

Tool-Based Capture and Exploration of
Software Architectural Design Decisions

by

Larix Lee

B.A.Sc., University of British Columbia, 2005

THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

in

The Faculty of Graduate Studies

(Electrical and Computer Engineering)

The University of British Columbia
(Vancouver)

February 2009

© Larix Lee, 2009

ABSTRACT

Developing software-intensive systems involves making many design decisions, some of

which are decisions that govern the architecture of the system. Since changes to these

architectural decisions affect many parts of the system being developed, design decisions

pertaining to the system architecture should be documented and the knowledge the decisions

contain should be explored. Many researchers and industry practitioners in the software

architecture and maintenance communities have identified this need for design decision

documentation as well as exploration. They have proposed design knowledge, rationale and

decision representation models, suggested requirements, and determined uses and challenges to

overcome when utilizing software architectural design decisions. Summarizing and integrating

the various works of these researchers and industry practitioners would better represent the

current state of research in exploring architectural knowledge and documenting design

decisions, thereby creating a common foundation for new discoveries to be built. I present a

new system-based tool that I developed called ADDEX, which attempts to unify the current

discoveries, models, requirements, and guidelines for design decisions. In addition to

integrating the various works together, the ADDEX tool is a system designed to take a holistic

approach to decision capture and exploration by explicitly supporting customized decision

capture processes for software development organizations. The tool also provides visualization

support to promote a better understanding of the software architecture through several decision

visualization aspects. I used ADDEX to acquire and display industry decision sets to

demonstrate the ability of the tool-based solution to capture and explore software architectural

design decisions. Combined with industry feedback, the decision sets help evaluate the tool

and verify that ADDEX met the requirements and guidelines described by the various

researchers and industry practitioners on which the integrated solution is based. Feedback from

industry provides insight into decision capturing and the practical use of decision visualization.

ii

TABLE OF CONTENTS
ABSTRACT.. ii
LIST OF TABLES ... v
LIST OF FIGURES .. vi
LIST OF ABBREVIATIONS..vii
ACKNOWLEDGEMENTS..viii
DEDICATION... ix
CHAPTER 1 INTRODUCTION .. 1

1.1 SIGNIFICANCE... 1
1.2 RESEARCH GOALS .. 2
1.3 CONTRIBUTIONS OF THIS THESIS.. 3
1.4 ORGANIZATION OF THIS THESIS ... 3

CHAPTER 2 KNOWLEDGE AND ARCHITECTURAL DESIGN DECISION REPRESENTATION..... 5
2.1 KNOWLEDGE AND DESIGN DECISIONS.. 5
2.2 DESIGN DECISION REPRESENTATION CHALLENGES AND REQUIREMENTS .. 7
2.3 DESIGN DECISION REPRESENTATION MODELS ... 10

2.3.1 Design Rationale.. 10
2.3.2 Design Decision Entities.. 11

2.4 COMPARING REPRESENTATION MODELS.. 12
2.5 SELECTING THE DECISION REPRESENTATION MODEL .. 16

2.5.1 Design Decision Ontology Model ... 19
CHAPTER 3 SYSTEM APPROACH TO DECISION CAPTURE AND EXPLORATION....................... 22

3.1 CHALLENGES AND REQUIREMENTS FOR DESIGN DECISION SYSTEMS... 23
3.1.1 Visualization Tool Requirements .. 27

3.2 USE CASES FOR DESIGN DECISIONS ... 29
3.2.1 Use Case Actors and Roles.. 29
3.2.2 Use Cases... 31

3.3 SELECTING THE USE CASES.. 33
3.4 SELECTING THE SYSTEM REQUIREMENTS... 35
3.5 MEETING SOME CHALLENGES .. 37

CHAPTER 4 DECISION CAPTURE AND VISUALIZATION SUPPORT .. 38
4.1 DECISION CAPTURE.. 39

4.1.1 Approaches to Decision Capture ... 40
4.1.2 Customized Decision Capture ... 47

4.2 DECISION VISUALIZATION.. 50
4.2.1 Visualization and Design Decisions .. 50
4.2.2 Essential Decision Visualization Aspects.. 52
4.2.3 Visualization and Use Cases.. 55

iii

CHAPTER 5 ARCHITECTURAL DECISION TOOL DESIGN.. 58
5.1 TOOL DESIGN OVERVIEW... 58

5.1.1 Decision Attributes .. 59
5.1.2 Users of the Tool ... 61
5.1.3 Decision Storage and Retrieval.. 61

5.2 DECISION CAPTURE TOOL IMPLEMENTATIONS... 62
5.2.1 Formal Elicitation .. 63
5.2.2 Lightweight Top-down Capture... 64
5.2.3 Lightweight Bottom-up Capture.. 67

5.3 DECISION VISUALIZATION TOOL IMPLEMENTATION... 68
5.3.1 Decision / Relationship Lists ... 69
5.3.2 Decision Structure Visualization ... 70
5.3.3 Decision Chronology Visualization... 72
5.3.4 Decision Impact Visualization... 74

5.4 COMPARISON WITH OTHER CURRENT DECISION TOOLS... 76
5.5 MEETING THE REQUIREMENTS ... 79

CHAPTER 6 EXPERIENCE WITH THE TOOLS.. 85
6.1 DEVELOPMENTAL SELF-TESTING ... 85
6.2 DECISION ACQUISITION.. 87

6.2.1 Industry Participants and Feedback ... 87
6.2.2 Decision Datasets and Findings... 89

6.3 VISUALIZATION STUDY WITH INDUSTRY .. 91
6.3.1 Industry Participation... 92
6.3.2 Feedback.. 93

6.4 TOOL USABILITY .. 93
6.4.1 Performing the Tasks... 95
6.4.2 Observations and Analysis .. 98
6.4.3 Tool Refinements .. 101

6.5 DECISION CAPTURE TOOL COMPARISON EXPERIMENT... 102
6.5.1 Experiment Overview.. 103
6.5.2 Experiment Results.. 103

CHAPTER 7 CONCLUSIONS AND SUMMARY ... 105
7.1 RESEARCH GOALS SUMMARY .. 105
7.2 CONTRIBUTIONS OF THIS WORK... 106
7.3 FUTURE WORK ... 107
7.4 CONCLUSION .. 109

REFERENCES... 111
APPENDIX A – ADDEX USER’S GUIDE.. 116
APPENDIX B – ETHICS APPROVAL ... 135
APPENDIX C – LIST OF PUBLICATIONS .. 138

iv

LIST OF TABLES

TABLE 1: ARCHITECTURAL DESIGN DECISION REPRESENTATION CHALLENGES ...8
TABLE 2: REQUIREMENTS FOR SOFTWARE DESIGN DECISION REPRESENTATION..9
TABLE 3: SUMMARY OF SEVERAL DECISION REPRESENTATION MODELS ...13
TABLE 4: MANDATORY AND OPTIONAL ATTRIBUTES OF ARCHITECTURAL KNOWLEDGE14
TABLE 5: ESSENTIAL AND OPTIONAL DOCUMENTATION OF ARCHITECTURAL DECISIONS15
TABLE 6: SUMMARY OF THE RESULTS FROM FALESSI’S TWO STUDIES ON DDRD INFORMATION IMPORTANCE.....15

TABLE 7: GROUPING THE RESULTS OF FALESSI’S TWO STUDIES ON DDRD INFORMATION IMPORTANCE16
TABLE 8: ATTRIBUTES OF DECISIONS ..19
TABLE 9: DECISION RELATIONSHIPS ...20
TABLE 10: DESIGN DECISION SYSTEM ISSUES AND CHALLENGES ..24
TABLE 11: REQUIREMENTS FOR ARCHITECTURAL KNOWLEDGE AND DESIGN DECISION SYSTEMS26
TABLE 12: VISUALIZATION TOOL REQUIREMENTS...27
TABLE 13: PASSIVE OR ACTIVE ROLES FOR ARCHITECTURAL KNOWLEDGE USE CASE ACTORS30
TABLE 14: USE CASE ACTORS FOR ARCHITECTURAL KNOWLEDGE AND DESIGN DECISIONS...................................30
TABLE 15: ARCHITECTURAL KNOWLEDGE (DESIGN DECISION) USE CASES..32
TABLE 16: COMPARING KRUCHTEN’S LIST WITH VAN DER VEN’S LIST OF USE CASES...33
TABLE 17: SUMMARY OF SELECTED REQUIREMENTS AND USE CASES ...36
TABLE 18: DECISION IMPACT MATRIX EXAMPLE...55
TABLE 19: USE CASES AND THE FOUR DECISION VISUALIZATION ASPECTS..56
TABLE 20: DESIGN DECISION ATTRIBUTES IMPLEMENTED IN EACH OF THE THREE CAPTURE TOOLS60
TABLE 21: REQUIREMENTS TRACEABILITY MATRIX FOR ADDEX ..80
TABLE 22: VISUALIZATION TOOL REQUIREMENTS MATRIX ...83
TABLE 23: INDUSTRY PARTICIPANTS SUMMARY ...88
TABLE 24: SEQUENCE OF ACTIONS PERFORMED FOR CERTAIN TASKS ...96

v

 LIST OF FIGURES

FIGURE 1: UML STATE DIAGRAM OF DECISION STATES AND THEIR TRANSITIONS ...20
FIGURE 2: DECISION CAPTURE AND EXPLORATION RELATIONSHIP ..22
FIGURE 3: GENERALIZATION OF FORMAL ELICITATION ...41
FIGURE 4: A LIGHTWEIGHT TOP-DOWN CAPTURE METHOD..43
FIGURE 5: A LIGHTWEIGHT BOTTOM-UP CAPTURE METHOD ..45
FIGURE 6: ADDEX SYSTEM DIAGRAM..59
FIGURE 7: UML DIAGRAM OF THE COMMON FRAMEWORK'S BASIC DECISION REPRESENTATION STRUCTURE62
FIGURE 8: SCREENSHOT OF THE FORMAL ELICITATION TOOL ..64
FIGURE 9: SCREENSHOT OF THE TOP-DOWN CAPTURE TOOL..65
FIGURE 10: SCREENSHOT OF THE BOTTOM-UP CAPTURE TOOL ..68
FIGURE 11: DECISION AND RELATIONSHIP LISTS FOR A SET OF DECISIONS ..70
FIGURE 12: DECISION STRUCTURE VIEW OF A SET OF DECISIONS...71
FIGURE 13: SEMANTIC ZOOMING IN THE DECISION STRUCTURE VIEW ...72
FIGURE 14: CHRONOLOGICAL VIEW OF A SET OF DESIGN DECISIONS ...73
FIGURE 15: CHRONOLOGICAL VIEW OF A SET OF DESIGN DECISIONS: CATEGORIZED BY AUTHOR74
FIGURE 16: DECISION IMPACT VIEW OF DESIGN DECISIONS ...75

vi

LIST OF ABBREVIATIONS

ADD Architectural Design Decision

ADDEX Architectural Design Decision Exploration (tool)

ADDSS Architecture Design Decision Support System

AK Architectural Knowledge

DDRD Design Decisions Rationale Documentation

DRCS Design Rationale Capture System

DRL Decision Representation Language

IBIS Issue-Based Information Systems

ID Identifier

IDE Integrated Development Environment

gIBIS graphical IBIS

InfoRAT Inferencing Over Rationale

PHI Procedural Hierarchy of Issues

QOC Questions, Options, and Criteria

SEURAT Software Engineering Using RATionale

SOA Service-Oriented Architecture

vii

ACKNOWLEDGEMENTS

To my supervisor Philippe, I express my deep gratitude for the opportunity to work with

you as one of your graduate students. I thank you for your guidance, patience, and kind

support during my graduate school experience and for the freedom to investigate what

interests me. Many thanks go to those who generously funded my research (IBM, Ensemble

Systems, NSERC, and ICICS), your support made this thesis possible. Sid, Kosta, thank you

for reviewing my thesis and providing significant feedback on my research.

To all my friends I worked with in SEAL: David, Eve, Mandana, Steve, Yvonne,

Davide, Agung, Jaana, Sam, and Erin, and the folks in the LERSSE side of the lab, I will

always remember all those memorable times we had together. You’ve made the laboratory

warm, supportive and “productive”. Special thanks go to David for all the help and tips in my

research, from computers to good eats, and to Mandana, who helped me sort through the

research domain and braved reviewing my thesis. To Davide, thank you for inspiring and

encouraging me through some difficult times. Your help in sorting out ideas and in empirical

software engineering is greatly appreciated. To Patricia and Hans, thanks for the discussions

and the opportunity to work with you. Rik: thanks for the enlightening talks and for the great

memories in Amsterdam. Olaf: thanks for your helpful feedback and interesting ideas.

To Elaine and Teresa, I greatly thank you for all your help in the capture and

visualization studies, from finding industry contacts to helping me sort through some painful

datasets. I especially would like to thank the four study participants and all those who were

involved: CW, DM, FP, JS, NH, PVA and SM, this research would not have been completed

without all of you. Your time and contribution is greatly appreciated.

To Luis, I enjoyed being a part of your operating systems class both as an undergraduate

student then and as an assistant the past few years. Your advice has always been helpful. To

Lee, thanks for the mind-opening discussions over coffee, in and out of class.

To Johnson, thank you for being a great friend, and for all the munchies. Nelson, thanks

for the reminders to have fun. Wilson, Pamela, and Joyce, thanks for being supportive.

But the greatest thanks of all go to God and then to my family who always prayed for me

and supported me: Mom, Dad, Maple (who also willingly endured proofreading all my

writing more than once), and my late grandma (Poh-Poh).

viii

DEDICATION

Dedicated to God and to my family –

 Mom, Dad, Maple, and Grandma (Poh-Poh)

ix

CHAPTER 1

INTRODUCTION

Designing is a process of making decisions; decisions build on each other and result in a final

design. However, the dynamic nature of software development means that software designs are

often never “final” but continue to change and grow, causing old decisions to become obsolete as

new decisions are made. As a result, software developers need to cope with requirement and

architecture changes, design evolution, and the consequences on implementation. Changing

design decisions pertaining to the architecture of a software-intensive system may significantly

affect the entire system being developed because architectural design decisions crosscut many

aspects of the system or because they affect the foundations on which the system is built.

Therefore, the need to capture and manage software architecture design knowledge is important

in any software development organization, and it is even more important in large organizations

with high personnel turnover where key staff members, such as architects and other designers,

have moved on to other projects and took their design knowledge with them.

1.1 Significance
Capturing architectural design knowledge could ease the burden of understanding the design as

the original designers had envisioned. Moreover, recent works in software architecture research

is increasingly recognizing the role of design decisions to represent software architecture. With

support from the software architecture community and the push for better knowledge

documentation, the research focus is shifting to the capturing and use of software architectural

design decisions. The architectural knowledge provided by these design decisions is useful

throughout the entire development organization to include reviewers, programmers, testers,

maintainers, and support. Exploring and using captured decisions to find additional information

hidden within the decisions are a fundamental goal of research in this area.

 1

Although there is an increasing amount of research in representing, capturing, and managing

design decisions in software design and development, many works address and target specific

aspects of architectural design decisions, resulting in limited exploration and assessment of

effectiveness for those contributions. I define architectural design decision exploration to be the

group of activities performed on captured decisions that include discovery (by other people),

perusal, understanding, and learning of architectural design decisions and the architecture they

represent. Architectural design decision exploitation (the analysis, extrapolation and creation of

new information and design decisions from captured decisions) is included in this group of

activities. However, both decision capture and exploration depend on each other, as it is difficult

to capture decisions without knowing how they are used and explored, yet the usefulness of

exploring design decisions depend on having them captured beforehand. Therefore, a holistic

approach is needed to investigate software architectural design decisions. By bringing together

the current works and contributions of researchers and industry practitioners in the area of design

decision capture and exploration, we can better assist software development organizations

manage and design software systems.

1.2 Research Goals
The objective of this thesis is to integrate several research contributions and works in the field

involving software architectural design decisions to come up with an integrated tool-based

solution for software architectural design decision capture and exploration. The solution

addresses as much of the requirements, recommendations, and guidelines recently proposed by

various members of the research community. I intend to achieve this objective by:

• Determining a common decision representation model for decision capture and exploration

• Identifying common challenges and issues among the contributions in the scope of

software architectural design decisions and architectural knowledge

• Determining common requirements and use cases of architectural design decisions

• Implementing the above set of requirements and use cases as a tool-based solution to

demonstrate the integrated set of requirements and use cases

• Evaluating the implemented solution with industry datasets and industry practitioners

2

1.3 Contributions of This Thesis
The contributions of this thesis are:

• A solution that integrates the current and common issues, challenges, requirements, use

cases, and guidelines to capture and explore design decisions in a system-based approach.

This solution represents the most current view of design decision systems in the field of

software architecture and maintenance

• A proposal of using three capture approaches (together or separately) to encourage and

facilitate decision capture:

1. Formal elicitation,

2. lightweight top-down, and

3. lightweight bottom-up

• A proposal of four visualization aspects that apply to software architectural design

decisions to promote decision exploration:

1. Tabular lists,

2. decision structure visualization,

3. decision chronology visualization, and

4. decision impact visualization

• A tool called ADDEX that implements the integrated solution in the context of a tool that

supports the capture and exploration of architectural design decisions:

o Provides an integrated environment for decision capture and exploration

o Supports decision capture across various stages of the development process

o Visualizes four aspects of design decisions to support decision exploration

• A demonstration of the implemented tool to capture and represent industry datasets

• An evaluation of the tool by industry practitioners to gain feedback on the tool-based

solution and the proposed decision capture approaches and decision visualization aspects

1.4 Organization of This Thesis
The following six chapters of this thesis describe how we can capture and explore software

architectural design decisions using the ADDEX tool. Starting with Chapter 2, I discuss what

architectural knowledge is and how we can represent architectural knowledge as design

3

decisions. This chapter also describes the selection of the decision representation model. Chapter

3 focuses on approaching decision capture and exploration from a system perspective, while

highlighting the challenges, requirements, and use cases that researchers have recommended to

follow for design decision systems. Also described in this chapter is how I selected the use cases

and system requirements to meet some of the described challenges. In Chapter 4, I propose

additional guidelines and context for decision capture and decision visualization, then I describe

the ADDEX tool that I implemented in Chapter 5 to best fulfill the chosen requirements and use

cases. Chapter 6 looks at the initial practical experience with the tool and describes a simple

evaluation of the tool with industry practitioners. Chapter 7 summarizes and concludes my

research in the tool support for the capture and exploration of software architectural design

decisions.

4

CHAPTER 2

KNOWLEDGE AND ARCHITECTURAL DESIGN

DECISION REPRESENTATION

This thesis defines software architectural knowledge to be the knowledge pertaining to the

software architectural design as well as the set of design decisions that resulted in that

architectural design (Kruchten et al., 2005). Architectural design decisions are decisions that

cross-cut multiple components and connectors, and intertwine with other design decisions

(Jansen & Bosch, 2005), such that changing one architectural decision could affect other

decisions. In other words, architectural design decisions are design decisions that pertain to the

overarching goals and characteristics of the system. If we seek to help people understand a

software design through architectural design decisions, then we require an understanding of

knowledge and how we can represent architectural knowledge as design decisions.

2.1 Knowledge and Design Decisions
Knowledge itself is difficult to define: great philosophers from Plato to Polanyi have wrestled

with the definition of knowledge. Although there are many definitions of knowledge, the ones

that focus on the process of knowing would help explain the difficulties of capturing

architectural knowledge. (Polanyi, 1966) defines two forms of knowing (awareness) in his book,

“The Tacit Dimension”: tacit and focal (Grant, 2007). In this view, knowledge brought to the

focus of attention is defined as focal knowledge. Focal knowledge is easily expressed, shared

and made apparent. Tacit knowledge, on the other hand, is difficult to express, so it cannot be

easily communicated. Nonaka later contributed a similar definition, but expresses it as tacit and

explicit knowledge. According to this definition, tacit knowledge is “highly personal... and

difficult to communicate to others”, while explicit knowledge is “formal and systematic... [and]

can be shared” (Nonaka, 1991). Nonaka expresses the interactions of the two forms of

knowledge as processes of converting from one form to another (that is, tacit to tacit, tacit to

explicit, explicit to tacit, and explicit to explicit) and illustrates the idea by applying the

5

processes to how corporate companies generate knowledge. Nonaka states that articulation

(implicit to explicit) is vital for knowledge creation and communication in an organization.

Another perspective of Polanyi and Nonaka’s definitions of knowledge is more concrete and it

categorizes knowledge into three levels: tacit, documented, and formal (Kruchten et al., 2006).

Documented knowledge is knowledge that is captured in some form outside the minds of people.

For example, documented knowledge can be the unstructured content found in a diary or

notebook. Formalized knowledge is a particular case where the knowledge is documented and

structured in an organized, systematic fashion, like a dictionary or an event logbook, so that

finding patterns or making associations within the data can exploit it. The third level of

knowledge, tacit knowledge, is acquired from experience and is difficult to express. Tacit

knowledge remains in the mind, where it can be forgotten. Knowledge that pertains to

preferences and choices are often not documented and hence remains tacit.

We can apply knowledge classification to software development. Basically, software is a product

of sequenced operations and declarations. Data structures are used to organize the operations

and declarations, while sets of operations and declarations can be logically evaluated against

each other. Furthermore, those operations and declarations can be grouped together into files,

classes, and packages, and the careful selection of which groups of operations and declarations

result in design patterns and architecture. (Robillard, 1999) defines five knowledge concepts that

are applicable to software knowledge: procedural/declarative, schema, proposition, chunking,

and planning. The procedural/declarative concept is the content, or essence, of the knowledge.

Procedural refers to sequences of actions and events, and declarative describe a meaning or

experience. The schema concept abstracts the first by organizing and classifying knowledge by

similarity. Abstracting further, the concept of propositions is used to represent knowledge

formally where information could be affirmed, while procedures, declarations and propositions

can be collected, grouped or sub-grouped together to limit scope for easier understanding. The

highest level of abstraction is the planning concept, where plans help manage knowledge by

defining goals and determining which groups of knowledge are needed to achieve the goals. In

essence, software planning is making architectural design decisions.

6

The software maintenance community has researched into the issues relating to design erosion

and lost knowledge in software design for many years (van Gurp & Bosch, 2002). The research

interested members of the software architecture community, which sparked further research in

architectural knowledge. A recent literature survey by (de Boer & Farenhorst) collected and

synthesized definitions of architectural knowledge to conclude that a significant part of the

knowledge involves the use of design decisions.

2.2 Design Decision Representation Challenges and Requirements
Unfortunately, representing software architectural knowledge using design decisions is not an

easy task; a number of researchers identified some decision representation challenges for use

with software architecture. These challenges include encountered issues, concerns, and common

themes that should be addressed by the research community. Table 1 below highlights some of

these challenges that are found in current literature. One challenge is the lack of a first-class

representation (Bosch, 2004) for design decisions within software architecture, where we can

refer to and manipulate design decisions as unique, fundamental entities. The structure of the

first-class representation allows the design decision, its rationale and its assumptions to be

accessed, analyzed, generalized, and contextualized more readily simply by making the decisions

explicit. A significant challenge is how to deal with the dynamic nature of design: the decision

representation must be able to support and keep track of design changes with minimal decision

management overhead. The decision representation must handle design changes while

maintaining clarity and simplicity to convey the changes plus the resulting implications and

consequences to the affected stakeholders. However, addressing this challenge involves more

than just creating a satisfactory representation model, it also depends on how people would

create and utilize the design decisions. The designers’ participation, the organizations’ needs and

development processes contribute to how much decisions are captured and how well the

decisions are represented. (Tang et al.) recommend that future work in decision representation

should involve generalizing design rationale into types, investigating decision representation

methodologies and tools, as well as assessing needs for decision documentation.

7

Table 1: Architectural design decision representation challenges

Topic (Source) Challenges

Design knowledge representation

challenges (Regli et al., 2000)

 Finding the best method to assist designers to make decisions
 Representing design knowledge as system components
 Representing features by context or group
 Generalizing rationales with generic clauses
 Using a formal representation language
 Supporting both decision authoring and browsing
 Personalizing the captured decisions

Decision representation challenges

(Bosch, 2004)

 Lack of first-class representation
 Design decisions are cross-cutting and intertwined
 High cost of change
 Design rules and constraints violated
 Obsolete design decisions not removed

Architecture decisions issues

(Tyree & Ackerman, 2005)

 Conveying change
 Conveying implications
 Conveying rationale & options
 Ease of traceability
 Providing agile documentation

Areas for future investigation in

architecture design rationale

(Tang et al., 2006)

 Different types of design rationale
 Designer’s attitude
 Necessity for design rationale documentation
 Design rationale methodology support
 Design rationale tool support

There are recent studies that discuss how the information should be represented as a software

architectural design decision. Table 2 shows several sets of requirements that researchers have

proposed to represent software design decisions. (J. Lee, 1997) describes three layers that make

up the generic structure of design rationale representation: decision layer, design artifact layer,

and design intent layer. Together, the three layers would also help document the functional

dependencies of the design. Representation formality also plays a large role in the selection of

what type of information to capture. The lower the formality, the easier it is for a person to

express his or her design rationale; however, it becomes more difficult for a computer system to

parse the data.

(Regli et al.) refer to three qualities for knowledge representation (ease of input, effective view,

and activeness (Conklin & Burgess-Yakemovic, 1996)) that deal with the usability of design

rationale and suggests that a formal design knowledge language be used while supporting design

feature and rationale generalization. For architectural design decisions, (Bosch) states that the

restructuring effect, design rules, design constraints, and rationale make up the four relevant

aspects of design decisions. (Kruchten, 2004) views decisions as a set, describes decisions to

8

have a temporal flow (via change histories) and suggests the explicit recognition of decision

relationships as a fundamental component of decisions. More recently, the architectural

knowledge community worked out a succinct set of essential and optional information to

document architectural design decisions (Avgeriou et al., 2007). The essential components for

design decisions are the decision description, the issue, the rationale, and the discarded options.

Other information types like relationships, categories, or versioning are optional, but beneficial if

captured.

Table 2: Requirements for software design decision representation

Topic (Source) Requirements

Generic structure of

explicitly representing

design rationale

(J. Lee, 1997)

 Decision layer (argumentation, alternative, and evaluation)
 Design artifact layer
 Design intent layer

How to represent rationales

(J. Lee, 1997)

 Informal (captures unstructured, natural, raw form)
 Semi-formal (only parts are computer readable)
 Formal (All info rationale system can read and use)

Knowledge representation
(Regli et al., 2000)

 Three qualities of representation: (Conklin & Burgess-Yakemovic, 1996):
 Ease of input
 Effective view
 Activeness (automatic action in response to events or conditions)

 Should have capability to represent potentially relevant features and combine
features of objects in specific concepts to form coherent explanations

 Encode the modeling language in a form that can be shared with other
applications and systems

 Formal language must be developed
 Systems should provide different views

Four relevant aspects of
design decisions
(Bosch, 2004)

 Restructuring effect
 Design rules
 Design constraints
 Rationale

Ontology of design decisions
(Kruchten, 2004)

 Decision classes (existence/ban, property, executive)
 Decision attributes (Epitome, rationale, scope, state, history, cost, risk)
 Decision inter-relationships (see Table 9)

Conceptual model of a
design decision
(Avgeriou et al., 2007)

 A concern (can be broken into issues)
 The issue and its option(s)
 The decision (and inter-decision dependencies)
 Rationale(s)
 Option(s)

9

2.3 Design Decision Representation Models
As the researchers develop requirements and guidelines to represent design decisions, they

propose new representation models or build on other models that support their ideas. In the

software community, two categories roughly divide the list of decision representation models:

design rationale and decision entities. What distinguishes the two categories apart is the models’

focus. The former category focuses on the background and context of a design decision while the

latter category focuses on the decision itself. Representing decisions as entities is a more recent

research progression in the software architecture community, whereas design rationale has roots

to the software maintenance community. The subsections below provide a brief summary of the

different types and the research progression of the decision representation models.

2.3.1 Design Rationale
Design rationale is “the historical record of the analysis that led to the choice of the particular

artifact or the feature in question” (J. Lee & Lai, 1996). Design rationale can explain the

behaviour of a component, or the rationale can refer to non-functional requirements and imposed

system constraints, such as response-time or interoperability. Many research works in design

rationale recommend the use of an argumentation structure, which improves the capturing

process as the knowledge can be expressed in familiar forms. Pioneered by the earlier works on

argumentation and decision making processes by (Kunz & Rittel) with Issue-Based Information

Systems (IBIS), (which use structured elements such as issues, positions, arguments,) many

works relating to capturing knowledge in software development processes and maintenance

emerged by the mid 1980’s. (Potts & Bruns) adopt the IBIS model in their issue-based model of

design deliberation that is investigated and extended by many other methods and models, such as

the Procedural Hierarchy of Issues (PHI) approach, as referenced by (Fischer et al., 1989). PHI

is essentially a recursive definition of the IBIS model, which takes into consideration subsets of

issues and solutions found in problem domains. The concept of decision structures and

dependency networks in a support environment for software maintenance are also investigated to

assist software engineers in understanding the design and the choices made (Wild & Maly, 1988,

Wild et al., 1989). (Conklin & Begeman) implement a hypertext tool known as graphical IBIS

(gIBIS) that utilizes the IBIS method to explore the capture of design rationale, supplementing

IBIS slightly to focus more on the decisions made during design. The gIBIS tool allows

10

computer-supported collaboration and investigates how to navigate large sets of rationale.

(Fischer et al.) create a hypertext tool that uses the capabilities of the PHI approach and

hypertext to design deliberation.

However, IBIS and its derivatives do not satisfy all members of the design community.

(MacLean et al.) find that the IBIS-based approaches do not fully apply to design spaces, so they

propose the Questions, Options, and Criteria (QOC) approach to address those needs. The QOC

approach uses more structured elements to describe design rationale, where the QOC approach

includes questions, options, criteria, assessments, arguments, and decisions (Dutoit et al., 2006).

Other approaches to design rationale capture were investigated. A concept known as decision

rationale was introduced by (J. Lee, 1990), where the work surrounds the concept that decision

rationale is a subset of design rationale. (J. Lee, 1990) describes a way to represent the decisions

through the Decision Representation Language (DRL) and he demonstrates it using the SIBYL

tool (J. Lee, 1991). A few years later, (Klein) introduces the Design Rationale Capture System

(DRCS) model which, like DRL, focuses more on the decisions than on the issues.

In the early 2000’s, research into design rationale focus more on the capture and manipulation of

design rationale. The InfoRAT (Inferencing over Rationale) tool (Burge & Brown, 2000, Burge

& Brown, 2001), and the RATSpeak rationale representation language in the SEURAT

(Software Engineering Using RATionale) tool (Burge & Brown, 2004) focuses on decision

design rationale during implementation and maintenance phases. (Dutoit & Paech) describes the

use of design rationale using the QOC approach during the specification of use cases. The

Sysiphus tool by (Wolf & Dutoit) investigates the capture of design rationale throughout a

software organization. The results of empirical investigations demonstrate that design rationale

documentation is useful (Karsenty, 1996), improves change-task completion rates and quality

(Bratthall et al., 2000), and is efficient and effective (Falessi et al., 2006).

2.3.2 Design Decision Entities
The shift from issue-based to decision-based representation of architectural knowledge and

software design is demonstrated through the development of the DRL and DRCS models. Soon

after, a new research direction emerges and the software architecture and maintenance

11

communities begin switching from capturing issue-based design reasoning towards more

formalized capture of design decisions. Representing design decisions explicitly focuses on the

choices as a primary objective, while both the context and the justification are secondary to that

decision. Although research in the design rationale community deals with representing decisions

and assumptions explicitly, the software architecture community develop this area significantly

due to the software architectural shift towards making design decisions and assumptions explicit.

An approach to making decisions first-class entities is described by (Bosch) followed by

Kruchten with his design decision ontology (Kruchten, 2004). (Tyree & Ackerman) define an

architecture decision description template that describes a set of attributes used to represent a

decision. These attributes include the issues, decisions, statuses, assumptions, constraints,

positions, arguments, implications, and the related decisions, requirements, artifacts, and

principles. The Archium metamodel (Jansen & Bosch, 2005) focuses on architectural changes by

linking software architectural components, requirements, and decision models together using

explicit change deltas. A metamodel proposed by (Lago & van Vliet) integrates the idea of

assumptions with design decisions and focuses on capturing cross-cutting concerns by modelling

invariabilities made during design. The metamodel in ADDSS (Architecture Design Decision

Support System) (Capilla et al., 2006) focuses on the relationships between decisions,

architecture, stakeholders, and requirements. The architecture ontology of (Akerman & Tyree)

applies the decision model to architectural assets by linking stakeholder concerns, assumptions,

alternatives, and assets together.

2.4 Comparing Representation Models
As there are various design decision representation models available, determining which

decision model to use for decision representation can be difficult. Rationale-based decision

representation can be used when the focus of the decision documentation is on design reasoning,

whereas the Archium metamodel is better suited to describe the progression of design decisions

through changes in architectural components and requirements. Since there are many decision

representation models, it is difficult to see which model captures what types of information.

Table 3 highlights the key attributes of several design decision representation models.

12

Table 3: Summary of several decision representation models

Source Main attributes of the representation model

IBIS-based
 (Kunz & Rittel, 1970)

 Issues
 Positions

 Arguments

Potts and Bruns model
(Potts & Bruns, 1988)

 Artifact
 Issue

 Alternative
 Justification

DRL
(J. Lee, 1990)

 Artifact
 Alternative
 Goal
 Issue
 Claim

 Question
 Group
 Procedure
 Viewpoint

QOC
 (MacLean et al., 1991)

 Questions
 Options
 Criteria

 Assessments
 Arguments
 Decisions

Ontology of design
decisions
 (Kruchten, 2004)

 Decision classes (Existence/ban,
property, executive)

 Decision attributes (Epitome, rationale,
scope, state, history, cost, risk)

 Decision interrelationships (see Table 9)
Architectural design
decision model in
Archium
(Jansen & Bosch, 2005)

 Problem
 Motivation
 Cause
 Context
 Decision

 Architectural modification
 Potential solutions (Description, design

rules, design constraints, consequences,
pros/cons)

Architecture decision
description template
(Tyree & Ackerman,
2005)

 Issue
 Decision
 Status
 Group
 Assumptions
 Constraints
 Positions

 Arguments
 Implications
 Related decisions
 Related requirements
 Related artifacts
 Related principles
 Notes

Generic design

rationales

(Tang et al., 2006)

 Design constraints
 Design assumptions
 Weakness (of a design)
 Benefit (of a design)
 Cost (of a design)

 Complexity (of a design)
 Certainty of design
 Certainty of implementation
 Tradeoffs

The general theme for design rationale representation models, with acknowledgement of some

vocabulary differences between the models, is on design deliberation, showing issues, options,

goals, and assessments. For example, the QOC “decision” is simply the selection of an

alternative that answers an issue. Likewise, for the decision entity representation, the majority of

the decision attributes can be represented entirely or as a part of another attribute, such as

“epitome” and “decision”, or decision “status” as a subset of “design certainty”. Both the design

rationale and decision entity representation models address the concept of a choice to be made,

followed by some justification or rationale behind that choice. However, some models have

13

attributes that others do not, such as the explicit “criteria” attribute in QOC , or the “architectural

modification” in Archium, as well as the “decision interrelationships” in the decision ontology

model. These differences help a representation model address specific situations, needs, and

emphases of a particular software development organization.

Different software development organizations would place different emphases on the type of

information captured to document their design decisions; what is optional to one organization is

mandatory to another. (Capilla et al., 2007) address this issue directly by proposing a flexible

approach to what constitutes architectural knowledge to suit the needs of the organization. This

flexible approach attempts to integrate the various works in documenting software architectural

knowledge and describes twenty-five mandatory and optional architectural knowledge attributes.

Since the definition that architectural knowledge includes a set of decisions, most of these

attributes apply to architectural design decisions as well. The results are summarized in Table 4.

According to Capilla et al., eight attributes should be documented in the captured design

decision and seventeen attributes can be documented depending on the documentation needs of

the organization. Five of these optional attributes involve the evolution of a design, by

documenting the chronology, versioning, validity, ratings, and traceability of the knowledge.

Table 4: Mandatory and optional attributes of architectural knowledge. Capilla, Nava, and Dueñas determined

eight attributes that should be defined in an architectural design decision at all times during the life of the system,

and lists seventeen attributes that they classify as optional where five of these attributes are useful during design

evolution.

Mandatory Optional
 Alternative decisions
 Assumptions
 Pros / cons
 Category of decisions
 Iteration
 Project/software architecture

information

 Responsible
 Architecture view
 Stakeholders
 Related principles
 Notes
 Quality attributes

Design evolution

 Decision name/description
 Constraints
 Dependencies
 Status
 Rationale
 Design patterns
 Architectural solution
 Requirements

 Date/version
 Obsolete decision
 Validity

 Reuse times/ratings
 Trace links

14

At the same time, the architectural knowledge community worked together to describe a rough

set of essential and optional documentation information (shown in Table 5) for architectural

design decision representation (Avgeriou et al., 2007).

Table 5: Essential and optional documentation of architectural decisions (Avgeriou et al., 2007)

Core (Essential) Relationships Management
 Decision description
 Issue
 Rationale
 Discarded options

 Links and relationship types to
other decisions

 Traceability to requirements,
design, implementation, and
tests

 Categories

 Name, ID, system, author,
owner, etc.

 Version history
 Status
 Decision type
 Result cost or risk analysis

A recent study performed by (Falessi et al., 2008a) identifies what a group of software

developers (graduate students) determine most important to capture in the design decisions

rationale documentation (DDRD) information. The DDRD information uses most of the

information categories listed in the architecture decision description template (Tyree &

Ackerman, 2005). The experiment was later replicated as part of a follow-up study (Falessi et

al., 2008b). Comparing these two studies provides an idea of what categories of information is

generally found to be useful. Tables 6 and 7 below summarize the differences.

Table 6: Summary of the results from Falessi’s two studies on DDRD information importance (Falessi et al.,

2008a, Falessi et al., 2008b). The feasibility study is performed first and is later replicated in another study with

another set of study participants who would better represent software professionals.

 Feasibility study Replicated Study

DDRD information
Mean
(%) Ranking

Mean
(%) Ranking

Issue 71 2 91 1
Decision 94 1 79 2
Status 47 7 25 9
Assumptions 43 8 49 7
Constraints 22 10 54 6
Positions 54 6 72 4
Argument 65 4 67 5
Implications 38 9 21 = 10
Related decisions 56 5 28 8
Related requirements 68 3 74 3
Related artifacts 9 12 14 12
Related principles 12 11 21 = 10
Notes 0.5 13 5 13

15

Table 7: Grouping the results of Falessi’s two studies on DDRD information importance. The category

importance groupings were created by finding the group boundaries that result in the minium number of category

ranking changes for both study results.

General
groups of

importance

Avg. # of rank changes
Σn (|Rankrepl - Rankfeas|)

N
(Lower # is more confident)

DDRD information (**)
(n = num of categories in each group)

High
importance

(1+1)/2 = 1.0 - Design Issues

- Design decisions

Medium-high
importance

(0+1+2+3)/4 = 1.5 - Related requirements
- Positions

-Arguments
- Related decisions

Medium low
importance

(2+1+1+3)/4 = 1.75 (*) - Status
- Assumption

- Implications
- Constraint

Low
importance

(0+0+0)/3 = 0.0 (*) - Principles
- Artifacts

- Notes

* - To simplify the complexity caused by a two-way tie in the category rankings of the replicated study, the

lowest difference for the affected categories is used.
**- The selection of which group each DDRD Information category belongs to is determined by finding the

boundaries that minimizes the amount of grouping changes between the two separate studies.

There are differences between Capilla’s list (Table 4), Avgeriou’s list (Table 5) and the grouping

of Falessi’s results (Table 7), but the main differences can be attributed to the use of vocabulary.

For example, Falessi’s “issues”, “arguments”, and “positions” and Avgeriou’s “discarded

options” can be addressed by Capilla’s “rationale”. Likewise, the “constraints” and “related

decisions/requirements” are addressed by “dependencies”. With the acknowledgement of these

differences in mind, the general consensus is that the decisions, rationale, status, requirements,

and dependencies are considered important to capture, while the remaining attributes are

considered unimportant (like “notes” and “artifacts”) or vary depending on the individuals, as

demonstrated by Falessi’s findings. Tailoring the amount of knowledge to capture based on the

values of an organization (Falessi et al., 2008b) may address the various needs and uses for the

captured architectural knowledge.

2.5 Selecting the Decision Representation Model
As there is no one right approach to represent design decisions (Regli et al., 2000), I need to

choose a decision representation model that can best service the scope of my thesis. Since my

research is in the area of architectural decision capture and exploration, the selection of the right

16

representation model guides the decision capture process and establishes a high decision

exploration potential. My decision is to find an existing decision representation model to

leverage the predefined/peer-reviewed as a cost-saving and risk reducing measure, yet I also

acknowledge that there are limitations to each model. The model selection required much careful

thought when I began my research.

When the work of this thesis started, there were only a few decision models that I deemed

sufficiently detailed for use. These choices were IBIS, PHI, QOC, DRL, or DRCS from the

design rationale stream, while from the decision entities stream there were only Kruchten’s

decision ontology model, Tyree and Ackerman’s decision description template, the Archium

metamodel, and Lago and van Vliet’s “assumptions” metamodel. Using decision entities to

represent decisions provide a guiding structure to facilitate decision capture while providing

visualization, manipulation, and temporal support to understand and manage design decisions.

However, only DRL, DRCS, the decision ontology model, and the decision description template

address design decisions explicitly. For design rationale, design decisions are embedded and can

be lost in the justification texts.

I exclude rationale-based decision models since those models detract attention from the core

decisions. For a study in decision exploration and analysis, a simpler, broader decision model is

preferred so that software architects and designers can document various types of information

during various stages of software development. This excludes the Archium metamodel, despite

its explicit support for architectural changes, because it is closely linked to the architecture

model. I also exclude models where decisions cannot be described in greater detail. I adopt

Kruchten’s decision model for my research work because the model is simpler and the decisions

can be presented separately from the architectural context. The model’s decision states and

change logs make the model process-focused, and it is the only model at that time that explicitly

represents decision relationships. Decision relationships could increase the exploratory and

analytical potential of design decisions by providing additional associations and traceability,

allowing a more rich foundation for visualizing relationships.

17

Research into design decision representation brings in new suggestions and decision models. The

ADDSS metamodel is introduced by (Capilla et al., 2006) and it attempts to unify the various

design decision models with a flexible definition of the mandatory and optional characteristics of

an architectural design decision (Capilla et al., 2007). This definition gives much freedom in

defining what type of information we need to capture and represent a design decision. Only one

mandatory decision attribute (“design patterns”) is not explicitly represented in Kruchten’s

decision model; rather, design patterns can be implicitly represented by modelling the design

pattern as a decision itself (e.g., “Use the strategy pattern for all data model interfaces”).

Research in the field of service-oriented architecture (SOA) includes applying design decision

models as a part of SOA. For example, researchers from IBM suggest design decisions models to

be a mean for SOA analysis and design (O. Zimmermann et al., 2007). IBM Research also

jointly investigates architectural decision modelling through the development of the ADkwik tool,

which is the subject of a doctoral thesis for (Schuster). The ADkwik tool uses a decision model to

model decisions, alternatives, and outcomes. Moreover, this model describes the relationships of

decisions with their alternatives and outcomes into three dependency types—topic, time, and

outcome. The latter two dependencies can also describe the influences of decisions on other

decisions as well. The decision model for ADkwik and Kruchten’s decision model are currently

the only software architectural design decision models that explicitly represent inter-decision

relationships.

During the course of my research in decision capture, I identify a couple more aspects that a

design decision representation model should support: decision confidentiality and explicit

support for incomplete decision documentation (L. Lee & Kruchten, 2007, L. Lee & Kruchten,

2008a). I suggest that the decision model should support different levels of disclosure, such as

“personal”, “organization-wide” or “public”, where the selective-release of the decisions allow

the gradual capture and formation of design decisions while reducing the effects of documenting

personal or politically-charged decisions. Support for personal decisions benefits the capturer by

providing an environment where the capturer can feel safe documenting their decisions.

Moreover, the decision model should have the capability to explicitly keep decisions as tacit as

possible, documenting only the essentials (like the name of a knowledgeable person) so that

other people could find out who could answer their questions about a particular area. This

18

capability increases convenience in some situations where it is more time-efficient when the

captured decision is conceptually difficult and can be better explained in person. Unfortunately, I

identified these other aspects when my research was well underway so I was unable to integrate

decision disclosure levels into the decision representation model I selected. However, with my

proposal of customized decision capturing processes (see Section 4.1) I was able to include

explicit support for incomplete decisions.

2.5.1 Design Decision Ontology Model
A brief explanation of the decision representation model used in my research work is warranted.

The decision representation model makes no distinction between decision types — there is no

concept of decision classes or hierarchy among decision entities. Each architectural design

decision entity has attributes to describe the decision. These attributes and how they are

represented are summarized in Table 8.

Table 8: Attributes of decisions
Name Type

Epitome Text

Rationale Text or pointer

Scope Text

State Enumeration

History List of (time stamp + author + change)

Categories List

Publicity Level Enumeration

Source (or expert) Text

The epitome describes the essence of the decision and is supported by reasons stated in the

rationale; however, the decision context is restricted by the scope of the decision. Each decision

has a certain state, which describes the “maturity” of the decision. The states and its transition

paths are depicted in Figure 1. Any change made to the decision attributes are logged in the

decision history. The category attribute complements the decisions with additional information.

The publicity level attribute sets the level of decision disclosure for the selective-release of

design decisions, while the source/expert attribute can document where the knowledge is found

for traceability or to support decisions intentionally left tacit.

19

Figure 1: UML state diagram of decision states and their transitions. The number next to each state name is the

promotion level for each state. Higher numbers mean greater levels, implying a higher decision “weight”. Arrows

leading out from a state denote the transition paths for that decision state. Created decisions start out in the “idea” or

“tentative” states. Decisions are never removed; they are given a new state (“rejected” or “obsolete”). Figure from

(Kruchten, 2004), with permission.

However, there is one major aspect of the decision representation model that many other works

fail to pick up on—decision relationships. In my model, there are ten inter-decision relationships.

Table 9 shows the ten relationship classifications between decisions, and these relationships are

of the form, “Decision A ‘is related to’ Decision B”.

Table 9: Decision relationships
Relationship Type Association

Constrains Directional

Forbids Directional

Enables Weak directional

Subsumes Directional

Conflicts with Bidirectional

Overrides Directional

Comprises (is made of) Directional

Is bound to Strong bidirectional

Is an alternative to Directional

Is related to Weak directional

Decisions can constrain one another, where the affected decision is contingent upon the

constraining decision. The weak form of this relationship is known as the enabling relationship,

20

while the bi-directional form is strong and is known as the binding relationship. Decisions could

also forbid another decision from being made, or could be subsuming in that it can be more

encompassing than another. Decision conflicts are symmetrical and are possible when both

decisions are mutually exclusive and have the same scope. Although similar in description,

alternatives differ from conflict relationships. Alternatives are decisions that address the same

issue and scope, but can be replaced by one or another, which relates various choices together.

Neither alternatives nor conflicts are subsets of each other. Decisions could also override one

another, or can break down into other decisions or comprises. If a decision relationship does not

fit into any of the above types, then the relating relationship can be used, but this is a weak

relationship and is used primarily for documentation and illustrative reasons. The implication of

relationships is that the decisions can now tell a story of the design process, bringing decision

hierarchy and structure to the captured architectural knowledge.

21

CHAPTER 3

SYSTEM APPROACH TO DECISION CAPTURE AND

EXPLORATION

The ability to represent software architectural design decisions would not be meaningful if there

is no way to capture and explore decisions. Unfortunately, the capture and exploration of design

decisions are closely tied and involve the idea of motivation. Software designers need to be

motivated to capture their design decisions and one way to do this is to demonstrate the

usefulness and the exploratory potential the decisions have to offer. However, the usefulness of

the decisions depends on the acquisition of a set of design decisions; moreover, the designer may

be required to capture even more information. The poor timing of the decision capture (Falessi et

al., 2008a, Grudin, 1996) also hinders motivation. Figure 1 illustrates this relationship between

decision capture and decision exploration. To simplify the research, this double-spiral cycle will

be addressed in a holistic manner while investigating design decision capture and exploration.

Figure 2: Decision capture and exploration relationship. The difficulty in capturing and using architectural

design decisions involve the lack of motivation in capturing decisions in the present for future utilization. To end

this cycle, we need to increase motivation for decision capture and exploration. We can achieve this by addressing

two areas: improve the capture of decisions and increase the ability to explore design decisions.

Issue: Original design intents &
decisions not visible or unknown

No motivation to capture and
explore design decisions

Issue: Tedious, lack of immediate
benefit

Issue: Decisions should be explored
more easily for better understanding

Capture & convey more useful info
for decision exploration

Document more architectural
design decisions for the future

Capture

Exploration

22

Therefore, a systems-approach should be used to investigate architectural design decision

capture and exploration. However, researchers have recognized that there are significant

challenges to support the necessary functionality and architectural design decision use cases for

design decision systems. Addressing all challenges and use cases is not possible in the scope of

my research, so I will highlight a set of use cases and requirements for the system that will best

address the challenges and functionality required in a design decision system.

3.1 Challenges and Requirements for Design Decision Systems
The challenges for software architectural design decision systems (some of which are shown in

Table 10) often involve issues related to the software architecting/design process. Dueñas and

Capilla summarize that after finding a design decision representation, the software architecting

process is essentially a knowledge management process (Dueñas & Capilla, 2005), where the

production of design and development artifacts is the result of applying the architectural and

design knowledge during the design process. Moreover, as software development spans across a

whole organization and involves many people, a system that manages architectural design

decisions for a software project should be treated as a groupware system. Grudin discussed eight

challenges that software developers need to address when developing groupware systems

(Grudin, 1994). These challenges focus on how to increase a tool’s usability in a group

environment by implying that the success of a groupware tool depends on who benefits from the

work and how well the tool supports a social or work process (including all the quirks and

exceptions). We should develop decision systems with these challenges in mind. Essentially,

good groupware tools promote less work and more benefit.

(J. Lee, 1997) identified seven issues for design rationale systems and also recognized that the

person who bears the cost of capturing design decisions must be the person who benefits from

decision capture, which echoes Grudin’s first issue regarding the disparity between work and

benefit. Lee’s issues focus on how we can capture, access, and manage design decisions in

addition to determining the uses and representation of design decisions. A key point is that

design rationale systems (and design decision systems in general) should better support software

design through dependency management, collaboration/project management, and design

reuse/extension, while also recommending better maintenance, learning, and documentation

23

support. Lee also states that we can capture rationale through reconstruction, recordings,

methodologies, and automatic generation. In addition, he describes that we must integrate

captured design rationale across different users (and their viewpoints), different media (i.e.,

audio, video or text), and with various design modules/objects in other tools or processes.

Table 10: Design decision system issues and challenges

Topic (Source) Issues and Challenges

Groupware Challenges (Grudin, 1994) Disparity in work and benefit
 Critical mass
 Disruption of social processes
 Exception handling
 Unobtrusive accessibility
 Difficulty of evaluation
 Failure of intuition
 The adoption process

Issues for Design Rationale Systems

(J. Lee, 1997)

 What services to provide
 What to represent explicitly
 How to represent rationales
 How to produce rationales
 How to access rationales
 How to manage rationales
 How to integrate the system

Challenges for design rationale systems

(Regli et al., 2000)

Technical challenges
 Reducing the amount of knowledge workers within organizations

to capture and manage design knowledge
 Making members of the organization aware of all relevant

resources available to them, based on individual needs.
 Designing specific strategies for design rationale that will suit the

needs of the organization (including reuse)
Design challenges
 Using human-centered approaches
 Designing systems with identifiable benefits
 Supporting informal and formal knowledge
 Supporting multiple levels of content organization/design systems
 Building on a successful application as a best-practice
 Borrowing ideas from the field of participatory design,

evolutionary growth, improvisational model, and Zimmermann
and Selvin’s framework (B. Zimmermann & Selvin, 1997).

A survey of design rationale systems performed by (Regli et al., 2000) describes several

technical and design challenges that we need to address for design rationale and decision

systems. In analyzing their list of challenges, it appears that the overall technical challenge stems

from the fact that we need to reduce the amount of design knowledge that people need to capture

or manage. The fact that the design knowledge is highly dependent on the various needs of

individuals or organizations makes this challenge more difficult to find a simple solution. Regli

et al. also stated several design challenges for the design rationale systems. In general, using

24

human-centered approaches to design will allow the system to benefit the people who use the

system. Moreover, we should design the systems in a way that will support both informal and

formal knowledge capture, as well as support multiple levels of content organization so that the

knowledge could be structured at any time using ways people can relate to and explore. These

challenges and recommendations also are reminiscent of Grudin’s groupware challenges, like the

work/benefit mismatch for users and the leveraging of successful applications.

The lists of challenges and recommendations provide a foundation for the current development

of requirements for architectural knowledge and design decision systems. These sets of

requirements are natural extensions of the challenges and recommendations. Table 11 below

shows a few of these requirement sets suggested by recent groups of researchers. Since we

acknowledge that a design rationale (or an architectural decision support) system is a knowledge

management system for the entire design process, the recommendations provided by (Regli et

al.) make sense, as they address the capture and retrieval of design rationale with a knowledge

management perspective. According to (Regli et al.), capturing design knowledge should be

performed with minimal overhead and as little interference as possible on the natural progression

of design activities, so that the designers can focus less on tedious documentation tasks and more

on designing. The design rationale system should keep the knowledge consistent, including the

support of conflict resolution when newly captured knowledge clashes with previously captured

knowledge. For retrieval of design decisions, there should be strategies to retrieve large volumes

of chronological data without causing people to navigate through all of the data. Query support

should be implemented, which is useful to support various design tasks involving the browsing

and viewing of the design knowledge.

Looking at design decisions from an architecture design perspective, (Dueñas & Capilla) lists

five requirements decision support tools should have for the decision view of software

architecture: multi-perspective support, visual representation, complexity control, groupware

support, and the gradual formalization of design decisions. Multi-perspective support provides

and highlights different facets of the decisions, depending on the particular person describing or

viewing the decisions. Visual representation facilitates understanding and “replaying” of large

sets of design decisions, of which the implementation of complexity control measures would

25

help with scalability and navigation of the decisions. Groupware support is inevitable as many

people are involved in the design process. The last requirement is the gradual formalization of

design decisions, in which it explicitly recognizes the fact that knowledge is often incomplete or

difficult to express, so a knowledge creation process is highly recommended that will gradually

build up sets of formalized design decisions.

Table 11: Requirements for architectural knowledge and design decision systems

Source Requirements

Capture and Retrieval of Design

Rationale (Regli et al., 2000)

Capture:
 Capture process knowledge with minimal overhead and minimal

interference with natural progression of design activities
 Resolve conflicts that arise when new knowledge clashes with

previously captured knowledge
 Keep knowledge consistent

Retrieval:
 Have retrieval strategies to manage large amounts of chronologically

organized data
 Retrieve information without causing people to navigate through all of

the data
 Support querying

Decision View Requirements

(Dueñas & Capilla, 2005)

 Multi-perspective support
 Visual representation
 Complexity control
 Groupware support
 Gradual formalization of design decisions

Effective tool support

requirements for AK sharing

(Farenhorst et al., 2007)

 Stakeholder-specific content
 Easy manipulation of content
 Descriptive in nature
 Support for AK codification
 Support for AK personalization
 Support for collaboration
 Sticky in nature

A recent study by (Farenhorst et al.) identifies requirements for tools that facilitate architectural

knowledge sharing. In terms of content, architectural knowledge sharing tools should support

stakeholder-specific content to address the various and customized needs of an organization in

browsing and using the knowledge. Moreover, the tools should manipulate content easily, as

changes to a software design are inevitable. The tools should naturally allow for descriptive

perspectives on the content so they do not hinder the creativity of the designers, yet the tools

should also support knowledge codification to allow formalized knowledge for knowledge

retrieval and analysis. However, a degree of knowledge personalization is helpful as the less-

structured form improves knowledge expression. If the personalized knowledge is collected and

26

shared in a collaborative environment, other designers can find out whom they can consult with

by determining who is most knowledgeable in a particular area. The study also identified that the

tools should be useful enough to encourage users to keep coming back to use the tools.

Farenhorst describes this concept as a tool’s “stickiness” in which a tool would tend to stay

attached to the user’s daily software design processes.

3.1.1 Visualization Tool Requirements
Dueñas and Capilla’s visual representation requirement of architectural design decisions

launches into an entirely different area of research. The information visualization community is a

large, long-established research community that attempts to explore how visualization can

improve cognitive abilities to understand and identify high-level concepts with large sets of data

(in the order of hundreds, tens of thousands, or often significantly more). The information

visualization often has software support to visualize large sets of data. Conversely, the software

community also has support from the visualization community to make sense of complex

systems. Visualization helps with program comprehension and communicates information in

ways the human mind can parse and understand. Various researchers have investigated how to

improve the usability and effectiveness of visualization tools. Kienle and Müller summarized

various works in visualization tools and came up with seven quality attributes and seven

functional requirements shown in Table 12 that all visualization tools should have (Kienle &

Müller, 2007).

Table 12: Visualization tool requirements (Kienle & Müller, 2007)

Quality Attributes Functional Requirements

 Rendering scalability
 Information scalability
 Interoperability
 Customizability
 Interactivity
 Usability
 Adoptability

 Views
 Abstraction
 Search
 Filters
 Code proximity
 Automatic layouts
 Undo/history

Summarizing Kienle and Müller’s work, the first two qualities of visualization tools refer to the

scalability of the visualization tool. The visualization tool must be able to process information

with reasonable performance when the dataset size is both large and small, whereas the second

quality focuses on how much information to display on the screen to prevent overwhelming the

27

person viewing the data with large amounts of information. The visualization tools must be able

to interoperate with other tools to promote information sharing and reuse functionality, while

some form of customizability, like scripting, functional configuration files, or programmable

interfaces, is useful to handle exception cases where a user may want to take a feature in a

different direction than intended. Visualization tool interactivity gives the user control of the

logic used to structure, navigate, and display information at the speed and direction of the user as

a mental aid in exploratory applications like reverse engineering. The sixth quality a

visualization tool should have is usability, but Kienle and Müller states that it is difficult to

achieve, where the evaluation focuses more on the user interface and how we can reduce the

obtrusiveness and cognitive overhead tied to the user interface. Finally, the adoptability of the

tool will depend on how well it can support the needs of the users, such as customizability and

functionality.

Since adoption depends on the functionality a tool should offer, Kienle and Müller summarizes

seven functional requirements all visualization tools should have. Visualization tools should

render information in the aspects of particular stakeholders to address the stakeholders’ specific

needs. Visualization tools should also support data abstraction, where low-level information can

be generalized into groups or hierarchical structures to present and highlight new information not

easily visible. To deal with potentially large amounts of data, visualization tools should use

searching and filtering. Searching can help find a specific piece of information quickly while

filtering helps reduce the amount of information shown to the user to help reduce information

overload. In terms of visualization of software artifacts, code proximity is a way to improve

program comprehension by linking visualization components as close to the relevant section in

the software artifacts as possible. Code proximity helps users identify which area of the software

code is represented by the visualization report. The sixth requirement is automatic layout of

visualizations. This is essential, as it may not be feasible to manually filter, connect and disperse

a large, complex dataset visually. The final requirement for visualization tools is the “undo” or

“history” capability to allow users to revert to a previous state.

28

3.2 Use Cases for Design Decisions
After defining what a design decision system should have, we should define what activities a

design decision system should support. Recalling the definition of architectural knowledge at the

beginning of Chapter 2, design decisions are a subset of architectural knowledge, so we should

find use cases for both the narrower-focused design decisions and the more general architectural

knowledge. (For the scope of this section only, we will use architectural knowledge and design

decisions interchangeably.) However, determining the use cases for architectural knowledge

would require knowing who would use the knowledge and what they want to do with it.

3.2.1 Use Case Actors and Roles
Kruchten, Lago, van Vliet, and Wolf identified a list of actors which includes architects,

developers, reviewers, analysts, maintainers, users and re-users of architectural knowledge,

students, researchers and software tools (Kruchten et al., 2005). Kruchten classifies the list of

actors into two categories—active and passive, shown in Table 13. Active use case actors are

producers of architectural knowledge, while the passive actors are the architectural knowledge

consumers. Shortly afterwards, a group of researchers performed interviews with industry

practitioners for their wish list on design decision uses (van der Ven et al., 2006). The

interviewed people, who are the use case actors, include architects, architecture reviewers,

project managers, developers, and maintainers.

Comparing the two lists of actors (Table 14), Kruchten’s list is more specific, containing eleven

classifications, while van der Ven’s list contains five. Although there are overlapping actors /

roles (i.e., architects, reviewers, developers, and maintainers), van der Ven’s list contains the

“project manager” role and Kruchten’s list includes the more general “users” and “re-users” of

architectural knowledge in addition to the academic roles of “students” and “researchers”. The

explicit “other architects” role in Kruchten’s list implies collaboration support with other

architects in the same or different projects, and the addition of “analysts” and “software tools”

would focus on the exploration and analysis of the captured design decisions to recommend or

improve upon the software architecture the design decisions represent.

29

Table 13: Passive or active roles for architectural knowledge use case actors (Kruchten et al., 2005)

Actors (roles) Passive (consumers) / Active (producers)
Architects Active

Other architects Active *
Developers Passive
Reviewers Passive
Analysts Passive *

Maintainers Active *
Users Passive *

Re-users Active *
Students Passive

Researchers Passive *
Software tools Active

* - The authors did not explicitly classify this role, so this classification is of my
own opinion and not the authors’.

Table 14: Use case actors for architectural knowledge and design decisions

Source Actors (roles)
Architectural knowledge (AK)
use case actors
 (Kruchten et al., 2005)

Architects
Other architects

Developers
Reviewers
Analysts

Maintainers
Users (of AK)

Re-users (of AK)
Students

Researchers
Software tools

Design decision use case actors
(van der Ven et al., 2006)

Architect
Architecture reviewer

Project manager
Developer
Maintainer

Italicized roles are roles unique to each classification

Interestingly, both use case actor lists did not fully address the generalized role of “stakeholder”.

Stakeholders are people who have invested interest and resources in a project, and often have

significant weight over the design and development of it. In general, stakeholders might include

the owner, the client/customer, end-users, and the development organization. However, in

contract-based software project, the stakeholders may agree on a high-level set of requirements

for a software architect to base an architectural design on, so in the context of architectural

knowledge, some stakeholders (like the client) have less influence on the architectural design

30

and hence they are left out of both use case lists. Moreover, we can also argue that the product

manager who generated the list of requirements (and the architect to a lesser extent) usually

represents the client, while the project manager could represent the development organization. In

light of the above arguments, it is understandable why some actors did not make either list.

3.2.2 Use Cases
Using their list of actors, (Kruchten et al., 2005) defined several use cases for architectural

design decisions, listed in Table 15. Most of the use cases are self-explanatory and involve

capturing, browsing and analyzing design decisions. “Spotting the subversive stakeholder” and

“spotting the critical stakeholder” use cases are similar. However, they differ in that the former

identifies people who could potentially affect the design significantly, while the latter focuses on

how much a decision change would affect a particular stakeholder. The “integration” use case

describes a situation where one needs to find an integration strategy to find how two or more

systems can fit together.

After performing interviews and validating with industry practitioners, (van der Ven et al.)

proposed a detailed use case model containing twenty-seven use cases, shown in Table 15. The

model classifies the use cases by actor and goal levels in addition to the interdependencies

between use cases, creating a grid they named the “knowledge grid”. When we compare the two

lists of use-cases (see Table 16), we find that van der Ven’s list includes as well as extends most

of Kruchten’s list, but van der Ven’s list does not explicitly address the “integration” use case.

31

Table 15: Architectural knowledge (design decision) use cases

Source Requirements

Using architectural knowledge

(Kruchten et al., 2005)

 Incremental architecture review
 Review for a specific concern
 Evaluate impact
 Get a rationale
 Study the chronology
 Add a decision
 Clean up the system
 Spot the subversive stakeholder
 Spot the critical stakeholder
 Clone architectural knowledge
 Integration
 Detection and interpretation of patterns

Using Architectural Decisions

(van der Ven et al., 2006)

 1. Check implementation against architectural decisions (needs #8)
 2. Identify the subversive stakeholder (needs #3)
 3. Identify key architectural decisions for a specific stakeholder (needs #1,9)
 4. Perform a review for a specific concern (needs #3)
 5. Check correctness (needs #8, 9)
 6. Identify affected stakeholders on change (needs #3)
 7. Identify unresolved concerns for a specific stakeholder (needs #9)
 8. Keep up-to-date (needs #5)
 9. Inform affected stakeholders (needs #5)
 10. Retrieve an architectural decision (needs #6)
 11. View the change of the architectural decisions over time (needs #5)
 12. Add an architectural decision (needs #2)
 13. Remove consequences of a cancelled architectural decision (needs #8)
 14. Reuse architectural decisions (needs #14)
 15. Recover architectural decisions (needs #6, 7)
 16. Perform incremental architectural review (needs #1, 9)
 17. Assess design maturity (needs #1)
 18. Evaluate impact of an architectural decision
 19. Evaluate consistency (needs #1)
 20. Identify incompleteness (needs #1)
 21. Conduct a risk analysis
 22. Detect patterns of architectural decision dependencies
 23. Check for superfluous architectural decisions
 24. Cleanup the architecture
 25. Conduct a trade-off analysis (needs #3)
 26. Identify important architectural drivers (needs #3)
 27. Get consequences of an architectural decision (needs #3, 6)

32

Table 16: Comparing Kruchten’s list with van der Ven’s list of use cases. The first two columns show how

Kruchten’s list of use cases could be covered by van der Ven’s use cases. The third column assesses the

implementation priority I assigned for this thesis.

Kruchten’s list of use cases
(Kruchten et al., 2005)

Equivalent van der Ven’s use
case numbers

 (van der Ven et al., 2006)

My Thesis
Priority

(lower # =
higher

priority)
Incremental architecture review 8, 11, 16 8 (Medium)

Review for a specific concern 4, 7, 18, 21, 25 4 (High)

Evaluate impact 1, 6, 9, 18, 25, 27 3 (High)

Get a rationale 5, 8, 10, 17 2 (High)

Study the chronology 1, 8, 11 7 (Medium)

Add a decision 12, 15 1 (High)

Clean up the system 5, 13, 19, 20, 23, 24 9 (Medium)

Spot the subversive stakeholder 2 5 (Medium)

Spot the critical stakeholder 2, 3 6 (Medium)

Clone architectural knowledge 14, 15 10 (Low)

Integration — 12 (Low)

Detection and interpretation of patterns 17, 20, 22, 26 11 (Low)

3.3 Selecting the Use Cases
Although I have listed two sets of use cases for software architectural design decisions, one of

the use case sets can be summarized by a general set (refer to Table 16). To simplify the

discussions regarding the use cases in this thesis, I will use the more general use case set. One

decision I needed to make about the chosen set of use cases is whether I would like a broad but

shallow coverage of these use cases. A broad coverage would result in a wide sample of the

utility of the design decisions, but it also hinders the study of how design decisions can be

explored, as it requires detailed, in-depth implementations of the use cases. Unfortunately,

limitations in time and resources prevent me from developing a design decision system (tool)

with the complete implementation of all use cases. My thesis includes the exploration of design

decisions and I have limited access to industry practitioners of various roles; therefore, I had to

enforce a scope reduction for my research, which resulted in the implementation of a subset of

the use cases.

33

The list of actors in Table 14 suggests the core actors the use cases should target should be the

architect (and other architects), the architecture reviewer, the analyst, the project manager, the

developer, and the maintainer. Referring to Table 13, the actors that are classified as “active”

(architects, maintainers, re-users, and software tools) are producers of architectural knowledge.

The most important by far is the architect’s role; without the architect, no relevant (or correct)

knowledge about the architecture of a software project would be captured for analysis and study.

The reviewer and the analyst would then be able to analyze and explore the captured knowledge

and architectural design decisions to assess the state and structure of the architecture and can

potentially cause more design decisions to be created or revised. These roles are the immediate

knowledge consumers with significant influence; therefore, they are important roles that I must

have for my tool. The project manager, developer, and maintainer are secondary knowledge

consumers as they can exert some indirect influence on the architectural design.

In prioritizing the use cases according to complexity, actor availability for feedback, research

goals, and interests, precedence goes first to the fulfillment of the basic decision capture and

retrieval functionality, as these use cases are used by the most important role classifications

(knowledge producer and the immediate knowledge consumers). Without the decision capture

and retrieval support use cases, we cannot establish and manipulate a set of decisions to

determine its exploratory potential. Next, the priority would go to decision impact analysis and

concerns, as the immediate knowledge consumers find this beneficial and would motivate people

to capture decisions. During the early stages of the study, I conversed with several software

architects and developers in industry, and the feedback they provided supports this view.

The next priority group of use cases would be determining the relationships between the decision

and the stakeholders, then on the effects of time on a set of design decisions, followed by how

the design can be cleaned and improved. These use cases seem to offer more exploratory and

analytical value with relatively less effort. The lowest priority level is the group of use cases that

deal with multiple sets of design decisions; that is, the integration, cloning and pattern

detection/interpretation. These use cases have not been investigated in detail because they

require an established foundation for decision exploration beforehand. Investigating these use

cases require significant design and implementation resources to be first spent on decision

34

exploration. Any automation of these use cases (even notification) requires significant

algorithmic design or manipulation; therefore, these use cases would be put on the lowest

priority. The comparison table that highlights the similarities between Kruchten and van der

Ven’s use case lists (Table 16) also shows the relative priority I assigned to each (or group of)

use cases for the scope of this thesis.

3.4 Selecting the System Requirements
Proper implementation of the use cases of design decisions should follow the recommendations

and requirements of a design decision system. Therefore, the developed decision support tool

should follow the recommendations and requirements suggested by the various authors

mentioned previously in Section 3.1.

The fundamental use cases of decision creation and retrieval ultimately depend on how we

represent the design decisions, careful planning is necessary to select which decision

representation model to use for the system. Details of the decision capture and representation

requirements are found in Section 2.2. However, if we look at the capture and retrieval

processes, the common theme of making decision capture, browsing, and manipulation easier is

evident and is addressed by reducing the capture overhead, allowing more customizable or

personalized content, gradually formalizing decisions, and improving the handling of large

amounts of information (Dueñas & Capilla, 2005, Farenhorst et al., 2007, Regli et al., 2000).

Other requirements of design decision systems are listed in Table 11 (see Section 3.1).

The decision view requirements proposed by Dueñas and Capilla is a mandatory set of

requirements to fulfil, as it summarizes many requirements well. A design decision system

should support multiple perspectives to handle various stakeholder needs and documentation

biases while acknowledging the collaborative nature of design by requiring groupware support.

The decision view also requires complexity control and gradual decision formalization to handle

the large volume of information to capture, browse, and manipulate; furthermore, the visual

representation requirement could significantly aid in those areas as well. Though second in

priority, implementing query support, consistency checks, and conflict management (Regli et al.,

2000) as well as implementing measures to increase the system’s “stickiness” (Farenhorst et al.,

35

2007) are highly preferred and the system would meet all the suggested requirements. I

identified that the adoptability and usability visualization tool requirements are difficult

requirements to satisfy, since they involve in-depth study of the way people use the tools and

require additional studies to be performed. As I acknowledge my limited time and resources, I

address these two requirements less significantly than the other requirements in the initial

implementation of the tool. Later tool design iterations will focus on these two requirements. To

summarize, Table 17 below gathers together all the selected requirements and use cases I intend

to implement in my software architectural design decision support tool. The rest of the thesis

references the requirement and use case identifiers used in this table.

Table 17: Summary of selected requirements and use cases

ID Requirement/Use Case Source
R1 Capture with minimal overhead (Regli et al., 2000)
R2 Resolve conflicts (Ibid.)
R3 Knowledge consistency (Ibid.)
R4 Retrieval strategies to manage large datasets (Ibid.)
R5 Retrieve information without navigating through all data (Ibid.)
R6 Support querying (Ibid.)
R7 Multi-perspective (Dueñas & Capilla, 2005)
R8 Visual representation (Ibid.)
R9 Complexity control (Ibid.)
R10 Groupware / Collaboration (Ibid.)/(Farenhorst et al., 2007)
R11 Gradual decision formalization (Dueñas & Capilla, 2005)
R12 Stakeholder-specific content (Farenhorst et al., 2007)
R13 Easy content manipulation (Ibid.)
R14 Descriptive in nature (Ibid.)
R15 Knowledge codification (Ibid.)
R16 Knowledge personalization (Ibid.)
R17 Sticky in nature (Ibid.)
U1 Incremental architecture review (Kruchten et al., 2005)
U2 Review for a specific concern (Ibid.)
U3 Evaluate impact (Ibid.)
U4 Get a rationale (Ibid.)
U5 Study the chronology (Ibid.)
U6 Add a decision (Ibid.)
U7 Clean up the system (Ibid.)
U8 Spot the subversive stakeholder (Ibid.)
U9 Spot the critical stakeholder (Ibid.)
U10 Clone architectural knowledge (Ibid.)
U11 Integration (Ibid.)
U12 Detection and interpretation of patterns (Ibid.)

36

ID Requirement/Use Case Source
V1 Rendering scalability (Kienle & Müller, 2007)
V2 Information scalability (Ibid.)
V3 Interoperability (Ibid.)
V4 Customizability (Ibid.)
V5 Interactivity (Ibid.)
V6 Usability (Ibid.)
V7 Adoptability (Ibid.)
V8 Views (Ibid.)
V9 Abstraction (Ibid.)
V10 Search (Query) (Ibid.)
V11 Filters (Ibid.)
V12 Code proximity (Ibid.)
V13 Automatic layouts (Ibid.)

3.5 Meeting some Challenges
We can check the selected requirements and use cases against the challenges for design decision

systems (found in Table 10). Looking at Lee’s issues for design rationale systems, we have

addressed the issues of what services to provide through the selection of use cases (refer to

Section 3.3), as well as the “what” and “how” to represent the design decisions through the

decision representation discussion (refer to Chapter 2). Minimizing the capture overhead and

supporting custom or organization-specific processes would address the decision production

issue. Complexity control measures and visualization requirements are approaches to the

decision access and management issues. Integration across various mediums, representations,

and systems remains a significant challenge, but unifying the various requirements together and

developing a multiplatform tool would attempt to address this.

Likewise, increasing the immediate benefit to the decision capturer, reducing the interference of

the decision capture or retrieval processes and supporting custom or organization-specific

processes would address most of Grudin’s eight challenges. If the focus is on providing

immediate benefit to the capturer, there will less work/benefit disparity so that collaborative

features become extensions of the immediate benefit and not an additional chore. These points

also summarize Regli’s technical challenges. Combined with the requirement for gradual

formalization of decisions and avoiding new tools (or processes) that the organizations are not

familiar with, we can also address Regli’s design challenges as well.

37

CHAPTER 4

DECISION CAPTURE AND VISUALIZATION SUPPORT

The success of a design decision system depends not only on the challenges the system should

address and the set of requirements needed to implement such a system, it also depends on how

the system will be implemented within an organization. In the previous chapter, we have looked

at the challenges and requirements of a system-based approach for architectural design decision

capture and exploration. We have also looked at what we can do with a set of design decisions

and what use cases such a design decision system must support. Furthermore, we reflected that

software development involves many people, so any software architectural design decision

system would need to follow Grudin’s groupware challenges. One major challenge and a critical

element of every system is how a software system can be adopted and used by people within an

organization.

This challenge can be described using an analogy of a corkboard in an office. This analogy starts

off with many office workers complaining that they cannot easily notify each another about

events, share anecdotes, or post pictures and humorous comic strips from the daily newspapers

with the entire office. Their current system of using broadcast e-mails resulted in everyone’s

mail boxes being flooded with e-mail. To remedy the situation, the office acquired a large

corkboard with many features, including a magnetic plate for photos, two bright lamps, a

whiteboard, and markers of different colours and sizes. Clearly, this corkboard addressed the

needs of the office workers. However, the corkboard was quite large and they could neither fit it

on the wall in the kitchen nor by the water cooler. They were able to find enough wall space in a

dark hallway near an emergency exit. Unfortunately, the office workers did not often walk by the

emergency exit, and the hallway had no electrical outlets, rendering the two lamps useless.

Pictures posted there were difficult to see, only two marker colours were distinguishable in the

dim light, they had no magnets, and messages left there expire unnoticed. Most of the notices on

the bulletin board were e-mail messages that the office workers manually printed and posted. It

38

was such an inconvenience to use the corkboard that, after several months, the office workers

resorted back to their old, system of broadcasting e-mails and the corkboard went unused. The

corkboard with its many features failed because it simply did not fit into the daily routines and

information flow at the office.

Applying this corkboard analogy to software systems, a software system should address the

specific needs of the organization without hindering the organization’s daily routines and work

flow. In other words, a software system is not just a tool to get work done; its use has to fit the

work activities and processes. If an organization makes a product C by first making A and then

making B, then any tool to improve the production of C should improve the production of A and

B and avoid introducing X, Y, or Z into the process, even if it does improve C slightly in the end.

Any additional work or complication must be justified by significant benefit. For marginal

amounts of benefit, it is better to break down a step into smaller parts (A becomes A' and A")

and improving each smaller part than adding new parts.

In this chapter, I propose that decision capture can be improved by using three decision capture

approaches to better meet the immediate needs of the people capturing the design decisions. As

well, I propose four aspects of decision visualization to better implement the requirement of

visualization in the context of decision capture and exploration so that people can better

understand the captured architectural design decisions. The proposed approaches and aspects are

measured against the selected requirements summarized in Table 17.

4.1 Decision Capture
In terms of the decision capturing process within an organization, the importance and method of

capturing decisions can vary depending on the type, size, and risk of the project being developed.

Small projects, such as websites or utility tools, may not warrant the amount of effort needed to

capture architectural knowledge, so decision documentation is unnecessary. Projects involving

software with a long service life-span may require significant documentation for code

maintenance and evolution; moreover, large or high-risk projects, like safety-critical systems,

require careful planning, accurate documentation, and extensive reviews in both documentation

and implementation to ensure that the right decisions and implementations are made.

39

Furthermore, the development state of the project affects how decisions are captured. Numerous

architectural decisions are made during the early stages of design but many of these decisions are

vague ideas or are tentative and do not make it past the later stages of design. Capturing

decisions in the mature stages of development mean that the majority of the architectural

decisions are made already and are highly specific, but many of these decisions are forgotten

before they could be documented. Decisions should be captured during the early stages of design

before they are forgotten, while decisions should be captured during the later stages of design

when the decisions are concrete and specific. Clearly, different situations require different

capturing approaches to address the specific needs of both the organization and the situation.

4.1.1 Approaches to Decision Capture
As the benefits of using architectural design decisions ultimately rely on the acquisition of

decisions, it is therefore necessary to have effective means of decision capture. I propose three

approaches to decision capturing. These three approaches are formal elicitation, lightweight top-

down capture, and lightweight bottom-up capture. Each approach takes a different perspective to

decision capture (requirement R7) to address the various decision capture needs of an

organization. To demonstrate each approach, I suggest particular methods that implement these

approaches and I describe the steps of these methods.

4.1.1.1 Formal Elicitation

Formal elicitation of software architectural design decisions is the method of gathering software

decisions in an explicit and structured manner. This is normally performed in several long

sessions devoted for this purpose. The approach, as illustrated in Figure 3, may be better

described as the “Big Bang” decision capturing approach, because the tacit decisions are

materialized and made both explicit and formal without any intermediary steps. Articulation (as

Nonaka puts it) in a single step is called “elicitation” in this capturing approach.

40

Figure 3: Generalization of formal elicitation. More easily understood as the “Big Bang” decision capture

approach, tacit decisions are articulated (elicited) and made explicit by forming decision structures using a particular

decision representation model. The blocks represent these decision structures, and the solid colour inside each block

simply denotes different decisions. Figure from (L. Lee & Kruchten, 2008a) with permission from IEEE.

In this approach, decisions are elicited directly or after-the-fact, with an emphasis on gathering

detailed information on decisions. The decision information is structured formally using a

particular decision representation model. This model can be a design rationale model or a

decision entity model, and it guides decision capturers to document decisions with sufficient

information, such as the issues, alternatives, choices, and rationale that were present when the

decision was made. These details help make the captured design decisions more self-contained

so that someone new to the software system can quickly understand the nature of the design

through the decisions’ context. When capturing the design decisions (use case U6), the details

would help with query support (requirement R6) by providing a large base of information, and

the formalized approach helps with knowledge codification (requirement R15) requirements for

knowledge consistency (R3) by providing sufficient amount of information The focus on

gathering detailed information allows more accurate modeling of a designer’s decision

processes, and hence the types of information gathered through formal elicitation are considered

to be the fundamental structure for modeling, manipulating and browsing design decisions.

Decisions created at the end of the elicitation process are well structured because the process

prompts the decision capturers to enter specific decision information in a consistent and

predictable manner to systematically create a decision that could follow one of many design

41

rationale and decision representation models mentioned above. Since this approach is by

definition a single-step approach, it is obvious that there is only one type of method that would

implement this approach. This method is simply “elicitation”.

4.1.1.2 Lightweight Top-Down Capture

To complement the formal capturing approach mentioned above, I propose a new lightweight

capturing approach for software architectural design decisions. This approach focuses on the

early design phases of a software project and attempts to support software architects and

designers in performing their activities. The term “lightweight” refers to the ability to capture

incremental and incomplete knowledge. This ability addresses the requirement to capture with

minimal overhead (requirement R1) and the gradual formalization of decisions (requirement

R11). A method that implements this splits the formal elicitation approach into three steps: flag,

filter, and form (L. Lee & Kruchten, 2007). This method is illustrated in Figure 4.

Flagging

Flagging is the capture of candidate decisions from the source in which they are found. Sources

of decision inspirations may be from magazine articles, books, audio/video recordings, e-mails,

electronic documents, or internet web pages. Candidate decisions are ones that are considered,

but not necessary for a design. Using a reference marker, which briefly describes the essence of

the decision and points to the source where it is found, can capture a decision candidate. Flagged

candidate decisions are called decision references. Flagging can be performed with little worry

over the immediate relevance or priority of the decisions as the sorting tasks can be performed at

a later point in time during the filtering step. In this manner, the captured knowledge can be

personalized to the design decision capturer and other stakeholders (requirements R12).

42

Figure 4: A lightweight top-down capture method. This method implements the lightweight top-down capture by

breaking the decision capture process into three steps: flag, filter, and form. Decision inspiration found in various

media such as books, documents, recordings, e-mails, or meeting minutes can be flagged and stored in a list of

candidate decision references (“candidate” because they are not full decisions yet) for future retrieval. The list can

be scanned at a later point in time in which the candidate decision references are filtered for relevance (represented

by the sieve). Decision references that are still relevant can be formed into formal decision structures (represented

by the block). Decisions that are no longer relevant are discarded, but kept handy in a repository (represented by the

recycle bin) in case we need to find alternate decisions. Figure from (L. Lee & Kruchten, 2008a) with permission

from IEEE.

Filtering

After a period of time, the accumulated decision references would require some sifting to

identify which decision candidates are still applicable for the project. This promotes periodic

cleanup of the list of decision references to reduce the amount of obsolete decisions in the final

decision documentation. Identified relevant decision candidates are considered for formal

decision structuring. This step allows stakeholder-specific content to be captured (requirement

R12). The filtering step confirms and promotes the selected decision candidates to be lightweight

versions of the full, formal design decisions.

43

Forming

The purpose of the forming step is to fill out the details and contextual information of the

relevant decisions identified during the filtering step. This would complete the requirement to

gradually formalize design decisions with minimal overhead (requirements R1, R11, and R15).

A formal decision representation model is used to structure the decision and its attributes in an

organized and accessible manner so that the captured decisions can be recalled, analyzed, or

manipulated at a later point in time. This step is similar to the creation of formal decision

structures in the formal elicitation approach, except that the decision capturer has intermediary

information (and additional information captured, like decision sources) to help flesh out the

decision details. This intermediary information is personalized and stakeholder-specific

knowledge that the decision capturers find relevant (requirements R12 and R16).

4.1.1.3 Lightweight Bottom-Up Capture

With the lightweight decision capture from the software programmer’s perspective in mind, I

propose a second new capturing method that supplements both the formal capturing methods and

the lightweight top-down method described above by specifically addressing decision capture in

the mature development and maintenance phases of a software project. The goal of the

lightweight bottom-up approach is to capture architectural decisions that are documented within

the many artifacts generated during software development. Again, “lightweight” refers to the

ability to capture incremental and incomplete knowledge (requirement R11). To demonstrate this

approach, we suggest a capturing method that has two steps: tag and form. This method is

similar to the three-step capturing method described in section 3.2, but is tailored to better suit

the needs of programmers and maintainers (requirement R12). Figure 5 illustrates the bottom-up

capture method as applied to software source code. Filtering decisions for relevance is not

necessary for bottom-up capture because fewer decisions are made when the design matures and

development progresses; furthermore, architectural decisions at this point in time are often

concrete and to-the-point, usually addressing a specific architectural issue.

44

Figure 5: A lightweight bottom-up capture method. Similar to the flag-filter-form method, this lightweight

bottom-up method divides the decision capture process into two steps, tag and form. This figure shows the method

as it applies to software source code. During the later stages of development and code maintenance, architectural

changes are often reflected in the source code, like workarounds and patches. A software developer can document

(tag) architectural decisions close to the affected areas of code using a decision tags or code comments (such as

@decision or //decision). The list of tags is stored within the source code, and can be displayed to developers during

peer code review or code commit to form a formal decision structure (represented by the blocks). Figure from (L.

Lee & Kruchten, 2008a) with permission from IEEE.

Tagging

I define the verb, “tag”, to mean the act of attaching small amounts of specific information onto

an article or other objects for later information retrieval regarding it. In the context of

architectural design decisions, tagging is “flagging” of decisions that are reflected in the various

design artifacts generated throughout software development. These artifacts include software

code, models, requirements, or text-documents that describe the software design. Moreover, the

artifacts should be accessible and be uniquely referenced for long-term traceability. The tagging

step captures decisions without significant documentation effort (requirement R1) by capturing

45

decisions as close to the artifacts that they are most concerned with. The captured decisions

would be highly relevant and specific to the capturer (requirements R12 and R16). Software

architects and other designers could document their decisions without leaving the design tools

they use most and are most familiar with (requirement R17). For example, a software architect is

studying a large class diagram and identified a collection of tightly coupled classes that heavily

depend on each other. The architect feels that these coupled classes need refactoring and the

architect would then tag the collection of classes within the class diagram with his decision and a

supporting reason. The architect could also tag his decision on the class diagram after refactoring

the classes. In general, the primary difference between tagging and flagging is that flagging

documents decision information in an external repository, while tagging documents decision

information within the object in concern.

In the context of software code, tagging is a common term to describe the act of placing

identifiers (like “@Decision” or “//Decision” code comments) within source code or on a

collection of files to store specific information for future reference. For decision capture, tagging

refers to placing identifiers within the design artifacts to document design decisions made that

deal with the particular design section represented in the artifact. A related work uses tagging

and code commenting as “waypoints” to document thought flow and code navigation (Storey et

al., 2006). Other related works include social tagging applications like Delicious

(http://del.icio.us) for web links and Flickr (http://flickr.com) for photographs. Broadly speaking,

social tagging usually stores tags externally (similar to web-bookmarks and decision flagging),

while decision tagging stores decisions inside the design artifacts of concern.

Forming

The decisions tagged within source code are typically succinct and would not contain the level of

detail necessary for formal decision representation; therefore, a separate step is needed to form

the decision using supplementary details. This step can be performed during peer code review to

encourage knowledge dissemination and increase architectural awareness, or this can be done

semi-transparently through routine code commit comments. As software artifacts like class

diagrams and source code could change often, formalization of the decisions (requirement R15)

is important to support knowledge consistency and awareness (requirement R3).

46

4.1.2 Customized Decision Capture
Multiple decision capturing approaches allow organizations to choose a better approach for their

needs. The three decision capturing approaches I propose give organizations more flexibility in

how they capture decisions. Each approach addresses a particular perspective of decision

capture, and the choice of which approach will depend on the situation. It is possible that all

three capturing approaches can be performed simultaneously if the organization is willing.

Moreover, the methods that implement each approach can be further customized to better fit the

needs of the organization.

4.1.2.1 Comparing the Three Approaches

The goal of all three approaches is the same—to create formalized decision entities that can be

manipulated and analyzed. Figures 2-4 illustrates this goal by showing the creation of decision

“blocks” at the end of each method. In essence, the two lightweight approaches are the result of

breaking down formal elicitation to multiple smaller steps, analogous to the principle of

transitivity. By completing all the steps of a lightweight approach, the resulting formal decision

is effectively equivalent to the decision if it were captured using the formal elicitation approach.

Thus the two lightweight approaches implicitly support the knowledge codification requirement

(requirement R15). However, the formal and lightweight approaches are not truly transitive as

the resulting decision sets from a lightweight capturing approach may contain additional

information that would have otherwise been lost if the decisions were created through the formal

elicitation approach. These include backwards traceability, information sources, background

context, and discussion traces. The flexibility of the source, form, and manner of documenting

the design decisions satisfies the requirement to be descriptive in nature (requirement R14). On

the other hand, decisions created through formal elicitation may contain more relevant

information, as some design details can be forgotten or lost between different steps. The

differences between the approaches suggest that using a particular approach can be advantageous

for certain situations.

Formal elicitation is useful in situations where the decisions are made with some level of

confidence. This is usually the case during technical design discussions where bursts of decisions

are generated in response to the issues at hand. Formal elicitation is also useful when the

47

decisions are already made but not documented, such as during post-implementation reverse

engineering, design comprehension and documentation. Moreover, this capture approach is

sometimes preferred because of its simplicity and shortest turnaround time before return on

investment — the single-step capturing approach is direct so the decisions can be explored in

great detail immediately after creation. However, the main concern of using the formal

elicitation approach is that it requires significant effort to enumerate the decisions someone made

when designing a particular system. The result is a significant upfront cost in which interested

participants become discouraged by the amount of effort being expended. The results of a survey

support this view (Tang et al., 2006). Formal elicitation does support gradual decision

formalization (requirement R11) implicitly in that design decision information can be captured at

various points in time. But the act of going back to an unfinished design decision could be

difficult; from personal experience, things left incomplete tend to stay incomplete. Therefore, we

need to have some guidance or assistance in capturing decisions in situations where the design

knowledge is intentionally or unavoidably left incomplete.

The two lightweight approaches focus on the Gestalt, in which the incomplete nature of

knowledge can be brought together to form a whole picture. Specifically, the two approaches are

designed to facilitate and support the design activities of the software architects, designers, and

the rest of the software development organization by explicitly documenting smaller pieces of

information so that their accumulation would describe a designer’s decisions and knowledge as a

whole. Furthermore, the focus on lightweight, incremental decision capture reduces the impact

of the decision capturing process on an organization’s design activities. Top-down capture of

design decisions addresses decision making in early design stages, when decisions are vague and

subject to change. Here, detailed capture is not possible or warranted. However ambiguous,

early-stage decisions are important to capture, as they make up the foundations of the design and

determine the path of progression for the design. The bottom-up approach is suitable for

situations where architectural decisions are made during a project’s implementation and

maintenance phases. In these cases, capturing the technical details of an issue may involve

referencing numerous external articles, from technical service bulletins to discussion threads and

to internal source code. Since a technical issue can stem from a particular section of code or

architectural diagram, decisions can be made and captured as close as possible to the

48

troublesome area. The result of using a bottom-up decision capture approach is that it enables

more precise documentation of the technical design issues related to the architecture. Moreover,

the resulting documented decision can also be easily referenced throughout the lifetime of the

design artifact because it is a part of the product.

4.1.2.2 Customizing Each Method

Although the three approaches can be viewed as a means to an end in that the final result is the

creation of a formal decision entity to represent the architectural knowledge, there is no

restriction as to what the final form of the captured knowledge should be for an organization. In

section 2.2, I mentioned the knowledge needs of an organization. Each capture approach satisfies

a certain design process perspective and each method implementation can be customized to

adapt to varying capture goals.

For some organizations, using a portion of a lightweight method would suffice; just capturing

decision references in its unrefined state is sufficient for them as architectural decision

documentation. The underlying implication is that the organization would rely on the people

involved to provide additional information or interpretation of the data. This concept is related to

the work of contribution structures (Gotel & Finkelstein, 1995), as there is a need for

organizations to maintain authorship traceability for the captured decision references. Likewise,

capturing architectural knowledge within the source code without enforcing the formalized

decision representation may be just as acceptable for an organization. The objective is to adapt

the capturing method to suit the needs of an organization without imposing additional work.

There is also the concern of personal and proprietary decision disclosure. People often prefer to

keep personal decisions private. Some decisions are made with personal or political motives, and

are rarely documented under fear of their discovery. For example, several employees working

for a company in times of economic uncertainty would conceal some of their design knowledge

in hopes to become indispensable and thus attain some level of employment security. In another

case, a joint venture with another company on a project could involve varying levels of design

disclosure. In either case, the designers would soon forget their original intents and decisions if

decisions were not documented at all under fear of their discovery. Varying levels of disclosure

49

at the discretion of the organization and the decision capturers would alleviate this fear and

promote documentation of sensitive decisions. Depending on the organization, publicity levels

can be enforced. Every person capturing his or her design decisions gets a private area to store

their personal decisions. Decisions can be assigned a publicity level, such as “personal” or

“organization-wide”, at any point in time. This concept enables selective-release of design

decisions, where decisions can be selectively shared with other people or the rest of the

organization. Support for the selective-release of design decisions is provided by the “publicity

level” attribute of the design decision representation model described in Section 2.5.

4.2 Decision Visualization
The formalized structure of explicit design decision representation in software architecture offers

high decision analysis and exploration potential. However, the analytical and explorative

capabilities of architectural design decision representation are bound by the way the information

is presented. In the previous chapter, I make a special note that visual representation is one of

Dueñas and Capilla’s requirements for the design decision view of software architecture

(requirement R8). Design decision visualization facilitates easier understanding of the

architecture and provides a better walkthrough of the designer’s decisions and intents because it

is capable of retrieving and displaying large sets of data in a meaningful way without

overwhelming the people viewing it (requirements R4 and R5). A design decision system should

support visualization as an integral part of the system. In focusing on the exploration of

architectural design decisions, the visualizations should also support the architectural knowledge

and design decision use cases outlined in Chapter 3 to help people perform their decision-related

tasks more effectively. To arrive at a visualization solution for software architectural design

decisions, one needs to know of the various visualization techniques currently available, and

identify which aspects of design decisions to visualize, guided by the use cases, which are how

design decisions can be used.

4.2.1 Visualization and Design Decisions
The information visualization community dedicate their research to help people perform specific

tasks more effectively by improving the communication and cognition of a large set of complex

or abstract information through visual representations. As information comes in many forms,

50

there are also many ways to represent information visually. Information in the form of text can

be arranged in paragraphs, lists, or tables, while numeric or relational information can be

represented using shapes, graphs, or hierarchical structures. In general, there are three types of

information: ordinal, nominal, and quantitative. Quantitative information has a magnitude and

can be measured. Ordinal information has an established order but may not have a magnitude,

such as information based on rankings, time, or sequence. Nominal information is qualitative or

descriptive, such as texture, shape, or name. Some types of information (like colour) may fit into

multiple categories depending on the context or representation. Charts and plot-graphs are useful

to compare quantitative information against other quantitative or ordinal information, such as the

number of decisions made over a period of time. Nominal information can be plotted against

quantity, such as the frequency of occurrence of the word “the” in a literary work. Relationships

and associations between nominal information can also be represented graphically using nodes

and edges.

In a strict sense, people have used visual representations specifically to understand large amounts

of information since the late 1700’s (Heer et al., 2005). Many new information visualization

techniques have been investigated since then, such as graph drawings, tree mappings, clustering,

cloud representation, bundling, and metaphor representations. Graphs (nodes and edges) are

useful to display associations, hierarchies and dependencies while treemaps are useful to

illustrate hierarchies based on subsets. Treemaps, (as well as clustering, bundling, and cloud

representation) help people identify and group information based on outliers and commonalities

(Munzner, 2000). Metaphor representations allow differences and anomalies to be detected

based on familiarity. Further visualization techniques to help people navigate, understand and

manipulate large amounts of information within a single view of the include animation and

interactivity and navigation, spatial distortion (like “fisheye” or hyperbolic graphs), colour,

dimensionality, and information compressibility.

The software maintenance and program comprehension communities applied many of these

visualization concepts to better understand the software in terms of the software structure,

behaviour or evolution. A recent software visualization workshop featured papers that visualize

the sequence of method calls within a program as graph (Deelen et al., 2007), a non-linear

51

timeline of dynamic memory allocations (Moreta & Telea, 2007), city-block/building metaphor

of class packages and classes using three-dimensional treemaps (Wettel & Lanza, 2007) and a

edge-bundling graph of a program’s execution trace (Holten et al., 2007). There is also a

visualization tool named SoftArchViz (Sawant & Bali, 2007) that appears to be closely related to

software design, but upon closer analysis it is actually a tool that visualizes the implemented

software architecture through a component-connector view of software classes, member

variables, logical structuring (file system and packaging), number of threads, functions, and the

distance away from the hardware level of abstraction. However, there is little work in visualizing

the architecture as a set of design decisions.

Determining how software architectural design decisions should be visualized is difficult

because design decisions have many ordinal, quantitative, and nominal attributes. (Ordinal

attributes include the decision creation/modification time, state, disclosure level, and relationship

strength. Quantitative attributes include the number of changes and relationships. Nominal

attributes include the keywords, relationship type, categories, source, and author of the

decisions.) Depending on the context and situation, certain attributes are compared or evaluated

more frequently. For example, when finding a subversive stakeholder (use case U8), the author,

timestamp, and change log of a design decision are more important than when understanding or

reviewing the decisions behind the architecture, which significantly involve the decision

rationale and relationships. As decision visualization should help people perform their tasks

better, we should have special visualizations that focus on certain aspects of design decisions to

reduce visualization complexity and improve the task assistance.

4.2.2 Essential Decision Visualization Aspects
I propose four visualization aspects (L. Lee & Kruchten, 2008c) that should be addressed when

visualizing design decisions: these four aspects are tabular lists, graphical structure visualization,

chronology visualization and decision impact visualization. These aspects abstract and represent

the decision representation model visually to address the visual representation requirement

(requirement R8) and contribute to the complexity control requirement (requirement R9). The

four visualization aspects also support the multiple-perspective approach to address specific

52

situations and foci (requirement R7). These situations involve the twelve use cases of software

architectural design decisions and will be discussed in the following subsection.

4.2.2.1 Tabular Lists

The purpose of this visualization aspect is to supply a quick and effective way to browse and

retrieve information from design decisions (requirements R4 and R5). The textual tabular

representation facilitates decision querying and simple decision entry and manipulation

(requirements R1 and R13) because the data representation can be easily parsed on a computer

screen or on a paper printout. Although tables provide efficient textual display of decision

information, it is difficult to quickly trace and assess decision structures, relationships, and

properties when the decision set becomes large or changes relationships frequently. Although

there is framework support for sorting, filtering and querying (requirements R6, V10 and V11), a

better retrieval strategy for large datasets is needed to adequately support requirements R4 and

R5 and another visualization aspect is needed to better handle the complexity (requirement R6).

4.2.2.2 Graphical Structure Visualization

The goal of this aspect is to increase understanding of the architecture’s decision structure. The

decision structure guides the capture, perusal, and manipulation of decisions and their

relationships without sacrificing the comprehension of the structure of the architecture for

managing the design decisions, especially when the decision sets become large. An effective

way to sort and analyze large sets of decision information is to graphically represent the

decisions (requirements R4, R5, and R8). Graphs are used to visualize decisions: decisions are

represented as nodes and the relationships are the edges. The visualization should be able to

display decisions, their attributes, and their relationships to each other separately from the

architectural components, or, in other words, a decision-only view of the software architecture.

A significant benefit for graphical structure visualization is its cognitive assistance, which helps

individuals to create a mental map of the decisions. Other benefits include the ability to detect

missing or orphaned decisions that may denote design incompleteness and the preservation of

decision contexts in relation to one another. These benefits support the requirements to resolve

conflicts and maintain knowledge consistency (requirements R2 and R3).

53

Decision relationships are better represented visually using decision graphs than lists in a table,

despite the fact that tables provide a more efficient textual display of decision information. The

emphasis on a mutable, visual manipulation interface complements the dynamic nature of the

decisions and satisfies the requirement for easy content manipulation (requirement R13). A

designer should be able to create and manage decision relationships easily, such as drawing a

line or dragging one decision on top of another. Likewise, changing a decision’s attributes can be

made easier by selecting decisions through the visual interface.

4.2.2.3 Chronology Visualization

The goal of this aspect is to increase understanding of the architecture’s dynamic nature.

Software design changes over a period of time, so the design decisions made will also change.

The visualization should handle the evolution of the design decisions and should support

versioning and the state of the decisions. The decision state can change at any time, implying

that any decision related to a mature decision could also be affected when that mature decision

becomes obsolete.

Keeping track of the history of the changes would better explain the architectural story and

reasons behind the design when we study the decision chronology (use case U5). Moreover, a

timeline view is suggested that will display decisions that were created or modified during a

specific time interval. This would be beneficial in periodic design reviews, where the reviewers

can find what has changed since the last review or determine the design maturity from the

decisions. The chronology visualization aspect supports certain query types and filtering

(requirements R6 and V10) against time or author to determine what decisions were changed

recently and by whom. This aspect provides a direct way to view and assess the gradual

formalization of design decisions by studying the various decision versions over a period of time

(requirement R11). Easier decision manipulation (requirement R13) is made possible because

this visualization aspect reduces the amount of information a user needs to sift through or modify

(requirement R5) as a part of the chronology retrieval strategy for decisions (requirement R4).

4.2.2.4 Impact Visualization

The goal of this aspect is to increase the understanding of the architecture’s dependencies on its

set of design decisions. This visualization helps visually identify the impact decisions have on

54

each other using the decision relationships and properties as well as links to software artifacts

and architectural components. The purpose is to assist in finding and resolving decision conflicts

in addition to maintaining knowledge consistency (requirements R2 and R3). To be more

concise, the decision impact visualization aspect utilizes the traceability provided by the artifact

support and the decision attributes represented in the structural support to create a potential

impact matrix for software architects, designers, and developers to draw conclusions upon. This

matrix represents a large volume of information and browsing it can be overwhelming.

Focussing on certain categories of the matrix helps reduce the amount of information during

retrieval and browsing (requirements R4 and R5). The visualization of this matrix provides an

entry point into decision exploration and analysis by linking potentially impacting decisions

together and making the impact relationships obvious in the visualization. Identified impacted

decisions can be easily viewed and manipulated from this aspect (requirement R13). An example

of a decision impact matrix is shown in Table 18.

Table 18: Decision impact matrix example. Short-hand notation and abbreviations are used to keep the table tidy.

Design
Decision

Relationship
with Decision

Decision Attributes

 I II III IV Epitome Rationale Scope Category Author State Publicity Source

I * - cs cf Use dot
NET 3.5

Acquired
technology
uses dot
NET 3.5

Back-
server

Framework,
Back end

LL Decided Organiz’n Acquis’n
tech doc ,
p. 143,
sec 9.12

II * - cp Deploy on
multiple
platforms

20% of
market not
using
Windows

Client
agent,
back
server

Deployment,
Agent,
market needs

JW Apprv'd Public Product
brochure
for ver.
1.5 & up

III * cf - Support
IBM OS/2

Legacy
support

Client
agent

Legacy,
Agent,
Compatible

LL Chllng'd Organiz’n SC from
AIE R&D

IV * o f - Support
popular
config-
urations
only

Lack of
resources in
dev, short
time to
market

Dev.,
market
time,
System.

Deployment,
testing,
market needs
Executive
decision

MTW Tent've Personal LL, from
Jun 08 IT
Monthly
magazine

Relationships: (In the form “<Decision *> [relates to] <Decision>”)
cs = constrain f = forbid en = enable s = subsume cf = conflict with
o = override cp = comprise of b = bound to a = alternative to r = related to

4.2.3 Visualization and Use Cases
The four visualization aspects are designed to support the various use cases of design decisions

discussed in section 3.2. These use cases unite the set of requirements together to address how

we can use visualization to explore design decisions. An important idea is that each of the four

55

visualization aspects focuses on certain aspects and situations represented by the use cases. A

handful of visualization aspects cannot adequately view and model all known aspects of design

decisions to satisfy the needs of every designer or developer in the same way that we cannot

directly view all sides of a three-dimensional object using a single spatial-perspective. Thus,

each visualization aspect will attempt to address particular use cases so that collectively, all the

use cases can be met. This is shown in Table 19.

Table 19: Use cases and the four decision visualization aspects

Decision Visualization Aspects
Tabular list Graph’l structure Chronology Impact

U1: Incremental architecture review – – Supported –

U2: Review for a specific concern Supported Supported Supported Supported

U3: Evaluate impact – Supported – Supported

U4: Get a rationale Supported Supported Supported Supported

U5: Study the chronology – – Supported

U6: Add a decision Supported Supported – –

U7: Clean up the system Supported Supported – Supported

U8: Spot the subversive stakeholder – – Supported Supported

U9: Spot the critical stakeholder – – Supported Supported

U10: Clone architectural knowledge Supported Supported Supported Supported

U11: Integration Supported Supported – –

D
es

ig
n

D
ec

is
io

n
U

se
 c

as
es

 (K
ru

ch
te

n
et

 a
l.,

 2
00

5)

U12: Detection & interpretation of patterns – Supported – Supported

The four most important use cases to fulfill is adding design decisions, getting the rationale

behind a decision, evaluating the impact of a decision, and reviewing the decisions for a specific

architectural concern. As decisions are created and manipulated in an environment where people

can quickly browse and understand the structure of decisions, I support decision capture (use

case U6) in the tabular listing and the graphical structure visualization aspects. The decision

impact visualization aspect is designed specifically to evaluate the potential impact if a decision

is changed or removed (use case U3). Decision impact analysis is an important decision use case,

where six of (van der Ven et al.)’s twenty-seven use cases address it (refer back to Table 16), and

the feedback from software architects and designers in industry supports its importance. In all

four decision visualization aspects, the user can view the decision rationale and other details (use

case U4) simply by selecting the decision and getting the rationale stored within it.

56

The next four important use cases surround the changes made to the system being designed.

These use cases are spotting the subversive stakeholders, spotting the critical stakeholders,

studying the chronology, and performing an incremental architecture review (use cases U1, U5,

U8, and U9). This is achieved through the decision chronology view, which looks at the

decisions created or modified during a specific time interval and maps them to a timeline. The

result of this aspect allows users to find what has changed since the last review and which

decisions are being modified. This view also makes it easier to find which stakeholders are

making the changes (i.e, subversive stakeholders) and which stakeholders would be most

affected by a decision change (i.e., critical stakeholders).

The final set of use cases deal with the decision maintenance and design improvement of the set

of architectural design decisions: system cleanup, pattern detection and interpretation, cloning

(or reusing) architectural knowledge, and integrating one set of decisions with other decision

sets. Pattern detection of design decision sets (use case U12) is a relatively new field of research,

so there is little theory in this matter to apply. However, the four visualization aspects are

designed to collectively help explore a set of design decisions to discover new ideas and themes

made apparent or visible through visualization. For example, in the graphical structure view, we

can easily see the documented relationships between design decisions and a sense of grouping.

Coherence and coupling can be determined with a single glance. In the decision structure and

impact visualization aspects, we can identify isolated decisions that may be no longer relevant or

find system components related to a decision that was just rendered obsolete (use case U7).

Combined with tabular listing, a software architect can easily find a subset of decisions to clone

or reuse (use cases U10 and U11) in new projects.

57

CHAPTER 5

ARCHITECTURAL DECISION TOOL DESIGN

In Chapter 3, I described the needs for a system-based approach for architectural design

decisions, where I also integrated and outlined the challenges, requirements and use cases for a

tool-based solution. Moreover, in Chapter 4, I describe other ways to support decision capture

and visualization by proposing three capture approaches and four visualization aspects to

improve the decision capture processes and decision exploration for software development

organizations. The next logical step is to design and implement a software tool that would satisfy

or support as much of those requirements and use cases in the tool-based solution as possible,

using the proposed capture approaches and visualization aspects. The goal of the tool creation is

to determine the feasibility of the requirements and use cases of the tool-based solution through

the development of the system-based tool. As well, the tool provides the capability of gaining

immediate feedback from users of the tool about the practicality of the proposed capture

approaches and visualization aspects. In this chapter, I discuss how I design and implement an

architectural design decision tool I name ADDEX (Architectural Design Decision EXploration).

5.1 Tool Design Overview
The ADDEX tool is a system-based tool that consists of four components. These components are

actually four sub-tools using a common framework to collectively address decision capture and

exploration. A general system structure overview of the ADDEX tool is shown in Figure 6.

Three of these tools (i.e. the components) respectively address one of the three approaches to

decision capture and store the captured decisions in a database using a common decision

representation model and supporting data manipulation software framework. The fourth tool

leverages the captured decisions to visualize and explore the different facets of the architectural

knowledge found within those design decisions. All four tools are written in Java and can

interface with an SQL relational database provided by the common framework. An overview of

the ADDEX tool is also found in (L. Lee & Kruchten, 2008b).

58

D
ecision Visualization

Decision
Structure

Decision
Chronology

Decision &
relationship lists

Decision Impact

D
ecision Visualization

Decision
Structure

Decision
Chronology

Decision &
relationship lists

Decision Impact

Decision
Structure

Decision
Chronology

Decision &
relationship lists

Decision ImpactDecision Capture

Lightw
eight

top-dow
n

Lightw
eight

bottom
-up

Form
al

elicitation

Decision Exploration

D
ecision

Visualization

Common decision representation & manipulation framework

Decision Capture

Lightw
eight

top-dow
n

Lightw
eight

bottom
-up

Form
al

elicitation

Decision Exploration

D
ecision

Visualization

Decision Capture

Lightw
eight

top-dow
n

Lightw
eight

bottom
-up

Form
al

elicitation

Decision Capture

Lightw
eight

top-dow
n

Lightw
eight

bottom
-up

Form
al

elicitation

Lightw
eight

top-dow
n

Lightw
eight

bottom
-up

Form
al

elicitation

Decision Exploration

D
ecision

Visualization

Decision Exploration

D
ecision

Visualization

Common decision representation & manipulation framework

Figure 6: ADDEX system diagram. Four sub-tools make up the ADDEX tool and are tied together through a

common framework for decision representation, storage, and manipulation. The visualization tool contains four

distinct visualization aspects that can be used to explore architectural design decisions.

5.1.1 Decision Attributes
To represent the design decisions in all four tools, I used the ontological decision representation

model, where decision details such as the description, rationale, scope, and state, and decision

relationships are gathered using the tool. The selection and brief overview of this decision

representation model is described previously in Section 2.5. For the two tools implementing the

lightweight decision capture, the focus was on breaking down the capturing process to smaller

steps, thus reducing the amount of immediate effort needed to capture architectural design

decisions. In this case, I use a subset of the decision attributes required for the initial capturing

event, and I provide additional support attributes so that the decision capturer can revisit the

semi-documented decision at a later time to add in the necessary details. For example, in

lightweight top-down capture, the required attributes during the initial capture event would be

the epitome of the decision, who made the decision (or who documented it), and when was it

documented. The additional requirements include a reference and an index to the source of the

decision (in a document or meeting minutes, for example), as well as a casual “notes” section to

document any additional information to informally remind the decision capturer about the

decision at a later point in time. Table 20 summarizes the attributes used to capture design

decisions in the three capture tools.

59

Table 20: Design decision attributes implemented in each of the three capture tools. Attributes denoted with a

‘*’ are additional attributes used to model the decisions for the implementations of the capturing approaches.

Attributes in parentheses are implicitly implemented.

Formal elicitation Lightweight top-down Lightweight bottom-up
 Epitome
 Rationale
 Scope
 State
 Categories
 Author
 Date/time
 (Publicity level)
 (Source)

 Epitome
 Author
 Date/time
 Source* (documents/media)
 Notes*
 (Publicity level)
 (Source)

 Epitome
 Tag source* (design artifact)
 Author

In the lightweight approaches, I am not implying that the reduced set of attributes are more

important than other attributes found in the formal elicitation approach; however, I am stating

that the subset of attributes are essential to the particular lightweight step being performed to

capture decisions before it would be forgotten and lost. In other words, I am suggesting that upon

completion of all the steps of the lightweight approaches would have not only captured the same

set of decision attributes as in the formal elicitation example, but additional support attributes

like traceability to decision sources, context, and relevance are captured as well.

For the scope and purpose of my research, the “source” attribute is intentionally folded into the

rationale of the design decisions. I made an assumption that people can document the source of

their decisions within the rationale. Since lightweight bottom-up capture documents decisions

directly within the source, the “source” attribute is defined to be the same as the “tag source”

attribute. Future work should make the source more explicit to better support traceability and

intentionally tacit decisions. However, for the “publicity level” attribute, limited resources and

scope dictate the implementation of personal and public design decisions, as it entails significant

implementation resources to develop a supporting framework for user groups and security

policies within the four components of the ADDEX tool. Publicity levels are implicitly defined

in the formal elicitation tool and the lightweight top-down tool in that all the personalized

decision flags in the lightweight top-down capture tool can be kept personal and private, while

all formed decisions in all three decision capturing tools are set to an organization-wide level of

disclosure. Since software artifacts are generally organization-wide in nature, there is little need

60

for publicity levels in lightweight bottom-up decision capturing. The context of decision set

acquisition (see Section 6.2.2) ultimately limit the study of publicity levels, so no further

attempts are made to modify the tool to support various levels of decision disclosure.

5.1.2 Users of the Tool
The ADDEX tool is designed to be used in a multi-user, collaborative environment. The targeted

users for the tool are software architects, designers, developers, maintainers, and other

stakeholders (refer to Table 14 in Section 3.2.1). It is assumed that the users are familiar and

comfortable with computer technology. Each user is associated with a username and must be

signed in to create and manipulate design decisions within the system. Currently, anyone can

view the decisions, as I assume that all users accessing the system are authorized (e.g., the tools

are operated within an organization’s secured building and computer network). Created decisions

and decision changes are associated with a user and the date and time of the change. The tools

can be deployed in a distributed environment where users in various physical locations can

simultaneously use the tools on their own machines. Alternatively, the tool can support multiple

users sharing time on a single instance running on a computer. In this way, software

organizations can customize the use and integration of the tools to their own specific needs.

5.1.3 Decision Storage and Retrieval
To store and retrieve captured design decisions, the ADDEX tool (with its four components)

supports flat files, databases, and XML representation. The captured design decisions can be

stored in a database located locally or remotely. To support decision storage into a relational

database like mySQL, the general logical structure models the various entities in relations to a

decision entity, as shown in Figure 7. If a database is not available, then the common framework

can use flat files instead. Also, decisions, relationships, and other attributes can be imported and

exported through external XML files. All decisions and relationships are assigned globally-

unique identifiers to import only the decisions that do not exist in the system yet. (The

underlying assumption in importing and exporting is that a group may collaborate with other

groups on different projects or organizations, so they may want to import new decisions made by

the other group. This means that decisions do not have to be system-unique, but globally unique.

This also mitigates confusion when decisions from other projects appear unintentionally in

61

another project.) The use of XML for decision import and export satisfies the interoperability

requirement (requirement V3).

Figure 7: UML diagram of the common framework's basic decision representation structure

Support for incremental decision changes, like change history, is a fundamental part of the

decision storage and retrieval framework. Each decision contains a change log, where each

version of the decision is tracked and can be accessed. The underlying assumption is that the

decisions and their previous versions are not deleted, but are rendered as rejected or obsolete.

The common decision representation and manipulation framework has been designed in such a

way that a tool using the framework does not need to know how the decisions are stored,

retrieved, or modified. The next few sections describe how these tools are designed and

implemented.

5.2 Decision Capture Tool Implementations
Of the four components that make up the ADDEX tool, three of them are tools to capture and

manipulate design decisions (to fulfil use case U6). Each of these three tools can operate

independently of each other, yet are able to share decision sets and resources through the

common framework. The three tools can coexist on one computer or can exist on other

computers in a distributed environment (when collaborating with other people—requirement

R10); in both cases the three tools would not interfere, but help capture decisions in cases where

the other tools are less capable. The following section describes how the three tools are

implemented.

62

5.2.1 Formal Elicitation
The formal elicitation tool is designed to be used in highly technical architecture discussion

sessions where decisions are created or modified in batches in response to a technical discussion.

Capturing descriptive design decisions in a methodical, structured form is possible and

conducive in a technical environment. Decisions are captured and represented formally

(requirements R14 and R15) using the decision representation model described in Section 2.5.

Structured knowledge helps maintain knowledge consistency and assists in identifying conflicts

after the decisions are captured (requirements R2 and R3) The tool’s uncluttered interface

focuses on the utility of capturing design decisions and allows users to browse and modify the

collection of decisions for a project. Users can select a particular project to browse its collected

decisions, but they must log in to the system in order to create, edit, or remove decisions. The

support for multiple users addresses the groupware and collaboration capability (requirement

R10), but the tool can be just as useful as a personal decision capture tool (requirement R16).

The tool uses an SQL database to store and retrieve the captured decisions. Decisions are never

deleted from the system, but rendered obsolete to increase system traceability and maintain a

temporal flow to the capturing process (for use cases U1 and U5, which deal with decision

chronology). I would like to highlight two scenarios for this capture tool—decision browsing and

decision elicitation/maintenance.

In decision browsing, a user is shown a list of captured decisions. Each decision can be selected

for viewing where a new dialog would show the decision’s attributes (such as the description,

rationale, scope, state, and change history). This view inherently supports decision querying

(requirement R6). Other details can be captured, including decision relationships. The user does

not have to be logged in to browse decisions and their details. In decision

elicitation/maintenance, a user is required to log in and will then be shown a list of captured

decisions similar to decision browsing. When creating a new decision, the user is shown a blank

decision-attribute dialog where the user can fill in the details of the decision. The user would

save the decision and append a change comment, then continue eliciting or browsing decisions.

Figure 8 depicts the formal elicitation tool while a user is saving a decision. Editing decisions is

similar to browsing the details of a decision, but all the fields can be edited and saving changes

require another change log entry. Thus, a history of creation and edits are tracked for

63

maintenance and traceability. Decision editing implies the ability to gradually form decisions by

updating the decision with additional or more appropriate information (requirement R11). The

documented flow of changes is useful when studying the decision chronology and changes (use

cases U1, U3, and U5).

Figure 8: Screenshot of the formal elicitation tool. This figure depicts an open “decision details” dialog during

an edit. The user has just hit ‘save’ and is prompted to enter a change comment. Figure from (L. Lee & Kruchten,

2008a) with permission from IEEE.

5.2.2 Lightweight Top-down Capture
The top-down capture tool implements the flag-filter-form method. Nicknamed

“DecisionStickies”, the tool attempts to model after sticky-notes (or PostIt™ notes). This tool,

shown in Figure 9, is based on the way someone can write on and use sticky-notes as bookmarks

for later information retrieval. After applying this usage metaphor to a decision capturing

process, the result is the creation of a capturing tool that has a familiar interface and supports

lightweight, low-impact capture (requirement R1). The tool uses the same infrastructure to store

and retrieve users, projects, and decisions, as in the formal elicitation process. However, the top-

down capture tool focuses on the personalized decision capture (requirement R16). It also

documents and describes decisions gradually and more freely (requirements R11 and R14). The

differences are mainly the addition of a smaller data structure known as a decision reference, the

way that data structure is stored, the absence of decision relationships, and the minimalist,

64

sticky-note user interface. The unobtrusive and familiar interface would help promote continual

decision capture (requirements R17) because it can be better integrated within the software

development process.

Figure 9: Screenshot of the top-down capture tool. Also known as “DecisionStickies”, the tool’s main interface is

the yellow square box near the upper-left corner of the figure. In this figure, the tool is running on a typical

computer desktop and the tool’s “filter” dialog is displayed. The left column of the filter dialog shows captured

decisions references. The right column shows the decisions that are selected (deemed relevant) and can be formed.

The following is an example of how this tool functions. Once a user logs in and selects a project,

the tool starts up with a little yellow square (the sticky-note) on the desktop, similar to a real

sticky-note pad on an actual desk. A user can flag a decision reference by dragging-and-dropping

a file or an e-mail onto the tool. The user is shown a dialog box containing a few text boxes for

the user to enter some quick information about the decision reference. A few fields, such as the

location of the document and the date are pre-filled so the user only needs to enter a decision title

(i.e. the epitome) and the description of what the decision reference alludes to. Once done, the

user saves the decision reference and can continue with whatever the user was working on

65

previously. Decision references not in an electronic format can be added manually using the

yellow sticky-notes square.

Over time, many decision references are captured for the project, and periodic sifting is required.

The user can right-click on the sticky-note and filter the decisions. To filter decisions, the user is

shown a screen with two lists of decision references: “available” and “selected”. Decisions

references that are considered relevant are distinguished by placing them onto the “selected” list.

The remaining irrelevant decision references are left in the “available” list for future browsing.

Decision references can be moved between the two lists and the user can form the decisions

similar to the formal capture tool. Decision flagging and filtering provide the ability to capture

content specific to the needs of the designers and stakeholders (requirement R12). Irrelevant

content would not be further documented. Decision forming is similar to the decision elicitation

step in the formal-elicitation tool described previously with the exception that some fields, like

the epitome and the author, are pre-filled with information found in the decision reference.

In the bigger picture, when other software designers and developers document their design

decisions, a distributed collection of design decisions emerges. Gathering all the decisions

together into a central repository or database establishes a corporate design knowledge base on

the decisions and the background information on the database. I have already implemented

support for this through a central SQL database. What keeps captured decisions personal is the

support for varying levels of disclosure provided by the decision representation model. However,

due to the limitations of time and scope, publicity levels are implicitly defined. Flagged and

filtered decisions are personal and are stored in a private user-space, but formed decisions are

organization-wide and made public. Any concern over organization-wide adoption to attain

critical mass for tool usability or adoption can be assuaged because a primary goal of the tool is

to capture decisions in a personal way (i.e., “memory-aid”). Groupware and collaboration

support would then be an asset.

66

5.2.3 Lightweight Bottom-up Capture
Because the lightweight bottom up approach takes gradual decision capturing and formalization

(requirements R1, R11, and R15) from the perspective of a software programmer, tester, or

maintainer, it follows that a capture tool of this approach should be integrated into the tools of

the developers. Tool integration improves adoptability and continued use (requirements R17 and

V7). For the bottom-up capture tool, I focus on capturing decisions stored in software code, but

bottom-up capturing can work with other software design artifacts like UML diagrams and

technical architecture specifications. The idea is to establish a close-proximity to the low-level

architectural design (requirement V12). When a user coding in a project encounters an

architectural issue, the user would first consult with his or her peers and/or the software

architect. The user would then make an architectural decision and the user would modify the

code to reflect the design changes. Then, the user would tag the affected part of the source code

with a decision comment or tag, and carry on with the work. In the meantime, the Eclipse Plug-

in finds the newly added tag and displays it in a list within a view. As decision tags are

intentionally created to quickly document a specific concern in the software design artifiact, the

tags are highly relevant to the software designer and other stakeholders (requirement R16). To

support the collaborative software design and development environment, the tool may update

other programmers working on the same project files, notifying them of the new decision via the

interface (requirement R10).

As many developers have adopted the Eclipse Integrated Development Environment1 (IDE) to be

their programming environment, I implemented an Eclipse plug-in to parse through all the code

in the project’s source files, identify all decision tags (denoted by an “@Decision” or

“//Decision” comment), and display those tags in a “view” within Eclipse. This tool is shown in

Figure 10. The tool’s purpose is simple: parse through all the code in the project’s source files,

identify all decision tags and comments, and display them all in a “view” within Eclipse. Though

not currently implemented yet, the tool would form decision entities (requirement R15) in a way

similar to the formal capture tool. The decision-forming interface is also similar to the formal

elicitation tool. To form the decision, the user would right-click on the decision in the code or in

1 Eclipse Open Development Platform. http://www.eclipse.org

67

the view and select “form”. This forming step can be performed during code check-in, but it is

better to integrate with the code-review part of the development process, when the user can

discuss the issues with other developers and share the decision knowledge at the same time.

Figure 10: Screenshot of the bottom-up capture tool. The tool is implemented as an Eclipse plug-in. Decision

tags are listed in the “decision tag” Eclipse view, where decisions could be formed using this view. Selecting a

decision tag brings up the particular file and line in the source code where the tag is stored. Figure from (L. Lee &

Kruchten, 2008a) with permission from IEEE.

5.3 Decision Visualization Tool Implementation
The fourth component of ADDEX is the tool that visualizes architectural design decisions

(requirement R8). This tool visualizes software architectural design decisions separately from the

software architecture in which the decisions reference. The reason behind this is to look at the

decision view of design decisions as a knowledge repository where people can gather

information about a design in a central location. The purpose of this tool is to facilitate decision

browsing, editing, manipulation, and exploration without introducing significant complexity

(requirements R9 and R13). My selected decision model has a higher capability of visual

abstraction (requirement V9) for decision exploration than other decision models (see Section

68

2.4) due to the amount of associability provided by the explicit support for decision

relationships.

The decision visualization tool is based on the same common decision representation and

manipulation framework as with the capture tools. In addition to visualization, the tool is

interactive in that a user can create, modify, and remove (make obsolete) both the decision and

its interrelationships while visualizing the information. The tool utilizes the Prefuse visualization

framework (Heer et al., 2005) for the visual representation of design decisions. The Prefuse

framework allows rapid development of visualization tools by providing a base structure for

visualization, graphical support, automatic layouts (requirement V13) and visual interactivity

(requirement V5). Rendering scalability (requirement V1) is mainly handled by Prefuse. A user

visualizes the decisions in several different aspects to support decision perusal and exploration.

The tool has four main views (requirements R7 and V8) for decision visualization and

information display. The first is a simple tabular list of decisions and their relationships, while

another view visualizes the decisions using decision-graphs to display the decision structures and

relationships. The tool can also visualize the decisions in a chronological order and the fourth

view displays decisions from an impact perspective.

5.3.1 Decision / Relationship Lists
This view is the most common in the decision tools. The formal elicitation tool and, to a lesser

degree, the two lightweight capture tools, use this visualization aspect for its decision

representation abstraction. The decision / relationship list simply lists the design decisions in a

table, showing a selection or all the attributes of a design decision. Decision relationships are

also listed in another table that references the decision list. A screenshot is depicted in Figure 11.

The purpose of this view is to supply a quick and effective way to browse and retrieve

information (requirement R5) from design decisions. The textual representation of the decisions

facilitates decision querying and filtering (requirements R6, V10, and V11) as well as simple

decision entry. However, it is difficult to trace decision relationships and quickly assess decision

properties when the decision set becomes large. Information scalability (requirements R4 and

V2) becomes dependent on how well queries and filtering are formed and executed.

69

Figure 11: Decision and relationship lists for a set of decisions. The lists show the current set of design decisions

and their relationships. Users can add, remove, and peruse the captured decisions and their relationships by double-

clicking or selecting a row in the list.

5.3.2 Decision Structure Visualization
With large decision sets, an effective way to sort and analyze decision information is to abstract

and represent the decisions graphically (requirement V9). In this view, we visualize decision

graphs, in which decisions are represented as nodes and the relationships are the edges. Figure

12 depicts a decision graph that represents the decisions and their relationships. Decisions and

relationships can be created, selected, viewed, modified, and removed from this view. The

advantages of graph visualization are apparent: an observer can see relationships and their

associated decisions more quickly than from a list. Moreover, the observer can also assess the

level of knowledge or design completeness by looking at the number of isolated nodes. A well-

documented project would have many interconnected decisions. For example, a large proportion

of isolated decisions could govern mutually exclusive feature sets, but there is likely a set of

decisions that ties all these features together into the software system. The missing relationships

draw attention to the missing set of decisions. Decision relationships promote design cohesion

and solidity during software design, so it is beneficial to be able to view the relationships easily.

70

Figure 12: Decision structure view of a set of decisions. This screenshot shows the visualization of design

decisions and their relationships as a directed graph. The nodes represent the decisions and the directed edges

represent the decision relationship to another decision. The size of the node denotes the decision state – for example,

larger nodes represent decided or approved decisions while smaller nodes represent ideas or tentative decisions.

Besides the view’s graphical visualization, there is a high degree of interactivity (requirement

V5) to communicate information. Using a force-directed layout (requirement V13) for the

visualization of the decision graph, the tool represents decisions of a less mature state as being

physically lighter in the layout model and visually smaller than more mature decisions. I intend

that the maturity of a design could be visually assessed from the number of small or large nodes

in the graph. The capability to assess design maturity from the size of nodes implements an

instance of the pattern detection and interpretation use case (use case U12). When the user

interacts with a decision node or a cluster of nodes, the user could assess the maturity from how

quickly the decision can be moved around the screen. For example, more mature decisions have

more “weight” (they are inset into the design and have significant inertia), so the decision nodes

behave like heavy objects in the view.

Depending on the zoom level, the decision nodes can show more or less information about the

decision. Known as “semantic zooming”, this strategy avoids overwhelming users when they

visualize large decision sets (requirements R4 and R5) and helps with information scalability

(requirement V2). When a user zooms towards a decision, the decision’s properties will appear

71

inside the node. When a user zooms away, decision information gets hidden. Viewing the

decision or relationship details can also take place without zooming simply by selecting a

decision. Figure 13 illustrates this semantic zooming feature.

Figure 13: Semantic zooming in the decision structure view. When the user zooms in or out, the amount of

decision information being shown on the screen will increase or decrease respectively. In this figure, the centre

screenshot depicts the default zoom-level. The upper-left screenshot depicts what the user sees when the user zooms

out (decision identifiers are hidden). The lower-right screenshot depicts what the user sees when the user zooms in

(the decision epitome is shown in lieu of the decision identifier). The yellow node highlighted is the selected

decision. The decision epitomes have been modified in the screenshots for decision set confidentiality.

5.3.3 Decision Chronology Visualization
The tool supports a time-based view of design decisions to show the evolution of design

decisions and gradual formalization (requirement R11) and provide the ability to quickly

determine created or changed decisions during a specified time interval (use cases U1 and U5).

This view is shown in Figure 14. A user can select a subset of these decisions to view in more

detail (requirements R4 and R5, use case U4), such as the decisions within a cluster, and can

create, view, or modify decisions (requirement R13).

72

Y
 A

xi
s:

 D
ec

is
io

n
ID

X-Axis: Date / time of decision creation / modification

Figure 14: Chronological view of a set of design decisions. This example shows two decision creation and

management periods (highlighted with red circles) over a three-month interval. Decision state is denoted by the

shape: circles are ideas, triangles are tentative, squares are decided, stars are approved, crosses are challenged.

This view initially displays all the decisions created and modified during the project in a

timeline, with the date on the x-axis and a user-selectable field for the y-axis. Decisions that are

closely spaced denote a decision capture or management session. A user can quickly identify the

state of a decision by its shape in the view (use case U12).

A particular area of interest is in the user-selectable y-axis, which supports a light querying

implementation (requirements R6 and V10). The tool currently allows categorization of the y-

axis by decision ID or decision author. If the decision ID is used for the y-axis, one can view

decision changes in a global perspective (because the decision ID is implemented as an

increasing number). If the author is used for the y-axis, we can determine which decision-makers

are most active and which changes they have made. Categorizing by author includes the ability

to find both subversive and critical stakeholders who can potentially damage the system if they

change their minds (use cases U8 and U9). Figure 15 depicts an example of categorizing by

author. By customizing the user-selectable y-axis with other criteria types (requirement V4), the

tool enables people to find and use hidden knowledge within design decisions (use cases U2,

73

U12) in allowing people to make associations with various criteria to find patterns not easily

visible.

Y
 A

xi
s:

 A
ut

ho
r

n

Figure 15: Chronologica

grouped by author and ar

and finding the stakeholde

5.3.4 Decision Im
The fourth view of d

16, this view provide

of a decision. Thoug

relationships, there ar

and categories. The

relationships by visu

relationships also pr

design reviews (use

through common att

impacting concern w

using remote database

X-Axis: Date / time of decision creation / modificatio

l view of a set of design decisions: Categorized by author. In this view, decisions are

e showing which stakeholders or designers are most active during a three-month period,

rs’ interests and foci are possible by looking for and viewing clusters of decisions.

pact Visualization
esign decisions that this tool supports is decision impact. Shown in Figure

s a visualization of decisions that can be potentially impacted by a change

h the decision structure visualization supports visualization of decision

e related decisions that are associated by attributes, such as author, scope,

tool provides an entry-point into the large matrix of potential impact-

alizing it to support decision impact analysis (use case U3). The impact-

omote knowledge consistency (requirement R3) through concern-based

case U2) because it enables people to find other decisions of concern

ributes to identify and resolve conflicts (requirement R2). An example

ould be, “What are the other approved decisions related to authentication

 deployment if Windows-authentication will be used?”

74

In this visualization, decisions are laid out automatically (requirement V13) using a radial layout,

where all other decisions surround the selected centre decision. Like the other visualization

components, the decision impact visualization is also interactive (requirement V5). Selecting a

different decision brings that decision into the centre and all other decisions surround it. Resting

a mouse cursor on a decision would highlight neighbouring decisions associated with an impact-

relationship. The impact relationships can be filtered (requirement V11) according to different

criteria, such as category, scope, or relationship. Currently, the tool links decisions that share a

common criteria value with an impact-relationship, though the tool can be modified to support

customized filtering and queries involving different criteria values, ranges, and thresholds

(requirements R6, V4, V10 and V12).

Figure 16: Decision impact view of design decisions. The nodes represent design decisions while the coloured

lines represent the impact-relationships between them. Thick edges are the decision relationships and thin edges are

impact-relationships (i.e. “category” in this case). The highlighted centre node is the decision in concern. Immediate

(and outer) neighbours to this node are decisions that are directly (and indirectly) impacted by it.

75

5.4 Comparison with Other Current Decision Tools
There are a number of tools created recently for attempting to capture, represent, and utilize

design decisions; some are from the design rationale community and some are from the

architecture community. Many of these tools were created for the purpose of demonstrating the

knowledge or decision representation model, so decision capture in those tools is considered to

be a means to an end. In other words, decision capture is not often explicitly addressed.

Visualization support in these tools is rare and those that do focus more on the decision set

model and less on the use of the visualization for decision exploration. I will briefly look at a

few of these tools in the context of decision capture and exploration.

A closely-related tool is PAKME (Process-centric Architecture Knowledge Management

Environment), which is a web-based design decision tool that focuses on general architectural

knowledge capture and management of scenarios, patterns, design options, and decisions for the

software architecture process (Babar et al., 2005, Babar et al., 2006). PAKME’s decision capture

approach focuses on capturing decisions throughout the entire development, where architectural

knowledge (including decisions) can be added and updated at any point in time. PAKME

addresses two strategies to capture and present knowledge: the first is elicitation by individuals

or teams and the second is knowledge creation throughout the software development process –

reminiscent of Nonaka’s “Knowledge Creating Company” (Nonaka, 1991). The former strategy

can be represented by the formal elicitation capture approach, while the latter strategy suggests

the combination of lightweight top-down and bottom-up capture approaches integrated in the

same tool. In terms of visualization, the web-based system is heavily textual, relying on tabular

listing for decision exploration. PAKME takes full advantage of the query support inherent to the

textual tabular listing and decisions can be easily retrieved, parsed, and edited. The tool favours

architectural knowledge creation, browsing, and management.

Another architectural knowledge capturing, representation, and management tool that is closely

related is the ADkwik tool (Schuster, 2007). ADkwik was created by Schuster for IBM Research as

part of her doctoral thesis and the tool ties together the ideas of design decision dependency

management, decision workflow/process support, design knowledge repository, and design

collaboration. ADkwik’s decision-making process involves three steps that could be performed in

76

parallel on a set of decisions: decision identification, decision-making, and decision

enforcement. The first two steps echo the lightweight top-down approach as it captures

decisions, while the third step addresses decision updating, management and maintenance. Like

top-down capture, ADkwik draws on many mediums to capture and store decisions (Wikis, files,

e-mail, and message boards) and brings them together into a common environment. The

environment also supports formal elicitation by performing all three steps at the same time.

Decision exploration support is provided through the Web 2.0-based interface, with structured

hierarchical lists and guided interfaces (“next steps”), which promote the sense of continuity and

design flow. Like PAKME, decision visualization in ADkwik is highly organized tabular listing

and text-based.

There are other recently developed decision capture tools. The SEURAT tool is an Eclipse

development environment plug-in utility that captures and displays design rationale while

developing and maintaining software code (Burge & Brown, 2006). The SEURAT tool focuses

on the uses of design rationale so the tool only briefly addresses rationale capture. Its tight

integration with the Eclipse environment allows design rationale to be captured; however, the

goal of SEURAT is to assist in software maintenance, focusing less explicitly on software

architecture. Design decision exploration is through a hierarchical tabular listing within an

Eclipse view where its structure closely resembles the decision representation model it uses.

Another rationale-based tool, Sysiphus, is a toolset that assists in the capture of various system

models for system various development activities (Bruegge et al., 2006). It supports rationale-

based design decisions and links them with system models, use cases, requirements and test

cases. Traceability is an important feature the tool addresses. It uses interactive, focussed graphs

to visualize and explore the complicated traceability relationships (the edges) between actors,

use cases, requirements, and test cases (the nodes). A decision is represented in the graph as a

collection of visualized design rationale attributes like issues, options, and criteria.

There is also the Compendium tool (Selvin et al., 2001), which documents the flow of

knowledge and design rationale during interactive team meetings. The Compendium tool derives

from the IBIS-based approach proposed by (Sierhuis & Selvin, 1996). Compendium is a general

knowledge and decision capture tool, but there are concerns that it does not apply well to

77

architectural design decisions (Jansen & Bosch, 2004), where it lacks in describing first-class

architectural concepts such as the various types of interaction between components (e.g.,

inheritance, data flow, or aggregation). This could be attributed to Compendium’s focus on

argumentation modelling. Nevertheless, it does model decisions and is a reasonable decision

capturing tool. Compendium models the flow of decisions graphically, where each design

decision is represented as a node and the subsequent refinement or addition of related decisions

would result in appending those decisions after the initial decision. The influences and

dependencies of these decisions are represented as edges in the graph. The graphical nature of

Compendium makes design “replay” and traversal easier. However, Compendium, Sysiphus and

SEURAT capture design rationale in a formal elicitation approach in that decisions are elicited

directly to a formal model.

The tool for the Archium approach is an architectural design decision tool which primarily

focuses on how software architecture can be represented as a set of design decisions; focussing

on decisions can be traced to the requirements and to the architectural components of a software

architecture (Jansen et al., 2006). Archium regards design decisions as a “change function” with

a single parameter (Jansen & Bosch, 2005), where decisions are linked to the architectural

components and connectors, and decision dependencies are modelled. The focus of this tool is to

demonstrate the Archium approach and the structure of the design decisions. Architectural

components and requirements are visualized graphically as distinct nodes connected together

through change functions, and the general graph constitutes a decision. Another tool, the ADDSS

(Architecture Design Decision Support System) tool, is a web-based tool to capture and

document architectural design decisions for immediate browsing (Capilla et al., 2006). Like the

other web tools, it suffers from the limitations of the web interface. The tool lists the system

requirements, the decisions, and the requirements it addresses in a tabular list, although it

supports the display of user-uploaded picture files to represent architectural products of arbitrary

format. Although the current decision capture approach can be classified as formal elicitation,

another version is being developed that will integrate with software tools used by architects

(Capilla et al., 2007), suggesting a bottom-up capture approach. The new version would also

involve better decision visualization.

78

IBM Research also developed an Eclipse-based tool, called the Architect’s Workbench, that tries

to balance the architects’ formalism and freedom of expression to structure and organize

architectural knowledge “into sufficiently formal work products” (Abrams et al., 2006).

Architect’s Workbench uses wizards (step by step query processes) for many complex tasks to

create or document design knowledge, similar to the lightweight approaches in that the wizards

break tasks down into multiple steps. This tool supports various forms of knowledge

visualization for exploration. The increased freedom of expression used in architectural

knowledge capture resulted in the proportional increase freedom and capability of knowledge

exploration. Knowledge can be documented and visualized in structured tabular lists and its

unstructured-form version (simple text fields). A free-form graphical area can display knowledge

and relationships using essentially whatever graph syntax the knowledge capturers desired. The

freedom of expression lends a level of flexibility towards decision exploration by not hindering

customized styles and notations.

5.5 Meeting the Requirements
After designing and creating the ADDEX tool, I should check the tool’s implementation against

the requirements and guidelines as described in the earlier chapters (refer to Table 17) to verify

whether it is possible to build the tool-based solution as described. The ADDEX tool attempts to

accomplish as much of the requirements as possible. A use case comparison is shown previously

in Table 19 and a summary of a requirements comparison is shown in Table 21.

79

Table 21: Requirements traceability matrix for ADDEX

ADDEX Tool Components

Decision Capture Decision Exploration

Formal

elicit’n

Lgtwgt.

top-dwn

Lgtwgt.

bttm.-up

Tabular

listing

Graph’l

structr.
Chrnlgy Impact

R1: Capture with minimal

overhead
--- Yes Yes --- --- --- ---

R2: Resolve conflicts Support --- --- --- Support --- Support

R3: Knowledge consistency Support --- --- --- Support --- Support

R4: Retrieval strategies to manage

large datasets
--- --- --- Yes Yes Yes Yes

R5: Retrieve info. without

navigating through all data
--- --- --- Yes Yes Yes Yes

R6: Support querying --- --- --- Frmewk Frmewk Partial Partial

R7: Multi-perspective Yes Yes

R8: Visual representation --- --- --- Yes

R9: Complexity control Yes Yes

R10: Groupware/ Collaboration Yes

R11: Gradual decision

formalization
Implicit Yes Yes --- --- View ---

R12: Stakeholder-specific content --- Yes Yes --- --- --- ---

R13: Easy content manipulation --- --- --- Yes Yes Yes Yes

R14: Descriptive in nature --- Yes Yes --- --- --- ---

R15: Knowledge codification Yes Yes Yes --- --- --- ---

R16: Knowledge personalization --- Yes Yes --- --- --- ---

R
eq

ui
re

m
en

ts
 (S

ou
rc

e)

R17: Sticky in nature Yes Yes --- --- --- ---

The two capturing tools implementing the lightweight capturing approaches address the specific

need to capture with minimal overhead by breaking down the capture process into smaller steps.

Guided by a decision representation model, consistency checks and conflict identification could

be performed during the formal elicitation decision capture and through the graphical structure

and impact analysis visualization aspects. However, the consistency checking and conflict

awareness are limited to manual identification. In the next release, more automatic conflict

identification can be performed through the comparison and cross-referencing of keywords and

other decision attributes so that conflicts could be identified upon decision entry. To effectively

80

handle situations involving large decision datasets, visualization techniques were used alongside

the strategies provided by using a relational database to retrieval and navigate through large

amounts of information. For example, the graphical structure visualization aspect uses semantic

zooming to reduce or increase the amount of information shown to the user. Decisions of less

interest are culled from the user’s view, yet more decision details would be displayed for the

decisions currently in view. Other visualization aspects also employ filtering techniques and

conceptual simplification through visual cues and information encapsulation.

For the ADDEX tool in general, the framework for decision querying is in place. All decision

creation, retrieval and manipulation functions are performed using SQL queries. Unfortunately,

due to limitations of time and resources, certain features have priority and I am not able to fully

implement user-side querying; however, I am able to implement a fixed-query support in the

form of selective filtering in the decision chronology and impact aspects. Query support would

be especially useful in the tabular listing and graphical structure aspects to help find and reduce a

set of decisions to explore. In hindsight and after acquiring feedback from industry, query

support is a component that should have received a higher implementation priority.

The ADDEX tool applies well to the decision view requirements of software architecture. The

ADDEX tool implements multiple perspectives in both the capture (formal meetings, early-stage

design, and development/maintenance) and the exploration (the four visualization aspects).

Visual representation is apparent in the four visualization aspects and complexity control is

covered through the customized capturing processes and the visualization techniques to handle

large amounts of data. As the tool is designed for a collaborative and distributed environment,

groupware support is a fundamental part of the ADDEX tool. Gradual decision formalization is

achieved through the customized, decision capture approaches that break down the capture into

smaller steps, which can be performed in different sessions. This chronological flow is also

visualized in the chronology visualization aspect.

The final set of requirements mentioned include whether the captured content is meaningful to

the stakeholders and could be created and manipulated easily. The interactive visualization tool

allows decisions to be created and modified via a couple of mouse clicks while the three

81

capturing tools allow stakeholders to capture only what is needed. Moreover, the lightweight

capture approaches support informal annotation, so software architects and designers can be

more expressive and descriptive during decision capture. As a result, decisions are more

personalized, yet are also more formal and structured, because the captured decisions are

structured using a decision representation model. Since a goal of the tool-based solution is to

encourage decision capturing and promote decision exploration through visualization, the

ADDEX tool should be used frequently by the architects, designers, developers, and maintainers.

However, confirming this requirement requires a long-term study (6 months or more) on how a

software organization would use this tool for their software projects, and whether it could meet

the “sticky-in-nature” requirement that could not be tested and traced (refer to Table 21) during

the scope of my research. Long-term usability study is a direction I should investigate in future

work.

The implemented ADDEX tool must also support the visualization tool requirements as well.

Table 22 compares the ADDEX visualization components to the visualization requirements. The

choice to use the Prefuse visualization toolkit makes the visualization tool requirements easier to

attain because it already encompasses many desired attributes and requirements. About half of

the quality attributes are provided or inherently supported by the visualization toolkit. For

example, rendering scalability (V1) is handled by the Prefuse rendering engine for the most part.

Information scalability (V2) is supported with the tool’s internal query-support (V10) and the

use of attributes to structure and build a graph. Further improvements to the query-support and

attribute filtering would help strengthen the scalability for several visualization aspects (such as

the decision impact perspective). Interactivity (v5) and dynamic layout support framework (V13)

is also provided by Prefuse. For example, the animated, force-directed layout will continuously

change the layouts based on user input and feedback. This enabled me to implement interactive

decision visualizations that depend on the attributes of decisions. (For example, decided and

approved decisions behave like heavy objects when moved around in the visualization).

Fulfilling the other visualization requirements requires additional implementation for the

ADDEX tool. With XML decision importing and exporting (V3), decisions can also be

represented with other visualization tools, or can retrieve decisions from other sources. The

ADDEX visualization can also be customized (V4), such as the user-selectable decision impact

82

filtering (V11) and decision chronology Y-axis criteria. The ADDEX tool leverages the

interactive visualization concepts and capabilities provided by the Prefuse visualization

framework for visualization tool usability (V6). However, I acknowledge that tool usability in

general could be improved in the next few iterations of the tool. The ADDEX tool briefly

addresses adoptability (V7) by allowing the customization of the decision capture approaches

and providing a selection of visualization aspects to best address the organization’s particular

situations and their uses for design decisions. Adoptability and usability are two requirements

that are not significantly addressed because of research scope limitations. Tool adoptability and

usability are best developed with iterative feedback from the users, so further work is needed to

assess the usability and adoptability of the ADDEX tool.

Table 22: Visualization tool requirements matrix

Decision Visualization Implementation in the ADDEX Tool

Tabular listing Graph’l structr. Chronology Impact

V1: Rendering scalability Supported Supported Supported Supported

V2: Informat’n scalability Query dependent Supported Supported Supported

V3: Interoperability Supported Supported Supported Supported

V4: Customizability --- --- Supported Supported

V5: Interactivity --- Supported Supported Supported

V6: Usability Not addressed in this research scope Q
ua

lit
y

A
ttr

ib
ut

es

V7: Adoptability Not addressed in this research scope

V8: Views Supported

V9: Abstraction --- Supported Supported Supported

V10: Search (Query) Framework Framework Partial Partial

V11: Filters Framework Framework Partial Supported

V12: Code proximity Supported (Decision representation model specific)

V13: Automatic layouts --- Supported Supported Supported

V
is

ua
liz

at
io

n
R

eq
ui

re
m

en
ts

(K

ie
nl

e
&

 M
ül

le
r,

20
07

)

Fu
nc

tio
na

l r
eq

ui
re

m
en

ts

V14: Undo/history Supported (Decision representation model specific)

For functional visualization requirements, four views (the four visualization aspects) were

implemented that look at decisions from an architect’s, reviewer’s, and maintainer’s perspective

(V8). In all four visualization tools, decisions were abstracted as nodes in a graph (V9) and were

automatically positioned using layout algorithms (V13) to ease the burden of sifting through

large amounts of data and promote information scalability (V2). Moreover, the abstraction

83

conceals non-essential information until the user selects or zooms in on a set of decisions.

Decision searching however, was bundled with decision querying (V10) in the previous

requirements and a decision querying framework was implemented in the internal structure of

the ADDEX tool. Unfortunately, limitations on the time and resources available for the ADDEX

development cycle results in deferring the complete implementation of decision searching and

querying in the tabular listing and decision structure visualization to the next development

iteration. However, for the decision chronology and decision impact visualization, I am able to

implement a subset of searching/querying using filtering (V10, V11) to hide decisions or

relationships that the users deem to be currently irrelevant so that the users can focus on the

decisions that matter to the task at hand. Code proximity (V12) and decision history (V14) are

implemented as part of the design decision representation model. Combined with the lightweight

decision capture approaches, the visualization provides an entry-point into software code and

other artifacts using the captured decision’s source links.

84

CHAPTER 6

EXPERIENCE WITH THE TOOLS

A good way to evaluate a software system implementation is to simply use it. By using the

ADDEX tool to capture architectural design decisions during software development and to

represent them visually for exploration, we can get a good grasp on how well the ADDEX tool

handles actual design decision datasets and supports their exploration through the decision use

cases. We can evaluate the ADDEX software system through my personal experience with the

tool during its design and development, acquisition of realistic or industry decision sets for the

ADDEX tool to represent and manipulate, acquiring feedback on the tool itself by the decision

capturers, and observing how someone could use the tool to perform the architectural design

decision use cases.

The most significant challenge is that the decision datasets are guarded intellectual properties of

their capturers so the confidentiality of the decision sets imposes constraints on who can view

and use the captured decisions. This means that using these decision sets for the ADDEX tool

evaluation can only be achieved by or alongside the people who or organizations that provided

those sets. This would limit the ability to study how people outside a project can learn and

manipulate the architecture of the system. However, for the purpose of the experience study, the

issue of who performs these use cases is less important than determining the coherence and

capability of the ADDEX system to assist people in performing the decision use cases.

6.1 Developmental Self-Testing
I was able to write down my design decisions pertaining to the ADDEX tool during the early

stages of its development. Although I have captured many decisions on paper in a notebook, I

found that it is often easier to capture design decisions near or within the software development

artifact, like the class diagram or software code. Other times, I found helpful software design

patterns and architectural guidelines from books and Internet examples, and I often bookmarked

85

these sources of information during the tool’s design phases. These preferences and self-

feedback inherently affected the development of the ADDEX tool, which led to my proposal of

three capturing approaches for software architectural design decisions and the implementation of

customizable capture methods that implement those approaches. The ADDEX tool reflects these

capturing methods in the capturing components. Unfortunately, the self-testing is significantly

limited by two reasons:

• I am knowledgeable in both the decision capture processes and decision representation

model that I defined

• The means to capture my design decisions effectively came at the end of the design

The first reason is straightforward: the author sees only his thoughts and is blind to his own

faults. Because I defined the set of requirements and designed the implementations, I became an

expert in the system I would like to evaluate, so objectivity is compromised. I address this

limitation by consulting with peers in academia and in industry throughout the tool’s software

development process. I was able to present my ideas and demonstrate my tool in front of

researchers and industry practitioners, acquiring useful and practical feedback along the way.

The result is a tool that reflects many needs and wishes of both academia and industry.

The second reason is linked to how my idea is developed. To address some of the concerns

raised by those in industry and academia, the ADDEX tool underwent many changes. It was

difficult to capture many of these decisions using pen and paper (or even a word processor)

because of the amount of time required to write them by hand and to keep track of the various

decisions. Documenting many of these decisions was deferred until I had more time. As a fast

and convenient way to capture these decisions has not been implemented yet, many early

architectural decisions were forgotten over time and are lost. However, I was able to capture a

limited set of my decisions in my laboratory notebook, e-mails, and software source code. Upon

a stable version of the ADDEX tool, I used its three capturing components to gather these

decisions and the resulting small set of decisions functioned as a conceptual dataset for the

ADDEX tool instead.

86

The limitations of the self-checking resulted in the need to have people external to my research

area capture their design decisions for an actual project they developed. To test the design

decision use cases the ADDEX tool is designed to support, we need a project that is sufficiently

large and complex to warrant decision exploration tasks like stakeholder risk analysis and

decision impact analysis. Large software projects that demand such use cases are usually based

in industry. It is clear that we need to acquire industry decision sets from real life development

systems to evaluate the ADDEX tool and that the bulk of the decision set acquisition should be

performed by another person.

6.2 Decision Acquisition
To demonstrate the ability of the capturing approaches in real-life situations and to gather

industry feedback, I presented the ADDEX tool to three industry participants representing

separate software organizations and we asked them to capture their architectural design decisions

for a project using the tool. The industry participants represent typical developers in software

development organizations, and their decisions are actual decision datasets from real-life

projects. The objective of this study is to confirm the feasibility and practicality of using the

three capturing approaches. I was able to gain supportive feedback regarding the tools and the

capturing approaches the methods represent. As well, the participants were kind enough to

provide their decision sets for their projects so that I could test the tool’s ability to practically

capture actual design decisions made in industry.

6.2.1 Industry Participants and Feedback
During the initial contact, all three participants expressed the desire to capture their architectural

knowledge and agreed that current capturing processes are insufficient for architectural

knowledge. All three organizations used requirements documents and UML for their

architectural documentation. A summary of the industry participants are shown in Table 23.

87

Table 23: Industry participants summary

 Industry Size Development Notes

1 Game Development Small In progress, second iteration Plan for future offshore dev.

2 Information Management Small Early design stage Familiar with knowledge capture

3 Technology corporation Large In progress, mature stages Heavy dev. processes, documentation

The first participant was hired to manage a project already underway in a small game-

development company based in North America. The participant would like to capture current

design decisions and relay them to developers in Asia to reduce the amount of communication

overhead. This participant was initially involved as a pilot study participant, where the

participant provided feedback on how the study is structured and conducted. The participant also

contributed feedback on the ADDEX tool. This participant stated interest in the top-down

capturing tool to assist in decision capture as the participant would like to learn and document

decisions made before the project started, as well as keeping track of the decisions the participant

has made already. The participant’s past experiences with heavy documentation resulted in less

motivation to document knowledge, so the choice of the lightweight top-down approach is

appropriate.

The second participant represents a small software development organization that specializes in

information and knowledge management. The participant expressed a need to capture

architectural knowledge of the system being developed for future reuse, and the participant was

actively capturing knowledge and background information on the project. The participant

showed enthusiasm for the formal and the top-down tools, but the bottom-up tool was not

discussed in detail as the participant’s project had not yet entered the detailed design phase at

that time. This is a significant reason why they did not want to use the bottom-up approach. The

participant did state that the bottom-up approach is interesting and serves its purpose.

The third participant is a software architect from a large organization that highly values

documentation and established software development processes. The participant is involved in a

large, multi-national project in its mature development stages and the organization would like to

88

document decisions with me through meetings and design documents. The participant explained

that they could not apply the lightweight capture methods to their situation because most of the

architectural design decisions have already been made and code implementation was well

underway. Thus, the consensus to use the formal elicitation approach is appropriate for them in

this post-design decision capture.

6.2.2 Decision Datasets and Findings
The participants agreed to collaborate with my research by providing me with their project

decisions. Due to time and resource constraints of the participants, I elicited decisions from the

participants, which is acceptable for a feasibility study on the approaches. In general, I elicited

the decisions by listening to the participants as they describe the general architecture and design

goals. Then the participants and I discuss what the architectural design decisions are and we

document the decisions using one of the decision capturing tools. The decision elicitation also

involved revising decisions and creating new decisions and relationships.

The context of my study with the participants does not support an exploration of decision

publicity levels (selective-release) due to: 1) the nature of elicitation—personal decisions would

not be made known and shared by definition, and 2) the non-disclosure agreements which are in

place. Any attempt to investigate publicity levels would result in a single level of publicity –

“organization-wide”. Since my goal of acquiring decision sets is to determine how the ADDEX

tool handles actual industry data, having the same publicity level for all decisions suffices and

would reduce the amount of variables in the study.

The first industry participant was involved as a pilot study participant, so the decisions captured

were experimental. After learning about the lightweight top-down capture tool and the types of

information to capture, the participant sifted through his own notes he took when he was learning

the software project and those decisions were documented using the lightweight top-down

capture approach. The participant expressed that the decision candidates from the lightweight

top-down capture tool satisfied what was needed without having to create formal decision

structures from the decision candidates. This result suggests that tailoring each decision capture

89

approach to the needs of the organization is important, so it is acceptable if the organization

wishes to not complete all of the steps.

The most significant decision set I obtained is from the large technology corporation for a

mature project. It was significant because of the size and complexity of the project; the project

interfaces with multiple external systems and processes and involves a team of at least 50

software developers taking at least 18 months for development. The introductory volume of the

requirements document alone is over 150 pages. To narrow down the scope of the study, I

focussed the decision capturing on the deployment configurations and the data model used for

this system. In light of the scope reduction, I was able to acquire around 40 decisions through

two short, hour-long meetings dedicated to the decision capture and the concept and overview-

requirements documents. In each meeting, I listened and discussed the general project

architecture as well as the detailed designs of several technical areas. At the same time, the

participant and I created as well as revised design decisions and relationships using the formal

elicitation tool. By the third meeting, I acquired a total of 52 decisions that pertain specifically to

the deployment configuration and data models.

Using the formal elicitation tool, I found that capturing decision rationale from documentation is

difficult and I heavily leveraged the discussion during the technical meetings for the architectural

decisions and their rationale. Of the 12 documented decision relationships, three relationship

types were documented (5 are the “enables” type, 5 are the “constrains” type, and 2 are the

generic “is-related to” type). Defining relationships was difficult if I did not repeatedly ask

whether this decision was related to another decision. I found that cross-referencing keywords

and scope helped reveal relationships. (I later applied the discovery of cross-referencing

keywords to improve the classification and creation of decision impact relationships, which are

more general forms of decision relationships.

The decision set that came from the third participant (who was keen on capturing background

information and knowledge) provided a good opportunity to use the top-down capturing tool to

acquire decisions. I received extensive background documentation, such as statement of work,

requirements, email, and other internal assessment documents. From the documentation alone, I

90

captured 83 decision references in the first iteration of decision capture, of which 62 were

selected after filtering. All 62 filtered references were formed into decisions. The 21 remaining

references were either redundant or were irrelevant due to scope change mentioned in the

documentation. The iteration spanned four weeks, averaging close to an hour per session with

two sessions per week. The capture of decision rationale and relationships were less difficult

than with the first decision set, likely due to the availability of background information.

I did not get the opportunity to evaluate the bottom-up capture tool in industry because two of

the participants had already started project implementation and did not want to incur more risk

by introducing a new step to their development processes when the project is in progress. The

third participant had just started preliminary design work on their project and had not developed

a base of design artifacts yet for bottom-up decision capture. However, I was able to use the

bottom-up capture tool on my own research tool, focussing on the formal elicitation tool source

code that contains some decision tags. The tool identified 14 decision tags in the source code and

these tags were displayed in the bottom-up capture tool.

6.3 Visualization Study with Industry
A visualization study with industry practitioners and with actual decision sets is needed to

evaluate the practicality and reality of using the four visualization aspects for decision

exploration. A set of criteria to evaluate decision exploration is to study how people would use

the visualizations to perform the design decision use cases. A long-term study with the tool in an

industrial setting would be best as it allows for requirements drift, architectural and design

decision evolution, and the natural progression of performing the design decision use cases as

part of the software development process. However, I encountered some difficulty in finding

long-term study participants due to issues of poor timing with participants’ projects – the

projects are already underway and introducing a new process or tool when development has

started carries a certain level of risk. As I could not find any participants willing to perform a

long-term study with the ADDEX tool, the visualization study was modified to employ a

meeting and casual discussion format. Through scheduled formal meetings, I demonstrated and

used the tool with industry participants, and I obtained feedback on the practicality of the

decisions. The industry participation is three-fold. I first observed how the participants reacted

91

when they were shown the tool and I documented their reactions. Then, I acquired actual design

decisions from the participants’ projects using the tool so that we can visualize them on the tool

and explore their design decisions. Lastly, I was able to test how someone could independently

use the ADDEX tool to perform the architectural design decision use cases.

6.3.1 Industry Participation
The intellectual property aspects of design decisions significantly affect the study. The

established confidentiality agreements with the study participants limits who I can share the

information with for further study, which results in the need for the original design decision set

donors to continue with the study. Reusing study participants has both benefits and drawbacks;

reusing participants reduces the learning curve and the amount of redundancy in acquiring

another decision set for the visualization study. However, the reduced learning curve biases the

results toward the “expert” decision capturer. In this particular experience study, we will look at

the decision exploration capabilities of the ADDEX tool, so the effects of learning are negligible.

Unfortunately, I have not found an organization or person working on open-source projects

willing to participate in the research in time for the study.

After the decision capture study with the industry participants, I asked them whether they would

like to continue the collaboration to help me investigate the visualization concepts. Due to the

poor timing and limited time availability, two of the original study participants declined the

study; however, the third participant agreed to participate. The participant is a senior software

engineer at a large technology corporation. (Refer to the third industry participant in Section

6.2.1, summarized in Table 23 on page 88.) This corporation is both process and documentation

heavy. The participant was involved in a multi-national project to develop an elaborate modeling

system. This system interfaces with various global databases frequently to stay updated, but the

system is constrained by many domain-specific standards and protocols. The decision set the

participant captured for the study focussed on the deployment configurations and the data model

of the system being developed. (Shortly after the study commenced, the participant invited a

senior software developer working on the project to join in on the discussion. For simplicity, I

will refer to both participants as a single participant.)

92

6.3.2 Feedback
After demonstrating the tool to the participant using their own decision dataset, I asked the

participants what their impressions of the ADDEX visualization component were. They found

that the decision and relationship lists were acceptable, but could not comment much about the

lists besides an implementation detail of whether the listed items could be filtered or sorted. For

the graphical decision structure visualization, the participant stated that the decision identifier

used in the default zoom-level is not very intuitive, as it can be hard to mentally map decision

details to the decision identifiers. Although the semantic zooming offers additional decision

information if the user zooms in on a decision, the participant found that it is somewhat difficult

to reference decisions without referring to other views. The participant found the decision

relationship graphs to be interesting, but the participant also reported that the explicit decision

relationships are difficult to elicit and categorize, partly due to the various relationship

definitions and the tacit nature of defining these relationships. The decision structure view

enables the participant to realize an earlier documented decision had been deferred to a later

release, and the decision set is updated accordingly.

For the decision chronology view, the participant commented that it is useful to see decision-

making sessions, and they found the “author” criterion for the user-selectable y-axis to be an

interesting application. However, for the decision impact view, the participant felt that the

decision impact view suffers some functional usability because the coarse-grained filtering

resulted in a diagram that has too much interconnectivity, and suggested that implementing a

user-defined query mechanism would help with the readability and usability of this view. This

reaction is expected, as the implementation of fine-grained filtering was not complete at the time

of the study. Yet the participant expressed that the decision impact view could be effective in

identifying decisions that could be indirectly impacted with further filtering improvements. The

participant also said that he can see himself using this visualization aspect as a part of his

“design analysis toolbox”.

6.4 Tool Usability
Usability is an important factor to consider when evaluating the integrated solution through its

tool implementation. Specifically, how well the integrated solution assists people in capturing

93

and exploring software architectural design decisions depend on how well people can use the

ADDEX tool to capture and explore software architectural design decisions. This can be

evaluated by studying how people would use the tool to perform decision use cases. The testing

should be in the form of a usability study, where the results of the study would be used in the

next development iterations of the ADDEX tool. As I have acquired feedback already on the

decision capture and visualization concepts implemented in ADDEX, the goal of the first

usability study is to confirm whether the difficulties identified earlier by the industry participants

above are consistent or common. This would give a solid baseline and direction for improving

the ADDEX tool. Detailed, statistically accurate participant sampling would not be appropriate

at this time. Themes and patterns can be determined and the ADDEX tool can be further refined

to handle confusing or incorrectly performed tasks. The first ADDEX usability study is a pilot

study, in which I perform the study on one or two participants so that the study results feed

directly back to the next development iteration of the ADDEX software tool.

As software architectural decision capture and exploration are valuable in cases where the

software project is large or complex, capturing and exploring small, fictitious decision sets with

the ADDEX tool seem trivial or contrived. For a realistic usability study, a set of software

architectural design decisions provided by industry of actual software projects is preferred.

However, the limited timeframe of my thesis research and the limited dataset audience imposed

by the dataset confidentiality agreements made it difficult to find a usability study participant to

assess the usability ADDEX with industry data if the original decision set donors are

unavailable. As an alternative, I planned to use a decision set that came from the ADDEX tool in

lieu of industry decisions sets. However, because I designed the ADDEX tool and I captured the

decisions myself, the resulting decision set may reflect what I subconsciously want people to see

or not see, so using the ADDEX tool decision set would likely be biased (refer to Section 6.1).

On the other hand, since I am studying how people would interact with the tool to perform

decision use cases, the information bias of the decision set is of lesser importance than on the

tool implementation.

A chance circumstance allowed me to find a software developer in the same project as the

previous participant to independently use the ADDEX tool. This occurred several months after

94

the initial dataset acquisition with the previous participant. The new participant is a recent

university graduate from a software engineering program and the participant has worked on the

project close to a year. Although the participant implemented software code for the system, the

participant has not worked on many areas of the system and does not know much about the

decisions behind the project’s software architecture.

In this study, the participant has access to a computer with the ADDEX tool open and running

with the organization’s design decision set loaded. On the table are a pen and several sheets of

blank paper. I gave the participant a verbal explanation of what an architectural design decision

is, a brief walkthrough of the ADDEX user’s guide. The participant was given a few minutes to

play around with the tool and ask any questions about the tool or the concepts for the study

before beginning. The participant is asked to perform three tasks on the project’s decision set,

which contains over sixty decisions. I sat approximately one meter behind the participant (and in

such a way where I can also see the computer screen) and documented the participant’s actions.

The participant understands that there are no time constraints so he could take as much time as

he wants to perform the task. I kept a time log of the events in order to record a reference point

of activity for comparison across studies at a later time. At the end of the study, I discussed the

tasks with him. This study session took approximately forty minutes to perform. The results of

this study session are summarized in Table 24.

6.4.1 Performing the Tasks
The three tasks are based on the decision use cases listed in Table 16. To reduce the amount of

time a participant needs to commit for the study, only the use cases I classified as high and

medium priority are used. The first task I asked the participant to perform is to find out if there

are any architectural design decisions that constrain other decisions (use case U2), and if there is

at least one, choose one and describe why that decision constrains the other decision (use case

U4). The participant started the tool and went to the tabular list view and scrolled through the list

of all decisions for several seconds, before the participant selected the decision structure view.

The participant then panned through the graph of decisions and found eight decision

relationships where decisions constrained other decisions. The participant wrote down the related

decision identifiers and double-clicked on one of the constraining decisions to open the decision

95

and wrote down the epitome of the decision. Two minutes had passed when the participant

identified all eight decisions. The participant viewed several decisions of interest and clicked on

the relationships to view the relationship comments. Another two minutes passed before the

participant realized the task is complete, at that point the participant explained the rationale of

one of the constraining decisions and the relationship comment to me, stating that those were the

reasons for constraining the other decision. This task was completed in about four minutes.

Table 24: Sequence of actions performed for certain tasks

Task

Duration

(min:sec)

Sequence of actions

Associated

use cases

Find constraining decisions &

describe why one decision

constrained the other

3:55 Opened decision list view
 Briefly scrolled/viewed list of design decisions
 Opened decision structure view
 Searched for “constrains” relationship, found 8
 Wrote down decision identifiers (ID) of relationship
 Picked one constraining decision/relationship
 From structure view, viewed constraining decision
 Also from structure view, viewed relationship
 Identified reason from the relationship’s comment

U2, U4

Find changed decisions (last 2

months) & determine dependencies

6:15 Opened up decision impact view
 Switched to decision chronology view
 Viewed timeline for entire period (6 months)
 Noted 5 decisions in the last 2 months
 Copied down the decision IDs of those decisions
 Viewed details of those five decisions in this view
 Opened decision list view
 Selected an identified decision
 Clicked “relationships” to see relationships list
 Found and viewed relationships for those decisions
 Declared there are 2 dependencies

U1, U3,

U5

Assess the design for design-

implementation disparity & add

decision explaining differences

9:40 Switched among the four visualization views
 Expressed chronology view “won’t be of much use”
 Went to decision list view
 Scanned through all decisions in list, found two

decisions in the area of concern
 Switched to impact view
 Enabled the decision impact relationship filter for

“scope”, disabled all other impact relationship filters
 Clicked one of the identified decision– the decision

moved to the centre of the screen.
 Hovered mouse over the decision, found three

immediately impacting decisions (by scope)
 Wrote down decision IDs of the 3 other decisions
 Switched to decision list view
 Read through the decisions’ details closely
 Identified decision conflict.
 Logged in via the decision list view interface
 Created new decision to resolve decision conflict

U6, U7

96

The next task I asked the participant to perform is to look up which decisions were changed in

the last two months (use cases U1 and U5) and determine whether there are other decisions that

depend on those created decisions (use case U3). The participant first opened the decision impact

view, but switched to the decision chronology view several seconds later to view the timeline of

design decisions. This timeline spans the entire period of the decision capture process (over six

months). There were five changed decisions in the last two months. The participant moved the

mouse cursor over each of the five decisions and wrote down the five decision IDs. The

participant viewed the details of these decisions in the chronology view, and then opened the

decision list view, selected one of the identified decisions, and immediately brought up the

relationships list. However, the participant voiced that he expected to find only the relationships

that involve the selected decision. At this point, two minutes forty seconds have passed since the

start of the task. The participant then scanned through the relationship list for the five affected

decisions on either side of the relationships. For each of the three relationships found involving

the concerned decisions, the participant viewed and studied the relationship and he declared task

completion shortly after viewing those relationships. Total time for this task was six minutes

fifteen seconds.

The third task required the participant to be critical with the design decisions to look for

inconsistent, overly general, or confusing decisions or relationships and tidy up the system (use

case U7). If applicable, the participant should determine whether the decision set agrees with

what the participant already knows about the project (as the decision set in this study came from

the participant’s own project). The final action the participant needs to perform is to add a

decision (use case U6) to clarify or correct the design. The participant started this task by

looking at the decision structure view that he left open from the previous task, and began to bring

up the other three visualizations. He focused his attention on the decision list view, browsing the

decision epitomes and viewing the details as he works his way down the list of decisions.

Halfway down the list and approximately four minutes into the task, the participant asked for

further information about the task by requesting whether there is a specific area of interest. I

replied with the suggestion that “there were reports of performance issues related to large

memory usage involving the <scope area>”. The participant immediately found one of the

97

decisions in the scope area, wrote down the decision ID, and brought up the decision impact

view. The participant filtered the decision impact relationships to display only the “scope”

impact relationships, and then he found the identified decisions and clicked on it. The decision

moved to the centre of the screen while the layout rearranged in animated sequence around the

centre decision. The participant rested his mouse cursor over the centre decision to highlight the

decisions that share the same scope. In less than a minute, the participant identified three

additional decisions and he went to the decision list view to study the three newly identified

decisions. By the six-and-half minute mark, the participant voiced his thoughts that there is a

conflict between two of those decisions; one decision describes a system behavior that

contradicts the desired outcome of the other decision. Using the decision list view, the

participant logged into the system and created a new decision to resolve the conflict between the

two decisions by adding a decision to use a different system. The participant filled out all the

fields in the decision dialog, selected a category and left the change log comment empty when

saving the decision. He then declared task was complete. It took a total of nine minutes forty

seconds for this task.

6.4.2 Observations and Analysis
The first task is where the participant needs to find and explain a decision that constrains another

decision. Although the participant started out with the decision list view, the participant used the

decision structure view to find the decision relationships, lending support to the design intent of

the decision structure view. The participant quickly figured out that decisions can be viewed by

clicking on the decision of interest and then clicking the “view” button. However, the participant

took a little more time to view relationship details, as it was not immediately apparent to click on

the relationship in order to view the relationship details. As this was the participant’s first task,

the participant took some time to read through several decisions in greater detail that were not

directly related to the task. When I asked the participant about it afterwards, the participant

stated that he was curious about some of the other decisions and took some time to view them.

The second task involved finding which decisions were changed in the two months and

determining the dependencies for those decisions. The participant initially went to the decision

impact view to find dependencies, but realized that he did not know which decisions were

98

changed easily in that view. The participant then asked for a task clarification on the definition

of a “changed decision”, that is, whether correcting a spelling mistake or changing the state of a

decision is a decision change. My response was a “change” includes any modification to the

decision information, including spelling or state change. Using the decision chronology view, the

participant was able to find which decisions have changed in the past two months and he

identified the decision IDs by resting the mouse cursor over the decisions corresponding to the

timeline region and writing down the decision IDs displayed on the mouse-over text. The

participant did not zoom in to narrow down the viewed time frame, perhaps because there were

only a few changed decisions and they were spread over the two months. The second half of the

task (finding dependencies) took a different approach and took longer than I expected. The

participant first brought up the decision list view and clicked on one of the identified decisions

with the intent on bringing up all the relationships associated to that design decision, but the

ADDEX implementation listed all the decision relationships for all decisions instead. The

participant chose to continue with this large list of relationships and scanned through the list to

find five relationships that involve those decisions. Then the participant viewed each of those

relationships and thought about them for several minutes to work out the logic behind the

decisions before he decided that there were two dependent changes for one of the changed

decisions. This task is surprising in several ways. The participant did not use the decision

structure view nor continued with the decision impact view (that he started to do at the beginning

of this task), which would have made identifying decision relationships clearer. The participant

also noted that he expected the relationships list to be automatically filtered to show only

relationships pertaining to the decision of concern, which is logical and is unfortunately an

uncaught usability oversight in the ADDEX implementation. As well, identification of a changed

decision is not very clear to the participant; the participant noted that the change logs should

have an automatically-generated “what’s changed” column that identifies which values were

changed from the previous version.

The last task involved critically assessing the design as represented by the decisions, looking for

confusing or inconsistent decisions between other decisions as well as between the design and

implementation. The participant was required to create a new decision that would explain any

disparity between the decisions and/or implementation to tidy up the system. This task gave the

99

participant significant freedom to interpret and use the ADDEX tool independently. To

understand why the participant performed the actions I documented, I reminded the participant to

describe his thought processes when he was performing the task. At the beginning of this task, I

observed the participant going back and forth between the four different visualizations. I

inquired about this afterwards, and the participant replied that he didn’t know where to begin.

The participant also said that he went from visualization to visualization to “get a feel” for the

decisions, and then he decided to start with the decision list view to gauge how correct the

decision contents are. The participant commented that many design decisions he browsed

through were new to him, but he sees how the decisions are mapped to the product he is

currently implementing. A point of interest is that the participant did not immediately find any

inconsistencies or design discrepancies without requesting a specific area to focus on. This is

understandable and expected, as the decision set included over sixty decisions that cover a range

of decisions, and it is unlikely that someone who is not familiar with these decisions would

become instantly aware of all of them. However, once I gave the participant a specific area to

look for, the participant immediately found a decision related to it and was able to find the other

decisions in the area quickly and eventually identified a conflict between two decisions. It is also

interesting that the participant used the decision impact view to find other decisions of the

similar scope. This was unexpected, as I originally thought the decision list view would be more

suited for this activity, but it seems that using the impact view is just as effective.

The final part of the task involved adding a decision. The participant created the decision from

the decision list view. The capturing approach is formal elicitation, as the decision had to be

documented directly and any decision details to be entered all at one time. The participant filled

out all the fields in the decision creation dialog, but the participant opted not to enter a change

log comment before saving his decision. Moreover, the participant did not create any decision

relationships that link the two concerning decisions together with this newly created decision

before declaring his task to be complete. When I asked the participant why he chose not to add

relationships from his decision to the other two design decisions, he replied that he was focussed

on finishing his task that he forgot to step back to look at the big picture. This comment reminds

us of the difficulties in capturing design decisions, as often times people become involved with

the task at hand that they often forget about the decision capture completely.

100

Although the participant performed three tasks, there is actually another task I planned, but it

was not included in this participant study. The task involved spotting the subversive and critical

stakeholders (use cases U8 and U9). It was not included because of the way the decision set has

been captured. Although the ADDEX tool explicitly supports multiple authors to represent

various stakeholders, spotting the subversive and critical stakeholders is difficult to perform in

this study because the decision dataset was created from the elicited-view of one person.

Decision authorship in the tool is based on who was entering the decisions, so it is possible to

have multiple authors but one stakeholder/viewpoint, as in the case of this decision dataset.

Therefore, the remaining two prioritized use cases were excluded from the participant study as it

requires prior support for the stakeholders’ interests during the decision capture process.

6.4.3 Tool Refinements
The tool usability study provides significant insight on how people use the ADDEX tool and

what areas require further refinement. Through the study, I identified several areas where the

tool can be refined. First, I noticed that the participant frequently flipped back and forth between

different views. Furthermore, the participant often wrote down the decision identifiers found in

one view on a piece of paper and then searched for them immediately in the next view. One way

to remedy this situation is to implement decision cross-referencing between visualization views.

For example, selecting one decision in one view would select the same decision in another view,

and this would eliminate the need to search for design decisions between views. The limited

decision query support can also be improved to facilitate easier decision searching and

navigation. One query support improvement would be supporting key-word-based searching (to

parse through fields like the “epitome” or “rationale”), as well as providing comparative queries

(such as “all decisions with two or more relationships”). In the decision chronology view, adding

previous decision versions to the visualization and linking them together with versioning traces

can address the difficulty in identifying decision changes and determine the state of the design at

a specific period in time. There is already a supporting framework built into the ADDEX tool for

these usability improvements. Another improvement would be adding a “legend” for the

decision chronology view to help users map decision states to the node shapes in the view.

101

Interestingly, unlike the participant in the visualization study earlier, this participant found the

semantic-zooming feature to be very useful for him.

Some other usability issues were made apparent after the ADDEX tool usability study. The most

significant issue is that the default settings for the decision impact view would typically

overwhelm a user with information. If the defaults of the decision impact view were set to

display only one type of impact relationship and renders the impact relationships to a single

degree, then people would be less intimidated or overwhelmed with information. Combined with

the cross-referencing improvement discussed above, the decision impact for a decision of

interest can be automatically selected. The usability study also helped identify small changes to

improve user convenience, such as showing only decision relationships pertaining to a selected

decision, including decision IDs in all decision views, and implementing automatic change log

generation to document which values have changed.

The study provided the necessary motivation to refine the tool. The first iteration of the ADDEX

tool focussed on the tool’s functional implementation and the technical challenges to implement

such a tool. This pilot study on the tool’s usability brought insight to how the tool

implementation can both support and hinder decision capture and exploration. The study also

confirmed the areas where the ADDEX tool needed to be changed. I support that usability

studies should be performed alongside functionality implementation so that the findings and

results from the first usability study would feed directly into the next development iteration of

the software tool.

6.5 Decision Capture Tool Comparison Experiment
Recently, a fellow graduate student performed an independent decision capture tool experiment

with several industry practitioners (Ting, 2009). Ting commenced this experimental study

around the same time as my own industry evaluation of the ADDEX tool. The experiment

focussed on comparing three decision capture tools in industry. These three tools are the

ADDEX decision capture tool, the ADDSS tool, and Compendium. For the ADDEX tool, the

formal elicitation component was used for the study.

102

6.5.1 Experiment Overview
Ting’s experiment attempts to determine which decision capturing tool is more mature for use in

industry and identifies the strengths and weaknesses in the three tools. The experiment consists

of performing three decision capturing sessions of around fifteen minutes in duration for each

tool. The first capture session involves using the tool to capture decisions without instructions as

to how to use the tool or what a design decision entails. The second session starts after a brief

information session explaining the features of the tool and introducing the concept of decision

structures. The last session narrows down decision capturing to a specific component in the

project for a more controlled comparison of decision capture across three tools.

The experiment involves three industry participants with three, five, and eleven years of software

development experience. All of the participants are software engineers who previously worked

on a software project together. They shared the same roles as both designer and developer for the

project, and none of them reported themselves as aware of the concept of design decisions

before. The participant with three years of software development experience was assigned to the

Compendium tool, while the participant with five years experience was assigned to the ADDSS

tool. The participant with eleven years of experience was assigned to the ADDEX tool.

6.5.2 Experiment Results
Ting’s experiment showed that the Compendium tool is most ready for industry use in terms of

usability and functionality, followed by the ADDSS tool and then the ADDEX tool. This result

is not surprising, as the ADDSS tool debuted three years ago and is already in its second version,

while the Compendium tool was introduced in 1996 and has been developed, maintained, and

made publicly available for more than a decade. When comparing overall decision capture rates,

the Compendium tool captured decisions at a faster rate than the other two tools in the first two

sessions (over 50% faster in the second session) and captured the most decisions overall.

Interestingly, the ADDEX tool had the highest rate of capture during the focussed decision

capture session. Overall, the ADDSS tool and the ADDEX tool are similar in that they captured

approximately the same amount of decisions, but the ADDEX tool captured more decisions than

the ADDSS tool during the second and third sessions. From the results, the ADDEX tool has a

high learning curve, resulting in the lowest decision capture rate during the first session but the

103

highest in the third session. Further experiments after improving ADDEX tool usability could

determine whether the higher capture rate in the focussed capture session can be attributed to the

tool’s functionality or increased user familiarity.

The experiment also highlighted the strengths and weaknesses of each of the three tools from the

participants’ perspective. Ting reports that the Compendium tool is easy to learn with a low

learning curve, and handles high-level design dependencies well, but lacked some support for

representing decisions as first-class entities and modelling of decision states, like “rejected”

decisions. The ADDSS tool is also easy to learn and captures high-level concepts well, and

supports design planning by enforcing the concept of iterations, but details and complicated

ideas are difficult to express due to input and selection limitations, which may hinder its

effectiveness during the later phases of a project. The lack of diagram support makes textual

explanations of certain concepts difficult. Despite that only the formal elicitation capturing

component is used for the study, the ADDEX tool is identified to be a good reference tool and

the decision exploration components are useful. Ting concludes that it has potential, but the tool

suffered the most from its relatively immature state. The ADDEX tool’s lack of an online “help”

functionality and its need for some user-interface usability refinements and features ultimately

hinders users from capturing decisions effectively. Some missing features include external file

linking in the formal elicitation capture component and a cleaner decision structure layout

algorithm that will not clutter the visualization with excessive decision or relationship crossings.

In terms of decision quality, some of the captured decisions from the Compendium tool were

obvious and could be found in the requirements document, but this could be attributed to the

participant having the least software design and development experience among the participants

in the study. The differences in the tools’ decision quantity and quality could also be attributed to

the fact that the three participants may not have participated equally in the design of the selected

component to document for the third capture session. Having the three participants each evaluate

the three tools would reduce the effects of design expertise when comparing decision capture

rates and decision differences. All three tools promoted the importance of decision capture

during software development and facilitate decision capture and exploration in industry.

104

CHAPTER 7

CONCLUSIONS AND SUMMARY

The work of this thesis focuses on summarizing and integrating the current works involving

software architectural design decisions. A frequently mentioned challenge is that it is still

difficult to capture architectural design decisions and convey them to other software developers;

moreover, it is also difficult to explore the captured decisions effectively. A holistic, system-

based tool is clearly needed to address the interdependencies of decision exploration and capture.

The creation of the ADDEX tool attempts to address this cyclical relationship and attempts to

integrate all the common goals, guidelines, requirements, use cases, and challenges currently

identified by many researchers and industry practitioners. The ADDEX tool addresses the

decision capture problem by supporting three customizable decision capture processes that can

be tailored to the specific capturing needs of the organization. In addition, the tool addresses the

visualization requirement by implementing four visualization aspects that support the identified

use cases. ADDEX attempts to represent the common vision of what a design decision support

environment should be for software organizations to capture and explore design decisions. The

implemented ADDEX tool was brought before industry experts for feedback and industry

datasets were used to test the practicality of the tool-based solution that ADDEX implements.

This chapter reviews the contributions of the work within the software engineering community.

7.1 Research Goals Summary
The goal of this thesis is to integrate the recommendations of several research contributions to

determine a tool-based solution for software organizations to capture and explore their

architectural design decisions. This solution reflects the current views common to the researchers

and industry practitioners in the field of software architecture and maintenance. This goal is

achieved by looking at the current works in literature to determine the common decision

representation model and identifying common challenges, issues, and implementation

requirements for a tool-based solution. The practicality of the integrated solution is evaluated

105

through the implementation of a design decision system tool and through the use of actual

industry datasets acquired and represented with the tool. Useful industry feedback about the

implemented solution is gathered at the same time.

7.2 Contributions of This Work
I have integrated the works of many researchers and industry practitioners to summarize the

collective state of software architectural design decision support systems, and I made

recommendations on how we could meet some requirements and objectives through a tool-based

solution. I have shown that we can implement such a tool (i.e., ADDEX) and I have identified

that the tool can support actual industry datasets. I demonstrated the tool to industry practitioners

and gathered feedback about the tool.

The following is a summary of my contributions:

• A solution that integrates the current common issues, challenges, requirements, use cases,

and guidelines to capture and explore design decisions using a system-based tool. This

solution represents the current state of research in the software architecture and

maintenance communities

• A proposal of using three capture approaches (together or separately) to encourage and

facilitate decision capture:

1. formal elicitation,

2. lightweight top-down, and

3. lightweight bottom-up

• A proposal of four visualization aspects that apply to software architectural design

decisions to promote decision exploration:

1. tabular lists,

2. decision structure visualization,

3. decision chronology visualization, and

4. decision impact visualization

• A tool called ADDEX that implements the integrated solution for software architectural

design decision capture and exploration

o Combines decision capture and exploration using a holistic approach

106

o Supports decision capture across various stages of the development process

o Supports capture of incomplete decision information

o Visualizes four aspects of design decisions to support decision exploration

• A demonstration of the tool and the integrated solution it represents to capture and

represent actual decision sets acquired from industry

• An evaluation of the tool by four industry practitioners to gain feedback on the tool-based

solution and the proposed decision capture approaches and decision visualization aspects

7.3 Future Work
In addition to identifying and implementing a set of requirements for software architectural

design decision systems, there are other areas of further research in the tool-based support of

design decision capture and exploration. Two significant areas for future work are

implementation and evaluation. Implementation plays a large role in the users’ experience with

the software tool as the experience is governed by how well the tool is implemented. Accurate

and effective evaluation is needed to determine the successes and shortcomings of the research

work.

Improved tool implementation is necessary to reduce the effects of the implementation on the

study results. The result of Ting’s experiment emphasizes the importance of the maturity of a

tool’s design and implementation. Tool usability is a priority; satisfying this requirement would

help users capture and explore design decisions without the tool getting into the way of their

tasks. Improved functionality like decision querying and filtering in the ADDEX tool’s

visualization component should enable people to perform what they want to do with the

decisions using the tool. As well, implementing better methods to cross-reference keywords and

decision attributes could also help identify other potential decision impact. Improving default

values and settings for all aspects of the tool will help, and providing external file linking or

storage could save users from additional data entry. For decision capture, the three decision

capture approaches are linked to how well the implemented capturing tools are integrated into

the processes of an organization or the daily routines of a software architect. In lightweight top-

down capture, the capture tool should be implemented as a part of the daily tool set, such as a

word processor plug-in, a design tool add-on, or an e-mail client extension. The development

107

and use of closely-integrated decision capturing tools should be investigated to determine the

effects of the three capturing approaches on an organization’s decision capture process. In both

decision capture and decision visualization, the ADDEX tool is my personal interpretation of the

requirements, so it would be interesting to see how other researchers and industry practitioners

would develop their decision capture and exploration tool using the same or similar set of

requirements identified in this thesis. Explicitly implementing the concept of publicity levels by

linking the selective release of design decisions to groups of users in all four components of the

ADDEX tool would lead to an interesting area of further study. Supporting decisions that are

intentionally left tacit or implicit may also yield interesting results. General improvements to tool

usability would help lower the effects of the tool on the study. For example, several users have

browsed across visualization aspects, so cross-referencing (by highlighting) design decisions

across the various open visualization views could help. Also, the “history” functionality of the

ADDEX tool can be extended to include the “Undo” concept, as every decision addition and

manipulation is logged and tracked. Using other visualization layout algorithms could also

improve usability by reducing clutter or cross-placement of nodes and edges in the visualization.

Although I am showing that it is possible to implement a tool using the set of integrated

requirements, we still need to perform an evaluation on how well the tool implements those

requirements. With the limited industrial evaluation of the lightweight bottom-up decision

capture component, the first recommendation is to acquire non-trivial industry datasets using the

bottom-up approach to determine its decision capturing effectiveness in real industrial situations.

The industry feedback on the ADDEX tool suggests that the work is on the right track, but a

detailed evaluation of the tool and the proposed capture approaches and the visualization aspects

is necessary to determine how useful the requirements and guidelines are in practice. We should

perform this detailed evaluation in the next iteration of the research work. Performing additional

usability and long-term field studies (six or more months) with the tool could also allow us to

determine and improve the usability and adoptability of the visualization tool. Further usability

studies also help customize the implemented visualization aspects to the specific needs of

individuals and organizations. Ting’s experiment compared the ADDEX tool against other

design decision tools and found some strengths and limitations of the tools. However, we should

perform another empirical study after making the necessary changes to address the concerns and

108

issues raised in the first study so that we can better evaluate and understand the proposed

requirements and use cases represented by the ADDEX tool. We should also deploy ADDEX in

industry after refining my tool’s implementation to evaluate how well the tool handles the

decision capturing processes and decision exploration within an organization and to determine

what other capabilities industry practitioners require for software architectural design decisions.

Performing a general study on the effects of various levels of disclosure for design decisions

could also help answer interesting questions, such as how much personal decisions influence the

end design.

7.4 Conclusion
This thesis describes the issues, challenges, requirements of capturing and using architectural

design decisions during the software development process. The thesis integrates the works of

various researchers and industry practitioners to arrive at a tool-based solution that tries to satisfy

many of the guidelines and recommendations regarding the capture and exploration of software

architectural design decisions. As the issues of decision capture and decision exploration are

interrelated, the tool-based solution should take a holistic approach. To assess the practicality of

the tool-based solution I created the ADDEX tool that combines both decision capture and

decision exploration together in a common environment. I proposed three approaches to decision

capture (formal elicitation, lightweight top-down and lightweight bottom-up capture) to address

the specific needs and situations that various software organizations have for architectural design

knowledge, and I proposed four decision visualization aspects to assist these organizations to use

the design decisions as described by various researchers. These proposals are reflected in the

implemented ADDEX tool.

However, we need to verify that the developed tool meets the common guidelines and

requirements of the tool-based solution that I brought together from current research works in the

software architecture and maintenance communities. The capture and representation of actual

industry decision sets using the developed tool demonstrates that it is possible to implement the

set of goals, requirements and design decisions combined from various researchers and industry

practitioners. The industry decisions sets and evaluation from industry participants also helped

evaluate whether the tool (and to some degree the general tool-based solution it represents) met

109

the goals and challenges described in the works of those I used to integrate together. Analyzing

the industry feedback and decision datasets also allows us to see how the proposed capturing

approaches and visualization aspects can be improved to better support decision capture and

exploration of software architectural design decisions. We should perform further studies to

study and improve the decision capture process in the light of improving the usability and

exploration of design decisions for software organizations. Since we have come to a collective

consensus of what an architectural design decision system should constitute, we should focus on

decision capture processes and decision exploration through visualization and continue the

research into how decision capturing processes and decision visualization can be improved to

investigate the decision capture and exploration potential in the current and future works

involving software architectural design decisions.

110

REFERENCES

Abrams, S., Bloom, B., Keyser, P., Kimelman, D., Nelson, E., Neuberger, W., Roth, T.,

Simmonds, I., Tang, S. and Vlissides, J.: Architectural thinking and modeling with the
Architects' Workbench. IBM Systems Journal, 45(3) pp. 481-500 (2006)

Akerman, A. and Tyree, J.: Using ontology to support development of software architectures.
IBM Syst. J., 45(4) pp. 813-825 (2006)

Avgeriou, P., Kruchten, P., Lago, P., Grisham, P. and Perry, D.: Architectural knowledge and
rationale: issues, trends, challenges. SIGSOFT Softw. Eng. Notes, 32(4) pp. 41-46 (2007)

Babar, M.A., Gorton, I. and Jeffery, R.: Capturing and Using Software Architecture Knowledge
for Architecture-based Software Development. In: Proc. 5th International Conference on
Quality Software (QSIC), pp. 169-176, Melbourne (2005)

Babar, M.A., Gorton, I. and Kitchenham, B.: A framework for supporting architecture
knowledge. In: Dutoit, A.H., McCall, R., Mistrik, I. and Paech, B. (eds.): Rationale
Management in Software Engineering. Springer-Verlag (2006) pp. 237-254

Bosch, J.: Software Architecture: The Next Step. In: Oquendo, F., Warboys, B.C. and Morrison,
R. (eds.): In: Proc. European Workshop on Software Architecture (EWSA 2004), vol.
LNCS 3047, pp. 194-199. Springer, Heidelberg, St Andrews, Scotland (2004)

Bratthall, L., Johansson, E. and Regnell, B.: Is a Design Rationale Vital when Predicting Change
Impact? A Controlled Experiment on Software Architecture Evolution. In: Proc. Second
International Conference on Product Focused Software Process Improvement, pp. 126-
139 (2000)

Bruegge, B., Dutoit, A.H. and Wolf, T.: Sysiphus: Enabling Informal Collaboration in Global
Software Development. In: Proc. First International Conference on Global Software
Engineering, pp. 139-148, Costao do Santinho, Florianopolis, Brazil (2006)

Burge, J.E. and Brown, D.C.: Reasoning with design rationale. Artificial Intelligence in Design
'00. Kluwer Academic Publishers, Netherlands (2000) pp. 611-629

Burge, J.E. and Brown, D.C.: Design rationale for software maintenance. In: Proc. 16th IEEE
international conference on automated software engineering (ASE'01), pp. 433-436
(2001)

Burge, J.E. and Brown, D.C.: An Integrated Approach for Software Design Checking Using
Rationale. Design Computing and Cognition '04. Kluwer Academic Publishers,
Netherlands (2004) pp. 557-576

Burge, J.E. and Brown, D.C.: Rationale-based Support for Software Maintenance. In: Dutoit,
A.H., McCall, R., Mistrík, I. and Paech, B. (eds.): Rationale Management in Software
Engineering. Springer-Verlag Berlin Heidelberg (2006) pp. 273-296

Capilla, R., Nava, F. and Dueñas, J.C.: Modeling and Documenting the Evolution of
Architectural Design Decisions. In: Proc. Second Workshop on SHAring and Reusing
architectural Knowledge Architecture, Rationale, and Design Intent, pp. 9-15. IEEE
Computer Society, Minneapolis, MN, USA (2007)

111

Capilla, R., Nava, F., Pérez, S. and Dueñas, J.C.: A web-based tool for managing architectural
design decisions. SIGSOFT Software Engineering Notes, 31(5) (2006)

Conklin, J. and Begeman, M.L.: gIBIS: a hypertext tool for team design deliberation. In: Proc.,
pp. 247-251. ACM, Chapel Hill, North Carolina (1987)

Conklin, J. and Burgess-Yakemovic, K.C.: A process-oriented approach to design rationale.
Design Rationale Concepts, Techniques, and Use. Lawrence Erlbaum Associates,
Mahwah, NJ (1996) pp. 393-427

de Boer, R.C. and Farenhorst, R.: In Search of ‘Architectural Knowledge’. In: Proc. Third
Workshop on SHAring and Reusing architectural Knowledge Architecture, Rationale,
and Design Intent, pp. 71-78. IEEE Computer Society, Leipzig, Germany (2008)

Deelen, P., van Ham, F., Huizing, C. and van de Wetering, H.: Visualization of Dynamic
Program Aspects. In: Maletic, J.I., Telea, A. and Marcus, A. (eds.): In: Proc. Visualizing
Software for Understanding and Analysis, 2007. VISSOFT 2007. 4th IEEE International
Workshop on, pp. 39-46, Banff, Canada (2007)

Dueñas, J.C. and Capilla, R.: The Decision View of Software Architecture. In: Proc. 2nd
European Workshop on Software Architecture, vol. LNCS 3527, pp. 222-230. Springer
Berlin / Heidelberg, Pisa, Italy (2005)

Dutoit, A.H., McCall, R., Mistrík, I. and Paech, B.: Rationale Management in Software
Engineering: Concepts and Techniques. In: Dutoit, A.H., McCall, R., Mistrík, I. and
Paech, B. (eds.): Rationale Management in Software Engineering. Springer-Verlag Berlin
Heidelberg (2006) pp. 1-48

Dutoit, A.H. and Paech, B.: Rationale-based Use Case Specification. Requirements Engineering
Journal, 7(1) pp. 3-19 (2002)

Falessi, D., Cantone, G. and Becker, M.: Documenting design decision rationale to improve
individual and team design decision making: an experimental evaluation. In: Proc. 2006
ACM/IEEE international Symposium on international Symposium on Empirical Soft.
Eng. ISESE '06, pp. 134-143. ACM (2006)

Falessi, D., Cantone, G. and Kruchten, P.: Value-Based Design Decision Rationale
Documentation: Principles and Empirical Feasibility Study. In: Proc. Software
Architecture, 2008. WICSA 2008. Seventh Working IEEE/IFIP Conference on, pp. 189-
198. IEEE Computer Society, Vancouver, BC, Canada (2008a)

Falessi, D., Capilla, R. and Cantone, G.: A value-based approach for documenting design
decisions rationale: a replicated experiment. In: Proc. 3rd international workshop on
Sharing and reusing architectural knowledge, pp. 63-70. ACM, Leipzig, Germany
(2008b)

Farenhorst, R., Lago, P. and Van Vliet, H.: Effective Tool Support for Architectural Knowledge
Sharing. In: Oquendo, F. (ed.): In: Proc. First European Conference on Software
Architecture (ECSA 2007), vol. LNCS 4758, pp. 123-138. Springer-Verlag Berlin
Heidelberg, Aranjuez, Madrid (2007)

Fischer, G., McCall, R. and Morch, A.I.: JANUS: integrating hypertext with a knowledge-based
design environment. In: Proc. Second annual ACM conference on Hypertext, pp. 105-
117. ACM Press, Pittsburgh, Pennsylvania, United States (1989)

Gotel, O. and Finkelstein, A.: Contribution Structures. Proceedings of 2nd International
Symposium on Requirements Engineering RE95, pp. 100 - 107 (1995)

112

Grant, K.A.: Tacit Knowledge Revisted - We Can Still Learn from Polanyi. Electronic Journal of
Knowledge Management, 5(2) pp. 173-180 (2007)

Grudin, J.: Groupware and social dynamics: eight challenges for developers. Commun. ACM,
37(1) pp. 92-105 (1994)

Grudin, J.: Evaluating Opportunities for Design Capture. Design Rationale Concepts,
Techniques, and Use. Lawrence Erlbaum Associates, Mahwah, NJ (1996) pp. 453-470

Heer, J., Card, S.K. and Landay, J.A.: Prefuse: a toolkit for interactive information visualization.
In: Proc. SIGCHI conference on Human factors in computing systems, pp. 421-430
(2005)

Holten, D., Cornelissen, B. and van Wijk, J.J.: Trace Visualization Using Hierarchical Edge
Bundles and Massive Sequence Views. In: Maletic, J.I., Telea, A. and Marcus, A. (eds.):
In: Proc. Visualizing Software for Understanding and Analysis, 2007. VISSOFT 2007.
4th IEEE International Workshop on, pp. 47-54, Banff, Canada (2007)

Jansen, A. and Bosch, J.: Evaluation of tool support for architectural evolution. In: Proc.
Automated Software Engineering, 2004. Proceedings. 19th International Conference on,
pp. 375-378 (2004)

Jansen, A. and Bosch, J.: Software Architecture as a Set of Architectural Design Decisions. In:
Proc. Fifth Working IEEE/IFIP Conference on Software Architecture (WICSA 2005), pp.
109-120. IEEE Computer Society, Pittsburgh, PA, USA (2005)

Jansen, A., Van der Ven, J., Avgeriou, P. and Hammer, D.: Tool support for architectural
decisions. In: Proc. Sixth Working IEEE/IFIP Conference on Software Architecture
(WICSA 2007), Mumbai (2006)

Karsenty, L.: An empirical evaluation of design rationale documents. In: Tauber, M.J. (ed.): In:
Proc. SIGCHI Conference on Human Factors in Computing Systems: Common Ground
(CHI '96), pp. 150-156. ACM Press, New York, NY (1996)

Kienle, H.M. and Müller, H.A.: Requirements of Software Visualization Tools: A Literature
Survey. In: Proc. Visualizing Software for Understanding and Analysis, 2007. VISSOFT
2007. 4th IEEE International Workshop on, pp. 2-9 (2007)

Klein, M.: Capturing design rationale in concurrent engineering teams. IEEE Computer, 26(1)
pp. 39-47 (1993)

Kruchten, P.: An Ontology of Architectural Design Decisions. In: Bosch, J. (ed.): In: Proc. 2nd
Groningen Workshop on Software Variability Management, pp. 55-62. Rijksuniversiteit
Groningen, Groningen, NL (2004)

Kruchten, P., Lago, P. and van Vliet, H.: Building up and reasoning about architectural
knowledge. In: Hofmeister, C. (ed.): QoSA-Quality of Software Architecture, vol. 4214.
Springer-Verlag, Vaesteras, Sweden (2006) pp. 43-58

Kruchten, P., Lago, P., van Vliet, H. and Wolf, T.: Building up and exploiting architectural
knowledge. In: Proc. Working IEEE/IFIP Conference on Software Architecture
(WICSA) 2005, pp. 291 - 292. IEEE Computer Society, Pittsburgh, PA (2005)

Kunz, W. and Rittel, H.W.J.: Issues as Elements of Information Systems, Working Paper 131.
The University of California at Berkeley (1970)

Lago, P. and van Vliet, H.: Explicit Assumptions Enrich Architectural Models. In: Proc.
International Conference on Software Engineering (ICSE 2005), pp. 206-214. ACM
Press, St. Louis, MO, USA (2005)

113

Lee, J.: SIBYL: a tool for managing group design rationale. In: Proc. ACM conference on
Computer-supported cooperative work (CSCW90), pp. 79 - 92, Los Angeles (1990)

Lee, J.: Extending the Potts and Bruns model for recording design rationale. In: Proc. Software
Engineering, 1991. Proceedings., 13th International Conference on, pp. 114 - 125 (1991)

Lee, J.: Design Rationale Systems: Understanding the Issues. IEEE Expert, 12(3) pp. 78-85
(1997)

Lee, J. and Lai, K.-Y.: What's in Design Rationale? Design Rationale: Concepts, Techniques,
and Use. Lawrence Erlbaum Associates, Inc., Mahwah, NJ (1996) pp. 21-51

Lee, L. and Kruchten, P.: Capturing Software Architectural Design Decisions. In: Proc. 20th
Canadian Conference on Electrical and Computer Engineering, pp. 686-689. IEEE,
Vancouver, BC, Canada (2007)

Lee, L. and Kruchten, P.: Customizing the Capture of Software Architectural Design Decisions.
In: Proc. 21st Canadian Conference on Electrical and Computer Engineering (CCECE
2008), pp. 693-698. IEEE, Niagara Falls, ON, Canada (2008a)

Lee, L. and Kruchten, P.: A Tool to Visualize Architectural Design Decisions. In: Becker, S. and
Plasil, F. (eds.): In: Proc. Fourth International Conference on the Quality of Software
Architectures (QoSA 2008), vol. LNCS 5281, pp. 43-54. Springer, Heidelberg,
Karlsruhe, Germany (2008b)

Lee, L. and Kruchten, P.: Visualizing Software Architectural Design Decisions. In: Morrison, R.,
Balasubramaniam, D. and Falkner, K. (eds.): In: Proc. Second European Conference on
Software Architecture (ECSA 2008), vol. LNCS 5292, pp. 359-362. Springer-Verlag,
Paphos, Cyprus (2008c)

MacLean, A., Young, R.M., Belloti, V.M.E. and Moran, T.P.: Questions, options, and criteria:
Elements of design space analysis. Human-Computer Interaction, 6 pp. 201-250 (1991)

Moreta, S. and Telea, A.: Visualizing Dynamic Memory Allocations. In: Maletic, J.I., Telea, A.
and Marcus, A. (eds.): In: Proc. Visualizing Software for Understanding and Analysis,
2007. VISSOFT 2007. 4th IEEE International Workshop on, pp. 31-38, Banff, Canada
(2007)

Munzner, T.: Interactive Visualization of Large Graphs and Networks. Ph.D. Dissertation.
Department of Computer Science, Stanford University (2000)

Nonaka, I.: The knowledge-creating company. Harvard Business Review, vol. 69 (1991) pp. 96-
104

Polanyi, M.: The Tacit Dimension. Routledge & Kegan Paul, London (1966)
Potts, C. and Bruns, G.: Recording the reasons for design decisions. In: Proc., pp. 418-427. IEEE

Computer Society, Singapore (1988)
Regli, W.C., Hu, X., Atwood, M. and Sun, W.: A survey of design rationale systems:

Approaches, representation, capture and retrieval. Engineering with Computers, 16(3-4)
pp. 209-235 (2000)

Robillard, P.N.: The role of knowledge in software development. Commun. ACM, 42(1) pp. 87-
92 (1999)

Sawant, A.P. and Bali, N.: SoftArchViz: A Software Architectural Visualization Tool. In:
Maletic, J.I., Telea, A. and Marcus, A. (eds.): In: Proc. Visualizing Software for
Understanding and Analysis, 2007. VISSOFT 2007. 4th IEEE International Workshop
on, pp. 154-155, Banff, Canada (2007)

114

Schuster, N.: ADkwik – a Collaborative System for Architectural Decision Modeling and
Decision Process Support based on Web 2.0 Technologies. Diplomarbeit im Studiengang
Medieninformatik Doctoral Thesis. Studiengang Medieninformatik, Hochschule der
Medien (2007)

Selvin, A.M., Buckingham Shum, S., Sierhuis, M., Conklin, J., Zimmermann, B., Palus, C.,
Drath, W., Horth, D., Domingue, J., Motta, E. and Li, G.: Compendium: Making
Meetings into Knowledge Events. In: Proc. Knowledge Technologies, Austin, TX (2001)

Sierhuis, M. and Selvin, A.M.: Towards a Framework for Collaborative Modeling and
Simulation. In: Proc. Workshop on Strategies for Collaborative Modeling and Simulation
Conference on Computer-Supported Collaborative Work (CSCW '96), pp. 1-7, Boston,
MA (1996)

Storey, M.-A.D., Cheng, L.T., Bull, R.I. and Rigby, P.C.: Waypointing and Social Tagging to
Support Program Navigation. CHI '06 extended abstracts on Human factors in computing
systems. ACM Press, Montréal, Québec (2006) pp. 1367-1372

Tang, A., Babar, M.A., Gorton, I. and Han, J.: A Survey of Architecture Design Rationale.
Journal of Systems and Software, 79(12) pp. 1792-1804 (2006)

Ting, E.: Design Decision Tools Experiment. Unpublished M.Eng. Project Report, University of
British Columbia (2009)

Tyree, J. and Ackerman, A.: Architecture Decisions: Demystifying Architecture. IEEE Software,
22(2) pp. 19-27 (2005)

van der Ven, J.S., Jansen, A.G.J., Avgeriou, P. and Hammer, D.K.: Using Architectural
Decisions. In: Proc. 2nd International Conference on the Quality of Software
Architectures (QoSA 2006), pp. 1-10, Västerås, Sweden (2006)

van Gurp, J. and Bosch, J.: Design erosion: problems and causes. Journal of Systems and
Software, 61(2) pp. 105-119 (2002)

Wettel, R. and Lanza, M.: Visualizing Software Systems as Cities. In: Maletic, J.I., Telea, A. and
Marcus, A. (eds.): In: Proc. Visualizing Software for Understanding and Analysis, 2007.
VISSOFT 2007. 4th IEEE International Workshop on, pp. 92-99, Banff, Canada (2007)

Wild, C. and Maly, K.: Towards a software maintenance support environment. In: Proc.
Proceedings of the Conference on Software Maintenance, pp. 80-85 (1988)

Wild, C., Maly, K., Liu, L., Chen, J.-S. and Xu, T.: Decision-based software development:
design and maintenance. In: Proc. Conference on Software Maintenance, 1989, p. 297
(1989)

Wolf, T. and Dutoit, A.H.: Sysiphus: Combining system modeling with collaboration and
rationale. Softwaretechnik-Trends, 24(4) (2004)

Zimmermann, B. and Selvin, A.M.: A framework for assessing group memory approaches for
software design projects. In: Proc. 2nd conference on Designing interactive systems:
processes, practices, methods, and techniques, pp. 417-426. ACM, Amsterdam, The
Netherlands (1997)

Zimmermann, O., Koehler, J. and Leymann, F.: Architectural Decision Models as Micro-
Methodology for Service-Oriented Analysis and Design. In: Lübke, D. (ed.): In: Proc.
Workshop on Software Engineering Methods for Service-oriented Architecture 2007
(SEMSOA 2007), vol. 244, pp. 46-60. CEUR-WS.org, Hannover, Germany (2007)

115

APPENDIX A – ADDEX USER’S GUIDE

User’s Guide
The end-user’s introduction to the ADDEX tool is included in this appendix section.

116

ADDEX User’s Guide

End User’s Introduction to the
Architectural Design Decision Exploration (ADDEX) Tool

Larix Lee

November 20, 2008

Version 1.0

The tool described in this user’s guide is created as a part of the author’s academic Master’s research thesis.

 117

ADDEX User’s Guide Page 2

Table of Contents

Purpose .. 3
Getting Started ... 3

System Requirements.. 3
Installing and Starting ADDEX .. 4

The ADDEX Tool Overview... 5
Using ADDEX... 5

Decision Capture... 5
Formal elicitation – DecisionCaptureTool... 6
Lightweight top-down decision capture – DecisionStickies .. 7
Lightweight bottom-up decision capture – DecisionCapturePlugin .. 9

Decision Exploration... 11
Tabular Listing... 11
Decision Structure Visualization ... 12
Decision Chronology Visualization ... 14
Decision Impact Visualization... 15

Reference: Design Decision Structures.. 17

118

ADDEX User’s Guide Page 3

Purpose
This document is intended to provide a general overview of the Architectural Design Decision

Exploration (ADDEX) tool to the end-users of this tool. The document begins by outlining the basic
structure of the tool and then it describes step-by-step procedures for basic tool functionality. By the end of
this document, the end-users reading this document should be able to understand how to use the ADDEX
tool and get started on tasks related to architectural design decision exploration and analysis.

Getting Started
The first step to use the ADDEX tool is to install the tool. The tool runs on any computer system

platform that supports the Java 5 runtime environment. After installation, ADDEX can be started simply by
opening the Java jar file.

System Requirements
The recommended system requirements to install and use the ADDEX tool are:

- Java VM 1.5- supported personal computer system
- Java 5 or greater runtime environment
- Graphical user environment and display
- 256 MB available system RAM
- Pentium II-class, G3 PowerPC or newer system processor
- 30 MB free hard drive or storage space
- Keyboard and two-button mouse

Optional installed prerequisites for additional functionality:

- Network-capable system
- MySQL 5.0 database server software
- Eclipse 3.2 or higher integrated development environment (IDE)

119

ADDEX User’s Guide Page 4

Installing and Starting ADDEX
There are three binary files that make up the ADDEX tool:

- ca.ubc.ece.seal.ADDEX.DecisionCapturePlugin.1.0.2.jar
- ADDEX.DecisionStickies.1.0.2.jar
- ADDEX.DecisionExploration.1.0.2.jar

The Java 5 Runtime Environment must be already installed and configured on the target computer
system. The Eclipse IDE should be installed in order to install and use the optional decision capture Eclipse
plug-in.

Installation of the tool is performed by copying three Java Jar files in two steps:

1) The Eclipse plug-in decision capture component can be installed by copying the
ca.ubc.ece.seal.ADDEX.DecisionCapturePlugin.1.0.2.jar file to the
“plugin” folder in the Eclipse installation folder.

2) Copy the remaining two Jar files to an easily-accessible folder with read/write permissions.
Installation is not required but is highly recommended.

To use the plug-in, start Eclipse as normal. To use the DecisionStickies decision capture component,

double-click the ADDEX.DecisionStickies.1.0.2.jar file to open it. To use the formal
elicitation/visualization components, double-click the ADDEX.DecisionExploration.1.0.2.jar
file to open it.

In future releases, an installer will be used to automate the installation process and a launcher

application will be used to start all four components.

Tip: Some systems and/or configurations cannot execute Java Jar files by

double-clicking the file. In those cases, the ADDEX tool components can
be started using the Java Runtime command-line interface. At a command
terminal, navigate to the folder containing the two Java Jar files and enter
the respective command listed below.

To run the DecisionStickies component:

java –jar ADDEX.DecisionStickies.1.0.2.jar

To run the formal elicitation/visualization components:

java –jar ADDEX.DecisionExploration.1.0.2.jar

120

ADDEX User’s Guide Page 5

The ADDEX Tool Overview
The ADDEX tool is made up of four smaller tools (components) that share a common decision

representation, storage and manipulation framework to address the capture and exploration of software
architectural design decisions. These four components are: 1) formal elicitation; 2) lightweight top-down
capture; 3) lightweight bottom-up capture; and 4) decision visualization.

Figure 6 below illustrates the system structure of the ADDEX tool. The lightweight top-down capture
component in the ADDEX tool is also known as the “DecisionStickies” tool. The lightweight bottom-up
capture component is an Eclipse Plug-in. Formal elicitation and decision visualization components are
integrated into a single package (generalized as “DecisionExploration”). Within the decision visualization
component, four visualization aspects are found. The goal of these four visualization aspects is to support
decision exploration by visualizing the different facets of the architectural knowledge found within the
captured design decisions.

D
ecision Visualization

Decision
Structure

Decision
Chronology

Decision &
relationship lists

Decision Impact

D
ecision Visualization

Decision
Structure

Decision
Chronology

Decision &
relationship lists

Decision Impact

Decision
Structure

Decision
Chronology

Decision &
relationship lists

Decision ImpactDecision Capture

Lightw
eight

top-dow
n

Lightw
eight

bottom
-up

Form
al

elicitation

Decision Exploration
D

ecision
Visualization

Common decision representation & manipulation framework

Decision Capture

Lightw
eight

top-dow
n

Lightw
eight

bottom
-up

Form
al

elicitation

Decision Exploration
D

ecision
Visualization

Decision Capture

Lightw
eight

top-dow
n

Lightw
eight

bottom
-up

Form
al

elicitation

Decision Capture

Lightw
eight

top-dow
n

Lightw
eight

bottom
-up

Form
al

elicitation

Lightw
eight

top-dow
n

Lightw
eight

bottom
-up

Form
al

elicitation

Decision Exploration
D

ecision
Visualization

Decision Exploration
D

ecision
Visualization

Common decision representation & manipulation framework

Figure 1: ADDEX system diagram. Four smaller tools (components) make up the ADDEX tool and are
tied together through a common framework for decision representation, storage, and manipulation. The
visualization tool contains four distinct visualization aspects that can be used to explore architectural design
decisions.

Using ADDEX

The ADDEX tool has four components. Three of the ADDEX components correspond to the capture of

architectural design decisions. The fourth component deals with architectural design decision exploration.
This section will describe how to use the ADDEX components for decision capture and exploration.

Decision Capture
The three ADDEX components involving decision capture are: Formal elicitation, lightweight top-

down (DecisionStickies), and lightweight bottom-up (DecisionCapturePlugin). For details on how to install
and start the respective tools, refer to the Getting Started section.

121

ADDEX User’s Guide Page 6

Formal elicitation – DecisionCaptureTool

Starting DecisionCaptureTool

1) The formal elicitation component of the ADDEX tool can be started by double-clicking on the

Java Jar file named ADDEX.DecisionExploration.1.0.2.jar.

2) Once the application has started, go to the “File” menu and select “open”.

3) Enter the name of the current project and click OK.

4) A list of previously-created, structured decisions (from the two lightweight capturing components
or previous formal elicitation sessions) is displayed and can be viewed and browsed.

5) To add, remove, or change the structured decisions, click the “Log in” button. Logging in is
required for any changes to the list of design decisions.

6) Enter your name and click OK to complete the log in process.

Using DecisionCaptureTool

• Decision Forming: To form a decision, click the “add” button under the decisions button group. A

dialog box will appear where you may enter specific decision information. Enter the decision
information, such as the decision epitome (key idea), the rationale behind the decision, the scope
and state. Select a decision state. When done, click the “save” button. A dialog appears where you
can enter a change log entry for the modified (new) decision. After entering the change log
comment and clicking the “OK” button, the decision is added to the list of captured decisions.

122

ADDEX User’s Guide Page 7

Lightweight top-down decision capture – DecisionStickies

Starting DecisionStickies

1) The first step to capturing decisions using DecisionStickies is to start up the program. You can do

so by double-clicking on the Java Jar file named ADDEX.DecisionStickies.1.0.2.jar.

2) Next, log in to the ADDEX tool by entering your name and your chosen password. If you don’t
have a configured name/password, you can create a new user by clicking on the “create new user”
button.

3) Select your project from the drop down list and click “done”. If your project is not listed, you can
create a new project by clicking “create a new project”.

4) The main user interface is presented to you as a yellow square on the upper left corner of your
screen. Right-clicking on the decision yellow square will enable you to access other features.

123

ADDEX User’s Guide Page 8

Using DecisionStickies

1) Decision flagging: Decisions can be flagged as a decision by drag-and-dropping the document on

top of the yellow square. A dialog window will pop up, with some fields pre-filled for you, and
you can enter the epitome (main idea) of your additional decision information.

2) Decision filtering: When you have many decisions, you can filter your decisions for relevance by

right-clicking on the yellow square and selecting “filtering”. A dialog screen appears and shows
two lists (all decisions and selected decisions). Select a decision by moving a decision from the left
list (all decisions) to the right list (selected decision) by clicking on the decision reference on the
left list and clicking “add”. Similarly, you can remove a selected decision by selecting a decision
from the right list and clicking “remove”.

124

ADDEX User’s Guide Page 9

3) Decision forming: For the selected decisions you can structure the reference formally by clicking

on the selected decision references in the filtering dialog and then clicking on the “form decision”
button. A dialog window will show up with several more fields to complete the decision structure.
Some of the fields are already pre-filled with the information from the decision reference. Fill out
the information pertaining to the decision and click “save” when done to save the structured
decision. This decision is now saved to the decision repository to be shared with other users.

Lightweight bottom-up decision capture – DecisionCapturePlugin

Starting DecisionCapturePlugin

1) Once the DeicsionCapturePlugin has been installed, starting the plugin is as simple as starting

Eclipse as normal. The main interface of the lightweight bottom-up decision capture is the
“Decision Tags” view in Eclipse.

2) If the “Decision Tags” view is not visible in when Eclipse is in the opened state, you can open it
by going to the “Window” menu, then “show view” submenu, and then selecting “Other…”. A
dialog will appear where you can select “Decision Tags” from the list of views. Click OK when
done.

125

ADDEX User’s Guide Page 10

3) When started, the “Decision Tags” view will scan through all the source code in the active projects

and find decision tags (denoted by the //Decision or @Decision prefixes) and lists them in
the view at the bottom of Eclipse.

Using DecisionCapturePlugin

1) Decision tagging: To add a decision tag within Eclipse, browse to the class or function headers of
the areas where the decision affects. Insert a code comment beginning with //Decision or
@Decision, where the code comment summarizes the key ideas of the decision. Save the
modified source files like normal.

2) Decsion forming: To form a decision from the decision tag, perform code check-in. During the

code check-in, the source code files are scanned for decision tags. The newly added decision tag is
detected and you are shown a dialog to form the decisions. Fill out the additional information
pertaining to the decision and click “save”. Continue code check-in as normal.

126

ADDEX User’s Guide Page 11

Decision Exploration
The fourth ADDEX component is decision visualization. As the visualization is designed to support the

exploration of design decisions, it is logical to link the visualization component to the formal elicitation
component since the structured decisions make information retrieval and analysis easier. Visualization is
helpful to make sense of various attributes among a large set of decisions. Therefore, the four visualization
aspects (tabular listing, decision structure visualization, decision chronology visualization and decision
impact visualization) are found within the formal elicitation component. Many typical decision information
manipulation features are found in the tabular listing view. All views update each other when decisions in
the decision list are loaded, added, edited, or removed.

Below is how you can start the decision visualization component. As the visualization component is

part of the formal elicitation component, the steps to start are similar to steps for the formal elicitation
component. For details on how to install and start the respective tools, refer to the Getting Started section.

1) The formal elicitation component of the ADDEX tool can be started by double-clicking on the

Java Jar file named ADDEX.DecisionExploration.1.0.2.jar.

2) The first screen shown after starting DecisionExploration is the Tabular Listing aspect.

3) The other three aspects can be opened by selecting the respective visualization aspects through the
“visualization” menu. All four visualization aspects can be opened and viewed simultaneously.

Tabular Listing

• Decision browsing: Decisions (and relationships) are displayed visually using tables. Each
decision is represented as a row in a table. The columns in the table display the decision attributes.

• Adding decisions: Decisions are added using the formal elicitation decision capturing approach.

The details on adding decisions are described in the “Formal Elicitation” section above. Decision
creation requires a user to be logged in.

127

ADDEX User’s Guide Page 12

• Viewing/editing/removing decisions: Decisions can be viewed or edited by selecting the decision

of interest and clicking the “view/edit” button. In order to edit the decisions, you must log in first.
Decisions can be removed by selecting the decision and clicking the “remove” button. Note,
decisions are removed from view but remains in the decision list for documentation purposes. It is
suggested to use the “obsolete” or “rejected” decision states instead of removing decisions.

• Viewing decision history: Each time you edit and save the decision, the old decision information

is kept and stored in a history. You can view the decision history by viewing a decision and
looking at the history table at the bottom of the decision dialog. Double-clicking on a history row
item would bring up another decision dialog with the decision information specific to that version.

• Adding/viewing/removing decision relationships: Decisions can be related to each another. To

add or remove decision relationships, click the “relationships” button. A new dialog with a list of
relationships appears. Relationship details can viewed using the list or by selecting a relationship
and then clicking “view”. Click the “remove” button to remove a relationship. Click the “add”
button to bring up a dialog where you can select the two decisions and the relationship type.

• Saving and retrieving a list of decisions: A list of decisions can be saved by going to the “File”

menu, selecting “save”, typing in the name of the project, and clicking “OK” to save. The saved
file will be stored in the same directory as the application. To open the list of decisions, go to the
“File” menu and selecting “open”. Enter the name of the project and select “OK”.

• Importing and exporting a list of decisions using XML: Decisions can be exported by selecting

“import” from the “File” menu, entering the path and file name of the XML file to export, then
clicking “OK”. To import an XML file, select “import…” from the “File” menu, select the path
and file of XML file to import and click “OK”.

• Database connectivity: To use an existing SQL database server to store and retrieve decisions, go

to the options” menu and select “database”. Fill in the necessary database server information and
click OK. The ADDEX tool will create the database for you if it does not exist on the database
server. Decisions are saved and retrieved using the database automatically when there is a database
configuration set for the ADDEX tool.

Decision Structure Visualization

• Decision browsing: Decisions are displayed visually using graphs. Decisions are nodes and
relationships are edges. They are arranged using an animated force-directed layout. More mature
decisions (decisions in the “decided” or “approved” states) are rendered using larger nodes than
less mature ones (like “idea”, “tentative”, or “rejected”).

128

ADDEX User’s Guide Page 13

• Interacting with the set of decisions: Semantic zooming allows more decision information to be

displayed in the nodes when zoomed in on a set of decisions. Less information will be displayed
when zoomed out. Zooming in is performed by centering the mouse cursor to where you want to
zoom in, holding the right-mouse-button and moving the mouse forward. To zoom out, hold the
right-mouse-button and move the mouse backwards. Right-clicking anywhere on the visualization
will reset the zoom. Decisions can be dragged around and other decisions will react to the
dragging. More mature decisions (“decided” or “approved” decision states) act as heavier objects.

• Adding/removing decisions: Decisions can be added by clicking on the “add decision” button in

on the right side of the visualization. Decisions are added in a way similar to the method in
Tabular Listing. The added decision will appear as a new node in the visualization. Remove a
decision by selecting the decision in the visualization and clicking “remove”. All relationships
associated to this decision will be removed.

129

ADDEX User’s Guide Page 14

• Viewing/editing decisions: Decisions can be viewed or edited by selecting (clicking) the decision
of interest in the visualization and then clicking the “view/edit” button. In order to edit the
decisions, you must log in first.

• Viewing decision history: When viewing a decision, you can view the history of a decision by

double-clicking on a row item in the history table at the bottom of the decision dialog. Another
decision dialog appears with the decision information specific to that version.

• Adding/viewing/removing decision relationships: To view a relationship, select a relationship

(line that connects two decisions together) in the visualization and then click the “view
relationships” button. To add a decision relationship, click the “add relationship” button. A dialog
appears where you can select two decisions and the relationship type between them. To remove a
decision, select the relationship in the visualization and click “remove”.

Decision Chronology Visualization

• Decision browsing: Decisions are displayed visually in a timeline. Decisions are nodes and the
horizontal axis (x-axis) denotes time. The flow of time goes from left to right – from earliest to
most recent. The shape (size) of the nodes denotes the decision states. The vertical axis (y-axis)
represents a user-selected decision attribute. For example, the y-axis can be sorted by decision ID
to identify decision changes, or the y-axis can be sorted by author to identify critical and
subversive stakeholders.

• Interacting with the set of decisions: You can zoom in on the timeline by click-and-dragging

around a set of closely-spaced decisions to reduce the time range and effectively spread out the
decisions visually. Right-clicking anywhere on the visualization will reset the zoom.

• Adding decisions: Decisions can be added by clicking on the “add decision” button in on the right

side of the visualization. Decisions are added in a way similar to the method in Tabular Listing.
The added decision will appear as a new node in the visualization and, if necessary, the timeline
range will be updated to reflect this update.

130

ADDEX User’s Guide Page 15

• Viewing/editing decisions: Decisions can be viewed or edited by selecting (clicking) the decision
of interest in the visualization and then clicking the “view/edit” button. In order to edit the
decisions, you must log in first.

• Viewing decision history: When viewing a decision, you can view the history of a decision by

double-clicking on a row item in the history table at the bottom of the decision dialog. Another
decision dialog appears with the decision information specific to that version.

Decision Impact Visualization

• Decision browsing: Decisions are displayed visually using a radial graph layout. Decisions are
nodes and the impact-relationships are the edges. Decisions are positioned concentrically around a
decision in the centre. The node in the centre is the decision of interest. Decisions in the immediate
concentric circle of decisions surrounding the centre decision are decisions that are directly
impacted by that decision. The outer concentric decision circles surrounding the decision of
interest are decisions that are indirectly impacted by the decision of interest. The further out from
the centre decision the less direct the impact.

• Interacting with the set of decisions: Clicking on any decision makes the selected decision the

decision of interest, where the animated layout will reorganize the decisions around the new
decision. The visualization supports zooming. You can zoom in on the set of decisions by
centering the mouse cursor to where you want to zoom in, holding the right-mouse-button and
moving the mouse forward. To zoom out, hold the right-mouse-button and move the mouse
backwards. Right-clicking anywhere on the visualization will reset the zoom.

• Adding decisions: Decisions can be added by clicking on the “add decision” button in on the right

side of the visualization. Decisions are added in a way similar to the method in Tabular Listing.
The added decision will be analyzed for decision impact and will appear as a new node in the
visualization.

131

ADDEX User’s Guide Page 16

• Viewing/editing decisions: Decisions can be viewed or edited by selecting (clicking) the decision
of interest in the visualization and then clicking the “view/edit” button. In order to edit the
decisions, you must log in first.

• Viewing decision history: When viewing a decision, you can view the history of a decision by

double-clicking on a row item in the history table at the bottom of the decision dialog. Another
decision dialog appears with the decision information specific to that version.

• Filtering the decision impact relationships: Decision impact relationships can be added or

removed from view by selecting the “filter” button on the screen.

132

ADDEX User’s Guide Page 17

Reference: Design Decision Structures

This section describes the architectural design decision representation model used by the ADDEX tool.

Each architectural design decision has certain attributes to describe the decision. These attributes and how
they are represented are summarized in Table 1.

Table 1: Attributes of decisions
Name Type
Epitome Text
Rationale Text or pointer
Scope Text
State Enumeration
History List of (time stamp + author + change)
Categories List
Publicity Level Enumeration
Source (or expert) Text

The epitome describes the essence of the decision and is supported by reasons stated in the rationale;

however, the decision context is restricted by the scope of the decision. Each decision has a certain state,
which describes the “maturity” of the decision. The states and its transition paths are depicted in figure 2
below. Any change made to the decision attributes are logged in the decision history. The category attribute
complements the decisions with additional information. The publicity level attribute sets the level of
decision disclosure for the selective-release of design decisions, while the source/expert attribute can
document where the knowledge is found for traceability or to support decisions intentionally left tacit.

Figure 2: UML state diagram of decision states and their transitions. The number next to each state
name is the promotion level for each state. Higher numbers mean greater levels, implying a higher decision
“weight”. Arrows leading out from a state denote the transition paths for that decision state. Created
decisions start out in the “idea” or “tentative” states. Decisions are never removed; they are given a new
state (“rejected” or “obsolete”).

There are ten inter-decision relationships. Table 2 shows the ten relationship classifications between

decisions, and these relationships are of the form, “Decision A ‘is related to’ Decision B”.

133

ADDEX User’s Guide Page 18

Table 2: Decision relationships
Relationship Type Association
Constrains Directional
Forbids Directional
Enables Weak directional
Subsumes Directional
Conflicts with Bidirectional
Overrides Directional
Comprises (is made of) Directional
Is bound to Strong bidirectional
Is an alternative to Directional
Is related to Weak directional

Decisions can constrain one another, where the affected decision is contingent to the constraining

decision. The weak form of this relationship is known as the enabling relationship, while the bi-directional
form is strong and is known as the binding relationship. Decisions could also forbid another decision from
being made, or could be more encompassing than another (subsumes). Decision conflicts are symmetrical
and are possible when both decisions are mutually exclusive and have the same scope. Although similar in
description, alternatives differ from conflict relationships. Alternatives are decisions that address the same
issue and scope, but can be replaced by one or another, which relates various choices together. Neither
alternatives nor conflicts are subsets of each other. Decisions could also override one another, or can break
down into other decisions or comprises. If a decision relationship does not fit into any of the above types,
then the relating relationship can be used, but this is a weak relationship and is used primarily for
documentation and illustrative reasons. The implication of relationships is that the decisions can now tell a
story of the design process, bringing decision hierarchy and structure to the captured architectural
knowledge.

134

APPENDIX B – ETHICS APPROVAL

Certificate of Approval
The UBC Research Ethics Board Certificate of Approval and its renewal certificate are included

in this appendix section.

 135

The University of British Columbia
Office of Research Services
Behavioural Research Ethics Board
Suite 102, 6190 Agronomy Road, Vancouver,
B.C. V6T 1Z3

CERTIFICATE OF APPROVAL - FULL BOARD

PRINCIPAL INVESTIGATOR: INSTITUTION / DEPARTMENT: UBC BREB NUMBER:
Philippe Kruchten UBC/Applied Science/Electrical

and Computer Engineering H07-01139

INSTITUTION(S) WHERE RESEARCH WILL BE CARRIED OUT:
Institution Site

UBC Point Grey Site
Other locations where the research will be conducted:
The study, gathering of data, and survey will take place at the participant's choice of their office, home, or any
locations designated by the user as an area where they have access to a computer and frequently make software
ecisions. d

CO-INVESTIGATOR(S):
Larix Lee
SPONSORING AGENCIES:
Natural Sciences and Engineering Research Council of Canada (NSERC)
PROJECT TITLE:
Capture and Visualization of Software Architecture Design Decisions
REB MEETING DATE: CERTIFICATE EXPIRY DATE:
June 14, 2007 June 14, 2008
DOCUMENTS INCLUDED IN THIS APPROVAL: DATE APPROVED:
 July 12, 2007
Document Name Version Date
Consent Forms:
Study consent N/A June 19, 2007
Advertisements:
Call for study participants N/A June 19, 2007
Questionnaire, Questionnaire Cover Letter, Tests:
Study interview questions N/A April 30, 2007
Study survey questionnaire N/A April 30, 2007
Letter of Initial Contact:
Initial contact letter N/A June 19, 2007

The application for ethical review and the document(s) listed above have been reviewed and the
procedures were found to be acceptable on ethical grounds for research involving human subjects.

Approval is issued on behalf of the Behavioural Research Ethics Board
and signed electronically by one of the following:

Dr. Peter Suedfeld, Chair
Dr. Jim Rupert, Associate Chair

Dr. Arminee Kazanjian, Associate Chair
Dr. M. Judith Lynam, Associate Chair

Dr. Laurie Ford, Associate Chair

136

The University of British Columbia
Office of Research Services
Behavioural Research Ethics Board
Suite 102, 6190 Agronomy Road,
Vancouver, B.C. V6T 1Z3

CERTIFICATE OF APPROVAL- MINIMAL
RISK RENEWAL

PRINCIPAL INVESTIGATOR: DEPARTMENT: UBC BREB NUMBER:
Philippe Kruchten UBC/Applied Science/Electrical

and Computer Engineering H07-01139

INSTITUTION(S) WHERE RESEARCH WILL BE CARRIED OUT:
Institution Site

UBC Vancouver (excludes UBC Hospital)
Other locations where the research will be conducted:
The study, gathering of data, and survey will take place at the participant's choice of their office, home, or any
locations designated by the user as an area where they have access to a computer and frequently make software
decisions.

CO-INVESTIGATOR(S):
Larix Lee
SPONSORING AGENCIES:
Natural Sciences and Engineering Research Council of Canada (NSERC)
PROJECT TITLE:
Capture and Visualization of Software Architecture Design Decisions

EXPIRY DATE OF THIS APPROVAL: April 30, 2009

APPROVAL DATE: April 30, 2008

The Annual Renewal for Study have been reviewed and the procedures were found to be acceptable on
ethical grounds for research involving human subjects.

Approval is issued on behalf of the Behavioural Research Ethics Board

Dr. M. Judith Lynam, Chair
Dr. Ken Craig, Chair

Dr. Jim Rupert, Associate Chair
Dr. Laurie Ford, Associate Chair

Dr. Daniel Salhani, Associate Chair
Dr. Anita Ho, Associate Chair

137

APPENDIX C – LIST OF PUBLICATIONS

Portions of this thesis have been previously published. The author of this thesis wrote the content

in the publications with the guidance and editing from the publications’ co-author, Philippe

Kruchten. Below is a general outline of where the content of these publications may be found.

Chapters 2, 4, 5, and 6 integrate the following four papers:

Lee, L. and Kruchten, P.: Capturing software architectural design decisions. In: Proc. 20th
Canadian Conference on Electrical and Computer Engineering (CCECE 2007), pp. 686-
689, Vancouver, Canada (2007). With permission of the IEEE.

Lee, L. and Kruchten, P.: Customizing the capture of software architectural design decisions. In:

Proc. 21st Canadian Conference on Electrical and Computer Engineering (CCECE
2008), pp. 693-698, Niagara Falls, Canada (2008). With permission of the IEEE.

Lee, L. and Kruchten, P.: A tool to visualize architectural design decisions. In: Becker, S. and

Plasil, F. (eds.): Proc. Fourth International Conference on the Quality of Software
Architectures (QoSA 2008), LNCS 5281, pp. 43-54, Karlsruhe, Germany (2008). With
permission of Springer Science+Business Media.

Lee, L. and Kruchten, P.: Visualizing software architectural design decisions. Morrison, R.,

Balasubramaniam, D. and Falkner, K. (eds.): Proc. 2nd European Conference on
Software Architecture (ECSA 2008), LNCS 5292, pp. 359-362. Paphos, Cyprus (2008).
With permission of Springer Science+Business Media.

138

	INTRODUCTION
	Significance
	Research Goals
	Contributions of This Thesis
	Organization of This Thesis

	KNOWLEDGE AND ARCHITECTURAL DESIGN DECISION REPRESENTATION
	Knowledge and Design Decisions
	Design Decision Representation Challenges and Requirements
	Design Decision Representation Models
	Design Rationale
	Design Decision Entities

	Comparing Representation Models
	Selecting the Decision Representation Model
	Design Decision Ontology Model

	SYSTEM APPROACH TO DECISION CAPTURE AND EXPLORATION
	Challenges and Requirements for Design Decision Systems
	Visualization Tool Requirements

	Use Cases for Design Decisions
	Use Case Actors and Roles
	Use Cases

	Selecting the Use Cases
	Selecting the System Requirements
	Meeting some Challenges

	DECISION CAPTURE AND VISUALIZATION SUPPORT
	Decision Capture
	Approaches to Decision Capture
	Formal Elicitation
	Lightweight Top-Down Capture
	Flagging
	Filtering
	Forming

	Lightweight Bottom-Up Capture
	Tagging
	Forming

	Customized Decision Capture
	Comparing the Three Approaches
	Customizing Each Method

	Decision Visualization
	Visualization and Design Decisions
	Essential Decision Visualization Aspects
	Tabular Lists
	Graphical Structure Visualization
	Chronology Visualization
	Impact Visualization

	Visualization and Use Cases

	ARCHITECTURAL DECISION TOOL DESIGN
	Tool Design Overview
	Decision Attributes
	Users of the Tool
	Decision Storage and Retrieval

	Decision Capture Tool Implementations
	Formal Elicitation
	Lightweight Top-down Capture
	Lightweight Bottom-up Capture

	Decision Visualization Tool Implementation
	Decision / Relationship Lists
	Decision Structure Visualization
	Decision Chronology Visualization
	Decision Impact Visualization

	Comparison with Other Current Decision Tools
	Meeting the Requirements

	EXPERIENCE WITH THE TOOLS
	Developmental Self-Testing
	Decision Acquisition
	Industry Participants and Feedback
	Decision Datasets and Findings

	Visualization Study with Industry
	Industry Participation
	Feedback

	Tool Usability
	Performing the Tasks
	Observations and Analysis
	Tool Refinements

	Decision Capture Tool Comparison Experiment
	Experiment Overview
	Experiment Results

	CONCLUSIONS AND SUMMARY
	Research Goals Summary
	Contributions of This Work
	Future Work
	Conclusion

	REFERENCES
	APPENDIX A – ADDEX USER’S GUIDE
	APPENDIX B – ETHICS APPROVAL
	APPENDIX C – LIST OF PUBLICATIONS

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

