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Abstract

High-order accurate methods have the potential to dramatically reduce the
computational time needed for aerodynamics simulations. This thesis studies
the discretization and efficient convergence to steady state of the high-order
accurate finite-volume method applied to the simplified problem of inviscid
and laminar viscous two-dimensional flow equations. Each of the three
manuscript chapters addresses a specific problem or limitation previously
experienced with these schemes. The first manuscript addresses the absence
of a method to maintain monotonicity of the solution at discontinuities while
maintaining high-order accuracy in smooth regions. To resolve this, a slope
limiter is carefully developed which meets these requirements while also
maintaining the good convergence properties and computational efficiency of
the least-squares reconstruction scheme. The second manuscript addresses the
relatively poor convergence properties of Newton-GMRES methods applied
to high-order accurate schemes. The globalization of the Newton method is
improved through the use of an adaptive local timestep and of a line search
algorithm. The poor convergence of the linear solver is improved through
the efficient assembly of the exact flux Jacobian for use in preconditioning
and to eliminate the additional residual evaluations needed by a matrix-free
method. The third manuscript extends the discretization method to the
viscous fluxes and boundary conditions. The discretization is demonstrated
to achieve the expected order of accuracy. The fourth-order scheme is also
shown to be more computationally efficient than the second-order scheme
at achieving grid-converged values of drag for two-dimensional laminar flow
over an airfoil.
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Chapter 1

Introduction

For almost all cases of practical interest, the equations governing fluid flow
cannot be solved analytically. Therefore engineers and scientists needing
to predict flow properties must depend on physical experiments or on the
numerical solution of the flow equations. The latter method, commonly
known as computational fluid dynamics (CFD) has grown to be an important
and broad field of study. Nonetheless, although immensely useful, these
methods have yet to reach a level of accuracy sufficient to completely replace
the need for costly and time consuming experimental work.

Although many aspects of the work presented in this thesis could be used
for other applications, the immediate focus is on aerodynamics. To date, the
most common goal of computational aerodynamics is the prediction of net
aerodynamic forces of lift and drag to help guide the design process. Early
successes in performing two-dimensional viscous simulations over airfoils and
three-dimensional inviscid simulations over aircraft were documented in a
review paper by Jameson in the mid 1980s [19]. The results available at the
time were sufficiently accurate to gain a qualitative understanding of the flow
but highly inaccurate for the quantitative prediction of drag and lift. Since
then, advances in modeling, numerical methods, and computational power
have greatly improved the fidelity of the results. Nonetheless the accuracy
of simulations involving three-dimensional turbulent flow around aircraft
configurations is still inadequate for many practical engineering purposes. In
recent years a series of drag prediction workshops has been held to evaluate
the state of the art in this domain. Studies of the combined results [18] of
these workshops have demonstrated that both the numerical methods and
the turbulence models used are responsible for these inaccuracies. This work
represents a modest contribution towards improving the accuracy of these
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1.1. Methods in Computational Aerodynamics

types of simulations. However the outlook for computational aerodynamics,
and therefore the need for efficient numerical methods, does not end with the
accurate prediction of lift and drag. As methods improve and computational
power increases, CFD applications will expand to the automatic optimization
of aerodynamic configuration, the study of fluid structure interaction, and
the study of flight dynamics.

1.1 Methods in Computational Aerodynamics

There are three essential components to the numerical simulation of fluid
flow:

1. Modeling. The partial differential equations describing the physics of
the problem must be defined.

2. Discretization. These partial differential equations must be discretized
thereby transforming them into a large system of algebraic equations.

3. Numerical Solution. The value of the discrete flow properties satisfying
the system of algebraic equations must be found.

All three of these aspects remain active fields of research. This thesis
introduces new contributions in the areas of discretization and numerical
solution which together can be called the numerical method. In this section
all three aspects will be introduced with an emphasis on methods most
relevant to the current work.

1.1.1 Modeling

For engineering purposes, the Navier-Stokes equations accurately describe
the physics of air flow. However the turbulent nature of aerodynamic flows
results in large disparities between time and length scales of small eddies and
macroscopic flow features. Since, in aggregate, these turbulent eddies have
an important effect on the flow they cannot simply be ignored. Currently
available computational power is grossly inadequate to solve the discretized
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Navier-Stokes equations sufficiently accurately to capture the effects of
turbulence for a typical aircraft configuration. Using an assumption that
computational power increases by a factor of 5 every five years, Spalart
estimated [35] that the direct simulation of turbulence for aircraft will not
be possible until the year 2080.

For these reasons the Reynolds averaged Navier-Stokes (RANS) equations
are preferred. To close this system of equations a turbulence model is needed
to estimate the effects of the fluctuation in the velocity field. The development
of these models, which themselves are typically systems of partial differential
equation, is an important field of research. The overall accuracy of the
solution will depend on the fidelity of the turbulence model and on how
accurately the RANS and turbulence model equations are solved by the
numerical method.

Large eddy simulation (LES) is a hybrid method in which effects of
smaller eddies are simulated with empirical models while larger eddies are
simulated directly. This approach can yield much more accurate results than
the RANS method, but requires much greater accuracy. In 2000, Spalart
estimated [35] that the grid size needed to perform LES simulations using
existing numerical methods would be a factor of 30, 000 larger than that
needed to perform RANS simulations. The cost of LES simulations is further
exacerbated by the lack of a steady-state solution necessitating averaging of
a time-accurate evolution of the solution. For these reasons Spalart estimates
that the computational resources to achieve this using existing numerical
approaches will not be available until 2045. Since the benefit of high-order
accurate methods increases with the desired solution resolution, the prospects
for these methods is even more promising for LES simulations than it is for
RANS simulations.

Although the numerical methods introduced in this work are ultimately
intended to be applied in conjunction with a turbulence model, they are
only demonstrated for inviscid and laminar flows. However some aspects of
the extension of our methods to the turbulent flows will be addressed in the
concluding chapter.
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1.1.2 Discretization

The purpose of discretization is to define a set of algebraic equations that
approximate the partial differential equations of the model. A number of
broad approaches exist for this. The most commonly used approach in
computational aerodynamics, and the one used in this work, is the finite-
volume method. In this method the spatial domain considered is tessellated
into non-overlapping control volumes. Algebraic equations are then used to
relate the control volume average states of the flow properties.

1.1.2.1 Choice of grids

Structured grids are attractive because they simplify many aspects of the
solver. However generating structured grids around complex geometries is
challenging. Even when a structured grid can be fitted, it often leads to grid
spacing which is poorly adapted to the expected local flow gradients. Some
methods, such as multi-block grids and overlapping grids, can be used to
help alleviate some of these limitations. However structured grids remain
difficult to generate for non-trivial geometries.

For these reasons unstructured grids have gained popularity in computa-
tional aerodynamics and are used in the present work. They can be fitted
to geometries of any complexity and the local grid density can readily be
controlled. Unlike with structured grids, the process of generating the mesh
can be almost completely automated. However unstructured grids also lead
to greater complexity of the solver since the mesh connectivity must be
stored and since the discretization cannot take advantage of a structured
topology. The first solutions of the Euler equations on unstructured grids
were carried out using the finite-element method in the 1980s [1, 22]. Shortly
thereafter work using the finite-volume method was carried out by Jameson
and Mavriplis [21].

1.1.2.2 Order of accuracy

For any consistent numerical method, the error resulting from the discretiza-
tion of the partial differential equations should decrease when the grid is
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refined. Specifically, a discretization will produce an error of O (hp) where h
is the mesh length scale and p is the order of accuracy. The disadvantage of
methods achieving a higher order of accuracy is that they are more compli-
cated to implement and are more computationally expensive on a given grid.
However to achieve the same level of accuracy a high-order accurate method
can use a coarser grid than a lower-order accurate method. Therefore, from
a computational cost perspective, the choice of discretization accuracy is
not an obvious one. Due to their relative simplicity, second-order accurate
schemes are by far the most commonly used methods for computational
aerodynamics. The question of whether high-order accurate schemes could
achieve desired levels of accuracy more efficiently has not been adequately
addressed.

A third-order accurate method for structured grids has been studied by
De Rango and Zingg [12]. In this study two-dimensional turbulent flow over
airfoils was considered. The high-order accurate method was shown to obtain
adequately accurate solutions on coarser grids than the second-order scheme.
Furthermore the overall computational cost of attaining this level of accuracy
was shown to be lower for the third-order scheme than the second-order
scheme due to the coarser mesh requirement.

On unstructured grids a nominally third-order accurate finite-volume
methods on unstructured grids for the Euler equations was introduced by
Barth and Frederickson [3–5]. This work introduced k-exact reconstruction,
which was further studied by other researchers [13, 16, 38]. These latter
works used a third-order k-exact reconstruction for the advective fluxes and
Green-Gauss gradient to compute viscous fluxes. Although a qualitative
assessment of accuracy for practical cases was made in these works, the
effective nominal accuracy of the scheme has not been demonstrated. Fur-
thermore the superiority of the method, in terms of computational effort
to attain a level of accuracy relative to second-order schemes, has also not
been demonstrated. Considerable work using the Euler equation has also
previously been carried out by others in the present author’s group [26–28].
These works successfully demonstrated that the nominal level of accuracy for
schemes up to fourth-order can be obtained for shockless flows. Work in the
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group has also been previously carried out demonstrating the effectiveness
of the k-exact reconstruction in obtaining high-order accurate solutions of
the advection-diffusion equation [29].

The discontinuous Galerkin finite-element method has also been success-
fully applied to the high-order accurate solution of compressible flow [7, 8, 15].
As with the high-order finite-volume method, the discontinuous Galerkin
method has not yet matured enough to be used in production codes. The
computational efficiency, in particular, has not been shown to exceed that of
second-order finite-volume methods in common use. A disadvantage of this
method is that, unlike in the finite-volume method, the number of degrees of
freedom increases with the order of accuracy on a given mesh.

1.1.3 Numerical Solution

Once a spatial discretization has been selected, the remaining step is to
address the time evolution of the system. For aerodynamics problems
modelled using RANS, often only the steady-state solution is of interest. In
this case, the time dependent terms could, in theory, be eliminated from the
system of equations. If this is done, the remaining problem is to find the
root of the equations defining the space discretization. In practice this root
finding problem is most easily solved by reintroducing a time-like term to
the equations. Therefore, whether a time-dependent or steady-state solution
is sought, some form of time integration is needed.

Explicit time integration methods, such as the Runge-Kutta schemes, are
relatively simple to implement since they only require a means of evaluating
the residual of the space discretized equations. However their stability is
limited by the Courant–Friedrichs–Lewy (CFL) condition. This limits the
size of the timesteps that can be taken relative to the grid spacing. For typical
grids used in computational aerodynamics this results in the need for an
inordinate number of residual evaluations. Therefore the computational effort
needed by these schemes is prohibitively high. For steady-state problems, the
efficiency of explicit time-advance methods can be greatly improved through
the use of multigrid methods [11, 20, 23, 24, 30].
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Alternatively, implicit time integration methods can be used. Unlike
explicit methods, the timestep is not restricted by the CFL condition. Implicit
methods can therefore be substantially more efficient, particularly when
only a steady-state solution is needed. At the limit when the timestep is
infinitely large, the approach reduces to the Newton method. Typically the
solution strategy is to use an implicit timestep until the solution is sufficiently
converged to transition to a full-Newton method. Alternatively, the timestep
can be ramped up gradually and the method approaches the Newton method
asymptotically. However implicit methods are considerably more complex to
implement since the solution of a large linear system involving the Jacobian
of the residual is needed.

Early approaches for solving the linear systems arising from the implicit
method were based on direct solution techniques [2, 36, 37]. However
the memory and processing requirements of direct methods quickly become
intractable. Therefore attention quickly turned to solving these linear systems
approximately using iterative methods. In particular Generalized Minimal
Residual (GMRES) [33], part of the Krylov subspace family of methods, has
been shown to be very effective. On structured grids Pueyo and Zingg [31]
demonstrated an efficient Newton-GMRES method for aerodynamic flow
computations. A number of researchers have successfully applied Newton-
GMRES on unstructured grids [6, 9, 26, 39].

1.2 Overview of the Solver

This section provides a brief overview of the high-order accurate finite-
volume solver used in this work. Focus will be placed on the components
of the solver that are not thoroughly addressed in the manuscript chapters.
Specifically, the focus here will be on the spatial discretization of the inviscid
flow equations. The extension to the viscous case is addressed in Chapter 4
and strategies for solving the discrete equations for steady state problems
are addressed in Chapter 3.
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1.2.1 Governing Equations

The two-dimensional Euler equations for a control volume Vi can be written
in integral form as

d

dt

ˆ
Vi

U dA+
˛

Ωi

F dS = 0 (1.1)

U =


ρ

ρu

ρv

E

 F =


ρun

ρuun + Pn̂x

ρvun + Pn̂y

(E + P )un

 (1.2)

where U is the solution vector in conservative variables, F is the flux vector
normal to the control volume boundary, n̂x and n̂y are the unit normal
components, and un = un̂x + vn̂y . The conserved variables consist of the
density (ρ), two components of momentum (ρu and ρv), and energy (E). Air
is modeled as an ideal gas with the equation of state

P = ρRT

where P is pressure, R is the specific gas constant for air, and T is the
temperature. The following thermodynamic relationships are also used

γ =
Cp
Cv
, Cp =

γR

γ − 1
, Cv =

R

γ − 1
, R = Cp − Cv

e = CvT, et = e+
1
2

(u2 + v2), E = ρet, h = et +
P

ρ

where γ is the ratio of specific heats for air, Cp and Cv are the specific heats,
e is the specific internal energy, et is the specific total energy, E is the total
energy, and ht is the specific total enthalpy. An important property for
compressible flows is the Mach number M which is the ratio of the flow
speed to the speed of sound a

M =
√
u2 + v2

a

8



1.2. Overview of the Solver

a =
√
γRT

To reduce round-off error and to improve the conditioning of the discretization,
the flow properties are normalized. For this, the following reference quantities
are used

ρref = ρ∞, Tref = T∞, Pref = γP∞

uref = vref = a∞, Rref = R∞ = const

where [·]ref is the reference value, and [·]∞ is the far-field value for exter-
nal aerodynamics problems or some other representative value for internal
flows. The governing equations can then be expressed in terms of the
non-dimensionalized quantities

ρn =
ρ

ρref
, Tn =

T

Tref
, Pn =

P

Pref

un =
u

uref
, vn =

v

vref
, Rn =

R

Rref
= 1

The important non-dimensionalized constitutive relations become

Pn =
ρnTn

γ
, an =

√
Tn , En =

Pn

γ − 1
+

1
2
ρn

(
u2

n + v2
n

)
, hn =

En + Pn

ρn

For the remainder of this thesis we will refer only to the normalized values
and the subscript n is therefore dropped.

1.2.2 Vertex Centered Finite-Volume Discretization

The grids used in the present work are generated using a Delaunay refinement
algorithm [10, 34]. In two dimensions these algorithms generate meshes
composed of triangular cells. The solver used in the present work uses
the median dual control volume formulation shown in Figure 1.1. Control
volumes are associated with each vertex and are defined by connecting cell
centroids with face centroids of the primal mesh. The dependent variables,
which will be solved for, represent the control volume averaged values of the

9



1.2. Overview of the Solver

Median Dual

Primal Mesh

Figure 1.1: Median dual control volume

flow properties

U i =
1
Ai

ˆ
Vi

U dA

1.2.3 Reconstruction

Reconstruction is a central component to the high-order accurate finite-
volume method. Some of the details of reconstruction are therefore repeated
to various extent in the manuscript chapters of this thesis. However, for
completeness, the fundamental details of reconstruction for the inviscid
scheme are summarized here. The extension to the viscous case is described
in Chapter 4.

To obtain a high-order accurate numerical approximation to the residual
we reconstruct a polynomial representation of the solution within each control
volume. As is common, the reconstruction is carried out in the primitive
variables U = [ρ, u, v, P ]T rather than the conserved variables. As in previous
work [29], the high-order accurate reconstruction is obtained by formulating
and solving a least-squares problem.

To obtain an accurate estimate of the solution at flux quadrature points,
we represent the solution within each control volume by the Taylor series

10



1.2. Overview of the Solver

expansion

URi (x− xi, y − yi) = U |i +
∂U

∂x

∣∣∣∣
i
(x− xi) +

∂U

∂y

∣∣∣∣
i

(y − yi) +

∂2U

∂x2

∣∣∣∣∣
i

(x− xi)2

2
+

∂2U

∂x∂y

∣∣∣∣∣
i

(x− xi) (y − yi) +

∂2U

∂y2

∣∣∣∣∣
i

(y − yi)2

2
+ · · · (1.3)

where URi is the value of the reconstructed solution and ∂k+lUi
∂xk∂yl

are its
derivatives at the reference point (xi, yi) of control volume i. The reference
point typically used for vertex-centered schemes is the vertex location. The
order of accuracy that the numerical method will achieve is, amongst other
factors, limited by the truncation error of this reconstruction. Truncating this
polynomial to degree k will result in a scheme which is at most (k+ 1)-order
accurate. In the present work we consider reconstructions of up to cubic
degree resulting in schemes up to fourth-order accurate. The coefficients
of the polynomial are computed so that the mean value of the solution
in the control volume is conserved and the reconstruction approximates
nearby control volume averages. The neighboring control volumes used for
reconstruction are selected based on their topological distance as shown in
Figure 1.2. Entire topological layers are added until the number of neighbors
equals or exceeds a set minimum. In the present work we use a minimum of 4
neighbors for linear reconstruction, 10 neighbors for quadratic reconstruction,
and 16 neighbors for cubic reconstruction.

Conservation of the mean within a control volume is satisfied when

U i =
1
Ai

ˆ
Vi

URi dA ≡ U |i +
∂U

∂x

∣∣∣∣
i
xi +

∂U

∂y

∣∣∣∣
i

yi +

∂2U

∂x2

∣∣∣∣∣
i

x2
i

2
+

∂2U

∂x∂y

∣∣∣∣∣
i

xyi +

∂2U

∂y2

∣∣∣∣∣
i

y2
i

2
+ · · · (1.4)
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2
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Figure 1.2: Example reconstruction stencil for second- and third-order scheme.
In this example the fourth-order stencil would be identical to the third-order
stencil.

where
xnymi ≡

1
Ai

ˆ
Vi

(x− xi)n(y − yi)mdA

As we shall see, this mean constraint can be eliminated analytically from
the least-squares system. The terms used to construct the reconstruction
least-squares problem have the form

1
Aj

ˆ
Vj

URi (~x− ~xi) dA = U |i +
∂U

∂x

∣∣∣∣
i
x̂ij +

∂U

∂y

∣∣∣∣
i

ŷij (1.5)

+
∂2U

∂x2

∣∣∣∣∣
i

x̂2
ij

2
+

∂2U

∂x∂y

∣∣∣∣∣
i

x̂yij +
∂2U

∂y2

∣∣∣∣∣
i

ŷ2
ij

2
+ · · ·

The geometric terms in this equation are of the general form

̂xnymij ≡ 1
Aj

ˆ
Vj

((x− xj) + (xj − xi))n · ((y − yj) + (yj − yi))m dA

=
m∑
l=0

n∑
k=0

m!
l! (m− l)!

n!
k! (n− k)!

(xj − xi)k · (yj − yi)l · xn−kym−lj

The resulting least-squares problem to be solved for each solution variable in
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each control volume takes the form



1 xi yi x2
i xyi y2

i · · ·
wi1 wi1x̂i1 wi1ŷi1 wi1x̂2

i1 wi1x̂yi1 wi1ŷ2
i1 · · ·

wi2 wi2x̂i2 wi2ŷi2 wi2x̂2
i2 wi2x̂yi2 wi2ŷ2

i2 · · ·
wi3 wi3x̂i3 wi3ŷi3 wi3x̂2

i3 wi3x̂yi3 wi3ŷ2
i3 · · ·

...
...

...
...

...
...

. . .

wiN wiN x̂iN wiN ŷiN wiN x̂2
iN wiN x̂yiN wiN ŷ2

iN · · ·





U
∂U
∂x
∂U
∂y

1
2
∂2U
∂x2

∂2U
∂x ∂y
1
2
∂2U
∂y2

...


i

=



U i

wi1U1

wi2U2

wi3U3

...
wiNUN


(1.6)

where the weights can be used to emphasize geometrically nearby data

wij =
1

|~xj − ~xi|n
(1.7)

where typically n ∈ [0, 2]. For isotropic or lightly anisotropic grids (such as
those used for laminar flows) the choice of n does not impact the accuracy of
the scheme but does affect its conditioning and stability. In the present work
we use n = 1 for the inviscid cases and n = 0 for viscous cases. The first
equation in the linear system is the mean constraint, which can be removed
by Gauss elimination, leaving an unconstrained least-squares problem of
reduced size. The efficient solution of these least-squares systems is discussed
in Chapter 3. Once the polynomial coefficients are known, the reconstructed
flow properties at any point in the control volume can easily be found using
Equation 1.3.
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1.2.4 Interior and Boundary Flux Evaluation

To maintain the numerical stability of the system, careful upwinding of the
Euler system of equations is needed. The discretization of the flux follows
the pioneering work of Godunov [17] who suggested solving what amounts to
a shock tube–or Riemann–problem at the interface of control volumes. Since
solving this Riemann problem exactly is computationally costly, a number
of approximate Riemann solvers have been developed. In the present work,
Roe’s approximate Riemann solver [32] is used. The reconstructed solution
from each of two control volumes incident on the Gauss point is used to
define the two states of the Riemann solver.

The inviscid boundary conditions are enforced by using a special flux
function at boundary Gauss points. In general this flux is simply taken as
the analytic flux of Equation 1.2 computed using some information from the
single reconstructed value from the interior and some information from the
boundary condition. Specifically, for walls, we use the reconstructed value of
ρ and P and a zero velocity normal to the wall. For inflows and outflows the
boundary flux is constructed based on an eigenvalue analysis. Specifically,
for supersonic inflows all values are taken from the boundary condition. For
subsonic inflows the reconstructed value of pressure from the interior is used
along with the total pressure, total temperature, and flow direction from
the upstream condition. Analogously, for supersonic outflows the flux is
based entirely on reconstructed values from the interior while for subsonic
outflows pressure is defined by the boundary condition while the remaining
flow properties are obtained from the reconstruction.

1.2.5 Flux Integration

As part of the numerical method, the contour integral in Equation 1.1 needs
to be discretized. This is obtained through the use of Gauss quadrature.
To achieve the desired order of accuracy, a single Gauss point per median
dual edge is used for first- and second-order schemes and two Gauss points
per edge are used for third- and fourth-order schemes. This represents,
respectively, two and four points per edge of the primal mesh.
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Curved Boundary

Gauss Point Normal

Median Dual Control−Volume

Primal Mesh

Figure 1.3: Approximate location and normal of Gauss integration points
for a third- or fourth-order scheme on a boundary control volume

To achieve third- and high-order accurate schemes it is well known
that Gauss points must be correctly located on curved boundaries [27, 29].
Recently it has also been shown that for vertex-centered schemes the curvature
of the boundary must be accounted for when determining the Gauss point
locations and the normals to the interior median dual edge incident on the
boundary [14]. For this reason, the Gauss point locations, normals and
weights are all computed from the curved boundary information as shown in
Figure 1.3.

In the present work we are concerned with steady-state flows. In these
problems, the time derivative term in Equation 1.1 is eliminated and the
remaining task is to find the root of the system of equations defining the
discrete flux integrals. The novel approach taken in this work, and how it
compares to more commonly used methods, is discussed in Chapter 3.
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1.3 Objectives and Outline

The objective of this thesis is to demonstrate that carefully implemented
high-order accurate unstructured finite-volume methods for computational
aerodynamics can be more computationally efficient than the second-order
methods commonly used. This broad objective is attained by considering a
number of specific, previously unresolved issues. Although ultimately this
study is aimed at resolving issues with the simulation of three-dimensional
turbulent flows, the current study is carried out in two-dimensions. Further-
more, only inviscid and laminar viscous flows are considered. We use these
simplifications since certain aspects of implementing the high-order method
for turbulent three-dimensional flows have not yet been addressed. These
challenges will be discussed in the concluding chapter. The core chapters of
this thesis are composed of three manuscripts submitted for journal publica-
tion. Further motivation and relevant background information is therefore
addressed in each individual chapter.

Many aerodynamic flows of engineering interest occur in the transonic or
supersonic regimes. Chapter 2 addresses the previously unresolved issue of
how to eliminate unwanted oscillations near solution discontinuities such as
shocks while maintaining the accuracy of the high-order method in smooth
regions. The chapter studies the extension of limiters used for second-order
methods to the high-order case. The requirements for accuracy and efficient
convergence are discussed. A new limiting procedure is proposed. Ringleb’s
flow problem is used to demonstrate that nearly nominal orders of accuracy
for schemes up to fourth-order can be achieved in smooth regions using the
new limiter. The results for the fourth-order accurate solution of transonic
flow demonstrates good convergence properties and significant qualitative
improvement of the solution relative to the second-order method. It is also
demonstrated that the new limiter can reduce the dissipation of second-order
schemes with minimal sacrifices in convergence properties relative to existing
approaches.

Although the matrix-free Newton-GMRES method commonly used to
converge the solution of the second-order scheme to steady-state has been
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shown to be relatively effective for the third-order scheme, it has also been
shown to be less effective for the fourth-order scheme [25, 26]. Chapter 3
successfully addresses the poor convergence to steady sate of the fourth-order
scheme through the use of novel Newton globalization techniques and the
use of the exact flux Jacobian with a matrix-explicit GMRES method. We
show that robustness of the globalization can be improved by supplementing
the pseudo-timestepping method commonly used with a line search method.
The number of timesteps required for convergence can be reduced by using a
timestep that scales with the local residual. We also show that it is possible
to form the high-order Jacobian explicitly at a reasonable computational
cost. This is demonstrated for cases using both limited and unlimited
reconstruction. This exact Jacobian can be used for preconditioning and
directly in the GMRES method. The benefits resulting from improvements
in preconditioning and the elimination of residual evaluations in the inner
iterations of the matrix-free GMRES method are substantial. Computational
results focus on second- and fourth-order accurate schemes with some results
for the third-order scheme. Overall computational cost for the matrix-explicit
method is lower than the matrix-free method for all cases. The fourth-order
matrix-explicit scheme is a factor of 1.6 to 3 faster than the matrix-free
scheme while requiring about 50-100% more memory.

In Chapter 4, the methods successfully applied for the high-order solution
of inviscid flow are extended to laminar viscous flow. A means of enforcing
the viscous boundary conditions by introducing additional rows in the recon-
struction matrices is devised. The solution gradients needed for the viscous
fluxes are obtained from the same reconstruction polynomials used for the
inviscid flux. Rapid convergence of steady-state problems is made possible
by computing the exact flux Jacobian and the use of a Newton-GMRES
algorithm. A grid convergence study of cylindrical Couette flow is used to
demonstrate the order of accuracy of the scheme. Laminar flow over an airfoil
on a sequence of anisotropic grids is also used to qualitatively demonstrate
the superior accuracy of the fourth-order scheme.

The conclusion in Chapter 5 discusses the combined significance of the
methods and results presented in the manuscript chapters. A number of ex-
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tensions to the present work are suggested. In particular the extensions of the
methods to three dimensions and turbulent flows are discussed. The expected
difference in the computational efficiency trade-offs for three-dimensional
methods relative to their two-dimensional counterparts are addressed. Spe-
cific issues of high-order methods applied to the highly anisotropic grids
needed to solve high Reynolds number flows are discussed. The need for
a stable high-order accurate discretization of turbulence model is also ad-
dressed.
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Chapter 2

Monotonicity Enforcement

Using a Limiter†

2.1 Introduction

High-order discretizations have been shown to reduce computational effort on
structured grids [6, 22]. High-order finite-volume methods on unstructured
grids, although well known [3, 4, 7], have not yet effectively been applied
to large scale aerodynamics problems. An outstanding issue with these
methods is how to deal with discontinuities, such as shocks in the flow, while
maintaining good accuracy and convergence.

One means of dealing with discontinuities is to use the classic MUSCL [20]
scheme with the addition of a slope limiter. For the second-order case, Barth
and Jespersen [5] demonstrated the use of limited reconstruction for the
solution of the Euler equations. Efficient convergence to steady state was
achieved by Venkatakrishnan [21] by modifying the limiter to be differentiable.

Third-order accurate schemes using k-exact reconstruction have been
demonstrated first by Barth and Frederickson [4] and subsequently by oth-
ers [2, 7, 9, 13, 14, for example]. Transonic and supersonic solutions have
been computed in some of these works by various extensions of second-order
limiters. However, the work of Barth [2] presents a limiting approach which
causes difficulties in steady-state convergence, while other works [7, 13]
present approaches that do not strictly enforce monotonicity and therefore al-
low some undesirable oscillations to occur. Furthermore none of these works
†A version of this chapter will be submitted for publication. C. Michalak and C.

Ollivier-Gooch. Accuracy preserving limiter for the high-order accurate solution of the
Euler equations.
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formally demonstrate that high-order accuracy is maintained in smooth
regions of the flow.

An alternative to MUSCL for obtaining high-order accurate solutions
is the essentially non-oscillatory (ENO) scheme [1, 10, 18, for instance].
These methods avoid the need for slope limiters by selecting a smooth flux
stencil at each iteration. Due to the inherent non-differentiability of this
process, convergence of the solution to steady state is not possible. Weighted
ENO (WENO) schemes [8, 11, 12, for instance] were introduced in part
to resolve this issue. However these schemes do not converge to steady
state as efficiently as MUSCL schemes. The computational cost per residual
evaluation is also much higher than for reconstruction based solvers. A hybrid
between WENO and MUSCL schemes named Quasi-ENO [15] has similar
limitations. This method’s reconstruction step is much more expensive than
traditional MUSCL since the reconstruction least-squares matrix changes at
each iteration. For these reasons ENO-like schemes have not seen widespread
application to aerodynamics problems.

The present work formulates the requirements and presents a candidate for
a limiter that achieves fourth-order accurate solutions in smooth regions while
maintaining monotonicity and good convergence properties. An overview of
the high-order MUSCL scheme is given in Section 2.2. Second-order limiters
are reviewed in Section 2.3. Our extension of these methods to high-order
schemes is presented in Section 2.4. Finally, we present results in Section
2.5 that demonstrate that our method achieves nominal order of accuracy in
smooth regions of the flow while effectively eliminating oscillations at shocks
and maintaining good convergence properties.

2.2 High-Order Accurate Solution

Reconstruction

The third- and fourth-order accurate reconstruction procedure we use here is
documented by Ollivier-Gooch and Van Altena [16] and is briefly reviewed in
this section. Only the equations that are needed for the discussion of limiters
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are presented.
In the finite-volume method, the domain is tessellated into non-overlapping

control volumes. Each control volume Vi has a geometric reference point
~xi. While in principle any point can be chosen as the reference point, the
usual choices (which we recommend) are the cell centroid for cell-centered
control volumes and the vertex for vertex-centered control volumes. For any
smooth function U(~x) and its control volume averaged values U i, the k-exact
least-squares reconstruction will use a compact stencil in the neighborhood
of control volume i to compute an expansion URi (~x− ~xi) that conserves the
mean in control volume i and reconstructs exactly polynomials of degree ≤ k
(equivalently, URi (~x− ~xi)− U(~x) = O

(
∆xk+1

)
) .

Conservation of the mean requires that the average of the reconstructed
function URi and the original function U over control volume i be the same:

U i ≡
1
Vi

ˆ
Vi

URi (~x− ~xi) dA =
1
Vi

ˆ
Vi

U (~x) dA (2.1)

The expansion URi (~x− ~xi) can be written as:

URi (~x− ~xi) = U |~xi +
∂U

∂x

∣∣∣∣
~xi

(x− xi) +
∂U

∂y

∣∣∣∣
~xi

(y − yi)

+
∂2U

∂x2

∣∣∣∣∣
~xi

(x− xi)2

2
+

∂2U

∂x∂y

∣∣∣∣∣
~xi

((x− xi)(y − yi)) (2.2)

+
∂2U

∂y2

∣∣∣∣∣
~xi

(y − yi)2

2
+ · · ·

Taking the control volume average of this expansion over control volume
i and equating it to the mean value gives

U i = U |~xi +
∂U

∂x

∣∣∣∣
~xi

xi +
∂U

∂y

∣∣∣∣
~xi

yi (2.3)

+
∂2U

∂x2

∣∣∣∣∣
~xi

x2

2
+

∂2U

∂x∂y

∣∣∣∣∣
~xi

xy +
∂2U

∂y2

∣∣∣∣∣
~xi

y2

2
+ · · ·
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2.3. Second-Order Limiting

where
xnymi ≡

1
Ai

ˆ
Vi

(x− xi)n(y − yi)mdA. (2.4)

are control volume moments. This condition, which must be satisfied exactly,
is combined with the reconstruction goal of approximating nearby control
volume averages to obtain a constrained least-squares problem for the solution
of the Taylor series expansion coefficients. Since the resulting least-squares
matrix depends only on geometric terms, its pseudoinverse may be found
in a preprocessing step. Therefore the reconstruction step at each flux
evaluation is reduced to a matrix-vector product and the exact flux Jacobian
can be computed as described in the manuscript reproduced in Chapter 3.
Ollivier-Gooch [15] presents a modification to the reconstruction procedure
resulting in a quasi-ENO scheme. This scheme eliminates the requirement
for a limiter by varying the weights of the rows in the least-squares matrix
at each iterations based on a measure of smoothness. However, since the
pseudoinverse can no longer be precomputed, this scheme is computationally
expensive.

2.3 Second-Order Limiting

To avoid introducing oscillation in the solution process, no new local extrema
must be formed during reconstruction. Barth and Jespersen [5] introduced
the first limiter for unstructured grids. The scheme consists of finding a
limiter value Φi for each primitive flow variable in each control volume that
will limit the gradient in the piecewise-linear reconstruction of the solution.
In the second-order reconstruction case, if the reference location ~xi is taken
to be the control volume centroid, the point-wise value U |~xi is equal to the
control volume average U i. This leads to the limited reconstruction of the
form

URi (~x− ~xi,Φi) = U i + Φi 5 Ui · (~x− ~xi), Φ ∈ [0, 1]

The goal is to find the largest Φi which prevents the formation of local
extrema at the flux integration Gauss points. The following procedure is
used by Barth and Jespersen :
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2.3. Second-Order Limiting

1. Find the largest negative (δUmini = min(U j−U i)) and positive (δUmaxi =
max(U j −U i)) difference between the solution in the immediate neigh-
bors j and the current control volume i.

2. Compute the unconstrained reconstructed value at each Gauss point
(Uik = URi (~xk − ~xi)).

3. Compute a maximum allowable value of Φik for each Gauss point k.

Φik =


min

(
1, δU

max
i

Uik−U i

)
, if Uik − U i > 0

min
(

1, δU
min
i

Uik−U i

)
, if Uik − U i < 0

1, if Uik − U i = 0

4. Select Φi = min(Φik) .

5. Compute the limited reconstruction URi (~x− ~xi,Φi) at flux Gauss inte-
gration points.

Clearly, steps 1, 3, and 4 introduce non-differentiability in the computation of
the reconstructed function. Consequently, the second-order flux is also non-
differentiable. This has severe adverse effect on the convergence properties of
the solver. This is particularly evident for implicit schemes, but even explicit
time advance schemes are unable to obtain more than two or three orders of
magnitude in residual reduction.

In practice, the non-differentiability of step 3 causes the greatest degra-
dation in convergence performance. For this reason, Venkatakrishnan [21]
introduces a smooth alternative to step 3 of the Barth-Jespersen procedure
by replacing the function min(1, y) with

φ(y) =
y2 + 2y
y2 + y + 2

(2.5)

The effect of this modification can be seen in Figure 2.1. This function is
differentiable and is entirely contained within the monotonicity bounds of
the original limiter. Furthermore by satisfying the condition φ(2) = 1 this
limiter can be shown to preserve second-order accuracy in regions where
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Figure 2.1: Venkatakrishnan’s smooth approximation to min(1, y)

no extrema exist for perfectly uniform meshes. Specifically for smooth
solutions on a uniform mesh, the value of the Gauss point is expected to be
located at the midpoint connecting two control volume centroids. Therefore
for any smooth function δUmaxi

Uik−U i
is expected to be 2 ± O (xi − xik), and

φ(y) is therefore expected to be 1 ± O (xi − xik). Hence, modifying the
gradient in this manner for second-order solutions introduces an error in
the reconstruction which is on the order of truncation for smooth flows on
uniform grids. However, for general unstructured grids the Gauss point
can be located at a distance O (xi − xik) away from the midpoint between
centroids. Therefore, as will be seen in the results, this limiter leads to
accuracy loss relative to the unlimited scheme.

A further modification introduced by Venkatakrishnan is a method to
avoid applying the limiter in regions of nearly uniform flow and smooth
extrema. In these regions we expect the solution to vary such that Uik−U i =
O
(
∆x2

)
where ∆x is the characteristic length of the control volume i.

Therefore if the effect of the limiter can be eliminated when Uik − U i ≤
(K∆x)1.5, where K is a tunable parameter, accuracy in smooth extrema
regions can be improved without compromising monotonicity enforcement in
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2.4. High-Order Limiting

other regions.
Venkatakrishnan uses a method inspired by van Albada [19] to make the

switch between limited and unlimited regions of flow using a differentiable
function so that convergence properties are not adversely affected. For the
case Uik − U i > 0 the limiter becomes

φik =
1

∆−

[
(∆2

+ + ε2)∆− + 2∆2
−∆+

∆2
+ + 2∆2

− + ∆−∆+ + ε2

]
(2.6)

In this equation ∆− = Uik − U i, ∆+ = δUmaxi and ε2 = (K∆x)3. In
addition to improving accuracy this modification is known to be critical
to achieving good convergence. When the solution is perturbed in nearly
uniform regions or near smooth extrema the results of steps 1 and 4 of the
limiting procedure can be expected to change more frequently than in non-
uniform regions. Therefore the non-differentiability of these steps is a much
greater hindrance to convergence in uniform regions than in non-uniform
regions. By effectively disabling the limiter in uniform regions, the addition
of the ε term in Equation 2.6 greatly improves convergence. The choice of the
parameter K is a compromise. Large values of K are favorable to accuracy
in smooth regions and good convergence. However, since for any K > 0 the
limiter no longer strictly enforces monotonicity, large values of K can lead
to significant overshoots near discontinuities in the solution.

2.4 High-Order Limiting

2.4.1 Monotonicity

The first challenge of extending the limiting procedure to third- and fourth-
order accurate schemes is to express the monotonicity requirement including
the high-order reconstruction terms. In second-order schemes the assumption
that the solution at the reference point is equal to the control volume average
is often made. For cell-centered schemes, where the reference point is the
centroid, this assumption is correct. For vertex-centered scheme, the reference
point is usually chosen as the vertex location, therefore the assumption is
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2.4. High-Order Limiting

not strictly correct. However, for third- and higher-order schemes the control
volume average solution is in general not equal to the centroidal value of the
reconstruction. Therefore, when devising a limiter for these schemes, making
the distinction between control volume average values and reference-point
values becomes critical for maintaining high-order accuracy. With this in
mind, the reconstruction polynomial in Equation 2.2 can be rewritten in
terms of the control volume average with the help of equation 2.3 to yield:

URi (~x− ~xi) = U i +

(
∂U

∂x

∣∣∣∣
~xi

((x− xi)− xi) +
∂U

∂y

∣∣∣∣
~xi

((y − yi)− yi)
)

+

 ∂2U

∂x2

∣∣∣∣∣
~xi

(
(x− xi)2

2
− x2

2
) +

∂2U

∂x∂y

∣∣∣∣∣
~xi

((x− xi)(y − yi)− xy)

+
∂2U

∂y2

∣∣∣∣∣
~xi

(
(y − yi)2

2
− y2

2
) + · · ·

 (2.7)

This can be interpreted as meaning that the reconstructed solution at any
point is the control volume average plus second and high-order contributions
from the reconstruction :

URi (~x− ~xi) = U i + S(~x− ~xi) +H(~x− ~xi)

Therefore, analogous to the second-order case, no new extrema will be formed
if

δUmini ≤ S(~x− ~xi) +H(~x− ~xi) ≤ δUmaxi

As in the work of Barth[2], the limited form of the high-order accurate
reconstruction can be expressed as

URi (~x− ~xi,Φi) = U i + Φi

(
S(~x− ~xi) +Hi(~x− ~xi)

)
(2.8)

Given this formulation, the same limiting procedure used in Section 2.3 can
be applied to the high-order reconstruction.

Some previous works [7, 13] have suggested a formulation where the
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2.4. High-Order Limiting

limiter value multiplies only the second-order terms while the high-order
terms are “switched off” when discontinuities are detected. This formulation
has the form of

URi (~x− ~xi,Φi, σi) = U i + (Φi (1− σi) + σi)S(~x− ~xi) + σiH(~x− ~xi)

where σi, the discontinuity detector, is zero near discontinuities and one
in smooth regions of the flow. However, this approach may violate the
monotonicity requirement as the high-order terms may have contributed to
reducing the overshoot in the unlimited reconstruction used in determining
the value of Φi. Therefore, the value of Φi computed may be insufficient to
reduce the slope such that overshoots occur when the high-order reconstruc-
tion terms are disabled. The additional parameters introduced in a smooth
switching function for σi can be considered a further disadvantage.

2.4.2 Accuracy

As previously mentioned, on uniform grids a limiter for the second-order
scheme maintains nominal accuracy as long as |φ− 1| ≤ O (∆x) since this
results in an error that is on the order of the quadratic term in the Taylor
expansion. However, when a third- or fourth-order scheme is used, the limiter
must satisfy |φ− 1| ≤ O

(
∆x2

)
or |φ− 1| ≤ O

(
∆x3

)
, respectively, for the

effect of the limiter in smooth regions to be on the order of truncation error.
For this reason, Venkatakrishnan’s limiter will not provide sufficient

accuracy even in smooth regions without any local extrema. While the Barth-
Jespersen limiter does satisfy these conditions, the lack of differentiability
will make achieving a steady-state solution difficult. Therefore, we seek a new
approximation for min(1, y) used in step 3 of the limiting procedure, which
we will call m̃in(1, y). Like Venkatakrishnan’s function, given in Equation
2.5, we require that it be differentiable at all points and that it be entirely
contained under the function min(1, y). However, unlike Equation 2.5, we
also require this new limiting function to have a value of exactly 1 for a
range of values y ≥ yt where 1 < yt < 2 represents a threshold value. For
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Figure 2.2: m̃in(1, y) with yt = 1.5 and yt = 1.75 compared to min(1, y)

this function, we propose the form

m̃in(1, y) =

{
P (y) y < yt

1 y ≥ yt

where P (y) is a polynomial satisfying

P |0 = 0 P |yt = 1
dP
dy

∣∣∣
0

= 1 dP
dy

∣∣∣
yt

= 0

P (y) ≤ min(1, y), y ∈ [0, yt]

The resulting polynomials for yt = 1.5, 1.75 are plotted in Figure 2.2. This
function allows the preservation of high-order accuracy on uniform grids
by satisfying

∣∣∣m̃in(1, y)− 1
∣∣∣ ≤ O (∆x3

)
. Additionally, this function is also

effective in maintaining high-order accuracy in regions of mild mesh non-
uniformity. The degree of non-uniformity that can be accommodated is
dictated by the choice of the threshold value yt. Smaller values of yt are less
likely to unduly activate the limiter on non-uniform meshes but result in a
limiter that approaches non-differentiability. Therefore the the choice of yt
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2.4. High-Order Limiting

is a compromise between maintaining good accuracy on non-uniform grids
and maintaining good convergence properties. For the results presented in
this work, we use yt = 1.5 which yields the following cubic polynomial

P (y) = − 4
27
y3 + y

2.4.3 Uniform Regions and Smooth Extrema

For the reasons already mentioned in Section 2.3, it is desirable to eliminate
the effect of the limiter in regions of uniform flow or near smooth extrema.
To maintain high-order accuracy it is essential to permit monotonicity to
be violated near smooth extrema. Furthermore the limiter value changes
rapidly and is non-differentiable in uniform regions which prevents good
convergence of the solver. Therefore, analogous to the second-order limiter
of Venkatakrishnan, we wish to eliminate the effect of the limiter when the
local solution variation is O

(
∆x2

)
or smaller. Specifically, we propose to

disable the limiter when

δU ≡ (δUmaxi − δUmini ) < (K∆x)
3
2

where K is a tunable parameter. However using a simple switch would
introduce a non-differentiable step in the residual evaluation which would
cause convergence problems. Therefore, to maintain differentiability, the
following procedure is proposed:

Φ̃i = σ̃i + (1− σ̃i)Φi (2.9)

where Φi is the limiter value as calculated in step 4 of the procedure in
Section 2.3 and σ̃i is the following function:

σ̃i =


1 δU2 ≤ (K∆x)3

s
(
δU2−(K∆x)3

(K∆x)3

)
(K∆x)3 < δU2 < 2(K∆x)3

0 δU2 ≥ 2(K∆x)3

(2.10)

where the transition function s is defined by
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Figure 2.3: Transition function s(y) = 2y3−3y2 + 1 used to smoothly disable
the limiter in nearly uniform regions

s(y) = 2y3 − 3y2 + 1 (2.11)

and is plotted in Figure 2.3. The limited reconstruction is then computed
for each Gauss point by evaluating URi (~x− ~xi, Φ̃i).

Although this two stage limiting procedure is somewhat more computa-
tionally expensive than Venkatakrishnan’s limiter in the general case, some
“short circuiting” is possible in uniform regions of flow. Since σ̃i depends only
on neighboring control volume averages, unlike Φi which also depends on
an evaluation of the unconstrained reconstruction at each Gauss point, it is
relatively inexpensive to compute. When σ̃i evaluates to 1, computational
effort can be saved by not computing Φi since it does not affect the value of
the final limiter Φ̃i.

2.4.4 Boundary Treatment

Maintaining high-order accuracy near domain boundaries represents a special
challenge. Local extrema are expected to exist on the boundary for smooth
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flows. Unlike smooth extrema in the interior of the domain, these points are
not characterized by a zero first derivative of flow property with respect to
space. Therefore, the method used in Subsection 2.4.3 will not be effective
in disabling the limiter in these regions.

As a first measure, in our implementation of both Venkatakrishnan and
the new limiter we elect to only iterate over interior face Gauss points in Step
3 of the limiting procedure. Therefore an extremum forming on a boundary
Gauss point will not cause the limiter to activate. In our experience this does
not cause any oscillatory issues at shocks. However, the Gauss points on
interior faces of boundary control volumes will often also have reconstructed
values of smooth solutions that form an extremum relative to the control
volume averages of the solution in the reconstruction stencil. In some cases
even Gauss points of control volumes adjacent to boundary control volumes
will exhibit this behavior. In our experience eliminating all of these Gauss
points from Step 3 of the limiting procedure causes unacceptable oscillations
in the solution near shocks. Therefore, to maintain high-order accuracy near
boundaries while maintaining solution monotonicity another approach is
needed.

Thus far the proposed limiting procedure is entirely physics agnostic.
However we have been unable to find a satisfactory means of dealing with the
issue of accuracy and monotonicity of boundary and near-boundary control
volumes in this manner. Therefore we propose a method specific to the Euler
equations.

For external and many internal flows the far-field boundary usually has
nearly uniform flow conditions. For these boundaries the limiter is effectively
disabled by the method applied in Subsection 2.4.3. Therefore we will focus
our attention on the wall boundary. Two flow conditions can be present
at a wall boundary condition: the flow can be tangential to the wall, or it
can be a stagnation point. We propose methods for maintaining high-order
accuracy in both cases.
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2.4.4.1 Tangential Flow

For every wall boundary control volume we will consider a “ghost” control
volume which is a mirror image of the boundary control volume about the
boundary. It will have an approximate control volume average value of the
solution assigned to it consistent with a shockless flow. These values will be
used to expand the stencil used to determine monotonicity outside of the flow
domain. This will effectively make the reconstructed Gauss point values no
longer extrema for smooth flows. To preserve high-order accuracy, these ghost
control volume values will not be used in the least-squares reconstruction
process. They will only be used when determining the values of δUmin and
δUmax in the limiting procedure. For any control volume that includes the
boundary control volume as its first neighbor the respective mirror control
volume will also be included in determining δUmin and δUmax.

To determine an appropriate solution value for the mirror control volume
we begin by noting that any well resolved curved boundary locally resembles
a circular arc. We approximate the radius of curvature from the boundary
Gauss point normals of the curved boundary edges. Since this information
is needed by the high-order boundary flux integration scheme, it is readily
available. Next, we make the assumption of steady momentum in the
direction normal to the streamline

∂P

∂n
= −ρV

2

R

where n is the direction normal to the wall, ρ is density, V is velocity and
R the radius. Since the ghost value is only used in computing the limiter,
a first-order approximation is sufficient. We can therefore approximate the
ghost value of pressure by

P gi = P i − 2d · ρiV
2
i

R
(2.12)

where P i, ρi, and V i are the control volume average pressure, density and
velocity respectively, and d is the distance of the control volume centroid
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from the wall in the convex direction (d is negative for concave boundaries).
The ghost values of Mach number and density can be obtained by considering
the isentropic transformation from the control volume state to the ghost
value state with a pressure of P gi

ρgi = ρi

(
P gi

P i

) 1
γ

M
2
gi =

2
γ − 1

(P ti
P gi

) γ−1
γ

− 1


where Mgi is the Mach number in the ghost control volume and P ti is
the total pressure as calculated using the boundary control volume average
flow properties. This, together with the assumption that the flow direction
remains tangential to the surface, fully establishes the state of the ghost
control volume.

2.4.4.2 Stagnation Point

Additional steps need to be taken to prevent the application of the limiter
at stagnation points. Although affecting a very small fraction of control
volumes, obtaining high-order accuracy near stagnation points can be critical
to global accuracy.

In practical aerodynamics problems, the flow discontinuity which requires
the proper application of the limiter is the shock. Since supersonic flow
is required to produce a shock, and stagnation points are necessarily in
subsonic regions, it is possible to simply disable the limiter in the latter areas.
Specifically, we propose that the reconstruction of a control volume can only
be adversely affected by a shock if at least one of the control volumes in
its reconstruction stencil contains supersonic flow. Practically, we wish to
smoothly disable the limiter as the highest control volume average Mach
number in the reconstruction stencil is reduced. For this purpose we can
reuse the approach of Subsection 2.4.3. Specifically, the limiter value is once
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again modified such that

Φ̂i = σ̂i + (1− σ̂i)Φ̃i, (2.13)

where Φ̃i is the limiter value after applying the uniform-flow fix in Equation
2.9 and

σ̂i =


1 Mi,max ≤M1

s
(
Mi,max−M1

M2−M1

)
M1 < Mi,max < M2

0 Mi,max ≥M2

(2.14)

where Mi,max is the maximum Mach number of the control volume averages
of the reconstruction stencil of control volume i, and s is the function in
Equation 2.11. The parameters M1 and M2 define the Mach numbers at
which the effect of the limiter is fully disabled and fully enabled respectively.
In the present work we use M1 = 0.8 and M2 = 0.85. The new limited
reconstruction used by the flux integration scheme becomes URi (~x− ~xi, Φ̂i).
For typical aerodynamics flows there is no harm in applying this step to all
control volumes, even if they are not near boundaries. Doing so can reduce
computational effort since Φ̃i does not need to be evaluated if σ̂i evaluates
to 1.

2.4.5 Complete Algorithm

The complete algorithm is, in the general case, more complex and costly
than the second-order limiting procedure presented in Section 2.3. However,
the various additions can, in some cases, be used to “short circuit” the
evaluation of the limiter, therefore reducing computational effort. The
complete algorithm for applying the limiter to the reconstruction for each
flow property of each control volume is

1. Find the maximum Mach number of the reconstruction neighbors
control volume averages of the solution and evaluate σ̂i using Equation
2.14. If σ̂i = 1 then Φ̂i = 1 and the algorithm jumps to step 9.

2. Find the largest negative (δUmini = min(U j−U i)) and positive (δUmaxi =
max(U j −U j)) difference between the solution in the immediate neigh-
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bors j and the current control volume i. If the control volume or any
of its immediate neighbors are adjacent to a wall boundary include
their ghost values using Equation 2.12 and isentropic relations.

3. Compute σ̃i using Equation 2.10. If σ̃i = 1 then Φ̂i = Φ̃i = 1 and the
algorithm jumps to step 9.

4. Compute the unconstrained reconstructed value at each Gauss point
(Uik = URi (~xk − ~xi)).

5. Compute a maximum allowable value of φik for each Gauss point k.

φik =


m̃in

(
1, δU

max
i

Uik−U i

)
, if Uik − U i > 0

m̃in
(

1, δU
min
i

Uik−U i

)
, if Uik − U i < 0

1, if Uik − U i = 0

6. Select Φi = min(φik) .

7. Compute Φ̃i using Equation 2.9.

8. Compute Φ̂i using Equation 2.13.

9. Compute the limited reconstruction URi (~x− ~xi, Φ̂i) at flux Gauss inte-
gration points using Equation 2.8.

2.5 Results

The presented results were obtained using a Newton-GMRES [17] vertex-
centered finite-volume solver. The solution process consists of two stages. In
the preiteration stage the linear system resulting from a local timestepping
is solved at each iteration. The Jacobian from the first-order accurate
scheme is used on the left-hand side and the full-order accurate flux is
used on the right-hand side. At each Newton iteration, the linear system
is approximately solved using incomplete-lower-upper factorization (ILU)
preconditioned GMRES. During the second stage, the left-hand side is
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Figure 2.4: Two coarsest meshes used for Ringleb’s flow test case

replaced with the full-order accurate Jacobian as described in the manuscript
reproduced in Chapter 3.

In addition to results using the new limiter, results are also presented
for the high-order scheme using the procedure in Section 2.4.1 but with
Venkatakrishnan’s limiting function. For Venkatakrishnan’s function we use
a tuning parameter of K = 2 and for the new limiter we use K = 1.

2.5.1 Ringleb’s Flow

We begin by considering Ringleb’s flow which is transonic but shockless and
has a known exact solution. This will enable us to quantify the negative
effects of Venkatakrishnan’s limiter and the new limiter on the accuracy of
the solution in smooth regions of flow. We consider four meshes consisting
of 369, 1426, 5467 and 20690 control volumes. The two coarsest meshes are
shown in Figure 2.4.

The exact solution to Ringleb’s flow is given by the streamlines defined
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by:

x =
1
2

1
ρ

(
1
q2
− 2
k2

)
+
J

2

y = ± 1
kρq

√
1−

(
q

k

)2

where k is constant along streamlines and

q =
∣∣∣~V ∣∣∣

J =
1
c

+
1

3c3
+

1
5c5
− 1

2
ln

1 + c

1− c

c =
√

1− γ − 1
2

q2

ρ = c2/(γ−1)

The computational domain is constructed using solid walls at the streamlines
for k = 0.55, 1.2 and placing the inlet and outlet at q = 0.5. This results in
a geometry that is symmetric about the horizontal axis. The flow is subsonic
at the inlet and outlet but is supersonic near the inside wall of the throat.
Using this domain, rather than just the upper half, is a more stringent test
of the accuracy of the computational scheme since errors produced at the
throat are allowed to propagate to the lower half of the domain.

Since this test case contains no stagnation points, the Mach number
dependent deactivation of the limiter should not be necessary. For this
reason, and to make the test as stringent as possible, we do not apply steps 1
and 8 of the high-order limiting procedure as presented in Subsection 2.4.5.

As an initial qualitative assessment, we compare the Mach number
contours generated on the 1426 control volume mesh using Venkatakrishnan’s
limiter and the new limiter in Figure 2.5. The additional dissipation of the
Venkatakrishnan limited solutions is evident in the reduced Mach number
at the inner wall near the outflow. Using the same criterion we can visually
detect a slight superiority of the fourth-order scheme over the second-order
scheme when using the new limiter. The Venkatakrishnan limited procedure,
on the other hand, does not benefit from the use of the high-order accurate

42



2.5. Results

(a) 2nd-order with Venkatakrishnan lim-
iter

(b) 2nd-order with new limiter

(c) 4th-order with Venkatakrishnan lim-
iter

(d) 4th-order with new limiter

Figure 2.5: Mach number contours from numerical solution of Ringleb’s flow
on 1426 control volume mesh
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reconstruction.
Next we examine the value of the limiter value Φ for the pressure compo-

nent at steady state for the fourth-order solution on the 5467 control volume
mesh using the two limiting schemes in Figure 2.6. In addition to Venkatakr-
ishnan’s limiter and the new limiter, we also consider the new limiter without
the special boundary ghost value treatment introduced in steps 3 and 7 of the
high-order limiting procedure. The new limiter successfully avoids limiting
in almost all control volumes. All the control volumes that are limited have
values Φ ≥ 0.99. Without the boundary ghost treatment significant limiting
occurs near the inner wall boundary. Venkatakrishnan’s limiter, on the other
hand, applies some limiting to virtually all control volumes.

Next, in Figure 2.7, entropy is plotted for the second- and fourth-order
schemes on the second-finest grid. The new limiter causes no distinguish-
able additional entropy production relative to the unlimited scheme for
the second-order method, and a very slight increase for the fourth-order
method. On the other hand, Venkatakrishnan’s limiter increases entropy by
approximately an order of magnitude for the second-order scheme and two
to four orders for the fourth-order scheme. Once again we note that when
applying Venkatakrishnan’s limiter there is no apparent benefit to using the
fourth-order scheme over the second-order scheme.

The L2 norm of error of the converged solution compared to the known
exact solution is used to generate Figure 2.8. The grid-convergence orders of
the error norms using a regression fit of the results from all grids are given
in Table 2.1. We begin by noting that the unlimited schemes attain their
nominal orders of accuracy in L1 and L2 norms and one order accuracy less
than nominal for the L∞ norm. Although the error of second-, third-, and
fourth-order schemes using Venkatakrishnan’s limiter is lower than that of
the first-order scheme, the error does not converge with nominal accuracy. In
fact the grid convergence of the error when using Venkatakrishnan’s limiter
is only first-order. The new limiter, on the other hand, allows for the second-
and third-order schemes to perform virtually identically to the unlimited
case and has only minimal adverse effect on the accuracy of the fourth-order
scheme. The results using the new limiter without the boundary ghost value
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(a) Venkatakrishnan’s limiter

(b) New limiter without boundary ghost
values

(c) New limiter

Figure 2.6: Limiter value for pressure for the fourth-order converged solution
on the 5467 control volume mesh. Only values Φ 6= 1 are plotted
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(a) 2nd-order no limiter (b) 4th-order no limiter

(c) 2nd-order Venkatakrish-
nan limiter

(d) 4th-order Venkatakrish-
nan limiter

(e) 2nd-order new limiter (f) 4th-order new limiter

Figure 2.7: Difference in dimensionless entropy from the freestream value for
Ringleb’s flow
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Figure 2.8: Error convergence for pressure in Ringleb’s flow
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Nominal Limiter L1 Norm L2 Norm L∞ Norm
Order

1st None 1.24 1.24 0.99
2nd None 2.22 1.96 1.24
2nd Venkatakrishnan 1.10 1.07 0.47
2nd New w/o Ghosts 1.71 1.23 0.47
2nd New 2.22 1.96 1.24
3rd None 3.18 3.12 2.70
3rd Venkatakrishnan 1.14 1.10 0.51
3rd New w/o Ghosts 1.83 1.43 0.59
3rd New 3.14 3.08 2.40
4th None 4.07 3.74 3.06
4th Venkatakrishnan 0.62 0.62 0.12
4th New w/o Ghosts 1.07 0.74 0.23
4th New 3.24 3.11 2.08

Table 2.1: Convergence order of norms of error in pressure for Ringleb’s flow
computed using regression fit of all mesh results.

treatment outperform Venkatakrishnan’s limiter only slightly. This indicates
that the application of the limiter in even an isolated region has severe
implications for global accuracy.

2.5.2 Transonic Flow Over an Airfoil

Next, we present results for transonic flow over a NACA 0012 airfoil at
Mach 0.8 and an angle of attack of 1.25 degrees. The computational mesh
consists of 4656 control volumes and is shown in Figure 2.9. We will consider
second- and fourth-order schemes using Venkatakrishnan’s limiter, the new
limiter, and the new limiter without the stagnation region fix which disables
the limiter at low Mach number in steps 1 and 8 of the high-order limiting
procedure.
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2.5. Results

Figure 2.9: Mesh consisting of 4656 control volumes used for the NACA 0012
test case
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2.5.2.1 Accuracy

We begin by assessing the quality of the solution upstream of the shock.
Entropy near the leading edge of the airfoil is plotted in Figure 2.10. The
fourth-order solution with Venkatakrishnan’s limiter once again fails to
outperform its second-order counterpart. The new limiter produces approxi-
mately an order of magnitude less entropy than Venkatakrishnan’s limiter
for the second-order scheme. The new limiter applied to the fourth-order
scheme results in even less entropy production. Disabling the stagnation
region fix results in a modest increase in entropy production.

The quality of the solutions can also be compared by examining the
stagnation pressure ratio along the upper surface of the airfoil shown in
Figure 2.11. The decrease in total pressure across the shock is comparable for
all schemes. However, the schemes limited with the Venkatakrishnan limiter
result in substantial stagnation pressure loss upstream of the shock. For the
second-order scheme the stagnation region fix has little effect while for the
fourth-order scheme applying this step in the limiting procedure results in a
further improvement in the conservation of total pressure.

2.5.2.2 Shock Monotonicity

The performance of the new limiter in controlling oscillations and overshoots
in the solution near the strong shock on the upper surface of the airfoil
is demonstrated in the pressure plot of Figure 2.12. The new limiter and
Venkatakrishnan’s limiter are both effective in eliminating any substantial
oscillations near the shock. The pressure computed on the upper surface of
the airfoil using the different limiters is virtually indistinguishable. Once
again the lower dissipation of the new limiter is demonstrated by the sharper
profile of the weak shock on the lower surface of the airfoil.

2.5.2.3 Convergence

Next, we consider the residual convergence properties of the new limiting
scheme coupled with our Newton-GMRES solver. Figure 2.13 shows the
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(a) Second-order Venkatakrishnan limiter (b) Fourth-order Venkatakrishnan limiter

(c) Second-order new limiter without stag-
nation fix

(d) Fourth-order new limiter without stag-
nation fix

(e) Second-order new limiter (f) Fourth-order new limiter

Figure 2.10: Difference in dimensionless entropy from the freestream value
for Mach 0.8, α = 1.25 flow around a NACA 0012 airfoil
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Figure 2.11: Decrease in total pressure along the upper surface of the NACA
0012 airfoil at Mach 0.8 α = 1.25
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Figure 2.12: Surface pressure profiles for transonic flow over a NACA0012
airfoil
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Figure 2.13: Convergence history for transonic airfoil case

Order Limiter Computational Time (s)
2nd Venkatakrishnan 37
2nd New 40
4th Venkatakrishnan 84
4th New 99

Table 2.2: Computational time for transonic airfoil test case

convergence of the scheme with the new limiter relative to Venkatakrish-
nan’s limiter for second and fourth order accurate schemes. We have also
provided the computational time required for convergence in Table 2.2. The
scheme with the new limiter exhibits a slightly poorer convergence rate than
Venkatakrishnan’s limiter. This is likely due to the lower dissipation of
the scheme which results in poorer conditioning of the nonlinear system of
equations. Similarly, we find that the fourth-order scheme requires slightly
more iterations to converge than the second-order scheme.
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Figure 2.14: Upper surface pressure profile upstream of the shock for transonic
flow over a NACA0012 airfoil using fourth-order scheme
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2.5.2.4 Sensitivity to Tuning Parameter

Venkatakrishnan’s limiter and the new limiter both require a tuning parameter
K to detect regions of uniform flow. Ideally the solutions produced by the
schemes should be relatively insensitive to the choice of this parameter.
Therefore we consider the effect of increasing and decreasing the parameter
by a factor of 4 from the original choice. For Venkatakrishnan’s scheme we
consider K = 0.5, 2, 8 and for the new limiter we consider K = 0.25, 1, 4.
In Figure 2.14 we examine the behaviour of pressure on the upper surface of
the airfoil just upstream of the shock using the fourth-order scheme. The
solution using Venkatakrishnan’s limiter exhibits a strong sensitivity to the
value of the parameter. Specifically, K = 0.5 results in a lower peak pressure
ahead of the shock, while K = 8 results in significant oscillations. The result
using the new limiter shows less sensitivity. Specifically, the results using
K = 0.25 are virtually indistinguishable from those with K = 1 while the
results with K = 4 result in some oscillation.

To further examine the effect of this parameter on the dissipation of
the scheme, the stagnation pressure along the upper surface of the airfoil is
shown in Figure 2.15. For Venkatakrishnan’s scheme the value of the tuning
parameter has little effect on the total pressure loss near the leading edge
of airfoil. However the stagnation pressure loss across the shock exhibits a
strong dependence on this parameter. The new limiter exhibits almost no
sensitivity to the parameter ahead of the shock. Downstream of the shock
the results using parameters K = 0.25 and K = 1 are indistinguishable while
the stagnation pressure with K = 4 is higher.

2.6 Conclusion

A new unstructured grid limiter broadly based on the framework introduced
by the Barth and Jespersen limiter has been developed specifically for
high-order schemes. Like the Venkatakrishnan limiter, it is designed to be
differentiable to enable good convergence to steady state by implicit schemes.
To achieve this and to maintain high-order accuracy, a new function defining
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Figure 2.15: Sensitivity of total pressure along the upper surface of the
NACA 0012 airfoil to the choice of limiter tuning parameter
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the relation between the limiter value and the unlimited reconstruction
at Gauss points has been constructed. To preserve accuracy at smooth
extrema, a smooth switch disables the limiter in regions of nearly uniform
flow. To avoid limiting regions of smooth flow near boundaries, the range
defining monotonicity is carefully expanded based on a constant momentum
extrapolation of conditions beyond the boundary. Application of the limiter
is avoided at stagnation points by smoothly disabling it in regions of low
Mach number.

The results indicate that the new limiter is effective in maintaining
high-order accuracy in smooth flows while effectively suppressing oscillations
near shocks. Additionally, the new scheme is also relatively insensitive to
tuning parameters which should lead to robustness and reproducibility of
solutions. Although the greatest gains in accuracy are seen when using a high-
order scheme, the new limiter is also effective in reducing the dissipation and
increasing the accuracy of second-order schemes relative to the currently most
widely used limiter. Since only minor modifications to the reconstruction
procedure are needed, the addition of the new method to existing solvers
should be relatively straightforward.

Although the present work presents only inviscid results in two dimensions,
the extension to viscous flows and three dimensions should be relatively simple.
Specifically, for viscous flows the stagnation region fix should be sufficient in
eliminating the effect of the limiter near walls making the wall ghost value
fix unnecessary. For three-dimensional inviscid flows the wall ghost value fix
will need to account for streamline curvature even though streamlines will
not be coordinate aligned.
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Chapter 3

Efficient Convergence to

Steady State†

3.1 Introduction

High-order discretizations on structured grids have been shown [6, 24] to
reduce computational effort for a given level of solution accuracy. Although
high-order finite-volume methods on unstructured grids are relatively well
known [1, 2, 7], means to efficiently converge the solution to steady state have
not been adequately studied. For this reason, the advantages of high-order
methods have not been convincingly demonstrated.

Although Newton-GMRES [21] methods provide rapid convergence, they
are known to be less robust than explicit schemes. This lack of robustness is
directly related to the choice of globalization technique. For compressible
flows, the technique of choice has been the addition of a timestep that is
increased as the solution converges. Successful convergence often depends
on the careful choice of parameters controlling the growth of this timestep.
High-order schemes, due to their lower diffusivity, are particularly sensitive
to these robustness issues. In this work, we demonstrate how the timestep
approach can be improved by the addition of a line search method. We also
demonstrate that scaling the local timestep based on the local residual can
dramatically improve performance and robustness.

The use of the GMRES method to approximately solve the linear systems
arising from implicit schemes is an increasingly popular approach for solution
†A version of this chapter will be submitted for publication. C. Michalak and C.

Ollivier-Gooch. Globalized matrix-explicit Newton-GMRES for the high-order accurate
solution of the Euler equations.
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convergence for second-order unstructured flow solvers. Previous work has
focused on using the matrix-free [3] approach. With this method the full
flux Jacobian does not need to be explicitly constructed. Instead, the
matrix-vector products required by GMRES are computed using Frechet
derivatives. However, a preconditioning matrix is still required for good
GMRES convergence; the typical choice here is to compute the Jacobian of
the first-order scheme (though perhaps using the reconstructed second-order
data) and use an incomplete LU factorization of this matrix to precondition
the linear system. Our group’s previous work in developing an efficient
high-order accurate flow solver extended this approach to high-order residual
calculations, including careful study of preconditioning methods [15, 16].

While those studies were successful in dramatically reducing CPU time
requirements for high-order schemes, especially for third-order accuracy,
there are also clear indications that the fourth-order scheme in particular is
poorly preconditioned by the first-order Jacobian. The research described in
this paper explores the possibility of forming and exploiting the full order
Jacobian. On the one hand, we expect that preconditioning will be much
better if we use the full order Jacobian. Also, having the Jacobian on hand
will eliminate all the flux evaluations done within GMRES inner iterations
in matrix-free schemes; this savings in CPU time should help offset the cost
of computing the Jacobian. The major drawback to forming the full order
Jacobian is the memory requirements.

Section 3.2 briefly reviews the high-order discretization used in the present
work, focusing on the reconstruction step. In Section 3.3 globalization
techniques for the Newton method are discussed. In this section we discuss
how the line search method can be effectively combined with the timestepping
method. We also present our novel method of deriving a local timestep from
the residual. In Section 3.4 we discuss the matrix-free and matrix-explicit
GMRES methods and their preconditioning. Some detail on how to efficiently
form the exact Jacobian needed by the matrix-explicit method is provided.
Numerical results for a multi-element subsonic test case and a single element
transonic test case are provided in Section 3.5. Concluding remarks are
found in Section 3.6.
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3.2 High-Order Accurate Finite-Volume Method

The high-order accurate finite-volume discretization relies on a piecewise
polynomial reconstruction in each control volume to provide an accurate
approximation to the solution at Gauss integration points. A series of
Riemann problems for the Euler equation are solved at these points using
the Roe scheme [20]. This results in a discrete flux integral for each control
volume which must be reduced to zero at steady state. In the present work,
the control volumes are formed using a vertex-centered median dual of an
unstructured triangular grid.

3.2.1 Governing Equations

The non-dimensionalized two-dimensional Euler equations for a control
volume Vi can be written in integral form as

d

dt

ˆ
Vi

U dA+
˛

Ωi

F dS = 0 (3.1)

U =


ρ

ρu

ρv

E

 F =


ρun

ρuun + Pn̂x

ρvun + Pn̂y

(E + P )un

 (3.2)

where U is the solution vector in conservative variables, and F is the flux
vector normal to the control volume boundary. The total energy per unit
volume, E, and the pressure, P , are related by the ideal gas equation of state

P = ρRT (3.3)

3.2.2 Finite-Volume Formulation

The governing equations are discretized in space using the finite-volume
method on an unstructured grid. The control volume average of the solution

64



3.2. High-Order Accurate Finite-Volume Method

in each control volume is defined by

U i =
1
Ai

ˆ
Vi

U dA

which can be used to rewrite Equation 3.1 as

dU i
dt

= − 1
Ai

˛
Ωi

F dS ≡ −Ri
(
U
)

(3.4)

Since in the present work we are concerned only with steady-state solutions
the time derivative term can be dropped. Therefore the system of equations
to be solved is simply

R(U) = 0

where R is the vector function representing the flux integral, or residual, in
all control volumes.

3.2.3 Solution Reconstruction

To obtain a high-order accurate numerical approximation to the residual we
reconstruct a polynomial representation of the solution within each control
volume. As in previous work [17], the high-order accurate reconstruction is
obtained by formulating and solving a least-squares problem.

To obtain an accurate estimate of the solution at flux quadrature points,
we represent the solution within each control volume by the Taylor series
expansion

URi (x− xi, y − yi) = U |i +
∂U

∂x

∣∣∣∣
i
(x− xi) +

∂U

∂y

∣∣∣∣
i

(y − yi) +

∂2U

∂x2

∣∣∣∣∣
i

(x− xi)2

2
+

∂2U

∂x∂y

∣∣∣∣∣
i

(x− xi) (y − yi) +

∂2U

∂y2

∣∣∣∣∣
i

(y − yi)2

2
+ · · ·
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where Ui is the value of the reconstructed solution and ∂k+lUi
∂xk∂yl

are its deriva-
tives at the reference point (xi, yi) of control volume i. The coefficients of
the polynomial are computed so that the mean value of the solution in the
control volume is conserved and the reconstruction approximates nearby
control volume averages.

Conservation of the mean within a control volume is satisfied when

U i =
1
Ai

ˆ
Vi

URi dA ≡ U |i +
∂U

∂x

∣∣∣∣
i
xi +

∂U

∂y

∣∣∣∣
i

yi +

∂2U

∂x2

∣∣∣∣∣
i

x2
i

2
+

∂2U

∂x∂y

∣∣∣∣∣
i

xyi +

∂2U

∂y2

∣∣∣∣∣
i

y2
i

2
+ · · · (3.5)

where
xnymi ≡

1
Ai

ˆ
Vi

(x− xi)n(y − yi)mdA

As we shall see, this mean constraint can be eliminated analytically from the
least-squares system. The terms used to form the reconstruction least-squares
problem have the form

1
Aj

ˆ
Vj

URi (~x− ~xi) dA = U |i +
∂U

∂x

∣∣∣∣
i
x̂ij +

∂U

∂y

∣∣∣∣
i

ŷij (3.6)

+
∂2U

∂x2

∣∣∣∣∣
i

x̂2
ij

2
+

∂2U

∂x∂y

∣∣∣∣∣
i

x̂yij +
∂2U

∂y2

∣∣∣∣∣
i

ŷ2
ij

2
+ · · ·

The geometric terms in this equation are of the general form

̂xnymij ≡ 1
Aj

ˆ
Vj

((x− xj) + (xj − xi))n · ((y − yj) + (yj − yi))m dA

=
m∑
l=0

n∑
k=0

m!
l! (m− l)!

n!
k! (n− k)!

(xj − xi)k · (yj − yi)l · xn−kym−lj

The resulting least-squares problem to be solved for each solution variable in
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3.2. High-Order Accurate Finite-Volume Method

each control volume takes the for



1 xi yi x2
i xyi y2

i · · ·
wi1 wi1x̂i1 wi1ŷi1 wi1x̂2

i1 wi1x̂yi1 wi1ŷ2
i1 · · ·

wi2 wi2x̂i2 wi2ŷi2 wi2x̂2
i2 wi2x̂yi2 wi2ŷ2

i2 · · ·
wi3 wi3x̂i3 wi3ŷi3 wi3x̂2

i3 wi3x̂yi3 wi3ŷ2
i3 · · ·

...
...

...
...

...
...

. . .

wiN wiN x̂iN wiN ŷiN wiN x̂2
iN wiN x̂yiN wiN ŷ2

iN · · ·





U
∂U
∂x
∂U
∂y

1
2
∂2U
∂x2

∂2U
∂x ∂y
1
2
∂2U
∂y2

...


i

=



U i

wi1U1

wi2U2

wi3U3

...
wiNUN


(3.7)

where the weights can be used to emphasize geometrically nearby data:

wij =
1

|~xj − ~xi|n
(3.8)

where typically n ∈ [0, 2]. The first equation in this linear system is the
mean constraint, which can be removed by Gauss elimination, leaving an
unconstrained least-squares problem.

In previous work [14], the least-squares problem was solved at each flux
evaluation using QR factorization [9]. However since the matrix contains
only geometric terms, is identical for each solution variable in a given con-
trol volume and does not change between iterations, substantial savings
in computational time can be achieved by precomputing and storing the
pseudoinverse of the reconstruction matrix for each control volume. To
obtain the pseudoinverse in a numerically stable manner, the present work
uses the singular value decomposition (SVD) method [9]. Given a SVD of a
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3.2. High-Order Accurate Finite-Volume Method

reconstruction matrix A, the pseudoinverse A† can easily be obtained

A = UΣV T

A† = V Σ†UT (3.9)

where the diagonal entries of Σ are the singular values of A, the columns
of U and V are the left- and right-singular vectors, Σ† is a diagonal matrix
containing the reciprocal values of Σ.

Once this precomputation has been performed, the reconstruction coeffi-
cients in each control volume can be obtained by performing a matrix-vector
multiplication; the number of columns in this matrix equals the number of
control volumes in the reconstruction stencil, while the number of rows equals
the number of required reconstruction coefficients. From these coefficients
the reconstructed values of the solution can easily be computed at the flux
quadrature points.

When solving flows with shocks, a slope limiter is applied to the recon-
struction polynomial. We refer the reader to the manuscript reproduced
in Chapter 2 for details of the high-order limiting algorithm used for the
transonic results of the present work.

3.2.4 Numerical Flux Calculation and Integration

The control volume boundaries are formed by connecting the cell centroids
with the face centroids surrounding vertices of the triangular grid. The
contour integral in Equation 3.4 is discretized using Gauss quadrature over
the dual edges. One Gauss point per edge is used for the second-order scheme.
Two Gauss points are used for the third- and fourth-order schemes. The
procedure to compute the numerical flux F is:

1. Translate the control volume average solution from conserved variables
(density, momentum, energy) to primitive variables (density, velocity,
and pressure).

2. Compute the reconstruction coefficients using the precomputed pseu-
doinverses of the reconstruction matrices and, if necessary, the limiter.
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3.3. Globalized Newton Method

3. At each Gauss point, compute the left and right solution states using
the reconstruction coefficients from both adjacent control volumes.

4. At each Gauss point, approximately solve the Riemann problem using
the reconstructed solution from both adjacent control volumes. In the
present work, the Roe scheme [20] is used.

3.3 Globalized Newton Method

Once a procedure to evaluate the discrete numerical residual has been
established the remaining problem is to find the root of the system of
equations

R(U) = 0 (3.10)

When a good starting guess for U is known, the Newton method can be used.
This results in an iterative method of the form

∂R

∂U
δU = −R

(
U
n
)

(3.11)

U
n+1 = U

n + δU

However, in practical problems a sufficiently good initial solution for U is
not known. Therefore the Newton method must be modified to improve
its robustness. Two methods are commonly used for this in computational
fluid dynamics. For aerodynamics flows most authors use a form of pseudo-
timestepping [10, 12]. For incompressible flow a line search algorithm is
sometimes used [18, 22]. In the present work we modify the Newton method
by applying both a pseudo-timestep and a line search algorithm.

3.3.1 Pseudo-Timestepping

In pseudo-timestepping, instead of directly solving Equation 3.10 using the
Newton method, we consider the series of root-finding problems defined by
the implicit timestep

U
n+1 = U

n − diag(∆t)R(Un+1)
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3.3. Globalized Newton Method

where Un is the solution from the previous timestep, Un+1 is the solution at
the next timestep, and ∆t is a vector of local timesteps. This results in a
root-finding problem at each timestep which we will define as

R̃
(
U
n+1

)
≡ R

(
U
n+1

)
+

I

∆t

(
U
n+1 − Un

)
= 0 (3.12)

The addition of a timestep component has two related benefits. First,
the root of the new residual R̃ is closer to the to previous iterate Un which
makes it a better candidate for the Newton method. Second, since it mimics
the time derivative in the original time-dependent Euler equations, it causes
the transient solution to evolve in a physically feasible way. This prevents
physically unfeasible states, such as negative pressure or density, which result
in an undefined residual, from occurring.

The most common approach is to approximately solve R̃ at each timestep
using a single Newton step and to increase ∆t as the solution progresses
towards steady state. In this case the scheme reduces to the backward-Euler
time advance scheme (

I

∆t
+
∂R

∂U

)
δU = −R

(
U
n
)

(3.13)

U
n+1 = U

n + δU

3.3.2 Line Search

To add robustness, instead of solving Equation 3.12 using a pure Newton
method we apply a single iteration of a line search algorithm [8]. The
resulting solution update is given by

U
n+1 = U

n + αδU

where δU is computed using a Newton iteration and α is a positive scalar
step length. To select the value of α we consider an optimization problem
related to Equation 3.12. Specifically, the objective function

z (x) =
1
2

∥∥∥R̃ (x)
∥∥∥2

2
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is required to satisfy a sufficient decrease condition given by

z
(
U
n+1

)
≤ z

(
U
n
)

+ c1α∇zT δU (3.14)

where c1 is taken to be 10−4 in the present work. The product of the gradient
of the objective function with the Newton update vector is simply

∇zT δU = R̃T
∣∣∣
n

(
∂R̃

∂U

∣∣∣∣∣
n

δU

)

and is therefore easily obtained. Satisfying this inequality, known at the
Armijo condition, is necessary for the good convergence of the algorithm. If
the initial guess α = 1 does not satisfy this condition a quadratic line search
algorithm [8] is used to find a value α ∈ [0, 1] which does. Although the
details of this algorithm are beyond the scope of this article, it should be
noted that in the case α 6= 1 additional evaluations of the objective function,
and therefore of the flux, are needed.

Since the ultimate goal of the scheme is to reduce the residual R, we
are not particularly concerned with the accuracy of the solutions to the
intermediate problem R̃

(
U
n+1

)
= 0. Therefore only a single iteration of

the line search algorithm is applied per timestep. As long as the residual
is sufficiently well behaved for the full Newton step to satisfy the Armijo
condition the result of this algorithm is the same as the backward-Euler
time advance scheme with only a minimal additional expense of verifying
that the sufficient decrease condition is satisfied. On the other hand, when
the line search determines that backtracking is necessary the additional flux
evaluations involved are a reasonable cost for the improved stability of the
resulting modified step.

3.3.3 Selecting the Timestep

3.3.3.1 Global timestepping

In a nonlinear sense, the timestep serves to improve the convexity of the
modified residual in Equation 3.12 so that the Newton method can be applied.
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3.3. Globalized Newton Method

In a linear sense it modifies the left-hand side of Equation 3.13 by making it
more diagonally dominant. These modifications are most important when the
current solution is far from steady state and therefore the linearized residual
at the current state does not accurately reflect the behavior of the residual
at the steady state solution. Therefore, since the linearization is expected
to improve as the solution converges, it is common to use the norm of the
residual to control the size of the timestep. The most common algorithm,
named successive evolution-relaxation (SER) [13], is defined as

τn+1 = c2 · τn ·

∥∥∥R(Un−1)
∥∥∥

2∥∥∥R(Un)
∥∥∥

2

(3.15)

where τ is a scalar timestep. For global timestepping we set ∆ti = τ for all
control volumes. Although this method has been shown to be effective, it
requires careful tuning of the initial timestep and the parameter c2 to prevent
the solution process from diverging. Conversely, if c2 or the initial timestep
are taken to be too small the number of iterations needed to converge may
be unnecessarily large. The robustness of this approach can be improved by
reducing the timestep when a solution update would result in unphysical
flow properties [11]. Specifically, when we consider SER in the present work,
we reduce the timestep by a factor of two if the solution update would result
in the reconstructed values of density or pressure becoming negative at any
of the Gauss integration points.

The selection of α satisfying the condition in Equation 3.14 is a measure
of how “well behaved”, in the sense of convexity, the modified residual of
Equation 3.12 is. Since the use of a sufficiently small timestep has the effect
of improving the behaviour of the modified residual function, α can be used
to determine the quality of the previous timestep. Therefore we propose to
use the result of the line search to help control the timestep such that

τn+1 = c̃2 · τn ·

∥∥∥R(Un−1)
∥∥∥

2∥∥∥R(Un)
∥∥∥

2

(3.16)
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3.3. Globalized Newton Method

where

c̃2 (α) =

{
c2, if α = 1

max (α, 0.5) , if α 6= 1

This modification essentially detects when the timestep has been increased
too rapidly and decreases the size of the subsequent timestep. Since this
feedback loop prevents the timestep from growing too quickly it is possible
to be more aggressive with the choice of c2 than with the standard SER
method.

3.3.3.2 Local Timestepping

Since we do not seek a time-accurate solution, it is not necessary to use a
scalar timestep. The concept of local timestepping is rooted in the stability
of explicit schemes. These schemes become unstable for CFL numbers
larger than one. Although this condition is not binding for implicit schemes,
the CFL number is nonetheless commonly used to select a local timestep.
Specifically, it is common to derive a local timestep from the global timestep
such that

∆tn+1
i = τn+1 · speedn

i

∆xi
(3.17)

where speedni is the largest characteristic speed in the control volume, ∆xi a
characteristic size, and τn+1 is calculated using Equation 3.15. Alternatively,
a global timestepping scheme can be obtained by selecting the smallest
timestep, computed using Equation 3.17, amongst all control volumes.

In the present work we propose an alternative means of computing a local
timestep. Since the residual was an effective guide for selecting the global
timestep in Equation 3.15, we propose to use the local residual to guide the
selection of the local timestep. Specifically,

∆tn+1
i = ζn+1

i τn+1 · speedn
i

∆xi

ζn+1
i = max

min


∥∥∥R (Un)∥∥∥

2∥∥∥Ri (Un)∥∥∥
2

, 102

 , 10−2

 (3.18)
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where Ri
(
U
n
)

is the residual in control volume i in conserved variables,
and τn+1 is evaluated using Equation 3.16. In other words, if the flux in
the control volume was small in the previous timestep we expect the local
linearization of the residual to be a good representation and a large timestep
can be taken. The intended result is that small timesteps are taken in regions
of high non-linearity while larger timesteps are taken elsewhere. The goal
is to give the scheme some multigrid-like properties such that error waves
can be rapidly propagated away from areas where the solution is changing
rapidly. For example, it is expected that this scheme will result in small
timesteps near an evolving shock while allowing larger timesteps to be taken
elsewhere in the domain.

3.4 Preconditioned GMRES

Solving the sparse linear system in Equation 3.13 exactly is prohibitively
expensive in computational time and memory. Therefore, as is common, we
solve the system approximately using the GMRES [21] method. Solving a
linear system with GMRES only requires a means of computing the product of
the left-hand-side matrix with an arbitrary vector. Therefore it is common to
avoid forming the exact Jacobian matrix and instead approximate the matrix-
vector product using Frechet derivative. However, since the convergence
properties of GMRES are highly sensitive to the conditioning of the matrix,
the system must be preconditioned using an approximate factorization of a
simplified Jacobian matrix. This matrix is usually chosen to be the Jacobian
of the first-order scheme or an approximation to it. In the present work
we consider both this “matrix-free” method and a method which explicitly
forms the exact high-order Jacobian.
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3.4. Preconditioned GMRES

3.4.1 Matrix-Free Method

In the matrix-free method the matrix-vector products are approximated
using a Frechet derivative

∂R

∂U
a =

R(U + h · a)−R(U)
h

where h is a small value. This scheme requires one flux evaluation per inner
GMRES iteration plus one flux evaluation per outer iteration.

3.4.2 Forming the High-Order Jacobian Matrix

Alternatively, the exact Jacobian of the high-order scheme can be formed
explicitly. The explicit Jacobian can then be used as an improved precon-
ditioner and to avoid the use of Frechet derivatives and their associated
residual evaluations.

3.4.2.1 Without Limiters

The analytic Jacobian can be represented explicitly as

∂R

∂U
≡ ∂FluxInt

∂CVars
=
∂FluxInt
∂Flux

∂Flux
∂RecSol

∂RecSol
∂RecCoef

∂RecCoef
∂PVars

∂PVars
∂CVars

where FluxInt is the flux integral, Flux are the numerical fluxes, RecSol are
the reconstructed solutions at Gauss points, RecCoef are the reconstruction
coefficients, PVars are the control volume averages of the primitive variables,
and CVars are the control volume averages of the conserved variables. To
compute the Jacobian, the following procedure is used at each timestep:

1. ∂PVars
∂CVars is computed for each control volume and stored. This is the
standard Jacobian for the change of variables from (ρ ρu ρv E)T to
(ρ u v P )T .

2. For each Gauss point, do the following for each of the two adjacent
control volumes:
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(a) ∂RecSol
∂PVars = ∂RecSol

∂RecCoef
∂RecCoef
∂PVars is computed. The ∂RecCoef

∂PVars
term is simply the pseudoinverse of the reconstruction matrix
precomputed in Equation 3.9, while the ∂RecSol

∂RecCoef term is a geo-
metric term that depends on the location of the Gauss quadrature
point. Although the entire ∂RecSol

∂PVars term is purely geometric
and could be precomputed and stored, this would dramatically
increase the memory requirements since, unlike ∂RecCoef

∂PVars , this
term is unique for each Gauss point of every control volume. Since
the computational efficiency gains would be small, this increase
in memory is not worthwhile.

(b) ∂Flux
∂RecSol , the Jacobian of the Roe flux, is computed. Due to its
complexity, the code required to compute this term was auto-
matically generated using the ADIC [4] automatic differentiation
tool.

(c) The product ∂Flux
∂PVars = ∂Flux

∂RecSol
∂RecSol
∂PVars is computed efficiently

by taking advantage of the sparsity of the reconstruction terms
that is due to the lack of coupling between solution variables.
∂Flux
∂PVars couples all solution variables in the reconstruction stencil.

(d) The product ∂Flux
∂CVars = ∂Flux

∂PVars
∂PVars
∂CVars is computed. Since ∂Flux

∂PVars
couples all solution variables in the reconstruction stencil, this
step is computationally intensive.

(e) ∂FluxInt
∂CVars = ∂FluxInt

∂Flux
∂Flux
∂CVars is the contribution to the flux in-

tegral due to one side of this Gauss point. This component is
computed by using the appropriate Gauss integration weight. The
result is added to the total flux Jacobian.

The sparse analytic Jacobian is found once for every Newton iteration and
used to produce the matrix-vector products needed by the GMRES solver.
These products require fewer operations to compute than the flux evaluation
needed by the matrix-free method. They are also easy to optimize to fully
benefit from caching and vector operations that may be available on the
processor.
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3.4.2.2 With Limiters

For transonic and supersonic flows, a limiter must be used to eliminate
overshoots in the solution. We will describe a means of including the effect
of our limiter, described in Chapter 2, which has been shown to maintain
high-order accuracy in smooth regions. The procedure using another limiter,
such as the Venkatakrishnan limiter [23], would be the same. The limiting
procedure consists in computing the maximum limiting factor Φ ∈ [0, 1]
which eliminates overshoots. The limiter is then applied as:

RecCoef =



1 Ψx Ψy Ψx2 Ψxyi Ψy2
i · · ·

Φ · · ·
Φ · · ·

Φ · · ·
Φ · · ·

Φ · · ·
...

...
...

...
...

...
. . .





U
∂U
∂x
∂U
∂y

1
2
∂2U
∂x2

∂2U
∂x ∂y
1
2
∂2U
∂y2

...


unlmt

(3.19)
where unlmt represents the coefficients found by using unlimited reconstruc-
tion and Ψ ≡ Φ− 1.

The Jacobian is therefore computed exactly as for the case without
limiters except for the the ∂RecCoef

∂PVars term which is computed as:

∂RecCoef
∂PVars

=
∂RecCoef

∂Φ
∂Φ

∂PVars
+

∂RecCoef
∂RecCoef unlmt

∂RecCoef unlmt
∂PVars

where RecCoef unlmt are the coefficients of the unlimited reconstruction. To
balance computational time and memory use, the ∂Φ

∂PVars term is computed
and stored once for each flow variable in each control volume in the same way
as ∂PVars

∂CVars was for the unlimited case. The computation of the remaining

terms and the assembly of ∂RecCoef
∂PVars is performed “on the fly” while iterating

over Gauss points:

• ∂RecCoef
∂Φ term is easily found based on the linear relationship in

Equation 3.19.
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• ∂RecCoef
∂RecCoef unlmt

term is also evident from Equation 3.19.

•
∂RecCoef unlmt

∂PVars is the pseudoinverse of the reconstruction matrix pre-
computed in Equation 3.9.

The limiter value Φ computed using our scheme or that of Venkatakrishnan,
requires the control volume average value, the neighboring maximum and
minimum control volume average values, and the unlimited reconstructed
value of the solution at the Gauss points. During the limiting procedure, the
minimum value of Φ from all the Gauss points is selected. For the purposes
of the Jacobian, the choice of which Gauss point produced the smallest value
of Φ is “frozen”. Similarly, the control volume which contains the minimum
or maximum control volume average is also preselected. The ∂Φ

∂PVars term
can therefore be decomposed as:

∂Φ
∂PVars

=
∂Φ

∂CVave
∂CVAve
∂PVars

+
∂Φ

∂NeighMin
∂NeighMin
∂PVars

+
∂Φ

∂NeighMax
∂NeighMax
∂PVars

+
∂Φ

∂RecVal
∂RecVal
∂PVars

where CVave, NeighMin, and NeighMax are simply select components of
PVar and RecVal is the unlimited reconstructed value of the solution at the
Gauss point producing the smallest value of Φ. The components ∂Φ

∂CVave ,
∂Φ

∂NeighMin , ∂Φ
∂NeighMax , and ∂Φ

∂RecVal are obtained by computing the

derivative of the limiter function. The component ∂RecVal
∂PVars is one row

of ∂RecSol
∂RecCoef unlmt

∂RecCoef unlmt
∂PVars and is found as discussed in the previous

section.

3.4.3 Preconditioning

Since the rate of convergence of the GMRES method is strongly dependent
on the condition number of the matrix, preconditioning is used to alter the
spectrum and hence accelerate the convergence rate of the iterative technique.
Left preconditioning is applied by modifying the linear system to be solved
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such that
Ax = b

becomes
M−1Ax = M−1b

where M−1 is an approximate inverse of the preconditioning matrix M ≈ A.
A common approach [3, 19] is to use the flux Jacobian of the first-order
scheme for M and to use ILU decomposition to form the approximate
inverse. This approach has the advantages of being easier to compute and
requiring less memory than using the full-order accurate Jacobian. To
form the preconditioning matrix M , a procedure similar to that presented in
Subsection 3.4.2 is used except that the terms ∂F lux

∂RecSol
∂RecSol
∂RecCoef are eliminated.

This method is used for the matrix-free results presented in the present work.
Since the high-order Jacobian already needs to be computed in the matrix-

explicit method, its ILU decomposition can easily be used as a preconditioner.
The increase in memory use can be partially mitigated by using a lower
level of fill; as we will show, our results demonstrate that even with low
levels of fill, the matrix-explicit method is much better conditioned than the
matrix-free method.

3.4.4 Startup

Since Newton-like quadratic convergence cannot be expected during initial
timestepping, computing the full-order Jacobian or using a matrix-free
method is unnecessarily expensive at that stage. Instead, the first-order
Jacobian is used on the left-hand side and the full-order residual is used on
the right-hand side. In the present work, we use timestepping with the first-
order Jacobian for the first 10 and 50 iterations for subsonic and transonic
cases respectively. We then switch to using either matrix-free GMRES or
full-order matrix-explicit GMRES.
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3.5 Results

3.5.1 Test Cases

Two two-dimensional inviscid flows will be used to evaluate the performance
of the proposed scheme. First, subsonic flow at Mach 0.2 around a multi-
element airfoil with zero angle of attack is considered. The mesh consists of
4913 vertices and is shown in Figure 3.1. The pressure from the steady-state
solution using the second- and fourth-order schemes is shown in Figure 3.2;
the lower dissipation of the fourth-order solution is evident from the larger
extent of peak high and low pressure areas.

Second, transonic flow around a NACA 0012 airfoil at Mach 0.8 and an
angle of attack of 1.25 degrees is also considered. To prevent oscillations in
the solution the limiter described in Chapter 2 is used. The mesh consists of
4656 vertices and is shown in Figure 3.3. The pressure along the upper and
lower airfoil surfaces is plotted in Figure 3.4. The benefit of the high-order
scheme is evident from the sharper shock on the lower surface.

To study the effects of the various methods and parameters discussed in
Sections 3.3 and 3.4 we will use what we propose as the best method as a base
scheme and compare it with variations in each aspect of the solution strategy.
Therefore, unless otherwise noted, the globalization scheme used is a line
search method with a local residual-dependent timestep (c2 = 1.1). The
initial timestep is based on a CFL number of 0.1. The startup phase consists
of 10 iterations for the subsonic case and 50 iterations for the transonic case.
During this phase, the Jacobian of the residual is approximated by that of the
first-order scheme for both preconditioning and the matrix-vector products
needed in the GMRES method. Preconditioning during the startup phase is
always achieved using ILU with zero levels of fill (ILU(0)). During the second
phase, the full-order exact Jacobian is formed and used for preconditioning
and matrix-explicit GMRES. Preconditioning is achieved using ILU(0). The
linear system at each iteration is solved to a relative residual drop of 10−3.
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3.5.2 Globalization Strategy

3.5.2.1 Line Search

To study the effects of adding the line search step to each timestep, we
compare it to a more standard backward-Euler approach. Specifically, we
compare the line search algorithm described in Subsection 3.3.2 using the
timestep evolution in Equation 3.16 with the backward-Euler approach of
Equation 3.13 using the standard SER timestep control of Equation 3.15.
In both cases the local timestep is derived from these values using the local
residual as in Equation 3.18. The results are presented in the form of residual
convergence plots in Figures 3.5 and 3.6. For the backward-Euler method
without line search we use values of c2 of 1.0 and 1.1. Since the line search
method is expected to be more robust to larger values of c2 we use values
of 1.1 and 1.2. The results indicate that there is little difference in the
number of iterations required for convergence for the subsonic flow. However,
for transonic flow, the method without line search can fail to converge.
Specifically it can enter a cycle where the solution alternates between two
states. The line search algorithm provides the necessary robustness to avoid
this pitfall. The results also illustrate that the robustness of the line search
remains unaffected by the choice of parameter c2.

3.5.2.2 Local Timestep

Next, we consider three methods of deriving the local timesteps ∆ti from the
global timestep τ computed using our modified SER method in Equation
3.16. The simplest method is to use a global timestep. The second method
is to compute a local timestep using the local CFL condition for each control
volume. Finally, the local residual based method of Equation 3.18 is also
considered. The resulting convergence plots are shown in Figures 3.7 and
3.8. In the subsonic case, the use of the local residual based timestep results
in more rapid convergence than with either CFL based local timestepping or
global timestepping. For transonic flow, this trend is even more pronounced,
as the non-residual-based methods fail to converge within 350 iterations.
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3.5. Results

Since it is impossible to study all permutations of parameters these results
should only be viewed as a representative sample. With the careful selection
of startup CFL number and other hand tuning of the startup procedure,
convergence is often possible with the methods that failed to converge in these
examples. However the gains in robustness and performance demonstrated
from the use of the line search method and of residual based local timestep
are representative of our general experience.

3.5.3 Solving the Linear System

3.5.3.1 Cost of Jacobian Evaluation

Having determined how to minimize the number of linear systems to solve to
converge the nonlinear residual, we now turn our attention to the efficiency
of the linear solver itself. We begin by comparing the relative CPU time
needed to compute a flux integral, a first-order Jacobian, and a high-order
Jacobian. The results are given in Tables 3.1 and 3.2. The large increase
in computational time needed for flux and Jacobian evaluations for the
third-order scheme relative to the second-order scheme can in large part be
attributed to the doubling of the number of Gauss points. Since the fourth-
order scheme uses the same number of Gauss points as the third-order scheme,
a smaller increase in flux and Jacobian evaluation times is observed. For
flux evaluations, this increase is purely due to the cost of the reconstruction
procedure. For the Jacobian, the increased cost of matrix-matrix products
needed for its assembly is also important.

3.5.3.2 Quality of Preconditioning

Next, we compare the relative effectiveness of the ILU decomposition of the
first-order and high-order Jacobians. The average number of inner GMRES
iterations needed per Newton iteration to obtain a relative residual drop
of 10−3 is shown in Table 3.3. The results also include the case where the
full LU decomposition of the first-order Jacobian is used to precondition
the high-order matrix-free scheme. Since doing the full LU decomposition is
prohibitively expensive in both time and memory, this is included solely to
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3.5. Results

Figure 3.1: Multi-element airfoil mesh consisting of 4913 vertices

Order Flux 1st Order Jacobian Full Order Jacobian
seconds seconds relative to flux seconds relative to flux

1 0.0116 0.217 18.7
2 0.0194 0.217 11.2 0.346 17.8
3 0.0399 0.217 5.4 1.122 28.1
4 0.0568 0.217 3.8 1.219 21.5

Table 3.1: Relative computational time of flux and Jacobian evaluation
without limiter for subsonic case

Order Flux 1st Order Jacobian Full Order Jacobian
seconds seconds relative to flux seconds relative to flux

1 0.0109 0.205 18.8
2 0.0356 0.205 5.8 0.375 10.5
3 0.0733 0.205 2.8 1.623 22.1
4 0.1137 0.205 1.8 2.241 19.7

Table 3.2: Relative computational time of flux and Jacobian evaluation with
limiter for transonic case
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3.5. Results

(a) Second-order scheme

(b) Fourth-order scheme

Figure 3.2: Pressure contours for subsonic flow over a multi-element airfoil
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3.5. Results

Figure 3.3: NACA 0012 airfoil mesh consisting of 4656 vertices
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3.5. Results

demonstrate the upper bounds on the quality of preconditioning that can be
achieved when using the first-order Jacobian. The results indicate that the
first-order Jacobian is a reasonably good preconditioner for the second-order
scheme if ILU with enough levels of fill is used. However, this preconditioner
does a poor job for the third- and fourth-order schemes. Even with a full
LU decomposition, the number of GMRES iterations required to solve the
fourth-order case remains high. Since the matrix-free method must be used
when the high-order Jacobian is not available, this large number of GMRES
iterations results in a large number of residual evaluations. The costs of
these residual evaluations exceed the relative additional cost of computing
the high-order Jacobian. Using the full-order Jacobian for the preconditioner,
the convergence properties of the high-order schemes is comparable to that
of the second-order scheme. In all cases the transonic test case requires
fewer GMRES iterations per Newton iteration indicating that the linear
systems are better conditioned. Due to the high nonlinearity of the shock,
the adaptive timestep method yields smaller timesteps for the transonic case
than the subsonic case. This likely explains why the linear system is better
conditioned in the transonic case. However, since these smaller timesteps
also result in a larger number of Newton iterations, the total number of
GMRES iterations for the transonic case exceeds that of the subsonic case.

3.5.3.3 Overall Memory and Computational Cost

The major components contributing to the memory requirement for both
matrix-explicit and matrix-free methods are:

• The pseudoinverse of the reconstruction matrix. To avoid solving the
least-squares problem at each flux evaluation, these matrices need to
be precomputed and stored for each control volume.

• The Jacobian. For the matrix-free scheme, this will always be the
first-order Jacobian. For the matrix-explicit scheme, the high-order
Jacobian will inevitably have more fill and require more storage.

• ILU decomposition of the Jacobian. The memory required for this
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Figure 3.4: Surface pressure coefficient for transonic flow over a NACA 0012
airfoil

Order First-Order Jacobian (MF) High-Order Jacobian (ME)
ILU(1) ILU(4) LU ILU(0) ILU(1)

2 85.5 49.7 29.2 54.2 33.7
3 81.3 55.0 38.8 34.0 23.4
4 152.4 105.4 95.7 32.6 23.0

(a) Subsonic case

Order First-Order Jacobian (MF) High-Order Jacobian (ME)
ILU(1) ILU(4) LU ILU(0) ILU(1)

2 41.9 28.6 26.8 25.2 13.3
3 40.9 32.9 29.5 10.9 7.1
4 58.9 47.5 44.9 20.6 11.9

(b) Transonic case

Table 3.3: Average number of inner GMRES iterations per Newton iteration
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Figure 3.5: Convergence plots comparing the line search method with a
backward-Euler method for subsonic case
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Figure 3.6: Convergence plots comparing the line search method with a
backward-Euler method for transonic case
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Figure 3.7: Convergence plots comparing global timestepping, CFL-based
local timestepping and residual-based local timestepping for subsonic case
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Figure 3.8: Convergence plots comparing global timestepping, CFL-based
local timestepping and residual-based local timestepping for transonic case
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3.5. Results

depends not only on the fill of the Jacobian but also on the additional
fill due to the decomposition which increases with n for ILU(n).

• Krylov subspace. The maximum number of inner GMRES iterations
required to solve a Newton iteration and the number of solution un-
knowns per control volume determines the memory requirement of the
Krylov solver.

The breakdown of memory requirement along with the total CPU time is
shown in Tables 3.4 and 3.5. The additional memory required by the matrix-
explicit scheme is due to the increased fill of the Jacobian and resulting
preconditioning matrix. However, this is partially offset by the lower fill
ratio of the ILU decomposition and the reduced memory use of the Krylov
solver. For the subsonic case, the matrix-explicit method preconditioned with
ILU(0) requires less than 50% more memory than the matrix-free method
with ILU(4) for second- and fourth-order schemes while for the third-order
scheme the difference is about 100% more memory. For the transonic case,
the matrix-explicit second-order method requires 31% more memory than
the matrix-free method, while for the third- and fourth-order scheme, the
difference is closer to 100%.
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Order Scheme Precon Recon Jacobian ILU Krylov Total Total Time Time
-ditioner -struction Matrix Subsp. (floats) (bytes) (seconds) (res eval)

2 ME ILU(0) 11.7 299.2 299.2 252 862.1 6897 10.2 526
2 ME ILU(1) 11.7 299.2 480.3 156 947.2 7577 9.5 490
2 MF ILU(1) 11.7 109 144.1 488 752.9 6023 21.8 1124
2 MF ILU(4) 11.7 109 300.4 252 673.2 5385 15.2 784
3 ME ILU(0) 88 585 585 172 1430 11440 16.7 419
3 ME ILU(1) 88 585 1011.7 124 1808.6 14469 15.7 393
3 MF ILU(1) 88 109 144.1 476 817.2 6537 35 877
3 MF ILU(4) 88 109 300.4 316 813.5 6508 26.2 657
4 ME ILU(0) 179.2 615.2 615.2 164 1573.7 12589 19.7 347
4 ME ILU(1) 179.2 615.2 1087.6 108 1990 15920 20.9 368
4 MF ILU(1) 179.2 109 144.1 808 1240.4 9923 92.1 1621
4 MF ILU(4) 179.2 109 300.4 572 1160.7 9285 66.5 1171

Table 3.4: Memory in number of floating point numbers per control volume along with run time in seconds and
equivalent residual evaluations for subsonic case
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R
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lts

Order Scheme Precon Recon Jacobian ILU Krylov Total Total Time Time
-ditioner -struction Matrix Subsp. (floats) (bytes) (seconds) (res eval)

2 ME ILU(0) 11.7 297.2 297.2 120 726.1 5809 27.5 772
2 ME ILU(1) 11.7 297.2 470.2 72 851.1 6809 27.1 761
2 MF ILU(1) 11.7 108.7 142.6 216 479 3832 47.2 1326
2 MF ILU(4) 11.7 108.7 291.7 144 556.1 4449 40.2 1129
3 ME ILU(0) 88 580.2 580.2 116 1364.3 10915 184.5 2517
3 ME ILU(1) 88 580.2 986 52 1706.2 13649 156.4 2134
3 MF ILU(1) 88 108.7 142.6 268 607.3 4858 179.1 2443
3 MF ILU(4) 88 108.7 291.7 220 708.4 5668 155.9 2127
4 ME ILU(0) 179.2 616.7 616.7 100 1512.6 12101 53.5 471
4 ME ILU(1) 179.2 616.7 1073.4 56 1925.3 15403 54.8 482
4 MF ILU(1) 179.2 108.7 142.6 316 746.5 5972 101.6 894
4 MF ILU(4) 179.2 108.7 291.7 256 835.6 6685 88.1 775

Table 3.5: Memory use in number of floating point numbers per control volume along with run time in seconds and
equivalent residual evaluations for transonic case
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3.6. Conclusion

Next we consider the overall computational time required to converge
to the solution. The results presented in Tables 3.4 and 3.5 present both
the CPU time in seconds on a single core of an Intel Core 2 processor as
well as a multiple of the cost of a residual evaluation. Despite the fact that
no attempt to hand tune the parameters of the globalization strategy was
made, the runtime in terms of equivalent residual evaluations is competitive
with that reported elsewhere. In particular, Blanco and Zingg report [5] that
the Newton-Krylov algorithm applied to a second-order accurate matrix-
dissipation scheme required the equivalent of 660 residual evaluation to
converge for the same transonic case. However due to the differences in the
discretization scheme and the mesh used, too much emphasis should not be
placed on such direct comparisons.

The results indicate that in terms of the memory to computational time
trade-off the matrix-explicit method with ILU(0) preconditioning and the
matrix-free method with ILU(4) preconditioning represent, in most cases,
the best trade-offs. Figure 3.9 shows the residual as a function of time
for these two schemes for the second- and fourth-order schemes. On these
plots the startup procedure is shown with a line while the main stage is
shown with a line and a point marker at each iteration. In all cases the
matrix-explicit method outperforms the matrix-free method. The difference
is most substantial for the subsonic case where the startup phase represents
a smaller portion of the total time and where the conditioning of the linear
system is poorer. In this case, the matrix-explicit method provides a 38%
and 70% reduction in CPU time for the second- and fourth-order schemes
respectively. For the transonic case, the matrix-explicit method provides a
32% and 39% reduction in CPU time for second- and fourth-order schemes
respectively.

3.6 Conclusion

We have shown that the most commonly used globalization technique may fail
to converge, particularly for difficult cases such as the fourth-order solution of
transonic flow. This was successfully remedied by the addition of a line search
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Figure 3.9: Residual versus computational time for matrix-explicit method
and matrix-free method

96



3.6. Conclusion

method and the use of the result of the line search to adapt the timestep for
the next iteration. A new method of computing the local-timestep from the
local residual was shown to dramatically improve robustness and performance
of both the second- and fourth-order schemes relative to the use of a global
timestep or a local timestep based on the CFL number.

A method for efficiently computing the exact Jacobian of the high-order
scheme was devised. The incomplete factorization of this Jacobian was
shown to be a more effective preconditioner than the factorization of the
first-order Jacobian. The difference is particularly important for the fourth-
order scheme. In addition the use of this exact Jacobian makes the use of
Frechet derivatives and their associated residual evaluations unnecessary in
the GMRES method. These factors lead to a reduction in computational time
needed for convergence relative to the matrix-free scheme. The difference is
particularly important for the fourth-order scheme where a 70% and 39%
reduction of computational time is achieved for the subsonic and transonic
cases respectively. These reductions in computational time come at the cost
of increased memory consumption of 36% and 81% for subsonic and transonic
cases respectively.

Although these proposed methods help reduce the computational time
of both the second- and fourth-order schemes, they have a greater effect
on the latter. This helps reduce the gap between the computational effort
needed for the fourth-order scheme and the second-order scheme on the
same grid thereby making the high-order schemes more attractive. With
the use of the proposed globalization techniques and the matrix-explicit
method, the fourth-order scheme is only a factor of 1.9 more expensive than
the second-order scheme. When compared to the matrix-free second-order
scheme, the matrix-explicit fourth-order scheme requires only a factor of 1.1
to 1.3 more computational time and about three times as much memory.
Therefore the fourth-order matrix-explicit method is less expensive in time
and memory than the second-order matrix-free scheme applied to a mesh
with one additional 4 : 1 refinement step.
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Chapter 4

Extension to Viscous Flows†

4.1 Introduction

Unstructured grid finite-volume methods have seen wide acceptance in re-
cent times due to their efficient handling of complex geometries. Though
third-order schemes for the advective fluxes have been known [2] for almost
20 years, they have seen little use. The number of details which must be
properly implemented, such as the correct treatment of curved boundaries,
is likely partially to blame. Furthermore, the application of convergence
acceleration techniques is also more complicated than for the second-order
schemes. Despite this we have recently had success in demonstrating the
accuracy of third- and fourth-order schemes for the Euler equations [15].
Just as importantly, we have had success in devising convergence accelera-
tion techniques for these schemes [11, 13, 14]. The result is that we have
successfully demonstrated that third- and fourth-order schemes can be more
computationally efficient at solving the Euler equations for a given level of
accuracy than second-order schemes.

We now aim to extend this work to the Navier-Stokes equations. Though
other researchers [3, 5] have previously used third-order discretizations for
the advective terms, they used traditional second-order discretizations for the
viscous terms. The present work is an extension of work previously carried
out [16] demonstrating the fourth-order accurate solution of the advection-
diffusion equation. Although the simulation of compressible turbulent flows
for aerodynamics applications is our ultimate goal, the present work is
†A version of this chapter will be submitted for publication. C. Michalak and C. Ollivier-

Gooch. A high-order accurate unstructured finite-volume method for the Navier-Stokes
equations.
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4.2. Governing Equations

restricted to subsonic laminar compressible flows.
In Section 4.3 we demonstrate how k-exact reconstruction including

boundary conditions can be efficiently carried out. The evaluation of advec-
tive and diffusive fluxes using this reconstruction is addressed Section 4.4.
The matrix-explicit Newton-Krylov method used to converge the solution to
steady state is presented in 4.5. Finally, in Section 4.6, we present numerical
experiments demonstrating the accuracy of the method and its computational
efficiency.

4.2 Governing Equations

The two-dimensional compressible Navier-Stokes equations for a control
volume Vi can be written in integral form as

d

dt

ˆ
Vi

U dA+
˛

Ωi

(F −G) dS = 0 (4.1)

U =


ρ

ρu

ρv

E

 F =


ρun

ρuun + Pn̂x

ρvun + Pn̂y

(E + P )un



G =


0

τxxn̂x + τyxn̂y

τxyn̂x + τyyn̂y

(uτxx + vτxy − qx) n̂x + (uτyx + vτyy − qy) n̂y


where U is the solution vector in conservative variables, F and G are the
inviscid and viscous flux vectors normal to the control volume boundary, n̂x
and n̂y are the unit normal components, and un = un̂x + vn̂y . The strain
tensor and heat flux vector are

τ = µ

[
2ux uy + vx

vx + uy 2vy

]
− 2

3
µ

[
ux + vy 0

0 ux + vy

]
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4.3. Solution Reconstruction

q =
1

(γ − 1)
µ

Pr
∇T

where µ is the viscosity and T is the temperature.

4.3 Solution Reconstruction

The basis of the present work is k-exact least-squares reconstruction [1]
which has been demonstrated to achieve high-order accuracy for the solution
of the Euler equation [15]. This approach has previously been extended
to include the diffusive fluxes of the advection-diffusion equation [16]. Our
current approach is similar to this previous work, but includes some addi-
tional efficiency considerations, particularly with regards to the handling
of boundary condition enforcement. Though the flux is evaluated in the
conserved variables (ρ, ρu, ρv, E), as is common we reconstruct the primitive
variables (ρ, u, v, P ).

4.3.1 Reconstruction for Interior Control Volumes

In the finite-volume method, the domain is tessellated into non-overlapping
control volumes. Although our approach is equally applicable to vertex-
and cell-centered control volume discretizations, only results using vertex-
centered grids will be presented herein. Each control volume Vi has a
geometric reference point ~xi. This reference point is taken as the cell centroid
for cell-centered control volumes and the vertex for vertex-centered control
volumes. For any smooth function U(~x) and its control volume averaged
values U i, the k-exact least-squares reconstruction uses a compact stencil in
the neighborhood of control volume i to compute an expansion URi (~x−~xi) that
conserves the mean in control volume i and reconstructs exactly polynomials
of degree ≤ k (equivalently, URi (~x− ~xi)− U(~x) = O

(
∆xk+1

)
) .

Conservation of the mean requires that the average of the reconstructed
function Ri and the original function U over control volume i be the same:

1
Vi

ˆ
Vi

URi (~x− ~xi) dA =
1
Vi

ˆ
Vi

U (~x) dA ≡ U i. (4.2)

103



4.3. Solution Reconstruction

The expansion URi (~x− ~xi) can be written as:

URi (~x− ~xi) = U |~xi +
∂U

∂x

∣∣∣∣
~xi

(x− xi) +
∂U

∂y

∣∣∣∣
~xi

(y − yi)

+
∂2U

∂x2

∣∣∣∣∣
~xi

(x− xi)2

2
+

∂2U

∂x∂y

∣∣∣∣∣
~xi

((x− xi)(y − yi)) (4.3)

+
∂2U

∂y2

∣∣∣∣∣
~xi

(y − yi)2

2
+ · · ·

Taking the control volume average of this expansion over control volume i
and equating it to the mean value gives

U i = U |~xi +
∂U

∂x

∣∣∣∣
~xi

xi +
∂U

∂y

∣∣∣∣
~xi

yi (4.4)

+
∂2U

∂x2

∣∣∣∣∣
~xi

x2

2
+

∂2U

∂x∂y

∣∣∣∣∣
~xi

xy +
∂2U

∂y2

∣∣∣∣∣
~xi

y2

2
+ · · ·

where
xnymi ≡

1
Ai

ˆ
Vi

(x− xi)n(y − yi)mdA. (4.5)

are control volume moments.
kth-order accuracy requires that we compute the (k − 1)th derivatives

by minimizing the error in predicting the mean value of the reconstructed
function for control volumes in the stencil of neighboring control volumes
{Vj}i. In other words, we aim to minimizing the difference between the control
volume average U j and the average of the reconstruction Ri over control
volume j. The minimum number of control volumes in the reconstruction
stencil is equal to the number of derivative terms to be approximated. In
practice, to improve conditioning, we increase this minimum to 4, 10, and
16 for second-, third-, and fourth-order schemes respectively. The stencil
is constructed by first considering the first-neighbors of the control volume.
If additional neighbors are needed they are added in order of topological
proximity. All neighbors at given topological distance are added at once.
The resulting stencil is therefore topologically centered but may exceed the
minimum specified size. The mean value, for a single control volume Vj , of
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the reconstructed function URi is

1
Aj

∗−4ex
ˆ
Vj

URi (~x− ~xi)dA = U |~xi (4.6)

+
∂U

∂x

∣∣∣∣
~xi

(
1
Aj

ˆ
Vj

(x− xi)dA
)

+
∂U

∂y

∣∣∣∣
~xi

(
1
Aj

ˆ
Vj

(y − yi)dA
)

+
∂2U

∂x2

∣∣∣∣∣
~xi

(
1

2Aj

ˆ
Vj

(x− xi)2dA

)

+
∂2U

∂x∂y

∣∣∣∣∣
~xi

(
1
Aj

ˆ
Vj

(x− xi)(y − yi)dA
)

+
∂2U

∂y2

∣∣∣∣∣
~xi

(
1

2Aj

ˆ
Vj

(y − yi)2dA

)
+ · · ·

To avoid computing moments of each control volume in {Vj}i about ~xi,
replace x− xi and y − yi with (x− xj) + (xj − xi) and (y − yj) + (yj − yi),
respectively. Expanding and integrating, we obtain

1
Aj

∗ −4ex
ˆ
Vj

URi (~x− ~xi) = U |~xi +
∂U

∂x

∣∣∣∣
~xi

(xj + (xj − xi))

+
∂U

∂y

∣∣∣∣
~xi

(
yj + (yj − yi)

)
+
∂2U

∂x2

∣∣∣∣∣
~xi

x2
j + 2xj(xj − xi) + (xj − xi)2

2

+
∂2U

∂x∂y

∣∣∣∣∣
~xi

(
xyj + xj(yj − yi) + (xj − xi)yj +(xj − xi)(yj − yi))

+
∂2U

∂y2

∣∣∣∣∣
~xi

y2
j + 2yj(yj − yi) + (yj − yi)2

2
+ · · · (4.7)

This equation is written for every control volume in the stencil. These
equations combined with the mean constraint form a constrained least-
squares system of the form:
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1 x̄ ȳ x2 xy y2 · · ·
wi1 wi1 x̂i1 wi1 ŷi1 wi1 x̂

2
i1 wi1 x̂yi1 wi1 ŷ

2
i1
· · ·

wi2 wi2 x̂i2 wi2 ŷi2 wi2 x̂
2
i2 wi2 x̂yi2 wi2 ŷ

2
i2
· · ·

wi3 wi3 x̂i3 wi3 ŷi3 wi3 x̂
2
i3 wi3 x̂yi3 wi3 ŷ

2
i3
· · ·

...
...

...
...

...
...

. . .

wiN wiN x̂iN wiN ŷiN wiN x̂
2
iN wiN x̂yiN wiN ŷ

2
iN
· · ·





U
∂U
∂x
∂U
∂y

1
2
∂2U
∂x2

∂2U
∂x∂y
1
2
∂2U
∂y2

...


i

=



U i

wi1U 1

wi2U 2

wi3U 3

...
wiNUN


(4.8)

where the first row is the mean constraint, and the geometric terms are

̂xnymij ≡ 1
Aj

ˆ
Vj

((x− xj) + (xj − xi))n((y − yj) + (yj − yi))mdA

=
m∑
l=0

n∑
k=0

m!
l! (m− l)!

n!
k! (n− k)!

(xj − xi)k(yj − yi)l xn−kym−lj

and w, the weights, can be chosen to emphasize geometrically nearby data

wij =
1

|~xj − ~xi|n
. (4.9)

where n is typically chosen to be 0, 1, or 2. Although the use of n = 0 has
been shown to lead to some accuracy issues for highly anisotropic grids [9], in
our experience it is the best choice for successful convergence of the scheme
and is therefore used in the present work.

Since the matrix in Equation 4.8 depends purely on geometric terms
it is possible to reduce the reconstruction step at each flux evaluation to
a matrix-vector multiplication by precomputing a pseudoinverse during a

106



4.3. Solution Reconstruction

preprocessing stage. To obtain this form, we first analytically eliminate the
mean constraint from Equation 4.8. Next, we compute the pseudoinverse of
the resulting unconstrained least-squares problem. For this we use singular-
value decomposition (see, for instance, [6] for details). The mean constraint
can then be reintroduced to yield a matrix, which we store for each control
volume, that can be used to compute the reconstruction coefficients using a
single matrix-vector multiplication operation of the form

U
∂U
∂x
∂U
∂y

1
2
∂2U
∂x2

∂2U
∂x∂y
1
2
∂2U
∂y2

...


i

= A



U i

U 1

U 2

U 3

...
UN


. (4.10)

Since the matrixA is based on purely geometric terms, the same pseudoinverse
matrix can be used to reconstruct all the flow variables in the control volume
which helps minimize memory use. Furthermore, this reconstruction form
helps in constructing the exact flux Jacobian which was shown in Chapter
3to be helpful in obtaining rapid convergence of high-order accurate schemes.

4.3.2 Boundary Condition Enforcement

In general, boundary conditions can be enforced either through special flux
functions or by modifying the reconstruction step. In practice, we use
special flux functions for boundary conditions of the inviscid flux and for
maintaining the adiabatic condition at walls. We modify the reconstruction
step to maintain the no-slip condition at the wall by enforcing Dirichlet
boundary conditions for the components of velocity u and v. However, our
approach to boundary condition enforcement is general enough to be applied
to any Dirichlet or Neumann boundary condition. In previous work with
the advection-diffusion equation [16] boundary conditions were enforced by
introducing additional constraints on the least-squares problem in Equation
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4.8. This resulted in the boundary conditions being satisfied exactly at the
Gauss integration points. In the present work we modify this approach by
instead augmenting the least-squares problem with additional reconstruction
goals. While this does not ensure that the boundary conditions are met
exactly, it does guarantee that they are satisfied within the truncation error
of the scheme and it simplifies the reconstruction process.

Suppose that the solution must satisfy a Dirichlet boundary condition
such that along part of the boundary ∂Ω1 the reconstruction approximately
satisfies R(~x − ~xi) = f1(~x). Rather than attempting to satisfy this condi-
tion everywhere along the boundary, we consider only the solution at each
Gauss integration point ~xg on the boundary. In terms of the reconstruction
polynomial coefficients, this reconstruction goal can be expressed as

f1(~xg) = U |~xi +
∂U

∂x

∣∣∣∣
~xi

(xg − xi) +
∂U

∂y

∣∣∣∣
~xi

(yg − yi)

+
∂2U

∂x2

∣∣∣∣∣
~xi

(xg − xi)2

2
+

∂2U

∂x∂y

∣∣∣∣∣
~xi

(xg − xi)(yg − yi)

+
∂2U

∂y2

∣∣∣∣∣
~xi

(yg − yi)2

2
+ · · · (4.11)

The boundary condition can be incorporated into Equation 4.8 by adding a
row to the matrix for each boundary Gauss point giving



1 x̄ ȳ x2 xy y2 · · ·
wia wiaδxia wiaδyia wiaδx

2
ia wiaδxiaδyia wiaδy

2
ia · · ·

wib wibδxib wibδyib wibδx
2
ib wibδxibδyib wibδy

2
ib · · ·

wi1 wi1 x̂i1 wi1 ŷi1 wi1 x̂
2
i1 wi1 x̂yi1 wi1 ŷ

2
i1
· · ·

wi2 wi2 x̂i2 wi2 ŷi2 wi2 x̂
2
i2 wi2 x̂yi2 wi2 ŷ

2
i2
· · ·

wi3 wi3 x̂i3 wi3 ŷi3 wi3 x̂
2
i3 wi3 x̂yi3 wi3 ŷ

2
i3
· · ·

...
...

...
...

...
...

. . .

wiN wiN x̂iN wiN ŷiN wiN x̂
2
iN wiN x̂yiN wiN ŷ

2
iN
· · ·





U
∂U
∂x
∂U
∂y

1
2
∂2U
∂x2

∂2U
∂x∂y
1
2
∂2U
∂y2

...


i
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=



U i

wiaf1(~xa)
wibf1(~xb)
wi1U 1

wi2U 2

wi3U 3

...
wiNUN


(4.12)

where the weights for the Gauss point rows can be computed as

wig = cb
1

|~xg − ~xi|n
(4.13)

and

δxig ≡ xg − xi
δyig ≡ yg − yi

where n is the same value used in Equation 4.9 and cb determines how
strongly the boundary condition is enforced. Except where otherwise noted,
we use cb = 6. Neumann boundary conditions can be applied in an analogous
way. If the reconstruction polynomial is to approximate the boundary
condition ∂URi (~x−~xi)

∂n = f2(~x) we simply add reconstruction goals at the
boundary Gauss points of the form

f2(~xg) = ∇URi (~xg − ~xi) · n̂

= nx

 ∂U

∂x

∣∣∣∣+ ∂2U

∂x2

∣∣∣∣∣
~xi

(xg − xi) +
∂2U

∂x∂y

∣∣∣∣∣
~xi

(yg − yi) + · · ·

+

ny

 ∂U

∂y

∣∣∣∣+ ∂2U

∂x∂y

∣∣∣∣∣
~xi

(xg − xi) +
∂2U

∂y2

∣∣∣∣∣
~xi

(yg − yi) + · · ·


where n̂ is the unit boundary normal.

As for the interior case, the pseudoinverse of the constrained least-squares
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problem of Equation 4.12 can be computed to reduce the reconstruction to a
matrix-vector product of the form



U
∂U
∂x
∂U
∂y

1
2
∂2U
∂x2

∂2U
∂x∂y
1
2
∂2U
∂y2

...


i

=
[
Ab Ai

]



f1( ~xa)
f1(~xb)
U i

U 1

U 2

U 3

...
UN


,

where the component Ab of the pseudoinverse has as many columns as there
are boundary Gauss points. Since the value of f1(~x) does not change at
each iteration, the boundary reconstruction step can be further optimized
by precomputing a vector

vb = Ab

(
f1( ~xa)
f1(~xb)

)
.

The reconstruction can then be found by



U
∂U
∂x
∂U
∂y

1
2
∂2U
∂x2

∂2U
∂x∂y
1
2
∂2U
∂y2

...


i

= Ai



U i

U 1

U 2

U 3

...
UN


+ vb. (4.14)

Therefore the computational cost of reconstruction at the boundaries is almost
identical to that of the interior. However since the different flow variables do
not need to satisfy the same boundary conditions, the pseudoinverse matrix
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Ai and vector vb will need to be stored independently for each flow variable.
Since only a small fraction of control volumes are adjacent to the boundary,
this is not a major issue.

Boundary conditions which linearly couple flow variables or their deriva-
tives can also be implemented. This is most easily accomplished by consider-
ing the constrained least-squares problem which simultaneously solves the
reconstruction polynomial for all flow variables at a control volume. However
this causes the memory and computational cost of boundary control volume
reconstruction to increase quadratically with the number of flow variables.
Therefore we elect to only simultaneously solve the reconstruction for the
flow variables which are coupled by boundary conditions and independently
solve those that are not.

4.4 Flux Integration

Once the reconstruction polynomial coefficients are computed as in Section
4.3, the solution and its gradients can easily be obtained at any Gauss
integration point along the control volume boundary. In the present work,
we use a vertex-centered centroidal-dual control volume which is obtained
by connecting mesh face centroids with cell centroids. This results in two
control volume edges per face in the primal mesh. Gauss integration is
carried out on these dual edges using one Gauss point per control volume
edge for the second-order scheme and two Gauss points for the third-, and
fourth-order schemes. For the third-, and fourth-order schemes, it is well
known that Gauss points must be located on the curved boundary rather
than on the straight edge connecting vertices. Recently, it has been shown
that for vertex-centered schemes the boundary face centroid used for the
construction of the dual mesh must also be correctly located on the boundary,
even for second-order schemes [4]. For this reason, we use curved boundary
information for determining Gauss point locations, weights, and normals for
all orders of accuracy.

The inviscid component of the flux is computed by evaluating the solution
at the Gauss point using the reconstruction from both incident control
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volumes as input to Roe’s approximate Riemann solver [19]. The viscous flux
requires not only the solution, but also the solution gradients. For this we
use the average gradient obtained from the reconstruction of the two incident
control volumes. For a p-order accurate reconstruction scheme, fluxes that
depend only on the solution will be p-order accurate. Since the solution
gradient is only (p− 1)-order accurate, the accuracy of the viscous flux is
an order of accuracy lower than that of the inviscid flux. However, previous
work [16] has analytically demonstrated that the even-order discretization
of the Laplace equation on equilateral triangular grids benefits from error
cancellation leading to an overall scheme that is p-order accurate. Numerical
results in the same work confirmed the p-order accuracy of the overall scheme
for the advection-diffusion equation on an isotropic unstructured grid. At
the onset of this work it was not known whether this could also be expected
of the Navier-Stokes equations on an unstructured grid.

4.5 Solution Convergence

The solution is converged to steady state using a Newton-GMRES [20] algo-
rithm. The exact full-order Jacobian is used for forming the preconditioning
matrix and for performing the matrix-vector products needed by the GM-
RES algorithm. The preconditioner used is ILU with one level of fill for the
second-order scheme and zero levels of fill for the third- and fourth-order
schemes. As in our work with the Euler equation, reproduced as Chapter 3
in this thesis, the globalization technique used is a combination of a local
timestepping scheme with a line search algorithm. The local timestep is a
function of a global timestep and the relative size of the local residual. The
global timestep is increased as the solution converges using the successive
evolution-relaxation (SER) [12] scheme. Convergence is facilitated by scaling
the local timestep by the size of the local residual from the previous itera-
tion. The line search algorithm is used to detect when an exceedingly large
timestep is taken which may adversely affect the nonlinear convergence of
the scheme. When this occurs, the subsequent timestep size is reduced.

In the manuscript presented in Chapter 3, it was shown that the exact
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high-order accurate flux Jacobian for the Euler equation could be found
using the chain rule

∂FluxInt
∂CVars

=
∂FluxInt
∂Flux

∂Flux
∂RecSol

∂RecSol
∂RecCoef

∂RecCoef
∂PVars

∂PVars
∂CVars

where FluxInt is the flux integral, Flux are the numerical fluxes, RecSol are
the reconstructed solutions at Gauss points, RecCoef are the reconstruction
coefficients, PVars are the control volume averages of the primitive variables,
and CVars are the control volume averages of the conserved variables. In that
work, a method to efficiently compute these terms was also presented. For vis-
cous equations the flux depends not only on the solution but also its gradient.
To accommodate this, we simply need to replace RecSol, the vector of recon-
structed solutions at Gauss points, with a larger vector RecSolGrad which
contains the solution and its two gradient terms. The term ∂RecSolGrad

∂RecCoef
becomes the sensitivity of the reconstructed solution and solution gradients
to the reconstruction coefficients, and the term ∂Flux

∂RecSolGrad becomes the
Jacobian of the inviscid and viscous fluxes with respect to the reconstructed
solution and its gradients. With these changes, the method to efficiently
assemble the Euler flux Jacobian described in Chapter 3 can readily be used
to assemble the Navier-Stokes flux Jacobian. The sparsity pattern of the
assembled Jacobian matrix does not change through the addition of the
viscous terms.

4.6 Results

4.6.1 Cylindrical Couette Flow

To numerically evaluate the order of accuracy of the scheme we consider flow
around concentric cylinders. The outer cylinder with a radius of 2 is fixed and
adiabatic while the inner cylinder has a radius of 1 and is rotated clockwise
with a tangential Mach number of 0.5. Since isothermal wall conditions for
the inner cylinder would be difficult to enforce with the current choice of
reconstruction variables, we obtain an equivalent result by augmenting the
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Reconstruction Order L1 L2 L∞

2 1.60 1.59 1.37
3 2.22 2.25 2.38
4 3.54 3.57 3.26

Table 4.1: Order of error norms in velocity computed using a regression fit
through data from all grids

fixed velocity wall condition with an isobaric condition. To avoid Taylor
instabilities a Reynolds number of 10 based on the inner cylinder radius is
used. Viscosity is considered constant for this case which allows comparison
with the analytic exact solution [8]. In particular, in this case the velocity
profile reduces to that of the incompressible flow with

vθ = Ωiri

ro
r −

r
ro

ro
ri
− ri

ro

where vθ is the tangential flow velocity, Ωi is the angular velocity of the inner
wall, r is the radius, and ri and ro and the radius of the inner and outer
cylinders.

The numerical solution is carried out on a series of four meshes consisting
of 219, 840, 3256, and 12812 vertices shown in Figure 4.1. Since the grids
are unstructured and not aligned with the expected flow gradients and
since the discretization is carried out in Cartesian coordinates, the error in
the numerical solution should not have any unexpected benefits from the
simplicity of the solution expressed in radial coordinates.

The L2 norms of error in the velocity terms for the second-, third-, and
fourth-order schemes is shown in Figure 4.2 and the convergence order of
the error norms is shown in Table 4.1. The results indicate that the effective
order of accuracy of the schemes falls between the nominal order of the flux
calculation of the solution and gradient terms.

To demonstrate that the enforcement of boundary conditions using a
least-squares approach is not detrimental to the overall accuracy of the
scheme, we consider the effects of varying cb in Equation 4.13. The L2
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(a) 219 vertex mesh (b) 840 vertex mesh

(c) 3256 vertex mesh (d) 12812 vertex mesh

Figure 4.1: Four coarsest grids used in cylindrical Couette flow case
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Figure 4.2: Convergence of error in velocity for cylindrical Couette flow

norm of error in the velocity terms sampled at 10, 000 points along the inner
cylinder boundary along with the norms of error in the interior of the domain
is plotted in Figure 4.3. The results indicate that increasing the value of cb
only serves to decrease the error in the constrained terms at the boundary
without affecting the overall accuracy of the solution in the interior.

4.6.2 Flow Over an Airfoil

Next we consider subsonic laminar compressible flow around an airfoil.
Specifically, flow around a NACA 0012 airfoil at zero angle of attack at
a Mach number of 0.5 and Reynolds number of 5000 is simulated on a
series of grids. These grids were generated by adaptive refinement using the
second-order scheme [17]. A total of six grids is considered with the coarsest
containing 1345 vertices and the finest containing 37399 vertices. The grids
are unstructured, anisotropic, and are not self-similar. The coarsest grid
is shown in Figure 4.4 and a sample flow solution is given in Figure 4.5.
The airfoil surface is considered adiabatic and Sutherland’s law is used to
compute the viscosity.
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Figure 4.3: Convergence of error in velocity for the fourth-order scheme at
the boundary and in the interior using different least-squares weights for the
boundary condition terms

The convergence process is facilitated by using the converged solution
from the previous coarser mesh as the initial solution on the next mesh. The
solution is transferred by Gauss integration on the fine grid of the values
obtained from the solution reconstruction on the coarse grid. Using this
grid-sequencing method, the CPU time needed for a solution scales nearly
linearly with the number of control volumes. The time required for a solution
at each grid level is shown in Figure 4.6. These results along with the
cumulative time required for the grid sequencing are shown in Table 4.2.
In general, the third- and fourth-order schemes are a factor of 2.5 and 2.8,
respectively, more costly than the second-order scheme. The majority of this
additional cost can be attributed to the doubling in the number of Gauss
points required in the high-order schemes.

From the converged flow solution, the pressure and viscous drag coef-
ficients are computed and the flow separation point is found. Table 4.3
demonstrates that the results are in general agreement with other published
values. Next we consider the convergence of viscous drag with mesh refine-
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(a) 1345 vertex grid

(b) 2681 vertex grid

(c) 5363 vertex grid

Figure 4.4: Three coarsest grids used for airfoil case
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Figure 4.5: Mach number contours as computed on the 10541 vertex mesh
using the fourth-order scheme
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Figure 4.6: Computational time required for convergence at each grid level
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Number of Incremental Time Cumulative Time
Control Volumes 2nd 3rd 4th 2nd 3rd 4th

1345 1.6 4.8 5.3 1.6 4.8 5.3
2681 2.8 8.1 8.8 4.4 12.9 14.1
5363 7.6 17.3 18.8 10.4 25.4 27.6
10541 13.9 31.9 37.1 21.5 49.2 55.9
20016 32.4 83.6 82.3 46.3 115.5 119.4
37399 94.2 190.0 227.4 126.6 273.6 309.7

Table 4.2: Computational time in seconds required for convergence of airfoil
test case using grid sequencing

Method Grid Size Viscous Drag Pressure Drag Separation
Coefficient Coefficient Point

Second-Order 37399 0.0311 0.0237 0.768
Third-Order 37399 0.0323 0.0224 0.778
Fourth-Order 37399 0.0321 0.0225 0.789
ARC2D [7] 320 x 128 0.0321 0.0221 0.824

Mavriplis [10] 320 x 64 0.0332 0.0229 0.814
Radespiel [18] 512 x128 0.0330 0.0224 0.814

Table 4.3: Comparison of fine grid results for airfoil case
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Figure 4.7: Viscous drag coefficient grid convergence

ment in Figure 4.7 and of pressure drag in Figure 4.8. We note that the
fourth-order scheme exhibits excellent grid convergence of drag coefficients.
In fact, both drag coefficients are within 4 counts of the converged values
beginning at the third-coarsest mesh (5363 vertices) and within 2 counts of
the converged values beginning at the fourth-coarsest mesh (10541 vertices).
The third-order scheme also exhibits good viscous drag convergence but
the pressure drag varies by 8 counts between the second-finest and finest
grids. Like the third-order scheme, the second-order scheme does not ex-
hibit grid-convergence of drag. Furthermore, the fine grid solution differs
significantly from that of the third- and fourth-order schemes. Next we
consider the separation point in Figure 4.9. The fourth-order scheme exhibits
convergence of the separation point to within 1% of chord length beginning at
the fourth-coarsest mesh while the third- and second-order schemes continue
to see fluctuations of up to 5%.

Overall, the grid convergence study demonstrates that the fourth-order
scheme is remarkably superior to the second- and third-order schemes. The
fourth-order solution on the third-coarsest mesh is arguably superior to the
second-order solution on the finest mesh and requires only 1

5 the computa-
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Figure 4.8: Pressure drag coefficient grid convergence
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Figure 4.9: Grid convergence of the separation point on the upper airfoil
surface
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tional time.

4.7 Conclusion

The scheme based on a fourth-order reconstruction was shown to obtain an
order of accuracy of approximately 3.5 under a mesh refinement study of the
cylindrical Couette flow. The subsonic laminar airfoil test case demonstrated
that this accuracy translates to rapid grid convergence of lift, drag and
separation points relative to the second-order scheme. When combined with
a matrix-explicit Newton-GMRES convergence acceleration technique, the
fourth-order scheme was shown to be only a factor of 2.8 more computationally
expensive than a second-order scheme on the same grid. The results indicate
that the fourth-order scheme can be less computationally expensive for
obtaining a level of accuracy typically desired for aerodynamics simulations.

Future work will examine the extension of the present scheme to turbulent
flows. One significant challenge will lay in the stability of the high-order
discretization of the turbulence model. Furthermore the need for curved
boundary treatment for the high-order scheme combined with the highly-
anisotropic grids required for efficient discretizations of turbulent flows can
lead to malformed control volumes unless the interior faces are also curved.
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Chapter 5

Conclusion

In the previous chapters a number of specific improvements to the state of
the art of the unstructured high-order finite-volume method were presented.
In Chapter 2 a means of eliminating oscillations of the numerical solution
near shocks while maintaining the high-order accuracy of the scheme and
computational efficiency of least-squares reconstruction was devised. The ex-
plicit formation of the high-order Jacobian combined with novel globalization
techniques was shown in Chapter 3 to provide significant improvement to the
Newton-Krylov convergence strategy. In Chapter 4 a method to discretize
diffusive fluxes of the Navier-Stokes equations and a means of enforcing
the associated boundary conditions was presented and shown to attain the
expected order of accuracy. In this chapter the combined significance of these
works is discussed, how these results affect the relative competitiveness of the
high-order finite-volume method compared with other high-order methods is
addressed, and future developments are suggested.

5.1 Significance of Results

The intended combined significance of the manuscript chapters was to resolve
specific limitations of the high-order least-squares reconstruction based finite-
volume scheme so as to pave the way for future research aimed at exploring the
feasibility and competitiveness of this method for aerodynamics simulations.
The common theme of the work is the demonstration that for the simplified
problem of two-dimensional inviscid and laminar flow the method can be
accurate and efficient. While this does not prove that the method will be
efficient or even accurate for the more difficult case of practical interest,
three-dimensional turbulent flow, it provides a critical stepping stone in that
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direction.

5.1.1 Limiter

The manuscript in Chapter 2 introduces a slope limiter for the least-squares
reconstruction which does not inhibit high-order accuracy in smooth regions
while maintaining monotonicity at shocks. Just as importantly, this is
achieved in a computationally efficient manner and without degrading the
steady-state convergence properties of the scheme. Previous researchers [3,
7, 17] have used a nominally high-order least-squares reconstruction together
with a limiter to resolve flows with shocks. However none of these works
have demonstrated or made explicit claims that the high-order accuracy of
the method was maintained in smooth regions when such a limiter is used.

The broad family of essentially non-oscillatory (ENO) scheme [1, 10, 20,
for instance] including the Weighted ENO (WENO) schemes [9, 11, 13,
for instance] provides a viable solution to the accuracy and monotonicity
challenge. However these schemes do not converge to steady state as efficiently
as least-squares reconstruction schemes. Furthermore, the reconstruction
step is much more costly than that of the least-squares reconstruction. A
hybrid approach, named Quasi-ENO [19], has also been developed. In this
approach, the reconstruction is carried out in a least-squares sense, but the
weights assigned to the reconstruction goals are modified at each iteration
to emphasize smooth data. Although found to be effective, this method
is computationally expensive since the pseudoinverse of the least-squares
matrix cannot be precomputed and stored. The cost savings enjoyed from
this precomputation by regular least-squares reconstruction schemes increases
dramatically as the order of accuracy, and therefore the size of the least-
squares matrices, increases. For these reasons the limiter approach present
in this work is more attractive than ENO-type schemes for steady-state
solutions with relatively simple shock formations typically seen in transonic
aerodynamics. The possible application of the limiter to unsteady problems
with more complex shock formations for which ENO schemes have primarily
been developed has yet to be studied.
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The significance of the development of the new limiter may extend beyond
high-order accurate schemes. The results in Chapter 2 demonstrated that
even for second-order schemes, the new limiter provided significantly better
accuracy than what is considered the de facto standard limiter [22] for
unstructured finite-volume methods. The degradation of the accuracy of
the solution with the use of limiters is a well-known problem. In fact, it is
common practice to avoid using a limiter for cases where only weak shocks
are expected. Such shocks occur, for example, in flow over a wing designed
to operate efficiently in transonic regimes. The choice to avoid the use of
limiters is made due to the improved convergence properties and accuracy
in smooth regions of the unlimited scheme. However, this choice comes at
the cost of introducing oscillations at the shock. The new limiter applied to
the second-order scheme was shown to maintain the same accuracy as the
unlimited scheme, therefore making the trade-off in choosing a good quality
solution away from the shock at the expense of the quality of the solution
at the shock unnecessary. Since the new limiter fits in essentially the same
framework as other limiters, existing finite-volume codes which incorporate
Venkatakrishnan’s [22] or Barth-Jespersen’s [3] limiter can easily be extended
to accommodate it.

The extension of the limiter to turbulent viscous flows is expected to be
straightforward. The only significant difference for the viscous case has to
do with the no-slip wall boundary condition. The method of maintaining
accuracy at stagnation points, which was developed and tested on the inviscid
case, is expected to be effective at allowing the limiter to maintain accuracy
near no-slip walls. In fact, the application of the limiter to viscous flows
should be simpler than for inviscid flows since the special treatment of
tangential flow at walls will no longer be necessary.

Likewise, the extension to three-dimensional flows is not expected to be
problematic. The two-dimensional assumption is only used in the develop-
ment of the special treatment of tangential flow at the wall. Therefore, for
inviscid three-dimensional flows some adaptation of this method will need
to take place. However for viscous three-dimensional flows the method as
presented in this work should be directly applicable.
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5.1.2 Globalized Matrix-Explicit Newton-GMRES

The manuscript in Chapter 3 introduces improvements to two aspects of
the efficient steady-state solution process developed for the high-order finite-
volume scheme. The first aspect deals with improving the robustness and
efficiency of the globalization of the Newton method. The second aspect
deals with the efficiency of the solution of the linear systems arising from
the globalized Newton method.

As part of the improvement in the globalization, a method of combining
timestepping with the line search method was proposed to improve robustness.
Although both timestepping and line search methods are commonly used,
this is to the author’s knowledge the first study combining both methods
in a CFD application. The lack of robustness of the Newton-GMRES
method, particularly for flows with shocks, has prevented its rapid adoption
in production codes. For high-order schemes, where the numerical method is
less dissipative, the problem is exacerbated. Although far from being a full
solution to this issue, the combined line search and timestepping method
provides an additional tool in the arsenal that researchers and developers
can use to improve the robustness of the solution process.

Another improvement to the globalization method presented in this work
relates to the choice of local timestep. Selecting a timestep that depends on
the relative local residual at the previous iterate was shown to be significantly
more effective than using a CFL based local timestep or a global timestep. For
transonic cases, in particular, the convergence of the scheme was drastically
improved. The idea behind the use of the residual based timestep is simple.
Regions where the residual, or flux integral, is large are changing rapidly
and therefore require the use of small timesteps for the correct evolution to
take place. Regions where small residuals prevail, on the other hand, benefit
from large timesteps so that errors can be propagated to the boundaries
quickly. An analogy to multigrid would be that the goal of the residual based
local timestep scheme is to smooth high frequency error in regions where the
residual at the previous iterate was large and to smooth low frequency error
in regions where the residual was small. Further research is warranted to
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determine if this approach is effective in reducing or eliminating the grid size
dependence on the number of nonlinear iterations needed for convergence.
However this is certainly not a complete replacement for multigrid since the
stiffness of the resulting linear system maintains its grid size dependence.
Both improvements to the globalization technique are not tied to the finite-
volume method and could potentially be used with other discretizations.

Chapter 3 also demonstrates that the exact Jacobian for the high-order
finite-volume method can be effectively used to improve the performance of
the preconditioned GMRES linear solver. The benefit is most significant for
the fourth-order scheme for which the first-order Jacobian had previously been
shown to provide poor preconditioning [17]. The high-order Jacobian not only
improves conditioning but also eliminates the need for residual evaluations
resulting from the matrix-free GMRES method previously employed. Perhaps
the most significant revelation from this work is the demonstration that the
exact Jacobian, which was previously thought to be prohibitively expensive to
compute, can be obtained at reasonable cost in both computational time and
memory. The significance of this extends beyond its demonstrated application
for efficient ILU preconditioned GMRES. For example, the availability of the
explicit Jacobian introduces the possibility of using an algebraic multigrid
method to solve the linear system. Another potential use of the exact
Jacobian is for aerodynamic shape optimization. Adjoint-based methods
have been proposed for this application [2, 12, 14]. Currently, the discrete
adjoint method is favored over the continuous adjoint method since it does
not require that the flux Jacobian be explicitly known. However, in light of
the fact that the exact flux Jacobian was found to be relatively inexpensive
to compute, the continuous adjoint methods may prove to be more efficient.
This research question has begun to be addressed by another graduate student
in the author’s group.

5.1.3 Viscous Discretization

The extension of the least-squares based unstructured high-order finite-
volume discretization to the full Navier-Stokes equations was carried out
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in Chapter 4. Since, unlike the inviscid fluxes of the Euler equation, the
viscous fluxes require the solution gradient in addition to the solution value,
this represents an important extension to the discretization which warranted
study. In addition to demonstrating that the expected order of accuracy could
be achieved, it was also shown that such schemes can readily be converged
through the use of the Newton-Krylov method with the help of the exact
Jacobian, which can be obtained in a method similar to that described for
the inviscid case in Chapter 3.

This is, to the author’s knowledge, the first high-order unstructured least-
squares reconstruction based finite-volume discretization to demonstrate
high-order accuracy for viscous flows. However, the discontinuous Galerkin
method has also been successfully used for this [4, 5, 8]. A comparative study
of the accuracy and efficiency of the high-order finite-volume method with
the discontinuous Galerkin method would certainly be warranted. However,
since both methods are in their infancy, such a study would provide only
preliminary information as to which scheme could fare better on more complex
problems which are ultimately of interest.

5.2 Outlook

5.2.1 Turbulent Flows

The Reynolds averaged Navier-Stokes (RANS) equations provide a com-
putationally feasible way of solving typical aerodynamics flows. For this
application, the most common closure models are the one-equation Spalart-
Allmaras [21] and two-equation k − ω and k − ε models [23]. These closure
equations, consisting of convective, diffusive, and source terms, are difficult
to solve due to their numerical stiffness. Their numerical solution must be
carefully designed to maintain the positivity of turbulence variables. For this
reason it is common for codes which use a second-order discretization for the
RANS equations to use a first-order discretization for some or all of the terms
of the turbulence model. While good results have been achieved with this
method, it is anticipated that a first-order discretization will be a limiting
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factor on the accuracy of the overall scheme if high-order accurate methods
are used for the RANS equations. Therefore a stable high-order accurate
discretization of the turbulence model needs to be developed. Although this
question has not been explored for high-order accurate finite-volume schemes,
it has been to be addressed in the context of the discontinuous Galerkin
method [4] which may provide valuable insight.

The use of Newton-Krylov methods for the solution of turbulent flows
will also require careful study. For second-order methods, the question has
been addressed with some success. Due to numerical stiffness, some evidence
suggests that a fully coupled approach to the solution of the turbulence and
RANS equations may not provide the best convergence properties. For this
reason a loosely-coupled approach has been suggested [6]. This approach
is also attractive due to its reduced memory requirement resulting from
the reduced block size of the Jacobian matrix. In the fourth-order case,
where the use of the full-order Jacobian was shown to be important for good
convergence, this savings in memory would be especially important.

Another complication is that the turbulence model equations, unlike
the Navier-Stokes equations, contain source terms. The high-order Gauss
integration rules for these terms on arbitrary control volumes, including
those at curved boundaries, have been developed [18]. However, in their
current state, these rules make no guarantee that the Gauss points will be
inside the control volume itself or even within the domain boundary. For
simple applications, such as initializing a solution, transferring a solution
to another grid, or evaluating the error relative to an analytic solution,
this is not problematic. In fact, this integration method is already being
successfully used as part of the pre- and post-processing of the solution in
our code. However if applied to the integration of turbulence source terms,
problems may arise near the domain boundary. For control volumes near a
no-slip wall some Gauss points will be located outside the domain on the
other side of the wall. The evaluation of turbulence model source terms at
these points is ill defined since they depend on the distance to the nearest
wall and the velocity magnitude. Therefore some special methods may need
to be developed for high-order integration of turbulence source terms near
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wall boundaries.
The added complications of high Reynolds number flows are not limited

to the issues directly related to the turbulence model. Since the boundary
layer in these flows is very thin relative to the macroscopic flow properties, it
is essential to use highly anisotropic grids to achieve computational efficiency.
For aerodynamics applications, it is not unusual to use grids with cell aspect
ratios of 10, 000 : 1 in the boundary layer.

This is expected to cause problems with the stability, accuracy, and
convergence properties of the scheme, all of which have also been issues with
second-order schemes. For example, a relatively recent paper [16] addresses
the accuracy of second-order least-squares reconstruction on anisotropic grids.
Although the findings indicate that the use of distance weighing of the least-
squares terms is essential for accuracy, this weighing is not typically used
due to stability concerns. In practice, structured or quasi-structured grids
are almost always used in the boundary layer. The resulting grid alignment
with flow properties alleviates many of the accuracy and stability issues of
reconstruction based finite-volume schemes. Whether these accuracy and
stability issues will be exacerbated with the use of a high-order accurate
reconstruction needs to be studied.

The difficulty of converging solutions to steady state using Newton-Krylov
methods on anisotropic grids results in part from poor conditioning due
to the strong directional coupling of flow properties. This problem will be
aggravated by high-order methods since they have higher inherent numerical
stiffness than second-order schemes. For second-order finite-volume methods,
this has been addressed through the use of directional coarsening multigrid
or the use of directional implicit smoothing [15]. Similar approaches will
undoubtedly need to be considered for high-order schemes.

A final challenge of highly anisotropic grids, which is unique to high-
order schemes, arises due to the treatment of curved boundaries. To obtain
high-order accuracy it is essential to account for the curved boundary when
locating flux integration points and when computing the control volume
moments used for reconstruction. However, for highly-anisotropic grids, this
may lead to ill-defined control volumes where the boundary face bulges past
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(a) straight boundary (b) curved boundary

Figure 5.1: Effect of curved boundary treatment on a quadrilateral highly
anisotropic boundary control volume

the interior face as seen in Figure 5.1. The solution to this problem may
be to also curve the interior faces of anisotropic control volumes near the
boundary. For this, a method to compute the appropriate location of the
interior Gauss points used for flux integration and moment calculation needs
to be devised.

5.2.2 Three Dimensional Flows

The fundamental aspects of the high-order discretization do not change
substantially from the two-dimensional case to the three-dimensional case.
Indeed, the discretization has already been implemented and shown to
be accurate for simple problems such as the Poisson equation. However,
the challenge of implementing curved boundary support has not yet been
addressed. The Gauss integration rules developed for curved boundary
control volumes [18] will need to be extended to the three-dimensional case.
Furthermore, for turbulent flows, the schemes devised to accommodate highly
anisotropic curved boundary control volumes will need to be extended to
three dimensions.

In terms of computationally efficiency, there is good news and bad news
for the extension of the method to three dimensions. The good news is that
the benefit of high-order accuracy, in terms of accuracy versus number of
control volumes, should increase. For example, let’s consider the results in
Chapter 4 where a fourth-order solution of the airfoil problem on a mesh with
5, 363 control volumes was more accurate than that of a second-order scheme
on a mesh with 37, 399 control volumes. To achieve similar mesh spacing in
three dimensions the number of control volumes needs to be increased by a
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power of 3
2 . Therefore, the equivalent mesh size in three dimensions would be

390, 000 control volumes for the fourth-order scheme and 7, 200, 000 control
volumes for the second-order scheme. While the two-dimensional problem
required roughly 7 times fewer control volumes for the fourth-order solution,
the three-dimensional problem may require 18 times fewer control volumes.

The bad news is that the computational cost of the high-order scheme
relative to the second-order scheme on a per control volume basis also
increases. In all likelihood the median dual vertex centered control volume,
which we prefer in two dimensions due to conditioning issues, will need to
be abandoned due to the large number of faces of such a tessellation in
three dimensions. Even if a cell-centered approach is taken, which results in
only four faces per control volume, the relative increase in cost of moving
to a high-order accurate flux integration in three dimensions exceeds that
of two dimensions. In two dimensions a fourth-order scheme requires twice
as many Gauss integration points as a second-order scheme, while in three
dimensions this factor increases to four. Furthermore, in terms of memory
requirement, the additional cost of the matrix-explicit method relative to
the matrix-free method will also increase. This is due to the increase in
Jacobian block size from the additional velocity term, as well as to the
increased flux dependency stencil which determines the matrix sparsity. Due
to this plethora of differences in the three-dimensional case, it is difficult to
speculate on the exact potential of high-order methods for these flows.
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