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Abstract

In this thesis we study non-local dielectric models on the sub-nanometer
scale. In particular, we focus on the effect of non-local electrostatics on the
potential barrier of a water-filled ion channel through a lipid cell membrane,
and on the interaction between ions within such an ion channel. A polar-
ization energy functional is used with its parameters calibrated to roughly
reproduce the wave-vector-dependent dielectric function ǫ(q) of water. The
lipid membrane is still modelled as a local dielectric.

This energy functional is discretized onto a lattice and minimized using
local moves to find the energy and the electric and polarization field config-
urations for a given charge distribution and dielectric profile. This method
is used to successfully reproduce known theoretical results with and with-
out an ion channel. Necessary, but not necessarily sufficient conditions for
obtaining good results are also derived.

The dielectric barrier of an ion channel is studied with these non-local
dielectric properties of water, and it is found that the results are very sen-
sitive to how the water-membrane interface is modeled. We conclude that
more molecular dynamics simulations are needed to provide guidance as to
how to implement the polarization energy density functional at this inter-
face, as well as whether these energy density functionals, which match the
properties of bulk water, need to be modified in order to apply inside narrow
ion channels.

However, in all instances that we explored the self-energy of the ion
traversing the ion channel was substantially modified from its self-energy
under the local model, suggesting that non-local dielectric effects may be
one significant factor determining the dielectric barrier of an ion channel.
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Chapter 1

Introduction

Most of physics involves approximations, and dielectrics are no different.
The typical linear dielectric is in fact an approximation that is valid for
many materials, but only over long length and time scales, and for weak
electric fields.

In local dielectric models, the polarization at a point is assumed to de-
pend only on the electric field at that exact point, and not on the polar-
ization or electric field of surrounding points, and the relationship between
these two fields is mediated by electric susceptibility χe(r) such that
P(r) = χe(r)E(r).

However, when electric fields vary rapidly on the nanoscale, this model
is not a valid description of highly polar fluids such as water, in which the
orientation of each water molecule is highly dependent on the orientation of
nearby water molecules.

In more realistic models, the polarization at a point also depends on the
polarization at nearby points, and is thus ’non-local’. These non-local effects
are only significant when electric fields vary rapidly over short length-scales
on the order of Angstroms (Å).

In the case of ion channels, which are responsible for ion-transport in and
out of cells, the relevant lengths are measureable in Angstroms. Thus the
non-local dielectric properties of water may play an important role in deter-
mining the dielectric barrier of an ion channel, provided they are significant
over length scales greater than the channel radius.

Thus far, research into the dielectric barriers of ion channels has largely
ignored these non-local polarization effects, so this thesis is primarily an
exploration of whether the non-locality of the dielectric response of water is
indeed an important effect that must be taken into account when considering
ion-transport through ion channels.

1.1 Review of Local Electrostatics

When subject to an electric field, matter tends to polarize. When the matter
is non-conducting, the field is not too strong, and the field also doesn’t
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Chapter 1. Introduction

change too quickly in time or space, the dipole moment per unit volume P

is roughly proportional to the applied electric field E at each point in space
[3]:

P(r) = χe(r)E(r), (1.1)

where the electric susceptibility χe is the constant of proportionality
(Note that we are assuming ǫ0 = 1).

This polarization may be due to the orientation of already polarized
molecules along the electric field lines, or due to the induced polarization of
atoms or molecules that didn’t have a pre-existing dipole moment.

In any event, changing polarization creates accumulations of bound

charge, which in turn modify the electric field, which in turn modifies the
polarization, ad infinitum. This circularity is solved by the introduction of
the electric displacement field D, defined by D = E + P. By Gauss’ law
we have

∇ · E = ρ = ρf + ρb, (1.2)

where ρf and ρb are the free and bound charges respectively. Now

ρb = −∇ ·P, (1.3)

and so we get

∇ ·D = ρf , (1.4)

which is Gauss’s law in terms of D. Note that, while ∇× E = 0 in electro-
statics, D is not subject to this constraint because P is not subject to this
constraint.

Assuming we are considering a linear dielectric, D, like P, is proportional
to E

D(r) = ǫ(r)E(r), (1.5)

where the constant of proportionality

ǫ(r) = χe(r) + 1 (1.6)

is the permittivity of the linear dielectric.
It is convenient to work in terms of D because it depends only on the free

charge, which is generally what we control or know. Thus it is convenient
to also express P in terms of D as

2



Chapter 1. Introduction

P(r) = χ(r)D(r), (1.7)

Calculating Energies Additional results that we shall be using from un-
dergraduate electrostatics include that the vacuum energy due to a charge
configuration can be calculated from its electric field using:

UV =

∫

1

2
E2dV, (1.8)

and that the full energy due to a charge configuration, including the potential
energy stored in linear dielectrics, can be calculated from E or D using:

U =

∫

ǫ

2
E2dV =

∫

1

2ǫ
D2dV, (1.9)

If we imagine that there are many dipoles in a dielectric composed of
positive and negative charges which are held together by springs, the extra
energy in eq. (1.9) over equation (1.8) is the potential energy stored in these
springs.

1.2 The Dielectric Barrier of an Ion Channel

Fig. 1.1 shows a toy model of the configuration of an ion channel in a
biological cell. The smallest ion channels have length M ≈ 2.5nm and
radius R ≈ 3Å. The cell membrane has a low dielectric constant of ǫm ≈ 2,
whereas the water in the channel has a high dielectric constant of ǫw ≈ 80,
for a dielectric contrast of 40.

Due to the low dielectric constant of the cell membrane, the self energy
of an ion in an ion channel is much higher than that of an ion in open water
(i.e. either inside or outside of a cell), meaning that there is a potential
barrier that must be overcome for an ion to traverse the ion channel, which
has implications for ion transport in and out of cells.

Thus far we are neglecting many things, such as the presence of salt in
the water, of multiple ions, of other transport mechanisms, and of non-local
polarization effects over short length scales. In this thesis our goal is to
explore whether this last effect must be taken into account, as the length
scales involved may be short enough that non-local polarization effects play
an important role.

3



Chapter 1. Introduction

Figure 1.1: Diagram of a water-filled ion channel with an ion at its center. M
is the thickness of the cell membrane, and thus is the length of the channel.
R is the radius of the channel, which is assumed to be cylindrical. ǫw and
ǫm are the permittivities of water and the cell membrane, respectively.

4



Chapter 1. Introduction

1.2.1 Literature Review of Classic Solutions for the
Dielectric Barrier

The Intuition Because of the large dielectric contrast between the water
inside an ion channel (ǫw ≈ 80), and the surrounding cell membrane (ǫm ≈
2), over intermediate distances the electric field of an ion in an ion channel
is largely confined within the ion channel. This results in a 1D (linear)
potential since, by Gauss’ law, this confined electric field is constant, and
thus the potential changes approximately linearly as one moves lengthwise
(in the x direction) within the channel, and we obtain:

V = k +
Dconfined

ǫw
x, (1.10)

where k is an arbitrary constant.
For long enough channels the field eventually ’leaks out’ of the channel

and into the cell well, and we revert to the 3D potential corresponding to
ǫ = ǫm:

V = k +
q

4πǫmr
, (1.11)

where r is the distance from the charge q and k is an arbitrary constant.
To determine the dielectric barrier of the ion channel, we must consider

the self-energy of an ion in the channel. One way to do this is to integrate
over the electric displacement field, using eq. (1.9).

1.2.2 Short Channels

We first assume that the channel is short enough and the dielectric contrast
large enough that the electric field is largely confined within the channel
until it exits from one of the channel’s two ends. If the ion is in the center,
then the field in both directions will be equal and thus we get

D =
q

2A
(1.12)

by Gauss’ law (eq. 1.4), where A is the cross-sectional area of the channel
and q is the ion’s charge.

If we shift the ion somewhat to the right, the electric flux will tend to
shift somewhat more to the right direction as well, since the distance it must
travel before exiting the channel is shorter in this direction, and so this will
lower the overall energy. The same thing occurs if we shift the ion to the
left.

5



Chapter 1. Introduction

Figure 1.2: A simplified model of the field of a single ion in an ion channel.
We assume that the electric field is entirely excluded from region D, and
that the fields of regions A and C together have the same energy as the
ion in open water, so that the potential barrier is determined by the extra
energy of the field in region B.

Thus the self energy of an ion is highest when it is at the center of the
channel, and decreases as it moves towards either end

The Dielectric Barrier

Given a path that an ion takes through an ion channel, the potential barrier
of this path is the maximum potential attained on that path. The potential
barrier of the ion channel is then the minimum over all paths through the
channel of the potential barrier of each path.

Since the self-potential of an ion increases as the ion approaches the edges
of a channel, the minimal path is clearly along the center of the channel,
and as discussed earlier is maximal along this path when the ion is in the
middle of the ion channel lengthwise as well. Thus determining the potential
barrier of the ion channel amounts to determining the potential of an ion at
the exact center of the ion channel and subtracting from this the potential
of an ion in open water.

6



Chapter 1. Introduction

A Simplified Model

The exact barrier cannot be calculated analytically, however we shall calcu-
late it for a simplified model where the electric field configuration is shown
in Fig. 1.2. In this model the electric field is entirely excluded from region
D, and the fields of regions A and C together have the same energy as the
ion in open water. Thus the potential barrier is determined by the extra
energy of the electric field in regions B, whose volume is the same as the ion
channel’s.

Using equation (1.12) we get:

Ubarrier =
V D2

2ǫw
=

Lq2

8Aǫw
, (1.13)

where V = AL is the volume of the channel.
There are certainly more sophisticated analytical models [6], however this

captures the basic physics and the limiting behaviour of this configuration.

1.2.3 Long Channels

For very long ion channels the electric field does eventually ’leak out’ of the
channel over a characteristic length scale of ξ, where ξ increases with the
dielectric contrast and with the diameter of the channel.

This case may be realistically modeled as an infinitely long ion channel,
which, assuming a cylindrical channel, can then be tackled by using a Fourier
Transform on the differential equation for the potential φ.

It is then possible to see three regimes: On length scales much less than
the channel radius R, the potential is approximately that of an ion in open
water. On length scales between R and ξ the potential is approximately 1D
with dielectric constant ǫw ≈ 80, and on length scales greater than ξ the
potential is 3D in nature with dielectric constant ǫm ≈ 2. The exact value
of ξ is given by the equation:

ξ = R

√

ǫw

2ǫm

√

log(2ξ/R) − γ, (1.14)

where R is the channel radius, and γ ≈ .577 is Euler’s constant [6]. Thus
ξ is proportional to the channel radius R, and increases non-linearly with
the dielectric contrast. For a water channel (ǫw ≈ 80) and a lipid membrane
(ǫm ≈ 2), we find

ξ ≈ 6.35R. (1.15)

7



Chapter 1. Introduction

Figure 1.3: A simplified model of the field when two ions of equal and
opposite charge are of intermediate separation R < d < ξ inside an ion
channel.

The Dielectric Barrier Having identified the behaviour of the potential
in these three regimes, we can find the approximate electric field by taking
a gradient. We can then find the self-energy of an ion in the center of an
ion channel using equation (1.9), and subtract from this the self-energy of
an ion in open water, thus finding the channel’s dielectric barrier. This is
done in reference [6], where they found that

Ubarrier =
1

2

e2

ǫmξ
(log(

2ξ

R
) − γ) + .26

e2

2ǫmξ
, (1.16)

where γ ≈ 0.577 as before, and ξ is give by eq. (1.14). This is just
an analytical approximation, but they found that it agrees fairly well with
numerical results [6].

1.2.4 The Pair Potential of Two Ions in an Ion Channel

One may also want to consider the pair potential of two ions of equal and
opposite charges inside an ion channel. For simplicity we shall assume that
this channel length can be approximated as infinite.

If the ions were widely separated so there was little interaction between
them, the potential would simply be the sum of the two charges’ self-energies
individually, so we shall focus on the case where the ion separation is of
intermediate distance d such that Rchannel ≪ d ≪ ξ. Thus the channel is
significant but d is also small enough that there is negligeable leakage of the
electric field into the surrounding cell membrane (Fig. 1.3). Thus the field
in between the ions is D = q

A
, and the potential is

Upair =
V D2

ǫw
=

dq2

Aǫw
, (1.17)

8



Chapter 1. Introduction

where V is the volume inside the channel that is between the two ions. Thus
we expect the potential U to increase linearly with ion separation d while d
is in this intermediate region.

1.3 Nonlocal Dielectric Effects

The linear dielectric theory discussed earlier describes the average polariza-
tion in a region based on the average electric field in this region. Over very
short length scales such as the molecular length scale, such an averaging
procedure is no longer valid, and short-ranged correlations in the polariza-
tion field become significant. For example, in highly polar fluids such as
water, neighboring molecules orient themselves such that the polarization is
strongly correlated over short lengthscales.

Thus when the electric field changes rapidly over short length scales,
the linear dielectric model of matter is no longer adequate. Here we shall
discuss generalizations of the linear model of dielectric response that are
more accurate over short length scales.

1.3.1 Linear Dielectrics

First we ’derive’ the linear dielectric properties of matter using a simple
model, to which we will later add more terms to account for non-local di-
electric properties.

One basic model used to visualize linear dielectrics and gain some in-
tuition for them is that there are many many tiny dipoles imbedded in
the material with the positive and negative charges connected by a spring.
Thus polarizing the material comes at an energy cost related to the ’spring
constant’ of these tiny springs, giving an energy density of:

UP =
1

2

∫

V

κ1P
2dV. (1.18)

Adding in the energy due to the electric field (using ǫo = 1 for conve-
nience) we get

U =
1

2

∫

V

(D− P)2 + κ1P
2dV. (1.19)

Minimizing with respect to P, we find that

P = D/(1 + κ1) (1.20)

9



Chapter 1. Introduction

for each point r. Since ǫ is defined by D = ǫE = ǫ(D− P), we find that

ǫ = 1 +
1

κ1
(1.21)

or

κ1 = (ǫ − 1)−1 = χ−1
e . (1.22)

We fit κ1to the macroscopic properties of water (ǫ ≈ 80) using eq. (1.22),
and call this the ’local model’. So far the polarization at a point depends
only on the electric field and κ1at that exact point, and not on the polariza-
tion or the electric field of surrounding points. Thus eq. (1.19) is entirely
’local’.

1.3.2 Non-Local Dielectrics

To make this model more accurate when the electric field changes rapidly
over short length scales, we can add ’nonlocal’ terms which involve deriva-
tives of P. This causes the polarization at each point to depend on the po-
larization in its neighborhood, as well as on the electric field at that point,
and causes rapid changes of the polarization over short distances to come at
an energy cost. Thus in Fourier space ǫ(q) becomes wavevector-dependent.
In isotropic materials, only the longitudinal components (D||P||E||q) are
relevant, and their relationship is described by

D(q) = ǫ(q)E(q). (1.23)

We shall be working with several non-local energy functionals. In Fourier
space, ǫ(q → ∞) = 1 for all materials, because molecules are incapable of
responding to such a rapidly varying field and see only the average field of
0. For water, ǫ(q → 0+) = ǫmacroscopic ≈ 80.

A popular starting point for introducing non-local effects has been to
assume exponentially decaying polarization correlations, which leads to a
Lorentzian form of the dielectric permitivity:

ǫ(q) = 1 +
1

κ + ( q
q0

)2
, (1.24)

which interpolates between the q → 0+ and q → ∞ limits over a character-
istic lengthscale of 1

q0
.

This dielectric permitivity can be reproduced by minimizing the follow-
ing energy density functional suggested by reference [4]:
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Chapter 1. Introduction

U =
1

2

∫

V

[

(D − P)2 + κ1P
2 + κ2(∇ ·P)2

]

dV, (1.25)

where κ1 determines ǫmac according to eqn. 1.21, and

κ2 =
1

q2
0

(1.26)

is chosen to reproduce the length-scale 1
q0

. We shall call this the ‘Lorentzian

model’. We shall be using q0 = 3Å−1 and q0 = 2Å−1, which we will
call Lorentzian model 1 and Lorentzian model 2, respectively (so the
second Lorentzian model with q0 = 2Å−1 will have much more significant
non-local effects). We choose these values of q0 so that the length scale
2π/q0 is of the order of two to three Å, which is comparable to the diameter
of a water molecule.

However, for water, neutron diffraction data and computer simulations
[2] have shown that as q increases ǫ(q) goes through two poles before con-
verging to 1 as q → ∞, and that between these poles ǫ is negative due to
’overscreening’. That is, P > D, meaning E is in the opposite direction to
what you would expect. To more accurately fit this behaviour, we use the
following energy functional also suggested by ref. [4]:

U =
1

2

∫

V

[(D − P)2 + κ1P
2 + κ2(∇ ·P)2 + α[∇(∇ ·P)]2]dV. (1.27)

Again, κ1 determines ǫmacroscopic, while κ2 < 0 and α > 0 are chosen
to match the main features of water obtained through molecular dynamics
computer simulations and experimental data. We shall call this the ‘Water

Model’.
Notice that the new non-local terms in the energy functional both involve

derivatives, and as such are not significant over long length scales with slowly
varying electric fields and thus slowly varying polarization, which leaves only
the local polarization term we are familiar with.

In fact, transverse correlations of the polarization field are also present,
and can be modeled by the inclusion of an additional energy density term:
1
2κ3(∇ × P)2. However this term only contributes to the energy in inho-
mogeneous media or when there is an interface, and we as yet lack clear
guidance from experiments and molecular dynamics simulations as to how
to model interfaces, so we shall be neglecting this term in this thesis.

11



Chapter 1. Introduction

1.3.3 Calculating ǫ(q) for the Water Model, and Fitting it
to Molecular Dynamics Results

We move into Fourier space to calculate ǫ(q), which we will later match
to values determined through molecular dynamics simulations. First we
substitute D = D0eiq·r and P = P0eiq·r into eqn. (1.27), assuming that
D0, P0 and q all point in the same direction (So that we are only considering
longitudinal correlations, as discussed earlier). We drop the integral as well,
so that we are looking at the energy density functional. This gives

U(q) =
1

2
(D0 − P0)2 +

1

2
κ1P0

2 +
1

2
κ2(q · P0)2 +

1

2
αq2(q ·P0)2. (1.28)

Taking the gradient with respect to P (to find the minimum), we get:

U(q) = P0 − D0 + κ1P0 + κ2(q ·P0)q + αq2(q ·P0)q = 0. (1.29)

Solving for P0 we get (assuming all vectors point in the same direction):

P0 =
1

1 + κ + κ2q2 + αq4
D0. (1.30)

Thus

χ(q) =
1

1 + κ + κ2q2 + αq4
, (1.31)

and

ǫ(q) = 1 +
1

κ + κ2q2 + αq4
. (1.32)

The maximum susceptibility (equation 1.31) occurs at q0 =
√

κ2/(2α),
where it has a value of A ≡ χ(q0) = 1/(1 + κ + 1

2κ2q
2
0). We have values

for the wavevector q0 and amplitude A = χ(q0) of peak susceptibility from
molecular dynamics simulations, and so we choose κ2 and α to match them
as follows:

κ2 =
2

q2
0

(
1

A
− 1 − κ) (1.33)

α = −
κ2

2q2
0

(1.34)

12



Chapter 1. Introduction

Computer simulations by Bopp et al [2] suggest q0 = 3Å−1 and A = 2,
which we shall refer to as ’Water Model 1’ or simply ’Water 1’. However,
subsequent work has found that this result is highly sensitive to the local
charge distribution of water molecules, and suggests instead q0 = 2Å−1 and
A = 5 [1], which we shall refer to as ’Water Model 2’ or ’Water 2’. Given
the variability in the literature, we shall study both sets of values, and in
some cases their average. We shall also study the Lorentzian model discussed
earlier with q0 = 3Å−1 (’Lorentzian 1’) and q0 = 2Å−1 (’Lorentzian 2’).

13



Chapter 2

Model and Numerical
Methods

2.1 Discretization

To find D and P we shall be minimizing the energy functional eq. (1.27)
subject to the Gaussian constraint:

∫

S

D · dA = Qenclosed. (2.1)

Note that, at the minimum of the energy functional (eq. 1.27), ∇×(E) =
∇×(D−P) = 0, so we do not need to include this as an additional constraint
for electrostatics.

We use an on-lattice scheme with a mesh spacing of aÅ and with an
auxiliary curl component to the electric field, which is reduced to zero by
the minimization process. The ions reside on the nodes, whereas the dis-
placement (D) and polarization (P) fields reside on the links connecting the
nodes (see Fig. 2.1). We denote the node with cartesian coordinates (x,y,z)
by Nx,y,z, where we use the mesh spacing a as the unit of length. Let ei

denote the (i + 1)th unit vector: e0 = (1, 0, 0), e1 = (0, 1, 0), e2 = (0, 0, 1).
The link that connects the Nx,y,z and N(x,y,z)+ei

nodes is then denoted by
Li

x,y,z.
We use periodic boundary conditions, so that if the dimensions of the

grid are n × n × n (n nodes in each direction), the L0
n,y,z link connects the

Nn,y,z and N1,y,z nodes. For simplicity, in our description below the subscript
n+1 shall be interpreted as 1, and the subscript 0 shall be interpreted as n,
where appropriate, in accordance with these periodic boundary conditions.

Each node Nx,y,z has a free charge, which may be zero, which we shall
denote by qx,y,z. Each link has a displacement field, which we denote by
D(Li

x,y,z) or Di
x,y,z, and a polarization field which we denote similarly.

Since we shall be working with systems of inhomogeneous dielectric pro-
file, such as water-filled ion channels through lipid membranes, each node

14



Chapter 2. Model and Numerical Methods

Figure 2.1: A diagram showing links and nodes from a portion of the grid
in a z = constant plane. The nodes are denoted by their coordinates in
3D cartesian space. The links have an additional superscript that denotes
the direction the link is pointing in (x = 0, y = 1, z = 2). Thus, while it is
not shown in the diagram, the L2

x,y,z link connects the Nx,y,z and Nx,y,z+1

nodes.
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Chapter 2. Model and Numerical Methods

also has values for κ1, κ2, and α, which we shall denote by κ1,x,y,z =
κ1(Nx,y,z), κ2,x,y,z = κ2(Nx,y,z), and αx,y,z = α(Nx,y,z).

Since P2 = P 2
x + P 2

y + P 2
z , in discretizing it is natural to express κ1P

2

as κ1,xP 2
x + κ1,yP

2
y + κ1,zP

2
z , which can then be easily discretized onto our

grid. We then require a value of κ1 for each link, which we obtain from the
node values using simple arithmetic averaging, and denote by κ1(L

i
x,y,z) or

κi
1,x,y,z.

We discretize the divergence term in equation (1.27) around each node.
We denote the flux of polarization out of node Nx,y,z by a2divP (Nx,y,z) ≡
a2divPx,y,z, where divPx,y,z is:

divPx,y,z = P 0
x,y,z + P 1

x,y,z + P 2
x,y,z − P 0

x−1,y,z − P 1
x,y−1,z − P 2

x,y,z−1. (2.2)

Using this notation, Gauss’ law (eq. 2.1) translates into a linear equation
relating the values of D on the six links connected to each node:

a2divDx,y,z = qx,y,z (2.3)

We also discretize the grad-div term (α[∇(∇ · P)]2) in equation 1.27
around the links. Let us denote the component of the grad-div term centered
around Li

x,y,z by gradDivP i
x,y,z. Choosing i = 0, for example, we get:

gradDivP 0
x,y,z = divPx+1,y,z − divPx,y,z (2.4)

Since the grad-div term is calculated around each link, we also interpolate
α onto the links using arithmetic averaging.

The Discretized Energy Functional Let Links denote the set of all
Links, and Nodes the set of all nodes in our grid. Using the above definitions
and discretizations, the energy functional (eq. 1.27) becomes:

U = .5a3[
∑

N∈Nodes

κ1(
divP (N)

a
)2, (2.5)

+
∑

L∈Links

(D(L) − P (L))2 + κ1P (L)2 + α(
gradDivP (L)

a2
)2]

subject to constraint eq. (2.3).
All instances of the mesh spacing ‘a’ are explicit in equation 1.27 and

in its constraint, so we can see that we would get the same answer if we
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substituted κ2,x,y,z →
κ2,x,y,z

a2 , αi
x,y,z →

αi
x,y,z

a4 , and qx,y,z →
qx,y,z

a2 , ran our

minimization procedure with mesh spacing 1Å and the same number of
nodes, then multiplied the resulting energy by a3. We can furthermore
undo the last substitution,

qx,y,z

a2 → qx,y,z, for each charge and multiply the
resulting energy by an addition factor of a−4.

To sum up, if we express the energy as a function of the mesh spacing a,
of the number N of nodes spanning the grid, and of the non-local dielectric
constants on each node or link, U = U(a,N, κ2,x,y,z, α

i
x,y,z, qx,y,z), we have

the relation:

U(a,N, κ2,x,y,z , α
i
x,y,z, qx,y,z) =

1

a
U(1, N,

κ2,x,y,z

a2
,
αi

x,y,z

a4
, qx,y,z). (2.6)

This is, in fact, how we ‘change’ the mesh size.

2.2 Minimization

In this section we discuss how the grid is initialized as well as the various
minimization techniques we use to find the equilibrium displacement and
polarization fields and the equilibrium energy efficiently.

Initializing D Our strategy is to first initialize D on the lattice such that
the Gaussian constraint eq. (2.3) is satisfied on all nodes for the given charge
distribution, and then to make no changes during minimization that would
change divDx,y,z on any node. Since the location of each charge is fixed,
this ensures the Gaussian constraint is always zero. Note that satisfying
this constraint (eq. 2.3) for all nodes requires that the net charge on the
lattice be zero.

When there are only two equal and opposite charges, this is accomplished
by charting a path of links that connects them, and then initializing all of
those links with field D = ±q, as needed to satisfy eq. (2.3).

When there are more than two charges, as for example when we have a
single charge q and a smeared out countercharge, we initialize D as follows:
We first sweep the x-oriented links, setting D on each link such that excess
divergence accumulates on all the nodes N1,y,z, and Gauss’ law is satisfied
elsewhere. We next sweep the y-oriented links, then the z-oriented links
until Gauss’ law is satisfied on all links (assuming charge neutrality).

Our strategy can be described using pseudocode as follows:
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for i = 1 to n
for all y and z, set D0

i,y,z such that Gauss’ law is satisfied around

node Ni,y,z

end for
# Comment - Gauss’ law is now satisfied on all nodes other than those
# with an x-coordinate of one: N1,y,z.

for i = 1 to n
for all z, set D1

1,i,z such that Gauss’ law is satisfied around

node N1,i,z

end for
# Comment - Gauss’ law is now satisfied on all nodes other than those
# with x and y coordinates of one: N1,1,z.

for i = 1 to n
set D2

1,1,i such that Gauss’ law is satisfied around node N1,1,i

end for
# Comment - Gauss’ law is now satisfied everywhere,
# provided the grid is charge neutral overall.

2.3 Minimization by Local Moves

It is clear from the form of eq. (2.6) that the energy functional is a parabolic
function of the polarization P on each link, and of the transverse degrees of
freedom of the electric displacement field. Thus there are no local minima
other than the global minimum.

In theory, we should be able to calculate the first derivatives vector and
the second derivatives matrix of this energy functional, and solve analytically
for the fields and energy at the minimum. Unfortunately, this would be very
difficult to implement, and is likely very innefficient computationally.

We instead use a simple relaxation method with respect to local mini-
mization moves on the D and P fields that satisfy the Gaussian constraint
2.3.

A Local Energy Functional It is clear that changing the polarization or
electric field on a single link only affects a small number of terms in equation
(2.6) corresponding to links or nodes connected to the link in question. This
formulation is thus entirely local, meaning we can calculate the change in
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energy due to a change in P or D on a single link with a few calculations
instead of having to re-calculate the entire energy functional eq.(2.6).

2.3.1 A Sufficient Minimization Algorithm

A fixed repertoire of three types of local moves suffices to find the minimum
energy and the equilibrium polarization and electric fields.

The polarization is unconstrained, and so the only move needed for the
polarization is P → P + δP on each single link. The most obvious choice for
δP is that which minimize U with respect to this one variable. However, as
we shall discuss later, other choices are often preferable.

Since the electric field is constrained, we require local and global moves
on the transverse (curl) degrees of freedom of D which ensure that Gauss’
Law is still satisfied. We define a local curl move on each plaquette consisting
of four links that form a loop. Thus, an example of a local curl move would be
D0

x,y,z → D0
x,y,z + δD, D1

x+1,y,z → D1
x+1,y,z + δD, D0

x,y+1,z → D0
x,y+1,z − δD,

and D1
x,y,z → D1

x,y,z − δD (The reader may find it useful to consult Fig.
2.1). Note that this move will ensure that ∇ × E = ∇ × (D − P) = 0 at
the minimum of energy functional eq. (2.6), which is the expected result for
electrostatics.

A global move which wraps all the way around the grid with its periodic
boundary conditions is also needed. An example is D0

x,y,z → D0
x,y,z + δD for

all x and for fixed values of y and z.
Again, for these two moves on D, δD can be chosen to minimize U with

respect to this variable. Any allowable change in the D and P fields can
be produced through a combination of these three moves. In addition, since
the potential is parabolic, by simply choosing δD to decrease U as much as
possible for each move and repeating all the moves over and over, we will
eventually approach the minimum.

2.3.2 Additional Minimization Techniques

One finds that the minimization technique described above, while sufficient,
is fairly slow. Here we give a two-dimensional example of the underlying
reason. Suppose we are minimizing the energy functional

U(x, y) = x2 + 10(x − y)2 (2.7)

by individually minimizing U with respect to each of x and y in turn. What
happens is that during the minimization process the x-y coordinates hug the
line x− y = 0 because the 10(x − y)2 term is so much greater in magnitude
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Figure 2.2: The X and Y coordinates throughout the minimization of
U(x, y) = x2 + 10(x − y)2 when performed by individually minimizing U
with respect to each of x and y in turn.
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than the x2 term (Fig. 2.2). This is very innefficient and uses many many
steps to approach the equilibrium configuration (x = y = 0).

There are a couple of possible approaches to ameliorating this problem.
In minimizing equation (2.7) it would clearly be very useful to have a move
that changed both x and y at once, holding x − y constant. That is, we
could couple moves so that they leave the most energetically costly terms
unchanged. These coupled moves would then be in a new diagonal direction.
Clearly, the above problem occurs because we don’t have moves that go in
the directions needed to make minimization efficient in the space of possible
minimization moves. We shall call this the direction problem.

Coupled Moves The first approach to making our code more efficient is
to somehow couple moves to obtain moves in new directions. Going one step
further, we can instead solve the direction problem by performing combined
moves that minimize U with respect to two or more moves/variables at once.
We use two such combined moves:

Firstly, on each plaquette we do simultaneous curl moves of δD on D and
δP on P. We can then choose δD and δP to go straight to the minimum
of U(δD, δP ). These moves affect only the (D − P )2 and κ1P

2 terms in
the energy functional eq. (2.6), and this avoids the problem just described
which would otherwise be caused by the mismatch κ1 ≪ 1 for water.

Secondly, we couple the global move of magnitude δD on D with a global
move of magnitude δP on P, and minimize U with respect to δD and δP
simultaneously. This is again helpful because of the mismatch κ1 ≪ 1 for
water.

We also tried a third combined move. The nonlocal terms in the energy
functional eq. (2.6) makes combined moves on the polarization of adjoining
links very attractive as a method of avoiding the direction problem. If we
did a combined move on the polarization of all the adjoining links in a
row around the grid, the math should be tractable. For example, we could
change P 0

x,y,z → P 0
x,y,z + δPx for each x and fixed values of y and z. Let δP

denote a vector of all the δPx for x = 1, 2, ...n and some fixed y and z. Then
the gradient UδP = ∂U

∂(δP) depends only on the values of P and D on nearby
links, and the second derivative matrix UδP×δP is a constant function of
the dielectric profile on these links. More importantly, UδP×δP is a cyclical
five-diagonal matrix, and so it is not difficult to solve for the location of the
minimum of U with respect to δP:

UδP×δP(δP) + UδP = 0. (2.8)
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We wrote our own cyclical five-diagonal matrix solver. Unfortunately,
when applied it produced an occasional error whose source we were not able
to identify.

This could potentially have made our algorithm far more efficient when
the nonlocal terms κ2 and α are large, as occurs for finer mesh sizes eq.
(2.6). Local curl moves on D and P could be similarly combined, and would
require us to solve cyclical tri-diagonal matrices. Unfortunately, we must
leave this to future research.

Over-Relaxation The second approach for solving the direction problem
for the high-dimensional function we are working with is an over-relaxation
technique. Simply put, when doing a minimization move on the polarization
of a single link for example, choose δP to be m times the value that would
minimize U(δP ), where 1 ≤ m < 2. It is necessary to sweep the links in
an organized fashion in both directions, so that the changes can propagate
quickly. As when applied to the Laplace equation, this technique aids faster
equilibration over long length scales. We also apply this technique to the
curl moves as well.

When applying over-relaxation to the Laplace equation, it is possible to
determine the ideal m theoretically from the dimensions of the grid. Unfor-
tunately, the functional we are working with is much more complex. There
are likely two ideal values for m, one for curl moves and one for polarization
moves, and these ’over-relaxation constants’ likely depend on κ2 and α in
addition to the dimensions of the lattice.

We use the same value of m for both types of moves, and test the mini-
mization time for bulk water with two ions of equal and opposite charge.

We choose the directions in which we sweep the grid randomly for each
sweep, which means there is some randomness to the speed of minimization.
As Fig. 2.3 shows, the optimal value of the over-relaxation constant is in the
neighborhood of m = 1.75 for these values of a, L, κ2, and α. Comparing
with the time used for m = 1, it appears that this over-relaxation reduces the
time required by half. The range m = 1.4–1.9 appears to provide significant
time reductions, so we will henceforth use values of m in the upper end of
this range (m = 1.8–1.9), since we expect the optimal m to increase as L,
κ2, and α increase.
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Figure 2.3: The effect of the over-relaxation constant on the time needed
for minimization. a = 1Å, L = 40Å, κ2 = −1, α = 2
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Figure 2.4: The decrease in energy during each sweep of the grid. The X-
axis shows the time, normalized so that the entire simulation takes a time
of one.

2.3.3 Criteria for Determining when the Minimization is
Complete

During the minimization process we simultaneously sweep the grid with
all the moves discussed above in both directions (except for global moves
where sweeping in both directions provides no extra benefit), and we call
this ’one sweep’. For each type of move we randomize which orientation
of faces/links we sweep first, second, and third, and consequently there is a
definite randomness to the amount by which the energy is reduced in each
sweep, in addition to a clear long-term trend that appears to be roughly
exponentially decreasing with respect to the number of sweeps (Fig. 2.4).

While the energy decrease during one sweep has a significant random
component to it, if we look at the energy change during groups of a number
(i.e. 20) of sweeps at a time, the randomness tends to average out, as shown
by Fig. 2.5 (left). The ratio between subsequent energy decreases also
becomes fairly stable when we look at groups of twenty sweeps (Fig. 2.5),
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and so we use the roughly exponentially decreasing nature of the energy
decreases with respect to the number of sweeps to estimate the amount
that the energy will yet decrease by, and thus the error, using the formula
1 + r + r2 + r3 + ... = 1

1−r
. We terminate the simulation when this error is

estimated to be less than 10−8.
Variations of the above graphs with the same essential features we are

relying on are produced independent of the number of charges, their separa-
tion, or any of the other parameters passed to the program, thus this appears
to be a very reliable method of determining when we are sufficiently close
to the minimum and can stop the minimization.
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Figure 2.5: The first graph shows the decrease in energy during each set
of twenty consecutive sweeps of the grid, while the second graph shows the
ratio of the decrease in energy during each set of 20 sweeps to the decrease
during the previous set of 20 sweeps.
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Results

3.1 Units and Default Values

Unless otherwise specified, throughout this thesis all lengths are in angstroms
(Å), all charges are in units of the charge of a proton (e), all fields are in
units such that ǫ0 = 1 so that

∫

E · dA = qenclosed, (3.1)

and the energy U is measured in [e]2/[Å], so that the pair potential of
two ions a distance R apart in vacuum is

U =
q1q2

4πR
. (3.2)

All charges q = ±1, unless otherwise specified.

3.2 Local Electrostatics

We first check that we get expected results and relations in certain known
situations and limits as a test of whether our code is working properly.

3.2.1 Pair Potentials

Using the configuration depicted in Fig. 3.1, we first reproduce some ex-
pected results for the pair potential of two ions using the purely local model
of dielectric effects (κ2 = 0 and α = 0 in eq. (2.6)).

The charge q = 1, so we expect that, when immersed in a medium with
purely local dielectric properties, the energy should be

U =
−1

4πǫd
+

C

ǫ
, (3.3)

where d is the ion separation and C is a constant. Thus ǫU = − 1
4πd

+ C
should be independent of ǫ. As shown by Fig. 3.2, our computational results
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Figure 3.1: A diagram showing the grid and ion configuration we are using.
L is the length of the width, height and length of the grid, a is the mesh
spacing, and d is the distance separating the ions, all measured in Å.
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show that ǫU is indeed independent of ǫ to a very high degree of precision,
and also agrees quite well with our theoretical prediction provided the ion
separation d is at least several lattice spacings apart and d ≪ L/2.

Since ǫU = 1
4πd

+ C, in theory ǫU − 1
4πd

− C = 0, so we graph ǫU −
1

4πd
− C VS d to see what errors and corrections discretization and the

circular boundary conditions have introduced (Fig. 3.3). The discrepancies
from theoretical results are about an order of magnitude smaller than the
variation in the original function. It appears that there are two primary
origins: An error due to the discretization that is significant on short length-
scales of under four lattice spacings, and a correction due to the finite volume
and the circular boundary conditions, which appears to be significant for ion
separations d > L/4 and varies roughly quadratically with d. We shall call
these the discretization error and the finite grid-size correction, respectively.

While the finite grid-size correction has only a limited absolute impact
on the potential, we may sometimes be interested in the relative change in
the electric field E due to the circular boundary conditions. According to
Fig. 3.4, the relative correction in the x-component of the electric field Ex

is less than 20% for ion separations d < L
3 . Since the absolute correction is

quite small L ≥ 3d or even L ≥ 2.5d should suffice for our purposes, and
since the effects of the non-local terms in the energy functional eq. (2.6)
decay far more quickly with distance than the local terms, we expect this
condition to suffice in general.

As for the short ranged discretization error, we have established that
it exists and is significant, however we cannot make any prescriptions in
general, as this error will also depend on the non-local parameters κ2 and
α. Lacking clear guidance, we shall use d ≥ 3a.

3.2.2 Pair Potentials in an Ion Channel

Here we expect that, given dielectric contrast sufficient to contain the field
within the channel and ion separation significantly greater than the channel
radius (d ≫ R), the energy should depend linearly on d in accordance with
eq. (1.17), and (ǫwU) should have a constant derivative with respect to ion
separation d of:

∂(ǫwU)

∂d
=

1

2
ǫ2
wE2A =

1

2
(
1

A
)2A =

1

2A
, (3.4)

where A is the cross-sectional area of the ion channel, ǫw is the permitivity
of the water (inside the ion channel), and we assume q = ±1, as before.
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Figure 3.5: A diagram of the channel configuration showing how the ions can
see each other in both directions due to the circular boundary conditions.
The distance between the ions is then d1 or d2, depending on the direction,
where d2 = L − d1.
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However, we are using circular boundary conditions, so the ions can see
each other around the torus in both directions (Fig. 3.5), which should
result in a significant finite grid-size correction. As Fig. 3.5 shows, the
distance between the ions in one direction is d1 and the distance in the
other direction is d2 = L − d1. There are corresponding displacement fields
D1 and D2, which obey

A(|D1| + |D2|) = q (3.5)

by Gauss’ Law. Integrating over the channel volume, we find that

U =
A

2ǫw

(d1D
2
1 + d2D

2
2). (3.6)

The field configuration and energy are found by minimizing this energy
function with respect to D1 and D2 subject to constraint eq. (3.5), which
gives

U =
1

2ǫwAL
(d1L − d2

1) (3.7)

and

ǫwEx =
∂(ǫwU)

∂d1
=

1

2AL
(L − 2d1), (3.8)

which agrees with eq. (3.4) in the d1 ≪ L limit, as required.
As Fig. 3.6 shows, for large values of ǫw and for d ≫ R these theoretical

calculations are in excellent agreement with the results from our model.

3.2.3 Parameter Constraints and Numerical Artifacts

In this section and in Appendix A we have demonstrated that we get the
expected behaviour in certain numerical limits, and have established the
following rough numerical constraints on the parameters we use in our min-
imizations that must be obeyed if we wish to get valid results.

In this section we came up with the following constraints on d:

3a ≤ d ≤
2

5
L (3.9)

We do expect the electric field to be significantly altered due to local

dielectric effects when L = 5
2d, however non-local effects decay very quickly,

and so we do not expect finite size effects to substantially alter the non-local

features of the potential, provided this is satisfied.
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34



Chapter 3. Results

We have also established for local dielectric models that when we have
an ion channel with a very large dielectric contrast betweem ǫw and ǫm,
the potential and electric field are significantly modified by the circular
boundary conditions, even when L is several multiples of d, as shown by the
difference between eqs. (3.4) and (3.8). We explore whether non-local terms
modify this effect later.

In Appendix A, we find the additional constraint

a ≤
1

q0
(3.10)

for the water models, for which the mesh spacing a must be small enough to
resolve the oscillations in the potential. Keeping these constraints in mind,
we now proceed to explore these non-local dielectric effects.

3.3 Non-Local Electrostatics in Bulk Water

Fig. 3.7 shows the pair potential between two ions in water whose polariza-
tion is modelled by each of the five energy functionals of section 1.3.

For the Lorentzian models, the only effect of the non-local terms in the
polarization energy functional appears to be an increased electric field at
short ion separations. This is to be expected, since in the Lorentzian model
ǫw(q) < ǫw(0) ≈ 80 ∀q > 0, and ǫw(q) → 1 as q → ∞, meaning that the
effective dielectric permitivity is always less that 80 and really close to the
ion where the field is changing very rapidly it approaches that of free space
(ǫ = 1). Convergence to the local dielectric limit appears to occur within 3
and 4 Å for the two models, respectively.

The water models are more interesting, exhibiting oscillations whose am-
plitude decreases with increasing ion separation. Predictably, water model 1,
which has the relatively smaller amplitude and higher frequency of maximum
dielectric response, exhibits more frequent oscillations of smaller amplitude
than model 2 does as the ions are drawn apart. For model 1, convergence
to the local limit appears to have occurred by about 5Å separation, whereas
for model 2 it appears that it will take significantly more than 8Å separation
for convergence to occurr.

Clearly non-local features dominate over short length scales. If one of
the water models is indeed approximately correct and they still apply to wa-
ter solutions of dissolved ions, this has implications for inter-ion distances:
only certain inter-ion distances are energetically favourable, and ions in so-
lution will tend to populate these minima. The presence of such potential
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oscillations in polar solvents has been pointed out many years ago [5]. Our
results underline how sensitive the effects of the non-local terms are to the
values of q0 and A used.

3.4 Conditions for the Successful Simulation of a

Water-Filled Ion Channel

First we would like to mention that, unless otherwise specified, the cell
membrane shall be modelled as a purely local dielectric with ǫm = 2.

3.4.1 The Water-Lipid Transition

Ion channels are water-filled passages, generally 3Å or more in radius, through
lipid cell membranes. Non-local dielectric effects are due to short-ranged
interactions between molecules, and we do not understand what kinds of
interactions occur at the water-cell membrane interface. We are also un-
aware of any molecular dynamics simulations that are capable of guiding us
as to what implementation we should use for our implicite modeling of the
polarization at this interface using an energy density functional.

Let’s assume there are no such interactions between the lipid and water
molecules. It is the ice-like structure of water over short lengthscales that
causes the non-local polarization effects we are investigating, however at the
interface the water molecules only have forces from water molecules on one
side. This may substantially weaken all polarization effects (including local)
of water, or may even have other effects (since forces from only one side may
cause the edge water molecules to do something other than conform with
the pattern established within the bulk water medium).

Another effect that may be significant is that if you looked very closely at
the water-cell membrane interface you might find that the boundary is wavy
because it consists of individual water and lipid molecules, so to accurately
model this it might be necessary to use a finer grid capable of resolving these
ripples.

Lacking clear guidance from molecular dynamics simulations, we shall
ignore the above considerations and assume we are going to use an interpo-
lation method for κ1, κ2, and α at the water-lipid interface over a transition
region of length l which starts a distance of R − l

2 from the center of the

channel and ends a distance of R + l
2 from the center (Fig. 3.8).

Recall that we first assign values to κ1, κ2, and α at each node, then
use simple arithmetic averaging to determine κ1 and α on the links, as
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Figure 3.7: Energy VS ion separation for the local model (eq. 1.19), the
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Figure 3.8: A diagram showing the dielectric profile of the grid, as well as
the position of the ions inside the water-filled ion channel. The dark regions
represent the lipids in the cell membrane, the white region depicts the water-
filled channel, and the gradiated transition regions show the region in which
we interpolate between the dielectric properties of the lipid membrane and
the water. The channel is cylindrical, the transition region has a thickness
of l, and the radius R represents the distance from the center of the ion
channel to the middle of the transition region. L and d are as before.
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described in section 2.1. However, this may introduce numerical artifacts
in regions where these parameters are changing: If we look at the discrete
energy functional eq. (2.6) we find that the value of κ1 on each link is only
’relevant’ to the polarization on that link, in that the terms in the sum
that contain κ1 contain only the polarization on that same link. The value
of κ2 on each node is relevant to the polarization on the six surrounding
links, and the value of α on each link is relevant to the polarization on
the eleven surrounding links. This assymetry between κ1, κ2 and α as well
as the arithmetic averaging method used to obtain the link values of these
parameters may introduce significant numerical artifacts if the mesh size a
is too large compared to the transition length l.

Thus we need a sufficiently long transition region, which raises the ques-
tion of what to interpolate and how. One could for example use geometric or
arithmetic interpolation of κ1. Geometric may be more appropriate, given
the vastly different values of κ1 between the membrane and the water. An-
other possibility is to interpolate χ (linearly?) and to determine κ1 from χ
using eq. (1.31) with q = 0.

We again lack any clear guidance from molecular dynamics simulations
or experiment, and so we use linear interpolation of κ1, κ2, and α, just as
we use arithmetic averaging of node values to determine κ1 and α on the
links. However we raise all these possibilities to point out that we are forced
to make many unjustified assumptions, whose validity future molecular dy-
namics simulations will hopefully be able to shed light on. The following
results are therefore merely exploratory.

3.4.2 Testing the Scaling Relation (Eqn. 2.6) for Varying
Water-Lipid Transition Lengths

We now expect the scaling relation (Eqn. 2.6) to hold so long as l ≫ a. As
Figs. 3.9 and 3.10 show, a significant transition length is necessary for this
relation to hold. In the first graph l is so short that the actual transition
length is determined by the mesh spacing a, and so as a decreases towards
0 the transition becomes sharper and sharper and the energies diverge (the
minimization with a = 0.3Å didn’t finish). For the l = 0.5Å case it is not
clear that convergence has occurred by the time a = 0.3Å, whereas in the
l = 0.75Å case it appears that convergence has occurred for a ≤ 0.4Å. Since
there is no apparent improvement in the convergence for the l = 1Å case,
we conclude that the remaining discrepancy in the l = 0.75Å case is due to
the fact that a = 0.45Å is close to the 1

q0
= 1/2Å maximum established for

the mesh size (eq. 3.10).
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Given the radius of a water molecule (≈ 1Å), l = 0.75Å seems somewhat
large, however, in order to simulate systems of any substantial size we shall
need to use larger mesh spacings, and so we henceforth use l = 0.75Å. There
is no visibly significant effect of the transition length l on the energies for
the other four models (Local, Lorentzian models 1 and 2, and water model
1). The only surprise here is that there is no visibe effect for water model 1,
however the non-local effects tend to be less pronounced and shorter ranged
in the first model than in the second, which may explain this.

With this choice of l = 0.75Å, we then have no new constraints on the
mesh spacing a, since we have satisfied l ≫ a by making l large, rather than
a small.

3.4.3 Testing the Finite Size Effects

In section 3.2.2 we showed that even for L ≫ d there were still significant
finite grid-size corrections due to the circular boundary conditions and the
field-containment within the ion channel. Thus we here explore whether
this is also the case when significant non-local effects are present, using the
second water model, whose non-local effects are most long-ranged. For all
other models, the polarization is primarily local beyond 5Å ion separation.

Again, we look at only the electric field near the maximum separation
to best discerne the effects of the finite grid size. Fig. 3.11 shows that,
the differences between the electric fields for different grid sizes L appear
to be almost the same for the water and local models, so long as L > 2d.
This suggests that these finite-size effects are almost entirely due to local
dielectric effects for L > 2d, and so we plot Ex again ’correcting’ for the
finite grid-size correction that we know is present for the local model. This
corrective factor, which we shall call Ec, is obtained by subtracting equation
3.8 from equation 3.4 and dividing by epsilon. A corrective factor for the
energy Uc can be derived similarly. They are given by:

Ec =
qd

ALǫw

(3.11)

Uc =
q2d2

2ALǫw
(3.12)

As Fig. 3.12 shows, all the local results collapse onto essentially the
same line, as expected, and for L > 32 the water models do as well. Thus
we conclude that we only need L slightly larger than 2d for the finite grid-
size correction to be primarily due to local dielectric effects, which we can
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correct for by adding the terms given by eqs. (3.11) and (3.12).
A possible explanation for this is that the amplitude of the oscillations

(due to non-local dielectric effects) decreases rapidly with each oscillation,
and so the oscillation in the longer direction (d2) around the grid is much
smaller than the oscillation in the shorter direction (d1), and so makes little
relative difference to the electric field.

3.4.4 The Infinite Channel

Now that we have established how to run our simulation and get valid results,
we are ready to explore how the pair potential depends on the channel radius
R. We still use the configuration shown in Fig. 3.8 and we correct for the
finite size effect as just discussed.

Water Model 1

We find that for large ion separations, the potential still converges to that of
the local model for all different channel widths (Fig. 3.13). We expect the
electric field to converge to that of the local model for large ion separations,
and to that of water model one without an ion channel for very short ion
separations. As Fig. 3.14 shows, this appears to be the case.

Finally, we are interested in how the effect of the channel on the electric
field (Ewithchan −Ebulkwater) depends on the dielectric model used. Thus we
plot Ewithchan −Ebulkwater for various channel widths using the water 1 and
local dielectric models (Fig. 3.15). Interestingly, for channel radius 3Å it
appears that for ion separations d < 3.5 the electric field is amplified slightly
more for the first water model than for the local model, and the reverse is
true in the range 3.5 < d < 5, after which the fields of both models appear
to converge. For wider channel widths there are no visible non-local effects.

Water Model 2

For Water Model 2 we find that the effect of the channel on the electric field
(Ewithchan − Ebulkwater) is much more significant than in the local, linear
dielectric case (Fig. 3.16). This is still the case for much wider ion channels.

Also, for intermediate ion separations the channel modifies the oscillatory
nature of the potential such that the location of the local minima and thus
of the probable inter-ion distances will be different for ions in an ion channel
than for ions in bulk water (Fig. 3.17).
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The Lorentzian Models

The Lorentzian models do not seem to modify the effect of the ion channel
on the electric field from the effects due to the local dielectric model (Fig.
3.18).

Discussion

The above results show that for the water models, and in particular for the
second water model with its more significant non-local effects, the effect of
the channel on the pair potential is significantly altered compared to the
local case. However, relative to the size of the oscillations for the second
water model, these modifications are quite small. Small enough that it is
possible that they are a finite grid size correction or a discretization error,
however we ran our code several times with different grid sizes L and mesh
sizes a and found that, while this had a noticeable affect on the above graphs,
it did not change the basic shape of the graph or the conclusions drawn from
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it.
Another possibility is that these results are attributable to the interpo-

lation scheme we used for the dielectric profile at the water-cell membrane
interface. This is investigated further in the next section on the dielectric
barrier of an ion channel.

3.5 The Dielectric Barrier of an Ion Channel

In this section we create an ion channel of length less than the dimensions
of the grid L, and move an ion from the bulk water outside the channel to
inside the channel. To ensure charge neutrality, every vacant node in the
lattice has a countercharge of q/(L3 − 1), where q is the charge of the ion.
We shall be moving the ion from outside the cell membrane to the center
(lengthwise) of the cylindrical ion channel through the cell membrane, as
depicted in Fig. 3.19.

As discussed in section 1.2.2, the dielectric barrier is determined by tak-
ing the minimum over all paths through the ion channel of the maximum
self-energy of the ion along each path (and comparing this with the ion’s
self-energy in bulk water). However, with non-local electrostatics it is no
longer a given that this mini-max occurs at the center of the ion channel.
This is why we need to calculate the energy as the ion enters the ion channel,
not just at the middle of the channel, and why we must also consider ion
positions that are off-center in the y-z plane as well.

Once we have found this mini-max, the channel barrier is Ubarrier =
Umini−max −Uout, where Uout is the ion’s self energy in bulk water far from
the cell membrane. To approximate Uout numerically one could use the ion’s
self energy at its initial position in Fig. 3.19 (denoted U(0)), or one could
use its self energy in a grid of the same size filled with water only (denoted
Ubulkwater). Both of these should result in the calculated dielectric barrier
converging to the correct value as the grid size to channel ratio L/M → ∞,
with the latter giving a greater value for the dielectric barrier than the
former for finite values of L/M . We shall use each of these approximations
at different times.

3.5.1 The Local Dielectric Approximation

As Fig. 3.20 demonstrates, we get the results we would expect for the purely
local model as the ion is moved into the ion channel.

We next plot the dielectric barrier versus the channel radius (Fig. 3.21),
which exhibits decent agreement with our theoretical expectations (eq. 1.13).
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Figure 3.19: Diagram of the dielectric profile of our grid used to model an
ion channel of finite length, and of the trajectory of the ion we are moving.
There is still a transition region of length l between the water and the cell
membrane, but this has been omitted to unclutter the diagram.
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Figure 3.20: U(X) − Ubulkwater VS the X-position of the single ion present
(see diagram 3.19). The local, linear model for polarization is used and the
channel radius R is varied. ǫw = 80, L = 24, channel length M = 3R,
a = 0.45Å and l = 0.75Å.

54



Chapter 3. Results

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 2.6  2.8  3  3.2  3.4  3.6  3.8  4

U
B

ar
ri

er

R

Umax - Ubulk water
Umax - U(0)
Theor. App.
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a = 0.45Å and l = 0.75Å.
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Figure 3.22: Ubarrier = Umax − Ubulkwater VS the X-position of the single
ion present (see diagram 3.19). The Lorentzian models for polarization are
used and the channel radius R is varied. For the same channel radius, the
energies for the local and Lorentzian models match so closely that they are
all superimposed on each other. ǫw = 80, L = 24, M = 3R, a = 0.45Å and
l = 0.75Å.

Given the finite grid-size to channel ratio L/M , the smeared-out counter-
charge, and the ambiguity about how to best approximate Uout numerically,
exact agreement is not expected.

3.5.2 The Lorentzian Dielectric Approximation

As Fig. 3.22 demonstrates, the results for the Lorentzian models are nearly
identical to what we would get for the purely local model, but for a slight
decrease in the barrier, particularly for narrow channels. We investigate the
Lorentzian models no further.
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Figure 3.23: Uwithchan−Ubulkwater VS the x-position of the single ion present
(see diagram 3.19). The second water model is used, and the channel radius
R is varied. ǫw = 80, L = 24, M = 3R, a = 0.45Å and l = 0.75Å.

3.5.3 Water Model 2

The increase in the self energy of an ion as it enters an ion channel is
substantially altered from the local result for the second water model (Fig.
3.23). Several interesting features are apparent from this graph: Firstly the
potential oscillates as the ion enters the channel, and is not highest in the
middle of the channel for narrower channels, suggesting that the potential
barrier may not be determined by the potential in the middle of the channel.
Secondly, for the narrowest channel there appears to be a potential well in
the middle of the channel, meaning that the channel would tend to attract

and capture individual ions in dilute ionic solutions. Fig. 3.23 exhibits only
the expected minor variations when the mesh size a is reduced and when
the grid size L is increased, thus this is not the source of these unusual and
unexpected results.

The source of these unexpected results appears to lie with the water-
membrane interface. To explore these ’edge effects’ the ion was shifted in
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Figure 3.24: A diagram illustrating the trajectory of the ion we are moving,
now with a Y offset. The transition region of length l at the water-cell
membrane interface has been omitted to unclutter the diagram.
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the y-direction by a ’y-offset’ of various multiples of the lattice spacing,
before being moved in the x-direction into the ion channel, as shown in
Fig. 3.24. This allows us to separate the effects of the narrow channel
from the effects of the ions proximity to the water-membrane interface. By
varying the y-offset we can move the ion as close as we wish to the interface
and even into the water-membrane transition region without changing the
channel radius R. Fig. 3.25 shows the resulting energies.

The transition region occurs between a y-offset of 2.625 and 3.375 mesh
spacings in the y-direction, and so we see that this unexpected potential well
is deepest when the ion is still fully inside the ion channel, but very close to
the transition region.

One possible explanation for why the energy is lowered near the inter-
face may lie with the fact that within the cell membrane increasing the
polarization (a divergence) is “free”, but maintaining non-zero polarization
is energetically costly, whereas in the water-filled ion channel increasing po-
larization is costly but maintaining non-zero polarization is cheap because
the small κ1 term in the water model. Thus when an ion is situated near the
water-membrane boundary, in our model the polarization takes advantage
of what is energetically cheap in each medium to lower the overall energy.

Specifically, Fig. 3.26 shows how the polarization might increase in the
cell membrane, where there is no energy cost for a divergence in the po-
larization field, then cross into the water-filled ion channel, where it can
minimize the 1

2(D − P )2 + 1
2κ1P

2 portion of the energy density functional,
having already circumvented costs associated with the non-local terms. We
shall refer to the kind of polarization field behaviour depicted in Fig. 3.26
as an ’interface effect,’ since it likely results from the implementation of the
dielectric profile at the water-membrane interface.

To test this theory for why the energy is lowered near the interface, we
suppress the kind of polarization field behaviour depicted in Fig. 3.26 in
two different ways. First, we set αmembrane = αwater, where previously the
gradDiv term αmembrane was zero for the membrane. This makes a diver-
gence of the polarization costly in the cell membrane as well, suppressing
this ’interface effect’. The result is Fig. 3.27, whose shape is exactly what
we would expect for local polarization.

However, when we compare the potential of the local and second water
models for various different channel radii (Fig. 3.28), we see that, although
the shape is quite similar, in scale the potential barrier is far larger for the
second water model than for the local model when αmembrane = αwater.

The second way in which we suppressed this interface effect is to increase
κ1 inside the cell membrane (and thus inside the water-membrane transition
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Figure 3.26: A diagram with an ion near the edge of the ion channel that
illustrates how the polarization may be able to take advantage of what is
energetically cheap in each medium to lower the overall energy.
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Figure 3.28: Uwithchan−Ubulkwater VS the x-position of the single ion present
(see diagram 3.19) for various channel radii. The local model is used above
and the second water model with αmembrane = αwater (not 0 in the
nonlocal case) is used below. ǫw = 80, L = 21, R = 3Å, M = 3R, a = 0.45Å
and l = 0.75Å.
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region as well). In this case we increase κ1 from the default value of 1
(ǫm = 2) to κ1 = 10 (ǫm = 1.1). This strongly supresses all polarization in
the cell membrane and throughout the water-membrane transition region.

As Fig. 3.29 and 3.28 show, the results are fairly similar for both methods
of suppressing this interface effect.

Taken together, the results in this section suggest that non-local polar-
ization effects may indeed substantially modify the dielectric barrier of a
ion channel, but that this modification is highly sensitive to what happens
at the water-membrane interface, and we currently have no guidance from
molecular dynamics simulations or experiments as to how to model this in-
terface. Also, recall that transverse correlations were neglected in equation
1.27 because guidance is needed for how to model them at the interface as
well.
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Figure 3.29: Uwithchan−Ubulkwater VS the x-position of the single ion present
(see Fig. 3.19) for various channel radii and using κ1,membrane = 10 so that
ǫm = 1.1, not the default value of ǫm = 2. The local model is used above
and second water model is used below. ǫw = 80, L = 21, R = 3Å, M = 3R,
a = 0.45Å and l = 0.75Å.
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Conclusion

In this thesis we have modeled nonlocal polarization effects using an energy
density functional for the polarization whose parameters were fit to the
dispersion relations obtained from computer simulations. Since predictions
vary between computer simulations, we actually implement two different sets
of parameter values, which we call the first and second water models, where
the second model has more significant and long-range non-local effects.

The energy functional is then minimized to find the electric and polariza-
tion field configurations, as well as the energy. For comparison, we also used
the ’Lorentzian polarization model,’ which simply interpolates between the
short-wavelength and long-wavelength limits of the energy functional over
a characteristic length-scale of 2π/q0. We try reasonable values of q0 = 2Å
and q0 = 3Å, to get a lengthscale of around 2 − 3Å, which is about the size
of a water molecule.

Since only the simplest geometries are tractable analytically, we used an
on-grid computational method to calculate this minimum energy configura-
tion. The ions were situated on the nodes of the grid, with the displacement
and polarization fields situated on the links. Circular boundary conditions
were applied at the edges and local minimization moves were applied re-
peatedly until the minimum was approached.

For the purely local model (with non-local parameters set to 0) we ob-
tained excellent agreement with theoretically expected values in bulk wa-
ter and in a water filled ion channel through a low-ǫ membrane. For the
Lorentzian models and for the first water model we find that the non-local
effects are only significant for short ion separations of less than 5Å. For
the second water model the non-local effects are very significant and long-
ranged, significant on the order of nm.

For the second water model we originally found that there was a potential
well at the middle of narrow ion channels, however further investigation
suggests that this is due to an ’interface effect’ at the water-lipid interface.
When this interface effect is suppressed or eliminated, the self energy of an
ion moving through an ion channel exhibits a substantially magnified version
of the expected behaviour, resulting in a much higher potential barrier.

66



Chapter 4. Conclusion

This suggests that an ion’s self energy and thus the dielectric barrier
of an ion channel are very sensitive to the implementation of the non-local
energy functional at the water-lipid interface, and so guidance from molec-
ular dynamics simulations is needed to accurately model this interface. In
addition, there are transverse polarization correlations, which we also do
not know how to model at the interface. Finally, the non-local polarization
energy functionals we have been using to model the dielectric response of
water hold in bulk water and are known to hold in ion channels of R ≈ 10Å,
however the water confined within a narrow ion channel may not qualify as
bulk water, meaning that these energy functionals may not be applicable.
Further work with molecular dynamics simulations is needed to investigate
these issues.

Thus the only conclusion we can draw about the dielectric barrier of an
ion channel is that our results suggest it may be significantly modified by
non-local dielectric effects, which should therefore certainly not be ignored!
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Appendix A

Verifying Scaling Results and
Determining Acceptable
Mesh Sizes for the Water
Model

If we change the mesh spacing a by changing the parameters κ2 and α
according to the scaling relation eq. (2.6) and rescale the energy, we expect
the energy graphs to be identical, but for differing discretization errors.
Since the discretization errors should approach zero as a → 0, we expect the
graphs to converge as a → 0, which is indeed what we observe in Fig. A.1.

It appears that when using larger mesh sizes for the water models, the
energy function calculated ‘rounds the corners’ of the actual energy function
somewhat. We suspect that this error in the calculated energy occurs be-
cause the ratio of the mesh size to the wavelength of maximum susceptibility
q0a
2π

is too large, and so the mesh cannot resolve the features of the energy
functional correctly. This appears to be confirmed by Fig. A.1, in which the
second graph has higher q0 than the first and also requires a smaller mesh
size a for convergence than the first. Taken together, the two graphs in Fig.
A.1 suggest that for the water model we start to get significant artifacts of
the discretization once the mesh spacing a is increased much beyond 1

q0
. For

the all of the other models there does not appear to be a very restrictive
constraint on a.

We expect the energy function to converge to that of local electrostatics
at large ion separations, so in this section we test that this does indeed occur
and what effect the mesh size a may have on this convergence.

As Fig. A.2 shows, this convergence does occur, but much more quickly
for larger grid sizes. Thus if we made the mesh size too large we would
underestimate the amount of time needed for the energy function to converge
to the local energy function. Again this graph also shows that, for mesh sizes
that are too large (i.e. a = .8), the energy can deviate so substantially from
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Figure A.1: Energy VS ion separation for various mesh spacings a, using
the water model (eq. 1.27) with A = 3.5 and L = 12Å. In the first graph
q0 = 2.5, whereas in the second graph q0 = 4. For comparison, the graph
for the local, linear model is shown as well. All energy graphs are shifted by
a constant so that each graph’s right-most point has energy zero.
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Figure A.2: Energy VS ion separation for various mesh spacings a. For
the water model (eq. 1.27) with q0 = 2.5, A = 3.5, and L = 30Å. For
comparison, the energy for the local, linear model is graphed as well. All
energy graphs are shifted by a constant so that each graph’s right-most point
has energy zero.

71



Appendix A. Verifying Scaling Results and Determining Acceptable Mesh Sizes for the Water Model

the correct energy as to make the results entirely useless.
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