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ABSTRACT

Although aggregating retail outlets into retail districts is an important academic and practical

issue in marketing and retailing, only limited academic work has been done on this problem.

The growing availability of detailed location data through Geographic Information Systems

makes this a particularly timely problem. Cluster analysis is a sound and well established

approach for reducing data dimensionality. However, the existing clustering approaches do not

handle the complicated geospatial structure that is typical of retailing data well, largely due to

the high variation in observation density. One problem is that the “epsilon radius,” a measure

of how close stores need to be to each other in order to be classified as belonging to the same

cluster, is assumed to be constant in methods such as density-based clustering. However, this

turns out not to be a good assumption in practice. In addition existing methods of judging the

quality of a clustering solution, so called cluster validation methods, do not provide sound

guidance as to the best clustering solution for the type of retailing data we study. Consequently,

we propose a new two-step clustering approach in which Variable Epsilon Spatial Density

Clustering (VESDC) is developed, and a new clustering validation measure, the CpSp index,

also is introduced.

VESDC effectively clusters data by systematically adjusting the epsilon radius to adapt to the

local market environment. In particular, using the logistic transformation function, we propose

a model in which the epsilon radius is determined by the population density in a small area.

CpSp, which is scaled from 0 to 1, balances the compactness and separation of a proposed

clustering solution. Extensive testing demonstrated that CpSp performed well as a cluster

validation method.
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We tested VESDC’s performance on synthetic data. The underlying pre-specified data patterns

were accurately recovered. Existing methods were not as successful in these tests. We then

applied the two-step approach to Greater Victoria since Greater Victoria is a typical

metropolitan city with large variation in store density.
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1. Introduction and Motivation

Recent advances in geodemographic coding have provided an impressive amount of data about

the characteristics of individual commercial outlets (e.g., stores) and their locations. For

example, location information for more than 16,000 retail stores in Vancouver is available. In

addition, those stores can be easily and accurately located on maps using Geographic

Information System (GIS) technology, making it easier to understand the marketing

environment among the retailers. The distance between stores, for example, can be calculated

after identifying the map locations using GIS. The availability of this considerable amount of

data should potentially be useful for marketing, specifically for retailing. For example, when

choosing sites for new stores and evaluating the performance of existing stores, retailers have

access to extensive data on competitors, complementary stores that might build traffic in an

area of interest, and other local geographic characteristics.

While local managers have always had some of this knowledge, the availability of such

vast quantities of data allows for a much more systematic and comprehensive analysis than was

previously possible. Recent research, such as that conducted by Ellickson and Misra (2008),

demonstrate the potential usefulness of this data. However, for the data to be most useful, it is

necessary to understand its structure. For example, rather than knowing the locations of each

individual store when determining the attractiveness of an area for a new store location, it is

more important to know whether there is an agglomeration of stores in a certain area, creating a

retail center or retail district that might serve to draw traffic. In other words, when estimating

the sales volume of a new store, the estimate is likely to depend on more than simply summing

up the current sales of stores within a certain geographical distance of the new location.

Obtaining such information from a large data set, especially location information, is
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challenging. For example, there are more than 16,000 retail outlets differentially distributed in

the Greater Vancouver area, and reducing the data dimension quickly becomes an issue during

the initial process of investigating the area further.

The challenge, then, is to provide ways to cluster data in ways that provide meaningful

information to researchers and managers. In this thesis, we focus on the use of cluster analysis

in marketing to understand the patterns in geographic data. As we will show, while a number

of new techniques have been developed in computer science and other areas, these techniques

have not yet been tested and developed for the type of geodemographic data commonly used in

understanding marketing, distribution, and retailing issues. Moreover, as we will show, the

existing techniques need substantial modification to be useful in such settings. In this thesis

then, we will first review the techniques commonly used in marketing and then introduce the

newer techniques from other literatures. Using both simulated and actual data from the

Victoria, British Columbia metropolitan area, we will show why both the existing and newer

techniques have difficulty when confronting geodemographic data typical of the retail sector of

the economy. The greater Victoria area is a mid-size metropolitan area with a strong downtown

core and a surrounding set of retail districts that vary widely in store density. We next will

introduce modifications to these techniques and demonstrate their usefulness. By using actual

data from Victoria, we will be able to test the robustness of our new approach to clustering data

and testing the structure that our clustering approach produces.

1.1 Illustrative Settings

Ellickson and Misra (2008) provide a recent example of the use of clustering in a retail setting.

They grouped supermarkets into “competing clusters” to investigate how firms react to the

pricing strategies of their competitors. Since competitors who are relatively far away are
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unlikely to provoke strong reactions by the focal store in terms of pricing, the authors need to

find a way to cluster the more than 28,000 supermarkets in the US into meaningful retail

clusters. To accomplish this, Ellickson and Misra (2008) use a clustering method called

K-means (described below) to group the stores into “competing” markets. This serves as the

first step in identifying the actual competitors among US supermarkets, and then the pricing

strategy of the focal store is studied within the relevant competition area. Reducing the

dimensionality of the data by clustering the stores into different “competing” markets allows

for effective investigation of pricing strategy.

The K-Means approach used by Ellickson and Misra (2008) is useful for handling large

data sets. However, the number of clusters is an input parameter that must be determined

before the clustering process can begin. Given the size of such a dataset, it is difficult to

determine the appropriate number of clusters based on a priori reasoning. Thus the optimal

number of clusters is determined by iterating through a large number of potential alternatives.

As we show below, the choose of the optimal number of clusters can be highly sensitive to the

criterion chosen (that is, the cluster validation method) and the structure of the clusters is very

sensitive to the number of clusters that chosen to represent the data. A particular problem

occurs when some stores are located in relatively isolated areas. Since K-means and other

techniques used in marketing tend to force all stores into clusters, sometimes the clusters

generated appear to be unreasonable. In other words, isolated supermarkets that should not

belong to any competing market are identified within the competing market.

Understanding the geographic structure of an area is particularly important for store

location decisions. In estimating sales potential of a proposed new outlet, it is often crucial to

know whether the existing stores can be grouped together to form a retail district. By a “retail
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district”, we mean a business area where a numbers of commercial outlets can be aggregated

together to form a multifunctional center. Given GIS technology, the location of commercial

outlets can be identified accurately, and the possibility of identifying retail districts has been

improved significantly in recent years. As the first step toward investigating an area for a

possible store location, we need to understand the local commercial structure in the area by

reducing the data dimension and understanding the volume of traffic generated. For example,

Vancouver’s Robson Street (comprising approximately 200 stores) can attract around 80,000

visitors on a weekend, thus demonstrating the significant effect that agglomeration can have.

As noted above, the problem addressed here is how to accurately agglomerate individual

stores into retail districts. Depending on the application, retail districts may consist of similar

stores, as in the case of an auto mall, or different stores, as in the case of a shopping district

such as Robson Street. The retail structure provides critical information on market demand and

market competition that cannot be obtained otherwise. While an individual observer familiar

with an area may be able to intuitively group together retail outlets into retail districts (for

example, by being able to indicate which stores on Vancouver’s west side fall into the Dunbar

area), such an approach is neither feasible nor reliable on a wide scale basis. For example,

Vancouver alone has more than 16,000 retail and service outlets, and developing reliable and

consistent information on retail districts by using unaided intuition would clearly be infeasible.

Therefore, a method needs to be developed that allows for structuring the data into retail

districts accurately and efficiently in order to gain enough understanding about the retail

structure. As discussed below, existing methods in marketing are unable to deal effectively

with spatial clustering, particularly for large data sets. Methods developed in computer science

and elsewhere appear to be promising, but make assumptions about the data structure that, as
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this thesis demonstrates, are unrealistic in the context of retail locations, and cannot handle

retail district identification accurately.

1.2 Approaches to Clustering Data in Marketing

Although aggregating commercial outlets into retail districts is an important issue in marketing

in general and retailing in particular for both marketing researchers and marketing managers,

only limited academic work has been done on this problem. In general, there are three

approaches for reducing the data dimension to form retail districts: predefined geographic areas

such as those indicated by postal codes, human judgment, and formal methods of cluster

analysis.

Postal codes cannot provide accurate information about retail districts. First, there are more

commercial concentrations than postal areas. Second, postal areas are essentially random

spatial units imposed across a complex spatial system. Therefore, they are only useful as an

initial step toward understanding the general picture of an area. The use of human judgment

takes advantage of GIS development and involves drawing retail districts on maps by hand

(Simmons et al., 2000). The GIS can locate retail stores accurately and improve upon the

innate human ability to identify patterns in visual displays. However, this is very labor

intensive and cannot be updated easily if the data set is large. This labor-intensive work can be

avoided by finding other computer-based or algorithmic approaches that can aggregate a large

number of retail outlets into a manageable number of groups (retail districts) quickly and

accurately. One reasonable solution for handling the issue is to reduce data dimensions by

forming retail districts via cluster analysis. Cluster analysis, which covers a wide range of

techniques, has emerged as a computer-based approach to grouping data on the basis of pre-

defined criteria, and has been successful in a number of applications.
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Cluster analysis is a statistical method for classification. It has been increasingly employed

in the design and implementation of marketing strategy (see Table 1.1 for a summary of

clustering studies in the marketing literature, based in part on Punj and Stewart, (1983)). The

primary use of cluster analysis in marketing has been for market segmentation. All

segmentation research, regardless of the method used, is designed to identify groups of entities,

including consumers, markets, and firms, that share certain characteristics, such as attitudes,

purchase behavior, geographical location, or business type. For example, based on

characteristics such as demographics, transaction history, and benefits sought, consumers can

be segmented by their similarity into different groups using a clustering method (Anderson et

al., 1976; Schaninger et al., 1980; Sexton 1974; Lessig and Tollefson 1971; Landon 1974;

Greeno et al., 1973), thereby helping marketing managers choose the proper targets. In another

setting, relevant and competing markets are identified based on store features and geographic

information (Sethi 1971; Day and Heeler 1971; Hooley et al., 1990; Ellickson and Misra 2008).

For the firm, different types of firms are identified based on their business type, attitude

towards innovation, and marketing practices (Moriarty and Venkatesan 1978; Kerin and Cron

1987; Bowen 1990; Coviello et al., 2002; Hollenstein 2003).

Cluster analysis has also been used to seek a better understanding of buyer behaviors by

identifying homogeneous groups of buyers. It has been applied less frequently to this type of

theory-building problem, possibly because of theorists’ discomfort with a set of procedures that

appear ad hoc (Punj and Stewart 1983).

Several studies use cluster analysis to improve predictions related to consumer buying

decisions (Morrison and Sherman 1972; Kiel and Layton 1981; Kernan 1968; Claxton et al.,

1974; Hagerty 1985; Krieger and Green 1996). Cluster analysis has also been used in the
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identification of potential new product opportunities. After determining the competing brands

or products through cluster analysis, a firm can examine its current offerings and determine

how the current or new products are positioned against other competing products (Srivastava et

al., 1981; Srivastava et al., 1978).

Cluster analysis has also been employed in test market selection (Green et al., 1967). Using

cluster analysis, marketers can choose markets that are similar to the larger geographic area to

which the results of the test are to be applied, thereby reducing the number of test markets

required.

Finally, cluster analysis has been used to develop aggregates of data that are well defined

and managed more easily than individual observations. As discussed above, Ellickson and

Misra (2008) clustered all the supermarkets in the United States into a manageable number of

competing markets/areas to further study firms’ pricing strategies.

Table 1.1 Cluster Analysis in Marketing Applications

Papers Purpose of research Clustering method
used

Anderson, Cox, and
Fulcher (1976)

To identify the determinant attributes in bank
decisions and use them for segmenting
commercial bank customers

Partitioning

Bowen (1990) To identify different service types Partitioning
Claxton, Fry, and
Portis (1974)

To classify furniture and appliance buyers in
terms of their information search behavior

Hierarchical

Coviello, Brodis,
Danaher, and
Johnston (2002)

To identify the relative emphasis on
transactional and relational across firm type

Partitioning

Day and Heeler
(1971)

To classify stores into similar strata Partitioning &
Hierarchical

Ellickson and Misra
(2008)

To identify the competing market where the
focal store is located

Partitioning

Green, Frank, and
Robinson (1967)

To identify matched cities for test marketing Hierarchical
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Papers Purpose of research Clustering method
used

Greeno, Sommers,
and Kernan (1973)

To identify market segments with respect to
personality variables and implicit behavior
patterns

Hierarchical

Hagerty (1985) To group customers with similar preferences to
improve the predictive accuracy of conjoint
analysis

Hierarchical

Hollenstein (2003) To identify five clusters of firms with different
innovation modes in Switzerland

Partitioning

Hooley, Lynch, and
Shepherd (1990)

To group firms with different perspectives on
the role of marketing

Partitioning

Kerin and Cron
(1987)

To determine how marketing executives group
their trade show programs on the selling and
non-selling performance dimensions

Hierarchical

Kernan (1968) To identify groups of people along several
personality and decision behavior
characteristics

Hierarchical

Kiel and Layton
(1981)

To develop consumer taxonomies of search
behavior by Australian new car buyers

Hierarchical

Krieger and Green
(1996)

To enhance the prediction of an exogenous
variable for the segmented customers

Partitioning
(modified K-Means)

Landon (1974) To identify similar groups of people using
purchase intention and self-concept variables

Partitioning

Lessig and Tollefson
(1971)

To identify similar groups of consumers along
several buyer behavior variables

Hierarchical

Moriarty and
Venkatesan (1978)

To segment educational institutions in terms of
benefits sought when purchasing financial-aid
Management Information System

Partitioning

Schaninger, Lessig,
and Panton (1980)

To identify segments of consumers on the
basis of product usage variables

Partitioning

Sethi (1971) To classify world markets Partitioning
Sexton (1974) To identify homogeneous groups of families

using product and brand usage data
Type not specified

This thesis To identify retail districts based on retail store
locations

Variable Epsilon
Spatial Density
Clustering

1.3 Summary and Outline of Thesis

While the marketing field has largely used traditional methods of clustering, new methods of

cluster analysis have been developed (primarily in computer science) to address issues
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encountered in clustering spatial data. For example, as discussed in subsequent sections of this

thesis, a density-based approach can identify outliers and is free from cluster shape restriction;

a model-based approach can be used to choose the optimal multivariate model and number of

clusters using BIC value (Ward’s is one special case of the general model-based approach);

and fuzzy clustering allows observations to belong to different clusters with different degrees

of probability. These methods can partially overcome the problems with the K-Means and

Ward’s approaches to clustering. While the new methods provide a starting point for spatial

point data clustering, they have largely been developed and tested using only simulated data.

Attempts to apply these methods to actual marketing data demonstrate the need to extend the

existing methods for use in practical applications. The extensions of the methods and the

applications of those extensions form the basis of this thesis.

The remainder of this thesis is organized as follows. In Chapter 2, we provide a review of

the existing clustering methods and cluster validation methods, and indicate potential problems

in their applications to retail location data. In Chapter 3, we develop a new method for cluster

validation and apply this approach to simulated data. In Chapter 4, we illustrate the

performance of current approaches on the city of Victoria. In Chapter 5, we introduce a new

two-step cluster approach, in which “Variable Epsilon Spatial Density Clustering (VESDC)” is

developed. In Chapter 6, we show the result of the two-step approach on Greater Victoria in

British Columbia. The summary and conclusions is the final chapter.
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2 Literature Review

Since this thesis focuses on clustering methodology and cluster validation measurement, it will

be helpful to first review the literature on cluster analysis, and then turn to a review of cluster

validation measurements.

2.1 Cluster Analysis

Cluster analysis is one of the most useful tools in the data mining process for discovering

groups and identifying similar observations in the underlying data. The main function of

clustering is dividing a given data set into groups (clusters) such that the data points in a cluster

are more similar to each other than to points in different clusters (Guha et al., 1998). Thus, the

main concern in the clustering process is to reveal the organization of patterns into “sensible”

groups, which allow us to discover similarities and differences, as well as to derive useful

conclusions about them (Halkidi et al., 2001). In general, cluster algorithms can be broadly

classified into the following types according to the method adopted to define clusters (Jain et

al., 1999; Yeung et al., 2001):

 Partitioning clustering attempts to directly decompose the data set into a set of

disjoint clusters. More specifically, it attempts to determine an integer number of

partitions that optimize a certain criterion function. The criterion function may

emphasize the local or global structure of the data, and its optimization is an iterative

procedure.

 Hierarchical clustering proceeds successively by either merging smaller clusters into

larger ones, or by splitting larger clusters into smaller ones. The result of the algorithm

is a tree of clusters, called a “dendrogram”, which shows how the clusters are related.
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By cutting the dendrogram at a desired level depending on the clustering purpose, a

clustering of the data items into disjointed groups is obtained.

 Density-based clustering groups neighboring objects within a data set into clusters

based on density conditions. The objects with lower than required density are classified

as outliers.

 Grid-based clustering is mainly proposed for spatial data mining. The space is divided

into a finite number of cells and the clustering operation is conducted on a segmented

data space grid structure.

 Model-based clustering assumes that the data are generated by a finite mixture of

underlying probability distributions such as multivariate normal distributions. The

issues of selecting a “good” clustering method and determining the “correct” number of

clusters are reduced to model selection problems on the probability framework.

 Fuzzy clustering uses fuzzy techniques to cluster data and allows for an object to be

classified into more than one clusters. These types of algorithms lead to clustering

schemes that are compatible with everyday life experience, as they handle the

uncertainty of real data.

In addition to applications in marketing, cluster analysis has been used in many fields, such

as the life sciences, medicine, business, and engineering. The most widely used cluster analysis

approaches in marketing are the partitioning approach and hierarchical approach. We will start

with these two basic methods, providing only a brief review, as these approaches are well-

known. See Theodoridis and Koutroubas (1999) for a more detailed review.
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2.1.1 Partitioning Approach

Partitioning algorithms construct a partition of a database D of n objects into a set of k

clusters. k is an input parameter that must be specified a priori, (i.e. some domain knowledge

is required, which unfortunately is not available for many applications). The partitioning

algorithm typically starts with an initial partition of D and then uses an iterative control

strategy to optimize an objective function. Each cluster is represented by the gravity center of

the cluster ( k -means algorithms) or by one of the objects located near the center of the cluster

( k -medoid algorithms). The objective function is typically the sum of the Euclidean distances

between a point and the gravity center of a cluster (for K-Means) within each cluster for all the

clusters. Consequently, partitioning algorithms use a two-step procedure. First, determine k

representatives, minimizing the objective function initially. Second, assign each object to the

cluster with its representative “closest” to the considered object, and re-compute the centers.

The process continues until the centers of the clusters stop changing. It deals efficiently with

large data sets. However, it also requires prior knowledge about the data set, since the number

of clusters is a parameter in the method and must be determined before the clustering

procedure. It is difficult to determine such information, especially for a large and unfamiliar

data set. Sometimes, an inaccurate input can lead to unexpected clustering results. For

example, if the number of clusters is set too small, some clusters will be very large, even

including very isolated observations in order to accommodate the input parameter while

ignoring the data structure. Although one can run K-Means clustering multiple times with

different numbers of clusters, the returned clusters are not guaranteed to be structurally related.

In addition, because the objective function is typically based on the Euclidean distance, the

shape of all clusters found by a partitioning algorithm is convex, which is very restrictive. For
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example, if the data were based on locations of retail outlets, the stores may be located along

streets, around an intersection, or in a shopping center; these configurations do not lend

themselves well to convex shapes. Outliers in the dataset are not uncommon and they should

not be classified into any cluster. However, the partitioning approach cannot identify outliers,

and all data points are classified into clusters, which at times does not reflect the underlying

data structure. The partitioning approach can handle large data sets well with computation cost

of )(nO .

2.1.2 Hierarchical Approach

Hierarchical algorithms create a hierarchical decomposition of D . The hierarchical

decomposition is represented by a “dendrogram”, a tree that iteratively splits D into smaller

subsets until each subset consists of only one object. A frequently used hierarchical approach is

Ward’s method. In such a hierarchy, each node of the tree represents a cluster of D . The

dendrogram can either be created from the leaves up to the root (agglomerative approach) or

from the root down to the leaves (divisive approach) by merging or dividing clusters at each

step. It is common practice to begin with each observation in a cluster by itself, although the

procedure could be initialized from a coarser partition if some groupings are known, a priori. In

contrast to partitioning algorithms, hierarchical algorithms do not need k as an input.

However, a termination condition must be defined, indicating when the merge or division

process should be stopped. One example of a termination condition in the agglomerative

approach is the critical distance minD between all the clusters. In contrast to the partitioning

method, the cluster shape can be arbitrary. However, the computational cost is very high due to

the distance calculation for each pair of points. This is acceptable for applications such as

character recognition with moderate values for n , but the computation burden is too high for a



14

large database with computation cost of )( 2nO . As with the partitioning approach, outliers

cannot be identified by the hierarchical approach.

Neither partitioning nor hierarchical methods directly address the issue of determining the

number of groups within the data.

2.1.3 Density-Based Approach

Since the proposed new approach is developed from a density-based approach (DBSCAN is

the basic algorithm of density-based approach), a more detailed explanation of density-based

cluster analysis is provided here. Density-based cluster analysis was developed primarily by

researchers in the Computer Science sub-discipline of Machine Learning. It was proposed first

by Ester et al., (1996) for discovering clusters in large spatial databases with noise, and has

been continually modified over time (e.g. Zaiane and Lee 2002). The density-based algorithm

recognizes that within each cluster there is a typical density of points that is considerably

higher than the density outside the cluster and, furthermore, the density within the areas of

noise is lower than the density in any of the clusters. “Noise” refers to a point that is isolated

and does not belong to any cluster. The key idea is that for each point of a cluster the

neighborhood of a given radius has to contain at least a minimum number of points, (i.e. the

population in the neighborhood must exceed some threshold). The shape of a neighborhood is

determined by the choice of a maximum distance for two points. So, the density-based

approach requires the specification of both MinPts and epsilon radius. MinPts refers to the

minimum number of points that a qualified cluster can have in an epsilon radius neighborhood

of that point. If the members of the groups are fewer than the MinPts, that point will be

classified as noise. “Epsilon radius” refers to the maximum distance between two adjacent

points that enables them to be considered reachable from one another.
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Using the above principles, the density-based approach employs several constructs to

describe the relationships within and among clusters; these concepts are based on the epsilon

radius and MinPts. A point p is directly density reachable from a point q if p is within the

epsilon radius neighborhood of the point q and there are more than MinPts within the epsilon

radius neighborhood of the point q . Directly density reachable is not always symmetric. Figure

2.1 illustrates the concept. In Figure 2.1, the circles indicate the epsilon radius neighborhoods.

MinPts is set to be 4. We find that B is directly density reachable from A, but A is not directly

density reachable from B, since within the epsilon radius neighborhood of point B there are

only 3 points, which does not meet the requirement of MinPts.

Figure 2.1 An Illustration of Directly Density Reachable Points

A point p is density reachable from a point q if there is a chain of points 1p , 2p , …, np ,

qp 1 , ppn  such that 1ip is directly density reachable from ip . As with the directly

density reachable concept, density reachable is not always symmetric. Figure 2.2 illustrates the

concept. In Figure 2.2, the circles indicate the epsilon radius neighborhoods. MinPts is set to be

4. B is density reachable from C, but C is not density reachable from B, since within the

epsilon radius neighborhood of point B there are only 3 points, which does not meet the

requirement of MinPts.
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Figure 2.2 An Illustration of Density Reachable Points

A point p is density connected to a point q if there is a point o such that both p and q

are density reachable from o . In contrast to the previous two concepts, density connectivity is

a symmetric relation. Figure 2.3 illustrates the concept. In Figure 2.3, the circles indicate the

epsilon radius neighborhoods. MinPts is set to be 4. We can say that points D and E are density

connected.

Figure 2.3 An Illustration of Density Connected Points

Based on these three concepts, the density-based cluster is defined to be a set of density

connected points which is maximal with regard to density reachability. Noise is defined

relative to a given set of clusters. It is simply the set of points in the database not belonging to

any of its clusters. To find a cluster, the density-based approach begins with an arbitrary point

p and retrieves all points density reachable from p with regard to epsilon radius and MinPts.
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The density-based approach overcomes some of the problems associated with the

traditional partitioning and hierarchical methods quite well. First, it can separate noise points

from clustered points. So, it is possible but not necessary to cluster all the points. Second, it

does not require domain knowledge in advance to determine the number of the clusters. Based

on MinPts and epsilon radius setting, it can do the clustering automatically. Such advantages of

the density-based approach are especially useful when the database is large and the domain is

complicated, because it is difficult to know the number of clusters in advance. However, the

choice of MinPts and epsilon radius is challenging. These issues are discussed more fully

below.

The shape of a cluster is arbitrary, since determining whether a point can be clustered into a

group is based on the density connectivity. This can overcome the convex shape restriction of

the K-Means method, thus better reflecting reality in many settings. Finally, the density based

approach can handle large databases very well with computation cost of O(n log(n)) (Ester et

al., 1996). These advantages are particularly important in relation to the problem studied in this

thesis. For retail district identification, we know it is common to observe isolated commercial

outlets (outliers); retail districts can appear in any shape; the number of commercial outlets can

be extremely large; and outlet density can vary significantly. Therefore, the density-based

approach can be helpful in accommodating the above special features associated with retail

district identification.

2.1.4 Grid-Based Approach

The grid-based approach is another method for clustering spatial data. It divides the space into

a finite number of cells and then does all operations within the cells. Since it considers cells

rather than data points, the computation is generally more efficient. But, determining how to
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divide the space into a definite number of cells is a challenge at the start. The STING

(Statistical information grid-based method) is representative of this category. It divides the

spatial area into rectangular cells using a hierarchical structure. STING (Wang et al., 1997)

goes through the data set and computes the statistical parameters (such as mean, variance,

minimum, maximum and type of distribution) of each numerical feature of the objects within

cells. Then it generates a hierarchical structure of the grid cells so as to represent the clustering

information at different levels. Based on this structure, STING enables the usage of clustering

information to search for queries or to conduct the efficient assignment of a new object to the

clusters.

WaveCluster (Sheikholeslami et al., 1998) is a recent grid-based algorithm based on signal

processing techniques (wavelet transformation) to convert spatial data into frequency domain.

More specifically, it first summarizes the data by imposing a multidimensional grid structure

onto data space (Han and Kamber 2001). Each grid cell summarizes the information of a group

of points that map into the cell. The approach then uses a wavelet transformation to transform

the original feature space. A prior knowledge about the exact number of clusters is not required

in WaveCluster. The two grid-based approaches above deal well with low-dimensional data,

Hinneburh and Keim (1999) and Pilevar and Sukumar (2005) proposed new grid-based

approaches (OptiGrid and GCHL) to accommodate high-dimensional data.

A grid-based approach can handle arbitrarily shaped collections of points, for example,

ellipsoidal, spiral, and cylindrical. As with the density-based approach, the grid-based approach

can also identify the noise (outliers). Although grid-based techniques have some features that

density-based approach lacks, a density-based procedure can better mimic the retail district

intrinsic network. Since the way the density-based approach forms clusters shares similarities
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with customers walking in the retail district, the inherent network structure within a retail

district can be captured to some degree by a density-based approach. In addition, our newly

developed approach based on density-based approach can accommodate the special patterns.

Therefore, we apply a density-based approach in retail district identification and develop

advanced approach from the basic algorithm.

2.1.5 Model-Based Approach

The model-based approach, a relatively recent development (Banfield and Raftery 1993; Fraley

and Raftery 2002), has demonstrated good performance in many applications on small- to

moderate-sized data sets (MCLUST is the most common algorithm of model-based approach).

However, it does not perform efficiently in terms of computer time and memory. In model-

based clustering, it is assumed that the data are generated by a mixture of underlying

probability distributions in which each component represents a different group or cluster.

Given observations ),...,,( 21 nxxx , the mixture model with density f is
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where )|( kik xf  is a probability distribution with parameters k , and k is the probability of

belonging to the thk component or cluster. G is the number of components in the mixture and

will be determined by the BIC value. In most cases, )|( kik xf  is taken to be multivariate

normal distribution with the parameters of mean k and covariance k . The parameters of the

model are often estimated by maximum likelihood using the expectation-maximization (EM)

algorithm (Mclachlan and Krishnan 1997). Each EM iteration consists of two steps, an E-step

and an M-step. The E-step computes the conditional probability that object i belongs to cluster
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k from the data with the current parameter estimates. In the M-step, parameters are estimated

from the data given the conditional probabilities calculated in the E-step. The E-Step and M-

Step are iterated until convergence, after which an observation can be assigned to the

component or cluster corresponding to the highest conditional or posterior probability. Ward’s

method (Ward 1963) is the special case of general model-based approach in which the clusters

are restricted to be spherical and identical in volume (size) (Fraley et al., 2005). Good initial

values for EM can be obtained efficiently for small to moderate sized data sets via model-based

hierarchical clustering (Banfield and Raftery 1993). Based on different parameterizations of

the covariance matrix k , the approach can test different models in terms of distribution

(Spherical, Diagonal, and Ellipsoidal), volume (Equal and Variable), shape (Equal and

Variable), and orientation (Coordinate Axes, Equal, and Variable). A model-based approach is

effective for determining the number of clusters, dealing with the outliers, and selecting the

best clustering method in small- to moderate-sized data sets. But, this method cannot handle

large data sets efficiently. Fraley et al., (2005) proposed an incremental approach to improve

the computation efficiency by drawing a random sample of data, selecting and fitting a

clustering model to the sample, and extending the model to the full data set by additional EM

iterations.

2.1.6 Fuzzy Approach

The clustering approaches described above result in crisp clusters, meaning that a data point

either belongs to a specific cluster or not. In other words, the clusters are non-overlapping.

Unlike the crisp methods that force the points to belong exclusively to one cluster, fuzzy

clustering allows points to belong to multiple clusters with varying degrees of membership.

This approach allows additional flexibility. A typical fuzzy clustering algorithm is the Fuzzy
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C-Means (FCM) (Bezdek et al., 1987). The FCM is an iterative optimization algorithm that

minimizes the cost function


 


n

k

c

i
ik

m
ik xJ

1 1

2


,

where n is the number of data points, c is the number of clusters, kx is the thk data point, i

is the thi cluster center, ik is the degree of membership of the thk data in the thi cluster, and

m is the quantity controlling clustering fuzziness (typically 2m ). The degree of

membership ik is defined by

























c

j

m

jk

ik

ik

x

x

1

)1(
2

1







.

Starting with a desired number of clusters c and an initial guess for each cluster center

cii ,...,2,1,  , FCM will converge to a solution for i that represents either a local minimum

or a saddle point of the cost function. The quality of the FCM solution, like that of most

nonlinear optimization problems, depends highly on the choice of initial values (i.e. the

number of c and the initial cluster centers). Based on classic FCM, some extensions have been

done by researchers in modifying the objective functions (Pham and Prince 1999; Ahmed et

al., 2002; Zhang and Chen 2003) and in improving initial value choosing efficiency (Chiu

1994; Kolen and Hutcheson 2002). Nevertheless, the sensitivity of this method to initial

conditions makes it of limited value for the problem of establishing retail districts. Table 2.1

compares those cluster methods.
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Table 2.1 Cluster Analysis Comparison

Identification of
outliers

Cluster shape Knowledge
about cluster
number in
advance

Deals with
large data sets

Partitioning (K-
Means)

No Convex Yes Yes

Hierarchical
(Ward’s)

No Polygon with no
shape
restrictions

No No

Density-based
(DBSCAN)

Yes Polygon with no
shape
restrictions

No Yes

Model-based
(MCLUST)

Yes Polygon with no
shape
restrictions

No No

Grid-based

(STING)

Yes Polygon with no

shape

restrictions

No Yes

Fuzzy (FCM) No Convex Yes Yes

2.2 Cluster Validation

Since clustering algorithms discover clusters and identify groups with similarities, neither of

which are known a priori, the final clusters of a data set require evaluation (Rezaee et al.,

1998). This evaluation serves at least two purposes. One is determining when the best set of

clusters is obtained with a given algorithm or set of input parameters. The other is testing

whether the clustering algorithm is a good representation of the underlying reality. For

example, answering questions like “How many clusters are there in the data set?” and “Is there

a better clustering result for the data set?” and “Does the resulting clustering match the data

reality?” requires what we call a clustering validation technique. The quantitative evaluation of

the results of the clustering algorithms is preferable to visual validation (applying to a
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maximum of two dimensions) and is called cluster validity methods. However, comparative

studies on clustering algorithms are difficult to conduct in general due to the lack of universally

agreed upon quantitative performance evaluation measures (Jain et al., 1999). Subjective

(human) evaluation is often difficult and expensive, yet is still valuable in many real

applications. There are three general approaches to investigating cluster validity (Theodoridis

and Koutroubas 1999). The first is based on external criteria. This implies that the result of a

clustering algorithm is compared with the pre-specified structure, which is imposed on a data

set, then to evaluate the clustering performance. The second approach is based on internal

criteria. The result of a cluster algorithm is evaluated in terms of quantities and features that

involve the vectors of the data set themselves (e.g. proximity matrix). The third clustering

validity approach is based on relative criteria. Clustering structure is evaluated by comparing it

to other clustering schemes that result from the same algorithm but involve different parameter

values.

The first two approaches are based on statistical tests, and their major drawback is their

high computation cost. Moreover, the indices related to these approaches aim at measuring the

degree to which a data set confirms a scheme specified a priori. On the other hand, the third

approach aims at finding the best clustering scheme that a clustering algorithm can be defined

under certain assumptions and parameters (Halkidi et al., 2001).

2.2.1 External Criteria

External criteria test whether or not the points of the data set are randomly structured. This can

work in two ways. First, we can evaluate the resulting clustering structure C by comparing it

to an independent partition of the data P built according to our intuition about the clustering
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structure of the data. Second, we can compare the proximity matrix to the partition P (Halkidi

et al., 2001).

2.2.2 Internal Criteria

Internal criteria evaluate the clustering result of an algorithm using only quantities and features

inherent to the data set (Halkidi et al., 2001). For low-dimensional vector data, the average (or

summed) distance from cluster centers (e.g. the sum-squared error criteria used for the standard

K-Means algorithm) is a common criterion (Zhong and Ghosh 2003).

2.2.3 Relative Criteria

The external and internal criteria are statistical testing and need high computation in general. In

addition, the data structure needs to be specified by external and internal criteria. This can be

done for the simulated data under a specified simulating mechanism. For the real data, for

example retail outlet location data, we do not know the data structure in advance and must try

to find the data pattern. Therefore, we cannot use external and internal criteria for a validation

test using the real data. The relative criteria do not involve statistical tests (Halkidi et al.,

2001). The idea is to choose the best clustering scheme of a set of defined schemes according

to a pre-specified criterion. More specifically, the problem can be stated as follows (Halkidi et

al., 2001):

“Let lgaP is the set of parameters associated with a specific clustering algorithm (e.g. the

number of clusters nc ). Among the clustering schemes nciCi ,...,3,2,1,  , defined by a

specific algorithm, for different values of the parameters in lgaP , choose the one that best

fits the data set.”

There are two criteria proposed for clustering evaluation and selection of an optimal

clustering scheme (Berry and Linoff 1996):
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1. Compactness -- the members of each cluster should be as close to each other as

possible. A common measure of compactness is the variance of the observations, which

should be minimized.

2. Separation -- the clusters themselves should be widely spaced. There are three

common approaches to measuring the distance between two different clusters:

 Single linkage measures the distance between the closest members of the clusters.

 Complete linkage measures the distance between the most distant members.

 Comparison of centroids measures the distance between the centers of the clusters.

In general terms, we want clusters whose members have a high degree of similarity, while

we want the clusters themselves to be widely spread. Several relative criteria have been

proposed, for example, the modified Hubert T Statistic (Halkidi et al., 2001), Dunn (Dunn

1974) and Dunn-like indices (Pal and Biswas 1997), and the Davies-Bouldin (DB) index

(Davies Bouldin 1979). The special measurements evaluating the fuzzy clustering approach

have also been investigated (Bezdek et al., 1984; Pal and Bezdek 1995). Here we explain the

SD Validity index (Halkidi et al., 2000) and the Comp_Sepa measure (Liu and Huang 2007),

since we use the SD index to evaluate the K-Means performance and chose the optimal number

of clusters for Victoria in the illustration section, and since our new cluster validation

measurement is developed from Comp_Sepa measure.

2.2.3.1 SD Validity Index

A recent clustering validity measure – the SD validity index -- was proposed by Halkidi et al.,

(2000). Consistent with the general rule for cluster validation, the underlying principle of the

SD index is that a good set of clusters should be compact within themselves (homogeneity

within clusters) but distinct from each other (heterogeneity among clusters). The index is based
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on the concept of the average scattering (the “reverse” of compactness) of clusters and of the

total separation among clusters. The average scattering of clusters is defined as
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where )( i is the variance of cluster i, )(X is the variance of the whole data set,

)max(max jiD    ncji ,...,3,2,1,  is the maximum distance between cluster centroids,

)min(min jiD    ncji ,...,3,2,1,  is the minimum distance between cluster centroids.

Then the SD index is defined as

)()()( ncDisncScatncSD   ,

where  is a weighting factor.

The first term (i.e. )(ncScat ) indicates the average compactness of clusters (i.e. intra-

cluster distance). A small value means good compactness, and as the scattering within clusters

increases (i.e. they become less compact) the value of )(ncScat also increases. The second

term )(ncDis indicates the total separation among the clusters (i.e. an indication of inter-

cluster distance). The optimal number of clusters should be that which minimizes the SD

index. However, the index cannot handle arbitrarily shaped clusters properly, because the

method uses the diameter (or radius) of clusters to compute the evaluation function (Halkidi et

al., 2001).
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2.2.3.2 Comp_Sepa Index

The most recently published clustering validity measure, called the Comp_Sepa index, was

proposed by Liu and Huang (2007). A traditional validity index, such as the SD index, does not

properly address clustering algorithms that allow for the creation of non-convex clusters due to

their use of compactness measures based on sum of squared differences between points within

a cluster and the cluster centroid or related measures since these types of measures implicitly

assume that “proper” clusters are circular (or at least convex). In contrast with other clustering

validation metrics, the Comp_Sepa index can evaluate both convex and non-convex clusters.

The widely accepted criteria for evaluating cluster performance are the separation of the

clusters and their compactness. To take both measurements into consideration, the Comp_Sepa

index is the ratio of compactness and separation, measuring the overall performance of

clustering. Comp (the measure of compactness) is evaluated using the interior density of

clusters (point density within the clusters). Sepa (the measure of separation) is computed using

the outside density (the density of regions outside clusters) and the inter-cluster separation (the

degree of separation between clusters). Both measurements are calculated using the minimum-

cost spanning tree (MST).

To evaluate the compactness of a clustering scheme C , the MST is generated for each

cluster and the edges of the MST are summed. The value of Comp for the solution is equal to

the sum of the MST edges for the cluster with the greatest value of this sum for clustering

scheme C. A smaller value indicates a more compact cluster. As a result, Comp represents a

“worst case” measure of compactness. To assess separation, the MST for the set of points

containing the centroids of the clusters (groupings that have more than a single member) and

“noise points” (noise points are clusters that have only a single member, and thus have a
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compactness measure of zero) is calculated. The separation measure for the clustering scheme

C is defined as the distance of the shortest edge of the MST. A large value indicates well-

separated clusters, and again it represents a “worst case” measure. The validity index

Comp_Sepa is the ratio between compactness and separation, namely,
Sepa

Comp
SepaComp _ .

Therefore, the cluster algorithm with the smallest value of Comp_Sepa is preferred.

The Comp_Sepa index is a simple but intuitive index evaluating clustering performance,

and it can handle large data sets and arbitrarily shaped clusters (Liu and Huang 2007).

However, we have found two serious limitations with the Comp_Sepa index in the application

of the method to both simulated and real-world data. First, the Comp_Sepa index is biased

towards having as many clusters as there are points in the data set under analysis. Second, the

Comp and Sepa measures typically have very different potential ranges, with the potential

values of Comp having a range that is often over an order of magnitude larger than the range of

Sepa, which can exacerbate the first problem in some instances, or lead to the reverse problem

(too highly aggregated clusters) in other situations. We explore the first problem in some detail

in the remainder of this chapter, and discuss the second problem in the next chapter.

The bias in the Comp_Sepa index towards having as many clusters as points in the data can

be seen using a mathematical argument. Specifically, the Sepa measure is always strictly

greater than zero, while the Comp measure is always non-negative, and obtains a minimum, at

zero, when all clusters contain a single member. Consequently, the Comp_Sepa measure has a

degenerate “best” solution with a value of zero when every point is in its own cluster. While

this particular case can be ruled out by requiring that the number of clusters in a solution must

always be strictly less than the number of data points, one suspects that the basic problem still
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persists when there are a large number of clusters relative to the number of points (resulting in

“under clustering”), which is indeed the case.

Two examples based on simulated data are used to illustrate the problem. The first example

is based on the data set shown in Figure 2.4. A visual examination of the figure indicates that

data contains 9 clusters arranged on a 3 by 3 grid. Each cluster consists of 20 points, with the

coordinate values drawn from a unit uniform distribution, and then shifted so that the center of

the ranges fell on the 3 by 3 grid. DBSCAN clustering solutions were then examined for values

of the epsilon radius that varied from 0.01 to 1.20, incremented by 0.01. The results of this

analysis are shown in Figure 2.5.

Figure 2.4 The First Simulated Data Set

The figure contains plots of the Comp (northwest panel), Sepa (northeast panel), and

Comp_Sepa (the southwest panel) index, as well as the “best” solution clustering solution
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based on selecting the epsilon radius value that minimizes the Comp_Sepa index (southeast

panel). As suggested above, an examination of Figure 2.5 indicates that the lowest (best) value

of the Comp_Sepa index occurs at the smallest value of epsilon’s range (0.01), which

corresponds to each point being in its own cluster. After the value of the epsilon radius exceeds

0.02, the value of the Comp_Sepa index begins to climb, peaking at an epsilon radius value of

0.28, at which point it begins to fall into a trough that extends over a range of epsilon values

from 0.50 to 1.06. This range of epsilon radius values corresponds to the nine-cluster solution

that we would anticipate
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Figure 2.5 The Comp_Sepa Analysis of the First Data Set

finding by visually examining the data. However, there is a range of epsilon radius values

(from 0.03 to 0.11) over which there are fewer clusters than points, and for which the value of

Comp_Sepa is better (lower) than the range of epsilon radius values that corresponds to the

nine-cluster solution. As a result, it is clear that the Comp_Sepa measure fails for what would

appear to be a fairly straightforward example.
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Figure 2.6 The Second Simulated Data Set

Figure 2.6 shows the data set for the second example. As the figure reveals, it corresponds

to four grid pattern clusters, each in a corner of the overall space. In our opinion, this data set

represents as clean an example of a four-cluster solution as is possible. Moreover, using

DBSCAN as the clustering algorithm, there are only three possible solutions: (1) all clusters

contain a single point; (2) the four-cluster solution; or (3) all points are in a single cluster. The

third possible solution could not be found by the Comp_Sepa method since the separation

between clusters is undefined when there is only a single cluster (which should not be a

problem in this instance). As a result, the Comp_Sepa method should detect one of two

possible clustering solutions. Figure 2.7 provides the results of applying the Comp_Sepa

method to the second data set.
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Figure 2.7 The Comp_Sepa Analysis of the Second Data Set

As with the first example, the “best” epsilon radius value based on the Comp_Sepa measure

corresponds to values of the epsilon radius (0.01 to 0.24) that result in each cluster containing a

single point. Epsilon radius values between 0.25 and 1.99 correspond to the four-cluster

solution, while values of the epsilon radius of 2 and above correspond to the single cluster

solution (which can be seen in the very large jump in the Comp index).
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Both of these examples illustrate the bias in the Comp_Sepa index towards a large number

of clusters relative to the number of data points. It can be reasonably argued that the method

performs well within the neighborhood of the correct solution (as illustrated by the large trough

between epsilon radius values of 0.50 and 1.06 for the first example data set). However, this

assumes that a visual examination of the data allows for an assessment of the “likely” number

of clusters in the data (something that appears to be the norm in the computer science literature

in this area), allowing the range of clustering solutions examined to be within a “reasonable”

neighborhood of the visual “truth”.1 Our experience with “real world” data suggests that the

ability to determine the neighborhood of the correct number of clusters based on a visual

examination of the data (even when the data falls in a two-dimensional plane as is the case of

the focal example in our work) typically is not possible. As a result, there is a need to develop a

relative cluster validation method with better “global” properties than the Comp_Sepa index,

but that is still consistent with clustering methods that allow for non-convex clusters. In the

next chapter we develop such a cluster validation measure.

1 In Liu and Huang’s (2007) defense, our suspicion is that they only examined clustering solutions in the
neighborhood of the visually “correct” number of clusters in their simulation results.
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3 An Alternative Approach to Cluster Validation

In this chapter we develop a new cluster validation measure that borrows the positive aspects

of Liu and Huang’s (2007) Comp_Sepa index, but eliminates some of the problems

encountered with their measure in practical applications. The real innovation in their approach

was the use of the minimum cost spanning tree to measure cluster compactness in a way that

does not implicitly assume that the “true” shape of clusters is convex. We take advantage of

this innovation, but attempt to address the problems associated with the interaction between the

separation and compactness measures caused by scaling issues. In addition, we look at the

implications of selecting different numbers of MinPts in DBSCAN clustering for cluster

validation.

3.1 The CpSp Cluster Validation Index

As indicated in the previous chapter, there is a much greater range across potential values of

compactness as compared to separation. What makes this problematic is that in some sense we

should be interested in relative compactness and separation rather than absolute levels of these

two measures. The problem with the Comp_Sepa approach is that it does not matter if

separation is driven to its minimum possible level (resulting in the Sepa measure obtaining

zero percent of the possible separation level that could be obtained in a data set), so long as the

compactness measure can be driven to zero.

One way to solve this problem is to rescale the measures. Our approach is to place both

measures on percentage terms with respect to both the upper and lower limits of the values

could conceivably obtain. Based on this notion, we call our compactness measure the

compactness percentage (which we label Cp). Mathematically, this value is given as
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Cp 
Cmax Comp

Cmax Cmin

,

where Cmax is the measure of the largest possible compactness value, Comp is Liu and Huang’s

(2007) compactness measure, and Cmin is the measure of minimum possible compactness.

While these measures may seem difficult to assess prior to performing any clustering, a great

deal of information concerning the possible bounds of a clustering solution can be determined

a priori.

The largest possible compactness value occurs when all the points in the data set are in a

single cluster. Consequently, we measure Cmax using the sum of the edges of the MST for all

the points in the data set. The complication this introduces is how best to compute the MST.

One approach that works for clustering in an arbitrary number of dimensions requires the

calculation of the distance matrix for the entire data set (in order to determine the edge costs),

an operation that is of order O(n2), and is infeasible for large data sets (largely due to computer

memory limitations). An alternative approach is to base the MST on the Delauney triangulation

of the points (De Berg, et al., 2008), which can be done in O(nlog(n)) time for two dimensions,

but this limits us to the examination of clustering in two or at most three dimensions.2 Given

the nature of our objectives (clustering a large number of store locations in two dimensional

space), we have opted to use the Delauney triangulation approach in our implementation.

There are two possible minimum compactness values, zero (corresponding to the case

where each point is in a cluster by itself), and the minimum distance between any two points in

the data set (which would consist of a single two-point cluster, with the remaining points being

2 Practically, it limits us to two dimensions since we make use of the TRIPACK package (Renka, 1996), as
implemented in the tripack R library, which only performs Delauney triangulations in two dimensions. However,
there are open source libraries that can perform Delauney triangulations in three dimensions that could be used in
the future by creating appropriate bindings to R.
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in single point clusters). We have elected to use the latter option, however, this decision is

likely to have minimal impact on the performance of the measure. Our reason for using the

minimum distance between two points in a data set is motivated by the notion that for there

truly to be clusters, at least two points in the data set should be agglomerated together.

Similar to compactness, we measure separation using the percentage of the highest possible

level of separation that could possibly be obtained, which we call the separation percentage, or

Sp. Mathematically, Sp is defined as

Sp 
Sep  Smin

Smax  Smin

,

where Sep is the minimum distance between any two points not in the same cluster (a single

linkage measure), Smin is the a priori minimum possible separation between any two points not

in the same cluster, and Smax is the a priori maximum possible separation between any two

points not in the same cluster. We obtain the value of Sep using an efficient nearest neighbor

search algorithm (via Mount and Arya’s ANN library, Mount, 2006) in which the points within

the cluster are taken to be the reference points, and those not in the cluster are taken to be the

test points. We have moved from the centroid based average likage used by Liu and Huang

(2007) to a single linkage measure for two reasons. First, it is conceptually more consistent

with the measure of Smax we use (which is described below), second, because two large clusters

(in terms of their lack of compactness) may be fairly distant from one another based on the

distances between their centroids, but in fact may be very near to one another when this same

distance is measured based on the distance between the closest points between nearest

members in the two clusters.
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The minimum possible separation between clusters (Smin) in a data set corresponds to either

the shortest distance between any two points in a data set (corresponding to the case when each

point is in its own cluster) or the second shortest distance between any two points in a data set

(corresponding to the case where there is a single two member cluster, and the remaining

points are in single point clusters). While not logically consistent with our definition of

minimum compactness, but practically unimportant, we use the minimum distance between

any points in the data set as the measure of minimum separation.

Probably the least obvious a priori bound on the clustering solution is Smax. We argue (and

have empirically confirmed, but have yet to formally prove) that the maximum possible

separation between two clusters in a point data set corresponds to the longest edge of the

Gabriel graph (Gabriel and Sokal, 1969; Matula and Sokal, 1980) of that set of points. The

Gabriel graph is a sub-graph of the Delauney triangulation of a set of points, with the edges of

the graph linking the pairs of points that are Gabriel neighbors. In turn, two points are Gabriel

neighbors if a sphere (or circle in two dimensions) centered at the mid-point between the two

points (which also has the two points on the diameter of the sphere) has no other points from

the data set within the sphere. Figure 3.1 illustrates the concept of Gabriel neighbors in two

dimensions, while Figure 3.2 shows the Gabriel graph for the first example data set described

in the previous chapter (see Figure 2.4). We use the length of the longest edge of the Gabriel

graph as our measure of Smax.

We use as our composite measure of compactness and separation the product of the

compactness percentage and the separation percentage (or CpSp, which corresponds to the

index’s name). This measure is bounded within the unit interval, and takes the value of 1 if a

clustering solution is able to achieve both a compactness of Cmin (causing Cp to equal 1) and a
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separation of Smax (causing Sp to equal 1), which is a situation that would never happen in

practice. The index takes on a value 0 if a clustering solution has a maximum compactness that

equals Cmax (which occurs when all points are in a single cluster), or the minimum separation

Figure 3.1 An Illustration of Gabriel Neighbors
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Figure 3.2 The Gabriel Graph of the First Example Data Set

between clusters corresponds to Smin. It is this second case that avoids the degenerate solution

of selecting the clustering solution in which every cluster contains a single point as “best”

which occurs with Liu and Huang’s (2007) Comp_Sepa method. Given the structure of the

index, the clustering solution that performs best under this index is the one that maximizes its

value.

Rather than a product of the Cp and Sp measures, we could have used the sum of the two

measures. However, the use of the product is better able to maintain a balance between

compactness and separation. To illustrate this point, consider three different clustering

solutions of a point data set. The first solution has a Cp value 0.99 and an Sp value of 0.01, the

second solution has a Cp value of 0.5 and an Sp value of 0.5, while the third solution has a Cp

value of 0.01 and an Sp value of 0.99. If the sum of the two measures was used as the
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composite index, then all three solutions would yield a composite index value of 1 (for a

measure that would be bounded between 0 and 2), but the first solution would have poor

separation between clusters, while the third would have at least one very diffuse cluster.

Conversely, the second solution strikes a much better balance between compactness and

separation, and, in our opinion, should be preferred on these grounds. The product of the

compactness and separation percentages is consistent with this, since the first and third

solutions have a CpSp value of 0.099, while the CpSp value for the second solution is 0.25.

To determine if the CpSp measure overcomes the issues encountered with the Comp_Sepa

method, we apply our new index to the same two example data sets and DBSCAN clustering

solutions used in the previous chapter. The results of using the CpSp index with the first

example data set is contained in Figure 3.3, while the application of the index to the second

example data set is contained in Figure 3.4. In Figure 3.3, actually any value of epsilon radius

along the best “flax max” region generates the same clustering solution (the southeast panel

would look same), the value of Sp would have to change if the clustering structure changed

(since the edge for the current Sep value would “go away” due to the merging of clusters),

therefore changing the CpSp value.
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Figure 3.3 The CpSp Analysis of the First Example Data Set

An examination of both figures indicates that the CpSp index is able to successfully find

both the nine-cluster solution for the first example data set, and the four-cluster solution of the

second example data set. Perhaps what is most striking is a comparison of Figures 2.7 and 3.4.

Specifically the plots of the Comp_Sepa index and the CpSp index over the range of epsilon

radius values (which is contained in the southwest panel in both figures) are identical in shape,
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Figure 3.4 The CpSp Analysis of the Second Example Data Set

but are polar opposite in terms of interpretation since the “best” solution corresponds to the

lowest value of the Comp_Sepa index, while the highest value of the index is “best” for CpSp.

Given the findings from this analysis, it appears the proposed CpSp measure is able to

validate clustering solutions from methods capable of producing non-convex clusters (through

the use of the MST to measure cluster compactness), but avoids the pitfalls of the Comp_Sepa
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method in terms of being biased towards a large number of clusters relative to the number of

points. At this juncture, we turn to another issue we have uncovered in our efforts to determine

the appropriate length of the epsilon radius for DBSCAN solutions, the interplay between the

selection of the number of MinPts for the DBSCAN algorithm and cluster validation.

3.2 The Influence of the Number of MinPts on the “Best” Length of the

Epsilon Radius

In performing the empirical application that is the basis of the sixth chapter of this thesis, we

determined that the “best” numbers of clusters for a DBSCAN solution was very sensitive to

the value of MinPts that was used, and this sensitivity seemed unpredictable to us.3 Ultimately,

we determined that this erratic behavior occurred when there was a group of two or more

points that were distant from points not in the group, were fairly close to one another, but the

size of the group was smaller than the value of MinPts. The “outlying” points act to halt the

movement in the separation measure over some range of the epsilon radius values, once the

size of the epsilon radius allowed one of the points to be reached by a point in a cluster

(thereby allowing all the outlying points to enter that cluster)

An example (based on the data set shown in Figure 3.5) will help to make the issue more

concrete. As can be seen in the example, there are two outlying points in the data that are in the

southeast corner of the figure. These two points are fairly distant from the other points in the

data, but are very close to one another. The two outlying points will induce a problem if

MinPts is set above a size of two. To see this, Figures 3.6 and 3.7 provide a CpSp analysis of

this data set with the two outlying points removed, with Figure 3.6 being based on DBSCAN

3 We initially discovered the problem using the Comp_Sepa index for cluster validation (ruling out epsilon radius
values we deemed too small, thereby avoiding degenerate solutions in an ad hoc way). However, the issue also
arises when the CpSp index is used as well, although it is somewhat mitigated for CpSp relative to Comp_Sepa.
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runs with MinPts set to two, and Figure 3.7 based on DBSCAN runs with MinPts set to 3. As

can be seen

Figure 3.5 The Outlying Points Example Data Set

from the two figures, the solutions are identical, resulting in a “best” epsilon radius being

within the range of 0.3 to 1.1 (we select the first value in this range, 0.3 in this case, as the

“best” value, even though all values in the range correspond to the same solution).

As illustrated in Figures 3.8 (where the value of MinPts is set to two for the DBSCAN

runs) and 3.9 (where MinEps is set to three), things become very different when the two

outlying points are placed back into the data set. The cluster structure is nearly identical for the

analysis done with MinPts set to two for the DBSCAN runs when the two outlying points are

included compared to the analyses done when the two outlying points are removed. The only
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difference in the “best” solution from the inclusion of the two outlying points is that they are

combined together into a seventh cluster that contains only those two points. However, this is

not true for the analysis in which MinPts is set to three for the DBSCAN runs. In this case, the

“best”

Figure 3.6 The CpSp Analysis with No Outlying points and MinPts = 2
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solution corresponds to an epsilon radius value of 0.2, and contains 18 mutli-point clusters and

27 noise points (only two of which are the outlying points).

A close examination of Figures 3.8 and 3.9 indicates why this situation is occurring.

Looking at the Cp plot (the northwest panel in both figures) reveals that the compactness

measure is not influenced by the choice of MinPts for the DBSCAN runs. However, a similar

examination of

Figure 3.7 The CpSp Analysis with No Outlying Points and MinPts = 3
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the Sp plot (the northeast panel in both figures) indicates that the outlying points have a

profound effect on this measure. Specifically, the Sp value becomes “stuck” at a very low level

(which can be seen by comparing the y-axis values between Figures 3.8 and 3.9 for the Sp plots

in both figures) over an extended range. As a result of this, the comparatively small decrease in

the Cp measure between 0.2 and 0.3 when MinPts is set to three for the DBSCAN runs drives

the
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Figure 3.8 The CpSp Analysis with Outlying Points and MinPts = 2

solution since the outlying points prevent the Sp index from moving.

In their original paper introducing the DBSCAN algorithm, Ester et al. (1996) minimize the

importance of selecting the value of MinPts, indicating that selecting a MinPts value of four

should be satisfactory for most applications. A reason to downplay the importance of the



50

MinPts value is that when the length of the epsilon radius is held constant, the cluster structure

for

Figure 3.9 The CpSp Analysis with Outlying Points and MinPts = 3

clusters that have a number of clusters that exceeds the value of MinPts does not change with

different values of MinPts. What occurs is that “marginal clusters”, those that had a number of

members that equaled the MinPts limit, are broken into a set of noise points when the level of
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MinPts increases (we illustrate this point in Figure 3.10 using our example data set when the

epsilon radius is set to 0.3 and MinPts is set to 3). This, combined with our findings on how the

Figure 3.10 The Clustering Solution for the Example Data with Outlying Points when

Epsilon = 0.3 and MinPts=3

selection of MinPts influences cluster validation measures, leads us to the conclusion that the

appropriate length of the epsilon radius should be determined using a MinPts value of 2 for the

DBSCAN run, and once this value is determined, the level of MinPts can be altered in an

appropriate way for the application at hand.

Having both described different methods of clustering, and presented a new tool for

validating cluster solutions that allows for cases where some or all of the clusters are non-

convex, we next compare the performance of the different methods when applied to real world

data. To foreshadow the results, it will become clear that even the improved tools are
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inadequate to address issues that arise in actual applications. The following chapter will

introduce new tools that are up to the task.



53

4 An Illustrative Application of Current Approaches

As discussed previously, K-Means and Ward’s method (a special case of the model-based

approach) are the most widely used clustering algorithms in marketing, but the density-based

approach is more flexible in terms of the non-convex clusters that can occur with spatial data,

partially due to the need for objects (retail outlets in our case) to locate along a road network. It

also appears to be better able to capture the network effect among retail outlets that leads to

retail districts. Consequently, this chapter assesses the performance of K-means, Model-based

clustering, and DBSCAN when applied to the problem of identifying retail districts in order to

determine whether any of them are up to the task, and, if none are, examine the reasons why

certain methods fail to assist in the development of more refined methods. As will be

demonstrated, each of the three approaches is incapable of providing an acceptable

representation of retail districts. Therefore, there is a need to develop a new approach for

spatial cluster analysis, at least for retail district identification. Fortunately, our results suggest

ways in which to improve the density-based methods for identifying retail districts in a

particular geographic area.

For this application, we use retail outlet location data from the Capital Regional District of

British Columbia, which corresponds to what is typically called the Greater Victoria Area.4

Greater Victoria has a population of roughly 330,000 people, a land area of 695 km2, and 2394

retail outlets. We have chosen Greater Victoria because it is large enough to have a dense

urban core and surrounding areas of differing levels of retail outlet concentration, but at the

same time it is small enough to be manageable. In particular, model-based clustering does not

4 A regional district is administrative area that corresponds to what most jurisdictions in North America call a
county. As a result, the data set consists of retail outlets both in the City of Victoria as well as a number of other
outlying communities.
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scale well (the underlying algorithm has O(n2) time) and, as a result, has limited usefulness for

larger cities (such as Vancouver, which has over 16,000 retail outlets in its metropolitan area).

Since Ward’s method, which is a special case of model-based clustering, is one of the most

widely used clustering methods in marketing, we decided to do our comparative testing on a

city to which model-based clustering could be readily applied.

Data Conversion

The retail location data is from DMTI’s “Enhanced Point of Interest” files, which are

distributed on a province level basis in ASCII format, and are from the third quarter of 2005.

Each file contains the name, a four digit SIC code that describes the location’s primary activity,

street address, city, postal code, and latitude/longitude coordinates.

From the British Columbia file the records associated with retail trade SIC codes were

extracted, and were converted into shapefile format using the R maptools package.5 The next

step of the data preparation process was to attach a census subdivision identifier code to each

location’s attribute record, which was accomplished using a point-in-polygon method.

Specifically, it was determined which census subdivision polygon each retail outlet fell into

(through the use of Statistics Canada’s census subdivision polygon shapefile for British

Columbia), and the identifier code of that census subdivision was then attached to the attribute

data for each retail outlet. The census subdivision identifier allowed us to easily assign a

census metropolitan area code to each retail outlet. Following this, a new shapefile was created

by extracting records only for those retail outlets located in the Greater Victoria census

metropolitan area. This step was carried using the ogr2ogr utility in the GDAL library.

5 The shapefile format was created by ESRI, and is the de facto standard format for vector GIS data layers. These
files can be read and manipulated by a number of GIS programs and other software tools.
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The last step in the process is to re-project the data from latitude/longitude coordinates

(also called geographic coordinates) into UTM (Universal Transverse Mercator) zone 10N

coordinates, which was also accomplished using the ogr2ogr utility. This step is necessary

because the clustering tools we are using work with planar Euclidean distances between points,

while the latitude and longitude coordinates give the location of a point on an ellipsoid

representing the earth, and are measured in degrees.6 The problem of converting geographic

coordinates into planar coordinates is one that has been addressed by cartographers for literally

centuries.7 A commonly used planar coordinate system for geographic data is the UTM system.

The reason for its popularity is that the projection from three dimensions to two dimensions is

done with minimal distortion since it is based on dividing the earth into 60 zones running west

to east, and providing a projection from geographic coordinates to planar coordinates for each

zone and each hemisphere. Coastal British Columbia falls into the 10th UTM zone, and is

located in the northern hemisphere; hence it is located in UTM zone 10N.

4.1 K-Means Cluster Analysis of the Data

When using the K-Means method, we must specify the number of clusters as an input

parameter for the algorithm. Since we do not have any a priori information about the

appropriate number of clusters for the 2394 retailers in Victoria, we tried every possible

solution within a range of two to 150 clusters (assuming 150 clusters would be large enough to

cover the optimal number of clusters). We then evaluated the performance for all of the

possible cluster solutions using two clustering validation measures, the SD index of Halkidi et

6 The earth is not perfectly ellipsoidal in shape. However, it is very close, and the datum our coordinates are based
on (the North American Datum of 1983) assumes the earth is ellipsoidal (the underlying ellipsoid is the Geodetic
Reference system of 1980).
7 An introductory book on Geographic Information Systems (such as Clarke, 1997) provides much greater detail
on the cartographic aspects of projections and coordinate systems.
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al. (2001) and the CpSp index developed in the previous chapter. Figure 4.1 shows the SD

index for the 149 solutions considered. An examinations of the figure reveals that the index

takes an initial jump between two and four clusters, and then rapidly decreases until the eight-

cluster solution is reached, and then begins to “chatter” over the remaining range of the data

(from 9 to 150 clusters). The actual minimum point for the SD index (an index for which lower

values are preferred) comes at the 141-cluster solution, with a value of 0.3094879 for the

index. However, there are a number of values nearly as low (in particular, for the 58- and 150-

cluster solutions) as the index chatters along.

Based on the SD index, there is no real clean solution for the data. Using the criteria that

the “best” solution is the solution for which the SD index obtains its lowest value leads us to

the 141-cluster solution. Figure 4.2 shows the clustering of the data for the downtown core of

Victoria based on this solution, while Figure 4.3 shows the clustering of the data for an area

with a very sparse concentration of retail outlets.

An examination of Figure 4.2 lets us clearly see the extent to which the K-means algorithm

attempts to form circular clusters. However, it produces these circular clusters at the expense of

creating essentially no separation between many of the clusters, while breaking up natural

clusters that run along a street because the underlying “line clusters” are not circular in shape.

At the same time, Figure 4.3 illustrates how the distances between cluster members become

extremely large in areas with a sparse concentration of stores since the algorithm does not

allow for noise points.

The CpSp based analysis of the K-means solutions can be found in Figure 4.4. This figure

reveals that the implied “best” solution is very different than for the SD index based analysis.
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Figure 4.1 The SD Index Analysis of K-Means Solutions for Victoria

Instead of 141 clusters, CpSp indicates that the “best” solution corresponds to the three-

cluster solution (which is shown in Figure 4.5), a solution consisting of three very large

clusters, that is of little practical use given the extent of the agglomeration. What is interesting

is that the CpSp index is much more definitive in its “judgment” with a fairly high peak for the

three-cluster solution. A closer examination of the Sp index (northeast) panel of Figure 4.4

indicates, unsurprisingly, that it is the separation between clusters (or rather the lack thereof)

that is driving this solution. Specifically, as we move from two to three clusters there is a drop

in the Sp index to nearly zero percent of the maximum possible separation.
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Figure 4.2
8 The 141-Cluster K-Means Solution for the Victoria Downtown Core

8 In Figure 4.2 and elsewhere, X is the east-west coordinate with UTM zone 10N, and Y is the north-south
coordinate, measured from the equator for locations north of the equator.
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Figure 4.3 The 141-Cluster K-Means Solution for an Outlying Area of Greater Victoria
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Figure 4.4 The CpSp Analysis of the K-Means Solutions for Greater Victoria

Overall, the analysis of the possible K-means solutions reveals that the use of this method

is not at all appropriate in this type of setting. This can be seen in the widely varying values of

the number of clusters that appear to optimal or near optimal, according to the criterion

measure used. However, the problem for retail district data is more fundamental. As mentioned
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above, these results are primarily due to the maintained hypothesis of the algorithm that

clusters are circular in nature, when in this instance this assumption is simply incorrect.

Figure 4.5 The 3-Cluster K-Means Solution for Greater Victoria

4.2 Model-Based Clustering of the Data

Ward’s method is one of the most widely used clustering approaches in marketing. As noted

above, Ward’s method is a special case of model-based approach, an approach that can

determine the optimal cluster solution (in terms of both the number of clusters and the model it
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is based on) using of the Bayesian Information Criterion, or BIC (Fraley and Raftery 2003).

The models differ in their assumptions concerning the volume, shape, and orientation of the

clusters. As a result, the method has the potential to provide a better clustering solution than K-

Means (albeit, it still attempts to form convex clusters, just much more flexible ones), but is

closely related to methods traditionally used in marketing applications.

Figure 4.6 The EEV and EII Model-Based Clustering Results for Victoria

As with our K-Means analysis, we set the possible number of clusters in a solution from

two to 150, and the algorithm examines ten different underlying models. Based on the BIC, the
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“best” model for the data is the EEV9 (equal volume, equal shape, and variable orientation)

model for a solution with 67 clusters. Figure 4.6 shows the BIC value for this model across the

possible different number of clusters, as well as the same information for the EII model (which

corresponds to Ward’s method). For model-based clustering, larger values of the BIC are

preferred to smaller values. An examination of this figure reveals that the BIC for both models

9 The first letter stands for volume of the clusters, the second for shape of the clusters, and the third for
orientation. E stands for equal, V stands for variable, and I stands for identity. A complete discussion of the
different possible models that can be generated in model-based clustering can be found in Fraley et al., (2003).
The statistical function used for this analysis (the R mclust library) tests ten different model structures.
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Figure 4.7 The 67-Cluster EEV Solution for the Victoria Downtown Core

rises fairly rapidly as the number of clusters in the solution increases, quickly reach a plateau

(with the EEV having a higher value for the BIC within the plateau), and then begins to

“chatter,” much as we found for the SD index for the K-means solution. As a result, the figure

reveals that the EEV model is preferred over the EII model, but there is not a definitive

indication of the appropriate number of clusters to use in the solution.



65

Based on the largest BIC value, we select the EEV model’s 67-cluster solution as the one to

examine in more detail. Figure 4.7 shows the clustering pattern produced by this solution for

Victoria’s downtown core. An examination of the figure shows that most of the clusters are

fairly ellipsoidal in nature. However, they are still incapable of adequately capturing “string

clusters” that run along a street in a road network, and, therefore, do not match the “ground

reality.” As with the K-Means results, the cluster separation seems extremely minimal for

larger numbers of clusters. Also as with the K-Means methods, the outliers cannot be identified

in this application. In addition to the above two weaknesses, and consistent with it being an

algorithm that runs in O(n2) time, it also took a relatively long time to perform the model-based

analysis for Victoria (more than two hours on a machine with an Intel Pentium Dual Core

Processor with a clock speed of 2Ghz and 4GB of 667 MHz memory), when the maximum

number of clusters was set at 150. If the number of points becomes much larger, such the over

16,000 retail outlet points for Vancouver, the use of the model-based approach becomes

impractical.

4.3 The DBSCAN Clustering of the Data

Some of the advantages of DBSCAN (Ester, et al., 1996) are that outliers (or “noise points”)

can be identified, there is no shape restriction on the clusters (such as a convexity), and the

computational efficiency is fairly good (being on the order of O(nlog(n)). In addition, the way

the method determines the cluster solution through density connectivity (as discussed in

Chapter 2) is similar to the way a customer walks or drives in a retail district. Consequently,

the way the retail districts are formed using DBSCAN actually mimics the underlying network

effect among retailers within a district. Therefore, we expected that DBSCAN would

outperform both the K-Means and model-based approaches.
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We ran the DBSCAN algorithm on the Greater Victoria data with epsilon radius values that

varied from 20 to 10,000 meters, in increments of 20 meters (a total of 500 separate solutions).

Given our discussion in Chapter 3, MinPts for the runs were set at two. It took roughly an hour

of computer time to obtain all 500 solutions.

Figure 4.8 The CpSp Analysis of the DBSCAN Clustering of Greater Victoria
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We used the CpSp index to determine the length of the epsilon radius since it balances both

compactness (inside density) and separation (outside density) to evaluate the performance of

the possible cluster solutions. The CpSp index indicates that the “best” solution corresponds to

an epsilon radius of 4100 meters, resulting in just two clusters, one with three points, and the

other with all the remaining points. It is readily apparent that with 2394 retail outlets

distributed
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Figure 4.9 The 26-Cluster DBSCAN Solution for Greater Victoria

unevenly in the Victoria area, neither the number of clusters nor the epsilon radius of 4100

meters is reasonable. Therefore, we conducted a second analysis within the one large cluster,

and obtained a more reasonable (but still imperfect) result with an epsilon radius of 840 meters,

resulting in 26 clusters.
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Figure 4.10 The 26-Cluster DBSCAN Solution for the Victoria Downtown Core

Figure 4.8 shows the CpSp analysis after the outlying three stores were deleted from the

data, Figure 4.9 illustrates the clustering solution obtained with an epsilon radius of 840 meters

for all of Greater Victoria, while in Figure 4.10 we show (in more detail) the same solution for

the clustering for the Victoria downtown core. Figure 4.9 reveals that this solution generates

clusters, as well as a number of noise points. However, the clusters that are created tend to be
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over agglomerated. In particular, as Figure 4.10 reveals, the downtown core of Victoria has

been agglomerated into a single cluster, something that is clearly undesirable.

The key reason, we believe, for our disappointing result is that the value of 840 meters is

very large, especially for the downtown area. As we examine the geographic distribution of

stores in the greater Victoria area visually, it is apparent that there is a large variation in the

density of stores over the area. However, the fixed epsilon radius in the density-based approach

cannot reflect the retailer density variation, and appears to take on a high value to

accommodate the data structure. In addition, as was indicated by the drastic change in the

clustering solution when three points were removed from the data set, the existence of distant

outlying points has an enormous impact on the clustering solution. While disappointing, this

latter effect is not surprising. What is driving this is the ability to obtain a large minimum

separation (driving the value of Sp upwards) when there are large distances between outlying

points. Taken together, these two factors result in some overly large clusters in terms of the

number of stores and geographic area covered in some areas.

We initially expected these problems to be avoided by the density-based approach. In this

case, however, the density-based approach results in an epsilon radius that is too large for the

more densely distributed stores in the downtown area. For reasons that are different, but with

results similar, to those found using the K-Means and model-based approaches, the density-

based approach cannot successfully handle the spatial clustering for this complicated data set

with large variations in observation density. As discussed next, we look to improve the density-

based approach in order to overcome the problems identified here.
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4.4 Existing Problems and Potential Solutions

As the clustering results for Victoria indicate, none of the three approaches (K-Means, model-

based, and density-based) performed well on a fairly large data set of store locations in a mid-

size metropolitan area. The K-Means approach simply seems inappropriate given its

underlying assumption to capture a pattern in which retail districts form fairly thinlines that run

along a road network. As a result, it does not have a stable clustering solution across validation

methods. The model-based approach, despite allowing for much more flexible cluster shapes,

also seems incapable of capturing the “strings” of stores that tend to characterize many retail

districts, at least for Greater Victoria. More importantly, its computational requirements limit

the usefulness of the approach since it cannot be used in larger metropolitan areas.

The current density-based approach can mimic the thin, string-like structure of the data,

and allows for some points to remain isolated (becoming a noise point). However, it assumes a

fixed epsilon radius value, and the CpSp validation index is very sensitive to distant outlying

points, which leads to unacceptable results in this case.

We believe that the density-based approach can be improved upon in a way that makes it

suitable for the problem at hand. As we have already implicitly suggested, there are two

underlying issues. First, while we have so far treated Greater Victoria as a monolithic entity, it

is really a region that contains a number of different “communities.” Communities could be

municipalities such as Esquimalt or Saanich in Greater Victoria, they could be well defined

neighborhoods within a municipality (such downtown Victoria), or they could even consist of

abutting “neighborhoods” of different municipalities.10 Downtown and urban communities

often have a higher population density, and hence a very different “scale,” than the areas

10 While we do not know of a cross-municipality “community” in Greater Victoria, the Kingsway corridor that lies
partially in Vancouver and partially in Burnaby in the Greater Vancouver metropolitan area.
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surrounding them. As a result, it is likely to be more appropriate to create clusters at the level

of the community rather than at the level of the metropolitan area. In addition, there is likely to

be heterogeneity even within communities, likely due to factors such as local population

density, which will have a within community effect on cluster structure.

To illustrate these two points, Figure 4.11 provides a plot of the retail outlets coded by the

total population density (based on the sum of both the local residential and workforce

population) of the census designation area in which each outlet is located, while Figure 4.12

provides the same plot, but is focused on the downtown core of Victoria. An examination of

Figure 4.11 reveals that, unsurprisingly, there is a very strong relationship between the total

population density of an area and the concentration of retailers in that area. Moreover, it

strongly suggests that the concept of densely populated communities separated by

comparatively less populated areas is consistent with “ground truth” (at least in Greater

Victoria). The notion that within communities the “micro-level” retail density (and hence

cluster structure) is likely to vary with population density can be clearly seen in Figure 4.12. In

the next chapter we will present an approach that addresses these two issues.
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Figure 4.11 The Population Density for Retail Locations in Greater Victoria
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Figure 4.12 The Population Density for Retail Locations in the Victoria Downtown Core
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5 A Two-Step Approach to Spatial Density Clustering

At the end of the previous chapter we discussed the issues of the importance of “communities”

in determining the appropriate “scale” of an area to be clustered and the potential need to

account for heterogeneity within communities (often induced by factors such as “micro-level”

population density differences) on cluster structure. In this chapter we present a two-step

approach to spatial density clustering that addresses both of these issues. In the first step a set

of “communities” are determined via a graph theory based method. The second step consists of

clustering the communities identified in a way that allows for intra-community heterogeneity

to have an influence on cluster formation. To do this, we generalize the DBSCAN method of

spatial density clustering by allowing the epsilon radius to vary in size with a micro-level

factor, such as total population density, in a systematic way. We call this generalization of

DBSCAN, VESDC, which is an acronym that stands for variable epsilon spatial density

clustering.

While in application we would create “communities” first, and then cluster within

communities, in this chapter we will reverse this order and first present the VESDC method

along with a number of surrounding issues, and then describe our proposed method for

determining communities in the first step. In addition to the development of the methods, we

also demonstrate the use of the methods with simulated data to allow the reader to gain some

understanding of the performance capabilities of the proposed methods.

5.1 Clustering Within Communities (Step 2)

In this section we present the VESDC method and then present an extension of the CpSp

cluster validation method to assist in determining the settings of any underlying parameters
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needed to link the size of the epsilon radius to some underlying factor. An extension to the

CpSp method is needed since in some sense, when we allow the epsilon radius to vary, we are

locally rescaling the space. In more concrete language, we are effectively assuming that a

meter of distance is in some sense “longer” in a densely populated area than it is in a sparsely

populated area. For the case of population density, this notion has a great deal of intuitive

appeal since we would expect that driving times per unit distance are longer in densely

populated areas compared to less densely populated areas, and we would also expect that the

use of walking (as opposed to driving) as a mode of transportation would be higher in densely

populated areas. In turn, these differences should have an influence on the structure of retail

districts.

The need to extend the CpSp method arises because the measures of compactness and

separation are unique to a particular assumed scale, so when we compare two different

clustering solutions (that vary slightly in the scaling implied by the different set of epsilon

values used for the two solutions) we could potentially be making an apples and oranges

comparison. As a result, there is a need to make one solution “conform” to the scale of the

solution it is being compared against, and obtaining this conformity in the underlying scale is

what the extension attempts to accomplish. Conversely, and perhaps surprisingly, it turns out

that extending the basic DBSCAN method to allow different points to have different epsilon

radius values is fairly straightforward. In addition to developing these new methods, we also

provide three applications (to simulated data sets) in ordering to gain some sense of how well

the methods perform before applying them to “real world” data in the next chapter.
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5.1.1 Variable Epsilon Spatial Density Clustering

As indicated above, the VESDC method represents a simple generalization of the DBSCAN

method of clustering. In the paper that introduces DBSCAN, Ester et al., (1996) call the length

of the radius around a point used to define an epsilon neighborhood “Eps” (while we have

called it “epsilon”), in this sub-section we will use their notation for consistency and ease of

comparison. The other important aspect of notation in Ester, et al., (1996) that needs to be

discussed is NEps(p), which gives the set of points that are within the epsilon neighborhood of

point p. The definition of this set is

NEps(p)  q  D | dist(p,q)  Eps , (5.1)

where D is the set of points in the data set, and dist(•) is a distance function (e.g., Euclidean,

Manhattan, etc.).

An extension to allow for a variable epsilon radius requires that we make epsilon a vector

for which all elements are strictly positive (how this is done is an application implementation

detail), and redefine the set of points that are in the epsilon radius of point p (NEps(p)) as

NEps(p)  q  D | dist(p,q)  min Epsp ,Epsq  , (5.2)

where Epsp is the epsilon radius for point p and Epsq is the epsilon radius for point q. In words,

what this means is that for points p and q to be epsilon neighbors, it must be the case that point

p is no further away from q than Epsq, and point q is no further away from p than Epsp. Figure

5.1 illustrates two situations, one where A and B are epsilon neighbors, and one where C and D

are not. After making these two changes, the remaining five definitions and the two lemmas

that validate the correctness of their algorithm follow directly. In addition, if Epsp = Epsq =

Eps, then (5.1) and (5.2) return identical results. Consequently, we can view DBSCAN as a

special case of VESDC.
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Determining if this revised definition of epsilon neighbors is met algorithmically is also

straightforward, and requires no additional near neighbor searches beyond what is needed for

the original DBSCAN method.11 Specifically, we first find all the points within the epsilon

radius

Figure 5.1 An Illustration of the New Definition of Epsilon Neighbors

of each point. Next, if point q was found to be within Epsp of p, we determine if p was within

Epsq of q, if it is then q remains an epsilon neighbor of p and vice versa. On the other hand, if p

is not within Epsq of point q, then point q is removed from the epsilon neighbor list of point p.

5.1.2 CpSp Index Modified for Variable Epsilon Radius Sizes

Fortunately, there is a direct (inverse) relationship between the size of the epsilon radius and

the local “scale” of distance. As an example, if the epsilon radius for point A is 10 meters,

while the epsilon radius for point B is 20 meters, then a distance of one meter is re-scaled to be

twice as long at point A as it is at point B. Since distances are ratio scaled, we are actually only

interested in the relative distances between objects. Consequently, we can simply divide a

11 The near neighbor search is implemented with the ANN library of Mount and Arya (Mount, 2006) using a kd-
tree and an exact search.
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distance at a point by the epsilon radius of that point. Going back to our example, the scaled

distance for 1 meter at point A becomes 0.1 (1/10), while the scaled distance becomes 0.05

(1/20) at point B.

The problematic concept in the last paragraph is “a distance at a point,” since points have

zero area. What we are really interested in is the distance between points. In what follows we

will rely on what we call a “weighted distance” between two points, which we define as the

Euclidean distance between two points divided by the average of the epsilon radius values of

those points. The example of the last paragraph can help to make this concept more concrete.

Assume that points A and B are 10 meters apart, and the epsilon radius value for each point are

as they were before (i.e., 10 meters for point A and 20 meters for point B), then the average of

the epsilon radius values is (10+20)/2 = 15, and the weighted distance between the points is

10/15 ≈ 0.67. Obviously, this measure of weighted distance can only be viewed as an 

approximation to the “actual” weighted distance. Fortunately, we are typically measuring the

distances between neighboring points, so the errors introduced by the approximation should be

fairly small.12

Given this definition of the weighted distance, we can now describe the scaled versions of

the measures underlying the CpSp index, beginning with the scaled version of the Comp

measure. In Chapter 3 we defined Comp as the maximum value across clusters of the sum of

the edge Euclidean distances for the MST of each cluster. For the scaled version of Comp we

use the weighted distances (rather than the standard Euclidean distances) to construct the MST,

and use the sum of the weighted edge distances for the measure. Similarly, the maximum

possible compactness (Cmax) is equal to the sum of the weighted edge distances for the MST of

12 Developing a more exact measure may be possible, but would likely be computationally expensive.
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the entire data set. Both the minimum possible compactness (Cmin) and minimum possible

separation (Smin) is taken to be the minimum weighted distance between any two points in the

data set. The maximum possible separation (Smax) is equal to the longest weighted distance

associated with the edges of the Gabriel graph of the points. Finally, the Sep measure is equal

to the shortest weighted distance between any two points not in the same cluster for the entire

data set.

The above measures are appropriate for a given vector of epsilon radius values. If the

elements of that vector change differentially, then the relative scaling of the underlying

measures (e.g., Cmax, Smin, etc.) can change relative to one another, resulting in a comparison

across solutions that is non-comparable.13 Consequently, in comparing two cluster solutions

(each based on a different vector of epsilon neighborhoods), there is a need to hold the vector

of epsilon radius values constant for the purposes of the comparison.

The use of an example here may help to fix ideas. The way we will use the modified CpSp

measure is to determine how to set the parameters of a function that links an underlying

variable to the length of the epsilon for a point. As a simple example of this consider the case

(which we empirically examine later in the chapter via synthetic data) where there are two

types of areas, high-density areas and low-density areas, and we believe that points in high-

density areas should have a smaller epsilon neighborhood than points in low-density areas.

Assume that we already know what the correct value of the epsilon neighborhood for points in

low-density areas, and are interested in determining the appropriate epsilon neighborhood

value for points in high-density areas (we label this value MinEps because it is the smaller of

13 If the value of the epsilon radius is the same for all points, then a change in the epsilon radius will leave the
relative distances across points unchanged. It is the possibility of a differential change in the epsilon radius values
that causes the problem.
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the two epsilon neighborhood values). Further assume that we are determining the correct

value by incrementing the value of MinEps along a range of values. Let there be two adjacent

candidate MinEps values, MinEpsi-1 and MinEpsi, with MinEpsi-1 < MinEpsi. Define Epsi-1 as

the vector of epsilon radius values when MinEps is at the level MinEpsi-1, and Epsi as the

vector of epsilon radius values when MinEps equals MinEpsi. In addition, let Ai-1 be the

assignment of points to clusters when Epsi-1 is the vector of epsilon neighborhoods, and let Ai

be the cluster assignments of points when Epsi is the vector of epsilon radius values.

Having set out the basic notation, we define Comp(Ai-1 | Epsi) as the compactness value of

the clustering solution when the epsilon radius vector corresponds to Epsi-1, but is evaluated

using the weights for the edge distances that correspond to Epsi, while Comp(Ai | Epsi) is the

compactness level when both the clustering solution and the distance weights when the epsilon

radius vector is Epsi. One measure of interest is the change in the Cp index when we go from

MinEpsi-1 to MinEpsi, which we can measure as

Cpi 
Cmax (Epsi ) Comp(Ai | Epsi )

Cmax (Epsi ) Cmin (Epsi )


Cmax (Epsi ) Comp(Ai1 | Epsi )

Cmax (Epsi ) Cmin (Epsi )
,

where Cmax(Epsi) is the maximum possible compactness when the distance weights correspond

to the epsilon radius vector Epsi, and Cmin(Epsi) is the minimum possible compactness when

the weights are given by Epsi. In a similar fashion we can measure the change in the Sp index

as

Spi 
Sep(Ai | Epsi )  Smin (Epsi )

Smax (Epsi )  Smin (Epsi )


Sep(Ai1 | Epsi )  Smin (Epsi )

Smax (Epsi )  Smin (Epsi )
.

Finally, we can measure the change in the CpSp index as
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CpSpi 

Cmax (Epsi ) Comp(Ai | Epsi )

Cmax (Epsi ) Cmin (Epsi )











Sep(Ai | Epsi )  Smin (Epsi )

Smax (Epsi )  Smin (Epsi )











Cmax (Epsi ) Comp(Ai1 | Epsi )

Cmax (Epsi ) Cmin (Epsi )











Sep(Ai1 | Epsi )  Smin (Epsi )

Smax (Epsi )  Smin (Epsi )











.

While the changes in these three measures are of great importance, what is more closely

related to the various CpSp measures (and the plots of those measures) presented in Chapter 3

is the cumulative sum of those changes up to a point. We can define the cumulative sum for the

Cp measure up to and including the jth incremental value of MinEps (MinEpsj) as

Cp j  Cpi

i2

j

 .

Similarly, we can define the cumulative sum of the Sp measure as

Sp j  Spi

i2

j

 ,

and the cumulative sum of the CpSp index itself as

CpSp j  CpSpi

i2

j

 .

Up to this point we have motivated the derivations relative to an example where we are

searching over the possible values of the parameter MinEps. However, any parameter that

alters the elements of the epsilon radius vector can be substituted into the equations above. As

a result, these correspond to the general CpSp measures modified to account for variable

epsilon radius sizes.
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5.1.3 Validating the Modified Methods against Simulated Data

5.1.3.1 Creating the Simulated Test Data

For this validation exercise, we wanted to create a set of test data sets that more closely

mimicked the patterns we actually observe for retail outlet locations than was the case for the

simulated data sets that were used for illustrative purposes in Chapters 2 and 3. As we saw in

Chapter 4 for the case of Greater Victoria, retail outlets often cluster along a street. As a result,

many of the clusters resemble thin strings of outlets when plotted, hence the term “string

clusters” that was used in the previous chapter. We also decided to mimic a grid layout of

streets that is common in many North American cities. The two considerations led us to the

creation of both horizontally and vertically oriented clusters that produce a grid pattern

(allowing string clusters to intersect one another). Finally, we wanted to create both high-

density and low-density areas.

To accomplish all our data creation objectives, each synthetic test data set contains two

different unique “panes”, one of high-density, and one of low-density. The panes are then laid

out in a matrix, with the high-density pane in the northwest cell of the matrix, and the low-

density pane being replicated in the remaining cells of the table (Figure 5.2 illustrates this

layout for the first simulated data set). The panes differ in the number of points they contain,

with high-density panes having 440 points and low-density planes having 66 points. Each pane

has the
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Figure 5.2 The First Simulated Data Set

same area of 10,000 square map units. High-density panes were created by drawing the mean

coordinate values from a uniform distribution that was bounded between 12 and 88 map units

for 10 horizontal and 10 vertical oriented clusters. The x (horizontal) mean coordinate for a

horizontal cluster was rounded to be an integer value to obtain the desired grid effect for the

clusters. An identical approach was taken for the y (vertical) mean coordinate for vertical
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clusters. In the case of horizontal clusters, the x-coordinate values for the 20 members of a

cluster were drawn from normal distribution with the mean corresponding to the x-coordinate

mean for the cluster, and a standard deviation equal to 6, while the y-coordinate values equaled

the cluster y-coordinate mean plus a very small amount of normal noise (with mean of zero and

a standard deviation of 0.1) to avoid potential problems with creating the Delauney

triangulation graph of the data. If one of the selected x-coordinate values resulted in either a

negative x-coordinate value, or an x-coordinate value that was greater than 100, rejection

sampling was used to avoid this from occurring. Consequently, all points fell within 0 and 100

map units. The creation of the vertical oriented clusters was done using a directly analogous

procedure. Finally, 40 randomly chosen points from a uniform distribution that was bounded

between 0 and 100 was added to the data in order to mimic noise points.

Essentially identical procedures were used to create the low-density panels. The exceptions

were that only 3 vertical and 3 horizontal oriented clusters were constructed, each cluster had

only 10 members as opposed to 20, and only six randomly chosen points were added to the

data.

5.1.3.2 The Simulated Data Set Analysis

We begin with a detailed discussion associated with clustering the first simulated data set using

the methods developed in this chapter, and then briefly summarize the results from clustering

two other data sets using these methods. The first example was not selected at random from the

set of simulated data testing we have conducted. Rather, it was chosen because it exhibited

some challenging aspects in clustering the clustering process.

To provide a benchmark by which to compare the results from the VESDC clustering of the

full data set, we begin by showing the DBSCAN results for each of the two unique panes.
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Figure 5.3 provides the DBSCAN results for the high-density panel, while Figure 5.4 provides

the DBSCAN results for the low-density panel. An examination of Figure 5.3 reveals a very

clean clustering of the high-density panel, with a clear peak in the CpSp index at 5 map units,

indicating that the “best” epsilon radius for the high-density area is 5 map units. A similar

Figure 5.3 The DBSCAN Results for the High Density Panel of the First Simulated Data

Set
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examination of Figure 5.4 also indicates a fairly clean clustering solution. Albeit, there is a

fairly large range of the epsilon radius values (from 13 to 32 map units) that captures the same

clustering solution. However, given the distance between the outlying group in the lower left-

hand corner of the figure’s southeast panel, this result isn’t surprising. What is encouraging is

that the “best” epsilon radius value for the high-density area is less than one-half the size of the

Figure 5.4 The DBSCAN Results for the Low Density Panel of the First Simulated Data

Set
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epsilon radius value for the low-density area (5 map units versus 13 map units), which is

consistent with our expectations.

Figure 5.5 presents the DBSCAN results for the entire (four pane) data set. The results

reveal that the best epsilon radius based on CpSp index is between 20.5 and 31.5. What is

interesting is that start of the “best” range begins at a much larger value of the epsilon radius

than was the case
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Figure 5.5 The DBSCAN Results of the First Simulated Data Set

when the low-density panel was analyzed in isolation. In any event, this high value of the

epsilon radius results in all the points in the high-density pane (along with some of the points

belonging to the low-density areas) to be in a single cluster. This over agglomeration of points

in dense areas is similar in nature to the problems that were seen in applying DBSCAN to the

Greater Victoria data.
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As discussed earlier in this chapter, given the structure of the data, where a point is either in

a low or high-density area, the appropriate way to parameterize the function that links an

underlying factor to the epsilon radius is a simple indicator function of the form

Epsi 
MinEps, density  high

MaxEps, density  low





,

where Epsi is the epsilon radius for a particular point in the data set. In this formulation, there

are two parameters that need to be determined, MinEps and MaxEps.

Based on the DBSCAN clustering results for the data set as a whole (Figure 5.5), it would

appear to the analyst that the best epsilon radius value for that solution would be more likely to

be near the value of MaxEps than MinEps. As a result, the natural thing to do is to set MaxEps

to 20.5 (the start of the best range), and then search over possible values of MinEps to find one

that improved the cumulative change in the modified CpSp index. Figure 5.6 provides the

CpSp analysis associated with searching for the value of MinEps over a range of values from

0.5 to 20.5, incremented by 0.5. An examination of this figure reveals that it is strongly bipolar,

with a sharp peak at a MinEps value of 5, peaking again in the range from 18.5 to 20.5.

Addressing this situation, which is actually fairly uncommon in the simulated data examples

we have run, is what makes this data set comparatively challenging. The first peak has a

cumulative CpSp index value that is very slightly below that of the second peak, while the

value of MinEps at the second peak replicates the unsatisfactory solution found using

DBSCAN. What should the analyst do in this situation? We argue that analyst should explore

both potential solutions.

Assuming the analyst realized that the second peak simply replicates the DBSCAN

solution, and opted to start with a MinEps value of 5, the natural thing to do, in EM algorithm-
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like fashion, is to set MinEps to 5, and grid search over new potential values of MaxEps to see

if the cumulative CpSp measure could be improved. The results of doing this over a range of 5

to 34 is shown in

Figure 5.6 The Variable Epsilon CpSp Analysis of MinEps for the First Simulated Data

Set
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Figure 5.7. An examination of this figure reveals that the start of the “best” range is 20.5,

indicating that we have converged with a MinEps of 5, and a MaxEps of 20.5. However, an

examination of the cumulative Cp measure (the upper left panel in the figure) and cumulative

Sp measure (the upper right panel in the figure) indicates that changes in the cumulative CpSp

are

Figure 5.7 The Variable Epsilon CpSp Analysis of MaxEps for the First Simulated Data

Set
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entirely due to changes in the Sp measure, with no movement whatsoever in cumulative Cp.

This suggests to us that there is less information available for setting parameter values when

two parameters vary as to opposed to only a single parameter, and represents a limitation of our

proposed approach. Having said this, it does remain a very useful, albeit imperfect, tool for

determining parameter values. To illustrate this point, Figure 5.8 provides the final VESDC
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Figure 5.8 The VESDC Solution for the First Simulated Data Set

clustering solution. A comparison of this figure with Figures 5.3 and 5.4 reveals that this

solution corresponds to the exact solutions obtained when the two panels are analyzed

individually. As additional evidence of the efficacy of the proposed methods, Figures 5.9 and

5.10 provide both the DBSCAN solutions for the separate high- and low-density panes, as well

as the final VESDC
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Figure 5.9 The VESDC and DBSCAN Results for the Second Simulated Data Set
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solutions for the pooled data sets for two different simulated data sets. An examination of these

figures reveals that while the VESDC solution does not perfectly correspond to the separate

DBSCAN solutions for the high- and low-density panes, the solutions are very close.

Moreover, a visual inspection of the clustering solutions suggests that the DBSCAN solutions

are no better, and perhaps worse, than the pooled VESDC solution. Overall, the VESDC

approach, along with the modified CpSp measures to assess clustering parameters, appear to be

able to address aspects of the intra-community complexity that current clustering methods

seem incapable of addressing. However, as will be illustrated shortly, even these methods

breakdown if there is not a reasonable definition of “community” to base detailed clustering

on. It is to the issue of defining “community” to which we now turn.

5.2 Creating “Communities” (Step 1)

Our definition of “community” is very different than the typical definition of this concept.

Specifically, what we mean by community is an area that is sufficiently compact that detailed

VESDC clustering can work in a reasonable manner. In an effort to illustrate what we mean by

this, we use a modified version of the first simulated data set as an example, which is shown in

Figure 5.11. In this data set, the panes, and the placement of those panes, is identical to the

original data set shown in Figure 5.2. What differs is that instead of the panes just touching one

another, a buffer of 150 map units in both the vertical and horizontal dimensions now separates

them.14

When we do a DBSCAN analysis on this data set we obtain a “best” epsilon radius of 34.5

meters. If we then set MaxEps to this value, and search over potential values of MinEps we

14 We have also conducted the analysis we are about to present with smaller 50 map unit buffers, and obtained
identical results. We use the 150 map unit buffers here since it makes visual imagery more striking.
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obtained the analysis contained in Figure 5.12. A comparison between this figure and Figure

5.6
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Figure 5.10 The VESDC and DBSCAN Results for the Third Simulated Data Set
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reveals a number of similarities. However, the critical difference between the two figures is the

height of the first mode (at a MinEps value of 5 map units). In Figure 5.12 this mode is

comparatively much shorter than it is in Figure 5.6. As a result, an analyst would likely select a

MinEps value along the upper plateau in the cumulative CpSp plot (the lower panel in the

figure). This value of MinEps, along with the value of MaxEps results in all the points in each

pane to be agglomerated together into a single cluster, resulting in four clusters overall, one for

each pane. To avoid this problem, each pane must be treated as a “community,” with the

clustering done at the community level.

Figure 5.11 The Separated Panel Version of the First Simulated Data Set
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Figure 5.12 The Variable Epsilon CpSp Analysis of MinEps for the Separated Panel Data

Set

The method we propose for creating “communities” relies on yet one more sub-graph of

the Delauney triangulation of the full set of points. In this instance we propose the use of the

relative neighbor graph of the points (Toussaint 1980; de Berg et al., 2008, p. 217).

Specifically, this process involves creating the relative neighbor graph of the full set of points
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and then removing from the graph edges between relative neighbors that are deemed too far

from one another to allow them to fall into the same community. Doing this results in a set of

disconnected sub-graphs. Both the relative neighbor graph and the “trimmed” set of sub-graphs

(based on removing edges from the relative neighbor graph that exceeded 40 map units in

length) for the first simulated data set whose panes have been separated by 150 meters buffers

is shown in Figure 5.13. The final step is then to apply VESDC clustering (or in this specific

example DBSCAN clustering since the sub-graphs are the original panes, each of which has a

constant density) to the points in each sub-graph (community) that has a sufficient number of

points to cluster (we will see in the next chapter that a large percentage of the identified sub-

graphs in real world data have a very small number of members).

Determining what distance to use for trimming the relative neighbor graph does require

some domain specific knowledge. However, the level of domain specific knowledge is fairly

minimal, and often amounts to having a minimally informed opinion. In the case of developing

retail districts, we have decided that the appropriate distance between relative neighbors that is

deemed too far is 400 meters. This conclusion was based on the notion that having to travel

roughly a quarter mile to get from one store to the next in some direction was simply too far to

consider these stores neighbors. While this assessment is a bit “off the cuff,” the 400 meters

rule seems to work well in empirical application.



102

Figure 5.13 The Relative Neighbor Graph and Trimmed Sub-Graphs of the Separated

Panel Data Set

5.3 Summary

In this chapter we have presented a set of a two-step clustering approach and companion

cluster validation tools that appear to be able to address complex spatial point data. While the

tools are not perfect (we expect that a number of improvements will be made overtime,

particularly to the modified CpSp validation tools), they provided much improved solutions as

compared to currently available approaches. With these new tools in hand, we now return to

Greater Victoria.
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6 Greater Victoria Revisited

In this chapter we illustrate the two-step clustering approach developed in the last chapter to

Greater Victoria. We will provide the results of each step in turn, as well as the assumptions

and choices we made along the way.

6.1 Step 1

As was indicated in our discussion of the first step in the last chapter, we assume that two

relative neighbors that are separated by more than 400 meters cannot fall into the same

“community.” When we apply this rule to trim the relative neighbor graph of the Greater

Victoria retail outlet locations, the result is a set of 189 disconnected sub-graphs. Figure 6.1

provides a plot of these Greater Victoria “communities.” An examination of this plot reveals

that there is one extremely large community in the southeast of the metropolitan area, which

corresponds to the Victoria downtown core (something we saw in Chapter 4 when examining

the relationship between total population density and retail outlet density). In addition, there

are a number of smaller “communities” along the eastern edge of Greater Victoria as you go

north from the downtown core. In addition there are a number of communities immediately to

the east of the downtown core as well. However, one thing that is striking is that many of what

we have been calling “communities” consist of one or two relatively isolated points, a pattern

particularly prevalent in the southwest region of the metropolitan area, but which can be seen

elsewhere.

To gain a better sense of the distribution of stores across communities, Figure 6.2 presents

a bar blot of the number of stores in each community, while Figure 6.3 provides a distribution
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of communities by the number of stores they contains. An examination of Figure 6.2 is striking

since it vividly illustrates the importance of the downtown core in Greater Victoria’s overall

Figure 6.1 The "Communities" of Greater Victoria

retail structure. In fact, approximately half of the retail outlets in Greater Victoria are located in

the downtown core. While the downtown core has 1296 retail outlets, the next two largest
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communities have only 109 and 101 retail outlets, respectively. The distribution of

communities by the number of retail outlets (Figure 6.3) is extremely skewed, with a majority

of “communities” containing a single cluster.

Figure 6.2 The Number of Stores in Each Community
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Figure 6.3 The Number of Communities with a Given Number of Stores

6.2 Step 2

Based on the Step 1 results, it is clear that gaining a better understanding of the retail structure

of the Victoria downtown core is an extremely relevant undertaking. To do this, we make use

of VESDC clustering. However, instead of using the simple high density / low density

indicator of the last chapter, given the heterogeneity in total population within this community

(from under 1000 people per square kilometer to over 60000 people per square kilometer) it

makes sense to use a more refined measure. The relationship we make use of is a four

parameter growth curve (actually a shrinkage curve in this case) of the form

Epsilon  MaxEps
MaxEps MinEps

1 er(DensM )
,

where MaxEps is the upper asymptote on the size of the epsilon radius, MinEps is the lower

asymptote on the size of the epsilon radius, r is the “shrinkage” rate on the size of the epsilon
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neighborhood as the total population density increases, M is the inflection point for the curve,

and Dens is the total population density (the sum of residential and workforce population

divided by area) for the census designation area the store in located within.

To find good parameter values for this curve we did an iterative grid search over each

parameter in the order MinEps, MaxEps, M, and r. The initial value of r was set to unity, which

causes the growth curve to discretely jump from one asymptote to the other at the inflection

point. We were surprise how well behaved the function was through EM like iteration process.

We fairly quickly converged to the values MinEps = 140, MaxEps = 170, M = 12000, and r =

0.00015. Unlike a regression model, there is no way to obtain standard errors for these

parameters. To gain a sense of what this relationship looks like, Figure 6.4 provides a plot of

the implied relationship between total population density and the value of the epsilon radius.
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Figure 6.4 The Implied Relationship Between Population and the Epsilon Radius

Based on the parameters of the shrinkage curve given above, Figure 6.5 provides the retail

outlet cluster structure for the Victoria downtown core. An examination of this figure appears

to be very reasonable, with clusters being fairly well defined. There is still one large cluster

with over 350 retail outlets (which can be seen in the central part of the figure towards the

bottom). However, these 350 stores are in an area that is between 2 km2 and 3 km2 so is

extremely densely packed. It would likely be difficult to further partition it in a reasonable

way.

The results for the two-step approach for clustering retail outlet locations into retail districts

seems very promising based on this application. However, additional applications will need to

be undertaken to confirm that the promising results seem here hold more generally.
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Figure 6.5 The VESDC Cluster Solution for the Victoria Downtown Core
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7 Summary and Conclusions

Although aggregating retail outlets into retail districts is an important academic and practical

issue in marketing and retailing, only limited academic work has been done on this problem.

The growing availability of detailed location data through Geographic Information Systems

(GIS) makes this a particularly timely problem. In some cases, analysts use simple geographic

designations such as postal codes to form retail districts. While grouping data by postal codes

can be a useful first step, postal codes and other geographic boundaries were developed for

other purposes and do not summarize retail data well. For example, the Kingsway shopping

area in Vancouver includes stores in both Burnaby and Vancouver. In applied situations,

experienced managers and analysts sometimes rely on their own background and insights to

form retail districts. However, human judgment, even when aided by GIS methods, is time

consuming, labor intensive, and generally not replicable.

7.1 Cluster Analysis

Cluster analysis is a sound and well established approach for reducing data dimensionality.

However, the existing cluster approaches do not handle the complicated geospatial structure

that is typical of retailing data well, primarily due to their high variation in observation density.

Newer methods, such as density based clustering, developed in computer science, appear to

have promise for marketing settings. One problem is that the “epsilon radius,” a measure of

how close stores need to be to each other in order to be classified as belonging to the same

cluster, is assumed to be constant in such methods as density-based clustering. However, this

turns out not to be a good assumption in practice. In addition existing methods of judging the

quality of a clustering solution, so called cluster validation methods, do not provide sound

guidance as to the best clustering solution for the type of retailing data we study. Consequently,



111

we propose a new two-step clustering approach in which Variable Epsilon Spatial Density

Clustering (VESDC) is developed, and a new clustering validation measure, the CpSp index,

also is introduced.

The CpSp index evaluates the overall performance by taking both compactness and

separation of a proposed clustering solution into consideration. It is formed from the product of

these two measures and is normalized so that it is scaled in the range of 0 to 1. The optimal

solution is the one with the highest CpSp score. Extensive testing demonstrated that CpSp

performed well as a cluster validation method. The modified CpSp index can accommodate

varied epsilon radius in evaluating the performance of clustering solutions.

We applied clustering methods commonly used in marketing such as K-Means to data from

the Greater Victoria metropolitan area of British Columbia, and did not get good results.

Newly developed density-based cluster methods were also unable to capture the retail district

structure in the Greater Victoria area. One critical underlying reason for these results is the

variation in the density of retail outlets in downtown, suburban, and other areas included in the

Greater Victoria metropolitan area. VESDC effectively clusters data by adjusting the epsilon

radius systematically to adapt to the local market environment. In particular, using the

exponential “shrinkage” transformation function with four parameters ( MaxEps , MinEps , r ,

and M ), we developed a model in which the epsilon radius is determined by the population

density in a small area.

We tested VESDC’s performance on synthetic data. The underlying pre-specified data

patterns were accurately recovered. We then applied the two-step approach to Greater Victoria.

The approach clearly outperformed the existing clustering approaches. VESDEC effectively
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reduced the data dimensionality to a manageable number by forming retail districts; In

addition, isolated retail outlets, which do not properly belong to a retail district, were

identified. Also, the VESDEC method is not restricted to convex shapes so that different

shapes of retail districts (circle, rectangular, linear, etc) were identified, which can match the

actual retail district appearance. The exponential “shrinkage” function used in the model

performed well and the four parameters could be identified from the data. One critical reason

for the relative success of the VESDC approach is that the varied epsilon radius is consistent

with the underlying data structure in which there is high variation in retail store density.

7.2 Future Research

Based on our encouraging results for the VESDC approach and the CpSp validation method,

we see future research proceeding in at least three directions. The first is to apply the method in

different settings, the second is to make further improvements to the methodology, and the

third is to apply the method to retail site location problems. We briefly review each of these

areas.

7.2.1 Additional Applications

We have tested VESDC over a wide range of simulated data and for Greater Victoria in British

Columbia. A logical next step is to test the method over a broader range of geographic areas to

test its limitations. Although Victoria is a strong real test of the method, such testing would

provide further insight into the robustness of the approach and the value of the CpSp measure

in identifying cluster structures. Beyond the retailing area, there appear to be many other areas

in marketing in which the technique can be applied. Marketing applications have relied very

much on traditional approaches such as K-Means and have not, at least in the published

literature, incorporated the use of newer methods such as density based clustering.
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Segmentation has been a very important applied area for clustering, but existing approaches

have a number of limitations. One is not to allow for outliers in the solution. We believe that

not to do so is unrealistic in many settings. We believe that VESDC and other methods of

density based clustering have much promise for segmentation research and to other marketing

problems.

More broadly, our approach can be applied in a wide variety of areas. While different

functional forms and relationships than the ones used here to develop the variable epsilon

radius will likely be required, the overall concept of adjusting the epsilon radius to different

local conditions appears to be widely applicable. Moreover, our CpSp measure overcomes

weaknesses with the existing Comp_Sepa measure that should be relevant in many areas.

7.2.2 Improvement on Methodology

In the current approach, the epsilon radius is related to the underlying population density

through a four parameter exponential “shrinkage” transformation function. This response

function was developed by logical analysis of the nature of the relationship between these two

variables and after extensive testing of alternative functions. Nevertheless, further testing of

this relationship would be worthwhile. One extension would be to have additional explanatory

variables beyond population density, which might be needed in some settings. On the other

hand, additional complexity is not always a good modeling strategy and a simpler approach

might be more valuable. In that framework, our analysis suggested that we needed four

parameters in our response function, but the possibility of employing a simpler response

function should also be investigated.

Our empirical analyses indicated a number of systematic problems with existing cluster

validation methods and led to the development of the CpSp measure. The CpSp and Modified
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CpSp measures exhibited very good performance, but given the crucial importance of cluster

validation, we believe that continued investigation in this area is worthwhile. We would not be

surprised if several cluster validation methods emerged, each providing different insights on

the quality of a proposed clustering solution.

7.2.3 Retail Site Location

While the formation of retail districts is interesting in itself, it is often the first step in both

academic and applied research. For example, as discussed in the first chapter, Ellickson and

Misra (2008) clustered supermarkets to investigate the nature of price competition among

stores.

In applied settings, managers frequently want to evaluate the performance of their stores

both historically across time for an individual store and comparatively. Store performance,

however, relies highly on the surrounding market environment, which in turn, influences the

sales potential of that store. Retail district identification can provide such information.

Consequently we believe that our approaches can lead to improved estimates of retail

performance. Depending upon the application, the retail districts may be formed by only

examining stores in the same industry (e.g. having the same SIC) or across industries, to obtain

an indicator of market potential and/or store traffic.

For companies, the new store location decision is a challenging task. Estimation of market

potential for each possible store location is critical (Hansen and Weinberg 1979). While the

surrounding residential and work place population is an important component of demand

generation, many approaches do not fully consider the ability of some areas to draw additional

traffic from people attracted to the area. Taking as an example the fast food industry, the

demand for a fast food store comes from four types of customers, residential customers (who
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live in the area), daytime population (who work in the area), transitory customers (who pass by

the area), and ancillary customers (who visit the area for other purposes). Depending on the

store location, the importance of each type of customer may be different. In the fast food

industry, ancillary and transitory customers can be particularly important. In practice,

estimation of the transitory and ancillary customers without on-site observation is extremely

difficult and costly, especially when many possible sites are being considered. However,

knowledge of the retail district structure of an area can significantly improve our ability to

estimate transitory and ancillary demand. Consequently, we anticipate future research on site

location to incorporate the type of retail district information we have developed in this thesis.

Through the co-operation of a major fast food retailer, we have already begun work in this

direction.

In summary, our new clustering approach, VESDC, and a new clustering validation

method, CpSp index, have demonstrated good and robust performance in both synthetic and

real data. These new approaches appear to be applicable to a wide variety of settings and lead

to a number of interesting future research opportunities.
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