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Abstract

Measurement error is a frequent issue in many research areas. For instance,

in health research it is often of interest to understand the relationship be

tween an outcome and an exposure, which is often mismeasured if the study

is observational or a gold standard is costly or absent. Measurement error

in the explanatory variable can have serious effects, such as biased parame

ter estimation, loss of power, and masking of the features of the data. The

structure of the measurement error is usually not known to the investigators,

leading to many difficulties in finding solutions for its correction.

In this thesis, we consider problems involving a correctly measured con

tinuous or binary response, a mismeasured continuous exposure variable,

along with another correctly measured covariate. We compare our proposed

Bayesian approach to the commonly used simulation extrapolation (SIMEX)

method. The Bayesian model incorporates the uncertainty of the measure

ment error variance and the posterior distribution is generated by using the

Gibbs sampler as well as the random walk Metropolis algorithm. The com

parison between the Bayesian and SIMEX approaches is conducted using

different cases of a simulated data including validation data, as well as the

Framingham Heart Study data which provides replicates but no validation

data. The Bayesian approach is more robust to changes in the measurement
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Abstract

error variance or validation sample size, and consistently produces wider

credible intervals as it incorporates more uncertainty.

The underlying theme of this thesis is the uncertainty involved in the es

timation of the measurement error variance. We investigate how accurately

this parameter has to be estimated and how confident one has to be about

this estimate in order to produce better results by choosing the Bayesian

measurement error correction over the naive analysis where measurement

error is ignored.
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Chapter 1

Introduction

In many research areas the measurement accuracy of a variable is a frequent

issue. For instance, in health research it is often of interest to understand

the relationship between an outcome Y and an exposure X. When an in

strument is available that mea.sures X correctly, such a tool is called a gold

standard. Suppose that X can only be measured imprecisely due to the

absence or high cost of a gold standard. Examples of such a scenario are in

takes of foods or drugs, and exposure to airborne pollutants or radiation. If

the covariate is a categorical variable, the problem with such imprecise mea

surement is called misclassification, whereas it is referred to as measurement

error for a continuous variable. In this thesis, we will only concern ourselves

with the latter case. There exists vast literature on misclassification, for

example see Gustafson (2004). Covariate measurement error problems are

concerned with inference on regression coefficients where one or more of the

covariates are measured imperfectly. It has been documented extensively

that treating this surrogate variable as if it were the true exposure can lead

to very poor results. We illustrate this with an example in Chapter 4. Car

roll, Ruppert, Stefanski and Crainiceanu (2006) call the effect of ignoring

imprecision in mismeasured covariates the Triple Whammy of measurement
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Chapter 1. Introduction

error because it causes bias iu parameter estimatiou, leads to a loss of power,

and masks the features of the data.

Many methods have been proposed for countering these issues. We will

focus on the first problem of how to offset the bias caused by measurement

error. It is interesting that the magnitude of a regression coefficient of the

incorrectly measured variable is often biased towards zero, a phenomenon

called attenuation. In other words, it will underestimate the true value.

The actual measurement that is made for X is the surrogate and incorrect

exposure variable X*. Further, we denote the correctly measured response

by Y and the other correctly observed covariates by Z. The set of observed

covariates is thus {X*, Z}.

Measurement error problems can be classified into nondifferential and

differential problems, the first of which occurs when X* contains no infor

mation about Y other than what is available in X and Z. In this case, the

distribution of the mismeasured surrogate depends only on the true explana

tory variable and not on the response. Otherwise, the measurement error is

considered differential.

For a given problem it is important to know how the error is arising in

the covariate. In the classical additive error model X* = X + U, where U

is the measurement error, and U ± (X,Y,Z), E(UX) = 0. This model is

used when the error-prone covariate is measured uniquely to an individual,

which is especially true when the measurement can be replicated. Examples
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Chapter 1. Introduction

of classical additive error arise in nutrition surveys and blood pressure mea

surements. However, if all subjects in a small group are given the same value

of the error-prone covariate and thus the independence assumption between

U and X is not satisfied, then the Berkson error model is better suited. In

this model X = X + U where U ± X, Y, Z. This applies to dust exposure

data of miners, for example. Employees having worked in the mine for a

fixed number of years are assigned the same exposure to dust, even though

the true exposure is almost certainly unique to each individual.

The models discussed above are additive measurement error models,

however, the error can also arise in a multiplicative fashion. Examples are

problems where the exposure X is positive and skewed, which occurs fre

quently in epidemiological problems. In that case, the observed exposure

might be assumed to equal the product of the true exposure and the mea

surement error such that X = XU. Log-exposure can be used to convert

such a case to an additive measurement error model. It then follows that

logX* =logX+logU.

1.1 Overview of Some Currently Available

Methods

Many methods have been proposed to deal with measurement error. They

can be broadly grouped into functional and structural models (Carroll, Rup

pert, Stefanski and Crainiceanu, 2006). In functional modelling, the Xs are

regarded as fixed or random with no or minimal distribution assumptions.
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Chapter 1. Introduction

In structural models the Xs are regarded as random variables, thus the

potential for exposure model misspecification arises.

1.1.1 Functional Methods

In order to use functional methods, the size of the measurement error needs

to be estimated. In some cases, a gold standard test is available and one is

able to observe X directly for some subset of the data. This is the validation

data from which the measurement error variance is estimated. In other cases

replication data or measurements from another instrument may be available.

A simple and quite general method called regression calibration (Pierce

and Kellerer, 2004) is appropriate when such a gold standard or replicates

are available and a linear measurement error with constant variance ap

plies. In this method E(XIX*, Z) is estimated and the unobserved Xs are

replaced by these estimates. Then a standard analysis is run to obtain the

parameter estimates. The resulting standard errors are adjusted to account

for the estimation of the parameters, using bootstrap, for example. This

method has been shown to be very useful for generalized linear models, but

performs poorly for highly nonlinear models (Carroll, Ruppert, Stefanski

and Crainiceanu, 2006).

Another simple method that is also potentially applicable to any regres

sion model, but is more computationally intensive than regression calibra

tion, is the simulation extrapolation approach (SIMEX). For SIMEX, the

bias function can be expressed in closed form for linear regression, and thus

having more data leads to better estimates. However, when the bias func

4



Chapter 1. Introduction

tion is not known and has to be approximated, having more data does not

improve this approximation. We will discuss the SIMEX method in detail

in the next chapter.

Although regression calibration and SIMEX are quite general methods

for eliminating or reducing measurement error bias, they result in estimators

that are consistent only in important special cases such as linear regression

(Carroll, Ruppert, Stefanski and Crainiceanu, 2006). In addition, when the

measurement error variance is large, both regression calibration and SIMEX

may not be useful in reducing the bias induced by the mismeasurement.

Score function methods are almost as widely applicable, but result in

fully consistent estimators more generally. In these methods consistency of

the estimators is due to the fact that they are M-estimators whose score func

tions are unbiased even if there is measurement error. The conditional-score

method (Stefanski and Carroll, 1987; Nakamura, 1990) and the corrected-

score method (Stefanski, 1989) differ im their underlying assumptions and

ease of computation. When the assumptions for both are satisfied, the

conditional-score method will usually be more efficient than the corrected-

score method. However, sometimes (for example in Poisson regression) the

conditional-score estimator requires numerical integration, while the cor

rected score has a closed form expression. Both score function methods are

not straightforward to implement and the problem of multiple roots is often

serious (Hossain, 2007).

SIMEX and regression calibration are simple to implement because they

are “add-on” packages to existing software, whereas other methods such as

5



Chapter 1. Introduction

the score function approaches require a completely different analysis set-up.

1.1.2 Structural Methods

To use structural models, the best possible specifications of the measurement

(X*IY, X, Z), outcome (YIX, Z), and exposure (XIZ) models are needed.

Bayesian methods fall into this category, as they are based on a likelihood

approach followed by direct analytic calculations if possible, or otherwise

by estimating methods such as Markov chain Monte Carlo (MCMC) sam

pling techniques. We will discuss such approaches further in this thesis.

Alternatively, one could use a likelihood estimation, which also requires

fully specified measurement, outcome, and exposure models. In this case,

the Expectation-Maximization algorithm could be applied instead of the

Bayesian MCMC techniques.

Bayesian methods have the advantage that they incorporate parameter un

certainty, whereas frequentist approaches are less able to incorporate such

uncertainty. However, they require fully specified exposure models, while

functional approaches, such as SIMEX, do not. This eliminates the risk of

misspeciflcation in the use of functional approaches.

6



Chapter 2

Simulation Extrapolation

The simulation extrapolation (SIMEX) method was first proposed by Cook

and Stefanski (1994) and is a simulation-based means of estimating and re

ducing bias due to additive measurement error (Carroll, Ruppert, Stefanski

and Crainiceanu, 2006). It can be used for inference for parametric mea

surement error models, when the measurement error variance is known or

can be estimated (Cook and Stefanski, 1994). Additional measurement er

ror is added to the already mismeasured covariate and the corresponding

parameter estimates are calculated. The relationship between the parame

ter estimate and the amount of added measurement error is calculated and

extrapolated back to the case of no measurement error. Cook and Stefanski

(1994) show that this approach is asymptotically equivalent to the method-

of-moments estimation in linear measurement error models. The authors

make a very simplified comparison between SIMEX and method-of-moments

estimation using Monte Carlo-derived estimating equations. SIMEX is intu

itive, simple to implement, and can be applied to just about any regression

model, as it creates new datasets with added measurement error. SIMEX is

applicable to general estimation methods, such as least-squares, maximum

likelihood, or quasilikelihood, and can also be extended to nonadditive mod
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Chapter 2. Simulation Extrapolation

els (Carroll, Ruppert, Stefanski and Crainiceanu, 2006). One way to deal

with multiplicative measurement error would be to convert it to additive

error by taking logarithms, as discussed in the last chapter.

To implement this method we use the simex package for covariate mea

surement error in R, written by Lederer and Kiichenhoff (2008).

We assume a simple linear regression of the form Y = fib + j31X + e

with additive and nondifferential measurement error X’ = X + U, where

UJJY, X), E(U) = 0, and Var(U) = a. Typically, although normality of

the measurement error is assumed, it is not completely critical in practice.

It is also assumed that the measurement error variance, o is known or well

estimated. Now, if u > 0, then the ordinary least squares estimate of j3

from regressing Y on X*, denoted by/3x,najve, is biased. Note that SIMEX is

usually not used for simple linear regression, as simple method-of moments

bias corrections can be used. We add further measurement error to the

already noisy predictor and create a new data set in which the measurement

error variance is greater. Suppose that this process is repeated until we have

a total of M data sets, including the naive one. Then each of these data

sets has a successively larger measurement error variance, (1 + (m)o, where

0 = ( < ( < ... < (iw are set by the user. /3x,m, the least squares estimate

of the slope of the m data set, m = 1,2, ..., M, consistently estimates

fixQ/{0 + (1 + Cm)u}. If we regress !3x,m on Cm, we get the following

mean function:

a 2

“ G1t > 0Px,m ) kt)g2+(l+g2 —
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Chapter 2. Simulation Extrapolation

We can extrapolate back to = —1 to get to the case of no measurement

error. From the equation above it is evident that this is the case because

G(—1) = 43w.

We now describe these steps in detail (Carroll, Ruppert, Stefanski and

Crainiceanu, 2006). First, simulated data sets with increasingly larger mea

surement error variance have to be created. Define

Xi()X+Um,i, i=1,...,n,m=1,...,M,

where {Um,i}..i N(0, u) are mutually independent and identically

distributed. They are also independent of all observed data. Because the

error variance in the simulated data has been inflated by a multiplicative

factor of (1 + (, the error variance is zero, in theory, when = —1. Math

ematically Var{X,()IXi} = (1 + C)u = (1 + )Var(XX), which is

equal to 0 when = —1, though we cannot actually generate for

negative values of (.
Now that the data sets have been simulated, the naive estimates based

on these predictors have to be computed. Let!3m() be the estimator when

the m’ additional error is used and then the average of these estimators is

=

m=1

() is the mean from many simulations with the same measurement er

ror. This way, we can precisely estimate the additional bias due to increasing

9



Chapter 2. Simulation Extrapolation

measurement error.

In the extrapolation step 3() is modeled as a function of > 0 and

then the fitted models are extrapolated back to = —1. This extrapolated

value is denoted byI3simex

The choice of the extrapolation function is important, as the wrong

choice could give misleading results and therefore not help in correcting

the bias caused by measurement error. The simex function in R requires

the user to specify an extrapolation function, otherwise the default, the

quadratic function, is used. We apply the quadratic extrapolation function

because it is numerically stable and seems to work best in our scenarios.

The SIMEX method is very popular because it is intuitive and simple to

implement. We note, however, that this method does not completely correct

the bias in practice, as the functional form of the bias is generally unknown

and needs to be approximated. SIMEX works well for popular special cases,

but does not always produce consistent estimators in general.
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Chapter 3

Bayesian Estimation

Bayesian inference implemented with Markov chain Monte Carlo (MCMC)

algorithms are mismeasurement-correcting methods that have become in

creasingly popular with the growing availability of MCMC algorithms.

3.1 Bayes Rule

Assume we have an independent and identically distributed (iid) sample

w = (Wi, ..., w,) from a density fo, where 8 9 is an unknown parameter.

Then the likelihood function is

f(81w) JJf(w).

Note that in the Bayesian framework 0 is assumed to be random. This is

the major difference between Bayesian and frequentist methods, where the

parameters are assumed to be fixed and probabilities refer to limiting fre

quencies (Doucet, 2007; Casella and Berger, 2002). Because 0 is assumed to

be random, we can set a prior distribution ir(0) on it that expresses our belief

about the parameter before having seen the data. Given these distributions

11



Chapter 3. Bayesian Estimation

and using Bayes’ theorem we can construct a posterior distribution

7r1’OIw) — f(81w)Tr(8)
— I f(Ow)ir(8)dEi

Note that this implies ir(OIw) cc f(81w)7r(8), where the proportionality

constant can be obtained by normalization. The evaluation of this normal

izing constant becomes an issue when 8 is very high dimensional and cannot

be evaluated in closed form. For example, suppose we want to compare the

estimators, 8, to 8 by using the quadratic loss function 18 — OH2. In the

Bayesian framework, one would calculate the expected value of 8 under the

posterior (Mann and Robert, 2007):

8 — 1 8r18 w’dO —

8f(8w)ir(8)d8

-J - ff(Ojw)7r(8)d8

Markov chain Monte Carlo (MCMC) techniques or other numerical methods

are needed to complete such calculations. MCMC methods have, since they

were introduced around 1990, revolutionized Bayesian statistics (Doucet,

2007). The posterior distribution is an updated version of the prior combined

with the observed data, as represented by the likelihood. We can then

consider the posterior distribution the new prior and repeat the procedure

to get another posterior. MCMC generates multiple dependent samples by

running a Markov chain a set number of times, whereas sequential Monte

Carlo (SMC) generates multiple independent samples simultaneously.

12



Chapter 3. Bayesian Estimation

3.2 Choice of Prior Distributions

The prior distribution 7r(O) expresses the subject researcher’s knowledge

and belief about the parameter(s) of interest based on previous experience

and subject area knowledge, but without having actually seen the current

data. When such information is not available, the impact of the prior on the

inference must be minimized. A “flat” distribution, called noninformative,

is assigned to such priors, therefore not preferring any values. This process

is not trivial, as there is not one agreed upon notion of “flat” (Gustafson,

2004; Mann and Robert, 2007).

3.3 Markov Chain Monte Carlo Algorithms

In Bayesian problems the posterior distributions are often very complicated,

therefore it is difficult to compute probabilities. The integrals that have to

be evaluated are frequently of high dimensions so that numerical integration

techniques become useless. These problems have made Bayesian analysis

very limited until around 1990 when MCMC algorithms were first applied

to statistical analyses. The MCMC techniques are based on the idea that

it is sufficient to produce a Markov chain t,, where n is a natural number,

whose stationary distribution is f, for instance, the posterior distribution

(Mann and Robert, 2007). If the marginal distribution of t is f, then f is

also the marginal distribution of.t1 (Grimmett and Stirzaker, 2001). For

large n, t is approximately distributed from f.
The following three sections briefly discuss the very general Metropolis-

Hastings algorithm (Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller,

13



Chapter 3. Bayesian Estimation

1953; Hastings, 1970), the random walk Metropolis algorithm (Metropolis,

Rosenbiuth, Rosenbiuth, Teller, and Teller, 1953), and the Gibbs sampler

(Casella and George, 1992). Mann and Robert (2007), among many other

sources, give a good overview of these and additional algorithms.

3.3.1 The Metropolis-Hastings Algorithm

The Metropolis-Hastings (MH) algorithm is a general iterative method to

sample from any probability distribution function f(9) known up to a nor

malizing constant. The first step in the MR algorithm is to set a proposal

probability distribution (8’I 9). Based on the current state of the Markov

chain, a new candidate for 8’ is proposed as follows at the 1th iteration, j 1:

1. Set (°). This can be done randomly or deterministically.

2. Sample 9*

3. Compute

= mm (1
f(’(9I9(1)))

4. With probability(9(i_1),9*), set (i) = 9*• Otherwise set 9(j) =

9(i—1)

3.3.2 Random Walk Metropolis Algorithm

The original Metropolis algorithm incorporates a random walk proposal and

in this thesis we use the following algorithm if the model in question is a

14



Chapter 3. Bayesian Estimation

logistic regression. A new candidate for 0 is proposed as follows at the jth

iteration, i 1:

1. Skip this step if i 1. Compute the maximum likelihood estimate 9

and the covariance matrix E corresponding to the asymptotic (Fisher)

covariance of 8. Set 9(0)
=

2. Generate 0* Nk (O(z_1), s2), where 2 is the scale factor. Typically,

use = I, where I is the identity matrix.

3. Compute

= mm (i
f(9(1)))

4. With probability c(9(), 9*), set = 0’. Otherwise set 0(i) =

9(i—1)

3.3.3 The Gibbs Sampler

The Gibbs sampler is a special case of the MH algorithm with an acceptance

probability of one, when full conditional distributions are available. It is

a simple and popular iterative method to sample from high dimensional

probability distributions. Suppose again we want to sample from f(9), where

9 = (Oi, ...,
Or). Then the algorithm of the Gibbs sampler to generate a

th . (i) (i)Markov chain at the ‘t iteration (° , ...,
0, ) is the following:

1. Set (90), 9,0)) This can be done randomly or deterministically.

2. For j = 1, ...,p, sample O f(0I0),

where 9 = (9(i) i) (i1)

15



Chapter 3. Bayesian Estimation

These MCMC algorithms are simple and general algorithms to sample

from any target distribution, however, the technical details are usually very

tedious. We will apply the Gibbs sampler and the random walk Metropolis

algorithm. These will be discussed in more detail in the simulation ap

plication in the next chapter and the Framingham example in Chapter 6,

respectively.
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Chapter 4

Simulation Study

In this example we consider the case of a linear regression involving two

covariates such that Y = /3 + /31X + 132Z + e, where € is normally dis

tributed with mean zero. We suppose that only a mismeasured surrogate

X is available for X, but we observe Z and Y correctly. For simplicity, we

assume the variables are distributed normally and the measurement model

is nondifferential. Then

XX,Z,Y N(X,r2),

where r2 is an unknown parameter. The response model, parameterized by

i3o, /3i, 2, and u2, is

YIX,Z N(i30+i3iX+i32Z,u2).

The exposure model, conditioned on the covariate Z and parameterized by

€o, o, and A2, is

XZ N(o +ciZ,A2).

We consider a study with n=250 subjects, where X*, Z, and Y are

observed for all subjects. For a validation sample of m = 10 randomly

17



Chapter 4. Simulation Study

chosen subjects, X is also measured. This is applicable for situations where

a gold standard test does exist, but where it is not feasible to administer it to

all subjects due to high costs or time constraints. Let the subscript C denote

the complete data available for the validation sample, and R the incomplete

or reduced data. For instance, X denotes the incorrectly measured variable

for the subjects in the validation sample.

Following Gustafson (2004), we simulate a data set with (X, Z) having

a bivariate normal distribution, each marginal distribution having a stan

dard normal distribution, and a correlation coefficient of 0.75. This set-up

yields (co,c) = (0,0.75) and A2 = 0.4375. We initially set T = 0.5 (Sce

nario 1), and increase it to r = 1.5 (Scenario 2) later. We set (30,d1,,d2)=

(0,0.5,0.25) and u = 1. Firstly, we analyze this hypothetical study using

the frequentist SIMEX approach, secondly from a Bayesian perspective, and

finally compare the results from both methods.

4.1 Simulation Extrapolation Approach

We use the simex package in R (Lederer and Küchenhoff, 2008) for this

analysis. The simexQ function in this package takes an estimate of T as

input, therefore it needs to be estimated from the validation data:

fvrn ( —

= I L4=1kXZC Xjc)

V m

18



Chapter 4. Simulation Study

We assume this value to be correct for its use in the SIMEX algorithm. This

may be too strong an assumption as our validation sample size is small and

we will investigate the validity of this further later. We use the quadratic

extrapolation function because it seems to perform best in the case of this

set-up. This function is usually used when the relationship is not known,

but we use it because of its numerical stability even though we know the

relationship.

The additional data sets with successively larger measurement error are

computed as described in Chapter 2. The extrapolation for this example

is illustrated in Figure 4.1 for Scenario 1 with moderate measurement error

variance, and in Figure 4.2 for Scenario 2 with large measurement error vari

ance. We will later elaborate on these two scenarios, and the performance

of SIMEX in each case. Figures 4.3 and 4.4 show how well the SIMEX ap

proach works in Scenario 1 and Scenario 2, respectively. SIMEX seems to

perform very well in the case of moderate measurement error variance, but

has its shortcomings when the measurement error variance is increased to

1.5 from 0.5.

19
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Figure 4.3: In the case of Scenario 1 (T = 0.5), the solid line shows the
least-squares line had the data been measured correctly, while the dashed line
illustrates the case of the naive analysis where measurement error is not
taken into account. The dotted line illustrates the correction the SIMEX
algorithm provides for this particular example.
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Figure 4.4: In the case of Scenario (-r = 1.5), the solid line shows the
least-squares line had the data been measured correctly, while the dashed line
illustrates the case of the naive analysis where measurement error is not
taken into account. The dotted line illustrates the correction the SIMEX
algorithm provides for this particular example.

To make the SIMEX approach more comparable to the Bayes-MCMC

method, it seems sensible to add uncertainty to the estimate of Var(X* IX) =

‘r2. We achieve this by using the bootstrap method where the pairs (X*,X)

c.’j

C

c’.J

—2 —1 0 1 2
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are sampled and the estimate of r2 is obtained using this bootstrap sample.

This process is repeated 1000 times and 95% confidence limits are obtained

for r. We then perform the SIMEX analysis three times; using the estimated

T, as well as the lower and upper bounds of the 95% CI. For the 3 estimates,

it is possible to get “added-variance confidence intervals” in addition to the

regular confidence intervals. We obtain the former as follows: We take the

and the 97.5 percentiles of the simex 3 estimates using the lower and

upper bound of r, respectively. These “added-variance confidence intervals”

are wider than the regular confidence intervals on the estimated coefficients.

4.2 Bayes-MCMC Approach

We assume prior independence of all unknown parameters, so

f(a A2 2 T2) = f(a)f()f(A2)f(a2)f(T2).

We assign improper locally uniform priors to the a’s and ‘s such that

f(a) 1 and f(j3) ‘-S-’ 1, although alternatively we could use proper, but

very fiat, priors. We use such uninformative priors because they do not

favour any one value for the coefficients. Partly due to their conjugate

property, Inverse Gamma distributions seem sensible to use as priors for the

variances of normal distributions (Gustafson, 2004; Doucet, 2007). So we

assign IG(0.5,0.5) priors to A2, u2, and r2.

The posterior distribution is
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n

f(xR,/3,a,r2,u2,.\2Ix*,xc,y,z)cxllf(xxj,T2)x
j=1

n

[J f(yx, z, 3,u2)x
i=1
n

fl f(xzj, ,
j=1

f (r, a2, 2),

which expands to

1 n/2 (4_x)2)
<f (xR, , , r2, 2, x, y, z) () exp (— 2T2

1 n/2 V’ (v — 13o — — /32zi)2)() exp ( ‘ 2a2

1
n/2 V’ (xi_ao_alzi)2)

><() exP(i1
2A2

/ 1 \ (0.5+1) 7—0.5
exP_Th_)x

/ 1 \ (0.5+1) 1—0.5
exp___-)x

/ 1 ‘ (0.5+1) —0.5

From this posterior we can get the full conditional distributions as follows.

Note that the superscript C denotes the complement.

N ((A’A)’A’x,\2(A’A)’),
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N ((B’B)’B’y,u2(B’B)’),

1 zi 1 X1 Z1

1 Z2 1 X2 Z2
where A = arid B =

1 z 1 x z

We also have:

(r21r2c) ()exp (_
(Zi(x - x)2 + 1)),

which implies that

T2IT2IG(2,U2U).

The full conditional distributions for the other two variance components

can be obtained in a very similar fashion:

22C IGQ1
Ix—Aa112+1)

U2U2IG( HY_B13112+1)

Only considering the cases where no gold standard measurement is made,

the full conditional distribution for XR follows a normal distribution with
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the following mean and variance:

E1 c — (1/r2)x + (32/2) (( —
— 32zi)//31)

+ (i/2) (cO + aiz)
X

— (1/r2)+(2/u2)+ (1/A2)

Var(xIx)
= (i/r2) + (?/u2) + (i/A2)

We are now ready to use the Gibbs sampler and to do so, we need to

continually sample from the full conditional distributions above. We use

10,000 iterations after 1000 burn-in iterations. The traceplots and posterior

densities of j3 and -r in the case of Scenarios 1 and 2 are shown in Figures 4.5

and 4.6, respectively. From this we see that there are no mixing problems.
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Figure 4.5: Traceplots and posterior densities of and T from the Gibbs
sampler for Scenario 1, where the measurement error variance is moderate.
The traceplots show the 10,000 iterations after the 1000 burn-in iterations.
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Figure 4.6: Traceplots and posterior densities of and r from the Gibbs
sampler for Scenario 2, where the measurement error variance is large. The
traceplots show the 10,000 iterations after the 1000 burn-in iterations.

0

o

0 2000 4000 6000 8000 10000

Iterations

0 2000 4000 6000 8000 10000

—0.2 0.0 0.1 0.2 0.3

beta 0

II

0
ID 0

—0.4

0)

ci)
U

0
0

—1.0 —0.5 1.0

Iterations

(N

elrlj
0

0 2000 4000 6000 8000 10000

Iterations

beta 1

i I

0.0 0.5 1.0

beta 2



Chapter 4. Simulation Study

4.3 Comparison: SIMEX versus Bayes-MCMC

It makes sense to compare the performances of the Bayes-MCMC and the

SIMEX approaches by looking at the mean squared errors of the relevart

parameters using both methods. For the Bayesian analysis, both the mean

and the median of the 10,000 MCMC /E estimates were used for comparison.

Table 4.1 shows the MSEs of and /3 based on one hundred simulated data

sets.

Table 4.1: Mean Squared Errors of SIMEX and Bayesian estimates of T

and i3i with varying validation sample size (m) and true -r. We use both,
the mean and the median, in the Bayesian case. The MSEs are based on
100 comparisons between the SIMEX and Bayesian methods.

MSE MSE61
simex Bayes Bayes f simex Bayes Bayes

median mean_IL______ median mean

m = 10
0.0089 0.0054 0.0050 0.0175 0.0369 0.0436

Ttrue = 0.5
m

= 0.0802 0.0083 0.0090 0.1311 0.0718 0.0700
Ttrue = 1.5

m
= 0.0025 0.0020 0.0020 0,0159 0.0200 0.0203

Ttrue = 0.5
m = 50

0.0223 0.0067 0.0067 0.1280 0.0303 0.0298
Ttrue = 1.5

When the measurement error and the validation sample are relatively

small, SIMEX performs better than the Bayesian method in estimating the

L3i coefficient. However, the Bayes-MCMC method outperforms the SIMEX

algorithm in estimating T in all performed scenarios. As soon as the mea

surement error variance is increased, the Bayes-MCMC method works better
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than SIMEX in the estimation of j3. SIMEX seems to deal badly with large

measurement error variance (r2 = 1.52), producing a MSE over three times

larger than the Bayes method in the r estimation and four times the MSE

of the Bayes method in the /3i estimation, even when the validation sample

size is large (m = 50). When the validation sample size, m, is ten and the

measurement error variance is 1 •52, SIMEX produces a MSE of nine times

that of the Bayes-MCMC correction for T and almost twice the MSE of the

Bayesian approach for /. This confirms the intuition that SIMEX should

be vulnerable in the large measurement error case. In summary, SIMEX

seems to perform well in simple scenarios with reasonably low measurement

error variance and the Bayes-MCMC method is more robust to changes in

validation size and measurement error variance.

The average widths, across the one hundred runs, of the 95% confidence

(SIMEX) and credible (Bayes-MCMC) intervals of and /i are shown in

Table 4.2. The added-variance (bootstrap) confidence bounds are also pro

vided. The Bayes-MCMC CIs for are more narrow than the SIMEX ones

obtained via bootstrapping. Since is expected that the Bayesian approach

creates wider CIs than the SIMEX method for /i, the values we get from

the simulation study are reassuring. It is notable that the added-variance

SIMEX confidence bounds are, although wider than the regular SIMEX CIs,

constantly more narrow than the Bayesian ones.
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Table 4.2: Average widths of Confidence and Credible Intervals (CI) using
SIMEX and Bayesian CIs of i and /i with varying validation sample size
(m) and true T. The averages are based on 100 simulated data sets.

i Average CI Width /3 Average CI Width
simex Bayes simex simex Bayes
boot boot

m
= 0.3802 0.2922 0.4010 0.5322 0.7742

Ttrue = 0.5
m = 1

1.1406 0.4189 0.2362 0.2823 1.0734
Ttrue = 1.5

m — 50
0,1846 0.1755 0.3978 0.4735 0.4921

Ttrue = 0.5
m = 50

0.5537 0.3143 0.2368 0.2649 0.6669
Ttrue = 1.5

Another way to compare the SIMEX and the Bayes-MCMC approaches

is to count how many times the confidence intervals and the credible intervals

of f and /3i contain the true values. We use 95% CIs mentioned above for

this measure of coverage. Table 4.3 gives these values out of 100 runs for

the SIMEX, the added-variance (bootstrap) SIMEX, and the Bayes-MCMC

corrections. The SIMEX (bootstrap) confidence bands included the true T

84 times when the validation sample size was 10 and 94 times when the

validation sample size increased to 50, regardless of the true r. When the

validation sample size is large, the SIMEX and the Bayesian approaches

work about equally well in estimating r, while the Bayesian approach seems

to be the better choice when the validation sample size is small. However,

when it comes to the coverage of the true /3 by the CIs, it becomes evident

that the Bayes-MCMC method performs much better, especially when the

measurement error variance is large. If the measurement error variance is
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small, it may be more economical to use SIMEX and perhaps account for

more variance by bootstrapping, than the time and cost consuming Bayesian

approach.

Table 4.3: Confidence and Credible Interval (CI) coverage of the true values
using SIMEX and Bayesian CIs of and /3 with varying validation sample
size (m) and true r. The values denote how many times, out of the 100
runs, the CIs contained the true values. We use the SIMEX and Bayesian
methods, as well as the SIMEX-bootstrap method.

‘ CI Coverage (100) CI Coverage (100)
simex Bayes simex simex Bayes
boot boot

m=10
84 97 83 96 96

Ttrue = 0.5
m=10

84 99 0 1 97
Ttrue = 1.5

m=50
94 93 89 96 90

Ttrue = 0.5
m=50

94 95 0 0 95
Ttrue = 1.5

From this study, it seems evident that the Bayes-MCMC method gener

ally produces more accurate results than the SIMEX approach. When the

measurement error variance is large, SIMEX does a poor job in correcting

for the mismeasurement. Bayesian approaches are more expensive than con

ventional methods, due to computational difficulties as well as the scarcity

of pre-packaged functions, and may not be worth using if the measurement

error variance is small with a simple study set-up.
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Exploring the Bayes-MCMC

Correction

It is well known that the more one knows about the size of the measure

ment error, the better the results of the techniques mentioned in this thesis.

The estimate of the measurement error can stem from a validation sample,

another instrument, or subject area knowledge. But how correctly do we

have to estimate this measurement error in order to improve our analysis?

Moreover, how certain do we have to be that this estimate is correct? In

a Bayesian framework the first question refers to the location of a chosen

prior, and the second to the prior’s width. It seems intuitive that there is

a trade-off on both scales. If our estimate is correct, a very narrow prior

should be best suited. What if our estimate is wrong and we choose a nar

row prior distribution, or our estimate is correct but we have little faith in it

and assign it a fiat prior? Is there a threshold where we end up with better

results by not correcting for measurement error at all? We investigate these

points further using the simulation example set-up from Chapter 4, but now

assume that we have no validation data and thus n = 250 incomplete obser

vations.
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Chapter 5. Exploring the Bayes-MCMC Correction

The question about how much one needs to know about the measurement

error in a given problem could be approached from many directions. We

choose to use five different inverse gamma prior distributions, with scale

parameter a and shape , for r2. All these priors have different widths but

the same mode = 3/(a + 1) = 0.25, and are shown in Figure 5.1 below.
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0
-

— shape=50,scale=12.75
- -

- shape2O,scaIe=5.25
shape=10,scale=2.75
shape=5,scale=1.5

— —

- shape=3,scale=1

‘‘I

o

- 2.0

Figure 5.1: Inverse Gamma (f(x)=IG(o,/3)) plots with mode==O.25, where
is the shape and is the scale of the distribution.

We place the, realistically unknown, true value of T2 at several differ

ent percentiles of these prior distributions. The idea is to investigate what

effect arises from placing these priors on r2 when the true value of the mea

surement error variance is located towards the center or either tail of each

distribution. We examine what happens when we estimate r2 to be around
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Chapter 5. Exploring the Bayes.-MCMC Correction

0.25, at the prior’s mode, but the true value is at a particular percentile of

the distribution. The width of the prior indicates how certain we are about

the estimate.

For instance, if we estimate the measurement error variance to be around

0.25 and are certain, due to prior knowledge, that it is larger than 0.15 but

no larger than 0.45, say, we would choose the IG(50, 12.75) prior out of the

five distributions mentioned. This example is illustrated in Figure 5.2.
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o - -

- shape=50,scale=1 2.75
x=0.15,x=0.45

0-
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0.0 0.2 0.4 0.6 0.8 1.0

x

Figure 5.2: Inverse Gamma (f(x)=rIG(50, 12.75)) plot with mode=O.25, and
a rough approximation of where its support is greater than zero.

Table 5.1 below shows the mean square errors for the parameter,

calculated by performing the analysis with different inverse gamma priors

on r2 with the true T2 values being located at several different percentiles

of these prior distributions. For each prior, the mean square errors are

calculated in the case of the naive analysis, where rio measurement error
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Chapter 5. Exploring the Bayes-MCMC Correction

correction is performed, and in the case of the Bayesian measurement er

ror correction described above. It follows that when the naive mean square

error is larger than the corrected one, then the measurement error should

be taken into account. However, if the naive mean square error is smaller

than the corrected one, it would be counter-productive to try to correct for

measurement error, as we get a similar or better result by performing the

cheaper and by far simpler naive analysis. To see this relationship better,

the ratio=naiveMSE/correctedMSE is given for each case. When this ra

tio is greater than one, a correction for measurement error is needed. Of

course, this is not a matter of absolute certainty, as different problems will

have different thresholds, and there is always some “gray area” around the

threshold.
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Chapter 5. Exploring the Bayes-MCMC Correction

Figure 5.2 shows the ratios from Table 5.1 graphically. The true r2

values and the ratios are represented on the horizontal and vertical axes,

respectively. Each line ifiustrates the behaviour of the ratios of five prior

distributions across the different scenarios. When the line of the chosen

prior distributions in the figure are well above one, a measurement error

correction is needed. However, if it is below one, it may be useless to perform

the measurement error correction because of lack of prior knowledge. We

note that this “rule” is not black and white. When the ratio is close to one,

one may want to investigate measurement error correction further, taking

into account subject area knowledge, cost of a potential correction, and

value. Priors much wider than the ones shown lead to greater biases in the

parameter estimation than the naive analysis.
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Figure 5.3: The ratios of the naive over the corrected mean square errors
from Table 5.1 are shown graphically.
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Chapter 6

Famingham Study Example

To illustrate the use of SIMEX and the Bayes-MCMC methods in a real-

world application, we use a subset of the Framingham Heart Study data.

This still ongoing, large cohort study was started in 1948 under the direc

tion of the National Heart, Lung, and Blood Institute in the United States

with the objective to identify some of the characteristics that contribute to

cardiovascular disease. We use only complete data of male adults aged be

tween 31 and 65 at the first exam, which yields a subset of n 1615 subjects

(Carroll, Ruppert, Stefanski and Crainiceanu, 2006). The study consists of a

series of medical exams, about two years apart, where a number of variables

were recorded. The response is the indicator variable Y, taking the value 1

if the individual has developed a coronary heart disease within eight years

of the third exam, and 0 otherwise. It has become well known, primarily

through this study, that high blood pressure is one of the leading causes of

cardiovascular diseases. We assume that the systolic blood pressure (SBP)

measurements may be mismeasured and will try to account for the bias

caused by this. We adopt a transformation of SBP introduced by Carroll,

Ruppert, Stefanski and Crainiceanu (2006), setting X log(SBP — 50).

We do not have any validation data available, but SBP is measured at the
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Chapter 6. Framingham Study Example

second and third exams. We treat these measurements as replicates for our

practical purposes, even though technically they are not. Therefore, we use

the mean, for simplicity denoted by X, for each individual i. The nondif

ferential measurement error assumption seems plausible because we would

like to be able to measure long-term systolic blood pressure (Xi), but what

we observe in reality is blood pressure on a single day (X). It is possible

that this actual measurement indicates little information about the long-

term systolic blood pressure (Carroll, Ruppert, Stefanski and Crainiceanu,

2006). The model is X = where E(U) = 0 and Var(U) = r2. We

also have the correctly recorded age, Z, at the second exam for each subject.

Since we are dealing with a binary response, we choose to use the logit

link on Y to make sure its domain covers the real numbers. Thus the

response model is

logit(P(Y = lIX, Z)) = log
(1 p(Yxz))

= + +

The measurement and exposure models are defined as in the simulation

study above. Under the nondifferentiality assumption, the measurement

model is

XX,Z,Y N(X,r2).

The exposure model is

XZ N(c0 + c1Z, 2)
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Chapter 6. Framingham Study Example

We will use this set-up to conduct a SIMEX and a Bayes-MCMC analysis.

6.1 SIMEX Analysis

As before with the simulated dataset, we use the simex package in R and

apply the quadratic fitting method because of its numerical stability. The

replicate measurements allow us to estimate the components of variance

estimator V as follows:

=
—

= 0.01278,
i=1 j=1

where X is the mean of the replicates (Carroll, Ruppert, Stefanski and

Crainiceanu, 2006). We thus estimate the measurement error variance /2 =

= 0.00639 from the data as well as Var(X*) = 0.04543. We use the gim

function in R for the logistic regression model. The results from the SIMEX

analysis are shown in section 6.2 and the extrapolation plot appears in Fig

ure 6.1.
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Figure 6.1: The extrapolation performed by the simex function is shown for
the mismeasured systolic blood pressure in the Framingham data.
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6.2 Bayes-MCMC Analysis

Unlike in the SIMEX analysis, we can use the replicate measurements to

incorporate the uncertainty about r2 in the Bayesian framework. As earlier

in the simulation example, we assign improper locally uniform priors to the

as and 3s such that f(a) 1 and fC8) 1, and IG(O.5,O.5) priors to

,\2 and r2. We first perform the analysis by coding the complete MCMC

algorithm in R, and secondly using W1nBUGS software as part of the R

program.

6.2.1 Analysis Using R

The posterior distribution is

f(x,a,,2,r2x*,y,z)
flf(xx,r2)x

f(iiIx z, j9) x

TI f(xIz, a,

f(a, 43 2 r2),

which expands to
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f(xa/3A2T2Ix*yz)(±)flexp(((xi —x)2+(42_x)2)) x

exp (y(i3o +/3lXj + /32Z))
<iJ 1 + exp (/3o + /3x +/32Zj)

/ 1 (—1 (x
— — 1Zj)2

jj llexPi\__
A2

1 1 N°51 /—0.5
i) exP_)x

/ 1 (O.5+1) /—0.5
i—I expj—
\TJ

We cannot obtain full conditional distributions for x and 3, and thus re

quire the use of the random-walk MH algorithm to update /3. We use the

algorithm for logistic regression given in 3.3.2 with the scale s = 0.5. We

use the gim function in R, such that model=sumniary(glm(y x + z,

fainily=binomial)). Then rnodel$coef provides the maximum likelihood

estimates 3, while rnodel$cov . unscaled gives YZ. The other parameters are

updated via the Gibbs sampler as in the simulation study in Chapter 4.

Figure 6.2 shows that there are no apparent mixing problems using

300,000 iterations after 5,000 burn-in iterations. The results are presented

and discussed in the next section.
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Figure 6.2: Traceplots and posterior density plots of 300,000 iterations after
5,000 burn-in iterations of the random-walk Metropolis sampler of the three
/3 parameters using R.
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6.2.2 Analysis Using WinBUGS

In this second analysis we use WinBUGS (Bayesian Inference Using Gibbs

Sampling for Windows) for the execution of the MCMG steps. WinBUGS

is a computational tool for MCMC that elimiates much of the hard work

that is involved in the coding of MCMC algorithms for the user (Haneuse,

2008). This way, we need not worry about the random walk Metropolis

Hastings algorithm and thus need not specify a tuning parameter, and such.

Full conditional distributions for the Gibbs sampler updates are also not

required. We only provide the likelihood, the priors, and initial values. If

the user does not provide initial values, WinBUGS will assign them.

Although WinBUGS can be used by itself, we set up the problem in R

and run WinBUGS using the R2WinBUGS package. The bugs function in

this package allows us to call WinBUGS from R and then do any further

analyses of the posterior in R. Traceplots and posterior densities are shown

iii Figure 6.3, and it is evident that there is no need for concern.
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Figure 6.3: Traceplots and posterior density plots of 300,000 iterations after
5,000 burn-in iterations of the WinBUGS output of the three parameters.
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6.3 Results

The results for the 3 estimates from the SIMEX and Bayesian analyses

are recorded in Table 6.1 below. (Note that the mean of the 300,000

realizations is shown in the Bayesian results.)

Parameter Estimate 95% CI CI width
naive -12.4066 (-15.8394, -8.9737) 6.8657

/3 SIMEX -13.1492 (-16.9464, -9.3520) 7.5944
Bayes (R) -13.7247 (-17.8030,-9.8861) 7.9169

WinBUGS -13.6909 (-17.7200, -9.7190) 8.001
naive 1.7080 (0.9079,2.5080) 1.6001

!3i SIMEX 1.8926 (0.9961,2.7890) 1.7929
Bayes (R) 2.0295 (1.1083,2.9485) 1.8402

W1nBUGS 2.0184 (1.0930,2.9510) 1.8580
naive 0.0507 (0.0282, 0.0733) 0.0451

/2 SIMEX 0.0493 (0.0264, 0.0721) 0.0457
Bayes (R) 0.0490 (0.0263, 0.0720) 0.0457

WinBUGS 0.0488 (0.0262, 0.0720) 0.0458

If we choose the Bayesian analysis using R, the resulting model for ex

plaining the probability of whether or not an individual has developed coro

nary heart disease within eight years of the third exam is:

log(

P(Y=1IX*,Z) N
= —13.72 + 2.03X + 0.05Z

1— P(Y = 1IX*,Z))

— exp(—13.72 + 2.03X + 0.05Z)
P(Y= 1IX,Z)

— 1 + exp(—13.72 + 2.03X + 0.05Z)

In light of the simulation study in Chapter 4, the results for this subset of

the Framingham data behave as we would expect. The Bayesian analyses

Table 6.1: parameter estimates with 95% confidence, or credible, intervals
using the naive, SIMEX, and Bayesian analyses.
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produce wider credible intervals than the SIMEX or the naive analyses.

Recall that we estimated a value for r2 and then used it as if it were known in

the SIMEX analysis, whereas we treated it as an unknown parameter in both

Bayesian analyses, thus accounting for more variability. The naive analysis

produces the most narrow confidence intervals, thus being too confident. It is

comforting that the results of both Bayesian analyses are very close. SIMEX

seems to give improved results over the naive analysis, with its parameter

estimates moving towards the corresponding Bayesian estimates.
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Conclusion and Future Work

Measurement error, when ignored, can have serious effects on statistical

analyses, such as biased parameter estimation, loss of power, and masking

of the features of the data. Nevertheless, the possible presence of mea

surement error often fails to be investigated outside of academic research.

Many methods have been proposed to deal with measurement error, and

they can be broadly grouped into functional and structural models (Carroll,

Ruppert, Stefanski and Crainiceanu, 2006). Simple “black-box” functional

methods, such as simulation extrapolation (SIMEX) and regression cali

bration, have been introduced to make the solving of such problems more

accessible. However, such approaches are rarely appropriate when the prob

lem is complicated or the measurement error is large. We show that SIMEX,

a simulation-based method for which the measurement error variance has

to be known or well estimated, fails when the measurement error variance

is large.

Bayesian measurement error adjustment, a structural method, allows

for more accurate bias correction more generally, while integrating more

variability. The risk with structural methods is that of exposure model

misspeeification. Ignoring any philosophical issues associated with Bayesian
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methods for the sake of this discussion, the only other drawback concerning

the Bayesian framework is that the posterior distributions are often very

complicated and numerical integration techniques become useless. Compu

tationally intensive sampling methods such as Markov chain Monte Carlo

algorithms often take a long time to code as well as implement (Robert and

Casella, 2004).

In Chapter 4 we show that when the measurement error variance and

the validation sample are relatively low, SIMEX performs better than the

Bayes-MCMC method in estimating the coefficient of X*. If either the mea

surement error variance, the validation sample, or both are increased, the

Bayes-MCMC correction outperforms SIMEX. The Bayesian method is ro

bust to changes in validation sample or measurement error variance sizes.

SIMEX incorporates less variance in its results than the Bayesian approach,

and thus produces more narrow confidence intervals even when forced to take

into account more variance by using the bootstrap method. The Bayesian

credible intervals contain the true values more often than the SIMEX confi

dence intervals. However, when the measurement error variance is small, it

may be more economical to use SIMEX and account for more variance by

bootstrapping.

To implement Bayesian methods, thorough understanding of statistics

as well as statistical software is needed and thus non-statisticians often shy

away from using Bayesian methods due to time or financial constraints.

WinBUGS is a useful tool to use for the computational part of a Bayesian

analysis. Knowledge of the Bayesian framework is still needed to use it,
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however, WinBUGS takes care of many complicated details. As shown in the

Framingham Heart study example, the results it produces are very similar

to the “custom” results. This example also illustrates another source of

information when validation data is not available: replication data. The

replicates are used to estimate and update the measurement error variance.

Again, the Bayesian measurement error correction method produces wider

credible intervals than the SIMEX analysis. However, the SIMEX analysis

does seem to improve the results over the naive method as well.

The Bayesian adjustment presented in this thesis can be applied and

extended to a variety of problems in many different research areas. As

an obvious extension, one could consider adding more correctly measured

covariates, which would be fairly straightforward when using WinBUGS.

Otherwise, one could extend the current model quite simply as well.

One crucial part of Bayesian statistics is the choice of priors for the

unknown parameters. In this thesis, we investigate the effects of different

choices of priors for the measurement error variance, r2. As shown in Chap

ter 5, it may so happen that correcting for measurement error is of no value

due to lack of knowledge (or wrong assumption) about the measurement

error variance. We investigate when measurement error correction is worth

the trouble. Our findings indicate that the accuracy of the measurement

error estimation is less important than the width of the prior we assign to

it.

Our investigation concerning these issues only considers mean squared

errors, so an immediate extension would be to consider the width of credi
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ble intervals as well. Another relevant extension would be to investigate the

Bayes-MCMC correction further. It would be useful to develop “rules” for

when to correct for measurement error in the cases of more general models.

If validation or replication data are available, incorporating such information

as part of the decision of whether or not it is worth correcting for measure

ment error would be very useful for subject area researchers.
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