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Abstract

Bioinformatics resources on the Web are proliferating rapidly.  For biomedical

researchers, the vital data they contain is often difficult to locate and to integrate.  The

semantic Web initiative is an emerging collection of standards for sharing and integrating

distributed information resources via the World Wide Web.  In particular, these standards

define languages for the provision of  the metadata  that facilitates both discovery and

integration of distributed resources.  This metadata takes the form of ontologies used to

annotate information resources on the Web.  Bioinformatics researchers are now

considering how to apply these standards to enable a new generation of applications that

will provide more effective ways to make use of increasingly diverse and distributed

biological information.  While the basic standards appear ready, the path to achieving the

potential they entail is muddy.  How are we to create all of the needed ontologies?  How

are we to use them to annotate increasingly large bodies of information?  How are we to

judge the quality of these ontologies and these proliferating annotations?  As new

metadata generating systems emerge on the Web, how are we to compare these to

previous systems?  The research conducted for this dissertation seeks new answers to

these questions.  Specifically, it investigates strategies for amassing, characterizing, and

applying metadata (the substance of the semantic Web) in the context of bioinformatics.

The strategies for amassing metadata orient around the design of systems that motivate

and guide the actions of many individual, third-party contributors in the formation of

collective metadata resources.  The strategies for characterizing metadata focus on the

derivation of fully automated protocols for evaluating and comparing ontologies and

related metadata structures.  New applications demonstrate how distributed information

sources can be dynamically integrated to facilitate both information visualization and

analysis. Brought together, these different lines of research converge towards the genesis

of systems that will allow the biomedical research community to both create and maintain

a semantic Web for the life sciences and to make use of the new capabilities for

knowledge sharing and discovery that it will enable.
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Glossary

Many of the words defined here have a variety of different meanings.  All of the provided

definitions are specific to the use of the defined word in the context of this dissertation.

Terms defined explicitly in the text of the introduction, such as ‘social tagging’, are not

included here.  A list of references cited is included at the end of the glossary.

Aggregate: A mass, assemblage, or sum of particulars; something consisting of elements

but considered as a whole [1].  For example, the elements might constitute votes by

individuals in an election while the whole might represent the result of the election.

Annotation: The act of or the product of associating metadata with a particular resource.

The form of this metadata can vary from notes written in natural language to indexing

with a formal language.  The most common usage within bioinformatics is likely in

the context of ‘genome annotation’ in which descriptive information representing

particular interpretations  of experimental evidence are associated with regions of an

organism’s genetic sequence.

Artificial Intelligence (AI): The attempt to endow computers with human-like cognitive

abilities.

Assertion: A statement of knowledge such as ‘all mammals have hair’ or ‘Mark

Wilkinson is a human’.  Usually used in the context of formalized knowledge – a

knowledge base is composed of a set of assertions.

Curation: The manual extraction of information, often from text, by a domain expert with

the aim to transform that information into structured knowledge [2].  For example, the

Gene Ontology is the product of the work of biologists who encode information

gathered from the scientific literature into statements that link precisely defined

concepts like ‘apoptosis’ and ‘programmed cell death’ together with the formal

relationships “is a” and “part of” [3].

Description Logic (DL) : A knowledge representation formalism, of which several

examples exist, which can be used to represent class descriptions such that efficient

algorithms for reasoning with those descriptions can be applied.  One of the variants

of the OWL language, OWL DL, is an example of a description logic.
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F-measure: the harmonic mean of precision and recall (defined below).  It provides a

single measurement with which to characterize the performance of class prediction

and information retrieval algorithms.

Folksonomy: A combination of the words ‘folk’ and ‘taxonomy’ usually used to describe

a collection of user-generated (hence the ‘folk’) free-text tags produced within the

context of a social classification (hence the ‘taxonomy’) system like Del.icio.us or

Connotea [4].

Indexing: Tennis (2006) defines indexing as ‘an act where an indexer in a particular

context, goes through a process of analyzing a document for its significant

characteristics, using some tools to represent those characteristics in an information

system for a user’ [5].  I use ‘indexing’, ‘annotation’, and ‘metadata provision’

interchangeably throughout this dissertation.

Indexing language: a set of terms used in an index to represent topics or features of the

items indexed. Notice that this definition spans both controlled languages and

uncontrolled languages. Examples of indexing languages thus include the Medical

Subject Headings (MeSH) thesaurus [6], the Gene Ontology [3], and the Connotea

folksonomy [7].

Knowledge: information that makes intelligent action possible.

Knowledge acquisition: The translation of knowledge from unstructured sources such as

human minds or texts into formulations useful for computation.

Knowledge base:  A collection of knowledge represented in a machine-interpretable

form.  In semantic Web applications, a distinction is often made between the ontology

that defines possible statements that can be made about Web resources and the

knowledge base that contains both the ontology and these assertions.  This dichotomy

is analogous to the relationship between a database schema and a populated database.

Machine learning: a collection of algorithms used in programs that improve their

performance based on the results of their operations.  There are many kinds of

machine learning.  The main type used within this dissertation is known as

‘supervised learning’.  In supervised learning, algorithms learn predictive functions

from labelled training data.
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Mass collaboration:  large numbers of people coming together to create something or to

solve a problem.

Ontology evaluation: a process through which features of an ontology pertinent to its

improvement or comparison to other ontologies are identified.

Precision : in the context of binary class prediction, the precision of a predictor may be

estimated through the analysis of its performance on an evaluation set containing

correctly labelled true and false samples.  It is equal to the number of true positives

divided by the total number of predicted positives.  Precision is used to estimate the

likelihood that the predictor will be correct if it makes a ‘true’ prediction.  In

information retrieval, the same measurement is used and true positives are denoted by

documents deemed to be relevant to a query with false positives deemed irrelevant.  It

is used in combination with measures of recall.

Recall: recall for a binary class predictor is equal to the number of predicted positives

divided by the total number of positives in an evaluation set.  It quantifies the

likelihood that the predictor will identify the true positives in the set, without regard

for how many false positives it generates in the process.  It is used in combination

with precision.

Social Semantic Tagging: social tagging using controlled vocabularies [8].

Subsumption: The term “subsumption” defines a specific relationship between two

classes A and B such that, if A subsumes B, then all instances of B must also be

instances of A.  In subsumption reasoning, an algorithm is used to determine which

classes are subsumed by which other classes. The inference of subsumption is

enabled by class definitions that incorporate logical constraints. This type of

reasoning can provide substantial benefits during the construction of very large

ontologies by ensuring that the ontology is semantically consistent [9], can be used

for classification of unidentified instances, and for query answering.

Tag: a keyword, often used to describe terms used by users of social tagging services to

label items in their collections.

Tag cloud: a collage-like visualization of a set of terms where the size of the terms and

sometimes their colour is used to indicate features such as the frequency of their

occurrence in a text.
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Thesaurus:  a controlled vocabulary that defines relationships between its terms such as

broader-than, narrower-than, synonym, and related.

User-script: a computer program that is installed within a Web browser to manipulate the

display of Web pages, for example, to remove advertisements or to add visual

enhancements.

URI: Uniform Resource Indicator.  URIs are short strings of characters used to refer to

resources on the Web.

URL: Uniform Resource Locator. URLs are a subset of URIs that encode both a unique

identifier and a description of how to retrieve the identified resource.  For example,

the URL ‘http://www.google.com’ indicates that the resource named

‘www.google.com’ can be retrieved using a request issued according to the HTTP

(hypertext transfer) protocol.

References for glossary

1. aggregate - Wiktionary [http://en.wiktionary.org/wiki/aggregate]
2. BioCreative glossary

[http://biocreative.sourceforge.net/biocreative_glossary.html]
3. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP,

Dolinski K, Dwight SS, Eppig JT et al: Gene ontology: tool for the unification
of biology. The Gene Ontology Consortium. Nature Genetics 2000, 25(1):25-
29.

4. Hammond T, Hannay T, Lund B, Scott J: Social Bookmarking Tools (I): A
General Review. D-Lib Magazine 2005, 11(4).

5. Tennis JT: Social Tagging and the Next Steps for Indexing. In: 17th ASIS&T
SIG/CR Classification Research Workshop: 2006; Austin, Texas; 2006.

6. Medical Subject Headings (MESH) Fact Sheet
[http://www.nlm.nih.gov/pubs/factsheets/mesh.html]

7. Lund B, Hammond T, Flack M, Hannay T: Social Bookmarking Tools (II): A
Case Study - Connotea. D-Lib Magazine 2005, 11(4).

8. Good BM, Kawas EA, Wilkinson MD: Bridging the gap between social tagging
and semantic annotation: E.D. the Entity Describer. Available from Nature
Precedings. [http://hdl.handle.net/10101/npre.2007.945.2] 2007.

9. Rector A, Horrocks I: Experience building a large, re-usable medical ontology
using a description logic with transitivity and concept inclusions. In: AAAI
'97: 1997; Menlo Park, California: AAAI Press; 1997.
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Preface

This dissertation has been prepared according to the guidelines for manuscript-based

theses set out by the University of British Columbia.  Following these guidelines, the

relevant references, figures, and tables are included at the end of each chapter.  Aside

from the introduction and the conclusion, each chapter represents a complete,

independent body of work suitable for publication.  For the chapters that have already

been published, no changes other than minor reformatting have been made.
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1 Introduction

“Branche le monde”

François Belleau1, 2008

This dissertation is about new strategies for metadata provision and use in the context of

biological information systems. These strategies are guided by the philosophy of openness upon

which the World Wide Web was founded and the unprecedented opportunities for global-scale

collaboration that the ubiquity of the Web now enables.  Through the development and

evaluation of these new approaches, I hope to help in the ongoing movement to bring about a

unified semantic Web of biological and medical information. Within this semantic Web, shared

metadata structures would be associated with widely distributed information resources – both

enhancing their value independently and offering new potential for automating the process of

integration.

1.1 Dissertation overview

In the research described in this dissertation, I investigate new strategies to support aspects of the

cycle of bioinformatics-driven research that involve the formation and use of metadata. In

particular, I focus on metadata generated by third-parties and represented and shared according

to the recently adopted standards of the World Wide Web Consortium’s (W3C) semantic Web

initiative.  The focus on ‘third-party’ emphasizes the role of individual contributors as opposed

to centralized institutions in the formation of collective metadata resources.  This shift from top-

down, authoritative control over the creation and maintenance of such resources towards more

bottom-up approaches in which everyone is encouraged to participate provides both new

opportunities and new challenges.  As demonstrated best by Wikipedia, open processes can

sometimes engage large numbers of people in the formation of collectively useful resources at

relatively low costs.  However, methodologies for designing such systems and evaluating their

products are still in their infancy. For example, little is known about what tasks open systems can

be used effectively to accomplish, how interface and incentive design affects the process, or how

to judge the quality of the products of such collective labour.  Here, I investigate new third-party

                                                  
1 ‘Branche le monde’ roughly translates to ‘connect the world’.
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approaches designed for application in the domain of bioinformatics.  Broadly, I introduce and

evaluate strategies for amassing metadata from volunteer contributions, for automatically

characterizing the products of different metadata generating systems, and for applying metadata

to problems in bioinformatics related to the presentation and analysis of distributed information.

The specific projects undertaken address the following questions:

(1) How might a volunteer-driven (‘crowdcasting’) model of knowledge acquisition work to
gather the components of a biological ontology?

(2) How can useful, objective assessments of ontology quality be generated automatically?

(3) How can diverse forms and instantiations of metadata structures ranging from
folksonomies to ontologies be characterized and directly compared?

(4) How do the products of the open ‘social tagging systems’ emerging on the Web  compare
to the products of professional annotation systems in a biomedical context?

(5) How can open annotation systems be designed that move the annotation quality closer to
that of expert-curation systems without losing the utility of the open environment?

(6) When Web-based semantic metadata becomes widely accessible, how can we harness it
to enable knowledge discovery?

In these studies, I attempt to strike a balance between a constructivist approach to information

systems research in which novel approaches are created for the purpose of evaluating them and a

more naturalistic approach which seeks a constantly updated understanding of the important

characteristics of the continuously expanding diversity of information systems emerging on the

Web.  The remainder of this introduction provides background information on the key Web

technologies and underlying philosophies needed to understand the rest of the dissertation.

However, before beginning, it is important to define the scientific context of this contribution.

1.2 Informatics and bioinformatics

Princeton’s Wordnet equates the term ‘informatics’ with ‘information science’ and defines it as

“the sciences concerned with gathering, manipulating, storing, retrieving, and classifying

recorded information” [1]. Bioinformatics is a subdiscipline of information science that focuses

on the development of approaches for processing biological information with the ultimate aim of

answering biological questions.  Many general approaches developed by information scientists
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such as, databases, knowledge representation languages, search algorithms and communication

protocols are applied in bioinformatics.  In addition to these approaches, bioinformatics

researchers develop highly specialized methods, such as algorithms that detect the presence of

genes in nucleotide sequences, that operate exclusively on biological information.

The strategies advanced in this dissertation were conceived out of needs originating in the

context of bioinformatics research and were evaluated using biological data; however, they are

certainly applicable in other domains.  As a result, this research could either be classified as

bioinformatics, based on its motivations and the nature of the experimental data, or as

information science, based on the breadth of its applicability.  Regardless, the ultimate goal

remains to produce methods that will eventually help to bring light to the mysteries of life by

enabling more effective use of the increasingly vast and diverse body of available biological and

medical information.  The principal tool brought to bear on this challenge is the provision of

metadata.

1.3 Metadata

To manage large volumes of heterogeneous data, data is associated with descriptive features that

make it possible to group similar items together, to distinguish between the members of those

groups, and to reason about those items.  At a fundamental level, this is the phenomenon of

language.  As humans, we use natural language to deal with the complexity of the physical world

by associating words with its components such that items can be distinguished from one another

and assembled into cognitively useful groups.  To do this, we assign both specific names, like

‘Mark Wilkinson’, and general categories, like ‘human’, to the entities that we interact with.  The

specific names give us anchors with which to begin the more thorough description of each entity

through reference to more general categories; “Mark Wilkinson is a human”.  At the same time,

the general categories, defined through their connections to other general categories, make it

possible to reason; “since Mark Wilkinson is a human and humans breathe air, Mark Wilkinson

breathes air”.   In the context of digital information, the use of computational languages2 to

describe entities is called metadata provision; the creation and use of data about data.  Metadata

                                                  
2  By ‘computational languages’ I refer to structures used to represent symbolic knowledge in forms that enable the
knowledge to be processed with computers
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serves the same basic purposes as other forms of language.  This is to distinguish between

different entities and to form descriptions of those entities that make it possible to group like

items together and to reason about the members of those groups. Because of the power of these

operations, metadata is a fundamental aspect of all large-scale information management efforts.

1.4 Third-party metadata

Third-party metadata refers to metadata created by a party other than the primary provider of the

data. As depicted in Figure 1.1, it can refer to metadata provided by an institution, for example

the indexing of journal articles by MEDLINE, or to metadata provided by individuals.

In the context of this dissertation, I focus on the metadata generated by individuals because,

though there are well-established patterns for institutional metadata provision, comparatively

little is known about how to make use of individual contributions.  The reason for this state of

affairs is simply that the concept of decentralized content curation would have been difficult if

not impossible to implement or even to conceive of prior to the relatively recent emergence of

the Web as a medium for worldwide communication.

As they bear on both the implementations and the philosophical foundations of the strategies

outlined in this dissertation, I now provide a brief introduction to the core components of the

World Wide Web and its nascent descendent, the semantic Web.

1.5 The World Wide Web

At a basic level, the World Wide Web is the marriage of two fundamental ideas,  the first is

hypertext and the second is that of a single, universal information space within which any digital

document can be stored and retrieved.

In 1965, Theodor Nelson defined ‘hypertext’ as “a body of written or pictorial material

interconnected in such a complex way that it could not conveniently be presented or represented

on paper” [2].  The interconnections within such a collection of materials are defined by

hyperlinks that make it possible to traverse directly from any document to any other, allowing a

manner of information organization foreshadowed by the ‘associative trails’ of Vanevar Bush’s
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Memex [3], but impossible to realize before the advent of the computer.  In an indirect way,

hyperlinks formed the first and thus far the most important third-party metadata on the Web.

Each link provides a statement, however loosely defined, about the content of its target; the

intelligent aggregation of many billions of these statements makes it possible for search engines

to successfully operate over the many billions of pages that now form the Web [4].

Tim Berners-Lee is widely renowned as the inventor of the World Wide Web because of his

many technical, philosophical, and political contributions to its initial creation and continued

development [5].  Each of these contributions emanate from the single profound idea, that “one

information space could include them all” - that the body of interlinked material Nelson referred

to might literally contain all of the information in the world [5] (p. 33).  As the union of these

two ideas, enabled by computational languages like the Hypertext Markup Language (HTML)

and communication protocols like the Hypertext Transfer Protocol (HTTP), the Web has

fundamentally changed the way information is communicated across the globe.

Of these two ingredients, hypertext and universality, the latter is the more fundamental.  As will

be shown, there are now many ways to interact with the Web that do not involve hypertext, but

all of them benefit technologically and philosophically from the fact that there is just one Web

and that anyone is allowed to both use it and contribute to it.  In the words of Tim Berners-Lee,

Ora Lassila and James Hendler:

“The essential property of the World Wide Web is its universality. The power of a

hypertext link is that ‘anything can link to anything.’ Web technology, therefore,

must not discriminate between the scribbled draft and the polished performance,

between commercial and academic information, or among cultures, languages,

media and so on.” [6]

The simple idea that anyone should be able to participate is what has made the Web the most

crucial piece of communications infrastructure in the World.  In the chapters of this dissertation,

I will be exploring how the basic stance that anyone can and should be allowed to contribute

their voice to the formation and management of knowledge resources can be applied to problems

surrounding metadata provision in bioinformatics.
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The standards used in this work for representing and sharing metadata are drawn from the

emerging collection that forms the World Wide Web Consortium’s (W3C) semantic Web

initiative; however, before these can be introduced, it is important to touch briefly upon the most

fundamental component of the Web – unique identification.

1.5.1 Unique identification

Though a tremendous amount of lower-level network technology and standards were needed to

make the Web a reality, one of the most crucial was the advent and uptake of a globally unique

identifier system.  To link documents produced all over the world together,  each needs to be

associated with a unique address – in the same manner that mail could never be delivered

successfully without unique addresses for physical locations.  On the World Wide Web, entities

are addressed with Uniform Resource Indicators (URI) [7].   URIs come in two dominant

varieties,  Uniform Resource Names (URN) and Uniform Resource Locators (URL).  In general,

a URN is used to refer to an entity without providing information about how to access it while

URLs encode both a unique identifier and a description of how to retrieve the identified resource.

Web browser’s typically make use of URLs of the form ‘http://www.google.com’, in which the

letters preceding the ‘:’ indicate what communications protocol should be used, in this case,

HTTP, and the rest indicate the specific address of the requested information on the network.  A

key enabler of unique identification on the Web is the Domain Name Service (DNS) system, a

global registry that links domain names like ‘www.google.com’ to Internet Protocol (IP)

addresses (unique numeric addresses associated with particular machines) and – importantly –

keeps track of which party owns each domain [8].  The DNS service can be used with both URL

and URN schemes (for example, see [9]) but is much more consistently used in association with

URLs.

1.6 The semantic Web

“The Semantic Web is not a separate Web but an extension of the current one, in

which information is given well-defined meaning, better enabling computers and

people to work in cooperation” [6].
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The World Wide Web can be envisioned as a graph with nodes and edges.  In this graph the

nodes are documents identified by URLs and the unlabelled edges are hyperlinks.  The semantic

Web can also be thought of as a graph.  In the semantic Web the nodes are anything that can be

named with a URI (a concept, a document, a protein) and the labelled edges are meaningful

properties that describe the relationships between the nodes.  While the  World Wide Web is

primarily a web of documents, the semantic Web is meant to be a much more granular web of

data and knowledge.

Building on the original Web, particularly its communications protocols and its unique identifier

system, the semantic Web is an additional collection of standards for sharing machine-readable

data and metadata with the intention of facilitating integration across distributed sources [10].

The two key standards of the semantic Web initiative are both languages for representing

information on the Web, the Resource Descriptive Framework (RDF) and the Web Ontology

Language (OWL). (Because of the highly distributed nature of data in bioinformatics [11], much

attention has already been devoted to investigating ways to apply these standards in biological

and medical contexts [12].)

1.6.1 The Resource Description Framework

RDF is the base computer language for representing and sharing all information on the semantic

Web [13].  In contrast to HTML, its analogue on the original Web, RDF is fundamentally about

representing information such that it is computationally useful rather than representing

information such that it can be effectively visualized by humans.  RDF represents information as

a set of directed graphs; URIs are assembled into triples composed of a subject URI, a predicate

URI, and an object URI.  Each triple provides a description of its subject resource; for example,

the statement “Mark Wilkinson is a human” could be formulated by creating URIs for ‘Mark

Wilkinson’, ‘is a’, and ‘human’ and then linking them together into an RDF triple.  The

predicates of RDF triples, for example ‘is a’ above, are similar to the hyperlinks of the Web.

The key advantage of RDF triples over hyperlinks is that the links are explicitly labelled – the

intent (semantics) of the relationship between the two entities is thus computationally accessible.

These triples of URIs are the most fundamental concept in the semantic Web infrastructure, but

alone, they are not sufficient to realize its vision.
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RDF provides a way to express statements about resources on the Web that can be processed

effectively by computers, but the components of these statements, the actual terms used, need to

be shared across groups and applications in order for effective integration to be possible.  If one

application uses a URI like ‘http://example.com#human’ to describe Mark Wilkinson and

another uses a URI like ‘http://another.example.com#homo_sapiens’ to describe Ben Good, then

it is difficult or impossible to compute that Ben and Mark should be grouped together and the

goal of global data integration is lost.  Moreover, these terms, e.g. ‘human’, should be associated

with meaningful definitions such that additional clarity in descriptions and therefore additional

reasoning can be achieved. Computational ontologies are needed to define the vocabularies

needed to author RDF such that it can effectively serve its purpose of enabling distributed data

integration.

1.6.2 Ontology

An ontology is often defined as an “an explicit [machine readable] specification of a

conceptualization” [14]. A conceptualization is an abstract model of the entities that exist in a

particular domain and their relationships to one another.  By making conceptualizations machine

readable, ontologies do two key things, they make it possible to execute algorithms that reason

with the encoded knowledge and they make it possible to share that knowledge across

applications.

The idea of automating reasoning with encoded knowledge is not new.  Knowledge-based

systems have formed an important part of artificial intelligence applications for many years.  One

of the first prominent examples was a rule-based expert system known as MYCIN, developed in

the early 1970’s, that was designed to help physicians identify the kinds of bacteria associated

with severe infections [15].  Since then, programs that compute with represented knowledge

have been applied in situations too numerous to list ranging from factory scheduling [16] to civil

engineering [17] to the distribution of guidelines in medical ethics [18].

The other function enabled by ontologies is more novel.  The idea that knowledge represented by

one party can be re-used by other parties was the main reason for the initial investigations into

ontologies in computer science [19] and remains a primary driver for their expanding use in
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biology and in other domains today.  It should come as no surprise that the rise to prominence of

the term ‘ontology’, in the computer science sense, marked by the authorship of the term’s most

frequently-used definition [14], coincided with the emergence of the World Wide Web in the

early 1990’s.  While the combination of Web technology and hypertext made it possible for

people to share their knowledge as never before, there was, at that time, no effective mechanism

to share knowledge across different software applications.  The ontologies of computer science

and now of bioinformatics were conceived to make such computational knowledge sharing

possible.

1.6.3 The Web ontology language

Though ontologies have been in active use in computer science for nearly 20 years, ontology

languages specifically designed for the Web are relatively new.  The first major attempt at

integration of ontology and Web standards was the DARPA Agent Markup Language (DAML)

instigated in the year 2000 [20].  DAML was followed by DAML+OIL (the ontology inference

layer) [21] and then finally by OWL [22].  Each of these ontology languages are represented

using RDF to provide computational concept definitions for application on the semantic Web.

1.6.4 Ontologies in bioinformatics

The dominant use of ontologies in bioinformatics is the task of integrating data stored in

multiple, distributed  databases [23].  Somehow, the relationships between entities in different

databases (e.g. equivalency) must be identified if the data is to be integrated and thus made the

most useful.  The paradigmatic solution to this problem, implemented many times in

bioinformatics applications, is the creation of a unifying ontology with which resources from

each participating database are described [11, 24-27].  Such ontologies give form to the

knowledge needed to align the entities in the different databases and thus enable successful

distributed data integration.

Ontologies composed with a variety of languages have been used in bioinformatics for many

years, enabling greater interoperability and integration between distributed computational

platforms. A few examples of relevant biological and medical ontologies include the Gene
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Ontology (GO) [25], the Unified Medical Language Semantic Network [28], the National Cancer

Institute ontology [29], the Foundational Model of Anatomy [30], the BioPAX ontology of

molecular interactions [31], and the growing number of ontologies emerging under the umbrella

of the Open Biomedical Ontologies project [32, 33].

1.7 Prospects for a semantic Web for the life sciences

If applied broadly and faithfully, the semantic Web standards touched upon above offer the

promise of freeing bioinformatics researchers from many data integration problems and thus

enabling them to spend more of their time simply as computationally savvy biologists.  This is

the ultimate, long-term goal driving the research presented in this dissertation.  Before

proceeding to specifically outline the problems addressed and the approaches taken, I provide a

brief example of what such a world of information, called Bioinfotopia, might look like and use

this to highlight both the potential benefits and the enormity of the challenge of reaching this

vision.

In Bioinfotopia, researchers are concerned with the same problems as bioinformaticians are in

our world.  They want to know how life works for the sake of advancing knowledge and for the

sake of improving the human condition through medicine.  As a result, they ask similar

questions.  For example, they -like their dystopian colleagues- often want to learn the

relationships between genes and disease.  Bob, a prominent member of Bioinfotopia, might pose

the question:

“In heart tissue from mice infected with coxsackievirus B3, which genes in the

complement and coagulation cascade pathways are over or under expressed in

healthy mice versus those showing symptoms of myocarditis?”

To receive an answer to this question, Bob submits a request to a program that, unbeknownst to

him, uses computational representations of the components of the request, like ‘heart tissue’,

‘infected’, ‘mice’, and ‘myocarditis’, to retrieve the information from data sources distributed

across the Web that understand these representations.  Once the data is gathered, it is

reassembled and presented in a visually intuitive fashion that enables Bob to rapidly understand
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the results.  All of the labour of identifying trustworthy information sources, understanding how

to query them, merging the results, and tracking the process is accomplished behind the scenes,

letting Bob focus his attention on the problem he is trying to solve.

To most people working in bioinformatics, this scenario must seem like a pipe dream.  Given

that it is possible to publish papers in respected journals about effective methods for parsing one

file format used by one database [34] and there are literally thousands of databases that might

contain relevant data [35], the idea that the steps required to answer that query might somehow

be automated seems remote.  However, under certain, very specific, circumstances it is already a

reality.  For example, within the context of the caCORE (Cancer Common Ontologic

Representation Environment) software infrastructure, a product of the National Cancer Institute,

it is possible to receive responses to similar queries such as:

“In brain tissue from patients diagnosed with glioblastoma multiforme subtype of

astrocytoma, which genes in the p53 signaling pathway are over or under expressed

in cancerous versus normal tissue?” [36]

This power is achieved through the rigorous application of syntactic and semantic standards for

the representation, transmission, and description of all information provided by the distributed

services in the caCORE environment.  As described in the detailed project documentation, rich

programmatic interfaces are defined for interacting with distributed databases and analytical

services and each data element in the system is associated with a particular semantic type from

an ontology.  Thus the system achieves both syntactic and semantic interoperability across

bioinformatics resources that adhere to its rules [37].

Despite this demonstrated power, most resource providers in bioinformatics are not contained

within the bounds of caCORE and, as such, much of the relevant data (and operations that might

be performed on that data) are not accessible through the system.  The reason that caCORE and

other similar initiatives have not yet generated Bioinfotopia is, perhaps, the same reason that

early hypertext systems did not generate the World Wide Web; they operate within closed worlds

that are difficult for external parties to participate in and contribute to.  Though it is possible to

develop applications that share information with caCORE [38], the process is complex and
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implementation dependent, requiring developers to make use of caCORE-specific development

tools and domain models.  In addition, it is not possible for external parties to contribute their

own ontologies directly to the system.

The semantic Web initiative is trying to achieve the same kind of functionality as systems like

caCORE, but on a far broader scale.  Once again, the W3C, still being led by Tim Berners-Lee,

is attempting to bring a universal information space into being.  The difference is that this time

the space is intended for computers as well as people.  The challenge of achieving this global-

scale vision is daunting.  Consider the case described above; for a software agent to succeed in

answering Bob’s query within the open world of the Web, every entity relevant to the query

would not only need to be discoverable and retrievable on the Web, it would need to be

associated with detailed metadata constructed using shared languages that defined everything

known about it, including the context of its origin, its physiological state, its biological location,

and so on.  Given the limitless dimensions with which entities might be described as well as the

profoundly large numbers of such entities on the Web, the potential for success seems small.

Additionally, as the amount of data resources in bioinformatics as well as the diversity of data

types expands, the challenge of providing the quantity of metadata needed to achieve global

interoperability, already massive, will only increase.

Despite the scale of the challenge, there is a growing and largely untapped resource that might

prove effective in addressing it.  Just as the volume of data is increasing, the volume of people

that are contributing to the Web is also increasing.  This dissertation thus introduces and

characterizes new ways to address the challenge of global semantic metadata provision in

bioinformatics that, like the PageRank algorithm [4], benefit from the aggregation of third-party

metadata generated through the collective action of unprecedented numbers of people.

Specifically, the approaches I investigate fall into two major categories, crowdcasting and social

tagging.  Crowdcasting, in the sense with which it is used here, is the idea of proactively pushing

requests for structured knowledge out to large groups of volunteers and then pulling the captured

knowledge back together.  Social tagging is a growing Web phenomenon in which users add

publicly accessible metadata in the form of keywords to resources on the Web to form their own

personal collections.  In the context of this dissertation, two primary kinds of knowledge are
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sought, the links between concepts that form ontologies (‘humans are mammals’) and the links

between concepts and instances that form semantic metadata for those instances (‘Mark

Wilkinson is a human’).  Specifically, I investigate crowdcasting methods as potential sources of

both ontological knowledge and semantic metadata.  In addition, I present comparative analyses

of metadata generated through social tagging in biomedical contexts.  In support of these

investigations, I introduce methods to evaluate ontologies and to provide empirical comparisons

of the products of different metadata generating systems.  In the following, I provide additional

background information to inform and motivate the specific discussions that ensue in the

chapters of the dissertation.

1.8 Background on crowdcasting for knowledge acquisition

A critical activity in the process of ontology construction is the acquisition of knowledge from

domain experts.  One of the basic assumptions in designing strategies for knowledge acquisition

has long been that the knowledge is to be collected from a relatively small number of people.

This is one reason that, even as early as 1983, “the usual  knowledge acquisition bottleneck” was

considered the most significant hurdle to overcome in the creation of knowledge based systems

[39].  That this is still the case today within the context of bioinformatics is made clear from

recent work that attempts to define a rigorous methodology for bio-ontology engineering [40].

As one stage of this proposed methodology, Garcia Castro et al. describe a process through

which ontological knowledge is elicited from domain experts in a series of face to face meetings

and teleconferences.  As anyone that has ever been in a meeting or a teleconference understands,

this is not a process that more than a handful of people can contribute to effectively.  This

process of face to face meetings, teleconferences and now lengthy email exchanges is

characteristic of most known efforts at ontology engineering, but recent work suggests there may

be other methods that could prove equally if not more effective.

In the domain of artificial intelligence, many potential applications require the assembly of very

large repositories of encoded knowledge.  For example, for a program to effectively make correct

inferences regarding natural language, a vast amount of ‘common sense’ knowledge is required

to disambiguate between the many possible senses of words.  Common sense knowledge makes

it possible, for example, to easily know the different meanings of the word ‘pen’ in the phrases
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“the box is in the pen” and “the pen is in the box” [41].  To make programs that correctly reason

with phrases like these, the programs must be empowered with extensive background

knowledge; for example, that pens of the writing variety might fit in boxes while pens of the pig

variety might contain boxes.  The problem is that there is an incredibly large amount of such

common sense knowledge to encode.

To meet the demands of common sense reasoning, both machine learning approaches [42] and

large-scale, long-term manual knowledge engineering efforts have been applied [41].  However,

other approaches are possible.  What if we had not a few, but literally thousands or even millions

of people contributing to knowledge acquisition efforts?  The first clear application of this idea

was in the formation of the Oxford English Dictionary, a project initiated in 1857 [43].  This

massive undertaking, eventually resulting in a dictionary containing precise definitions of more

than 400,000 words, was made possible largely through the contributions of hundreds of

volunteers who mailed in their knowledge about the earliest usages of English words.  Now,

through the Web, it is possible to conduct similar knowledge acquisition efforts at unprecedented

scale and speed.

The idea of crowdcasting [44], suggests that seekers of computationally encoded knowledge and

other typical products of human labour ‘cast’ requests out to the ‘crowd’ via specifically targeted

Web interfaces.  Pioneering efforts in this emerging field include Open Mind Common Sense

[45], Learner2 [46-48], Games With a Purpose (Gwap) [49], and a growing collection of projects

that make use of Amazon’s Mechanical Turk Web service [50, 51] such as Snow et al.’s use of it

to gather annotations of natural language documents [52].  Though interfaces, incentive

structures, and specific forms of knowledge requested vary, each of these efforts follows the

basic strategy of (1) deciding on the kind of knowledge sought, (2) implementing a Web

interface that can elicit knowledge of this form from volunteers, (3) making the interface

available on the open Web to anyone willing to contribute, (4) gathering knowledge from

volunteers, (5) applying algorithms to clean and aggregate the collected knowledge.

This pattern has proven remarkably successful in many of the domains where it has been tried.

Perhaps the most successful and certainly the most famous of these efforts was the ESP Game -

the original experiment that lead to the Gwap project at Carnegie Mellon University [49, 53].
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The ESP game was designed to accumulate textual tags (metadata) for large numbers of images

in order to improve image search on the Web.  In the game, players are paired with anonymous

partners and both partners are presented with a series of images to label.  Players score points

when the terms they use to describe the image match up with those generated by their partner

(demonstrating their ‘extrasensory perception’).  This game proved remarkably effective, rapidly

eliciting high quality image labels for tens of thousands of images from thousands of online

players.  It proved so successful in fact, that is has been incorporated directly into the technology

stack of the world’s most successful Web search engine and is thus now known as the Google

Image Labeller [54].

Despite the impressive success of such crowdcasting initiatives for knowledge acquisition, the

field is still in its infancy.  Little is known about the effects of different choices in interface

design, different incentive structures, or the kinds of knowledge that might successfully be

assembled  through such approaches.  The first two chapters of this dissertation investigate some

of these topics in the context of bioinformatics.  Specifically, I ask if and how might a

crowdcasting model of knowledge acquisition work to gather the components of a biological or

medical ontology?

1.9 Passive distributed metadata generation via social tagging

In contrast to the active, goal-directed approach of crowdcasting, the Web offers other, more

passive mechanisms through which individuals contribute to the production of collectively useful

metadata while simultaneously solving their own personal problems.  As alluded to earlier, the

first such mechanism was simply the hyperlink.  By creating links from the Web documents they

own to other websites, people tacitly create computationally accessible descriptive information

about the targets of the links.  The presence of the link alone indicates interest in the target site,

and the text both in and surrounding the link provides information about the nature of the other

site.  Now, third-party metadata similar in form, but more precise in content is emerging through

the phenomenon known as social tagging.

Social tagging, as the term is used here, occurs when an individual assigns tags (keywords) to

items in an online resource collection.  The most prominent example of social tagging is
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provided by the website Del.icio.us which lets its users manage their Web bookmarks by

assigning each bookmarked URL a set of tags and making these tagged bookmark libraries

available online [55].  The principal personal advantages of using systems like this are that a

user’s bookmarks can be accessed from any machine with an Internet connection and can be

organized in many different ways using tags.  In addition, these applications provide interesting

social features as they make it possible to see what other people are bookmarking and what tags

they are using.

From the perspective of knowledge acquisition, social tagging services form an interesting new

source of third-party metadata.  Though individual users use these systems for their own personal

reasons [56], their collective efforts, available online, end up creating large amounts of useful

metadata. The tags added to the Web resources in these collections, when aggregated, have

already been shown to aid in the retrieval effectiveness of full Web search engines [57], but this

is a new and little-researched phenomenon.  Though social tagging services began in the general

context of the Web, the last several years have seen them penetrate into a variety of more

specific applications.  In the context of bioinformatics, social tagging services have emerged that

aid researchers in organizing and sharing their personal collections of academic citations [58-61].

This new activity and its recent penetration into the life sciences community introduces a variety

of new questions and new possibilities.  I address some of these questions in several chapters of

this dissertation. Specifically, I ask how this new source of metadata compares to the products of

professional annotators in scientific contexts and how social tagging interfaces might be

improved to enhance the value of the products that they create.

1.10 Dissertation objectives and chapter summaries

I conducted the research described in this dissertation to identify how third-party strategies might

be applied to the problems of metadata generation in bioinformatics with the ultimate aim of

moving the field closer to the vision of a global semantic Web for life sciences research.  The

specific objectives were to (1) design and test a system for bio-ontology engineering that did not

involve the bottleneck imposed by the requirement for expert knowledge engineers, (2) design

and test an open system for semantic annotation of bioinformatics resources that would marry the

benefits of open social tagging with those of semantic metadata, (3) establish empirical
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approaches for use in the evaluation of ontologies and other metadata structures, (4) characterize

the differences that hold between the products of social tagging and of professional labour in a

relevant biomedical context, and (5) implement a demonstration of a bioinformatics Web

application made possible through the use of distributed semantic metadata.

In Chapters 2 and 3, I describe the design and evaluation of the iCAPTURer system for ontology

engineering.  This system integrates pre-existing natural language processing technology with an

innovative volunteer-driven approach to knowledge engineering.  Evaluated in the context of two

scientific meetings in which attendees, untrained in ontology engineering, volunteered to

contribute their knowledge, the system demonstrated that valid ontology components can be

acquired rapidly and inexpensively without the presumed requirement of expert manual labour.

In Chapter 4, I describe OntoLoki, a new data-driven method for automatic ontology evaluation.

Given the expanding need for ontologies and the expanding number of techniques for building

them, exemplified by the iCAPTURer system described in Chapter 2, there is a growing need for

methods to evaluate ontology quality. OntoLoki is one of the first programs to succeed at

automating the task of ontology evaluation.  It achieves this through the application of simple,

longstanding philosophical principles,  extensive use of semantic Web technology and machine

learning.  In addition to a direct numeric assessment of quality, OntoLoki produces easily

interpretable classification rules for the classes in the evaluated ontology.

In Chapter 5, I present a new automated protocol for measuring terminological aspects of

controlled and uncontrolled indexing languages on the Web.  As the diversity of different

sources and forms of Web-based metadata continues to expand, methods for comparing different

instantiations provide vital knowledge to those that seek to use and to understand these

structures.  In this work, I focused specifically on characterizations of the sets of natural

language terms used within different indexing languages. The metrics proved sufficient to

differentiate between instances of different languages and to enable the identification of term-set

patterns associated with indexing languages produced by different kinds of information systems.

In particular, we found that distinct groups of term-set features can be used to distinguish the

tags produced by social tagging from other indexing languages.
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In Chapter 6, I offer a broad empirical comparison of the metadata produced by academic social

tagging services and the Medical Subject Headings generated and applied by the United States

National Library of Medicine.  To achieve this comparison I designed and implemented a

comparative protocol that defines key measurable indicators of annotation performance.  This

included the coverage of the document space, the density of metadata associated with the

documents,  the rates of inter-annotator agreement, and the rates of agreement with a gold

standard.  The comparison demonstrated that annotations generated by social taggers are

generally of low quality, that quality could be improved through intelligent aggregation of

multiple user’s assertions, but that the overall sparseness of the data renders simple aggregation

techniques such as voting ineffective.

In Chapter 7, I present an evaluation of an experimental semantic annotation system that blends

the open, participatory nature of social tagging with the benefits of terminology control.  An

implementation of this system was tested on the task of creating semantic annotations of

BioMoby Web services.  Annotation quality was assessed based on levels of agreement between

volunteer annotations (inter-annotator agreement) and agreement with a manually constructed

standard.  Though the annotations collected from different volunteer annotators varied widely,

simple algorithms for aggregating these assertions generated collective products of quality

approaching that to be expected from teams of expert annotators.  This experiment demonstrated

that, given sufficient community involvement,   open social classification appears to be a viable

strategy for accumulating semantic annotations for Web services in the domain of

bioinformatics.

In Chapter 8, I demonstrate how a user-script, a new kind of Web technology that allows third-

party developers to manipulate the display of Web pages, can be used to bring together third-

party metadata from distributed sources to enhance the visualization and navigation of the iHOP

(information Hyperlinked Over Proteins) website. The user-script augments the gene-centred

pages on iHOP by providing a compact, configurable visualization of the defining information

for each gene and by enabling additional data, such as biochemical pathway diagrams, to be

collected automatically from third-party resources and displayed in the same browsing context.

This open-source script provides an extension to the iHOP website, demonstrating how user-
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scripts, a novel kind of third-party Web resource, can be used to personalize and enhance the

Web browsing experience in a relevant biological setting.

The strategies described in these chapters are broadly applicable to the design and evaluation of

new information systems that are intended for the semantic Web and that seek to benefit from

third-party contributions.  The work specifically addresses the problem of the knowledge

acquisition bottleneck in the formation of semantic metadata, offering some of the first evidence

that emerging practices in mass collaborative knowledge capture may be effective in the expert

contexts characteristic of bioinformatics as well as new system designs tailored specifically for

knowledge capture in scientific settings.  Since much of the work undertaken was new in both

process and product, a significant challenge throughout was defining effective evaluation

methods. The approaches identified to evaluate ontologies and to compare metadata produced

from different information systems thus form an additional, important contribution of this

dissertation - providing a framework for future research to build upon.
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Figure 1.1. Third-party metadata providers
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2 Fast, cheap and out of control: a zero-curation model for ontology development3

2.1 Introduction

Ontologies provide the mechanism through which the semantic Web promises to enable dramatic

improvements in the management and analysis of all forms of data [1].  Already, the importance

of these resources to the bio/medical sciences is made clear by the thousands of citations4 of the

original paper describing the Gene Ontology (GO) [2].  Because of the broad range of skills and

knowledge required to create an ontology, they are generally slow and expensive to build.  To

illustrate, the cost of developing the GO has been estimated at upwards of $16M (Lewis, S,

personal communication).  This bottleneck not only slows the initial development of such

systems but also makes them difficult to keep up to date as new knowledge becomes available.

Conversely, projects such as the Open Directory Project (ODP) [3] and BioMOBY [4] take a

more open approach.  Rather than paying curators, ODP lets ‘net citizens’ build hierarchies (now

utilized by Google among many others) that organize the content of the World Wide Web.

BioMOBY, a web services-based interoperability framework, depends on an ontology of

biological data objects that can be extended by anyone.  The successful, open, and ongoing

construction of the ODP directories and the BioMOBY ontology hints that the power of large

communities can be harnessed as a feasible alternative to centralized ontology design and

curation.

We describe here a protocol meant to overcome the knowledge-acquisition bottleneck to rapidly

and cheaply produce a useful ontology in the bio/medical domain.  The key features of the

approach are the use of a web-accessible interface to facilitate collaborative ontology

development and the deployment of this interface at a targeted scientific conference.  This

chapter describes the protocol and presents the results of a preliminary evaluation conducted at

the 2005 Forum for Young Investigators in Circulatory and Respiratory Health (YI forum) [5].

                                                  
3 A version of this chapter has been published. Good BM, Tranfield EM, Tan PC, Shehata M, Singhera GK,
Gosselink J, Wilkinson MD: Fast, cheap and out of control: A zero curation model for ontology development. In:
Pacific Symposium on Biocomputing: January 3-7 2006; Hawaii, USA: World Scientific; 2006: 128-139.
4 1064 Google Scholar citations retrieved from http://scholar.google.com, 8 September 2005
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2.2 Experimental context and target application for the YI Ontology

The YI forum did not (outside of this study) include any research on knowledge capture or

artificial intelligence.  The topics covered spanned aspects of circulatory and respiratory health

ranging from molecular to population-based studies, and analysis of quality of health-service

provision.  Attendees included molecular biologists, health service administrators, statisticians,

cardio/pulmonary surgeons, and clinicians.  The target task for the YI Ontology was to provide a

coherent framework within which to organize the abstracts submitted to this broadly-based yet

specialized conference.  This framework would take the form of a simple subsumption hierarchy

composed of terms associated with individual abstracts, and/or added by individual experts

during the construction process.  Such an ontology could be used to facilitate searches over the

set of abstracts by providing legitimate, semantically-based groupings.

2.3 Motivation and novelty of conference-based knowledge capture

Research in natural language processing and machine learning is yielding significant progress in

the automatic extraction of knowledge from unstructured documents and databases  [6, 7];

however these technologies remain highly error-prone and, to our knowledge, no widely used

public ontology in the life sciences has ever been built without explicit, extensive expert

curation.  Thus, given the costs of curation, it would be preferable to identify methodologies that

facilitate extraction of machine-usable knowledge directly from those who possess it.  In order to

achieve this, several preliminary steps seem necessary:

1. Domain experts need to be identified

2. These experts need to be convinced to share their knowledge

3. These experts must then be presented with an interface capable of capturing their specific

knowledge

Scientific conferences seem to provide a situation uniquely suited to inexpensive, rapid,

specialized knowledge capture because the first two of these requirements are already met by

virtue of the setting; experts are identified based on their attendance and, at least in principle,

they attend with the intention of sharing knowledge.  Clearly, the main challenge lies in the
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generation of an interface that facilitates extremely rapid knowledge acquisition from expert

volunteers.

2.4 Interface design

The architecture chosen for this project borrows techniques from a new class of knowledge

acquisition systems that attempt to harness the power of the Internet to rapidly create large

knowledge bases.  Projects in this domain are premised on the assumption that, by distributing

the burden of knowledge representation over a large number of people simultaneously, the

knowledge acquisition bottleneck can be avoided  [8-11].   Two active projects in this domain

are Open Mind Common Sense [11], and Learner2 [12, 13]. Both of these efforts focus on

gathering  ‘common sense’ knowledge from the general public with the aim of producing

knowledge-based systems with human-like capabilities in domains such as natural language

understanding and machine translation.

These large, open, Internet-based projects are premised on the idea that there is little or no

opportunity for explicit training of volunteers, and in principle no strong motivation to

participate.  This is similarly true of the conference participants engaged in this study, and thus

based on these similarities, the interface developed for this knowledge capture experiment was

modeled after the template-based interface of the Learner2 knowledge acquisition platform [14].

Learner2 follows two basic design patterns:

1. Establish a system that allows the knowledge engineer to passively control knowledge

base structure, while allowing its content to be determined entirely by the subject matter

experts.

2. Use a web-enabled, template-based interface that allows all volunteers to contribute to

the same knowledge base simultaneously and synergistically in real-time.

The ‘iCAPTURer’ knowledge acquisition system presented here applies and adapts these

principles to the task of knowledge capture in the conference setting.
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2.4.1 Specific challenges faced in the conference domain

The iCAPTURer experiment faced unique challenges by virtue of its expert target-audience.

Learner2 is designed to capture common sense knowledge, and operates by generating generic,

user-agnostic fill-in-the-blank templates.  For example, in order to collect statements about

objects and their typical uses, a volunteer might be presented with “A [blank] is typically used to

smash something” and asked to fill in the blank.  In order to capture specific, expert knowledge

however, it is necessary to adapt the contents of these templates to target each volunteer’s

specific domain of expertise. The following section details our adaptation of the Learner2

approach to meet this challenge.

2.5 Methods - introducing the iCAPTURer

2.5.1 Preprocessing

Prior to the conference, terms and phrases were automatically extracted from each abstract using

the TermExtractor tool from the TextToOnto ontology engineering workbench  [6].  The

TermExtractor was tuned to select multi-word terms using the “C-value” method [15].  This

process produced a corpus of terms and phrases linked directly to the abstracts.  This corpus

provided the first raw material for the construction of the ontology and provided a mechanism to

match the contents of the templates to the volunteer's area of expertise.

In addition, the nascent ontology was seeded with a concept hierarchy taken from the Unified

Medical Language System  Semantic Network (UMLSsn) [16]. The UMLSsn was selected as the

‘upper ontology’ in order to provide a common semantic framework within which to anchor the

knowledge capture process [17].

2.5.2 Priming the knowledge acquisition templates - term selection

Two priming models were employed to ensure that relevant knowledge was captured and that

expert volunteers were presented with templates primed with concepts familiar to them. After

logging into the system, the volunteer first makes a choice between priming the system with a
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keyword entered as free text, or priming the system through selection of a specific abstract

(preferably their own).

In the abstract-driven model, the term to be evaluated is randomly selected from the pre-

processed auto-extracted terms associated with the selected abstract.  In this way, the expert is

preferentially asked about terms from an abstract that they are presumptively familiar with,

though there is nothing stopping them from selecting abstracts at random.

In the keyword-driven model, the system first checks the knowledge base for partial matches to

the keyed-in term, and if found, selects one at random.  If no matches are found the term is added

to the knowledge base and is considered meaningful.

2.5.3 Term evaluation

After the volunteer chooses an abstract or enters a keyword, they are presented with the term-

evaluation page.  This page presents them with a term and requests them to decide if it is

“meaningful”, “not-meaningful”, or if they do not understand it (‘X is a meaningful term or

phrase “True, False, I don’t know”’).  If they are unable to make a judgment on the term, another

term is presented and the process repeats.  If they indicate that the term is not valid, then the

term's ‘truth value’ is decremented in the knowledge base and another term is presented for

judgment.  Only terms above a set truth value are presented.  This allows for rapid pruning of

invalid entries from the active knowledge base without any permanent corpus loss.

Approximately 50% of the terms extracted using text mining were judged nonsensical, hence this

pruning was a critical step in the development of the ontology. If a term is rated as “meaningful”,

its truth value is raised and the term is considered selected.

2.5.4 Relation acquisition

Once a valid concept is selected, the system directs the volunteer to attach relations to the

concept that will determine its position in the ontology.  Two types of relation were targeted in

this study, synonymy (same as) and hyponymy (is a). To capture synonyms, a simple fill-in-the-

blank template was presented.  For example, if the term “muscle” was selected as valid, the

volunteer would then be invited to enter synonyms through a template like: The term or phrase
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[blank] means the same thing as “muscle”.  A different format was used for capturing the

hyponym relation. The hyponym template asks the volunteer to select a parent-term from a pre-

existing hierarchical vocabulary (initially seeded with the UMLSsn) rather than letting them type

one in freely.  This approach was selected with the goal of producing a sensible taxonomic

structure.  During the knowledge capture process, terms added to this hierarchy became new

classes that future terms could be classified under, thus allowing the ontology to grow in depth

and complexity.

As each task is completed, the volunteer is returned to a task selection screen and the completed

task's button is removed.  When each of the tasks are completed for the select term, another term

is selected and the process repeats.

2.5.5 Volunteer recruitment and reward

To assist in volunteer-recruitment, conference attendees were motivated by a 5 minute

introductory speech at the welcome reception, by flyers included in the conference handouts, and

by the promise of mystery prizes for the most prolific contributors.  Points were awarded to the

user for each piece of knowledge added to the system.  A simple user management system

allowed the users to create accounts, log out, and log back in again while keeping track of their

cumulative score throughout all sessions.  Anonymous logins were also allowed.

2.6 Observations

In this preliminary study, qualitative observation of volunteer response to the system was a

primary objective.  As such, the enthusiastic response the project received from the organizers

and the participants in the conference was encouraging, and the willingness of the volunteers to

spend significant amounts of time entering their knowledge was unanticipated.  From

conversations with the participants, it became clear that the competitive aspect of the

methodology was often their primary motivation, and this was especially true for the most

prolific contributors who indicated a clear determination to win.  Some volunteers also indicated

a simple enjoyment in playing this ‘intellectual game’.
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Another important observation was that the tree-based interface used to capture the hyponym

relation (see Figure 2.1) was not readily understood by the majority of participants.  This

interface required the user to understand relatively arbitrary symbols and to click multiple times

in order to find the correct parent for the term under consideration.  In contrast, the interface used

in the later qualitative evaluation (discussed in section 6) required just a single click for each

evaluation, resulting in no confusion or negative comments and more than 11,000 collected

assertions in just three days from a similar number and composition of volunteers.

2.7 Quantitative results

2.7.1 Volunteer contributions

During the 2 active days of the conference, 68 participants out of approximately 500 attendees

contributed to the YI Ontology.  Predominantly, volunteers contributed their knowledge during

breaks between talks and during poster sessions at a booth with computer terminals set up for the

purpose; however several participated from Internet connections in their hotel rooms. As

illustrated by Figure 2.2, the quantity of contributions from the different participants was highly

non-uniform, with a single volunteer contributing 12% of the total knowledge added to the

system.

2.7.2 Composition of the YI Ontology

Table 2.1 describes the terms captured for the YI ontology.  The pre-processing text mining step

yielded 6371 distinct terms associated with the 213 abstracts processed.  These auto-extracted

terms were not added to the ontology until they had been judged meaningful by one of the

volunteers via the term-evaluation template.  464 auto-extracted terms were evaluated by the

conference volunteers.  Of these, 232 were judged meaningful and 232 were judged not

meaningful.  In addition, the 429 terms entered directly by volunteers (in the keyword

initialization) were all considered to be meaningful.  Thus in total the potential corpus for the

ontology consisted of 661 validated terms.
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2.7.3 Relationships in the YI Ontology

Tables 2.2 and 2.3 describe the numbers of hyponyms and synonyms captured for the YI

ontology.  Of the 661 concepts, 207 were assigned parents in the UMLSsn rooted taxonomy.  Of

these, 131 concepts came from the auto-extracted set and 76 came from the directly entered set.

As terms could be linked to different parents, 38 additional parental relationships were assigned

to terms within this set, bringing the total number of hyponym relations assigned up to 245. 219

of the accepted terms were associated with at least one synonym, with many linked to multiple

synonyms.

2.8 Quality assessment

The evaluation of the YI Ontology was conducted in similar fashion to the initial knowledge

capture experiment.  Following the conference, the 68 participants in the conference study and

approximately 250 researchers at the James Hogg, iCAPTURE Centre for Cardiovascular and

Pulmonary Research were sent an email requesting their participation in the evaluation of the YI

ontology.  The email invited them to log on to a website and answer some questions in exchange

for possible prizes.  65 people responded to the request.  Upon logging into the website, the

evaluators were presented with templates that presented a term, a hyponym relation, or a

synonym relation from the YI Ontology.  They were then asked to make a judgment about the

accuracy of the term or relation. For synonyms and hyponyms, they were asked to state whether

the relationship was a “universal truth”, “true sometimes”, “nonsense”, or “outside their

expertise”.  For terms, they were asked whether the term was a “sensible concept”, “nonsense”,

or “outside their expertise”.  After making their selection, another term or relation from the YI

ontology that they had not already evaluated was presented and the process repeated.

Again, participants were provided motivation through a contest based on the total number of

evaluations that they made (regardless of what the votes were and including equal points for

indicating “I don’t know”). Participation in the evaluation was excellent, with 5 responders

evaluating every term and every relation in the ontology.  During the three days of the

evaluation, 11,545 votes were received, with 6060 on the terms, 2208 on the hyponyms, and
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3277 on the synonyms.  93% of the terms, 54% of the synonyms and 49% of the hyponyms

enjoyed more positive than negative votes overall.

Figures 2.3a, 2.3b, and 2.3c display plots of the fraction of “true” votes received for each term,

synonym and hyponym in the ontology.  These curves illustrate strong positive consensus for the

large majority of captured terms, but considerable disagreement regarding the quality of the

captured synonyms and hyponyms.  To some extent this may have been caused by the exclusion

of the “sometimes” category from the term evaluations, but even when the “sometimes” votes

are merged with the “true” votes, there are still considerably fewer positive votes for the

hyponyms and synonyms and less agreement among the voters.  This is illustrated for the

hyponyms in  Figure 2.3d.

Table 2.4 gives some examples of the contents of the YI ontology.  These examples illustrate that

the voting process successfully identified high quality components that should be kept, low

quality components that should be discarded, and questionable components in need of

refinement.  These assessments could be used to improve the overall quality of the ontology

through immediate pruning of the obviously erroneous components and by guiding future

knowledge capture sessions meant to clarify those components lacking a strong positive or

negative consensus.

2.9 Summary

Between April 29th and April 30th 2005, 661 terms, 207 hyponym relations, and 340 synonym

relations were collected from 68 volunteers at the CIHR National Research Forum for Young

Investigators in Circulatory and Respiratory Health.  In a subsequent community evaluation,

93% of the terms, 54% of the synonyms and 49% of the hyponyms enjoyed more positive than

negative votes overall.  The rudimentary ontology constructed from these terms and

relationships was composed at a cost of the 4 t-shirts, 3 coffee mugs, and one chocolate moose

that were awarded as prizes to thank the volunteers.
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2.10 Discussion

This work addresses the key bottleneck in the construction of semantic web resources for the life

sciences.  Ontology construction to date has proven to be extremely, possibly impractically,

expensive given the wide number of expert knowledge domains that must be captured in detail.

Thus, it is critical that a rapid, accurate, inexpensive, facile, and enjoyable approach to

knowledge capture be created and ubiquitously deployed within the life science research

community.  To achieve this, a paradigm shift in knowledge capture methodologies is required.

The open, parallel, decentralized, synergistic protocol presented in this study represents a

significant deviation from the centralized, highly curatorial model employed in the development

of all of the major bio/medical ontologies produced to date.

The positive consequences of this approach are that 1) knowledge can be captured directly from

domain experts with no additional training, 2) a far larger number and diversity of experts can be

recruited than would ever be feasible in a centralized effort and 3) because the approach involves

no paid curators, the overall cost of ontology development is very low.

The negative aspect of the approach is that the knowledge collected is “dirty”, requiring

subsequent cleaning to achieve high quality. Future versions of the iCAPTURer software will

attempt to improve on the quality of the captured knowledge by integrating the evaluation phase

directly with the knowledge capture phase.  In this “active  learning” approach, the questions will

be tuned on-the-fly to direct knowledge capture efforts to areas of uncertainty or contention

within the developing ontology and to quickly weed out assertions that are clearly false.  The

present study describes just one step of such a multi-step process, with obvious opportunities for

immediate improvement in the next iteration based on the knowledge gathered during the

evaluation.

In comparison to existing methodologies, which tend to separate the biologists from the

ontologists, the iCAPTURer approach demonstrates dramatic improvements in terms of cost and

speed.  If future work confirms that this approach can also produce high quality ontologies, the

emergence of a global semantic web for the life sciences may occur much sooner than expected.
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Table 2.1. Captured terms

Text-
extracted

Judged
meaningful

Judged not
meaningful

Added
directly

Total
meaningful

Count 6371 232 232 429 661

Table 2.2. Hyponyms

 Total number of categories (including the UMLSsn) 469
 Total categories added at the YI forum 207
      Added categories created from auto-extracted terms 131
      Added categories created from terms added as keywords 76

Table 2.3. Synonyms

 Total distinct targets (number of distinct synonyms entered) 340
 Total distinct sources (number of terms annotated with a
synonym) 219
      Sources from auto-extracted terms 153
      Sources from terms added as keywords 66

Table 2.4. Examples of assertions and associated votes

Type Assertion % positive % sometimes % negative
‘wild type’ 100 NA 0
‘epinephrine e’ 50 NA 50

Term

‘blablala’ 0 NA 100
 ‘asthma is disease’ 100 0 0
‘factor xiia is a coagulation factor’ 50 50 0

Hyponym

‘stem cells are a kind of
transmission electron microscopy’

0 11 89

‘positive arrhythmia is the same as
abnormal pacing of the heart’

89 11 0

‘lps treatment is the same as
lipopolysaccaharide treatment’

50 37.5 12.5

Synonym

‘Cd34 is the same as aneurysm’ 0 14 86
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Figure 2.1. Hyponym collection

'Muscle' is being placed as a child of 'Anatomical Structure'.

Figure 2.2. Distribution of participant contributions.

The X axis denotes the participant number, the Y-axis the fraction of the knowledge base
contributed by that individual.
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Figure 2.3. Positive consensus agreement

The positive consensus agreement for captured terms (A), synonyms (B), and hyponyms (C).
For A, B and C, the y-axis indicates the fraction of the votes for “universal truth”.  This value is
used to sort the assertions indicated on the X-axis.  The y-axis on D indicates the level of
positive consensus for the hyponyms if the “true sometimes” votes are counted with the
“universal truth” votes indicating a “not-false” category.
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3 Ontology engineering using volunteer labour5

3.1 Introduction

Ontologies are a fundamental component of the incipient Semantic Web. To achieve its visions,

ontologies need to be written in Semantic Web compatible languages such as OWL and used to

annotate the resources of the Web.  However, as with many previous efforts in the domain of

artificial intelligence, ontology development faces the problem of the knowledge acquisition

bottleneck.  Given current approaches, ontology development is a slow, expertise-heavy, labor-

intensive, and thus costly enterprise.   The work presented here is part of a larger project that

seeks to dramatically reduce the costs associated with ontology development by altering the

process of knowledge acquisition such that it may be distributed across a very large number of

volunteers simultaneously via the Internet.

The process starts with a seed ontology that may be generated automatically or semi-

automatically; for example, from text [1], or from a translation of an existing structured resource

such as a thesaurus [2].  The putative classes and relations in the inferred ontology are then

validated and refined based on answers to questions about them posed to a large pool of

volunteers.  The simplest form of these questions is simply, to ask whether or not a given

ontological statement is ‘true’ or ‘false’.  Each question is posed to multiple volunteers.  To

make improvements to the ontology, the responses are combined using methods that attempt to

incorporate estimates of trust in each volunteer.

The goal of the work presented here is to estimate how well our system can detect errors in auto-

generated statements of the subsumption relationship without any training for the volunteers. The

relationships that we use are drawn from the biomedical domain.  For example,  how well can

volunteers (individually or in aggregate) answer questions such as “is a nipple a kind of breast”

or “is a lymphocyte a sub-class of a lymphatic system”?

                                                  
5 A version of this chapter has been published. Good BM, Wilkinson MD: Ontology enginering using volunteer
labour. In: Proceedings of the World Wide Web Conference: 2007; Banff, Canada; 2007: 1243-1244.
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3.2 Creating an OWL version of MeSH

MeSH, which stands for ‘Medical Subject Headings’, is the thesaurus used by the United States

National Library of Medicine to index the millions of biomedical journal articles described in the

Pubmed/MEDLINE database  [3].  MeSH has been automatically converted to OWL using a

simple, but problematic, mapping from the ‘narrower than’ thesaural relation to the

rdfs:subClassOf relation [4].  By our estimation, about 40% of the predicted sub-class relations

are incorrect.  Many are statements of meronymy, as in the nipple-breast example above, but

there are many more subtle problems in the mix as well [5].  The experiment described below

tests our volunteer-driven system’s ability to detect these errors.

3.3 Experiment

Following from previous work that utilized scientific conferences as settings for focused

knowledge capture efforts [6], this experiment took place at the annual meeting of a large

research project directed at identifying biomarkers of allograft rejection [7].  The setting of the

meeting made it easy to identify volunteers from the biomedical domain and to provide

motivation for their participation in the form of a small prize awarded to the most prolific

contributor at the end of the conference.

The volunteers were asked to login to a website and answer a series of questions about

subsumption relations from MeSH.owl.  These questions were provided in one of two forms: “Is

it true that a ‘mast_cell’ is also a ‘connective_tissue_cell’?” or “Is it true that all instances of the

class ‘b-lymphocyte’ are also instances of the class ‘antibody_producing_cell’?”.

3.3.1 Test data

To measure the performance of the volunteer-system on this task, we used a sample of 130

MeSH.owl sub-class relations which we manually labeled as either true or false.  The sample

relation set was generated by extracting the subgraph of the MeSH term ‘immune system’ which

included all of its parents, all of its subclasses and all of the parents of all of its subclasses.  The

term ‘immune system’ was chosen because the topic of the meeting where the experiment was

conducted was closely related to immunology.
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3.4 Results

Over the course of the 2 day experiment, responses from 25 volunteers were recorded.  All but

two of these were from the 50 attendees of the Biomarkers annual meeting, the others were from

external IP addresses.  As observed in previous experiments of this nature and displayed in

Figure 3.1, the amount of labor provided per volunteer exhibited a characteristic long-tail

distribution with a few volunteers contributing the large majority of the work.  Overall, only 5 of

the volunteers responded to more than 25% of the questions and only one volunteer responded

with an assertion of ‘true’ or ‘false’ to more than 90% of the questions in the test set.

3.4.1 Performance of aggregated responses

Five methods were tested for combining the multiple volunteer assertions about each putative

MeSH sub-class relation.  The simplest method was to take the majority vote for each potential

sub-class.  The next method weighted each vote based on the time taken between it and the

previous vote.  As they did not use any training, these were evaluated on the entire set of

samples.

The other three methods involved machine learning algorithms (1R, Support Vector Machines,

and Naive Bayes) that attempted to learn how best to combine the votes using the data collected.

If, for example, one voter consistently voted correctly, these algorithms should detect that voter

and weight their responses above others.  Each row of training data for these methods consisted

of the target class (the true/false label for one sub-class relation), the votes for that relation from

each volunteer who voted on it (including assertions of ‘I don’t know’), and the ratio of the true

verse false votes gathered from all volunteers for that relation.  These methods were evaluated

using 10-fold cross-validation over the whole set of samples.  Table 3.1 provides a summary of

the results obtained for the various methods. It is problematic to directly compare the results of

the cross-validation evaluations to those from the non-learning based approaches, but there does

seem to be an advantage gained by the learning methods.
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3.5 Discussion and future work

Due to the relatively small number of volunteers and number of test cases, the work presented

here should be considered as preliminary.  However, it did re-iterate previous results indicating

that volunteers can be found, but that this kind of task and this kind of incentive strategy are

sufficient to keep the attention of only a small fraction of the recruits.  It also suggested that

learning algorithms can aid in forming intelligent aggregates of multiple voters on ontology

evaluation tasks. Future experiments will test the effects of various training mechanisms for

improving individual volunteer performance and will continue to evaluate different approaches

to combining the assertions of multiple volunteers.
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Table 3.1. Performance on subclass-assessment task using the different aggregation methods

The F-measure is the harmonic mean of precision P and recall R where P = tp/fp+tp), R =
tp/fn+tp), F-measure = 2*P*R/(P+R)

Aggregation
Method

%
correct F-false F-true

A Single
Volunteer .62 .17 .75

Majority Vote
(MV) .64 .23 .77

MV weighted by
time between

votes
.63 .47 .71

1R .71 .56 .78
SVM .75 .64 .78

Naive Bayes .75 .64 .81

Figure 3.1. Volume of participation per volunteer

For each volunteer listed on the X-axis, the Y-axis shows the fraction of the total number of
subclass judgements that could have been made that the volunteer asserted.  Note that a few
volunteers completed nearly all of the statements while most contributed very little.
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4 OntoLoki:  an automatic, instance-based method for the evaluation  of biological

ontologies on the semantic Web6

4.1 Background

In recent years, the explosive growth of data in the life sciences has produced the need for many

new biological and medical ontologies  [1, 2].  To meet this need,  the biomedical informatics

community has developed powerful tools for building ontologies such as Protégé [3, 4],

established institutions devoted to improving and expanding the practice of biomedical ontology

design [5], and produced an ever-increasing number of ontologies and ontology-based

applications [6].  Outside of the biomedical community, the broader W3C-lead semantic Web

initiative has produced new, standardized languages for sharing ontologies on the Web, such as

OWL [7], as well as efficient algorithms for automated, deductive reasoning over the knowledge

represented within them [8, 9].  These advances aid the processes of building, sharing, and using

biological and medical ontologies; however,  one well-recognized, yet largely unmet need

remains the development of effective, objective methods for the evaluation of ontology quality

[10, 11].  As Jeremy Rogers points out,

“the medical and non-medical ontology engineering communities have yet to

define, much less to regularly practice, a comprehensive and systematic

methodology for assuring, or improving, the quality of their product” [12].

In much the same way that consistent standards for designing, building, and evaluating the

products of physical engineering efforts can contribute to the efficiency of the engineering

process and the reliability of the end-product,  an effective, systematic methodology for ontology

design and evaluation would be a great benefit to the community.  Though some attempts have

been made at comprehensive methodologies, such as Methontology [13], none has gained

widespread adoption.  We suggest that before such a methodology can truly be successful, a

wealth of measurements of the characteristics of ontologies as well as a detailed understanding of

their implications is necessary.

                                                  
6 A version of this chapter will be submitted for publication. Good BM, Ha G. Kin Ho C., Wilkinson MD:
OntoLoki:  an automatic, instance-based method for the evaluation  of biological ontologies on the semantic Web.
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To contribute to the eventual development of a comprehensive methodology for ontology design

and evaluation, we introduce a new way of automatically measuring one important ontology

characteristic that is currently inaccessible using existing methods. The delineation of precise

definitions for each class in an ontology and the consistent application of these definitions to the

assignment of instances to classes are well-accepted desiderata for ontologies.  If ontologies are

defined with formal restrictions on class membership, then such consistency can be checked

automatically using existing technology.  If no such logical restrictions are applied however, as is

the case with many current biological and medical ontologies,  then there are currently no

automated methods for measuring the consistency of instance assignment for the purpose of

evaluation.  The aim of this study is thus to identify, implement, and test a new method for

automatic, data-driven ontology evaluation that is suitable for the evaluation of the consistency

of ontologies with no formally defined restrictions on class membership.

4.2 Results

The results of this research comprise the OntoLoki method for ontology evaluation, its

implementation, and the empirical evaluation of the implementation.  Each aspect is now

presented in turn.

4.2.1 OntoLoki method

4.2.1.1 Input and output

Figure 4.1 illustrates the basic process of ontology evaluation using the OntoLoki method.  The

input is a knowledge base containing an ontology, instances assigned to the classes in that

ontology, and properties associated with those instances.  The output is, for each class in the

ontology,

1) a rule that defines a pattern of properties that attempts to separate the instances of the

class from the instances of other classes,

2) a quantitative score, called ‘classification consistency’, based on the ability of the

identified rule to correctly predict class membership for the instances in the knowledge

base.
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High classification consistency means that instances are assigned to classes based on strictly

followed rules expressed through specific patterns of properties evident in the instances.  For

example, a classification rule could be used to assign all instances in a particular knowledge base

that displayed both the property of having blue feathers and the property of having a red beak to

a particular class.  As long as the rule is applied reliably,  such that all members of the class

exhibit this pattern of properties,  the class should receive a high classification consistency score.

On the other hand, a low classification consistency score is an indication that – in the context of

the specific knowledge base used in the evaluation – no consistent pattern of properties could be

found to differentiate the members of the class in question from the other classes.

4.2.1.2 Processing

The classification consistency of an ontology, effectively the ability to identify patterns of

properties that can be used to correctly assign instances to its classes, may be computed as

follows:

1) Assemble a knowledge base composed of the ontology, instances of each of the classes

considered from the ontology, and the properties of interest for those instances.

2) For each class in the ontology,

a. Compose a dataset consisting of instances of that class (positive examples)  and

instances that are not members of that class (negative examples).  This data may

take the form of a simple table, where the rows correspond to instances and the

columns correspond to properties of those instances.

b. Use this data to build a classifier to distinguish between positive and negative

instances of the class in question

 i. Generate scores for each class based on the ability of the classifier to

correctly predict the classes associated with the instances based on their

properties.

 ii. Record the pattern identified by the classifier for each class.
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To provide a single classification consistency score for the entire ontology, report the average

score across all the classes.

4.2.2 Implementation

The implementation presented here is designed for application to ontologies and knowledge

bases created according to the standards defined by the semantic Web working group(s) of the

World Wide Web Consortium.  Ontologies are thus expected to be represented in the OWL

language [7] and knowledge bases are assembled by building or discovering RDF [14] graphs

containing instances of the ontology classes.  The RDF predicates originating from each instance

of an ontology class to be evaluated provide the properties of those instances used for the

evaluation.  Chains of such predicates and their objects can be combined to form arbitrarily

complex properties associated with each instance.

4.2.2.1 Step 1 – knowledge base discovery

The first step in the process of conducting an OntoLoki evaluation is the discovery of a

knowledge base containing instances of the ontology classes and their properties.  Though we

would eventually like to include a discovery module in our implementation that assembles the

required knowledge bases dynamically by identifying suitable content on the semantic Web, for

example, through the automatic generation of queries issued to semantic repositories such as

Bio2RDF [15, 16] and DBpedia [17], the current implementation requires manual intervention

during the composition of the needed datasets.  Once an OWL/RDF knowledge base is

assembled, the rest of the processing is completely automated.  In the experiments presented

below, all the data is gathered through queries to the UniProt protein database [18]. This resource

was selected because the instances of the evaluated ontologies correspond to proteins and the

queries to this resource return RDF representations of the properties associated with proteins.  To

clarify interpretation of the experimental results below and to illustrate the raw input to our

implementation, we provide a short description of the UniProt data.
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4.2.2.2 UniProt beta RDF representation

The RDF versions of UniProt protein records are organized according to the UniProt core

ontology [19].  At the time of writing, this OWL ontology used 151 classes, 39 object properties,

65 data properties, and 59 individuals to form the descriptions of all of the UniProt proteins.

Each protein resource is represented as an instance of the class ‘Protein’.  The two most

important predicates associated with proteins for present purposes are ‘annotation’ and

‘seeAlso’.

The UniProt ‘annotation’ object property is used to form relations between protein instances and

instances of the class ‘Annotation’. ‘Annotation’ is subdivided into many different kinds of

annotation, including 83 distinct subclasses.  Examples of Annotation classes include

‘Transmembrane_Annotation’, ‘Helix_Annotation’, ‘Signal_Peptide_Annotation’,

‘Lipidation_Annotation’, and ‘Biotechnology_Annotation’.  These classes are used in at least

two importantly different ways.  In one, the class is specific enough to thoroughly encapsulate

the intended meaning of the annotation; in the other, the precise meaning must be inferred from

additional, often non-formal, statements.  For example, consider the sample of UniProt RDF

statements about the protein P35829 depicted in Figure 4.2 [20].

In Figure 4.2, protein P35829 is described with three annotations.  The first is a “Signal Peptide

Annotation”, the second a “Function Annotation”, and the third a “Post-translational

modification annotation”.  The Signal Peptide annotation is quite specific, needing no more

additional clarification as to its meaning.  On the other hand, the latter two of these annotations

are ambiguous and are thus enhanced in the record with textual comments that contain most of

their meaning (e.g. the Post-translational modification is ‘Glycosylated’).

This situation raises a problem for automated semantic processing in that it requires the

implementation to either ignore the information present in the comment fields, or incorporate

some manner of natural language understanding to extract the information.  As the aim of the

implementation generated for this project is to take advantage of the structured data of the

semantic Web, the comments were not incorporated into the training data for the classifiers.



49

The other important property used to describe proteins in the UniProt data is rdfs:seeAlso.  This

is used to form relations between the proteins in UniProt and records from other databases.  For

example, P35829 is the subject of the following statement:

<rdfs:seeAlso rdf:resource="http://purl.uniprot.org/interpro/IPR004903"/>

Unfortunately, both the nature of these relationships and the nature of the external record is not

captured.  From the standpoint of an agent processing this data, each of the above statements is

equally meaningless; each saying P35829 has some relationship to some other resource of

unknown type/nature.  Though it goes against the goal of providing a completely generic

implementation that works according to the standards of the semantic Web, the information

about the InterPro domains was needed for this particular experiment.  Thus, a specific block of

code was added to extract the InterPro annotations and add them to the training data.  The other

seeAlso statements were not processed.

4.2.2.3 Step 2 – propositionalization of the RDF

Once an appropriate OWL/RDF knowledge base is assembled, our implementation maps the

relational structure of the RDF graph to the flat structure of the tables used by most current class

prediction algorithms in a process known as ‘propositionalization’ [21].  Each instance becomes

a row in a simple 2-dimensional table and each property becomes a column.  To identify

properties, the RDF graph is traversed until either pre-defined endpoints or a specified maximum

depth is reached.  For example, properties that would be extracted from the protein graph

represented in Figure 4.2 would be ‘annotation_Signal-Peptide’, ‘annotation_Function-

Annotation’, and ‘seeAlso-IPR004903’.  More complex properties can be extracted by traversing

deeper into the graph and recording the path.

The following list delineates important choices made in our implementation that may or may not

be appropriate in others.

1) The extracted table represents a set of binary values. Each instance is assigned a true or a

false value for each identified property.
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2) The table does not reflect the open-world assumption of the semantic Web.  If a property

is not attached to an instance in the knowledge base, it is assumed not to exist and set to

false.

3) The table does represent the subsumption relationship. Instances are indicated as

members of both the class they are directly assigned to and all of the superclasses of that

class.

4.2.2.4 Step 3 – preparing the dataset for the evaluation of a single class

Once a table representing the knowledge base is constructed, subsections of it are extracted for

the evaluation of individual classes.  To begin the evaluation of any particular class in the

ontology, a table of data is composed specifically for that class by:

1) Selecting only those rows that are instances of the direct parent of the class (where simple

subsumption reasoning ensures that this set will contain all of the instances of the class in

question).

2) Removing all of the class columns (is a) except for the class in question.

This results in a table with one class column corresponding to the class being evaluated  where

all the rows correspond either to instances of that class (positive examples), or instances of its

parent or sibling classes that are not instances of it (negative examples).  This formulation allows

for the detection of patterns that serve to discriminate classes from their parents and, through

subsumption, their hierarchical siblings.  If such patterns are detected, the addition of the class in

question to that particular hierarchical location in the ontology is considered justified and the

reason for its inclusion denudated.

4.2.2.5 Step 4 – classifier training and testing

Once a table containing positive and negative instances of a particular class is created, the next

step is to find patterns of properties that can define the rules for membership in the class.  In our

implementation, this inductive process is accomplished through the application of supervised

learning algorithms made available by the Waikato Environment for Knowledge Analysis

(WEKA)[22].
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Of the many learning algorithms available through WEKA, just the following were utilized in

the experiments described below.

1) ZeroR simply always predicts the class displayed by the majority of the instances in the

training set and thus serves as a baseline for evaluating the other algorithms.

2) OneR creates a rule based on the most informative single attribute in the training data.

3) JRip is an implementation of the Ripper rule induction algorithm [23] capable of

identifying fairly complex, but easily interpreted classification rules.

4) Chi25_JRip.  In this case we use WEKA’s AttributeSelectedClassifier  meta–classifier.

First, all of the attributes (properties of the instances) are ranked using the value of the

chi-squared statistic for the attribute with respect to the class.  Then, only the top 25

attributes are used to train and test the JRip algorithm.

These were selected as demonstrative cases because they are relatively fast and yield easily

interpretable rules; however, any particular evaluation might benefit from a different classifier.

With this in mind, our implementation makes it possible to select any of the hundreds learning

algorithms provided by WEKA when running an evaluation.

4.2.2.6 Quantifying classification consistency

The classification rules identified by the learning algorithms need to be quantified based on their

ability to separate the positive and negative instances for the class in question.  Following a

traditional approach to evaluating machine learning schemes with limited available data, the

classifiers (learning algorithms) are repeatedly trained on ninety percent of the data and then

tested on the remaining ten percent until all ten such divisions are complete [22].  For each such

10-fold cross-validation experiment,  the numbers of all the correct and incorrect predictions

made on the testing data are recorded. From these, various estimates of the quality of the class

predictor (the decision model learned) are derived and reported to indicate the consistency of

each class. The metrics reported by our implementation (as they are implemented in WEKA) are:

1) Accuracy = 

€ 

N(C)
N(T)

 where N(C) equals the number of correct predictions and N(T) equals

the total number of predictions.
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2) F-Measure for predicting the target class F(1) and for predicting not the target class F(0)

a. F(c) = 

€ 

2(P(c) *R(c))
P(c) + R(c)

 where P(c) equals the precision of predicting the class c and

R(c) equals the recall for predicting class c.

 i. P(c) = 

€ 

TP
TP + FP

 where TP equals the number of true positive predictions

and FP equals the number of false positive predictions.

 ii. R(c) = 

€ 

TP
TP + FN

 where TP equals the number of true positive predictions

and FN equals the number of false negative predictions.

3) Kappa: K =  

€ 

P(A) − P(E)
1− P(E)

 where P(A) equals the probability of correct prediction of the

learned classifier and P(E) equals the probability of correct prediction by chance.

4) Kononenko-Bratko information gain.  See [24] for the derivation of this metric which is

generally similar in intent to the Kappa statistic.

These estimates of the quality of the induced decision models attempt to reflect the relative

existence of a consistent, unique pattern of properties associated with the class being evaluated.

4.2.3 Testing

Now that the method, illustrated in Figure 4.3, and our implementation have been described, we

turn to an assessment of the data that it produces. We assert that the OntoLoki metrics

quantitatively represent the quality for an ontology in a particular context and that the

classification rules learned in the process could be useful in both the process of ontology

engineering and in knowledge discovery.  To provide evidence for these claims, we now present

the results of the evaluation of several ontologies.  The evaluations begin with a control

experiment intended to show that the implementation is successful in producing the expected

results on artificially generated ontologies displaying known levels of quality.  This is followed

by the evaluation of two real-world, biological ontologies, one very simple and one large and

structurally complex.
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4.2.3.1 Experiment 1 – control: Phosphabase and its permutations

To evaluate the ability of the OntoLoki method, we began by identifying a gold standard with

regard to classification consistency.  We sought an ontology and a knowledge base that, in

addition to displaying highly consistent classification, were representative of the biomedical

domain. A combination that met these criteria was provided by the Phosphabase ontology [25]

and an OWL/RDF knowledge base extracted from UniProt.

Phosphabase is an OWL ontology for describing protein phosphatases based on their domain

composition.  For example, the class “classical Tyrosine Phosphatase” is defined to be equivalent

to the set of proteins that contain at least one InterPro domain IPR000242.  Because class

definitions like this have been formalized with OWL DL restrictions, it is possible to use

reasoners, such as Pellet [9] and Fact++ [8], to automatically classify protein instances within the

ontology.  For example, if a novel protein is discovered to have an IPR000242 domain, then a

reasoner can be used to infer that it is an instance of the class ‘classical Tyrosine Phosphatase’

[25].

Ontologies, like Phosphabase, that are constructed using DL class restrictions, form a

particularly interesting and useful case from the perspective of the quality evaluations suggested

here.  The formal, computable restrictions on class membership that they encode can be used to

guarantee that the instances of each class demonstrate a perfectly specific pattern of properties.

The ability to rediscover the decision boundaries formed by these class restrictions and expressed

in the properties of instances assigned to the classes can thus serve as a positive control on our

implementation.  If these straightforward, perfectly consistent patterns cannot be discovered,

then the implementation could not expect to identify more complex patterns in noisier, more

typical, data.

To create a control knowledge base using a DL ontology like Phosphabase, the following steps

are applied:

1) classify the instances of the knowledge base using a DL reasoner

2) strip the definitions from the classes
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3) convert the classified knowledge base into a table as discussed above

This process results in a knowledge base where the properties of the instances are guaranteed to

contain the information required to identify the decision boundaries represented in the original

class definitions but where those definitions are unknown to the implementation.

To prepare the knowledge base for the Phosphabase experiment, instances in the form of proteins

annotated with InterPro domains were gathered by a query issued to UniProt beta [18].  The

query retrieved reviewed protein records where the term ‘phosphatase’ appeared in the

annotation of the protein in any of the fields: ‘domain’, ‘protein family’, ‘gene name’, ‘gene

ontology’, ‘keyword’, ‘protein name’, or ‘web resource’.  This query, executed on November 6,

2007, produced 3169 protein instances, each with extensive annotation expressed in OWL/RDF.

For the control experiment, the only properties that were considered were the InterPro domains

and the presence of transmembrane regions because these were the only features used in the

Phosphabase class restrictions.  Once the instances were retrieved and their annotations mapped

to the Phosphabase representation, they were submitted to the Pellet reasoner and thereby

classified within the ontology.  Prior to presenting this knowledge base to the evaluation system,

the restrictions on class membership were removed from the ontology, but the computed class-

assignments for each instance were maintained, thus forming a simple hierarchy of classes with

instances consistently assigned according to the (now absent) class definitions.  It is worth noting

that this final structure mimics that of many existing biomedical ontologies, such as the Gene

Ontology, where instances are assigned by curators to a class-hierarchy free of formal

definitions.

Table 4.1 describes the knowledge base constructed for the evaluation of the Phosphabase

ontology.  The ontology contains a total of 82 classes, of which only 39 define phosphatase

classes.  The other classes are used to represent things like protein domains and are not included

in this evaluation.  The root of the classes evaluated was thus the class ‘Protein Phosphatase’.  Of

the 39 phosphatase classes, only 27 had defined restrictions sufficient for inferring class

membership and of these only 19 had enough instances to attempt the evaluation. In some cases,

the Phosphatase classes used InterPro domains that have now been retired and thus no instances
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with current annotation could be classified into them.  In other cases, there were few instances of

that Phosphatase class.  Only classes with at least 5 positive and 5 negative examples are

evaluated as this is the minimum number required to execute 10-fold cross-validation.  In all,

only 19 classes (about half of the phosphatase classes) were evaluated.

4.2.3.1.1 Phosphabase results

As expected, the perfectly consistent rules for class membership present for the classes evaluated

in this control knowledge base were easily learned by the induction algorithms in nearly every

case.

JRip identified rules that accurately reflected the restrictions on class membership in the original

ontology for each evaluated class except one. The only class that contained any variance from

perfect in the cross-validation runs was the class PPP (phosphoprotein phosphatase).  For PPP,

JRip learned the rule: “If the protein contains domain IPR004843 or IPR001440, then predict

PPP”.  The original  definition for this class corresponded to the rule “If the protein contains

domain IPR004843 or IPR006186, then predict PPP”. It identified the IPR001440 constraint

because the majority of the instances of PPP are actually instances of its subclass,

proteinPhosphataseType5 which is defined by a restriction on IPR001440. This results in 1

incorrectly classified instance out of 1462 examples (the instances of PPP’s parent

Protein_Phosphatase).

Chi25_JRip performed identically to JRip with the exception of the class R2A (Receptor

Tyrosine Type 2A).  When using all of the data (not in cross-validation), it learned the same rule

that covered all of the examples in the database perfectly, “if the protein contains domain

IPR0008957 and IPR003599, then predict R2A”. However, in one round of 10-fold cross-

validation, it learned a different rule and misclassified one of the instances.

OneR, which can only learn one rule using one attribute, worked perfectly on all the classes

except PPP and R2A.  For PPP, it learned the rule “if IPR004843 then PPP”, displaying its

inability to add the additional attribute (IPR006186) needed to complete the definition.  For R2A,

it simply always predicted true in all of the cross-validation runs, thus misclassifying the 12
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instances that were R1_R6 phosphatases (R2A’s superclass) but not R2As.  When applied to all

of the training data, it learned the rule “if IPR000884 then R2A” which, though not part of the

formal definition of the class, correctly predicted 74 of the 82 instances in the R2A dataset.

Figure 4.4 shows the average performance of each learning algorithm across each of the 19

classes evaluated in terms of the average accuracy, Kappa statistic, F-measures, and mean

Kononenko-Bratko information gain measure as identified in one 10-fold cross-validation

experiment.  With the exception of the ZeroR algorithm, there is very little difference between

the different induction algorithms along any of these metrics.

The ZeroR algorithm doesn’t learn from any of the features of the data, it simply makes all

predictions for the most frequently observed class in the training set.  Hence, it does nothing to

expose any defining pattern for the class in question and is thus not useful in terms of assessing

the knowledge base.  The actual quality of the knowledge base as indicated by any induction

algorithm is thus better determined by the difference between its quality and that generated using

ZeroR.  Metrics that take the prior probability of the test classes into account, such as the Kappa

statistic, are thus more effective estimates of the quality of a knowledge base than those that do

not.

4.2.3.1.2 Experiment 1 – part 2, permutation-based evaluation

The next phase of the control experiment was designed to test whether or not the metrics

produced using the OntoLoki method are effectively quantifying the quality of the ontology in

the context of the selected knowledge base and to provide a preliminary estimate of the expected

range of values for the different metrics.  Our approach to conducting this test relies on the

assumption that a randomly ordered knowledge base (which includes both the ontology and all of

the data) should generate lower scores than a non-random knowledge base.  Based on this

assumption we applied a method similar in nature to that of Brank et al.(2006), in which

permutations of the assembled Phosphabase knowledge base were generated which contained

increasing numbers of random changes to the class assignments for each instance [26].  For each

permutation, the amount of noise added was quantified by counting the number of differences

between it and the original knowledge base and dividing this number by the total number of
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instances.  If the quality metrics do not correlate with the presence of this added noise, then they

clearly do not provide effective measurements of quality.

Figure 4.5 indicates the relationship between the amount of noise added to the Phosphabase

knowledge base and the score for each of the above metrics for the Chi25_JRip algorithm.  It

shows that each reported metric displays a strong correlation with the amount of randomness

added to the ontology, however, the correlation was strongest for average accuracy (r-squared =

0.9994).  Based on the trends observed in the chart, the other metrics that seemed to best indicate

the presence of the noise in the knowledge base were the Kappa statistic, which consistently

varied from a perfect score of 1 all the way down to below 0 (it can range from 1 to –1) and the

mean Kononenko-Bratko information-gain measurement which smoothly varied from

approximately 0.5 to 0.

When the amount of noise added to the ontology reached approximately 11 (which corresponds

to about 35,000 random changes), the scores for the f-measure for predicting the class under

evaluation (‘f_1’ on the chart) reversed their expected downwards trend and began to improve.

This correlates with the point at which the ability to predict the negative instances for a particular

class (instances of its parent that aren’t instances of it) begins to decrease rapidly. This somewhat

surprising behaviour highlights an influential characteristic of the simple approach to the

knowledge base destruction used here and an important weakness of the f-measure in this

context.

The simple algorithm to degrade a knowledge base repeatedly a) selects an instance at random,

b) selects a class attribute at random, c) checks whether that instance is labelled with that class; if

it is, removes the label and if not, adds it.  It does not pay attention to the subsumption hierarchy.

After running it to saturation, as we did here, the probability for an instance to be labelled with

any class in the ontology approaches 0.5 and there is no longer any relationship between classes.

So, when creating the local training set for a particular class, the expectation is that 1/2 of the

instances in the entire knowledge base will be selected based on the chance of being an instance

of that class’s superclass and then, of these, 1/2 are likely to be instances of the class being

evaluated.
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We suggest that the point where F(1) measures begin to increase indicates a threshold beyond

which no more information is held in the knowledge base.  At this point, algorithms that simply

predict true half of the time, which is now near the prior probability in every case, can always get

approximately half the predictions correct. Figure 4.6 shows how the Chi25_JRip algorithm

begins to mirror the ZeroR algorithm according to the f-statistics as the noise reaches this

threshold.  The same behaviour is observed for the OneR and the JRip algorithm without

attribute selection.

This behaviour indicates the susceptibility of the F-measures to incorrectly indicating knowledge

base quality.  According to F(1), one knowledge base that is completely random can receive the

same score as one that clearly has some merit as reflected by the other statistics.

4.2.3.1.3 Summary of experiment 1 – control: Phosphabase and its permutations

The Phosphabase experiments, indicated that:

1) the induction algorithms used in this implementation do effectively learn rules that are

predictive of class membership when the information is clearly present in the knowledge

base

2) when the required information is removed from the knowledge base, this is reflected in

the relative performance of these algorithms

3) the most reliable quality metrics in this context appear to be the Kappa statistic, the

Kononenko-Bratko information measure, and the simple percent correct.

In the next section, we assess the implementation’s  performance in a more typical situation,

where the rules for classification are not well known in advance and are not likely to be rigidly

defined.

4.2.4 Evaluating biological ontologies

In the control experiment we demonstrated that our implementation of the OntoLoki method

could successfully find patterns of properties associated with ontology class definitions where

they were clearly present.  In addition, we showed that the system produced quantitative
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estimates of classification consistency that correlated with varying levels of knowledge base

quality.  Given those proofs of concept, we can now begin to explore how the method might be

applied to ‘real’ cases where it is unknown in advance whether the kinds of patterns sought are

present in the data.  As a beginning in this exploration, we consider two ontologies, one very

simple and one fairly complex, that define classifications for the subcellular localizations of gene

products.  In the first experiment, we conduct an  evaluation of an ontology, composed of just six

classes in one single level, that represents the classes that can be predicted by the PSORTb

algorithm [27].  In the second we move on to the evaluation of the cellular component branch of

the Gene Ontology, an ontology composed of more than two thousand classes, arranged in a

polyhierachy that in some cases is as much as 11 levels deep.

4.2.4.1 Experiment 2 - PSORTb

PSORTb is a tool for predicting the subcellular localization of bacterial protein sequences [27].

Given a protein sequence, it makes predictions about the protein’s likelihood of appearing in one

of six locations: the cytoplasm, the cytoplasmic membrane, the outer membrane,  the cell wall,

the periplasm, or the extracellular space.  These classes, which correspond directly to terms from

the Gene Ontology, were brought together under the top class ‘subcellular localization’ to form

the very simple ontology used in this experiment.

The knowledge base used to evaluate this ontology, described in Table 4.2, was created as

follows:

1) Instances of proteins and their subcellular localizations were gathered from the hand-

curated PSORTb-exp database of experimentally validated subcellular localizations [28].

2) The ‘ID Mapping’ tool from UniProt beta was used to map the NCBI gi numbers used by

the PSORTb database to UniProt identifiers.

3) RDF annotations of these instances were gathered by querying UniProt beta with the

UniProt identifiers.

The ability of the PSORTb localization prediction system to accurately classify proteins

demonstrates that the classes of the generated PSORTb ontology can be predicted for protein
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instances based on properties associated with those instances.  As the algorithms used in

PSORTb are different (and much more highly optimized) than the generic rule learners

employed here and the features that they process (including the raw protein sequence) are

broader than the features used in the current, generic implementation (which does not process the

sequences for example), we do not expect to achieve the same high levels of classification

performance as the PSORTb implementation.  However, there are clearly protein features, such

as Signal Peptides, that are captured in the UniProt annotations and are relevant to predicting

subcellular localization.  From these, it should be possible to identify some predictive patterns

automatically and to thus provide this simple, but clearly useful ontology with a fairly good

classification consistency score.

The interpretation of what constitutes ‘a fairly good score’ is still somewhat arbitrary due to the

early stage of the development and characterization of the method, but the results indicated by

the second phase of the Phosphabase experiment do provide some guidance.  Taking the Kappa

statistic as an example, Kappas above 0 indicate that the induction process yielded rules that

improved upon predictions based only on prior probability and thus the classification could be

judged to display at least some degree of property-based consistency.  That being said, we expect

Kappa scores much higher than 0 in this particular case.

4.2.4.1.1 PSORTb results

The evaluation identified predictive patterns for each of the classes in the PSORTb ontology.

Figure 4.7 illustrates the average performance of the four learning algorithms tested in cross-

validation experiments as described in the previous section. As expected, the JRip algorithm had

the best performance across all of the different quality metrics, with the attribute selected version

(Chi25_JRip), following closely behind.  Figure 4.8 shows the performance of JRip for each of

the classes in PSORTb.

The highest scoring class in terms of simple accuracy of the learned models in the cross-

validation runs was ‘Cell Wall’; however, this is clearly explained by the relative infrequency of

this class within the instances that compose this knowledge base as illustrated by the percentage

of positive instances for the class displayed in Figure 4.8.  Since there were only 60 instances of
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‘Cell Wall’ out of a total 1379 in the knowledge base (4%), it is quite easy to achieve a high

overall prediction accuracy without learning anything at all by simply always predicting ‘not

Cell Wall’.    This again highlights the importance of accounting for the prior probability of the

classes under evaluation when using this system to estimate the  quality of a class.

Figure 4.9 provides a larger view of the performance of JRip using just the Kappa statistic.

According to this measure, the best class – in the context of this knowledge base and this

induction algorithm – is ‘Cytoplasmic Membrane’ and the worst is ‘Periplasmic’.

4.2.4.1.1.1 PSORTb classification rules learned
The rules listed below were generated using the JRip algorithm on all the data in the entire

training set.  We present the complete rule set for ‘Cytoplasmic Membrane’ and ‘Cell Wall’ and

then samples of the rules covering the most positive instances of the other classes. The two

numbers following the consequent of each rule indicate the number of instances classified with

the rule and the number of incorrect classifications respectively.

Cytoplasmic Membrane

If Transmembrane_Annotation = true, Signal_Peptide_Annotation = false, IPR001343
(Haemolysin-type calcium-binding region) = false and Similarity_Annotation = true
Then CytoplasmicMembrane=true  (221.0/1.0)

Else if
Transmembrane_Annotation = true, Similarity_Annotation = false and taxon 813 (Chlamydia
trachomatis) = false
Then CytoplasmicMembrane=true  (29.0/2.0)

Else if
IPR003439 (ABC transporter-like) = true
Then CytoplasmicMembrane=1 (8.0/1.0)

Else
CytoplasmicMembrane= false (1121.0/40.0)

Cell Wall

If  IPR001899 (‘Surface protein from Gram-positive cocci, anchor region’) = true
Then Cellwall=true (31.0/0.0)
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Else if
IPR001119 (‘S-layer homology region’) = true
Then Cellwall=true (3.0/0.0)

Else if taxon = 1423 (Bacillus subtilis) and Modification_Annotation = true and
Modified_Residue_Annotation = false and part of protein = false
Then Cellwall=1 (5.0/0.0)

Else if
IPR010435 (‘Peptidase S8A, DUF1034 C-terminal’) = true
Then Cellwall=true (2.0/0.0)

Else
Cellwall=false (1338.0/19.0)

Periplasmic

If Signal_Peptide_Annotation = true and Metal_Binding_Annotation = true and
Active_Site_Annotation = false
Then Periplasmic=1 (47.0/7.0)

OuterMembrane

If not part of protein and Signal_Peptide_Annotation = true and Similarity_Annotation = true
and Modification_Annotation = false and Site_Annotation = false and Subunit_Annotation = true
and IPR006059 (‘Bacterial extracellular solute-binding, family 1’) = false and IPR001782
(‘Flagellar P-ring protein’) = false
Then OuterMembrane=true (46.0/1.0)

Extracellular

Propeptide_Annotation = true and IPR001899 (‘Surface protein from Gram-positive cocci,
anchor region’) = false
Then Extracellular=true (110.0/12.0)

Cytoplasmic

If Signal_Peptide_Annotation = false and part of protein = true and Transmembrane_Annotation
= false and Subunit_Annotation = true and Metal_Binding_Annotation = false
Then Cytoplasmic=true (109.0/2.0)
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The first rule learned for predicting localization in the cytoplasmic membrane illustrates the

nature of the rest of the rules identified.

1) It describes a large fraction of the instances of cytoplasmic membrane very well,

correctly predicting 220 out of the 221 instances that it applies to.

2) It is composed of clearly relevant features such as transmembrane regions and signal

peptides, ambiguous features that may be indicators of more specific information not

processed by the system such as ‘similarity annotation’, and features of an uncertain, but

potential interesting nature such as IPR001343 (Hemolysin-type calcium-binding region).

4.2.4.1.2 Summary of PSORTb results

The results of the PSORTb experiment provide evidence that our implementation can identify

and quantify the consistency of classification of discriminatory patterns of properties associated

with the instances of different classes where those patterns are not known in advance.   However,

though another useful control on the implementation, the PSORTb ontology is far simpler than

the great majority of ontologies in use in the biomedical domain.  To characterize our

implementation in a realistic situation, we now present an evaluation of a large, well-used,

structurally complex, biological ontology.

4.2.4.2 Experiment 3 - Cellular Component ontology

The Cellular Component (CC) branch of the Gene Ontology (GO) provides a controlled

vocabulary for the description of the subcellular localizations of gene products [29]. Table 4.3

provides some basic statistics about the composition of the OWL version used for this

evaluation, gathered from the data offered by the experimental Open Biomedical Ontologies

(OBO) ontology Web page [30] and the Swoop ontology editor [31].  The version used for the

experiment was collected from the OBO Download matrix on Sept. 23, 2007 [32].

The CC ontology was selected for exploratory evaluation for the following reasons.

1) Physical properties, such as protein domains of gene products, are known to be predictive

of class membership within this ontology [33]. Thus, in principle,  patterns of such

properties exist that consistently define membership in at least some of the classes.
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2) It is a large and widely used ontology in the biomedical domain with many accessible

instances appropriate for the formation of test knowledge bases.

3) It is representative of the structure and basic intent of many other important biomedical

ontologies such as several of those being developed as part of the Open Biomedical

Ontologies (OBO) initiative [5].

For simplicity, we call the proteins instances of CC classes; however, a gene product is

obviously not an instance of a cytoplasmic membrane.  Conceptually a gene product may be

considered an instance of the class of proteins that tend to localize in the cytoplasmic membrane.

These implied classes are what is being evaluated here.

To evaluate the CC, UniProt was once again queried to create an OWL/RDF knowledge base.

The query requested protein records that

1) had been annotated with a class from the CC ontology (a subclass of GO_0005575)

2) had been reviewed by UniProt curators

3) had evidence at the protein level (not the fragment level)

4) and had at least one domain annotation

This query resulted in a knowledge base containing 6586 distinct protein instances. Once the

knowledge base was assembled, the same evaluation was applied as in the preceding

experiments.  A specific training/testing table was created for each subclass of the root

(GO_0005575) and, assuming it had more then 5 positive and 5 negative instances, was used to

train a Chi25_Jrip classifier to attempt to distinguish between  the positive and negative

instances.

4.2.4.2.1 Cellular Component evaluation results

In all, only 361 classes (17%) from the CC ontology were evaluated because many classes did

not have enough instances in the particular knowledge base extracted from UniProt.   The 361

classes had a mean of 1.7 direct (not inferred via subsumption) superclasses.  (Recall that, as

each class-superclass pair is evaluated independently, per-class scores are averages across each



65

of these evaluations).  Within the evaluated classes, a large variability in classification

consistency was observed, ranging from classes with perfect defining patterns of properties to

classes for which no defining pattern could be identified.  The average Kappa score for the 10-

fold cross-validation runs across all of the evaluated classes was 0.30, as compared to 0.66 for

the PSORTb experiment and 1.0 for the Phosphabase control.  Figure 4.10 provides an

illustration of the distribution of the scores observed for the evaluated classes based on the

Kappa statistic.

4.2.4.2.2 Cellular Component classification rules learned

The rules learned by the classifiers were often constructed from the taxon and the InterPro

domain properties.   For example, the first (very simple) rule listed divides the GO class

GO_0000142 (‘contractile ring (sensu Saccharomyces)’) from its superclass GO_0005826

(‘contractile ring’) based on the property ‘taxon 4930’ (Saccharomyces). Below, we list

examples of rules identified for some of the highest scoring classes in the cross-validation

experiments.

If taxon 4930 (Saccharomyces)
   then GO_0000142 (‘contractile ring (sensu Saccharomyces)’) (7/0)
Else GO_0005826 (‘contractile ring’) (13/0)

If not taxon 3701 (‘Arabidopsis’)
   then GO_0046658 (‘anchored to plasma membrane’) (10/0)
Else GO_0031225 (‘anchored to membrane’) (13/0)

If not taxon 4932 (Saccharomyces cerevisiae)
   then GO_0005764 (‘lysosome’) (25/0)
Else GO_0000323 (‘lytic vacuole’) (17/0)

If IPR001208 (‘MCM domain’)
   then GO_0042555 (‘MCM complex’) (24/2)
Else GO_0044454 (‘nuclear chromosome part’) (92/0)

If IPR002290 (Serine/threonine protein kinase) and IPR015734 (‘Calcium/calmodulin-dependent
protein kinase 1’)
   then GO_0005954 (‘calcium- and calmodulin-dependent protein kinase complex’)(4/0)
Else if IPR015742 (‘Calcium/calmodulin-dependent protein kinase II isoform’)
   then GO_0005954 (6/0)
Else GO_0043234 (‘protein complex’) (1157/0)
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If IPR013543 (‘Calcium/calmodulin dependent protein kinase II, association-domain’)
   then GO_0005954 (‘calcium- and calmodulin-dependent protein kinase complex’)(6/0)
Else if IPR015734  (‘Calcium/calmodulin-dependent protein kinase 1’)
   then GO_0005954 (5/1)
Else GO_0044424 (‘intracellular part’) (5071.0/0.0)

If IPR001442 (‘Type 4 procollagen, C-terminal repeat’)
   then GO_0030935 (‘network-forming collagen’) (7/0)
Else GO_0005581 (‘collagen’) (17/0)

If IPR011990 (‘Tetratricopeptide-like helical’)
   then GO_0031307 (‘integral to mitochondrial outer membrane’) (5/0)
Else if IPR001806 (‘Ras GTPase’)
   then GO_0031307 (3/0)
Else GO_00313101 (‘integral to organelle membrane’) (35/0)

If IPR011990 (‘Tetratricopeptide-like helical’)
   then GO_0031306 (‘intrinsic to mitochondrial outer membrane’) (5/0)
Else if IPR002048 (‘Calcium-binding EF-hand’)
   then GO_0031306 (3/0)
Else GO_0044455 (‘mitochondrial membrane part’) (21/0)

4.2.4.2.3 Summary of Cellular Component results

The results of the GO CC evaluation highlight the context-sensitivity of the OntoLoki method.

Given a different knowledge base, the results would have been very different.  For example, a

larger knowledge base would have enabled the evaluation of a much larger proportion of the

classes in the ontology.  For those classes that were evaluated, the identified rules display a

mixture of properties that range from the clearly relevant to the obviously artifactual.  Though,

upon a very shallow inspection uninformed with any deep knowledge regarding the biology of

cellular localization, these results are not overwhelmingly illuminating in terms of understanding

or judging the CC ontology, even in their current unrefined form they do provide some insights

worthy of consideration.  For example, the fact that the taxon properties figured prominently in

the delineation of many classification rules indicates the species specific nature of some, but not

all, of the definitions of the classes in this ontology.  The ongoing work to automatically extract

taxon-specific versions of the GO [34], clearly shows that this is an important factor in the

evaluation of this ontology.  The fact that this basic feature was uncovered automatically by the
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OntoLoki method thus indicates that the rules discovered can be useful and that their

quantification is relevant.

4.3 Discussion

We presented the OntoLoki method, summarized in Figure 4.3, for the automatic evaluation of

the consistency of classification for ontology classes lacking formal, computable definitions. The

implementation begins with an ontology, builds an associated knowledge base, translates that

graphically structured knowledge base into a table, and then applies machine learning algorithms

to identify specific patterns of properties associated with the different classes.  As the dashed

lines in  Figure 4.3 indicate, the evaluation of the learned patterns can then be used to make

adaptations at each of the steps, starting with the actual ontology and finishing with the

algorithms used for induction. Before closing, we highlight some examples of how this method

could be applied in several different situations.

4.3.1 Making use of OntoLoki

The products of carrying out an OntoLoki evaluation are:

1) a set of rules for assigning instances to the classes in the ontology

2) an estimate of the performance of each inferred classification rule

3) through the rules identified, a direct, empirical assessment of the quality of each class

with respect to the implied presence and consistent application of a definition composed

of properties present within the knowledge base

4) through the aggregated class scores, an automatic, objective, reproducible quantification

of the quality of an ontology in the context of a specific knowledge base

How these products might be applied is highly dependent on the goals of the person conducting

the evaluation. We suggest a few ideas, but expect that there are many other possible

applications aside from those listed.

The numeric ratings associated with the different classes and whole ontologies could be used for

the purposes of,
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1) organizing ontology maintenance efforts by identifying classes to attend to based on low

classification consistency

2) ordering the results retrieved from ontology search engines [35]

3) evaluating the success of different approaches to the ontology engineering problem

Though the ratings for the classes may be useful, the classification rules likely form the most

important product of the system.  Such decision models could be used in a variety of different

ways, for example,

1) suggesting starting points for the construction of formal (e.g. OWL DL) class definitions

within ontologies initially implemented solely as “is a” hierarchies

2) as a means to classify novel instance data within the ontology automatically while

leaving the ontology itself unchanged [33].

Aside from improving the ontology or the knowledge base, the knowledge represented in the

identified rules could conceivably lead to novel discoveries useful for extending or adapting

scientific theory.  Scientific ontologies and associated knowledge bases are representations of

what is known about the world.  By representing knowledge in the form of these ‘computational

symbolic theories’, knowledge can be computed with (tested for internal consistency, integrated,

queried) to a much greater extent than would otherwise be possible [36].  The rules found to be

associated with class membership thus form both a means for evaluating the classification

consistency of an ontology and the opportunity to extend the body of knowledge that it

represents.

4.3.2 Future work

In the future, it would be useful to improve upon each of the three main phases of the prototype

utilized here - the creation of the knowledge base, its propositionalization, and the induction of

classification rules from it.  The first step, in particular, is crucial.  Though the processing of the

knowledge base is obviously important, its original  creation has by far the most significant

effect on the end results of any evaluation.  As such, the derivation of efficient methods to

dynamically assemble high quality, relevant knowledge bases is a top priority for future

investigation.  The second step, the propositionalization of the RDF knowledge base, was the
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most computationally intense aspect of the implementation.  In future implementations much

more efficient approaches to this step should be identified as the size of the required knowledge

bases will only increase.  Finally, the induction phase of the method might be improved through

the incorporation of learning algorithms specifically designed to infer OWL class definitions

from instance data [37] and the integration of techniques from the domain of Formal Concept

Analysis that may help to suggest new classes for inclusion in ontologies based on the data used

in the evaluation [38].

4.3.3 Conclusions

Given the complexity and the diversity of ontologies and their applications, it is unrealistic to

expect that a single, universal quality metric for their evaluation will be identified.  Rather, as

Jeremy Rogers suggests, a comprehensive methodology for ontology evaluation should include

assessments along multiple axes [12].  We introduced a new, automated method for the empirical

assessment of one aspect of ontology quality that, through its application of automated inductive

reasoning, extends and complements existing approaches.  Though designed and assessed with

the biological and medical domains in mind, the method is applicable in a wide range of other

disciplines.
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Table 4.1. Phosphabase knowledge base statistics

Total classes 82

Total Protein Phosphatase classes 39

Total Phosphatase classes with defined necessary and sufficient conditions

for class membership (allowing automatic classification)

27

Total instances 3169

Total classes with more than 5 positive and 5 negative instances 19

Fraction Phosphatase classes that could be evaluated based on their

instances

19/39

.49

Table 4.2. PSORTb knowledge base statistics

Total classes (excluding the top class) 6

Total instances gathered from PSORTb-exp database 2171

Total instances used in experiments. Each must have a UniProt identifier

and a minimum of at least one annotated InterPro domain or other UniProt

annotation property.

1379

Table 4.3. Attributes of the Cellular Component ontology (Sept. 2007)

Total classes 2127

Average number of direct superclasses per class 1.49925

Max depth of class tree 11

Average depth of class tree 5.9

Max branching factor of class tree (GO_0043234, ‘protein complex’ has

410 subclasses)

410

Average branching factor of class tree 4.4



71

Figure 4.1. The input and the output for the OntoLoki method

The properties assigned to each instance are used to learn classification rules whose performance
is quantified.  The rule learned for the dark blue class correctly classifies two of its three
instances based on the property indicated by the black diamonds.  The rule learned for the yellow
class correctly predicts all of its instances based on the presence of the property indicated by the
light blue diamonds.
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Figure 4.2. Sample RDF description of the UniProt protein P35829, an S-layer protein precursor from
Lactobacillus acidophilus

Classes are indicated with ovals, instances with square boxes, predicates with arrows, and Strings
as ‘idea bubbles’.  Some instances – for example, ‘#_B’ – are created to fill the place of the
blank nodes needed to create the descriptions of the instance under consideration (‘P35829’).
P35829 has three annotations: a signal peptide annotation, a function annotation, and a PTM
annotation.
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Figure 4.3. The complete cycle of ontology evaluation using the OntoLoki method

The rectangles represent data, the oblong boxes represent processes applied to that data and the
arrows represent the order of operations.  The dashed arrows indicate how the ontology and any
of the contributing processes might be adjusted based on the knowledge gleaned in the
evaluation.
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Figure 4.4. The average performance of different learning algorithms on predicting the classes in the
Phosphabase knowledge base

Each of the 4 algorithms tested: ZeroR, OneR, Chi25JRip, and JRip, are indicated with a
different color.  The average performance of the algorithms in 10-fold cross-validation
experiments conducted with the Phosphabase knowledge base is shown according to 5 metrics:
mean Kononenko-Bratko information gain (KBi), F measure (f_1 measures performance in
predicting ‘true’ for the target class and f_0 indicates performance in predicting ‘false’), Kappa,
and accuracy.
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Figure 4.5. Results for the Chi25_JRip algorithm as increasing amounts of noise are added to the
Phosphabase knowledge base

Performance is again assessed according to the average F measures, Kappa,  KBi, and accuracy.
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Figure 4.6. Effects of increasing noise on the performance of Chi25_Jrip and ZeroR as indicated by the
average F measure for each evaluated class

Note that the results from the sophisticated Chi25_Jrip algorithm eventually begin to mirror
those from ZeroR – demonstrating the loss of information from the knowledge base caused by
the introduction of random changes.
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Figure 4.7. Average performance of different classifiers according to each reported statistic for the PSORTb
classes

Each of the 4 algorithms tested: ZeroR, OneR, Chi25JRip, and JRip, are indicated with a
different color.  The average performance of the algorithms in 10-fold cross-validation
experiments conducted with the PSORTb knowledge base is shown according to 5 metrics: mean
Kononenko-Bratko information gain (KBi), F, Kappa, and accuracy.
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Figure 4.8. Classification consistency for PSORTb classes using the JRip algorithm

Classification consistency is reported for each class using the metrics: accuracy, Kappa, F, and
Kononenko-Bratko information gain.  In addition, the percentage of positive instances used for
each class is presented in blue to give an indication of the baseline frequencies of the different
classes in the assembled knowledge base.
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Figure 4.9. Inferred classification consistency for PSORTb classes

The evaluations were conducted using the JRip algorithm and the PSORTb knowledge base.
The Kappa statistic was used for the quantification indicated on the X axis.
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Figure 4.10. Classification consistency of a sample of classes from the Cellular Component branch of the
Gene Ontology

The X axis indicates individual classes in the Cellular Component ontology.  The Y axis
indicates the average Kappa statistic observed for the Chi25_JrRip classifier in 10-fold cross-
validation for that class.
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5 Term based comparison metrics for controlled and uncontrolled indexing languages7

5.1 Introduction

We are in an era of a rapidly expanding number and diversity of systems for organizing

information.  Wikis, collaborative tagging systems and semantic Web applications represent

broad categories of just a few emerging frameworks for storing, creating, and accessing

information.  As each new kind of information system appears, it is important to understand how

it relates to other kinds of system.  This understanding allows us to answer a variety of important

questions that will shape the way future systems are designed.  Does the new system represent a

less expensive way to achieve the same functionality as another?  Might it be fruitfully combined

with another approach?  How similar is it to an exemplar in its domain?

In addition to deriving theoretical answers to questions at the level of the kind of system, such as

how does social tagging relate to professional indexing? [1, 2] or how do the ontologies of

computer science relate to the classifications of library and information science? [3], it is also

now of practical importance to find answers to specific instance-level questions as well.  For

example, Al-Khalifa and Davis (2007) attempt to answer the question, how do the tags provided

by Del.icio.us [4] users relate to the terms extracted by the Yahoo indexing algorithm over the

same documents? and Morrison (2008) asks how do the results of searches performed on social

tagging systems compare to those performed on full web search engines? [5, 6].  Answers to

such questions provide vital knowledge to system designers because, in the age of the Web,

information systems do not operate in isolation from one another.  It is both possible and

beneficial to integrate components of different systems to create symbiotic aggregates that meet

the needs of specific user groups better than any single system could and doing so depends upon

the knowledge of how the different systems relate.  Would Yahoo automatic indexing be

improved through incorporation of indexes provided by Del.icio.us users?  Comparative analyses

of the components of the two systems can help tell us.

                                                  
7 A version of this chapter has been accepted for publication.  Good BM, Tennis JT: Term based comparison metrics
for controlled and uncontrolled indexing languages. Information Research (accepted 22 October 2008)
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Both comparative studies of information systems in the abstract and efforts to design specific

instances of new integrative systems can benefit from mechanisms that help to identify the

specific similarities and differences that obtain between different systems. One facet of this is

empirical, reproducible, quantitative methods of investigation.  To inform both kinds of enquiry,

empirical protocols that allow for reproducible, quantitative comparison would be beneficial.

However, the term ‘information system’ covers a vast and ill-defined set of things, each of which

is composed of many complex components operating together in many different contexts to

achieve a variety of different purposes. To conduct useful empirical comparisons of such

systems, 1) hypotheses must be evaluated in light of the many contributing qualitative factors,

and 2) reproducible metrics must be devised that can be used to test assumptions.  While

qualitative interpretations of the differences that hold between different kinds of information

system continue to advance, there are few practical, reproducible metrics defined for use in

empirical comparisons of system components.

Our broad goal in this work is to define a set of measurements that can be taken of information

systems that are meaningful, widely applicable, and reproducible.  The specific set of metrics

introduced here do not intend nor pretend to be exhaustive nor definitive, in fact, we suggest that

is not an attainable goal given the complexity of the systems under scrutiny.  Rather, we advance

them as an early set of candidates in what we expect will be a broad pool of metrics that will

continue to expand and be refined indefinitely.  In light of these goals, the metrics defined here

are meant for the characterization of one key component common to the vast majority of

information systems in current operation - the language used to index the resources of interest

within the system.

Zhang (2006:121) defines an indexing language as “the set of terms used in an index to represent

topics or features of documents and the rules for combining or using those terms” [7].  As the

emphasis here is on empirical observation and many of the information systems under

consideration offer few rules for the application nor of the construction of the terms, we will

operate under the broader definition of indexing languages as “sets of terms used in an index to

represent topics or features”.  Notice that this definition spans both controlled languages, such as

institutionally maintained thesauri, and uncontrolled languages, such as the sets of keywords

generated by social tagging systems. Examples of indexing languages, as defined here, thus
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include the Medical Subject Headings (MeSH) thesaurus [8], the Gene Ontology [9], and the

Connotea folksonomy [10].  Each of these languages, though varying in relational structure,

purpose and application, is composed of a set of terms that represent aspects of the resources

within the information systems that utilize them.  Through comparisons of the features of these

indexing languages, we hope to start work that will lead us to a better understanding of the

relations between the languages and of the relations between the systems that generate and use

them.

In this work, we advance an approach to the automated, quantitative characterization of indexing

languages via metrics based on the sets of  terms used to represent their concepts.  These metrics

are divided into two groups, intra-set and inter-set.  The intra-set metrics provide views on the

shape of the sets of terms in aggregate.  The inter-set metrics provide a coherent approach to the

direct comparison of the overlaps between different term-sets.  The manuscript is divided into

two primary sections.  The first section describes each of the metrics in detail and the second

presents the results from a quantitative comparison of twenty-two different indexing languages.

Results are provided for each language individually, using the intra-set metrics, and for each

language pair, using the inter-set metrics.  In addition to the broad all-against-all comparison, we

present a more detailed exploration of the similarities and differences, revealed using the

proposed metrics, that hold between controlled and uncontrolled indexing languages.

5.2 Metrics for comparing term-sets

In this work we focus on the set of terms used to represent the concepts that compose  indexing

languages.  Relationships between the terms or the concepts that they represent are not analyzed

at this stage because some languages, such as many folksonomies, do not display the explicitly

defined relationship structures present in other forms, such as thesauri and ontologies.  This view

allows us to produce metrics that are applicable to a broad array of different indexing languages

and can serve as the foundation for future efforts that expand the comparative methodology.  In

the following section, we identify a group of specific, measurable characteristics of term-sets.

From these we can measure similarities and differences between indexing languages based on

quantifiable characteristics that they all share.
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5.2.1 Intra-term-set measures

Measurements taken at the level of the set define what might be termed the shape of the term-set.

Such features of a term-set include its size, descriptive statistics regarding the lengths of its

terms, and the degree of apparent modularity present in the set. Measures of modularity expose

the structure of the term-set based on the proportions of multi-word terms and the degrees of

subterm re-use.  These measures of modularity include two main categories, Observed Linguistic

Precoordination (OLP) and Compositionality.

OLP indicates whether a term appears to be a union of multiple terms based on syntactic

separators.  For example, the MeSH term ‘Fibroblast Growth Factor’ would be observed to be a

linguistic precoordination of the terms ‘Fibroblast’, ‘Growth’, and ‘Factor’ based on the presence

of spaces between the terms. As explained in Tables 5.1 and 5.2, we categorize terms as uniterms

(one term), duplets (combinations of two terms), triplets (combinations of three terms) or

quadruplets or higher (combinations of four or more terms).  Using these categorizations, we also

record the flexibility of a term-set as the fraction of subterms (the terms that are used to compose

duplets, triplets, and quadplus terms) that also appear as uniterms.

The OLP measurements described here were adapted from term-set characteristics, originally

identified by Van Slype (1976), for gauging the quantifiable features of a thesaurus [11].  Van

Slype developed and used these metrics in the process of suggesting revisions to the ISO

standard [12] based on comparisons of the attributes of a sample of thesauri to the prescriptions

of the standard.   Our intent in using these and related metrics is to make it possible to explore

the consequences of adding a similar empirical aspect to studies of modern indexing languages.

The OLP measures were extended with related measures of compositionality as introduced by

Ogren et al. (2004) [13].  Compositionality measures include a) the number of terms that contain

another complete term as a proper substring, b) the number of terms that are contained by

another term as a proper substring, c) the number of different complements used in these

compositions, and d) the number of different compositions created with each contained term. A

complement is a subterm that is not itself an independent member of the set of terms.  For

example, the term-set containing the two terms {‘macrophage’, ‘derived from macrophage’}
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contains one complement – ‘derived from’. A composition is a combination of one term from the

term-set with another set of terms (forming the suffix and/or the prefix to this term) to form

another term in the set.  For example, in the Academic Computing Machinery subject listing, the

term ‘software program verification’ contains three subterms that are also independent terms

(‘software’, ‘program’, and ‘verification’).  According to our definition, this term would be

counted as three compositions – ‘software’+suffix, prefix+‘program’+suffix,

prefix+‘verification’.  As another example, the term ‘denotational semantics’ would only result

in one composition because ‘semantics’ is an independent term while ‘denotational’ is not (and

thus is a complement as defined above).

Modularity is indicative of the factors that go into the semantics of a term-set, and shape its use.

Here we are guided by Soergel’s rubric from concept description and semantic factoring.  He

tells us “we may note that often conceptual structure is reflected in linguistic structure; often

multi-word terms do designate a compound concept, and the single terms designate or very

nearly designate the semantic factors.  Example: Steel pipes = steel:pipes [demonstrating the

factoring]” [14].  The relative presence or absence of modular structure within a term-set thus

provides some weak indication of its conceptual structure.  For example, even though an

indexing language may not explicitly declare relationships between its terms, semantic

relationships may sometimes be inferred between terms that share, for example, common

subterms [13]. The potential to detect re-usable semantic factors that may be indicators of

semantic structure within a term-set makes modularity metrics important axes for the comparison

of different term-sets.

Together, these measurements combine to begin to form a descriptive picture of the shape of the

many diverse term-sets used in indexing languages.  Table 5.3 lists and provides brief definitions

for all of the term-set measurements taken.

5.2.2 Inter-term-set measures

The descriptions of term-set shape described above are useful in that they can be applied to any

set of terms independently and because they provide detailed descriptions of the term-sets, but,

from the perspective of comparison, more direct methods are also applicable.  To provide a more
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exact comparison of the compositions of sets of terms used in different languages, we suggest

several simple measures of set similarity.  Each of the measures is a view on the relation between

the size of the intersection of the two term-sets and the relative sizes of each set.  The members

of the intersection are determined through exact string matches applied to the term-sets (after a

series of syntactic normalization operations).  As depicted in Figure 5.1 and explained below,

these intersections are used to produce measures of Precision, Recall, and Overlap (the F-

measure).

5.2.2.1 Context considerations in inter-set comparisons

The equivalence function used when conducting direct set comparisons of the components of

different indexing languages is important.  In this preliminary work, we rely on the simplistic

notion that a term in one indexing language is equivalent to a term in another language if and

only if, after syntactic normalization, the  terms are identical.  Synonymy, hyponymy and

polysemy are not considered and thus the measured overlaps are purely syntactic.  When

considering indexing languages used in similar contexts - for example as might be indicated

when two different languages are used to index the same set of documents by similar groups of

people - this function provides useful information because the same words are likely to be used

for similar purposes.  However, the greater the difference in context of application between the

indexing languages being compared, the greater the danger that this simple function will not

yield relevant data.  Logical extensions of this work would thus be to make use of semantic

relations, for example of synonymy, present within the indexing languages as well as natural

language processing techniques to develop additional equivalence functions that operate on a

more semantic level.  That being said, with or without such extensions, any empirical

comparison should always be interpreted in light of the contexts within which the different

indexing languages operate.

5.2.2.2 Quantifying set similarity

Once methods for assessing the equivalence relationship are established (here post-normalization

string matching), it is possible to quantify the relations between the resultant sets in several

different ways.  For example, Al-Khalifa and Davis (2007) find what they term ‘percentage
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overlap’ by dividing the size of the intersection of the two sets by the size of the union of the sets

and multiplying by 100 [5].  They use this metric to quantify the similarity of the sets of terms

used to index the same documents produced by different indexing systems.  For example, to find

the percentage overlap between the set F {A,B,C} and the set K{A,G,K,L} , the size of the

intersection {A} is 1, the size of their union {A,B,C,G,K,L} is 6 and thus the percentage overlap

is 100(1/6) = 17%.

While a useful measurement, this equation misses key information regarding the relative sizes of

the two sets.  To capture the size discrepancies and the asymmetry of the relationship, we employ

additional metrics typically used to evaluate class prediction algorithms.

Binary class prediction algorithms are often evaluated based on the relations between sets of true

and false positive and negative predictions [15].  These relations are quantified with measures of

Accuracy, Precision and Recall.  Accuracy is the number of correct predictions divided by the

number of false predictions.  Precision is the number of true positives divided by the number of

predicted positives.  Recall is the number of true positives divided by the number of both true

and false positives.  Precision and Recall are often summarized with the F-measure, which

equates to their harmonic mean.

Hripcsak and Rothschild (2005) showed that, by arbitrarily assigning one set as the ‘true

positives’ and the other as the ‘predicted positives’, the F-measure can be used to measure the

degree of agreement between any two sets [16].  Because it is commutative, the choice of which

set to assign as ‘true’ makes no difference to the outcome.  Figure 5.1 illustrates the idea of using

Precision, Recall, and the F-measure as generic set comparison operators.  The logic goes as

follows, if set A is conceptualized as an attempt to predict set B, the number of items in both sets

(the intersection) corresponds to the number of true positives for the predictor that produced A,

the number of items in A corresponds to the number of true positives plus the number of false

positives, and the number of items in B corresponds to the number of true positives plus the

number of false negatives.  From this perspective, accuracy thus equates to percentage overlap as

described by Al-Khalifa and Davis (2007).  In addition, Precision and Recall can be used for the

asymmetric quantification of the similarity of the two sets and the F-measure can be used to
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provide a symmetric view of the overlap between the sets that takes into account their relative

sizes.

5.3 Demonstration and evaluation of proposed metrics

The metrics described above are intended to be useful in scientific enquiries regarding the

relationships that hold between different indexing languages.  This information should then, in

turn, be useful in informing assumptions regarding the relationships between the information

systems that generate and use these languages.  As such, it should be possible to use the metrics

to answer specific questions.  We chose the following questions as demonstrative examples:

1) Are the intra-set characteristics of the folksonomies emerging from collaborative

tagging systems sufficient to distinguish them from term-sets associated with

indexing languages created using professional labour? (We assume that the

difference in kind between these groups will be expressed in a difference in shape

as expressed in the intra-set measures.)

2) How much direct overlap exists between terms from the Connotea, Bibsonomy,

and CiteULike folksonomies, and terms from MeSH? These folksonomies are

used to describe tens of thousands of the same resources as MeSH, hence we

expect some overlap in representation, but how much is there in reality?

To answer these questions and thus demonstrate example applications of the proposed set of

metrics, we implemented programs that calculate each intra and inter-set metric described above.

In the text that follows, we describe the application of these programs to the automated

characterization and comparison of 22 different indexing languages.

5.3.1 Sample

We gathered a sample of 22 different term-sets.  The terms were extracted from  folksonomies,

thesauri, and ontologies, all of which are currently in active use. Our domains span biology,

medicine, agriculture, and computer science; however, the sample set is biased towards biology

and medicine.  Ontologies constitute the most common type of structure in the sample simply
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because more of them were accessible than the other forms. Table 5.4 lists the subjects of the

study (note that there are more than 22 listed because multiple versions for some of the larger

term-sets were considered separately).

The indexing languages considered here were chosen for three general reasons: (1) they were

freely available on the Web, (2) most of the terms associated with the indexing languages had

representations in English and (3) we sought popular examples spanning both controlled and

uncontrolled indexing languages.  Availability on the Web not only made data collection for the

present study easier, it increases the likelihood that the study could be repeated by others in the

future. By constraining the natural language of origin for the indexing languages under study, the

likelihood that the measured differences between term-sets were the results of factors aside from

differences in,  for example, typical grammatical structure of the source languages, was

increased. Finally, by sampling from a broad range of the known types of indexing language, as

suggested, for example, in Douglas Tudhope’s typology [17], we hoped to show the generic

nature of the metrics introduced here and to offer some basic exploratory comparisons of the

broad groups of controlled and uncontrolled languages.

Though we provide results for all of the inter-term-set comparisons, the emphasis of the set

comparisons is on the relationship between MeSH and the uncontrolled indexing languages.  To

partially decrease the problems, noted above, associated with conducting syntactic comparisons

of indexing languages operating in different contexts, uncontrolled languages were sought that

were used to index many of the same documents as MeSH.  Folksonomies emanating from social

tagging services targeted towards academic audiences thus compose the set of uncontrolled

languages in the sample.

5.3.2 Data analysis

Once each of the term-sets was collected (see Appendix 1), two levels of term normalization

were applied corresponding to the intra-set analysis (phase 1) and the inter-set analysis (phase 2).

Both phases were designed based on the premise that most of the terms in the structures were

English words. Though there were certainly some non-English terms present in the folksonomy
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data, notably German and Spanish, these terms constituted a relatively small minority of the

terms in the set and, as such, we do not believe they had any significant effect on the results.

5.3.2.1 Phase 1 term normalization

Phase 1 normalization was designed primarily to help consistently delineate the boundaries of

compound words, especially in the case of the folksonomies.  The operations were:

1 All non-word characters (e.g. ‘ ‘,’;’,’_’,’-‘) were mapped to spaces using a regular

expression.  So the term ‘automatic-ontology_evaluation’ would become ‘automatic ontology

evaluation’.

2 CamelCase compound words were mapped to space separated words -  ‘camelCase’ becomes

‘camel case’.

3 All words were made all lower case (‘case-folded’).

4 Any redundant terms were removed such that, after operations 1-3, each term in a set

composed a string of characters that was unique within that set.

All of the intra-set measurements (for example, Size and Flexibility) were taken after Phase 1

normalization.  Phase 2 normalization was applied before the set-intersection computations (for

the inter-set measurements).

5.3.2.2 Phase 2 term normalization

Phase 2 normalization was intended to reduce the effects of uninformative inconsistencies such

as ‘dolphins’ not matching ‘dolphin’ when estimating the intersections of the term-sets.

1) Phase 1 normalization was applied.

2) Porter stemming was applied to all terms and subterms [18].

3) All subterms were sorted alphabetically.

4) All terms and subterms with less than two characters were removed.

5) All terms and subterms matching words from a popular English stopword list were

removed [19].
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These additional steps resulted in an average reduction in the total number of distinct terms per

term-set of 13% with the most substantial difference seen for the ‘MeSH all’ term-set, which

included both the preferred labels for each descriptor and all of the alternate labels, at 52%.  The

set of just the preferred labels  for the MeSH  descriptors was only reduced by 3%.  This

demonstrates that the normalization step was successful in reducing redundancy within the term-

sets because the ‘MeSH all’ set intentionally includes many variations of the same term while the

preferred labels are intended to be distinct.  Figure 5.2 plots the reduction in the (non-redundant)

term-set size between phase 1 and phase 2 normalization for all the term-sets.

After normalization, the shape of each of the term-sets was first assessed individually using the

intra-set measures. Then each of the term-sets were compared directly to all the others using the

inter-set metrics.

5.3.3 Findings – intra-set

The intra-set measures displayed a broad range of diversity across all of the samples and

provided some preliminary evidence of the presence of distinct shapes associated with term-sets

originating from controlled versus uncontrolled information organization structures.  The

collected measurements are provided in Tables 5.5-5.7 and discussed below.

Table 5.5 contains the non-ratio measurements of the size and the composition of the term-sets.

From it, we can see that there is a wide range in the size and degrees of modularity of the term-

sets under study.  The largest term-set was the CiteULike [20] folksonomy at 234,223 terms and

the smallest was the Common Anatomy Reference ontology [21] at just 50 terms.  There was

also substantial variation in the total number of OLP subterms per term, with the CHEBI

ontology [22] averaging 8.88 while the Bibsonomy [23, 24] folksonomy averaged just 0.63.  This

is suggestive of differences in the relative compositionality of the different term-sets, with the

ontologies being much more modular in general than the folksonomies.

The subterms per term measurement highlights the uniqueness of the CHEBI ontology within the

context of our sample; its terms include both ‘normal’ language constructs like ‘tetracenomycin
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F1 methyl ester’ and chemical codes like ‘methyl 3,8,10,12-tetrahydroxy-1-methyl-11-oxo-6,11-

dihydrotetracene-2-carboxylate’. Though both term structures are highly modular in this large

ontology, the latter are clearly driving the very high observed mean number of subterms per

term.

Table 5.6 focuses specifically on illustrating the amount of modularity apparent in these term-

sets.  It displays the percentages of uniterms, duplets, triplets, and quadplus terms; the flexibility,

and the percentages of terms that contain other terms or are contained by other terms.  The

CiteULike folksonomy has the highest percentage of uniterms at 75.8%, followed closely by the

Bibsonomy folksonomy at 72.7%, while the two lowest percentages are observed for the

Foundational Model of Anatomy (FMA) [25] (including synonyms) at 1.2% and the Biological

Process (BP) branch of the Gene Ontology [9] at 0.8%.  This tendency towards increased

compositionality in these ontologies and decreased compositionality in these folksonomies is

also apparent in the percentage of their terms that contain other complete terms from the

structure, with more than 95% of the FMA terms containing other FMA terms and only 23.8% of

the Bibsonomy terms containing another Bibsonomy term.  As might be expected, larger average

term lengths, as presented in Table 5.7, appear to correlate to some extent with some of the

measures indicating increased compositionality.  The highest correlation for a compositionality

measure with average term length was observed for OLP Quad Plus (r-squared 0.86) while the

lowest was for containedByAnother (r-squared 0.13).  The highest mean term length observed

was 40.35 characters for the preferred labels for the FMA and the lowest was 10.19 for the

Bibsonomy terms.

5.3.3.1 Factor analysis

Following the collection of the individual parameters described above, exploratory factor

analysis was applied to the data to deduce the major dimensions.  Prior to executing the factor

analysis, the data was pruned manually to reduce the degree of correlation between the variables.

The features utilized in the factor analysis were thus limited to % uniterms, % duplets,  %

quadplus, flexibility, %containsAnother, %containedByAnother, mean number of subterms per

term, mean term length, and the coefficient of variation for term length.  Maximum likelihood

factor analysis, as implemented in the R statistical programming environment [26], was applied
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using these variables for all of the sampled term-sets.  Three tests were conducted with 1, 2, and

3 factors to be fitted respectively.   In each of these tests, the dominant factor, which might be

labelled ‘term complexity’, was associated with the variables: %quadplus,  mean term length,

and mean subterms per term.  In the 2-factor test, the secondary factor was most associated with

the % uniterms and the flexibility.  Finally, in the 3 factor analysis, the third factor was

associated with %containsAnother and %containedByAnother.  Table 5.8 provides the factor

loadings for the 3-factor test.

5.3.3.2 Controlled versus uncontrolled term-sets

The data presented in Tables 5.5-5.7 provides evidence that the metrics captured here are

sufficient to distinguish between term-sets representing different indexing languages.  To assess

their utility in quantifying differences between indexing languages emanating from different

kinds of information system we tested to see if they could be used to differentiate between the

languages produced by professional labour (the thesauri and the ontologies) and languages

generated by the masses (the folksonomies).

This examination was conducted using manual inspection of the data, multi-dimensional

visualization,  and cluster analysis.   At each step, we tested to see if the data suggested the

presence of a distinct constellation of intra-set parameters associated with the term-sets drawn

from the folksonomies.  For some subsets of variables, the difference was obvious.  For example,

as Figure 5.3 illustrates, both the %uniterms and the OLP flexibility measurements were

sufficient to separate the folksonomies from the other term-sets independently.  For other subsets

of variables, the differences were less clear and, in some cases, the folksonomies did not group

together.

Figures 5.4-5.10 use radar-charts to illustrate the shapes associated with the three folksonomies

in the sample as well as representative ontologies and thesauri. Radar charts were chosen

because they make it possible to visualize large numbers of dimensions simultaneously.  Though

it would be possible to reduce the number of features in the charts, for example using the results

from the factor analysis presented above, we chose to present all of the measurements taken.

These figures, which capture all of the features measured for a given term-set in a single image,
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suggest fairly distinct patterns in the term-sets associated with the different kinds of information

system present in our sample. However, when utilizing all of the variables, the borders of the

various categories are not entirely clear.  For example, the Bibsonomy and CiteULike

folksonomies appear to be nearly identical in these charts but, while similar, the Connotea

folksonomy shows substantial variations.

In various iterations of cluster analysis we repeatedly found that the Bibsonomy and the

CiteULike term-sets grouped tightly together and that Connotea was generally similar to them

but that this similarity was strongly influenced by the specific subset of the metrics used.  In one

specific analysis, Ward’s method identified a distinct cluster containing just the folksonomies

using the following parameters: % of uniterms, % of duplets, flexibility, % contained by another,

standard deviation of term length, skewness of term length, and number of complements [27].

These results indicate that the answer to the first question, namely “are the terms from

folksonomies shaped differently than the terms from controlled vocabularies?” is, generally, yes.

Subsets of these metrics can be used to separate folksonomies  from the controlled vocabularies

using a variety of methods.  However, Bibsonomy and CiteULike are clearly much more similar

to each other than either is to Connotea.  Without advancing a definitive answer as to why this is

the case, we offer several possible explanations.  First, one clear technical difference between

Connotea and the other two systems is that it allows spaces in its tags.  For example, it is

possible to use the tag ‘semantic web’ in Connotea, but, in Bibsonomy or CiteULike, one would

have to use a construct like ‘semanticWeb’, ‘semantic-web’, or ‘semanticweb’ to express the

same term.  Though the syntactic normalization we utilized will equate ‘semantic-web’ with

‘semantic web’ (and detect the two-term composition), the term semanticweb would not match

and would be classified by the system as a uniterm.  This difference suggests that there may be

more compound terms in Bibsonomy and CiteULike than our metrics indicate; however, this

aspect of the tagging system may also act to discourage the use of complex tags by the

Bibsonomy and CiteULike users.  Aside from differences in the allowed syntax of these

uncontrolled indexing languages, this may also be an effect of the differing communities that use

these systems.  While Connotea is clearly dominated by biomedical researchers, Bibsonomy is

much more influenced by computer scientists and CiteULike seems to have the broadest mixture.

Perhaps the biomedical tags are simply longer and more complex than in other fields.  A final
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possibility, one that we will return to in the discussion of the direct measures of term-set overlap,

is that Connotea may be disproportionately affected by the automatic import of terms from

controlled vocabularies, in particular MeSH, as tags within the system.

5.3.4 Findings – inter-set

Following the intra-set results, the inter-set comparisons indicate high diversity in the term-sets

present in the sample while also highlighting interesting relationships between them.  Figures

5.11 and 5.12 provide an overview of the all-against-all comparison of each of the term-sets

using the F-measure and the measures of precision and recall respectively.  They show that, in

general, there was a very low amount of overlap between most of the pairs that were examined.

This is likely a direct result of the wide variance of contexts associated with the diverse indexing

languages represented in the sample. Though the sample was biased towards ontologies in the

biomedical domain, biomedical is an extremely broad term.  For example, the domains of items

intended to be indexed with the different languages ranged from amino acid sequences, to

biomedical citations, to tissue samples.  That there was not much direct overlap in general is

unsurprising.

Aside from overlaps between different term-sets drawn from the same structure (e.g. between a

version of MeSH with only the preferred labels and a version that included all of the alternate

labels), the highest amount of overlap, as indicated by the F-measure, was found between the

Zebrafish Anatomy (ZFA) ontology [28] and the Cell ontology (CL) [29] at (f = 0.28).  This

overlap results because the ZFA ontology contains a large proportion of cell-related terms that

are non-specific to the Zebrafish, such as ‘mesothelial cell’ and ‘osteoblast’.

Table 5.9 lists the F-measure, precision and recall estimates for the term-set pairs with the

highest F-measures.  Aside from the ZFA/CL comparison, the highest amounts of overlap were

observed for the inter-folksonomy pairs, MeSH and the Agricultural Information Management

Standards thesaurus (Ag) [30], MeSH and the National Cancer Institute thesaurus (NCI) [31],

and MeSH and Connotea.
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5.3.4.1 MeSH versus the folksonomies

The second specific, demonstrative question put forward above, and one of the early motivators

for this project, was the question of how the terms from MeSH compare to the terms from

academic folksonomies.  To answer this question, Tables 5.10 and 5.11 delineate the overlaps in

terms of precision, recall, and the F-measure that were observed between the three folksonomies

in our sample and the MeSH thesaurus (including one version with just the preferred labels and

another that included alternate terms).  Of the three folksonomies, Connotea displayed the

greatest degree of overlap with MeSH in terms of the F-measure, precision, and recall for both

the preferred labels and the complete MeSH term-set.  The precision of the Connotea terms with

respect to the MeSH preferred labels was 0.073, the recall 0.363, and the F-measure was 0.122.

The fact that the Connotea term-set contains nearly 9000 MeSH terms (36% of the entire set of

preferred labels) suggests a) that there are a number of biomedical researchers using Connotea

and b) that they have chosen, one way or another, to utilize MeSH terminology in the

organization of their publicly accessible resource collections.  How these terms came to be used

in this manner is a more difficult question.  In some cases, the Connotea users likely recreated

the MeSH terms when going about their normal tagging practices; however,  the relatively high

level of overlap is suggestive of other underlying factors.

5.3.4.2 Batch import in folksonomies

Connotea, as well as the other social tagging systems in the study, offers a way to import data

from other sources automatically.  For example, it is possible to export bibliographic information

from applications such as Endnote and then import these records as bookmarks within the

Connotea system.  This opens up the possibility that tags generated outside of the Connotea

system, such as MeSH indexing by MEDLINE, can wind up in the mix of the tags contained

within the Connotea folksonomy.

To help assess the impact of imported tags on the contents of the Connotea folksonomy, we

identified and removed a subset of the Connotea tags that were highly likely to have been

imported through the use of additional information about the context of the creation of the tags,
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and then recomputed all of the metrics defined above.  In a social bookmarking system like

Connotea, tags are added to the system as descriptive annotations of Web resources.  When a

bookmark is posted to the system by a particular user, the tags associated with it, as well as a

timestamp, are associated with the entry. Sets of bookmarks posted via batch import, for example

from the contents of an Endnote library,  will all have nearly identical timestamps associated

with them.  Thus, by pruning out tags originating only in posts submitted by the same user

during the same minute, we constructed a new Connotea term-set that should be more

representative of the terms actually typed in directly by the users.

Figure 13 shows the differences between the pruned Connotea term-set (Connotea_no_batch)

and the original dataset on both intra-set measures and measures of direct overlap with the MeSH

preferredLabel term-set.  In every metric except for the skewness of the lengths of the terms, the

pruned Connotea term-set more closely resembled the other folksonomies.  For example, in the

pruned set, the % uniterms increased by about 10%, the % quadplus decreased by more than 30%

and the flexibility increased by about 10%.  The overlap with the MeSH prefLabels decreased

from 0.12 to 0.11 with respect to the F measure, the precision decreased from 0.363 to 0.266, and

the recall decreased from 0.073 to 0.069.

It appears the process of batch uploading bookmarks in Connotea, in cooperation with other

personal information management practices such as the use of Endnote, has influenced the

contents of the Connotea folksonomy.  In particular, many MeSH terms appear to have been

incorporated into it.  Since most other folksonomies, including the others evaluated here, also

have automated upload capabilities, it is highly likely that similar results may be observed within

them.  While this phenomenon makes the interpretation of folksonomy datasets more complex by

obscuring the origins of the data, its illumination should provide new opportunities for

investigation.  For example, perhaps it would be possible to track the migration of terms across

the boundaries of different systems through the addition of a temporal attribute to the inter-set

metrics suggested here.  Such data might help to explain the origins of the terms utilized in

different indexing languages.  One would assume for example, that many of the terms that now

overlap between MeSH and the folksonomies appeared first in MeSH and then migrated over

somehow;  however, in the future, perhaps this process might be reversed as folksonomies are

mined for candidate extensions to controlled vocabularies.
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5.4 Discussion

Robust, reproducible methods for comparing different information systems are vital tools for

scientists and system developers faced with what has been called “an unprecedented increase in

the number and variety of formal and informal systems for knowledge representation and

organization” [32]. Indeed, we are in a Cambrian Age of web-based indexing languages.  Metrics

and tools such as the system for indexing language characterization described here can be used to

provide information about how the many emerging kinds of information systems relate to one

another. It can also be used in the design of new systems that incorporate ideas inspired by such

comparisons, as suggested by the University of California’s Bibliographic Services Task Force

[33], or, as demonstrated by Good et al. (2006) and Willighagen et al. (2007), explicitly combine

multiple extant systems to form novel hybrids [34, 35].

In the research presented above, we introduced metrics for the automatic characterization and

set-theoretic comparison of sets of terms from indexing languages.  Using these metrics, we

provided a broad-spectrum analysis of 22 different languages.  Within the data gathered in this

exploratory analysis, we identified suggestive patterns associated with the terms that compose

folksonomies versus the terms from controlled vocabularies as well as directly quantifying the

degree of overlap present across each of the sets in the sample.  Of particular interest is the

apparent migration of terms across the boundaries of the different systems, in particular from

MeSH into the folksonomies.  Though the results presented here are informative, the main

contribution of this work is the enumeration and implementation of the comparative protocol.

Future term-set analyses, particularly if they can be integrated with rich qualitative dimensions,

might be put to any number of novel uses.  Given the definition of these metrics and the

provision of tools for their calculation, it would now be straightforward to test whether any of the

term-based measurements are related to other attributes of information systems.  For example, it

might be interesting to test to see if any of these factors were predictive of system performance;

e.g., is the percentage of uniterms in the tags that compose a folksonomy correlated with the

performance of that folksonomy in the context of a retrieval task?  If that answer turned out to be

yes, then it would offer an easy way to estimate the retrieval performance of different systems

and might suggest ways to improve performance, for example by adapting the tagging interface
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to encourage the contribution of more complex tags.  Other potential applications include:

comparative quality evaluation, term-set warrant and the identification of relationships between

term-set shape and theoretical types of indexing language.

5.4.1 Comparative quality evaluation

From the perspective of systems evaluation, one particular use of the methods defined here might

be in gold-standard based quality assessments similar to those described by Dellschaft and Staab

(2006) for the automated, comparative evaluation of ontologies [36].  If a particular indexing

language is judged to be of high quality for some particular context, other structures might be

evaluated for their quality in that or a very similar context based on their similarity to this gold-

standard. For example, for the purpose of indexing biomedical documents for an institutional

information retrieval system like MEDLINE, many would consider MeSH as a gold standard.

The similarity of another indexing language, such as a folksonomy, to this standard might thus

be used as a measure of its quality for indexing biomedical documents for retrieval. The principal

advantage of such an approach is that it can be completely automatic, potentially helping to

avoid the intensive manual labour and possible subjectivity associated with manual evaluations.

The disadvantages are that, for any real, new application, (a) a gold standard is unlikely to exist

and (b) any acceptable evaluation would still have to be informed by extensive qualitative

alignment of the contextual attributes of the intended application in comparison with the gold

standard.

5.4.2 Term-set warrant

The creators and maintainers of indexing languages often require justifications for the inclusion

or exclusion of classes within their structures [37].  These justifications, referred to as ‘warrants’,

may come in many forms, though the most commonly discussed is probably ‘literary warrant’.

Essentially a particular kind of warrant bases the justification for the contents of an indexing

language on a particular kind of empirical evidence (e.g. user requests) or argument (e.g.

philosophical or scientific warrant).  The inter-set metrics may provide data useful in the

development of a new kind of warrant based upon the overlap between different structures.
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Essentially, such a ‘term-set warrant’ might be invoked to justify the inclusion of terms or the

concepts they represent based on the presence or absence of those terms in other structures.

5.4.3 Relationship of term-set shape to theoretical type

It is tempting to think that this approach, or some extension of it, could be used to describe

meaningful types of indexing languages, not from design requirements, but from the

actualization of those design requirements manifest in and observable to us in the shape of term-

sets.  This could provide a weak empirical corroboration for types of indexing languages in use,

not only according to standard or theory, but based on empirical evidence of term corpus.

Defending and making use of such inferences would require a solid understanding of the

meaning of the different shapes.  The work presented here is exploratory and future work will

have to substantiate any claim at deriving type from these empirical factors.  However, we can

see that, in this sample, there were clear distinctions between the shapes of controlled and

uncontrolled vocabularies, demonstrating at this stage that we can hypothesize that folksonomies

have a particular shape in relation to both thesauri and ontologies.  Future studies may take

advantage of the increasing number of different indexing languages to, for example, attempt to

define the relationship of term-set shape to the breakdown of theoretical type within the

controlled vocabularies.

5.5 Future work

The metrics derived and applied here operate at what amounts to a syntactic level – no specific

attempt, other than rudimentary term normalization, was made to identify the concepts present in

the different indexing languages.  A natural extension of this work would be to apply natural

language processing technology to make this attempt.  The rough indications of semantic

similarity provided by the inter-term-set comparisons could be made much more robust if the

comparisons were made at the level of concepts rather than terms, for example making it

possible to equate synonymous terms from different languages.

Aside from the incorporation of natural language processing technology for concept

identification, it would be useful to consider the analysis of predicate relationships between the
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terms (e.g. the hierarchical structure) and the analysis of the relationships between terms and the

items they may be used to index.  Metrics that captured these additional facets of information

systems, characteristic of their form and application, would provide the opportunity for much

more detailed comparisons, thus forming the raw materials for the derivation and testing of many

new hypotheses.

There remain many indexing languages, both controlled and uncontrolled, that are available

online that have not been characterized with the methods and from the naturalistic perspective

adopted here. In addition to improving and expanding methods, the majority of future work will

be the application of these tools to the analysis of other languages.

5.6 Conclusion

We are at the very beginning of a rapid expansion in the number and the diversity of different

frameworks for the organization of information.  As more and more information systems come

into the world, the application of expository, reproducible protocols for their comparative

analysis, such as the one described in this article, will lead to ever increasing abilities to

illuminate and thus build upon this expanding diversity of form and content.
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Table 5.1. Examples of OLP term classifications

Terms are divided into different OLP categories (uniterm, duplet, triplet, quadruplet or higher)
based on the number of subterms detected.

Terms OLP Subterm
Number

Naming
convention

‘ontology’ 1 uniterm

‘ontology evaluation’ 2 duplet

‘Fibroblast Growth Factor’ 3 triplet

‘United States of America’ 4 quadruplet or

higher

‘Type 5 Fibroblast Growth Factor’ 5 quadruplet or

higher

Table 5.2. Explanation of the OLP Flexibility measure

The flexibility for the term-set listed in the first columns is equal to 0.17 (1 divided by 6)
because there is one subterm ‘Web’ that is also a uniterm out of a total of 6 subterms.

Terms Uniterms Subterms Consolidated
subterms

Both consolidated
and uniterms

Semantic Web Semantic Semantic

Web Web Web

Web Web

Social Web Social Social

Web

Planet Planet

Do Re Mi Do Do

Re Re

Mi Mi

Star Star

6 1
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Table 5.3. Parameters of term-sets

Parameter Definition

Number distinct terms
The number of syntactically unique terms in the set.

Term length The length of the terms in the set.  We report the mean,
minimum, maximum, median, standard deviation, skewness,
and coefficient of variation for the term lengths in a term-
set.

OLP uniterms, duplets,
triplets, quadplus

We report both the total number and the fraction of each of
these categories in the whole term-set.

OLP flexibility The fraction of OLP subterms (the independent terms that
are used to compose precoordinated terms) that also appear
as uniterms.

OLP number subterms
per term

The number of subterms per term is zero for a uniterm
(’gene’), two for a duplet (‘gene ontology’), three for a
triplet (‘cell biology class’), and so on.  We report the mean,
maximum, minimum, and median number of subterms per
term in a term-set.

contains another The terms that contain another term from the same set. Both
the total and the proportion of terms that contain another are
reported.

contained by another The terms that are contained by another term from the same
set. Both the total and the proportion of terms that are
contained by another are reported

complements A complement is a subterm that is not itself an independent
member of the set of terms. The total number of distinct
complements is reported.

compositions A composition is a combination of one term from the term-
set with another set of terms (forming the suffix and/or the
prefix to this term) to form another term in the set.  The total
number of compositions is reported.
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Table 5.4. Term-sets

Each of the term-sets evaluated in this study is described below.

Name Abbreviation Source
syntax

Type Domain

Academic Computing
Machinery subject listing

ACM 1997 OWL thesaurus computer science

Agriculture Information
and Standards ontology

AG OWL ontology agriculture

Bibsonomy Bibsonomy text folksonomy general/academic
BioLinks BioLinks OWL thesaurus bioinformatics
Biological Process branch
of the Gene Ontology

GO_BP OBO/OWL ontology biology

Cell Type Ontology CL OBO/OWL ontology biology
Cellular Component branch
of the Gene Ontology

GO_CC OBO/OWL ontology biology

Chemical Entities of
Biological Interest

CHEBI OBO/OWL ontology biology

CiteULike CiteULike text folksonomy general/academic
Common Anatomy
Reference Ontology

CARO OBO/OWL ontology biology

Connotea Connotea text folksonomy general/academic
Environment Ontology ENVO OBO/OWL ontology biology
Foundational Model of
Anatomy (preferred labels
+ synonyms)

FMA +
synonyms

OWL ontology biology/medicine

Foundational Model of
Anatomy (preferred labels)

FMA PrefLabels OWL ontology biology/medicine

Medical Subject Headings
(descriptors + entry terms)

MeSH With All
Labels

XML thesaurus biology/medicine

Medical Subject Headings
(descriptors)

MeSH
PrefLabels

XML thesaurus biology/medicine

Molecular Function branch
of the Gene Ontology

GO_MF OBO/OWL ontology biology

National Cancer Institute
Thesaurus (preferred labels
+ synonyms)

NCI Thesaurus +
synonyms

OWL thesaurus biology/medicine

National Cancer Institute
Thesaurus (preferred
labels)

NCI Thesaurus
PrefLabels

OWL thesaurus biology/medicine

Ontology for Biomedical
Investigation

OBI OBO/OWL ontology biology/medicine

Phenotype Ontology PATO OBO/OWL ontology biology
Protein Ontology PRO OBO/OWL ontology biology
Sequence Ontology SO OBO/OWL ontology biology
Thesaurus of EIONET, the
European, Environment,
Information, and
Observation Network

GEMET SKOS/RDF thesaurus environment

Zebrafish Anatomy ZFA OBO/OWL ontology biology
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Table 5.5. Size and composition of term-sets

This table reports the size of the term-sets and parameters related to the degrees of modularity
observed in each.   The term-sets are grouped into three types: folksonomies are indicated in
green, thesauri in yellow, and ontologies in blue. The maximum and minimum values for each
column are indicated by the uncolored cells.

Term-set Number
distinct
terms

OLP mean
number
sub terms
per term

OLP
max
number
sub
terms
per term

OLP
median
number
sub
terms
per term

Complements Compositions

Bibsonomy 48120 0.63 21 0 16448 25881
CiteULike 234223 0.56 14 0 62364 127118
Connotea 133455 1.49 33 2 119486 183980
ACM 1997 (OWL
version)

1194 2.47 15 2 583 654

AG (English terms) 28432 1.34 7 2 7146 10018
BioLinks 90 1.87 6 2 9 9
GEMET 5207 1.68 7 2 2201 3809
MeSH PrefLabels 24766 1.67 20 2 8333 11162
MeSH With All
Labels

167081 2.35 27 2 90032 163010

CARO 50 2.38 4 2 21 22
CHEBI 73465 8.88 241 3 255506 289469
CL 1268 2.57 9 2 1171 1529
ENVO 2001 1.49 10 2 925 1452
FMA plus synonyms 120243 5.81 18 6 255632 545648
FMA Preflabels 75147 6.14 18 6 169042 352541
GO_BP 42482 5.00 33 5 33667 79062
GO_CC 3539 3.45 14 3 2493 3821
GO_MF 30843 4.83 62 4 18941 26138
NCI Thesaurus –
preflabels

60980 3.38 31 3 107413 148151

NCI Thesaurus +
synonyms

146770 3.81 73 3 391297 592554

OBI 764 2.20 8 2 288 315
PATO 2162 1.57 7 2 1162 2780
PRO 837 4.28 32 5 552 767
SO 2104 2.86 18 3 2342 3183
ZFA 3250 2.40 8 2 2255 3616
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Table 5.6. Modularity measurement ratios.

This table reports on parameters related to the modularity of the term-sets.   The term-sets are
grouped into three types: folksonomies are indicated in green, thesauri in yellow, and ontologies
in blue. The maximum and minimum values for each column are indicated by the uncolored
cells.

Term-set OLP
uniterms

OLP
duplets

OLP
triplets

OLP
quadplus

OLP
flexibility

Contains
another

Contained
by another

Bibsonomy 72.7% 21.7% 4.2% 1.5% 56.6% 25.8% 13.7%
CiteULike 75.8% 18.8% 4.3% 1.2% 68.2% 23.8% 9.6%
Connotea 44.8% 35.1% 12.4% 7.7% 43.8% 51.7% 18.2%
ACM 1997
(OWL
version)

18.5% 40.9% 18.4% 22.2% 9.2% 40.3% 12.8%

AG (English
terms)

34.3% 63.1% 2.2% 0.4% 15.6% 32.5% 11.0%

BioLinks 35.6% 31.1% 14.4% 18.9% 6.5% 8.9% 8.9%
GEMET 27.5% 54.4% 13.9% 4.1% 26.6% 51.7% 16.0%
MeSH
PrefLabels

37.3% 37.1% 15.7% 9.8% 15.8% 35.1% 10.5%

MeSH With
All Labels

16.4% 40.6% 28.1% 14.9% 23.1% 62.0% 10.4%

CARO 4.0% 54.0% 38.0% 4.0% 3.7% 44.0% 12.0%
CHEBI 22.1% 18.8% 11.2% 47.9% 33.2% 73.7% 20.9%
CL 15.3% 35.3% 28.0% 21.4% 6.3% 80.6% 13.4%
ENVO 37.3% 47.6% 10.4% 4.6% 26.6% 51.6% 17.3%
FMA plus
synonyms

1.2% 6.9% 11.7% 80.2% 15.0% 95.1% 24.6%

FMA
Preflabels

1.4% 5.2% 8.8% 84.6% 16.6% 95.5% 25.3%

GO_BP 0.8% 14.4% 18.1% 66.7% 3.7% 87.1% 20.7%
GO_CC 9.1% 26.7% 22.3% 41.9% 7.0% 57.0% 19.5%
GO_MF 4.0% 8.2% 20.4% 67.5% 2.3% 58.2% 11.0%
NCI
Thesaurus -
preflabels

14.8% 25.8% 22.5% 36.9% 22.3% 77.9% 17.2%

NCI
Thesaurus +
synonyms

16.8% 20.1% 17.5% 45.6% 37.5% 81.3% 24.8%

OBI 19.5% 42.1% 25.1% 13.2% 7.7% 32.2% 13.6%
PATO 36.6% 40.0% 17.7% 5.7% 42.8% 57.6% 32.2%
PRO 11.1% 6.0% 11.8% 71.1% 12.1% 69.7% 17.6%
SO 12.8% 29.8% 27.5% 30.0% 17.2% 76.4% 22.6%
ZFA 17.4% 36.4% 26.0% 20.3% 13.7% 60.9% 14.7%
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Table 5.7. Measurements of term length

This table reports on the sizes of the terms.   The term-sets are grouped into three types:
folksonomies are indicated in green, thesauri in yellow, and ontologies in blue. The maximum
and minimum values for each column are indicated by the uncolored cells.

Term-set Mean Max Median Standard
Deviation

Skewness Coefficient of
variation

Bibsonomy 10.19 196.00 9.00 6.59 5.17 0.65
CiteULike 12.38 80.00 11.00 7.35 1.83 0.59
Connotea 15.29 268.00 13.00 14.14 7.56 0.92
ACM 1997 (OWL
version)

21.70 94.00 20.00 10.96 1.48 0.51

AG (English terms) 15.29 48.00 15.00 5.67 0.12 0.37
BioLinks 16.30 45.00 15.00 9.12 0.74 0.56
GEMET 15.48 54.00 15.00 6.73 0.67 0.43
MeSH PrefLabels 17.46 98.00 16.00 8.71 1.29 0.50
MeSH With All
Labels

20.36 112.00 19.00 9.29 0.93 0.46

CARO 20.96 35.00 20.00 7.24 0.30 0.35
CHEBI 36.12 831.00 21.00 45.44 4.01 1.26
CL 19.35 72.00 18.00 9.59 1.07 0.50
ENVO 12.43 73.00 11.00 7.80 2.32 0.63
FMA plus synonyms 38.26 125.00 36.00 16.45 0.64 0.43
FMA Preflabels 40.35 125.00 38.00 17.03 0.59 0.42
GO_BP 39.71 160.00 37.00 18.63 1.38 0.47
GO_CC 26.50 96.00 23.00 15.29 1.00 0.58
GO_MF 39.82 322.00 38.00 19.61 1.45 0.49
NCI Thesaurus -
preflabels

25.87 208.00 22.00 17.36 1.86 0.67

NCI Thesaurus +
synonyms

26.67 342.00 23.00 19.96 2.25 0.75

OBI 18.69 62.00 17.00 9.46 0.99 0.51
PATO 14.96 46.00 14.00 7.33 0.67 0.49
PRO 26.38 162.00 27.00 13.82 1.40 0.52
SO 19.87 142.00 18.00 11.86 1.58 0.60
ZFA 18.45 72.00 18.00 8.72 0.54 0.47



110

Table 5.8. Factor loadings from maximum likelihood  factor analysis using three factors

The loadings for the dominant variables for each factor are indicated in bold.  Factor one was
mostly composed of the percentage of quadplus terms, the mean term length, and the mean
number of subterms per term.  Factor two was most influenced by the percentage of terms that
contained other terms and the percentage of terms that were contained by another term.  Factor 3
was most influenced by the percentage of uniterms and the flexibility.

Parameter Factor1 Factor2 Factor3
pct.OLP.uniterms -0.321 -0.537 0.774
pct.OLP.duplets -0.907 -0.131 -0.275
pct.OLP.quadplus 0.876 0.409 -0.24
OLP.flexibility -0.199 0.94
pct.containsAnother 0.421 0.814 -0.171
pct.containedByAnother 0.206 0.756 0.173
Mean.Term Length 0.769 0.438 -0.321
Coefficient.of.variation. Term.Length 0.54
OLP.mean.number.sub.terms.per.term 0.665 0.518 -0.216

Table 5.9. Term-set pairs with the highest F-measures

This table presents the pairs of term-sets that exhibit the highest amounts of overlap as indicated
by the F-measure.  Precision and Recall for the set comparisons are also reported.

Comparison pair F(x,y) P(x,y) = R(y,x) R(x,y) = P(y,x)
cl vs. zfa 0.28 0.46 0.20
citeulike vs. connotea 0.22 0.17 0.30
bibsonomy vs.
connotea

0.19 0.37 0.13

bibsonomy vs.
citeulike

0.16 0.47 0.09

ag_EN vs.
mesh_prefLabel

0.15 0.14 0.17

ncithesaurus_prefLabel
vs. mesh_prefLabel

0.14 0.10 0.24

mesh_prefLabel vs.
connotea

0.12 0.36 0.07
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Table 5.10. Precision/Recall estimates of the similarity between MeSH and three folksonomies

Each cell in the table may be read as either the precision of the term-set identified for the row
with respect to the term-set identified by the column or the recall of the column with respect to
the row.  For example, the first cell indicates that the precision of CiteULike with respect to
mesh_all (including alternate term labels) and the recall of mesh_all with respect to CiteULike is
0.047.  The minima and maxima for each column are indicated in bold.

mesh_all mesh_prefLabel bibsonomy citeulike connotea
citeulike 0.047 0.030 0.094 1.000 0.170
connotea 0.104 0.073 0.129 0.297 1.000
bibsonomy 0.075 0.047 1.000 0.470 0.370
mesh_all 1.000 0.301 0.039 0.122 0.155
mesh_prefLabel 1.000 1.000 0.081 0.263 0.363

Table 5.11. F measures of the similarity between MeSH and three folksonomies.

This table presents the levels of overlap, quantified with the F measure, between the
folksonomies and MeSH

bibsonomy citeulike connotea mesh_all mesh_prefLabel
bibsonomy 1.000 0.157 0.191 0.051 0.059
citeulike 1.000 0.217 0.068 0.054
connotea 1.000 0.124 0.122
mesh_all 1.000 0.462
mesh_prefLabel 1.000
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Figure 5.1. Set comparison operations

The figure illustrates the different set comparison operations considered in this study: Precision,
Recall, the F measure, and Accuracy.  For the sets A (in blue) and B (in yellow), the intersection
(in green) is I(A,B).  If B is considered to contain ‘true positives’, the Precision(A,B) is equal to
I(A,B)/A, Recall is equal to I(A,B)/B, and the F measure is the harmonic mean of Precision and
Recall.  Accuracy is I(A,B)/U(A.B) where U(A,B) is the union of the sets A and B.
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Figure 5.2. The effect of phase 2 normalization on the size of the term-set

For each term-set, the chart displays the ratio of its size after phase 2 normalization versus its
size after phase 1 normalization.  Note that the greatest difference is observed for the ‘mesh_all’
term set; this is expected because this set explicitly includes multiple syntactic forms of each
term.
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Figure 5.3. %Uniterms verse OLP flexibility

Both %Uniterms and OLP flexibility are independently sufficient to form a linear separator
(indicated by the light vertical and horizontal lines) between the term-sets originating from
folksonomies (the three in the upper right corner) and the controlled terms from the other
indexing languages.
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Figure 5.4. Radar graph of the MeSH thesaurus

Figure 5.5. Radar graph of the Association for Computing Machinery (ACM) thesaurus

Figure 5.6. Radar graph of the Connotea folksonomy
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Figure 5.7. Radar graph of the Bibsonomy folksonomy

Figure 5.8. Radar graph of the CiteULike folksonomy
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Figure 5.9. Radar graph of term-set from Gene Ontology Biological Process (GO_BP)

Figure 5.10. Radar graph of term-set from the Foundational Model of Anatomy (FMA)
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Figure 5.11. All against all comparison using the F-measure

The white intensity of each cell (or anti-redness) is determined by the overlap (F-measure) of the
term-set indicated on the horizontal and vertical axes.  The cells along the diagonal represent
self–against-self comparisons and thus are white – indicating exact overlap. The color key shows
the range of values (0-1) associated with the different colors.
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Figure 5.12. All against all comparison using Precision/Recall

The white intensity of each cell (or anti-redness) is determined by the Precision of the term-set
indicated on the horizontal axis in its coverage of the term-set indicated on the vertical axis.  The
chart may also be read as the Recall of the term-set indicated on the vertical axis in its coverage
(or prediction) of the term-set on the horizontal axis. The color key shows the range of values (0-
1) associated with the different colors.
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Figure 5.13. Differences between the full Connotea term-set and the Connotea term-set with batch uploaded
bookmark posts removed

The figure shows the differences between all the terms from Connotea (connotea_all) and the
terms from Connotea originating in bookmark posts that appeared to be uploaded rather than
entered manually (connotea_no_batch). Each horizontal bar corresponds to one metric.  For
example, the first bar on the top of the chart indicates that the %OLP uniterms  is about 10
percent higher for the connotea_no_batch group and the second bar indicates that the %OLP
duplets is about 2 percent lower for the no_batch group.
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6 Social tagging in the life sciences: characterizing a new metadata resource8

6.1 Background

As the volume of data in various forms continues to expand at rapid rates in the life sciences and

elsewhere, it is increasingly important to find mechanisms to generate high quality metadata

rapidly and inexpensively.  This indexing information – the subjects assigned to documents, the

functions annotated for proteins, the characteristics identified in images, etc. – is what enables

effective search and integration to succeed at large scales over varying document types.

Current practices for generating metadata within the life sciences, though varying across

initiatives and often augmented by automated techniques, generally follow a process closely

resembling that long employed by practitioners in the library and information sciences [1, 2].

First, semantic structures, such as thesauri and ontologies, are created by teams of life scientists

working in cooperation with experts in knowledge representation or by individuals with expertise

in both areas.  Next, annotation pipelines are created whereby professional annotators utilize the

relevant semantic structures to describe the entities in their domain.  Those annotations are then

stored in a database that is made available to the public via websites and sometimes Web

services.  As time goes on, the semantic structures and the annotations are updated based on

feedback from the community and from the annotators themselves.

This process yields useful results, but it is intensive in its utilization of an inherently limited

supply of professional annotators. As the technology to produce new information and the

capacity to derive new knowledge from that information increases, so to must the capacity for

metadata provision.  Technologies that support this process by partially automating it, such as

workflows for genome annotation [3] and natural language indexing systems [4-6], provide

important help in this regard, but manual review of automated predictions remains critical in

most domains [7, 8].  There is clearly a need for an increase in the number of human annotators

that parallels the increase in the amount of data.

                                                  
8 A version of this chapter will be submitted for publication. Good BM, Tennis JT, Wilkinson MD: Social tagging in
the life sciences: characterizing a new metadata resource
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As the life sciences are not alone with respect to the recent introduction of large volumes of

relatively unstructured, but very valuable information, we may seek solutions to our metadata

generation problems in other domains.  The World Wide Web is likely the largest and least well-

structured repository of information on the planet and thus provides an ideal space to observe

different approaches to the annotation problem.  Of the many recent developments in the

evolution of the Web, one that is clearly relevant is the emergence of social tagging.

Social tagging systems let their users organize personal resource collections with tags.  The kinds

of resources contained within them are essentially unlimited, with popular examples including

Web bookmarks [9], images [10], and even personal goals [11].  These resource collections are

made available to the social network of their creators and often to the general public.  The tags

used to organize the collections are created by the owner of the collection (the tagger) and can

serve a variety of purposes [12].  The act of adding a resource to a social tagging collection is

referred to as a 'tagging event' or simply as a ‘post’ (as in “to post a bookmark”).  Tagging events

are composed of a tagger, a thing tagged, a collection of applied tags, and a variety of other

factors that define the context of the event (time, type of resource tagged, software used, personal

purpose, etc.).  Figure 6.1 illustrates the information captured in a record of a typical tagging

event in which JaneTagger tags an image retrieved from Wikipedia with the tags ‘hippocampus’,

‘image’, ‘mri’, and ‘wikipedia’.  Academic social tagging systems, such as Connotea,

Bibsonomy and CiteULike, extend this basic functionality with the ability to identify and store

bibliographic information associated with scientific articles [13-16].

The tagline of Connotea, a prominent example in the academic domain, is “Organize, Share,

Discover”.  Social tagging services help their users accomplish each of these purposes in relation

to scientific resources.  Tags can be used to organize personal collections in a flexible, location

independent manner.  The online nature of these services allows users to easily share these

collections with others – either within their circle of associates or with the general public.

Through the public sharing of these annotated references, it is possible for users to discover other

users with similar interests and references they may not otherwise have come across.  These last

two aspects, sharing and discovery, are perhaps the newest and ‘warmest’ [17] features of these

systems and are the features most often touted by their proponents; however, the simple personal
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information management needs satisfied by these systems likely provide the most powerful

incentives for their continued use [18].

As a side-effect of providing these individual benefits while hosting data in public, social tagging

services have the capacity to rapidly and inexpensively produce large concentrations of publicly

accessible, user-generated metadata.  Based on the growing need for metadata in the life

sciences, it is natural to wonder how these emerging resources might be useful in scientifically

relevant settings.  Might they somehow be used to extend traditional mechanisms for metadata

provision and thus enable the generation of better applications for finding and interacting with

scientific information?

In this investigation, we consider socially generated tags from the perspective of their potential

to function as subject descriptors in the context of search and retrieval applications.  That is, can

tags linked to scientific documents help retrieval in a similar manner to index terms generated

via other processes?  There may be many other possible applications of this data, but the

ubiquitous importance of search and the availability of many comparable, better understood

frameworks for supporting this activity makes it an appropriate place to begin.

One way to address this kind of question is through direct studies of the relevance of search

results produced using different systems.  For example, Morrison (2008) applied this method in

the context of general purpose Web search [19].  He found that searches conducted using broadly

scoped social tagging services such as Del.icio.us [9] can produce results that are competitive

with full Web search engines, such as Google, and manually created Web directories, such as the

Yahoo directory [20]. In addition, he found that the most relevant search results overall could be

obtained by combining results from social tagging services with results from the search engines.

Another way to address this kind of question is through direct inspection of the indexes upon

which searches are conducted.  Though Morrison’s study is suggestive of the potential value of

socially generated metadata in the context of search, it does little to answer questions of why it is

useful or how it might be improved because it does not distinguish between the contributions of

the underlying tagging data and the algorithms applied to search that data and rank the results.

To complement this kind of ‘black-box’ study of search retrieval effectiveness, it is important to
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open up the box and consider the indexes upon which the searches are conducted.  What do the

tags look like?  How many are there?  How do they vary from the terms that might be assigned

by other indexing processes?  By answering such questions we can begin to understand how best

to make use of socially generated metadata in the context of applications that blend it with other

metadata sources, such as the integrated social search engines suggested by Morrison’s study that

are even now starting to appear (for example, worio.com [21]).

Here, we provide a characterization of the current products of social tagging in biomedical,

academic contexts through a direct, empirical assessment of the tags used to describe references

in PubMed by users of Connotea and CiteULike.  We measure the coverage of the document

space, the number of tags assigned per document, the rates of agreement between different

taggers, and the relationship between tags and the MeSH descriptors associated with the same

documents.  The measurements of agreement are conducted at multiple semantic levels using

tools from the Unified Medical Language System (UMLS) [22].  Through these investigations

we offer a quantitative snapshot of the metadata currently emerging from social tagging

applications within the life sciences.  This snapshot illustrates the current state of these resources

– offering both a view into their potential and an empirical point of comparison to refer to as they

evolve over time.

6.2 Results

6.2.1 Resource Coverage

In the life science domain, the total number of items described by social tagging systems is

currently tiny in comparison to the number of resources described by institutions.  To illustrate,

the MEDLINE bibliographic database contains over 16 million citations [23] while, as of

November  9, 2008, CiteULike, the largest of the academic social tagging services, contained

references to only about 203,314 of these documents.  However, academic social tagging

systems are still in their infancy and thus the most interesting aspect is not their current state but

their future potential.
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On November 10, 2008, Connotea reported more than 60,000 registered users (Ian Mulvaney,

personal communication) and it is likely that CiteULike has even more.  Given such large

numbers of potential contributors, it seems possible that the resource coverage observed for

academic social tagging services might eventually meet or surpass that of fundamentally

resource-constrained institutional mechanisms.  In 2007, the NLM (National Library of

Medicine) reported that it indexed 670,943 citations for the MEDLINE database which equates,

on average , to about 56,000 citations per month [23].  To estimate if social tagging services

might someday reach the same level of throughput as the NLM indexing service, we compared

the rates of growth, per month, for MEDLINE and for CiteULike on the number of distinct

PubMed citations indexed over the last several years and used this data to make some predictions

of future trends.

Figure 6.2 plots the numbers of new PubMed citations described by users of CiteULike and by

MEDLINE indexers each month and a rough extrapolation of the observed trends several years

into the future.  The upper line, describing the PubMed/MEDLINE expansion, provides a clear

indication of the steadily increasing rate of information and knowledge pouring forth from and

for life scientists.  The lower line describes the increasingly rapid growth of socially generated,

biomedically relevant metadata accumulating in the CiteULike database.  If both of the observed

trends continue, CiteULike coverage  per month would catch up with MEDLINE around the year

2016 - at which point both systems would be describing approximately 74,000 new biomedical

citations per month; however, as the rapidly expanding confidence intervals illustrate, there is

insufficient data to provide strong evidence for the precise point of intersection or even that

CiteULike will continue to grow.  It is entirely possible that social tagging systems could either

fade away or that they will expand even more rapidly than they currently are.  That being said,

the latter potentiality seems to be the more likely.  Based on the trends suggested in current data

and the continuing popularity of social tagging in other domains, it seems plausible that

CiteULike and other scientifically oriented social tagging services will continue to expand in

their coverage of the life sciences.  Since, as we will see, social tagging data presents substantial

differences from previous forms, it is important that we begin now to understand these

differences so that we can make the best use of the information as it comes available.
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6.2.2 Density

Density refers simply to the number of metadata terms associated with each resource described.

Though providing no direct evidence of the quality of the metadata, it helps to form a descriptive

picture of the contents of metadata repositories that can serve as a starting point for exploratory

comparative analyses.  To gain insight into the relative density of tags used to describe citations

in academic social tagging services, we conducted a comparison of the number of distinct tags

per PubMed citation for a set of 19,118 citations described by both Connotea and CiteULike.

This set represents the complete intersection of 203,314 PubMed citations identified in the

CiteULike data and 106,828 PubMed citations found in Connotea.

Table 1 provides an assessment of the density of distinct tags used to describe these citations by

individual users and by the aggregate of all users of the system.  These numbers are contrasted

with the average numbers of MeSH subject descriptors (both major and minor subject headings

were included) used to index the same set of documents.  Only the MeSH descriptors are

reported (ignoring large amounts of additional subject-related metadata such as descriptor

modifiers, supplementary concept records, and links to other databases such as NCBI Gene [24]).

In terms of tags per post, the users of CiteULike and Connotea were very similar.  As Table 1

indicates, the mean number of tags added per biomedical document by individual users was 3.02

for Connotea and 2.51 for CiteULike, with a median of 2 tags/document for both systems.  These

figures are consistent with tagging behaviour observed throughout both systems and with earlier

findings on a smaller sample from CiteULike which indicated that users typically employ 1-3

tags per resource [25, 26].  On independent samples of 500,000 posts (tagging events) for both

CiteULike and for Connotea, including posts on a wide variety of subjects, the medians for both

systems were again 2 tags/document and the means were 2.39 tags/document for CiteULike and

3.36 for Connotea. The difference in means is driven, to some extent, by the fact that CiteULike

allows users to post bookmarks to their collections without adding any tags  while Connotea

requires a minimum of one tag per post.  Other factors that could influence observed differences

are that the user populations for the two systems are not identical nor are the interfaces used to

author the tags.  In fact, given the many potential differences, the observed similarity in tagging

behaviour across the two systems is striking.
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As more individuals tag any given document, more distinct tags are assigned to it.  After

aggregating all of the tags added to each of the citations in the sample by all of the different users

to tag each citation, the mean number of distinct tags/citation for Connotea was 4.15 and the

mean number for CiteULike was 5.10. This difference is a reflection of the larger number of

posts describing the citations under consideration by the CiteULike service.  In total, 45,525

CiteULike tagging events produced tags for the citations under consideration while data from

just 28,236 Connotea tagging events were considered.

Overall, the subject descriptors from MEDLINE exhibited a much higher density, at a mean of

11.58 and median of 11 descriptors per citation, than the social tagging systems as well as a

lower coefficient of variation across citations.  Figures 6.3a-c plot the distribution of tag densities

for Connotea, CiteULike, and MEDLINE respectively.  From these figures we can see that even

after aggregating the tags produced by all of the users, most of the citations in the social tagging

systems are described with only a few tags.  Note that the first bar in the charts shows the

fraction of citations with zero tags (none for Connotea).

One of the reasons for the low numbers of tags/citation, even in the aggregate sets, is that most

citations are tagged by just one person, though a few are tagged by very many.  To illustrate,

Figures 6.4a-d plot the number of citations versus the number of users to post each citation in the

Connotea-CiteULike-MEDLINE intersection.  Figures 6.4a and 6.4b show the data from

Connotea on both a linear (Figure 6.4a) and logarithmic scale (Figure 6.4b) and Figures 6.4c and

6.4d show the equivalent data from CiteULike.  The plots clearly indicate exponential

relationships between the number of resources and the number of times each resource is tagged

that are consistent with previous studies of the structure of collaborative tagging systems [12].

As with resource coverage, current levels of tag density are indicative, but the rates of change

provide more important insights regarding the potential of these young systems. Figures 6.5a and

6.5b plot the increase in distinct tags/citation as more Connotea (Figure 6.5a) and CiteULike

(Figure 6.5b) users tag PubMed citations.  These figures suggest that in order to reach the same

density of distinct tags per resource as MeSH descriptors per resource produced by MEDLINE

(median 11), roughly 5 to 7 social taggers would need to tag each citation.  Since, at any given

time it appears that the vast majority of citations will be described by just one person, as
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indicated in Figure 6.4, the data suggests that the density of socially generated tags used to

describe academic documents in the life sciences will remain substantially lower than the density

of institutionally created subject descriptors.  This prediction is, of course, dependent on current

parameters used for the implementations of academic social tagging systems.  As interfaces for

adding tags change, the density of tags per post as well as the level of agreement between the

different taggers regarding tag assignments may change.

6.2.3 Inter-annotator agreement

Measures of inter-annotator agreement quantify the level of consensus regarding annotations

created by multiple annotators.  Where consensus is assumed to indicate quality or correctness, it

is used as measure of quality.  The higher the agreement between multiple annotators, the higher

the perceived confidence in the annotations.

In a social tagging scenario, agreement regarding the tags assigned to particular resources can

serve as a rough estimate of the quality of those tags from the perspective of their likelihood to

be useful to people other than their authors. When the same tag is used by multiple people to

describe the same thing, it is more likely to directly pertain to the important characteristics of the

item tagged (e.g. ‘VEGF’ or ‘solid organ transplantation’)  than to be of a personal or erroneous

nature (e.g. ‘BIOLS_101’, ‘todo’, or ‘**’).  Rates of inter-annotator agreement can thus be used

as an approximation of the quality of tag assignments from the community perspective.  Note

that, as [27] discusses, there may be interesting, community-level  uses for other kinds of tags,

such as those bearing emotional content.  For example, tags like ‘cool’ or ‘important’ may be

useful in the formation of recommendation systems as implicit positive ratings of content.

However, the focus of the present study is on the detection and assessment of tags from the

perspective of subject-based indexing.  Note also that, as discussed in greater detail below, the

small numbers of tags per document in the systems under consideration here bring into question

the relationship between consensus and quality.

To gauge levels of inter-annotator agreement, we calculate the average level of positive specific

agreement (PSA) regarding tag assignments  between different users [28].   PSA is a measure of

the degree of overlap between two sets – for example, the sets of tags used to describe the same
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document by two different people.  It ranges from 0, indicating no overlap, to 1, indicating

complete overlap.  (See the Methods section for a complete description.)  For this study, we

measured PSA for tag assignments at five different levels of granularity: string, standardized

string, UMLS concept, UMLS semantic type, and UMLS semantic group.  At the first level, PSA

is a measurement of the average likelihood that two people will tag a document with exactly the

same string of characters.  At the next level, we measure the likelihood that two people will tag

the same resource with strings of characters that, after syntactic standardization (described in the

Methods section), are again exactly the same.  Moving up to the level of concepts, we assess the

chances that pairs of people will use tags that a) can be mapped automatically to concept

definitions in the UMLS and b) map to the same concepts.  (Note that not all of the tags in the

sample were successfully mapped to UMLS concepts; only tagging events where at least one

UMLS concept was identified were considered for the concept, type, and group level

comparisons.)  At the level of semantic types, we are measuring the degree to which pairs of

taggers are using the same basic kinds of concepts where these kinds are each one of the 135

semantic types that compose the nodes of the UMLS semantic network [22, 29].  At the

uppermost level, we again measure the agreement regarding the kinds of tags used, but here,

these kinds are drawn from just 15 top-level semantic groups designed to provide a coarse-

grained division of all of the concepts in the UMLS [30]. Table 2 provides examples from each

of these levels.

Table 3 captures the average levels of PSA observed for CiteULike and Connotea users on

taggings of PubMed citations.  It shows that average PSA among CiteULike taggers ranged from

a minimum of 0.11 at the level of the String to a maximum of 0.52 at the level of the Semantic

Group with Connotea users following a very similar trajectory.   Table 3 also again illustrates the

low numbers of tags per post in the social tagging data and the even lower number of UMLS

Concepts that could be confidently associated with the tags. The majority of the posts from both

social tagging services contained no tags that could be linked to UMLS concepts.  For those

posts for which at least one Concept was identified, means of just 1.39 UMLS Concepts per post

were identified in CiteULike and 1.86 in Connotea.

One interpretation of the low levels of agreement is that some users are providing incorrect

descriptions of the citations.  Another interpretation  is that there are many concepts that could be
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used to correctly describe each citation and that different users identified different, yet equally

valid, concepts. Given the complex nature of scientific documents and the low number of

concepts identified per post, the second interpretation is tempting.  Perhaps the different social

taggers provide different, but generally valid views on the concepts of importance for the

description of these documents.  If that is the case, then, for items tagged by many different

people, the aggregation of the many different views would provide a conceptually multi-faceted,

generally correct description of each tagged item.  Furthermore, in cases where conceptual

overlap does occur, strength is potentially added to the assertion of the correctness of the

overlapping concepts.

To test both of these assumptions, some way of measuring  ‘correctness’ regarding tag

assignments is required.  In the next several sections, we offer comparisons between socially

generated tags and the MeSH subject descriptors used to describe the same documents.  Where

MeSH annotation is considered to be correct, the provided levels of agreement can be taken as

estimates of tag quality; however, as will be shown in the anecdote that concludes the results

section and addressed further in the Discussion section, MeSH indexing is not and could not be

exhaustive in identifying relevant concepts nor perfect in assigning descriptors within the limits

of its controlled vocabulary.  There are likely many tags that are relevant to the subject matter of

the documents they are linked to yet do not appear in the MeSH indexing; agreement with MeSH

indexing can not be taken as an absolute measure of quality – it is merely one of many potential

indicators.

6.2.4 Agreement with MeSH indexing

As both another approach to quality assessment and a means to precisely gauge the relationship

between socially generated and professionally generated metadata in this context, we compared

the tags added to PubMed citations to the MeSH descriptors added to the same documents.  For

these comparisons, we again used PSA, but in addition, we report the precision and the recall of

the tags generated by the social tagging services with respect to the MeSH descriptors. (For

readers familiar with machine learning or information retrieval studies, in cases such as this

where one set is considered to contain true positives while the other is considered to contain
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predicted positives, PSA is equivalent to the F measure - the harmonic mean of precision and

recall.)

For each of the PubMed citations in both CiteULike and Connotea, we assessed a) the PSA, b)

the precision, and c) the recall for tag assignments in comparison to MeSH terms at the same five

semantic levels used for measuring inter-annotator agreement. For each PubMed citation

investigated, we compared the aggregate of all the distinct tags added by users of the social

tagging service in question to describe that citation with its MeSH descriptors. Table 4 provides

the results for both systems at each level. It shows how the degree of agreement with MeSH

indexing increases as the semantic granularity at which the comparisons are made widens.  As

should be expected based on the much lower numbers of UMLS Concepts associated with the

social tagging events, the recall is much lower than precision at each level.

Focusing specifically on precision, we see that approximately 80% of the concepts that could be

identified in both social tagging data sets fell into UMLS Semantic Groups represented by

Concepts linked to the MeSH descriptors for the same resources. At the level of the Semantic

Types, 59% and 56% of the kinds of concepts identified in the Connotea and CiteULike tags

respectively, were found in the MeSH annotations.  Finally, at the level of UMLS Concepts, just

30% and 20% of the concepts identified in the Connotea and CiteULike tags matched Concepts

from the MeSH annotations.

6.2.5 Improving agreement with MeSH through voting

The data in Table 4 represents the conceptual relationships between MeSH indexing and the

complete, unfiltered collection of tagging events in CiteULike and Connotea.  In certain

applications, it may be beneficial to identify tag assignments likely to bear a greater similarity to

a standard like this – for example, to filter out spam or to rank search result lists.  One method

for generating such information in situations where many different opinions are present is voting.

Assuming that there is a greater tendency for tag assignments to agree with the standard than to

disagree – where multiple tag assignments for a particular document are present – then the more

times a tag is used to describe a particular document the more likely that tag is to match the

standard.
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To test this assumption in this context, we investigated the effect of voting on the precision of the

concepts linked to tags in the CiteULike system with respect to MeSH indexing.  (Once again

Connotea was very similar to CiteULike.) Figure 6.6 illustrates the improvements in precision

gained with the requirement  of a minimum of 1 through 5 ‘votes’ for each Concept, Semantic

Type, or Semantic Group assignment.  As the minimum number of required votes increases from

1 to 4, precision increases in each category.  At a minimum of 5 votes, the precision of semantic

types and semantic groups continues to increase, but the precision of individual concepts drops

slightly from 0.335 to 0.332.  We did not measure beyond five votes because, as the minimum

number of required votes per tag increases, the number of documents with any tags drops

precipitously.  For documents with no tags, no measurements of agreement can be made.  Figure

6.7 illustrates the decrease in citation coverage associated with increasing minimum numbers of

votes per tag assignment.  Requiring just two votes per tag eliminates nearly 80% of the citations

in the CiteULike collection.  By 5 votes, only 1.7% of the citations in the dataset can be

considered.  This reiterates the phenomenon illustrated in Figure 6.4 – at present, most PubMed

citations within academic social tagging systems are only tagged by one or a few people.

6.2.6 An anecdotal example where many tags are present

Though the bulk of the socially generated metadata investigated above is sparse – with most

items receiving just a few tags from a few people – it is illuminating to investigate the properties

of this kind of metadata when larger amounts are available both because it makes it easier to

visualize the complex nature of the data and because it suggests potential future applications.

Aside from enabling voting processes that may increase confidence in certain tag assignments,

increasing numbers of tags also provide additional views on documents that may be used in

many other ways.  Here, we show a demonstrative, though anecdotal example where several

different users tagged a particular document and use it to show some important aspects of

socially generated metadata – particularly in contrast to other forms of indexing.

Figure 6.8 illustrates the tags generated by users of Connotea and CiteULike to describe an

article that appeared in Science in June of 2008 [31].   In the figure, the different tags are sized

based on their frequency and divided into three differently coloured classes: ‘personal’, ‘non-

MeSH’, and ‘MeSH Overlap’.  The MeSH descriptors for the document are also provided.  The
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figure shows a number of important characteristics of social tagging given current

implementations.  There are personal tags like ‘kristina’ and ‘bob’ but the majority of the tags

are topical – like ‘neuro-computation’.  There are spelling errors and simple phrasing differences

in the tags; for example, ‘astroctyes, ‘astrocytes’, ‘Astrocytes’, and ‘astrocyte’ are all present

(highlighting some of the difficulties in mapping tag strings to concepts).  The more frequently

used tags (‘astrocytes’, ‘vision’, ‘methods’) are all of some relevance to the article (entitled

“Tuned responses of astrocytes and their influence on hemodynamic signals in the visual

cortex”).  There is some overlap with MeSH indexing but many of the tags  – such as ‘receptive-

field’, ‘V1’, and ‘neurovascular-coupling’ – that do not match directly with MeSH descriptors

also appear to be relevant to the article.

In some cases, the tags added by the users of the social tagging systems are more precise than the

terms used by the MeSH indexers. For example, the main experimental method used in the

article was two-photon microscopy – a tag used by two different social taggers (with the strings

‘two-photon’ and ‘twophoton’).  The MeSH term used to describe the method in the manuscript

is ‘Microscopy, Confocal’.

Within the MeSH hierarchy, two-photon microscopy is most precisely described by the MeSH

heading ‘Microscopy, Fluorescence, Multiphoton’ which is narrower than ‘Microscopy,

Fluorescence’ and not directly linked to ‘Microscopy, Confocal’; hence it appears that the social

taggers exposed a minor error in the MeSH annotation.  In other cases, the social taggers chose

more general categories – for example, ‘hemodynamics’ in place of the more specific ‘blood

volume’.

In another case, a social tagger used a tag that seems potentially relevant at a high level but does

not describe topics present in the article.  A Connotea user used the term ‘BOLD’, which is an

acronym for Blood-Oxygen-Level-Dependent fMRI.  The fMRI technique was not used or

discussed within the article yet it is an important method that might be used in similar studies of

brain activity.

Broadly speaking, the tags in Figure 6.8 show two important aspects of socially generated

metadata: diversity and emergent consensus formation.  As increasing numbers of tags are
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generated for a particular item, some tags are used repeatedly and these tend to be topically

relevant; for this article, we see ‘astrocytes’ and ‘vision’ emerging as dominant descriptors.  In

addition to this emergent consensus formation (which might be encouraged through interface

design choices) other tags representing diverse user backgrounds and objectives also arise such

as ‘hemodynamic’. ‘neuroplasticity’, ‘two-photon’, and ‘WOW’.  In considering applications of

such metadata – for example, in the context of search – both phenomenon have important

consequences.  Precision of search might be enhanced by focusing query algorithms on high-

consensus tag assignments or by enabling Boolean combinations of many different tags.  Recall

may be increased by incorporating the tags with lower levels of consensus.

While we assert that this anecdote is demonstrative, a sample of one is obviously not

authoritative.  It is offered simply to expose common traits observed in the data where many tags

have been posted for a particular resource.

6.3 Discussion

The continuous increase in the volume of data present in the life sciences and elsewhere,

illustrated clearly in Figure 6.2 by the growth of PubMed, renders processes that produce value-

enhancing metadata increasingly important.  It has been suggested by a number of sources that

social tagging services might generate useful metadata, functioning as an effective intermediate

between typically inexpensive, but low precision automated methods and expensive professional

indexing involving controlled vocabularies [14, 25, 26, 32].  Evidence in favour of this claim

comes from reported improvements in the relevance of Web search results gained by integrating

information from social tagging data into the retrieval process [19].  When viewed through the

anecdotal lens of Figure 6.8, the potential value of this metadata is apparent; however, the results

presented here suggest that much of this potential is as yet unavailable in the context of the life

sciences.  This is primarily because the coverage of the domain is still very narrow and the

number of tags used to describe most of the documents is generally very low.

Aside from gross measures of the quantity of documents and tags in these systems, we made an

attempt to measure the reliability of socially generated metadata through measures of inter-

annotator agreement and agreement with a standard – in this case MeSH indexing.  However, the
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extremely small numbers of tags available for most documents and the extremely large numbers

of potentially relevant tags cast doubt over the utility of these metrics to predict annotation

quality in this context.  When individuals generally use around two tags per document and there

are many more potentially relevant tags, it is possible that even if all of the taggers used ‘high

quality’ tags, the measures of inter-annotator agreement would remain very low.  In the same

manner, MeSH indexing can only cover a subset of potentially relevant concepts in any given

article – many ‘good’ tags will likely not match with MeSH indexing.  With these difficulties in

mind in reference to mapping agreement to ‘quality’, the measures of agreement applied here do

have value as automatic, reproducible ways to quantify levels of consensus.  These measures are

likely most useful as a point of comparison between different implementations of tagging

systems that operate in the same context.  For example, if Connotea desired to increase

agreement between users regarding tag assignments – for example, by implementing a tag

suggestion feature that displayed other user’s tags – the measures of inter-annotator agreement

would serve as a good benchmark of success for meeting that objective.  Note that system

designers may not always want to increase agreement.  Instead, they may prefer to increase the

diversity of captured opinions, in which case inter-annotator agreement would ideally be low.

The same could be said for agreement with MeSH or any other standard.  Where the standard is

available for comparison, the tags that match it are of little value because they are redundant.

Regardless of how socially generated metadata is to be applied or its quality measured, one key

to its future value is through volume.  If metadata from social tagging services is to be useful,

more documents need to be tagged and more tags need to be assigned per document.  These

objectives can be approached by both expanding the number of users of these systems and

improving the interfaces that they interact with.

The numbers of users of current social tagging services are increasing and it is likely that the

owners of these services are working on methods to increase  participation.  Aside from waiting

for these private enterprises to advance, the bioinformatics community might consider the

construction of a not-for-profit, life-science focused social annotation and collaboration platform.

If, for example, the National Institute for Biotechnology (NCBI) created a social tagging service

that was directly incorporated into PubMed, it seems likely that it might attract a far larger

number of participants from the life sciences than other, more general purpose projects.  In
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addition, such a life-science-focused tagging service could provide a better user interface

because it could be tailored specifically to support biomedical researchers.  Looking forward, the

increasing volume of contributors to social tagging services (either newly formed or continuing

applications) should help to increase resource coverage and, to some extent, tag density, yet both

the rich-get-richer nature of citation and the limited actual size of the various sub-communities of

science will likely continue to result in skewed numbers of posts per resource.  To make

effective use of tagging data from social tagging applications in science, the metadata generated

by individual users needs to be improved in terms of density and relevance because, in most

cases, the number of users to tag any particular item will be extremely low.

It has already been shown that careful interface and interaction design can be used to guide

individual users towards tagging behaviours that produce more useful metadata at the collective

level [33, 34].  Future efforts will help to provide a better understanding of this process,

illuminating methods for guiding user contributions in particular directions, e.g. towards the use

of larger numbers of more topical tags, without reducing the individual benefits of using these

systems that provide the primary incentive for participation.  Key among ongoing efforts of this

kind, within the general context of social bookmarking on the Web, are new systems that

incorporate controlled vocabularies into the tagging process by either simply letting users tag

with controlled terms [35, 36] or automatically extracting relevant keywords from text associated

with the documents and then suggesting the extracted concepts as potential tag candidates [37].

By providing the well-known benefits of vocabulary control, including effective recognition and

utilization of relationships such as synonymy and hyponymy between indexing terms and by

gently pressing users towards more convergent vocabulary choices and fewer simple spelling

errors, such systems seem likely to produce metadata that, from the collective sense, would

improve substantially on that analyzed here.  In preliminary investigations of such ‘semantic

social tagging’ applications - including Faviki [36], the Entity Describer [38, 39], and ZigTag

[35] – the degrees of inter-tagger agreement do appear higher than for the free-text interfaces

however the number of tags per document remains about the same (data not shown).  Systems

that aid the user in selecting tags – for example, by mining them from relevant text – may aid in

the expansion of the number of tags added per document.
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In addition to recruiting more users and producing interfaces that guide them towards more

individually and collectively useful tagging behaviours, additional work is needed to better

understand other aspects of the metadata from social tagging systems that are both important and

completely distinct from previous forms of indexing.  For example, one of the fundamental

differences between socially generated and institutionally generated indexes is the availability of

authorship information in the social data [40].  It is generally not possible to identify the person

responsible for creating the MeSH indexing for a particular PubMed citation, but (with the

exception of certain variants of tagging systems that do not record authorship nor allow multiple

people to add tags to the same resource such as early releases of Flickr [10]) it is possible to

identify the creator of a public post in a social tagging system.  This opens up whole new

opportunities for finding information online whose consequences are little understood.  For

example, it is now possible for users to search based on other users e.g. searching for items in

Connotea that have been tagged by ‘mwilkinson’ [41] or ‘bgood’ [42].  In addition to this simple

yet novel pattern of information interaction, research is already being conducted into ways to

incorporate user-related data into keyword-based retrieval algorithms [43].  It may turn out that

the primary benefit of social tagging data might not be found in the relationships between tags

and documents as explored here but instead in the information linking documents and tags to

users and users to each other.

6.4 Conclusions

Academic social tagging systems provide scientists with fundamentally new contexts for

collaboratively describing, finding, and integrating scientific information.  In contrast to earlier

forms of personal information management, the public nature and open APIs characteristic of

social tagging services make the records of these important scientific activities accessible to the

community.  These new metadata repositories provide a novel resource for system developers

who wish to improve the way scientists interact with information.

Based on the results presented above, it is clear that the information accumulating in the

metadata repositories generated through social tagging offers substantial differences from other

kinds of metadata often used in the process of information retrieval.  In particular, both the

number of documents described by these systems in the context of the life sciences and the
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density of tags associated with each document remain generally very low and very unequally

distributed across both the user and the document space.  While expanding numbers of user-

contributors and improving user interfaces will likely help to encourage the formation of greater

numbers of tagged documents and more useful tags, the unbalanced distribution of scientific

attention will almost certainly result in the continuation of the skewed numbers of taggers (and

thus tags) per document displayed in Figure 6.4.

At a broad level, the key implication of these results from the standpoint of bioinformatics

system design is that – despite surface similarities – these new metadata resources should not be

used in the same manner as metadata assembled in other ways.  Rather, new processes that make

use of the additional social context made accessible through these systems need to be explored.

In considering future applications of socially generated metadata in the life sciences, it may

prove more valuable to know who or how many tagged a particularly document than it is to know

which tags were used to describe it.

6.5 Methods

6.5.1 Data acquisition

The Connotea data was gathered using the Connotea Web API [44] and a client-side Java library

for interacting with it [45].    All tagging events accessible via the API prior to November 10,

2008 were retrieved and, with the exception  of a small number lost due to XML parsing errors,

stored in a local MySQL database for analysis.

The CiteULike data was downloaded on November 9, 2008 from the daily database export

provided online [46].   Once again, the data was parsed and loaded into a local MySQL database

for processing.

Once the Connotea and CiteULike data was gathered, the associated PubMed identifiers from

both datasets were used to retrieve the PubMed records using a Java client written for the United

States National Centre for Biotechnology’s Entrez Programming Utilities [47].  This client

retrieved the metadata, including MeSH term assignments, for each identifier and stored it in the

local database.
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6.5.2 Resource coverage

The coverage of PubMed by Connotea and CiteULike was estimated through inspection of the

identifiers supplied for each posted citation in the downloaded data.  Only posts that were linked

by the tagging systems to PubMed identifiers were counted.  For Figure 6.2, the Wessa.net

online statistical calculator  was used to generate the CiteULike forecast using exponential

smoothing [48, 49].

6.5.3 Tag density

The data generated for the tag density tables and figures was assembled from the local database

using Java programs.  The figures were generated using R [50].

6.5.4 Calculation of Positive Specific Agreement (PSA)

In situations where there is no defined number of negative cases, as is generally the case for the

assignment of descriptive tags to documents, PSA has been shown to be an effective measure of

inter-annotator agreement [28].  PSA can be calculated for any pair of overlapping sets.  Here it

is used to compare the degree of overlaps between sets of terms, concepts, semantic types, and

semantic groups.  If one set is considered to be the standard against which the other set is being

measured, then PSA is equivalent to the F-statistic (the harmonic mean of precision and recall)

commonly used in the machine learning and information retrieval literature.  For two sets S1 and

S2, consider the set a as the members of the intersection of A and B, b as the members of S1

outside of the intersection and c as the members of S2 outside of the intersection.

€ 

PSA(S1,S2) =
2a

(2a + b + c)

Equation 6.1: Positive Specific Agreement for the members of sets S1, S2 whose intersection is

a and where b = S1 excluding a and c = S2 excluding a. For more information, see [28].
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To provide an estimation for quality of tag assignments in academic social tagging systems, we

measure the levels of agreement between the sets of tags assigned to the same resource by

multiple users as follows:

- For resources associated with more than one tagging event

o For pairs of users to tag the resource

 measure and record the positive specific agreement (PSA) between the

tags assigned to the resource between the pair

- Summarize by average PSA for each distinct (user-pair, resource) combination

6.5.5 String standardization for tag comparisons

As PSA is a metric designed for comparing sets, to use it, it is necessary to define a rigid

equivalence function to define the members of the sets.  For comparisons between concepts,

types, and groups from the UMLS, unique identifiers for each item are used; however, for

comparisons between tags, only the strings representing the tag are available.  For the results

presented at the level of standardized strings, operations were applied to the tags prior to the

comparisons as follows:

1. All non-word characters (for example, commas, semi-colons, underscores and

hyphens) were mapped to spaces using a regular expression.  So the term

“automatic-ontology_evaluation” would become “automatic ontology

evaluation”.

2. CamelCase [50] compound words were mapped to space separated words -

“camelCase” becomes “camel case”.

3. All words were made all lower case (“case-folded”).

4. Any redundant terms were removed such that, after operations 1-3, each term in a

set composed a string of characters that was unique within that set.

5. Porter stemming was applied to all terms and sub-terms [51].

6. All sub-terms were sorted alphabetically.
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6.5.6 Mapping tags and descriptors to UMLS concepts

For MeSH terms, associated UMLS concepts were identified within the information provided in

the 2008 version of the MeSH XML file provided by the NLM [52].  In a few cases, concepts

were missing from this file in which case they were retrieved using a Java client written to make

use of the Web services made available as part of the UMLS Knowledge Source Server

(UMLSKS) [53].

For the tags, the UMLSKS client program was designed to identify matching concepts with high

precision.  For each tag, the UMLSKS web service method findCUIByExact was used to identify

concepts from any of the source vocabularies represented in the metathesaurus where at least one

of the names assigned to that concept matched the tag directly [54].  To further increase

precision, only concepts whose primary name (rather than one of the several possible alternate

names) matched the tag were included.

To assess the performance of this concept identification protocol, we tested it on its ability to

rediscover the concepts associated with MeSH descriptors using the text of the preferred label for

the descriptor (acting as a tag) as the input to the system.  The concepts already associated with

each MeSH descriptor in the MeSH XML file provided by the NLM were used as true positive

concept calls for comparison.  On a test of 500 MeSH descriptors, the concept calling protocol

used to generate the data presented above produced a precision of 0.97 and a recall of 0.91.

Without the requirement that the primary concept name match the query string, precision

decreases to 0.82 while the recall increases to 1.0 for the same query set.  The reduction in the

precision is due to false positives such as ‘Meningeal disorder’ being identified for the query

term ‘Meninges’.  Once a unique concept identifier was identified, the Java client was used to

extract its semantic type and semantic group and store this information in our local database.
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Table 6.1. Tag density in Connotea, CiteULike and MEDLINE on PubMed citations

‘N sampled’ refers to the number of tagged citations considered.  For example, the first row
shows the statistics for the number of tags associated with distinct posts to the Connotea service.
In contrast, the ‘Connotea aggregate’ row merges all the posts for each citation into one.

System N sampled mean median min max stand.
dev.

coefficient of
variation

Connotea per
tagging

28236 3.02 2 1 115 3.74 1.24

CiteULike per
tagging

45525 2.51 2 0 44 2.16 0.86

Connotea
aggregate

19118 4.15 3 1 119 5.14 1.24

CiteULike
aggregate

19118 5.1 4 0 74 5.29 1.04

MEDLINE 19118 11.58 11 0 42 5.3 0.46

Table 6.2. Examples of different levels of granularity

Level Example

String ‘Adolescent-Psychology’

Standardized String ‘adolescent psychology’

UMLS Concept CUI 0001584: ‘Adolescent Psychology’

UMLS Semantic Type SUI T090 : ‘Biomedical Occupation or Discipline’

UMLS Semantic Group OCCU: ‘Occupations’
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Table 6.3. Positive Specific Agreement among pairs of social taggers on PubMed citations

Citeulike Connotea
Mean
PSA

N pairs
measured

Mean
terms per

post

Mean
PSA

N pairs
measured

Mean
terms per

post
String 0.11 19782 2.49 0.14 13156 3.06
Standardized
String

0.13 19782 2.49 0.16 13156 3.06

Concepts 0.39 9128 1.39 0.31 4022 1.86
Types 0.43 9128 1.36 0.38 4022 1.72
Groups 0.52 9128 1.29 0.45 4022 1.56

Table 6.4. Average agreement between social tagging aggregates and MeSH indexing.

CiteULike verse MEDLINE Connotea verse MEDLINE
N

Citations
Mean

precision
Mean
recall

Mean
PSA

N
Citations

Mean
precision

Mean
recall

Mean
PSA

String 19059 0 0 0 19118 0.03 0.02 0.02
Normalized
String

19059 0.09 0.03 0.04 19118 0.10 0.04 0.05

Concepts 8933 0.20 0.02 0.03 9290 0.30 0.04 0.07
Types 8933 0.56 0.07 0.12 9290 0.59 0.10 0.16
Groups 8933 0.81 0.18 0.29 9290 0.81 0.22 0.32
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Figure 6.1. Data captured in tagging events (posts)

Tagging events capture information about: the resource tagged, the tagger, the time the event
took place, and the tags associated with the resource by the tagger.
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Figure 6.2. The increase in distinct new biomedical citations indexed per month by CiteULike and by
MEDLINE

The numbers for MEDLINE are estimated by taking the reported yearly totals and dividing by
12.  The number of new biomedical citations (with PubMed identifiers) indexed per month by
CiteULike was measured directly.  The dashed lines indicate extrapolations for future time
points.  For the MEDLINE data, this is a simple linear regression (R-squared = 0.98).  For the
Citeulike data, the blue dashed line indicates extrapolations using exponential smoothing.  The
magenta and aquamarine lines indicate the 95% confidence intervals for the Citeulike
extrapolations for one year of predictions (beyond the first year the interval expands rapidly).
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Figure 6.3. The number of distinct tags assigned per PubMed citation

(a) shows the number of distinct tags assigned per PubMed citation by the aggregate of Connotea
users and (b) shows the aggregate of CiteULike users.  (c) shows the number of MeSH subject
descriptors assigned by NLM indexers to the same citations. Note that Connotea forces users to
add at least one tag while citeulike does not and some Pubmed citations have no MeSH
descriptors.

a b 

c
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Figure 6.4. Relationship between number of PubMed citations and number of posts per citation

Relationship between number of PubMed citations and number of posts per citation in Connotea
(a,b) and CiteULike (c,d).  Most citations are only posted once while a few are posted many
times (by many different users).

a b

c d
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Figure 6.5. Increase in tag density per PubMed citation with increase in number of posts per citation

Increase in tag density per PubMed citation with increase in number of posts per citation for
Connotea (a) and CiteULike (b).  Each vertical box and whisker plot describes the distribution of
the number of distinct tags associated with PubMed citations tagged by the number of people
indicated on the X axis.  For example, the first plot, at X = 1, describes the density of tags per
citation assigned by just one person while the second plot, at X = 2, describes the density of
distinct tags per citation assigned by the aggregated tags of 2 people and so forth.  The median of
the distribution is indicated by the horizontal line, the upper and lower boundaries of the box
indicate the medians of the first and third quartiles (such that 50% of the data lies within those
boundaries), the whiskers extend either to the extremes of the observations or a maximum of 1.5
times the interquartile range, and circles indicate outliers.

a b
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Figure 6.6. Precision increase and coverage decrease with voting in CiteULike

The X axis indicates the minimum number of times a given UMLS Concept (in green), Semantic
Type (in pink), or Semantic Group (in dark blue), would need to be associated with a PubMed
citation (through the assignment of a tag by a CiteULike user that could be linked to the
Concept) to be considered.  The Y axis plots the precision with which these different voted
aggregates predict the corresponding MeSH annotations.
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Figure 6.7. Decrease in coverage as voting threshold increases

The X axis indicates the minimum number of times a given UMLS Concept would need to be
associated with a PubMed citation (through the assignment of a tag by a CiteULike user that
could be linked to the Concept) to be considered.  If no concepts can be identified for a particular
document at each threshold, the document is  removed from consideration.  The Y axis shows the
fraction of PubMed citations associated with UMLS Concepts at each threshold.  Only Concepts
are plotted as each Concept is linked to a Semantic Type and a Semantic Group hence the other
plots would be redundant.
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Figure 6.8. Tags for a popular PubMed citation from Connotea and CiteULike

The tag cloud or “Wordle” at the top of the figure shows the tags from both CiteULike and
Connotea for the Science article “Tuned responses of astrocytes and their influence on
hemodynamic signals in the visual cortex” (PubMed id 18566287).  As the frequency scale at the
bottom left indicates, the tags are sized based on the number of times they were used to describe
the article. As the colour key at middle-right shows, the tags are divided into three, manually
assigned categories: ‘personal’, ‘non-MeSH’, and ‘MeSH overlap’.  Personal tags are those, like
‘kristina’, that do not appear topical, ‘non-MeSH’ tags appear topical but do not match directly
with any of the MeSH descriptors for the article (listed on the bottom-right), and the ‘MeSH
overlap’ tags have matches within the MeSH descriptors assigned to the article.
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7 Open semantic annotation: an experiment with BioMoby Web services9

7.1 Background

Web services have many definitions, but for present purposes, we simply consider them as

computational functions that may be invoked remotely over the Internet [1].  The crucial

difference between Web services and websites is that Web services are designed for machine

access while websites are designed for human access via Web browsers.  This difference means

that the data used as input and produced as output for Web services can be structured according

to standards designed to facilitate interoperability between distributed resources rather than

structured for presentation on Web pages.  The key consequence of this difference is that the use

of Web services can, in principle, enhance our ability to produce software that integrates data

and resources from multiple distributed sources. As a result of the highly distributed nature of

computational resources in biology, much attention has been paid to developing bioinformatics

Web services [2].

While Web services offer the promise of improved interoperability,  they do not do this on their

own. Web services need to be found, invoked, and the contents of the messages that they

communicate must be interpretable for the client programs that access them.  Semantic Web

service frameworks attempt to meet these challenges by providing clear, computationally

accessible descriptions of Web service components using ontologies shared on the Web.  For

example, the MyGrid project provides ontologies specifically designed for describing Web

services in the bioinformatics domain [3].  Such ontologies can be used to clarify, in a manner

that is computationally useful, the meaning of different service aspects, for example linking the

input to a service to a semantic type like ‘protein sequence’ rather than simply to a syntactic type

like ‘String’.

Semantic descriptions can be used for a number of key purposes, one of which is reasoning in the

context of service discovery.   Given an ontology that defines for example, a subsumption

relationship between the classes ‘biological sequence’ and ‘protein sequence’, it is possible to

                                                  
9 A version of this chapter will be submitted for publication. Good BM, Kawas EK, Lu P, Tennis JT, Wilkinson
MD: Open semantic annotation: an experiment with BioMoby Web services
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automatically infer that a service declared to consume ‘biological sequences’,  should operate on

both protein sequences and nucleotide sequences. An example of this kind of service might be

one that generates a particular XML formatted file from a Fasta  formatted text file.  (Such

format conversion services are kinds of “shim” services and are indispensable in the multi-

format, multi-identifier domain of distributed bioinformatics [4, 5].)

While multiple Web service ontologies exist, most independent bioinformatics Web service

providers generally appear to have little interest, incentive,  or time  to use them to describe their

services.  Furthermore,  even in cases where there is interest, the task of making effective use of

ontologies (authoring the semantic annotations) in this context has proven difficult.  Though the

value of semantic annotation for Web services seems clear,  as Wolstencroft et al. point out, “the

cost and viability of obtaining the semantic annotations is the challenge” [6].

Automated approaches to generating semantic annotations may prove useful in this regard but

they suffer from the fact that for a program to succeed in generating semantic annotations,

sufficient information about the Web services must exist to start out with.  It is possible to

generate candidate semantic annotations of Web services from, for example, textual annotations

of those services [7, 8] or from information extracted from known workflows that successfully

chain multiple Web services together [9]; however, there must be sufficient information present

to seed the process and even when such information does exist, such methods are intended to

support, not replace manual semantic annotation.   As such, manual annotation processes are

required.

The three potential sources of manual semantic annotations for Web services are (1) the

providers of the services, (2) the users of the services, and (3) professional semantic Web service

annotators [6].  The benefit of (1) is that the providers know precisely what their services do.

Some Web service registries, such as those employed by the BioMoby interoperability initiative

[10], require service providers to include semantic annotation in order for services to be listed in

the registry.  While this guarantees a modicum of semantics within these closed worlds, it does

not necessarily ensure that the annotations are correct or that they make the most effective use of

the available ontologies.  Furthermore, there are thousands of services already available in the

bioinformatics domain such as those offered by the National Center for Biotechnology
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Information (NCBI), that would be beneficial to have included in semantic Web service

frameworks but as yet have no semantic annotation.  To make use of these key resources, the

second and/or third options must be considered.

In considering professional versus user-driven annotation, two facts are clear,

1) there are many more users of Web services than there are ever going to be professional

semantic Web service annotators

2) an untrained user with unknown amounts of skill and background knowledge is unlikely

to provide professional quality semantic annotations.

What is less well known is just how much worse amateur annotations are likely to be, how much

interfaces used to guide the annotation process might affect the results,  how best to combine

multiple annotations of the same resource from different annotators, and how to motivate users

to provide annotations.  Given the massive differences in the scale between the populations of

users and professional annotators and the success of open, collaborative knowledge construction

in other contexts, it seems prudent to address these questions forthright.  Through a better

understanding of the consequences of different methods for generating and using third-party

manual semantic annotations, it should be possible to make more informed decisions about how

to successfully, sustainably produce open semantic Web service frameworks in bioinformatics

and other domains.

Here, we present an experiment in which semantic annotations for BioMoby Web services are

gathered from a diverse group of volunteers.  We begin with a brief description of the BioMoby

framework that serves to provide the specific motivation for obtaining the semantic annotations.

Then, we describe the prototype semantic annotation system used by the volunteers to create the

annotations.  The description of the prototype, including the user interface and the ontologies

used, is followed by an explanation of our approach to evaluation.  Finally,  we present the

results of the experiment and use these results to guide suggestions for future work.
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7.1.1 BioMoby

Web services in the BioMoby registry, called ‘Moby Central’, gain their semantics from three

unique ontologies, the Object ontology, the Namespace ontology and the Service ontology [11].

Aside from their functions, the most unique aspect of these ontologies is that they are exclusively

produced by Web service providers.  Anyone can edit them and there is no centralized curation

of the system.

The Object ontology defines the structure of the XML messages that are accepted as input and

produced as output by BioMoby services.  It uses a simple structure composed of three

relationships, that can hold between any two Objects: “is a” (Objects inherit properties from their

parent and multiple inheritance is not allowed), “has a” (an Object may contain another Object),

and “has” (an Object may contain a set of other Objects).  Each new Object is defined by

specifying these relationships to other Objects in the ontology and through this mechanism,

arbitrarily complex data structures can be created.  Though its classes contain names like

“Amino Acid Sequence”[12], which provide suggestions regarding the nature of the data

represented by a serialization of the class, their purpose is fundamentally to represent syntax, not

semantics.  Based on its definition in the Object ontology, an “Amino Acid Sequence” object

could be used to represent anything describable with a String (the sequence), and an Integer (its

length).  Thus, the Object ontology achieves syntactic interoperability by providing predictable

message structures, but does not necessarily result in semantic interoperability.

The Namespace ontology consists of a simple flat list of terms, like ‘NCBI_gi’ and ‘KEGG_ID’,

that are used to disambiguate identifiers in the BioMoby space.  Every BioMoby Object – every

component of a message sent or received from a BioMoby compatible Web service – may be

linked to a set of Namespace/identifier pairs.  (A set, rather than a single item, is used because

the same piece of data may exist in multiple namespaces.)  In this manner, data can be

unambiguously described such that naming conflicts are avoided.  Though unique entity

identification is a key step, the meaning of data elements remains ambiguous because there are

no formal semantics associated with the Moby namespaces.
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The Service ontology is distinct from the other two BioMoby ontologies in that it is a specific

attempt to describe semantics rather than to clarify syntax or to support unique identification.

This ontology is a straightforward, single inheritance, directed graph along the ‘is a’ relationship.

The concepts represented in the ontology describe the operations performed by the service, for

example ‘retrieval’ or ‘parsing’.  A significant constraint imposed by the BioMoby specification

is that BioMoby services may be described by just one node from this ontology, severely limiting

the potential expressiveness of service annotations.

7.1.1.1 Some limitations of BioMoby 1.0

There are two key components of the interoperability problem, syntax and semantics [13].

BioMoby goes far in achieving syntactic interoperability between participating Web service

providers by its insistence that services within its registry state explicitly which Moby Objects

they use.  Though this basic utility is sometimes undermined by service providers who register

services that, for example, consume the Moby object ‘String’ and then proceed to process only

Strings of a particular format, in practice, the process has largely been successful . However,

semantic interoperability is limited within the Moby framework.  There is no way for a computer

to ‘know’ what kind of thing is represented by a particular Moby Object – for example ,an

‘iANT_entry_db-xml’ [14] – because the semantic type of objects is never explicitly defined.

Furthermore, the relationship between service inputs and outputs remains largely ambiguous due

to the lack of expressivity made possible by the service ontology and the single typing constraint

imposed by the current Moby specification.

To expand the semantic coverage of Web services in the BioMoby framework, additional

ontologies need to be identified and semantic annotations using those ontologies created.

Specifically,  it would be useful to:

1) define the semantic types of the service inputs and outputs to complement the syntactic

types of the Object ontology

2) define the nature of the operations performed by each service more precisely  by

specifying not just the kinds of task(s) performed, but also the algorithms and resources

used in the process [15].
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In the following, we describe a prototype social annotation system intended to meet these

objectives.  Through its evaluation, we hope to bring light to the questions raised earlier about

the realities of removing the knowledge acquisition bottleneck in the context of semantic

annotation.

7.2 Moby Annotator

Building on previous work in social semantic tagging [16, 17], the Moby Annotator is an open,

Web-based system for collecting semantic annotations of the inputs, outputs, and operations of

BioMoby Web services [18].  It provides a straightforward graphical user interface that allows

any user to contribute semantic annotations using concepts from a pre-defined set of ontologies.

These annotations are stored in an RDF [19] database accessible at an open SPARQL [20]

endpoint.  Within this database, annotations are structured according to an OWL [21] ontology

[22] that provides minor extensions to Richard Newman’s tag ontology [23].

Figure 7.1 illustrates the basic structure of annotations represented using the ontology employed

by the Moby Annotator.  In the figure, the user ‘JaneTagger’ has associated the semantic tag

‘retrieving’ and the free text tag ‘mutants’ with the operation performed by the BioMoby Service

‘getSeedGeneMutantImageByAGI’ .  Each such annotation event in the knowledge base –

referred to as a ‘tagging’ following the terminology used in the ontology – captures the user-

author of the tagging, the resource tagged, the tags associated with that resource, and the time

when the tagging occurred.  Links between semantic tags and associated external URIs, such as

ontology classes, are represented using the RDF Schema property ‘isDefinedBy’ [24].

When a user logs in and desires to annotate a service, the Moby Annotator gathers information

about the service via a SPARQL query to an RDF version of the Moby Central registry and

displays that information for the user.  Figure 7.2 provides a screenshot of the Moby Annotator

interface as it appeared at the time of this study.  It separates general information about the

service,  including a textual description, from information about its inputs and outputs.  This

separation is continued in the three distinct areas available for annotating the inputs, outputs, and

operations performed by the service.
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Each annotation area consists of an autocomplete input text box linked to a pre-defined list of

terms such that, as the user starts typing, terms matching the input text are presented in a

dropdown list.  When the users mouses over a term from the list, a definition is provided and

when the user clicks on a term, the term is added as a candidate semantic annotation.  If the user

wants to make use of a term that can not be found in the pre-defined list, they are allowed to

create a tag and use it for annotation in the same way that free-text tags are used in social

bookmarking services like Del.icio.us and Connotea [25-27].  The terms used to populate the

autocomplete lists are drawn primarily from the RDF-S version of the MyGrid bioinformatics

Domain ontology [28], but also from a new source of structured knowledge called Freebase [29].

The MyGrid Domain ontology is divided into six main branches: ‘bioinformatics algorithm’,

‘bioinformatics data resource’, ‘bioinformatics task’,  ‘bioinformatics file formats’,

‘bioinformatics data’, and ‘bioinformatics metadata’.  Terms from the data and metadata

branches are included in the autocomplete lists for the service parameters while terms from the

algorithm, data resource (e.g. NCBI), and task branches are used for annotating the service

operations.  When a service input or output is of the Moby Object ontology root type ‘Object,’ it,

by definition, can not contain any actual data and thus only metadata terms are presented in the

list.  The ‘file format’ branch of the MyGrid ontology was not included here because the format

of an Object in the Moby system should be entirely determined by its definition in the Moby

Object ontology.

Freebase, developed by MetaWeb Technologies Inc.,  is an “open, shared database of the world’s

knowledge” [30].  Anyone can enter data into it and anyone can make use of that data, free of

charge, within their own applications.  To make it possible to search for BioMoby services based

on organisms of relevance – for example, finding services related to information about

Arabidopsis – the Moby Annotator makes it possible to tag both service inputs/outputs and

operations with organism classifications drawn from Freebase. Though fascinating,  discussion

of the Freebase data model and the implications of the genesis of such open, yet privately funded

platforms for Web-based knowledge representation are beyond the scope of this article.  For the

purposes of this investigation, we simply treat the structured knowledge in Freebase in the same

way that we would treat an ontology represented in any other manner.
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7.3 Evaluating semantic annotations

We approach the evaluation  of the annotations gathered via the Moby Annotator from two

angles: agreement among pairs of annotators (users) and agreement between group aggregates

and a manually constructed standard.  In both cases, we make use of a metric known as positive

specific agreement (PSA), shown in Equation 7.1, to assess the degree of overlap between tags

associated with the same resource by two different sources [31].  In the case of the standard-

based evaluation, measurements of PSA are accompanied by measurements of precision and

recall.  (PSA equates to the F measure in this case, the harmonic mean of precision and recall.)

€ 

PSA(S1,S2) =
2a

(2a + b + c)
Equation 7.1: Positive Specific Agreement for the members of sets S1, S2 whose intersection is

a and where b = S1 excluding a and c = S2 excluding a.

To provide a scale with which to consider the results presented below, Table 7.1 lists average

levels of PSA observed among experts in several different semantic annotation tasks culled from

the literature.  In each study described in the table, though the task varies, trained domain experts

use custom designed interfaces to associate items with concepts from ontologies.   Results for

average inter-annotator agreement vary from 0.50 for the annotation of clinical patient problems

[32], to 0.54 for the annotation of proteins [33], to 0.73 for the annotation of clinical disorders in

physician-dictated notes [34]. Given that it was observed among “clinical data retrieval experts”,

each with a minimum of four years of experience and that high levels of agreement were a

primary objective of the reported research, the average inter-annotator agreement of 0.73

suggests a reasonable approximate upper bound for what to expect for semantic annotation in

professional, controlled settings  [34].

In open systems, such as the Moby Annotator, that involve the collection of semantic annotations

from a potentially diverse group of contributors, we expect that average levels of inter-annotator

agreement will be lower than in more controlled professional settings.  However, when the

annotators are not all domain experts, the interpretation of inter-annotator agreement becomes

more complex.  In situations where the annotators are all assumed to be experts, agreement

between them provides a strong indication – based on this pre-defined authority – that the agreed
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upon statements are of high quality.  In cases where annotators are not considered authoritative

as a premise, estimates of inter-annotator agreement simply describe the level of consensus

within the group.  In the results presented below, we take advantage of the additional point of

reference provided by the generated standard to explore the relationship between consensus and

quality in this context.

7.4 Results

The following experiment is an attempt to measure the performance of a new system for open,

semantic annotation in the bioinformatics domain.  Though the focus here is on extending the

semantics associated with the BioMoby framework, these results should prove relevant in any

situation that calls for user-driven semantic annotation.

7.4.1 Users

We recruited users via email request to colleagues and to members of the BioMoby mailing list.

Upon registration, users were prompted with a simple form that asked them to label themselves

with ‘bioinformatician’, ‘biologist’, ‘moby_developer’, or ‘none of the above’ - the principal

user groups envisioned to have interest in the system.  Each user was allowed to enter multiple

labels for themselves.  19 people volunteered to participate in the experiment, of which 12

declared themselves as bioinformaticians, 11 as moby developers, 5 as biologists and 4 as none

of the above.   Out of these volunteers, 13 completed the annotation of all of the selected Web

Services.

7.4.2 Services

Of more then 1,400 Web Services listed in the BioMoby registry at the time of the study, 27

were selected for annotation.  This comparatively small number was used to ensure that

redundant annotations could be collected such that inter-annotator agreement could be measured

and experiments in annotation aggregation conducted.  The services were selected such that,

based on the semantic annotations already available in the registry, the sample contained

examples of Services that appeared to be identical, that appeared to bear no similarity to one

another, and that appeared to have some similarity.  For example, two different services might
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appear to be identical from the perspective of their registered semantic metadata if they both

produced and consumed ‘Objects’ that were not linked to particular Namespaces and were

registered as ‘retrieval’ services.  This approach was motivated by the desire to reveal likely

hidden differences between the apparently identical and to identify similarities between the

apparently distinct.  In addition, the sample was biased to favour services from authorities that

expressed interest in the study as a means of encouraging participation.

7.4.3 Taggings

As illustrated in Figure 7.1, each tagging links a set of tags (free-text and semantic) to a

particular resource and to the author of the tagging.  In the results presented here, we distinguish

between two kinds of resources, Objects, which correspond to the inputs or outputs of Web

Services and Operations, which correspond to the actions performed by the Services.  A total of

872 taggings were recorded for Objects and 400 were recorded for Operations.

7.4.4 Tag density

Each tagging act links a set of semantic and/or free-texts tags to a particular resource.  Tag

density refers to the number of tags associated with each such assertion.  As tables 7.2 and 7.3

indicate,  users entered a median of 2 tags per item.  A minimum of one tag, which could be

either free text or semantic, was enforced for each tagging event.  Its interesting to note that, in

many other open social classification systems, such as the Connotea and CiteULike social

bookmarking services, very similar average numbers of tags per resource are observed despite

drastic differences in purpose, context, and interface.  Note also that there is a clear difference

between the annotations of the Service operations and the annotations of the Objects; the

operations tended to have more tags overall and a higher proportion of semantic tags to free tags.

7.4.5 Inter-annotator agreement

Table 7.4 presents the average levels of agreement, measured with PSA, among all pairs of users

across all resources annotated by both members of the pair.  To achieve a perfect agreement of

1.0, both users would have to add exactly the same tags to each resource they both annotated

while a score of 0 would be obtained if both users never used the same tag to describe the same
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resource.  For the Objects, the mean PSA for the semantic tags was 0.44 and for the free text tags

(compared following syntactic standardization) it was 0.09.  For the Operations, the mean PSA

for both the semantic tags and the free tags was higher at 0.54 and 0.13 respectively.

The strong increase in agreement for the semantic tags in comparison to the free text tags in both

groups should be expected; even if the tags were assigned randomly, the much smaller pool of

terms available through the semantic tagging interface would result in somewhat higher levels of

agreement.  At the same time, it is important to mark this difference as, prior to this study, we are

not aware of any direct evidence regarding what to expect in terms of the differences in

agreement levels between free-text and semantic annotation systems.  In addition,  this provides

an indication of one of the potential effects of introducing semantics into other social annotation

systems, most of which currently rely on free-text tags.

In comparison to other studies of inter-annotator agreement among either professional annotators

or domain experts, these results would be considered moderate at best, with a more desirable

average level of consensus closer to 0.7.  However, given the diverse user population – ranging

from professional creators of semantic Web service frameworks to statisticians and students that

had never seen a Web service before – as well as the limited information provided for the

Services (some of which had very shallow descriptions),  these results are, in our opinion,

surprisingly high.  As stated above, without a pre-defined view on the level of authority to

attribute to each user, further analysis is required to assess whether the identified consensus is

indicative of quality within this population.

7.4.6 Agreement with standard

A standard set of annotations was assembled by the author for use in gauging the quality of the

collected annotations.  Using the same annotation interface as the participants in the study (thus

ensuring that it would have been possible for the participants to create exactly the same

annotations) each object and service operation was annotated with at least one semantic tag

available through the autocomplete input boxes.  In creating these annotations, an emphasis was

placed on precision.  Where a potential annotation was questionable, it was omitted.  This

standard might be improved through future collaborative decisions among knowledgeable parties
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regarding exactly what the most detailed correct annotations are in each case; however, based on

discussions with other researchers in the semantic Web services community, this will clearly not

be a trivial task nor one that is likely to produce a completely definitive set of answers.  As noted

earlier, even among professional annotators with years of experience, levels of agreement are

rarely higher than 80% and almost never perfect.  One of the results of this study was the

surprisingly difficult nature of the task.  Even professional annotators that had extensive prior

experience with the MyGrid ontology reported that they struggled to make decisions regarding

the annotations.  Keeping in mind that it is likely that some experts would disagree with some

annotations in the standard used here, for present purposes, it serves as a useful point of

reference for assessing the collected annotations.

7.4.6.1 By volunteer

Table 7.5 presents the average results of comparing the semantic annotations authored by each

user with the standard.  It indicates that, for the Objects, the average precision with which each

user reproduces the standard annotations is 0.54 and the average recall is 0.54 resulting in an

average PSA of 0.52.  For the Operations, the levels of agreement with the standard are slightly

higher,  with an average precision of 0.81, an average recall  of 0.53, and an average PSA of

0.59.  For both Objects and Operations, there is substantial variation across the different users.

Average PSA with the standard ranges from 0.32 for the lowest user to 0.71 for the highest user

for Objects and from 0.36 to 0.75 for the Operations.

The diversity of opinion represented by the user population, as indicated in Table 7.5, is to be

expected in any open system.  Each user brings a different level of prior knowledge as well as a

different point of view.  To make effective use of this kind of data in applications, strategies that

not only handle but actually benefit from this diversity needed to be implemented.  In the next

section, we demonstrate an old and extremely simple, yet effective strategy for extracting

wisdom from the cacophony of the crowd.
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7.4.6.2 Aggregations

It has been shown that merging assertions generated by multiple annotators can produce

significant improvements on the end products.  Camon et al referred to this as the ‘superhuman

complex’ [33] and many annotation projects have taken advantage of it in different ways – e.g.

[34, 35].  For present purposes, we take a very simple approach to aggregation based on positive

voting.   For each asserted association between an ontology term and a resource, we count the

number of users to make that assertion (to ‘vote’ for it) and then remove assertions below a

specified number of votes.  Assuming that greater consensus is more reflective of the standard,

the more votes for a particular assertion, the more likely it is to be correct with respect to the

standard; however, the more votes required, the less assertions will be kept.  Thus, if higher

consensus increases correctness, precision should be increased and recall decreased by raising

the threshold.

Figures 7.3 and 7.4 show that the assumption of consensus equating correctness seems to hold

for the collected annotations when judged according to the constructed standard for both the

Objects and the Operations.  At a voting threshold of 1 (corresponding to the union of all

assertions), average recall of semantic tags for the Objects is 0.93 and precision is 0.36.  As the

threshold is increased, recall is reduced while precision is increased.  For the Objects, the

optimum value of 0.80 for average PSA was reached at a voting threshold of 5, at which point

precision was 0.93 and recall was 0.76.

For the semantic annotations of the Operations displayed in Figure 7.4, similar trends occur up to

another apparent optimum near 5 votes.  Since comparisons are only made for resources that

have at least one tag assignment (because otherwise precision is meaningless), the number of

resources actually compared (called coverage) begins to fall for the Operations after the vote

threshold passes 3.  (Coverage for the Objects begins to fall only after a threshold of 10 votes.)

Though higher levels of PSA occur at higher vote thresholds, the apparent optimum for the

Operations, including coverage, occurs at 5 votes where the average PSA is 0.74, precision is

0.77, recall is 0.75, and coverage is 0.86.
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7.5 Discussion

In comparison to other studies of semantic annotation involving relatively homogeneous pools of

highly trained annotators, such as those described in Table 7.1, the results presented here are on

the low end of the spectrum for inter-annotator agreement.  On the other hand, the performance

of aggregates of these annotations created through a simple voting mechanism, as judged with a

manually created standard, is encouragingly high.  The implication is that, given sufficient user

engagement, high quality semantic annotations for bioinformatics Web services can be generated

using systems like the one presented above.

Looking forward,  it is clear from related studies that more sophisticated aggregation algorithms

– for example, those that apply machine learning approaches to weight contributions from

different users differently by learning from comparisons of samples of their assertions to a

defined standard – could be used to improve on the results presented here [36, 37].  In addition, it

is likely that enhancements to the user interface could result in a higher level of performance for

individual assertions that, in turn, would result in better overall system performance [38].  For

example, one of the main challenges for users was to learn which ontology terms were available

and what each of them meant.  The only way that the current interface allows for this is via the

type-ahead lists and the associated textual definitions.  In the future, confusion might be avoided

by providing an additional mechanism for browsing and learning about the available terms.

There are many possibilities for improving both the annotation interface and the algorithms used

to aggregate the collected knowledge; however, the primary question that needs to be addressed

is that of incentive.  Regardless of interfaces or algorithms, open social systems, like the Moby

Annotator and the Web itself, need users to function – generally the more users the better.

In 2006, it was observed that the basic technological ingredients needed to achieve the visions of

the semantic Web in the life sciences and elsewhere, of which the Web services discussed above

form a crucial component, had already been in place for several years but that the community

had yet to apply them to a sufficient extent to gain any substantive benefit [39].  This problem

has persisted to the present day, recently prompting the International Journal of Knowledge

Engineering and Data Mining to issue a call for articles for a special issue on "Incentives for

Semantic Content Creation" due to appear in the summer of 2009 [40].  In this call for papers,
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the editors note the sharp contrast between the still comparatively minute and largely invisible

semantic Web and the recent successes of Web2.0 applications such as Wikipedia and

Del.icio.us which “generate huge amounts of data at comparatively low costs and impressively

high quality” [40].  In future work,  we hope to take advantage of the prototype open semantic

annotation system introduced here to investigate the system-level effects of applying different

incentive strategies based on those that have been shown to be successful in other open Web

applications.

The design for the Moby Annotator and its more general-purpose predecessor, the Entity

Describer, was inspired by social bookmarking applications which, for incentive,  rely

exclusively on what has been called “passive altruism” [11].  In social bookmarking systems,

users are provided with a means to satisfy a personal need, that of organizing online bookmark

collections,  but, as they use the system to fulfill this need, their actions passively contribute to

the benefit of the community [41].  While the individual users don’t necessarily intend to help

the community or the creators of the tool that they use, the fact that the assertions they make

(that Web page X should be labelled with tags Y and Z) are available in a public information

space makes it possible to integrate them to form a valuable collective product.  This is exactly

the same basic phenomenon that made search engines that take advantage of the link structure of

the Web possible; authors of hyperlinks in Web pages never intended to make it possible for

Google to exist, but because their collective actions were recorded in the public space of the

Web, they had exactly that effect.  As it requires essentially no direct financial input, has been

shown to produce very successful products and because the Moby Annotator would require only

minor extensions to support the generation of personal collections of semantically tagged Web

services that could be used in the context of applications that aid in the discovery and use of Web

services like Taverna [42, 43], passive altruism is certainly an incentive mechanism we will be

attending to in the future.  That being said, a serious potential problem with it is that it seems to

require a scale of users much larger than is likely to arise in the near future for the relatively

small niche of people interested in bioinformatics Web services.

Open annotation systems that do not invoke any active incentive structure often end up

producing a very large number of annotations for a very small number of items.  In the context of

Web services, it is likely that NCBI’s extremely important BLAST (Basic Local Alignment and
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Search Tool) services could garner hundreds or thousands of interested user-annotators but that

smaller niche services, such as those related to the parsing of the XML structure used by a

particular database devoted to the genome of the sunflower, would receive little, if any attention

and thus little annotation.  Since the services in the smaller niches are often the most difficult to

find and integrate and are thus the ones that would benefit the most from effective semantic

annotation, this is a serious problem.  To address it, other, more active incentive structures are

likely to be needed.

To produce active incentive, some form of payment must be utilized.  The most obvious form is

simply cash; we could follow traditional principles and hire and train annotators.  However, the

small number of professional annotators that most research projects can afford to pay is exactly

the bottleneck that open annotation systems hope to avoid.  To make use of the power and scale

of collective intelligence while still engaging direct financial incentive, perhaps it would be

possible to use a system like Amazon’s Mechanical Turk (AMT) to gather many small,

inexpensive contributions from a large number of people [44].  In the context of human linguistic

annotation (marking up sentences to train machine learning algorithms for natural language

processing) the AMT has been used to achieve a remarkable volume and quality of manual

annotations for very little money and in extremely short amounts of time [37].  Whether or not

and how such approaches can be used in domains such as Web service annotation, that typically

seem to require more expert-level knowledge, is a key area for future research that would be

possible to address using the Moby Annotator framework.

Another form of payment that has been used effectively to generate large numbers of annotations

at almost no cost is, surprisingly, fun [35].  Luis Von Ahn and colleagues have created a highly

successful research platform called “Games With a Purpose” with which they are investigating

ways that knowledge of various forms can be collected from people through the actions they

perform in the context of specifically designed online games [45].  As with the AMT

experiments, the results of these investigations indicate that games can be highly effective in

contexts that do not involve expert knowledge, such as labelling images of pets, but, to the best

of our knowledge, these techniques have not been tried in more expert contexts.  Once again, this

is a fascinating and important area for future research.
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Before concluding, we introduce just one more important potential form of payment that could

have relevance to the problem of semantic annotation.  Michael Nielsen has suggested that the

critical limiting resource in science today is not money or technology, but expert attention [46].

Perhaps it would be possible to trade directly in this commodity by setting up markets within

which tasks requiring expert knowledge, such as the semantic annotation of complex Web

services, could be traded between people with different skill sets.  Such a structure might help to

address potential problems in other active incentive strategies; by trading directly in expertise,

not only might quality be increased, but the potential problems related to unscrupulous users

gaming the incentive systems would likely be eliminated.  The complexities of how such a

system might be created and how it might be applied specifically to the semantic annotation

problem form yet another vast and important domain for future explorations.

7.6 Conclusions

In this study, we have demonstrated that, though individual user-generated semantic annotations

vary widely,  even simple algorithms for merging these assertions can be used to generate

collective products of quality approaching that to be expected from teams of expert annotators.

Given sufficient community involvement,  effective interface design, and the intelligent

integration of multiple user contributions, open social annotation appears to be a viable strategy

for accumulating semantic annotations for Web services in the domain of bioinformatics.  Aside

from expected improvements in both interface design and algorithms for aggregating assertions,

the principal challenge ahead is in understanding the processes involved in motivating

participation.
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Table 7.1. Reported semantic annotation performance measured by positive specific agreement

Task N
annotators

N items considered
by each annotator

average PSA

Describe clinical patient
problems with UMLS [47]
concepts  [32]

10 5
clinical cases

0.50
(as reported)

Annotate proteins with
GO [48] terms based on
literature [33] 3

10
scientific papers

0.54
(recalculated from supplied

supplementary data)

Label spans of text
associated with clinical
disorders from SNOMED-
CT [34]

4
100

dictated clinician’s
notes

0.73
(as reported – where labelled

text overlaps and same
concepts identified)

Table 7.2. Density of tags associated with 872 taggings of web service input/output objects

tag type mean median min max stand
dev.

coefficient
of

variation

All tags 1.99 2.00 1.00 22.00 1.89 0.95

Free text
tags

0.89 1.00 0.00 20.00 1.77 1.98

Semantic
tags

1.10 1.00 0.00 9.00 1.03 0.94

Table 7.3. Density of tags associated with 400 taggings of web service operations

tag type mean median min max stand.
dev.

coefficient
of

variation

All tags 2.41 2.00 1.00 23.00 2.53 1.05

Free text
tags

0.34 0.00 0.00 8.00 0.78 2.28

Semantic
tags 2.07 2.00 0.00 20.00 2.04 0.99
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Table 7.4. Positive specific agreement, semantic and free tags for objects and operations

N pairs mean median min max stand.
dev.

coefficient
of variation

Free,
Object 1658.00 0.09 0.00 0.00 1.00 0.25 2.79

Semantic,
Object 3482.00 0.44 0.40 0.00 1.00 0.43 0.98

Free,
Operation 210.00 0.13 0.00 0.00 1.00 0.33 2.49

Semantic,
Operation 2599.00 0.54 0.67 0.00 1.00 0.32 0.58

Table 7.5. Average agreement between each user and standard

subject
type

measure mean median min max stand.
dev.

coefficient of
variation

PSA 0.52 0.51 0.32 0.71 0.11 0.22

Precision 0.54 0.53 0.33 0.74 0.13 0.24

Objects

Recall 0.54 0.54 0.30 0.71 0.12 0.21

PSA 0.59 0.60 0.36 0.75 0.10 0.18

Precision 0.81 0.79 0.52 1.0 0.13 0.16

Operations

Recall 0.53 0.50 0.26 0.77 0.15 0.28
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Figure 7.1. Structure of annotations in the Semantic Tagging ontology

Each recorded annotation (Tagging Event) keeps track of the author, the item tagged, the time
the annotation took place, and the tags applied.  Both free text and semantic tags can be used.
Semantic tags are linked to ontology classes using the RDF-Schema annotation property
‘isDefinedBy’.
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Figure 7.2. Screenshot of Moby Annotator

The user has entered the semantic tags ‘keyword’ and ‘bioinformatics metadata’ to describe the
service input (in the leftmost input area) and is currently in the process of annotating its output.
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Figure 7.3. Agreement with standard for aggregations created through different minimum vote thresholds on
service input/output object annotations

The X axis delineates the minimum number of votes required for an assertion to be counted.  The
Y axis indicates the levels of agreement with the standard as well as the fraction of web service
input/output objects described by the aggregates (coverage).
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Figure 7.4. Agreement with standard for aggregations created through different minimum vote thresholds on
service operation annotations

The X axis delineates the minimum number of votes required for an assertion to be counted.  The
Y axis indicates the levels of agreement with the standard as well as the fraction of web service
operations described by the aggregates (coverage).
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8 iHOPerator: User-scripting a personalized bioinformatics Web, starting with the iHOP

website10

8.1 Background

User-scripts are programs, typically written in JavaScript, that are installed inside web-browsers.

They manipulate the content of specified sets of Web pages prior to their display in the browser.

The name ‘user-script’ may be slightly misleading as a typical user of a Web browser will not

likely write user-scripts (but see [1] for work on making this more feasible).  The name might

more appropriately be ‘user-side-scripts’ to convey the notion that the script operates within the

user’s browser and that its installation and activation is under the user’s control.  For brevity and

to stay in alignment with common terminology, we will use ‘user-scripts’ throughout the rest of

the text.

User-scripts can be used to perform tasks including, but not limited to: automatically adjusting

style sheets, stripping unwanted advertisements, integrating the content of multiple Web

resources, or introducing novel visualizations. Anyone capable of writing JavaScript can write

and share user-scripts that alter the content displayed on any Web page.  By writing or locating a

suitable user-script, for example in a public repository such as userscripts.org [2], and installing

it in their browser, users gain unprecedented control over the content that is ultimately displayed

in their browser window. User-scripts thus offer an immediate mechanism by which the Web

browsing experience can be shifted from its current resource-centred pattern of control towards a

more user-centred view.

Here we introduce the iHOPerator – a user-script designed to provide an enhanced, customized

view of the iHOP website, a key bioinformatics resource describing proteins, their properties,

and the relationships that hold between them.  We describe how the iHOPerator script generates

and embeds a novel visualization of the contents of the iHOP Web pages and extends the content

of those pages with information gathered from  related, external Web resources.  We conclude

                                                  
10 A version of this chapter has been published. Good BM, Kawas EK, Kuo BY, Wilkinson MD: iHOPerator: User-
scripting a personalized bioinformatics Web, starting with the iHOP website. BMC Bioinformatics 2006, 7:534
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with a discussion of the potential implications of user-scripts, describing their relationship with

the emerging Semantic Web in the life sciences.

8.1.1 iHOP

The iHOP database provides information about proteins that have been automatically associated

with PubMed abstracts [3-5].  Using the iHOP website [6], it is possible to browse through the

literature using hyperlinks that associate abstracts to one another using co-occurring genes.  After

identifying a gene of interest, a user may navigate to a page that contains the “defining

information” for the gene. This information consists of the gene’s names in different databases,

its source organism, and a potentially very long list of snippets of text that have been extracted

from abstracts associated with the gene (Figure 8.1).

The purpose of the iHOPerator user-script is to enhance the user’s experience when visiting the

iHOP Web page.  It does this by providing a new way to visualize some of the information

presented on the gene-information Web pages and by extending the content of these pages using

relevant third party resources such as PubMed[7] and the Kyoto Encyclopaedia of Genes and

Genomes (KEGG)[8].

8.1.2 Tag clouds

Tag clouds are visually-weighted renditions of collections of words (‘tags’) that are used to

describe something [9].  Tags in a cloud are sized, organized and coloured so as to illustrate

aspects of the relationship between each tag and the entity that it describes.  Tag clouds have

recently gained popularity in ‘social-tagging’ applications such as Flickr [10], Connotea [11],

and Del.icio.us [12] because they provide a mechanism through which untrained users can

quickly visualize the dominant features of voluminous databases and because they provide a

visually based navigation paradigm that is complementary to text search and operates naturally

over non-hierarchically organized information systems.

The iHOPerator user-script provides tag clouds that display the defining information for a gene

by processing the contents of the iHOP abstract snippets.  For example, (Figure 8.2) shows a tag

cloud generated using MESH terms gathered from abstracts associated with the gene Brca1.  In



185

the cloud, the size of the term is used to display the frequency of occurrence of that term in the

context of abstracts associated with Brca1 and colour is used to highlight the impact factor of the

journals in which the terms appear.

8.2 Implementation

The iHOPerator is a user-script, a JavaScript that can be embedded in a Web browser such that it

processes the contents of visited Web pages prior to their presentation to the user. Though a user-

script may be instructed to process any set of Web pages, (e.g. those from a particular domain)

the iHOPerator is focused specifically on the gene-information pages of the iHOP website.

8.2.1 GreaseMonkey

At this time, most user-scripts require extensions to Web browsers such as GreaseMonkey [17]

for Mozilla’s Firefox, Creammonkey [18] for Apple’s Safari, and Turnabout [19] for Microsoft’s

Internet Explorer.  Though user-scripts for each of these browsers are written in JavaScript, there

are no accepted standards for user-script extensions and thus scripts written for one browser may

or may not work in another browser.  As user-scripts become more popular, standardization

efforts are likely to emerge that will improve script/browser interoperability; for the moment

however, the iHOPerator is built for Firefox and is thus dependent on the GreaseMonkey

extension for its operation.

The GreaseMonkey/Firefox combination was chosen for this project because both are cross-

platform, actively developed, open source, and because GreaseMonkey was the first and is still

the most widely used browser extension for housing user-scripts.  We utilize GreaseMonkey to

add a tag cloud to pages describing genes on the iHOP website by processing the HTML and

JavaScript present on those pages prior to presentation in the browser.  As well, we extend the

content of the website by utilizing the GreaseMonkey API to retrieve content from external

HTTP-accessible resources.
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8.2.2 Generating tag clouds

The iHOPerator script produces tag clouds based either on MESH keywords from the abstracts

associated with a gene (Figure 8.2) or from other genes that iHOP identifies as interacting with

the gene (Figure 8.3).  From the user’s perspective, these tag clouds appear to be embedded

directly within the iHOP Web page (Figure 8.4).  The process of generating the tag cloud works

as follows:

1. Extract tags (MESH keywords or interacting genes) embedded in the HTML of the page.

(This is greatly facilitated by the presence of XML mark-up of these entities provided by

the iHOP website).

2. Count the number of occurrences of each tag

3. Calculate a score for the tag based on its relative frequency in the page.

4. Collect the impact factor assigned to each abstract and associate it with the appropriate

tag. (Once again, this is facilitated by XML mark-up in the iHOP page).

5. Find the average impact factor associated with each tag.

6. Produce the HTML for the cloud by

a. Assigning each tag to a predefined Cascading Style Sheet class that is associated

with a particular size and colour that is determined by the frequency of occurrence

of the tag in the page and the average impact factor of the journals associated with

the tag occurrences respectively.

b. Sorting the tags alphabetically.

The iHOPerator script also allows the user to customize the interface by selecting different

ranges for the font sizes in the cloud and by specifying whether iHOPerator-generated content

should be hidden, display in another window, or display within the iHOP Web page.

8.2.3 Integrating 3rd-party content

Aside from the tag-cloud based visualization (produced entirely using JavaScript operating

within the browser), a key feature of the iHOPerator script is its ability to acquire and display

third-party content related to the gene in the same browser-context.  For example,  the script
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utilizes GreaseMonkey’s built in support for AJAX (Asynchronous JavaScript and XML) to

execute an asynchronous HTTP request that invokes a BioMoby [13] Web service workflow

stored as a Java servlet that, when possible, provides KEGG pathway diagrams containing the

gene of interest  (Figure 8.5).  The script also makes it possible for the user to access relevant

external websites using an embedded IFRAME element.  This allows the user to view the

abstracts associated with the gene and/or MESH term of interest or to initialize a Web service

browsing session using the Gbrowse Moby [14] BioMoby client application that originates with

a gene selected from the cloud.  Without the iHOPerator, each of these activities would require

that the user find the additional resources themselves, learn how to use them, cut and paste

search terms into them, and of course, navigate away from the iHOP website.

8.3 Related work

Within the bioinformatics domain, only a few examples of user-scripts appear to exist so far.  At

the time of this writing, only two were listed at the primary global repository [2] and one was

identified via Web search [15].  Both scripts listed on [2] facilitate the addition of bookmarks to

articles listed in PubMed [7] to similar science-focused social bookmarking systems, Connotea

[11] and CiteULike [16].  In the other, Pierre Lindenbaum provides a script that generates a

TreeMap [17] visualization of Connotea reference collections [15].

8.4 Discussion

At present, Web browsers are the dominant technology used to satisfy the information gathering

and visualization needs of life scientists.  In their current form, browsers provide users with the

ability to retrieve information from widely distributed sources, but essentially no means to

integrate information from multiple sources and only a very constrained set of operations for

manipulating the display of that information.   Given the distributed nature of information on the

Web and the diversity of user requirements in interacting with that information, this situation is

unsatisfactory.

In most current implementations, Web browsers facilitate information transfer between only two

parties – the resource provider, who determines all information presented, all links to external
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resources, and nearly all manner of visualizing that information; and the consumer, who

essentially can only control which page they choose to view next.  The typical Web browsing

experience can thus be characterized as resource-centric because everything that the user sees on

a Web page is governed entirely by the resource provider.

By introducing an additional layer of processing that occurs only at the discretion of the user (by

choosing whether or not to install a given script), user-scripts offer a way to effect a transition

towards a user-centric browsing experience.   Though it has always been possible for the

technically skilled to engineer their own software for processing Web content (e.g. the notorious

‘screen-scraping’ characteristic of early bioinformatics [18]), the arrival of popular browser

extensions such as GreaseMonkey marks the beginning of a fundamental change in the way end-

users can interact with the Web.  Empowered with the ability to easily embed scripts directly into

their browser and to find such scripts in public repositories, Web users can now more actively

make decisions about what Web content they see and how that content is presented.

Despite its intriguing, paradigm-shifting nature, the user-script concept is not without its

problems.  Because Web content is still primarily provided as HTML, user-scripts must process

HTML in order to function.  This is problematic for two reasons: 1) HTML is not designed for

knowledge or data representation and hence is difficult to parse consistently and 2) HTML

representations may change frequently even when the underlying data does not.  The former

makes it challenging to write effective user-scripts, particularly scripts that are intended to

operate over multiple Web pages.  The latter makes these scripts brittle in the face of superficial

changes to their inputs and thus potentially unreliable [18].  Since information on the Web is

currently provided primarily as HTML, alterations to the structure of this content are frequent

and necessary results of the need to keep the browsable interfaces up to date.  To alleviate these

problems, it would clearly be beneficial if the underlying data could be exposed in a manner that

was independent of its HTML representation

The potential value of separating content from presentation provides motivation for the Semantic

Web [19] initiative and the  standards for the annotation of Web resources, such as the Resource

Description Framework (RDF)[20] and the Web Ontology Language (OWL)[21], that have

recently emerged from it.  With these standards in place, content providers are encouraged to
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provide a representation of their data for visualization (HTML) in parallel with an additional

representation of their data for machine-interpretation (RDF/OWL).  This would enable those

who wish to utilize the content in novel ways to process the more stable, machine-readable

representations while remaining unaffected by visual modifications to the associated websites.

Though widespread adoption of Semantic Web standards by the community may, in principle,

enable the creation of powerful, user-centred applications that go beyond the capabilities of user-

script enabled browsers [22], this process is occurring very slowly [23] and the problems faced

by life scientists in gathering, integrating and interpreting information on the Web are pressing.

In their current form, user-scripts, such as the iHOPerator, provide an immediate means to

address these needs and thus should be more widely exploited to this end.

8.5 Conclusions

By adding the iHOPerator user-script to their browser, users gain access to 1) a novel method of

visualizing and navigating the defining information about genes on the iHOP website and 2)

enhancements to that information that are gathered automatically using external resources such

as PubMed and KEGG.  The iHOPerator thus provides an extension to the iHOP website that

demonstrates how user-scripts can be used to personalize and to enhance the Web browsing

experience in a biological context.

User-scripts represent a small, but immediate and useful step in the direction of a user-centred

rather than a resource-centred Web browsing experience.  In contrast to other proposed routes to

achieving this goal, they offer a mechanism that can be effected immediately using existing

resources and representations to provide end-users with a straightforward way to exert greater

control over what and how they see on the Web.
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Figure 8.1. Default iHOP page displaying the defining information for VEGF

The default iHOP gene-focused Web page without the enhancements provided by the
iHOPerator script.  The page is displaying the defining information for the gene VEGF. The top
of the page displays alternate names while the bottom (extending well past the area that can be
displayed in the figure) provides extractions from the text of abstracts associated with the gene.
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Figure 8.2. A tag cloud built from MESH terms associated with Brca1

This tag cloud was built automatically using the iHOPerator user-script.  It is composed of
MESH terms extracted from abstracts associated with the gene Brca1 (in mouse).  Colour
(redness) correlates with the impact factor of the journals where the term occurs.  Size correlates
with the number of times the term occurs in association with the gene – in this case Brca1.

Figure 8.3. A tag cloud built from genes related to Brca1

This tag cloud was built automatically using the iHOPerator user-script.  It is composed of gene
names extracted from abstracts associated with the gene Brca1 (in mouse). Colour (redness)
correlates with the impact factor of the journals where the gene name occurs.  Size correlates
with the number of times the related gene name occurs in association with the gene in question–
in this case Brca1.
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Figure 8.4. The iHOP webpage enhanced by the iHOPerator user-script

The iHOP webpage after it has been enhanced with the iHOPerator user-script.  Compare with
Figure 8.1.  The Web page now includes a tag cloud composed of MeSH terms from abstracts
associated with the gene Brca1 in mouse as well as a panel of controls for manipulating the new
visualization.  The number of terms used to build the cloud, the scale of the fonts used, the
presence or absence of the cloud on the page, and the actions taken when the user clicks on an
element of the cloud are all under the user's control.
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Figure 8.5. The iHOP webpage for IRF-3, enhanced with a tag cloud and a pathway diagram using the
iHOPerator user-script

The iHOPerator user-script is shown providing access to a KEGG pathway diagram containing
the gene IRF-3 within the context of the iHOP website.  The diagram was retrieved as a result of
a mouse-click on ‘IRF-3’ in the tag cloud.
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9 Conclusion

9.1 Summary

The diverse topics discussed in this dissertation were united under the common goal of enabling

the formation of a globally distributed semantic Web for research in the life sciences – a

Bioinfotopia.  Within the context of the life sciences, the purpose of the semantic Web is clear

–it is to make possible a new generation of applications that will provide effective ways to make

use of the rapidly expanding and diversifying pool of biological data and knowledge.  However,

the path to achieving this vision remains murky.  While isolated demonstrations illustrate

potential, the larger goals of a united Bioinfotopia can not be realized without the collaborative

formation of truly unprecedented amounts of high quality metadata.  The research conducted for

this dissertation thus explored new social and technical processes involved in creating and

evaluating the needed metadata.  Specifically, this dissertation described new strategies for

amassing, characterizing, and applying metadata in the context of bioinformatics.

The strategies presented for amassing metadata addressed two key problems in the formation of

the semantic Web – the creation of ontologies and the accumulation of annotations that use

concepts from ontologies to provide computationally accessible descriptions for data.  These

problems were approached through the generation and evaluation of new methods that involve

the application of crowdcasting within the context of knowledge acquisition processes.  The

evaluations of these strategies, described in Chapters 2, 3, and 7, provided some of the first

evidence of the potential of this emerging technique in an expert-knowledge domain – offering

new possibilities to generate the raw material needed to build the semantic Web.

The strategies for characterizing metadata also addressed two problems – the automatic

quantification of characteristics of ontologies pertinent to the assessment of their quality and the

problem of forming direct, meaningful, empirical comparisons of disparate metadata resources

ranging from ontologies to folksonomies.  Chapter 4 addressed the first problem with OntoLoki,

a methodology that taps into the information present on the semantic Web to measure the

consistency with which the instances of different ontology classes exhibit distinguishing patterns

of properties.  Chapter 5 addressed the second, more generic, metadata characterization problem.
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It described how features related to the terms used in different metadata resources could be used

to form clear,  quantitative comparisons between very different resources.  In addition to these

novel strategies, Chapter 6 provided the results of a thorough comparison of the products of

uncontrolled social tagging versus professional annotation in a relevant biomedical context.

Chapters 8 and 4 introduced strategies for applying metadata to problems in bioinformatics

related to the presentation and analysis of distributed information. Chapter 8 provided a novel

demonstration of how distributed metadata can be dynamically brought together to create new

user-centric applications that replace the resource-centric views furnished by most current

bioinformatics providers.  In addition to giving insights into ontology quality, the methods

introduced in Chapter 4 demonstrated the automation of the knowledge discovery process made

possible by the realization of the semantic Web – offering the roots of a general purpose

application that intersects powerful tools in machine learning with information gathered

automatically from distributed sources.

Weaved together, these diverse threads of research converge towards the creation of systems that

will allow the biomedical research community to create and maintain a semantic Web for the life

sciences that will provide unprecedented opportunities for knowledge sharing and discovery. In

the remainder of this chapter, I suggest some general conclusions that can be made from this

work, identify some key areas to investigate in future research and finish with some thoughts

regarding science in the age of the Web.

9.2 Conclusions

As the volume and diversity of relevant data in bioinformatics continues to increase, systems that

effectively enable widespread community participation in the creation and maintenance of the

metadata needed to make it useful are becoming increasingly vital.  In considering designs for

such systems for amassing third-party metadata, a few general conclusions can be drawn from

the results presented here.

The first conclusion is suggested by the title of a recent paper in Nature Reviews Microbiology –

“If  you build it, they might come” [1].  Incentives must be considered when designing any
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system that is dependent on human  labour.  As [1] discusses, there are already many examples

of systems that attempt to use wikis and similar technologies to generate collective information

resources in bioinformatics, but few of them have enjoyed much success thus far.  For example,

though the article that described WikiProteins [2] has been downloaded thousands of times, only

a tiny fraction of that number have contributed anything to the project (Barend Mons, personal

communication).  Most current efforts seem to rely exclusively on the altruist impulse to

motivate contributions.  It seems that this alone is generally not enough to motivate busy

scientists.

A second conclusion emerges from Chapters 3, 6 and 7; open systems for amassing third-party

metadata should track and make computationally accessible provenance information regarding

all collected statements. Without this information, approaches for aggregating collective

metadata can not take advantage of voting processes (as in Chapters 6 and 7) or other more

sophisticated methods for combining multiple opinions (Chapter 3).  In addition, information

regarding the authorship of different contributions can be used for citation – a potentially critical

kind of currency for use in motivating scientists.  The capture and use of such provenance

information represents a key difference between the third-party metadata considered in this

dissertation and the metadata provided by institutional sources.  For example, there is no

authorship information associated with the MeSH terms assigned to a particular resource in

PubMed.  This is because we assume from the outset that all such statements are correct.  In

socially generated content however, assessments of quality must be made based on the data at

hand rather than on pre facto assumptions of institutional authority. The additional information

required to make these judgements of quality forms a crucial component of third-party metadata

and provides the opportunity to implement novel functions (e.g. “find related users”).

A final broad conclusion is that, for scientific purposes, the products of different metadata

generating systems can and should be measured using quantitative, reproducible metrics.  While

the specific approaches described in Chapters 4 and 5 represent useful independent advances,

perhaps the most important contribution of this aspect of this dissertation was to show that it is

possible to define automatically producible metrics in these domains. The OntoLoki method

described in Chapter 4 is the first to demonstrate a fully automatic, quantitative way to measure
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properties of an ontology related directly to its quality.  The methodology described in Chapter 5

is the first to approach a generic package for characterizing and directly comparing metadata

structures of different types (including folksonomies, thesauri, and ontologies).  These strategies

show that the metadata generated by different systems can be investigated using quantitative

approaches and a naturalistic11 perspective.  This perspective, that species of information systems

can be investigated much like species of animals – through the identification of measurable,

defining characteristics – is one that will only expand in value as increasing numbers of new

metadata-generating strategies are invented and applied in increasingly diverse contexts.

9.3 Future work

The work presented in this dissertation produced more questions than it did answers.  Each

chapter presents a starting point for a new domain of research.  For example, Chapter 2

illustrated the possibility of volunteer-based ontology creation but leaves open a raft of questions

about elements of such processes ranging from incentive, to interface, to context, to effective

quality evaluation.  For example, how much does the presentation of the high score list in the

interface impact the amount and quality of knowledge collected?  This is just one relatively

simple question, but to answer it robustly will require the implementation of many more

experiments.  As another example, we demonstrated the potential power of collaborative

semantic annotation of Web services in Chapter 7, but more experiments with many more

participants are needed to not only provide stronger evidence for the claims made in that chapter

but also to answer questions related to the sustainability of such efforts, the effects of alternate

interface designs, etc..  With so many new avenues to investigate, a major concern for the future

of all social Web research is how to accomplish all of the needed experiments.

Two primary research designs were applied in this dissertation – naturalistic enquiry (Ch. 5, 6)

and ad hoc prototyping for the purpose of experimentation (Ch. 2,3,7,8).  Naturalistic approaches

are powerful, and will be increasingly powerful as time progresses, because they make it possible

to measure systems that have been operating over long periods of time and have succeeded in

attracting large numbers of users.  However, this approach is not well-suited when the topic of

interest (e.g. social semantic tagging of Web services) is too new for any implementations to
                                                  
11 Naturalistic: “representing what is real; not abstract or ideal”, Wordnet [http://tinyurl.com/cmyj2c]
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exist to study.  The other pattern – of ad hoc prototyping – makes it possible to investigate newer

ideas but has significant drawbacks.  First, it can be slow and expensive to create the prototypes,

so each new experiment may pose a substantial cost on the implementer.  Second, and more

importantly, experiments may require large numbers of people to spend substantial amounts of

time participating.  Time and money spent recruiting could thus pose problems in terms of cost

and could limit the potential reproducibility of the experiments.

While both the naturalistic and ad hoc approaches have their place, another pattern that deserves

serious consideration in the future is in-context experimentation.  In this methodology,

experiments are conducted directly within the context of functional applications with extant,

active user populations.  By manipulating aspects of the application and measuring the effects,

specific questions can be addressed in a flexible manner without the problems associated with

the recruiting process in the ad hoc model.  An excellent example of this technique is provided

by a series of experiments conducted by scientists at the University of Minnesota in the context

of the MovieLens Web application.  In this case, the research group first produced a successful

application which attracted many users.  Now that the system is operational, they perform

experiments in which individual parameters of the system – such as the signup process or the

algorithms used for recommending tags – are varied and the responses of the user community to

these changes measured.  For example, Drenner et al. conducted an experiment that proved that

by altering the initial signup process, they could permanently change the subsequent behaviour

of users on the site such that their individual actions resulted in a more useful collective product

(in this case dramatically increasing the amount of tags used to describe movies within the

system) [3].

Within the context of bioinformatics, there are already many important applications with highly

active user populations.  In considering future research in the areas of social metadata creation

touched upon in this dissertation, it would be useful to embed experimental efforts directly into

the context of such functional applications.  To achieve this, it is vital that social Web

researchers work closely with the teams that are responsible for producing the applications that

the end users will ultimately be interacting with.  These applications are the Petri dishes of the

social Web.  Such in-context research approaches would not only help with respect to running
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experiments as described above, but would also help to keep the research focused tightly around

problems of relevance to the community that it is ultimately intended to serve.

With those experimental approaches in mind, I now suggest three (of many potential) topics for

future study that are key in our attempts to reach Bioinfotopia: incentives, upper ontologies, and

information visualization.

While it is now known that there is little wisdom in the phrase “if you build it, they will come”,

results discussed in this dissertation and elsewhere suggest that “if they come, you can build it”.

Whenever efforts to amass third-party metadata and other knowledge resources have succeeded

in acquiring sufficient numbers of participants, they have succeeded in their objectives.  In

considering strategies for amassing third-party metadata, critical questions relate to how to get

them to come.  I suggest that this problem might be addressed through two parallel lines of

research.  One direction would be to focus on defining incentive structures to encourage

scientists to spend time contributing to community resources while the other would focus on the

generation of novel software that lets researchers contribute to collective metadata resources

passively.  The former would involve basic research in the economics of scientific labour [4].

Such research would help system designers know what to expect when scientists are encouraged

with incentives ranging across money [5, 6], recognition [1], competition (as applied in Chapters

2 and 3), and perhaps even fun [7].  The latter would focus on building software that would make

it just as easy for researchers to share their structured knowledge as it is now for them to hide it –

thus engaging the potential for passive altruism to take effect.  An excellent example of the roots

of one system like this, called the Science Collaboration Framework (SCF), has recently been

published [8] and many more are likely to follow.

In terms of both characterizing and applying metadata the possibilities for future research are

limitless, but one area that is both vital and seems reachable is in the derivation and increased

application of upper ontologies [9].  One of the main challenges in producing the OntoLoki

implementation was in deciding which of the many properties associated with the instances in

different knowledge bases should be crawled by the knowledge gathering agent. This decision

could be automated to a large extent if the agent ‘knew’ the ontologies used by the information

providers well enough to encode rules along the lines of “follow predicates of type 1, but not
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predicates of type 2”.  This could be achieved if the ontologies that defined the RDF predicates

(the links of the semantic Web) encountered by the agent were rooted in a consistent upper level

ontology of which the agent was aware.  Though there are multiple implementations of such

upper ontologies, most ontologies are still not rooted in any of them.  One reason for this may be

that the philosophical complexity of most upper ontologies is often too high to interest task-

oriented ontology developers (for example, many developers are not interested in learning what a

‘situoid’12 is).  I suggest that a first, very simple step be made with the introduction of an

ontology of just two upper-level classes and two upper-level predicates.  This ontology would

divide the entities of the semantic Web into two basic classes – those that are ‘natural’ based on

their attempts to represent aspects of the natural world, such as proteins and cellular

localizations, and those that are ‘artificial’ that are used to keep track of provenance information

such as the dates when records are created.  This simple division, if applied broadly, would do

much to enable agent-based collection and interpretation of biological knowledge from

distributed sources and might prove easier to propagate than previous, more sophisticated

attempts.  The downside to such an approach would be the loss of the reasoning capabilities

made possible with more detailed divisions of the universe.  Future research could attempt to

find a better balance between reasoning power and the ease of use needed for widespread uptake.

The crux of the continuous, iterative cycle of informatics-based research is the stage where

scientists interact with information.  It is at this point where new insights are derived and plans

are made for future study. For example, one of the most interesting products of the work

described in Chapter 5 was the formation of visualizations used to provide holistic summaries of

the components of the different metadata sources under study.  These subitizing illustrations

proved informative and interesting to many observers, suggesting that future work would profit

not only from expanding the number of parameters measured, but also from careful consideration

of and improvements in the way that this data is displayed.  Given the critical importance of

visualization, the current state of interface design for scientists is generally lacking.  With large

quantities of information increasingly pulled from multiple, distributed sources and increasingly

driving the scientific endeavour, better ways to visualize, summarize, and explore this

                                                  
12 According to the Onto-Med group at the University of Leipzig, a situoid is a “a category of processes whose
boundaries are situations, and that satisfy certain principles of coherence, comprehensibility and continuity”.  The
provided example instance of a situoid is “John's kissing of Mary'' [http://tinyurl.com/ae5z5g].
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information are fundamental.  I suggest that bioinformatics as a discipline should expand its

focus to emphasize basic research on interface design to derive specific visualizations of

recurring kinds of biological data.  Such visualizations might be enhanced by the levels of

granularity and of additional semantic properties made accessible by the kinds of metadata

discussed in the context of this dissertation.  Given the enormous complexity of human factors,

such research should be exploratory – creating and implementing new approaches - but should

also be goal-directed and critically evaluated through user-testing.

As we seek to expand the use of open systems further into scientific contexts, it is important to

balance the healthy spirit of innovation needed for creativity with the scepticism of the science

that will help improve future creations.  The work presented here provided examples of both

sides of this coin.  It offered some of the first, demonstrations of open metadata-generating

systems specifically designed to encourage the formation of the semantic Web in the life

sciences and it introduced new ways of quantitatively measuring metadata. The demonstrations

should serve as proofs of principle that, like other surprisingly successful open systems, will help

to motivate and to inspire the additional research needed to define robust, consistently effective

design strategies.  The approaches advanced for evaluation should aid this research by

contributing necessary components to the process of advancing open system design from its

current state as an abstract art guided by intuition into a science driven forward by measurement

and careful experimentation.  Together, these new strategies should serve as useful points of

reference for many future investigations of the role of third-parties in the management of

biological and medical information.

9.4 Closing remarks

“Genome-era bioinformatics, we repeat, is absolutely dependent upon the web as

a global collaboration framework. This framework has the potential of unifying

and sharing all biological knowledge as it emerges, driving an increasingly

productive social organisation of science.”

Tim Clark, Sean Martin, and Ted Liefeld [10]
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If we, as a society, are to realize the full potential of the Web and through it, the full potential of

global collaborative research in biology and in medicine, a number of steps need to be taken.

The first few steps are not unknown, they involve the creation of a unified system of unique

resource identification, the creation of interoperable interfaces for databases and analytical

services, and the provision of the metadata that will make it possible to not only discover

distributed resources but to integrate them automatically.  Progress is being made by the

bioinformatics community at each of these levels.  After years of philosophical, pragmatic, and

sometimes emotional debate, a consensus finally appears to be forming around the use and

recommended form of URIs for the identification of entities in bioinformatics [11].  Standards

designed for the sharing of information between machines, such as Web service interfaces, are

now increasingly accepted and applied by the community [12].  Perhaps more than any other

discipline, bioinformatics is embracing and making strong progress on the construction and

application of shared ontologies and other metadata structures for the annotation of its

information resources [13].

However, despite all of these advances, the scale of the work that remains is nearly

unimaginable. Even nine years ago, when PubMed had on the order of 5 million fewer references

[14] and GenBank 70 million fewer sequences [15, 16], it was accepted that it was “impossible

for a biologist to deal with all the knowledge within even one subdomain of their discipline”

[17].  As our capacity to measure the biological world continues to expand with the advent of

increasingly fast and inexpensive sequencing technologies and other high-throughput

instrumentation, the space of information of relevance to bioinformatics will inflate to reach

dimensions that will make the current ‘data deluge’ seem like the first few gentle drops of a

nascent monsoon. That this will happen is not a question, how we will deal with it is.

The research conducted for this dissertation was framed around the idea that, as suggested by

David Weinberger, “the solution to the overabundance of information is more information”

[18](p 13).  To make effective use of large bodies of information, it simply must be enhanced

with additional information that makes it possible to group like with like, to assess quality, to

summarize, and to reason at multiple levels of abstraction.  In assembling such metadata, we are

now presented with an expanding array of options.  We can implement powerful, expensive

institutional mechanisms, such as MEDLINE, for the curation of the new digital libraries of
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biology and medicine.  We can look to individuals acting to satisfy their own needs, such as the

contributors to social tagging services, to generate metadata about the resources that matter to

them.  We can design algorithms that extract the information automatically from primary data.

And we can design new methods that, like the ESP game, enable the centralized, institutionally

guided direction of mass collaborative action.  Ultimately, aspects of all these approaches will

likely be needed.

Modern science is an intensely social process.  While it is advanced by individual leaps of

intuition, the technology and compiled knowledge that enable these leaps are truly the products

of millions of minds working together.  It is my hope that the work conducted for this

dissertation will serve to enable the more harmonious organization of this global collaboration

and that, by doing so, I will have contributed some small part to the realization of the larger

dreams of biology and medicine.

Branche le monde, indeed!
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Appendix 1. Data collection for chapter 5: assembly of term-sets

1. MeSH

a. Files representing the 2008 release of MeSH were downloaded from

http://www.nlm.nih.gov/mesh/filelist.html on Feb. 11, 2008.

b. The preferred labels for the terms were taken from the downloaded file

“mshd2008.txt”.

c. The union of the preferred labels and the synonyms (mesh all) was extracted from

the downloaded MeSH XML file “desc2008” using a Java program.

d. The MeSH terms with comma separated adjectives, like “Cells, Immobilized”

were programmatically re-ordered to reflect a more natural English language

usage of adjective noun, such as “Immobilized Cells”.  This step was taken to

facilitate comparison with the other indexing languages that tended much more

towards this form.

2. OWL/RDF formatted thesauri and ontologies.  Unless otherwise, noted, all the labels for

the concepts and their synonyms were extracted from the files using custom Java code

built with the Jena OWL/RDF API.

a. ACM – Association for Computing Machinery

 i. An OWL-XML version of the 1998 ACM thesaurus was acquired from

Miguel Ferreira of the Department of Information Systems at the

University of Minho. See http://dspace-

dev.dsi.uminho.pt:8080/en/addon_acmccs98.jsp for more details.

b. AG – AGROVOC thesaurus from the Agricultural Information Management

Standards initiative

 i. An OWL-XML file containing the thesaurus (“ag_2007020219.owl”) was

downloaded from  http://www.fao.org/aims/ag_download.htm

c. BioLinks is a subject listing used to organize the bioinformatics links directory

(http://bioinformatics.ca/links_directory/).  An OWL version of these subject

headings was composed by one of the authors in August of 2007, and is available

at (http://bioinfo.icapture.ubc.ca/bgood/ont/BioLinks.owl).



207

d. The daily OWL versions of the following ontologies from the OBO foundry

(http://obofoundry.org/) were downloaded from

(http://www.berkeleybop.org/ontologies/) on Feb. 11, 2008.

 i. Gene Ontology (biological process, molecular function, cellular

component)

 ii. CARO – common anatomy reference ontology

 iii. CHEBI – chemical entities of biological interest

 iv. CL – cell ontology

 v. ENVO – environment ontology

 vi. FMA – an OWL version of the Foundational Model of Anatomy

 vii. NCI Thesaurus – National Cancer Institute thesaurus

 viii. OBI – Ontology for Biomedical Investigations

 ix. PATO – Phenotypic Quality ontology

 x. PRO – Protein Ontology

 xi. SO – Sequence Ontology

 xii. ZFA – Zebrafish Anatomy and Development Ontology

e. GEMET – the thesaurus used by the European Environment Information and

Observation Network was downloaded from

http://www.eionet.europa.eu/gemet/rdf?langcode=en on Feb. 15, 2008.  The

English terms were extracted from the provided HTML table.

3. Folksonomies (collections of tags created in social bookmarking systems)

a. Connotea

 i. The Connotea folksonomy was extracted from 377885 posts to Connotea

collected prior to December 12, 2007.  The Connotea Web API and the

Connotea Java library were used to gather and process the data.

b. Bibsonomy

 i. The Bibsonomy tag set was extracted from the January 1, 2008 dump of

the Bibsonomy database.  It is available for research upon request from

webmaster@bibsonomy.org.

c. CiteULike
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 i. The CiteULike tag set was extracted from the December 31, 2007 dump of

the CiteULike database.  Daily versions of this database are available for

research purposes from http://www.citeulike.org/faq/data.adp.


