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Abstract

Customizable and extensible processors (commonly known as “configurable

processors” or ASIPs) can provide the flexibility of off-the-shelf processors with a

performance closer to that of custom logic. Manual configuration of an ASIP requires

highly-specialized knowledge of computer architecture and typically results in sub-

optimal architectures leading to poor performance and higher costs. Ideally, the ASIP

flow should be entirely automated; however, optimal solutions are only guaranteed with

an exhaustive search of the design space. Unfortunately, an exhaustive search is

computationally prohibitive and so the research community continues to study ways to

find “good” solutions within a reasonable time.

This dissertation presents new methods of design space exploration and fast

architecture evaluation. These methods are intended to improve the automation and

usability of ASIPs. Design space exploration is conducted using a novel approach where

the design space is modeled using a small sample of points. Each sample point

evaluation is expensive; however, the design space model can then be used to quickly

estimate all other points in the space. Non-parametric statistics are used to construct the

model and, consequently, the precise nature of the design space need not be specified a

priori. This approach provides a computationally-efficient alternative to existing

optimization heuristics with additional benefits that provide easy discovery of

architectural trends and tradeoffs.

Experiments were conducted using the proposed modeling approach to configure

both the branch prediction unit (BPU) and the cache hierarchy of an embedded processor.

Results showed that the approach could achieve a 1 OOx speedup while providing near

optimal configurations.

In addition, a fast performance estimation approach is proposed for evaluating

configurations of instruction-set extensions. This approach considers pipeline effects and

consequently improves the quality of results over existing approaches. This

improvement is achieved while maintaining constant run-time complexity.
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Chapter 1: Introduction

1.1. Motivation

Embedded systems are special-purpose designs intended for a specific application

or set of applications and with specific design constraints (i.e., speed, power

consumption, cost, reliability, usability, etc.). Such systems are typically embedded in

mechanical or electrical hardware as part of a system deployed in the field. Applications

for embedded systems include PDAs, cell phones, MP3 players, traffic control systems,

guidance systems and medical instrumentation, to name a few. With a growing market

demand for communications and portability, the use of embedded systems has grown

correspondingly.

The cost of designing embedded systems and their constituent components has

increased in a similar manner for several key reasons. First, the size of circuits has grown

according to Moore’s law which states that the number of transistors in an integrated

circuit doubles every 18 months [1]. Also, deep-submicron effects are contributing to the

rising costs because they make design more difficult on a per transistor basis. It has been

predicted that if it were not for the CAD innovations developed to date, the average

design costs of a power-efficient system-on-chip (SoC-FE) would be in the order of

$900M rather than the current $20M [2]. The International Technology Roadmap for

Semiconductors (ITRS) emphasizes that the current pipeline of CAD innovations must

continue otherwise design costs will quickly become prohibitive [2].

While designs have become more complex, engineers have also become more

productive in part due to increasingly more sophisticated CAD tools and methodologies.
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In spite of this, a design trend known as the productivity gap continues to widen where

design complexity continues to outpace the ability of engineers to meaningfully design

them. To make matters worse, market pressures have steadily reduced the acceptable

time-to-market. Designers have a reduced design window and a lowered tolerance for

design revisions. This forces companies to incur the costs of additional engineers to help

meet deadlines.

One approach to reducing development costs is to use System-on-Chip (SoC)

methodologies. An SoC integrates pre-verified and pre-qualified intellectual property

(IP) components onto a single chip. Design time is reduced through the use of off-the-

shelf IP while performance is greatly improved over multi-chip solutions.

A central component of an SoC is the embedded processor which adds

programmability to the system. With programmability, the system can be reused for a

variety of applications, thus amortizing the cost of design and manufacturing. A design

with programmability provides a lower risk and shorter time-to-market implementation

path; however, increased flexibility generally comes with a power, speed, and area/cost

overhead.

The likely trend for future SoCs will be an increase in the number of on-chip

processors and other forms of programmability (i.e., Field Programmable Gate Arrays

(FPGAs)). Figure 1.1 illustrates some of the key differences between processors, FPGAs

and their fixed-function equivalent known as an Application Specific Integrated Circuit

(ASIC). Processors and FPGAs are both configurable devices, but they achieve

configurability in very different ways. At one extreme, processors are configurable

platforms that implement “temporal” computing and are programmed via software.
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Processors are more suitable for complex state machines. At the other extreme, FPGAs

implement “spatial” computing and are programmed via programmable look-up tables

and programmable interconnect. FPGAs are more suitable for data-path applications

where speed, logic density, and power are more important. A typical rule-of-thumb is

that an FPGA is an order of magnitude faster, more dense, and more power efficient than

the equivalent software running on a processor [3].

Fixec
Logic

i
(ASIC)

Figure 1.1: Comparison of Processors, FPGAs, ASICs, and custom devices.

The vertical axis in Figure 1.1 represents the degree to which the device is

configurable (i.e., flexibility). Programmable devices are generally easier to implement,

have a faster time-to-market, lower risk, and lower NRE costs than the equivalent ASIC

implementation [4]. On the other hand, they are slower, less dense, consume more

power, and have a higher per part cost in larger quantities.

U)
1)

C”

U,

02’ci c

z
0
C-)

t
C”

I.
ci)
0.

more suitable for more suitable

the data path for complex
contro

speed, logic density, and power

3



A customizable device is inherently programmable but has some aspects of its

architecture tailored to a specific application or application domain. In doing so, these

devices maintain many of the advantages of programmability such as reduced costs,

reduced risk, and faster time-to-market. At the same time, they benefit from improved

performance thus closing the gap between programmability and fixed implementations.

This compromise between programmable implementations and fixed implementations is

evident in Figure 1.1 where customizable processors and customizable FPGAs have been

included.

A disadvantage to customizable devices is that they are no longer suitable for as

wide a range of applications as for general purpose processors (GPPs). This is illustrated

in Figure 1.2 where the set of all applications is shown with several sub-domains labeled

for applications with particular speed, density, power, and reliability requirements. In

this example, a device has been customized to work best for a specific domain within

lower-power applications (i.e. a hypothetical set of similar compression algorithms).

Thus far, we have discussed customizable devices in general; however, the scope

of this dissertation is on customizable or configurable processors, so it is useful to

understand the key difference between embedded processors (EPs) and GPPs. EPs are

intended to be run on a few applications which are known at design time whereas GPPs

run a wide variety of applications which are chosen by the end-user. Because we have

knowledge of the intended applications at design time, significant performance gains can

be made by customizing the EP to the applications. As a result, the system designer only

adds what is needed to the processor and can tailor components to precise specifications

in order to meet area, speed, and power goals. In fact, customizable processors have
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been shown to result in performance gains of 1.1 2x to 11 .3x over general-purpose

processors [5].

Medical &
Transportation

Mobile
Electronics

Customized Configurable Device

Figure 1.2: Hypothetical application domains for custom and general-purpose devices.

In the industry, customizable processors are commonly referred to as

“configurable processors”, or Application-Specific Instruction-Set Processors (ASIPs).

To date, industrially-available ASIPs such as Tensilica Xtensa [6], ARCtangent [7],

MIPS32 M4K [8], and Altera Nios/Nios II [9] have a base architecture with only a

limited set of customizable parameters. Aside from these parameters, many other aspects

of the architecture have a significant impact on performance and energy-efficiency but

are normally fixed as prescribed by the base architecture. One goal of this research is to
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determine the proper settings of key parameters of the processor front-end to customize

for reduced power.

Currently-available ASIPs are difficult to use because effective customization

requires advanced knowledge of processor architecture. Even if a user were to have in-

depth knowledge of computer architecture, it is difficult to manually find an optimal

configuration due to the complex manner by which parameters interact. With this in

mind, the work in this research focuses on methods of automatically tuning the

architectural parameters to meet specific design goals while adhering to design specific

design constraints.

A major difficulty in automatic customization of ASIPs is that a large solution

space may be defined by the parameter set. Even with only a few parameters, exhaustive

methods for exploring the solution space quickly become intractable due to a

“combinatorial explosion.” There are three orthogonal approaches to solving this. First,

the solution space can be “pruned” using design constraints. Second, sophisticated

heuristics can be used to minimize the time required to explore the design space. Third,

fast evaluation techniques can be use to minimize the time needed to evaluate each point

visited during exploration. The latter two approaches will be addressed within this

dissertation.

This dissertation focuses on customizability of the front-end of the processor

because of its impact on instruction level parallelism (ILP) and its significant

contribution to both power and area. Henceforth, the combined fetch, decode, and

memory hierarchy shall be referred to as the “front-end” of the processor. Improvements

in ILP through front-end improvements typically come with a penalty of increased
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hardware (cache, buffers, and history look-up tables), all of which add significant power

consumption in addition to that of the main memory. The trend for memory hierarchy is

towards increased size because of the growing gap between memory and processor

performance [10]. It is for these reasons that this dissertation focuses on the

configuration of several key aspects of the front-end; in particular, it focuses on cache

and branch prediction.

The primary design objective in this research is to reduce power. In both

academia and industry, power has become the main focus of research and development

for both embedded and high-performance processors. For embedded processors, reduced

power consumption extends the battery life of mobile devices such as laptops and cell

phones. For high-performance processors, reduced power consumption helps reduce

power-density problems and related cooling costs.

1.2. Research Goals and Challenges

Having described the motivation and background for the research, a succinct

thesis statement is as follows: to investigate methods to improve the automation of

customizable processors in order to make them more accessible to system-level

designers. The following research objectives where identified for this work:

1. To develop an efficient methodology for design space exploration. This method

would be used for both optimization and assessing trade-offs and trends between

parameters and design objectives. Further, this method should require only a

minimal set of simulations and the user should not require in-depth knowledge of

the design space.
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2. To develop fast estimation techniques for evaluating candidate configurations when

extending the instructions of a base instruction set.

3. To apply the proposed methods to the customization of industry-standard

embedded processors using well-recognized benchmarks suites. The primary

design objective will be power reduction. All techniques will be incorporated into

an existing compiler and simulation flow to demonstrate the advantages and

limitations of the new methods.

1.3. Thesis Organization

In Chapter 2, a brief overview is provided on embedded processors and ASIPs.

In addition, an overview of previous work is described for key components of the front-

end including branch prediction, cache management, and instruction-set extensions.

Background is given on the design goals and base architecture used to perform

experiments. Research described in this thesis has some overlap with previous work

from the high-performance general-purpose processor community, the low-power

embedded processor community, and the configurable processor community.

In Chapter 3, a Design Space Exploration (DSE) optimization methodology is

proposed based on modeling of the design space and is called Design Space Modeling.

First, motivations for modeling the design space are discussed. Second, a comparison is

made between Design Space Modeling and existing path-oriented heuristics and

instruction trace sampling approaches. Third, the methodology is outlined in detail with

a comparison of four modeling variants. The first of these variants (called Manual

Decomposition) is a first attempt at modeling the design space. This variant provides

excellent results; however, construction of the model requires considerable manual effort
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and is therefore not scalable. The shortcomings of this method help to motivate the

second modeling variant that also offers accurate models but is fully automated. This

variant is a major contribution of the thesis and is discussed in detail in Chapter 4. The

last two variants were developed by other research groups concurrently with this

dissertation. To conclude the chapter, Manual Decomposition is applied to an example

problem where the processor’s branch prediction unit (BPU) is configured. This

example is small enough to illustrate many of the concepts but complex enough to gain

insight into the difficulties of the approach.

Chapter 4 proposes a non-parametric regression-based variant of Design Space

Modeling. The advantage to this approach is that it is fully automated and that the class

of functions required to perform the statistical fit need not be specified a priori. A

detailed description of the approach is discussed. It is applied to the configuration of a 2-

level cache hierarchy.

Chapter 5 discusses ways to improve the speed of customizing an Instruction-Set

Architecture (ISA) using fast performance estimation. In this chapter, a general

methodology for adding custom instructions (Instruction Set Extensions or ISEs) is

introduced and includes a description of the current speed, power, and area estimation

techniques. Because existing approaches do not account for data hazards, a novel

“hazard-aware” estimation approach is proposed. This approach is evaluated by

comparing it to existing approaches through experiments conducted using a modified ISE

experimental flow.

Chapter 6 provides conclusions and directions for future work.

9



Chapter 2: Background

2.1. Overview

In this chapter, background information is provided beginning with a description

of ASIPS in Section 2.2. Then, Section 2.3 discusses the base processor architectures

used. Section 2.4 discusses the primary design objectives which include instruction-level

parallelism (ILP) and power efficiency. Section 2.5 provides background information on

the architectural parameters to be configured. Finally, Section 2.6 provides background

information on the two methodologies addressed which includes design space

exploration and instruction set extensions.

2.2. Customizable Processors / ASIPs

2.2.1. Configurability

A detailed classification of configurable platforms is shown in Figure 2.1. It is

composed of the three dimensions of Compute Abstraction Level, Binding Time, and

Reconfigurable Feature. Compute Abstraction Level is the level of configurability

presented to the user and can vary from system-level configurability to logic-level

configurability. This dimension is shaded on the y-axis in Figure 2.1.

The binding time refers to the time at which the platform is configured. For some

platforms such as Tensilica Xtensa [6] and Actel Axcellerator [11], the configuration is

set at production/fabrication time. Other platforms, such as the FPGAs available through

Xilinx [12] and Altera [9], are configured at start-up. Still others, such as GARP [13]

and Chimaera [141, can be configured as many times as needed at run-time. Platforms

10



with production, start-up and run-time configurability are often referred to as

configurable, reconfigurable, and dynamically reconfigurable, respectively. In this

thesis, platforms with production-time binding are referred as customizable platforms.

This dimension is shaded along the y-axis in Figure 2.1.

The configurable dimension is shaded along the x-axis in Figure 2.1 and includes

communication elements, storage elements, and computational elements. This dimension

represents the manner in which the platform supports configurability.

y
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Figure 2.1: Classification of configurable platforms (adapted from 1151 and [161).
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Example architectural features are shown in Figure 2.1 for the space defined by

the compute abstraction level and reconfigurable features dimensions. Two examples in

this table that will be discussed later in this dissertation are the bold blocks. One of these

is the memory hierarchy which is a system level issue when sizing is performed. The

other example is instruction customization which is an ISA level issue. As will be

discussed in subsequent chapters, the work in this dissertation focuses on configurable

devices with binding times at fabricationlproduction.

2.2.2. Customizable Processors

An application-specfIc instruction set processor (ASIP) is a processing element

that can be customized for a particular application domain [17,181. The ASIP design

flow allows system designers to build processors that can execute code faster while using

less power than off-the-shelf processors. This avoids expensive and risky development

of a fully custom processor or Application-Specific Integrated Circuit (ASIC). Previous

studies have shown improvements from 1.1 2x to 11 .3x over general-purpose processors

[5]. Using these processors, designers can tune the instruction set architecture, optimize

the pipeline, or add new data components for critical code segments in specific

applications.

ASIPs come either in the soft or hard form. A soft ASIP is implemented on an

FPGA and its binding time is at power-up. Industrially available soft ASIPs include

Altera Nios/Nios II [9] and Xilinx MicroBlaze [12]. A hard ASIP is one for which the

binding time is at fabrication time and is implemented using a standard cell flow like an

ASIC. Industrially available ASIPs of this form include Tensilica Xtensa [6], ARC

tangent [7], MIPS32 M4K [81 and Improv Jazz [19].

12



ASIP methodologies use compiler analysis, directed profiling, and design

automation techniques to transform a base architecture to one that is optimized for a

particular application or application domain. This allows the processor to take advantage

of particular regularities in control and data behavior, and common clusters of operations.

2.2.3. ASIP Methodologies

The primary focus of most research in ASIPs is the study and development of

algorithms to automate the configuration flow. Many methodologies have been

suggested [20,21,22,23,24,25,26]; most methodologies include the following five steps

of typical ASIP synthesis [27] which are illustrated in Figure 2.2:

1. Application Analysis: statically or dynamically analyzes the application and

input data.

2. Architecture Design Space Exploration: enumerates all possible

parameterizations of the architectures given the design constraints. Power,

speed, and area are estimated and used to identify the candidate architecture

that minimizes a user-defined metric. This phase will be discussed further in

Section 2.6.1.

3. Instruction Set Generation: extends the Instruction-Set Architecture (ISA) of

the processor to include new instructions that minimize power, speed and area.

Newly-defined operations can be of type Fused, Vector, or Very Long

Instruction Word (VLIW) [5]. Fused operations are the combination of several

simple operations with the outcome of reduced code size, reduced fetch and

issue bandwidth needs, and possible reduced register file port requirements.

Vector operations increase throughput by operating on more than one data

13



element in parallel. VLIW operations contain multiple independent operations

that are encoded into the instruction in “slots”. VLIW operations add the

potential of significant performance improvements through software pipelining

and instruction scheduling techniques [28). Each of these new instruction types

vary in the amount of additional hardware needed. As shown in Figure 2.2, this

phase of synthesis can be broken down further into Pattern Enumeration,

Pattern Selection, and Pattern Mapping. Each of the sub-phases will be

discussed further in Section 2.6.2.

4. Code Synthesis: either generates a compiler suitable for the new architecture or

directly emits the executable code for the application.

5. Hardware Synthesis: synthesizes the processor based on ASIP templates written

in a hardware description language (HDL) using standard tools.

This research is chiefly concerned with design space exploration and instruction-set

enumeration and selection (shaded blocks).

The Mescal research project [17] developed a set of five elements, as shown in

Figure 2.2, which together provide a coherent approach for the development and

deployment of programmable platforms. These five elements are as follows:

1. Judiciously Using Benchmarks: Benchmarks used to perform ASIP synthesis

should be chosen such that results are comparable across various system

implementations. Further, benchmarks should be representative of the

application domain, should be indicative of the real-world application

performance, and should be well-specified. The selection of benchmarks used

within this thesis will be discussed for each set of experiments separately.
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Figure 2.2: General ASIP Configuration Methodology [17, 27, 29].

2. Inclusively Identifj’ the Design Space: In the past, the design space explored has

been relatively small and often limited to only those parameters with which the

designer is familiar. Defining a broad set of parameters increases the likelihood

of discovering more optimal configurations. For this reason, the design space

should be inclusive. The focus of this thesis is on novel methods for DSE;

consequently, an assumption is made that the design space has been correctly

identified and is inclusive.
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3. Efficiently Describe & Evaluate the ASIP: In order to evaluate a broad range of

architectures, each architecture must be easy to describe and evaluate. Efficient

methods must be developed to efficiently map the application benchmark(s)

onto each candidate architecture. What is necessary is a re-targetable software

environment for mapping and evaluation. The development of this environment

was an important part of the experimental platforms used in this research work.

4. Comprehensively Explore the Design Space: DSE involves two orthogonal

issues: first, how each point in the design space should be evaluated, and

second, how much of the design space should be covered during exploration.

These questions are important because the sheer size of most design spaces

makes exhaustive searches computationally infeasible. As a result, intelligence

must be built into exploration to minimize the number of points visited in order

to find optimal points and to minimize the cost of evaluating point each visited.

This represents the central theme of this thesis. Chapters 3 and 4 propose a

novel DSE approach that models the design space while only having to evaluate

a small sample of points. Chapter 5 proposes a new method to speed-up the

evaluation of candidate architectures while performing instruction set

generation.

5. Successfully Deploy the ASIP: ASIP synthesis may provide an excellent match

between the architecture and the intended application while at the same time

could result in a useless end product because of poor deployment. Successful

deployment implies that the device must be easy to program, debug, and

simulate. To easily program the ASIP, it must be at a sufficiently high level to
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make it practical; however, it must also be low enough to take advantage of

ASIP architectural features. This element is outside the scope of this thesis.

Examples of ASIP flows that are available from industry include the Embedded

Processor Designer by CoWare [30], the Sx000 product line from Stretch [31], the

Synfora PICO Express processor array [32], and Clarity by Mimosys [33]. The CoWare

ASIP flow emits a custom processor based on the LISA processor design platform [34]

and a custom compiler using the CoSy compiler development system by ACE [35].

CoWare also emits a configurable instruction-set simulator (IS S) and debugger.

Unfortunately, candidate architectures must be specified manually using the LISA

architecture specification language.

Synfora’s PICO Express is based on the PICO processor array originally

developed by Hewlett Packard laboratories [36]. PICO is based on an explicitly parallel

instruction computing (EPIC) processor developed by Hewlett Packard and Intel which

has its origins in very long instruction set (VLIW) processors. The PICO flow includes

significant innovations in automatic processor configuration and will be discussed further

in Section 2.6. The Trimaran compiler infrastructure is used for PICO and is also used

for the experimental framework developed in Chapter 5 of this thesis.

The Stretch processor line is based on Tensilica technology but adds automatic

customizability of the instruction set. Included with Stretch products are a customizable

compiler, simulator, and debugger. Mimosys Clarity also customizes the instruction set

automatically but does so for a number of target architectures including ARC, MIPS,

Xilinx, Altera, Tensilica, IBM, ARM, CoWare, and Toshiba.
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Academia offers several ASIP flows including LISA [34], ASIP Meister [37], and

Expression [38]. Each of these tools allows the system designer to specify the desired

architecture of the processor manually. They do not provide any form of automatic

configurability; however, a compiler flow and simulator is generated. Using these tools,

the user can iterate through various architectures until the desired performance is met.

For LISA and Expression, the user specifies candidate architectures using an architecture

description language (ADL); for ASIP Meister, the user specifies the architecture through

a graphical user interface. In the case of LISA and ASIP Meister, a hardware

description language (HDL) description of the processor can be emitted.

2.3. Base Architectures for ASIPs

2.3.1. Embedded Processors

An embedded processor (EP) differs from a general-purpose processor (GPP) in

that an EP is designed for one or a few specific applications. Because the EP is designed

for specific task, it can be optimized and tailored to increase performance, reduce cost,

and increase reliability. EPs are often produced in mass quantity thus taking advantage

of economies of scale. Typical uses for embedded processors include phones, DVD

players, HDTV sets, photocopiers, GPS navigation, printers, routers, automobiles,

personal digital assistants (PDAs), and MP3 players.

With an increase in market demand for communications and portability, EPs have

continued to grow at a faster rate than GPPs. In 1998, 2.5 billion embedded processors

were installed, compared to 100 million general-purpose machines [39]. In 2002, 98% of

all processors were embedded processors [40].
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2.3.2. ARM7TDMI

Experiments conducted throughout this thesis make use of the most popular

embedded processor called ARM7TDMI which is a well-known member of the ARM7

family [41]. The ARM7TDMI is a 32-bit reduced instruction set computer (RISC) on a

Princeton architecture designed by ARM [42]. Although ARM7 is over 14 years old, it

is still seeing extensive use in the market. Because of its popularity, it is also frequently

used for academic experimental flows. Therefore, it is a natural choice for use as a base

architecture for the research in this thesis.

In addition to the configurability discussed in Section 2.2.2, ARM has

incorporated one form of configurability through the use of its Advanced Microcontroller

Bus Architecture (AMBA) [43] bus. AMBA is an open bus standard designed by ARM

for use in System-on-Chip (So C) platforms. AMBA provides a technology-independent

solution that can easily be used for modular Intellectual Property (IF) design. ARM also

offers PrimeCell Peripherals [42] which are re-usable, pre-verified, AMBA-compliant

macrocells. The combination of AMBA and PrimeCell, to some extent, provides a

configurable SoC infrastructure based on reusable modular design.

2.3.3. StrongARiVi SA-ilO

In 1995, the StrongARM SA-l 10 processor [44] was launched by ARM and

Digital Equipment Corporation (sold later to Intel in 1998). The StrongARM was based

on the ARM architecture but was intended for higher-speed applications. One key

difference is that StrongARM has a separate data and instruction cache rather than the

unified cache of the ARM7TDMI. The processor has also been prevalent in academia

19



and industry and so it is also used as a base architecture for the research outlined in this

thesis.

2.4. Design Objectives

The primary design objective used throughout this dissertation for optimization

experiments is energy. The total energy dissipated by the processor to complete a task is

a combination of the power it dissipates and how long it takes to execute the task.

Achieving a low-energy solution typically requires a balance between reducing

architecture size and complexity to reduce the power dissipated by the processor and

increasing architecture size and complexity to improve Instruction Level Parallelism

(ILP) (which consequently reduces the execution time, thus saving energy). An in-depth

discussion of both ILP and power is discussed in the following sections.

2.4.1. Instruction Level Parallelism (ILP)

ILP is a measure of how many instructions in a program can be executed in

parallel. With increased ILP, the processor can complete program execution within a

shorter number of cycles, thus consuming less energy as shown in the next section.

Program execution is inherently sequential; however, there are several

mechanisms that provide ILP including pipelined execution, superscalar execution, out

of-order execution, and VLIW techniques [45]. All of these methods can increase ILP;

however, there is a significant amount of overhead circuitry and memory that contribute

additional power. In most cases, the benefits of ILP must be carefully weighed against

the power and area penalties associated with the overhead.
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A basic block is a sequence of instructions with only one entry point, one exit

point, and no jump instructions contained within. Techniques have been developed to

improve ILP within blocks and between blocks. Within blocks, traditional techniques

include register renaming [46] and aliasing analysis [47]. Across block boundaries,

branch prediction [48], loop unrolling [49], software pipelining [28], and trace

scheduling [50] are traditional techniques.

The theoretical limit to ILP was explored by Wall [51] using what he called an

“impossibly good” architecture that has effectively unlimited resources with perfect

branch prediction and speculation. In that work, Wall found that such architectures could

achieve an ILP of 7 at best, with 5 being more common. Lam et al. [52] attributed

limitations of ILP primarily to control flow and then explored how this can be resolved

by speculatively executing multiple flows. Processors with the ability to speculatively

execute multiple flows are relatively complex and are not considered to be suitable for

embedded systems.

In this dissertation, ILP is regulated by tuning a parameter in the branch

prediction unit (BPU) called the pattern history table (PHT) and through several

parameters in a 2-level cache hierarchy.

2.4.2. Power

Power consumption for CMOS logic is typically expressed as:

P = aCVDD2f+ aVDDIshor(f + VDDIleak (2.1)

where the terms represent dynamic power, short-circuit power, and leakage power,

respectively [53]. a is the gate activity, C is the total capacitance of the gate, VDD is the
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supply voltage, f is the operating frequency, T is the short-circuit switching time, ‘short S

the short-circuit current, and ‘leak is the leakage current. Further, the following

proportionality relationship holds, where VT is the threshold voltage:

fmax (VDD —VT)2 /VDD (2.2)

In Equation (2.1), the first term represents a dynamic contribution due to

capacitive charging and discharging, and has traditionally been the dominant term due to

increases in f over the years. On the other hand, scaling supply voltages and threshold

voltages has increased the contribution of static power dissipation from the last term in

Equation (2.1) which is based on leakage current1. The second term in Equation (2.1)

represents a relatively small contribution due to switching current and is often

incorporated into the first term.

At the architectural level, two important aspects that affect power consumption

are the level of parallelism and the amount of memory used for main memory, cache,

branch prediction, and the translation lookaside buffer (TLB). At a fundamental level,

the effect of parallelism is evident from Equations (2.1) and (2.2). Parallelism can

reduce the intrinsic power needed to complete a task because it permits the supply

voltage to be scaled. For a system with a doubling of parallelism, Y2 the voltage is

needed to maintain throughput; thus, only 1/4 of the dynamic power is needed. With

overhead, leakage, and short-circuit power neglected, it has been shown that the general

equation for a circuit with N levels of parallelism is:

Leakage current is composed of both subthreshold leakage and gate-oxide leakage.
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where VN is the supply voltage for an N processor system and Vref is the reference supply

voltage for a system implemented with one processor [54]. This equation represents an

upper bound on the reduction in power dissipation due to parallelism.

fampi/N -

SEL —+‘

Figure 2.3: General parallelization of a logic function.

Overhead power must be accounted for in the extra circuitry needed to facilitate

parallelism. Figure 2.3 illustrates the general case where a logic function, F, sampling

the input at a rate Of fsa,npie is parallelized such that there are N logic functions, each

sampling input at a rate of fsa,npie/N. In the figure, overhead circuitry is needed to

broadcast the inputs and to combine the outputs. With overhead circuitry considered,

Equation (2.3) becomes [54]:

IN
Broadcast Capacitance Overhead
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PN/ = 11+ C(N) + c,ls(N)IvN2 (2.4)
/ N Cref Cref ) “ef )

where C(N) is overhead that scales the operating frequency with increased parallelism

and C,,(N) is overhead that does not scale the frequency with increased parallelism. As

the operating voltage is scaled in Equation (2.4), capacitance due to overhead circuitry

may grow to the point that there is no longer a benefit to increase parallelism. It is for

this reason that the degree of parallelism must be carefully selected to optimally reduce

power dissipation.

Equation (2.4) does not consider power dissipation due to leakage current. Static

leakage power is heavily dependent on the form of parallelism used whether it be logic

function duplication or pipelining [55]. If parallelism is achieved by duplicating logic

functions, then static power dissipation is effectively duplicated. Alternatively,

parallelism can be achieved by pipelining the logic function. Other than inter-stage

latches, no other circuitry is added for this solution; thus, static power is minimized.

Parallelization of a logic function through pipelining is usually the more power-efficient

solution. Unfortunately, the power benefits of pipelining may also be offset by data and

control hazards.

For most applications, parallelism is used not only to reduce power dissipation

but also to reduce the number of cycles of execution. Both of these objectives have

motivated aggressive instruction-level parallelism techniques in the design of processors.

As described in the previous section, it is difficult to extract parallelism from most

applications. In fact, most modern processors include significant overhead hardware in

an attempt to maintain very modest levels of parallelism. This overhead hardware
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dissipates both dynamic and static power. Examples of this include the cache hierarchy

and the branch prediction unit.

In order to minimize power dissipation, processor designers must find the correct

balance of the size and complexity of extra hardware used to improve parallelism. Large

and complex hardware improves parallelism (which reduces intrinsic power and reduces

run-time) while at the same time dissipates excess dynamic and static power. At the

same time, reduced run-time also reduces the static power from all other components of

the processor [56]. Figure 2.4(a) shows power dissipation for a processor with reduced

hardware dedicated to maintaining parallelism and Figure 2.4(b) shows a processor with

increased hardware dedicated to maintaining parallelism. This figure shows the

power/run-time tradeoff between all circuitry related to improving parallelism. In

addition, fixed-rate circuitry is shown which represents all components of the processor

that dissipates static power at a fixed-rate regardless of the level of parallelism. Also

shown in Figure 2.4(a) is the excess energy due to fixed-rate power dissipation caused by

a longer execution time.

Increased

a) b) Complexity

parallelism
related

fixed-rate

# cycles # cycles

Figure 2.4: Parallelism-related versus Fixed-rate Power Dissipation.

Reduced
Complexity

additional overhead
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This dissertation primarily focuses on the configuration of memory structures to

reduce power. The memory hierarchy (and branch prediction) of a processor consumes a

significant amount of power, often being the dominant source of power [57]. Memory

systems have two sources of power loss. Dynamic power consumption is caused by

frequent access of the memory and static power consumption is caused by leakage

current. At the architectural level, power dissipation can be reduced in memory systems

by correctly reducing the code size, organizing the code to reduce memory access,

correctly sizing the memory, using a suitable cache organization, and using memory

banking techniques.

2.4.3. ASIPs and Power

There is a significant body of research dealing with reduced power dissipation for

general-purpose processors at the logic level [58,57,59,60,61,62], architectural level

[63,64,65,66,67], and the system/OS level [68,69]. Previous work on power and

configurability specific to branch prediction, the cache hierarchy, and instruction-set

extensions and are provided in Sections 2.5.2, 2.5.3, and 2.6.2 respectively.

Research on power in ASIPs is still in its infancy. Work by Glökler et al. [70]

uses gate-level simulations to jointly consider speed, area, and power while optimizing

the number of pipeline stages, clock gating, logic netlist restructuring, data-path

optimizations, instruction memory power reduction by optimized instruction encoding,

and the implementation of coprocessors. They claim that these optimizations together

improve power dissipation by 92%; however, they do not explicitly address the trade-offs

between energy and runtime. Further, they only consider a limited set of course-grain

parameters at the architectural level and do not automate the flow.
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In this dissertation, ASIP power optimization is approached differently. The goal

is to use a general-purpose approach that is highly automated and can be used to

configure a wide variety of course- and fine-grain parameters at the architecture level.

This makes automation difficult because of the large inclusive design space and because

DSE takes place early in the flow thus making it difficult to evaluate the value of each

candidate configuration.

2.5. Architectural Parameters

2.5.1. Motivation for Configuring the “Front-end”

As a rule of thumb, a processor uses an order of magnitude more power than an

FPGA to compute the same task [31. The most significant explanation for this problem is

that processors fetch and decode instructions from the memory hierarchy, which is

relatively slow, impedes instruction level parallelism (ILP), and consumes significant

area and power. Here, we refer to the combined fetch, decode, and memory hierarchy as

the “front-end” of the processor.

The purpose of the front-end is to supply valid decoded instructions to the

execution core with low latency and high bandwidth to maintain ILP. In the presence of

highly control-based applications (which is typical for tasks assigned to processors), it is

difficult to speculate which instructions should be delivered to the execution core after

encountering a control operation such as a branch. On average, the CPU is in a steady

state 50% of the time, stalled 20% of the time, and in transition between steady and stall

30% of the time [71]. A substantial amount of research has focused on improving ILP

but with limited success.
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Increases in ILP through front-end improvements typically come with the penalty

of increased resources (cache, buffers, and history look-up tables) all of which add

significant power consumption in addition to that of the main memory. The trend for

memory hierarchy is towards increased size because of the growing gap between

memory and processor performance [10]. It is for these reasons that this work focuses on

the front-end and the memory hierarchy.

Configurability can be used to adjust the complexity of the front-end to control

how instructions are speculatively fetched for a given application. If the front-end has

more resources than necessary (over-speculation), then power is wasted through excess

dynamic and static power. If there are not enough resources (under-speculation), then

excess power is consumed because of reduced ILP, pipeline stalls and the execution of

incorrectly fetched instructions.

2.5.2. Branch Prediction

An initial investigation of the role of branch predictor organization on power was

described in [72]. This work concluded that it is better to spend extra power on a more

complex branch predictor if it results in more accurate predictions and improves run-

time. In spite of this conclusion, both methods proposed in [72] reduce power dissipation

solely by reducing the capabilities of the branch prediction unit (BPU). They first

suggest that power can be saved by banking the branch predictor in a similar way to what

has been done in the past for caches. Second, they propose a prediction probe detector

(PPD) that is used to switch off the BPU for non-branch instructions.

In [73], profiling is used to determine whether each branch instance is “biased”

towards global or local predictability. Branch instructions are then encoded with a bit
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that specifies whether their direction should be predicted using a global type predictor

such as GSelect [74] or a local type predictor such as Bimodal [75].

The approach taken in [76] is similar to [73] in that the application is profiled to

determine which of the gated parts of the BPU should be switched off at run-time. In

[76], the branch target buffer (BTB) is resized and parts of the hybrid predictor are

disabled. In both cases, power dissipation is reduced in part by improving run-time. The

two approaches differ in that resizing of the BTB in [76] requires extra hardware for run-

time support. Further, [76] sizes the BTB a priori using a “brute-force” trial-and-error

approach where they simulate all possible configurations in the search space. Even with

just a few other dimensions in the search space, this approach would quickly become

impractical.

Previous work has focused on run-time solutions by gating part of the BPU. The

processor architecture is fixed but has extra hardware in the pipeline and BPU

specifically to reduce power. Conversely, extra bits are encoded into the instructions to

provide the processor with “hints” on how to save power. In either case, extra hardware

must be added. The work discussed in Chapter 3 differs in that the architecture of the

processor BPU is undecided until the synthesis tool/compiler profiles the application,

compares all possible configurations using a cost function, and finds the correct trade-off

between BPU complexity and execution time. Extra hardware is not needed to provide

run-time support.

2.5.3. Cache Hierarchy

The cache hierarchy has a significant impact on the total power and performance

of the processor. In some cases, the memory hierarchy of a microprocessor can consume

29



as much as 50% of the system power [77]. One approach is to save energy in the cache

[78] using schemes such as way prediction [79], selective cache way access [80], sub-

banking [81], multi-banking [72], selective prediction [82], and confidence prediction

and throttling [83].

Another approach for saving energy is to tune the cache based on the application

which is the approach taken in this dissertation. Currently, many vendors offer tunable

caches; however, the designer is left to manually choose the correct configuration for

their application. Configurable caches are now offered by several vendors with most of

them configurable at design time. This is true for processor cores such as Tensilica

Xtensa [6], MIPS [8], ARM [42], ARC [7], and Altera Nios/Nios II [9]. Motorola offers

a processor with reconfigurable cache hardware called M*Core [77] where individual

ways in the second-level cache may be specified for use by data, instructions, or both. In

addition, ways may be individually shut down.

Industrially available processors offer configurable caches; however, they do not

provide mechanisms for automatically configuring them. This presents a significant

problem to system designers who may not have in-depth knowledge of processor

architecture and who most often have significant time-to-market pressures. This is

especially true for cache due to the sheer number of possible configurations within its

design space. Tensilica Xtensa currently has only one level of cache hierarchy but it can

be configured in 6561 ways. Reconfigurable caches such as M*Core [147] have few

parameters with few configurations; however, a second level unified cache increases the

number of configurations to 17,640. Exploring these configurations has the potential to

take many weeks thus slowing down the design cycle dramatically. To worsen the

30



problem, the industry trend is towards increased cache complexity with an increase in the

number of levels. Clearly, any advances in DSE would have a significant impact on

cache configurability and performance.

Automatic cache configuration has been well-studied and includes work that

configures the cache through simulation [84,85), trace reduction [86], and analytical

approaches [87]. Several heuristics have been developed to help speed-up the time

required to search the solution space while tuning the cache. The previously exhaustive

searches used to tune the Li cache of the Platune [88] framework was improved by

Palesi et al. [89] using a genetic algorithm. Zhang et al. [90] propose a heuristic where

each design parameter is searched in order of its impact on energy and performance. In

doing so, a list of Pareto-optimal solutions is generated. Ghosh et al. [91] use an

analytical model to explore cache size and associativity to directly find the configuration

that meets the designer performance constraints.

Few methods exist for exploring multiple-level caches. Balasubramonian et a!.

[92] propose a method of redistributing the cache size between the Li and L2 caches or

between the L2 and L3 caches while maintaining a conventional Li cache. They

achieved a 43% energy improvement. Gordon-Ross et al. [93] designed a cache tuning

heuristic that explores separate Li data and instruction caches as well as separate L2 data

and instruction caches. In that work, an examination of 7% of the design space yielded a

53% reduction in energy.

Current state-of-the-art heuristics by Gordon-Ross et a!. [94] can achieve a

search-space speedup of up to 500x over an exhaustive search resulting in a reported

31



62% energy savings and a 35% performance improvement. The downside to this

heuristic is that it is specific to a particular architecture, the Motorola M*Core.

Configurable cache subsetting was proposed by Viana et al. [95] where a small

subset of configurations can be identified for a specific set of benchmarks. The intention

of this work is that a user with an application in the same domain as the original set of

benchmarks need only consider a small subset of configurations rather than the entire

solution space. Although their approach shows promise, the problem they address is

different fi-om this dissertation. Here, no assumptions are made that an application will

fall into the domain of a prescribed set of benchmarks. To guarantee a high quality

solution, single-application design exploration should be performed for the specific

application in question.

2.6. Design Methodologies

2.6.1. Design Space Exploration (DSE)

System design space exploration typically follows a Y-chart approach [96] as

shown in Figure 2.5. It illustrates a concept referred to as a separation of concerns [97,

17] where one or more descriptions of the application (workload, computation, and

communication tasks) and the architecture specification are kept separate. A mapping

phase binds application tasks to architecture building blocks. An evaluation of the

mapping may include synthesis, compilation, transformation, and simulations, resulting

in performance statistics. Constraints from the architecture, workload description, and

application may influence the evaluation phase. Results from evaluation would

determine whether or not successive iterations of mapping and evaluation will take place
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to iteratively improve the quality of the mapping. In this thesis, two aspects of the Y

chart are dealt with. First, we explore methods for improving DSE where intelligent

coverage of the design space is achieved through systematic modification of the mapping

phase. Second, we explore methods of improving the way by which mappings are

evaluated.

Architecture AppIication/1
I Workload

A

Figure 2.5: Y-chart representation of the separation of concerns for design space exploration.

A number of challenges exist relating to DSE. The dimensions of a design space

are defined by the set of configurable parameters with each point representing a unique

configuration. For a given set of N design parameters F1, Oi<N, with C1 possible

configurations each, the total number of configurations in the design space can be

expressed as,

C=jJC1, (2.5)
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Due to its sheer size, an exhaustive searching a design space becomes computationally

prohibitive as the number of parameters grows. To make matters worse, complexity is

further increased when optimizing multiple objectives; however, objective functions can

be combined to form a cost function or used as a Pareto Optimal objective where all

objectives are maximized to the extent that an improvement of one metric results in the

degradation of another.

Aside from an exhaustive search, there are a number of more efficient strategies

for exploring the design space. One approach is to randomly sample the design space

using what is often referred to as a Monte Carlo based approach [981. This approach

lacks any form of intelligence; however, it has the advantage of an unbiased selection

criterion which is less likely to overlook less than obvious optimal configurations. One

approach based on Monte Carlo is Simulated Annealing [99] where the severity of

changes made to the design that is allowed is gradually reduced as the algorithm

progresses. Although Simulated Annealing is based on the random selection of

candidate points, it has an intelligent filtering process in which it will only consider those

“positive” candidates that drive exploration closer to an optimal solution. To avoid

locally optimal solutions, Simulated Annealing will also consider a proportion of

“negative” candidates based on the progress of the algorithm. In general, Monte Carlo

based approaches are very effective for very large and complex design spaces. On the

other hand, they are not very effective in taking advantage of well-defined structure in

the design space.

Path-oriented approaches incorporate knowledge of the design space into DSE

[100]. Hill-climbing approaches evaluate the neighborhood of the current configuration
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to determine which neighbors yield the greatest improvement to the design objective.

Another path-oriented approach that can be used for DSE is based on genetic algorithms

[101].

To help reduce exploration time, pruning techniques can be used that include

hierarchical exploration, sub-sampling of the design space, and sub-division of the design

space into independent parts. Sub-division decomposes the architecture according to

natural spatial boundaries that are assumed to be independent of one another to a first

degree. Given this assumption, the total size of the design space becomes:

D n1—I

C=flC1 (2.6)
i=O j=O

where D is the number of independent parts, n1 is number of design parameters for the Ih

part, and C1, is the number of configurations for the th design parameter of the part.

Equation (2.6) relates to (2.5) in that:

N=n1 (2.7)

The total size of the design space is no longer the Cartesian product of design

parameters as in Equation (2.5) but a sum of products. Thus, the total size of the design

space is reduced significantly. An interesting form of the latter technique is used for

ASIPs by Sanghavi et al. [102] of Tensilica and is presumably used to estimate power,

area, and speed for their synthesis tools. It is an analytical approach to providing a first

degree decomposition of the design space in both space and time.

Sensitivity analysis [103,104] is another effective way of pruning the design

space where all design parameters are treated as independent. In turn, the impact of each
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design parameter upon the design objective is measured while all other parameters are

held constant. The results from this are used to determine the “sensitivity” of the design

objective to each parameter. Parameters are then configured one at a time according to

an ordering from most sensitive to least sensitive. As a consequence, the effective size of

the design space becomes:

C=C1 (2.8)

Sensitivity prunes the design space significantly such that it is a summation of design

parameter settings rather than a product. The disadvantage to sensitivity analysis-based

approaches is that they do not adequately address correlations between parameters and so

it is often inaccurate.

The Spacewalker algorithm used for PICO [36,105] exemplifies a complete

algorithm that incorporates path-oriented DSE with several pruning techniques. More

explicitly, Spacewalker uses a hill-climbing approach to find Pareto-optimal solutions. If

the design space is too large, then it uses a manifold strategy to search only those points

that are likely Pareto-optimal. Further, decomposition is used to separate parts of the

architecture and then a path-oriented search is applied to each part. Results from each

search are combined to form a system design space which is then searched to find a

system solution.

Evaluation tools specific to ASIPs can also be sped up through hybrid simulation

techniques such as [106] which combines instruction-level techniques and macro

modeling techniques for the base architecture and custom instructions. Trace-driven

simulation provides a method for reducing the number of simulations needed during
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space exploration [1071. This approach collects memory access sequences from an initial

simulation and uses them when subsequent configurations are evaluated.

2.6.2. Instruction Set Extensions

Instruction-Set Extensions (ISEs) are a specific instance of DSE where custom

instructions are generated to improve processor performance. As an example, one

custom instruction created through fusion might be the combination of two ADD

operations followed by a multiply which is then fed into an inverter. Instruction-Set

Extensions using fusion can be broken into three parts: pattern enumeration, pattern

selection (instruction selection), and pattern matching. During pattern enumeration, a

list of candidate complex instructions is generated such that all candidates adhere to the

microarchitectural constraints imposed by the processor architecture. A subset of these is

chosen during the Pattern Selection phase based on a set of cost functions. Once a group

of patterns has been identified, pattern matching then maps new instructions throughout

the application.

Several approaches have been proposed to perform Instruction Enumeration and

Instruction Selection [29,108,109,110,111,112]. All of these are significant contributions

towards the ASIP flow; however, they do not address the effects of pipeline stalls due to

data hazards between functional units (FUs) of the processor. This motivates some of the

proposed work described in this thesis. Like many algorithms in ASIP and compiler

research, the methods used in previous work operate on intermediate representations of

the application by adding, removing, and clustering operations. All algorithms of this

type would benefit from the addition of a “hazard-aware” performance predictor for

architectures with pipeline data hazards to reduce overall run-time of the application.
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The authors of [29] and [113] assume an ideal pipeline because predicting

performance would otherwise be difficult. The authors of [29] state that “it is not trivial

to compute the total latency” of the application with data hazards. The authors of [113]

claims that data hazards need not be considered in the presence of functional unit to

functional unit (FU-to-FU) forwarding2. As stated above, FU-to-FU forwarding is a

possible solution; however, it would require new multiplexers to be added to all new

FUs. This might be practical for a small number of custom FUs but it would likely add

significant power and performance penalties with large numbers of FUs. With a trend

towards increased number of FUs, it is important to evaluate the impact of data hazards

on instruction fusion.

Thus far, there is little work that considers power when fusing instructions. Sun

et al. [114] develop a cost function to reduce speed and then quantify the power saved as

a biproduct of the reduced run-time. They claim to improve performance by an average

of 3.4X, energy by an average of 3.2X, and energy-delay by an average of 12.6X. This

work serves as an example of the significant gains possible with application-specific

configurability; however, it uses an ad-hoc methodology that does not fully explore its

design space.

This dissertation will build upon the ideas presented in this chapter to improve the

speed and automation of processor customizability and extensibility. An ASIP flow will

be developed that incorporates a novel DSE approach that will drastically reduce the

number of simulations required for architecture optimization. This will be used to

2 FU-to-FU forwarding is the forwarding of output from a functional unit to a previous stage of

the pipeline in order to avoid a data hazard.
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configure the BPU and the cache hierarchy of an embedded processor. Further, the

capabilities of ISE configuration will be improved by speeding up the evaluation of

candidate instructions using a novel performance prediction approach. All of the

proposed approaches will be used to improve execution time (and thus ILP) and reduce

power, thus saving energy.
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Chapter 3: Optimization via Design Space Modeling

3.1. Introduction

The previous chapter introduced the design space exploration (DSE) problem and

discussed the difficulties associated with its run-time complexity. It further discussed

how DSE run-time can be reduced through better exploration and through faster point

evaluations. In addition, some of the known approaches for DSE including both path-

oriented and random-based methods were described. It was shown that DSE is a key

bottleneck in the automatic configuration of ASIPs [1151.

In this chapter, a new paradigm for DSE is introduced [116, 117]. This paradigm

is based on a predictive model of the design space using statistical methods. It is much

faster than simulation and it helps users to expose the tradeoffs between different

parameters in different regions of the design space. Requiring only the evaluation of a

small sample of the design points, all other points in the design space can be estimated

through DSE modeling. The model must be accurate enough to predict changes in

performance due to architectural changes.

To illustrate how Design Space Modeling could be used in a hypothetical

problem, consider the mesh plot shown in Figure 3.1. The x-axis and y-axis represent

two parameters, and the z-axis represents the cost function of a DSE problem. The

domains or neighborhoods for hypothetical one-dimensional and two-dimensional

problems are shown as a line and a rectangle on the contour map, respectively. Shown

on the mesh plot are the corresponding predictive models of the design space. Each

model was constructed from a sample of points known through simulation which are
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represented as “dots”. From these models, all other points within their domain can be

estimated.

Figure 3.1: Hypothetical 1-D and 2-D design space models.

The speedup achievable by design space modeling over exhaustive methods is

dependent on the desired level of accuracy and the number of dimensions. For example,

the 1-dimensional neighborhood from Figure 3.1 has 3 known points. If this

neighborhood were used to estimate 7 other points out of 10 total points, then there

would be a 10/3 3X speedup. For the 2-dimensional problem, there would be 9

sampled points out of 100 total points thus the speedup would be 100/9 11X. The

speedup in four dimensions would be two orders of magnitude. Although the speedup

expressed in this manner is somewhat unrealistic (since exhaustive exploration is
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assumed), the key idea is that the cost of each estimated point is extremely cheap

compared to the cost of an evaluated point.

The rest of this chapter describes the details of Design Space Modeling for ASIP

optimization. Section 3.2 introduces the relationship of design space modeling to

existing approaches. Section 3.3 outlines the major steps involved in design space

modeling. Section 3.4 discusses several approaches for constructing design space

models which have been developed concurrently. Of these approaches, two are

contributions of this dissertation (Manual Decomposition Approach and Automatic Non-

parametric Regression Approach). Section 3.5 provides a simple example of the Manual

Decomposition Approach applied to branch prediction.

3.2. Relationship to Previous Methods

3.2.1. Spatial versus Temporal Sampling

The two multiplicative sources for long DSE run-times are the relatively long

simulations times needed to evaluate each point in the design space and the exponentially

large number of points in the space. Prior efforts for improving DSE run-time have

focused on temporal sampling which obtain samples of instruction traces in the time

domain, reducing the costs per simulation by reducing the size of simulator inputs.

Eeckhout et al. [118] and Nusbaum and Smith [119] study profiling techniques to

simplify workloads during simulation. This is accomplished by constructing smaller,

synthetic benchmarks with similar characteristics. Sherwood et al. [120] propose a

method of reducing the simulator input by identifying representative simulation points
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within the instruction trace. In all cases, simulations are effectively compressed in the

time domain.

Design Space Modeling tackles the DSE problem via spatial sampling which is

orthogonal to temporal sampling. By sampling only a subset of the points within the

design space, it helps mitigate the intractability and inefficiency of traditional techniques

that sweep design parameter values and exhaustively simulates all points within a

constrained space. Effectively, simulations are compressed in the spatial domain.

Spatial and temporal sampling can be combined to further reduce DSE run-time as

shown in Figure 3.2. Starting at the top of this figure, the instruction trace is first

sampled temporally to form a compressed instruction trace. This trace is then used for

simulations of architecture configuration points sampled spatially from the design space.

These simulated values are then used to construct the design space model as shown at the

bottom of the figure.

3.2.2. Relationship to Heuristic Approaches

Design space modeling differs from heuristic search algorithms in terms of scope

and use. With respect to being a pure optimization algorithm, design space modeling

serves as an alternative to heuristics such as hill-climbing. The comparative speed of

these algorithms is highly dependent on the nature of the application and the design

space. To date, a quantitative comparison between design space modeling and heuristics

such as those in [121] have not been conducted. Unfortunately, it is not trivial to make a

“fair” comparison against the proposed Design Space Exploration approach due to the

unavailability of heuristic implementations suitable for comparison. Heuristic

implementations require significant customization and tuning for a given problem and
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therefore it is unlikely to find one that matches the specific architecture, application and

experimental conditions of the problem outlined in this dissertation. Alternatively, a

heuristic implementation could be implemented and optimized from scratch; however,

this would be a relatively difficult and lengthy undertaking. Such a comparison was not

made in this dissertation.

Qualitatively, a modeling approach has the following capabilities beyond that of

heuristic algorithms:

• It generates predictions for all points in the design space. Unlike heuristics, design

space modeling can be queried to explore different tradeoffs amongst parameters in

different regions of the design space.

• It can provide a tunable knob for controlling the tradeoffs between different

objectives. Unlike heuristics, the modeling can be adapted immediately and without

simulations for a varying cost function.

• It can quickly verify that a novel architecture feature is not a consequence of other

parameters chosen.

• It is not as susceptible to noise as are heuristic approaches. A heuristic approach,

such as hill-climbing, can be negatively impacted by noise differences between

neighboring points. This is true because the algorithm makes decisions based on only

a small sample of local points. Design Space Modeling, however, is primarily

concerned with high level trends; model construction is generally based on sample

points spread over a large proportion of the space. In doing so, the model filters out

much of the fine-grain noise.
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Each of these capabilities would be a significant addition to any automated tool used to

configure an ASIP.
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Figure 3.2: DSE using an approach with combined spatial and temporal sampling (adapted from
[122]).

It is possible to combine modeling with heuristic methods. One approach would

be to use a rough design space model to serve as a “map” to help guide a path-oriented

heuristic. Another approach would be to use design space modeling as a method of

evaluating an extended neighborhood during hill-climbing rather than just using the
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immediate neighbors. Implementing these approaches would not be trivial and would

therefore make for interesting future research.

3.3. Modeling Paradigm

The proposed paradigm for design space modeling includes the following steps:

Design Space Definition, Spatial Sampling Specification, Model Construction, and

Optimization. Each of these steps is discussed in further detail in the following sections.

3.3.1. Design Space Definition

The design space must be inclusively defined as described by the Mescal

Methodology in Section 2.2.3. Thus, a broad set of parameters should be included to

increase the likelihood of discovering optimal configurations. This stage can include

appropriate pruning of the design space based on micro-architectural and high-level

constraints (i.e. area, power, and delay) so that simulations are not carried out on

unnecessary or non-feasible solutions.

3.3.2. Methods of Sampling Points

As discussed earlier, simulations are effectively compressed in the spatial domain

via spatial sampling. Several sampling policies are possible as follows:

1) Evenly Distributed: Perhaps the most natural sampling policy is to sample equally for

all dimensions of the design space and to evenly space the points over the range of

permissible values for each dimension. In doing so, this approach does not bias any

given dimension or any part of the range within each dimension. The advantage of this

approach is that requires little knowledge of the landscape a priori.
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The disadvantage is that it may require course sampling granularity. If, for

example, there are 3 samples per dimension for a 5-dimensional space then the total

number of samples is 3243. Once the number of samples per dimension is specified,

the required number of points is automatically established. If the sampling rate were

reduced to 2 samples per dimension or 5 samples per dimension then the total number of

samples would be 32 and 1024, respectively.

2) Random Selection: This sampling policy is based on a random selection with uniform

probability over all dimensions and throughout the entire range of values in each

dimension. In doing so, no bias is placed towards any part of the design space regardless

of the application. Similar to the evenly distributed policy, random selection does not

require knowledge of the design space a priori. The advantage of this approach is that

any number of additional points can be added to the total number of sampled points.

3) Regional Sampling: This approach places increased emphasis on particular regions or

dimensions of interest. Selection of which regions or dimensions to be emphasized is

based on domain-specific knowledge or on knowledge gained through previous runs

during an iterative approach. Regional sampling could be used in conjunction with an

evenly distributed selection or a random selection policy.

4) Weighted Sampling: Similar to regional sampling, weighted sampling places emphasis

on particular regions or dimensions of the design space during model training. However,

it differs from regional sampling in that regions are emphasized by placing extra weight

for points in that region as opposed to sampling more points. Of course, this policy is
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only applicable to modeling methods where the formulation of the model can use weights

[1221.

5) Adaptive: This approach adjusts the granularity based on model error variances for

each sampled point. Samples with larger variances are likely to be poorly predicted;

including such samples for model training will likely improve model accuracy. For this

policy, samples are iteratively added to the training set based on their measured variance

and how much they differ from previously chosen samples [1231.

The latter three sampling policies can improve the quality of the design space

model; however, they are more complex and computationally expensive. Regional

sampling and weighted sampling require that the Euclidean distance between each

candidate point and all other points be found. While evenly distributed selection and

random selection are inherently parallel, adaptive selection introduces a feedback

component that limits parallelism [122].

3.3.3. Model Construction

Once the sample set is created, the design space model is constructed from the

sampling set and can be done using one of the following four approaches: Manual

Regression Approach, Artflcial Neural Networks Approach, Manual Decomposition

Approach, and Non-Parametric Regression Approach. Each of these approaches will be

discussed in further detail in Section 3.4.

An in-depth model built manually benefits from several steps of analysis [122].

One or more of these analysis steps can be incorporated into each approach depending on

the desired level of model accuracy versus automation:
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1) Hierarchical Clustering: Clustering examines the correlation between different

parameters. Parameters that are highly correlated to others can be pruned from the DSE

problem, thus reducing model size.

2) Association Analysis: Quantitatively, the trends between parameters and the cost

function can be captured to reveal the degree of non-monotonicity and nonlinearity. This

can be used to determine how the model will estimate the relationship between the cost

function and each dimension. Further, parameters could be pruned if it is found that they

are insignificant and do not greatly impact the cost function.

3) Correlation Analysis: Correlations can be used to dictate the choice of nonlinear

transformation required for the relationship between the parameter and the cost function.

4) Model SpecifIcation: Domain-specific knowledge is used to dictate the relationships

between parameters and the cost function and between parameters. Based on the results

from correlation analysis, the relative flexibility of nonlinear functions can be specified.

5) Assessing Fit: A statistic such as R2 can be used to determine the overall fit of a design

space model.

3.3.4. Optimization

Once the design space model has been constructed, it can provide highly-accurate

estimates of the cost function for all points throughout the design space. The prominent

use for this model is to quickly find the optimum point within the design space. If the

design space represents the set of all ASIP architecture configurations and the cost

function is the overall power dissipation, then the minimum-valued point in the

predictive model would specify the optimal power.
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While model accuracy is heavily emphasized in this dissertation, it is important to

recognize that high levels of accuracy may not be required in order to make good

optimization choices. In fact, good configuration choices are possible as long as

important characteristics of the curve of the design space and the model are the same.

Thus, one model construction approach that provides a less accurate model in order to

reduce construction time may make better optimization choices than one with an equal or

more accurate model. This would be true if the less accurate model was able to better

capture the important trends of the design space.

Other uses for design space models include Pareto frontier analysis, design space

characterization, and parameter sensitivity analysis [1241.

3.4. Construction Approaches

This section describes the following four methods for design space modeling:

Manual Regression Modeling, Automatic Learning Modeling, Manual Decomposition

Approach, and Automatic Non-Parametric Regression Modeling. The first two methods

were developed by two other research groups concurrently with this research [125,126],

while the latter two are key contributions of this dissertation.

3.4.1. Manual Regression Approach

Lee et al. [125] use in-depth statistical analysis to manually build a regression

model of the design space and then uses statistical inference to estimate all other points.

To construct the model, all aspects described in Section 3.3.3 are employed. Hierarchical

clustering is an iterative approach that amalgamates parameters based on the correlation

coefficient. Association analysis is performed using scatter plot analysis, and correlation
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analysis is based on a rank-based measure of correlation called Spearman p2. All of

these approaches require some level of manual analysis.

A general class of models is used to represent the design space where the

response (cost function) is a weighted sum of functions gj() plus random noise. Thus,

f(y,) = 13g(x,) + e,

(3.1)=fi+fl1g1(x11)+e1
1=’

where x1=x1,, . . . ,x, denote the p predictors (architecture parameters) for a response

variable, y. /3=/3d, ...,/3, denotes the set of regression coefficients and e1 is the error and is

an independent random variable with zero mean and constant variance. f() and

go gi() gpo are transformations that can be applied to the response and predictors,

respectively, to stabilize non-constant error variance or to account for nonlinear

correlations between the response and the predictors. Sometimes the interaction between

the response, y, and a predictor, Xj, can be correlated by another predictor, X2. In this

case, a third predictor, X3 =X1x2, can be introduced such that,

= fl +flx +fl2x2+/33xx2+e (3.2)

The coefficients of the regression are solved using the method of least-squares.

As determined by association analysis, not all predictor-response relationships

can be adequately modeled using a linear function. More advanced techniques are

implemented including the above-mentioned transformations and parametric spline

curves. Spline curves are an alternative to polynomial regressions which can result in

undesirable peaks and valleys. Further, a good polynomial fit in one region of the
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predictor’s range can affect the fit in other parts. A manual analysis is required to

determine whether or not each predictor-response relationship should be modeled using a

linear function or a spline.

To construct a spline, the function is divided into intervals defining multiple

different continuous polynomials with end-points called knots. The number of knots can

vary and determines the quality of fit. Lee et al. [127] found restricted cubic splines

more appropriate than linear splines.

Because this approach requires advanced knowledge of statistics and manual

effort to construct the model, it runs counter to the motivation of this dissertation which

is towards a completely automated solution for ASIP configuration [127]. On the

positive side, the model is highly accurate and the relationships between the response and

predictors are highly transparent. This approach is suitable for general-purpose processor

development where accuracy is more important than the cost of human resources, but not

for use in an automatic ASIP configuration tool.

3.4.2. Artificial Neural Networks Approach

Ipek et al. [126] use artificial neural networks (ANN) that sample points in the

design space to train the network to model the function describing predictor-response

relationships. ANN is a machine-learning model capable of modeling complex nonlinear

relationships and is relatively resilient to noise.

Figure 3.3 illustrates a simple fully-connected, feed-forward ANN with an input

layer, hidden layer, and an output layer. Predictions are made at the output layer as a

weighted contribution of the inputs through the hidden layer which implements an

activation function. According to [126], the activation function must be nonlinear,
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monotonic, and differentiable using a sigmoid function. More explicitly, outputs are

calculated from the sigmoid function (output layer), as follows:

0 = J(net)
= 1+ enet

(3.3)

where,

net =w1x (34)

such that w1 is the weight for the th input x1 of n inputs.

Ipek et al. [1261 update the weights in Equation (3.4) using back-propagation. A

gradient descent approach in a weighted space is use to minimize the squared error

between simulation results and model predictions. An iterative approach gradually

improves the quality of the model with each training input and increases its nonlinearity.

The weight update function also incorporates a momentum term to avoid local minima.

The sampling policy used for by Ipek et al. is adaptive.

The ANN-based approach addresses all steps of model construction as specified

in Section 3.3.3. Hierarchical clustering was not originally used in [126]; however, it

may be completed once before the automatic configuration tool based on ANN is

deployed to users. Association analysis and correlation analysis are not necessary with

the ANN-based approach since non-monotonicities and nonlinearities are addressed

automatically through neural network learning. In the model specification step,

relationships between the response and the predictors are automatically determined

through learning. Predictor-predictor relationships can, to a limited extent, be

automatically captured by ANN; however, this is not done transparently.
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This approach is very effective and is fully automated. Similar to the manual

regression approach, it models the response as a nonlinear weighted sum of predictors.

Further, it is relatively resilient to noise and does not suffer from “over-fitting” as would

a polynomial fit. On the downside, the ANN-based approach is not as computationally

efficient as the manual regression-based approach [127]. Further, it does not scale well

to problems with many variables that have complex interactions. To some extent, the

ANN-based approach is able to capture these interactions; however, this is not done

transparently. Thus, it is difficult to predict how well ANN would scale to increased

predictor interactions.

Output
Layer

Hidden
Layer

Input
Layer

Output

Figure 3.3: A typical artificial neural network.
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3.4.3. Manual Decomposition Approach

Manual Decomposition is a first attempt at modeling the design space and

represents the straightforward approach based on polynomial regressions [1281. The

basic idea is to characterize the behavior of the response function using a linear,

quadratic, or higher-order polynomial. Regression methods are used to determine the

suitable order of the polynomial. Based on the order of the method, a corresponding

number of points are evaluated in the solution space. The goal is to minimize the number

of points evaluated so a low-order polynomial is preferred. Unfortunately, the accuracy

of the predictive model suffers as a result.

To improve accuracy, a decomposition approach similar to that proposed by

Sanghavi et al. [102] of Tensilica can be used. If low-order polynomials can be used on

the decomposed functions, then only a few points need to be evaluated in the solution

space, thus limiting the number of samples required. This approach is best described in

the context of a simple example as presented in Section 3.5. The main advantage of this

approach is its low run-time complexity and its simplicity. However, it suffers from

being a time-consuming and error-prone manual modeling process.

3.4.4. Non-Parametric Regression Approach

A key contribution in this dissertation is the use of non-parametric regression

schemes for model construction in design space exploration for ASIPs [116,117]. Rather

than using parametric regressions to form a design space model as with the Manual

Decomposition approach, it is proposed that a local regression statistic (LOESS) [129]

be used. Standard regressions require that a class of functions be defined a priori;

however, this is generally not possible for all many DSE problems. Non-parametric
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regression statistics solve this problem in that they do not need to be parameterized; one

need not specify whether the overall fit will be linear, quadratic, cubic, etc. Instead, the

estimated points indirectly define the function. Collectively, design space modeling

combined with a LOESS-based construction is given the name Local Regression

Modeling-based Design Space Exploration (LRM-DSE). A detailed description of

LOESS and LRM-DSE can be found in Section 4.2.

To illustrate the approach, consider the two plots in Figure 3.4 where x is the

predictor variable and p(x) is the response variable. The large dots indicate the known

points that were evaluated at great cost. A parametric linear regression would produce

the line shown in Figure 3.4(a) whereas the actual solution is quadratic in nature. Figure

3.4(b) computes the desired intermediate points using the known points and the LOESS

technique (depicted conceptually as 4 linear regressions). This approach is better able to

capture the characteristics of the actual behavior thus improving our ability to predict

optimal configurations. A more detailed discussion of this approach appears in Chapter

4.

Local

Simple Linear Actual Regression
a) Regression “unknown” Modeling of 4

/ Behavior
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Figure 3.4: (a) Simple Parametric Linear Regression (b) LOESS-based approach.
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There are other methods of non-parametric regression; however, the local

regression method was found to be the best fit in terms of flexibility, computational

complexity, and availability of tools. Although the results are not presented here,

experimentations were conducted to assess the suitability of local regressions against

local smoothing. Local smoothing is similar to local regressions with the caveat that

smoothing results in increased bias at the end points of the neighborhood. This is

especially problematic for our application where we have relatively few known points.

Table 3.1: Comparison of various model construction approaches.

Manual
Manual Regression ANN LRM-DSE

Decomposition
[125] [126] (Chapter 4)

(Section_3.5)

Automated No No Yes Yes

Algorithm
Fast Fast Slow FastComplexity

Model
Good Very Good Very Good Good

Accuracy

Response-
Predictor Very Good Very Good Poor Good

Transparency

Evenly Distributed
Sampling Policy Evenly Distributed Random Adaptive

/ Random

Construction Regression with Regressions with Neural Non-parametric
Approach Decomposition Spline Networks Regressions

ASIP
ASIPApplication GPP Development GPP Development Configuration

Configuration Tool
Tool

LRM-DSE addresses all steps of model construction as specified in Section 3.3.3.

Like the ANN-based approach, hierarchical clustering can be completed once before

deploying the automatic configuration tool to customers. Association analysis and

correlation analysis are not necessary since non-monotonicities and nonlinearities are
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addressed automatically through the non-parametric regression. In the model

specification step, relationships between the response and the predictors are

automatically determined through a non-parametric fit to the sample data. Predictor-

predictor relationships can, to a limited extent, be automatically captured by LOESS;

however, improved results could be attained by adding predictor interaction terms to the

regression model.

A comparison of the various methods is shown in Table 3.1. The non-parametric

approach shares advantages with both the manual regression approach and the ANN-

based approach. Similar to the ANN-based approach, LRM-DSE is fully automated, thus

it is suitable for use in an automatic ASIP configuration tool. Similar to the manual

regression approach, LRM-DSE is based on solving linear systems of equations to

perform regression. The ANN-based approach differs in that the edge weights must be

iteratively refined to reduce error with each iteration. The time of convergence is usually

larger than that required to numerically solve least squares for regression, especially if

the predictor count is small [127]. Response-predictor transparency is higher for the

regression-based approaches than the ANN-based approach. The most transparent

approach is the manual regression approach because of the in-depth analysis required.

3.5. Example: Manual Decomposition Applied to the BPU

3.5.1. Overview

We now apply the concepts described in the prior sections to a concrete example

of optimizing the branch prediction unit (BPU) of a processor for power [128]. This

example is small enough to illustrate many of the concepts but complex enough to gain
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insight into the key issues. The model construction approach used in this example is

Manual Decomposition for which that the response-predictor function is manually

decomposed and then assessed through a series of parametric regressions. Once the

model is completed, only a few points must be evaluated to capture the behavior in a

solution space. The main advantage of this approach is its low run-time complexity and

simplicity. However, it is a manual process which must be repeated whenever the

parameters or response functions are modified. This approach is also important in that it

motivates the automated approach discussed in Chapter 4.

3.5.2. Branch Prediction

Branch prediction has long been an important area of study for high-performance

processors because it has a significant impact on the attainable instruction level

parallelism (ILP). As processors become wider and pipelines become deeper, the penalty

of a misprediction grows. To offset this, branch predictors have become more complex

with each generation of processor design. As a consequence, branch predictors may

account for a significant portion of the total power dissipation (more than 10% of the

total processor in some cases [130]).

There are many ways in which the branch prediction unit (BPU) can be

configured to reduce power dissipation for a specific application. One approach is to

automatically choose a low-power branch prediction policy. While larger, more

complex, branch predictors dissipate more power, they have better prediction rates so the

processor takes fewer cycles to execute the application thus resulting in less overall

power dissipation. This approach is not taken here. Instead, the branch predictor is

configured by sizing its pattern history table (PHT) based on the application. The PHT
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is a significant part of the BPU as it is a lookup table that stores history information of

recent branches thus providing a way of predicting the outcome of future branches.

Sizing the PHT has a significant impact on performance and is a less drastic departure

from the base architecture.

An increase in PHT size improves the branch prediction rate thus reducing the

number of cycles wasted due to branch prediction penalties. With fewer cycles needed to

execute the application, the overall processor will consume less energy. On the other

hand, an increase in the size of the PHT will increase the energy consumption of the

BPU. This is because the PHT is typically implemented as a standard SRAM cell array

so an increase in the number of entries will result in more cells, longer bit lines, and

larger decoders. Larger bit line capacitances result in an increase in switching power,

and an increase in the number of cells results in more leakage power. The goal here is to

configure the PHT size with the correct trade-off between BPU complexity and execution

time.

To solve the complete problem, there are many other variables that must be

configured in an ASIP to minimize power dissipation. Together, these variables define

the solution space. The most accurate way of solving for the optimal point of this

solution space is a “brute force” search where every point is evaluated through

simulation. However, if there are many variables all with many possible configurations,

a “brute force” approach quickly becomes intractable.

Three types of branch predictors are shown in Figure 3.5. For the Bimodal

branch predictor [75], PHT entries are indexed by the m least significant bits of the

branch address. For the GSelect branch predictor [74], PHT entries are indexed by the m

60



least significant bits of the branch address concatenated with the n least significant bits of

the branch history register (BHR). The BHR is a shift register that tracks a history of

outcomes for all recent branches. By combining bits from the branch address and the

BHR, GSelect bases its prediction partially on the global history of all recent branches

and partially on the local history of a specific branch instruction. The Hybrid predictor

[131] has both a Bimodal predictor for local predictions and a GSelect predictor for

global predictions. A second Bimodal predictor, called the meta-predictor, is used to

predict which of these two sub-predictors will provide a more accurate result for the

current branch instance.

GSelect

PC I PHT

___________

Ioi 1 OO1iO I
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4
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Figure 3.5: The Bimodal, GSelect, and Hybrid Branch Predictors.
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Each entry of the PHT is a 2-bit saturated counter [45] that is incremented for

branches that are taken and decremented for branches that are not taken. A branch is

predicted as taken if this counter is “10” or “11 and as not-taken for “00” or “01”. A

state machine for the 2-bit counter is also shown in Figure 3.5.

3.5.3. Measuring Aliasing via Simulation

Experiments conducted in [132] found that two-level predictors such as GSelect

are close to optimal when implemented with unlimited resources. Due to power, timing,

and area constraints, PHTs must allow more than one branch and/or branch history to be

mapped to each table entry. This is referred to as aliasing or interference. When

constructive aliasing occurs, the BPU correctly predicts the branch direction by

“coincidence” whereas destructive aliasing predicts the wrong direction [133]. Aliasing

has been shown to be the dominating factor affecting branch prediction accuracy [134].

The larger the PHT, the smaller the chance that branches will interfere with one another.

An important assumption of the approach here is that aliasing can be used to

predict how the overall power of the processor will be affected by the size of the PHT.

First, this assumption is justified by showing that there is a linear relationship between

the degree of aliasing measured for a given PHT size and the hit rate of the BPU. Next, a

linear relationship is found between the BPU hit rate and the number of cycles of penalty

needed to execute the application. Last, the number of cycles of penalty and the overall

power dissipation of the processor are found to have a linear relationship. By combining

these relationships, aliasing measurements can be used to estimate power and can

therefore be used to predict which PHT size will minimize power.
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For a given simulation, aliasing statistics can be collected for all possible PHT

sizes in parallel. A convenient implementation for this is the binary tree data structure

shown in Figure 3.6. The branch address is concatenated with the global branch history

and then the r least significant bits are used to index the PHT (enclosed in a dashed box).

Each row, r, of the figure represents a different size of the PHT, S=2’, where r=O... 16.

The nodes of the tree at a given level r represent all of the possible table entries for a

table of size S.

Global
PHT Branch Branch
Size Address

2° 1
21

— I
L”01”:.L”11”1

216 LI::.11II1I1IZ
Figure 3.6: Data structure used to collect aliasing statistics for all PHT configurations in parallel.

When a branch is encountered during simulation, the branch address is

concatenated with the global branch history to form the full index. The binary tree is

then traversed from the root to a leaf based on the bits of the full index starting from the

least significant bit. In this figure, the shaded nodes define the path taken for the index

“01001101”. As the tree is traversed, statistics are updated for exactly one node per

level.
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To measure aliasing, each node of the binary tree structure stores the last branch

{address, history} pair from which it was mapped. When a new branch is mapped to a

node, the current {address, history} pair is compared to that previously stored. If they

differ then aliasing has occurred [44]. In addition to storing a {address, history} pair,

each node keeps track of the number of times aliasing occurred. This approach for

collecting statistics allows us to perform one simulation to simultaneously measure the

aliasing rate for each PHT size in parallel by summing the total number of aliasing

occurrences across each level (i.e., for each PHT size).

3.5.4. Model Construction

Modeling construction can be carried out using the claim that the aliasing per

PHT size can be used to predict the total power dissipation of the processor. To reduce

the number of simulations needed to configure the BPU, spatial sampling is used as

dictated by the modeling paradigm described in Section 3.3. Although not shown here,

experiments were conducted to determine the appropriate spacing of sample points

within the design space.

To simplify regression, the response-predictor relationship was manually

decomposed in a similar way to that proposed by Sanghavi et al. [102] of Tensilica. This

procedure is as follows: First, the aliasing statistics are gathered for all BPU

configurations in parallel during a single simulation. Second, the relationship between

aliasing and power is decomposed into simpler relationships in order to apply

regressions. Third, the combined set of regressions form the design space model which

is then used to estimate how changes in the BPU configuration affect the overall power

dissipation of the processor. From this model, the optimal PHT size is selected.
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Many of the analysis steps described in Section 3.3.3 such as hierarchical

clustering, association analysis, and correlation analysis were not necessary for the

design space in this example because it had only one response-predictor relationship to

model and it was simplified to a set of linear relationships by construction using

decomposition. As will be discussed in Section 3.5.6.1, the quality of fit is assessed

using the correlation coefficient, R2.

To predict the success rate of the branch predictor, an expression that relates the

hit rate probability to aliasing is derived. The probability of aliasing is pa=P(aliasing).

Given that a branch prediction lookup is aliased, constructive aliasing occurs with a

probability Pca =P(correct pred. I aliasing) and destructive aliasing occurs with

probability 1pcaP(incorrect pred. aliasing). When a PHT lookup is not aliased, the

probability that the 2-bit saturated counter makes a correct prediction is Pcna=P(correct

pred. non-aliasing). Accounting for the cases with and without aliasing, we use the

following expression as the probability of a hit (i.e., hit rate):

(3.5)

For an ideal branch predictor with infinite PHT resources, the hit rate is HR=pc,a.

When comparing two different processors with finite but different PHT sizes, the

following is an expression for the change in hit rate:

AHR = HR2 — HR, = (Pea — Pena) (Pa,2 — Pa,i)

J(Pa,2Pa,i)/3Pa (3.6)

As stated earlier, only one simulation is needed to collect aliasing statistics for all

configurations; however, a minimum of two simulations are needed to find the slope, fi,

65



of the hit-ratio versus aliasing curve. Experimental data supported the approximation

that fi is roughly constant.

To predict the number of cycles, we assume the following relationship between

the hit rate and the number of cycles of execution:

T=Ideal+NCB•tp•(1HR) (37)

where Tideal is the number of cycles needed to execute the application when branch

prediction is 100% accurate, NCB is the number of conditional branches encountered, t is

the penalty for a branch misprediction, and HR is the hit rate. Using Equation (3.7), the

change in the number of cycles when comparing two different PHT sizes is:

zT=T2—T1=tP•NcB•(HRI—HR2)_•AHR (3.8)

Equation (3.8) relates the change in the number of cycles needed to execute the program

(due to branch penalties) to the change in the hit rate. is the slope of this relationship

and is approximated to be constant based on observations made from the data.

The change in overall power dissipation of the processor can be divided into the

change in power dissipated by the BPU (leakage and switching), /‘PBP, and that

dissipated by the rest of the processor, LIPTBP. As the size of the PHT changes, these two

components are affected differently. An increase in the PHT size improves the branch

prediction rate thus reducing the number of cycles devoted to branch penalties. With

fewer cycles needed to execute the program, the entire processor will consume less

energy. On the other hand, an increase in the size of the PHT will increase the energy

consumption of the BPU even though there is a fixed number of lookups.
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The change in the overall power dissipation of the processor can be approximated

by:

A’J’BP+I3TBP =y•AN+a•AT (3.9)

where the second term is the change in power dissipation of the entire processor except

for the BPU. It can be approximated as a linear function of the change in the number of

clock cycles. The first term is the change in power dissipation of the BPU and can be

approximated as a linear function of the PHT size, AN.

Figure 3.7 shows the four functions found through decomposition and the

linearity of the decomposition. If these functions had not exhibited a linear relationship,

than a quadratic or cubic could have been used.

1IHR
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AP
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Figure 3.7: Linearity of regression coefficients, o, , , and y.

Equations (3.6), (3.8), and (3.9) can be combined to form a complete expression

for the change in the total processor power dissipation as a function of aliasing and the

PHT size:
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BP’T-BP =yiXN+aI3Apa (3.10)

where o
,

/3, and y are slope parameters that have to be measured by simulating the

processor with two different configurations. On the other hand, only one simulation is

needed to determine Zipa for all PHT sizes in parallel. This significantly reduced the

number of evaluations needed in the design space. Together, these statistics are

combined using Equation (3.6) to estimate the power dissipation of a processor for a

particular PHT size.

5.5x106
100

N
Figure 3.8: Estimated and measured total power dissipation for the gcc.

Two curves are shown for the application gcc in Figure 3.8. One curve is the

estimated total power dissipation (using Equation (3.10)) as a function of the PHT size

and the other curve is that measured using Power Analyzer [135] which is a detailed

cycle-accurate power estimation tool that models internal switching power, I/O switching

power, and leakage power. Power Analyzer adds power estimation functionality onto

Simplescalar [136], an instruction-level simulator. This figure shows that the model

given by Equation (3.10) is fairly accurate at estimating the total power dissipation of the
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processor. In this example, a parametric regression-based configuration tool would

choose a PHT size of 8192 which coincided with the actual minimum point.

3.5.5. Experimental Platform

The experimental platform used in this chapter is based on the StrongARM

architecture [137] as specified in Table 3.2. By default, a Bimodal branch predictor is

assumed with a PHT size of 2048. The Bimodal predictor, a 1024-entry GSelect

predictor and a Hybrid predictor are studied on the platform. The default Hybrid

predictor has sub-predictor sizes of 1024, 2048, and 2048 for the GSelect, Bimodal, and

meta-predictor, respectively (based on default values from Power Analyzer [135]).

Table 3.2: Base processor specifications of the StrongARM processor.

Processor Core

Issue Width: 4 instructions per cycle

Pipeline Length: 5-stage

Functional Units:

Memory Hierarchy

Li Data Cache Size: 128-set, 4-way, 32B blocks

Li Instruction Cache Size: 512-set, i-way, 64B blocks

L2: Unified, 1024-set, 4-way, 64B blocks

Branch Predictor

Combined Predictor: Bimod: 2048-entry
GAg: 1024-entry, 8-bit BHR

BTB: 512-entry, 4-way

Figure 3.9 illustrates the flow used to implement software compilation and

hardware configuration. A set of benchmarks drives the overall system. A “C” language

description of the application is parsed and optimized by a modified version of the

Trimaran compiler infrastructure [138] which then emits ARM v.4 assembly code. This

code is then assembled and linked using standard GNU tools [139]. Results from the
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local regression tool are used to configure the compiler and the simulation tool through

architecture description files. In accordance with Power Analyzer, energy is reported as

the sum of individual power dissipation values sampled for all cycles. Units are reported

as Joules*cycles/sec.

“C” Application
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Figure 3.9: Flow used to run experiments on BPU configuration. Solid arrows represent the
sequence of steps used in the standard flow. Dashed arrows represent the additional steps

introduced to add configurability.
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Benchmark applications are from the SPECcpu2000 Integer Suite [140] and the

MediaBench Suite [141]. Both are commonly used benchmark suites where

SPECcpu2000 has general-purpose applications and MediaBench has communications

and multimedia applications. For SPECcpu2000, only integer applications were used

because floating point benchmarks are generally easy to predict and have few dynamic

branches. Each benchmark was simulated to a maximum of 50 million instructions

which is long enough to saturate the PHT but short enough to make experimenting

feasible.

3.5.6. Results

3.5.6.1. Quality of the Linear Relationships

After model construction, it is important to assess the quality of the result. In the

case of the BPU model, we must analyze the quality of the assumed linear relationships.

The results must validate the assumption or a higher-order method must be used. Using

Power Analyzer, simulations were run on all benchmarks over all PHT sizes ranging

from 16 to 65535 for the Bimodal and GSelect branch predictors. For each benchmark,

“least-squares” linear regression slopes /3, c, ü, and y were determined based on the

statistics gathered for ill-JR versus Apa, AT versus Al-IR, /JPTBR versus AT, and Z1PBR

versus AN, respectively. As an indication of the overall quality of fit for each regression,

correlation coefficients (R2) are given in Table 3.3. The closer a value to 1, the higher

the quality of fit.

Most regressions in Table 3.3 exhibit a high quality of fit except for bzip2 and

parser. According to the first column, bzip2 and parser have the lowest percentage of
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instructions that are branches and are therefore less likely to saturate the PHT. For these

benchmarks, aliasing will likely be low regardless of the size of the PHT. Therefore, the

“quality” of the linear relationship between ziHR and /-lPa will be dampened and

overshadowed by “noise” generated by Pca and Pcna This inaccuracy has a negative

impact on our ability to predict power dissipation. These results suggest that the

accuracy of our power prediction methodology is less effective for applications with a

low utilization of branch predictor resources.

Table 3.3: The correlation coefficient (R2) for all Least square regressions.

%

lnstr are
branches

_____________________ ______________________ ______________________
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15.7
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0.789

0.965

0.998

0.989
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0.804

0.991

0.882

R2 for 1

GSelect Bimodal

0.781 0.025

0.996 0.624

0.984 0.747

0.999 0.998

0.992 0.983

0.993 0.978

0.679 0.754

0.982 0.985

0.926 0.762

R2 for

GSelect Bimodal

0.634 0.438

0.985 0.971

0.996 1.000

0.999 0.999

0.999 0.978

0.996 1.000

0.976 0.993

0.984 0.998

0.946 0.922

R2 for cx

GSelect Bimodal

0.026 0.284

0.008 0.728

0.999 0.993

0.994 0.998

0.986 0.977

0.995 0.993

0.929 0.101

0.996 0.984

0.742 0.757
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3.5.6.2. Configured PHT

The prediction method was used to configure a processor with Bimodal and

GSelect predictors. For each predictor, only two evaluations using Power Analyzer were

carried out to estimate the slope parameters fi, a and At the same time, aliasing was

measured for all PHT sizes in parallel. Using the cost function defined by Equation

(3.10), the total power dissipation was predicted for all configurations. Each benchmark

was then simulated using the configuration with the lowest estimated power as

bzip2

parser

gzip

CC

string

twoif

CF1C32

vortex

average
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determined by the cost function. Power dissipation results were then compared against

that of the default branch predictors. These results are shown in Table 3.4.

Results indicate an average reduction in total power dissipation of 5.4%

(maximum of 12.7%) for a processor with GSelect predictor and 0.1% (maximum of

1.3%) for a processor with a Bimodal predictor. A processor with the optimal PHT size

results in a 5.8% improvement and 0.7% improvement for the GSelect and Bimodal

predictors, respectively. These results suggest that, by configuring the branch predictor

using the parametric regression-based cost function, the power reduction is close to that

achievable by the “optimal” PHT configuration.

Table 3.4: Power reduction after using the proposed configuration approach for GSelect and
Bimodal.

Percent Power Reduction

GSelect Bimodal

Manual Manual
Decomposition Optimal

Decomposition Optimal

bzip2 -1.8% 0.0% -0.3% 0.8%

Parser -0.3% 0.1% 1.3% 1.6%

Gzip 4.3% 5.2% 0.1% 0.3%

Gcc 4.6% 4.6% -0.1% 0.0%

String 6.3% 6.4% 0.0% 0.4%

Twolf 12.7% 12.7% 0.4% 2.1%

CRC32 9.1% 9.1% -0.9% 0.0%

Vortex 8.6% 8.6% 0.2% 0.2%

• average 5.4% 5.8% 0.1% 0.7%
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Table 3.4 indicates that there is power reduction for all benchmarks except for

bzip2 and parser which result in a small increase in the power dissipation. This is

acceptable to some degree since the “optimal” configuration provided too little or no

power reduction for these benchmarks. The effects of this were also evident in the

previous section which showed that the miss rate of bzip2 and parser did not “behave

well” as a linear function of aliasing. The minimal power reduction of these two

benchmarks does not show a deficiency in our approach because there was very little

power reduction possible.

3.6. Summary

A novel algorithm was developed to improve DSE. This approach was based on

the manual construction of a design space model from a small sample of points within

the design space. This model can be used for optimization in an ASIP architecture

configuration problem. The net result is a reduction in the time needed to perfonu DSE

because only a subset of the design space needs to be simulated.

To help illustrate many of the concepts of design space modeling, an example

design space model was constructed to configure the PHT of a branch prediction unit.

The most difficult part of the process was to extract linear relationships between the

response function and the measurable quantities so that the number of evaluations could

be kept to a minimum. Fortunately, such relationships existed in the power function and

worked well. If, on the other hand, a quadratic or cubic regression were required then the

model would require more effort to construct. Further, any changes made to either the

architecture parameters or the response function would require that the entire analysis be
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repeated. In any case, results showed that the proposed approach could produce near

optimal results while only having to simulate a fraction of the design space.
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Chapter 4: Application of Non-parametric Design

Space Modeling to Architecture Exploration

4.1. Introduction

In the previous chapter, a composition of linear regressions was manually

constructed by identifying basic relationships between an objective function and

architecture parameters (PHT of the BPU). Using this approach, the number of design

points requiring evaluation was reduced; however, the approach required extensive

manual intervention thus making it infeasible for use with more complex design spaces

with many dimensions.

In this chapter, a novel DSE approach is proposed that can model the design

space automatically using non-parametric statistics [116,117]. With only a small subset

of the solution space sampled, a model of the design space is constructed using LOESS

with interpolation. From this model, statistical inference is used to estimate the values of

all other points. This, in turn, is used to perform architecture optimization. This

approach is given then name Local Regression Modeling-based Design Space

Exploration (LRM-DSE). To demonstrate its features, LRM-DSE is used to perform a 5-

dimensional DSE representing a two-level cache hierarchy tuning problem.

4.2. LRM-DSE

4.2.1. Overview

To help illustrate how LRM-DSE works in more detail, consider the hypothetical

problem in Figure 4.1. In this figure, the x-axis serves as the predictor variable and the
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y-axis as the response variable for a LOESS regression. Known data points are denoted

by large dots.

Figure 4.1(a) illustrates how non-parametric models such as LOESS are defined

by the data itself and not by the user. The local regression behavior of the underlying

trend is then estimated for each point thus providing both a value and slope estimate. In

this figure, value estimates are represented with an “x” and slope estimates are

represented by a dashed line.

Figure 4.1: LRM-DSE uses both LOESS and Hermit Interpolation
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Once the local behavior has been determined for all known points, a piece-wise

cubic Hermite polynomial interpolation can be used to estimate the value of all unknown

points (shown as small dots in Figure 4.1(b)). In doing so, the model can be used to

predict all unknown points without the need for parameterization.

Now that estimates have been found for all predictor values, a curve can be

defined for the entire domain. This curve represents the LRM-DSE model and can now

be used to select the optimal point. In Figure 4.1(c), this curve is represented as a dashed

line and the actual function is represented by a solid line.

To extend LOESS to multiple dimensions, LRM-DSE uses a Generalized

Additive Model of the form,

(4.1)

where Y is the response variable, X, through Xrn represent m values for the predictor

variables, and b0 through b, represent regression coefficients estimated by multiple

regression. f, throughfm represent unspecified non-parametric functions of the predictor

variables [142]. e is the error and is an independent random variable with zero mean and

constant variance.

4.2.2. Local Regression Basics

A regression models the dependency between the observations of a response

variable, Y, and the values of a predictor variable, x. Normal regression models take the

form,

Y1 =p(x1)+e1
(4.2)

78



such that p(x,) is an unknown function and represents the mean of Y at x, and represents

the error which is an independent and identically distributed random variable with zero

mean and variance d<oc,. For a parametric regression, p(Xj) is specified to be a member

of a parametric family such that its coefficients are the parameters.

LOESS differs from parametric regressions (of Section 3.5) in that p(’x,) is

determined from a local subset of the data points defined by a window centered at x,

[129]. For a given point x1 (and its corresponding window), we assume that p(x1) is well-

behaved and can be locally approximated by a member of a simple parametric class such

as a linear or quadratic polynomial. Using local regression, an estimate, 2(x1), is then

calculated using weighted values of Y in its local region. Together, all such /2(x1) are

combined to form the overall estimated function spanning the entire data set. Our ability

to model local behavior using a low-order polynomial stems from Taylor’s theorem that

states that any differentiable function can be approximated locally by a straight line and a

twice differentiable function can be approximated by a quadratic. Hence, there is a

smoothness assumption in the functions being estimated using LOESS.

It is important to emphasize that although a polynomial is used for fitting locally,

the overall fit covering the entire range of data is non-parametric. The polynomial is

only used to find the value and slope of the estimation point (current center of the

regression window). The accumulation of these estimates forms the overall LOESS fit

which need not be parameterized a priori.

For most applications, it is sufficient for locally-fitted polynomials to be either

linear or quadratic. For ASIP DSE, we are generally concerned with the coarse-grained
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behavior of a relatively-small neighborhood of the design space. As a consequence, we

use linear least-squares regressions for the work presented here.

If the local regression is approximated by a linear function within a neighborhood

ofx1, then the closed-form estimate of p(x) is [143]:

j2(x) = b0 +(x—x)b1 (43)

where

=

b1
= w,(x)(x —)Y

w(x) w,(x)(xi_iw,)2

= 1

w(x)
i—I (4.4)

and w1(x) is a suitable weighting function.

The closed-form estimate of Equation (4.4) is based on a least-square fitting

criterion which satisfies the following:

mm w (x)(Y - /2(x)) (4.5)

To estimate the value of unknown data points using known data points, the local

regression weight function from Cleveland [30] was modified so that unknown data

points have their weights set to zero:
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) x e known points

unknown points,
(4.6)

and known data points are weighted with the symmetric weight function. From

[129,143], an often-used weight function is a tricube function:

W(x) = (1— ). (4.7)

w,(x) =

weighting
functiona)

Eu(x)

b)

p(x)

Figure 4.2: The regression window is shifted from left to right for different points
being estimated (shown as an “x”).

x

81



To illustrate the process, Figure 4.2 shows a set of data points with the x-axis as

the predictor variable and the y-axis as the response variable. Both of these plots have

the same three known data points (large dots) and six unknown data points (small dots).

To perform a local regression, a regression window is adjusted with the point to be

estimated at the center of the neighborhood as in Figure 4.2(a). The response values of

all known data points are assigned weights based on their distance from the fitting point.

For a given fitting point, x, Equation (4.7) is used to determine the th weight. These

weighted points contribute according to Equation (4.4) to the calculation of the unknown

point (estimated point). In Figure 4.2(b), the window is shifted to the right to center the

next unknown point.

4.2.3. Point Selection

Point Selection determines the number of points and their location for evaluation.

The number of points can be determined from the bandwidth and smoothing parameters.

The bandwidth, h, of a local regression defines the number of data points used to

estimate local regression at each fitting point. It has a significant impact on the fit of the

local regression through its variance-bias trade-off. If the bandwidth is too small then the

resulting fit will be too noisy (will have large variance). On the other hand, if the

bandwidth is too large, then the polynomial will not provide a good quality fit. As a

result, ,t2(x1) could be distorted and will therefore have increased bias.

An approach specified in [144) uses a smoothing parameter, a, defined as:

2+1
<a<1

n (4.8)
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where 2 is the degree of the local regression polynomial and n is the size of the data set.

For a linear least-squares, 2—i. If we assume that n=9, then it follows from Equation

(4.8) that O.22<a<i. To balance bias and variance, the smoothing parameter should, by

“rule-of-thumb”, lie between 0.25 and 0.5 for most applications [144].

For LRM-DSE, a nearest neighbor specification for bandwidth is used. This

ensures that the fitting neighborhood always has a fixed number of points. With this

assumption, the bandwidth can be expressed as h Enal. If n=9, then h 2. When

using the more practical rule-of-thumb, the bandwidth should be h 3. This

specification is suitable for a linear fit where the response is known for all data points in

the regression window. Thus, the following minimum exists for the number of known

points used for a local regression at each position of the local regression window:

h 2 hard minimum
(4.9)

h 3 conservative mimimum

Beyond the minimum specified in Equations (4.9), the size of the sample set is

important in that it dictates the degree to which we can model fine-grain trends in the

design space. If we sample a large number of points (i.e. >1000 points), we will have a

more accurate model of the design space but at the expense of increased simulation time.

If we have a smaller sample set (i.e. <1000 points), simulation time will be saved but at

the expense of a poorly-modeled design space.

4.2.4. Quality of Fit

To determine the quality of fit and to make comparisons between two or more

local regression models, a simple criterion is needed. We propose a criterion that
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estimates unknown data points and compares them to their true simulated value. We call

this criterion the unknown response validation score (UR V) and it has an average sum of

squares form:

URV(ft)=±(Y _t2(xj)2
m 1=1 (4.10)

where m is the number of unknown data points and the prediction mean squared error is

arithmetically averaged over all data points estimated using our approach.

URV is similar to the commonly used coefficient ofdetermination, R2, as used in

Section 3.5.6.1; however, URV only evaluates points in the solution space that are

unknown. The quality of optimization stemming from the statistical model is dependent

on the error of estimates for only those points that are unknown (small dots in Figure

4.1(b)) and not from points that are known (“x” points in Figure 4.1(a)).

4.2.5. LRM-DSE Configuration Methodology

The LRM-DSE methodology is composed of six major steps. First, a

neighborhood of interest must be specified which dictates what part of the design space is

modeled. Second, a subset of the points in the design space are selected and simulated.

Third, LOESS is used on the sampled points in order to model the underlying trend.

Fourth, this model is used to estimate the value of all remaining points within the

neighborhood. Estimated points are then included in the model. Last, the model is used

to identify which point or region in the neighborhood optimizes the objective function.

A detailed description of these steps follows:
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Step 1: Specify the Neighborhood to be Modeled:

The neighborhood of exploration defines the subset of points within the

design space modeled for one instance of LRM-DSE. Irrespective of whether

LRM-DSE is used as a stand-alone DSE algorithm or if it is used as part of

another algorithm, the neighborhood of exploration must be specified. In many

cases where the terrain of the design space is coarse-grain, the neighborhood can

include the entire design space. In other cases where the terrain is more complex,

it is more effective to use smaller neighborhoods. In such a case, LRM-DSE

would be the inner loop of an algorithm where the outer ioop is hill-climbing or

hierarchical exploration. For such cases, each iteration of the outer loop would

shift its neighborhood closer towards the direction where the global minimum

seemingly resides.

For both examples presented in this thesis, we expected relatively smooth

trends between each dimension of the design space and the objective function. As

a consequence, we treat LRM-DSE on its own as a DSE algorithm and specify the

neighborhood as the entire design space.

Step 2: Determine Sampling Points:

Once a neighborhood has been specified, we have the freedom to choose

the data points that make up the sample of points simulated and those to be

estimated. As discussed in Section 4.2.3, the size of the sample set defines a

relative trade-off between model accuracy and simulation time. The two

sampling policies investigated here are random-based selection and evenly

distributed selection. Random-based has the advantage that the sample set can be
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sized with finer granularity. The accuracy of a random-based selection versus

evenly-distributed selection will be compared in Section 4.3.4.1.

Step 3: Model the Underlying Trend by Applying LOESS to Sampled Points:

For each known point within the neighborhood, local regression

techniques are used to estimate its value such that an overall “smoothing” trend

can be found (note that they may not be equal). These estimates do not replace

known values found through simulation but are used in the next step to estimate

the value of unknown points.

To perform LOESS, we incorporated a free statistics environment into our

flow called R [145]. Multi-dimensional LOESS was performed using the R

compatible Locflt library offered by Bell Laboratories [146]. As discussed in

Section 4.2.1, LOESS is a non-parametric statistic such that designers need not

specify the precise characteristics of the model a priori.

Step 4: Estimate all Unknown Points:

The values of unknown points are computed based on the estimated values

of known/simulated points. They are estimated in LRM-DSE using cubic

Hermite polynomial interpolation for large data sets. With large numbers of data

points, LOESS could become computationally expensive. This is especially true

for multidimensional design spaces.

For small data sets, LRM-DSE estimates unknown points using another

approach. This approach is a natural extension of the LOESS calculation in

Equation (4.4) and can be used to estimate unknown points in the same way as it
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can for known points. The difference, however, is that unknown points are

treated as “singularities” by setting their weight to zero.

Step 5: Use Model to Select Point to Maximize Objective:

This step simply chooses the optimal point or region in a neighborhood of

the design space based on the model generated in the previous two steps. In the

cache example to be discussed in the chapter, the optimization metric is power.

The estimated optimal configuration within the design space is selected by simply

choosing the lowest-valued point (whether known or estimated) in the model.

This 5-step process sets the parameters for a given ASIP for a target application.

Practically, the use of regression modeling with DSE is well-suited for parameters

associated with smooth functions. It is ineffective if the function has singularities or the

parameter has a limited set of options. For example, there is little use in performing

regression on a parameter with only two values that specify whether or not a multiply-

accumulate unit should be included in the architecture, or whether an integer or floating-

point architecture is suitable. The power or performance of a memory, on the other hand,

can be expressed as a smooth function of its size and is therefore better-suited for our

approach. This is also true for many of the parameters related to the cache, branch

prediction, and register file.

4.3. Example: Tuning the Cache Hierarchy

4.3.1. Cache Hierarchy

The true capability of LRM-DSE is best illustrated on a cache memory example

since this is an important application with many parameters. In addition, the memory
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cache of a processor has a large impact on its total power and performance. In some

cases, the memory hierarchy can consume as much as 50% of the system power [147].

Currently, many vendors offer tunable caches; however, the designer is left to manually

choose the correct configuration for their application.

Cache size is a function of the number of lines in the cache where each line is

indexed by a memory address. The more lines in a cache, the fewer the cache misses. In

fact, an infinitely large cache will have no cache misses. The number of additional

cycles required to execute an application is significantly affected by cache misses.

Power, on the other hand, is affected by cache size in two competing ways. A larger

cache will dissipate more power per cycle; however, a larger cache will reduce the total

number of cycles to complete a task, thus reducing overall power. Cache sizes are

typically chosen in powers of 2 which causes large variations in performance and power.

Block size and the associativity both affect the size of the cache by increasing line

size. As a consequence, they directly affect cache power dissipation. With respect to

performance, the block size and associativity affect the number of execution cycles in a

several ways. A larger block size improves spatial locality; however, it also incurs a

larger penalty when a miss occurs. A higher associativity reduces the number of misses

due to conflict; however, it also reduces the number of entries in the cache thus

increasing the number of capacity misses. When comparing all parameters, it has been

shown that line size and block size have a higher impact on performance than

associativity [148]. For this reason, we focus on the configurability of the line size and

block size.
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Recent generations of processors tend to have larger caches and more levels of

cache. The trend towards more levels of cache is a consequence of the growing trend

towards increased memory size. As the size of main memory increases, the size gap

between successive stages in the memory hierarchy increases. If the granularity of cache

sizes is too coarse then there can be an inadequate match between the varying levels of

locality within the application and the cache levels to serve them properly. The

downside to more levels of cache is that additional levels of cache hierarchy require

overhead circuitry. Also, more levels of hierarchy make DSE much more difficult

because of the increased number of configurable parameters.

4.3.2. Tuning the Cache using LRM-DSE

The set of all possible cache configurations in the following example is defined

by nine parameters for two levels of cache. Table 4.1 lists the range of values used for

each parameter. To reduce the simulation time needed to provide comparisons to LRM

DSE, cache configurability is limited to dimensions P1 through P5 with the remaining

dimensions set to a single fixed value.

Table 4.1: The dimensions of the design space resulting in 19,278 configurations.

Description Range
P Li instr. cache size { 1K, 2K, 4K, 8K, ... , 256K }
P2 Li data cache size { 1K, 2K, 4K, 8K, ... , 256K }
P3 L2 unified cache size { 32K,64K,. . .,2M }
P4 Li instr. block size { 8, 16, 32, 64, 128, 256 }
P5 Li data block size { 8, 16, 32, 64, 128, 256 }
P6 Li unified block size { 64 (fixed)
P7 Li instr. block size { i-way } (fixed)
P8 Li data block size { 4-way } (fixed)
P9 Li unified block size { 4-way } (fixed)
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Configurability was provided for both the cache size and the line size because these

parameters have been shown to have a higher impact on performance than associativity

[148). After removing illegal combinations, the resulting design space has 19,278 valid

configurations which is sufficient to demonstrate the approach.

4.3.3. Experimental Platform

Figure 4.3 illustrates the experimental platform used to test our approach. A set

of benchmarks drives the overall system. A “C” description of each application is

compiled using the GNU cross-compiler toolset [149]. The code is then executed with

Power Analyzer [135]. Results from the local regression tool are used to configure the

compiler and the simulation tool through architecture description files. In accordance

with Power Analyzer, energy is reported as the sum of individual power dissipation

values sampled for all cycles. Units are reported as Joules*cycles/sec.

C Applicatior (ase Architectur
I Desciiption

— I DescnPton

+
— LRM-DSE

i +
TooJChae I ft:rients I

______________

I
I Next Iteration

i
Step 6 Step 5 Step 4

Opticazec

z.TrMaxOP.n.zatior
_UnknOWn

Points
TrendJES) I

______

I
4 I

I j____________________ ( cestgnpac€Th I
MOd

Figure 4.3: The LRM-DSE experimental flow incorporating LRM-DSE.

Experiments were conducted using the StrongARM architecture [150] as the base

processor. The GSelect branch predictor and a 2-level cache have been added to the

processor in order to perform DSE experiments in the following sections. As a baseline

for comparisons, we use a typical default configuration where the level 1 data cache is
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16K, has a line size of 32 and an associativity of 4. The level 1 instruction cache is 16K,

has a lines size of 32 and associativity of 1. The unified level 2 cache is 256K, has a line

size of 64, and an associativity of 4. The default size of the branch predictor pattern

history table (PHT) is k=1024.

Ten benchmark applications were taken from the SPECcpu2000 Integer Suite

[151] and the MediaBench Suite [152]. Each benchmark was limited to a maximum of

100 million instructions (with a 50 million instruction warm-up) to allow the exploration

of larger design spaces.

It is important to note that our technique does not provide models for timing,

power consumption, or area of the synthesized processor. Rather, it assumes an adequate

level of accuracy in the simulation tool itself, and then predicts simulation results based

on previous simulations. The main purpose of our approach is to drastically reduce the

number of simulations that need be performed with the simulation tool.

4.3.4. Results

4.3.4.1. Quality of Estimates

The design space defined by the parameters in Table 4.1 was modeled using

LRM-DSE. As mentioned earlier, a cubic Hermite polynomial interpolation is used to

estimate unknown points. Initially, the distributed point selection policy used for cache

was based on the conservative minimum in Equation (4.9) (3 samples per dimension).

As a consequence, the number of points sampled and simulated was 3=243 which

corresponds to 1.3% of the design space. Initial experiments found that it is possible to

further reduce the proportion of the design space simulated so experiments were

conducted with random selection.
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The following proportions of points randomly sampled were used for simulation:

p = (0.2%, 0.4%, 0.6%, 1%, 2%, 4%, 8%). With p = 0.2%, the number of points

sampled in each dimension is slightly above the hard minimum as defined in Equation

(4.9).
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Figure 4.4: URV(.L) and percentage power improvement for different sampling densities.

Each point estimated using LRM-DSE in the design space was then compared

against the simulated value and the value of URV (which is similar to the R2 measure).

URV results are shown in Figure 4.4 for all values of p. In addition, the average power

improvement over the default configuration is shown for each value of p. Each bar is the

average URV over all benchmarks. From this figure, it is evident that the quality of the

LRM-DSE improves with higher sampling rates but levels off at around 1%. Also

included in Figure 4.4 is the result for evenly-distributed point selection. Of the various

random sampling rates, p = 1% is a good tradeoff between quality and reduced number

of simulations. This sampling rate corresponds to a lOOx speed-up over an exhaustive
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search of the design space. Evidently, evenly-distributed point selection with p = 1.3%

has roughly the same quality of fit as random selection with p = 1%.

Table 4.2: The power reduction due to LRM-DSE for random and evenly distributed sampling.

% Power Reduction
(PLRM-DSE VS Pdefault)

E % Power Reduction
Random Distributed (Poptimai VS Pcjetauit)
(p=l%)

(p=I3%)

Qsort 11.6 12.0 13.9

CRC32 8.6 8.6 8.9

bitcount 8.0 8.2 10.0

bzip2 53.0 53.0 53.0

g72ldecode 9.3 9.3 10.9

gzip 9.0 10.3 12.6

mcf 14.2 14.2 14.2

Mpeg2dec 5.9 5.8 6.5

sha 9.1 9.1 9.2

Twolt 10.5 10.5 10.5

• Average 13.9 14.1 15.0

4.3.4.2. Power Savings

In Table 4.2, energy results are provided for sampling rates of p = 1% for random

selection (lOOx speed-up) and p = 1.3% for evenly-distributed selection (‘—77x speed-

up). On average, LRM-DSE is able to configure the cache to improve the overall energy

dissipated by the processor by 13.9% for random sampling and 14. 1% for evenly

distributed sampling. These results are very close to the 15% achievable with optimum

configuration. Although not shown, these results correspond to a reduction in energy
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consumed by the cache of 32.8% for random selection and 31.9% for distributed

selection. Note that, while evenly-distributed selection provides a more energy-efficient

solution than random selection for the overall processor, this is not the case for cache

energy dissipation. In fact, some benchmarks may achieve a reduction in overall

processor energy by increasing the size of the cache (and therefore increasing the energy

dissipated by the cache). Perhaps more importantly, these results indicate that random

point selection is nearly as effective as evenly distributed point selection.

Based on these results and additional analysis of the benchmarks, we believe that

random sampling is more a favorable point selection policy over the evenly distributed

approach. Random sampling achieves nearly the same results as evenly-distributed

selection but also allows a larger variety of sampling rates. The ability to fine-tune the

sampling rate is desirable for those applications where increased accuracy is important or

if there is a need for fewer simulations.

4.3.4.3. Offsets from Optimal Configurations

It is interesting to examine the cases where LRM-DSE was offset from the

optimal. Table 4.3 shows the optimal and LRM-DSE configurations for a subset of

benchmarks where they differ by 2-3%. In this table, any parameter values using LRM

DSE (random distribution) that differ from the optimal configuration are underlined. For

these cases, LRM-DSE did not obtain the ideal L2 cache size and the LI instruction

cache size. These results suggest that some dimensions may require more sampling than

others. In spite of these variations, the overall results are all close to the optimal as shown

in Table 4.3.
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Table 4.3: LRM-DSE and optimal configurations are compared for four benchmarks with
parameters that differ underlined.

Optimal L2 unified Li data Li inst

Qsort {8K,64,4} {2K, 16,4) (8K, 16,1)

Bitcount (8K,64,4} {iK,16,4} (32K,64,1}

Gzip {64K,64,4) {4K,64,4) {8K,64,1)

LRM-DSE L2 unified Li data Li inst

Qsort {ZK,64,4} {2K,16,4} {j4,i6,i}

Bitcount {j.K,64,4} {1K,,4} (,32,i}

Gzip (j,64,4) (,64,4} {4j,64,1}

4.4. Conclusions

In this chapter, a method of modeling the design space of an ASIP using non-

parametric statistics was introduced. By configuring a 2-level cache hierarchy, it was

shown that LRM-DSE can find near-optimal configurations while only having to

simulate a relatively small proportion of the design space. This accomplished

automatically thus avoiding the extensive manual fitting required when using the manual

decomposition approach from Section 3.5.

While tuning the cache, only 1% of the design space was evaluated. This resulted

in an overall energy reduction of 13.9% on average with one design as high as 53%.

This improvement is only a few percent less than that of the optimal configuration.

Random sampling was shown to be as effective as evenly-distributed sampling, but

allows more flexibility. The effective speedup is I OOx compared to exhaustive sampling.

LRM-DSE is very promising as a general DSE approach in that it drastically

reduces the number of simulations needed to find the global optimum. Because it is
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effective and fully automated, it places ASIPs within the reach of more system designers

who may not have the in-depth knowledge of processor architecture needed to choose an

appropriate configuration. This allows more system designers to take advantage of the

power and performance benefits possible with ASIPs over off-the-shelf processors.
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Chapter 5: Fast Evaluation of Instruction-Set

Extensions

5.1. Introducfion

Another important aspect of configurability for ASIPs is Instruction-Set

Extensions where the instruction set of an embedded processor is extended with custom

instructions to best suit an application or an application domain. Current ASIP

methodologies are able to specify custom instructions automatically [5, 108]. This

involves the grouping of a number of instructions into a cluster that can be implemented

in hardware as a single complex instruction. This problem can be broken into three parts:

Pattern Enumeration, Pattern Selection (Instruction Selection), and Pattern Matching.

Figure 5.1(a) shows Path Enumeration of a hypothetical basic block of an

application modeled as a directed acyclic graph (DAG). Each vertex in the DAG is a

member of the base instruction-set with its functionality implemented in a Functional

Unit (FU) for the execution stage of the pipeline. Edges represent data dependencies

between operations. Shown at the top and bottom of the block are the entry and exit

operations of the block, respectively. Pattern Enumeration is used to explore the solution

space, and consequently to generate a list of all possible custom instructions in the basic

block. This is repeated for all blocks in the application in order to generate a master list

of candidates. Each candidate in the master list must adhere to the microarchitectural

constraints imposed by the processor architecture. In this figure, only a subset of all

possible candidate instructions are shown and circled.
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c) Mapping
Entry 9

Figure 5.1: (a) Pattern Enumeration, (b) Instruction Selection, and (c) Instruction Mapping.

Once a master list of candidate instructions has been generated, the list is sorted

according to the projected impact of each instruction on processor performance. A

subset of the master list is chosen during the Instruction Selection phase of Figure 5.1(b)

to implement as actual instructions in hardware. A high-level cost function is required to

estimate the potential performance gain of the processor that would result by adding each

candidate instruction. The cost function is typically based on a combination of the

candidate’s frequency of use, the projected impact on block latency, implementation

area, and power when implemented as hardware. Figure 5.1(b) shows the top three

custom instructions from a hypothetical master list which are tagged to be implemented

as new custom instructions.

a) Enumeration
Entry 9

.

b) Selection
A

.

I
I
I

I
I
I

:
Exit

98



Figure 5.1(c) illustrates the mapping of how new instructions to a basic block.

When a group of patterns has been identified, pattern matching is used to determine how

to best map new instructions throughout the application. This pattern matching has been

shown to be NP-hard and equivalent to a minimum-area technology mapping problem

[29].

Several approaches have been proposed to perform Instruction Enumeration and

Selection [110,111,112,114]. All of these are significant contributions towards the ASIP

flow; however, they do not address the effects of pipeline stalls due to data hazards.

Large errors in estimating the perfonnance of applications with new instructions may

result. This motivates the work in this chapter. Like many algorithms in ASIP and

compiler research, the methods in [110,111,112,114] operate on intermediate

representations of the application by adding, removing, and clustering operations. One

way to improve all algorithms of this type would be the addition of a “hazard-aware”

performance predictor for architectures with pipeline data-hazards.

Dependencies between instructions in the DAG have the potential to stall the

pipeline whenever an instruction waits for a result from preceding instructions. This is

illustrated in Figure 5.2 which shows a processor arithmetic logic unit (ALU) with

custom functional units (FUs). To prevent stalls, many processor architectures

implement a forwarding scheme where the output of an FU is forwarded from one stage

to another so that the FU corresponding to the next instruction can immediately use the

value (FU-to-FU forwarding). To accomplish this, multiplexers must be added to the

inputs of all FUs. Further, for every custom instruction added to the architecture, a

custom FU must be added to the hardware. Similar to the base architecture, custom FUs
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must contend with pipeline dependencies and stalls. As a result, a custom architecture

can only be free of data hazards if multiplexers are added to all FUs so they can fully

access results from all other FUs.

To provide fast performance estimation, [29) and [113] assume an ideal pipeline.

[29] states that “it is not trivial to compute the total latency” of the application with data

hazards. [113] claims that data hazards need not be considered in the presence of FU-to

FU forwarding. As stated above, FU-to-FU forwarding is a possible solution; however,

it would require new multiplexers to be added to all new FUs. This might be practical
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for a small number of custom FUs but it does not scale well thus it would likely add

significant power and performance penalties with large numbers of FUs.

If FU-to-FU forwarding is not used, then it becomes difficult to compute the total

latency of the application after substituting in custom instructions. Figure 5.3(a) shows a

basic block that has been scheduled such that vertex labels indicate the order in which

instructions enter the pipeline. In this figure, operations 4, 5 and 8 have been circled

indicating a cluster of operations. Figure 5.3(b) shows the basic block after the cluster

has been replaced by a custom instruction as represented by the black vertex. After

making this transformation, it is difficult to assess the total run-time of the block without

rescheduling operations. It is desirable to avoid rescheduling because it is expensive in

terms of the run-time of the Instruction Selection algorithm. In fact, a typical scheduling

algorithm such as List Scheduling has a run-time complexity of O(N.log(N) + E) where

N is the number of vertices and E is the number of edges in the basic block [153]. Long

run-time complexity is problematic because Pattern Selection can potentially iterate

through hundreds of thousands of potential clusters and so it is imperative that fast

techniques be developed for estimating run-time.

In this dissertation, estimation techniques were developed on the premise that FU

to-FU forwarding is too expensive and that data hazards must be considered. To

accomplish this, a method is proposed for estimating how the schedule length (in cycles)

of a block changes after substituting a cluster of instructions with a custom instruction

[154]. Because this method is significantly faster than rescheduling, it can easily be

incorporated into Instruction Selection, Enumeration and Matching heuristics to serve as

a “hazard-aware” performance predictor. Thus, the following will be addressed in the
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5.2.1. Problem Definitions

An application can be specified as a control data flow graph (CDFG) in which

each node represents a basic block and each edge represents a control dependency. A

following sub-sections: First, a new method will be proposed for estimating the

performance improvement of automatic instruction-set processors with data hazards.

Second, the impact of hazard-aware prediction on Instruction Enumeration and Selection

will be quantified. This is accomplished by incorporating the proposed predictor into an

Instruction Enumeration and Selection algorithm.
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Figure 5.3: The schedule of a basic block (a) before and (b) after adding a custom instruction.

5.2. Enumeration and Selection
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basic block can be represented as a data flow graph and is modeled as a DAG G=(V,E)

such that V is the set of vertices representing basic instructions and E is the set of

directed edges representing register dependencies.

A candidate instruction set extension (ISE) is represented by a cluster C which is

defined as a subgraph of G, C G. Because C will be implemented as a functional unit

that will load/store values to/from the register file in a single clock cycle, it must adhere

to input and output constraints such that the number of inputs and outputs must not

exceed the number of input ports, and output ports, N01, of the register file. In

addition, C must adhere to a convexity constraint such that there must not exist a path P

such that nodes iEC and kEC are connected through node jC. Otherwise, the result

provided by instruction i would not be available on time for operation k.

During selection, clusters are partially evaluated based on their impact on block

latency when implemented as hardware. To determine this, the latency of the cluster in

both hardware and software must be determined. The latency of the block is equivalent

to its schedule length, which can be defined as follows: Every operation v1 takes

delay(v1) time steps to execute. An operation V1 is said to be scheduled at time t1 if it

starts execution at time step t1. A dependency <v1,v> E implies that an operation vj can

only be scheduled on or after t+delay(v1). A schedule of G is a function S: V—+t where

each operation v is said to be scheduled at time S(i,). The execution time of a schedule S

is the maximum completion time of all operations, ET(S) = max{S(v1)+delay(v)}. The

goal of the scheduling algorithm is to minimize ET(S) so that the block is executed in the

shortest number of cycles.
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For the following sections of this thesis, List Scheduling [153] is used to perform

instruction scheduling within the compiler. The goal behind performance prediction is to

accurately and quickly estimate the schedule length that would be achievable through

List Scheduling.

5.2.2. Performance Estimation (the Simple Predictor)

References [29], [110], and [113] perform Instruction Selection using a metric

that estimates the speedup potential of each candidate instruction. For a given cluster of

instructions, the number of cycles needed to execute all instructions as software is

compared to the number of cycles needed to execute them in hardware. For the simple

predictor, the execution time in hardware and software is,

T. = (5.1)
all instrutions

and,

THWr AHw1 (5.2)
CF_instructions

respectively, where Asw and AHW are the number of cycles needed to execute a specific

instruction in software and hardware, respectively. CPjnstructions is the set of all

instructions along the critical path in hardware.

In hardware, a custom FU fully exploits all available parallelism to execute the

cluster of instructions (spatial computing). As in Equation (5.1), an estimate of the

execution time of the cluster is the sum of the latencies of all operations along the critical

path.
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With respect to software, [29], [1101, and [113] assume that the processor

pipeline is simplified such that there are no data hazards. With this simplification, the

software latency can be easily calculated because instructions are executed sequentially

(temporal computing). As in Equation (5.2), an estimate of the execution time is simply

the sum of the latencies of all instructions in the cluster. For the remainder of this

chapter, we call this approach the Simple Predictor. For this predictor, estimating

performance is relatively straight-forward. If we refer back to the example in Figure 5.3,

the estimated reduction in schedule length for operations 1 through 12 would be 2. In the

next section, we will show how the problem becomes more complex when data hazards

are considered. In fact, results presented later will show that the Simple Predictor results

in a 50% error on average for architectures with data hazards.

5.3. Predicting the Impact of Hazards

In the previous sections, Instruction Enumeration and Selection algorithms as

well as performance estimation techniques were discussed for ideal pipelines (i.e., no

data hazards). Also, a formal definition of a schedule was provided. In this section,

pipelines with data hazards are considered by first discussing how a schedule is affected

by data hazards when custom instructions are introduced. Further, a detailed description

of the proposed “hazard-aware” performance predictor is provided.

5.3.1. Considering Data Hazards

When data hazards are ignored, the delay(v1)must only be long enough to avoid

all structural hazards. Conversely, when data hazards are considered, the delay(v1)must

also allow for results computed by v1 to be written to registers. Because of this, it is no
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longer possible to estimate changes in the total execution time of the block by simply

subtracting the sum of delays of all instructions in the cluster. Every instruction has the

potential to be stalled by previous instructions or to stall subsequent instructions in order

for dependencies to be resolved. When a cluster of instructions is removed from a block

and replaced by a custom instruction, it can affect the optimal scheduling of the entire

block. As a result, it is difficult to assess the impact of a cluster without performing a

reschedule operation on the entire block. The method proposed in the next section

partitions the schedule in order to obtain a reasonable “first-order” estimate of the impact

of a custom instruction.

5.3.2. Proposed “Hazard-Aware” Predictor

The hazard-aware predictor estimates the impact of a custom instruction on

performance in three stages. First, the block G=(V,E) must be partitioned into levels

based on its pre-schedule ordering and dependencies. Second, this partitioning is used to

determine the best- and worst-case changes in delay for all levels directly affected by the

transformation. Last, the best- and worst-case delays are combined using a summation

weighted by the size of the cluster to generate an estimate.

After partitioning, there should be no dependencies between instructions that

reside at the same level; however, instructions at a given level may be dependent on

instructions at lower numbered levels. To perform this partitioning, the first node in the

schedule (entry node) is added to the lowest level. The second node in the schedule is

also added to the same level only if it does not depend on the first node. If it does

depend on the first node, it will be added to a new level. More generally, as the predictor

sequences through the schedule, each new instruction will be added to the current level
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only if it does not depend on any other instructions at that level. If it does, a new level

must be created for that instruction. This partitioning step need only be completed once

before using the predictor in an algorithm.

To illustrate this process, Figure 5.4(a) is an example DAG of a block divided

into dependency levels. Each node represents an instruction with a label indicating its

pre-scheduled ordering. Arrows represent data dependencies between instructions and

dotted lines represent the divisions between dependency levels.

a) Entry b) Entry 0

L=9

-
-

L=1O ,“ ® L=1Q
I

-

L=11 “ ®® ® L=11

L=12 JL*L=12

Exit Q
c) EntT9

L=9
--:

-

“0 ®® 0L=1O

Exit

Figure 5.4: A DAG representation of a basic block (a) partitioned according to levels of dependency,
(b) with worst case dependencies, and (c) with best case dependencies.

Exit
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By organizing the block of instructions into levels as in Figure 5.4(a), the

predictor isolates the impact of the custom instruction to only those levels with

operations involved in the cluster. An approximation is made by assuming that the

schedule for all other levels will not be significantly affected by the substitution of the

cluster with a custom instruction. Suppose that a cluster has been identified as consisting

of instructions 4, 5, and 8. After the transformation, these instructions will have been

removed and replaced with a custom instruction at level L=1O. To estimate the impact of

this modification, the predictor will approximate the change in schedule length only for

levels L=lO and L=I1.

To determine how the schedule length of levels L=1O and L=11 will be affected

by a custom instruction, the predictor must calculate the worst-case and best-case

possible schedule lengths for these levels. This must be performed without the

knowledge of how the instructions at these levels would be ordered if they were to be

fully rescheduled. What is certain is that all instructions at a given level can be swapped

without violating dependencies. Because the four instructions at level L=1O are not

dependent on each other, they will be properly pipelined and will take only 4 cycles to

execute no matter what order they are scheduled. Unfortunately, by not knowing their

ordering, our predictor cannot determine whether or not the first instruction to be

scheduled for a given level is dependent on the last instruction to be scheduled from the

previous level. If it were as shown in Figure 5.4(b), this would result in the worst case

delay and would add an additional P-i cycle stall penalty where P is the effective length

of the pipeline. This stall would need to be added twice: once for the transition from

level L=9 to level L=1O and once for the transition from level L=iO to level L=ii. If
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P=1 0, the worst case delay for level L=1 0 includes 4 cycles to execute instructions and

two stalls,

Dworst(lO) =4+9+9=22 (5.3)

To calculate the best-case delay as shown in Figure 5.4(c), the predictor assumes

that the only dependency that exists is between the last instruction scheduled at the

current level and the first level instruction scheduled at the previous level. Thus, the best

case stall penalty would be P minus the number of instructions on both levels plus one.

Two stalls for two level transitions would be added to the 4 cycles needed to execute the

instructions at level 10. Thus,

Dbest(lO) =4+(1O—(3+4)+1)+(1O--(4+3)+1) =12 (5.4)

The above-mentioned approach only assesses the best- and worst-case delays for

one level. To calculate the impact of a given custom instruction, delays for all levels

directly affected by the transformation must be calculated. Using the same approach in

the example, the best- and worst-case delays are summed for all levels. If the levels of

interest are L = a to L =fl, inclusive, then the worst and best case latencies are:

Dworst (a, fi) = (6 — a + 2)(P —1) + N1
1=a (55)

and

Dbest(a,/J) = max(0,P—N1—N1÷1+1)+N1
l=a-1 l=a (56)

respectively, where P is the length of the pipeline loop, N1 is the number of instructions at

level 1, and afl. For levels L=10 and L=]1 from the example,

D011(10,l 1) = (11—10+ 2)(10—1) +(4+3) = 34 (5.7)
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and

Dhec/ (10,11) = max(0,1 0—3 — 4+1) + max(0,1 0—4—3+1) +

max(0,10—3—2+1)+(4+3)= 21 (5.8)

Once the worst and best case delays before the transformation have been solved

using Equations (5.7) and (5.8), the predictor must perform the same calculation for the

block after the transformation (i.e., replacement of cluster with the custom instruction).

The maximum and minimum changes in delay can then be calculated as follows:

1max (a, /3) = Dworstbef,re (a, ,8)
— Dbest aper (a, /3)

(59)

and

AD (a, /3) = Dbes( before (a, /3) — D worst ,afler (a,
(5.10)

In the above, /iD,(o/3) is a useful result because it serves as a lower-bound on the

reduction in execution time. This is true because the calculation of ADmjn(O/3) provides

a legal schedule that represents the worst-case reduction in cycles due to the

transformation.

Once the maximum and minimum impact of a transformation has been

determined, an estimate of the change in the overall schedule length due to the

replacement of the cluster C with a custom instruction can be found. In our approach, a

weighted summation ofAD,0(a/3) and ADm(c/3) is used,

AD(a,/3) = (1— A) .ADmin(a,/3)+ A ti3max(a,fl) (5.11)

where 0 A 1 is a weight coefficient. A is determined dynamically on a per block

basis and can be a function of block characteristics such as the code length, the number

of levels, or the number of levels to block size ratio. For simplicity, we restrict A to be a
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linear function of cluster size. This works well because the larger the cluster size, the

larger the proportion of instructions at each level that will be consumed within the

cluster. With a larger proportion of each level consumed within the cluster, it is more

likely that a longer stall will arise between levels as a consequence of the transformation.

As a result, the /1D,nax(0/3)term will become the more prominent factor term in Equation

(5.11).

As the enumeration algorithm adds or removes operations to the current candidate

to specify a new candidate, it keeps track of the number operations at each dependency

level and the maximum and minimum level involved. This information can be retrieved

by the “hazard-aware” predictor in constant time to calculate the first term in Equation

(5.5). The second terms in Equations (5.5) and (5.6) can be incremented or decremented

in constant time as new operations are added to the cluster during instruction

enumeration. Pre-calculated values for the first term in Equation (5.6) can be stored in a

hash table and retrieved in constant time. Overall, the run-time complexity of the

“hazard-aware” estimator is 0(1), or constant time complexity. Thus, it has the same

run-time complexity as the simple predictor and significantly lower run time complexity

than List Scheduling which is O(Nlog(N) + E), where N is the number of vertices and E

is the number of edges in the basic block.

5.4. Experimental Platform

A system was developed to conduct the configuration experiments described

above. Figure 5.5 illustrates the flow that was implemented in this work to perform

software compilation and hardware configuration. A “C” description of the application

is parsed and optimized by a modified version of the Trimaran compiler infrastructure
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[138] which then produced ARM v.4 assembly code and a file listing all instruction-set

extensions added to the ISA. In a similar way to [155], the base processor was modified

to be more “ARM-like”. In particular, the architecture was scaled down to a single

pipeline with three execution stages where only one instruction can occupy a given stage

at a time. All instructions require three clock cycles to pass through the pipeline. This is

a simplified architecture; however, it is sufficient to demonstrate the effects of data

hazards.

Application
Description

Tnirnaran
Compiler

Infrastructure

1M Assemb

L Description

Power 8

LPenf.
Stats

Figure 5.5: The Trimaran flow with modifications for ISEs.
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The code was then assembled and linked using standard GNU tools [149]. The

binary code can be executed using an instruction-set simulator such as Simplescalar

[156] or Panalyzer [157]. As illustrated in Figure 5.5, instruction enumeration and

selection was added to the back-end of Trimaran. Instruction enumeration and selection

was implemented using the branch-and-bound algorithm presented in [110] but with the

“hazard-aware predictor” outlined in Section 5.3.2. To maximize the number of

opportunities for identifying new instructions, instruction enumeration and selection were

placed before register allocation to reduce false dependencies.

5.5. Results

5.5.1. Accuracy of the Performance Predictor

The “hazard-aware” predictor was incorporated into the flow described in Section

5.4. A set of custom instructions was generated using Instruction Enumeration and

Selection. For each basic block, the cluster that resulted in the maximum reduction in

execution cycles was chosen. The change in clock-cycles for each block was estimated

using the “hazard-aware predictor and was then compared to the best value found

through List-Scheduling. A similar comparison was made between the Simple Predictor

and the List-Scheduler. The purpose of this experiment was to gauge the quality of the

proposed predictor against existing methods.

Table 5.1 presents results for benchmark applications from the MediaBench Suite

[141] and the Trimaran Distribution [138]. These benchmarks are representative of

larger suites frequently used in the microarchitectural community. Results include the
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percent error in execution time per block as predicted by the hazard-aware predictor

versus the simple predictor [29,113].

Results show that the hazard-aware predictor has a mean block error of 15.4%

while the simple predictor has a mean block error of 50.8%. Further, the standard

deviation of block error is 18.9% and 65.8% for the hazard-aware predictor and the

simple predictor, respectively. These results show that the hazard-aware predictor is

more accurate than the simple predictor. Further, the smaller standard deviation of the

hazard-aware predictor indicates that it provides more consistent predictions.

Table 5.1: Error in execution time per block as predicted by the “hazard-aware” estimator.

mean % error std.dev. % error
Simple Hazard Aware Simple I Hazard Aware
Pred. Pred.

-- Pred. j Pred.
bmm 35.6 14.3 46.8 8.9
g72ldecode 97.2 18.6 95.9 21.7
g72lencode 93.5 18.1 96.1 21.3
mpeg2dec 35.9 15.1 51.1 18.4
mpeg2enc 20.8 14.3 54.6 30.8
parms_test 21.9 12.2 50.1 12.4
mean 50.8 15.4 65.8 18.9

The results provided above are promising; however, the “hazard-aware” predictor

has its limitations. If the candidate cluster resides on dependency levels with many

operations, the accuracy of the predictor becomes worse. In particular, the greater the

number of operations per level and the fewer the number of levels occupied by the

cluster, the greater the separation between the worst- and best-case bound given by

Equations (5.5) and (5.6), respectively. With a large separation between these bounds,

predictor accuracy drops. Although the Simple Predictor is not susceptible to this
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limitation, results show that the “hazard-aware” predictor provides more accurate

estimates on average.

5.5.2. Effects of Data-Hazards on Enumeration & Selection

In the previous section, the hazard-aware predictor was shown to be significantly

more accurate than the simple predictor. The hazard-aware predictor was then

incorporated into an instruction enumeration and selection algorithm to serve as a figure

of merit when comparing candidate clusters. The Trimaran compiler was used along

with the branch-and-bound algorithm from [110] with the hazard-aware predictor as a

cost function. Candidate clusters from all blocks were added to a master list of

candidates. To approximate the effects of having an area constraint, only a predefined

proportion 2 of these candidates could be implemented as custom instructions. The best

2 proportion of these cluster candidates were chosen based on their expected run-time

improvement using the hazard-aware predictor. The performance improvement for each

benchmark is reported in Figure 5.6.
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Figure 5.6: Improvement in ISEs due to the “hazard-aware” predictor.
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Figure 5.6 compares overall performance when the hazard-aware performance

predictor is used versus the simple predictor. In both cases, the architecture has a

pipeline with data hazards. Averaged over all benchmarks (see right-most profile), the

difference in performance improvement between the two predictors was found to be

4.9%, 8.4%, 6.0%, and 1.9% for 2 values of 20%, 50%, 80%, and 100%, respectively.

These results are significant because their benefit to overall processor speed is additive;

on average, an improvement towards the overall speed can be expected for each custom

instruction added to the ISA.

The improvement is best for the first three values of 2 when the hazard-aware

predictor plays a role in choosing candidates at the block level and at the application

level. When 2=100%, all candidates at the application level are used as custom

instructions. In this case, the improvement is less prominent because candidates are only

compared at the block level where there is less granularity in the quality of candidates

that adhere to all microarchitectural constraints.

5.6. Conclusions

In this chapter, a new evaluation method was proposed for evaluating points in

the custom instruction design space. In particular, a “hazard-aware” performance

predictor was developed for pipelined architectures. In addition to providing an estimate

to the change in execution cycles of an application due to custom instructions, the

“hazard-aware” predictor also provides a strict lower-bound. The estimate calculated by

the tool was shown to be more accurate than the existing predictor which ignores hazards
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and is faster than List-Scheduling. By adding this predictor to an Instruction

Enumeration and Selection flow, performance was improved by as much as 8.4%.

This is just one example of an algorithm and flow that benefits from the increased

prediction accuracy, but other algorithms used for Instruction-Set Extensions would also

benefit. The proposed predictor serves as an alternative for predicting performance when

data hazards are present and improved schedule length accuracy is important.
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Chapter 6: Conclusions

The embedded systems market is continuing to grow as the market demand for

communications and portability grows. ASIPs are continuing to expand their application

in embedded systems because of the significant performance and power gains that are

achievable over off-the-shelf processors. Evidence of this lies with the growing interest

in ASIPs in both academia and industry. The growing trend towards heterogeneous

multiprocessor systems-on-chip (MPSoCs) will further increase the demands for ASIPs.

ASIPs are still in their infancy and have plenty of room for improvement. This is,

in part, because the set of configurable parameters is limited and because most of the

configuration must be done manually. From an industry perspective, the key problems

associated with ASIPs are lack of automation breadth and depth. In terms of breadth, the

ASIP flow should be thoroughly automated, thus making it useable for the average

system designer, and should cover a wide range of configurable parameters and base

processors. With respect to depth, ASIP tools should be able to deliver more

performance than currently available. From the perspective of academia, the key

bottleneck to the automatic configuration of ASIPs is design space exploration (DSE).

As better DSE methodologies are developed, the benefits will propagate to the user

providing faster, more accurate, and more useable tools, thus serving the needs of the

industry.

A typical characteristic of most DSE problems for AS1Ps is that the cost of

evaluating each point in the design space is very expensive. Each configuration of the

processor affects the outcome of the optimization goal in a complex manner that is not

easily estimated. Typically, evaluation of a point requires configuration of the processor
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and compiler flow, and simulation of the processor using the target application. Because

each evaluation is so expensive, Monte Carlo-based optimization algorithms are typically

not appropriate.

Current research in ASIPs has focused automatic configuration problems for

specific parts of the architecture such as the instruction-set. All of these problems can be

categorized into one of the following two key topics: how can DSE exploration be

improved and how can evaluation time be reduced.

6.1.1. Research Summary

In this dissertation, an approach for DSE exploration is proposed to solve a

variety of ASIP configuration problems called Design Space Modeling. Design Space

Modeling is suitable for optimization problems and for exploring trade-offs between

parameters and objectives. With only a small sample of points simulated, this approach

uses statistical inference to construct a model of the design space. Using this model,

system designers can find an optimal processor to suite their application while avoiding

the time consuming process of evaluating all possible architecture configurations

manually. Although the focus of this dissertation has been on ASIPs, the proposed

approach can be applied to many other optimization problems in other disciplines.

To the best of the author’s knowledge, the approach to DSE modeling for ASIPs

outlined in this dissertation is a novel approach that is computationally efficient and

requires only a limited number of simulations to construct the model. Comparable works

were published concurrently by two other research groups ([125] and [126]); however,

they focused on general microprocessor modeling rather than ASIPs. Also unique to the

approach outlined in this dissertation is that the design space model is constructed using
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non-parametric statistics (LRM-DSE). This approach can construct the design space

model with the speed and transparency of the Manual Regression Approach [125] and

the automation of the Artificial Intelligence Approach [126]. The Non-parametric

Approach suffers from reduced model accuracy relative to competing approaches;

however, this may not affect its ability to be used for optimization because of its

effectiveness in identifying overall trends in the design space.

The combination of fast and transparent model construction with a high level of

automation makes the Non-parametric Approach the most appropriate approach for DSE

in high level ASIP architecture design tools. Full automation improves the accessibility

of ASIP tools for system designers and allows them to explore a larger variety of designs

earlier in the design flow. Faster model construction allows designers to explore a larger

variety of architectures earlier. Because architecture DSE is typically performed early in

the design flow when many design decisions involve course-grain changes, small

reductions in model accuracy are tolerable if automation and modeling speed are

improved.

In addition to fast exploration, design space exploration for instruction-set

extensions requires fast evaluation of candidate instructions because they must often

evaluate a very large number of candidates. Previous methods were too simple in that

they did not consider data dependencies within the pipeline. To the best of the author’s

knowledge, the approach proposed in this dissertation is the first published work to

consider data hazards within the pipeline while evaluating candidate custom instructions.

This approach improves the quality of instruction-set selection over previous methods

while maintaining constant time run-time complexity. In spite of this improvement over
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previous approaches, the proposed approach continues to suffer from significant error.

As a consequence, future work should be directed at further improvements in accuracy.

In summary, the main contributions of this thesis are as follows:

• A fast design space exploration methodology for ASTPs that models the design space

through statistical inference by dramatically reducing simulation time (1 OOx

reduction for the 2-level cache problem). This approach is called Design Space

Modeling.

• A variant of the Design Space Modeling approach that constructs the model using

non-parametric statistics. This approach is called LRM-DSE. A qualitative

comparison is made between LRM-DSE and two other approaches developed

concurrently by other research groups.

• LRM-DSE is applied to cache tuning with results comparable to that of state-of-the-

art methods developed specifically for cache. In fact, architectures configured using

LRM-DSE improved power dissipation results to within 2-3% of the optimal.

• A fast performance estimation approach for evaluating configuration of instruction-

set extensions. This approach improves the effectiveness of Instruction-set Selection

and Enumeration by as much as 8.4% per custom instruction by considering data

hazards. Even with the additional processing necessary to consider data hazards, the

proposed estimator maintains constant run-time complexity.

The modeling approach proposed in this dissertation is a promising approach.

The interest and effort made by other research groups in developing similar work helps to

validate the importance of the research direction. Further, the robustness of the approach

is supported by the success of other research groups that used a variety of
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implementations and experimental platforms. It is expected that the quality of the

modeling will improve with ongoing research and it will be applied to a wider variety of

architectural features. Not only does this methodology serve as a noise-resistant

alternative to traditional heuristics for optimization but it can also be combined with

other heuristics to improve run-time and quality. One approach, for example, could use a

coarse-grain design space model to serve as a “map” to guide the path-oriented heuristic.

Another approach could use design space modeling as a method for evaluating an

extended neighborhood during hill-climbing approaches rather than just immediate

neighbors.

Acceptance of this approach by the industry will require a more thorough

understanding of when the approach works well in comparison to traditional heuristics

approaches. Further, it will require a deeper understanding of when each variant of the

approach is most effective. Once this has been determined by the research community,

this approach will likely have an impact on the industry at some level.

The experimental approach used in this dissertation was in line with approaches

taken in industry. All experiments used state-of-the art simulation tools and compilers.

All experiments targeted the most relevant questions for each topic and were conducted

on commonly used benchmark suites. In spite of this, however, several important

questions were not addressed in the dissertation. For example, a quantitative comparison

between the various other model construction approaches would have been beneficial.

Because the DSE approaches developed in this dissertation were done so concurrently

with the other research groups, a description of these approaches was not available in the

literature until recently. Thus, it was not possible to perform a quantitative comparison.
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Another major limitation of the experimental approach was an incomplete

quantitative comparison of the various sampling approaches. In the context of LRM

DSE, both evenly-distributed sampling and random sampling were compared; however,

there may be benefit to regional, weighted, and adaptive sampling policies.

6.1.2. Limitations

It has been suggested that design space modeling is computationally less

expensive than path-oriented heuristics. Evidence for this is based on qualitative cost

measures but a thorough comparison is still necessary. Research may show that, in some

circumstances, the number of points to be evaluated in a sample set is greater than the

number of points evaluated during a path-oriented search.

In LRM-DSE, the specific variation of design space modeling proposed here,

there are a few known limitations. Because LRM-DSE is based on LOESS, it is most

effective on smooth functions. With respect to ASIP configuration, LRM-DSE works

best with memory-related parameters. In this dissertation, the cache hierarchy was

configured; its parameter set is likely a very good candidate for LRM-DSE. However,

many other parameters such as those with discrete values are incompatible with LRM

DSE.

6.1.3. Future Work

6.1.3.1. Short Term Direction

The immediate direction for future work is to improve the quality of design space

modeling through gradual improvements of the LRM-DSE statistics. This will require a
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careful quantitative comparison between the different approaches developed to date so

that the best features can be drawn from each.

In addition, a study should be conducted to determine when design space

modeling is suitable and when heuristics are suitable. From this, hybrid solutions can be

developed that combine both approaches.

6.1.3.2. Long Term Direction

Due to the size of integrated circuits possible with sub-100 nanometer processes,

Multiprocessor Systems-on-Chip (MP-SoCs) have become a more prevalent design style

where the system has multiple processors. Such systems provide a mechanism for real

task-level concurrency thus improving the performance necessary for many of the real

time multimedia and communications applications prevalent today. In addition,

parallelism allows for voltage and frequency scaling that saves energy when compared to

a single processor solution with the same computational burden. MP-SoCs often have a

variety of processor types (heterogeneous MP-SoCs) with a variety of different memory

types throughout, thus creating a platform with components specifically tailored to the

tasks assigned to them.

Using ASIPs (and configurability in general) in MP-SoCs is a natural next step

for improved performance over the use of general-purpose processors and for faster time

to-market over the use of custom blocks. Configurability for IvIP-SoC does come with a

price, however; to add such capabilities introduces additional levels of complexity.

The shift towards an increased number of processors on a system will require

improved concurrency models, more user-friendly development and debugging

environments, improved system modeling, faster simulation, higher-level programming
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abstractions to aid in platform-independent software development, and more efficient

methodologies for finding optimal configurations of a highly-configurable system.

These design problems are collectively part of an emerging methodology referred to as

Electronic System-Level (ESL) design. The need for sophisticated ESL tools goes far

beyond the current offerings of the electronic design automation (EDA) industry. Once

developed, ESL design would allow companies to produce better products faster.

A good direction for future work could be to develop ESL methodologies that

incorporate configurability and extensibility in MP-SoCs. The primary focus of this

should be on ASIPs; however, configurable memory and field programmable gate arrays

(FPGA5) must also be addressed. If successful, this goal would allow designers to

develop high performance MP-SoCs without the need for the costly development of

fixed-logic or ASICs. As a consequence, more companies would be able to produce

more competitive products while reducing their time-to-market window.

The contributions of this dissertation help improve the automation and usability

of design space exploration for ASIP configurability. In doing so, it helps to place future

ASIPs within the reach of more system designers. This will allow system designers to

create products capable of meeting the demands of future communications, medical,

entertainment, and security applications. It will also contribute to the exceptional design

automation challenges that lay ahead as we tackle heterogeneous multiprocessor

computing.
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