pre-specified criterion. More specifically, the problem can be stated as follows (Halkidi et
al., 2001):

“Let P,,, istheset of parameters associated with a specific clustering algorithm (e.g. the
number of clusters nc). Among the clustering schemes C,,i =1,2,3,...,nc, defined by a

specific agorithm, for different values of the parametersin P,,,, choose the one that best

alg?
fits the data set.”
There are two criteria proposed for clustering evaluation and selection of an optimal

clustering scheme (Berry and Linoff 1996):
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1. Compactness -- the members of each cluster should be as close to each other as
possible. A common measure of compactnessis the variance of the observations, which
should be minimized.

2. Separation -- the clusters themselves should be widely spaced. There are three
common approaches to measuring the distance between two different clusters:
¢ Single linkage measures the distance between the closest members of the clusters.

e Complete linkage measures the distance between the most distant members.
e Comparison of centroids measures the distance between the centers of the clusters.

In general terms, we want clusters whose members have a high degree of similarity, while

we want the clusters themselves to be widely spread. Several relative criteria have been
proposed, for example, the modified Hubert T Statistic (Halkidi et al., 2001), Dunn (Dunn
1974) and Dunn-like indices (Pal and Biswas 1997), and the Davies-Bouldin (DB) index
(Davies Bouldin 1979). The special measurements eval uating the fuzzy clustering approach
have also been investigated (Bezdek et al., 1984; Pal and Bezdek 1995). Here we explain the
SD Validity index (Hakidi et a., 2000) and the Comp_Sepa measure (Liu and Huang 2007),
since we use the SD index to evauate the K-Means performance and chose the optimal number
of clustersfor Victoriain theillustration section, and since our new cluster validation

measurement is developed from Comp_Sepa measure.

2.2.3.1 SD Validity Index
A recent clustering validity measure — the SD validity index -- was proposed by Halkidi et al.,

(2000). Consistent with the general rule for cluster validation, the underlying principle of the
SD index isthat a good set of clusters should be compact within themsel ves (homogeneity

within clusters) but distinct from each other (heterogeneity among clusters). The index is based
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on the concept of the average scattering (the “reverse” of compactness) of clusters and of the

total separation among clusters. The average scattering of clustersis defined as
1 nc
Seat(ne) = — > o 0:)|/lo (X))
i=1 .

Total separation between clustersis defined as

min k=1\ z=1

Dis(rc) = %f(invk —vz||j

where o(v;) isthevariance of cluster i, o(X) isthe variance of the whole data set,
D = Max(|v, —v;[) Vi, j € {123....,nc} is the maximum distance between cluster centroids,

Do = min(v, —v,[) Vi, j e {L23...,nc} isthe minimum distance between cluster centroids.
Then the SD index is defined as

D(nc) = a o Scat(nc) + Dis(nc) ,
where o isaweighting factor.

Thefirst term (i.e. Scat(nc)) indicates the average compactness of clusters (i.e. intra-
cluster distance). A small value means good compactness, and as the scattering within clusters
increases (i.e. they become less compact) the value of Scat(nc) also increases. The second
term Dis(nc) indicates the total separation among the clusters (i.e. an indication of inter-

cluster distance). The optimal number of clusters should be that which minimizes the SD
index. However, the index cannot handle arbitrarily shaped clusters properly, because the
method uses the diameter (or radius) of clustersto compute the evaluation function (Halkidi et

al., 2001).
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2.2.3.2 Comp_Sepa | ndex
The most recently published clustering validity measure, called the Comp_Sepa index, was

proposed by Liu and Huang (2007). A traditional validity index, such as the SD index, does not
properly address clustering algorithms that allow for the creation of non-convex clusters due to
their use of compactness measures based on sum of squared differences between points within
acluster and the cluster centroid or related measures since these types of measures implicitly
assume that “proper” clusters are circular (or at least convex). In contrast with other clustering
validation metrics, the Comp_Sepa index can evaluate both convex and non-convex clusters.
The widely accepted criteriafor evaluating cluster performance are the separation of the
clusters and their compactness. To take both measurements into consideration, the Comp_Sepa
index isthe ratio of compactness and separation, measuring the overall performance of
clustering. Comp (the measure of compactness) is evaluated using the interior density of
clusters (point density within the clusters). Sepa (the measure of separation) is computed using
the outside density (the density of regions outside clusters) and the inter-cluster separation (the
degree of separation between clusters). Both measurements are cal culated using the minimum-
cost spanning tree (MST).

To evaluate the compactness of a clustering scheme C, the MST is generated for each
cluster and the edges of the MST are summed. The value of Comp for the solution is equal to
the sum of the MST edges for the cluster with the greatest value of this sum for clustering
scheme C. A smaller value indicates a more compact cluster. As aresult, Comp represents a
“worst case” measure of compactness. To assess separation, the MST for the set of points
containing the centroids of the clusters (groupings that have more than a single member) and

“noise points’ (noise points are clusters that have only a single member, and thus have a
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compactness measure of zero) is calculated. The separation measure for the clustering scheme
C isdefined as the distance of the shortest edge of the MST. A large value indicates well-
separated clusters, and again it represents a“worst case” measure. The validity index

Comp_Sepa is the ratio between compactness and separation, namely, Comp _ Sepa = C;Z;n; .

Therefore, the cluster algorithm with the smallest value of Comp_Sepa is preferred.

The Comp_Sepa index is asimple but intuitive index evaluating clustering performance,
and it can handle large data sets and arbitrarily shaped clusters (Liu and Huang 2007).
However, we have found two serious limitations with the Comp_Sepa index in the application
of the method to both simulated and real-world data. First, the Comp_Sepa index is biased
towards having as many clusters as there are points in the data set under analysis. Second, the
Comp and Sepa measures typically have very different potential ranges, with the potential
values of Comp having arange that is often over an order of magnitude larger than the range of
Sepa, which can exacerbate the first problem in some instances, or lead to the reverse problem
(too highly aggregated clusters) in other situations. We explore the first problem in some detail
in the remainder of this chapter, and discuss the second problem in the next chapter.

The biasin the Comp_Sepa index towards having as many clusters as pointsin the data can
be seen using a mathematical argument. Specifically, the Sepa measure is always strictly
greater than zero, while the Comp measure is always non-negative, and obtains a minimum, at
zero, when al clusters contain a single member. Consequently, the Comp_Sepa measure has a
degenerate “best” solution with avalue of zero when every point isin its own cluster. While
this particular case can be ruled out by requiring that the number of clustersin a solution must

always be strictly less than the number of data points, one suspects that the basic problem still
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persists when there are a large number of clusters relative to the number of points (resultingin
“under clustering”), which isindeed the case.

Two examples based on simulated data are used to illustrate the problem. The first example
is based on the data set shown in Figure 2.4. A visua examination of the figure indicates that
data contains 9 clusters arranged on a 3 by 3 grid. Each cluster consists of 20 points, with the
coordinate values drawn from a unit uniform distribution, and then shifted so that the center of
the ranges fell on the 3 by 3 grid. DBSCAN clustering solutions were then examined for values
of the epsilon radius that varied from 0.01 to 1.20, incremented by 0.01. The results of this

analysis are shown in Figure 2.5.
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Figure 2.4 The First Simulated Data Set

The figure contains plots of the Comp (northwest panel), Sepa (northeast panel), and

Comp_Sepa (the southwest panel) index, as well as the “best” solution clustering solution
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based on selecting the epsilon radius value that minimizes the Comp_Sepa index (southeast
panel). As suggested above, an examination of Figure 2.5 indicates that the lowest (best) value
of the Comp_Sepa index occurs at the smallest value of epsilon’s range (0.01), which
corresponds to each point being in its own cluster. After the value of the epsilon radius exceeds
0.02, the value of the Comp_Sepa index begins to climb, peaking at an epsilon radius val ue of
0.28, at which point it beginsto fall into atrough that extends over arange of epsilon values
from 0.50 to 1.06. This range of epsilon radius values corresponds to the nine-cluster solution

that we would anticipate
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Figure 2.5 The Comp_Sepa Analysis of the First Data Set

(from 0.03 to 0.11) over which there are fewer clusters than points, and for which the value of

Comp_Sepa is better (lower) than the range of epsilon radius values that corresponds to the
nine-cluster solution. As aresult, it is clear that the Comp_Sepa measure fails for what would

appear to be afairly straightforward example.
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Figure 2.6 The Second Simulated Data Set

Figure 2.6 shows the data set for the second example. Asthe figure reveals, it corresponds
to four grid pattern clusters, each in a corner of the overall space. In our opinion, this data set
represents as clean an example of afour-cluster solution asis possible. Moreover, using
DBSCAN as the clustering algorithm, there are only three possible solutions: (1) all clusters
contain asingle point; (2) the four-cluster solution; or (3) all pointsarein asingle cluster. The
third possible solution could not be found by the Comp_Sepa method since the separation
between clustersis undefined when there is only a single cluster (which should not be a
problem in thisinstance). As aresult, the Comp_Sepa method should detect one of two
possible clustering solutions. Figure 2.7 provides the results of applying the Comp_Sepa

method to the second data set.

32



Compactness Index Values

8 -
w _|
']
o _|
Y]
3
k]
c
- w _|
a =
€
]
9_ -
w 4
o 4 —1
T T T T T
0.0 0.5 1.0 15 2.0
Epsilon
The Ratio of Compactness to Separation
S
o
o
3
©
£
g
o < 4
S =
d
£
]
]
o
o 4 —
o
T T T T T
0.0 0.5 1.0 1.5 2.0
Epsilon

Sepa Index

1.0 1.5 2.0 25 3.0

0.5

Separation Index Values

T T T T T
0.0 0.5 1.0 15 2.0

Epsilon

Comp_Sepa Index Minimizing Solution

[ Y
- =
[ Y
- = a aa
- s A a
[ Y
- =
[ Y
- =
[ Y

-
- = -
-
-
- = -
-

T
2

O = = m -
a e g a g a
(7 J O
P

X
Epsilon = 0.01, noise points marked as "1"

Figure 2.7 The Comp_Sepa Analysis of the Second Data Set

Aswith thefirst example, the “best” epsilon radius value based on the Comp_Sepa measure

corresponds to values of the epsilon radius (0.01 to 0.24) that result in each cluster containing a
single point. Epsilon radius values between 0.25 and 1.99 correspond to the four-cluster
solution, while values of the epsilon radius of 2 and above correspond to the single cluster

solution (which can be seen in the very large jump in the Comp index).
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Both of these examplesillustrate the bias in the Comp_Sepa index towards a large number
of clustersrelative to the number of data points. It can be reasonably argued that the method
performs well within the neighborhood of the correct solution (asillustrated by the large trough
between epsilon radius values of 0.50 and 1.06 for the first example data set). However, this
assumes that a visual examination of the data allows for an assessment of the “likely” number
of clustersin the data (something that appears to be the norm in the computer science literature
in this area), alowing the range of clustering solutions examined to be within a “reasonable’
neighborhood of the visual “truth”.* Our experience with “real world” data suggests that the
ability to determine the neighborhood of the correct number of clusters based on avisual
examination of the data (even when the datafalls in atwo-dimensional plane asis the case of
the focal example in our work) typically is not possible. As aresult, thereis aneed to develop a
relative cluster validation method with better “global” properties than the Comp_Sepa index,
but that is still consistent with clustering methods that alow for non-convex clusters. In the

next chapter we develop such acluster validation measure.

Y In Liu and Huang's (2007) defense, our suspicion is that they only examined clustering solutions in the
neighborhood of the visually “correct” number of clustersin their smulation results.



3 AnAlternative Approach to Cluster Validation

In this chapter we develop a new cluster validation measure that borrows the positive aspects
of Liu and Huang's (2007) Comp_Sepa index, but eliminates some of the problems
encountered with their measure in practical applications. The rea innovation in their approach
was the use of the minimum cost spanning tree to measure cluster compactnessin away that
does not implicitly assume that the “true” shape of clustersis convex. We take advantage of
thisinnovation, but attempt to address the problems associated with the interaction between the
separation and compactness measures caused by scaling issues. In addition, we look at the
implications of selecting different numbers of MinPtsin DBSCAN clustering for cluster

validation.

3.1 TheCpSp Cluster Validation I ndex
Asindicated in the previous chapter, there is amuch greater range across potential values of

compactness as compared to separation. What makes this problematic is that in some sense we
should be interested in relative compactness and separation rather than absolute levels of these
two measures. The problem with the Comp_Sepa approach is that it does not matter if
separation is driven to its minimum possible level (resulting in the Sepa measure obtaining
zero percent of the possible separation level that could be obtained in adata set), so long as the
compactness measure can be driven to zero.

One way to solve this problem is to rescale the measures. Our approach is to place both
measures on percentage terms with respect to both the upper and lower limits of the values
could conceivably obtain. Based on this notion, we call our compactness measure the

compactness percentage (which we label Cp). Mathematically, thisvalueis given as
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Cp= C,ux — Comp
Conax = Coin

max ~ Cmin
where Crax 1S the measure of the largest possible compactness value, Comp is Liu and Huang's
(2007) compactness measure, and Cyin is the measure of minimum possible compactness.
While these measures may seem difficult to assess prior to performing any clustering, a great
deal of information concerning the possible bounds of a clustering solution can be determined
apriori.

The largest possible compactness value occurs when al the pointsin the data set arein a
single cluster. Consequently, we measure Crax Using the sum of the edges of the MST for all
the pointsin the data set. The complication this introduces is how best to compute the MST.
One approach that works for clustering in an arbitrary number of dimensions requires the
calculation of the distance matrix for the entire data set (in order to determine the edge costs),
an operation that is of order O(n?), and isinfeasible for large data sets (largely due to computer
memory limitations). An aternative approach isto base the MST on the Delauney triangulation
of the points (De Berg, et a., 2008), which can be done in O(nlog(n)) time for two dimensions,
but this limits us to the examination of clustering in two or at most three dimensions.” Given
the nature of our objectives (clustering alarge number of store locations in two dimensional
space), we have opted to use the Delauney triangulation approach in our implementation.

There are two possible minimum compactness values, zero (corresponding to the case

where each point isin acluster by itself), and the minimum distance between any two pointsin

the data set (which would consist of a single two-point cluster, with the remaining points being

2 Practically, it limits us to two dimensions since we make use of the TRIPACK package (Renka, 1996), as
implemented in the tripack R library, which only performs Delauney triangulations in two dimensions. However,
there are open source libraries that can perform Delauney triangulationsin three dimensions that could be used in
the future by creating appropriate bindingsto R.
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in single point clusters). We have elected to use the latter option, however, thisdecisionis
likely to have minimal impact on the performance of the measure. Our reason for using the
minimum distance between two points in a data set is motivated by the notion that for there
truly to be clusters, at least two pointsin the data set should be agglomerated together.

Similar to compactness, we measure separation using the percentage of the highest possible
level of separation that could possibly be obtained, which we call the separation percentage, or
. Mathematically, Sp isdefined as

Sp Sep—S

min
S

S

b

max ~ Omin
where Sep is the minimum distance between any two points not in the same cluster (asingle
linkage measure), Syin isthe a priori minimum possible separation between any two points not
in the same cluster, and Snax is the a priori maximum possible separation between any two
points not in the same cluster. We obtain the value of Sep using an efficient nearest neighbor
search agorithm (viaMount and Arya’ s ANN library, Mount, 2006) in which the points within
the cluster are taken to be the reference points, and those not in the cluster are taken to be the
test points. We have moved from the centroid based average likage used by Liu and Huang
(2007) to asingle linkage measure for two reasons. Firgt, it is conceptually more consistent
with the measure of Sax We use (which is described below), second, because two large clusters
(in terms of their lack of compactness) may be fairly distant from one another based on the
distances between their centroids, but in fact may be very near to one another when this same

distance is measured based on the distance between the closest points between nearest

members in the two clusters.
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The minimum possible separation between clusters (Syin) in adata set corresponds to either
the shortest distance between any two points in a data set (corresponding to the case when each
point isin its own cluster) or the second shortest distance between any two points in a data set
(corresponding to the case where there is a single two member cluster, and the remaining
points are in single point clusters). While not logically consistent with our definition of
minimum compactness, but practically unimportant, we use the minimum distance between
any pointsin the data set as the measure of minimum separation.

Probably the least obvious a priori bound on the clustering solution is Syax. We argue (and
have empirically confirmed, but have yet to formally prove) that the maximum possible
separation between two clustersin a point data set corresponds to the longest edge of the
Gabriel graph (Gabriel and Sokal, 1969; Matula and Sokal, 1980) of that set of points. The
Gabriel graph is asub-graph of the Delauney triangulation of a set of points, with the edges of
the graph linking the pairs of points that are Gabriel neighbors. In turn, two points are Gabriel
neighborsif a sphere (or circle in two dimensions) centered at the mid-point between the two
points (which a so has the two points on the diameter of the sphere) has no other points from
the data set within the sphere. Figure 3.1 illustrates the concept of Gabriel neighborsin two
dimensions, while Figure 3.2 shows the Gabriel graph for the first example data set described
in the previous chapter (see Figure 2.4). We use the length of the longest edge of the Gabriel
graph as our measure of Syax.

We use as our composite measure of compactness and separation the product of the
compactness percentage and the separation percentage (or CpSp, which corresponds to the
index’s name). This measure is bounded within the unit interval, and takes the value of 1 if a
clustering solution is able to achieve both a compactness of Cy,,, (causing Cp to equal 1) and a
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separation of Syax (Causing S to equal 1), which is a situation that would never happenin
practice. Theindex takes on avalue O if a clustering solution has a maximum compactness that

equals Crax (Which occurs when all points are in a single cluster), or the minimum separation

Points A and B are Gabriel Neighbors Points A and B are not Gabriel Neighbors
C
®
A B A B

Figure 3.1 An lllustration of Gabriel Neighbors
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Figure 3.2 The Gabriel Graph of the First Example Data Set

between clusters corresponds to Sy It isthis second case that avoids the degenerate solution
of selecting the clustering solution in which every cluster contains a single point as “ best”
which occurs with Liu and Huang's (2007) Comp_Sepa method. Given the structure of the
index, the clustering solution that performs best under thisindex is the one that maximizesits
value.

Rather than a product of the Cp and Sp measures, we could have used the sum of the two
measures. However, the use of the product is better able to maintain a balance between
compactness and separation. To illustrate this point, consider three different clustering
solutions of a point data set. The first solution has a Cp value 0.99 and an Sp value of 0.01, the
second solution has a Cp value of 0.5 and an Sp value of 0.5, while the third solution has a Cp

value of 0.01 and an Sp value of 0.99. If the sum of the two measures was used as the
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composite index, then all three solutions would yield a composite index value of 1 (for a
measure that would be bounded between 0 and 2), but the first solution would have poor
separation between clusters, while the third would have at |east one very diffuse cluster.
Conversdly, the second solution strikes a much better balance between compactness and
separation, and, in our opinion, should be preferred on these grounds. The product of the
compactness and separation percentages is consistent with this, since the first and third
solutions have a CpSp value of 0.099, while the CpSp value for the second solution is 0.25.
To determine if the CpSp measure overcomes the issues encountered with the Comp_Sepa
method, we apply our new index to the same two example data sets and DBSCAN clustering
solutions used in the previous chapter. The results of using the CpSp index with the first
example data set is contained in Figure 3.3, while the application of the index to the second
example data set is contained in Figure 3.4. In Figure 3.3, actually any value of epsilon radius
along the best “flax max” region generates the same clustering solution (the southeast panel
would look same), the value of So would have to change if the clustering structure changed
(since the edge for the current Sep value would “go away” due to the merging of clusters),

therefore changing the CpSp value.
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Figure 3.3 The CpSp Analysis of the First Example Data Set

An examination of both figures indicates that the CpSp index is able to successfully find
both the nine-cluster solution for the first example data set, and the four-cluster solution of the
second example data set. Perhaps what is most striking is a comparison of Figures 2.7 and 3.4.
Specifically the plots of the Comp_Sepa index and the CpSp index over the range of epsilon

radius values (which is contained in the southwest panel in both figures) are identical in shape,
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Figure 3.4 The CpSp Analysis of the Second Example Data Set

but are polar opposite in terms of interpretation since the “best” solution corresponds to the

lowest value of the Comp_Sepa index, while the highest value of the index is “best” for CpSp.
Given the findings from this analysis, it appears the proposed CpSp measure is able to

validate clustering solutions from methods capable of producing non-convex clusters (through

the use of the MST to measure cluster compactness), but avoids the pitfalls of the Comp_Sepa
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method in terms of being biased towards a large number of clusters relative to the number of
points. At this juncture, we turn to another issue we have uncovered in our effortsto determine
the appropriate length of the epsilon radius for DBSCAN solutions, the interplay between the

selection of the number of MinPts for the DBSCAN algorithm and cluster validation.

3.2 Thelnfluence of the Number of MinPtson the* Best” Length of the
Epsilon Radius
In performing the empirical application that is the basis of the sixth chapter of thisthesis, we

determined that the “best” numbers of clusters for aDBSCAN solution was very sensitive to
the value of MinPts that was used, and this sensitivity seemed unpredictable to us.® Ultimately,
we determined that this erratic behavior occurred when there was a group of two or more
points that were distant from points not in the group, were fairly close to one another, but the
size of the group was smaller than the value of MinPts. The “outlying” points act to halt the
movement in the separation measure over some range of the epsilon radius values, once the
size of the epsilon radius allowed one of the points to be reached by a point in a cluster
(thereby allowing all the outlying points to enter that cluster)

An example (based on the data set shown in Figure 3.5) will help to make the issue more
concrete. As can be seen in the example, there are two outlying points in the datathat are in the
southeast corner of the figure. These two points are fairly distant from the other pointsin the
data, but are very close to one another. The two outlying points will induce a problem if
MinPtsis set above a size of two. To seethis, Figures 3.6 and 3.7 provide a CpSp analysis of

this data set with the two outlying points removed, with Figure 3.6 being based on DBSCAN

3 Weinitially discovered the problem using the Comp_Sepa index for cluster validation (ruling out epsilon radius
values we deemed too small, thereby avoiding degenerate solutions in an ad hoc way). However, the issue also
arises when the CpSp index is used as well, although it is somewhat mitigated for CpSp relative to Comp_Sepa.
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runs with MinPts set to two, and Figure 3.7 based on DBSCAN runs with MinPts set to 3. As

can be seen
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Figure 3.5 The Outlying Points Example Data Set

from the two figures, the solutions are identical, resulting in a“best” epsilon radius being
within the range of 0.3 to 1.1 (we select thefirst value in thisrange, 0.3 in this case, asthe
“best” value, even though all valuesin the range correspond to the same sol ution).
Asillustrated in Figures 3.8 (where the value of MinPtsis set to two for the DBSCAN
runs) and 3.9 (where MinEpsis set to three), things become very different when the two
outlying points are placed back into the data set. The cluster structure is nearly identical for the
analysis done with MinPts set to two for the DBSCAN runs when the two outlying points are

included compared to the anal yses done when the two outlying points are removed. The only
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difference in the “best” solution from the inclusion of the two outlying pointsis that they are
combined together into a seventh cluster that contains only those two points. However, thisis

not true for the analysisin which MinPtsis set to three for the DBSCAN runs. In this case, the
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solution corresponds to an epsilon radius value of 0.2, and contains 18 mutli-point clusters and
27 noise points (only two of which are the outlying points).

A close examination of Figures 3.8 and 3.9 indicates why this situation is occurring.
Looking at the Cp plot (the northwest panel in both figures) reveals that the compactness
measure is not influenced by the choice of MinPts for the DBSCAN runs. However, asimilar

examination of
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the S plot (the northeast panel in both figures) indicates that the outlying points have a
profound effect on this measure. Specifically, the S value becomes “stuck” at avery low level
(which can be seen by comparing the y-axis values between Figures 3.8 and 3.9 for the Sp plots
in both figures) over an extended range. As aresult of this, the comparatively small decreasein
the Cp measure between 0.2 and 0.3 when MinPtsis set to three for the DBSCAN runs drives

the
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Figure 3.8 The CpSp Analysiswith Outlying Pointsand MinPts= 2

solution since the outlying points prevent the Sp index from moving.
In their original paper introducing the DBSCAN algorithm, Ester et al. (1996) minimize the
importance of selecting the value of MinPts, indicating that selecting a MinPts value of four

should be satisfactory for most applications. A reason to downplay the importance of the
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MinPts value is that when the length of the epsilon radius is held constant, the cluster structure

for

clusters that have anumber of clusters that exceeds the value of MinPts does not change with
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Figure 3.9 The CpSp Analysiswith Outlying Pointsand MinPts= 3

different values of MinPts. What occursisthat “marginal clusters’, those that had a number of

members that equal ed the MinPts limit, are broken into a set of noise points when the level of
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MinPts increases (weillustrate this point in Figure 3.10 using our example data set when the

epsilon radiusis set to 0.3 and MinPtsis set to 3). This, combined with our findings on how the
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Figure 3.10 The Clustering Solution for the Example Data with Outlying Points when
Epsilon = 0.3 and MinPts=3

selection of MinPts influences cluster validation measures, leads us to the conclusion that the
appropriate length of the epsilon radius should be determined using a MinPts value of 2 for the
DBSCAN run, and once this value is determined, the level of MinPts can be altered in an
appropriate way for the application at hand.

Having both described different methods of clustering, and presented a new tool for
validating cluster solutions that allows for cases where some or al of the clusters are non-
convex, we next compare the performance of the different methods when applied to real world

data. To foreshadow the results, it will become clear that even the improved tools are
51



inadequate to address issues that arise in actual applications. The following chapter will

introduce new tools that are up to the task.
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4 An lllustrative Application of Current Approaches

As discussed previously, K-Means and Ward' s method (a specia case of the model-based
approach) are the most widely used clustering a gorithms in marketing, but the density-based
approach is more flexible in terms of the non-convex clusters that can occur with spatial data,
partially due to the need for objects (retail outletsin our case) to locate along a road network. It
also appears to be better able to capture the network effect among retail outlets that leads to
retail districts. Consequently, this chapter assesses the performance of K-means, M odel-based
clustering, and DBSCAN when applied to the problem of identifying retail districtsin order to
determine whether any of them are up to the task, and, if none are, examine the reasons why
certain methods fail to assist in the development of more refined methods. Aswill be
demonstrated, each of the three approachesisincapable of providing an acceptable
representation of retail districts. Therefore, there is aneed to develop a new approach for
gpatial cluster analysis, at least for retail district identification. Fortunately, our results suggest
ways in which to improve the density-based methods for identifying retail districtsin a
particular geographic area.

For this application, we use retail outlet location data from the Capital Regional District of
British Columbia, which corresponds to what is typically caled the Greater Victoria Area.*
Greater Victoria has a population of roughly 330,000 people, aland area of 695 km?, and 2394
retail outlets. We have chosen Greater Victoriabecause it is large enough to have a dense
urban core and surrounding areas of differing levels of retail outlet concentration, but at the

sametimeit is small enough to be manageable. In particular, model-based clustering does not

* A regional district is administrative area that corresponds to what most jurisdictionsin North Americacall a
county. As aresult, the data set consists of retail outlets both in the City of Victoriaas well as a number of other
outlying communities.
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scale well (the underlying algorithm has O(n?) time) and, as a result, has limited usefulness for
larger cities (such as Vancouver, which has over 16,000 retail outletsin its metropolitan area).
Since Ward' s method, which is a special case of model-based clustering, is one of the most
widely used clustering methods in marketing, we decided to do our comparative testing on a
city to which model-based clustering could be readily applied.

Data Conversion

The retail location datais from DMTI’s “Enhanced Point of Interest” files, which are
distributed on a province level basisin ASCII format, and are from the third quarter of 2005.
Each file contains the name, afour digit SIC code that describes the location’s primary activity,
street address, city, postal code, and latitude/longitude coordinates.

From the British Columbia file the records associated with retail trade SIC codes were
extracted, and were converted into shapefile format using the R maptools package.® The next
step of the data preparation process was to attach a census subdivision identifier code to each
location’ s attribute record, which was accomplished using a point-in-polygon method.
Specificaly, it was determined which census subdivision polygon each retail outlet fell into
(through the use of Statistics Canada’ s census subdivision polygon shapefile for British
Columbia), and the identifier code of that census subdivision was then attached to the attribute
data for each retail outlet. The census subdivision identifier allowed usto easily assign a
census metropolitan area code to each retail outlet. Following this, a new shapefile was created
by extracting records only for those retail outlets located in the Greater Victoria census

metropolitan area. This step was carried using the ogr2ogr utility in the GDAL library.

® The shapefile format was created by ESRI, and is the de facto standard format for vector GIS data layers. These
files can be read and manipulated by a number of GIS programs and other software tools.
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The last step in the processis to re-project the data from latitude/longitude coordinates
(al'so called geographic coordinates) into UTM (Universal Transverse Mercator) zone 10N
coordinates, which was also accomplished using the ogr2ogr utility. This step is necessary
because the clustering tools we are using work with planar Euclidean distances between points,
while the latitude and longitude coordinates give the location of apoint on an ellipsoid
representing the earth, and are measured in degrees.® The problem of converting geographic
coordinates into planar coordinates is one that has been addressed by cartographers for literally
centuries.” A commonly used planar coordinate system for geographic datais the UTM system.
The reason for its popularity is that the projection from three dimensions to two dimensionsis
done with minimal distortion since it is based on dividing the earth into 60 zones running west
to east, and providing a projection from geographic coordinates to planar coordinates for each
zone and each hemisphere. Coastal British Columbiafallsinto the 10" UTM zone, and is

located in the northern hemisphere; henceit islocated in UTM zone 10N.

4.1 K-MeansCluster Analysisof the Data
When using the K-Means method, we must specify the number of clusters as an input

parameter for the algorithm. Since we do not have any a priori information about the
appropriate number of clusters for the 2394 retailersin Victoria, we tried every possible
solution within arange of two to 150 clusters (assuming 150 clusters would be large enough to
cover the optimal number of clusters). We then evaluated the performance for al of the

possible cluster solutions using two clustering validation measures, the SD index of Halkidi et

® The earth is not perfectly ellipsoidal in shape. However, it is very close, and the datum our coordinates are based
on (the North American Datum of 1983) assumes the earth is ellipsoidal (the underlying ellipsoid is the Geodetic
Reference system of 1980).
" Anintroductory book on Geographic Information Systems (such as Clarke, 1997) provides much greater detail
on the cartographic aspects of projections and coordinate systems.
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a. (2001) and the CpSp index developed in the previous chapter. Figure 4.1 shows the SD
index for the 149 solutions considered. An examinations of the figure reveals that the index
takes an initial jump between two and four clusters, and then rapidly decreases until the eight-
cluster solution is reached, and then begins to “chatter” over the remaining range of the data
(from 9 to 150 clusters). The actual minimum point for the SD index (an index for which lower
values are preferred) comes at the 141-cluster solution, with avaue of 0.3094879 for the
index. However, there are anumber of values nearly as low (in particular, for the 58- and 150-
cluster solutions) as the index chatters along.

Based on the SD index, thereis no real clean solution for the data. Using the criteria that
the “best” solution is the solution for which the SD index obtainsits lowest value leads us to
the 141-cluster solution. Figure 4.2 shows the clustering of the data for the downtown core of
Victoria based on this solution, while Figure 4.3 shows the clustering of the datafor an area
with avery sparse concentration of retail outlets.

An examination of Figure 4.2 lets us clearly see the extent to which the K-means al gorithm
attempts to form circular clusters. However, it produces these circular clusters at the expense of
creating essentially no separation between many of the clusters, while breaking up natura
clusters that run along a street because the underlying “line clusters’ are not circular in shape.
At the same time, Figure 4.3 illustrates how the distances between cluster members become
extremely large in areas with a sparse concentration of stores since the algorithm does not
allow for noise points.

The CpSp based analysis of the K-means solutions can be found in Figure 4.4. Thisfigure

reveals that the implied “best” solution is very different than for the SD index based analysis.
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Figure 4.1 The SD Index Analysis of K-Means Solutionsfor Victoria

Instead of 141 clusters, CpSp indicates that the “best” solution corresponds to the three-
cluster solution (which is shown in Figure 4.5), a solution consisting of three very large
clusters, that is of little practical use given the extent of the agglomeration. What is interesting
isthat the CpSp index is much more definitivein its “judgment” with afairly high peak for the
three-cluster solution. A closer examination of the Sp index (northeast) panel of Figure 4.4
indicates, unsurprisingly, that it is the separation between clusters (or rather the lack thereof)
that is driving this solution. Specifically, as we move from two to three clusters thereis adrop

in the Sp index to nearly zero percent of the maximum possible separation.
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Figure 4.2 The 141-Cluster K-Means Solution for the Victoria Downtown Core

8 In Figure 4.2 and elsewhere, X is the east-west coordinate with UTM zone 10N, and Y is the north-south
coordinate, measured from the equator for locations north of the equator.
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Figure 4.3 The 141-Cluster K-Means Solution for an Outlying Area of Greater Victoria
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Figure 4.4 The CpSp Analysis of the K-M eans Solutionsfor Greater Victoria

Overdl, the analysis of the possible K-means solutions reveals that the use of this method
isnot at all appropriate in thistype of setting. This can be seen in the widely varying values of
the number of clusters that appear to optimal or near optimal, according to the criterion

measure used. However, the problem for retail district datais more fundamental. As mentioned
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above, these results are primarily due to the maintained hypothesis of the algorithm that

clusters are circular in nature, when in this instance this assumption is simply incorrect.

Y
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Figure 4.5 The 3-Cluster K-Means Solution for Greater Victoria

4.2 Model-Based Clustering of the Data
Ward's method is one of the most widely used clustering approaches in marketing. As noted

above, Ward’'s method is a specia case of model-based approach, an approach that can

determine the optimal cluster solution (in terms of both the number of clusters and the model it
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is based on) using of the Bayesian Information Criterion, or BIC (Fraley and Raftery 2003).
The models differ in their assumptions concerning the volume, shape, and orientation of the
clusters. As aresult, the method has the potential to provide a better clustering solution than K-
Means (abeit, it still attempts to form convex clusters, just much more flexible ones), but is

closely related to methods traditionally used in marketing applications.

BIC
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Figure 4.6 The EEV and Ell Model-Based Clustering Resultsfor Victoria

Aswith our K-Means analysis, we set the possible number of clustersin a solution from

two to 150, and the algorithm examines ten different underlying models. Based on the BIC, the
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“best” model for the datais the EEV® (equal volume, equal shape, and variable orientation)
model for a solution with 67 clusters. Figure 4.6 shows the BIC value for this model across the
possible different number of clusters, as well as the same information for the ElIl model (which
corresponds to Ward’ s method). For model-based clustering, larger values of the BIC are

preferred to smaller values. An examination of thisfigure reveals that the BIC for both models

® The first letter stands for volume of the clusters, the second for shape of the clusters, and the third for
orientation. E stands for equal, V stands for variable, and | stands for identity. A complete discussion of the
different possible models that can be generated in model-based clustering can be found in Fraley et al., (2003).
The statistical function used for thisanalysis (the R mclust library) tests ten different model structures.
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Figure4.7 The 67-Cluster EEV Solution for the Victoria Downtown Core

risesfairly rapidly as the number of clustersin the solution increases, quickly reach a plateau
(with the EEV having a higher value for the BIC within the plateau), and then begins to
“chatter,” much as we found for the SD index for the K-means solution. As aresult, the figure
reveals that the EEV modd is preferred over the ElIl model, but there is not a definitive

indication of the appropriate number of clusters to use in the solution.



Based on the largest BIC value, we select the EEV model’s 67-cluster solution as the one to
examinein more detail. Figure 4.7 shows the clustering pattern produced by this solution for
Victoria s downtown core. An examination of the figure shows that most of the clusters are
fairly elipsoidal in nature. However, they are still incapable of adequately capturing “string
clusters’ that run along a street in aroad network, and, therefore, do not match the “ground
reality.” Aswith the K-Means results, the cluster separation seems extremely minimal for
larger numbers of clusters. Also as with the K-Means methods, the outliers cannot be identified
in this application. In addition to the above two weaknesses, and consistent with it being an
algorithm that runsin O(n?) time, it also took arelatively long time to perform the model-based
anaysisfor Victoria (more than two hours on a machine with an Intel Pentium Dual Core
Processor with a clock speed of 2Ghz and 4GB of 667 MHz memory), when the maximum
number of clusters was set at 150. If the number of points becomes much larger, such the over
16,000 retail outlet points for Vancouver, the use of the model-based approach becomes

impractical.

4.3 The DBSCAN Clustering of the Data
Some of the advantages of DBSCAN (Ester, et al., 1996) are that outliers (or “noise points’)

can beidentified, there is no shape restriction on the clusters (such as a convexity), and the
computational efficiency isfairly good (being on the order of O(nlog(n)). In addition, the way
the method determines the cluster solution through density connectivity (as discussed in
Chapter 2) issimilar to the way a customer walks or drivesin aretail district. Consequently,
the way the retail districts are formed using DBSCAN actually mimics the underlying network
effect among retailers within adistrict. Therefore, we expected that DBSCAN would

outperform both the K-Means and model-based approaches.
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We ran the DBSCAN algorithm on the Greater Victoria data with epsilon radius values that
varied from 20 to 10,000 meters, in increments of 20 meters (atotal of 500 separate solutions).
Given our discussion in Chapter 3, MinPts for the runs were set at two. It took roughly an hour

of computer time to obtain all 500 solutions.
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Figure 4.8 The CpSp Analysis of the DBSCAN Clustering of Greater Victoria

66



We used the CpSp index to determine the length of the epsilon radius since it balances both
compactness (inside density) and separation (outside density) to evaluate the performance of
the possible cluster solutions. The CpSp index indicates that the “best” solution corresponds to
an epsilon radius of 4100 meters, resulting in just two clusters, one with three points, and the
other with al the remaining points. It is readily apparent that with 2394 retail outlets

distributed
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Figure 4.9 The 26-Cluster DBSCAN Solution for Greater Victoria

unevenly in the Victoria area, neither the number of clusters nor the epsilon radius of 4100
meters is reasonable. Therefore, we conducted a second analysis within the one large cluster,
and obtained a more reasonable (but still imperfect) result with an epsilon radius of 840 meters,

resulting in 26 clusters.
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Figure 4.10 The 26-Cluster DBSCAN Solution for the Victoria Downtown Core

Figure 4.8 shows the CpSp analysis after the outlying three stores were deleted from the
data, Figure 4.9 illustrates the clustering solution obtained with an epsilon radius of 840 meters
for al of Greater Victoria, whilein Figure 4.10 we show (in more detail) the same solution for
the clustering for the Victoria downtown core. Figure 4.9 reveals that this solution generates

clusters, aswell as anumber of noise points. However, the clusters that are created tend to be
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over agglomerated. In particular, as Figure 4.10 reveals, the downtown core of Victoria has
been agglomerated into a single cluster, something that is clearly undesirable.

The key reason, we believe, for our disappointing result is that the value of 840 metersis
very large, especialy for the downtown area. As we examine the geographic distribution of
storesin the greater Victoriaareavisualy, it is apparent that thereis alarge variation in the
density of stores over the area. However, the fixed epsilon radius in the density-based approach
cannot reflect the retailer density variation, and appears to take on a high value to
accommodate the data structure. In addition, as was indicated by the drastic change in the
clustering solution when three points were removed from the data set, the existence of distant
outlying points has an enormous impact on the clustering solution. While disappointing, this
latter effect is not surprising. What is driving thisis the ability to obtain a large minimum
separation (driving the value of Sp upwards) when there are large distances between outlying
points. Taken together, these two factors result in some overly large clustersin terms of the
number of stores and geographic area covered in some areas.

Weinitially expected these problems to be avoided by the density-based approach. In this
case, however, the density-based approach results in an epsilon radius that istoo large for the
more densely distributed stores in the downtown area. For reasons that are different, but with
results similar, to those found using the K-Means and model-based approaches, the density-
based approach cannot successfully handle the spatial clustering for this complicated data set
with large variations in observation density. As discussed next, we look to improve the density-

based approach in order to overcome the problems identified here.
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4.4 Existing Problems and Potential Solutions
Asthe clustering results for Victoriaindicate, none of the three approaches (K-Means, model-

based, and density-based) performed well on afairly large data set of store locationsin amid-
size metropolitan area. The K-Means approach simply seems inappropriate given its
underlying assumption to capture a pattern in which retail districts form fairly thinlines that run
along aroad network. As aresult, it does not have a stable clustering solution across validation
methods. The model-based approach, despite allowing for much more flexible cluster shapes,
also seems incapable of capturing the “strings’ of stores that tend to characterize many retail
districts, at least for Greater Victoria. More importantly, its computational requirements limit
the usefulness of the approach since it cannot be used in larger metropolitan areas.

The current density-based approach can mimic the thin, string-like structure of the data,
and allows for some points to remain isolated (becoming a noise point). However, it assumes a
fixed epsilon radius value, and the CpSp validation index is very sensitive to distant outlying
points, which leads to unacceptable resultsin this case.

We believe that the density-based approach can be improved upon in away that makes it
suitable for the problem at hand. As we have aready implicitly suggested, there are two
underlying issues. First, while we have so far treated Greater Victoria as a monolithic entity, it
isreally aregion that contains a number of different “communities.” Communities could be
municipalities such as Esquimalt or Saanich in Greater Victoria, they could be well defined
neighborhoods within a municipality (such downtown Victoria), or they could even consist of
abutting “neighborhoods” of different municipalities.® Downtown and urban communities

often have a higher population density, and hence avery different “scale,” than the areas

19 \While we do not know of a cross-municipality “community” in Greater Victoria, the Kingsway corridor that lies
partially in Vancouver and partialy in Burnaby in the Greater Vancouver metropolitan area.
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surrounding them. As aresult, it islikely to be more appropriate to create clusters at the level
of the community rather than at the level of the metropolitan area. In addition, thereislikely to
be heterogeneity even within communities, likely due to factors such asloca population
density, which will have awithin community effect on cluster structure.

To illustrate these two points, Figure 4.11 provides a plot of the retail outlets coded by the
total population density (based on the sum of both the local residential and workforce
population) of the census designation area in which each outlet is located, while Figure 4.12
provides the same plot, but is focused on the downtown core of Victoria. An examination of
Figure 4.11 reveals that, unsurprisingly, there is a very strong rel ationship between the total
population density of an area and the concentration of retailersin that area. Moreover, it
strongly suggests that the concept of densely populated communities separated by
comparatively less popul ated areas is consistent with “ground truth” (at least in Greater
Victoria). The notion that within communities the “micro-level” retail density (and hence
cluster structure) islikely to vary with population density can be clearly seenin Figure 4.12. In

the next chapter we will present an approach that addresses these two issues.
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5 A Two-Sep Approach to Spatial Density Clustering

At the end of the previous chapter we discussed the issues of the importance of “communities’
in determining the appropriate “scale” of an areato be clustered and the potential need to
account for heterogeneity within communities (often induced by factors such as “micro-level”
population density differences) on cluster structure. In this chapter we present a two-step
approach to spatial density clustering that addresses both of these issues. In the first step a set
of “communities’ are determined via a graph theory based method. The second step consists of
clustering the communities identified in away that allows for intra-community heterogeneity
to have an influence on cluster formation. To do this, we generalize the DBSCAN method of
gpatial density clustering by allowing the epsilon radiusto vary in size with amicro-level
factor, such astotal population density, in a systematic way. We call this generalization of
DBSCAN, VESDC, which isan acronym that stands for variable epsilon spatial density
clustering.

While in application we would create “communities’ first, and then cluster within
communities, in this chapter we will reverse this order and first present the VESDC method
along with a number of surrounding issues, and then describe our proposed method for
determining communitiesin the first step. In addition to the development of the methods, we
also demonstrate the use of the methods with simulated data to allow the reader to gain some

understanding of the performance capabilities of the proposed methods.

5.1 Clustering Within Communities (Step 2)
In this section we present the VESDC method and then present an extension of the CpSp

cluster validation method to assist in determining the settings of any underlying parameters
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needed to link the size of the epsilon radius to some underlying factor. An extension to the
CpSp method is needed since in some sense, when we alow the epsilon radius to vary, we are
locally rescaling the space. In more concrete language, we are effectively assuming that a
meter of distanceisin some sense “longer” in adensely populated areathan it isin a sparsely
popul ated area. For the case of population density, this notion has agreat deal of intuitive
appeal since we would expect that driving times per unit distance are longer in densely

popul ated areas compared to |ess densely populated areas, and we would also expect that the
use of walking (as opposed to driving) as a mode of transportation would be higher in densely
populated areas. In turn, these differences should have an influence on the structure of retail
districts.

The need to extend the CpSp method arises because the measures of compactness and
separation are unigue to a particular assumed scale, so when we compare two different
clustering solutions (that vary dlightly in the scaling implied by the different set of epsilon
values used for the two solutions) we could potentially be making an apples and oranges
comparison. As aresult, there is a need to make one solution “conform” to the scale of the
solution it is being compared against, and obtaining this conformity in the underlying scaleis
what the extension attempts to accomplish. Conversely, and perhaps surprisingly, it turns out
that extending the basic DBSCAN method to alow different points to have different epsilon
radius valuesisfairly straightforward. In addition to devel oping these new methods, we aso
provide three applications (to simulated data sets) in ordering to gain some sense of how well

the methods perform before applying them to “real world” datain the next chapter.
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5.1.1 Variable Epsilon Spatial Density Clustering
Asindicated above, the VESDC method represents a simple generalization of the DBSCAN

method of clustering. In the paper that introduces DBSCAN, Ester et al., (1996) call the length
of the radius around a point used to define an epsilon neighborhood “Eps’ (while we have
called it “epsilon™), in this sub-section we will use their notation for consistency and ease of
comparison. The other important aspect of notation in Ester, et a., (1996) that needsto be
discussed is Neps(p), which gives the set of points that are within the epsilon neighborhood of
point p. The definition of thissetis
Ngps(p) =1{q € D|dist(p,q) < Eps}, (5.1

where D isthe set of pointsin the data set, and dist(e) is a distance function (e.g., Euclidean,
Manhattan, etc.).

An extension to alow for a variable epsilon radius requires that we make epsilon a vector
for which all elements are strictly positive (how thisis done is an application implementation
detail), and redefine the set of points that are in the epsilon radius of point p (Ngps(p)) as

Ng,s(p) = {q € D|dist(p,q) < min(Epsp,Epsq )} (5.2

where Eps; is the epsilon radius for point p and Eps; is the epsilon radius for point g. In words,
what this meansis that for points p and g to be epsilon neighbors, it must be the case that point
p is no further away from q than Eps,, and point ¢ is no further away from p than Eps,. Figure
5.1 illustrates two situations, one where A and B are epsilon neighbors, and one where C and D
are not. After making these two changes, the remaining five definitions and the two lemmas
that validate the correctness of their algorithm follow directly. In addition, if Eps, = Epsy =
Eps, then (5.1) and (5.2) return identical results. Consequently, we can view DBSCAN as a

specia case of VESDC.
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Determining if this revised definition of epsilon neighborsis met algorithmically isaso
straightforward, and requires no additional near neighbor searches beyond what is needed for
the original DBSCAN method.™* Specifically, we first find al the points within the epsilon

radius

Points A and B are Epsilon Neighbors Points C and D are Not Epsilon Neighbors

Figure5.1 An lllustration of the New Definition of Epsilon Neighbors

of each point. Next, if point g was found to be within Eps, of p, we determine if p was within
Eps, of q, if it isthen g remains an epsilon neighbor of p and vice versa. On the other hand, if p

is not within Eps; of point g, then point g is removed from the epsilon neighbor list of point p.

5.1.2 CpSpIndex Modified for Variable Epsilon Radius Sizes
Fortunately, thereisadirect (inverse) relationship between the size of the epsilon radius and

theloca “scale’ of distance. As an example, if the epsilon radius for point A is 10 meters,
while the epsilon radius for point B is 20 meters, then a distance of one meter is re-scaled to be
twice aslong at point A asitisat point B. Since distances are ratio scaled, we are actually only

interested in the relative distances between objects. Consequently, we can ssmply divide a

1 The near neighbor search isimplemented with the ANN library of Mount and Arya (Mount, 2006) using a kd-
tree and an exact search.
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distance at a point by the epsilon radius of that point. Going back to our example, the scaled
distance for 1 meter at point A becomes 0.1 (1/10), while the scaled distance becomes 0.05
(/20) at point B.

The problematic concept in the last paragraph is “adistance at apoint,” since points have
zero area. What we arereally interested in is the distance between points. In what follows we
will rely on what we call a“weighted distance” between two points, which we define as the
Euclidean distance between two points divided by the average of the epsilon radius values of
those points. The example of the last paragraph can help to make this concept more concrete.
Assume that points A and B are 10 meters apart, and the epsilon radius val ue for each point are
asthey were before (i.e., 10 meters for point A and 20 meters for point B), then the average of
the epsilon radius values is (10+20)/2 = 15, and the weighted distance between the pointsis
10/15 = 0.67. Obviously, this measure of weighted distance can only be viewed as an
approximation to the “actual” weighted distance. Fortunately, we are typically measuring the
distances between neighboring points, so the errors introduced by the approximation should be
fairly small.*?

Given this definition of the weighted distance, we can now describe the scaled versions of
the measures underlying the CpSp index, beginning with the scaled version of the Comp
measure. In Chapter 3 we defined Comp as the maximum value across clusters of the sum of
the edge Euclidean distances for the MST of each cluster. For the scaled version of Comp we
use the weighted distances (rather than the standard Euclidean distances) to construct the MST,
and use the sum of the weighted edge distances for the measure. Similarly, the maximum

possible compactness (Crax) is equal to the sum of the weighted edge distances for the MST of

12 Devel oping a more exact measure may be possible, but would likely be computationally expensive.
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the entire data set. Both the minimum possible compactness (Cyin) and minimum possible
separation (Syin) 1S taken to be the minimum weighted distance between any two pointsin the
data set. The maximum possible separation (Snax) IS equal to the longest weighted distance
associated with the edges of the Gabriel graph of the points. Finally, the Sep measure is equal
to the shortest weighted distance between any two points not in the same cluster for the entire
data set.

The above measures are appropriate for a given vector of epsilon radius values. If the
elements of that vector change differentially, then the relative scaling of the underlying
measures (e.9., Crax, Smin, €tC.) can change relative to one another, resulting in a comparison
across solutions that is non-comparable.** Consequently, in comparing two cluster solutions
(each based on adifferent vector of epsilon neighborhoods), there is a need to hold the vector
of epsilon radius values constant for the purposes of the comparison.

The use of an example here may help to fix ideas. The way we will use the modified CpSp
measure is to determine how to set the parameters of afunction that links an underlying
variable to the length of the epsilon for a point. As a simple example of this consider the case
(which we empirically examine later in the chapter via synthetic data) where there are two
types of areas, high-density areas and |low-density areas, and we believe that pointsin high-
density areas should have a smaller epsilon neighborhood than points in low-density areas.
Assume that we aready know what the correct value of the epsilon neighborhood for pointsin
low-density areas, and are interested in determining the appropriate epsilon neighborhood

value for pointsin high-density areas (we label this value MinEps because it is the smaller of

31 the value of the epsilon radius is the same for all points, then a change in the epsilon radius will leave the
relative distances across points unchanged. It is the possibility of a differential change in the epsilon radius values
that causes the problem.
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the two epsilon neighborhood values). Further assume that we are determining the correct
value by incrementing the value of MinEps along arange of values. Let there be two adjacent
candidate MinEps values, MinEps.; and MinEps;, with MinEps.; < MinEps. Define Eps.; as
the vector of epsilon radius values when MinEpsis at the level MinEps.;, and Eps asthe
vector of epsilon radius values when MinEps equals MinEps. In addition, let A;_; be the
assignment of pointsto clusters when Eps.; is the vector of epsilon neighborhoods, and let A
be the cluster assignments of points when Eps is the vector of epsilon radius values.

Having set out the basic notation, we define Comp(A;.1 | Eps) as the compactness value of
the clustering solution when the epsilon radius vector corresponds to Eps.1, but is evaluated
using the weights for the edge distances that correspond to Eps, while Comp(A; | Eps) isthe
compactness level when both the clustering solution and the distance weights when the epsilon
radius vector is Eps. One measure of interest is the change in the Cp index when we go from
MinEps.; to MinEps, which we can measure as

Conax (Eps;) — Comp(A; | Eps;) _ i (Eps;) — Comp(A,_, | Eps;)

ACp; =
Cmax(Epsi) - Cmin (EpSl-) Cmax(Epsi) - Cmin (EpSl-)

1

where Crax(Eps) is the maximum possible compactness when the distance weights correspond
to the epsilon radius vector Eps;, and Cyin(Eps) is the minimum possible compactness when
the weights are given by Eps. In asimilar fashion we can measure the change in the Sp index

as

_ Sep(A; | Eps;) = Synin (Eps;) _ Sep(A;i_y | Eps;) = S, (EpS;)

ASp;
l Smax(EpSi)_Smin(Epsi) Smax(Epsi)_Smin(Epsi)

Finally, we can measure the change in the CpSp index as
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(Cmax(Eps» — Comp(4; | Eps»J{Sep(A,- | Eps;) - Sm,-n<Epsi>J )
Cmax(EpSi)_Cmin(Epsi) Smax(Epsi)_Smin(Epsi)
ACpSp; =

(Cmax(Epsi) — Comp(A,_, | Epsi)j(Sep(Ai_ | Eps) =S, (Epsi)j
Cmax(EpSi)_Cmin(Epsi) Smax(EpSi)_Smin(Epsi)

While the changes in these three measures are of great importance, what is more closely
related to the various CpSp measures (and the plots of those measures) presented in Chapter 3
is the cumulative sum of those changes up to a point. We can define the cumulative sum for the

Cp measure up to and including the jth incremental value of MinEps (MinEps) as
J
=2
Similarly, we can define the cumulative sum of the Sp measure as
J
Spj= ZASPi’
=2
and the cumulative sum of the CpSp index itself as

CpSp; = ZJ:ACpSpi.
=2
Up to this point we have motivated the derivations relative to an example where we are
searching over the possible values of the parameter MinEps. However, any parameter that
alters the elements of the epsilon radius vector can be substituted into the equations above. As

aresult, these correspond to the general CpSp measures modified to account for variable

epsilon radius sizes.
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5.1.3 Validating the M odified Methods against Simulated Data

5.1.3.1 Creating the Simulated Test Data
For this validation exercise, we wanted to create a set of test data sets that more closely

mimicked the patterns we actually observe for retail outlet ocations than was the case for the
simulated data sets that were used for illustrative purposes in Chapters 2 and 3. Aswe saw in
Chapter 4 for the case of Greater Victoria, retail outlets often cluster along a street. As aresullt,
many of the clusters resemble thin strings of outlets when plotted, hence the term “string
clusters’ that was used in the previous chapter. We also decided to mimic a grid layout of
streets that is common in many North American cities. The two considerations led us to the
creation of both horizontally and vertically oriented clusters that produce a grid pattern
(allowing string clusters to intersect one another). Finally, we wanted to create both high-
density and low-density areas.

To accomplish al our data creation objectives, each synthetic test data set contains two
different unique “panes’, one of high-density, and one of low-density. The panes are then laid
out in amatrix, with the high-density pane in the northwest cell of the matrix, and the low-
density pane being replicated in the remaining cells of the table (Figure 5.2 illustrates this
layout for the first simulated data set). The panes differ in the number of pointsthey contain,
with high-density panes having 440 points and low-density planes having 66 points. Each pane

has the
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Figure5.2 The First Simulated Data Set

same area of 10,000 square map units. High-density panes were created by drawing the mean
coordinate values from a uniform distribution that was bounded between 12 and 88 map units
for 10 horizontal and 10 vertical oriented clusters. The x (horizontal) mean coordinate for a
horizontal cluster was rounded to be an integer value to obtain the desired grid effect for the

clusters. Anidentical approach was taken for the y (vertical) mean coordinate for vertica



clusters. In the case of horizontal clusters, the x-coordinate values for the 20 members of a
cluster were drawn from normal distribution with the mean corresponding to the x-coordinate
mean for the cluster, and a standard deviation equal to 6, while the y-coordinate values equaled
the cluster y-coordinate mean plus a very small amount of normal noise (with mean of zero and
a standard deviation of 0.1) to avoid potential problems with creating the Delauney
triangulation graph of the data. If one of the selected x-coordinate values resulted in either a
negative x-coordinate value, or an x-coordinate value that was greater than 100, rejection
sampling was used to avoid this from occurring. Consequently, all points fell within 0 and 100
map units. The creation of the vertical oriented clusters was done using a directly analogous
procedure. Finally, 40 randomly chosen points from a uniform distribution that was bounded
between 0 and 100 was added to the data in order to mimic noise points.

Essentially identical procedures were used to create the low-density panels. The exceptions
were that only 3 vertical and 3 horizontal oriented clusters were constructed, each cluster had
only 10 members as opposed to 20, and only six randomly chosen points were added to the

data.

5.1.3.2 The Simulated Data Set Analysis
We begin with adetailed discussion associated with clustering the first simulated data set using

the methods devel oped in this chapter, and then briefly summarize the results from clustering
two other data sets using these methods. The first example was not selected at random from the
set of ssimulated data testing we have conducted. Rather, it was chosen because it exhibited
some challenging aspects in clustering the clustering process.

To provide a benchmark by which to compare the results from the VESDC clustering of the

full data set, we begin by showing the DBSCAN results for each of the two unique panes.
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Figure 5.3 provides the DBSCAN results for the high-density panel, while Figure 5.4 provides

the DBSCAN results for the low-density panel. An examination of Figure 5.3 reveals avery

clean clustering of the high-density panel, with a clear peak in the CpSp index at 5 map units,

indicating that the “best” epsilon radius for the high-density areais 5 map units. A similar
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examination of Figure 5.4 also indicates afairly clean clustering solution. Albeit, thereisa
fairly large range of the epsilon radius values (from 13 to 32 map units) that captures the same
clustering solution. However, given the distance between the outlying group in the lower |eft-
hand corner of the figure's southeast panel, thisresult isn’t surprising. What is encouraging is

that the “best” epsilon radius value for the high-density areaisless than one-haf the size of the

Percentage of Minimum Possible Compactness Percentage of Maximum Possible Separation
o ]
(=]
o |
o
e o |
§ °
¢ 2
2 o
g g 7
g 3
8 ()
< ]
o
N
\ o
T T T T T T T T T T T T T T
5 10 15 20 25 30 35 5 10 15 20 25 30 35
Epsilon Epsilon
The Product of Min Compactness and Max Separation CpSp Index Maximizing Solution
(=]
™
=] o
[e]
2 2 - 8
S S 8
N o
[ Q 000 O g o
3 & 4 8 LR
2 o o©°
a > 8
g =) ° [
Ey <
=
@ O ODOoCo
AAAAMDM
o | A
o N
<
1
T T T T T T T T T T T T
5 10 15 20 25 30 35 0 20 40 60 80
Epsilon

Epsilon = 13, noise points marked as "1"

Figure 5.4 The DBSCAN Resultsfor the Low Density Panel of the First Simulated Data
Set

87



epsilon radius value for the low-density area (5 map units versus 13 map units), which is
consistent with our expectations.

Figure 5.5 presents the DBSCAN results for the entire (four pane) data set. The results
reveal that the best epsilon radius based on CpSp index is between 20.5 and 31.5. What is
interesting is that start of the “best” range begins at a much larger value of the epsilon radius

than was the case
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Figure 5.5 The DBSCAN Results of the First Simulated Data Set

when the low-density panel was analyzed in isolation. In any event, this high value of the

epsilon radius resultsin all the points in the high-density pane (along with some of the points

belonging to the low-density areas) to bein asingle cluster. This over agglomeration of points

in dense areas is sSimilar in nature to the problems that were seen in applying DBSCAN to the

Greater Victoria data.
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As discussed earlier in this chapter, given the structure of the data, where apoint is either in
alow or high-density area, the appropriate way to parameterize the function that links an
underlying factor to the epsilon radiusis a simple indicator function of the form

MinEps, density = high
Epsi = . '
MaxEps, density = low

where Eps isthe epsilon radius for a particular point in the data set. In this formulation, there
are two parameters that need to be determined, MinEps and MaxEps.

Based on the DBSCAN clustering results for the data set as awhole (Figure 5.5), it would
appear to the analyst that the best epsilon radius value for that solution would be more likely to
be near the value of MaxEps than MinEps. As aresult, the natural thing to do isto set MaxEps
to 20.5 (the start of the best range), and then search over possible values of MinEps to find one
that improved the cumulative change in the modified CpSp index. Figure 5.6 provides the
CpSp analysis associated with searching for the value of MinEps over arange of values from
0.5t0 20.5, incremented by 0.5. An examination of this figure revealsthat it is strongly bipolar,
with asharp peak at a MinEps value of 5, peaking again in the range from 18.5 to 20.5.
Addressing this situation, which is actually fairly uncommon in the simulated data examples
we have run, is what makes this data set comparatively challenging. Thefirst peak has a
cumulative CpSp index value that is very slightly below that of the second peak, while the
value of MinEps at the second peak replicates the unsatisfactory solution found using
DBSCAN. What should the analyst do in this situation? We argue that analyst should explore
both potential solutions.

Assuming the analyst realized that the second peak ssimply replicates the DBSCAN

solution, and opted to start with a MinEps value of 5, the natural thing to do, in EM algorithm-
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like fashion, isto set MinEpsto 5, and grid search over new potential values of MaxEps to see
if the cumulative CpSp measure could be improved. The results of doing this over arange of 5

to 34 isshownin
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Figure 5.7. An examination of thisfigure reveals that the start of the “best” rangeis 20.5,
indicating that we have converged with a MinEps of 5, and a MaxEps of 20.5. However, an
examination of the cumulative Cp measure (the upper left panel in the figure) and cumulative

Sp measure (the upper right panel in the figure) indicates that changes in the cumulative CpSp

are
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entirely due to changesin the Sp measure, with no movement whatsoever in cumulative Cp.
This suggests to us that there is less information available for setting parameter values when
two parameters vary as to opposed to only a single parameter, and represents a limitation of our
proposed approach. Having said this, it does remain avery useful, albeit imperfect, tool for

determining parameter values. To illustrate this point, Figure 5.8 provides the final VESDC
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Figure 5.8 The VESDC Solution for the First Simulated Data Set

clustering solution. A comparison of this figure with Figures 5.3 and 5.4 reveal s that this
solution corresponds to the exact solutions obtained when the two panels are analyzed
individually. As additiona evidence of the efficacy of the proposed methods, Figures 5.9 and
5.10 provide both the DBSCAN solutions for the separate high- and low-density panes, as well

asthefinal VESDC
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solutions for the pooled data sets for two different simulated data sets. An examination of these
figures reveal s that while the VESDC solution does not perfectly correspond to the separate
DBSCAN solutions for the high- and low-density panes, the solutions are very close.
Moreover, avisual inspection of the clustering solutions suggests that the DBSCAN solutions
are no better, and perhaps worse, than the pooled VESDC solution. Overall, the VESDC
approach, along with the modified CpSp measures to assess clustering parameters, appear to be
able to address aspects of the intra-community complexity that current clustering methods
seem incapable of addressing. However, aswill beillustrated shortly, even these methods
breakdown if there is not areasonable definition of “community” to base detailed clustering

on. It isto theissue of defining “community” to which we now turn.

5.2 Creating“ Communities’ (Step 1)
Our definition of “community” is very different than the typical definition of this concept.

Specifically, what we mean by community is an areathat is sufficiently compact that detailed
VESDC clustering can work in areasonable manner. In an effort to illustrate what we mean by
this, we use amodified version of thefirst simulated data set as an example, which is shownin
Figure 5.11. In this data set, the panes, and the placement of those panes, isidentical to the
original data set shown in Figure 5.2. What differsisthat instead of the panes just touching one
another, a buffer of 150 map unitsin both the vertical and horizontal dimensions now separates
them.**

When we do aDBSCAN analysis on this data set we obtain a*“best” epsilon radius of 34.5

meters. If we then set MaxEps to this value, and search over potential values of MinEps we

4 We have also conducted the analysis we are about to present with smaller 50 map unit buffers, and obtained
identical results. We use the 150 map unit buffers here since it makes visual imagery more striking.
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obtained the analysis contained in Figure 5.12. A comparison between this figure and Figure

5.6
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reveals anumber of similarities. However, the critical difference between the two figuresisthe
height of the first mode (at a MinEps value of 5 map units). In Figure 5.12 thismodeis
comparatively much shorter than it isin Figure 5.6. As aresult, an analyst would likely select a
MinEps value along the upper plateau in the cumulative CpSp plot (the lower panel in the
figure). This value of MinEps, along with the value of MaxEps resultsin al the pointsin each
pane to be agglomerated together into a single cluster, resulting in four clusters overal, one for
each pane. To avoid this problem, each pane must be treated as a “community,” with the

clustering done at the community level.
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The method we propose for creating “communities’ relies on yet one more sub-graph of
the Delauney triangulation of the full set of points. In this instance we propose the use of the
relative neighbor graph of the points (Toussaint 1980; de Berg et a., 2008, p. 217).

Specificaly, this process involves creating the relative neighbor graph of the full set of points
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and then removing from the graph edges between relative neighbors that are deemed too far
from one another to allow them to fall into the same community. Doing this resultsin a set of
disconnected sub-graphs. Both the relative neighbor graph and the “trimmed” set of sub-graphs
(based on removing edges from the relative neighbor graph that exceeded 40 map unitsin
length) for the first simulated data set whose panes have been separated by 150 meters buffers
isshown in Figure 5.13. Thefina step isthen to apply VESDC clustering (or in this specific
example DBSCAN clustering since the sub-graphs are the original panes, each of which hasa
constant density) to the points in each sub-graph (community) that has a sufficient number of
points to cluster (we will seein the next chapter that alarge percentage of the identified sub-
graphsin real world data have avery small number of members).

Determining what distance to use for trimming the relative neighbor graph does require
some domain specific knowledge. However, the level of domain specific knowledge isfairly
minimal, and often amounts to having aminimally informed opinion. In the case of developing
retail districts, we have decided that the appropriate distance between relative neighborsthat is
deemed too far is 400 meters. This conclusion was based on the notion that having to travel
roughly a quarter mile to get from one store to the next in some direction was simply too far to
consider these stores neighbors. While this assessment is a bit “ off the cuff,” the 400 meters

rule seemsto work well in empirical application.
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Figure 5.13 The Relative Neighbor Graph and Trimmed Sub-Graphs of the Separ ated
Panel Data Set

5.3 Summary
In this chapter we have presented a set of atwo-step clustering approach and companion

cluster validation tools that appear to be able to address complex spatia point data. While the
tools are not perfect (we expect that a number of improvements will be made overtime,
particularly to the modified CpSp validation tools), they provided much improved solutions as
compared to currently available approaches. With these new tools in hand, we now return to

Greater Victoria
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6 Greater Victoria Revisited
In this chapter we illustrate the two-step clustering approach developed in the last chapter to
Greater Victoria. We will provide the results of each step in turn, as well as the assumptions

and choices we made along the way.

6.1 Step1l
Aswasindicated in our discussion of thefirst step in the last chapter, we assume that two

relative neighbors that are separated by more than 400 meters cannot fall into the same
“community.” When we apply thisrule to trim the relative neighbor graph of the Greater
Victoriaretail outlet locations, the result is a set of 189 disconnected sub-graphs. Figure 6.1
provides a plot of these Greater Victoria“communities.” An examination of this plot reveals
that there is one extremely large community in the southeast of the metropolitan area, which
corresponds to the Victoria downtown core (something we saw in Chapter 4 when examining
the relationship between total population density and retail outlet density). In addition, there
are anumber of smaller “communities’ along the eastern edge of Greater Victoria as you go
north from the downtown core. In addition there are a number of communities immediately to
the east of the downtown core as well. However, one thing that is striking is that many of what
we have been calling “communities’ consist of one or two relatively isolated points, a pattern
particularly prevalent in the southwest region of the metropolitan area, but which can be seen
elsewhere.

To gain abetter sense of the distribution of stores across communities, Figure 6.2 presents

abar blot of the number of storesin each community, while Figure 6.3 provides a distribution
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of communities by the number of stores they contains. An examination of Figure 6.2 is striking

sinceit vividly illustrates the importance of the downtown core in Greater Victoria s overall
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Figure 6.1 The" Communities" of Greater Victoria

retail structure. In fact, approximately half of the retail outletsin Greater Victoriaare located in

the downtown core. While the downtown core has 1296 retail outlets, the next two largest
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communities have only 109 and 101 retail outlets, respectively. The distribution of
communities by the number of retail outlets (Figure 6.3) is extremely skewed, with a majority

of “communities’ containing asingle cluster.
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Figure 6.2 The Number of Storesin Each Community
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Figure 6.3 The Number of Communitieswith a Given Number of Stores

6.2 Step 2
Based on the Step 1 results, it is clear that gaining a better understanding of the retail structure

of the Victoriadowntown coreis an extremely relevant undertaking. To do this, we make use
of VESDC clustering. However, instead of using the simple high density / low density
indicator of the last chapter, given the heterogeneity in total population within this community
(from under 1000 people per square kilometer to over 60000 people per square kilometer) it
makes sense to use a more refined measure. The relationship we make use of isafour
parameter growth curve (actually a shrinkage curve in this case) of the form

MaxEps— MinEps
—r(Dens—M ) °

Epsilon = MaxEps —
I+e

where MaxEps is the upper asymptote on the size of the epsilon radius, MinEpsisthe lower
asymptote on the size of the epsilon radius, r isthe “shrinkage’ rate on the size of the epsilon
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neighborhood as the total population density increases, M is the inflection point for the curve,
and Densisthetotal population density (the sum of residential and workforce population
divided by areq) for the census designation area the store in located within.

To find good parameter values for this curve we did an iterative grid search over each
parameter in the order MinEps, MaxEps, M, and r. Theinitia value of r was set to unity, which
causes the growth curve to discretely jump from one asymptote to the other at the inflection
point. We were surprise how well behaved the function was through EM like iteration process.
We fairly quickly converged to the values MinEps = 140, MaxEps = 170, M = 12000, and r =
0.00015. Unlike aregression model, there is no way to obtain standard errors for these
parameters. To gain a sense of what this relationship looks like, Figure 6.4 provides a plot of

the implied relationship between total population density and the value of the epsilon radius.

107



Epsilon Radius
155 160 165
L L L

150
|

145
|

140
|

I I I I I I I
0 10000 20000 30000 40000 50000 60000

Population Density

Figure 6.4 The Implied Relationship Between Population and the Epsilon Radius

Based on the parameters of the shrinkage curve given above, Figure 6.5 provides the retail
outlet cluster structure for the Victoria downtown core. An examination of this figure appears
to be very reasonable, with clusters being fairly well defined. Thereis still one large cluster
with over 350 retail outlets (which can be seen in the central part of the figure towards the
bottom). However, these 350 stores are in an areathat is between 2 km? and 3 km? so is
extremely densely packed. It would likely be difficult to further partition it in a reasonable
way.

The results for the two-step approach for clustering retail outlet locations into retail districts
seems very promising based on this application. However, additional applications will need to
be undertaken to confirm that the promising results seem here hold more generally.
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Figure 6.5 The VESDC Cluster Solution for the Victoria Downtown Core
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7 Summary and Conclusions

Although aggregating retail outletsinto retail districtsis an important academic and practical
issue in marketing and retailing, only limited academic work has been done on this problem.
The growing availability of detailed location data through Geographic Information Systems
(GIS) makes this a particularly timely problem. In some cases, analysts use simple geographic
designations such as postal codes to form retail districts. While grouping data by postal codes
can be auseful first step, postal codes and other geographic boundaries were devel oped for
other purposes and do not summarize retail datawell. For example, the Kingsway shopping
areain Vancouver includes stores in both Burnaby and VVancouver. In applied situations,
experienced managers and anal ysts sometimes rely on their own background and insights to
form retail districts. However, human judgment, even when aided by GIS methods, istime

consuming, labor intensive, and generally not replicable.

7.1 Cluster Analysis
Cluster analysisis a sound and well established approach for reducing data dimensionality.

However, the existing cluster approaches do not handle the complicated geospatial structure
that istypical of retailing datawell, primarily due to their high variation in observation density.
Newer methods, such as density based clustering, developed in computer science, appear to
have promise for marketing settings. One problem is that the “epsilon radius,” a measure of
how close stores need to be to each other in order to be classified as belonging to the same
cluster, is assumed to be constant in such methods as density-based clustering. However, this
turns out not to be a good assumption in practice. In addition existing methods of judging the
quality of aclustering solution, so called cluster validation methods, do not provide sound

guidance as to the best clustering solution for the type of retailing data we study. Consequently,
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we propose a new two-step clustering approach in which Variable Epsilon Spatial Density
Clustering (VESDC) is developed, and a new clustering validation measure, the CpSp index,

also isintroduced.

The CpSp index evauates the overall performance by taking both compactness and
separation of aproposed clustering solution into consideration. It is formed from the product of
these two measures and is normalized so that it is scaled in the range of 0 to 1. The optimal
solution is the one with the highest CpSp score. Extensive testing demonstrated that CpSp
performed well as a cluster validation method. The modified CpSp index can accommodate

varied epsilon radius in evaluating the performance of clustering solutions.

We applied clustering methods commonly used in marketing such as K-Means to data from
the Greater Victoria metropolitan area of British Columbia, and did not get good resullts.
Newly developed density-based cluster methods were also unable to capture the retail district
structure in the Greater Victoriaarea. One critical underlying reason for these resultsis the
variation in the density of retail outlets in downtown, suburban, and other areas included in the
Greater Victoria metropolitan area. VESDC effectively clusters data by adjusting the epsilon
radius systematically to adapt to the local market environment. In particular, using the

exponential “shrinkage” transformation function with four parameters (MaxEps, MinEps, r |

and M ), we developed amodel in which the epsilon radius is determined by the population

density in asmall area.

Wetested VESDC' s performance on synthetic data. The underlying pre-specified data
patterns were accurately recovered. We then applied the two-step approach to Greater Victoria.

The approach clearly outperformed the existing clustering approaches. VESDEC effectively
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reduced the data dimensionality to a manageable number by forming retail districts; In
addition, isolated retail outlets, which do not properly belong to aretail district, were
identified. Also, the VESDEC method is not restricted to convex shapes so that different
shapes of retail districts (circle, rectangular, linear, etc) were identified, which can match the
actual retail district appearance. The exponentia “shrinkage” function used in the model
performed well and the four parameters could be identified from the data. One critical reason
for the relative success of the VESDC approach is that the varied epsilon radius is consistent

with the underlying data structure in which thereis high variation in retail store density.

7.2 Future Research
Based on our encouraging results for the VESDC approach and the CpSp validation method,

we see future research proceeding in at least three directions. Thefirst isto apply the method in
different settings, the second is to make further improvements to the methodology, and the
third isto apply the method to retail site location problems. We briefly review each of these

areas.

7.2.1 Additional Applications
We have tested VESDC over awide range of smulated data and for Greater Victoriain British

Columbia. A logica next step isto test the method over a broader range of geographic areas to
test its limitations. Although Victoriais astrong rea test of the method, such testing would
provide further insight into the robustness of the approach and the value of the CpSp measure
in identifying cluster structures. Beyond the retailing area, there appear to be many other areas
in marketing in which the technique can be applied. Marketing applications have relied very
much on traditional approaches such as K-Means and have not, at least in the published

literature, incorporated the use of newer methods such as density based clustering.
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Segmentation has been a very important applied areafor clustering, but existing approaches
have anumber of limitations. Oneis not to allow for outliersin the solution. We believe that
not to do so is unrealistic in many settings. We believe that VESDC and other methods of
density based clustering have much promise for segmentation research and to other marketing
problems.

More broadly, our approach can be applied in awide variety of areas. While different
functional forms and relationships than the ones used here to develop the variable epsilon
radius will likely be required, the overall concept of adjusting the epsilon radius to different
local conditions appears to be widely applicable. Moreover, our CpSp measure overcomes

weaknesses with the existing Comp_Sepa measure that should be relevant in many areas.

7.2.2 Improvement on M ethodology
In the current approach, the epsilon radius is related to the underlying popul ation density

through afour parameter exponentia “shrinkage’ transformation function. This response
function was developed by logical analysis of the nature of the relationship between these two
variables and after extensive testing of alternative functions. Nevertheless, further testing of
this relationship would be worthwhile. One extension would be to have additiona explanatory
variables beyond popul ation density, which might be needed in some settings. On the other
hand, additional complexity is not always a good modeling strategy and a simpler approach
might be more valuable. In that framework, our analysis suggested that we needed four
parameters in our response function, but the possibility of employing asimpler response
function should also be investigated.

Our empirical analyses indicated a number of systematic problems with existing cluster

validation methods and led to the development of the CpSp measure. The CpSp and Modified
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CpSp measures exhibited very good performance, but given the crucial importance of cluster
validation, we believe that continued investigation in this areais worthwhile. We would not be
surprised if several cluster validation methods emerged, each providing different insights on

the quality of a proposed clustering solution.

7.2.3 Retail Site Location
While the formation of retail districtsisinteresting in itself, it is often the first step in both

academic and applied research. For example, as discussed in the first chapter, Ellickson and
Misra (2008) clustered supermarkets to investigate the nature of price competition among
stores.

In applied settings, managers frequently want to evaluate the performance of their stores
both historically across time for an individual store and comparatively. Store performance,
however, relies highly on the surrounding market environment, which in turn, influences the
sales potential of that store. Retail district identification can provide such information.
Consequently we believe that our approaches can lead to improved estimates of retail
performance. Depending upon the application, the retail districts may be formed by only
examining stores in the same industry (e.g. having the same SIC) or across industries, to obtain
an indicator of market potential and/or store traffic.

For companies, the new store location decision is a challenging task. Estimation of market
potential for each possible store location is critical (Hansen and Weinberg 1979). While the
surrounding residential and work place population is an important component of demand
generation, many approaches do not fully consider the ability of some areas to draw additional
traffic from people attracted to the area. Taking as an example the fast food industry, the

demand for afast food store comes from four types of customers, residential customers (who
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live in the areq), daytime population (who work in the area), transitory customers (who pass by
the ared), and ancillary customers (who visit the areafor other purposes). Depending on the
store location, the importance of each type of customer may be different. In the fast food
industry, ancillary and transitory customers can be particularly important. In practice,
estimation of the transitory and ancillary customers without on-site observation is extremely
difficult and costly, especially when many possible sites are being considered. However,
knowledge of the retail district structure of an area can significantly improve our ability to
estimate transitory and ancillary demand. Consequently, we anticipate future research on site
location to incorporate the type of retail district information we have developed in thisthesis.
Through the co-operation of amajor fast food retailer, we have already begun work in this
direction.

In summary, our new clustering approach, VESDC, and a nhew clustering validation
method, CpSp index, have demonstrated good and robust performance in both synthetic and
real data. These new approaches appear to be applicable to awide variety of settings and lead

to anumber of interesting future research opportunities.
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