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Abstract

This thesis comprises two essays that apply nonparametric methods to the es-
timation of portfolio allocations.

In the first essay, I test the significance to investor welfare of (i) adding
additional assets to the portfolio choice set and (ii) conditioning on predictor
variables. I estimate unconditional and conditional optimal allocations of a
constant relative risk aversion investor by maximizing a nonparametric approx-
imation of the expected utility integral. Investors can improve their expected
utility significantly over that of an equities and cash investor by adding portfolios
based on the value or momentum premiums into their asset allocation decision.
In contrast, neither a size premium portfolio nor a long-term bond portfolio
improves expected utility. The significance of predictability is increased by si-
multaneously conditioning on the two strongest predictors (of eight) studied:
the term spread and the gold industry trend.

In the second essay, I formulate a nonparametric estimator that permits
combining historical data with a qualitative prior. I investigate the impact of
an investor belief, motivated by asset-pricing theory, that optimal allocations
are positive. In the estimator construction, I use a Bayesian approach to perturb
the probabilities associated with each data point in the empirical distribution
to reflect qualitative prior beliefs. In a simulation study and in out-of-sample
tests, I find that portfolio estimates conditioned on a belief in the positivity
of portfolio weights are significantly more stable than those estimated by an
uninformed investor, and that the model performs better in out-of-sample tests
than a number of plug-in models. However, the out-of-sample performance lags
that of the minimum-variance and 1/N policies.
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Chapter 1

Introduction

The information in historical returns is not sufficient, on its own, to provide

useful estimates of optimal portfolio allocations. Previous researchers have doc-

umented overwhelming evidence that portfolios estimated by direct substitution

of distributions estimated from previous realized returns feature extreme port-

folio weights and perform poorly out of sample.1 Furthermore, accounting for

this estimation error in a Bayesian framework that accounts for estimation un-

certainty without introducing informative prior beliefs only slightly improves

expected portfolio performance.2

Portfolio allocation is a problem that is plagued by estimation error. The

objective of portfolio allocation is to select the portfolio that yields the optimal

balance between future rewards and risk. The theory of choice under uncer-

tainty yields an elegant mathematical framework for the portfolio problem.3 In

turn, allocation models expressed in this framework are tantalizingly straight-

forward to solve, given the investor’s risk aversion and the future distribution

of returns.4 Yet, in practice, the future distribution of returns is unknown and

must be estimated. Asset returns are highly volatile, and return means esti-

mated from time series of past realized returns are very noisy. In addition,

optimal allocations are inversely proportional to asset variances for risk averse

investors. Thus, optimal portfolios depend on the inverse of the covariance ma-

1See, for example, Jobson and Korkie (1980), Jobson and Korkie (1981), Best and Grauer
(1991), and Chopra and Ziemba (1993).

2Early empirical studies of Bayesian approaches to portfolio choice appear in Bawa et al.
(1979) and references therein. See Kan and Zhou (2007) for further discussion and results
pertaining to the relative performance of plug-in and diffuse Bayesian portfolio estimators.

3Markowitz (1952) developed the mean-variance formulation of this problem that remains
the canonical mathematical formulation of the allocation problem. In this framework, rewards
as represented by expected portfolio return is balanced against increased risk from portfolio
variance.

4A major advantage of the mean-variance model is its analytic tractability. Alternative
utility assumptions may lead to less tractable models, but these, too, are readily solved
computationally by convex programming algorithms.
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trix. In applications, this matrix is often ill conditioned because financial asset

returns are highly correlated. As a result, errors in variances and correlations

are amplified in the portfolio solution.

This thesis comprises two essays that examine issues in portfolio estimation.

The first essay examines the question of asset selection for the tactical allocation

problem. Given that portfolio weights are computed from observed data, they

are naturally viewed as statistical estimates. Using inference techniques, I test

the significance of gains in expected utility from adding assets to a tactical asset

allocation portfolio, and of conditioning on predictor variables in the context of

tactical asset allocation.

In the second essay, I construct a nonparametric estimator for the portfolio

choice problem that incorporates qualitative prior beliefs into the investor’s

estimation problem. In an empirical exercise, I consider an industry allocation

problem. I examine the value of a prior belief that all optimal portfolio weights

are positive. The prior is motivated by economic theory that suggests that,

given that all industries have positive weight in the market portfolio, that they

are unlikely to be priced such that short positions are optimal.

A common theme of both essays is the nonparametric estimation strategy.

In the first essay, I evaluate the value of conditioning variables following the

nonparametric strategy introduced by Brandt (1999). In the second essay, use

Bayesian computational techniques to incorporate qualitative prior beliefs in

the investor’s problem. As suggested in the pioneering work of Jobson and

Korkie (1980), I treat the investor’s utility maximization as the statistical ob-

jective when evaluating conditioning information. I illustrate the high threshold

that must be overcome before we can conclude that conditioning information is

helpful to an investor in a statistically meaningful way.

The remainder of the introduction motivates and reviews the empirical con-

tributions, provides background for the estimation strategy, and describes my

methodological contribution.

2



1.1 Using Inference to Assess the Benefits of

Diversification

In the first essay, I use an inference approach to examine the benefits of diver-

sification given an optimal portfolio estimated from return data. One of the

fundamental corollaries of portfolio theory is that adding additional assets to

the set available for diversification improves outcomes.5 In the presence of es-

timation error, there is no guarantee that including the diversifying asset will

improve subsequent utility.

For the investor, portfolio estimates are empirical forecasts of their optimal

allocations. If an investor can precisely estimate their optimal portfolio then

adding an additional asset always improves expected utility6 However, adding

an asset can also reduce the precision of the optimal portfolio estimator. Con-

sider the very simple example of an investor who is choosing whether to invest

solely in the risk free asset or whether to select an optimal portfolio that com-

bines the risky asset and the risk free rate. In the first case the optimal portfolio

is trivially and precisely identified since there is only one asset. In the second

case, the optimal portfolio depends critically on the investor’s estimate of the

probability distribution of returns. There is no guarantee that the estimated

optimal portfolio will have a higher expected utility with respect to the under-

lying return-generating distribution. I use a hypothesis testing approach to test

whether an increase in utility from diversification is large enough to statisti-

cally reject the null that the investor would have been better off investing in

the original, less diversified portfolio.

Following Brandt (1999), I formulate the portfolio allocation problem itself

as a statistical estimation problem. The finite sample estimator of expected

utility plays the same role as a statistical loss function7, and portfolio weights

are parameters to be estimated.

I test the significance of the diversification benefits of various assets for a

United States investor. The investor has a choice of assets that includes an

5Standard textbook discussions always caution that diversifying beyond one or two dozen
equities yields little diversification benefit.

6I am assuming the added asset’s returns are not perfectly correlated with any portfolio
formed from the existing assets.

7Actually, statistical optimizations are usually formulated as minimizations so negative
utility is the direct analog of a statistical loss function.

3



equity index, a long-term bond index, and an asset formed by going long assets

with high book to market ratio with offsetting short position in assets with low

book to market ratios. I find that inclusion of the long-term bond asset does

not significantly increase the estimated utility. This is surprising since a bond

portfolio is a standard component in practical asset allocation problems. By

contrast investment in the value premium significantly improves the expected

utility estimate.

Furthermore, I examine the significance of predictability of index returns. I

test against the hypothesis that conditioning allocations on predictor variables

does not increase expected utility of the investor. I find that this hypothesis

cannot be rejected for most of the predictor variables considered. The excep-

tions are the term spread and the gold industry trend which yield marginally

significant improvement in unconditional expected utility.

1.2 Prior Disbelief in the Optimality of Short

Positions

The second essay examines whether portfolio estimates are improved when con-

ditioned on additional, economically motivated insights. The idea is to improve

the robustness of portfolio estimates by introducing an informative, non-data

prior. I accommodate the additional prior by formulating the portfolio estima-

tion problem in a Bayesian setting.

I consider the prior belief that all asset allocations are positive at the opti-

mum. This prior has two motivations. First, the prior is motivated by economic

theory. Classic asset pricing models such as the CAPM (Sharpe (1964)) hold

that assets are priced such that their market weights reflect the optimal port-

folio of an aggregate investor. For assets that have positive market value, the

implication is that they will appear with positive weight in the optimal port-

folio of individual investors. The second motivation for the no-short-position

prior is the importance of short-sales constraints in portfolio allocation applica-

tions. While many investment managers impose short-sales constraints due to

limitations in their mandates, the presence of such constraints may also reflect

the lack of availability of Bayesian technology in standard portfolio selection

implementations. As a result, the only convenient method of incorporating a

4



prior belief is to impose it directly via the use of constraints.

In a simulation study, I examine the impact of a prior disbelief in the op-

timality of short positions. I consider a five-asset universe and simulate return

histories from a generating distribution based on the historical distribution of

returns for a five-industry breakdown of the United States equity universe.

I find that the expected out-of-sample performance under the no-short-sales

prior improves over the expected out-of-sample performance under a diffuse

prior. The model performs similarly to approaches that impose short-sales con-

straints directly. However, the method does not perform as well as the minimum

variance and equal weight (or 1/N) rules. For the case considered, both of these

rules are asymptotically biased. The true optimal minimum variance portfolio

includes negative weights while the weights under the 1/N rule do not equal

the true optimal mean variance weights.

1.3 Nonparametric Portfolio Estimation

I use a nonparametric estimator of portfolio weights. For the inference analysis

in the first essay, I employ the formulation of Brandt (1999).8 In the second

essay, I develop a technique for tuning the data to obtain an empirical distrib-

ution of returns that reflects an investor’s qualitative (or non-data) priors.9 I

use Bayesian methods to adapt the probabilities attached to each data point in

the return distribution to the non-data information. Because I discretize the

set of possible return outcomes to those observed in the historical data, the

data informs the setup of the prior, and the resulting estimator is not strictly

Bayesian. However, restricting to return outcomes in the investor’s data set is

an effective means of discretizing a high dimensional space of possible return

outcomes to a parsimonious grid. Because the actual data generating points

is setting the grid, the included points are naturally concentrated near peaks

of the data generating distribution. Effectively, the domain of the posterior is

restricted to a set of multinomial distributions. However, the set allows for a

8Other applications of Brandt’s (1999) method can be found in Aı̈t-Sahalia and Brandt
(2001), Paye (2004), and Chapter 2.

9Previous applications of data tuning focus on minimally perturbing either the probabilities
or the data itself until some constraint on the solution is satisfied. See Braun and Hall (2001)
for a discussion of these methods and their application.
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broad range of distributional properties and permits effective incorporation of

prior information. I integrate the Bayesian posterior distribution of returns by

Markov chain Monte Carlo.

In both essays, I combine historical return data with other information. In

the first essay, the additional information is the value of a predictor variable

while in the second essay the additional information is a qualitative prior. Un-

surprisingly, the resulting estimators have a common nonparametric form. In

each case, the problem is to choose weights that solve the investor’s problem,

max
w

E [U(r̃, w)|R, I] , (1.1)

where w is a vector of portfolio weights, r̃ is a vector of unknown future returns,

R is a matrix of past asset returns, and I is the additional information. The

resulting nonparametric estimator is given by

max
w

T∑
t=1

atU(r̃t, w), (1.2)

where rt is the tth row of the return matrix R, and the at are coefficient weights

that depend on the non-return information I. For the unconditional case with

no additional information, the at are constant. When conditioning on a predic-

tor variable, the at depend on the distance between the historical value of the

predictor and the value at time of investment. Finally, in the Bayesian case,

the at are obtained following integration over the posterior. The incorpora-

tion of prior beliefs into the nonparametric portfolio estimator is an important

methodological contribution of the second essay.

6
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Chapter 2

Asset Allocation with Value

Growth Tilts and

Predictability10

2.1 Introduction

Researchers document evidence of two empirical features of financial asset re-

turns with implications for asset allocation. First, a market index is not suffi-

cient to span systematic risk in the cross-section of equity returns.11 Second,

equity and bond index returns can be predicted by variables such as the dividend

yield, term spread, and short term interest rate.12

An investor is interested in whether conditioning their portfolio policy on

either predictability or multi-factor structure improves their expected welfare.

More specifically, an investor might ask, “Is the gain in expected utility from

conditioning on an empirical feature significant, given the evidence in the data?”

A portfolio estimate that conditions on the presence of an additional factor or

predictor will always yield a higher expected-utility estimate in-sample, simply

from diversification. An important question is whether the utility gain is sig-

nificant given that the true optimal portfolio is unknown. The investor cannot

be certain that the expected utility for an estimated portfolio with a diversify-

ing asset is an improvement over the best estimated portfolio that excludes the

additional asset. The actual generating distribution for returns is unknown. In

other words, the investor faces a forecasting problem. Adding an asset adds a

10A version of this chapter will be submitted for publication. Douglass, J., Asset Allocation
with Value Growth Tilts and Predictability.

11The presence of multiple factors in equity returns can be observed via principle compo-
nents analysis (Connor and Korajczyk (1993)).

12See Rey (2004) and Ang and Bekaert (2007) for reviews of predictability evidence.
Cochrane (1999) reviews investment implications of multifactor pricing and predictability.

9



parameter to the estimation problem. The extra parameter will permit finding

a solution that yields a higher value for the estimation optimand. However, the

statistical power is lessened so the out-of-sample performance of the estimator

may be lower than under a more parsimonious asset set.

In this chapter, I evaluate the significance of estimated expected utility gains

from conditioning on multifactor pricing and predictability. For ease of inter-

pretation, I express expected utility as a certainty equivalent return (CER).13 I

treat the portfolio optimization problem as a statistical optimization. As such,

the expected utility achieved at the optimum is a random variable. I employ

bootstrap resampling to estimate the distribution of expected utility for a given

policy. I compute p-values for the null hypothesis that investing according to

an estimated optimal portfolio that conditions on an empirical feature yields no

utility gain over a policy that conditions on asset returns only.14

My results build on those of Brandt (1999), Aı̈t-Sahalia and Brandt (2001),

and Paye (2004). Following Brandt (1999), I estimate allocations in a single

step by direct solution of the Euler equation of the investor’s problem. The

estimation is achieved by replacing the expectation integral with an average

over the outcomes for each data point. This nonparametric approach has the

advantage of bypassing the need to assume and then estimate a parametric

distribution of returns. This eliminates a potential source of misspecification,

as well as the problem of explicitly determining which moments of the return

distribution are of interest. Direct estimation of portfolio weights leads to a

transparent interpretation of portfolio allocations as statistical estimates.

I assess investment significance based on robustness of expected utility gains

to estimation error. Treatment of expected utility as a statistical estimate has

its roots in the work of Jobson and Korkie (1980). The investor’s problem is

analogous to a statistical optimization. Consider a comparison with the famil-

iar problem of linear regression. For estimation in an investment framework,

13A convention that is standard in the portfolio choice literature. See Kandel and Stam-
baugh (1996).

14Goetzmann and Jorion (1993) apply a bootstrap approach to the assessment of gains in
R2 in linear regressions of returns on the dividend yield. Their bootstrap approach differs
from mine in that they focus on comparing the predictive regression R2 with the distribution
of regression R2s in bootstrap samples constructed to eliminate conditional correlation. I
bootstrap from the original data and use the utility difference between the conditional and
unconditional strategies to test the null hypothesis.
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portfolio weights play the same role as coefficients in a regression, while ex-

pected utility is analogous to R2. As in regression studies, in which R2 is rarely

accompanied by a measure of precision (Press and Zellner (1978)), estimated

expected utility is rarely quoted with a standard error.

In general, expected utility estimates based on finite samples have unknown

distribution.15 There are two common approaches to estimating standard errors

under the finite distribution. One can either use a large sample, asymptotic ap-

proximation or compute standard errors by a bootstrap procedure. I primarily

employ a bootstrap procedure. I obtain each bootstrap sequence by a resam-

pling procedure designed to preserve correlation properties of the data. For

each bootstrap sequence, I compute average utility outcomes for optimal poli-

cies estimated from the original data. In this manner, I construct an empirical

distribution of expected utilities. This becomes an issue for determining stan-

dard errors and for hypothesis testing. Wolf (2007), suggests a similar block

bootstrap method for testing differences in Sharpe ratios across return series

and compares the results with those obtained by asymptotic methods of Job-

son and Korkie (1981). Wolf (2007) demonstrates that asymptotic methods are

often biased in finite samples and that the bootstrap method performs well in

Monte Carlo tests on returns generated by processes with non-IID errors and

correlations.16

In the empirical analysis, I consider the asset allocation problem of a do-

mestic U.S. investor. I consider two empirical questions. First, I examine the

diversification benefit from incorporating portfolios that serve as empirical prox-

ies for pricing factors. Multifactor pricing has implications for the role of asset

allocation as a mechanism for determining exposure to systematic risk. In a

nonparametric factorization of the covariance matrix of equity returns, three

or more principle components are required to capture cross sectional variation

in returns (Connor and Korajczyk (1993)). The capital asset pricing model

suggests the market portfolio as principal factor. However, this portfolio only

explains 70-80% of non-diversifiable risk in equity returns. Fama and French

15Jobson and Korkie (1981), updated by Memmel (2003), present asymptotic results for
estimating the distribution of a difference in expected utility under the assumption of mean-
variance utility and independent and identically distributed returns.

16The Jobson and Korkie (1981) test is applied to comparisons of portfolio strategies in
out-of-sample tests by DeMiguel et al. (2007) and DeMiguel and Nogales (2007). In contrast,
I perform in-sample testing of differences in expected utility for different strategies.
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(1996) and Carhart (1997) find a number of hedge portfolios that serve as prox-

ies for priced risk that is not captured by the market portfolio.

I consider three long-minus-short equity portfolios constructed to capture

value, size, and momentum premiums, respectively.17 I find that including a

factor portfolio constructed to reflect the return premium between value and

growth stocks significantly improves expected utility. This finding corrobo-

rates results of Pástor and Stambaugh (2000) and Avramov (2004). They find

that an unconstrained investor who is given the opportunity to diversify across

value-premium and size-premium factors will take large positions in the value

premium. However, they also report large allocations to a size premium portfo-

lio. Furthermore Aı̈t-Sahalia and Brandt (2001) report nontrivial allocations to

a long term bond index. I find that neither a factor portfolio based on the size

premium nor a long-term bond index provide significant diversification benefit

to an equities and cash portfolio. The momentum portfolio provides significant

diversification benefit. Finally, I test the null hypothesis that expected utility is

not improved by the addition of each factor portfolio in the investor’s available

asset set. I find that the hypothesis cannot be rejected at the 99% confidence

level unless the value-premium or momentum-premium portfolios are included

in the investor’s asset set.

Second, I study the impact of conditioning on expected utility. Predictability

implies state dependence of an investor’s optimal portfolio. I estimate condi-

tional and unconditional expected utility from following optimal policies condi-

tioned on a set of eight predictors. I compare the results to conditional and un-

conditional expected utilities estimated for the unconditionally optimal policy.

I find that conditioning on individual predictors leads to a significant improve-

ment in unconditional expected utility. However, utility gains that are condi-

tional on the predictor value are statistically insignificant. My unconditional

results are in line with a large literature on the significance of predictability on

return regressions.18 In addition, the unconditional results corroborate results

of asymptotic tests by Brandt (1999) for a subset of the predictors studied in

this paper.

17These three portfolios are widely cited factor proxies proposed by Fama and French (1993)
(value and size premiums) and Carhart (1997) (momentum premium). As of October 2007,
the former had over 2400 citations on Google scholar, while the latter had over 1400.

18See, for example, Campbell and Yogo (2006).
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My results show that optimal portfolios vary substantially with predictor

value. However, as noted previously, I find that conditioning on individual pre-

dictors does not yield a significant improvement in conditional expected utility.

The implication is that conditioning on individual predictors is not economically

significant to a myopic investor. This result contrasts with previous literature

in which economic significance is linked to conditional variability of portfolio

weights. However, following the optimal conditional policy does not increase

conditional expected utility significantly over that attained following the opti-

mal unconditional strategy.

Of the eight predictors I consider, seven are taken from the literature.19The

exception is the gold industry trend which measures recent returns on the gold

industry. Despite being known for its low correlation with other industries, gold

industry returns have not received much attention in previous literature on pre-

dictability. The lack of interest might be explained by the lack of significance

of this variable in a linear regression versus next period returns. Linear re-

gression is the standard approach to analyzing potential predictors.20 However,

gold industry trend proves to be one of the two strongest predictors in a non-

parametric estimation of portfolio weights and expected utility. Examination

of the portfolio policy as a function of gold industry trend reveals a strong non-

linear relationship that smooths out to a constant under a linear assumption.

The significance of gold industry trend is corroborated by findings of Makarov

and Papanikolaou (2008). They find evidence that a latent factor that weights

heavily on base metal industries helps explain market equity returns.

The result demonstrates that not accounting for potential nonlinearity in

the relationship between predictors and expected returns can have important

implications for model assessment. This point is also emphasized by Ferson

and Siegel (2000) in the context of testing asset pricing models. Rejection of

the hypothesis that predictability improves expected utility based on an in-

sample study requires a framework in which conditioning information is used

with maximum efficiency. The nonparametric model places minimal restrictions

on the portfolio policy and is therefore likely to result in a higher expected

utility improvement over the unconditional policy when predictability is used

19See Ang and Bekaert (2007) and references therein.
20Predictors should also have an economic rationale to mitigate data snooping.
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in-sample. Thus rejection of the hypothesis that the unconditional policy yields

the same expected utility is more challenging, and, therefore, p-values that

suggest rejection are more convincing.

My approach to the question of investment significance differs from much of

the recent literature, where two approaches are prevalent. First, many studies

abstract from estimation uncertainty by calculating optimal allocations from

parameters of a model of the expected distribution of returns that are fixed at

sample values (i.e., Brennan et al. (1997), Campbell and Viceira (1999), Balduzzi

and Lynch (1999), Campbell et al. (2003), and Jurek and Viceira (2005)). These

contributions yield insight into potential implications of empirical features for

an asset allocator, but do not establish whether the computed impacts are

statistically significant.

The second approach seen in the recent literature assumes a Bayesian model

of the investor in which estimation uncertainty is incorporated into the pre-

dictive distribution of returns. Kandel and Stambaugh (1996) pioneer this ap-

proach in a study of the investment impact of predictability evidence.21 They

conclude that the impact of predictability on investment decisions is significant

even though the empirical evidence for predictability is weak. Their conclusions

are based on the substantial variability of portfolio weights with predictor value,

but they do not provide evidence on the significance of the expected utility gains

from using predictor variables.

My results have different implications for the importance of predictor vari-

ables when compared to those of Kandel and Stambaugh (1996) and subsequent

Bayesian studies.22 The discrepancy can be attributed to differences in the cri-

teria used to assess significance. I treat the portfolio problem as a statistical

estimation problem and assess significance in terms of welfare gains using a hy-

pothesis testing approach. I examine whether expected utility gains of adopting

optimal strategies are robust to estimation error. In contrast, Kandel and Stam-

baugh (1996) ask whether investment policies are influenced by predictability

but only obtain point values for expected utility gains without addressing the

21Kandel and Stambaugh (1996) is a concept study. Barberis (2000) and Wachter and
Warusawitharana (2005) apply the ideas to empirical data. Barberis (2000) examine the
importance of predictability in the face of estimation risk. Wachter and Warusawitharana
(2005) study allocations of an investor with priors biased against predictability.

22See, for example, Barberis (2000) and Wachter and Warusawitharana (2005).
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statistical significance of these gains. However, expected utility estimated in-

sample must increase when the investor is given additional information. Thus,

whether or not an empiricist uses a Bayesian model of the investor, it is im-

portant to address the robustness of estimated expected utility gains before

ascribing investment significance.

Finally, I extend the predictability analysis to allow for simultaneous con-

ditioning on multiple predictors. I remain in the nonparametric environment,

but follow Aı̈t-Sahalia and Brandt (2001) and reduce the dimensionality of the

nonparametric problem by constructing indices from linear combinations of pre-

dictors. This semiparametric approach reduces the dimension of the nonpara-

metric estimation problem to one, thereby mitigating problems with the curse

of dimensionality that arise in multidimensional nonparametric estimation.

I find that predictability can be significant for an investor with a single-

month horizon when multiple predictors are used. I estimate optimal index

values for all combinations of four predictors that can be formed from a set of

eight predictor variables. This model selection exercise suggests that the best

and most robust predictor combination is any combination of predictors that

includes the term spread and the gold industry trend. The important predictors

differ from those ordinarily employed in studies that focus on the dynamics

of investment with time varying investment opportunities. For example, the

dividend yield is not a statistically robust component of the optimal predictive

index, but is often used in calibrated dynamic models. Of the two variables that

play an important role in predicting optimal allocations, the term spread has

the longest history in studies of predictability (see Campbell (1987)). Unlike

in the single predictor case, the improvement in expected utility for the best

multivariate index is marginally significant in some states of the world.

It is important to clarify that the tests in this paper are not primarily aimed

at verifying the presence of predictability. The objective of my tests is to eval-

uate the relative significance of portfolio estimation risk versus the benefits of

diversification or conditioning using a metric, expected utility, that reflects in-

vestor preferences. In other words, I assume that diversification or conditioning

would add value if the true optimal portfolio was known. The testing approach

in this paper would also be applicable to tests of predictability. However, the

standard errors and p-value statistics would have to be adjusted to address the
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data-snooping/joint-testing problem. This analysis is beyond the scope of the

this thesis.23

The estimated expected-utility gains permit weighing the benefit of incor-

porating factor portfolios into the asset allocation decision versus the benefit

of conditioning on predictability. For an equities and cash investor, I find that

point estimates of expected utility gains from adding the value premium proxy

to the portfolio choice set are effectively equal to the gains from conditioning

on the term spread or gold industry trend. The magnitude of the improvement

in CER is approximately 50 basis points per month or six percent per year.

2.2 Empirical Framework

I employ an econometric framework based on the portfolio choice problem of a

single period investor. The investor’s problem is set up as a statistical decision

problem with asset allocations as parameters and expected utility as the objec-

tive. The allocations are estimated by direct maximization of expected utility.

The remainder of this section describes the investment framework and presents

the empirical estimator.

2.2.1 Investor’s Problem

Consider a single period investor who maximizes the expected value of utility

u(Wt+1) over next period’s wealth Wt+1. The investor has access to a set of N

portfolios for investment. The investor’s choice variable is an N -vector of port-

folio weights αt. Expected utility is conditional on a set of predictor variables

Zt. Hence, the investor solves

max
αt

E
[
u(Wt+1)|Zt

]
, (2.1)

where u(·) is the investor’s expected utility over wealth.

The above formulation of the portfolio problem does not explicitly include

a budget constraint. Instead of requiring that portfolio weights add to one, the

23The predictability of stock returns and the precise nature of additional pricing factors
remains a topic of current research(Ang and Bekaert (2007)). White (2000) and Dudoit and
van der Laan (2007) describe frameworks for testing multiple hypotheses.
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asset set is defined such that each asset is a hedging portfolio. Hedging portfolios

consist of long positions in some assets and offsetting short positions in other

assets such that the net investment is zero. A net long or short position in risky

assets is made possible by the inclusion of at least one asset that represents a

long position in a portfolio of risky assets and an offsetting short position in the

risk-free asset. Given this construction of the asset set, and assuming no other

constraints, the vector of portfolio weights α can take on any value in RN .

Let random vector Rt be the vector of gross returns on securities from t to

t + 1. Next period wealth Wt+1 depends on this period’s wealth and portfolio

weights along with the intervening period’s vector of returns Rt+1,

Wt+1(Wt, αt, Rt+1) = Wt

[
Rf + αᵀ

t Rt+1

]
(2.2)

where Rf is the risk-free rate.

The predictor variables are realizations of a random vector Zt from an M -

dimensional predictor space Λ. The distribution of expected returns is depen-

dent on Zt. This along with the dependence of utility on returns explains the

conditional form of the expectation in the investor’s objective function.

The investor’s optimal portfolio policy is the solution α(Z) to (2.1). A

portfolio policy is a mapping from the predictor space to the space of allowed

portfolio weights, α : Λ → RN . The first order conditions of the investor’s

problem are

E
[
u′ (Wt(Rf + αᵀ

t Rt+1)) Rt+1|Zt

]
= 0. (2.3)

Hence, the portfolio policy is given by

α(Z) =
{

αt : E
[
u′(Wt(Rf + αᵀ

t Rt+1))Rt+1|Zt = Z
]

= 0
}

. (2.4)

The estimator developed in the following section is based on this equation.

2.2.2 Direct Estimator of Conditional Portfolio Policy

Portfolio policies can be estimated without explicitly modeling return dynam-

ics24. Brandt (1999) adapts the method of moments approach of Hansen and

24The need to model the entire return distribution considerably complicates estimation of
optimal portfolio policies by adding an additional set of assumptions beyond those already
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Singleton (1982) to this problem. The empirical approach entails replacing the

expectation in the first order condition or Euler equation of the investor’s prob-

lem (2.3) with a consistent estimator. The expectation E[·|Zt] on the right-hand

side of the Euler equation is replaced with a nonparametric estimate Ê[·|Zt] that

converges to the true expectation as T →∞. Upon replacing the expectation in

(2.3) with its empirical counterpart, an empirical moment condition is obtained

and α can be estimated by method of moments.

Operationally, the expectation on the left-hand side of the first-order condi-

tion (2.3) is replaced with a historic average

Ê [u′(Wsα
ᵀRs+1)Rs+1 |Zt = z] =

1

Tz

∑

{s:Zs=Z,s<t}
u′(Wsα

ᵀRs+1)Rs+1 = 0, (2.5)

where Tz is the number of observations at which Zt = z. For Zt on a continuous

domain, the above estimator is infeasible for finite samples. Brandt (1999)

shows that a standard nonparametric estimator converges for moment functions

that obey reasonable properties. The nonparametric estimator of α in some

state z is obtained by weighting each observation according to the similarity of

its state with z. Define the weighting function ω(·) and bandwidth hT . The

nonparametric estimator of the expectation is

Ê [u′(Wsα
ᵀRs+1)Rs+1 |Zt = z] =

1

τ(hT , z)

T∑
s=1

ω

(
z − zt

hT

)
u′(Wsα

ᵀRs+1)Rs+1,

(2.6)

where τ(hT , z) is equal to the sum of the weights applied to each observation.

Substituting the empirical expectation into the Euler equation yields a set of

empirical moment conditions that are satisfied by the optimal portfolio policy.

required to model investor preferences. For most preference models, the precise shape of the
portfolio policy is a complicated function of multiple moments of the conditional distribution
of returns. This point is discussed extensively in Aı̈t-Sahalia and Brandt (2001). They
evaluate the portfolio policy for a variety of utility specifications, including expected utility,
ambiguity and loss aversion, and prospect theory preferences. For example, consider the
case of an investor with mean-variance utility. In this case, there is an analytic solution
for the optimal conditional policy. The optimal policy depends on the ratio of the first two
conditional moments of the return distribution. Thus, even in this simple case, in order to
study the effects of predictability on portfolio choice by traditional means, one would have to
effectively model both the first and second moments as functions of the predictor variables.
The problem is exacerbated if allocations depend on higher moments (Harvey et al. (2003),
Kacperczyk (2003)) or if allocating across a large number of assets (Brandt et al. (2005)).
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The problem of solving the Euler equations can be formulated as a method of

moments minimization whereby α(z) is chosen to equate

Ê
[
u′(Wtα

ᵀ
t Rt+1)Rt+1|Zt = z

]′
Ê

[
u′(Wtα

ᵀ
t Rt+1)Rt+1|Zt = z

]
(2.7)

to zero.

2.2.3 Measure of Portfolio Performance

Kandel and Stambaugh (1996) suggest certainty equivalent returns as a useful

metric for comparing portfolio performance.25 The certainty equivalent CE

is the certain wealth outcome that would be accepted by the investor as an

even trade for the risky bet, i.e., U(CE) = E [u (Wt+1)]. When comparing two

certainty equivalents, the fractional change is a useful metric. This is defined as

δCE = CEA/CEB − 1; CEA is the certainty equivalent of interest and CEB is

certainty equivalent value of a reference portfolio. Following convention, I refer

to δCE as the certainty equivalent return (CER) when the reference portfolio

is a 100% investment in the riskless asset.

For unconditional portfolio allocation, the certainty equivalent can be esti-

mated by replacing the expectation with a sample average:

ĈE = U−1

(
1

T

T∑
t=1

u(αᵀRt)

)
(2.8)

When using conditioning information, the estimated certainty equivalent is state

dependent. Adopting the kernel averaging approach described in the previous

section, the conditional certainty equivalent for an investor with unit wealth is

ĈE(z) = U−1

(
1

τ(hT , z)

T∑
s=1

ω

(
z − zt

hT

)
U (α(Zt)

ᵀRs+1)

)
. (2.9)

I calculate p-values for hypothesis tests and compute standard errors using

a bootstrap analysis. I recalculate equivalent statistics for 1000 bootstrap sam-

ples. I use the stationary bootstrap procedure of Politsis and Romano (1994)

25The use of certainty equivalent to evaluate portfolio performance is a standard approach
(Aı̈t-Sahalia and Brandt (2001), Avramov (2004), Brennan et al. (1997)).
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to preserve autocorrelation properties of the data in the bootstrap samples.

Many of the hypothesis tests involve comparing expected utility gains achieved

by different strategies. I first compute the optimal policies for the two strategies.

I then calculate expected utility estimates for each bootstrap draw. If the null

hypothesis is that strategy A achieves as high an expected utility as strategy

B, then I compute a p-value based on the fraction of draws for which average

utility achieved under policy A equals or exceeds that achieved under policy B.

An investor’s ability to exploit the increase in CER from diversification will

depend on the amount of data available to the investor and potential CER gain

given full knowledge of the generating distribution of returns. To guage the

relative importance of these two factors, I conduct a simulation experiment. I

consider the investment benefit of adding an additional risky asset to a two

risky asset portfolio. The correlation between the returns of the three assets

are based on correlations between the equity index, bond index and HML asset

described in section 2.2.4. I vary the Sharpe ratio of the third added asset so

that the full-information increase in CER varies between 1 basis point and 100

basis points per period. I simulate 400 return series of length T equal to 120,

240 and 600. For each return series, I estimate an optimal portfolio for the

two risky asset and three risky asset cases. I also compute a bootstrap p-value

against the hypothesis that the two asset portfolio will achieve a higher CER

out of sample.

The results demonstrate that an investor seeking to reject the dominance

of the estimated two-asset portfolio would need to be adding an asset with the

potential to add greater than 1% return per period given a data set of 120 peri-

ods. For a data set of length 600, the null that the estimated portfolio achieves

a higher out-of-sample CER can be rejected in the majority of cases as long as

the CER is greater than 25 basis points. The latter result is relevant to the

unconditional results because the data set used in this study includes over 600

monthly return periods. For results that are conditioned on predictor variables,

the effective number of samples is reduced by the kernel averaging method.

As a result, larger conditional improvements in CER are required to achieve

diversification benefits given the available data for portfolio estimation.26

26Specifically, the Monte-Carlo Average p-values are, given a potential diversification benefit
of 1 basis point, 0.30, 0.28, and 0.20 for data series lengths T = 120, 240, and 600 respectively.
For potential diversification benefit of 25 basis points, the corresponding Monte-Carlo average
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In addition to bootstrap errors, I also compute asymptotic standard errors

where possible. The asymptotic properties of the nonparametric conditional es-

timator were given by Brandt (1999). The asymptotic distribution of estimates

of portfolio weights are directly analogous to standard convergence results for

the method of moments. For conditional and unconditional certainty equivalent

returns estimated via (2.8) and (2.9), I compute asymptotic standard errors via

the delta method.

2.2.4 Data and Utility Assumptions

I obtain monthly data for asset returns and predictors for the time period Jan-

uary 1952 to December 2006.27 I consider an investor who allocates wealth

between an equity index, a bond index, and cash. The investor also has ac-

cess to hedge portfolios that have been recognized in empirical studies as good

proxies for priced risk in the equity market that is not captured by the mar-

ket portfolio (Fama and French (1996), Carhart (1997)). These consist of a

portfolio long high book-to-market (value) stocks and short low book-to-market

(growth) stocks, a portfolio long small market capitalization stocks and short

large capitalization stocks, and a portfolio positive high momentum stocks and

short negative momentum stocks. The market index is the value-weighted in-

dex of NYSE, AMEX, and Nasdaq stocks from CRSP. The bond portfolio is an

index of long-term government bonds. Returns on this portfolio are obtained

from CRSP. Factor portfolios based on value minus growth, small minus big and

upward momentum minus downward momentum are the HML (High-book-to-

market Minus Low-book-to-market), SMB (Small-stock Minus Big-stock), and

UMD (Upward-momentum Minus Downward-momentum) portfolios from Ken

French.28 The return of the riskless asset is the yield on treasuries matching

p-values are 0.21, 0.14, and 0.05. For potential diversification benefit of 50 basis points,
corresponding Monte-Carlo average p-values are 0.14, 0.06, and 0.009. Finally, for potential
diversification benefit of 100 basis points, the corresponding Monte-Carlo average p-values
are 0.07, 0.02, and 0.0003.

27This start date is commonly used in calibration studies of predictability and portfolio
choice (e.g. Brandt (1999), Campbell and Viceira (1999), Brennan et al. (1997), Aı̈t-Sahalia
and Brandt (2001)), and coincides with availability of data for a large set of predictor variables.
The time period is subsequent to the 1951 Treasury-Fed accord that allowed independent
conduct of monetary policy.

28http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
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the investment horizon. For the monthly return horizon, this is the 30-day

Treasury-bill yield. Summary statistics for the asset returns are provided in

Table 2.1.

Investment opportunities are functions of eight predictor variables that have

been cited as able to forecast market returns and volatility. The predictors

include the NYSE dividend yield, default premium, term premium, trend in

the S&P 500 composite, trend in the 30-day Treasury-bill yield, gold industry

returns, value spread, and inflation29. The dividend yield on NYSE stocks is

imputed from cum- and ex-dividend returns from CRSP. All interest rate data

is obtained from Global Insight with the exception of the T-bill yield. The

latter is obtained from CRSP. The default premium is the difference in yield

between an index of BAA and AAA rated corporate bonds. The term spread

is the difference between the yield on long-term government bonds and three-

month Treasury bills. As suggested by Campbell (1991) and Hodrick (1992),

I stochastically detrend the 30-day Treasury-bill yield used for prediction. I

take the current yield minus a six-month moving average centered six months

previously. This eliminates the long-term secular trend in this variable, rising

prior to and descending since 1980. The 30-day Treasury-bill yield serves a

dual role as both predictor and yield on the risk-free asset for investments with

one-month horizon. The trend in the S&P 500 composite is an average over

trailing returns of the previous twelve months. Realized volatility is calculated

using daily returns over the previous month. Inflation is the monthly change in

consumer price index (CPI) for the previous month. Summary statistics for the

predictors are provided in Table 2.1. Correlations between returns and lagged

predictors are listed in Table 2.2. Correlations between realized volatilities and

lagged realized volatilities and predictor variables are listed in Table 2.3.

All the above predictors have received attention in the literature on pre-

dictability with the exception of gold industry trend. This variable is con-

structed from returns on the gold industry portfolio within the 48 industry

breakdown of Ken French. This breakdown is based on industry definitions

29Other predictors that have received attention include the ratio of consumption to in-
come (Lettau and Ludvigson (2001)) and measures of market sentiment (Baker and Wurgler
(2006)). I restrict attention to predictors derived from market observables (with the excep-
tion of inflation). This mitigates possible interpretation issues associated with the timing and
availability of non-market based variables.
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that begin in June 1964. To extend the series backwards, I construct a gold

industry based on membership in the gold industry in June 1964. While there

is danger of introducing survivorship bias into the early part of the series, this

is overshadowed by the likely loss of information from discarding the returns

entirely. For use as predictor, gold industry returns are smoothed by taking a

moving average over the trailing twelve months.

For the empirical analysis, I assume an investor with power utility, U(W ) =

W 1−γ/(1 − γ). I use a power utility model because of its appealing properties

with respect to the effect of wealth on risk aversion. Power utility engenders

decreasing absolute risk aversion. This is more reasonable than the increasing

absolute risk aversion of mean-variance utility30. Mean-variance utility, which

is often used in practice, can be a good approximation to other utility functions

(including power utility). Mean variance is obtained by truncating a power series

expansion of the utility at the second power so the quality of the approximation

depends on the size of return magnitudes. I consider a monthly investment

horizon so some returns in the sample are quite large. In addition, optimal

portfolios may be leveraged thereby magnifying portfolio returns.

I vary the risk aversion coefficient γ between one (log utility) and ten. Most

of the experiments are performed with risk aversion set to five.

2.3 Unconditional Asset Allocation

I begin the empirical analysis with an examination of the investment gains

derived from incorporating portfolios that serve as empirical proxies for pricing

factors into the asset allocation portfolio. The section presents an in-sample

analysis of the unconditional portfolio choice and certainty equivalent gains for

various combinations of assets. To obtain estimates of unconditional policies, I

compute solutions to the unconditional version of (2.7).

Table 2.4 lists estimates of unconditional portfolio choices of an investor

with power utility. The first row lists portfolio allocations for investors whose

investment universe is limited to the equity index. The results are broadly

30Many of the experiments of the next section were repeated with mean-variance utility.
Essential features of the results (not reported) are similar to the power utility case. Markowitz
(1952) and Arrow (1971) provide theoretical arguments for utility with decreasing absolute
risk aversion.
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consistent with those of Brandt (1999).31 The optimal weights are large. For

an investor with risk aversion of five, optimal investment in the index is 58%,

rising to 142% at risk aversion of two. These results are consistent with the well-

known tendency for estimated allocations to indicate large positions in equities

for reasonable levels of risk aversion (Mehra and Prescott (1985)).

The second row of Table 2.4 lists portfolio allocation for an investor who

invests in HML only. While this is not a realistic portfolio choice for most in-

vestors as it implies short positions in the growth portfolio, the results illustrate

the investment appeal of HML’s historical return properties. The allocation is

almost double that selected by the equities investor. This can be attributed

to HML’s higher Sharpe ratio (Table 2.1). The mean-variance solution illus-

trates the source of the difference between the two allocations. For a mean-

variance investor, the optimal allocation to a risky asset is proportional to the

ratio of mean return to its variance. Using this fact, we expect the ratio of

the portfolio weights for the index-only portfolio and the HML portfolio to be

αIndex/αHML ≈ µIndexσ
2
HML/(σ2

IndexµHML). Based on mean and variances listed

in Table 2.1, αIndex/αHML = 0.58. The ratios between the estimated weights in

rows 1 and 2 of Table 2.4 are all within rounding error of 0.56.

The remaining rows of Table 2.4 present allocations across different port-

folios. The next two rows show allocation estimates for an equity and bond

index portfolio. The allocation to bonds is less than the standard error of the

allocation estimate. The boundaries of a 95% confidence interval around the

optimal bond allocation are -0.41 and 1.03. In addition, equity allocations in

equity and bond portfolios are almost unchanged from their optimum without

the bond asset. An equities-only investor achieves little diversification benefit

by adding bonds to the asset set. Combining the equity index portfolio with

HML leads to higher allocations to the equity index and HML relative optimal

holdings in their single asset portfolios. When compared to the allocation for

an equities-only investor, the allocation to equities increases by approximately

40% when HML is added to the asset set. These results reflect the large positive

premium accorded to value stocks over the fifty-year period encompassed by this

data set along with the significant negative correlation between the index and

31Brandt (1999) considers a simultaneous portfolio allocation and consumption decision.
However, the consumption decision has little effect on portfolio allocation.
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HML. Combining the bond asset with the equity index and HML combination

has little effect on the portfolio weights of the equity portfolios. In all cases, the

allocation to the bond portfolio is less than one standard error from zero and

the allocations to the equity portfolios effectively are unchanged.

The large standard errors reported in Table 2.4 reflect considerable uncer-

tainty in return estimates obtained from data. Brandt (1999) suggests using the

mean-variance solution for intuition on the source of uncertainty. If we assume

known variance then the standard error of the return estimate for the mean-

variance solution, and consequently, of the portfolio weights, will be inversely

proportional to (γ ∗√T ∗ σ), where σ is the standard deviation of returns. The

errors calculated using this approximation and sample values in Table 2.1 are

of similar size to those given in Table 2.4.

Table 2.5 lists estimated CERs for an investor who follows the optimal un-

conditional policies for various portfolios. I compute standard errors for CERs

using the stationary bootstrap. For each bootstrapped realization of the data, I

compute a CER estimate under the assumption that the investor holds the esti-

mated optimal portfolio.32 The certainty equivalent return of an index investor

is less than two standard errors above the certainty equivalent return of follow-

ing a risk-free strategy. A 95% confidence interval around the CER estimate for

an equities-only portfolio runs from -5 to positive 37 basis points. The results

suggest that an equity index investor may not be able to reject the possibility

that the CER of investing in the equity index is no greater than investing solely

in the risk-free asset. This level of uncertainty in the CERs might give pause to

advocates of straight indexing as an optimal allocation policy.

I also compute the asymptotic standard errors for the CERs reported in

Table 2.5. The CER is a function of the realized utilities ut = w′ ∗ rt. The

delta method approximation linearizes the variations to approximate the stan-

dard error by (CER′(ū))2var(u). I use a Newey-West procedure to account for

autocorrelation in the realized utilities when computing the variance. The re-

sults are very similar to those obtained by the bootstrap analysis. For example,

the standard error of the CER for the equities, bonds, and HML computed by

the bootstrap is 0.24 basis points compared per month whereas the asymptotic

32Alternatively, asymptotic standard errors can be computed by the delta method applied
to (2.8). The results are similar and not reported.
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standard error given a Newey-West adjustment with 20 lags is 0.25 basis points.

Given the similarity of the results obtained by the two methods, I only report

bootstrap standard errors in Table 2.5 and subsequent tables.

In contrast to the equity index-only case, the CER of portfolios that include

both the equity index and HML portfolios are significantly larger than twice the

standard errors (Table 2.5). The portfolio of an HML-only investor has a higher

Sharpe ratio in-sample than the equity index, but the CER of an investor who

allocates exclusively to this portfolio is less than two standard deviations from

the risk-free CER of zero. In contrast, the investor whose portfolio includes

equities and HML achieves CER greater than three times the standard error. A

95% confidence interval for CER for the equities and HML investor runs from

0.2 to 1.1 basis points.

The results in Table 2.5 have important implications for the bond asset.

Inclusion of the bond portfolio in the asset set has an insignificant impact on

CERs of both the equities-only investor and the equities and HML investor.

In both cases, the estimated CERs remain unchanged. In addition, there is no

shift in the bootstrap confidence intervals. Referring to Table 2.4, the estimated

allocations to the bond asset are quite large, but remain insignificant. Consider

the case of risk aversion γ equal to five. The estimated bond weight is 30%

and 17% in the equities and bonds, and equities, bonds and HML portfolios

repectively. The CER results demonstrate that there is no in-sample evidence

that an investor achieves any diversification by including the long-term bond

asset in their asset allocation portfolio.

Table 2.6 lists bootstrap p-values based on the null hypothesis that adding

a particular asset does not improve expected utility. Each p-value is based on

1000 resamples of the joint return series. The left column lists the asset set that

is assumed optimal under the null while the middle column lists the asset under

consideration for addition to the portfolio. The first and third rows examine

the importance of utility gains from investing in the equity index and HML

respectively versus the null of holding only the risk-free asset. The p-values are

approximately 0.05 in each case, indicating that investing in either portfolio is

an improvement over simply holding the risk-free asset. As suspected given the

insignificant holdings in the portfolios listed in Table 2.4, the null hypothesis

that investing fully in the risk-free asset is preferred to investing in a mix of
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bond index and risk-free asset cannot be rejected.

The sixth row lists the p-value of adding the bond index to a portfolio

that includes the equity index and HML. The seventh row states the p-value

of adding HML to the traditional asset allocation portfolio. The null that the

bond index is not additive to an investor’s CER cannot be rejected. In contrast,

the corresponding null in the HML case is strongly rejected in favor of adding

HML to the asset allocation portfolio.

Other portfolios have been suggested as proxies for risk captured by stock

returns. Table 2.5 also lists in-sample CERs for an investor who adds two other

portfolios to the asset allocation decision. The first is SMB: a portfolio long large

stocks and short small stocks. SMB is a member of the oft-cited three factor set

of Fama and French (1993). If the investor believes that SMB serves as a proxy

for a priced risk factor, then the portfolio choice results (not shown) indicate

that the investor will take a marginally significant long position in this asset.

However, the increase in CER over that achieved by the optimal equities, bonds,

and HML portfolio is insignificant. The p-value for the bootstrap test against

the hypothesis that SMB has no diversification benefit is 0.24 (eighth line of

Table 2.6), providing further evidence against SMB as a useful diversification

factor. The increase in CER is much larger when the momentum factor UMD is

added to the asset set. The increase in CER for the equities and HML investor

who includes UMD in their asset set is just under twice the standard error. The

p-value on the last line of Panel A of Table 2.6 corroborates this observation.

The portfolios that include HML can only be implemented if short-sales are

permitted. The short sales occur when short positions on the growth side of

the HML portfolio are larger than long positions in the same stocks held in

the equity index portfolio. Table 2.4 also list portfolio weights for an investor

who cannot hold assets short. Weights in equities and bonds must be greater

than zero. To ensure that short positions in the long-short factors are covered,

positions in these portfolio are limited to one third of the equity holding.

The asset weights listed in Table 2.4 suggest an increased role for bonds in the

equities, bonds, and HML portfolio. With the short sale constraint restricting

the investor’s ability to leverage the HML portfolio, the optimal bond weight

is 42% for an investor with risk aversion of five. This compares to 17% in the

unconstrained case. However, the certainty equivalent gain achieved by moving
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from the optimal equities and HML portfolio to the optimal portfolio with bonds

included is inconsequential. The p-value listed in Table 2.6 for this case (line

5 of Panel B) is close to 0.5. The hypothesis that bonds do not increase CER

cannot be rejected even when short sales are not permitted.

2.4 Conditional Asset Allocation

This section examines predictability evidence in an asset allocation framework.

The standard approach to predictability evidence is to estimate a statistical

model in a linear regression or vector autoregression framework. Returns are

regressed on lagged predictor variables. This section considers an alternative

approach. I examine the implications of individual predictors on investor wel-

fare. I consider the portfolio problem of a power utility investor whose portfolio

choice is between the asset of interest and a risk-free asset.

The first subsection is a brief examination of predictability evidence based

on a simple regression analysis. The second subsection looks at predictability

evidence through the lens of the optimal asset allocation problem. I consider the

allocation problem of an investor with access to a single, risky asset. I evaluate

the impact of predictors on portfolio choice by examining the significance of

differences between conditional and unconditional allocations estimated by the

method of section 2.2.2.

2.4.1 Predictability of Mean and Variance

Panel A of Table 2.8 lists results of univariate least squares regressions of individ-

ual asset returns on individual predictor variables, i.e., rt = a + b′Zt. Because

the choice of predictor variables is primarily based on previous literature on

market predictability, it is no surprise that levels of significance are reasonably

high for regressions involving the equity index return. In each case, a number

of predictors yield t-statistics greater than two33. The least predictable asset is

HML; at short horizons, only the Treasury-bill rate yields a t-statistic greater

33Care must be taken in interpreting t-statistics obtained from regressing a time series on
a second, highly persistent time series (Stambaugh (1999)). See Campbell and Yogo (2006)
and references therein for a discussion of inference issues associated with regression evidence
for stock return predictability.
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than one. The value spread does not show evidence of much correlation with

future HML returns.

Panel B of Table 2.8 presents results of multivariate regressions. For each

asset, next month’s return is regressed on the full vector of predictor variables.

The results are broadly consistent with those of the previous table, but with

dampened significance for individual coefficients due to the simultaneous nature

of the regression. For the index portfolio, no one predictor appears particularly

significant. By contrast, the regression results indicate term spread and bonds

have significant impact for predicting bond returns. Additionally, The Treasury-

bill rate stands out as a significant predictor for the HML portfolio.

The R2 values for the multivariate regressions are highest for the equities and

bond indices. Once again, this result is unsurprising given that the predictor

variables used are from the long literature on stock market predictability. Thus,

while the index and bond portfolios may be more predictable than HML, a data

snooping bias in the choice of regressors must also be acknowledged.

Panel A of Table 2.9 displays results of univariate regressions of realized

volatility of equity index and HML portfolios respectively on each lagged pre-

dictor variable. A number of variables appear to predict realized volatility at the

one-month horizon. For example, the t-statistic is greater than two for realized

volatility of the equity index regressed on dividend yield, default premium, S&P

500 trend, and value spread. The same holds for HML regressed on dividend

yield, S&P 500 trend, and gold industry trend.

Panel B of Table 2.9 shows results of regressing realized volatilities of the

equity portfolios on the full set of predictors. Significant regression coefficients

are observed for both the equity index and HML. The high R2 values reflect the

high short-term persistence of volatility.

2.4.2 Predictability in an Asset Allocation Framework

In this section, I analyze the impact of predictability on portfolio choice through

the lens of the investor’s portfolio problem. The analysis provides direct insight

into the significance of predictability to portfolio choice. I employ the nonpara-

metric estimator of portfolio policy (Section 2.6) to examine the evidence for

predictability of different assets. Consider the portfolio policy of an investor

who is able to invest in only one risky asset. The investor’s problem is to
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choose optimal allocations to the risky asset as a function of predictor value.

In this context, the significance of a predictor for portfolio choice is a function

of the ratio of the maximum deviation of the conditional allocation from the

unconditional allocation and the standard error of the allocation estimates.

I apply this approach to analysis of predictability of the equity index and

HML portfolios. Table 2.10 lists conditional allocations for an investor choosing

between one risky asset and a risk-free asset. Results in this table can be used to

assess the relevance of any one predictor variable for portfolio allocation. Opti-

mal allocations are listed for values at the 20th, 50th and 80th percentiles of the

empirical distribution of the predictor variable. Based on differences between al-

locations at the 20th and 80th percentiles, the greatest in-sample predictability

is obtained for the equity index conditioned on the term spread, Treasury-bill

rate, inflation rate, and gold industry trend. Interestingly, the gold industry

trend does not show up as significant in either univariate or multivariate linear

regression results given in Table 2.8. In agreement with regression results, pre-

dictability of HML does not appear significant by this portfolio choice metric.

The largest difference between allocations at the 80th and 20th percentiles is

smaller than those observed for equities.

Comparison of policies at three points of the predictor distribution may

miss large variations in the optimal allocations if portfolio policies are nonlin-

ear. Figures 2.1-3 provide a graphical comparison of optimal conditional and

unconditional single-asset policies as a function of predictor values. Each fig-

ure plots optimal portfolio weight versus standardized predictor value34. The

portfolios are estimated for a non-uniform range of percentiles of the empirical

distribution. The calculation points are denoted by dots in the figures. Condi-

tional policies are reported for single-asset decisions when the risky asset is the

equity index (left panels) or HML (right panels). The equity index policies that

condition on the dividend yield, default premium, and term spread are consis-

tent with those documented by Brandt (1999) and, with the T-bill rate added,

Paye (2004). The second column presents results for the HML portfolio. The

conditional allocation to the equity index as a function of dividend yield (top

left panel of Figure 2.1) is broadly consistent with results of Barberis (2000).35

34Predictor values are standardized by subtracting their means and normalizing by their
standard deviations.

35See left side of his Figure 5, one period horizon case.
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The shaded confidence regions are interpolated between two standard devi-

ation error bars estimated by bootstrap. The vertical bar in the center of each

plot depicts bootstrap two standard deviation confidence interval of the uncon-

ditional portfolio. Overall, the width of the confidence regions confirms the

insignificance of predictability evidence when conditioned on predictor value.

The conditional policy rarely moves beyond the limits of the vertical bar on any

panel of the three figures. The term spread and gold industry trend are the

only two predictors that appear qualitatively significant for equity investment.

For each of these predictors, there is a range of predictor values over which

the optimal policy is greater than two standard errors from the unconditional

policy. Of interest is the strength of predictability of the gold industry trend

relative to the regression results presented in Table 2.7. Conditional policies

show significant variability even though the coefficient on a linear regression is

below standard significance levels. Estimated portfolio policies for gold industry

trend vary nonlinearly with predictor value such that a linear fit as is used in

the regression would damp out much of the conditional variability.

Evidence for predictability of HML is weaker. This is not unexpected given

that the majority of predictors that I consider are sourced from the literature

on predictability of the equity index. Gold industry trend, inflation and real-

ized volatility appear marginally significant as predictors for an HML investor.

For the other predictors, the conditional variation in the portfolio policies is

swamped by the standard errors of the estimates. The data suggest high hold-

ings of HML when the trend in gold industry returns is more than one standard

deviation above or below its average trend, and lower holding of HML when

trend is near its average. The results for realized volatility suggest decreasing

emphasis on value stocks in high volatility scenarios. In contrast, conditional

significance of inflation occurs at inflation values close to two standard devia-

tions above its mean. A glance at the histogram for inflation in Figure 2.11

shows low data density for high inflation environments. Hence, the significance

in this region is likely to be spurious.
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2.5 Conditional Asset Allocation with

Multiple Assets

In this section, I study the consequences of predictability for the conventional

asset allocation problem – that of choosing between an equity index, long-term

bond index and cash. In addition, I examine the importance of predictability

when the asset set is expanded to include HML.36 Section 2.3 highlights the

significant impact of incorporating the HML portfolio into the asset set used

for asset allocation. The results in this section permit a comparison of the

utility gain achieved by adding HML as a risk factor proxy to the gain from

conditioning on individual predictors.

Figures 2.4-11 depict the portfolio policies of a tactical allocation investor

who conditions on a single predictor. There are five panels in each figure laid

out in three rows and two columns. Each column depicts results for a differ-

ent set of assets. First columns show optimal conditional portfolio policies for

an investor with access to equity and bond indices. This corresponds to the

traditional problem of tactical asset allocation. Second columns show optimal

conditional policies for an investor who achieves risk factor diversification by

investing in the HML portfolio. All results are obtained assuming risk aversion

equal to five. The predictor values are standardized. The shaded regions are

two standard deviation error estimates obtained by interpolating between two

standard deviation error bars for each point estimate.37 Unconditional portfolio

weights are indicated by horizontal lines, with a single cross bar on each plot

showing the two standard error range of the unconditional weight.

For the asset allocation problem of allocating across equities, bonds, and

cash, conditional variability of portfolio weights is marginally significant for

some of the predictors. Based on Figures 2.4-11, the largest deviations of opti-

mal conditional weights from their unconditional level occurs when conditioning

on the term spread, S& P 500 trend, T-bill rate, gold industry trend and infla-

tion.

Addition of the HML portfolio to the set of assets included in the portfolio

36I focus on HML rather than UMD. While the UMD portfolio also provides significant
utility gains, the practical implementation of UMD strategies requires high asset turnover
that leads to high transaction costs.

37Error bars are estimated by stationary bootstrap.
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yields two observations. First, as was true for single asset policies for HML

(right panels of Figures 2.1-3) the variability in conditional allocations to HML

does not appear significant. Second, the presence of the HML asset increases

allocations to the equity index. By comparing the top two rows of Figures 2.4 to

2.11, I observe that the effect of adding the HML to the asset set of a index and

bond investor is similar to that observed in the unconditional case. The addition

of a second, predictable asset increases the total investment in risky assets, but

does not influence the conditional variation in asset allocations. Allocations to

bonds remain essentially unchanged. The allocations to HML are similar to

those obtained by Jurek and Viceira (2005). They calculate a VAR model that

includes two of the predictors considered here: the term premium and T-bill

rate38. However, they employ a calibration framework and do not evaluate the

uncertainty of computed optimal portfolios.

Neither the dividend yield (Figure 2.4) or the default premium (Figure 2.5)

yield conditional policies that show significant variation with respect to predic-

tor value. Results in Figure 2.6 suggest underweighting equities when the term

spread is low and overweighting bonds when term spread is high. The optimal

policy with respect to the S&P 500 trend is to underweight equities and over-

weight bonds when the trend is greater than one standard deviation below its

mean and to underweight bonds when the trend is greater than one standard

deviation above its mean.

The downward slope of the relationship between the T-bill rate and optimal

allocation to the index (Figure 2.8) shows that post-war U.S. experience vali-

dates the common wisdom that equity investment should decrease when short

term interest rates rise. The effect of the T-bill rate on HML investment is

statistically insignificant, but hints that an investor would have benefited dur-

ing the in-sample period from holding larger positions in value stocks during

periods of very high and very low short term interest rates.

Figures 2.12-15 illustrate the in-sample gain in CERs from conditioning on

predictor variables. Results are shown for an investor with risk aversion of five.

The solid line is the conditional CER of the conditionally optimal policy as

a function of predictor value. The conditional CER is the return equivalent

38Jurek and Viceira (2005) find weak statistical significant evidence of predictability. They
employ a parameterized VAR model of returns and an approximate solution to the portfolio
choice problem.
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of a kernel weighted average over monthly utility outcomes (see equation (9)).

Three other curves are plotted for comparison. The dashed curve is the con-

ditional CER of the unconditionally optimal strategy. The dotted line is the

unconditional CER that obtains when following the unconditionally optimal

strategy. The dash dot line is the unconditional CER from following the op-

timal conditional strategy. The unconditional CERs are return equivalents of

simple time-series averages of realized utilities for each strategy.

By comparing the conditional CER of the conditional and unconditional

strategies, we can qualitatively examine the conditional significance of pre-

dictability to the asset allocation investor. First, consider results for the bonds

and equities portfolio with dividend yield as predictor (left panels of Figure

2.12). The difference between conditional CERs of the conditional strategy

(solid line) and unconditional strategy (dashed line) are very small relative to

the uncertainty in the conditional CER estimate (shaded region). CER is a di-

rect proxy for expected utility. Thus conditioning on the dividend yield does not

improve conditional expected utility when conditioning on the dividend yield.

Similar results hold for all predictors for both the equities and bonds investor

(left panels of Figures 2.12-15) and the equities, bonds and HML investor (right

panels of Figures 2.12-15). With HML in the asset set, the conditional CER of

the unconditional portfolio never leaves the two standard deviation region (right

panels of Figures 2.12-15). There are some exceptions near the extremes of the

empirical distribution for the case of an equities and bonds investor. At very low

term spreads, the conditional CER of the unconditional strategy drops below

the two standard error region around the conditional CER of the conditional

strategy (top left panel of Figure 2.6). This implies potential benefits from

reducing exposures to risky assets when the term spread is small or negative.

The CER of the unconditional portfolio also drops below the error region at

low values of S%P 500 trend and high values of the gold industry trend and

consumer price index. However, these results must be interpreted with caution

since the data density at the margins of the empirical distribution is small. This

can lead to bias in a bootstrap framework. An empirical distribution is a noisy

model of the true distribution in the tail area.

Table 2.11 shows conditional in-sample estimates of CERs attained by fol-

lowing the conditional and unconditional strategies for the portfolios: equities
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and bonds; and equities, bonds, and HML. Bootstrap standard errors are given

in brackets below each CER. The third line of each entry is a bootstrap esti-

mate of the conditional p-value for the null hypothesis that conditioning does

not improve CER. The CER improvement over the unconditional strategy is

rarely more than one or two basis points. P-values near 0.5 reflect the lack

of significant improvement of conditional expected utility from conditioning on

single predictor variables. Gold industry trend and term spread are the only

predictors that consistently yield p-values below 0.3.

The difference between significance results for conditional and unconditional

hypotheses has consequences for evaluating predictability in an investment con-

text. For an investor with a one-month horizon, the only concern is the signif-

icance in the conditional problem. While this paper focuses on the one-month

investment horizon, the high persistence of the predictor series means that long

horizons are required to ensure a high probability of visiting all predictor states.

As a result, even for investment horizons of moderate length, investors will wish

to condition on the starting value of the predictor when evaluating predictability

evidence.

Table 2.12 lists increases in unconditional CERs from conditioning on indi-

vidual predictors. The CERs are computed from realized returns from following

optimal conditional policies depicted in Figures 2.4 to 2.11. As one might an-

ticipate given the conditional CER results, the greatest CER improvements are

attained by conditioning on gold industry trend or term spread. The results

can be directly compared to the CERs estimated for the unconditionally opti-

mal policy that are given in Table 2.5. For the conventional asset allocation

problem the unconditional CER is 0.19. Only gold and term spread result in

unconditional CERs that are more than two standard deviations greater than

the unconditional portfolio. For the equities, bonds, and HML case, the uncon-

ditional CER estimate is 0.67. In terms of multiples of the standard deviation

of the CER estimates, CER gains are less significant than for the case without

HML. Only the gold industry trend yields an unconditional certainty equivalent

gain of more than two standard deviations.

The results in the first column of Table 2.12 permit comparison of the CER

gain from conditioning on individual predictors with that achieved by simply

adding HML to the conventional asset allocation. From Table 2.5, the diver-
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sification benefit of the HML portfolio is 0.48 basis points per month. CERs

achieved by conditioning the conventional asset allocation portfolio on individ-

ual conditioning variables are almost all less than the CER estimate for the

optimal unconditional portfolio with HML added to the asset set. The lone ex-

ception is the CER of the portfolio conditioned on gold industry trend for which

the unconditional improvement in CER is equal to the diversification benefit of

the HML portfolio.

Beyond indicating whether conditioning improves investment outcomes, the

results in Figures 2.12-15 can also be used to determine whether predictors

can be used to differentiate between good and poor investment states. Even if

conditioning on predictors does not significantly improve investment prospects

can we at least identify whether our prospects are good or poor in the current

state? Good states feature conditional expected utility significantly greater than

the unconditional expected utility of the strategy, and vice versa for bad states.

Using Figures 2.12-15, we can identify potentially good or poor states by

identifying predictor values for which the unconditional expected utility of the

conditional strategy is outside the error region for the conditional expected

utility. For the equities and bonds investor (left panels), some predictors can be

used to identify poor investment states. For example, a high up trend in gold

industry returns corresponds to low conditional CER relative to unconditional

levels. The same is also true for states with negative term spread. Similar

regions obtain for a number of the other predictors. When HML is added to the

asset set, the predictors lose any ability to differentiate good and poor states,

with the notable exception of gold industry trend. Moderately positive upward

trend in gold industry return corresponds to poor investment outlook for the

asset allocation investor (bottom right panel of Figure 2.14).

The results for the term spread and trend (Figure 2.13), gold industry re-

turns (Figure 2.14), and inflation (Figure 2.15) suggest that conditional policies

have significantly higher conditional CERs relative to unconditional policies at

the extremes of predictor distributions. For example, the conditional policy

indicated for negative term spreads (or inverted yield curve) has significantly

higher CER than the corresponding conditional returns of the unconditional

policy. However, these results have to be interpreted with caution because the

density of the data set decreases towards the extremes of the in-sample range
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of the predictor variables.

Whether or not the conditional policy is adopted, the CER in negative term

spread (inverted yield curve) environments is significantly less than the un-

conditional expected utility. This result suggests that an inverted yield curve

indicates a state of the economy in which investment outlook is gloomy. How-

ever, following a conditional strategy does not mitigate the negative impact of

being in this poor state.

2.6 Conditioning on Multiple Predictors

Analysis of the previous section demonstrates that conditioning on individual

predictors does not significantly improve investment expectations. In this sec-

tion, I examine whether this result continues to hold when the investor is able

to condition on multiple predictors simultaneously.

2.6.1 Direct Estimator for Multiple Predictors

The nonparametric estimator (2.6) rapidly loses statistical power when applied

to a multi-dimensional conditioning vector, i.e. when Zt is a vector. Given a

finite sample, the data density drops exponentially with number of dimensions.

As a consequence, there is an exponential drop in rate of convergence with

number of dimensions.

Motivated by the implementation of Aı̈t-Sahalia and Brandt (2001), I con-

sider a structural assumption that reduces the dimensionality of the nonpara-

metric estimation. However, in forming the estimator, I make a slightly less

restrictive modeling assumption.

Aı̈t-Sahalia and Brandt (2001) reduce the dimensionality of the estimation

problem through a partial parameterization of the model of section 2.2. With

Zt representing an M -vector of conditioning variables, the portfolio policy is as-

sumed to depend on a parametric function Z(Zt; β) of the conditioning variables

where β is a vector of parameters. The parametric function projects realiza-

tions of Zt onto a lower dimensional space. Hence, the dimensionality of the

nonparametric estimation is reduced at the expense of requiring the estimation

of a finite number of unconditional (or global) parameters β. Instead of model-
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ing portfolio allocations as nonparametric functions of a vector Zt defining the

state at time t, portfolio allocations are modeled as a nonparametric function

of a parametric function Z(Zt; β) of the predictor variables, where β is a vector

of parameters. The function Z(·; β) : RM → RL reduces the dimension of the

nonparametric problem (i.e., L < M).

The semiparametric approximation mitigates problems with the curse of di-

mensionality because the nonparametric part of the estimation is with respect to

a lower dimension variable, Z(Zt; β). If we further assume that Z(Zt; β) = β′Zt

where β is an L×M matrix, then we obtain a model analogous to the semipara-

metric index model that has received attention in the regression literature.39 In

the empirical application to follow, I assume β has one dimension, i.e., L = 1.

Under the semiparametric specification, additional predictors are incorpo-

rated into the model via the addition of a finite number of parameters per

dimension. These parameters add to model complexity, but at a much slower

rate than if an additional dimension were added for nonparametric estimation.

These parameters, index coefficients β, are global parameters. As a result, they

are estimated by optimizing an unconditional objective. Unlike nonparametric

portfolio policies, the estimate converges with
√

n efficiency once an appropri-

ate decision criteria has been specified. For example, in the standard regression

framework, index coefficients might be chosen to minimize the squared differ-

ences between observed data and the best fit curve for the chosen bandwidth.

I first follow Aı̈t-Sahalia and Brandt (2001) in assuming that the investor’s

optimal conditional portfolio is independent of information in Zt that is not

captured by Z(Zt, β). In other words, the hypothesis is that an investor with

an information set of infinite size would infer an optimal portfolio that depends

only on Z(Zt; β), i.e.,

arg max
αt

E
[
u
(
Wtα

′
tRt+1

)∣∣∣Zt

]
≡ αt

(
βᵀZt

)
, (2.10)

where ≡ indicates equality by assumption. Assuming that Z(Zt, β) = β′Z, the

policy of the investor depends only on the subspace Λ of RM spanned by the

39In the regression literature, models in which dimensionality of right-hand side vector is
reduced through partial parameterization are called semiparametric models. The term single-
index model is used when the dimensionality of the parametric problem is reduced to one (see
e.g. Hardle et al. (2004)).

38



column space of β.

Of course, β is unknown and must be estimated. Aı̈t-Sahalia and Brandt

(2001) note that a GMM estimator for β can be constructed based on assump-

tion (2.10). The following first order conditions are a direct consequence of

(2.10).

E
[
u′

(
Wtα

′
t(β

ᵀZt)Rt+1

)
Rt+1

∣∣∣Zt

]
= 0. (2.11)

Upon multiplying each of the above conditions by a vector of predetermined

functions of the conditioning variables g(Zt) and taking unconditional expecta-

tions, we obtain a set of moment conditions. These conditions can be used to

estimate β by solving the GMM problem

min
β

E
[
u′(Wtα(β′Zt)

′Rt+1)Rt+1 ⊗ g(Zt)
]ᵀ

WE
[
u′(Wtα(β′Zt)

′Rt+1)Rt+1 ⊗ g(Zt)
]

(2.12)

β′β = 1 (2.13)

where W is a weighting matrix, g : RM → RMg is a predetermined function of the

vector of predictor variables. To ensure identifiability, the number of moment

conditions must exceed the number of independent index coefficients; i.e., Mg×
N > L(M − 1). The constraint (2.13) arises because the optimal directions are

only identified up to scale. As a result, the number of free parameters to be

estimated is equal to one less than the number of predictor variables M . 40

Given assumption (2.10), for known β the investor’s optimal portfolio policy

is a solution to

αt

(
βᵀZt

)
= arg max

αt

E
[
u
(
Wtα

′
tRt+1

)∣∣∣β′Zt

]
. (2.14)

Thus, with known β, the estimation problem for the portfolio policy is equiva-

40I follow Aı̈t-Sahalia and Brandt (2001) in setting the weighting matrix (2.12)
proportional to the inverse covariance matrix of the moment conditions W =
Cov[u′(Wtα(β′Zt)′Rt+1)Rt+1g(Zt)]−1. Aı̈t-Sahalia and Brandt (2001) write out the uncon-
ditional utility maximization problem for selecting β and show that the optimal choices of
g(zt) would be the gradient of α(Z ′tβ) with respect to β. While theoretically optimal, these
instruments are not ideal in practice since they require estimates of the derivative of the policy
function α with respect to each element of β. Instead, I use instruments that are linear in
each predictor variable.
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lent to that for a single predictor with β′Z taking the role of the single predictor.

Consequently, the methods of the previous section can be used for policy esti-

mation.

Aı̈t-Sahalia and Brandt (2001) note that the assumption (2.10) may be sub-

optimal. In a second approach, I make a less restrictive assumption. Instead

of directly assuming a restricted functional dependence of portfolio policy on

predictor variables, I arrive at the same functional form for the portfolio policy

by assuming the investor is limited in the number of independent shocks that

they have the capacity to condition on. The limitation could arise either due to

a bounded information gathering capacity or a bounded ability to process infor-

mation. In the current context, this assumption limits the investors conditioning

information to βᵀZt where, as before, β projects Zt onto a lower dimensional

subspace of RM . Given β, the optimal policy under the current assumption is

α(Zt) ≈ α(β′Zt) = max
αt

E
[
u
(
Wtα

ᵀ
t Rt+1

)∣∣∣βᵀZt

]
. (2.15)

This assumption does not limit the information set, just the amount of infor-

mation that the investor has the ability to use. Hence, the index matrix β is

selected by the investor. This is a weaker assumption than that of the previous

paragraph. In the previous paragraph, the investor is assumed to condition on

all information, but that the resulting portfolio only depends on the projection

of predictor shocks onto a lower dimensional subspace. Here, the true optimal

policy may depend on the full information subset, but the investor must choose

an optimal subspace of the set of possible predictor outcomes upon which to

condition their portfolio policy.

The two assumptions differ in their implications for index identification.

Assumption (2.15) does not imply that the investor can gain no information

from observing shocks along directions perpendicular to those included in β. As

a consequence, the conditioning variables are not necessarily instruments of the

first-order conditions. Thus, the moment conditions used to construct the GMM

objective (2.12) do not necessarily hold. This precludes using the estimator

described for the previous case. Instead, the investor chooses directions, the

columns of β, that span the subspace of the space of possible predictor vector
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outcomes that yields the largest gain in expected utility.

max
β

E

[
max

αt

E [u(Wtα
′
tRt+1) | β′Z]

]
= max

β
E

[
u (Wtα(β′Z)′Rt+1)

]
, (2.16)

β′β = 1. (2.17)

In essence, the investor is choosing the most informative index coefficients given

the objective of maximizing utility. In the following I shall refer to (2.15) as the

limited-information case, and (2.10) as the restricted case.

To provide further illustration of the differences between the formulations,

consider the first-order conditions of the index optimization problem (2.16)

E [u′(Wtα (βᵀZt)
ᵀ Rt+1) (α′(βᵀZt)

ᵀRt+1) Zt] = 0. (2.18)

Evaluation of the above first-order condition requires not only knowledge of the

policy function, but its derivative as well. By contrast the first-order conditions

of the restricted case depend only on the policy function itself. Hence, despite

the strong assumption upon which it is based, the restricted case may be more

efficient in finite samples since the first order condition of its objective does not

depend on derivatives of an estimated nonparametric function, making it more

amenable to solution by standard optimization techniques. In addition, the

restricted approach may be easier to implement in practice given the analytic

form of the first-order condition.

Two factors diminish the practical advantage of the restricted case. First,

the normalization constraint confines possible index values to a finite domain.

As such, grid search is a feasible approach to the index optimization problem.

Because grid search can be based on direct evaluation of the objective function,

the differentiability of the objective in the restricted case offers less advantage.

Second, neither the objective function in (2.16) nor in (2.12) is concave. Because

α(·) is a nonparametric function, there is no guarantee that the maximands are

concave in β. Consequently, in general some form of grid search is necessary

whether or not the optimal portfolio policy is restricted by assumption.

For implementation purposes, the index optimization problems present some

solution challenges. For a grid search to be successful, the estimation problem

must satisfy two criteria: the space to be searched must be of low dimension
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and the curvature of the objective function must be constrained. Data den-

sity drops exponentially with the number of grid dimensions. As a result, even

on a finite domain, grid search becomes impractical for problems with more

than a few dimensions. However, the identification constraint (2.13) reduces

the dimensionality of the problem by one. As such, grid search over the objec-

tive functions in (2.16) and (2.12) is feasible for problems including up to four

predictor variables.

Limitations on the curvature of the objective function with respect to β are

required to ensure that a sparse sampling of possible index values will locate

the desired extremum. However, reasonable smoothness of these derivatives can

be assured by choice of a sufficiently large bandwidth for the portfolio policy.

In the applications to follow, this proves to be a non-issue if the bandwidth

selection procedure described in Appendix A is employed in determining port-

folio policies for given index values. This approach yields objectives that are

of sufficient smoothness for estimation on reasonably sparse grids in both the

limited information and restricted cases.41

In addition to dealing with a non-concave objective function, evaluation of

the objective functions of the index optimization problems requires nonparamet-

ric estimation of portfolio policies for each data point. This renders function

evaluation computationally expensive. I deal with this issue by evaluating the

α(β′Z) at a reasonably small subset of points in the range of β′Z. Realiza-

tions at intermediate points are then obtained by interpolation. Because the

smoothness of the policy function is determined by the bandwidth used in the

point-by-point optimization, two to four points per bandwidth length along with

a polynomial interpolation is sufficient to ensure that numerical errors that are

introduced are within statistical uncertainty error.

The global search is implemented over a finite grid. The dimension of the

volume to be searched in β space is one less than the dimension of the pre-

dictor variable. To keep the global search computationally feasible, I restrict

the number of predictors included in the index to four.42 This is perhaps less

of a limitation than it might appear. Previous research on model selection for

return predictability in a linear regression framework has shown that standard

41For a three dimensional problem, I obtain stable estimated for a grid with O(103) points.
42Aı̈t-Sahalia and Brandt (2001) also examine an index of four predictor variables in their

empirical application.
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model selection procedures rarely select more than four predictors (Bossaerts

and Hillion (1999)).

In the empirical analysis that follows, I estimate utilities of the optimal

strategies under the assumptions of both the restricted case and the limited

information case. In the current application, I do not find a significant difference

between the results obtained under the two assumptions. For brevity, I only

report results obtained under the limited information assumption.

2.6.2 Model Selection

Turning now to the evaluation of conditional significance of predictability in a

multi-predictor setting, I evaluate optimal index values for all seventy combi-

nations of four predictor variables. Index coefficients are estimated by the grid

search procedure described in section 6.1.

Table 2.13 displays coefficients estimated for the six combinations of four

variables that yield the highest in-sample CER for the equities, bonds, and

HML portfolio. The standard errors of the CERs for the equities, bonds, and

HML portfolio are between 26 and 29 basis points, and for the case without

HML, the standard errors range from 16 to 19 basis points. The difference

between the best and sixth best CER is 5 basis points in the no-HML case and

2 basis points for the case with HML.

The term spread and gold industry trend are the dominant predictors. The

predictor combinations that produce the top six CERs all include both the term

spread and gold industry trend. Of the six other predictors, all but realized

equity index volatility appear in at least one of the top six combinations. In

all indices, the highest index coefficients are associated with the gold industry

trend and term spread predictors. This evidence provides robust support for

use of an index consisting of term spread and gold industry trend for estimating

allocations. The seventh line of Table 2.13 shows index coefficients estimated for

the two-variable index consisting of term spread and gold industry trend. The

in-sample CERs achieved using this latter index are only 0.06 and 0.09 less than

the maximum CERs achieved with four predictor variables for the no-HML and

HML cases respectively. These differences are within one bootstrap standard

error and are insignificant.

The last line of Table 2.13 lists index coefficients for an index made up of
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the four predictors studied by Aı̈t-Sahalia and Brandt (2001). The term spread

dominates this latter index. For the no-HML case, the coefficient on the term

spread is four times larger than that on the other three variables. The term

spread also boasts the largest coefficient in the case with HML. In agreement

with results reported by Aı̈t-Sahalia and Brandt (2001), the term spread and

S&P 500 trend variables are the largest index components.

2.6.3 Certainty Equivalent Returns with Multiple

Predictors

Table 2.14 lists conditional CERs for strategies conditioned on the particular

indices listed in Table 2.13 along with conditional CERs from following the

corresponding unconditional policies. Results are calculated for the case with

and without HML. For each set of predictors, results are given for index values

at the 20th, 50th and 80th percentiles of the index distributions. The first six

sets of predictors correspond to the first six predictor combinations listed in

Table 2.13. In addition, results are given for the two-predictor index combining

term spread and gold industry trend and the four predictor index of Aı̈t-Sahalia

and Brandt (2001).

The results can be contrasted with those obtained in the single predictor

case. The improvement in conditional CERs from following the conditional

policies as opposed to the unconditional policy are significant for the predictor

indices that include the term spread and gold industry trend predictors. In

contrast, in the single predictor case, the hypotheses that the unconditional

policy yielded as high a conditional CER as the conditional policy could not be

rejected (see Table 2.10).

2.7 Conclusion

The empirical analysis of this chapter yields three observations: i) the benefits

of incorporating a proxy for an additional priced risk factor (the value pre-

mium) outweigh the gains from conditioning on individual predictor variables;

ii) short horizon investors do not benefit from conditioning on single predictor

variables in their portfolio decisions; and iii) short horizon investors may be able
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to improve expected outcomes by conditioning portfolio decisions on multiple

predictors simultaneously.

In prior studies of predictability, the significance of predictability is based

on averaging over long time periods. For predictors with high persistence, the

investment significance of predictability is dampened for investors with short

horizons. The conditional results presented in this paper help to distinguish pre-

dictors that are likely to be of interest to that large contingent of investors that

evaluates their performance (or have their performance evaluated) at shorter

horizons.

In evaluating the predictability results, the risk of data snooping must be

borne in mind. Many of the predictor variables that I examine are extracted

from an extensive literature, of which the majority is based on data from the

United States covering periods that either include or substantially overlap the

sample period considered in this paper. The variables can be legitimately clas-

sified as snooped with regard the their ability to predict index returns.

Where my results are additive is in the assessment of investment significance

of predictability under the assumption that the predictability is real but that

the underlying conditional distribution of returns is unknown. Under this as-

sumption, I demonstrate that simultaneous conditioning on the term spread and

gold industry trend increase an investor’s expected utility by approximately 50

basis points per month - an amount which is approximately equal to the ddi-

versification benefit of incorporating a mechanical portfolio based on the vale

premium.

A topic for further study is the implications for hedging demands. As hori-

zon increases, the effective sample size shrinks, and statistical power decreases.

However, at infinite horizon, a single policy function holds. The sensitivity of

this policy to data realization is a promising problem for future exploration

using techniques discussed in this paper.
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Table 2.1: Summary Statistics
This table shows the following summary statistics for monthly data on asset
returns and forecasting variables for the time period January, 1952 to November,
2004: mean, median, standard deviation, skewness, kurtosis, Sharpe ratio, and
lag one autocorrelation ρ1. The assets are the value weighted CRSP index minus
the risk-free interest rate (Index), the HML, SMB and UMD portfolios of Ken
French, and returns on an index of long-term bonds minus risk-free rate. The
predictor variables are dividend yield (div), default premium (def), term spread
(term), S&P 500 trend (trend), the 30-day T-bill rate (tbill), gold industry trend
(gold), log of previous month realized volatility (realvol) and inflation (cpi). The
mean, median, and standard deviation are annualized.

mean median std skewness kurtosis sharpe ρ1

equities 0.071 0.116 0.147 -0.510 5.033 0.136 0.062
SMB 0.022 0.006 0.103 0.577 9.326 0.061 0.063
HML 0.051 0.047 0.094 0.053 5.915 0.152 0.133
RF 0.050 0.048 0.008 1.068 4.643 1.748 0.960
UMD 0.105 0.112 0.129 -0.662 9.199 0.225 -0.034
bonds 0.013 0.000 0.073 0.283 4.604 0.069
div 3.377 3.244 1.101 0.228 2.385 0.986
def 0.934 0.810 0.412 1.463 5.382 0.972
term 1.305 1.210 1.407 -0.126 3.309 0.964
trend 3.617 4.700 8.968 -0.706 3.572 0.923
tbill 0.002 0.012 0.098 -0.492 8.211 0.760
gold 1.129 0.878 2.451 0.695 4.894 0.899
realvol -2.260 -2.294 0.455 0.349 3.585 0.668
cpi 0.312 0.259 0.231 1.422 4.956 0.992
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Table 2.6: Bootstrap Test of Expected Utility Improvement
This table gives bootstrap p-values for the null hypothesis that adding an asset
to an investor’s asset set improves expected utility. Starting asset sets are listed
in the left column. The second column is the asset being added. Results are
computed for a power utility investor with risk aversion of five. The p-values
are computed based on expected utility differences computed for 1000 bootstrap
samples.

Asset Set Added Asset p-value
Panel A: Unconstrained
{} {equities} 0.054
{} {bonds} 0.26
{} {HML} 0.046
{equities} {bonds} 0.33
{equities} {HML} 0.009
{equities, HML} {bonds} 0.417
{equities, bonds} {HML} 0.009
{equities, bonds, HML} {SMB} 0.237
{equities, bonds, HML} {UMD} 0.001
Panel B: No Short Sales
{} {equities} 0.054
{} {bonds} 0.26
{equities} {bonds} 0.33
{equities} {HML} 0
{equities, HML} {bonds} 0.479
{equities, bonds} {HML} 0.001
{equities, bonds, HML} {SMB} 0.171
{equities, bonds, HML} {UMD} 0.059
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Table 2.7: Abbreviations Used for Conditioning Variables

div dividend yield (log)
def default premium
term term spread
trend S&P 500 trend
tbill T-bill rate
gold gold index return
realvol CRSP index realized volatility (log)
cpi inflation
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Table 2.8: Returns Regressed on Predictors
This table shows coefficient estimates for predictive regressions of realized re-
turns on lagged conditioning variables. Full names of the conditioning variables
are given in Table 7. Panel A shows coefficients of linear regressions of next
month’s returns on a individual predictor variables. Panel B presents coeffi-
cients of multivariate regressions of asset returns on the full set of predictor
variables. The last column lists R2 values for the multivariate regressions.

div def term trend tbill gold realvol cpi R2

Panel A: univariate regression results
equities 0.353 0.185 0.376 -0.012 -0.347 -0.333 0.224 -0.229 -

[0.180] [0.187] [0.188] [0.208] [0.164] [0.216] [0.175] [0.211]
bonds 0.050 0.122 0.217 -0.183 -0.029 -0.348 0.232 -0.054 -

[0.102] [0.110] [0.108] [0.089] [0.096] [0.115] [0.076] [0.116]
HML -0.126 0.047 0.009 0.041 0.157 -0.061 -0.047 -0.021 -

[0.131] [0.119] [0.118] [0.115] [0.120] [0.145] [0.129] [0.128]
Panel B: multivariate regression results

equities 0.694 -0.057 0.272 0.167 -0.129 -0.258 0.496 -0.412 0.055
[0.194] [0.268] [0.212] [0.224] [0.192] [0.211] [0.190] [0.271]

bonds 0.135 0.037 0.291 -0.068 0.156 -0.341 0.240 -0.042 0.060
[0.089] [0.139] [0.105] [0.100] [0.093] [0.108] [0.087] [0.147]

HML -0.225 0.256 0.027 -0.025 0.226 -0.083 -0.150 -0.024 0.035
[0.144] [0.162] [0.151] [0.130] [0.134] [0.146] [0.154] [0.178]
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Table 2.9: Realized Volatility Regressed on Predictors
This table shows coefficient estimates for linear regressions of realized monthly
volatilities on lagged predictors. Full names of the conditioning variables are
given in Table 7. Panel A shows coefficients of linear regressions of realized
one-month volatilities of each asset on individual predictor variables. Panel B
lists coefficients of multivariate linear regressions of realized volatilities of each
asset on the full set of predictor variables. The last column lists R2 values for
the multivariate regressions.

div def term trend tbill gold realvol cpi R2

Panel A: univariate regression results
equities -0.809 1.137 -0.081 -1.744 -0.458 0.463 3.973 0.745 -

[0.394] [0.275] [0.379] [0.405] [0.262] [0.452] [0.255] [0.325]
HML -1.059 0.082 -0.279 -0.722 -0.199 -0.585 1.797 -0.138 -

[0.267] [0.154] [0.181] [0.195] [0.164] [0.243] [0.227] [0.166]
Panel B: multivariate regression results

equities -1.445 1.519 -0.458 -1.868 -0.528 0.620 2.898 -0.327 0.457
[0.423] [0.296] [0.245] [0.367] [0.244] [0.311] [0.327] [0.371]

HML -1.692 0.926 -0.864 -0.734 -0.453 -0.504 1.221 -0.144 0.408
[0.302] [0.203] [0.188] [0.175] [0.149] [0.159] [0.200] [0.220]
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Table 2.10: Portfolio Weights as a Function of Predictor Values
This table shows portfolio allocations conditioned on individual predictor vari-
ables. Portfolio weights are estimated by solving a nonparametric approxima-
tion to the investor’s Euler equation. The optimal strategies are estimated for
a power utility investor with risk aversion equal to five and a one-month invest-
ment horizon. Portfolio weights are shown for four assets sets: equities only;
HML only; equities and bonds; and equities, bonds, and HML. Asymptotic
standard errors are given in square brackets.

{equities} {bonds} {equities,bonds} {equities,bonds,HML}
div 0.2 0.49 0.35 0.46 0.35 0.90 0.10 1.77

[0.31] [0.58] [0.27] [0.56] [0.31] [0.57] [0.58]
0.5 0.44 0.22 0.48 0.06 0.93 -0.14 2.12

[0.27] [0.52] [0.25] [0.46] [0.26] [0.46] [0.47]
0.8 0.79 0.10 0.79 -0.22 1.17 -0.18 2.10

[0.30] [0.59] [0.27] [0.50] [0.27] [0.47] [0.59]
def 0.2 0.53 0.04 0.53 -0.04 0.97 -0.21 1.73

[0.30] [0.58] [0.28] [0.53] [0.27] [0.51] [0.53]
0.5 0.46 0.18 0.47 0.13 0.92 -0.02 1.68

[0.26] [0.49] [0.25] [0.47] [0.26] [0.47] [0.50]
0.8 0.51 0.89 0.49 0.68 0.86 0.52 1.58

[0.25] [0.52] [0.22] [0.47] [0.26] [0.47] [0.48]
term 0.2 0.38 0.03 0.46 -0.10 0.86 -0.22 1.39

[0.32] [0.59] [0.30] [0.53] [0.30] [0.51] [0.47]
0.5 1.07 0.46 0.98 0.09 1.30 -0.02 1.55

[0.27] [0.54] [0.24] [0.49] [0.26] [0.47] [0.57]
0.8 1.10 0.59 1.08 0.50 1.46 0.48 1.82

[0.39] [0.58] [0.32] [0.58] [0.34] [0.55] [0.63]
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{equities} {bonds} {equities,bonds} {equities,bonds,HML}
trend 0.2 0.34 0.65 0.34 0.56 0.90 0.29 1.83

[0.43] [0.53] [0.40] [0.53] [0.36] [0.51] [0.52]
0.5 0.93 0.41 0.85 0.03 1.23 -0.15 1.84

[0.24] [0.56] [0.23] [0.51] [0.25] [0.49] [0.60]
0.8 0.77 -0.09 0.79 -0.16 1.16 -0.27 1.83

[0.26] [0.62] [0.26] [0.54] [0.31] [0.52] [0.65]
tbill 0.2 0.76 0.84 0.71 0.53 1.03 0.34 1.64

[0.25] [0.61] [0.23] [0.53] [0.24] [0.51] [0.49]
0.5 0.60 0.25 0.59 0.21 0.91 0.12 1.62

[0.22] [0.48] [0.22] [0.46] [0.24] [0.47] [0.51]
0.8 0.46 0.25 0.46 0.15 0.84 0.07 1.63

[0.24] [0.45] [0.23] [0.43] [0.25] [0.44] [0.50]
gold 0.2 1.26 0.90 1.15 0.35 1.55 0.22 1.67

[0.28] [0.60] [0.26] [0.57] [0.27] [0.54] [0.54]
0.5 1.11 0.20 1.07 -0.22 1.37 -0.24 1.56

[0.26] [0.56] [0.25] [0.53] [0.26] [0.51] [0.51]
0.8 0.49 -0.50 0.58 -0.56 0.97 -0.54 1.71

[0.36] [0.57] [0.33] [0.54] [0.31] [0.52] [0.51]
realvol 0.2 1.06 0.58 0.91 0.09 1.25 -0.25 2.69

[0.32] [0.64] [0.28] [0.56] [0.28] [0.53] [0.58]
0.5 0.59 0.22 0.61 -0.07 1.12 -0.28 2.50

[0.27] [0.49] [0.24] [0.43] [0.25] [0.43] [0.52]
0.8 0.46 0.00 0.49 -0.01 0.94 -0.05 1.78

[0.25] [0.43] [0.25] [0.41] [0.28] [0.41] [0.54]
cpi 0.2 0.97 0.62 0.95 0.69 1.33 0.59 1.76

[0.27] [0.49] [0.25] [0.48] [0.27] [0.47] [0.55]
0.5 0.76 0.85 0.74 0.70 1.18 0.54 1.74

[0.26] [0.45] [0.25] [0.43] [0.27] [0.44] [0.51]
0.8 0.40 0.99 0.37 0.76 0.90 0.46 1.79

[0.32] [0.58] [0.30] [0.50] [0.30] [0.50] [0.51]
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Table 2.11: Certainty Equivalent Returns as a Function of Predictor Values
This table displays certainty equivalent returns (CERs) portfolio strategies con-
ditioned on a single predictor variable. The optimal strategies are estimated for
a power utility investor with risk aversion equal to five and a one-month in-
vestment horizon. CERs are shown for three possible assets sets: equities only;
equities and bonds; and equities, bonds, and HML. The equity and bond as-
sets are hedge funds that are long the appropriate index and short the risk-free
asset. The first row shows CER of unconditional strategies. Subsequent rows
show conditional CER calculated as kernel averages of utility outcomes at dif-
ferent (standardized) values of predictor variables. Two columns are shown for
each set of assets. The first is the conditional CER of an optimal conditional
strategy. The second is the conditional CER of the optimal unconditional strat-
egy. Standard errors are calculated by the delta method and given in square
brackets.

{equities,bonds} {equities,bonds,HML}
CER CERunc CER CERunc

{div} 0.2 0.10 0.09 0.60 0.59
[0.11] [0.14] [0.28] [0.29]
(0.38) (0.39)

0.5 0.10 0.09 0.66 0.62
[0.10] [0.14] [0.26] [0.25]
(0.38) (0.26)

0.8 0.29 0.25 0.81 0.78
[0.19] [0.17] [0.33] [0.29]
(0.28) (0.34)

{def} 0.2 0.12 0.11 0.59 0.58
[0.12] [0.15] [0.26] [0.27]
(0.38) (0.36)

0.5 0.11 0.10 0.56 0.56
[0.10] [0.14] [0.25] [0.27]
(0.37) (0.39)

0.8 0.21 0.18 0.58 0.55
[0.14] [0.14] [0.26] [0.28]
(0.32) (0.31)

{term} 0.2 0.09 0.07 0.42 0.38
[0.09] [0.13] [0.21] [0.26]
(0.28) (0.29)

0.5 0.41 0.35 0.73 0.68
[0.17] [0.10] [0.27] [0.27]
(0.21) (0.22)

0.8 0.60 0.48 1.06 0.95
[0.25] [0.13] [0.37] [0.30]
(0.15) (0.17)
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{equities,bonds} {equities,bonds,HML}
CER CERunc CER CERunc

{trend} 0.2 0.11 0.08 0.64 0.62
[0.12] [0.18] [0.27] [0.27]
(0.33) (0.40)

0.5 0.29 0.26 0.79 0.77
[0.15] [0.11] [0.29] [0.27]
(0.28) (0.31)

0.8 0.28 0.24 0.78 0.75
[0.15] [0.12] [0.33] [0.31]
(0.28) (0.29)

{tbill} 0.2 0.29 0.27 0.68 0.67
[0.17] [0.13] [0.27] [0.27]
(0.38) (0.43)

0.5 0.17 0.17 0.59 0.58
[0.12] [0.12] [0.25] [0.27]
(0.46) (0.40)

0.8 0.11 0.10 0.54 0.53
[0.09] [0.13] [0.24] [0.27]
(0.35) (0.34)

{gold} 0.2 0.56 0.44 0.96 0.84
[0.23] [0.12] [0.31] [0.27]
(0.14) (0.13)

0.5 0.42 0.33 0.74 0.67
[0.18] [0.11] [0.26] [0.25]
(0.17) (0.20)

0.8 0.15 0.08 0.55 0.49
[0.13] [0.13] [0.25] [0.26]
(0.20) (0.23)

{realvol} 0.2 0.27 0.24 0.97 0.87
[0.16] [0.12] [0.35] [0.25]
(0.29) (0.19)

0.5 0.16 0.14 0.90 0.81
[0.11] [0.13] [0.31] [0.25]
(0.34) (0.17)

0.8 0.14 0.12 0.66 0.65
[0.13] [0.17] [0.28] [0.30]
(0.32) (0.35)

{cpi} 0.2 0.41 0.34 0.87 0.82
[0.17] [0.11] [0.30] [0.27]
(0.20) (0.20)

0.5 0.30 0.27 0.78 0.75
[0.15] [0.11] [0.28] [0.26]
(0.28) (0.28)

0.8 0.16 0.12 0.65 0.63
[0.15] [0.16] [0.28] [0.27]
(0.23) (0.32)
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Table 2.12: Increase in Certainty Equivalent Returns from Conditioning on a
Predictor
This table reports the difference between unconditional CER of optimal policies
conditioned on individual predictor variables minus the CER of the optimal
unconditional strategy. The standard deviation of CER differences is given in
parentheses. P-values reflect the probability of rejecting the null hypothesis
that the unconditional certainty equivalent of following the conditional strategy
leads to lower certainty equivalent return than that achieved by following the
optimal unconditional strategy. Standard deviations and p-values are calculated
based on 1000 stationary bootstrap samples.

{equities,bonds} {equities,bonds,HML}
div 0.10 0.11

[0.05] [0.06]
(0.018) (0.022)

def 0.06 0.11
[0.05] [0.05]

(0.077) (0.016)
term 0.34 0.36

[0.09] [0.10]
(0.000) (0.000)

trend 0.21 0.20
[0.07] [0.08]

(0.000) (0.000)
tbill 0.09 0.14

[0.05] [0.08]
(0.024) (0.016)

gold 0.49 0.55
[0.12] [0.14]

(0.000) (0.000)
realvol 0.16 0.29

[0.06] [0.10]
(0.002) (0.001)

cpi 0.19 0.22
[0.08] [0.09]

(0.004) (0.002)

59



T
ab

le
2.

13
:

C
o
effi

ci
en

ts
of

P
re

d
ic

ti
ve

In
d
ex

T
h
is

ta
b
le

d
is

p
la

y
s

es
ti

m
at

es
of

op
ti

m
al

in
d
ex

co
effi

ci
en

ts
fo

r
d
iff

er
en

t
co

m
b
in

at
io

n
s

of
p
re

d
ic

to
r

va
ri

ab
le

s.
E

ac
h

ro
w

is
la

b
el

ed
w

it
h

ab
b
re

v
ia

ti
on

s
fo

r
th

e
p
re

d
ic

to
r

va
ri

ab
le

s
in

cl
u
d
ed

in
ea

ch
in

d
ex

.
A

b
b
re

v
ia

ti
on

s
ar

e
d
efi

n
ed

in
T
ab

le
7.

T
h
e

in
d
ex

co
effi

ci
en

ts
,
{β

i},
ar

e
es

ti
m

at
ed

fo
r

a
p
ow

er
u
ti

li
ty

in
ve

st
or

w
it

h
ri

sk
av

er
si

on
eq

u
al

to
fi
ve

.
In

d
ex

co
effi

ci
en

ts
ar

e
li
st

ed
fo

r
tw

o
as

se
t

se
ts

:
eq

u
it

ie
s

an
d

b
on

d
s;

an
d

eq
u
it

ie
s,

b
on

d
s

an
d

H
M

L
.

T
h
e

fi
ft

h
co

lu
m

n
fo

r
ea

ch
as

se
t

se
t

sh
ow

s
in

-s
am

p
le

es
ti

m
at

es
of

C
E

R
s

ac
h
ie

ve
d

b
y

fo
ll
ow

in
g

th
e

op
ti

m
al

p
or

tf
ol

io
co

n
d
it

io
n
ed

on
th

e
es

ti
m

at
ed

in
d
ex

.

{e
q
u
it

ie
s,

b
on

d
s}

{e
q
u
it

ie
s,

b
on

d
s,

H
M

L
}

β
1

β
2

β
3

β
4

C
E

β
1

β
2

β
3

β
4

C
E
R

d
iv

te
rm

tr
en

d
go

ld
0.

08
0.

46
-0

.1
5

-0
.3

1
0.

69
0.

23
0.

38
-0

.0
8

-0
.3

1
1.

25
d
ef

te
rm

go
ld

cp
i

0.
23

0.
38

-0
.3

8
0.

00
0.

68
0.

08
0.

38
-0

.3
8

0.
15

1.
24

te
rm

tr
en

d
go

ld
cp

i
0.

38
-0

.2
3

-0
.3

8
0.

00
0.

69
0.

38
-0

.0
8

-0
.3

8
0.

15
1.

24
d
iv

te
rm

tb
il
l

go
ld

0.
08

0.
46

-0
.0

0
-0

.4
6

0.
69

0.
23

0.
46

-0
.0

0
-0

.3
1

1.
23

d
iv

d
ef

te
rm

go
ld

0.
15

0.
15

0.
38

-0
.3

1
0.

69
0.

23
-0

.0
0

0.
46

-0
.3

1
1.

23
d
ef

te
rm

tr
en

d
go

ld
0.

15
0.

38
-0

.1
5

-0
.3

1
0.

70
0.

15
0.

38
-0

.1
5

-0
.3

1
1.

23
te

rm
tr

en
d

tb
il
l

go
ld

-0
.3

8
0.

15
0.

00
0.

46
0.

69
-0

.3
1

0.
08

-0
.1

5
0.

46
1.

21
te

rm
go

ld
0.

54
-0

.4
6

0.
68

-0
.2

4
0.

76
1.

21
d
iv

d
ef

te
rm

tr
en

d
0.

08
0.

08
0.

69
-0

.1
5

0.
51

-0
.0

8
0.

15
0.

46
-0

.3
1

0.
99

60



Table 2.14: Conditional Certainty Equivalents for Predictive Index
This table shows certainty equivalent returns (CERs) of portfolio strategies
conditioned on predictor indices. Each index is a linear combination of up to
four predictor values. The index coefficients are given in Table 12. The optimal
strategies are estimated for a power utility investor with risk aversion equal
to five and a one-month investment horizon. CERs are shown for two assets
sets: equities and bonds; and equities, bonds and HML. The equities and bond
assets are hedge funds that are long the appropriate index and short the risk-free
asset. Each row shows conditional CER calculated as kernel averages of utility
outcomes at different (standardized) values of predictor variables. Standard
errors are calculated by the delta method and given in square brackets. Two
columns are shown for each set of assets. The first is the conditional CER of an
optimal conditional strategy. The second is the conditional CER of the optimal
unconditional strategy. Bootstrap p-values are given in parentheses. The p-
values are based on the null hypothesis that the unconditional strategy is as
efficient in terms of CER as the conditional strategy.

{equities,bonds} {equities,bonds,HML}
CER CERunc CER CERunc

{div,term,trend,gold} 0.2 0.11 -0.20 0.31 -0.06
[0.20] [0.25] [0.31] [0.46]
(0.05) (0.04)

0.5 0.09 0.06 0.30 0.17
[0.15] [0.23] [0.27] [0.43]
(0.28) (0.17)

0.8 0.74 0.44 1.51 1.20
[0.56] [0.27] [0.92] [0.53]
(0.06) (0.07)

{term,gold,vs,cpi} 0.2 0.09 -0.16 1.14 0.92
[0.18] [0.25] [0.66] [0.47]
(0.07) (0.08)

0.5 0.08 0.05 0.72 0.68
[0.14] [0.23] [0.46] [0.43]
(0.31) (0.27)

0.8 0.72 0.31 0.47 -0.02
[0.58] [0.27] [0.51] [0.52]
(0.03) (0.02)
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Table 2.14: (Continued)

{equities,bonds} {equities,bonds,HML}
CER CERunc CER CERunc

{def,term,gold,cpi} 0.2 0.22 -0.22 0.32 -0.13
[0.31] [0.27] [0.35] [0.49]
(0.02) (0.03)

0.5 0.09 0.06 0.35 0.27
[0.15] [0.23] [0.30] [0.43]
(0.26) (0.23)

0.8 0.78 0.48 1.40 1.13
[0.58] [0.27] [0.82] [0.51]
(0.07) (0.08)

{term,trend,gold,cpi} 0.2 0.10 -0.23 0.31 -0.09
[0.20] [0.26] [0.35] [0.48]
(0.06) (0.03)

0.5 0.10 0.08 0.36 0.29
[0.16] [0.23] [0.30] [0.43]
(0.31) (0.24)

0.8 0.70 0.40 1.43 1.13
[0.52] [0.26] [0.82] [0.51]
(0.07) (0.07)

{term,gold,,} 0.2 0.08 -0.02 0.92 0.84
[0.15] [0.24] [0.57] [0.44]
(0.15) (0.19)

0.5 0.28 0.24 0.45 0.40
[0.28] [0.23] [0.35] [0.43]
(0.30) (0.29)

0.8 1.33 0.64 0.77 -0.24
[1.02] [0.36] [1.13] [1.03]
(0.02) (0.04)

{div,def,term,trend} 0.2 0.03 -0.16 0.41 0.23
[0.10] [0.25] [0.37] [0.46]
(0.13) (0.11)

0.5 0.16 0.14 0.46 0.41
[0.21] [0.24] [0.36] [0.43]
(0.33) (0.28)

0.8 0.53 0.41 1.28 1.12
[0.50] [0.29] [0.81] [0.55]
(0.20) (0.17)
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Figure 2.1: Single Asset Portfolios Conditioned on Dividend Yield and Default

Premium

Figures 2.1-3 depict conditional, single risky asset allocations as functions of

predictor variables. Each row of panels corresponds to a predictor variable.

Column one shows index allocation for an equities and cash investor. Column

two shows allocations to HML for an investor who otherwise only holds cash.

The shaded regions show plus or minus two standard deviation regions. The

dotted lines correspond to the unconditional policy. Predictor values are stan-

dardized to have mean zero and standard deviation 1.
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Figure 2.2: Single Asset Portfolios Conditioned on Term Spread, S&P 500

Trend, and T-bill Rate

Conditional, single risky asset allocations as a function of predictor variables.

See caption to Figure 2.1 for details.
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Figure 2.3: Single Asset Portfolios Conditioned on Gold Industry Trend, Real-

ized Volatility, and Inflation

Conditional, single risky asset allocations as functions of predictor variables.

See caption to Figure 2.1 for details.
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Figure 2.4: Portfolio Allocations versus Dividend Yield

Figures 2.4-11 depict portfolio allocations versus predictor value. Predictor

values are standardized to have mean zero and standard deviation one. Each

figure shows results for a different predictor. Figure 1 shows results for the

dividend yield. Each column shows results for a different set of assets. The first

column plots results for an investor who trades in the value weighted CRSP

index as well as the CRSP bond index. The second column plots allocations for

an investor who also trades in the HML portfolio. The conditional allocations

are plotted for risk aversion equal to 5. The horizontal dotted lines in each plot

depict unconditional allocations. The solid vertical line segment on each plot

marks the two standard error band for the unconditional weights. The lower
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left panel of each figure shows a histogram of predictor variable occurrences.

Figure 2.5: Portfolio Allocations versus Default Premium

This figure plots conditional portfolio allocations versus default premium stan-

dardized to have mean zero and standard deviation one. See Figure 2.4 for

complete description.
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Figure 2.6: Portfolio Allocations versus Term Spread

This figure plots conditional portfolio allocations versus term spread standard-

ized to have mean zero and standard deviation one. See Figure 2.4 for complete

description.
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Figure 2.7: Portfolio Allocations versus S&P 500 Trend

This figure plots conditional portfolio allocations versus S&P 500 trend stan-

dardized to have mean zero and standard deviation 1. See figure 2.4 for complete

description.
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Figure 2.8: Portfolio Allocations versus T-bill Rate

This figure plots conditional portfolio allocations versus 3 month T-bill rate

standardized to have mean zero and standard deviation one. See Figure 2.4 for

complete description.
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Figure 2.9: Portfolio Allocations versus Gold Industry Trend

This figure plots conditional portfolio allocations versus gold industry trend

standardized to have mean zero and standard deviation one. See Figure 2.4 for

complete description.
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Figure 2.10: Portfolio Allocations versus Realized Volatility

This figure plots conditional portfolio allocations versus realized volatility stan-

dardized to have mean zero and standard deviation one. See Figure 2.4 for

complete description.
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Figure 2.11: Portfolio Allocations versus Inflation

This figure plots conditional portfolio allocations versus inflation standardized

to have mean zero and standard deviation one. See Figure 2.4 for complete

description.

73



Figure 2.12: CER versus Default Premium and Dividend Yield

Conditional certainty equivalent returns (CERs) as a function of predictor value.

The solid curve is the CER for an investor who allocates to the optimal condi-

tional portfolio. The dashed curve is the conditional CER of an investor who

allocates to the optimal unconditional portfolio. The dash-dot horizontal line

is the unconditional CER attained by following the conditional portfolio. The

dotted horizontal line is the unconditional CER of an investor who allocates to

the unconditional portfolio. The shaded region is an approximate one standard

error region for the conditional CER of the conditional portfolio policy (calcu-

lated by the delta method). The vertical segment indicates +/− one standard

error above and below the unconditional CER of the unconditional policy.
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Figure 2.13: CER versus Term Spread and Index Trend

Conditional certainty equivalent returns (CERs) as a function of predictor value.

See caption for figure 2.12 for details.
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Figure 2.14: CER versus Tbill Yield and Gold Industry Trend

Conditional certainty equivalent returns (CERs) as a function of predictor value.

See caption for figure 2.12 for details.
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Figure 2.15: CER versus versus Inflation and Volatility

Conditional certainty equivalent returns (CERs) as a function of predictor value.

See caption for figure 2.12 for details.
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Chapter 3

Nonparametric Portfolio

Estimation with Prior Belief in

the Positivity of Portfolio

Weights43

3.1 Introduction

Short-sales constraints are a common technique for stabilizing portfolio esti-

mates based on historical returns. The imposition of short sales constraints has

the effect of penalizing variability in portfolio weights. A disadvantage of this

approach is that it results in a biased portfolio estimator. The reward is a more

robust estimate that performs better out of sample. However, what if historical

returns do not capture all information available to the investor? Any additional

information would decrease the variance of portfolio estimates and, hence, de-

crease the need to bias the portfolio estimator by explicitly constraining the

weights vector.

A source of information beyond that provided by historical returns is eco-

nomic intuition. If investors have beliefs about the properties of portfolio

weights, then those beliefs should be incorporated into the investor’s information

set. One candidate belief can be imputed from the very popularity of short-sales

constraint. Given that many assets can be readily shorted either directly or indi-

rectly via exchange traded funds or derivative trades, it seems plausible that this

constraint is more reflective of investor bias or beliefs. Furthermore, for many

asset allocation problems, the positivity of portfolio allocations is supported by

equilibrium asset pricing theory. For example, an investor choosing an allo-

43A version of this chapter will be submitted for publication. Douglass, J., Nonparametric
Portfolio Estimation with Prior Belief in the Positivity of Portfolio Weights.
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cation across industry portfolios might reflect that all industries have positive

market weight and therefore ought to be priced accordingly at equilibrium.

In this chapter, I investigate the impact of conditioning portfolio estimates

on a belief in the nonnegativity of portfolio weights. I use Bayesian techniques to

construct a nonparametric estimator that can incorporate qualitative investor

beliefs. Then, in a simulation study, I examine the properties of estimated

weights and evaluate the performance of a portfolio rule based on the conditional

estimator.

I construct a conditional nonparametric method-of-moments estimator that

incorporates qualitative prior beliefs. The final form of the estimator is analo-

gous to the conditional estimator developed by Brandt (1999).44 The difference

is that Brandt (1999) conditions portfolio estimates on predictor variables rather

than qualitative beliefs. Both estimators approximate the expectation integral

in the investor’s problem with a probability weighted sum over historical return

outcomes. The weights can be viewed as a perturbation of the empirical dis-

tribution of returns that leads to the most likely predictive distribution given

the conditioning information. The advantages of a nonparametric framework

for portfolio choice are discussed by Brandt (1999) and Aı̈t-Sahalia and Brandt

(2001). Briefly, the nonparametric framework does not require the assump-

tion of a parametric model of the underlying distribution thereby eliminating a

potential source of specification error.

The conditional estimator introduced here is also related to data tuning

applications developed by Peter Hall et. al.45 Data tuning methods seek to

minimally perturb the data set until a nonparametrically estimated quantity

satisfies a set of restrictions or constraints. The data set can be perturbed

by shifting the data points themselves or by perturbing the relative probabil-

ity of each data point. These approaches impose prior views on the estimator

using constraints. The estimator developed in this paper is akin to data tun-

ing approaches that perturb probabilities. The objective is to obtain a data

set that accommodates prior views with a minimal shift of these probabilities.

Rather than imposing constraints, I use Bayesian techniques to obtain a dis-

crete predictive distribution that reflects investor priors. The approach allows

44Brandt’s (1999) approach is applied by Aı̈t-Sahalia and Brandt (2001), Paye (2004) and
the author (see Chapter 2).

45See, for example, Choi and Hall (1999), Choi et al. (2000) and Braun and Hall (2001).
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for a probabilistic specification of prior beliefs. In addition, unlike data tuning

algorithms, the resulting discrete-Bayesian estimator is consistent in the sense

that the estimator converges in the large-sample limit even if the prior is wrong.

The goal of the estimator construction is to translate qualitative views into

a discrete predictive distribution of returns. To accomplish this, I apply Bayes’

rule on a discrete subset of the candidate probability distribution functions for

returns. I start from a standard formulation of the investor’s problem in a

Bayesian statistical decision framework (Zellner and Chetty (1965)). In this

framework, investor beliefs are modeled as a prior density over a space of can-

didate probability distributions. The investor combines their prior information

with the data likelihood to obtain posterior probabilities for each candidate

distribution. The predictive distribution for future returns is then obtained by

integrating over the domain of the posterior distribution.

The domain of the posterior is a space of probability distribution functions.

In a nonparametric setting, integration over a domain of functions is not com-

putationally tractable without some specification assumptions. The standard

approach is to restrict the candidate distributions to a parametric family such

as the set of multivariate Gaussians. To retain the nonparametric character of

the estimator, I instead restrict the domain of the posterior by discretizing the

set of possible return outcomes. I restrict the domain of the posterior to the set

of multinomial distributions with nonnegative probabilities on the chosen set.

The final step in the estimator design is the designation of the set of return

outcomes. The set must be large enough to allow for a rich set of candidate

distributions, yet parsimonious enough to permit sampling. A good candidate

is the set of the return realizations in the historical data. This set is a random

sample from the return domain that has the useful property of being generated

by the data generating process of interest. As a result, this set will likely place a

greater number of points where the density is concentrated and the data provides

the most information. Furthermore, by discretizing to the return outcomes in

the data, the resulting predictive distribution takes the form of a perturbation

of the empirical distribution of returns.

One caveat is that the resulting discrete-Bayesian estimator is not strictly

Bayesian. By using the data to approximate the posterior domain, I am implic-

itly restricting the prior domain as well. Despite this, the prior probabilities
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attached to each candidate distribution do reflect prior beliefs, and these prior

beliefs are effectively incorporated into the posterior.

In a simulation study, I investigate the implications of investor belief in

the nonnegativity of portfolio weights on portfolio choice. I model prior views

as exponential functions that decay as the conflict between investor views and

candidate distributions increases. I examine the implications of the no short

views on the predictive distribution of returns and on the portfolio weights.

I consider the example problem of an investor seeking to estimate alloca-

tions across a set of five assets that are highly correlated and that have similar

distribution characteristics.46 As in Kan and Zhou (2007), I use simulations to

compare the expected out-of-sample performance of different models. In ad-

dition, I conduct out-of-sample experiments on historical data, and compare

investment outcomes with a set of portfolio choice models from the literature.

I set the parameters of the underlying distribution such that the true optimal

allocations are all positive.

I find that, even when blessed with a prior belief in the positivity of portfolio

weights that is true for the generating distribution, the expected out-of-sample

performance of the estimates struggles to match the performance of the mini-

mum variance and 1/N portfolios.

The weak performance of the Bayesian model with informative prior attests

to the usefulness of regularization in portfolio forecasting. Regularization is a

technique that places smoothness criteria on the vector of estimated weights.

The 1/N solution is an extreme example of a regularized solution. The 1/N

policy is optimal if an extremely large penalty on cross-sectional variation in

portfolio weights.47 For history lengths of up to two-hundred and forty months,

the data does not contain enough information to estimate robustly portfolio

weights. This is true even after imposing a prior that is both correct and leads

to less variation in portfolio weights across assets.

This study adds to several strands of the portfolio choice literature. First, I

build on work that has incorporated Bayesian analysis into the portfolio choice

problem. The Bayesian framework not only allows for possible prior views, but

has the additional benefit of incorporating the impact of distribution uncertainty

46The distribution characteristics are based on the historical returns distribution of the
five-industry breakdown of the United States equity market provided by Ken French.

47Additionally, portfolio weights are assumed to sum to one (DeMiguel et al. (2008)).
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on investor decisions. Numerous applications of Bayesian analysis in portfolio

choice examine the influence of distribution uncertainty when an investor has

uninformative prior beliefs.48 Kandel and Stambaugh (1996), and Wachter and

Warusawitharana (2005) examine the impact of degrees of belief in return pre-

dictability on portfolio decisions.49 Pástor (2000) and Pástor and Stambaugh

(1999) examine the implications of investor beliefs in an asset pricing model.

This chapter is closely related to that of Chevrier and McCulloch (2008)

who also consider the impact of investor views on portfolio composition. This

study differs with that of Chevrier and McCulloch (2008) in several significant

respects. I employ a modeling approach that is nonparametric with respect

to the underlying return distribution. I am able to construct a nonparametric

posterior by introducing a simple restriction on the space of possible probability

distributions. In contrast, Chevrier and McCulloch (2008) assume the return

distribution is normal. While I do assume an investor whose utility depends

only on the first two moments of return, I do not restrict the set of underlying

distributions to the normal family. As such, my approach could be applied to

models with different investor utility such as those considered by Aı̈t-Sahalia

and Brandt (2001). In addition, as well as reporting out-of-sample performance

tests, I also conduct a simulation study which permits comparing expected

out-of-sample performance of the model. The disadvantage of out-of-sample

studies is that performance results are based on outcomes for a single sequence

of returns. With a simulation experiment, the performance of a portfolio rule

can be estimated to arbitrary precision given enough simulated return histories.

Finally, I describe the potential for positive weight constraints to introduce

upward bias in the predictive return distribution and introduce an adjustment

to the prior that mitigates this issue.

This remainder of the chapter is divided into seven sections. In section 3.2,

I formulate the portfolio choice problem in a Bayesian decision framework. In

section 3.3, I construct a discrete estimator for the investor’s optimand. In

section 3.4, I quantify the prior beliefs that I incorporate into the investor’s

problem. Section 3.5 describes the relationship between the portfolio choice

model developed in section 3.3 with models from literature. The empirical

48See, for example, Brown (1976) and Bawa et al. (1979).
49Avramov (2002) and Cremers (2002) use Bayesian methods to help with model selection

given a set of predictors.
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results are presented and discussed in sections 3.6 and 3.7. Section 3.8 concludes.

In Appendix B, I formulate two data tuning approaches to portfolio choice.

Appendix C details the Markov chain Monte Carlo (MCMC) algorithm used to

resample from the posterior distribution.

3.2 Portfolio Choice Framework

In this section, I formulate the investor’s problem as a utility maximization in

a Bayesian decision framework. The Bayesian decision framework will be the

starting point for development of the resampling estimator developed in section

3.3. The Bayesian formulation of the investor’s decision problem has its roots

in the work of Zellner and Chetty (1965). Other applications can be found in

Brown (1976), Bawa et al. (1979) and Barberis (2000), amongst others.

Consider an investor who must select a portfolio from a universe of N risky

assets plus a riskless asset. Define the N vector of risky asset returns rr
t and

the risk-free rate rf
t from time t−1 to time t. Excess returns on the risky assets

are given by rt = rr
t − rf

t .

The investor does not know the probability distribution of returns. Instead

the investor is Bayesian, and bases portfolio decisions on an information set

comprised of historical return data plus prior beliefs. The prior beliefs may be

based on economic insights or other non-data knowledge. The prior beliefs and

the non-data knowledge are combined to obtain a posterior distribution.

The domain of the posterior distribution is a function space that includes

all probability distributions that could possibly describe the data set (prior to

introducing any information). This is a very large set. For the portfolio problem,

we are concerned with the future distribution of returns. The unrestricted set of

potential future distributions includes all N-dimensional functions that integrate

to one on RN . In applications, one must integrate over this set to evaluate

the investor’s expectation. This functional integral is an essential feature of

Bayesian applications. The evaluation of functional integrals is challenging in

applications. Unlike with classical integration of volumes50, there is no universal

fundamental definition for functional integrals. Thus, in typical applications the

set of possible distributions is restricted to a subset that permits evaluation of

50Volume is a generalized concept here defined on N dimensions.
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a standard integral. I return to this issue and discuss the restriction used in

this paper in the next section.

Let Ω ⊂ RN be the space of possible next period return outcomes rτ+1, and

let ∆ be the unrestricted space of possible probability distributions of returns.

The investor uses his or her available information set to assign posterior prob-

abilities to each possible probability distribution δ ∈ ∆. The posterior qpost

is the product of a likelihood distribution given the available data and a prior

distribution qprior that quantifies investor views, i.e.,

qpost(δ|R) ∝ l(R|δ)qprior(δ), (3.1)

where R is a T by N matrix of historical return data, and the outer integral is

a functional integral over the function space ∆.

I assume the investor’s utility can be expressed as a von-Neumann-Morgenstern

utility function that includes a parameter γ that increases in risk aversion. The

investor’s problem is to maximize expected utility given the available informa-

tion.

max
w

E
[
u(W )

]
=

∫

∆

∫

Ω

u(r, w) p(r|δ) dr qpost(δ|X) dδ, (3.2)

where p(r|δ) is the probability of return r under probability distribution δ.

Introducing the notation E∆ for the expectation integral over ∆ and Eδ for

the expectation integral over Ω for a given δ ∈ ∆, the investor’s problem can

be written as

max
w

Eq

[
u(r)

]
= max

w
E∆

[
Eδ

[
u(r)

] ]
, (3.3)

where q is the predictive distribution of returns, i.e., q(r) =
∫
∆

p(r|δ)qpost(δ)dδ.

3.3 Discrete-Bayesian Estimator

As in many Bayesian applications, solution of the investor’s decision problem

requires computing an expectation over the space of possible distributions ∆.

To render this integration feasible, the domain of possible distributions ∆ can

be restricted by a model specification. A standard approach is to restrict the set

of distributions to a parametric model. For example, the investor might restrict
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the space of possible return distributions to the set of multivariate normal dis-

tributions. In this case, the posterior is a function of the model parameters: the

mean returns and the covariance matrix. In essence, the model specification is

a meta-prior that places zero probability on all distributions outside the model

space.

In this section, I develop an estimator based on a model specification that

does not rely on a parametric specification to achieve a computationally fea-

sible algorithm. In the portfolio choice context, the method extends Brandt’s

(1999) nonparametric method of moments to the case with non-data priors. The

method also can also be related to a class of “data tuning” (Braun and Hall

(2001)) methods developed for conditional smoothing and inference applications

in nonparametric statistics.

To provide some intuition for the linkage between the estimator discussed

here and previous literature, I anticipate the final form of the estimator con-

structed below. The approximation to the expectation in the investor’s problem

(3.3) reduces to the form,

Eq

[
u(rt+1, w)

] ≈
T∑

t=1

u(rt, w)qt, (3.4)

where the qt, (t ∈ {1 . . . T}), are weights that depend on the prior. Like classical

nonparametric estimators, the estimator is a sum over historical realizations of

the integrand. The estimator departs from the classic estimator in that it incor-

porates observation weights. These weights represent a discrete approximation

to the predictive distribution of returns q that depends on investor priors.

The estimator (3.4) is analogous to the nonparametric estimator of the in-

vestor’s problem developed by Brandt (1999). Brandt (1999) also estimates the

investor’s expected utility by a weighted sum over historical return outcomes.

However, whereas the weights in Brandt (1999) reflect conditioning on return

predictors such as the dividend yield, the weights applied here depend on non-

data priors. In either case, each of the estimation weights reduces to 1/T when

no additional information is available.

Incorporation of non-data priors into a nonparametric estimation framework

also motivates data tuning methods. Data tuning methods incorporate non-data

information by perturbing the empirical distribution of the data subject to a
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distance constraint on the perturbation. This is accomplished either by altering

the weights applied to each data point in the estimator or by perturbing the

data themselves subject to a distance constraint.51

While the estimator developed in this paper (3.4) has a similar structure to

data tuning methods that perturb the probabilities attached to each data point,

the methods of arriving at the final estimator differ. The perturbed probabilities

used in data tuning are obtained by selecting the highest likelihood distribution

for which the optimal decision variables satisfy a constraint.52 By contrast,

the data weights for the nonparametric Bayesian approach are a reflection of

qualitative or non-data prior views, and are obtained by numerical integration

over the investor’s posterior distribution by Markov chain Monte Carlo. The

estimator takes the familiar nonparametric form as a result of the discretization

scheme used to model the domain of distributions spanned by the posterior.

3.3.1 Construction of the Discrete-Bayesian Estimator

To construct the discrete-Bayesian estimator (3.4), I start by assuming that we

have a finite sample of B draws from the posterior qpost. Under this assumption,

the finite sample equivalent of the investor’s objective in (3.3) is

Eδ

[
u(rt+1, w)

] ]
≈ 1

B

B∑

b=1

Tb∑
t=1

u(rbt, w), (3.5)

where {δb}B
b=1 is the sample of B distributions drawn from the posterior, and

{rbt}Tb
t=1 is a draw from δb for each b.

To implement the above estimator, we require a feasible means of drawing

a set of distributions from the posterior qpost. The expression (3.5) is a Monte

Carlo approximation to the investor’s expectation integral. In theory, the ap-

proximation will converge as the number of draws goes to infinity. The challenge

51Hall and Presnell (1999) introduce a method of perturbing the probability weights applied
to each observation. Methods that perturb the data are referred to as data sharpening.
(Choi and Hall (1999) and Choi et al. (2000) develop data sharpening methods applicable to
nonparametric curve smoothing, density estimation and inference. See Braun and Hall (2001)
for further references to related techniques.

52To illustrate the contrast between the Bayesian resampling approach developed below
and data tuning methods, I include two data tuning formulations for a sample investment
problem with a non data prior. See Appendix B.
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is to develop a scheme that is stable and computationally feasible. Given the

limited number of historical returns available to the investor, and the high di-

mensionality of the underlying return distribution, some form of restriction on

the space of return distributions is warranted. The usual approach is to restrict

the set of possible distributions ∆ by introducing a parametric model for the

return distribution – often a multivariate normal.53

Here, I depart from the standard approach. I modify the set of candidate

distributions ∆ by restricting the possible return outcomes to a finite set. This

discretizes ∆ to a subspace of distributions with nonnegative probabilities at

a finite set of points, i.e., a set of multinomial distributions. Unlike paramet-

ric models, the approximation places no restriction on the functional form of

the distribution. However, the approximation does introduce the problem of

selecting a set of return outcomes to form the domain of the candidate distrib-

utions. The set must be sufficiently parsimonious for computational feasibility,

yet must be dense enough to allow for a rich array of posterior distribution

characteristics.

Ideally, the set of possible return outcomes would be chosen to place a greater

density of points near peaks of the underlying distribution because the data are

more likely to be informative on distribution shape in those regions. But we

do not know the distribution in advance. I deal with this issue by setting

the discrete set of possible return outcomes equal to the returns realized in

the historical data. The underlying data generating process is itself the ideal

randomizer for selecting a parsimonious grid of returns with the desired point

distribution.

By restricting the set of possible distributions to multinomial distributions

with nonnegative probabilities at the realized returns, I obtain an approxima-

tion that is analogous to classical nonparametric estimation in which inference

is based on the empirical distribution. In the presence of an uninformative prior,

the resulting discrete-Bayesian estimator is equivalent to the classical nonpara-

metric estimator, i.e., the probability weights assigned to each observation are

equal. One caveat is that the resulting estimator is not strictly Bayesian. The

approximation used to allow integration over the posterior domain also estab-

53An exception is Kacperczyk (2003) who studies a Bayesian model in which third and
fourth moments of returns are unrestricted.
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lishes the domain of the prior. Thus, while the prior likelihoods associated with

any distribution are not affected by the use of the return outcomes to set the

discretized grid, the prior and the data are no longer independent.

To formalize the construction of the discrete-Bayesian estimator, I define

a subset ∆R of the set of possible return distributions ∆. Each member of

∆R has finite domain consisting of the T realized returns in the set of realized

returns R. Thus the subspace ∆R is the space of multinomial distributions with

nonnegative probabilities pt at all points in the set of realized returns R and

zero probability elsewhere, i.e.,

δ ∈ ∆R ⇒





δ(r) =





pt r ∈ {r1, . . . , rT}
0 otherwise

∑T
t=1 pt = 1.

(3.6)

For the purpose of evaluating the investor’s problem, I restrict ∆ to ∆R.

Each member δ of ∆R is parameterized by T − 1 independent probabilities.

The likelihood l(δ) is the probability of drawing the return sample given a

distribution δ. Hence,

l(δ|R) ∝ p1p2 · · · pT−1

(
1−

T∑
t=1

pt

)
, (3.7)

where pt is the probability of draw t under distribution δ. Multiplying by the

prior qprior yields the posterior

q(δ) =

( T−1∏
t=1

pt

)(
1−

T−1∑
t=1

pt

)
qprior(δ). (3.8)

Given a sample of B draws δb = {pb1, . . . , pbt} from ∆R and noting that

p(rt|δb) = pbt, the estimator (3.5) reduces to

1

B

B∑

b=1

T∑
t=1

u(rt, w)pbt. (3.9)

Summing over B simplifies (3.9) to the form given in (3.4). The components

qt of the predictive distribution are given by qt = (1/B)
∑B

b=1 pbt. The pre-
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dictive distribution reduces to a set of weights applied to each of the sample

observations.

3.3.2 Sampling from the Posterior

The posterior distribution (3.8) is a mixture of a multinomial distribution and

an as yet unspecified prior. With T − 1 parameters, obtaining a draw from the

distribution that achieves statisfactory convergence of the investor’s expectation

is a challenge. One viable approach for such a high dimensional problem is

Markov chain Monte Carlo.54

To construct the Markov chain, I employ a Metropolis Hastings algorithm.

At each step of the chain, I draw a distribution δ from a tractable proposal

distribution. The proposal is conditional on the current distribution. This pro-

posal is either accepted or rejected with an acceptance probability that depends

on i) the ratio of the value of the posterior distribution at the proposal and the

current value, and ii) the ratio of the conditional proposal probabilities. The

accept-reject algorithm ensures that as the length of the chain goes to infinity,

the number of draws from any region of the posterior’s domain is proportional

to that region’s posterior probability.

I base the calibration of the MCMC algorithm on the convergence with

number of draws of the posterior distributions of the mean returns and of the

optimal portfolio weights implied by each distribution drawn. I obtain good

convergence by combining draws from five independent chains of length 5000.

The first half of the draws from each chain are dropped to allow for convergence

of the chain to the posterior distribution. Thus, the posterior estimates are

based on a total of 12500 draws. I provide full details and an algorithm chart

in Appendix C.

3.3.3 Mean-Variance Utility

In the empirical study in section 3.6, I assume quadratic utility over wealth.

Under this assumption, the portfolio estimator developed in the previous section

simplifies to mean variance form. Working in the mean variance framework

allows for comparison of results with those of previous research, as it is the

54Gamerman and Lopes (2006) contrast MCMC with more direct simulation methods.
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standard model in the portfolio choice literature.55 However, application of the

portfolio estimator discussed in the previous section is not dependent on this

assumption. The fact that the portfolio allocations only depend on the first two

moments of the return distribution is purely a function of the utility assumption.

The return distribution is modeled without moment assumptions.

Let µ(δ) and Σ(δ) be functions that return the mean and covariance matrix

respectively of the distribution δ. Under quadratic utility, the expected utility

estimator (3.4) is

u(r, w) = w′µ(q)− γ

2
w′Σ(q)w, (3.10)

where q is the discrete predictive distribution of returns defined in the previous

section.

3.4 Prior

I formulate the investor’s beliefs as a quantitative prior. My objective is to

examine the consequences of incorporating prior beliefs in the portfolio decision

problem. The discrete nonparametric estimator described in section (3.3) allows

for specification of arbitrary priors. This is liberating for Bayesian analysis as

priors are not limited by analytical requirements for conjugacy with a particular

return model. In addition, since the distributions are nonparametric, priors do

not have to be formulated in terms of specific distribution parameters. In theory

priors should take the form of probability distributions. However the estimator

is insensitive to multiplicative constants. Hence, the priors must satisfy two

restrictions: they must be positive functions defined on the set of candidate

distributions, and multiplication with the data likelihood must result in an

integrable posterior distribution.

I model four priors. The first two priors are suggested by Chevrier and

McCulloch (2008). The first is a restriction on the global minimum variance

portfolio implied by a candidate distribution. The second models the belief that

optimal portfolios are positive.

55Proposed by Markowitz (1952). Brandt (2005) and DeMiguel et al. (2007) review subse-
quent developments.
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The third prior mitigates a side effect of the second prior. As will be demon-

strated in section 3.6.2, the second prior biases posterior mean returns upward.

It is implausible that a belief in the positivity of portfolio weights is associated

with a belief that historical return means are biased downward. To mitigate this

effect, I introduce a prior that models the belief that the mean of the return

means or “grand mean” is close to the sample value. Finally, I consider a prior

that models the belief that all portfolio weights are smaller than one.

The first prior q1 is a step function that places zero probability on return

distributions that imply a return on the global minimum variance portfolio

that is less than the risk-free rate. This is a no-arbitrage condition that states

that risky portfolios dominate the risk-free asset in terms of expected return. I

quantify the prior by setting

q1(δ) = 1rGMV >rf (3.11)

where rGMV = w′
GMV µ(δ) is the return on the global minimum variance portfolio

wGMV = Σ−1(δ)1 for distribution δ.

The second prior expresses investor belief that portfolio weights, given the

underlying or true distribution of returns, are uniformly positive. This prior is

motivated by both asset pricing theory and modeling precedents in practice and

research. Asset pricing theory holds that the assets in positive net supply are

priced such that the aggregate investor would have positive allocations in an

optimal portfolio. If we assume the investor’s preferences are similar to those

of the aggregate market, then it follows that the investor would expect optimal

portfolio holdings to reflect the holdings of the market.

Short-sales constraints are often employed by investors and practitioners in

implementations of portfolio choice models. Mean-variance portfolio weights

computed by plug-in methods often feature large negative positions. These po-

sitions are attributable to high estimation error and the dominance of one or few

eigenvalues in the covariance matrix of returns (Green and Hollifield (1992)).

Whether negative weights are justified or not, mean variance methods are often

implemented with a constraint against short sales. The constraints might re-

flect restrictions on investment mandates or trading restrictions. However, the

number of assets available for taking short positions is large and continues to

grow. In addition, a restrictive investment mandate, while telling us nothing
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about the beliefs of an asset manager, indicates bias against short positions on

the part of the investor’s clients.

Prior skepticism regarding short positions is implemented by the following

function:

q2(δ, c2) = exp
(
−c

(
neg(wtan)′wtan

)2
,
)

(3.12)

where c is a decay parameter, wtan is the N vector of portfolio weights in the

actual optimal portfolio given distribution δ, and neg(·) is a vector function that

returns a vector of the same length with zeros substituted for positive values

and −1 substituted for strictly negative values.56 The larger the value of c2, the

greater is the investor’s belief that optimal portfolio weights are greater than

zero.

The third prior expresses the belief that the grand mean, or mean of the

return means, is unlikely to exceed its sample value. While intuitive, the prior

q2 biases the posterior towards distributions in ∆ with expected return vectors

that are uniformly higher than the sample mean. The high variance of returns

creates regions of the posterior domain characterized by high likelihood and

high return means. Distributions with lower return means are discounted by the

prior, and these distributions receive lower weight in the posterior. The result

is an upward bias in optimal weights that is difficult to justify. The primary

motivation for the belief in positive weights is to focus the posterior on candidate

distributions with means that are similar to the sample, but whose returns and

covariances do not combine to create unrealistic positions. Unrealistic positions

are those with high leverage that arise when estimating optimal portfolios for

highly correlated assets.57

The third prior mitigates this effect. The prior is implemented as

q3(δ) = exp
(−c3 (max(µg(δ)− µ̂g), 0)2) , (3.13)

where µg(δ) = (
∑N

i=1 µi(δ) 1)/N, µ̂g = (
∑N

i=1 µ̂i)/N , and c3 is a parameter.

I also consider a fourth prior that expresses the view that large deviations

56wtan is computed as the solution of maxw Eδ[U(w′r)]. To eliminate dependence on risk
aversion in the prior, tangency weights are scaled to sum to one.

57See Green and Hollifield (1992) and Jagannathan and Ma (2003) for studies of gearing in
mean variance portfolios.
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from the grand mean from the sample value are unlikely whether positive or

negative. The prior is expressed as

q3(δ) = exp
(−c4(µg(δ)− µ̂g)

2
)
. (3.14)

Prior q4 is related to Bayes-Stein estimation. Jorion (1986) shows that a Bayes-

Stein estimator that shrinks return means dominates traditional plug-in esti-

mation.

An investor can have one or more of these priors. The investor’s overall prior

distribution is expressed as qprior(δ; c) =
∏

i∈I qi(δ, ci) where I is the investor’s

subset of priors and c is a vector of the relevant prior coefficients.

3.5 Relationship to Previous Portfolio Choice

Models

In this section, I discuss a selection of models for portfolio choice that are related

to the estimator employed in the current study. Table 3.1 lists the models

considered. Researchers have proposed a vast number of innovative approaches

to portfolio choice. The list considered here is by no means comprehensive. See,

for example, DeMiguel et al. (2007) and Garlappi et al. (2007) for comparative

empirical studies of large sets of models that overlap the set considered here.

The subsections below describe two groups of models. The first group in-

cludes plug-in rules. These rules are variants of the classical approach that

makes use of sample estimates of return means and variances. The second

group consists of portfolio resampling models. I conclude with a brief note on

regularization in portfolio choice.

3.5.1 Plug-in Models

Perhaps the most straightforward approach to portfolio estimation is to directly

substitute estimated distribution parameters into the investor’s problem. For

the mean variance model, this amounts to approximating the investors problem

max
w

w′µ− γ

2
w′Σw (3.15)
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by

max
w

w′µ̂− γ

2
w′Σ̂w (3.16)

where µ̂ = 1
T

∑T
t=1 rt and Σ̂ = 1

T

∑T
t=1(rt − µ̂)(rt − µ̂)′ are sample moments.

Solutions obtained by the direct plug-in model (3.16) are notoriously unstable

and lead to poor out-of-sample performance.58

In efforts to achieve more robust performance, researchers have proposed

numerous alternative estimators for the distribution moments used in the mean

variance model. A large class of these models take the form of plug-in rules that

combine the risk-free asset, a sample estimate of the mean variance portfolio,

and a sample estimate of the minimum variance portfolio formed without the

risk-free asset. Plug-in models assign a portfolio weight vector of the general

form

w =
π1

γ
Σ̂−1µ̂ +

π2

γ
Σ̂−11 (3.17)

where π1 and π2 are constants. The classic mean variance solution (3.16) is

obtained with π1 = 1 and π2 = 0.59

A number of plug-in rules that take the form (3.17) are motivated by statisti-

cal considerations. Kan and Zhou (2007) provide a detailed analysis of portfolio

models whose solutions take this form. For the most part, these models shrink

the estimated portfolio towards the risk-free asset (i.e., π1 < 1) or towards the

minimum variance portfolio (i.e., π2 > 0). I list a subset of these plug-in rules

in Table 3.1. The first model is the direct substitution mean variance model. I

consider the direct substitution approach because it is a longstanding standard

in the literature.

The second plug-in model is obtained following a parametric Bayesian analy-

sis in which the investor assumes normally distributed returns and has a diffuse

Jeffrey’s prior over the distribution parameters. Kan and Zhou (2007) demon-

strate that this model is dominated in terms of out-of-sample performance by

some of the plug-in rules that follow. I include this model because it is interest-

ing to compare the parametric Bayesian solution to the discrete, nonparametric

58See Best and Grauer (1991).
59If the unbiased estimator of Σ is used then π1 = (T − 1)/T .
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Bayesian approach developed in this paper.

The third through fifth models are developed in Kan and Zhou (2007). Kan

and Zhou (2007) evaluate the efficiency of plug-in rules based on their expected

out-of-sample utilities under the assumption of normally distributed returns.

The third model is the most efficient plug-in rule with a coefficient on the sample

portfolio π1 that is independent of the sample. The fourth and fifth models are

plug-in rules that aim to improve efficiency by allowing the coefficients in (3.17)

to depend on the sample. The fourth is derived under the restriction π2 = 0,

and the fifth allows for investment in the sample minimum variance portfolio.

The sixth model is the classical mean variance model with short sales con-

straints imposed on the investor’s problem (3.16). As discussed in the intro-

duction, a common approach is to solve (16) under a constraint against short

sales. Solutions obtained with short sale constraints imposed are closely related

to those obtained by statistical approached that shrink portfolios towards the

minimum variance portfolio. Because they are straightforward to implement in

many optimization packages, models with short sale constraints are very com-

mon in investment practice.

The last two models back away entirely from relying on the data to estimate

return means. The seventh model is the global minimum variance portfolio. The

global minimum variance portfolio has a statistical advantage in small samples

in that it is independent of return estimates, and has proven to be a strong

performer in many out-of-sample studies, despite being an ad hoc rule. The

final entry is the 1/N model discussed extensively in Garlappi et al. (2007).

This model takes data skepticism to the extreme. The model assumes portfolio

weights sum to one and assigns equal weight to each asset.

3.5.2 Portfolio Resampling

Portfolio resampling refers to the recomputation of optimal portfolios for re-

peated, randomly generated return samples. The return samples can be gen-

erated by drawing from a parametric return model estimated from the sample

data60 or bootstrapping from the empirical distribution of returns. Resampling

is a standard technique in statistics for estimating sampling distributions and

60See Jorion (1992), Michaud (1998), Markowitz and Usmen (2003) and Harvey et al.
(2003).
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addressing hypothesis tests (Efron (1979)). Jobson and Korkie (1981) suggest

the technique for statistical analysis of portfolio estimates. The technique has

been adopted in a number of subsequent studies.61

Michaud (1998) considers extending the application of portfolio resampling

beyond statistical hypothesis testing to decision analysis. He suggests choosing

portfolios by averaging across optimal allocations computed for each resam-

pled return draw.62 Scherer (2002) and Harvey et al. (2003) point out that the

resampling of return distributions is conceptually equivalent to drawing from

a Bayesian posterior distribution with an uninformed prior.63 Viewed from a

Bayesian perspective, construction of portfolio decisions from averages of resam-

pled portfolios switches the order of the maximization and the integration over

the posterior in the investor’s portfolio problem (3.2). Using the notation from

section 3.3, weights computed by portfolio resampling are an approximation to

the integral

w =

∫

∆

[
arg max

wb

∫

Ω

u(r, wδ)p(r|δ)dr

]
qpost(δ)dδ. (3.18)

Given B resampled return draws, the finite sample approximation is

ŵ ≈ 1

B

B∑

b=1

[
arg max

wb

T∑
t=1

u(rbt, wb)pbt

]
, (3.19)

where δb is the empirical distribution associated with the bth resampled return

series.

Under mean-variance utility, the portfolio resampling computation (3.18)

61For example, Jorion (1992) uses resampling to illustrate portfolio sensitivity to estimation
risk. Scherer (2002) suggests application of resampling techniques for hypothesis tests of the
statistical difference between two portfolios. I apply resampling to test the difference in
investment benefits of different asset allocation portfolios in Chapter 2 of this thesis.

62See Scherer (2002) or Meulli (2006) for a complete description of Michaud’s algorithm.
Herold and Maurer (2006) implements portfolio resampling using the bootstrap.

63For example, as T −→ ∞ likelihood properties of distribution moments computed from
bootstrap distributions will approach those of moments based on distributions sampled from
the posterior discussed in section 3.
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simplifies to

1

B

B∑

b=1

arg max
wb

(
µ(δb)

′wb − γw′
bΣ(δb)wb

)
. (3.20)

In this case, the solution to the portfolio resampling problem is

wPS =
1

Bγ

T∑
t=1

Σ(δb)
−1µ(δb). (3.21)

The portfolio resampling solution is an average of optimal weights implied by a

set of distributions drawn from the posterior.

While portfolio resampling procedures are not usually associated with Bayesian

analysis, the portfolio resampling heuristic can be readily extended to allow for

informed priors. The solution (3.21) can be computed as long as a sampling

scheme is available to obtain draws from the resulting posterior distribution.

The primary model implemented by Chevrier and McCulloch (2008) is an ex-

ample of such a scheme.64 They analyze portfolio weights obtained as solutions

to (3.21) where the set of distributions is drawn from a posterior that incorpo-

rates prior beliefs.

In the empirical examples of section 3.6, I compare portfolio allocations es-

timated via the Bayesian approach to two portfolio resampling models. Both

implement the mean variance solution (3.21). The first is a standard portfolio

resampling model with uninformed prior and the second incorporates prior be-

liefs. In both models, I employ the MCMC technique developed in section 3.3

to draw from the posterior. I find that the performance of portfolio resampling

with prior is very similar to that of the discrete-Bayesian model.

Finally, I compute results for a heuristic proposed by Michaud (1998) that

combines the placement of short sales constraints with portfolio resampling.

For this model, each of the resampled portfolio weights are computed with

constraints on short sales. For consistency with previous applications, I draw

the returns for this last model from a posterior that does not include prior

information.

64Chevrier and McCulloch (2008) describe the method as the “posterior mean over the
implied weights”.
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3.5.3 Statistical Refinement versus Regularization

It is useful to distinguish models that are statistical refinements of the clas-

sic plug-in approach from those that give up consistency in a statistical sense

to regularize (i.e., impose smoothness) on the solution vector. Of the models

listed in Table 3.1, the regularizing solutions are those that impose short sale

constraints and the 1/N rule. The other models, with the exception of the min-

imum variance portfolio, converge to the true optimal portfolio as the length of

the available data set approaches infinity. Statistically motivated models seek

to improve allocation estimates by accounting for estimation uncertainty or ad-

ditional non-data information. Regularization seeks to compensate for data

insufficiency by imposing smoothness on the portfolio weights vector.65

A major challenge in portfolio estimation is that the amount of data re-

quired to achieve a stable estimate is many orders of magnitude larger than is

usually available to the investor. As such, even the best statistical estimates of

the return distribution yield unstable portfolio estimates. As a result, despite

introducing bias, regularized solutions such as those based on constraining short

sales (Jagannathan and Ma (2003) and 1/N (DeMiguel et al. (2007)) perform

well in many applications.

While regularization is effective, ideally an investor would be able to estimate

optimal allocations from available information. Previous studies indicate that

statistical approaches have a very hard time outperforming the regularized so-

lutions. The simulation analysis of the next section further tests this conclusion

by comparing short sales constrained and 1/N performance with performance of

a Bayesian model that incorporates additional non-data priors in a simulation

setup in which the priors are correct.

65In general, regularization models result in a Lagrangian with additional terms that pe-
nalize variation of the solution vector. For example, a typical regularized Lagrangian for the
portfolio problem might have the form

E [U (r̃, w)]− κ||Φw||p (3.22)

where κ is a scaling parameter, p is the degree of the vector norm, and Φ is an NxN matrix.
Jagannathan and Ma (2003) show that the no short sales solution is equivalent to (3.22) with
p = 1 and Φ equal to a diagonal matrix with the Lagrange multipliers of the short sales
constraints on the diagonal. Sufficient conditions for the 1/N solution have Φ equal to a
demeaning operator, Φ = I − 11′/N , p = 2 and κ →∞.
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3.6 Portfolios with Positive Weights Prior

In this section, I compare the properties and performance of portfolios estimated

using the discrete-Bayesian model for portfolio choice developed in section 3.3

with models from the literature. The empirical analysis is divided into two

parts. In the first, I compare the expected out-of-sample performance of the

models in a simulation experiment. In the second, I conduct an out-of-sample

study using historical returns.

Simulation results are a useful tool for comparing the performance of portfo-

lio models under controlled conditions. Because the underlying return distrib-

ution is known to the experimenter, out-of-sample performance for a simulated

trial can be computed exactly for any portfolio weight policy.

This study differs from previous simulation studies in that some of the rules I

consider assume investors have information beyond that contained in historical

data. See Kan and Zhou (2007), Herold and Maurer (2006), and Garlappi

et al. (2007), amongst others, for simulation results that examine outcomes for

portfolio rules estimated from historical data. This study most directly extends

results of Kan and Zhou (2007). I use a simulation procedure that closely

parallels their procedure. In addition they provide analytic results for a number

of plug-in rules that can be exploited for verifying simulation convergence.

3.6.1 Simulation Setup

In the simulations, I assume a mean-variance investor with relative risk aversion

γ equal to five. I generate independent return series from a normal distribution.

I consider a five-asset example. I calibrate the covariance matrix to sample

values computed for the five-industry data set. In setting the return means,

I partially shrink the sample mean vectors towards their grand mean. The

degree of shrinkage is high enough to ensure that the optimal portfolio weights

of a mean variance investor with full knowledge of the underlying distribution

would be strictly positive.66 The parameters used in the simulation trial for the

five-asset case are listed in Table 3.2.

66I set the vector of return means of the data generating process for the simulations to
µ = εµ̂ + (1− ε)(

∑N
i=1 µ̂i)/N , with 0 < ε < 1. I choose a shrinkage coefficient ε small enough

to ensure that all optimal weights implied by the underlying distribution are greater than
zero; i.e., Σ̂−1µ > 0.
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I employ a simulation strategy similar to that employed by Kan and Zhou

(2007). I randomly generate S return series from the underlying distribution.

These return series become the “historical” data for S hypothetical investors.

Each investor estimates optimal portfolios using the twelve models listed in

Table 3.1. I then compute the mean and standard deviation of the out-of-sample

utility realizations for each estimated portfolio given their portfolio estimates

and the actual distribution parameters.

I calibrate the number of simulations S required to effectively estimate the

out-of-sample utility. Given the computational burden of the Markov chain

Monte Carlo methods, I wish to minimize S. Kan and Zhou (2007) provide

analytic expressions for the out-of-sample utility of the plug-in rules for which

π1 and π2 are independent of the data. Using these results, I choose an S that is

large enough to yield estimates that are precise to within two significanct digits

when compared with the theoretical result. I find that S = 250 is sufficient for

this purpose.

3.6.2 Exploratory Analysis of the Prior Assumptions

An important preliminary step in a Bayesian investigation is characterization of

the posterior. A prior model designed to quantify an investor belief may have

unintended consequences for the posterior. This can result in a posterior model

that, while ostensibly capturing the investor belief that is of primary interest,

is decidedly unrealistic on another dimension.

Here I contrast the posterior distributions for several different priors. The

posteriors are based on a return series of length T = 120. The return series

is drawn from the five-asset distribution parameterized in Table 3.2. For the

analysis, I employ 12500 distributions drawn from the posterior distribution by

the MCMC method described in the appendix. I compute summary statistics

for each of the 12500 draws. The summary statistics include return means,

return standard deviations, and the implied portfolio weights of a mean variance

investor with risk aversion coefficient equal to five.

The first panel of Table 3.3 shows return means, return standard deviations,

and portfolio weights estimated directly from sample data. The remainder of

Table 3.3 reports averages and standard deviations of summary statistics across

posterior draws under different prior specifications. The second panel shows the
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summary statistics averaged across 12500 distributions drawn without prior.

As expected, given that the prior adds no information, the means, returns, and

weights are close (within 1%) to values obtained under a diffuse prior assumption

on µ and Σ. For a normal model, and given a diffuse prior, the optimal weights

are the standard mean variance weights multiplied by (T −N − 2)/(T + 1). In

this case, this implies average weights of 0.81, slightly below the value predicted

by simulation.

The third panel of Table 3.3 displays results obtained with investor bias

against negative portfolio weights incorporated into the prior. For this initial

case, the model only incorporates the economically motivated priors described

in Section 3.4: the no-arbitrage prior q1, and the positivity prior q2. I select the

parameter c2 following a qualitative tuning exercise. I consider the posterior

distribution obtained when the informed prior is paired with a return sample of

length T = 120. I find that c2 = 20 yields a set of posterior draws that places

less than 5% weight on distributions that imply negative weights in a mean

variance optimized portfolio. Hence, this choice of parameter reflects a strong,

but not completely dogmatic belief that all portfolio weights are positive.

Under priors q1 and q2, the variability of the means and standard deviations

are similar to those observed with no prior. However, comparison of the bottom

lines of panels 2 and 3 reveals that implied portfolio weights are far less vari-

able across posterior draws for the informed investor. The prior q2 informs the

implied weights of the mean variance investor without increasing the precision

of the individual moment estimates.

Figure 3.1 compares histograms of portfolio weights obtained with no prior

with those obtained when priors q1 and q2 are implemented. Under the informed

prior, the posterior probability that the optimal portfolio weights are less than

zero is clearly reduced relative to the no-prior case, as is the variance of the pos-

terior distribution of portfolio weights. The standard deviations of the portfolio

weights implied by the posterior distribution are reduced by two to three times

upon incorporating a belief in the positivity of portfolio weights.

While the prior q2 succeeds in incorporating a belief in positive weights,

there is a noticeable upward bias in the overall average of the return means.

Averaging across the first row of any panel in Table 3.3 yields a cross-asset

mean or “grand” mean of the asset returns. The grand mean based on the first
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row of panel 3 is 1.15 while that for the second panel is 0.82, a difference of

0.33 percentage points per month. Given a prior that favors positive weights,

the posterior places greater weight on distributions with higher return means.

The return bias is illustrated in Figure 3.2. Each panel shows a histogram of

the posterior distribution of one asset’s return mean (vertical bars). The solid

line is a normal distribution fitted to the data. The average posterior return

means are shifted to the right relative to their no prior counterparts.

The return bias is a side effect of the positive weights prior. Mean variance

analysis tells us that portfolio weights are functions of the mean variance ratio

for each asset and the correlation matrix. The positive weights prior informs

the relative magnitudes of the mean variance ratios as well as the correlation

matrix, but does not directly restrict the absolute magnitudes of either the

means of the variances.

The upward shift in return means is not warranted by theory. Skepticism

about negative portfolio weights is not usually associated with optimism with

respect to return means. Investors are skeptical about negative portfolio weights

because of noise in the relative returns of highly correlated assets that create

opportunities for long-short trades that are not warranted by the data evidence.

To correct the posterior bias of return means, I activate prior q3 that reflects

skepticism that the grand mean of returns is larger than the grand mean of the

sample returns. The fourth panel of Table 3.3 lists the posterior characteristics

under the revised prior. The averages of the posterior mean returns are shrunk

towards the grand mean in the sample, and the standard deviation of these

quantities is reduced relative to the posteriors computed without the prior.

The primary effect of the shrinkage of the return means is to reduce the overall

investment in risky assets. The impact on the posterior distribution of implied

portfolio weights is muted.

Figure 3.3 shows the distribution of posterior returns when priors q1, q2,

and q3 are incorporated into the model. A comparison with Figure 3.2 shows

that prior q3 has a noticeable effect on the return distribution. The information

in the prior acts to restrict the posterior distributions of return means. The

distributions are shifted towards the grand mean of the sample, and the posterior

distribution of the return means has visibly less variance.

Incorporating prior q3 has an inconsequential effect on the precision of port-
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folio weight estimates. Figure 3.4 compares histograms of portfolio weights

obtained with no prior with those obtained under prior beliefs that include the

no-arbitrage q1, positive-weights q2, and mean-restriction q3 priors. The his-

tograms are similar to those shown in Figure 3.2 for the case under priors q1

and q2 only. In addition, differences in the averages and standard deviations

of the portfolio weights listed in the third and fourth panels of Table 3.3 are

inconsequential. Thus, while prior q3 mitigates return bias introduced by the

positive weights prior, it has little impact on the precision of the final allocation

estimates.

3.6.3 Monte-Carlo Study

For each of the 250 simulated data sets, I compute the first two moments of

the Bayesian predictive distribution of returns under different prior specifica-

tions. The top and bottom panels of Table 3.4 list return means and standard

deviations, respectively, averaged across simulations. The first and second lines

of each panel show results computed for an investor with no prior and with

prior that reflects belief in the positivity of portfolio weights, i.e., with prior q2

activated.67 Comparison of the two lines reveals the upward return bias asso-

ciated with this prior. The mean predictive returns are at least one standard

deviation higher than those computed without prior. While not significant in

the conventional sense, the upward bias is economically significant. The bias

represents an approximate 5% per annum upward shift in expected returns.

The introduction of prior q3 or q4 eliminates the upward bias in return means.

Results given these priors are listed in lines 3-5 of each panel of the table.

Examination of the means of the return standard deviations computed for each

simulation (reported in the second panel) reveals the limited impact of priors

on second moments of the predictive return distribution. Some reduction in the

variance of predictive distributions is expected given that the priors introduce

additional information. However, when compared to the no-prior case, the

reduction in the standard deviations are small (between 1% and 8%).

Table 3.5 shows simulation averages of portfolio weights estimated under

different priors. The first panel shows results estimated using the discrete-

67I include the no-arbitrage prior in all cases.
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Bayesian model. These results illustrate the additional stability of portfolio

weight estimates when priors are incorporated. For example, comparison of

lines 1 and 3 of either panel reveals that a model that incorporates priors q1, q2

and q3 reduces standard deviations of portfolio weights across simulations by a

factor of four.

The second panel shows means of allocations for the portfolio resampling

approach with prior. For each simulation, I calculate allocation estimates by

averaging the optimal weights computed for each distribution drawn from the

posterior by MCMC. Comparison of results listed in the first and second panels

reveals very little difference in either the average or the variability of portfolio

weights across simulations. Thus, despite being an ad hoc decision rule, portfolio

weights computed by portfolio resampling are as stable as those obtained by

solving the full Bayesian predictive problem when the posterior is based on the

same priors.

Table 3.6 shows out-of-sample performance given estimated portfolio weights

averaged across simulations. Performance is reported as percent certainty equiv-

alent return per month. As in Table 3.5, I report results for the discrete-Bayesian

model and the portfolio resampling approach. The three columns summarize

model performance for three sizes of data window: T ∈ {60, 120, 240}. The

results demonstrate the difficulty of estimating portfolios given just 60 data

points. The paucity of information in such a small data set is not sufficient to

achieve a risk adjusted portfolio return that exceeds the risk-free rate whether

or not the investor has prior information. The certainty equivalent returns in

the first column are uniformly negative.

For the longer data histories, the expected risk adjusted return is improved

under the positive weight prior. Reading line 2 of Table 3.6, the monthly risk

adjusted returns are -0.03 and 0.13 in the T = 120 and T = 240 cases respec-

tively compared to −0.27 and 0.02 in the no-prior case. However, the upward

return bias associated with the positive weights prior is costly. The investor’s

out-of-sample utility is further improved if the prior also downweights distrib-

utions with grand mean greater than that of the sample. For the T = 120 and

T = 240 case, the positive returns are highest when prior q3 is implemented, as

in lines 3 and 4 of either panel of Table 3.6.
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3.6.4 Comparison of Discrete-Bayesian Policy with

Other Models

Next, I compare the portfolio policies and the expected performance of the

discrete-Bayesian model to those of the allocation models listed in Table 3.1.

Table 3.7 lists simulation summary statistics while Table 3.8 mirrors Table 3.6

in reporting expected out-of-sample performance of estimated policies.

The first panel of Table 3.7 shows optimal policies of an investor with full

knowledge of the first two moments of the underlying distribution. Needless to

say, these policies are unachievable in practice. However their properties and

performance are a useful reference when evaluating the performance of estimated

optimal policies. As in Table 3.5, the average weight across assets is listed in

column six. For the full information mean variance portfolio, the average weight

assigned across assets is 0.15. This is essentially equal to the simulation mean of

the average weights for each of the discrete-Bayesian models examined in Table

3.5 with the exception of the case with positive weights prior instituted without

the prior against return bias. In the latter case, the average weight across assets

is 5% higher, corresponding to a 25% greater allocation to risky assets.

The second panel of Table 3.7 shows portfolio weights averaged across sim-

ulations for eight plug-in rules. The last column show the simulation average

of the allocation magnitudes averaged across assets. The difference between

mean allocation magnitudes and mean weights reveals the importance of neg-

ative weights in the portfolios suggested by the various policies. The first four

policies are in decreasing order of the degree to which they account for estima-

tion error by shrinking towards the zero portfolio. As expected, both the mean

weight and mean weight magnitude decrease with degree of shrinkage. However,

the mean policy weights obtained using the estimated two-fund rule of Kan and

Zhou (2007) are substantially lower than those of the full information portfolio.

Kan and Zhou (2007) provide an analytic foundation and simulation results

that support the conclusion that their best two-fund and estimated two-fund

rules will exhibit better expected out-of-sample performance. However, there

is a clear upper bound on their ability to improve performance, because they

do not alter the relative magnitudes of the estimated weights. Shrinkage to-

wards the zero portfolio results in smaller negative weights only insofar as the

109



magnitude of all weights are reduced.

The estimated three-fund rule is an optimal combination of the expected

mean variance portfolio, the zero portfolio, and the estimated minimum variance

portfolio. This rule allows for shrinkage in the relative magnitudes of portfolio

weights by including the estimated minimum variance portfolio as an additional

shrinkage target. This effectively allows for some rotation of the covariance ma-

trix and reduction in the relative magnitudes of negative weights. The contrast

is best illustrated by comparing the results for the best two-fund and estimated

three-fund portfolios (lines 3 and 5 of the second panel of Table 3.7). The aver-

age weights for these two portfolios are equal, but the average weight magnitude

is 25% lower in the estimated three-fund portfolio. The estimated three-fund

policy allocates less to negative positions on average. However, having the min-

imum variance portfolio as a target portfolio does have disadvantages. The

average allocation to the fifth asset is negative and the average allocation to the

second asset is well above that of the full information mean variance portfolio.

This bias is attributable to the fact that the full information global minimum

variance portfolio in this example places extreme weights on these two assets;

-0.45 on asset 5 and 0.83 on asset 2, relative to the true mean variance optimal

portfolio.

Table 3.8 lists expected out-of-sample performance of the alternative policies

for data windows of length 60, 120, and 240. Results for the plug-in rules are

listed in the second panel. The expected out-of-sample performance improves

with horizon for all policies (except the mechanical 1/N rule).

The performance results for the first five mean-variance based rules reflect

the conclusions of Kan and Zhou (2007). The two and three-fund policies pro-

posed by Kan and Zhou (2007) show better performance than the classical mean-

variance and diffuse Bayesian policies, with the estimated three-fund portfolio

showing best performance. The significance of the performance improvement

decreases with horizon. None of the policies has expected out-of-sample returns

greater than the risk-free rate for the 60 period case. The performance of the

estimated three-fund policy is essentially equal to that of the mean variance

policy with short sale constraints.

The expected out-of-sample performance of the discrete-Bayesian model

with the no bias positive weights prior is higher than that of the estimated
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three-fund rule of Kan and Zhou (2007). The difference in performance is ob-

tained by comparing line 3 of Table 3.6 with the results in Table 3.8. For a

120 period horizon, the improvement is seven basis points, dropping to three

basis points at the 240 period horizon. The expected performance improvement

is small and insignificant relative to the performance standard errors. The in-

crease in expected risk adjusted return is approximately one third of its standard

error at both the 60 and 120 period horizons. Based on the improvement in

out-of-sample performance alone, the discrete-Bayesian approach is not over-

whelmingly superior to the best mean-variance based models of Kan and Zhou

(2007).

Stability of estimated weights is also an important consideration. Here, the

discrete-Bayesian model is a significant improvement over the estimated two-

fund and three-fund rules of Kan and Zhou (2007). The standard deviations

of the estimated weights are two to three times greater for the mean variance

based policies than they are for the discrete-Bayesian model. Even the mean

variance policy with short sales constraints imposed exhibits standard errors in

its weight estimates that are approximately one and a half times the standard

deviation of the discrete-Bayesian weights.

The last two lines of the second panel of Table 3.8 show expected out-of-

sample utility for the minimum variance and 1/N policies. Both of these policies

exhibit expected out-of-sample performance that is marginally higher than that

of the discrete-Bayesian model. The minimum variance and 1/N policies miti-

gate the impact of estimation error by ignoring estimated return means. This

approach trades off a major source of estimation error (because return means

are difficult to estimate precisely given the high variance of asset returns) for

estimator bias. The bias arises because the portfolio weights obtained by min-

imum variance do not converge to the true optimal weights as sample length

approaches infinity. The difference between the realized risk-adjusted return of

the full information portfolio without bias and the full information portfolios

under the two biased estimates serves as a measure of the potential lost opportu-

nity. For the example problem considered here, an investor gives up twenty-nine

or twenty-seven basis points in the full information limit, depending on whether

they employ the minimum variance or 1/N approaches.

Despite the potential costs, the biased estimators dominate the unbiased
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mean variance estimators in the five-asset example. The convergence of the ex-

pected out-of-sample utility to the full information value is significantly slower

for the unbiased mean variance estimators. In the five-asset example, the ex-

pected out-of-sample utility of the minimum variance strategy reaches its limit

given a sample length of 120, and is not significantly below the full information

limit with a sample length as low as 60. Of course, the expected out-of-sample

utility of the 1/N strategy is independent of sample size because the data play

no role in setting the portfolio allocations. Even for sample sizes as high as

T = 240, the expected out-of-sample utility of the mean variance estimators

included in Table 3.8 does not surpass the values for the minimum variance and

1/N portfolios.

The discrete-Bayesian portfolio does better, but only matches the expected

out-of-sample performance of the minimum variance portfolio for sample length

T = 240.

The last panel of Tables 3.7 and 3.8 shows portfolio results and expected out-

of-sample utility for the portfolio resampling model with short sales restrictions.

This model differs from the portfolio resampling models listed in Table 3.6. In

both cases, a final portfolio estimate is obtained by averaging over a larger

number of estimated portfolios.

3.7 Out-of-Sample Study

In this section, I examine the out-of-sample performance of the discrete-Bayesian

portfolio estimates described in section 3.3. I consider the performance of in-

vestments in three asset baskets. The data set for each basket consists of a set

of excess returns over the risk-free rate. The first two data sets are monthly

returns of five and ten-industry portfolios for the period January 1952 to De-

cember 2006. The industry definitions and data are from the web site of Ken

French. The third consists of international returns on four country indices from

Morgan Stanley Capital International for the period January 1975 to December

2006.

The study design is based on a rolling window framework. The investor is

assumed to re-balance their portfolio based on data for the previous T months,

where T is either 120 or 240. The rolling window setup is rather arbitrary as
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it sets an arbitrary date-based cutoff on the information in historical returns.

My main objective with the out-of-sample experiment design is to maintain a

connection with the fixed-window simulation analysis, and to ensure that there

is no look-ahead bias.

I compute certainty-equivalent returns for the discrete-Bayesian policy, the

resampling policy with prior, as well as seven policies of the policies from the

literature listed in Table 3.1. Table 3.9 lists the out-of-sample risk-adjusted

returns for the two policies based on draws from the discrete-Bayesian posterior,

and Table 3.10 lists parallel results for the policies from the literature.

The first and second panels of Tables 3.9 show results for the T = 120 and

T = 240 estimation window respectively. For the T = 120 case, the portfolio

policy never achieves positive ex-post risk adjusted returns. The five-industry

results (column 1) are poor when compared to the results obtained for the

simulated case. In the simulation experiment, the expected out-of-sample utility

is significantly greater than the realized results over the four time periods listed

in Table 3.9. Even with the estimation window expanded to 240 months, the

realized risk-adjusted returns are not significantly different from zero (second

panel of Table 3.9).

The risk-adjusted returns listed in Table 3.9 can be compared with those

obtained for suggested approaches from the previous literature listed in Table

3.10. The discrete-Bayesian policy outperforms the mean variance policy68, but

does not do as well as the statistically motivated policies of Kan and Zhou

(2007). Both the estimated two-fund and the estimated three-fund policies

outperform the discrete-Bayesian policy.

Consistent with results in DeMiguel et al. (2007), the best performing poli-

cies are the minimum variance and 1/N policies. The outperformance of the

minimum variance portfolio is an indicator that historical returns data yields

exploitable information on return correlations. However, there is a cost to this

outperformance as average position magnitudes are approximately twice the

size of estimated for the models that constrain short sales (a set that includes

the 1/N portfolio) as well as for the models listed in Table 3.9 that incorporate

priors against short selling.

68The poor performance of standard mean variance is well known, and this poor perfor-
mance extends to the mean variance method with diffuse prior (not reported).
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The 1/N models and the policies that explicitly forbid short sales (mean

variance with no short sales and the direct averaging of resampled weights with

no short sales) introduce bias into the portfolio estimation problem. The 1/N

policy achieves superior risk adjusted returns across asset sets and time pe-

riods than the discrete-Bayesian model with informed prior. The short sales

constrained policies achieve higher risk adjusted returns for most cases, but

the improvement was not statistically significant. These models differ from

the discrete-Bayesian policy in that the problems are formulated with exoge-

nous constraints designed to smooth, or ‘regularize’, the variability of the port-

folio weights vector. In contrast, the Bayesian approach imposes priors that

restrict the space of possible distributions to weights that obey certain prop-

erties. In each case, there is a tradeoff of expected bias and variance of the

weight estimates. The better performance of the 1/N policy relative to the

discrete-Bayesian policy demonstrates that costs of estimation error outweigh

the smoothing bias for the three asset baskets during the time periods considered

in this study.

The out-of-sample tests attest to the usefulness of shrinkage approaches

in portfolio forecasting. One could increase the smoothness of the informed

Bayesian solution by increasing the confidence in the in prior. However, that

approach implicitly conflates the problem of distribution estimation and the

problem of selecting the best solution given the available information.

3.8 Conclusion

This paper develops a simple and flexible modeling approach for incorporat-

ing general priors into the portfolio estimation problem without requiring the

specification of a parametric distribution family. I construct a nonparametric

approximation to the predictive distribution of returns by restricting the set

of possible return outcomes in candidate distributions under the posterior to

returns realized in the sample. This allows me to sample from the posterior

by MCMC. Given a resampled set of draws from the posterior, the estimator

for the investor’s utility expectation reduces to a simple weighted sum over the

sample outcomes.

I apply the discrete-Bayesian estimator to an analysis of a portfolio estima-
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tion problem under the prior belief that all portfolio weights are positive. In the

simulation analysis, I examine the problem of allocating across five assets with

asset correlations greater than 0.5. Such problems are particularly thorny for

traditional mean variance analysis as estimation error in the returns can result

in solutions that leverage similar assets against each other.

In a simulation analysis, I examine the performance of the discrete-Bayesian

model for a five asset problem given an investor with prior belief that positive

weights are positive. I find that the discrete-Bayesian policy with informed

prior performs on par with models that impose short sale constraints and un-

derperforms the 1/N portfolio. Thus, despite introducing bias, smoothing type

estimators such as the short-sales constrained and 1/N models are as useful to

the investor as conditioning on a prior that is true. The benefits of regularizing

are further demonstrated in an out-of-sample study on three historical asset

sets.

This paper does not extend the analysis of the portfolio allocation problem

to the analysis of regularization of estimators in the presence of additional infor-

mation. The analysis of regularization versus informed Bayesian and statistical

estimators is a fertile and open area for future research. The implications of

more general forms of regularization is, itself, a new area of research in the

portfolio choice field. It will be interesting to address the question of whether

portfolio forecasts can be improved by combining portfolio forecasts that incor-

porate non-data information with regularization of the optimization problem.
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Table 3.1: Portfolio Choice Models
This table lists portfolio allocation models that are evaluated in the simulation
and out of sample tests.

Model Description

Discrete Bayesian Models

Bayesian Full Prior Portfolio estimated from empirical distribution
with probability weights tuned to reflect prior
beliefs. Bayesian techniques are used to condi-
tion observation weights on priors.

Bayesian No Prior Portfolio estimated assuming an investor with
no prior beliefs.

Plug-in Models

Mean variance Portfolio estimated using sample estimates for
mean returns and covariances.

Mean variance with diffuse prior Mean variance model with estimation uncer-
tainty accounted for via the introduction of dif-
fuse priors for mean and variance.

Best two fund Portfolio estimated using sample estimates for
means and covariance matrix with fixed shrink-
age coefficient chosen to optimize expected out
of sample performance of the model.

Estimated two fund Portfolio estimated using sample estimates for
means and covariance matrix with shrinkage co-
efficient estimated from data.

Estimated three fund Portfolio estimated using sample estimates of
means and covariance matrix. Portfolio formed
by combining standard mean variance portfolio,
minimum variance portfolio and risk-free asset
with coefficients estimated from data.

Mean variance - no short Mean variance portfolio with no-short-sales con-
straint.

Minimum variance Global mimimum variance portfolio.

1/N Portfolio formed by placing equal weights in
each asset.

Portfolio Resampling Models

Averaged weights Portfolio formed by averaging over resampled
weights. Each vector of resampled weights is
computed by mean variance for using resampled
data.

Averaged weights - no short sales As above but with no-short-sales constraints ap-
plied to each weights calculation.
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Table 3.2: Simulation Parameters
This table lists parameters of the multivariate normal distribution used to gen-
erate return samples for the simulations.

Asset:
1 2 3 4 5

Means

0.64 0.58 0.66 0.68 0.69

Standard Deviations

4.44 4.08 5.22 4.99 4.89

Correlation Matrix

1.00 0.81 0.73 0.70 0.88
0.81 1.00 0.71 0.68 0.87
0.73 0.71 1.00 0.63 0.73
0.70 0.68 0.63 1.00 0.70
0.88 0.87 0.73 0.70 1.00

Mean Var. Wts. (γ = 5)

0.21 0.25 0.08 0.22 0.01
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Table 3.3: Posterior Distribution Given a Simulated Sample: Summary Statis-
tics
This table lists summary statistics for the posterior distribution of asset returns
given a simulated data set of length T = 120 and prior information. The data
set consists of asset returns for five assets and is generated from the multivariate
normal distribution described in Table 2. The first panel shows summary statis-
tics of the random return sequence. Subsequent panels show averages of return
means and standard deviations as well as implied portfolio weights. The three
distribution summary statistics are averaged over 12500 distributions drawn
from the posterior. Each panel corresponds to a different prior specification.
The second panel is the no prior case. In the next three panels, the prior co-
efficients {c1, c2, c3} reflect investor belief that i) the global minimum variance
portfolio has return greater than the risk-free asset, ii) optimal portfolio weights
are positive, and iii) the grand mean of returns is not higher than the grand
mean of the sample or 5% per annum - whichever is higher.
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Table 3.3: (continued)

Asset: Avg.
1 2 3 4 5

Sample Statistics

mean 0.75 0.77 0.78 0.96 1.07 0.87
std. dev. 4.33 4.24 4.92 4.98 4.64 4.62
weight -0.96 -0.20 0.08 0.48 1.56 0.19
Prior: none

mean 0.71 0.73 0.76 0.94 1.01 0.83
[0.29] [0.27] [0.30] [0.31] [0.30]

std. dev. 4.28 4.17 4.87 4.89 4.60 4.56
[0.19] [0.18] [0.22] [0.23] [0.21]

weight -0.96 -0.22 0.12 0.53 1.52 0.19
[0.70] [0.65] [0.44] [0.37] [0.75]

Prior: c1 = Yes c2 = 20 c3 = 0

mean 1.13 1.09 1.11 1.16 1.26 1.15
[0.24] [0.23] [0.24] [0.26] [0.28]

std. dev. 4.24 4.17 4.76 4.85 4.60 4.52
[0.19] [0.16] [0.22] [0.19] [0.18]

weight 0.17 0.20 0.26 0.33 0.52 0.30
[0.21] [0.23] [0.23] [0.27] [0.34]

Prior: c1 = Yes c2 = 20 c3 = 100

mean 0.80 0.76 0.74 0.84 0.87 0.80
[0.10] [0.09] [0.11] [0.14] [0.11]

std. dev. 4.20 4.11 4.66 4.86 4.50 4.47
[0.15] [0.20] [0.20] [0.19] [0.17]

weight 0.15 0.18 0.15 0.27 0.32 0.21
[0.18] [0.19] [0.17] [0.22] [0.25]

Prior: c1 = Yes c2 = 200 c3 = 100

mean 0.81 0.78 0.79 0.84 0.89 0.82
[0.08] [0.08] [0.11] [0.12] [0.10]

std. dev. 4.16 4.06 4.66 4.82 4.50 4.44
[0.15] [0.19] [0.19] [0.17] [0.17]

weight 0.16 0.19 0.21 0.24 0.32 0.22
[0.15] [0.17] [0.17] [0.20] [0.23]

119



Table 3.4: Monte Carlo Statistics for Predictive Distributions
This table lists the average across simulations of summary statistics for the
predictive distributions of returns for investors with different prior specifications.
The first panel shows predictive return means averaged across simulations. The
second panel shows return standard deviations. Simulation standard deviations
are listed in square brackets. For each simulation, return series are drawn from
the multivariate normal distribution specified in Table 2. The prior coefficients
{c1, c2, c3} reflect investor beliefs that i) the global minimum variance portfolio
has return greater than the risk-free asset, ii) optimal portfolio weights are
positive, and iii) the grand mean of returns is not higher than the grand mean
of the sample or 5% per annum - whichever is higher.

Asset: AVG
Prior Model 1 2 3 4 5
Average Return Means

No prior 0.66 0.61 0.66 0.70 0.73 0.67
[0.39] [0.36] [0.46] [0.44] [0.43]

c1 = Y c2 = 20 1.10 1.01 1.18 1.14 1.23 1.13
[0.28] [0.26] [0.30] [0.31] [0.31]

c1 = Y c2 = 20 c3 = 100 0.67 0.61 0.72 0.70 0.75 0.69
[0.26] [0.24] [0.28] [0.29] [0.29]

c1 = Y c2 = 200 c3 = 100 0.68 0.62 0.73 0.70 0.76 0.70
[0.26] [0.24] [0.29] [0.29] [0.30]

c1 = Y c2 = 20 c3 = 0 c4 = 100 0.66 0.61 0.70 0.69 0.74 0.68
[0.35] [0.32] [0.39] [0.37] [0.39]

Average Return Standard Deviations

No prior 4.41 4.07 5.18 4.96 4.86 4.70
[0.28] [0.27] [0.35] [0.31] [0.30]

c1 = Y c2 = 20 4.35 4.02 5.12 4.91 4.80 4.64
[0.29] [0.27] [0.36] [0.32] [0.32]

c1 = Y c2 = 20 c3 = 100 4.25 3.92 5.01 4.81 4.68 4.53
[0.27] [0.26] [0.35] [0.31] [0.30]

c1 = Y c2 = 200 c3 = 100 4.25 3.92 5.00 4.80 4.68 4.53
[0.28] [0.26] [0.35] [0.31] [0.31]

c1 = Y c2 = 20 c3 = 0 c4 = 100 4.14 3.83 4.92 4.71 4.56 4.43
[0.27] [0.26] [0.35] [0.31] [0.29]
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Table 3.5: Monte Carlo Averages of Estimated Allocations
This table lists estimated allocations averaged across return simulations. Re-
sults are displayed for different prior specifications. For each simulation,
T = 120 returns are drawn from the multivariate normal distribution specified
in Table 2. A risk aversion coefficient of five is assumed for the portfolio calcu-
lations. The first panel shows allocations estimated using the discrete Bayesian
model. The portfolio weights are the mean variance optimal weights given the
estimated predictive distribution of returns. The second panel shows allocations
estimated by averaging portfolio weights implied by a set of distributions sam-
pled from the posterior. Mean variance optimal allocations are computed for
each distribution in the investor’s posterior draw, and allocations are set to the
average of these allocations. Standard deviations across simulations are listed in
square brackets. The prior depends on three parameters. c1 indicates investor
belief that the global minimum variance portfolio has higher return than the
risk-free rate. c2 determines the strength of investor belief in the positivity of
portfolio weights. c3 determines the strength of the investor’s prior view that
the grand mean of the asset returns does not exceed that of the sample.
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Table 3.5: (Continued)

Asset Avg. Avg.
Prior Model 1 2 3 4 5 w |w|
Discrete Bayesian

No prior 0.21 0.33 0.03 0.22 0.06 0.14 0.67
[0.92] [1.04] [0.64] [0.61] [1.06]

c1 = Y c2 = 20 0.29 0.34 0.22 0.30 0.23 0.23 0.28
[0.23] [0.25] [0.21] [0.27] [0.19]

c1 = Y c2 = 20 0.18 0.22 0.14 0.20 0.14 0.15 0.18
c3 = 100 [0.15] [0.16] [0.13] [0.19] [0.13]

c1 = Y c2 = 200 0.18 0.20 0.15 0.20 0.15 0.15 0.18
c3 = 100 [0.13] [0.13] [0.11] [0.17] [0.12]

c1 = Y c2 = 20 0.20 0.26 0.13 0.22 0.15 0.16 0.20
c3 = 0 c4 = 100 [0.20] [0.27] [0.23] [0.27] [0.18]

Portfolio Resampling

No prior 0.23 0.34 0.03 0.22 0.05 0.14 0.70
[0.96] [1.08] [0.66] [0.62] [1.09]

c1 = Y c2 = 20 0.29 0.34 0.22 0.30 0.23 0.23 0.28
[0.24] [0.26] [0.21] [0.28] [0.20]

c1 = Y c2 = 20 0.19 0.22 0.14 0.20 0.15 0.15 0.18
c3 = 100 [0.15] [0.16] [0.14] [0.20] [0.13]

c1 = Y c2 = 200 0.18 0.20 0.15 0.20 0.16 0.15 0.18
c3 = 100 [0.13] [0.13] [0.11] [0.17] [0.12]

c1 = Y c2 = 20 0.20 0.26 0.13 0.22 0.15 0.16 0.20
c3 = 0 c4 = 100 [0.20] [0.29] [0.23] [0.32] [0.21]
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Table 3.6: Monte-Carlo Average Out-of-Sample Utilities
This table shows out-of-sample utility averaged across simulations. A risk aver-
sion coefficient of five is assumed for the portfolio calculations. The first panel
shows results for allocations estimated using the discrete Bayesian model. The
portfolio weights are the mean variance optimal weights given the estimated
predictive distribution of returns. The second panel shows results for alloca-
tions estimated by portfolio resampling. Mean variance optimal alocations are
computed for each distribution in the investor’s posterior draw, and allocations
are set to the average of these allocations. Standard deviations across simula-
tions are listed in square brackets. The prior depends on three parameters. c1

indicates investor belief that the global minimum variance portfolio has higher
return than the risk-free rate. c2 determines the strength of investor belief in
the positivity of portfolio weights. c3 determines the strength of the investor’s
prior view that the grand mean of the asset returns does not exceed that of the
sample.

ŪOOS

Prior Model T = 60 T = 120 T = 240
Discrete Bayesian

No prior -1.01 -0.27 0.02
[1.01] [0.43] [0.17]

c1 = Y c2 = 20 -0.03 0.13
[0.32] [0.15]

c1 = Y c2 = 20 c3 = 100 -0.01 0.16 0.20
[0.57] [0.18] [0.09]

c1 = Y c2 = 200 c3 = 100 0.16 0.20
[0.18] [0.09]

c1 = Y c2 = 20 c3 = 0 c4 = 100 -0.28 0.08 0.16
[0.95] [0.30] [0.14]

Portfolio Resampling

No prior -1.16 -0.30 0.01
[1.12] [0.45] [0.18]

c1 = Y c2 = 20 -0.04 0.13
[0.34] [0.15]

c1 = Y c2 = 20 c3 = 100 -0.02 0.16 0.20
[0.60] [0.19] [0.09]

c1 = Y c2 = 200 c3 = 100 0.16 0.20
[0.18] [0.09]

c1 = Y c2 = 20 c3 = 0 c4 = 100 -0.31 0.06 0.15
[1.02] [0.37] [0.14]
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Table 3.7: Monte-Carlo Average Portfolio Allocations for Alternative Portfolio
Estimates
This table lists means across simulations of investment weights computed using
different allocation models. The data set consists of 120 monthly returns for
all five assets in the simulated portfolio. Standard deviations are reported in
square brackets.

Asset Avg. Avg.
Model 1 2 3 4 5 w |w|
Full information

Mean variance 0.21 0.25 0.08 0.22 0.01 0.15

Global minimum 0.40 0.83 0.05 0.18 -0.45 0.20
variance

Plug in

Mean variance 0.21 0.32 0.03 0.21 0.07 0.17 0.67
[0.92] [1.02] [0.63] [0.59] [1.04]

Mean variance: 0.19 0.30 0.03 0.20 0.06 0.16 0.62
diffuse prior [0.86] [0.95] [0.59] [0.56] [0.97]

Best two fund 0.19 0.29 0.02 0.19 0.06 0.15 0.60
[0.82] [0.91] [0.57] [0.53] [0.93]

Est. two fund 0.08 0.14 0.01 0.09 0.04 0.07 0.27
[0.44] [0.50] [0.31] [0.29] [0.53]

Est. three fund 0.25 0.49 0.04 0.15 -0.18 0.15 0.35
[0.41] [0.53] [0.27] [0.25] [0.50]

Mean variance: 0.19 0.23 0.14 0.22 0.15 0.19 0.19
no short sales [0.33] [0.36] [0.24] [0.32] [0.31]

Minimum variance 0.41 0.82 0.06 0.18 -0.46 0.20 0.39
[0.17] [0.17] [0.11] [0.10] [0.19]

1/N 0.20 0.20 0.20 0.20 0.20 0.20 0.20
[0.00] [0.00] [0.00] [0.00] [0.00]

Portfolio resampling

Resampling: 0.20 0.25 0.17 0.24 0.15 0.20 0.20
no short sales [0.29] [0.31] [0.21] [0.28] [0.26]
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Table 3.8: Monte-Carlo Average Out-of-Sample Utility for Alternative Portfolio
Estimates
This table shows out-of-sample utility averaged across simulations for different
portfolio selection models listed in Table 1.

ŪOOS

Model T = 60 T = 120 T = 240
Full information

Mean variance 0.49 0.49 0.49

Global minimum variance 0.20 0.20 0.20

Plug in

Mean variance -0.97 -0.25 0.03
[0.98] [0.42] [0.17]

Mean variance diffuse prior -0.66 -0.19 0.04
[0.73] [0.36] [0.16]

Best two fund -0.50 -0.15 0.05
[0.60] [0.33] [0.15]

Estimated two fund -0.04 0.04 0.10
[0.25] [0.17] [0.09]

Estimated three fund -0.05 0.09 0.17
[0.34] [0.19] [0.10]

Mean variance - no short sales -0.13 0.09 0.16
[0.57] [0.21] [0.11]

Minimum variance 0.18 0.20 0.20
[0.06] [0.06] [0.06]

1/N 0.22 0.22 0.22
[0.06] [0.06] [0.06]

Portfolio resampling

Resampling: no short sales -0.17 0.09 0.17
[0.67] [0.23] [0.11]

125



Table 3.9: Out-of-Sample Utility for Discrete-Bayesian Estimator
This table shows out-of-sample utilities that would have been realized by an
investor using the discrete-Bayesian model with informed prior to set their al-
location strategy. The investor has prior belief in the positivity of the portfolio
weights. The investor does not believe that the mean of the asset return means
is higher than that observed in the return sample. The investor rebalances every
three months. The investor’s data set at each investment month includes the
previous T monthly returns. The three panels correspond to three data sets:
the five- and ten-industry portfolios of Fama and French, and a portfolio of
four-country indices from Morgan Stanley Capital International.

T = 120
Five Ten Four

Industries Industries Countries
Jan1962-Jan2007

Nonparametric Bayes -0.47 -0.86
Resampling with prior -0.50 -1.06

Jan1972-Jan2007

Nonparametric Bayes -0.26 -0.48
Resampling with prior -0.21 -0.74

Jan1985-Dec2006

Nonparametric Bayes -0.22 -0.39 0.03
Resampling with prior -0.19 -0.49 -0.01

Jan1995-Dec2006

Nonparametric Bayes -0.23 -0.60 -0.20
Resampling with prior -0.30 -0.66 -0.33
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Table 3.9: (Continued)

T = 240
Five Ten Four

Industries Industries Countries
Jan1972-Jan2007

Nonparametric Bayes -0.12 -0.16
Resampling with prior -0.07 -0.22

Jan1985-Dec2006

Nonparametric Bayes 0.04 -0.00
Resampling with prior 0.10 -0.08

Jan1995-Dec2006

Nonparametric Bayes 0.04 0.08 0.03
Resampling with prior 0.10 0.05 0.07
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Table 3.10: Out-of-Sample Utility for Alternative Models
This table shows out-of-sample utilities that would have been realized by an
investor using the discrete-Bayesian model with informed prior to set their al-
location strategy. The investor has prior belief in the positivity of the portfolio
weights. The investor does not believe that the mean of the asset return means
is higher than that observed in the return sample. The investor rebalances every
three months. The investor’s data set at each investment month includes the
previous T monthly returns. The three panels correspond to three data sets:
the five- and ten-industry portfolios of Fama and French, and a portfolio of
four-country indices from Morgan Stanley Capital International.
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Table 3.10: (Continued)

T = 120
Five Ten Four

Industries Industries Countries
Jan1962-Jan2007

Mean variance -0.81 -1.68
Estimated two fund -0.20 -0.22
Estimated three fund -0.09 -0.06
Mean variance - no short sales -0.37 -0.60
Minimum variance 0.04 0.09
1/N 0.04 0.09
Average - no short sales -0.36 -0.62

Jan1972-Jan2007

Mean variance -0.72 -1.40
Estimated two fund -0.10 -0.07
Estimated three fund -0.09 -0.03
Mean variance - no short sales -0.19 -0.30
Minimum variance 0.16 0.25
1/N 0.07 0.13
Average - no short sales -0.19 -0.31

Jan1985-Dec2006

Mean variance -0.35 -1.15 -0.19
Estimated two fund -0.03 -0.04 -0.01
Estimated three fund -0.00 0.03 0.01
Mean variance - no short sales -0.07 -0.21 -0.06
Minimum variance 0.35 0.39 0.35
1/N 0.34 0.36 0.29
Average - no short sales -0.08 -0.24 -0.08

Jan1995-Dec2006

Mean variance -0.40 -1.06 -0.30
Estimated two fund -0.08 -0.08 -0.09
Estimated three fund -0.07 -0.00 -0.03
Mean variance - no short sales -0.20 -0.45 -0.19
Minimum variance 0.34 0.27 0.24
1/N 0.40 0.41 0.11
Average - no short sales -0.22 -0.47 -0.22
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Table 3.10: (Continued)

T = 240
Five Ten Four

Industries Industries Countries
Jan1972-Jan2007

Mean variance -0.30 -0.57
Estimated two fund -0.11 -0.10
Estimated three fund -0.10 -0.03
Mean variance - no short sales -0.10 -0.14
Minimum variance 0.17 0.27
1/N 0.07 0.13
Average - no short sales -0.07 -0.08

Jan1985-Dec2006

Mean variance 0.06 -0.35
Estimated two fund 0.03 -0.01
Estimated three fund 0.02 0.05
Mean variance - no short sales 0.16 0.13
Minimum variance 0.43 0.44
1/N 0.34 0.36
Average - no short sales 0.19 0.20

Jan1995-Dec2006

Mean variance -0.00 -0.48 0.07
Estimated two fund 0.03 -0.05 0.08
Estimated three fund 0.00 0.05 0.06
Mean variance - no short sales 0.20 0.07 0.05
Minimum variance 0.52 0.35 0.16
1/N 0.40 0.41 0.11
Average - no short sales 0.24 0.19 0.05
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Figure 3.1: Histogram of Posterior Returns for a Simulated Data Set

This figure shows histograms of mean returns across 12500 Markov chain Monte

Carlo draws from the posterior distribution of an informed investor. The return

data is a simulated series of returns of length T = 120 from a five dimensional

multivariate normal distribution. The parameters of the underlying distribution

are chosen to reflect historical values for the five-industries data set of Fama and

French. The investor has a prior that reflects a belief in the positivity of returns.

The investors prior coefficients are c1 = 20, c2 = 0, and c3 = 0. The line plots

are probability density functions of the returns of the generating distribution

(dotted) and the maximum likelihood normal distribution given the sample

(solid).
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Figure 3.2: Histogram of Posterior Weights

This figure shows histograms of optimal portfolio weights implied by 12500

distributions drawn from the posterior distribution with prior belief in the pos-

itivity of portfolio weights. The return data is a simulated series of returns of

length T = 120 from a five dimensional multivariate normal distribution. The

parameters of the underlying distribution are chosen to reflect historical values

for the five industries data set of Fama and French. The posterior is sampled

via a Markov chain Monte Carlo algorithm. The investor has a prior that re-

flects a belief in the positivity of returns. The investor’s prior coefficients are

c1 = 1, c2 = 20, and c3 = 0. The rust colored histograms in the background

depict histograms of optimal portfolio weights under the no-arbitrage prior ony

(c1 = 1, c2 = 0, and c3 = 0).
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Figure 3.3: Histogram of Posterior Returns with Prior Against Return Bias

This figure shows histograms of mean returns across 12500 Markov chain Monte

Carlo draws from the posterior distribution of an informed investor. The return

data is a simulated series of returns of length T = 120 from a five dimensional

multivariate normal distribution. The parameters of the underlying distribution

are chosen to reflect historical values for the five industries data set of Fama

and French. The investor has a prior that reflects a belief in the positivity of

returns. The investors prior coefficients are c1 = 1, c2 = 20, and c3 = 100. The

line plots is the maximum-likelihood normal distribution given the sample.
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Figure 3.4: Histogram of Posterior Weights with Prior Against Return Bias

This figure shows histograms of weights implied by distributions drawn from the

posterior. 12500 Markov chain Monte Carlo draws from the posterior distribu-

tion of an informed investor. The return data is a simulated series of returns of

length T = 120 from a five dimensional multivariate normal distribution. The

parameters of the underlying distribution are chosen to reflect historical values

for the five-industries data set of Fama and French. The investor has a prior

that reflects a belief in the positivity of returns. The investor’s prior coefficients

are c1 = 1, c2 = 20, and c3 = 100.
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Figure 3.5: Histogram of Posterior Weights with Strong Prior

This figure shows histograms of weights implied by distributions drawn from the

posterior. 12500 Markov chain Monte Carlo draws from the posterior distribu-

tion of an informed investor. The return data is a simulated series of returns of

length T = 120 from a five dimensional multivariate normal distribution. The

parameters of the underlying distribution are chosen to reflect historical values

for the five industries data set of Fama and French. The investor has a prior

that reflects a belief in the positivity of returns. The investor’s prior coefficients

are c1 = 200, c2 = 1000 and c3 = 0.
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Figure 3.6: Histogram of Predictive Return Distribution under Different Priors

This figure shows histograms of predictive distributions under different prior

assumptions for a simulated return series. The predictive distributions are based

on observation weights computed by summing over 12500 distributions drawn

from the discrete-Bayesian posterior.
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Figure 3.7: Histogram of Asset Weights Across Simulations

This figure shows histograms of estimated optimal allocations across a set of

250 simulated historical return series. The figures show an investor’s allocation

to the first asset in a five asset problem. The returns are simulated from a

multivariate normal distribution with mean and covariance parameters that

are reflective of those of United States industry portfolios. The investor’s risk

aversion parameter is 5. For the resampling methods, 12500 distributions are

drawn by Markov Chain Monte Carlo from the set of discrete distributions

whose domain is the sample returns. Plot (a) shows portfolio weights estimated

by an informed Bayesian who has prior views against the presence of negative

portfolio weights, and believes the average of the expected returns across assets

is close to the average return across assets in the sample. The Bayesian computes

expectations by averaging over resampled distributions that take into account

their priors. Plot (b) shows portfolio estimated by an uninformed Bayesian.

Plots (c) and (d) shows portfolio weights estimated by resampling. For plot(c),

the investor uses the same set of distributions as the informed Bayesian, and

computes portfolio weights for each draw with short sale constraints imposed,

and then takes on average over the ’resampled’ weights. For plot(d), the investor

uses the same set of distributions as the uninformed Bayesian. Plot (e) shows

portfolio weights estimated by an investor who use sample values to proxy for

expected returns and means, but imposes short sale constraints on the risky

asset weights.
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Figure 3.7 (continued)
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Chapter 4

Conclusion

In this thesis, I examine whether supplementing historical returns data yields

a significant improvement in risk-adjusted expected return for an investor. In

Chapter 2, I find that return variability can severely limit expected gains from

diversification and conditioning on predictor variables. In Chapter 3, I demon-

strate that, even when granted a prior that is correct, an investor may have

trouble attaining risk-adjusted out-of-sample return that matches that of biased

estimators such as the 1/N model (DeMiguel et al. (2007)). In this chapter, I

discuss my results in relation to recent research and describe some promising

avenues for future research.

The results of both Chapters 2 and Chapters 3 reflect the difficulty of es-

timating optimal portfolios from limited information available for return fore-

casting. Even with correct additional information, it is difficult to outperform

biased estimates such as short-sales constrained, minimum-variance and 1/N

portfolios. However, the results should not discourage an investor from incor-

porating as much information as they have available into their portfolio choice

problem.

It is important to differentiate the underlying motivation and objective of

the conditional estimation models of Chapters 2 and 3 and smoothing estima-

tors such as the 1/N model. The Bayesian approach aims to obtain the best

estimate possible of the underlying distribution of returns by supplementing the

information provided by the data.

In contrast, the 1/N model and models that impose short sales constraints

are examples of smoothing or regularization techniques. Regularization tech-

niques aim to improve the robustness of estimates by smoothing the optimiza-

tion solution. This smoothing is achieved by adding functions that penalize

solution variability to the Lagrangian of the optimization problem.69 Statis-

69Or, equivalently, placing constraints on the solution (see Jagannathan and Ma (2003)).
Hence, short sales constraints are an example of a regularization technique.
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ticians use smoothing techniques to deal with estimation problems for which

data is limited or highly collinear. Portfolio allocation qualifies as just such

a problem.70 Asset returns are often highly collinear. For example, DeMiguel

et al. (2007) demonstrate that a return history of 250 years would be required

to match the 1/N strategy for an example problem with 25 assets.

A key distinguishing feature of Bayesian and regularization methods is that

Bayesian estimators are consistent whereas regularization may be biased even in

large sample. Also, the aim of Bayesian methods is to improve the distribution

estimate, whereas regularization aims to improve the robustness of small sample

estimates by constraining the solution vector. Recent research has focused on

implementations based on one or the other of these approaches. For example,

Chevrier and McCulloch (2008), Tu and Zhou (2008), and Chapter 3 of this

thesis, consider economically motivated priors in a Bayesian context, whereas

DeMiguel et al. (2008) focus on improving estimates by constraining norms of

the vector of portfolio weights.

This division between Bayesian portfolio estimates and those based on in-

formed priors is artificial. The objective of the model should be to first obtain

the best estimate of the underlying return distribution that is possible given the

information at hand, and, second, to then apply an appropriate regularization

if the effective sample size given the data and the other information remains too

small to obtain consistently robust solutions.

To illustrate, we can add a regularization term to the estimator first dis-

cussed in Chapter 1 (see equation 1.2) and applied throughout this thesis.

max
w

T∑
t=1

atU(r̃t, w)− κ||w||p, (4.1)

where κ is a parameter that determines the strength of the regularization and

p > 0 determines the norm.71

It seems likely that the optimal portfolio rule will be one that incorporates

all the best available information plus some regularization. This suggests an

interesting avenue for future research into both the impact of predictability and

70Optimal portfolio weights can be expresses as parameters of a least squares regression
(Britten-Jones (1999)).

71A p-norm regularization is used for illustration. Other regularization functions are possi-
ble. See equation 1.2 and surrounding text for definitions of other notation.
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the importance of the positive-weights prior. Would out-of-sample performance

be improved by an estimator of the form 4.1?

On a related note, the estimation formulation 4.1 suggests an alternative

means of assessing the impact of new information on portfolio estimates. The

current paradigm for assessing a portfolio rule that incorporates new information

is to compare its performance to various ad hoc regularized portfolios such as

minimum variance, 1/N , or short-sales constrained. Instead, one might ask

the more subtle question of whether incorporation of the information reduces

the degree of regularization required to obtain an admissible solution, i.e., does

the new information allow us to obtain equivalent or improved out-of-sample

performance as the previous regularized solution but with a reduced weight

on the regularization penalty function. Given the inherent instability of the

portfolio problem, this softer criterion is likely to be a more suitable basis for

inference when analyzing the economic significance of information beyond that

provided by historical returns.
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Appendix A

Bandwidth Specification

There is considerable leeway in the specification of the weighting function and

bandwidth used in the non-parametric estimator. However, the properties of

the solution are much more sensitive to choice of bandwidth than they are to

choice of weighting function72. I set the weighting function equal to the density

function of the normal distribution73.

Bandwidth choice is a classic example of the tradeoff between bias and vari-

ance. If the bandwidth is very narrow then few observations receive any weight

in the estimator for a given value z of the conditioning variable. This leads to

high variance. As the bandwidth is broadened, variance of the estimator drops

as more data points receive significant weights, but bias increases as points from

states farther away from the z of interest gain more weight in the estimator. A

standard approach to balancing this tradeoff is to minimize mean squared error

of the estimates. Consistent with Brandt (1999) I consider bandwidths of the

form

hT = λσT ( −1
K+4), (A.1)

where σ is the unconditional variance of the state variable, and λ is a compli-

cated function of unobservable functions of the moment conditions and condi-

tioning variable.

In practice, there are a number of methods of choosing λ, and none is ideal.

For example Brandt (1999) uses leave-one-out cross validation. For every obser-

vation zt, α(zt) is estimated both with and without including zt in the data set.

The bandwidth parameter λ is selected that minimizes the sum of the squared

differences between the two estimates. My experiments (not reported) indicate

that the λ selected by leave-one-out cross validation tends to be overly conser-

vative. Instead I make use of a rule of thumb proposed by Silverman (1986).

72See Hardle (1990) for a summary and discussion of the relative importance of weighting
function and bandwidth to asymptotic convergence of nonparametric regression estimators.

73This is a special case of the product of normal densities used by Brandt (1999).
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The standard deviation σ in the above formula is replaced by the interquartile

range R, and bandwidths are set to hT = λRT−1/(K+1). I report results for

λ = 0.79 which is consistent with Paye (2004). Recalculation of results of, for

example, figures 1-11, for bandwidths within 25% does not significantly change

the results.
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Appendix B

Data Tuning for a Portfolio

Choice Problem

This appendix presents two formulations that make use of data tuning to impose

the restriction that all portfolio weights are positive.

Assume an investor seeking to choose allocations to N assets plus a risk free

asset. The standard investor’s problem is

max
w

E [U(r̃, w)] , (B.1)

where r̃ is a random return over the investment period and w is a vector of

portfolio allocations.

Suppose we wish to find a solution to the above problem under the constraint

that all weights are positive. The standard approach is to impose the constraint

w ≥ 0. Data tuning is an alternative approach that seeks to adjust the data

set until the solution to the unconstrained problem satisfies the nonnegativity

requirement for the portfolio allocations. Two approached have been proposed.

The first is to shift the probabilities associated with each observation until

the most likely multinomial distribution is found that satisfies the constraint.

This approach is applied to bootstrap inference by Hall and Presnell (1999).

The formulation is given by

max
T∑

t=1

log pt (B.2)
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subject to

w∗ = arg max
T∑

t=1

ptU(rt, w) > 0.

T∑
i=1

pt = 1 (B.3)

The second approach is to perturb the data vector the minimum distance

required to yield a weight vector that satisfies the required constraint. Choi

and Hall (1999) and Choi et al. (2000) refer to this latter approach as data

sharpening and provide analysis and applications. In this case, the perturbed

data set S = [s1 : . . . : sT ] is found by solving

min
S

D(R− S) (B.4)

subject to

w∗ = arg max
T∑

t=1

U(st, w) > 0,

where D(·) is a distance metric and R = [r1 : . . . : rT ] is the N × T matrix of

return data.
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Appendix C

Sampling from the Posterior

I sample from the posterior (3.8) using an implementation of the Metropolis

Hastings algorithm.74 As described in Gamerman and Lopes (2006), an arbi-

trary posterior can be sampled by drawing from a Markov chain that has the

posterior as a limiting distribution. The Metropolis Hastings is a means of con-

structing such a chain for arbitrary posteriors. The Markov chain is generated

by stepping through the parameter space. At each step a proposal distribution

is drawn from a transition kernel π(ξ|δ). The chain steps to the proposed draw

with probability given by the acceptance level

a(ξ, δ) = min

{
1,

qpost(δ|X)π(ξ|δ)
qpost(ξ|X)π(δ|ξ)

}
. (C.1)

If the transition is rejected, the chain remains at the current distribution δ until

the next step.

The transition kernel must allow for efficient spanning of a large dimensional

parameter space, and be computationally feasible. I construct such a kernel as

a mixture of a discrete uniform distribution over the set of observation indices

{1, . . . , T} and a Beta distribution. The discrete draw i UNIFORM({1, . . . , T})
identifies an individual pi. The proposal is then formed by drawing a new value

of for pi from a Beta distribution, and adjusting the remaining probabilities in

δ such that the summation condition is satisfied.

The transition kernel has some similarity to sequential transition schemes

that update individual parameter either one at a time or in blocks. However,

while a single pi the focus of the proposed jump, all the remaining components

of the probability vector are also altered to satisfy the summation condition.

As such, the kernel describes a standard Metropolis Hastings algorithm.

Let α and β be the parameters of the Beta distribution. The parameters

74The high dimensionality of the parameter space renders more traditional direct sampling
approaches computationally infeasible.
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are set to achieve a distribution whose mode is equal to the current pi. This is

achieved by setting α = 1 + pi/v and β = 1 − pi/v + 1/v. When α > 0 and

β > 0, the mode of the β distribution is equal to (α− 1)/(α + β − 2) = pi. The

variance of the Beta distribution is also a function of its parameters,

αβ

(α + β)2(α + β + 1)
=

(
1 + pi

v

) (
1 + pi

v
+ 1

v

)
(
2 + 1

v

) (
3 + 1

v

) ≈ v (C.2)

where the approximate equality holds as long as both v and pi are small. The

latter condition is likely to hold if T is large since, in that case, any one pi is

likely to be small. The choice of v determines the average size of jumps in the pa-

rameter space and, by extension, the acceptance rate for proposal distributions.

The acceptance rate must be small enough to ensure that the Markov chain does

not get stuck at a single point, while at the same time the jumps must be large

enough to ensure that the chain visits spans enough of the parameter space to

ensure convergence in a reasonable number of iterations. Following recommen-

dations in Gamerman and Lopes (2006), I choose v to obtain an acceptance rate

between 0.35 and 0.5.

I use a standard sampling scheme. I generate a small number of Markov

chains m. I sample every k step of each chain until I accumulate 2n samples

from each chain. I drop samples from the first half of each chain to allow

convergence of the chain to the limiting distribution. The end result is nm

draws that can be used for inference based on the posterior and for computing

the predictive distribution. I list pseudocode for the Markov chain Monte Carlo

implementation in Algorithm 1.

Using convergence diagnostics described by Gamerman and Lopes [2006,

p.196-7], I find that convergence is achieved for the portfolio choice problems

considered in Section 3.6 with m = 5 and n = 2500.
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for c = 1 : # of chains do

Select a random start distribution δ0 = {p0
1, . . . , p

0
T} ;

b = 0;

for n = 1 : kb do

Select a random index i ∈ {1, . . . , T} ;
Draw p∗i ∼ Beta(εn−1

i , 1 + εn−1
i , 1− εn−1

i + εn−1
i /pn−1

i )

where εs
i = ps

i/v ;

Compute m =
1−p∗i

1−pn−1
i

;

Set p∗−i = pn−1
−i m ;

Compute posterior at proposal: qpost(δ
∗) ;

Compute acceptance probability

r =
qpost(δ

∗)
qpost(δn−1)

= mT−1 p∗i
pn−1

i

qpost(δ
∗)

qpost(δn−1)

τ(i, n− 1, ∗)
τ(i, ∗, n− 1)

where τ(i, s, l) = Betapdf(pl
i, 1 + εs

i , 1− εs
i + εs

i/p
s
i) ;

Draw u ∼ U(0, 1) ;
if u < r then

δb = δ∗

end
else

δn = δn−1

end
if (n mod k) = 0 then

b = b + 1; Store δb = δn

end

end

end

Algorithm 1: MCMC Algorithm for Drawing from the Discrete Posterior
Distribution

The above lists the Markov Chain Monte Carlo algorithm for drawing from the

posterior distribution of the informed Bayesian investor. The domain of the pos-

terior encompasses discrete distributions that assign positive probabilities to T

return outcomes. The notation is as follows. Beta(α, β) is the beta distribution

with parameters α and β and Betapdf(x, α, β) is its associated probability dis-

tribution function. δn is the vector of posterior parameters {pn
1 , . . . , p

n
i , . . . , pn

T}
indexed by n. pn

−i is the set of parameters of δn with pi excluded. b is total

number of draws to be saved, and k is the frequency that the chain is sampled.
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