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Abstract

We are addressing two aspects of vision based system development that are
not fully exploited in current frameworks: abstraction over low-level details
and high-level module reusability. Through an evaluation of existing frame-
works, we relate these shortcomings to the lack of systematic classification of
sub-tasks in vision based system development. Our approach for addressing
these two issues is to classify vision into decoupled sub-tasks, hence defining
a clear scope for a vision based system development framework and its sub-
components. Firstly, we decompose the task of vision system development
into data management and processing. We then proceed to further decom-
pose data management into three components: data access, conversion and
transportation.

To verify our approach for vision system development we present two
frameworks: the Vision Utility (VU) framework for providing abstraction
over the data management component; and the Hive framework for pro-
viding the data transportation and high-level code reuse. VU provides the
data management functionality for developers while hiding the low-level sys-
tem details through a simple yet flexible Application Programming Interface
(API). VU mediates the communication between the developer’s application,
vision processing modules, and data sources by utilizing different frameworks
for data access, conversion and transportation (Hive). We demonstrate VU’s
ability for providing abstraction over low-level system details through the
examination of a vision system developed using the framework. Hive is a
standalone event based framework for developing distributed vision based
systems. Hive provides simple high-level methods for managing communi-
cation, control and configuration of reusable components. We verify the
requirements of Hive (reusability and abstraction over inter-module data
transportation) by presenting a number of different systems developed on
the framework using a set of reusable modules.

Through this work we aim to demonstrate that this novel approach for
vision system development could fundamentally change vision based system
development by addressing the necessary abstraction, and promoting high-
level code reuse.
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Chapter 1

Introduction

The field of computer vision has been going through an extraordinary meta-
morphosis within the last several years which has led to an increasing de-
mand for the development of vision based systems. Vision processing, the
automated analysis and manipulation of image and video data through com-
putation, has been around since the 1960’s. However, the activity in this
field has accelerated greatly in the past 15 years. This increase is due to
a number of factors, mainly the reduction in price and an increase in the
accessibility of the tools (sensors and computation platforms), as well as
our understanding of the field[15]. The tremendous boost in this field has
sparked an increasing demand for end-to-end vision systems for deployment
and prototyping of new algorithms from a heterogeneous set of sources and
methods.

The task of developing end-to-end vision systems (or the vision prob-
lem as we refer to it in this work) has become increasingly sophisticated
and complex as a by-product of recent growth in the field. In addition to
general system issues, vision has specific requirements that introduce par-
ticular system development challenges. Foremost in the list of issues is the
performance requirement of computer vision. Large volume of data and the
computational complexity of current processing algorithms often exceeds
the performance of readily available computation machines (PCs). Access-
ing and managing image data is another non-trivial issue that complicates
the vision problem. There are numerous data format and protocols that
are employed by different camera devices. Furthermore, new methods and
algorithms in multiple camera research have emerged that employ inputs
from several (possibly heterogeneous) cameras and other sensors to perform
tasks such as calibration, tracking and 3D reconstruction[22, 25, 29, 40].
These multi-sensor systems amplify the issues associated with vision system
development and require tremendous effort in order to access, manipulate,
transport and process the data in real-time.

The need for addressing system-level development issues in the current
state of computer vision follows the pattern described in [41]. Shaw and Gar-
lan have identified the following pattern for general software engineering: as

1



Chapter 1. Introduction

the complexity of a given problem increases, system level issues become
more than just choosing an algorithm and data structures. Developers face
issues such as composition of components, global control structures, commu-
nication protocols, synchronization and data access, physical distribution,
etc. The vision problem has reached the point where system level issues
are becoming quite significant. A framework that targets these issues in a
systematic manner is necessary.

Currently system-level issues are addressed in the vision community us-
ing two approaches: developing in-house solutions and using available frame-
works and packages. Development of in-house solutions results in a large
amount of effort and resources as it requires users to implement the needed
functionality. Furthermore, due to the high cost of development, these so-
lutions tend to deal with system-level issues minimally which introduces a
number of repercussions. The major two drawbacks being lack of robust-
ness and generality as custom solutions are very application specific with no
easy means for reuse. Due to these issues, the negative trade-offs that ex-
ist between flexibility and development effort is significant enough to deter
many developers from this approach. The use of standardized frameworks
and packages for addressing the system-level issues is generally a superior
route. Standardized frameworks decrease development efforts by exploiting
the redundancy in commonly required functionality thus providing module
reuse.

There exists a number of frameworks and packages that target the vision
problem such as OpenCV, Gandalf and VXL. Although these frameworks
address critical computer vision tasks, in their current rendition they have
a number of major shortcomings (as discussed in Chapter 2). The approach
taken by existing frameworks prevents them from maximizing the potential
abstraction over low-level details and reusability that could be extracted
from computer vision.

In this thesis we are targeting the shortcomings of existing frameworks
for addressing the vision problem. The approach we present is to provide
a conceptual classification of the vision problem into a number of decou-
pled sub-tasks. We demonstrate that using this approach we can provide a
framework with a well defined scope that promotes module reusability and
abstraction over low-level infrastructure-level details. In the remainder of
this chapter we present: the specific issues that exist with respect to current
vision based system development approaches, our approach for addressing
these issues and an overview of the contributions we have made through this
work.

2



1.1. Problem

1.1 Problem

The main problem that we are addressing is that current approaches for
vision system development do not fully address the need for abstraction
over the low-level details and high-level module reuse.

Computer vision is a rich field that consists internally of a number of
secondary components in addition to its primary task of processing image
data via computation. These secondary issues mainly address the tasks of
retrieval, pre-processing and delivery of image data from sources (cameras or
image/video files) to the module responsible for performing the processing.
Each one of these tasks is non-trivial and introduce a number of issues for
developers. Current approaches require vision developers to explicitly deal
with these issues (such as data types, communication and access to sources)
which leads to a high awareness of the low-level details of these tasks (as
discussed in Chapter 2). This awareness complicates the development task
thereby increasing the load on developers.

Existing frameworks provide a function based approach for addressing
(what they consider to be) an appropriate sub-set of the vision problem (as
discussed in Section 2.3). Using this approach reusability is achieved within
each framework through function reuse. Since no standardized classifica-
tion of the vision problem currently exists, the functions provided by these
frameworks often overlap in scope. As demonstrated by Makarenko et al.
in [26] this leads to very poor reusability in the global sense.

1.2 Approach

The approach we have taken in this work is to provide a new methodology
for vision based system development in order to address the shortcomings
of current frameworks.

Firstly, we present a novel classification of the computer vision sub-tasks
that is based on separating data processing from data management. We
further classify the sub-components of data management into three strongly
decoupled sub-tasks: data access, data conversion, and data transportation.

Secondly, we present a framework that is based directly on the classifi-
cation of sub-tasks and demonstrate that there are significant advantages to
vision system development using this approach.

Thirdly, we present a framework that implements the data transport sub-
component of data management and demonstrate that there are significant
advantages to having a transport mechanism for vision based development.

3



1.3. Contributions

Much of the inspiration for this approach has been derived from the suc-
cess of a similar approach in the field of Computer Graphics. The introduc-
tion of separation between graphics programming and display/interaction
in Computer Graphics was done with Open Graphics Library and utility
frameworks such as Graphics Library Utility Toolkit (GLUT), which rev-
olutionized the Computer Graphics industry and made it accessible to a
wider set of developers.

1.3 Contributions

The work presented in this thesis provides three main contributions with
respect to the problems facing computer vision based application develop-
ment (as described in Section 1.1). The following is an overview of these
contributions:

1. We present a novel systematic decomposition of the vision problem
into a number of decoupled sub-components.

2. We present the Vision Utility (VU) framework which is based on this
decomposition and provides abstraction over the infrastructure-level
tasks of computer vision.

3. We present the Hive framework that provides data transportation be-
tween vision modules, hence promoting module reusability.

Novel contributions of the Hive framework have been published in the
International Conference on Distributed Smart Cameras (ICDSC’08) and
the International Conference on Computer Vision Theory and Applications
(VISAPP’09)[1, 30].

1.4 Overview

The remaining chapters of this thesis are laid out as follows: Chapter 2 will
evaluate the previous research and existing frameworks that target the vision
problem and other fields as they relate to this research. Chapter 3 presents
our decomposition of the vision problem which provides the foundation for
our approach to vision based system development. Chapter 4 presents the
API and architecture of the VU framework and the proof of concept system
developed using this framework. Chapter 5 presents the transport frame-
work and a detailed description of its architecture and implementation as
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1.4. Overview

well as presenting a set of modules and applications based on this framework.
Chapter 6 is the conclusion that summarizes the problem, the approach and
the contributions of this work as well as presenting a future direction for the
continuation of this research.
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Chapter 2

Related Work

The vision problem contains many sub-components that extend into a num-
ber of different fields. This chapter provides a discussion of the current
state of research and existing frameworks that aim to address the variety of
limitations faced in vision system development.

This chapter is organized as follows: firstly, we review existing frame-
works that focus on specific infrastructure-level issues of the vision prob-
lem. More specifically, we evaluate frameworks that target accessing image
data from devices, converting the format of image data and data transport.
Secondly, we present an overview of frameworks for multimedia application
development and evaluate them with respect to requirements of vision based
development. Finally, we evaluate existing frameworks that specifically at-
tempt to target the vision problem in a comprehensive way.

2.1 Frameworks for Vision Data Management

In this section we evaluate existing frameworks that target infrastructure-
level requirements of the vision problem. We focus on existing solutions for
addressing the following tasks: accessing image data, conversion of image
data and inter-module transportation of data in systems.

2.1.1 Access to Image Data

The following is an evaluation of several significant frameworks for standard-
ization of image acquisition from various different sources:

Device Standardization There have been a number of efforts to cre-
ate standardized formats for device manufacturers such as IIDC 1394-based
Digital Camera Specification[3] and VAPIX network camera communica-
tion specification[11]. IIDC standardizes access to camera devices that use
FireWire as the camera-to-PC interconnect. The IIDC standard specifies
the camera registers, fields within those registers, video formats, modes of
operation, and controls. IIDC ensures uniformity of access to devices that
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2.1. Frameworks for Vision Data Management

adhere to its standards. VAPIX is a HTTP protocol developed by Axis
Corporation for communication with network cameras via TCP/IP and the
server client model. Using VAPIX the image data and camera configuration
data in VAPIX are sent as HTTP commands to and from the camera device
allowing uniform communication to any network device that implements
VAPIX. Although these standard formats present a theoretically valid ap-
proach, a convergence of such standards by manufacturers is not likely within
the short term if ever.

Video4Linux Video4Linux (V4L) is an example of a class of solutions
that attempt to provide seamless access to source via a uniform interface[38].
V4L provides standardized access to video devices by including a kernel in-
terface for video capture. This approach utilizes Linux’s paradigm of treat-
ing all input and output communication as reads and writes to a file and
presents imaging devices as file handlers to users. V4L defines standard
types for devices and video properties. It functions for opening and clos-
ing devices, changing device properties, data formats, and input and output
methods that are implemented via system calls. Using these defined types
and methods, programmers have access to the sources that are installed on a
particular machine. Although V4L provides abstraction over specific camera
protocols (e.g. IIDC) to the user quite effectively, it has two drawbacks. It is
highly platform dependent and there is a high barrier to adding support for
new devices. In order to add support for a new device (or class of devices)
a developer needs to write kernel drivers which is a cumbersome task and
eliminates any hope of an opportunity for platform independency.

2.1.2 Image Conversion Frameworks

The conversion of image data involves tasks such as image format conversion,
resizing and affine transformation, etc. Performing these functions is not
trivial and there have been a number of efforts to provide frameworks that
provide support for these tasks. We discuss some of these frameworks in
this section.

Open Source Image Format Packages Currently there exist a variety
of open source cross-platform software packages for image conversion and
manipulation such as ImageMagick[19], DevIL[13], and Netpbm[32]. These
frameworks provide standard representations of images and a large set of
manipulation routines that extend well beyond image format conversions
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2.1. Frameworks for Vision Data Management

and affine transformations. The main issue with the approach taken by
these frameworks is the over exposure of low-level details of routines.

As we demonstrate in Chapters 3 and 4, the functionality of these frame-
works could be separated into data management and data processing. This
separation would allow the framework to provide high-level abstractions over
the conversion routines and remove users’ awareness of low-level details via
a declarative model.

CoreImageTM and CoreVideoTM CoreImage and CoreVideo pro-
vide a plug-in based architecture for image manipulation and processing
that utilizes graphics cards for hardware acceleration[20]. Although these
frameworks provide a limited set of image manipulation and hardware ac-
celerated processing, the model being used is quite successful at providing
abstraction over the low-level details. The API for these frameworks presents
functionality as processing blocks that can be aggregated to form a pipeline
that performs one, or a number of, tasks. Image formats and properties
are completely abstracted away from users in the intermediate sections of
the pipeline. Users simply connect processing blocks together without ex-
ternally managing images or pixels. This level of abstraction removes the
necessity for users to deal with a large overhead of image manipulation.

2.1.3 Data Transport Middlewares

Modularity, code reuse and standard accessibility to system components are
issues that have been quite apparent and pronounced in various disciplines;
particularly in Robotics and Haptics research and development. Since com-
munication between different sensors, actuators and control algorithms are
central to these two fields there have been several projects that have at-
tempted to provide middle-wares to support abstraction and module based
development. This section provides an evaluation and discussion of the
most widely used frameworks which is helpful in understanding the various
decisions that we have made with respect to the development of our commu-
nication framework. We discuss the advantages and disadvantages of each
framework and their relevance to vision.

Robotics

The most widely used frameworks for robotics developemnt are YARP[28],
Player[10], Orca[6], Orocos[7] and CARMEN[31]. We discuss the first three
as they provide the most insight into the different communication paradigms:

8



2.1. Frameworks for Vision Data Management

Figure 2.1: YARP’s communication model with modules. Figure adapted
from[28].

Yet Another Robotics Platform YARP provides a flexible commu-
nication medium based on the observer pattern between different running
processes. Figure 2.1 shows the communication of the YARP module with
users’ code and other modules. The process that produces data opens an
“out port” on a specific data type and the receiving process opens an “in
port” to receive a data type. Data transfer will take place between the
two ports upon connection. YARP provides an abstraction over the data
transport medium and utilizes the network (TCP/UDP) in its current im-
plementation. Although the communication mechanism of YARP is very
similar to communication required by vision systems, some of its features
are very specific to robotics. Much of this difference is due to the fundamen-
tal difference in use of a large number of sensors and actuators in robotics
that can often lead to physical exceptions causing instability and unexpected
crashes. There is a large emphasis on creating mutually exclusive blocks of
processing that minimally interfere with each other. Another fundamental
difference is the fact that YARP does not provide any means for controlling
modules and is designed to be used strictly as a slave framework. Vision re-
quires the communication framework to be the main backbone of the system,
whereas YARP is a more lightweight approach that does not assume control
in order to be compatible with other possible libraries and frameworks in
the system.
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2.1. Frameworks for Vision Data Management

Player Player is another software framework that provides a communica-
tion means for managing the flow of distributed sensing and control data
between sensors and actuators in robots. Player utilizes a message proto-
col implemented using multi-threaded TCP sockets. Player is in essence a
set of protocols implemented on a client-server model which provides trans-
parent network access to the devices employed within a robot. The socket
based communication protocol of Player provides: easy of distribution of
sensors, actuators and control processes; independence between modules (as
each module can be implemented in any language and on any platforms);
and the convenience of a client-server model for information exchange. Fig-
ure 2.2 shows the overall architecture of Player. The middle section of the
diagram is the Player framework that creates the connections between the
devices and control routines. The protocol specified by Player is a low-level
schema for information exchange between actuators (servers) and control
routines (clients). This communication model is not sufficient for vision
based systems that require more flexible peer to peer (client to client) net-
working. Player focuses on the data management of many actuator-control
pairs. However, it lacks the complex control required for the creation of
complex networks of sensors for a single unified application like vision.

Orca Orca is an open source, general robotics framework that was de-
veloped based on Component Based Software Engineering (CBSE)[9]. The
aim of Orca project is to provide an extensible de-centralized middleware
for connection reusable components that is independent of a particular ar-
chitecture and the communication mechanism. The project also aims to
provide an online repository of useful standalone components that can be
used by all robot developers.

Orca identifies and categorizes the following components of robotics:
‘objects’, which refer to units of data that are communicated in between
modules; ‘communication pattern’, which specifies the data transfer model
such as client-push; ‘transport mechanism’, which specifies the data transfer
protocol such as TCP/IP; and ‘components’, which refers to the algorithm
implementations and hardware interfaces.

In order to build a system using Orca, a developer connects one or several
components together using the transport mechanism. Orca is most suitable
as a vision communication mechanism. However, there are fundamental
limitations that prevent it from being as effective for vision systems. The
concept of a controlling module is missing from Orca as no one component
is designated to setup and configure other components. Also, the level of
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Figure 2.2: The scope and architecture of Player. Figure adapted from [10].

abstraction is not sufficient for vision developers as Orca users are forced to
select communication mechanisms and indicate the communication patterns.

Robotics Frameworks Evaluation Makarenko et al. presented a study
looking at existing robotics frameworks comparing the levels of abstrac-
tion of six existing solutions (Player, Orocos, Carmen, Orca, Yarp and
OpenSlam)[26]. Makarenko et al. conclude that although each solution at-
tempts to provide a framework for reusable components and is partially suc-
cessful within its community, there is only an estimated 4% reusability across
these platforms. Through the analysis of available solutions, Makarenko et
al. illustrate that the level of abstraction provided within each of the solu-
tions is insufficient. The authors organize the frameworks into three concep-
tual layers: Driver and Algorithm Implementations (DA); Communication
Middleware (CM); and Robotic Software Framework (RSF). They indicate
that while DA is the layer desirable for reusability, current solutions tend
to couple it to the CM and in some cases, even worse, to RSF. The authors
suggest that in the future, frameworks should be designed to have a thin
middle-ware and RSF. Further, the levels of abstractions in future frame-
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Figure 2.3: Increasing reusability through well defined component scope.
Diagonal lines show that each component could be utilized in other frame-
works. Figure adapted from [26].

works should decouple inter-dependency between layers in order to allow for
a mix and match of layers amongst different frameworks. This decoupling
would lead to maximizing code reuse in the community as a whole. Fig-
ure 2.3 shows the concept of mixing and matching graphically indicating
how each decoupled component can be used with a number of other choices.
We have adopted this concept in our design and implementation throughout
this work.

Haptics

Another field that has dealt with similar issues as vision is haptics research
in HCI. Haptics research inherently requires the use of many different sensors
and performance is of critical priority, just as in any other Human Computer
Interfaces. Pave et al. have presented the Real-Time Platform Middleware
for Prototyping of Haptic Applications (RTPM)[34] in order to address some
of these issues. RTPM is a framework for development of distributed real-
time collaborative Haptic applications. RTPM provides abstraction over
communication between its different distributed haptic, graphics, and con-
trol modules based on Remote Function Calls (RFC) model implemented by
the Common Object Request Brokage Architecture (CORBA). RTPM medi-

12



2.1. Frameworks for Vision Data Management

Figure 2.4: Architecture diagram of RTMP. Figure adapted from [34].

ates communication between user processes and the operating system while
providing abstractions over communication details (as shown in Figure 2.4).

The main problem with the approach taken by RTPM in regards to
communication for vision based applications is its strong client-server com-
munication paradigm. Vision systems require more flexible communication
patterns between components that support the creation of communication
pipelines where the output of a module is directly connected to the input
of another module without the mediation of the application. Using a strict
client-server paradigm for vision would produce computational bottlenecks.
In contrast to RTPM, Hive provides the ability to create complex peer-to-
peer connections between modules as well as providing RFC for configuring
the modules (as shown in Chapter 5).

Vision

The majority of activity in the area of data transportation with respect
to vision systems consists of frameworks for distributed smart cameras, dis-
tributed sensor networks and generalized data communication solutions that
developed out of specific applications. The following is an evaluation of the
existing research in this field:
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Figure 2.5: Architecture diagram of Scallop. Figure adapted from [37].

Scallop Scallop is an open framework for creating distributed sensor sys-
tems using the peer to peer connectivity paradigm[37]. Scallop provides a
flexible communication middle-ware for sensor modules data transportation.
Figure 2.5 shows the architecture of Scallop. The API mediates communi-
cation between user’s code and sensors and other modules.

Scallop provides a plug-in mechanism for modules to be used within its
framework which is required by vision systems. Scallop also avoids com-
putational bottle-necks by focusing on a pure decentralized peer to peer
communication model where each node communicates data directly to other
nodes. The main disadvantage of Scallop is its lack of central control over
modules. Due to this limitation there is no way for dynamic reconfiguration
of the processing network which may be required for vision systems that
need dynamic reconfiguration based on run-time data.

Cluster Based Smart Camera Framework Lei et al. present a gener-
alized framework for communication in smart camera arrays that provides
control and mediates data transportation between smart cameras[23]. This
framework is based on a set of modules (nodes) running on a PC cluster.
The nodes represent smart cameras as they contain a data source and a pro-
cessing unit. The communication between these nodes is done through two
channels: a message communicator and a data communicator. One of the
nodes is designated as the master and it controls the operation of the other
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nodes (workers) by sending control messages through the message channel.
All of the nodes in the framework are connected directly to each other form-
ing a peer to peer network. The framework allows the smart camera array
to perform a number of built-in tasks and allows for the extension of these
tasks via modification of the nodes. The framework provides abstraction
over device access, data communication and centralized control over the
configuration of the nodes.

This framework provides a scalable peer to peer communication platform
for inter-nodal data transportation as well as a central control mechanism for
run-time configuration of the nodes. The main limitation with this frame-
work is the homogeneity of its nodes. All of the nodes are designed to be
utilized collectively to perform a single task, yet each node on its own is not
a reusable entity. This methodology prevents the framework from support-
ing extension through a plug-in architecture of its nodes. All the nodes must
be updated for the system to perform additional tasks beyond the default
support.

RPV The RPV framework provides an API for developing vision sys-
tems by connecting a number of modules together on a cluster of PC’s[2].
RPV provides the abstractions for gathering input data from sources and
pipelining the operators to process the data. Using RPV, a programmer can
develop distributed multi-camera systems with little overhead.

RPV provides abstraction over peer to peer data communication be-
tween its nodes and supports a plug-in model for the addition of source and
processing nodes. However, RPV fails to address the need for a centralized
control over the nodes and does not support run-time reconfiguration of the
network of nodes.

2.2 Frameworks for Multimedia Development

There currently exists a number of popular frameworks for multimedia appli-
cation development that target similar issues as vision development. Apple’s
QuickTimeTM, Sun’s Java Media Framework, and Microsoft’s DirectShow
are three of the main players in this field. These frameworks focus mainly
on capturing, decoding and rendering to the screen (playing) video (and
audio). However, they provide a limited set of filters for manipulating this
data and no support for data communication. The following is a discussion
of these three frameworks in more detail:

15



2.2. Frameworks for Multimedia Development

QuickTime 7TM QuickTime is a media framework developed by Apple
Inc. for managing and handling various multimedia requirements[36]. In
addition to its ability to manage audio, animation, and graphics, Quick-
Time provides functionality for capturing, processing, encoding, decoding,
and the delivery of video data through a framework called QTKit. QTKit’s
view of vision data is based on the concept of video clips or as QuickTime
calls it ‘movies’. QTKit provides a set of classes for accessing vision data
from sources (capture devices and files) that provide high-level abstractions
over the source’s low-level details. QuickTime also provides a very com-
prehensive, high-level mechanism for decoding and encoding video between
a large number of different formats. There are two limitations with the
QuickTime’s approach with respect to vision based system development.
The first issue is QuickTime’s lack of support for data processing. Although
QuickTime provides the use of CoreImage and CoreVideo frameworks which
provide a small subset of built-in image manipulation routines, it does not
provide any mechanism for advanced vision processing to be integrated in
the framework. This limitation forces users to explicitly deal with the over-
head involved in transferring image data in between the framework and the
external processing module which significantly reduces the effectiveness of
QuickTime as a vision based system development framework. The second
major limitation of QuickTime is that it does not provide a means mech-
anism for the integration of a data transportation mechanism to address
the communication between distributed tasks. We have addressed these
limitations in our approach presented in Chapter 4.

Java Media Framework Java Media Framework (JMF)[21] is a cross-
platform multimedia framework similar to QuickTime that provides capture,
playback, streaming and transcoding of multimedia in a number of differ-
ent formats for Java developers. The architecture of JMF consists of three
stages: input, processing and output. The input stage provides routines
for accessing video data from capture devices, files and network inputs. The
processing stage deals with converting data using different codecs and adding
common video effects. The output stage deals with rendering the video data,
saving it to disk and sending the data via network. The fundamental lim-
itations of JMF are similar to the QuickTime framework. The processing
aspect is simplified to use intermediate filters and codecs (although JMF pro-
vides limited support for codecs compared with QuickTime) with no built-in
support for extended processing. Also, the support for data transportation
is limited to reads from and writes to the network.
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DirectShow DirectShow[14] is a multimedia framework developed by Mi-
crosoft to provide a common interface for managing multimedia across many
programming languages. DirectShow is an extensible filter-based framework
that provides data capture, filtering, conversion and rendering of video and
audio data. DirectShow interfaces with the Windows Driver Model in order
to provide access to a large number of capture and filter devices. DirectShow
insulates the application programmer from the details of accessing these de-
vices; however, it also suffers from the same drawbacks as other multimedia
frameworks as it provides no support for complex video processing and data
transportation.

2.3 Frameworks for Vision System Development

There have been a number of frameworks that have been designed to target
vision processing as whole. We discuss a few of these frameworks in this
section and compare them with our approach.

OpenCV The Open Computer Vision library (OpenCV)[5] is a compre-
hensive and widely used vision processing framework. The overall design
of OpenCV relies on declaring data type definitions for image and vision
entities and providing functions for operating on and extracting data from
them. OpenCV provides limited system development support (source ac-
cess and image manipulation) for developers to easily create vision systems.
OpenCV provides a framework for accessing data from cameras installed on
the system that utilizes an OS specific framework such as V4L. OpenCV
also provides a function based approach for image format conversion and
resizing. These functions access images of different formats from disk and
convert the data into OpenCV’s native image class. OpenCV also provides
routines that allow the programmer to resize images using a number of
different interpolation methods, extract sub-regions of images to sub-pixel
accuracy and extract specific channels from a multi-channel image.

OpenCV provides function level code reuse within the framework; how-
ever, it provides no easy way for users to provide higher level blocks that
could be reused outside OpenCV. As demonstrated by Makarenko et al.[26]
this approach to code reuse is not successful when examined on a scale
that extends beyond the OpenCV framework. In addition to code reuse,
OpenCV has other shortcomings and drawbacks that make it inadequate
for larger scale vision system development. Limitations such as lack of sup-
port for distribution, multithreading, limited source access and image data
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manipulation, force developers to create custom frameworks (or utilize other
existing frameworks) that employ OpenCV as a complementary framework.

OpenCV is an excellent representation of the current approach to com-
puter vision development. OpenCV provides users with the tools necessary
to create end to end vision systems, yet these tools cover only a subset
of the vision problem. Figure 2.6 shows the components of the OpenCV
framework. The computer vision task has been addressed by 3 libraries:
CxCore, OpenCV and HighGui. CxCore defines a set of data types for rep-
resenting common entities such as images, points and arrays and provides
the functions that perform operations on these data types such as element
access, copying, arithmetic, etc... OpenCV provides functions that imple-
ment computer vision algorithms as well as data access and manipulation.
HighGui addresses the image and video I/O as well as window manage-
ment and display. Although there is some degree of classification embedded
in the categorization of the framework’s tasks into these three classes, the
functionality of these libraries (managing and processing data) overlap in a
number of cases and are all presented to the user at the same level using the
same function based API. It is clear from this superficial classification that
OpenCV does not provide a strong conceptual separation between different
classes of vision processing tasks. Consequently, as a result of the lack of
conceptual categorization, OpenCV has major limitations and shortcomings
preventing its extensive use as the major tool for system development.

Gandalf Gandalf is a function based computer vision and numerical anal-
ysis library that defines a set of data types relating to mathematical and
computer vision operations. Gandalf consists of four packages: a Common
package that defines simple structures and data types used by other pack-
ages; a Linear algebra package with a large number of routines for matrix and
vector manipulations; an Image package that declares the image structure
and provides low-level image manipulation routines; and a Vision package
that provides a number of standard image processing, computer vision and
geometrical routines.

Gandalf is similar to OpenCV in its approach to provide a function-based
set of routines for processing numerical and image data. However, Gandalf
focuses more on processing and less on providing functionality for dealing
with reading, writing, manipulating image data formats, and displaying[17].
Gandalf has the same code reusability issue as OpenCV as it is also a func-
tion based framework. Gandalf can not be used as an all encompassing
vision framework, because of its focus and limited scope; it does not provide
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Figure 2.6: The OpenCV computer vision framework internal components.

support for the data retrieval and preparation tasks. In its current rendi-
tion, Gandalf could be used as a processing component of the VU frame-
work. However, it will need a much more standardized interface in order to
co-exist with the other components in the framework. The VU framework
presented in this thesis provides the standardized interface for interaction
with frameworks such as Gandalf.

VXL VXL is a vision development framework that consists of a collection
of C++ libraries for computer vision based development[43]. VXL contains
four core libraries for numeric processing (VNL) that provides methods for
matrices, vectors, decompositions, optimizers, etc, image access and manip-
ulation (VIL), geometry definition (VGL), and other platform-independent
vision related functionality (VSL, VBL, VUL). In addition to the core li-
braries, VXL contains a number of other libraries that cover a variety of
vision problems. VXL provides a modular framework where each package
could may be used as a lightweight unit independent of others.

The VXL package has an advantage over OpenCV and Gandalf in that
it provides different libraries to address the different categories of the vision
problem (reflected by its core libraries). The fundamental approach of VXL
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is however the same as the other two; to provide a function based set of
libraries. The main disadvantage of this framework is that unlike the VU
framework, it relies on users to explicitly manage and handle the input
data preparation which includes access and manipulation. As we prove in
Chapter 4, this level of detail is unnecessary for the application developer.

Matlab MATLAB is a numerically oriented programming environment
that provides easy methods for matrix manipulation, plotting of data, im-
plementation of algorithms and a number of other useful features[27]. MAT-
LAB also contains a package that provides access to image file access and
common image processing and analysis routines. MATLAB is commonly
used for algorithm prototyping by researchers as it’s easy interface and
readily accessible image processing package allow for quick development.
However, MATLAB is inadequate for any serious system development due
to its poor computational performance and its inability to create end to end
solutions. The scope of MATLAB is quite different than VU as VU targets
the development of large deploy-able vision systems.

2.4 Conclusion

In this chapter we explored the two current approaches for utilizing existing
frameworks to address the vision problem: using several standalone frame-
works that address different components of the vision problem and using a
single comprehensive framework (perhaps also in conjunction of other stan-
dalone frameworks) to address all of the sub tasks of the vision problem.

We reviewed a number of different frameworks that target specific sub
tasks of vision system development in three categories: image data access,
image data conversion, and transportation. Through a discussion of each
framework, we showed that frameworks which provide a large set of func-
tionality for data access and image data conversion exist, yet they overlap
in scope and expose unnecessary low-level details to users. With respect to
data transportation, we showed there are several frameworks; however, they
do not address all the requirements of transportation of vision applications.

In the evaluation of the comprehensive frameworks we demonstrated
that they have three major shortcomings: they do not provide all of the
functionality needed by users; similar to the other frameworks they force the
user to deal with low-level details of all the sub tasks of the vision problem;
and they do not provide adequate support for high-level reusability.

The overall conclusion of the evaluation presented in this chapter is that
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the current approaches for vision based system development suffer from a
variety of shortcomings which limit reusability and require a large effort on
the part of developers.
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Chapter 3

Classification of the Vision
Problem

This chapter presents an overview of our methodology for addressing vision
system development issues. It is based on a systematic classification of the
vision problem into a number of decoupled sub-tasks.

As discussed in Chapter 2, current frameworks for vision based applica-
tion development such as OpenCV, VXL and Gandalf focus on processing
image and video data while offering intermediate support for retrieval, pre-
possessing and transportation of image and video data. Furthermore, they
fail to provide any strong notion of classification of different sub-tasks within
computer vision. All of the functionality of these frameworks are offered to
users on the same level and through the same interface (function based).
The lack of classification and abstraction in current approaches to vision
based system development leads to limited component reuse and large de-
velopment efforts due to the unnecessary exposure of low-level development
details to developers.

In the following sections we directly target the lack of classification of the
vision problem in current frameworks. We present a categorization of the
various computer vision sub-tasks into a set of decoupled components which
provides two main advantages over the traditional approaches: abstraction
over low-level details, and increased reusability. Based on this categorization
we define the scope of a framework for vision based development. We present
our component based model and discuss the scope of each component.

3.1 Distinction between Data Management and
Processing

The main objective of vision systems is to process image data via computa-
tional methods in order to perform one of two tasks:

• Extract high-level descriptions from images such as location of per-
sons or objects etc. We refer to this information as meta-data in this
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context.

• Manipulate image data for example applying a smoothing filter or
correct radial distortion etc.

The fundamental difference between these two types of processing is the
type of output they produce. The first task produces high-level meta-data
whereas the second task produces image data. We refer to the task of
processing images which includes both analysis and manipulation of image
data as data processing.

In vision systems, in order to perform the task of data processing, the
system developer must address the following issues: retrieve the data from
a data source that could be a camera, an image file, a video file or a number
of other devices; deliver the data from the source to the module in charge of
performing the actual processing; modify the format of the data to match
the format expected by the processing module; and deliver the output from
the processing module to the module in charge of storing, displaying or
using the output for any other purpose. We refer to these tasks collectively
as data management with respect to the vision problem. As described, data
management is composed of a number of different non-trivial, yet necessary
sub-tasks.

Although the data processing task has specific requirements for the for-
mat and communication protocol of its inputs and outputs, it is decoupled
from the data management task as long as a standard interface is defined for
communication between the two. This decoupling allows for the existence of
a framework that implements the data management tasks while merely pro-
viding a standard interface for communication with modules that perform
the processing. A framework with this limited scope allows developers to
focus strictly on creating processing modules without addressing any data
management. Using this model for vision system development means that
the scope of data processing becomes well defined and quite thin, allowing
for greater code reuse as demonstrated by Makarenko et al[26]. In Chap-
ter 4 we present a framework that is based on the separation between data
management and processing while highlighting the direct mapping between
this classification and the scope of the framework. Furthermore, we proceed
to validate this approach by demonstrating the advantages of the framework
in Section 4.3.3.

The approach of separating management of data from processing has
proved successful in other fields, a good example being computer graph-
ics. Modern computer graphics programming is divided into two parts, a
languages specification such as Open Graphics Library (OpenGL)[39] and
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utility frameworks such as Graphics Library Utility Toolkit (GLUT)[18].
OpenGL specifies graphics language which allows users to perform graph-
ics tasks such as creating and manipulating polygons, shades and textures.
Frameworks such as GLUT provide the data management functionality such
as interaction from the user and displaying the graphics pipelines output to
the screen. The abstraction provided by utility frameworks allows the lan-
guage specification to be reusable, completely portable across platforms and
accelerated using different graphics hardware.

The following section describes in more detail the scope of the function-
ality of the data management task and its sub-components.

3.2 Sub-Components of Data Management

As defined in the previous section, data management is the task of accessing,
preprocessing and delivery of input and outputs to and from the processing
task. Data management includes a number of non-trivial sub-tasks with
respect to accessing image data from devices and managing data in the
vision system. These tasks can be classified into three categories:

• Data Access

• Data Transportation

• Data Conversion

Figure 3.1 shows our classification of the computer vision. As the di-
agram indicates, there is a strong separation between data management
and processing. Furthermore, it can be seen that the three sub-components
within data management are also separated from each other indicating the
strong decoupling that exists with respect to data management’s internal
components.

Although these three components are standalone and completely de-
coupled from one another, they can collectively be utilized to address the
data management requirement of vision systems in an abstracted way. In
Chapter 4 we present the VU framework directly based on this model that
provides vision data management. We discuss in detail its conceptual de-
sign and implementation while demonstrating its benefits through a set of
example applications developed on it.

The following is an overview of the three internal components of data
management.
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Figure 3.1: Graphical representation of our classification of the vision prob-
lem.

Data Access There exist a wide variety of devices and other media (e.g.
files) that could be used as sources of image data for the processing module.
The data access module addresses the task of obtaining data from these de-
vices. More specifically, the data access module deals with configuration of
the source and retrieval of image data in a standard format. A detailed ex-
planation of the data access component is presented through our discussion
of the Unified Camera Framework in Section 4.2.2.

Data Transportation In many vision systems, especially large scale sys-
tems, the components of the system such as source and processor modules
are often distributed over a network or physically connected to several ma-
chines via a communication medium such as a bus. The data transport mod-
ule addresses the need for inter-communication of data and control amongst
the different modules of the vision system. We have developed a standalone
framework for addressing the issues involved in data transportation for vision
called Hive. Chapter 5 presents the conceptual design and implementation
of this framework in detail.

Data Conversion Different sources employ a large variety of data formats
and compression schemes to represent the image data. In order for modules
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to communicate data effectively, they need to agree on the communicated
data types. The data manipulation module addresses the need for conversion
of data formats in order to allow devices with different native representations
of image data to communicate. A detailed explanation of the data conversion
component is presented in Section 4.2.2.

3.3 Conclusion

In order to address the drawbacks of current frameworks for vision based ap-
plication development, we presented a new approach that is based on a novel
classification of the vision problem. We decomposed vision into two tasks:
processing vision data and managing vision data. We further classified the
data management task into: data access, which retrieves image data from
sources; data transport, which delivers data in between the modules; and
data conversion, which converts the between different data formats required
by modules.

The classification of computer vision tasks in this way provides two major
advantages: firstly, it reduces the developers’ and researchers’ work load by
providing high level abstractions and allowing them to focus on development
and extension of a particular task independently of others, and secondly,
it promotes developing modularized, reusable code by removing inter-task
dependencies via standardization of a clear interface between tasks.
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Chapter 4

The Vision Utility
Framework

In this chapter we present the VU framework for vision based application
development. It is directly based on the classification of the vision problem
presented in Chapter 3. VU provides the required data management func-
tionality to vision developers via an API that abstracts the details of its
sub-components.

The goal of this chapter is to verify that the approach of vision system
development through separation of vision into sub-tasks is valid and that it
provides the necessary abstraction over low-level data management details.
More specifically, the framework will be evaluated in terms of the following
criteria in Section 4.3.3:

• Is data capture from sources de-coupled from processing?

• Are the image data format details hidden from the user?

• Does the framework provide abstraction over inter-component com-
munication?

We present the VU framework in three parts. We first present an
overview of the framework which includes the development model, the con-
ceptual design, and components of VU. Second, we discuss the details of the
architecture of the VU framework and finally we present the proof-of-concept
which includes an implementation of the framework, a vision system based
on the framework, and an evaluation of the effectiveness of the framework.

The VU framework in its current build is designed to address a subset of
the vision problem and it is intentionally limited to support vision systems
that consist of a single source and a single processor. This decision was
made in order to simplify the development task. The VU approach however
generalizes to more sophisticated frameworks that support multiple sources
and processors and connection patterns.
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4.1 VU Overview

In this section we introduce the VU framework. The VU approach towards
vision based system development is fundamentally different from traditional
frameworks as it is based on a novel classification of the vision problem. We
present this new approach by discussing the system development model, the
modules of the framework and the communication model used.

4.1.1 System Development Model

VU allows programmers to create vision systems by developing applications
that configure and connect sources and processors. In this model, sources
are modules that produce image data, processors are modules that perform
processing on data, and the application is the control center of the whole
system. This development model preserves the separation between the data
management tasks performed by the framework (as described in Section 3.2)
and the data processing performed by the processing module.

VU provides a system development environment that encapsulates the
data management functionality while providing an API that implicitly pre-
serves the natural decoupling between the data management task and data
processing task. Figure 4.1 shows the scope of the VU framework and its
relationship to the application, source and processing blocks.

4.1.2 Modules

The following sections describe the scope of the source, processor, and the
application modules with respect to the VU framework.

Source

The representation of image data sources within VU is generalized to a black
box with an interface that includes the configuration parameters and the
output. Figure 4.2a shows the representation of the source block. In the VU
framework all sources are abstracted as configurable virtual cameras. The
configuration interface of the source block exposes the internal configuration
of the source (such as resolution, exposure settings, white balance and so
forth in the case of actual camera devices.)
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Figure 4.1: System development using the VU framework. The scope of the
framework is clearly marked.

(a) (b)

(c) (d)

Figure 4.2: Representation of the a)source, b)application, c)analysing pro-
cessor and d)image based processor modules in the VU framework.
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Processor

As discussed in Section 3.1 we classify the processing task into two cate-
gories: extraction of meta-data and manipulation of data. Within VU the
two types of processors are distinguished. The first type is called the image
analysis processor and the second type is called the image manipulation pro-
cessor. Figures 4.2c and (d) show the difference between the two processors.
While they are both presented as black boxes with an input and configu-
ration data, the image analysis processor produces meta-data whereas the
image based processor produces image data. The input is image data and
the configuration parameters allow customization of the algorithm to accom-
modate the nature of the input data. Meta-data is a high-level description
extracted by the analysis process and the output data is an image. In prac-
tice it is possible for a processor device to be a mixture of the two models
and provide both meta-data and output image data.

The following is a simple example which demonstrates the concepts be-
hind the processor representation in the VU framework: A basic foreground
extraction algorithm works by subtracting input images from a constant
background image flagging the pixels that are greater than a threshold value
as foreground and grouping these pixels by bounding boxes. In this case,
the input is a pixel based image, the output is a binary image (foreground-1,
background-0), the configuration is a threshold value and control over back-
ground model selection, and the meta-data is the list of bounding boxes.
Since the outputs are both high-level (meta-data such as location and bound-
ing boxes) and low-level (meta-data such as binary image), this processor is
a mixture of the analysis and image based processor.

This simple model for the processing unit can scale to more complicated
algorithms by presenting a broader definition of the input set and the param-
eter set. The overall paradigm of inputs, outputs, parameters and meta-data
is still valid even if a processing block requiring a set of images as input and
a parameter set selecting amongst multiple algorithms is presented.

Application

The application is developed by the users of the VU framework. The ap-
plication uses the VU API to access, configure and connect sources to pro-
cessors and retrieve meta-data. Figure 4.2c shows the representation of the
application block within the framework. The application can receive the
output of the source and processor as well as the configuration parameters
and meta-data.
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4.1.3 Communication Model

The communication model for the VU framework is based on asynchronous
callbacks. A discussion of the decision to employ asynchronous callbacks is
included in Chapter 5 where we present the architecture of the Hive frame-
work.

VU provides two methods for communicating configuration and data
amongst devices: remote function calls for configuration and retrieval of
meta-data of devices, and receiving outputs from devices. Sources only
support the first method whereas processors support both.

Remote function calls allow the application to read and write data to a
device. The data can be configuration parameters or meta-data produced by
the device. For source devices the application can call the remote functions
at any time; however, for processor devices there is a synchronous callback
which is invoked upon processing a frame of data. This callback blocks
and allows the application to exchange data with the device. Through this
callback the application is allowed to control, modify and verify resulting
data of the processing module and possibly make decisions whether to move
on to the next frame or reprocess (further process) the current frame.

In addition to the remote function calls, processors allow the transfer of
their outputs to applications. The output here refers strictly to image data
as other outputs are transferred via the remote function call mechanism
described above. Limiting the output of the devices to image data is done
in order to provide the functionality of image manipulation framework and
allow for possible extension of the framework to multi-processing devices via
cascading of the outputs.

4.2 Architecture

The VU framework provides the data management required for vision based
application development through an interface that abstracts the details of
the data management operations. The architecture of the VU framework
therefore contains two layers: The Interface layer and the Core layer. As
shown in Figure 4.3 VU’s architecture consists of the interconnection of the
following components:

• Interface layer

– Application Interface

– Driver Interface
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Figure 4.3: The VU architecture.

• Core layer

– Data Transport

– Data Access

– Data Convert

The following sections provide a description of each layer and its subse-
quent components:

4.2.1 Interface Layer

The Interface layer contains two components; the Application Interface which
provides the programmer access to the functionality provided by the Core
layer, and the Driver Interface which provides a contact point for device
developers allowing them to create drivers for existing sources and pro-
cessors. Since the VU framework is based on asynchronous callbacks, in
both instances the interface routines allow the user to register a number of
callbacks to perform actions based on arriving events. The following is a
discussion of the interface and the driver component of the framework.
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Application Interface

The Application Interface layer provides routines to expose the functionality
of the VU framework to the vision application programmer. It provides
access and abstraction over the functionality of the Core layer to simplify
the task of the developer. The following is a description of the services
provided by the Application Interface:

• Device query: This functionality allows the programmer to query the
devices (sources and processors) that are available and their general
properties.

• Device communication: This functionality allows the programmer
to send and receive data from devices in order to set or get configura-
tion parameteras and meta-data.

• Device interconnection: This functionality allows programmers to
create a vision processing context by connecting sources to processors.

• Callback handling: This functionality allows programmers to regis-
ter handlers for the communication callbacks from each processor.

Driver Interface

The Driver Interface standardizes the communication between devices and
VU while providing abstraction over the implementation details of devices.
Devices can virtually be anything, ranging from software routines to hard-
ware accelerated implementations via GPUs, as long as they provide a
‘driver’ that adheres to the defined interface.

Since communication between devices and the VU framework is strictly
callback based, the Driver Interface provides the mechanism to allow de-
velopers to register their services in order for them to be VU compatible.
These services must include handlers for configuration providing output and
the main processing of the device.

4.2.2 Core Layer

The Core layer of the VU framework performs the data management ser-
vices. As discussed in Chapter 3 data management consists of the following
three tasks:

• Data Access: Configuration and retrieval of data from sources
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• Data Conversion: Conversion and transformation of image data

• Data Transport: Data transfer mediation between modules

VU provides abstraction over the details of these tasks from the user through
the use of the Core layer. The following is a discussion of each of the sub-
components of the Core layer:

Data Access

Currently there are large variations of protocols and formats used for ac-
cessing image data, which is mostly due to the diversity of existing image
sources. Analogue cameras, digital cameras, image and movie files, as well
as imaging sensors based on mediums other than light (e.g. ultrasound)
are just several examples of sources that are commonly used. Even within
each group there exists a wide variety of devices with different representa-
tions in software and physical interfaces. This variability results in a lot of
customized effort in order to configure and get data from these devices. In
addition to the variability within devices, there exist numerous representa-
tions of image and movie data that introduces additional complexity.

This diversity has created a need for a general framework that provides
uniform access to image sources regardless of access protocols, physical in-
stantiation and native data type. The aim of this framework would be to get
image data in native format from any image and video source in a uniform
way.

In order to unify access to image data from devices and other mediums,
we have created a model that presents image data sources as virtual cam-
eras with a unified interface. We have named this conceptual approach the
Unified Camera Framework (UCF). UCF defines and implements two sets of
specifications: the image specification that specifies the format of the image
data, and the device communication protocol that specifies a standard for
device communication.

The image specification within UCF is the definition of the meta-data
format that provides a complete description of its associated image data.
This specification identifies the properties and the format of the image data
allowing the consumer of the data to be able to decode and use the image
data. Typical image properties include resolution and compression type.
However, there are many other properties that need to be included in order
to provide a comprehensive description of images.

The device communication protocol within UCF specifies the method
for communication of data to and from devices. The communicated infor-
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mation consists of image and configuration data. This protocol would be
implemented on top of the existing device driver in order to allow that device
to be used as a UCF compatible device.

Data Conversion

Manually pre-processing images and converting them into the format re-
quired by the processing task is a non-trivial task. Pre-processing image data
includes operations such as format conversion, resolution change, colour-
space change and affine transformation. These tasks are non-trivial and
require additional effort on the developer’s part. The existence of a frame-
work that performs these tasks seamlessly as a preprocessing step for a pro-
cessing task is essential to the vision processing community. However, such
a framework is still not available in a seamless manner. The main reason
for the non-existence of such a framework is due mostly to the inadequate
standard method for the representation of image data properties. Without
a standard representation, it is very difficult to provide a framework for
conversion between data of different formats.

We propose an image manipulation framework that allows for seam-
less transformation between data with different properties. This framework
would rely on the image specification provided by the data access framework
explained in the previous section. The reliance on the standard image spec-
ification makes this framework conceptually simple as it can be represented
as a black box. The image specification would provide a uniform method for
identification between the input and output of the framework and based on
the output requirements the framework would apply the appropriate conver-
sions and transformations. It is important to note that there is some overlap
between operations that are considered to be part of this framework (data
format conversion/transformation) and data processing. However, includ-
ing functionality here does not preclude the processing task from performing
similar operations to data processing. This is demonstrated in Section 4.3.3
with the resizing functionality of the processor.

Data Transport

Transportation of data between different source and processing modules is
an important aspect of vision system development. The vision problem is
inherently a distributed task due to its employment of multiple sensors.
Communication between these sensors and processing modules is not a triv-
ial task. As discussed in Chapter 2, there are no existing frameworks that
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target the data transport requirement of vision system development ade-
quately. In order to address data transport we have developed an archi-
tecture for building distributed modular systems focusing on vision called
Hive. We present the motivation and the complete description of the Hive
framework in Chapter 5.

4.3 Proof of Concept

In this section we present an evaluation of the framework in three parts. In
the first part we present the implementation details of the VU framework
that we have developed in order to verify our approach towards vision based
system development. In the second part we present a system that we devel-
oped using the VU framework. In the third and final part of this section,
we present an evaluation of the framework, and discussion of the results of
the application.

The current version of the VU framework is a proof-of-concept system
that illustrates the validity of our approach; therefore, it is not a fully fea-
tured framework. The main limitations of this implementation are the fol-
lowing: VU only supports a single pipeline consisting of one source and one
processor; VU uses the above frameworks that are also not fully featured
and only provide a subset of the features. To implement a full version of this
framework would require fully featured versions of the components stated
above and is currently out of the scope of this thesis.

4.3.1 Implementation of VU Framework

The implementation of the VU framework closely follows the architecture
presented above. We have implemented an API that exposes the function-
ality of VU. In order to provide the needed functionality to the users and
maintain consistency with the classification presented in Chapter 3, we have
developed three frameworks to address the data access, manipulation and
transport requirements. The following is a discussion of the API of the
framework as well as the implementation details of the components of the
framework.

Interface Layer

In the VU implementation we created two separate interfaces: an application
API and a driver API. The application API exposes the services of the
framework to the vision system developer, whereas the driver API allows
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Requirement Methods
Device query GetDevices()
Device configuration SetParameter()

GetParameter()
Device interconnection CreateContext()

SetContextSource()
Callback handling SetIdleFn()

RegisterImageOutputCallback()
RegisterPostprocessCallback()

Table 4.1: This table shows the methods that provide the VU application
functionality.

developers to implement drivers for devices to use in the VU framework.
Both API’s use the asynchronous callback model to interface with users. A
complete list of the VU API is included in Appendix C which outlines the
description, inputs and outputs of each VU routine.

Application API The application API supports device communication
and control through a set of routines that implement the tasks outlined in
Section 4.2.1. Table 4.1 shows the correlation between the requirements of
the VU framework and the routines that provide the requirements. The
GetDevices() routine provides a list of the available devices to the user. The
user can query and set the parameters of these devices using the GetParam-
eter() and SetParameter() routines. Device interconnection is not a direct
call, but two calls. The first call (CreateContext()) starts a vision processing
‘context’ associated to a particular processing device. The second call (Set-
ContextSource()) associates a source device to the ‘context’ hence producing
the connection between the source and the processor. SetIdleFn() allows the
user to provide an idle routine that gets called when the framework is not
processing events. Using RegisterPostprocessCallback() the user can pro-
vide a routine that gets called when the processor has finished processing
a frame of data. This allows the user to check the status of the system
and possibly configure the processor or source during runtime. Using Reg-
isterImageOutputCallback() the user can provide a routine that accepts a
processor’s output image in a specific format.
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Requirement Methods
Callback handling RegisterProcessorFn()

RegisterGetConfigurationFn()
RegisterSetConfigurationFn()
RegisterDataReciever()

Output production SendOutput()
GetParameter()

Table 4.2: This table shows the methods required to device developers in
order to write drivers for various devices

Driver API The Driver API provides a standard interface to mediate
the communication between the VU framework and devices through asyn-
chronous callbacks. Table 4.2 lists the API methods for the Driver. For
a device to be used in the VU framework, it needs to implement a driver
that provides handlers for these routines. The RegisterProcessorFn() allows
the developer to provide the main processing routine of the device which
is called repeatedly by the framework. RegisterDataReciever() allows the
developer to specify the properties of the incoming images (device’s input)
and provide the routine that receives it. RegisterGetConfigurationFn() and
RegisterSetConfigurationFn() allows the developer to provide routines that
responds to the applications requests for retrieval (GetParameters()) and
assignment (SetParameters()) of internal parameters. The driver developer
would also need to expose the parameter types to the application developer
via a header file for these functions to be utilized.

Core layer

In order to implement the functionality of VU we have developed three
frameworks that implement the sub-components discussed in Section 4.2.2.
The VU Core layer simply makes calls to these frameworks based on internal
events or user requests from the Interface layer. The implementation of the
data access and the data convert components is done in a very lightweight
manner as proof-of-concept and are covered here. However, for the data
transport, we have developed a full framework that is presented in Chapter 5.

We have defined a light version of the image specification and device pro-
tocol. The image specification defines a number of data types that describe
the content and the encoding of the image. Table 4.3 summarizes the image
specification that we are using in our implementation. As can be seen we
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Properties Options
Image Compression Raw

JPEG
PNG

Pixel Depth (Bytes) 1, 2, 3, 4
Pixel Type Grayscale

RGB
BGR
HSV
YUV
CMYK

Image Origin Top Left
Bottom Right

Table 4.3: This table provides a summary of the image properties included
in our proof of concept image specification

have limited support for data types, but this description can be extended to
include many other image and video formats. The device access protocol is
based on a uniform set of asynchronous callbacks to the driver.

In order to perform data conversion we have developed a set of libraries
to convert between different image types as defined by Table 4.3. We have
wrapped the data conversion component in a simple function that takes an
input image header, an output image header and input data, and provides
data in the format requested by the output header. This is a very simplified
view of data conversion and to implement a fully featured package requires
further research.

4.3.2 System Development using VU

This section presents the proof-of-concept application that has been devel-
oped using the VU framework. In order to create a direct contrast between
the VU framework programming paradigm and the current vision applica-
tion development paradigm we have chosen to present a subset of OpenCV’s
functionality in this section.

We describe the components that make up this proof-of-concept system
(the sources and the processor) and present the application program that
uses these components. We then present the result of the application and
contrast this approach to the conventional method of development.
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Figure 4.4: OpenCV based VU framework processor.

Sources

For this application we use two sources that employ very different phys-
ical protocols: An Axis 207 network camera that employs TCP/IP over
Ethernet and a Logitech Quickcam pro 3000 that uses USB as a communi-
cation medium. We have developed drivers for these two cameras for use
as sources with the VU framework. These drivers adhere to the data access
image specification data and retrieval standards presented in Section 4.3.1.

Processor

We have designed a VU framework processor that performs a number of
different tasks implemented using the OpenCV framework. The following is
the functionality we have chosen to include in this processor:

• Resizing

• Smoothing

• Image Subtraction

• Image Thresholding

• Blob Extraction

These sub-processing components have been pipelined and collectively
constitute the processor that performs foreground object detection. How-
ever, the user has control over activating components of the pipeline and by
utilizing VU’s functionality could perform any combination of these com-
ponents on an image by processing it through the pipeline multiple times.
Figure 4.4 shows the processor and its components.

In order to be utilized as a VU device, the processor needs to provide
three components: a header file that includes the configuration and meta-
data types of the device; a set of handlers methods for the VU callbacks;
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and a header file that provides functions to allow the application to access
and configure the devices parameters and meta-data.

Code Snippet 4.1 shows the code that performs the task of providing
handlers to for the callbacks. This code provides function pointers as han-
dlers for the incoming image, get and set configuration, and the processing
routine. Note that the SetDataReceiver call passes the input header object
that specifies the properties for the incoming image. The framework takes
care of converting the incoming image to match those properties automati-
cally.

CodeSnippet 4.1 VU device interface code. This snippet shows the process
of registering callback handlers.
// Declare VUDevice
VUDevice vu_device(VU_DEVICE_PORT);

// configuration of VUDevice
vu_device.SetProcessorFn(OpenCVProcess);
vu_device.SetConfigurationFn(GetConfiguration);
vu_device.SetConfigureFn(SetConfiguration);
vu_device.SetDataReceiver(input_header, RecieveImage);

Table 4.4 shows the configuration parameters of the OpenCV processor
constituting the second requirement for a VU device. In addition to the
control structure (Active Modules) that determines the active components
of the pipeline, each component of the pipeline has a set of configuration
parameters that is exposed to the application developer. By manipulat-
ing these configuration parameters the pipeline and its components can be
configured.

Code Snippet 4.2 shows the third and final requirement of the VU device;
an example of a function that utilizes the set and get configuration func-
tionality of VU application API to modify and access a particular device’s
internal parameters and meta-data. This code shows the function that sets
the status (active or not-active) of each component on the device. It takes
in the VU object, the processor device and the configuration data and con-
figures the device using the appropriate ‘command’ and VU’s setParameter
routine.

41



4.3. Proof of Concept

Parameters Configurations
Active Modules Resizing

Smoothing
Image Subtraction
Thresholding
Blob Detection

Smoothing Smoothing Type
Smoothing parameters

Image Subtraction
Thresholding Threshold Value
Blob Detection Minimum Size

Maximum Size

Table 4.4: This table shows the parameters of the OpenCV processor

Application

The role of the application module is to configure the source and connect it
to the processor. For this application we would like to display the processor’s
output on the screen under a number of different configurations to test the
framework.

Assigning the Source The application can assign one of the two available
sources to the processor. Depending on the user’s input one of the two
sources is chosen and configured to provide images at a specific resolution
(e.g. 640x480 or 320x240).

Configuring the Processor In order to fully exercise the processor we
have developed the application to take inputs from the user in runtime to
configure the processor. Using the GLUT framework we are capturing key
strokes from the user and setting appropriate flags that activate or deactivate
components of the pipeline upon the invocation of the post process callback
handling routine.

Displaying Processor Output In order to display images we are using
the GLUT framework to create a 640x480 RGB window. To receive the
output of the processor in this format we register a handler for the incoming
image and specify the desired image properties (640x480 RGB). The image
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CodeSnippet 4.2 This is an example of wrapper code that sets the acti-
vation of opencv components.
bool cvDeviceSetComponents(VU *vu, VU::Device processor,

opencvComponents &config_data)
{

int psize = sizeof(commandType)+sizeof(opencvComponents);
byte *pdata = new byte[psize];
commandType parameter = CV_SET_COMPONENT_STATUS;
memcpy(pdata,&parameter,sizeof(commandType));
memcpy(pdata+sizeof(commandType),

&config_data,
sizeof(opencvComponents));

bool res = vu->SetParameter(processor, pdata,
psize, VU::DeviceConfig);

delete[] pdata;
return res;

}

receiving handler copies the data into the GLUT display buffer and calls the
display function.

4.3.3 Results and Evaluation

This section presents an evaluation of the VU framework based on the cri-
teria presented in the introduction of the chapter. Through the following
evaluation we demonstrate the following:

• The details of accessing data from sources is de-coupled from the pro-
cessing module.

• The details of image data format of the source and processor are hidden
from the user of the framework.

• The details of physical connection and communication of the source
and processor module is hidden from the user of the framework.

In the following sub-sections we present and discuss the results in detail
as they apply to these three points. In addition to directly evaluating the
framework with respect to these three points we present the results of the
overall system in order to verify the VU framework’s ability to configure and
communicate to the processor in run-time.
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Source Access Abstraction

As presented in the previous section we have developed VU drivers for two
different cameras: a USB camera and a network camera. In order to test
the source access abstraction of the VU framework we have developed an
application that connects each source to a processor and displays its output.
In order to simplify the task and focus on the task at hand (source access
abstraction) we have configured the processor to perform no operation on
the image hence the output of the processor is the same as its input.

The two cameras have different native formats. The USB camera pro-
duces raw RGB images whereas the Axis 207 camera produces JPEG images.
Although both cameras have a number of different configurable internal pa-
rameters, for demonstration, we only configure the resolution of the cameras.

Figure 4.5 show the output of the processor with the different cameras
set at different resolutions, and Code Snippet 4.3 shows the code responsible
for assigning a source to a processing pipeline. As can be seen from the code,
the application programmer does not deal with any low-level details such as
memory allocation, addressing or format change. The user simply picks a
source from the list, has the option of setting the properties and assigns the
source to the processor. This interface will remain the same regardless of
the source; for example, image and movie files could also be represented as
virtual cameras.

Image Detail Abstraction

An important contribution of VU is the abstraction it provides over the
image representations inside the system from the user of the framework
thus removing any effort that is associated with image data manipulation
and transformation on the user’s part.

In order to evaluate the framework’s ability to perform this abstraction,
we provide a number of different image resolutions and formats to each com-
ponent of the pipeline. Since each component of the pipeline (the processor
and the application) can only perform operations on a specific data type,
the framework should handle the format changes to cater to the needs of
each component. We evaluate the application developer’s awareness of the
change in image formats throughout the system.

The processor used for this evaluation is designed to strictly accept im-
ages with resolution of 640x480 RGB format and depending on its config-
uration can produce images of any resolution. The application has been
designed to reconfigure the source to produce images with resolutions of
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(a) (b)

(c) (d)

Figure 4.5: Output of the processor with the a) USB camera at 320x240,
(b) USB camera at 640x480, c) AXIS camera at 320x240, (d) AXIS camera
at 640x480.

640x480, 352x288 and 320x240 in both raw RGB and JPEG format and
strictly display images of resolution 640x480 in RGB space.

We exercised the system by testing it under a number of different sce-
narios.

In the first scenario, the source is configured to provide images of reso-
lution 640x480 in RGB space, and the processor is simply passing the same
image to the application that displays it at the same resolution and type,
hence eliminating the need for any format change (as shown in Figure 4.6a)).
In the second scenario, the source is producing images of resolution 320x240
of JPEG format, the processor requires raw 640x480 images hence requiring
a transformation by the framework to match the required data type for the
processor (as shown in Figure 4.6b)). In the last scenario, the source is still
producing 320x240 JPEG images and the processor has been configured to
convert the images to raw 100x200 RGB format. Since the application ac-
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CodeSnippet 4.3 VU code for setting up the source of a processing
pipeline.
/* using the QCP camera */
vu.SetContextSource(devices.at(0));

QCPSettings qcp_settings;
qcp_settings.width = 320;
qcp_settings.height = 240;
res = QCFSetProperties(vu, devices.at(0), qcp_settings);

/* using the AXIS camera */
//vu.SetContextSource(devices.at(1));

//AxisSettings axis_settings;
//axis_settings.width = 640;
//axis_settings.height = 480;
//res = AXISSetProperties(vu, devices.at(1), axis_settings);

cepts only 640x480 RGB the framework converts the image automatically to
match the required format for the application (as shown in In Figure 4.6c)).

Code Snippet 4.4 shows the code for registering image receiving handlers
for both the application and the processor device driver. Using this API,
the user simply states the required properties of the incoming image and
the VU framework takes care of the conversion to that type. Using this
framework all sources and processors are compatible and can be connected
using the ‘plug and play’ paradigm.

Communication Abstraction

To demonstrate VU’s ability to provide abstraction over the inter-module
communication details, we present and compare the code for two systems de-
veloped on the VU framework. The components of the first system (source,
processor and application) are on a PC running Linux OS. For the second
system the source and application are running on the Linux PC and the
processor is running on a Windows PC that resides on the same network.

The only difference in the two applications from the developer’s per-
spective is the selection of the different processor from the list. The system
developer treats both processing modules identically as the actual physical
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(a) (b) (c)

Figure 4.6: Output of the processor with a) Camera and processor raw RGB
640x480, (b) Camera JPEG 320x240 and processor raw 640x480, c) camera
320x240 JPEG and processor raw RGB 100x200.

CodeSnippet 4.4 Code for registering an incoming image handler.
UCF::ImageProp img_prop;
img_prop.width = width;
img_prop.hight = height;
img_prop.size = width*height*UCF::Byte3;
img_prop.image_format = UCF::Raw;
img_prop.pixel_depth = UCF::Byte3;
img_prop.pixel_type = UCF::RGB;

// VU Application
vu_application.RegisterImageReceiver(img_prop,image_receiver);

connection is completely hidden from the application developer via the data
transport component. More discussion regarding data transport is presented
in Chapter 5.

Run-time Processor Control and Configuration

To demonstrate the run-time control and configuration of the processor from
the application we present the results of the application under a number of
different controlling commands from the user. Figure 4.7 shows the screen
shots of the system output with a number of different processor components
activated.
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Raw feed Smoothing Resizing

Resizing + Smoothing Background image Foreground image

Subtraction Thresholding Foreground Grouping

Figure 4.7: The result of the VU processor.

4.4 Conclusion

In this chapter we presented our approach of addressing the vision problem.
Our approach is directly derived from the classification of the vision problem
presented in Chapter 3. We presented the VU framework which provides
the data management component of the vision task to vision developers
while providing abstraction over the low-level details of data management
sub-components.

We presented a proof-of-concept implementation of each data manage-
ment sub-components and demonstrated how the VU framework utilizes
these components and provides transparent access to their functionality to
vision based application developers. We presented an application developed
using the VU framework that utilizes two different sources and a processor
based on the OpenCV framework.
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We demonstrated that by using the VU framework, the user is not re-
quired to explicitly address the details of accessing sources, converting image
data and transporting data in between modules.
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Chapter 5

Hive Framework

In this chapter we present the Hive framework as a solution to satisfy com-
puter vision’s requirement for data transportation as described in Chapter 3.
As presented in Chapter 4, Hive serves as the basis for the transport com-
ponent of the VU framework. However, Hive is a standalone framework
designed to provide the modularity and distributivity needed in vision sys-
tem development.

The main goal of the Hive framework is to mediate reusability by provid-
ing abstraction over inter-module communication in a platform independent
way. There is a direct link between support for data transportation and
reusability that has inspired the Hive framework. The existence of a data
transport mechanism is necessary to achieve code reusability since without a
standard method for data communication between vision components there
is no easy way of defining a standard interface for components to make them
reusable. Reusability, abstraction and platform independence form the basis
of our evaluation at the end of this chapter.

Data transportation for vision based systems is a complex task and to
create an all encompassing solution it requires that has a large set of re-
quirements be fully met which is well beyond the scope of this. We have
mainly focused on satisfying a set of key requirements in developing Hive
while not addressing hard real-time or global synchronization requirements.
Following is a list of the requirements addressed by Hive:

• Abstraction and Encapsulation: Low-level communication details
should be hidden from the user. This feature also decouples the im-
plementation of the framework from its API.

• Plug-in Interface: Hive modules should be standalone (not require
any other modules) and reusable to emulate the successful operating
system’s paradigm of plug and play.

• Flexible and Low overhead Communication: The communica-
tion protocol needs to provide low-overhead direct connection between
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modules while being extensible and flexible to accommodate any pos-
sible distribution pattern for vision systems.

• Centralized Control: The modules and connection between the
modules should be controlled centrally to allow for dynamic recon-
figuration.

• Cross platform: The framework needs to be platform independent in
order to be promote use, portability and interchangeability of modules.
This requirement allows heterogeneous sensor systems to be easily de-
veloped.

This chapter presents an overview of the Hive frameworks, the archi-
tecture of Hive, and a discussion of the implementation of its components,
highlighting how the architecture satisfies the mentioned requirements.

5.1 Hive Overview

In this section we are introducing the Hive framework by presenting its
application development model, its components and its framework model.

5.1.1 System development Model

Hive is a modular framework based on the concept of encapsulated and
distributed processing. Hive systems consist of a single application and a
number of drone modules which allows developers to rapidly create vision
systems by reusing modules. Hive provides control routines to the applica-
tion and mediates all of the communication between the modules by creat-
ing a structured peer-to-peer network. Using Hive’s communication model,
drones can be set up as a pipeline, a distributed network, or any combi-
nation of the two. Figure 5.1 shows a simple Hive system that performs
human tracking using a background subtraction and a tracking drone. The
image data in this case is provided by the camera drone. The application
creates the data connections between the drones for processing and receives
the output of the tracker. The following sections present the components of
Hive: the application, the drone and swarms.

5.1.2 Modules

The following is a description of the different types of modules that make
up Hive systems:
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Figure 5.1: An example swarm set up using Hive to accomplish a vision
processing task. Adapted from [1]

Application

The application module is the control center of Hive based systems. The
application provides access to Hive modules to the system developer. The
role of the application is to configure and connect drones together to create
single or multiple swarms.

Hive supplies an Application API for the system developer that provides
access to functions that configure drones’ internal parameters and create
data connections for drone-to-drone and drone-to-application communica-
tion. In addition to the initial configuration and setup, the API allows an
application to connect drones to itself to receive data from drones. This
data may be the results of the vision processing component of the system
that is used by the Hive application or it can be run time information about
the status of each drone. Hive applications can reconfigure drones or the
swarm dynamically at run time if needed.

The application accesses drones using a universal addressing scheme.
Using this addressing model, drones can be connected to the same physical
machine as the application or be scattered across the network.

Drone

Drones are independent, reusable modules with a well defined interface that
carry out one or several specific tasks. Drones can be based on a physical
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device such as a graphics card or a software routine. However, regardless
of the nature of the drone, the interface remains constant. The drone’s
interface consists of the specification of the input data types, the internal
configuration parameters, and the output data types. The configuration
parameters of a drone allow a programmer to customize its function. For
example, a camera drone’s parameters can be the resolution and frame rate.
Drones can be pure data sources (such as cameras), pure data processors
(such as a background subtraction module), or a combination of the two
(such as smart cameras).

Hive provides a simple interface for developers to create drone modules
that run a software routine or interface with a physical hardware device.
The Driver API provides routines for receiving data, performing process-
ing, sending and receiving configuration parameters from applications, and
sending data to other modules in the system. This API allows developers to
easily create drones which can be connected to any other drone that adheres
to its interface.

Swarm

Hive swarms are a set of inter connected drones controlled by a Hive ap-
plication. Swarms consist of sources that produce data and processors that
process the data. They can be set up in a variety of configurations to accom-
plish a single or a series of complex vision processing tasks. An application
can set up multiple swarms simultaneously using different drones or employ
a single drone in more than one swarm.

5.1.3 Framework Model

The Hive framework is a hybrid of two well known architecture patterns:
Pipes and Filters (stream processing) and event driven architecture. Each
of these patterns have a set of advantages and disadvantages. By combining
them we are leveraging the benefits of each approach in order to satisfy
Hive’s requirements.

The Pipes and Filters model for stream processing is a popular model for
signal processing that allows for parallel processing and distribution. In this
model filters are processing units with well defined inputs and outputs and
pipes are connectors that transfer stream data among filters. The simple rep-
resentation of filters (inputs and output description) in this model provides
modularity and easy reusability. Furthermore, as filters are independent
units, they may be utilized in order to achieve parallel and distributed pro-
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cessing. Benefits of Pipes and Filters with relation to computer vision has
been demonstrated in [16] where the authors use a modified Pipes and Fil-
ters model to successfully develop several vision based systems. The main
disadvantage of the Pipes and Filters model with respect to vision based
system development stems from the simplicity of the filters. As the model
does not provide high-level management of filters, there is no mechanism
for interactively accessing and manipulating the filter parameters. We have
addressed this issue in Hive by modifying the communication model of the
“filters”.

Event Driven Architecture (EDA) describes a model of communication
between components that is based on production and consumption of events.
An event in this sense is defined as a change in state that is exchanged be-
tween a system’s components[8]. The use of EDA for vision is not necessary;
however, it provides a number of features that make it a very suitable model.
The main advantage provided by this model is that system components are
very loosely coupled since the event creator has no knowledge of the recip-
ient(s). Due to the loosely coupled nature of its components, EDA can be
easily distributed.

The Hive framework’s architecture is based on a modified Pipes and
Filters model which utilizes an event driven architecture for communication
between components. This approach provides the advantages of the Pipes
and Filters in addition to interactive control over the components of the
framework. The details of Hive’s architecture are presented in Section 5.2.

5.2 Architecture

Hive is based on a layered architecture inspired by the success of other lay-
ered designs such as the OSI model[44]. As successfully demonstrated by
the OSI model, the layered architecture decouples services offered by the
framework and provides abstraction and encapsulation of the implementa-
tion details of each service. In general layered architectures promote modu-
larity and reusability as lower layers can be used by several instances of the
upper layers, thereby reducing the complexity of development.

Figure 5.2 shows Hive’s layered architecture for both the application and
drone. There is a division in the architecture between the application and
drone in the interface and Service layers. This distinction is necessary since
Hive provides two API’s with different functionality; however, the abstrac-
tion provided by the Communication layer is identical for both modules. In
this section we present a detailed discussion of the motivation and design of
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Figure 5.2: The layered architecture of Hive for both applications and
drones.

each layer.

5.2.1 Interface Layer

The Interface layer provides Hive’s application programming interface to
users via asynchronous callbacks. Callbacks are chosen in this instance be-
cause they work well with the asynchronous event based nature of the sys-
tem. The interface layer could also be implemented via blocking or polling
methods. However, in these two cases the overhead on the user is increased
as the user would need to manage the blocking call or poll for events man-
ually. Hive provides two different API’s to users: the Application API and
the Driver API. Both API’s share a subset of routines for setting up data
handlers and the main method as well as a number of specific routines. The
next three sections describe the Interface layer by discussing the API’s for
both the application and drones.

Application Specific API

The fundamental difference between applications and drones is the applica-
tion’s ability to manage drones and create swarms. The Application API
provides the functionality to set and get the internal configuration param-
eters of individual drones. This can be done prior to creating a swarm
or during the operation of a swarm. To create swarms the Application

55



5.2. Architecture

API provides methods for connecting drones to each other. These connec-
tions specify the data type and can either be synchronized or streaming.
The difference between the two connection methods is that for synchronized
connections there is a request each time the data is required by the receiv-
ing drone. However, with streaming connections the data is sent whenever
the sending drone has it available. There are also methods for connecting
drones to the application and vice versa. The application can also send data
and notifications to drones directly. The API for the application exposes
the functionality provided by the Service (Manager) layer to the application
developer.

Driver Specific API

The driver specific API is a thin layer that provides counterpart routines to
the Application API and a drone’s output. The Driver API allows drones
to provide function handlers to respond to the set and get configuration
requests. These handlers are invoked by callbacks when initiated by the
application. The API also allows the drone to provide outputs by creating
data of a certain type which is transported by the Communication layer to
any drone that has registered to receive data of that type.

Common API

Since communication for both application and drones is done via asyn-
chronous callbacks, registering callback handlers is the same for both in-
terfaces. There are two types of callbacks for communication with modules:
the main routine and incoming data. The main routine is a method that
is invoked repeatedly by the Service layer and often carries out the main
processing task of the module. For example, a camera drone’s main routine
is responsible for retrieving a new frame and passing it as output to the
Event layer. The incoming data handlers are routines that are registered by
the modules to process a specific data type. These routines are invoked by
the Service layer whenever a data of that type arrives.

5.2.2 Service Layer

The Service layer provides the functionality for the Interface layer for the
drones. The Service Layer’s functionality can be categorized into the fol-
lowing: using the Communication layer to send appropriate commands and
data to other modules in order to achieve tasks required by the Interface
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layer; and responding to incoming commands and data by invoking the ap-
propriate handler routines (registered via the Interface layer).

5.2.3 Manager Service Layer

Similar to the Service layer, the Manager Service layer provides the func-
tionality of the API provided by the Interface layer for the application. The
Manager layer uses the Communication layer to send and receive data to
drones. In order to set and get drone parameters, the Manager layer sends
commands to a specific drone and blocks until the expected response event
is received. In order connect (or disconnect) drones together, the Manager
layer sends commands to the recipient drone, instructing it to request (or
cancel the request) for data from the sending drone. The Manager layer also
provides routines for sending data and notification of a specific kind directly
to a drone.

Drone Service Layer

The drone specific functionality of the Service layer is minimal; mainly the
registration and invocation of the callback routines that handle the config-
uration of the drone. In addition to configuration, the Service layer also
passes the output data to the Event layer for potential delivery to other
modules.

Common Services

The Service layer maintains and manages the callback handlers for both
the application and drones. It provides routines for registration (from the
interface layer) and invocation (from itself or the communication layer) of
these handlers. Each handler is registered for a specific data type, and is
invoked by the Service layer when data of that type is received through the
Communication layer. The callback handlers are queued and called one at a
time to maintain simplicity and prevent synchronization issues on the user’s
part.

5.2.4 Communication Layer

The Communication layer manages the transfer of data and commands be-
tween modules in Hive via a peer-to-peer network using an event based
model. Event based communication is suitable for Hive since vision data
is represented and processed as discretized packets. The communication
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model is based on a publish/subscribe model which uses an asynchronous
messaging model. The peer-to-peer model is chosen to avoid communication
bottlenecks that can occur in client-server models where the data from all
components is directed to a central server for processing. Combining the
flexibility of an event based mechanism with the efficiency of peer-to-peer
communication allows for a system that is loosely coupled and scalable to
very high number of modules.

The Communication layer consists internally of the Event and Transport
layers. The following is a discussion of the details of these two layers.

Event Layer

The Event layer provides the functionality needed for managing connections
between drones as well as sending and receiving events. The event based
communication between drones is based on a publisher/subscriber model,
where the sender does not explicitly send messages to receivers but the
message is delivered to the recipient if it has registered for the message’s
data type. This paradigm decouples the communicating modules allowing
the sender to operate at its maximum potential regardless of the receiver’s
performance. The event based communication provides flexibility and ex-
tensibility for the Communication layer.

The Event layer handles two types of events: network events and module
events. In both cases the Event layer uses the functionality of the Transport
layer to deliver events to their destination. Figure 5.3 graphically demon-
strates the flow of data and events through the different layers of the Hive
framework.

Network events are commands to manage interconnections between mod-
ules. These events are issued by the application module to drones as requests
for creating or removing uni-directional data pipelines between two modules.
The ‘connect’ event instructs the recipient drone to register itself as inter-
ested in data of a specific type on the drone that will produce the data, hence
creating a uni-directional pipeline from the sender to the recipient. There
are two types of pipelines: persistent, which transports events continuously;
and non-persistent, which only transports a single event.

Module events carry data or notifications between drones. These events
can be sent directly from the application to drones or transferred between
drones using the uni-directional pipelines (as described above). The data
transferred between drones is managed by the Event layer as described pre-
viously; drones produce output data of a certain type and pass it to the
Event layer which then delivers the data to any module that has registered
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Figure 5.3: The flow across layers associated with sending (b), and receiving
(c) data across the network.

for data of that type.

Transport Layer

The Transport layer can receive packets from and deliver packets to other
modules. The send and receive functions are complementary and implement
the delivery of incoming and outgoing events as complete packages. The re-
ceive routine is implemented as an asynchronous callback to the Event layer.
The Transport layer was designed to implement a peer-to-peer network in
a simple and lightweight manner. The communication is based on TCP/IP
to allow modules to run anywhere on the network.

5.3 Proof of Concept

The main objective of Hive is to provide the data transportation and stan-
dardization required for vision (and other sensor) based system development
that meets the following requirements:

• Component reusability

• Platform independency
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• Abstraction over inter-component communication

In this section we focus on presenting a number of drones and systems
developed using Hive to validate the framework by showing how it meets the
above requirements. In order to focus on Hive’s features we have isolated
the transportation component in the following systems by dealing with the
image data access and conversion within each drone. Furthermore, we utilize
different platforms and sensors to show Hive’s platform independency and
ability to uniformly access modules regardless of underlying hardware or
software platforms.

5.3.1 Implementation

We have developed a full version of the Hive framework to evaluate our
conceptual VU framework presented in the previous section.

The implementation of this version of Hive is in C++ using the Boost
library. Boost is a free peer-reviewed and portable set of C++ source li-
braries that provide standard API’s for tasks such as networking, thread
management and timing etc.[4]. The development of Hive follows the layer
architecture closely to provide the same abstraction levels in code. C++
was chosen because it is the most widely used language for vision system
development. Boost libraries allow us to easily provide a C/C++ interface
for Hive and provide the platform independency we require.

5.3.2 System Development Using Hive

This section presents a diverse set of reusable modules (drones) implemented
using Hive that form the building blocks for Hive systems. Each drone’s
functionality is described as well as its inputs, outputs, configuration and
processing method. The drones are categorized into the following three
types: data capture, processors, and visualization and storage.

Data Capture

This section presents a number of data capture drones that act as a starting
point (sources) to swarms in Hive. We discuss the functionality and the
abstraction of these drones. Note that the drones that produce images in
this section follow the UCF image specification described in Section 4.2.2.

AXIS Network Camera : AXIS network cameras are standalone units
that interface directly to the network via Ethernet and host a web-server
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that provides access to the camera’s internal parameters and image data via
the AXIS VAPIX protocol over TCP/IP[11]. The AXIS drone abstracts the
VAPIX protocol by implementing the translation between Hive commands
and protocol to VAPIX. This drone can run on any machine that is connected
to the network which the camera resides on.

Inputs: None
Outputs: Colour image

Configuration: Camera settings; Output format (JPEG or RGB)

Logitech Quickcam pro 3000 : Quickcam pro 3000 is a USB webcam
that has a number of configuration parameters for image quality and reso-
lution. Logitech provides a driver that allows access to image data and the
configuration. The Hive drone for this device implements the translation be-
tween the Hive and native protocol device. The only difference from Hive’s
perspective between this source and the AXIS network cameras presented
previously is the configuration parameters.

Inputs: None
Outputs: Colour image

Configuration: Camera settings; Output format (RGB or HSV)

Image Sequence : Often when testing algorithms the same sequence is
used for evaluation purposes. In some cases the actual data capture device
might not be available and pre-recorded data is needed. The image sequence
drone provides this functionality by loading an image sequence from the disk
thus allowing seamless switching of data sources (e.g. from a live camera to
an image sequence stored on any computer on the network). The drone itself
can load any image sequence stored on its local machine. The root name of
the sequence and the frame rate to supply data are given as configuration
parameters.

Inputs: None
Outputs: Colour image

Configuration: Root filename; Frame rate

Video Files : This drone fulfils the same purpose as the image sequence
drone, but for video files. This is currently implemented using OpenCV and
thus supports the codecs installed on the system. The frame rate used is
the same as that used for the video file.

Inputs: None
Outputs: Colour image

Configuration: Filename
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Fastrak : Spatial position is an important aspect of many vision applica-
tions. Vision based algorithms for estimating 3D position require intensive
processing and are often inaccurate. This task can be performed easily and
accurately using tracking hardware. The Polhemus Fastrak[35] is a magnetic
device that performs real-time six degree of freedom tracking of sensors. Fas-
trak provides the 3D position and orientation of each sensor (pitch, roll and
yaw) relative to a base station. The Fastrak drone implements routines for
getting and setting configuration of the tracker, start and stop routines and
the get data routines. The only parameter on the tracker is the number of
connected sensors. The device allows up to four sensors to be connected
simultaneously. The start and stop routines allow the application to control
whether the drone is producing data.

Inputs: None
Outputs: 3D position and orientation for each sensor

Configuration: Number of active sensors

Processing

This section presents the processing drones that we have developed using
Hive.

Background Subtracter : Many algorithms in Computer Vision make
use of background subtraction (or foreground extraction) as a precursor
to the main computation. For example, silhouette images are required for
visual hull construction and are useful for tracking, object detection and vir-
tual environment applications. This drone provides eight different methods
of background subtraction, ranging from simple frame differencing to more
sophisticated techniques[33]. Algorithm selection and parameter setting can
be altered via drone configuration.

Inputs: Image
Outputs: Foreground image; Alpha matte

Configuration: Algorithm selection; Parameters of algorithm

Face Detector : Finding faces in an image has become an ubiquitous
application seen now as standard on many compact cameras and also avail-
able on some camera phones. This drone makes use of the face detection
supplied with OpenCV, which utilizes a cascade of boosted classifiers using
Haar-like features[5, 24]. For each input image the drone produces an array
of rectangles corresponding to regions possibly containing a face.
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Inputs: Image
Outputs: Array of rectangles

Configuration: Algorithm parameters

Colour Point Detector : Locating colour points in images is a useful
method for tracking objects of interest. This drone finds the center of a
region in an image that corresponds to a certain colour. The image is first
thresholded against the required colour and then the pixels left in the image
are grouped into blobs. The centers of the blobs are then calculated for
those that meet the preferred size criteria.

Inputs: Image
Outputs: 2D position of the coloured areas

Configuration: RGB value of point; Min and max size of regions

Convolution : Convolution is a common operation in computer vision
that is the basis behind many filters. We have developed two drones: one
that implements 7x7 convolution using software and another that imple-
ments it using CUDA on a graphics card[12]. The interface to both drones is
identical; however, the performance is substantially different. In the graph-
ics card implementation, the image and kernel are loaded into the graphics
card memory and operated on using parallel processors.

Inputs: Image
Outputs: Convoluted Image

Configuration: Convolution Kernel

Visualization and Storing

Displaying and storing image data is a vital part of vision based system
development. The following describes drones set up to accomplish these
tasks:

Live Video Viewer : This drone provides a display for incoming images
and annotation tools to draw shapes (from other drones such as the Face
Detector). Multiple instances of this drone can be tied to different drones
providing real-time feedback at each stage of a swarm’s computation, which
is useful for debugging during development. For example, in the Face Detec-
tion application described in Section 5.3.3 separate viewers can be connected
to the camera, the background subtractor and the face detector to monitor
algorithm results.
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Inputs: Image; Rectangles; Points
Outputs: Video to screen

Configuration: None

Image Sequence Capture : As discussed above for the Image Sequence
drone, capturing data from cameras is important for offline processing or
algorithm development and testing. This drone accepts images and stores
them directly to disk, saving them with a file name given via configuration.
The Image Sequence Capture drone also supports saving images to video
files instead of image sequences.

Inputs: Image
Outputs: Images to disk

Configuration: Root filename

Video Capture : Video capture works in much the same way as Image
Sequence Capture, although the incoming images are saved to disk as a
video file. The file name for the video is supplied via configuration, as is the
video compression format.

Inputs: Image
Outputs: Video to disk

Configuration: Filename; Video format (codec)

5.3.3 Results and Evaluation

In this section we present a number of systems that have been developed
using the Hive framework and the drones presented in Section 5.3.2. We
present the results of these systems through which we demonstrate the com-
ponent reusability, platform independency and seamless communication of
the Hive framework. The systems in this section emphasize that given a base
set of drones, system prototypes can be constructed quickly and swarms can
be dynamically connected to test different configurations.

Face Detection

We have implemented a face detection system using the AXIS Camera,
Background Subtracter, Face Detector and the Live Video Viewer. The
system operates in two ways: the first detects faces on the original camera
images and the second performs face detection on a foreground extracted
image. Results demonstrate the improvement in accuracy and performance
by incorporating a background subtraction system. The system itself shows
the simplicity and flexibility of development using Hive.
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(a) System 1

(b) System 2

Figure 5.4: Face Detection: Flow charts showing the connections in (a)
direct detection and (b) the addition of a Background Subtractor drone.
Taken from [30]

Both methods of face detection use a ‘dumb’ application to connect
the various drones together. The application is termed ‘dumb’ because it
does not need to do any computation or result collation itself as the drones
perform all the processing.

The first method uses the application to connect an AXIS Camera to
both the Face Detector and the Live Video Viewer and then connects the
Face Detector to the Live Video Viewer (as shown in Figure 5.4(a)). Using
Hive and the predefined drones, this amounts to under thirty lines of code
(including configuration parameters). To obtain real-time performance the
face detector is configured to be less accurate and faster. However, this
results in more false positives. All of the drones and the application module
for this setup run on one PC with Windows XP OS for this demo.

For the second system a background subtracter is inserted between the
AXIS Camera and the Face Detector in order to reduce the number of
false positives while maintaining real-time performance. In this instance,
the Background Subtracter drone is running on another PC running Linux
OS connected via the network. This new system, shown in Figure 5.4(b),
removes identified faces from the background (such as photographs) as well
as reducing the number of false positives.

The second system demonstrates Hive’s platform independency and ab-
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(a) (b) (c)

Figure 5.5: Face Detection: First row uses fast method, Second row the
accurate method. Taken from [30]

straction over the physical location and connection of drones. The appli-
cation does not need to address any communication or platform specific
details.

The results of the two systems are shown in Figure 5.5, with and without
background subtraction, and at two levels of accuracy. To obtain real-time
performance the Face Detector is set to find faces with low accuracy, which
increases the rate of false positives (Figure 5.5a)). Attaching a Background
Subtracter to the system removes large regions of the image (Figure 5.5b))
where false positives can appear as well as removing static faces (such as
photographs) from the scene. Figure 5.5c) shows the final result using the
second system. The second row of images displays results for the system
with the Face Detector in high accuracy mode.

The addition of the Background Subtracter drone to the system is simple
and shows how systems can be enhanced or tested by inserting additional
processes using Hive.

Quality of View Analysis

This system extends the previous real-time Face Detection algorithm to
create a system which analyzes the quality of the given views in a multiple
camera network. The quality evaluation is set to the number of faces in each
view and the application automatically switches to the view with the most
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Figure 5.6: Quality of View Analysis: The flow chart for the Hive sensor
network for analysing the quality of views via face detection. Taken from
[30]

faces. This system for example could be used for home video podcasting
in one-person shows; using multiple webcams the system will automatically
change to the view the presenter is looking at.

The system connections are shown in Figure 5.6. Three AXIS Camera
drones are each connected to a Background Subtracter drone which is in
turn attached to a Face Detector drone. The cameras are also connected to
the application to provide the images for the chosen view. As the feeds come
in from the Face Detectors, the number of faces in each view is compared
and the view with the most faces is chosen. Its images are then routed to
the applications display.

This example demonstrates the reusability provided by Hive. We show
how a sophisticated system can be built quickly using Hive from a set of base
drones. Figure 5.7 shows the screenshots of the Quality of View Analysis
system running for three scenes.

Multiple Camera Calibration

Applications such as tracking, augmented reality, camera calibration and
human computer interface require a mapping between image pixels and 3D
positions in the world. This system uses a magnetic positioning device to
obtain the intrinsic and extrinsic camera parameters in order to calibrate
cameras. There are various methods for computing camera calibration; we
have developed a multiple camera calibration system based on the Tsai
calibration method[42].

Using Hive we utilize the Colour Point Detector and the Fastrak drones.
For this system we use a green marker on the Fastrak sensor to locate it in
the image giving an image point to 3D point correspondence. To perform
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Figure 5.7: Quality of View Analysis: Each row represents a snapshot in
time from each of the three cameras. The red boxes in the top-left, center
and bottom-right images show positive detections and the view chosen by
the system. Taken from [30]

calibration, the marked sensor is moved around in the field of view of each
camera to produce a data set which is then processed using the Tsai method
to calculate the intrinsic and extrinsic parameters.

Figure 5.8 shows the interconnection of drones in the multi-camera cali-
bration system. The application is connected to one Fastrak and three sets
of the Colour Point Detector and AXIS Camera swarms. The application
couples the 3D sensor position from the Fastrak drone with the 2D location
of the colour point from the Colour Point Detector drone and runs the cali-
bration routine. The resulting calibration parameters are written to disk for
each camera. Figure 5.9 shows the annotated images for each camera. Note
that extension to more cameras is trivial, requiring an additional swarm for
each camera.
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Figure 5.8: Drone interconnection for camera calibration. Taken from [30]

Figure 5.9: Feed from cameras 1, 2 and 3 during data point collection for
calibration. Taken from [30]

Augmented Reality

The insertion of virtual objects into a real scene has many applications in
entertainment, virtual reality and human computer interaction. We have
implemented a real-time augmented reality system using the Fastrak drone
and multiple camera drones that provides jitter-free virtual object insertion
which is accurately represented in the different camera viewpoints.

Figure 5.10 shows the interconnection of drones for this system. We use
the multiple camera calibration described above to calibrate the cameras
to the Fastrak’s coordinate system. The calibration system provides the
location and orientation of each camera in the tracker’s coordinate system
as well as the camera’s intrinsic parameter (focal length and the principle
point). The calibration data is used to construct a model of the cameras
and the coordinate system in OpenGL.

Given this model, a 3D object can be placed in the scene using the correct
position and orientation supplied by the Fastrak sensor and rendered in the
image plane of the modeled camera. This rendering is superimposed on the
actual camera feed to produce the images that contain the virtual object.
Figure 5.11 shows the frames from the three cameras before and after the
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Figure 5.10: Drone interconnection for augmented reality. Taken from [30]

Camera 1 Camera 2 Camera 3

Figure 5.11: Original feed from the cameras vs. augmented reality. Taken
from [30]

placement of the augmented reality object. Figure 5.11 shows the setup used
for the calibration and the augmented reality system.

5.4 Conclusion

In this chapter we presented the architecture and the programming model
of Hive; a component based framework for mediating communication and
services needed for development of distributed vision systems.

We presented the Hive API which allows developers to create reusable
source and processing modules called ’drones’. Using control modules called
‘applications’ the ‘drones’ can be connected in virtually any configuration to
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create sophisticated vision systems. We described the architecture of Hive as
a set of layered services to provide abstraction and to decouple the architec-
ture from implementation. We showed that by defining a clear interface for
each layer, Hive provides increasingly high-level services that uses the func-
tionality of underlying layers without relying on particular implementation.
At its lowest level, Hive provides a flexible, low overhead Communication
layer that follows the peer-to-peer interconnection model to allow for the
creation of systems that are distributed and scalable.

We present a number of source and processor drones that have been im-
plemented using the Hive framework. We show that using these drones, we
can create a number of different systems easily in order to show modularity
and reusability.
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Chapter 6

Conclusion

In this chapter we revisit the material presented in this thesis in three parts.
Firstly, we revisit the problems that we identified in the introduction and
addressed throughout the thesis. Secondly, we summarize the contributions
that have been made with respect to those problems. Thirdly, we propose
a number of suggestions for the continuation of this work and the future
direction of this area of research.

6.1 Problems with Current Approaches

The major focus of the work presented in this thesis is to address two im-
portant requirements that are not fully addressed in current approaches to
vision based application development: abstraction over low-level details and
high-level module reuse.

We identified that the underlying reason that these two issues have been
previously overlooked is the lack of classification and conceptual abstractions
in current approaches to computer vision based system development.

6.2 Contributions of this Work

In order to address the lack of conceptual abstraction we firstly separate the
vision problem into the data management task and the processing task. We
further decompose the data management task into the following decoupled
components:

• Data Access: Configuration and retrieval of data from sources

• Data Transformation: Conversion and transformation of image
data

• Data Transportation: Data transfer mediation between modules

We proposed that a framework for vision development should provide the
data management functionality which consists of the data access, transfor-
mation and transportation sub-tasks.
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Based on the above decomposition we presented VU framework, a frame-
work that provides the data management functionality to vision developers
while providing abstraction over low-level details. We demonstrated how the
VU framework simplifies the developers task through abstraction of device
access, image data details and communication between components.

In addition to the VU framework, we presented the Hive framework,
an event based framework for developing distributed sensor systems that
provides simple high-level methods for the communication, control and con-
figuration of the reusable components. We discussed the details of design
and architecture of Hive as well as a number of modules (sources and proces-
sors) and applications developed using Hive. We showed that even though
Hive is completely independent of the VU framework, it forms the basis of
the data transportation component of VU.

6.3 Future Direction

During the course of the research presented above, a number of future direc-
tions have emerged for the continuation of this research topic. We summarize
these directions here.

6.3.1 Extension of Vision Utility Framework

We have identified four components of vision processing and presented the
functionality and scope of each component. However, we only focused in de-
tail on one of the components (data transportation). We have proposed an
approach for the remaining components (data access and data transforma-
tion) and shown that this approach is valid for a subset of the functionality,
providing a comprehensive solution. However, it is a non-trivial task that
still requires in-depth research.

The VU framework in its current rendition has been designed as solely a
proof-of-concept framework that supports a limited set of functionality. The
main limitation of VU is that it only addresses a single vision context with
one source and one processor. In order for this framework to be utilized as a
successful vision based application development framework, it would need to
support contexts with multiple sources and processors. In order to achieve
this, the API of the framework needs to be extended to fully exploit the
transport component by supporting more flexible connection configurations
amongst the modules. Another feature that could be added to the VU
framework is the addition of an auto-discovery feature for devices.
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6.3.2 Extension of Hive

There are a number of future extensions in order to improve the Hive frame-
work both in terms of added functionality and improved performance. We
discuss two immediate possible additions to the framework: support for task
distribution and an extension to the transport layer.

Hive currently provides the mechanism for transparent communication
of modules. A possible extension to Hive that would further exploit this
mechanism is to add build-in support for task distribution using the idea of
pools of drones. The framework could accommodate dynamic allocation of
drones to tasks based on the workload. The framework could provide the
synchronization and control means for distributing the task and gathering
results with minimal effort on the application developer.

Currently the sole transportation mechanism of the Hive framework is
TCP/IP over Ethernet. However, the transport layer can be extended to
support a number of different mediums such as shared memory and physical
buses (e.g. USB and FireWire). Shared memory can drastically increase the
performance for communication between drones running on processors that
share memory banks, whereas USB and FireWire could extend the frame-
work to be used for applications that require specific connectivity between
components.

6.4 Conclusion

In this thesis we explored the current methodology for computer vision based
system development in order to determine the underlying cause of the in-
adequacy of the existing frameworks. We proposed that the fundamental
limitation with the current approach offered through various frameworks
is the lack of conceptual high-level classification of the vision problem into
smaller sub-components.

In order to address the lack of sub-task classification in computer vision
we proposed a decomposition of the vision problem into the following decou-
pled components: data access, which addresses retrieval of image data from
sources; data transformation, which addresses format conversion of image
data; data transportation, which addresses the communication of data be-
tween modules in a vision system; and data processing, which addresses the
analyzing and manipulation of image data.

Based on the above classification we presented a framework that pro-
vides the functionality of the data access, data transformation and data
transportation components through an API that abstracts the details of
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each component from users. We described the programming model of this
framework and presented an application as a proof-of-concept to validate
this approach.

We focused on the transport component of the above classification and
presented Hive, a standalone event based framework for developing dis-
tributed vision based systems that provides simple high-level methods for
the communication, control and configuration of the reusable components.
The main objectives of Hive are to promote component reusability, platform
independency and abstraction over communication. We presented a set of
modules and applications to validate the Hive framework.

The vision system development approach presented in this thesis could
fundamentally change the way vision development is approached and could
help advance the vision community as a whole through abstraction, stan-
dardization and promotion of code reuse.
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The material presented in Chapter 5 (Hive Framework) has been previously
published in the International Conference on Distributed Smart Cameras
2008 and International Conference on Vision Systems and Application 2009
[1, 30].
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Appendix B

Statement of Co-Authorship

Parts of the work presented in this thesis were completed in collaboration
with other researchers. The following list outlines my contributions:

• Identification and design of the research program:

Collaborated on the classification of the vision problem.

Determining the Scope of the Vision Utility framework.

• Performing the research:

Design and implementation of the Vision Utility framework.

Implementation of the VU proof of concept application.

Evaluation of the VU proof of concept application.

Scope definition and layered design for Hive’s architecture.

Implementation of Hives Event, Service, and Interface layers.

Implementation of the Face Detections, Multi-camera Calibration,

and Augmented Reality applications and drones.

• Data analysis:

Evaluation of the Vision Utility Framework.

Evaluation of the Hive framework.

• Manuscript preparation:

Preparation of the entire thesis document.
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Appendix C

The Vision Utility
Framework’s Application
Programming Interface

The following is a description of the routines that constitute the VU API:

C.1 Application API

• ContextID CreateContext(Device processor id):

Functionality: This method creates a VU processing pipeline
that is associated with a specific processor.

Arguments: Processor device

Return: ID of the processing pipeline created

• void SetContextSource(Device source):

Functionality: This method allows the application to assign a
source to the context that is already created using the CreateContext()
method.

Arguments: Source device

Return: void

• bool SetParameter(Device dev, void *data, int size, Config-
Type type):

Functionality: This routine allows the application to set the
configuration parameters of a device or its driver (determined by Con-
figType arguement). The driver parameter consists of manipulating
the communication mechanism between the device and application.

Arguments: Device ID, configuration data, size of the configu-
ration data, target (driver or device)

Return: Result of the operation
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• bool GetParameter(Device dev, void *data, int size, Config-
Type type):

Functionality: This routine allows the application to get the
configuration parameters of a device or its driver (determined by Con-
figType arguement). Similar to SetParameter() the driver parameter
controls the communication mechanism between the device and appli-
cation.

Arguments: Device ID, configuration data (to be written into),
size of configuration, target(driver or device)

Return: Result of the operation

• void SetIdleFn(IdleFn VU idle function):

Functionality: This routine allows application to register an idle
function that gets called by the framework repeatedly when there are
no other events being processed.

Arguments: Idle function routine

Return: void

• void RegisterPostprocessCallback(VUCallBack fn):

Functionality: This routine allows the application to register a
method that is invoked every time the processor has finished a cycle
of processing on an input. The processor blocks until this call returns.

Arguments: Callback handler routine

Return: void

• void RegisterImageReceiver(UCF::ImageProp prop, VUCall-
Back fn):

Functionality: This routine allows application to register a han-
dler for incoming images from the processor. This routine allows the
application to specify the properties of incoming images. Images are
converted to match these properties upon being received by the sys-
tem.

Arguments: Incoming image properties, handler routine

Return: void

• void PostReprocess():
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C.2. Driver API

Functionality: This routine signals the processor of a context
to reprocess an input. This routine is called within the post-process
callback by the application.

Arguments: void

Return: void

• void PostDone():

Functionality: Similar to PostProcess(), however this call signals
the vision context to move on to the next input data.

Arguments: void

Return: void

• void Start():

Functionality: This routine starts the vision system. This rou-
tine requires that a vision processing context be set up prior to its
invocation.

Arguments: void

Return: void

• void MainLoop():

Functionality: This routine blocks forever and allows the frame-
work to invoke the registered callbacks in response to actions of the
vision processing context.

Arguments: void

Return: void

• void Cycle():

Functionality: This is a non blocking counter-part to the Main-
Loop() call. This routine relies on the application for getting called
repeatedly.

Arguments: void

Return: void

C.2 Driver API

• void RegisterProcessor(NoArgCallBack fn):
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Functionality: This routine allows the device driver to register
the main processing method of the device. This routine gets called by
the framework when there is an input awaiting processing.

Arguments: Processor function

Return: void

• void RegisterGetConfiguration(DataCallBack fn):

Functionality: This routine allows the device driver to register
the routine that retrieves the configuration of the device. This routine
is invoked by the application through a callback.

Arguments: Get configuration routine

Return: void

• void RegisterSetConfiguration(DataCallBack fn):

Functionality: This routine allows the device driver to register
the routine that performs configuration setting of the device. This
routine is invoked by the application through a callback.

Arguments: Set configuration routine

Return: void

• void RegisterDataReciever(UCF::ImageProp img prop, Dat-
aCallBack fn):

Functionality: This routine allows the device driver to register a
method that receives incoming image data. This routine allows driver
to set the properties of the incoming image. This is an optional routine
and is only used for processors.

Arguments: Image properties, receiver routine

Return: void

• void SendOutput(UCF::ImageProp image prop, char *data):

Functionality: This routine allows a device to send image out-
puts to the application.

Arguments: Image properties, image data

Return: void

• void Wait():
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Functionality: This routine blocks forever and is used once the
driver registers all the appropriate callback handlers in order to allow
the framework to invoke appropriate callbacks to respond to incoming
events.

Arguments: void

Return: void
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Appendix D

Hive’s Application
Programming Interface

The following is a description of the routines that constitute in the Hive
API:

D.1 Application API

• bool SetConfig(ModuleID &id, byte *data, int size):

Functionality: This method allows the application to set the
configuration of drones. The application programmer must have the
drone’s header file that specifies the configuration specification for each
drone.

Arguments: Drone’s ID, configuration data, size of the configu-
ration data

Return: Boolean result

• bool GetConfig(ModuleID &id, byte *data, int size);:

Functionality: This method allows the application to get con-
figuration data from a drone. The application programmer must have
the drone’s header file that specifies the configuration specification for
each drone.

Arguments: Drone’s ID, size of the configuration data

Return: Boolean result, Configuration struct

• bool Connect(ModuleID &target, ConnectOptions &options,
Connection::Type type):

Functionality: This method allows the application to create data
pipelines between drones, an overloaded method is also provided to
connect drones to the application. The connection options provided
by the user supplies the method and the data type for the connection.

87



D.1. Application API

The data type specifies what kind of data should be sent through this
pipeline as a drone could produce a number of different outputs. The
method specifies whether the data is ’synchronized’ or ’streaming’.
The difference here is that for synchronized connections there is a
request each time the data is wanted by the receiving drone however
with synchronized the data is sent whenever the sending drone has it
available.

Arguments: Source drone ID, destination drone ID, connection
options

Return: Boolean result

• bool Disconnect(ModuleID &target, ConnectOptions &op-
tions, Connection::Type type):

Functionality: This method allows the application to remove
existing connections between drones, it is also overloaded to drone-to-
application connections. Disconnect() requires the connection type in
order to remove only the required connection, as there may be several
connections between 2 modules.

Arguments: Source drone ID, destination drone ID, connection
options

Return: Boolean result

• void SendDataToDrone(ModuleID &mod, DataType &type,
Data &data):

Functionality: These methods (SendNotificationToDrone) allow
the application to send data to specific drones. The difference between
the two methods is that SendNotificationToDrone() only transfers the
data type, where SendDataToDrone() also sends the data payload.

Arguments: Drone’s ID, data type, data(SendDataToDrone)

Return: Void

• void SetMainFn(MainFn main):

Functionality: This method allows the module to register a main
handler routine. This routine is called by the service layer repeatedly.

Arguments: Main Routine

Return: Void
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• void RegisterHandler(DataType &datatype, HandlerFn han-
dler):

Functionality: This method allows the module to register a call-
back routine that is called when the module receives data of a specific
type. The data type is passed as an argument.

Arguments: Data Type, handler function

Return: Void

D.2 Drone API

• void SetConfigFns(ConfigureFn GetConfig, ConfigureFn Set-
Config):

Functionality: This method allows the drone to provide the call-
back routines that get and set the internal parameters of the drone.
These are the functions that are invoked when the application’s get-
config/setconfig is called for a drone.

Arguments: Handlers functions for configuration setting and get-
ting

Return: Void

• void NewData(const DataType &type, const Data &data):

Functionality: This method is used by the drone to send the
output to other modules in Hive, This routine only requires the data
type and data payload as the destination of this data is determined
by the event layer.

Arguments: Data Type, data

Return: Void

• void SetMainFn(MainFn main):

Functionality: This method allows the module to register a main
handler routine. This routine is called by the service layer repeatedly.

Arguments: Main Routine

Return: Void

• void RegisterHandler(DataType &datatype, HandlerFn han-
dler):
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Functionality: This method allows the module to register a call-
back routine that is called when the module receives data of a specific
type. The data type is passed as an argument.

Arguments: Data Type, handler function

Return: Void

90


