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Abstract

This thesis presents several simple, robust, and optimal resource management schemes for multi-

hop wireless access networks with the main focus on multi-channel wireless mesh networks (MC

WMNs). In this regard, various resource management optimization problems are formulated

arid efficient algorithms are proposed to solve each problem. First, we consider the channel as

signment problem in MC-WMNs and formulate different resource management problems within

the general framework of network utility maximization (NUM). Unlike most of the previously

proposed channel assignment schemes, our algorithms can not only assign the orthogonal (i.e.,

non-overlapped) channels, but also partially overlapped channels. This better utilizes the avail

able frequency spectrum as a critical resource in MC-WMNs. Second, we propose two distributed

random medium access control (MAC) algorithms to solve a non-convex NUM problem at the

MAC layer. The first algorithm is fast, optimal, and robust to message loss and delay. It also

only requires a limited message passing among the wireless nodes. Using distributed learning

techniques, we then propose another NUM-based MAC algorithm which achieves the optimal

performance without frequent message exchange. Third, based on our results on random MAC,

we develop a distributed multi-interface multi-channel random access algorithm to solve the NUM

problem in MC-WMNs. Different from most of the previous channel assignment schemes in the

literature, where channel assignment is intuitively modeled in the form of combinatorial and dis
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Abstract

crete optimization problems, our scheme is based on formulating a novel continuous optimization

model. This makes the analysis and implementation significantly easier. Finally, we consider

the problem of pricing and monetary exchange in multi-hop wireless access networks, where each

intermediate node receives a payment to compensate for its offered packet forwarding service. In

this regard, we propose a market-based wireless access network model with two-fold pricing. It

uses relay-pricing to encourage collaboration among the access points. It also uses interference

pricing to leverage optimal resource management. In general, this thesis widely benefits from

several mathematical techniques as both modeling and solution tools to achieve simple, robust,

optimal, and practical resource management strategies for future wireless access networks.
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Chapter 1

Introduction

Optimization-based approaches have been used extensively over the past several years to study

various resource management problems in communications and computer networks. Example

includes the Internet congestion control which is modeled in the general form of a distributed

system to solve a network-wide optimization problem to maximize the aggregate network utility.

These approaches can systematically model the complicated issues in the networking systems and

result in deep understandings of the existing network protocols such as the transmission control

protocol (TCP) [1].

The main focus of this thesis is on formulating various resource management schemes for

wireless access networks in the form of tractable optimization problems within the general frame

work of network utility maximization and also proposing simple and practical algorithms to solve

the formulated problems. The rest of this chapter is organized as follows. We first provide an

overview of the structure and the existing resource management problems in wireless access net

works with the main focus on multi-channel wireless mesh networks in Section 1.1. We then

list most of the mathematical and analytical tools that we use throughout this thesis in Section

1.2. Next, we summarize the our contributions and outline the results in Section 1.3. The list of

related publications is given in Section 1.4. Finally, we describe the organization of the thesis in

Section 1.5.

1



Chapter 1. Introduction

1.1 Wireless Access Networks

1.1.1 Structure

Wireless access networks have recently received an increasing attention, especially under the

context of wireless mesh networks (WMNs), where the wireless network is multi-hop and offers

ubiquitous and inexpensive Internet access to various wireless users within a wide coverage area

[2, 3]. A sample wireless mesh network is shown in Fig. 1.1. The network consists of a number of

wireless stationary access points and several wireless users. In the context of WMNs, the access

points are called wireless mesh routers while the wireless users are called the wireless mesh clients.

The access points may also be referred to as wireless relay nodes. The wireless access points form

a fully wireless backbone network to provide the connectivity service to the users. Some of them

also act as gateways to the Internet via high-speed wired links. Users first transfer data to their

associated access points, and these data are then transferred to the Internet or other users via

the intermediate access points in a multi-hop manner.

The research and development of wireless access and mesh networks are motivated by several

applications including broadband home networking, community and neighborhood networking,

enterprise networking, metropolitan area networking, and building automation [2]. Some vendors

have recently begun to offer products in this area [4, 5, 6, 7]. The IEEE has also set up the

802.lls task group for mesh networking [8].

For the wireless access networks, interference is a major issue which can significantly limit

the aggregate capacity of the network. As a practical solution, the capacity of the IEEE 802.11

a/b/g-based WMNs [9, 10] can be substantially improved via the use of multiple network interface

cards (NICs) and multiple orthogonal frequency channels [11]. In this scenario, each access point

2



Chapter 1. Introduction

High Speed Wired Internet

—.-... \ Wireless
Access
Point

is equipped with multiple NICs. Each NIC is then assigned to a distinct frequency channel. A

pair of neighboring access points can communicate with each other as long as one of their NICs

uses the same channel. On the other hand, those transmissions which take place over two different

(orthogonal) frequency channels do not interfere with each other.

1.1.2 Resource Management

The number of available channels depends on the frequency band. For example, the 802.11 b/g

standards have 11 channels within the 2.4 GHz frequency band, of which 3 channels are orthogonal

(non-overlapping). The 802.lla standard has 79 operating channels in North America, of which

12 channels are orthogonal. Notice that the key benefit of using multiple NICs is to provide

independent simultaneous transmnissiomis via different NICs. The number of NICs per each access

point is usually limited to 2 or 3.

/

Wireless
%%% Link / \

/

/

/

\

/
‘S...,.. /

Wireless
users

Figure 1.1: A sample multi-hop wireless access network with six wireless access points (also
called wireless relay nodes or wireless mesh routers), and 15 wireless users (also
called wireless mesh clients).
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Chapter 1. Introduction

The limited number of frequency channels implies that some transmissions may be required

to operate over the same channels. The limited number of NICs also avoids having several

simultaneous transmissions. These limit the performance gain of the multi-channel deployments

and make it critical to design intelligent interface assignment and channel allocation (also called

channel assignment) schemes. Interface assignment determines which wireless links should operate

on each NIC. Channel allocation determines which frequency channel should be assigned to each

wireless link. Other resource management problems include medium access control, transmission

power control, routing, and congestion control.

In this thesis, we apply optimization theory to solve the mentioned resource management

problems. Our main focus is on cross-layer optimization where joint designs are given for multiple

resource management problems which affect different layers in the network layering model [12].

A review of the work related to each resource management problem of interest is given later in

each chapter. Tutorial papers on cross-layer design can be found in [13] and [14].

1.2 Mathematical Foundation

In this thesis, we extensively employed several powerful mathematical tools from optimization

theory, theory of parallel and distributed computing, and utility theory. Optimization theory

is a mature field that has experienced major development in the last twenty years [15, 16].

In particular, the theory of convex optimization has been widely accepted as both modeling

language and solution tool in complex communication and networking problems [17]. The theory

of parallel amid distributed computing is also a promising field that can be brought to bear on many

important problems in both parallel computers and distributed data communication networks

4



Chapter 1. Introduction

[18). It can particularly be helpful in various convergence and robustness analysis studies. This

thesis also benefits from the recent developments in using utility theory in networking problems

which is indeed a promising research area towards establishing a mathematical theory for network

architectures [19]. In this section, we provide an overview of each of these three areas.

1.2.1 Optimization Theory

Consider the following problem:

minimize fo(x)
a3EX

subject to f(x) 0, Vi = 1,.. . , N (1.1)

h(x)=0, Vj1,...,Ne

which describes the problem of finding an x that minimizes function Jo (x) among all feasible

points; i.e., all x e X that satisfy the conditions f(x) < 0 for all i = 1,... , N, and h(x) = 0,

for all i = 1,. . . , N. Here x = (xi, V i = 1, . . . , N) e X denotes the vector of optimization

variables where X C RN. The function fo : RN —> R is called the objective function or cost

function. The inequalities f(x) < 0 for i = 1, . . . , N1 are called the inequality constraints, and

the corresponding functions f : RN —* R for i = 1, . . . , N1 are called the inequality constraint

functions. The equations h(x) = 0 for i = 1,.. . , N are called the equality constraints, and the

functions h : RN —* R for i = 1,.. . , N are called the equality constraint functions. If there are

no constraints (i.e., N = Ne = 0), then we say that problem (1.1) is unconstrained. Generally

speaking, optimization theory provides the mathematical tools to model and solve optimization

problems in the general form of problem (1.1). Notice that any maximization problem can also

5



Chapter 1. Introduction

be written in the form of (1.1) if we multiply its objective function by —1. Thus, we only focus

on minimization problems in this section. The results can be extended to maximization problems

accordingly. Next, we describe four important classes of optimization problems, namely linear,

convex, integer, and mixed-integer optimization problems.

Linear Optimization

An important class of optimization problems is the linear optimization problems. Problem (Li)

reduces to a linear optimization problem if X = RN and for each vector x e X, we have:

f(x) =aTx+b, (1.2)

h(x) cTx + d, Vi 1,... , Ne, (1.3)

where a, c e RN and b, d e R. Linear optimization problems can be solved in polynomial time.

That is, the run time is no greater than a polynomial function of the problem size N + N + Ne

and the number of bits used to represent each variable. Various techniques can be used to solve

linear problems such as simplex method [20] and interior point method [21]. Recent textbooks on

linear optimization theory include [22, 23, 24].

Convex Optimization

The optimization problem (1.1) is called a convex optimization problem if X = RN, condition

(1.3) holds, and for any choice of vectors x, y E X and any scalar 0 1, we have:

f(Ox + (1
—

O)y) <Of(x) + (1
—

8)f(y), Vi = 0, ... , N. (1.4)

6
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The above inequality implies that the objective function and all the inequality constraint functions

are indeed convex functions [16, pp. 67]. Notice that any linear function is also a convex function.

Thus, all linear optimization problems are also convex optimization problems. If problem (1.1) is

a maximization problem, then it is a convex problem as long as (1.4) holds for —fo; rather than

fo. That is, if the objective function fo is concave. Some example convex and concave functions

are listed in [16, Chapter 3].

In a minimization problem as in (1.1), a vector x E X is called a local minimum if it is no

worse (i.e., greater) than its neighbors feasible points. The vector x e X is also global minimum

if it is less than all feasible points. That is, fj(x*) < fj(x) for all x e X that satisfy the conditions

< 0 for all i = 1,... , N, and h(x) = 0, for all i = 1, . . . , N. Recent textbooks on convex

optimization theory include [15, 16, 25].

Theorem 1 In a convex optimization problem, any locally optimal point x e X is indeed globally

optimal /16, pp. 138].

We define the Lagrangian L : RN x RNi x RATe —* R associated with problem (1.1) as:

N

L(x, A, ii) = fo(x) + Ajf(x) + vh,(x), (1.5)

where ), is defined as the Lagrange multiplier associated with the th inequality constraint f(r)

0 for any i = 0, . . . , N, and v is defined as the Lagrange multiplier associated with the ith

equality constraint h(x) = 0 for any i = 0, . . . , N. The vectors A = j, i = 0,... , N) and

V = (z, i = 0, ... , N) are called the dual variables or Lagrange multiplier vectors associated

with the optimization problem in (1.1). We can also define the dual function g : RNI x R’e
,‘ R

7



Chapter 1. Introduction

as the minimum value of the Lagrangian L(x, A, v) over x. We have:

g(A,v) = inf L(x, A,v), VA e RNi, R’e. (L6)
aEX

The dual problem associated with problem (1.1) is now defined as:

maximize g(A, v)
.XERNi,ziERe

1 7

subject to A 0, Vi = 1, . .. , N.

Notice that since the dual function g(A, v) is the pointwise inflinum of a family of affine (La

grangian) functions of (A, ii), it is a concave function. Since the inequality functions X, 0 for

any i = 1, . .. , N are linear, the dual problem in (1.7) is indeed a convex optimization problem

even if the primal problem in (1.1) is not convex.

We can show the following key result.

Theorem 2 Let p = fo(x*) denote the global minimum of the primal problem (1.1). Also let d*

denote the global maximum of the dual problem (1. 7). We have [16, pp.

(1.8)

The inequality in (1.8) is called weak duality. It holds even if the primal problem in (1.1) is not

convex. On the other hand, if problem (1.1) is convex, then we have /16, pp. 226]:

d* = (1.9)

8
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The equality in (1.9) is called strong duality.

The difference *
— d* is always non-negative and is called the duality gap. From Theorem 2,

the duality gap is zero for convex optimization problems. Theorems 1 and 2 show two fundamental

properties of the convex optimization problems. Using these properties, various schemes can be

used to solve convex optimization problems, including gradient projection methods, interior point

method, and primal-dual method [16].

There are also some important optimization problems, called geometric optimization problems,

which are not convex; but can be converted to equivalent convex optimization problems using

logarithmic change of variables. Details are given in [26] and [27]. Some other non-convex

optimization problems which can be converted to convex problems are described in [28, 29, 30].

Integer and Mixed-Integer Optimization

Linear and convex optimization problems are two important classes of continuous optimization

problems over real-valued optimization variables. In this section, we summarize two other im

portant classes of optimization problems called integer optimization problems and mixed-integer

optimization problems. Problem (1.1) reduces to an integer optimization problem if X c ZN

where ZN is the set of all N x 1 integer vectors; i.e., vectors with integer entries. Similarly,

a mixed-integer optimization problem is an optimization problem in which some of the opti

mization variables are integer-valued, while the rest are real-valued. Integer and mixed-integer

optimization problems are linear if conditions (1.2) and (1.3) hold. Integer and mixed-integer

optimization problems are usually difficult to solve. In particular, they cannot be solved within

polynomial time. In fact, the complexity of integer and mixed-integer optimization problems is

NP-hard. That is, finding the optimal solution may require examining all the feasible points

9
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using exhaustive search. Nevertheless, there are efficient commercial computer codes such as

CPLEX [31] and MOSEK [32] that can solve integer and mixed-integer problems using branch-

and-bound [33] and branch-and-cut methods [341. In general, solving linear integer and linear

mixed-integer optimization problems is computationally easier compared to solving non-linear

integer/mixed-integer problems.

Binary Linearization

An important class of integer problems is binary optimization problems where the optimization

variables can only take the values of 0 and 1. That is,

{0,1}, Vi = 1,...,N. (1.10)

The binary optimization problems are especially important as they can be used to model various

decision making problems: optimization variable x = 1 if we should perform an action and x = 0

if we should not perform the action. In this section, we explain how we can convert several non

linear binary and mixed-binary optimization problems to the equivalent linear problems using

the exact binary optimization schemes.

Theorem 3 Consider two binary variables x1 and x2. Their product (i.e., the non-linear quadratic

term xlx2) can be replaced by a new binary auxiliary variable ir, such that its value corresponds

10



Chapter 1. Introduction

to the values of xi and x2 as follows:

0, if x1=0, X20,

0, if xi=O, X21,
= (1.11)

0, if xi=l, X2=0,

1, if x1=1, X21.

The desired correspondence is obtained by requiring that ir e {0, 1} and we have [35]:

x1 + x2 — ir <1,
(1.12)

—X1
—

X + 2’ir <0.

We can also show the following for mixed-binary products.

Theorem 4 Consider a binary variable Xb and a non-negative real variable Xr. Assume that

rrnax is an upper bound for the real variable Xr. The quadratic term XbXr can be replaced by a

new non-negative real auxiliary variable v, such that its value corresponds to the values of x and

x as follows:

0, if Xb0,

v = (1.13)

x, if Xb=l.

The desired correspondence is obtained by simply requiring that [36]:

0 v x
(1.14)

— rmax (1 — xb) <v <rmax Xb.

11
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Theorem 5 Now consider two binary variables xj, and y and a non-negative real variable Xr.

Assume that rmax is an upper bound for the real variable Xr. We define CT = x. xbyb. The desired

correspondence between u and variables xb, Yb, and Xr is obtained by simply requiring that [37J:

o o- rrnaxxb,

o rmaxyb, (1.15)

rmax(xb + Yb — 2) + Xr 0 rmax(2 — Xb
— Yb) + Xr.

Theorems 3, 4 and 5, together provide a toolkit of various linearization techniques which

can help us to convert any non-linear binary or mixed-binary optimization problem with polyno

mial non-linearity to the equivalent linear optimization problems. Further binary linearization

techniques can be found in [38, 39, 40, 41, 42, 43].

1.2.2 Network Utility Maximization

Historically, most of the network protocols in the layered architectures have been designed based

on a heuristic or ad-hoc basis, making the analysis sometimes difficult. A decade ago, Kelly

et al. [44] proposed a new approach of optimization-based modeling and decomposition-based

solutions using utility theory [45] to simplify the understanding of the complex interactions in

network congestion control. Since then, this approach has been extended substantially in many

ways, forming a promising direction towards a mathematical theory of network architectures. In

this regard, the overall network is modeled as a network utility maximization (NUM) problem,

where each layer corresponds to a decomposed subproblem, and the interfaces among layers are

quantified as functions of the optimization variables coordinating the subproblems. An interesting

12
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survey on recent developments in formulating and solving various NUM problems is given in [19].

NUM problem is usually formulated either at the network layer (cf. [44, 46, 47, 48, 49,

50, 51, 52] or at the link layer (cf. [53, 54, 55, 56, 57]). The former is mostly used to design

congestion control algorithms while the latter is considered to design medium access control

(MAC) protocols. Assume a network with .iV as the set of nodes and £ as the set of links.

For each link I e , we define c1(x) as the capacity of link 1, where x denotes the vector of

all resource management variables. For example, x may include the vector of all transmission

powers, persistent probabilities, routing settings, etc. Let S denote the set of all end-to-end flows.

For each flow s e 5, let r8(x) denote the transmission rate of flow s. We also define £8(x) as

the set of links along the routing path of flow s. The NUM problem at the network layer can be

defined as [44, 58]:

maximize u3(r8(x))
eX

(1.16)

subject to r5(x) < cj(x), V I e £,
s:lEI

where for each flow s e 5, the utility u is an increasing and concave function of the data rate r

and indicates flow s’s degree of satisfaction on its data rate. Notice that since the data rates are

functions of the resource management variables x, the utilitiesu8(r(x)) are also functions of x

for any s S. Different utility functions can be considered to achieve different design objectives.

In particular, the utility functions can be a-fair [50]:

(1 — a)1 r(x)’, if a 1,
u8(r3(x)) = Vs 5, (1.17)

log r(x), if a = 1,

where a > 0 is a design parameter, called fairness index. Using (1.17), a wide range of efficient

13
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and fair resource management objectives can be modeled. In particular, problem (1.16) reduces

to throughput maximization with a — 0, to proportional fair allocation with a = 1, to harmonic

mean fair allocation with a = 2, and to max-mm fairness with a —* cc.

Similarly, we can define the NUM problem at the link layer as follows [53]:

maximize uj(cj(x)). (1.18)
let:

Assuming that the a-fair utility functions are being used, similar to problem (1.16), problem

(1.18) can be solved to obtain various fair resource management objectives among the link-layer

flows. Notice that both problems (1.16) and (1.18) can be written in the general form of the

constrained optimization problem in (1.1). For example, considering the NUM problem in the

network layer, we have:

fo(x) = Zsu8fr8(x)), (1.19)

f’(x) = Zs:lECsr8(x) — cj(x). (1.20)

Almost any network resource management problem can be formulated as a NUM problem in

form of either (1.16) or (1.18). Various decomposition techniques can then be used to decom

pose the formulated NUM problem into several small subproblems to be solved in a distributive

fashion at each network node. The decomposition techniques include primal decomposition, dual

decomposition, and indirect decomposition. Survey papers on decomposition techniques can be

found in [59] and [60].
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1.2.3 Distributed Systems and Convergence Analysis

The theory of parallel and distributed computing is also a promising field that can be brought to

bear on many important problems in both parallel computers and distributed data communication

networks [18]. In particular, it can be helpful in various convergence and robustness analysis

studies in wired as well as wireless networking systems. As in Section 1.2.2, let x denote the vector

of all resource management variables. Also let {t1,t2,t3,.. .} denote the set of time instances at

which the resource management variables are being updated. We consider the following general

update formulation:

= g(x(tk)), (1.21)

Vk=1,2,3,...,

where for any i 1,... , N, function gj is called the mapping function associated with resource

management variable x. In general, we are interested in those mappings g = (gj, Vi = 1,... , N)

such that the update equations in (1.21) converge towards the optimal solution of the NUM

problems in (1.16) or (1.18) or any other resource management optimization problem in the

general form of problem (1.1).

Important Mappings

A mapping function g: X — X is a contraction mapping if we have [18, pp. 181]:

IIg(x)
— ()II 711x

— yII Vx,y e X, (1.22)
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where is some norm and scalar E [0, 1) is called modulus of mapping g. On the other hand,

mapping g is a monotone increasing mapping if we have [18, pp. 191]:

x-y = g(x)-<g(y), Vx,yéX, (1.23)

and is a monotone decreasing mapping if,

xy = g(x)g(y), Vx,yeX. (1.24)

Here -< and succeq are interpreted coordinatewise.

Convergence Theorems

For each mapping g: X —* X, the vector x’ E X is a fixed point if we have [18, pp. 181]:

g(x*) = x. (1.25)

In general, we are interested to know (a) whether there exists any fixed point (existence), (b)

whether the fixed point is unique (uniqueness), and (c) whether the mapping can reach its fixed

point starting from any arbitrary initial point (convergence). It is then ideal if we have: x

where x is the optimal solution for the optimization problem of interest.

Theorem 6 Assume that g : X —* X is a contraction mapping. Then, the mapping g has a

unique fixed point and for every initial vector x(0) E X, it synchronously converges to its unique

fixed point x geometrically fast [18, Proposition 1.1, Chapter 3].

Theorem 6 provides results on synchronous convergence of contraction mapping. We can also

show the following results on asynchronous convergence.

Theorem 7 Assume that g : X —* X is a contraction mapping with respect to any weighted
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maximum norm:

IIxII, = max--, (1.26)
i Wi

where w e RN is an N x 1 vector with positive entries. Then, the mapping g has a unique fixed

point and for every initial vector x(O) e X, it asynchronously converges to its unique fixed point

x geometrically fast /18, pp. 43J.

The asynchronous convergence is of special importance as it implies robustness and less co

ordination overhead. Finally, we have the following results on the asynchronous convergence of

monotone mappings.

Theorem 8 Assume that g X —* X is a monotone mapping (i.e., either increasing or decreas

ing). Set X is assumed to be bounded. Then, for every initial vector x(O) e X, the mapping g

will asynchronously converge to one of its fixed points /18, pp. 15-146J.

Similar to Theorem 7, Theorem 8 provides convergence results for asynchronous updates.

However, monotone mappings may have multiple fixed points. Depending on the initial point

x(O), the mapping may converge to different fixed points. Combining Theorems 6 and 8, a

monotone mapping which is also a contraction mapping with respect to an arbitrary norm is

guaranteed to asynchronously converge to its unique fixed point.

1.3 Summary of Results and Contributions

This thesis covers several resource management problems in wireless access networks with special

focus on MC-WMNs. The results are divided into seven chapters. The contributions in each

chapter are as follows.
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• Chapter 2 considers the problem of joint optimal design of topology formation, interface

assignment, channel allocation, and routing for MC-WMNs as a unified a cross-layer linear

optimization problem to maximize the network performance in a centralized and perma

nent fashion. Structural results and numerical algorithms are derived. Extensive simula

tions show that the proposed joint design results in significantly higher aggregate network

throughput and lower transmission delays compared to two recently proposed algorithms

in the literature.

• Chapter 3 formulates the interface channel assignment problems jointly with MAC in the

NUM framework. The formulated problems, with a-fair utility functions, achieve various

fair and efficient resource management objectives. An optimal design, based on exact binary

linearization techniques, is proposed which leads to a global maximum. A near-optimal

design, based on approximate dual decomposition techniques, is also proposed which is

practical for distributed deployment. Numerical results show that our proposed designs

can lead to MC-WMNs which are more efficient and fair compared to their single-channel

counterparts. The performance gain on both efficiency and fairness increase as the number

of available NICs per router or the number of available channels increases.

• Chapter 4 addresses the problem of assigning partially-overlapped channels in MC-WMNs

and provides the required modeling tools accordingly. The proposed modeling is different

from the previous channel assignment models in the literature, where only the orthogonal

(i.e., non-overlapped) channels are being used. Simulation results show that the network

capacity can increase up to 90% when all partially overlapped channels are being used.

• Chapter 5 is different from the previous chapters and addresses the problem of designing
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simple, robust, and optimal random access for multi-hop wireless networks. In this chapter,

we propose two distributed contention-based MAC algorithms to solve a NUM problem.

Our algorithms overcome four important performance bottlenecks in the previous NUM

based random access algorithms in the literature. First, only limited message passing

among nodes is required. The complexity reduction is in the order of 10. Second, fully

asynchronous updates of contention probabilities are allowed. Furthermore, our algorithms

are robust to arbitrary large message passing delays and loss. Third, we do not utilize any

stepsize during updates, thus our algorithms can achieve faster convergence. Finally, our

proposed algorithms have provable convergence, optimality, and robustness properties under

a wider range of utility functions, even if the NUM problem is non-convex. The analysis

techniques we propose in this chapter are general and can be used to tackle other non-

convex optimization problems in communications and networking. Simulation results show

the optimality and fast convergence of our algorithms, performance improvements compared

with the subgradient-based MAC, and better efficiency-fairness tradeoff compared with the

IEEE 802.11 distributed coordination function.

Chapter 6 gives a positive answer to the following question: Is it possible to design a NUM

based MA C algorithm that can achieve the optimal performance without frequent explicit

message passing? Compared with the related algorithms in the literature, our proposed al

gorithm in this chapter achieves the optimal performance without frequent explicit message

passing among wireless users. This is of critical importance in practice, since any explicit

message passing among wireless users will lead to further contentions in the network and

reduce the network performance. We prove the convergence of our algorithm under the as
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sumption that the users can estimate the required information through local observation of

the shared wireless medium with asymptotically converging estimation errors. This includes

the important case where the underlying channel is lossy and thus not every transmission

can be correctly decoded. When the channel is perfect, our algorithm converges to the

global optimal solution of the NUM problem. Simulation results show the optimality and

fast convergence of our algorithm, arid better efficiency-fairness tradeoff compared with the

IEEE 802.11 distributed coordination function.

Chapter 7 considers the problem of designing a distributed and optimal multi-interface

multi-channel random access algorithm based on the results from the previous chapters.

In general, most of the recently proposed channel and interface assignment algorithms are

based on formulating combinatorial optimization problems and discrete optimization. The

key is to assign exactly one channel to each NIC. However, as we show in this chapter,

combinatorial channel assignment models may result in computationally complicated algo

rithms and inefficient utilization of the available frequency spectrum. In this chapter, we

revisit channel assignment problem by formulating a novel continuous multi-interface multi-

channel random access model. This includes elaborate modeling of the link data rates for

various multi-interface multi-channel networking scenarios. We then propose a fast, fully

distributed and easy to implement multi-interface multi-channel random access algorithm.

Simulation results show that our proposed algorithm significantly outperforms combinato

rial channel assignment algorithms in terms of achieved network utility and throughput.

• Chapter 8 considers the problem of pricing in multi-hop wireless access networks. In a

multi-hop wireless access network, where each node is an independent self-interested corn
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mercial entity, pricing is helpful not only to encourage collaboration but also to utilize the

network resources efficiently. In this chapter, we propose a market-based model with two

fold pricing (TFP) for wireless access networks. In our model, the relay-pricing is used to

encourage nodes to forward each other’s packets. That is, each node receives a payment

as a compensation for the relay service it provides. We also consider interference-pricing

to leverage optimal resource allocation. Together, the relay and the interference prices in

corporate both cooperative and competitive interactions among the nodes. We prove that

TFP guarantees positive profit for each individual wireless node for a wide range of pricing

functions. The profit increases as the node forwards more packets. Thus, the cooperative

nodes are well rewarded. We then determine the relay and the interference pricing func

tions such that the network social welfare and the aggregate network utility are maximized.

Simulation results show that, compared to a recently proposed single-fold pricing (SFP)

model where only the relay prices are considered, our proposed TFP scheme significantly

increases the total network profit and the network throughput. TFP also leads to more fair

revenue sharing and profit distribution among the wireless nodes.

1.4 List of Publications

The following publications have been completed based on the work in this thesis. In some cases

the conference papers contain materials overlapping with the journal papers.

Journal Papers

• Amir-Hamed Mohsenian-Rad, Vincent W.S. Wong, “Joint Logical Topology Design, In

terface Assignment, Channel Allocation, and Routing for Multi-Channel Wireless Mesh
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Networks,” IEEE Trans. on Wireless Communications, vol. 6, no. 12, PP. 4432-4440,

December 2007.

• Amir-Hamed Mohsenian-Rad, Vincent W.S. Wong, “Cross-layer Fair Bandwidth Sharing

for Multi-Channel Wireless Mesh Networks,” accepted for publication in IEEE Trans. on

Wireless Communications, 2008.

• Amir-Hamed Mohsenian-Rad, Jianwei Huang, Mung Chiang, Vincent W.S Wong, “Utility

Optimal Random Access: Reduced Complexity, Fast Convergence, and Robust Perfor

mance,” accepted (pending to minor revision) for publication in IEEE Trans. on Wireless

Communications, 2008.

• Amir-Hamed Mohsenian-Rad, Jianwei Huang, Mung Chiang, Vincent W.S Wong, “Utility

Optimal Random Access: Optimal Performance without Frequent Explicit Message Pass

ing,” accepted (pending to minor revision) for publication in IEEE Trans. on Wireless

Communications, 2008.

• Amir-Hamed Mohsenian-Rad, Vincent W.S. Wong, Victor C.M. Leung, “Two-Fold Pricing

to Guarantee Individual Profits and Maximum Social Welfare in Wireless Access Networks,”

submitted to IEEE Trans. on Wireless Communications, 2008.

• Amir-Hamed Mohsenian-Rad, Vincent W.S. Wong, “Distributed Multi-Interface Multi

Channel Random Access Using Convex Optimization,” submitted to IEEE Trans. on

Mobile Computing, 2008.

• Amir-Hamed Mohsenian-Rad, Vincent W.S. Wong, “Congestion-Aware Channel Assign

ment for Multi-Channel Wireless Mesh Networks,” submitted to Computer Networks, 2008.
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Conference Papers

• Amir-Hamed Mohsenian-Rad, Vincent W.S. Wong, “Joint Optimal Channel Assignment

and Congestion Control in Multi-Channel Wireless Mesh Networks,” in Proc. of IEEE

International Conference on Communications (ICC), Istanbul, Turkey, June 2006.

• A. Hamed Mohsenian-Rad, Vincent W.S. Wong, “Logical Topology Design and Interface

Assignment for Multi-Channel Wireless Mesh Networks,” in Proc. of IEEE Global Telecom

munication Conference (GLOBECOM), San Francisco, CA, November 2006.

• Amir-Hamed Mohsenian-Rad, Vincent W.S. Wong, “Joint Channel Allocation, Interface

Assignment, and MAC Design for Multi-Channel Wireless Mesh Networks,” in Proc. of

IEEE Conference on Computer Communications (INFO COM), Anchorage, AK, May 2007.

• Amir-Hamed Mohsenian-Rad, Vincent W.S. Wong, “Partially Overlapped Channel As

signment for Multi-Channel Wireless Mesh Networks,” in Proc. of IEEE International

Conference on Communications (ICC), Glasgow, UK, June 2007.

• Amir-Hamed Mohsenian-Rad, Jianwei Huang, Mung Chiang, Vincent W.S Wong, “Sim

ple, Optimal, and Robust Random Access,” accepted for publication in Proc. of Military

Communications Conference (MILCOM), San Diego, CA, November 2008.

• Amir-Hamed Mohsenian-Rad, Vincent W.S. Wong, “Optimal Multi-Interface Multi-Channel

Random Access,” accepted for publication in Proc. of IEEE Global Telecommunications

Conference (GLOBECOM), New Orleans, LA, November 2008.

• Amir-Hamed Mohsenian-Rad, Vincent W.S. Wong, Victor C.M. Leung, “Two-Fold Pric

ing to Guarantee Individual Profits and Maximum Social Welfare in Wireless Access Net-
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works,” accepted for publication in Proc. of IEEE Global Telecommunications Conference

(GLOBECOM), New Orleans, LA, November 2008.

1.5 Thesis Organization

The remainder of the thesis is organizes as follows. Our proposed static and centralized joint

logical topology design, interface assignment channel allocation, and routing algorithm to achieve

max-mm resource allocation in MC-WMNs is described in Chapter 2. We then extend our design

to dynamic and distributed channel allocation in Chapter 3, where we consider some design

objectives such as proportional fair and harmonic fair resource allocations. The formulations for

assigning partially overlapped frequency channels are given in Chapter 4. Our low-complexity,

robust, fast, and optimal distributed random access algorithm is described in Chapter 5. We then

extend our model and propose a random access algorithm which does not require any explicit

message passing among the wireless nodes in Chapter 6. In Chapter 7, we combine the results

from Chapters 2 to 6 and propose a distributed multi-interface multi-channel random access

using convex optimization techniques. Our proposed optimal two-fold pricing scheme for multi-

hop wireless access networks in described in Chapter 8, where we also analytically prove its key

properties. Finally, Chapter 9 contains discussions of main results, conclusions and proposals

of future research directions. Each of the main chapters in this thesis is self-contained and

included in separate journal articles and conference papers. A review of the related work for each

optimization context is given for each chapter accordingly. The notations are separately defined

for each chapter, but have been consistent throughout the thesis.
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Chapter 2

Joint Logical Topology Design,

Interface Assignment, Channel

Allocation, and Routing for

MC-WMNs

The aggregate capacity of WMNs can be increased by the use of multiple frequency channels

as explained in Section 1.1.1. Within the IEEE 802.11 a/b/g frequency bands, the number of

available channels is limited. The 802.llb/g bands and the 802.lla band provide 3 and 12 non-

overlapping frequency channels, respectively. This implies that some logical links may operate

on the same channel. In addition, the number of NICs is also limited. In the experimental MC

WMN test-beds in [11] and [61], each router is equipped with two NICs. A small number of NICs

implies that some logical links in a router may need to share an NIC to transmit and receive data

packets. Two nearby links that operate on the same channel or share the same NIC cannot be

active simultaneously. In general, given the physical topology (i.e., the physical locations of the

wireless mesh routers), four key issues should be addressed in MC-WMNs:
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1. Logical Topology Formation: Given the physical topology, how many logical links (if any)

should be assigned between a pair of neighboring routers?

2. Interface Assignment: Given the logical topology, how should the logical links be assigned

to each NIC in a wireless mesh router?

3. Channel Allocation: Given the logical topology and interface assignment, how should a

frequency channel be allocated on each logical link?

4. Routing: Given the logical topology, interface assignment, and channel allocation, through

which logical links should the packets be forwarded?

In this chapter, we mathematically formulate the logical topology formation, interface assign

ment, channel allocation, and routing as a joint mixed-integer linear optimization problem. Our

goal is to better understand the channel and interface assignment problems and evaluate the

performance of MC-WMNs at optimal operation. We call our proposed MC-WMN architecture

TiMesh. Our contributions are as follows:

• Our model formulation takes into account several design parameters such as the number of

available NICs in each wireless mesh router, the number of available frequency channels,

the communication range and the interference range of routers, and the expected traffic

load between different source and destination pairs.

• Unlike most of the previously proposed channel and interface assignment strategies, our

model formulation allows having multiple logical links between the same pair of routers.

This further increases the effective data transmission rate between the two routers and more

efficiently utilizes the available frequency channels.
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• Our proposed algorithm guarantees the network connectivity. It also supports both internal

traffic among the wireless routers and external traffic to the Internet.

• Simulation results show that TiMesh achieves higher throughput and lower end-to-end delay

than the recently proposed Hyacinth [61] and CLICA [62] MC-WMN architectures.

The rest of this section is organized as follows. We present related work in Section 2.1. Our

proposed joint design is described in Section 2.2. Performance evaluation and comparison are

given in Section 2.3. A summary of the chapter is given in Section 2.4.

2.1 Related Work

Several logical topology formation, interface assignment, channel allocation, and routing algo

rithms have been recently proposed for MC-WMNs. Raniwala et al. [61] proposed a logical

tree topology architecture for MC-WMNs, called Hyacinth. The tree construction mechanism

is similar to the IEEE 802.1D [63] spanning tree formation. The gateways are the roots. Each

router uses an up-NIC to exclusively connect to its parent and uses several (probably shared)

down-NICs to connect to its children. Each parent router provides the Internet connectivity to

its children routers. As a result, each wireless mesh router can access the Internet through the

shortest available routing path. In the Hyacinth architecture, each router allocates the channels

that are less used by its neighboring routers to its down-NICs. Marina et al. [62] also proposed

the Connected Low Interference Channel Assignment (CLICA) algorithm for topology formation

in MC-WMNs. The interference among logical links is modeled by a weighted conflict graph.

The weight of the edge between two vertices in the weighted conflict graph indicates the extent

of interference between their corresponding logical links using the protocol interference model
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[64]. The proposed heuristic algorithm determines the logical links and assigns their channels

permanently so that the average interference weight in the resultant conflict graph is minimized

while the network connectivity is maintained. In [65], the channels are allocated so as to minimize

the maximum number of interfering links within each neighborhood, subject to the connectivity

constraint of the logical topology graph. A bandwidth-aware routing algorithm is also proposed

to facilitate the path finding operation.

Various centralized and distributed channel allocation algorithms have also recently been

proposed for MC-WMNs. The centralized schemes (e.g., [66, 67]) require a network controller

to collect the topology information and assign the channels. In the distributed schemes (e.g.,

[68, 69]), some of the routers are responsible for channel assignment for a subset of interfaces. The

channel allocation algorithms can also be classified as static and dynamic. The static algorithms

(e.g., [70, 71, 72, 72, 73]) assign a frequency channel to each NIC permanently, while dynamic

algorithms allow each NIC to change its channel either in a short-term (e.g., packet-by-packet

[69, 74, 75]) or a long-term basis (e.g., every several minutes [66, 67, 76, 77]). Unlike the static

algorithms, the dynamic channel allocation requires a coordination mechanism to ensure that the

sending and the receiving routers/NICs use the same channel at the same time.

Various joint designs for MC-WMNs have also been proposed. Some recent work include joint

channel assignment and routing [67, 71, 78], joint routing and interface assignment [79], and joint

channel assignment and congestion control [77].
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‘ Operaling
Chann

Figure 2.1: An MC-WMN with six wireless mesh routers, five frequency channels, and three
NICs per router. The number on each link indicates the operating channel number.

2.2 Joint Logical Topology Design, Interface Assignment,

Channel Allocation, and Routing

In this section, we formulate the logical topology formation, interface assignment, channel allo

cation, and routing as a joint linear optimization problem. For the rest of this chapter, the terms

routers and nodes are used interchangeably.

2.2.1 Problem Formulation

We first model an MC-WMN by a physical topology graph G(Jf, é) where N denotes the set of

all vertices and é’ denotes the set of all unidirectional edges. Each vertex n e Al represents a

stationary wireless mesh router. For simplicity, we assume that N = {1, 2,... , N}. Notice that

1

Q Mesh Router
— interface Card
— Wireless Link

Mobile Device

5
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N = I.A/. Similarly, we define E = . For the network in Fig. 2.1, we have: N = 6 and E = 16.

For any two nodes m, n e /, if node n is within the communication range of node m, then there

is an edge or link from node m to node n in set . The link from node m to node n is denoted

by emn E E. We assume the connectivity to be symmetric. That is, link e é if and only if

enrn e S. Each mesh router is equipped with I network interface cards. There are C orthogonal

frequency channels available.

For any two nodes m and n such that emn E 5, and any channel i e {1,... , C}, we define

a link channel allocation variable In the logical topology, if node m communicates with

node n over the ith frequency channel, then is equal to 1; otherwise, it is equal to zero. For

the MC-WMN in Fig. 2.1 with C = 5, we have xb = 1 and xb = = Xab = Xab = 0. In

general, two nodes may communicate with each other over multiple distinct frequency channels.

For example, consider the MC-WMN in Fig. 2.1, we have Xad Xad = 1 and Zad = = Xad = 0.

As a result, the neighboring nodes a and d can communicate with each other over both channels

3 and 4 at the same time.

To establish the logical links, nodes m and n should assign the same frequency channels to

communicate with each other. This requires that,

= V m,n E Ar, emn eS, V i = 1,..., C. (2.1)

The link channel allocation variables implicitly provide the required information to create the

logical topology. Due to traffic and interference constraints, it is possible that there is a link

between nodes m and n in the physical topology graph (i.e., ernm e 5), but there is no logical link

between them in the logical topology. In that case, we have x = 0 for all i = 1,... , C. Note
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that we allow multiple logical links between the same pair of nodes in the logical topology. They

operate independently over distinct channels and can significantly increase the effective capacity

between two neighboring nodes.

For any node m e J’f and any channel i e {1,... , C}, we define y to be as follows:

1, ifn ej’f and emn E ‘, such that x = 1
(2.2)

0, otherwise.

We refer to y as the node channel allocation variable corresponding to node m and channel

i. For node a in Fig. 2.1 with C = 5 and I = 3, we have = y = y = 1 and y = y = 0. From

(2.2), y indicates the total number of channels that are being used by node m to establish

logical links with its neighboring nodes. Since each NIC operates on a distinct frequency channel,

y cannot be larger than the total number of available NICs on node m. That is,

y<I, VmE. (2.3)

The link and node channel allocation variables implicitly provide the required information

for interface assignment. For example, given y = y = y = 1, we assign channel 1 to the first

NIC, channel 3 to the second NIC, and channel 4 to the third NIC of node a. Since xb = Xd =

Xd = 1, node a uses its first NIC to communicate with node b and its second and third NICs to

communicate with node d.

Lemma 1 The desired correspondence in (2.2) is obtained by having y be a continuous real
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variable for all nodes m e Jf and all channels i E {1,. . , C} and also requiring that:

0 < < (2.4a)
flEJ\I,emnb

and

x <y < 1, V n e .Af, emn E . (2.4b)

2.2.2 Effective Capacity

Let c0 denote the nominal link-layer data rate in the corresponding 802.11 standard (e.g., 54

Mbps in 802.lla). Also let 0 < c0 denote the effective capacity of the logical link (m, n)

in the direction from node m to node n over frequency channel i. We have:

c<xc°, Vm,nEjV, emnEE, Vi=1,...,C. (2.5)

From (2.5), if node m does not allocate frequency channel i to communicate with node n (i.e.,

channel allocation variable x = 0), then node m cannot transmit any packet to node n over

channel i (i.e., = 0).

For any two nodes m and n such that emn e , we define a set of potential interfering links

.Fmn C E. Fm,,, includes all epq e such that nodes p or q (or both) are within the interference

range of nodes m or n (or both). Note that we always have enm E Fmn. Considering the IEEE
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802.11 based RTS-CTS-DATA-ACK model, we have [67, 76]:

ff + < 1, Vm, n E N, emn E E, V j = 1,... , C (2.6)
p,q, epqEFmn

where c/c° denotes the fraction of time that logical link (m, n) can be active in the direction

from node m to node n over frequency channel i.

2.2.3 Total Flows on a Logical Link

For efficient network planning, a statistical model for network traffic needs to be available. Let

7sd denote the expected traffic rate to be delivered between source and destination pair (s, d),

where s,d E N. We assume that the information for all source and destination pairs is given.

For any source and destination pair (s, d), any nodes m, n e N such that emn é , and any

channel i e {1, . . . , C}, we define a binary routing variable a71,1. The variable is equal

to 1 if the traffic from source s to destination d is being routed via link (m, n) in the direction

from node m to node n over channel i, and is equal to 0 otherwise. Note that $ in

general. Multiple links between a pair of nodes can provide more than one path between them.

Since each of the multiple links is operating over a distinct channel, packets that are forwarded

on different links experience different latencies. Thus, if packets that belong to the same flow use

parallel links between a pair of neighboring nodes, this can cause packets to arrive out of order.

To avoid this issue, only one of the available logical links between each pair of neighboring nodes

is used to route packets of each flow. That is,

Vs,d,m,neN, emne. (2.7)
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Let denote the aggregate traffic from all source and destination pairs that is routed on

link (m, n) in the direction from node m to node n over channel i. We have:

= V m, m e Af, emn E , j = 1,... , C. (2.8)
s,de.Af

The aggregate traffic cannot be more than the effective capacity for all nodes m, n E Ai’

such that emn E ‘, and all channels i e {1,. . . , C}. Consider the following constraint:

Vm,nef, emnE, Vi=1,...,C. (2.9)

where A < 1 is a positive parameter. From (2.9), the parameter A imposes an upper bound on the

expected link utilization The higher the link utilization, the higher the queueing delay

[80]. In the current Internet, an access link is considered overloaded when its average utilization

is greater than 80% [81, 82]. Thus, we set A = 0.8.

2.2.4 Flow Conservation at Each Node

The flow conservation requires that for s, d, m e f,

7sd, if s = m,

—
= _7sd, if d = m, (2.10)

nJ’f, nEJV,
0, otherwise.

emnE& enmE

In (2.10), the term on the left-hand side is the net flow out of node m for the flow from source s

to destination d. The net flow is the difference between the outgoing flow and the incoming flow.
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The term on the right-hand side is equal to 0 if node m is neither the source nor the destination

for that specific flow. If node m is the source (i.e., s = m), then the net flow is equal to 7sd j

node m is the destination (i.e., d = m), then the net flow is equal to Note that both sides

in (2.10) can be divided by the common factor 7sd• We also notice that (2.10) implies (2.7).

The constraint in (2.10) also guarantees that there is at least one routing path available

between each source and destination pair (s, d). In practice, all nodes have traffic to or from

the Internet; thus we can make the valid assumption that 7sd > 0, if either s or d is a gateway

node. The constraint in (2.10) and the aforementioned assumption guarantee that the obtained

topology is connected. That is, there is neither an isolated node nor an isolated group of nodes.

2.2.5 Feasible Region and the Objective Function

Given the expected traffic demand y and the network resources C, I, and c°, the constraints

in (2.1)-(2.10) form the feasible region for all logical topologies that can properly support the

expected traffic demand y. The feasible region could be empty. We can enlarge the feasible

region by choosing a higher value for parameter A; however, even for A = 1, the feasible region

can be empty if and only if the network resources cannot support the expected traffic demand.

In that case, we need to either increase the available resources or limit the traffic demand.

From constraint (2.9), the difference (Ac
—

is always non-negative. As approaches

the difference (Ac — )) tends to 0 and the corresponding logical link becomes more

prone to congestion. Let ömjfl denote the minimum difference (Ac
—

A) across all channels
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and all links that exist in the logical topology. That is,

Smin = mm (Ac — . (2.11)
rn,rzE.A1, emn EE,

iC{1,..,C}, x,—1

Note that Smin corresponds to the most congested (i.e., the bottleneck) logical link across the

network. Our objective is to maximize the variable Smln. It can be achieved by decreasing the

aggregate traffic load or increasing the effective capacity (or both) on the network’s bottleneck

link. The former implies load balancing: balancing the traffic load among different logical links

using proper logical topology formation and routing schemes; while the latter implies congestion-

aware capacity planning: providing higher effective capacity for more congested logical links using

proper logical topology formation, interface assignment, and channel allocation schemes. Load

balancing is shown to be a proper objective for joint topology control and routing algorithms

in optical networks [83]. Congestion aware capacity planning is also proposed for cross-layer

congestion control designs in wireless ad-hoc [49] and mesh networks [771.

Maximizing can also be justified in terms of providing fairness among the existing logical

links. In fact, it leads to achieving max-mm or bottleneck-optimal fairness [50, 80, 84]. This is

equivalent to solving the NUM problem in (1.18) for cr-fair utility functions with o —* cc. Note

that the system is fair in the sense that all the links experience similar level of congestion.

Lemma 2 The desired correspondence in (2.11) can be obtained by requiring that:

8m’in < + Ac°(1 — Vm, n E f, emn E E, Vi = 1,.. . , C. (2.12)
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2.2.6 Hop Count Constraint

Load balancing avoids highly loaded links and prevents congestion; however, it may lead to

assigning long routing paths. For each source and destination pair (s, d), the hop count along the

assigned routing path is obtained as Zm,nEN, emnee Z Let h denote the hop count

for the minimum hop path between source and destination pair (s, d) in the physical topology

graph G(N, S). The ratio Zi is always greater than or equal to 1,

and is defined as the stretch factor for the routing path from the source node s to the destination

node d. We define the hop count constraint to be:

F h, V s, d e . (2.13)
m,nEJ\1, emnE i=1

where F 1 is a tunable parameter to set an upper bound on the routing stretch factor. Note

that there is always a trade off between load balancing and shortest path routing [85]. This trade

off can be controlled by using the tunable parameter F. By assigning F = 1, the routing part of

the algorithm becomes the shortest path routing. If F = cc, the hop-count constraint (2.13) is

relaxed. In general, the greater the tunable parameter F, the larger the feasible region.
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2.2.7 Optimization Problem

Given the physical topology graph G(JV, ‘) and all parameters C, I, F, A, C0, .Fmm, 7sd, h,

maximize ömir,
x,y,c,a,A,ömjn

subject to x, =

Xmn
— Ym’

Ym
— /-néJ.f,emnEE’1mn’

-C
L.,j=1 Ym —

i <i 0
Cmn — XmnC

Cmn + Zp,q, epqEFmn 4q < C°,

(2.14)
1, ifs=m,

ZnEJf,emmEE 1 an,jflEW,enmEZ —1, if d = m,

0, otherwise,

— sd sd<A
mn — s,deJr”mn,i 7 — Crnn,

Smin < (Ac — A) + Ac°(1 —

‘çC sd — p
L.im,nJV, emnE L.j1 — ‘

where a.j e {0, 1}, y, c, A,5mjfl 0, y < 1,

c<c0,Vm,n,s,dEJ\f, emnee, Vi=1,...,C.

Let W denote the number of source and destination pairs. The linear mixed-integer problem

(2.14) has EC(1+W) integer variables and C(2E+N)+1 real variables. It also has 1.5EC+NW

equality and F(5C + W) + N(C + 1) + W inequality constraints.
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Algorithm 1 Iterated Local Search Algorithm to Solve Problem (2.14) - Centralized
1: set K = the maximum number of iterations.
2: set x[1]=1, Vm,neN, emnee.
3: set x[1j = =x[1] =0, Vm,n eAr, emn C

4: for k = 1 to K do
5: Randomly choose p, q e Ar such that emn C

6: solve problem (2.14) subject to
0 1, V s,d,m,n eJ\f, emn C , ViE {1, . . . ,C}
x = x[k], Vm,n e Ar, em,7. eE, m,’n {p,q}.

7: setx[k+1]=47.,Vm,nejV, emméVie{1,... ,C}.
8: end
9: for each source and destination pair (s, d) do

10: setm=s.
11: while m d do
12: set = 1 where {i,n} = arg max
13: set m = n.
14: end
15: for all m, n e Ar and all channels i e {1,... , C} do
16: if 1, then set = 0.
17: end
18: end

2.2.8 Algorithm

There are efficient commercial software (e.g., CPLEX [31]) to solve linear mixed-integer programs.

Most of them use the branch-and-cut algorithm [86]. Problem (2.14) can easily be solved for

small-scale MC-WMNs. However, finding the optimal solutions are not trivial for large-scale

networks. An alternative is to use some simple arid efficient metaheuristic methods to find the

sub-optimal solutions [87]. In this chapter, we use the Iterated Local Search (ILS) [88] which is

a powerful metaheuristic algorithm. We will investigate the sub-optimality of the ILS algorithm

in comparison with the optimal branch-and-cut algorithm in Section 2.4.

The pseudo-code for the proposed ILS algorithm is provided in Algorithm 1. In line 2, a

fully connected single-channel logical topology is selected as the starting point. At each iteration,

lines 4 and 5 are used to randomly select a pair of nodes p, q C Ar (e.g., with probability that is
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proportional to the worst congestion status among the current logical links between them). From

the two additional constraints in line 6, the integer constraint on the routing variable a is relaxed.

Most of the variables are also set as constants in the current iteration. Therefore, the modified

problem only has a few integer variables and can be solved easily. Given the sub-optimal topology

formation, interface assignment and channel allocation solutions, the routing path from source

s to destination d is assigned by traversing the logical topology from source s to destination d,

and by choosing the next hop based on the maximum observed value for routing variable a (lines

10-18). The intuitive justification is that if the relaxed is close to 1, it indicates that it

is better to forward the packets from source s to destination d on the logical link (m, n) over

channel i. On the other hand, if the relaxed is close to 0, it implies that it is better to avoid

forwarding packets on logical link (m, n) over channel i.

2.3 Simulation Results

In this section, we evaluate the performance of our proposed TiMesh MC-WMN architecture

and compare it with the Hyacinth [61] and CLICA [62] architectures using ns-2 simulations. We

consider both UDP (User Datagram Protocol) and TCP (Transmission Control Protocol) traffic.

The default simulation model is as follows. The size of the network field is 1000 m x 800 m. Ten

sample MC-WMNs are generated. Each MC-WMN consists of 30 routers. Four of them serve as

gateways. The gateways are located at the four corners of the field. The communication and the

interference ranges are 250 m and 450 m, respectively. Each router is equipped with three NICs.

Six channels are available. The parameter F is set to two. The IEEE 802.lla standard with 54

Mbps data rate is being used. In each topology, there are 30 flows: 15 flows are internal, and 15
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Figure 2.2: Average optimization error versus the iteration number using the ILS algorithm
when the number of nodes/flows vary from 10 to 30.

flows are external. For each internal flow, two non-gateway nodes are randomly selected to be

the source and destination nodes. Each external flow is established between a randomly selected

node and a gateway. For UDP traffic, the packet size is 1000 bytes and the transmission rate is

500 kbps. For TCP traffic, the packet size is 1020 bytes and the transmission rate is set by the

TCP Vegas. The simulation time (i.e., the duration of the simulation) is 300 sec.

For UDP traffic, the performance metrics are: 1) packet delivery ratio: the total number of

packets received by all destinations divided by the total number of packets transmitted by all

sources; 2) end-to-end delay: the time takes for a packet to traverse the network from a source

to a destination. For TCP traffic, the metrics are: 1) aggregate throughput: the total number of

correctly received packets (in bits) divided by the simulation time; 2) round-trip time: the time

delay between sending a TCP segment and receiving its acknowledgement.
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2.3.1 Optimal and Sub-optimal Solutions

In this section, we compare the solutions for problem (2.14) obtained from the ILS algorithm with

those obtained from the optimal branch-and-cut solver. Let S denote the optimal value. Also

let Smin [k] denote the value obtained from the ILS algorithm after the kth iteration. We define

— Smin[k])/Snjn as the optimization error. Fig. 2.2 shows the average optimization error

across all ten topologies versus the iteration number when the number of nodes and flows vary

from 10 to 30. We can see that the optimization error decreases when the number of iterations

in ILS algorithm increases. After 50 iterations, the error is 1.4%, 1.9%, and 4% for 10, 20, and

30 iiodes/fiows, respectively. These results show that a near optimal solution can be achieved

within a limited number of iterations. For the results presented in the subsequent sections, the

near optimal solutions of problem (2.14) are obtained using ILS with 50 iterations.

2.3.2 Sample Logical Topology

Fig. 2.3(a) shows a sample physical topology. The corresponding logical topology, interface

assignment, and channel allocation are shown in Fig. 2.3(b). For the physical topology graph in

Fig. 2.3(a), 72 pairs of neighboring nodes are within the communication range of each other. The

logical topology in Fig. 2.3(b) includes at least one logical link between 43 pairs of neighboring

nodes. There are two links between nodes C1 and a, G3 and i, G4 and w, as well as s and n.

These links operate over distinct channels. In Fig. 2.3(b), there are 12 logical links that share

an NIC with some others. The sharing of the logical links do not happen often as it reduces

the corresponding link capacities. In the obtained routing solution, the 2-hop route {o, t, G2} is

replaced by the 3-hop route {o, t, x, G2} to take the advantage of the unused logical link (t, x).
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A random topology with 30 routers. Each router is equipped with 3 NICs. (a)
Physical topology, (b) Logical topology, interface assignment, and channel alloca
tion. Solid lines are wireless links that use only exclusive (not shared) NICs. Dashed
lines are the links that share an interface with some other links. The number on
each link indicates the channel number.

(a)

(b)

Figure 2.3:
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2.3.3 Impact of the Network Traffic

In this section, we first investigate the performance with UDP traffic. The number of active flows

varies from 6 to 30. Fig. 2.4 shows the results of the packet delivery ratio and the average end-to-

end delay. In this figure, each point is the average of measurements for all 10 simulated topologies.

When the number of UDP flows increases, the network becomes congested. Since UDP does not

have any congestion control mechanism, there is a reduction of the packet delivery ratio and

an increase of the end-to-end delay. When there are 30 UDP flows, Fig. 2.4(a) shows that the

packet delivery ratio obtained from TiMesh is 7% and 18% higher than CLICA and Hyacinth,

respectively. Fig. 2.4(b) shows that the average end-to-end delay obtained from TiMesh is 28%

and 52% lower than CLICA and Hyacinth, respectively.

Fig. 2.5 shows the results of the aggregated throughput and the average round-trip time when

there are different number of TCP flows established in the network. In this figure, each point is

the average of measurements for all 10 simulated topologies. If only a few flows are established

(e.g., less than 6 flows), the TiMesh, CLICA, and Hyacinth architectures achieve almost the

same performance. By increasing the number of flows, the network becomes congested and

the round-trip time increases significantly. When there are 30 flows, Fig. 2.5(a) shows that the

aggregated throughput obtained from TiMesh is 11% and 32% higher than CLICA and Hyacinth,

respectively. Fig. 2.5(b) shows that the average round-trip time obtained from TiMesh is 29%

and 52% lower than CLICA and Hyacinth, respectively.

The better performance of TiMesh can be explained based on the features of the three ar

chitectures. Unlike Hyacinth that concentrates the traffic on long routing paths with highly

loaded links (especially the links connected to the gateways), TiMesh distributes and balances
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Figure 2.4: Comparison between TiMesh, Hyacinth [61], and CLICA [62] MC-WMN archi
tectures in the presence of fixed-rate UDP traffic, (a) Packet delivery ratio, (b)
End-to-end delay.
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Figure 2.5: Comparison between TiMesh, Hyacinth [61], and CLICA [62] MC-WMN archi
tectures in the presence of TCP traffic, (a) Aggregated throughput, (b) Average
round-trip time.
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the traffic among different links. It also assigns shorter routing paths. TiMesh has two distinct

advantages when it is compared to CLICA. The logical topology created by TiMesh depends on

the expected traffic demand. TiMesh also allows having multiple links between the routers. This

further increases the effective data transmission rate between two neighboring routers.

2.3.4 Impact of the Number of NICs and Channels

In this section, we compare the performance by varying the number of interfaces and the available

channels. Thirty TCP traffic flows are generated in the network. Results for the aggregate

throughput and average round-trip time are shown in Table 2.1. We can see that both TiMesh

and CLICA improve the performance significantly when the number of channels is increased from

6 to 9. The performance gain is less for Hyacinth as it has fewer logical links

in its topology and cannot efficiently use the available resources. When the number of NICs

increases from 3 to 4, the aggregate network throughput increases by 36%, 29%, and 37% for

TiMesh, CLICA, and Hyacinth, respectively. The average round-trip time also decreases by 92%,

17%, and 48%, respectively. The observed high performance gain for TiMesh is due to the fact

that it uses the extra available NICs to assign multiple links between the routers.

2.3.5 Fairness

Recall from Section 2.2.5 that TiMesh can achieve max-mm fairness among logical links. To

quantitatively measure the fairness that is attained among different flows, we let 1’PDR and PEED

denote Jam’s fairness indices [89] for packet delivery ratio and end-to-end delay, respectively:

/ \2
(Zs,deji,78doPDR(s, d))

PDR rni I 2’ ( . )
VV 2_ds,deJ%/,7or i1J:-LjS, U)
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Throughput (Mbps) Round-Trip Time (msec)
Architecture I = 3, I = 4, I = 4, I = 3, I = 4, I = 4,

C=6 C=9 C=12 C=6 C=9 C=12
TiMesh 57.9 68.3 92.0 25.5 21.8 11.6
CLICA 51.7 61.5 79.1 36.8 32.7 24.4

Hyacinth 43.1 48.2 66.4 52.7 49.9 41.0

Table 2.2: Achieved fairness among different flows.
Fairness Index

Architecture Packet Delivery Ratio End-to-End Delay
(‘PpDa) (‘PEED)

TiMesh 0.914 0.903
CLICA 0.867 0.836

Hyacinth 0.712 0.678

where PDR(s, d) denotes the packet delivery ratio for the flow from source s to destination d.

The fairness index PEED can be expressed similarly. The measured ‘PPDR and ‘PEED for TiMesh,

CLICA, and Hyacinth architectures are shown in Table 2.2. We can see that TiMesh offers

better fairness among the flows. The lower fairness indices in CLICA and Hyacinth are the

result of several highly congested bottlenecks. Those flows that traverse the bottleneck links

experience higher delays and more packet loss compared to the rest of the flows. This is also the

case for Hyacinth where the links connected to the gateways are the bottlenecks. The proposed

topology control, routing, interface assignment, and channel allocation algorithms in TiMesh

manage to avoid different links experiencing different congestion levels. Thus, different flows that

are traversing different links achieve similar performance.

Table 2.1: Impact of varying the number of NICs and channels.
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2.4 Summary

In this chapter, we proposed the TiMesh MC-WMN architecture by formulating the logical topol

ogy design, interface assignment, channel allocation, and routing as a joint linear mixed-integer

optimization problem. Our model formulation takes into account the number of available NICs

in routers, the number of available orthogonal frequency channels, expected traffic load between

different source and destination pairs, and the effective capacity of the logical links. The proposed

scheme balances the load among logical links and provides higher effective capacity for the bot

tleneck link(s). We conducted extensive ns-2 simulation experiments to evaluate our algorithm

and compared it with Hyacinth and CLICA MC-WMN architectures. Simulation results show

that our proposed TiMesh architecture provides a higher aggregated network throughput and

a lower end-to-end delay for both TCP and UDP traffic. The available NICs and channels are

better utilized. The TiMesh also offers better fairness among different flows.

In this chapter, we mainly focused on centralized and static channel and interface assignment

problem by formulating a linear mixed-integer problem in (2.14). In the next chapter, we will

propose a dynamic and distributed channel assignment strategy. We will also study the possibility

of formulating the channel and interface assignment problem as a convex optimization problem

in Chapter 7.

2.5 Analytical Proofs

2.5.1 Proof of Lemma 1

Assume that node m is assigned to communicate with K neighboring nodes over channel i. Thus,

constraint (2.4a) can be written as 0 < y K. If K = 0, then constraints (2.4a) and (2.4b)

49



Chapter 2. Topology Design, Interface Assignment, Channel Allocation, & Routing

become 0 < y <0 and 0 y 1, respectively. This implies that y = 0. On the other hand,

if K> 0 (i.e., if K 1), then constraints (2.4a) and (2.4b) become 0 K and 1 y 1,

respectively. This implies that y = 1.

2.5.2 Proof of Lemma 2

If there exists a logical link between nodes m and n over frequency channel i (i.e., XZflrn = 1), then

A c°(1 — = 0 and constraint (2.12) simply becomes 8min < (A
—

A). On the other

hand, if there is no logical link between nodes m and n over frequency channel i (i.e., x = 0),

then Ac°(1 — x) = Ac°. From eqs. (2.5) and (2.9) we also have (Ac — = 0. Thus,

constraint (2.12) becomes 5min <Ac0. Note that Ac° is an upper bound for variable Smin. •
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Chapter 3

Cross-layer Fair Bandwidth Sharing

for MC-WMNs

Most of the previously proposed channel assignment algorithms for MC-WMNs mainly focus on

network efficiency (i.e., increasing the network throughput) while the issue of fairness remains

less studied. Although several test-bed and simulation studies have shown that various channel

and interface assignment algorithms can provide a higher throughput in MC-WMNs compared to

their single-channel counterparts [61, 62, 66, 67, 69, 70, 71, 72, 74, 75, 76, 77, 79, 90, 91, 92, 93],

it is not clear whether the same statement is true for the case of fairness. Note that, an efficient

but unfair channel allocation may cause some flows to starve. In this chapter, we formulate a

cross-layer bandwidth sharing problem in MC-WMNs as a NUM problem [19, 44] (see also Section

1.2.2). We then use the a-fair utility functions [50] to model a wide range of well-known fairness

allocations. The contributions of our work are as follows.

• We mathematically model the channel and interface assignment problems by introducing

link and node channel assignment binary vectors. Using these vectors, we also model the

feasible region for the link-layer flow rates.

• We present a formulation for cross-layer fair bandwidth sharing problem as a non-linear
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mixed-integer NUM. It takes into account the number of NICs at each router, the number

of channels, and the interference constraints.

• We solve the NUM problem via both exact and approximate design schemes. The exact

design results in an optimal static algorithm while the approximate design results in a

near-optimal long-term basis dynamic and distributed algorithm.

• Our proposed designs take into account both network efficiency and fairness. In particu

lar, some of the well-known fairness criteria, such as proportional fairness, harmonic-mean

fairness, and max-mm fairness, can be modeled using a tunable design parameter.

The rest of this chapter is organized as follows. The problem formulation is described in

Section 3.1. The first design scheme (using exact binary linearization) is presented in Section

3.2. The second design scheme (using approximate dual decomposition) is described in Section

3.3. The performance of our algorithms is assessed through numerical examples in Section 3.4.

A summary of the chapter is given in Section 3.5.

3.1 Problem Formulation

In this section, we describe the mathematical model to formulate a cross-layer fair bandwidth

sharing problem in MC-WMNs. The terms wireless mesh routers and nodes will be used inter

changeably. Consider an MC-WMN and let N = {1, 2,... , N} denote the set of stationary nodes.

Each node m e N is equipped with Im NICs. Different nodes carl be equipped with different

number of NICs. There are C orthogonal frequency channels available. We assume that the

logical topology of the network has been pre-determined. Let £ denote the set of all unidirec

tional logical links. The cardinality of set £ is denoted by L. Notice that the logical topology
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High Speed Internet

Wired Link

Gateway$
2

/ I
/1/ 4”.

c±K
3

NIC

(a, b)

(b, a)

(a) Physical and logical topologies

(a,c) (cd)

o Mesh Router

—
— Wireless Link

J Mobile Device

(d,e)

(e, d)

Operating
Channel

Figure 3.1: A sample MC-WMN with five routers, eight unidirectional logical links, and three
frequency channels.

graph G(N, £) is always a subgraph of the physical topology graph G(JV, é) where E is defined

in Chapter 2. The logical link from node m to node n is denoted by (m, n) e £. We assume the

connectivity to be symmetric. That is, link (m, n) e £ if and only if (n, m) E £.

3.1.1 Channel Assignment Model

For any two nodes m, n E N such that there exists a logical link (m, n) E £, we define a C x 1

link channel assignment vector Xmn. The jth entry of x, is denoted by x. Jf i frequency

channel is assigned to unidirectional logical link (m, n), then x = 1; otherwise, x = 0. As

(ca) (dc)
(b) Single-channel contention graph CGs
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an example, for the MC-WMN in Fig.3.1(a) with C = 4, we have’:

Xab=[1 o o

Xba=[1 o
(3.1)

xac=[O 1 0
01T

xca=[0 0 0

Since all logical links need to be assigned to a frequency channel, it is required that

lTXmn = 1, Vm,m éA/, (m,n) EL, (3.2)

where 1 denotes a C x 1 vector with all entries equal to 1. Notice that for any m, ii e .A/, if

XTmnXnm = 1, then both logical links (m, n) and (n, m) are assigned to the same frequency channel

(e.g., links (a, b) and (b, a) in Fig.3.1(a)). On the other hand, if XTmnXnm = 0, then logical links

(m, n) and (n, m) are assigned to two different channels (e.g., links (a, c) and (c, a) in Fig. 3.1(a)).

In fact, for any pair of unidirectional logical links (m, n), (p, q) e L, we have:

1, if (m, n) and (p, q) use the same channel,
T

Xmn Xpq —

0, otherwise.

For any node m E .Af, we also define a C x 1 node channel assignment vector Ym. The

entry of Ym is denoted by y. Jf jth frequency channel is assigned to one of the NICs of node m,

‘The link channel assignment model in this chapter is exactly the same as that in Chapter 2. However, here we
consider the channel assignment variables in vector form.
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then y,. = 1; otherwise, y = 0. Consider Fig. 3.1(a) as an example, we have2:

Ya[1 1 0

Yb = [ 1 0 0 0 (3.4)

yc[0 1 1

By definition, lTYm indicates the total number of channels that are being used by node m to

establish outgoing and incoming logical links with its neighboring nodes. Since each NIC operates

on a distinct frequency channel, lTyrn cannot be larger than the total number of available NICs

on node m. That is,

lTYm < Im, V m N. (3.5)

The link and node channel assignment vectors are related. For each node m e N, we have

= 1 if and only if there exists n e N such that either x = 1 or = 1; otherwise, y = 0.

The following Lemma, proved in Section 3.6.1, mathematically models the desired correspondence

between link and node channel assignment vectors:

Lemma 3 For eachm eN, and anyi e {1,...,C},

0 Yn ZnEN,(m,n)E Xn+ZnEJf,(n,rn)ED :lm, (3.6)

x< y<1, VneN, (m,n)e, (3.7)

Xm < y <1, VneN, (n,m) eL. (3.8)

2The node channel assignment variables here are slightly different from those in Chapter 2. Compare Lemma 3
with Lemma 1.
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The link and node channel assignment vectors together provide all the required information

to assign channels. They also implicity show how the interfaces should be assigned. For the

example of Fig. (3.1), given Ya = [i 1 0 1
1T, we assign channel 1 to the first NIC, channel 2

to the second NIC, and channel 4 to the third NIC of node a. Since Xab = Xba = [1 0 0 0

Xac = [o 1 0 0
1T and Xca = { o o 1

1T, node a uses its first NIC to establish both links (a, b)

and (b, a), its second NIC to establish (a, c), and its third NIC to establish (c, a).

We stack up all link channel assignment vectors and denote the obtained vector by x. Sim

ilarly, we stack up all node channel assignment vectors and denote the obtained vector by y.

A channel assignment strategy, denoted by (x, y), is defined as determining vector Xmn for all

links (m, n) E £, and vector Ym for all nodes m E Jf. Given an MC-WMN logical topology, a

channel assignment strategy (x, y) is feasible if conditions (3.2) and (3.5)-(3.8) hold. The set of

all feasible channel assignment strategies is denoted by ‘P.

3.1.2 Interference Model

In an MC-WMN, two logical links (m, n), (p, q) e £ are defined to mutually interfere with each

other whenever both of the following conditions hold:

1. The logical links operate over the same frequency channel (i.e., = 1), and

2. The sender/receiver of one logical link is within the interference range of the sender/receiver

of the other logical link.

To model the interference, we construct a link-layer flow contention graph (or simply con

tention graph [53]). In a contention graph, vertices correspond to the logical links. There is an

edge between two vertices if the corresponding logical links mutually interfere with each other
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and cannot be active simultaneously. The contention graph depends on the assigned channels.

Given (x, y), the corresponding contention graph is denoted by CG.?,). As a special case,

consider a feasible channel assignment strategy that assigns all links to the first channel (i.e.,

Xmn = Ym = [ 1 o ... o ]T for all m, n e )v such that (m, n) e £). The corresponding contention

graph is a single-channel contention graph and is denoted by CG. The single-channel contention

graph for the MC-WMN in Fig. 3.1(a) is shown in Fig. 3.1(b).

Although the vertices in CG(,) and CG are the same, for a general channel assignment

strategy (x, y), CG(,,) may have fewer edges than CGs. Thus,

CG(,) ç CGs, V (x,y) e ‘I’. (3.9)

Given we can identify all of its maximal cliques3. The links which correspond to

the vertices of a maximal clique cannot be active simultaneously [53, 64, 94]. Let denote

the set of all maximal cliques in CG(,). The number of maximal cliques is denoted by IQ(a,y)

For notation simplicity, we enumerate the maximal cliques. The maximal clique of CG(,) is

denoted by The set of vertices that form is denoted by V) c £.

Let fmm > 0 denote the normalized link-layer flow rate on logical link (m, n) e £ (i.e., the

proportion of time that link (m, n) is active). For notation simplicity, we stack up all link-layer

flow rates and denote the obtained vector by f. Since flows within the same maximal clique

cannot transmit simultaneously, we have the following clique capacity constraint [53, 64, 94]:

fpq 1, Vi:Q> EQ(a,y). (3.10)
p,q: (p,q)EV)

3A clique of a graph is a complete subgraph of the graph. Each clique is either a maximal clique or a subgraph
of a maximal clique.
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Recall that the contention graph depends on selected channel assignment strategy.

Any changes in (x, y) will cause changes in CG() and the set of its maximal cliques Q(). This

will result in changes in structure and number of inequalities in (3.10). Therefore, the current

form of clique capacity constraint in (3.10) cannot be used to formulate an optimization-based

channel assignment problem where x and y are optimization variables. The following theorem

can overcome this problem.

Theorem 9 Given (x, y) e ‘I’, the feasible region formed by constraint (3.10) is equivalent to

the feasible region formed by the following constraint,

> xyjxpqfpq 1, Vi: Q C Qs, Vm,n esV,(m,n)e14 (3.11)
p,q: (p,q)c)4

where Qs, Q, and ‘14 denote the set of maximal cliques, the ith maximal clique, and the set of

vertices in the maximal clique of the single-channel contention graph CGs, respectively.

The proof of the above theorem is given in Section 3.6.1. Note that the number of constraints

in (3.10) and (3.11) are not the same. Depending on (x,y), the number of inequalities in (3.10)

can vary from !QsI to . However, the number of inequalities in (3.11) is fixed and is equal to

Z!2’ In addition, all the inequalities in (3.10) are maximal clique constraints; while there

may be some inequalities in (3.11) that are just clique (but not maximal clique) constraints.

As an example, consider CGs in Fig. 3.1(b). Two maximal cliques are recognized:

‘14 = {(a, b), (b, a), (a, c), (c, a), (c, d), (d, c)} (3.12)

= {(a, c), (c, a), (c, d), (d, c), (d, e), (e, d)} (3.13)
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They form IVI + IVI = 12 inequalities in (3.11). If we assign the frequency channels as shown

in Fig. 3.1(a), then we have: fac + fde 1, fca 1, fai + fdc 1, and fed 1.

3.1.3 Cross-Layer Fair Bandwidth Sharing Problem

The model in (3.2)-(3.11) can be used in various cross-layer designs. In this chapter, we extend

the fair bandwidth sharing framework in [53] to obtain two cross-layer fair bandwidth sharing

algorithms for MC-WMNs. Given an MC-WMN logical topology with N nodes and L links, C

orthogonal channels, ‘m NICs per each router m é .Af, CG and the set of its maximal cliques Qs,

our objective is to choose the normalized link-layer flow rates, and assign channels and interfaces,

so as to solve the following NUM problem:

maximize umn(i’.fmn)
f>-O, (r,y)e’

m,n: (rn,n) EC
(3.14)

subject to xxpqfpq < 1, V i : e Qs, m, n e f, (m, n) é V
p,q: (p,q)EV

where ic denotes the nominal link-layer data rate in bits per second, and Umm is a continuously

differentiable, increasing, and strictly concave utility function. The utility functions are assumed

to be a-fair [50]. Recall from Section 1.2.2 that, if a = 1, then proportional fairness among link-

layer flows is obtained; a = 2 corresponds to harmonic mean fairness; and a —* cc corresponds

to max-mm fairness.

3.2 Design I: Exact Binary Linearization

Problem (3.14) is a non-linear mixed-integer problem and is not easy to solve. Note that:
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1. It has real variables f and binary variables x and y.

2. It has mixed binary-real cubic constraints.

After relaxing the binary constraints, problem (3.14) is still non-convex. Thus, even the

relaxed problem cannot be easily solved. In this section, we present some binary linearization

techniques to obtain the global optimal solution of problem (3.14) in a static and centralized

manner. Let Es denote the set of all edges in CGs. We denote eT e Es if there is an edge

between vertices (m, n) and (p, q). The cubic constraint in (3.14) can be linearized as follows:

Step 1: For each pair of logical links (m, n), (p, q) e £ such that eT e Es, we define a C x 1

auxiliary link channel assignment vector as follows:

mn
Vpq — Xmn Xpq,

where o denotes the Hadamard product4. From (3.15) we have, X = 1T
v7. Notice that

Xpq is quadratic while 1T v7 is linear. Since Xmn, Xpq and v are C x 1 binary, (3.15)

is equivalent to the following linear constraints (see Theorem 3):

mm
Xmn m Xpq — Vpq —

(3.16)
mn

Xmn — Xpq Vpq —

For notation simplicity, we stack up all vectors as v. A linearized channel assignment

strategy, denoted by (x, y, v), is defined as determining Xmfl for all links (m, n) e £, vj for all

links (m, n), (p, q) e £ such that em e E5, and Ym for all nodes m e .A/. A linearized strategy

4The Hadamard product of two C xl vectors a and b is a C x 1 vector whose th entry is the product of the jth

entry of a and the entry of b.
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(x, y, v) is feasible if (x, y) e 1’ and condition (3.16) holds. The set of all feasible linearized

channel assignment strategies is denoted by 1.

Step 2: For each pair of logical links (m, n, (p, q) e £ such that epT e CG, we define an

auxiliary real scalar variable z7 as follows:

= Xpq fpq
(iTvTh)fpq. (3.17)

Since lTrnn is a binary scalar and the normalized link-layer flow fpq is upper bounded by

one, equation (3.17) is equivalent to the following linear constraints (see Theorem 4):

0 Zq’ fpq, (3.18)

fpq_1+1Tv 471 < lTmn (3.19)

We stack up all scalars z7 and denote the obtained vector by z. Combining steps 1 and 2,

problem (3.14) is equivalent (cf. [16, pp. 130]) to the following problem:

maximize

f >.- o, z >- o, m,n: (m,n)EC

(x,y,v) E

subjectto 4711, Vi:QeQs,Vm,nEJ’f,(m,n)EVg,

p,q: (p,q)EV (3.20)

zfpq, vm,n,p,q:eees,

fpq — 1 ± 1T v < z, V m, n,p, q : e e

zlTv Vm,n,p,q:ees.
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By relaxing the binary constraints on x, y, and v, problem (3.20) becomes a convex optimiza

tion problem. There exist several efficient algorithms to solve convex problems [16]. By solving

the relaxed problem, we can obtain the upper and lower bounds that are required in branch and

bound algorithm [15, pp. 577-580]. By using branch and bound, we can find the global optimal

solution of the mixed-integer problem in (3.20). Since problems (3.14) and (3.20) are equivalent,

the global optimal solution of the mixed-integer problem in (3.14) is also readily found.

3.3 Design II: Approximate Dual Decomposition

The exact binary linearization scheme in Section 3.4 helps us to find the optimal solution of

problem (3.14) in a static and centralized manner. In this section, we propose an alternative but

approximate design which is more practical.

Consider the dual problem of the primal problem (3.14):

minimize D(p) (3.21)
PO

with partial dual function

IQsI /
D(p) = maximize umfm)+ p (i -

m,m: (m,n)E i1 m,n: (m,n)eV p,q: (p,q)EV

where we relaxed the clique capacity constraint in (3.14). The Lagrange multiplier for the clique

capacity constraint associated with clique Q e Qs and vertex (m, n) e V is denoted by

p. For notation simplicity, we stacked up all Lagrange multipliers and denoted the obtained

vector by p. Our proposed joint algorithms are shown in Algorithm 2 and Algorithm 3, where
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Algorithm 2 Executed by each node m e N
1: For Vn e N, (m, n) e £ do

2: fmn (Zi:(m,n)éV Zp,q:(p,q)eV 4qxxmn)]

3: End
4: For Vn e N, (m, n) £ and Vi: (m, ii) e V, do

5: Pmn := — (i
— p,q:(p,q)cV

xpTqxmnfpq)]0

6: End
7: Inform the updated values to all nodes p e N such that n, q e N, eTh é

[x] = max (mm (x, b), a). We make the following assumptions:

1. The normalized link-layer flow rates arid the Lagrangian multipliers are updated distribu

tively and asynchronously every TMAC time units using Algorithm 2.

2. The channels are updated every Ti time units using Algorithm 3.

3. The time interval TMAC <<T01.

Consider the time interval between two consecutive channel updates (i.e., the period of length

T01 time units right after any channel assignment performed by Algorithm 3). During this period,

Algorithm 2 is just a fair MAC [53] over fixed channels and fixed interfaces. Given x and p as

constants, line 2 of Algorithm 2 selects fm, to maximize the dual objective function in (3.22).

Line 5 of Algorithm 2 also updates Lagrange multiplier using a sub-gradient method [15],

where parameter is a constant stepsize. We can interpret the Lagrange multipliers as clique

contention prices to regulate between the supply and the demand. From line 5 in Algorithm 2,

if the demand Z(pq)Ev Xpq fpq exceeds the supply (that is 1), the price will increase.

The prices are then used to adjust the flow rates in the next iteration. If Ti is large enough,

stepsize is small enough, and the asynchronism measure is bounded5,then the convergence of

5The asynchronism measure of distributed Algorithm 2 is bounded if there exists a positive finite B such that
1) each node m E iV executes Algorithm 2 at least once during any interval of length B time units, and 2) the
information is used by each node for executing Algorithm 2 is outdated by at most B time units [18, pp. 481].
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Algorithm 3 Executed by a pre-authorized gateway
1: Gather the information on f and p from all nodes m e f.
2: For Vm,n,p,q: (m,n),(p,q) e £ do
3: If eTh E ‘f-s then

4: Wpq := (frnn + fpq) (Zi:(rn,n),(p,q)ev pq)

5: else

6:

7: End if
8: End
‘-• i._v’ rnrif T

U’ L.im,ri,p,q:(m,rz),(p,q)ef”pq

10: (, th ‘o) := argrnin Zm,n,p,q:(m,n),(p,q)eL
w7(lTi3n)

(a,y,v)’I’

_7. ‘ mnf-T -ii: IL .— Z_,m,n,p,q:(m,n),(p,q)JJpq iXrnnXpq

12: With probability [o (d/ci— 1)]’ do

13: (x,y):=(,’)

14: Inform (x, y) to all nodes m E .iV.
15: End
16: S := 5/2.

Algorithm 2 is guaranteed [18, pp 527-535]. That is, before the new channels are being assigned

by Algorithm 3 in its next iteration, Algorithm 2 will reach its fixed point. The fair MAC in

Algorithm 2 can be implemented by modifying the contention window size adjustment mechanism

within the IEEE 802.11 distributed coordination function as in [57).

Now consider the channel assignment scheme in Algorithm 3. We first gather all information

on flow rates and Lagrangian multipliers every Ti time units in a pre-authorized node (e.g.,

one of the gateways). Then, we select the linearized channel assignment strategy to minimize

= Zflpq.( n) (p q)E 7(xxpq), where is as in lines

3-7. Recall that the Lagrange multipliers can be interpreted as clique contention prices and

xnxpq indicates whether links (m, m) and (p, q) mutually interfere with each other. Thus, we

can interpret w as the interference cost of having the logical links (m, n) and (p, q) operate

over the same frequency channel. By definition, the interference cost is high if the interfering
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links are highly loaded and belong to highly contended maximal cliques. In the linear binary

optimization problem in line 10, we minimize the aggregate interference cost across the network.

The optimal solution of aggregate interference cost minimization problem (i.e., , ii) in line

10) is taken into account with probability (d/d— 1) bounded between 0 and 1. Notice that d (in

line 9) is always greater than or equal to d (in line 11). We initially set = 1. Since parameter S

is decreasing (see line 16), the probability of switching to new channel assignment strategies will

gradually decrease through iterations. That is, Algorithm 3 becomes less willing to make changes

in the assigned channels as time goes by. This will guarantee the convergence. To further explain

how Algorithm 3 works, we present the following two Lemmas.

Lemma 4 Let Q and Q be two arbitrary maximal cliques in single-channel contention graph

CGs. For any links (m, n), (p, q) e £, we have: (m, n) e V and (p, q) e 4. Given the assigned

channels (x,y), if

V\ {(l, k) : mn1k = o} C V\ {(l, k) : XpqXlk = o}, (3.23)

then

*nXlk fik < ‘qXlk fik, (3.24)
l,k:(1,k)eV 1,k:(l,k)eV

and, if (9.24) holds for all t > to for some to, then

lim p(t) = 0. (3.25)
t—oo

The proof of Lemma 4 is given in Section 3.6.3. From (3.25), if Tj is large enough, then

the contention prices converge to zero for those cliques that are not maximal cliques of the
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single-channel contention graph

Lemma 5 For arbitrary links (m, n), (p, q) e £ such that e%’ e Es, if Xpq = 1 and p(0) =

then

= pq(t), V i: (m, n), (p, q) e V, V t 0. (3.26)

The proof of Lemma 5 is given in Section 3.6.4. For arbitrary logical links (m, n), (p, q) E

such that e e Es, we have:

(t4,qfmn + p;qfpq)
i:(m,ri),(p,q)eV

(3.27)

= (%fpq + pqfrnn),

i:(m,n),(p,q)eV

where the first equality comes from line 3 of Algorithm 2 and the second equality results from

Lemma 5. From (3.15), (3.27), and the fact that xTmnxpq = xpTqxmn, we have

IQsI /
w (1Tv) = p ( xnxpqfpq) . (3.28)

m,n,p,q:(m,n),(p,q)E m,n: (m,n)EV \p,q: (p,q)EV /

This implies that solving the interference cost minimization problem in line 10 of Algorithm 3

is the same as selecting a feasible channel assignment strategy which maximizes the dual objective

function in (3.22). In summary, both Algorithms 2 and 3 try to solve the dual problem of the

primal NUM problem in (3.14). Algorithm 2 selects optimal f and p while x and y are assumed

to be fixed. On the other hand, Algorithm 3 selects optimal x and y while assuming f and p

are fixed. The optimality of joint Algorithms 2 and 3 is not guaranteed. We will investigate the

sub-optimality of the solutions and their effects on network performance in Section 3.4.
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Algorithm 4 To replaced line 10 of Algorithm S
1: K := number of iterations
2: mn := [ 1 0 0 1T, Vm, n e Al, (m, n) E
3: rn := [ 1 0 0 1T, V m E iV
4: ‘:=[ 10 •.. 01T Vm,m,p,qeAl, eEes
5: For k 1 to K do
6: Randomly choose nodes v, w Al such that (v, w) e £.
7: Using branch-and-bound [33], solve

minimize wmn(lT3mn)
pq

subject to mn = mm, V m, n e Al\{v, w}, (m, n)

Ym=!m, VmeAl\{v,w}

if = Vm,n,p,q éAl\{v,w}, e é

8:

9: End

3.3.1 A Simple Heuristic Algorithm to Solve Aggregate Interference Cost

Minimization Problem

In line 10 of Algorithm 3, we need to solve a linear binary problem to minimize the interference

cost across the network. There are effective commercial software packages (such as CPLEX [31] or

MOSEK [32]) that can solve linear binary problems. However, the process can be time consuming

for large scale MC-WMNs. An alternative is to use some simple and efficient metaheuristic

methods to find suboptimal solutions [87]. Here we use the iterated local search [88]. Our

algorithm is shown in Algorithm 4. We first assign all links to the first channel (lines 2-4).

Then, at each iteration, we randomly choose a small neighborhood in the network (line 6) and

locally solve the mixed-integer interference cost minimization problem for that neighborhood

assUming the channels are fixed for the rest of the network (line 7). The iterations continue until

a termination condition is met (e.g., we finish K iterations). Using heuristic Algorithm 4, Design

II can easily be applied to large-scale MC-WMNs.
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3.4 Simulation Results

In this section, we evaluate the performance of our proposed cross-layer designs. In the model,

the size of the network field is 500 m x 500 m. Ten different random scenarios are considered.

In each scenario, the WMN consists of twenty wireless mesh routers that are arbitrarily located

in the field. Unless stated otherwise, the routers are equipped with four NICs (i.e., I = 4) and

there are five orthogonal frequency channels available (i.e., C = 5). The communication and

interference ranges are 100 m and 150 m, respectively. For each scenario, there is a logical link

between each pair of nodes if they are within the communication range of each other. One of the

network scenarios (scenario number 1) that we used in our analysis is shown in Fig. 3.4.
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Figure 3.2: Scenario number 1: A wireless mesh network with 20 nodes (i.e., wireless mesh
routers), 46 unidirectional logical links.

The utility functions are selected as in (1.17). Unless stated otherwise, we set c = 1. Recall

that the logarithmic utility functions lead to proportional fairness among the link-layer flow rates.
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For the second design, we have: TMAC = 1, T01 = 1500, = 0.01, k = 11 Mbps, and B = 5.

Note that depending on the selected value for the stepsize and the value of the asynchronism

measure B, the channel update interval Ti should be large enough to let the fair MAC (i.e.,

Algorithm 2) reach its steady state. At time t = 0, we set S = 10. Later, we reduce S by half

every Ti time units (as shown in line 16 of Algorithm 3). We use Algorithm 4 with K =25 to

solve the aggregate network interference cost minimization problem (see Section 3.3). All NICs

initially (i.e., at t = 0) are assigned to a single channel.

Fig. 3.3 shows the evolution of the network utility for scenario number 1. We see that, after

only four channel/interface update intervals, the utility reaches 99.46% of its optimal value. Later

on, there is only one more slight channel/interface adjustment (at t = 9000) before the system

reaches a steady state. We notice that right after each channel/interface assignment update, the

utility experiences an overshoot. In fact, for the duration of overshooting, the assigned rates are

not feasible as they were set accoridng to the previously assigned channels/interfaces. Thus, they

result in higher utility until they settle down in their optimal feasible values.

The achieved network utilities for the ten different random scenarios are shown in Fig. 3.4.

We see that the proposed MC-WMN deployments significantly increase the network utility in all

scenarios, On average, the second (i.e., approximate) design scheme is able to find near optimal

solutions with 99.6 % optimality. Recall that the second design scheme is simple to implement

and its signalling overhead is not significant.

To evaluate the network performance, two metrics are considered: 1) network throughput, and

2) fairness index. The network throughput is the aggregate actual link-layer flow rate across all

logical links in bits per second. That is, m,n:(rn,ri)EI. ‘fmn. The fairness index is a dimensionless
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Figure 3.3: Evolution of network utility for scenario number 1.

metric between zero and one. It is defined as [891:

(Zm,n:(m,n)
fmn)2 / (Lm,n:(m,fl)E(fmn)2). (3.29)

The higher the fairness index, the more fair the rate allocation is.

Fig. 3.5 shows the throughput and fairness index when the number of NICs varies between

2 and 4 and the number of orthogonal channels varies from 1 to 5. Each point is the average

of the measurements for all ten scenarios. We can see that when each router is equipped with

3 NICs and there are 5 channels available, the throughput and fairness index increase by 2429

and 3.4%, respectively, compared to the single-channel case. If each router is equipped with four

NICs, then the throughput and fairness index further increase by 5% and 0.4%, respectively.
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Figure 3.4: Network utility for ten different random scenarios. Each router is equipped with 4
NICs and there are 5 orthogonal channels available. On average, the second (i.e.,
approximate) design is able to find near optimal solutions with 99.6 % optimality.
The average utility improvement compared to single-channel case is 12.5 %.

Results from Fig. 3.5 show that our proposed designs can lead to MC-WMN deployments

which are not only more efficient but also more fair compared to their single-channel counterparts.

Fig. 3.6 clarifies this issue in more details. In this figure, the average network throughput and

the average fairness index across all ten topologies are shown when the number of channels

varies from 1 to 12. Each mesh router is equipped with enough NICs so that the only resource

limitation is the number of channels. We can see that the fairness index increases smoothly

as the number of channels increases. To examine whether there is a similar trend for every

channel and interface assignment algorithm, we consider the load-aware algorithm [66] which is

a centralized long-term dynamic channel and interface assignment scheme. By monitoring the

amount of traffic being transmitted over each frequency channel, the load-aware algorithm assigns
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Figure 3.7: Effects of varying the fairness parameter: (a) Aggregate network throughput, (b)
Fairness index.
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the channel with minimum usage within the neighborhood of each link. We implemented the load-

aware algorithm jointly with fair MAC [53]. To make the comparison consistent, channels and

interfaces are updated every 1500 intervals as in our second design scheme. We can see that

the average throughput is almost the same for both load-aware and our proposed schemes (see

Fig. 3.6(a)); however, our proposed design is more fair (see Fig. 3.6(b)). In some cases (i.e., for

C 2, .. . , 6), the MC-WMN is even less fair than the single-channel WMN when the load-aware

algorithm is being used. Note that by increasing the number of channels, (e.g., C 7), achieving

fairness becomes trivial due to the availability of sufficient resources.

As stated in Section 1.2.2, different fairness criteria can be taken into account by tuning

fairness parameter a. Fig. 3.7 shows the throughput and fairness index when C = 5, I = 4, and

utility parameter a varies from 0.2 to 2. We can see that by increasing a, the system becomes

more fair but less efficient. As an example, we can achieve 24% higher fairness index by setting

a = 2 (instead of a = 0.2), at the expense of reducing the network throughput by 6.8%. From

the results in Fig. 3.7, we can also conclude that as a decreases, the performance gain on fairness

index becomes higher compared to the single-channel case.

3.5 Summary

In this chapter, we presented a formulation for cross-layer fair bandwidth sharing in MC-WMNs.

We first modeled the channel and interface assignment problems by introducing binary channel

assignment and binary interface assignment vectors. We then obtained the feasible region of the

link-layer flow rates as a function of the channel and interface assignment vectors. A cross-layer

fair bandwidth sharing problem was then formulated as a non-linear mixed-integer network utility

maximization problem. An optimal design, based on exact binary linearization techniques, was
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proposed which leads to a global maximum. A near-optimal design, based on approximate dual

decomposition techniques, was also proposed which is more practical for implementation. Our

proposed designs take into account both network efficiency and fairness. Some of the well-known

fairness criteria, such as proportional fairness, harmonic-mean fairness, and max-mm fairness,

can also be modeled using a tunable design parameter.

3.6 Analytical Proofs

3.6.1 Proof of Lemma 3

Assume that node m e .N is assigned to establish incoming and outgoing logical links

with its neighboring nodes over frequency channel i. Thus, constraint (3.6) can be re-written as

o < < (K + KLt). If K = = 0, then (3.6) becomes 0 < y 0 and constraints (3.7)

and (3.8) become 0 < y < 1. This implies that y = 0. If K 0 or 0, then constraint

(3.6) or either one of (3.7) and (3.8) becomes 0 <y < K + and 1 <y < 1.

3.6.2 Proof of Theorem 9

Since (3.10) inc]udes all maximal clique capacity constraints for the single-channel contention

graph CG) and each inequality in (3.11) is a clique (not necessarily a maximal clique) capacity

constraint for CG(,), then the feasible region formed by (3.10) is a subset of or equal to the

feasible set formed by (3.11). We only need to prove that the reverse is also true. That is, the

feasible region formed by (3.11) is a subset of or is equal to the feasible region formed by (3.10).
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From (3.9) we have:

V E Q(,) Q’ E Qs: ç Q3. (3.30)

We refer to set as the parent of set In general, there may be more than one parent for

set Consider an arbitrary maximal clique and one of its parents Q. Let (m, n) be

a logical link in That is, (m, n) We can show (by contradiction) that,

X Xpql, Vp,q: (p,q) e
(3.31)

X XpqO, Vp, q: (p, q) e V\V)

Thus, we have:

fpq = lxfpq+ Oxfpq

p,q: (p,q)EV) p,q: (p,q)EV p,q: (p,q)EV\V

= xxpqfpq+ xxpqfpq (3.32)
p,q: (pq)EV,y) p,q: (p,q)EV\Vy,

ZTcXmnXpqJpq,

p,q: (p,q)EV

where the second equality follows from (3.31). Eq. (3.32) implies that for every inequality in

(3.10), there is an equivalent inequality in (3.11). Therefore, the feasible region formed by (3.11)

is a subset of or is equal to the one formed by (3.10).
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3.6.3 Proof of Lemma 4

Inequality (3.24) is obtained from (3.23) as follows,

XjjXjj fik = fiic
1,k:(1,k)EV l,k:(1,k)EV\{(l,k):,flak=O}

< fu (3.33)
l,k:(l,k)EV\{(l,k):x’q xlk_O}

= XpqXflk.

1k: (1,k) EV.

From (3.11) and (3.33), we have:

X7jflX1JçfJ < 1. (3.34)

l,k:(l,k)EV

Eq. (3.25) results from replacing (3.34) in the update equation of Lagrange multipliers in line 5

of Algorithm 2, assuming that TMAC <<Tci.

3.6.4 Proof of Lemma 5

Consider a maximal clique Q e Qs so that (m, n), (p, q) e V. Since Xpq = 1,

Xrnn Xlk = Xpq Xlk, V1,k: (1,k) E (3.35)

Thus,

= Xpq Xlk. (3.36)

1,k:(l,k)E’14 l,k:(1,k)EV

Since %(O) = pq(O), the equality (3.26) follows from (3.36) and line 5 of Algorithm 2.
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Chapter 4

Partially Overlapped Channel

Assignment for MC-WMNs

As we showed in Chapters 2 and 3, the aggregate capacity of wireless mesh networks can be

increased by the use of multiple frequency channels and multiple network interface cards in each

router. However, so far we limited our studies to the case where only the orthogonal (i.e., non-

overlapped) frequency channels are being used. Recent results have shown that the performance

can further be increased when both non-overlapped and partially overlapped channels are used.

In this chapter, we systematically model a joint channel assignment, interface assignment,

and scheduling design problem. The contributions of our work are as follows:

• Our proposed model takes into account various parameters including the number of available

frequency channels, the number of available NICs in each wireless router, transmission

power, path loss information, signal to interference plus noise ratio, expected traffic load,

and frequency response of each channel filter.

• Since the model is formulated as a linear mixed-integer program with a few integer variables,

the computation complexity is low and it is feasible for implementation.

• We propose the channel overlapping matrix and mutual interference matrices to model the
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non-overlapped and partially overlapped channels.

• Simulation results show that the aggregate capacity increases by 90% when all partially

overlapped channels within the IEEE 802.llb frequency band are used.

The rest of the chapter is organized as follows. The problem formulation is described in

Section 4.1. Our proposed joint design is presented in Section 4.2. Performance evaluations are

given in Section 4.3. The chapter is concluded in Section 4.4.

4.1 System Model

The system model in this chapter is very similar to the one in Chapter 3. Consider an MC-WMN

and assume that .Af = {1, 2,... , N} denotes the set of stationary wireless mesh routers. Each

router is equipped with I NICs. There are C frequency channels available. We assume that the

network’s logical topology has been pre-determined. Let £ denote the set of all unidirectional

logical links. The cardinality of set £ is denoted by L. The logical link from router a to router b

is denoted by (a, b) e £. We assume the connectivity to be symmetric. That is, link (a, b) E £ if

and only if (b, a) e £.

4.1.1 Channel and Interface Assignment Model

For any two routers a, b e f such that there exists a logical link (a, b) e £, we define a C x 1

channel assignment vector Xab. If router a communicates with router b over the frequency

channel, then the jth element in Xab is equal to 1; otherwise, it is equal to zero.
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Same as Chapters 2 and 3, we have:

Xab = Xba, V a, b E J\f, (a, b) E £ (4.1)

and

Xab = 1, V a, b e .Af, (a, b) e £ (4.2)

where 1 denotes a C x 1 vector with all entries equal to 1. The term 1T
Xab is equal to 1 if router

a assigns one of the available frequency channels to communicate with router b.

Similar to Chapter 3, for any two routers a, b e N such that (a, b) e L, we define an I x 1

interface assignment vector Yab. If the jth network interface in router a is used to communicate

with router b, then the jth element in Yab is equal to 1; otherwise, it is equal to zero. We have:

lTyabl, Va,beJV, (a,b)1 (4.3)

where 1 denotes an I x 1 vector with all entries equal to 1. The term 1T
Yab is equal to 1 if router

a assigns one of its NICs to communicate with router b. Notice that,

IbXacYaYac, Va,b,cel’f, (a,b),(a,c) i. (4.4)

4.1.2 Channel Overlapping Matrix

Assume that m and m are two of the available channels within the 802.11 frequency band (i.e.,

m, n E {1,... , C}). Let Fm() and F(w) denote the power spectral density (PSD) functions of

the band—pass filters for channels m and n, respectively. The PSD functions can be obtained from
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f°°c,Fm(w) dw
Wmn roo F2(w)dwJ-m
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Figure 4.1: Available eleven partially overlapped channels in 802.llb frequency band. The
number on each curve indicates the corresponding channel number. Channels 1, 6,
and 11 are non-overlapped (orthogonal).

the channels’ frequency responses. Without loss of generality, we assume the use of raised cosine

filters [95]. Fig. 4.1 shows the frequency responses of the channel filters in the IEEE 802.llb

frequency band. To model the overlapping among channels, we define a symmetric C x C channel

overlapping matrix W. The entry in the m’ row and the column of W is denoted by scalar

Wrnn and is defined as:

(4.5)

Now assume that channels m and n are assigned to arbitrary links (a, b) and (c, d), respectively.

Let Pa denote the transmission power of router a. Also let denote the path loss from router

a to router d. The interference power from link (a, b) on link (c, d) can be modeled as:

W Xcd 9ad Pa Wrnn ad Pa. (4.6)

4.1.3 Mutual Interference Model

We first consider an MC-WMN where only non-overlapped channels are being used, two links

(a, b), (c, d) e AD are defined to be mutually interfered with each other whenever they are assigned
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to the same channel (i.e., X = 1) and the sender or receiver of one link is within the

interference range of the sender or receiver of the other link. The interference range is then

defined as the region where a given receiver cannot decode the signal correctly if there is another

transmission within that range. Given the modulation scheme, the interference range depends

on the minimum required signal to interference plus noise ratio SINRmin.

Now consider an MC-WMN where both non-overlapped and partially-overlapped channels are

being used. Two neighboring links (a, b), (c, d) e £ are assigned to channels m and n, respectively.

If the interference power of the transmission on link (a, b) causes the signal to interference plus

noise ratio on link (c, d) to be below SINRmim, then the transmitter of link (a, b) is within the

interference range of the receiver of link (c, d):

cd Pc C’T1TD< kJlIVlL7fljfl,

Wrnrj ad Pa + 71d

where ‘/d denotes the thermal noise power at the receiver router d. Without loss of generality, we

model the path loss ad using the Friis free space model [95j:

a
Yad = (4.8)

(rad)

where rad is the distance between routers a and d, ic is the path loss exponent, and a is a

constant which depends on the transmitter and receiver antenna gains and signal wavelength. By

substituting (4.8) into (4.7), link (a, b) interferes with link (c, d) if

apa
rad < iI( I Wmn. (4.9)

\9cd p/SINR
—

TldJ

83



Chapter 4. Partially Overlapped Channel Assignment for MC-WMNs

af ib /C ,.-d-..
t-- ‘• )

/ D
--- II II II II

‘S -. ,, 0 - F’.) ()

5%-S -‘S

Figure 4.2: Different interference ranges depending on the frequency channel separation m — n.
Logical links (a, b) and (c, d) use channels m and n, respectively.

The importance of (4.9) is that we now have different interference ranges depending on the

assigned channels to the neighboring links. The less the frequency overlapped, the shorter the

interference range is. Given that the bandwidth and roll-off factor are the same in all raised

cosine channel filters, the interference range only depends on the frequency channel separation

(Im — n). This fact is illustrated in Fig. 4.2, where rn is the channel assigned to link (a, b) and

n is the channel assigned to link (c, d). The outermost circle indicates the interference range of

receiver router d when rn — n = 0 (i.e., the same channel is being assigned to links (a, b) and

(c, d). The next circle shows the interference range when rn
—

n = 1. The innermost circle

corresponds to the interference range when rn — n = 3. When rn
— nl > 3, there is no overlap

between frequency channels rn and n for IEEE 802.llb (see Fig. 4.1). Thus, the corresponding

interference ranges are equal to zero. Note that in this example, transmission on link (a, b)

interferes with transmission on link (c, d) only when either rn — nI = 0 or rn — nI = 1.

For any two links (a, b), (c, d) e £, we define a symmetric C x C mutual interference matrix

Mj. If we have either
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Tad <
(gcdpc/SRmin_d) Wmn,

or

Tcb <
(Yab pa/SINRmin_b) Wnm,

then the entry in mthi row and flth column of M,j is equal to 1; otherwise, it is equal to 0. If the

transmission powers are fixed, the mutual interference matrices are constant. For the scenario

in Fig. 4.2, the corresponding mutual interference matrices are tridiagonal with all diagonal,

subdiagonal, and superdiagonal entries equal to 1:

11 00 ...

11 1 0”.0

01
M = M = (4.10)

10

0••• 0 1 1 1

0•• 0 0 1 1
lix ii

Note that if logical links (a, b) and (c, d) are far enough from each other, then all entries

of become zero. According to the definitions of channel assignment vectors and mutual

interference matrices, we have:

1, if links (a, b) and (c, d) are mutually interfered,
(4.11)

0, otherwise.
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4.1.4 Link-Layer Flow Rates

Let 0 < fab 1 denote the normalized link-layer flow rate on logical link (a, b) E L (i.e., the

proportion of time that link (b, a) is active). If two logical links (a, b), (c, d) e £ are mutually

interfered (i.e., x M,j Xcd = 1), they cannot be active simultaneously. We can extend the

interference constraint in [67] to have:

fab + 1. (4.12)
c,d:(c,d)EC

Let c0 denote the nominal data transmission rate (e.g., 11 Mbps data rate in IEEE 802.llb).

The effective link-layer data rate on link (a, b) is equal to fab C°.

4.2 Joint Channel Assignment, Interface Assignment, and

Scheduling Problem

The mathematical formulation introduced in (4.1)-(4.12) models the channel assignment, inter

face assignment, mutual interference among the links, and link-layer flow rates when all non

overlapped and partially overlapped channels within the IEEE 802.11 frequency band are being

used. The model can be employed to develop different cross-layer design schemes for MC-WMNs.

In this chapter, we focus on a joint channel assignment, interface assignment, and scheduling

design problem. We assume that the network logical topology and routing paths have been

pre-determined.
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4.2.1 Nonlinear Problem

Given the expected end-to-end traffic rates and routing paths, we can determine the expected

aggregated traffic load on each logical link (a, b) e £. It is denoted by ‘Yab. The link utilization

on logical link (a, b) is defined as the total traffic load 7ab divided by the effective link-layer data

rate fab c°. Based on the results from queuing theory, when the link utilization is close to 1,

the queueing delay tends to be very large [80]. On the other hand, a small value of the link

utilization tends to provide a small queueing delay. It also implies that the network is less prone

to congestion. Thus, our objective function is to minimize the maximum (i.e., bottleneck) link

utilization in an attempt to manage the network capacity according to the expected traffic load.

Given the parameters I, C, L, 7ab, c0, and I1/1j for all a, b, c, d e N such that (a, b), (c, d) e £,

7abminimize maximum
a,y,f a,b:(a,b)E fab C°

subject to Xab = Xba,

Xab = 1,

Yab = 1, (4.13)

T — T
Xab Xac

— Yb Yac,

fab + x M Xcdfcd 1,
c,d:(c,d)EIL

where Xab E {0, 1} Yab E {0, 1}’, fab > 0, V a, b: (a, b) eL

Intuitively, if a particular link is heavily loaded, its effective link-layer data rate should be in

creased by reducing the interfering links in its neighborhood. Note that problem (4.13) is a

non-linear mixed-integer program and is not easy to solve. The terms x Xac and y Yac are
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quadratic and the term x Mj zj fcd is cubical.

4.2.2 Equivalent Linear Problem

Following the binary linearization techniques (see Section 1.2.1), the non-linear problem (4.13)

can be converted to its equivalent linear problem using these steps:

Step .1. For each pair of logical links (a, b), (c, d) e , we define a C x 1 auxiliary vector u

to be as follows:

= cd (4.14)

where o denotes the Hadamard product [96]. From (4.14) we have, x x = 1T u. Since Zab

and a are binary vectors, (4.14) is equivalent to the following linear constraint [39]:

Xab + Xcd — U < 1,

o < Uj Xab, (4.15)

o UCCL

Step 2. For each pair of logical links (a, b), (a, c) e £, we define an I x 1 auxiliary vector v

to be as follows:

V = Yab Yac. (4.16)
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From (4.16), Ya Yac = lTvab. Eq. (4.16) is equivalent to the following constraint [39]:

Yab + Yac —
< 1,

0 Yab,
(4.17)

ab,
— Vac

— Yac.

Step 3. For each pair of logical links (a, b), (c, d) e L, we define a C x C auxiliary matrix Q

to be as follows:

= Xab fcd. (4.18)

The entry in the row and the flth column of matrix Q is equal to the product of the m

entry in vector Xab, the entry in vector Xd, and fcd. Eq. (4.18) is equivalent to the following

linear constraint for all m, m e {1, ... , C} (see Theorem 5):

,T imab. -iT
1rn ‘‘cd -n :: ImXab,

‘T_—iabm’4cd n D lnXcd,
(4.19)

1Xab+1Xcd2+fcd <

1Q1m < 21Xab1Xcd+fcd,

where ‘m denotes the standard basis vector (i.e., a C x 1 constant vector with all entries equal

to zero, except the m’ entry which is equal to 1). The terms 1 Xab, x, and 1 Q i

simply denote the m entry of vector Xab, the r entry of vector Xcd, and the entry in the m’
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row and th column of matrix Q, respectively. From (4.18), we have:

x Xdfd
1T (Qab Mj) 1. (4.20)

Note that is a constant matrix, thus eq. (4.20) is a linear equality in terms of Q. In

addition, we have, tr(Q) (lTu) fed.

Step 4. We first note that:

7ab . faiC°
minimize maximum = maximize minimum (4.21)

,y,f a,b:(a,b)C fabC0 x,y,f a,b:(a,b).C ‘Yab

Here equality indicates equivalence of the two optimization problems. By defining = min(fabC0/7ab)

for all (a, b) e £, solving the right hand side in (4.21) is equivalent to maximizing S subject to

the constraint S for all links (a, b) e

Problem (4.13) can now be replaced by its equivalent linear mixed-integer program. Given
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Note that the optimal solutions obtained from (4.13) and (4.22) are the same. There are

effective commercial software (such as CPLEX [311) to solve linear mixed-integer programs. Most

of them use branch-and-bound algorithm [33]. The linear mixed-integer problem (4.22) has

L(C + I) binary variables and L2(C + I + C2) + L + 1 real variables, respectively. In general,

problem (4.22) can be solved in practice for only small-scale and medium-scale MC-WMNs. Using

some heuristic algorithms similar to Algorithm 4 in Section 3.3.1, we can also approximately solve

problem (4.22) for large-scale MC-WMNs.

4.3 Performance Evaluation

In this section, we evaluate the performance gain when not only the non-overlapped channels,

but also the partially overlapped channels are being used. In the simulation model, the size

of the network field is 1 km x 1 km. Five different random scenarios are simulated. In each

scenario, the WMN consists of 15 wireless mesh routers that are randomly located in the field.

The routers are equipped with 3 NICs. (i.e., I = 3). The IEEE 802.llb with 11 Mbps nominal

data rate (i.e., c° = 11 x 106) is being simulated. Thus, up to 11 partially overlapped frequency

channels are available (see Fig. 4.1). Three of them (i.e., channels 1, 6, 11) are non-overlapped.

The SINRmjn is set to be 13 dB. The value of ic is equal to 2. The transmission power is the

same for all routers. For each scenario, 30 source and destination pairs are randomly selected to

generate UDP traffic. We obtain the global optimal solution for linear mixed-integer program in

(4.22) by using branch-and-bound algorithm [33]. To evaluate the performance, two metrics are

considered: 1) aggregate network capacity, and 2) bottleneck link utilization (i.e., 1/S).

The simulation results are shown in Fig. 4.3. In this figure, each point is the average of
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measurements for all five simulated scenarios. The dashed lines correspond to the measured

performance metrics when a single channel (i.e., channel 1), two non-overlapped channels (i.e.,

channels 1, 6), and three non-overlapped channels (i.e., channels 1, 6, 11) are being used, respec

tively. It is observed that, by using the partially overlapped channels 1, 2, 3, 4, 5, and 6 instead

of using only non-overlapped channels 1 and 6, the aggregate network capacity increases by 96%

and the bottleneck link utilization decreases by 20%. On the other hand, by using all partially

overlapped channels 1, 2, ..., 10, and 11 instead of using only non-overlapped channels 1, 6, and

11, the aggregate network capacity increases by 93% and the bottleneck link utilization decreases

by 50%. Note that the performance improvements are achieved without using extra resources

(frequency spectrum). Thus, the spectrum is utilized more efficiently when partially overlapped

channels are being used.

4.4 Summary

In this chapter, we proposed a joint channel assignment, interface assignment, and scheduling

algorithm for MC-WMNs when all non-overlapped and partially-overlapped channels are being

used. The joint problem is formulated as a linear mixed-integer program with a few integer

variables. The computational complexity is low and is feasible for implementation in practical

networks. Simulation results show that there is a significant performance improvement in terms of

a higher aggregate network capacity and a lower bottleneck link utilization when all the partially

overlapped channels within the IEEE 802.llb frequency band are being used.
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Figure 4.3: Performance comparison within the IEEE 802.llb frequency band.
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Utility Optimal Random Access:

Reduced Complexity, Fast

Convergence, and Robust

Performance

Different from the cross-layer designs in the previous chapters, in this chapter, we narrowly focus

on the MAC problem in wireless ad hoc networks. In general, there are two major types of

wireless MAC protocols: scheduling-based (e.g., in cellular systems) and contention-based (e.g.,

in wireless local area networks). In this chapter, we focus on the study of contention-based MAC,

where wireless nodes randomly and distributively access the shared communication channel with

certain transmission (persistent) probabilities.

The contention-based protocols are scalable and inherently flexible, but they typically have

poor performance due to insufficient feedback. For example, in IEEE 802.11 distributed coor

dination function (DCF) [9], a node updates its transmission probability based on the binary

feedback of its data transmission: success (no collision) or failure. This leads to low throughput
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and unfair resource allocation. Such mechanism also cannot achieve a stable equilibrium [97].

In this chapter, we design distributed contention-based random MAC algorithms through the

general framework of NUM [44]. Several related algorithms that are also proposed based on the

same NUM framework include [47, 51, 56, 98, 99]. They have various performance bottlenecks

due to one or more of the following: (1) extensive message passing among nodes to achieve

semi-distributed implementation, (2) synchronous updates of contention probabilities that require

homogeneous computational capabilities and software implementations among wireless nodes, (3)

small update stepsizes to guarantee convergence with typically slow speed, and (4) supporting

only a limited range of utility functions due to non-convexity.

Our proposed algorithms overcome the performance bottlenecks of previous proposed NUM

based random access algorithms in all four aspects. First, they only require limited message

passing (i.e., signalling) among nodes. Based on the messages from other nodes, each node updates

its persistent probabilities by solving a local and myopic optimization problem in an attempt to

maximize the total network utility. Compared to the NUM-based random access algorithm in

[981, our algorithms can reduce the total signalling overhead by more than a factor of 10. Second,

our algorithms allow fully asynchronous updates of messages and contention probabilities. They

can tolerate arbitrary large and finite asynchronism and message delays and are also robust to

message losses. For example, even when the packet loss rate of the underlying communication

channel is down to 0.5 (i.e., on average, half of the messages are lost), our algorithms can still

achieve the optimal performance within a short time. Third, in our algorithms, nodes update

their contention probabilities through best response updates, thus no small stepsizes are needed

in the update. This enables our algorithms to achieve a much faster convergence compared with

the previously proposed subgradient-based update methods (e.g., in [47, 51, 56, 981). Finally,
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our algorithms have provable convergence property under a wider range of utility functions, even

if the NUM problem cannot be transformed into a convex optimization problem. The analysis

techniques we use here are quite general and can be used to tackle other non-convex optimization

problems in communications and networking.

Besides the NUM-based approach, another related thread of research focuses on the analysis

of random MAC algorithms using game theory (e.g., [100, 101, 102, 103]). The focus is on

noncooperative interaction among nodes, while here, we focus on global network optimization.

The rest of this chapter is organized as follows. The system model is described in Section

5.1. Our proposed algorithms are presented in Section 5.2. The convergence, optimality, and

robustness of our proposed algorithms are analytically proved in Section 5.3. Simulation results

are shown in Section 5.4. Conclusions are discussed in Section 5.5.

5.1 System Model

Consider a wireless ad-hoc network. Let A[= {1,... , N} denote the set of nodes and £ = {1, . .. , L}

denote the set of unidirectional wireless links. For each node n E .N, we denote the set of its

outgoing links by AD7 CL, with size L = I.C,I. Each node n has L separate queues, each queue

holds the packets for one of its outgoing links of node n (see Fig. 5.1). Time is divided into equal

length slots. At each time slot, node n may choose to transmit on one of its outgoing links i e

with a persistent probability I-N. The probabilities need to satisfy ZiE < prnax < 1, where

prnax denotes the given maximum total persistent probability. That is, node n may remain silent

in some slots. For the network in Fig. 5.1, node a has La = 2 outgoing links, where La = {1, 2}.

In this node, those packets which are destined to node b are enqueued in queue 1. Similarly, the
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Figure 5.1: A sample wireless ad-hoc network. We have, La = {1, 2}, Lb = {3, 4, 5}, and
4 = {6, 7}. In node a, those packets which are assigned to be sent to node b (over
link 1) are enqueued in queue 1. Similarly, those packets that are assigned to be
sent to node c (over link 2) are enqueued in queue 2. R and T boxes represent
receiver and transmitter units, respectively.

packets which are destined to node c are enqueued in queue 2. At each time slot, a packet from

queue 1 is sent over wireless link 1 with probability P1, and a packet from queue 2 is sent over

wireless link 2 with probability P2. Notice that links 1 and 2 will not be active at the same time.

For each node n e N, if the receiver node of link i C 4 is within the interference range of

another node s e N\{n}, then any transmission by node s (i.e., transmission on any link j eL8)

interferes with transmissions of link i. Those nodes which interfere with transmissions of link i

are denoted by set .½. For each node n e N, let r denote the average data rate for link i e 4,

which is a function of the persistent probability vector p = (p,, Vi C L) of all links. We have [80):

rj(p) = 7iPifleK(l —

(5.1)

where , denotes the fixed peak data rate for link i (i.e., the rate achieved by link i if no node
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in set AI is active). To ensure that no link encounter starvation, for each node n and any link

i E £,, we require i P” > 0 and <P’. Here pi1 denotes the given minimum

persistent probability. Thus,

rj(p) >7minpmin (1 — pmax)N—1
> o, v i , (5.2)

where

pmifl
= minejP7 (5.3)

prnax
= ma nEJV P (5.4)

7min
= minie%7i (5.5)

7max maxjEyj. (5.6)

Each link i e £ has a utility which is an increasing and concave function of r and indicates

link i’s degree of satisfaction on its average data rate. The utility of link i is denoted by u(rj(p)),

which is also a function of the persistent probabilities p of all links. We are interested in finding

the value of p that solves the following NUM problem [53]:

max u(rj(p)), (5.7)

where the feasible persistent probability region is
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and the utility function is a-fair (see Section 1.2.2). That is, [50]:

(1 — a)—’ if a e (0, 1) U (1, oo),
u(rj) = V i e £. (5.8)

logr, ifa=l,

Notice that problem (5.7) has the form of the NUM problem in (1.18) where the optimization

variables are the persistent probabilities. Also recall from Section 1.2.2 that using (5.8), a wide

range of efficient and fair allocations can be modeled. In particular, problem (5.7) reduces to

throughput maximization with a — 0, to proportional fair allocation with a = 1, to harmonic

mean fair allocation with a = 2, and to max-mm fairness with a —*

Although the objective function in problem (5.7) is concave in link rates r = (ri, V i e £), it

is not concave in persistent probabilities p due to the product form of the average rate in (5.1).

Thus, finding the optimal solution for this non-convex and constrained optimization problem is

difficult even in a centralized fashion. In this chapter, we propose two algorithms which are able to

find the optimal solution of problem (5.7) in a distributed fashion under easily verifiable sufficient

technical conditions. In comparison with the existing algorithms, our proposed algorithms do not

require any synchronization, converge much faster, are more robust to message delay and message

loss, and support a wider range of a values in the utility function.

5.2 Algorithms

In this section, we propose two distributed algorithms to solve problem (5.7), one for single-

cell topologies in Section 5.2.1 and another one for general topologies in Section 5.2.2. In both

algorithms, each node n performs a myopic and local optimization, i.e., optimizing the total
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network utility by choosing the persistent probabilities of its own outgoing links, assuming others

do not change theirs. Despite the complexity of the problem, we show that the solution of this

local optimization problem can be obtained in closed form, facilitated by limited message passing

among nodes and a simple local sorting procedure. Various properties of the algorithms, including

convergence, optimality, and robustness, will be proved in Section 5.3.

5.2.1 Single-Cell Topology

We begin by considering a single-cell topology, where all links interfere with each other. That

is, for each n e 1V and any i e £, the interference node set JV = Jf\{n}. This models some

important practical wireless networks including wireless personal area networks where multiple

wireless devices interact with each other over short distances in a piconet, as well as indoor

wireless local area networks where several wireless devices communicate with an access point and

each other (e.g., in a large conference room). We extend our work to the general topology case

in Section 5.2.2.

Node n’s Local Optimization Problem

We begin by considering a single-cell topology, where all links interfere with each other. That

is, for each n e A( and any i e £,, the interference node set AI = JV\{n}. This models some

important practical wireless networks including wireless personal area networks where multiple

wireless devices interact with each other over short distances, as well as indoor wireless local area

networks where several wireless devices communicate with an access point and each other.
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Node n’s Local Optimization Problem

For each node n, let p,-, = (p, Vi e) denote the persistent probabilities of its outgoing links.

Also let p = (p, Vj £\E) denote the persistent probabilities of all links other than the

outgoing links of node n. Consider the following local and myopic optimization problem:

max ZiEJ u(rj(pn,p_n)), (LOCALNUM)
pn e P

where the feasible persistent probability region for node n is

Pn {pn : < 1,p, > O,V i e £}, (5.9)

By solving problem (LOCAL-NUM), node n can select p such that the total network utility

is maximized assuming that p is fixed (i.e., none of the other nodes change their persistent

probabilities). It is clear that nodes are not selfish in this case, and they cooperate with each

other. This is necessary for achieving the optimal network performance in a distributed fashion.

Although problem (LOCAL-NUM) is difficult to solve, we can convert it to an equivalent

instructive representation. Its objective function in the single-cell case can be written as:

u(rj(pn,p_n)) = (1 — a) ‘(flCew\{fl}(1 —Z1pi))’ [z (P)1 a+

(1— Ze ZEJ(7iPi) / (1— ZIEJL3PI)]

Since the multiplicative term (flCE\{fl}(1
—

))‘ does not depend on the vector variable

p,, problem (LOCAL-NUM) can be equivalently written as:

max u Qyjp) + v(p_) (1
—

pi), (5.10)

where

vm(p_m)
= sE\{fl} (1— (Z(7iPi)’). (5.11)
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Since uQyjpj) and u(1—Z pi) are strictly concave functions with respect to p, and

vn(p_m) is independent of Pn, problem (5.10) is strictly concave in local variable vector p. In

other words, there exists a unique optimal solution of problem (5.10) and thus problem (LOCAL

NUM).

Closed-Form Solution of Problem (LOCAL-NUM)

Next, we show how to obtain a closed-form optimal solution for problem (5.10). Consider a node

n e .Af and the set of its outgoing links £. We define a permutation, j1,... , i, of the link

indices in set % such that for any j and I that satisfy 1 j I L,, we have

Thus, in the case of a 1, we have j1 < and in the case of a e (0, 1), we have

7i1 > 7ZL, For example, let ={4,7, 12}, 74=18 Mbps, 77=24 Mbps, and 712=6 Mbps.

If a> 1, then we have i1 = 12, i2 = 4, and i3 = 7. On the other hand, if a e (0, 1), then we have

i1=7,i24, andi3=12.

Let ci denote the smallest number in the set {0,.. . , L, — 1} such that

1/prnifl
— L + ci <

(/7j)_1
+ v,(p_n). (5.12)

We can show that (see (5.43) in Section 5.6.1), if condition (5.12) holds for ci, then it also holds

for ci + 1. We define the set l3 = {i,-+1, . . . ,iL,}, with its size B = 113n1 = — cr. Notice that

if condition (5.12) does not hold for any ci e {0,... , L, — 1}, then we set l3 = {} and B = 0.

Similarly, let c denote the smallest number in the set {0, . . . , L,- — 1} such that

prnax/prnin
— L + c (5.13)

Again, we can show that (see (5.44) in Section 5.6.1), if condition (5.13) holds for c, then it also

holds for c + 1. We define C = {ic+i,. . . , i}, and its size C,, = CrLI = L
— c. If condition

(5.13) does not hold for any c e {0,... , L, — 1}, then we set C,, = {} with C,, = 0.
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We now define An = B U C?,, with its size A,-,, = IATh = L — ,c where ,c = min{u, c}. In fact,

A?-,, = {ik+1, . . . }. Depending on the value of v (p), either A,-,, = 13,-,, or An = C,-,, (see Section

5.6.1). Using An, the closed-form solution of problem (5.10) can be obtained as follows.

Theorem 10 For each node n e J\f, the unique optimal solution of problem (5.10) is p,,(p—n) =

fn(p—n) (fi(p—n), V j E er,,), where for each link i e £,, the mapping f(p_) is defined as

ifieA,

f(P—m)
= A pmin

(prnax_Aprnin)/( /‘wn) (5.14)

(wnnpn))]prnjn
, if i e

where [x] = max [mm [x, a] , b] and we have:

Wn = Zje\A (1/7). (5.15)

The proof of Theorem 10 is available in Section 5.6.1. The key is to show that fn(p—n) satisfies

the necessary and sufficient Karush-Kuhn-Tucker (KKT) optimality conditions [16, pp. 244j.

Since problems (LOCAL-NUM) and (5.10) are equivalent, p,,(p—n) is also the unique optimal

solution of problem (LOCAL-NUM). We notice that, regardless of the selected system parameters

and the value of ti, for each i e £n\An, the upper bound /‘n) in (5.14)

is always greater than or equal to the lower bound P,- (see (5.63) and (5.75) in Section 5.6.1).

It is clear that to compute fj(pn) in (5.14), the only information node n needs from other

nodes is Vn(p_n). If each node s announces a message m where

m8 = (i
— (jEs (7iPi)’) Vs e\{n}, (5.16)

node n can compute vn(p_n) = Zjv\{fl}ms. This motivates us to propose our first algorithm.
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Algorithm 5 Executed by each node n E Jf in a single-cell topology.
1: Allocate memory for messages m = (mi,... , mpr).

2: Randomly choose p > 0 for each link i e L such that p 1.
3: Randomly choose m8 > 0 for all s e J’f.
4: repeat
5: Transmit on outgoing link i é £,-, with probability Pi.
6: if t e then
7: Set A = getA(n, vn(p_n), L, 71,. .. , 7Lj

8: Update j = P,” for all i E A.
(pmax_AprnirI)/( /‘w)

9: Update Pi
= [-‘ (Wfl±Vfl;fl))]

for all i e

10: if t E Tn,qm then

11: Update m = (1— ZjEPi)’ (ZE (1/7) (i/p)’).

12: Broadcast m.
13: if a message is received then Update m.
14: until node n decides to leave the network.

A Distributed MAC Algorithm

Our distributed random MAC algorithm is given in Algorithm 5. In this algorithm, each node

n .Af, regardless of how many outgoing links it has, announces only a single message m. All

nodes choose the persistent probabilities of their outgoing links based on the received messages

from other nodes. The persistent probabilities and messages are asynchronously updated. Let

and Tn,m be two unbounded sets of time slots at which node n updates Pn and m, respectively.

We assume that the asynchronism of the updates is bounded; i.e., there exists a finite H (called

asynchronism measure [18]) such that:

Vti e , t2 e such that t2 — t1 < H, (5.17)

Vt3 E Tn,m , t4 E Tn,m such that (t4 — t3) + D < H, (5.18)

where D denotes an upper bound on communication delay (e.g., queueing or propagation delay).
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1: function getA(n,v(p_), L,71,. .
. ,7j)

2: SetB={}andC={}.
3: if a 1 then Set il,.

.. Lm such that ‘y1 7i2

4: else Set ‘11,.. ,iL such that y1 y2 ...

5: forcr=0,...,L—1do

________

6: if 1/prnifl
— L + + then

7: Set Bfl={iU+1,...,iLfl}.

8: Goto Line 10.
9: end for

10: for c = 0, . .. , L, — 1 do

11: if PaX/P,in
— L + c then

12: Set

13: Goto Line 15.
14: end for
15: Set A = 13 U C.
16: return A.

From (5.17), each node updates the persistent probabilities of its outgoing links at least once

during any time interval of length H time slots. From (5.18), the information used by each node

is outdated by at most H time slots. We notice that H can be arbitrarily large as long as it is

bounded. The exact value of H is not important and needs not be known by all nodes.

Compared with the distributed MAC algorithms proposed in the literature, Algorithm 5

has several distinct features: (i) less explicit message passing is needed (e.g., in the subgradient

algorithm proposed in [98], each node needs to announce two messages), (ii) asynchronous updates

with arbitrarily finite delay, which minimizes the coordination overhead and allows maximum

heterogeneity among wireless nodes, and (iii) does not use any stepsizes, which avoids the slow

convergence problem due to small stepsizes in the commonly used subgradient methods.

We note that if Algorithm 5 has a fixed point, then every node n achieves the optimal solution

of problem (LOCAL-NUM) and each node will not change its persistent probability vector. In

Section 5.3.1, we show that this fixed point indeed corresponds to the unique global optimal
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solution of the non-convex problem (5.7) under proper sufficient conditions, and Algorithm 5

globally converges to such a fixed point with fast and robust performance.

5.2.2 General Topology

Now let us consider the general case, where each node is within the interference range of an

arbitrary subset of the other nodes. For each node n e .Af and any of its outgoing links i E £,

the set of nodes that interfere with link i is an arbitrary subset of all nodes, i.e., .N ç .Af\{n}.

In this case, the objective function of problem (LOCAL-NUM) can be written as:

u(r(p,p_)) = (1— ‘ [iE ((7j fl(1
—

a
+ (1—

Z8EJV\{n} Zjet5:nEJrj (iPi flCe\{}(1 — Zicii))’ +

ZsN\{n} Zje8;ngj (7jPj flce(1—

Since the last term in the bracket does not depend on vector variable Pn, problem (LOCAL-NUM)

can be equivalently written as:

Ziec u (y(p)pj) + v(p,) u (i
— ZiEJn pi), (5.19)

where

= FISEJ/ 1
—

p1), V E £, (5.20)

— 11 V’
— L..seJV\{r} /_.djEI8:nEArj’JiPi llcaNj\{n}’ — L...leIP1)) .

Notice that 7(P—n) does not represent the peak data rate of link i. We can show that problem

(5.19) is strictly concave in p and has a unique optimal solution.

The closed-form solution of problem (5.19) can be obtained similarly as that of problem (5.10)
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in the single-cell case. For the outgoing link set £ of node n, we can define a permutation of

link indices in this set, i1,••. , i, such that for any j and I that satisfy 1 j I L,, we have

< /%(p_n)’. In the case of c 1, we have 7Z In the case of

cE(O, 1), we have y “ Let odenote the smallest value in {O,. . . , L—1} such that

1/pin
— L +‘ < ,÷j(P-n)/7 P_n))’ + ‘(p_n) V(p_n). (5.22)

Similarly, let c’denote the smallest value in {O,... , L— 1} such that

pmax/pmin
— L + c’ z (5.23)

We define Z3 = . , i}, with its size B = BJ = L — u’. If condition (5.22) does

not hold for any 0 {O,... , L, — 1}, then we set 13,, = {} with B = 0. Similarly, we define

C = {ic’+i,... , i}, with its size C = = L
— c’. If condition (5.23) does not hold for any

{0,. . . , — 1}, then we set C = {} with C, = 0. Given Z3 and C, we define A 13 UC

with its size A’7 = IAI = L,3 — ,cV where it’ = min{u’,c’}.

Theorem 11 For each node n e J\f, the unique optimal solution of problem (5.19) is p(p) =

f(p) = (f’(p), V i e £), where for each link i f, the mapping f(p_) is defined as

P,’m1, ifieA’,
max / mm

fj(p)= (5.24)

____________

I 1—A’ pmin ‘\ i/-,(1_,) w(p_)

I ‘
, otherunse

/yi(p_)a_1 \w(p_)+ J

with w(p_n) ZjEC\A

The proof of Theorem 11 is similar to that of Theorem 10. It is clear that (5.24) provides the

optimal solution for problem (LOCAL-NUM) in the general topology case, which includes the
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Algorithm 6 Executed by each node n E .Af in a general topology.
1: Allocate memory for m = (mi,,.. . , mr,,.,,) and q = (qi,... , qir).
2: Randomly choose pj > > 0 for all i e £ such that pj 1.
3: Randomly choose m8, > 0 and q8 e (0, 1) for all s e J\f.
4: repeat
5: Transmit on outgoing link i e L with probability Pi.

6: if t e T, then
7: Set A’ = getA(n, v(p_), L, 7’i’• . . ,

8: Set pj = P,” for all i e A’,.
pmax_A! pnl

9: Set [‘‘) (W(Pfl)V(Pn))] ;:‘‘--
for all ie\A’.

10: if t E Tn,m then
11: Update q = 1

—
p.

12: Update m,8 = 1/(7jPj flcEN\{s} for any s n.

13: Inform m,5 to all s e
14: Inform q to all s e A/\{n} such that E j e £ to have n e J\f.
15: if a message is received then Update m and q.
16: until node n decides to leave the network.

single-cell case as a special case. We can define node s’ messages as

q = 1— and m8, = ZjEJS:nEJ1j 1/(7jpj11\{fl}qC)’. (5.25)

Then v(p_) = ZsEN\{fl} and ‘y,(p) = q5 for all i e £,. Message qs simply

denotes the probability that node s remains silent at a time slot. Also note that for each node

n s, if there does not exist any j e £ such that n e then = 0 (i.e., node n does not

cause interference to any outgoing link of node s).

Our second proposed algorithm works for any general topology and is shown in Algorithm

6. In this algorithm, each node n e Jf informs to all nodes s whose transmissions interfere

with transmissions of at least one of the outgoing links of node n. It also informs q to all

nodes s whose outgoing transmissions is interfered by transmissions from node n. All nodes then

choose the persistent probabilities of their outgoing links based on the received messages from
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other nodes. In Algorithm 6, and Tn,qm are two unbounded sets of time slots at which

node n updates p and announces q, and for all s n, respectively. The assumptions on

asynchronism measure are the same as those in Algorithm 5. We will show in Section 5.3.2 that

for any general topology, the fixed point of Algorithm 6 also corresponds to the global optimal

solution of the non-convex problem (5.7) under proper conditions.

In comparison with the prior algorithms in the literature (e.g., [98]), Algorithms 5 and 6 are

more robust, converge faster, and require less signalling. We further discuss the properties of our

proposed algorithms in Sections 5.3 and 5.4.

5.3 Convergence, Optimality, and Robustness

In this section, we prove convergence, optimality and robustness of Algorithms 5 and 6 by using

recent developments in the theory of parallel and distributed computation [18] (also see Section

1.2.3) and the theory of non-linear optimization [15, 16] (also see Section 1.2.1).

5.3.1 Single-Cell Topology

Here we study Algorithm 5 which was proposed to solve problem (LOCAL-NUM) in a single-cell

topology. We first show that if Algorithm 5 has a unique fixed point, then it will globally converge

to that fixed point. After that, we provide the conditions under which the uniqueness of the fixed

point of Algorithm 5 is guaranteed. We also show that such unique fixed point corresponds to the

unique global optimal solution of non-convex problem (5.7). We define f(p) = (f(p), ‘v/n e

where f(p) is as in Theorem 10 for each node n. Recall that a fixed point of mapping f(p) is

also a fixed point of Algorithm 5. We can show that:
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Theorem 12 Mapping f(p) is monotone increasing (see Section L2.3) if a 1, and is mono

tone decreasing if a 1.

The proof of Theorem 12 is given in Section 5.6.2. This enables us to show the following:

Theorem 13 Assume that f(p) has a unique fixed point p*• Starting from any initial point

p e P, Algorithm 5 globally converges to

The proof of Theorem 13 is given in Section 5.6.3. The key idea is to show that the monotone

mapping f(p) satisfies synchronous convergence and box conditions; thus, the asynchronous

convergence theorem [18, pp. 431] is applicable (see Theorem 8). Theorem 13 is general and

applies to any choice of system parameters. It only requires that mapping f(.) has a unique

fixed point. Next, we will show that not only Algorithm 5 has a unique fixed point under mild

technical conditions, the fixed point is indeed the global optimal solution of problem (5.7).

Let F denote the set of fixed points of Algorithm 5. For each p e F and any link i E

we have p =
f(p*,). We also let S denote the set of stationary points [15, pp. 194] of problem

(5.7). Note that all local (and global) optimal solutions of problem (5.7) belong to set S.

Theorem 14 F = S.

The proof of Theorem 14 is given in Section 5.6.4. From Theorems 13 and 14,

Corollary 1 If either S or F is a singleton set (i.e., it has one element), then Algorithm 5

globally and asynchronously converges to the unique global optimal solution of problem (5. 7).

In [98], it has been shown that the set of stationary points S is a singleton set for all a 1.

They used logarithmic mapping and transformed problem (5.7) to an equivalent convex problem

and showed that it has a unique stationary point. However, this transformation does not work if
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a e (0, 1). That is the reason the algorithm proposed in [98] does not support the a-fair utility

functions with a e (0, 1). Here we are able to provide sufficient conditions under which the

non-convex problem (5.7) has a unique optimal solution with a e (0, 1).

Theorem 15 Consider the case where the fairness index parameter a E (0, 1). Set F is a

singleton if the following holds:

max(1 — a
It Vm) ( — L/L

—

<1, (5.26)
a J

\7min )

where

= mm L, (5.27)

= maxL, (5.28)
nE.N{ (Vmax)l/a

, ifVm<1,
(1+(Vm) ‘/)2

(v”,vm)= (Vmin)’
, if vmmn> 1, (5.29)

(1+(Vmin)h/a)2

0.25, otherwise,

r (Pm(i pmin)) / (pmin(l
—Pm)), (5.30)

‘I’ =Lm/(1 — Pm)+1/pmin (5.31)
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ZEJV i/(L/L — 1), (5.32)

vmmn = (N—i)(7max(i/pmin
—

i)/7min), (5.33)

vrnax = (N—i)(7min(i/pmin
— i)/7max). (5.34)

The proof of Theorem 15 is given in Section 5.6.5. The key is to show that if (5.26) holds,

then mapping f is not only a monotone mapping, but also an12-norm contraction mapping (see

Section 1.2.3 for the definition of contraction mapping).

The sufficient condition in Theorem 15 can further be simplified in some cases. For example,

if all nodes have the same number of outgoing links, then L” = L for each node n, and

L/L = L/Lmmn = N. Thus, 2— 1/(L/Lm —1) = N/(N— 1)— i/(N— 1)= 1 and (5.26) becomes

i—o 2 max 1—a

( a
(v’, vmax)) (-r) <1. (5.35)

In general, all the terms in (5.26) and (5.35), except 1, are independent of the number of

nodes N. The value of can be arbitrarily close to 0 if N is large enough. Thus,

Corollary 2 For any a e (0, 1) and any choice of other system parameters, there exists a positive

integer N such that Algorithm 5 has a unique .fixed point if the number of wireless nodes N> N.

Theorem 15 provides practical bounds on system parameters that guarantee the uniqueness

of the fixed point. For example, consider the IEEE 802.lla standard where 7mm
= 6 Mbps and
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Figure 5.2: Sufficient conditions on the upper bounds of P and lower bounds of pmn for
a e [0.1,0.9] and N e [2, 100] when Algorithm 5 is being used and each node has
one outgoing link. Solid lines represent lower bounds on pmuT and dashed lines
represent upper bounds on pmax

7max
= 54 Mbps6. In Fig. 5.2, we plot the sufficient conditions on the upper bounds ofPm and

lower bounds of mfl for utility parameter a e [0.1,0.9] and number of nodes N E [2, 100], where

each node has one outgoing link. As we caii see, the difference between the lower and upper

bounds increases as a or N increases, indicating the convergence condition is less restrictive. In

many cases, convergence of Algorithm 5 can be obtained even when the sufficient condition (5.26)

is not satisfied. For example, it is easy to numerically verify that for N = 2, problem (5.7) with

a E (0.5, 1) has a unique global optimal solution with any choice of system parameters.

Theorems 13 to 15 together show that Algorithm 5 globally and asynchronously converges to

the unique global optimal solution of the problem (5.7) when either a e (0, 1) (under condition

6IEEE 802.lla supports 6,9, 12, 18,24,36,48, and 54Mbps data rates [9].

/
,/,/ a=0.9
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(5.26)) or a 1 (with any system parameters). In particular, Algorithm 5 works properly under

delayed or even occasionally lost messages. To have a better understanding on how the system

behaves with message loss, consider M consecutive messages announced by an arbitrary node n.

The first M — 1 messages are lost (e.g., because of collision) while the last message is properly

received by all other nodes s e .Af\{n}. In this case, all derived results will go through with

a redefined asynchronism measure. Let H = MH. Since H and M are bounded, H is also

bounded. Considering as the new asynchronism measure, Theorems 13 to 15 can still be

applied. Thus, convergence and optimality of Algorithm 5 are still guaranteed. Interestingly, this

robust behavior is accompanied with fast convergence speed as shown in Section 5.4.

5.3.2 General Topology

Consider vector mapping f’(p) = (f,(p), V i e hf), where f7ç(p) is defined in Theorem 11. We

denote the set of fixed points of mapping f’(p) by F’, which is the set of fixed points of Algorithm

6. We also denote the set of stationary points of problem (5.7) by S’in this case.

Theorem 16 F’ = 8’.

The proof of Theorem 16 is similar to that of Theorem 14. If a 1, then from [98, Lemma

1] we know that stationary point set S’is a singleton set. Together with Theorem 16, we have:

Corollary 3 If a 1 and Algorithrrz 6 converges to some fixed point, then the fixed point is the

unique global optimal solution of problem (5. 7).

If a e (0, 1), we can use the same idea of Theorem 15 and obtain sufficient conditions to assure

that the stationary point set 8’ is a singleton set. We first notice that since not all links interfere

with each other, for each node n ef and any link i e £, function f may only depend on a small
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j+2

-- -

‘•‘ i_S. s-i i—i “ i—si—s

Figure 5.3: A chain topology with one hop interference. Arrows indicate the direc
tion of the corresponding unidirectional wireless links. Function f’ only de
pends on ,Pi—1,Pi+2, . . . ,pj+). Notice that -y,, -y1,

and mfl+2,fl depend on (Pi+1,...,Pi+4), (pj5,...,pj2), (pi—4,Pi—3,pi—2),

(Pi—2, Pi+1, Pi+2), (p—, Pi—2, pi+i), and (pi+i, Pi+2,Pi+3), respectively.

subset of entries in vector p. For example, consider the chain topology in Fig. 5.3, where the in

terferences are within one hop. For each node i, AI = {n+1, n+2}. In this figure, ft only depends

on ,Pi—1,Pi+2, ,pj+). Notice that depends on (Pi+i, . . . ,i’j+) and y, depends

on (pj5.... ,Pj2). Thus w depends on ,Pi—1,Pi+2,.. . ,pj+). In addition,

and depend on (pi—4,pi—3,pi—2), (Pi—2,Pi+1,Pi+2), (pi—3,pi—2,pi+1), and

(Pi+1,pi+2,Pi+3), respectively. Thus, v also depends on . . . ,Pi—1,Pi+2, . . . ,Pi+4). We de

fine set Xj = {i—5,. . .,i—1,i+2,... ,i + 4} as the dependency set for link i. Similarly, we can

define X for all i E £ in any arbitrary topology. That is, for any i, j e £, we have j e 2 if and

only if Pj appears in the formulation of ft. Let X = denote the size of set . We define

xmax = max X. As an example, for the chain topology in Fig. 5.3, xmax = 8.

Theorem 17 For any general topology, the fixed point set F’ is a singleton if c é (0, 1) and

1 a xm A (Zmmn,Zm) <1, (5.36)

where is as in (5.29) and we have:

A = 1/pmin + 1/(1 — Pm), (5.37)
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zm= )‘(Lmh1 — 1), (5.38)

zm
=()‘(mmfl

— 1)+ /(L— Lmin)Pmax) (539)

.ymin = min(1 — pmax)N_, (5.40)

7!max7max (5.41)

Theorem 17 guarantees that Algorithm 6 has a unique fixed point which is indeed the global

optimal solution of problem (5.7). Notice that Zmu1 and zmax are lower and upper bounds on

7Il(Wn(p_n)+/Vn(p_n))a for any ne.Af and any The proof of Theorem 17 is similar to

that of Theorem 15. The key is to show that condition (5.36) is sufficient to make f’ an12-norm

contraction mapping. Theorem 17 is general and applies to any topology. Given the particular

topology of interest, we can further refine (5.36), e.g., as in (5.26) for single-cell topologies.

We note that condition (5.36) is only sufficient as in the single-cell case. For example,we can

numerically verify that for many practical topologies (e.g., chain topologies), problem (5.7) with

a(0.5, 1) has a unique local (thus global) optimal solution for any choice of system parameters.

Unlike mapping f in the single cell case, mapping f’ here may not always be a monotone

mapping. Thus, the convergence results in the single cell case (i.e., Theorem 13) do not apply in

the general topology case. On the other hand, we can also find sufficient conditions under which

the convergence to the unique fixed point is guaranteed.

117



Chapter 5. Simple, Robust, and Optimal Random Access

Theorem 18 For any general topology, Algorithm 6 globally and asynchronously converges to

the unique global optimal solution of problem (5.7) if

Ii aI (zm,Zm)<1 (5.42)

where A is as in (5.37) and Zmh and Zm are defined in (5.38) and (5.39,), respectively.

The proof of Theorem 18 is given in Section 5.6.6. The idea is to use the relationship between

12 and l norms to obtain a sufficient condition under which f’(p) is a weighted maximum norm

contraction mapping with unit weights (see Section 1.2.3). Thus, Algorithm 6 asynchronously

converges to its unique fixed point. From Theorem 16, the convergence is indeed towards the

unique global optimal solution of problem (5.7). Notice that condition (5.42) is a sufficient (but

not necessary) condition for asynchronous convergence. Simulation results in Section 5.4 verify

that Algorithm 6 converges under a wide range of system parameters. We also notice that if

(5.42) holds for some a e (0, 1), then (5.36) also holds for the same a. Thus, Theorem 18 also

implies Theorem 17.

The exact value of asynchronism measure H is not important for any of the proofs. Following

the same argument in Section 5.3.1, Algorithm 6 works properly under delayed or occasionally

lost messages. In Section 5.4, we assess the optimality, robustness, and convergence speed of

Algorithm 6 for several randomly selected topologies and under different channel conditions.

5.4 Simulation Results

In this section, we assess the optimality, convergence and robust performance of our proposed

algorithms. In particular, we show the advantages of our algorithms compared with the previously

proposed subgradient-based algorithm [98] and IEEE 802.11 DCF.
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5.4.1 Convergence and Optimality

We first consider a single-cell topology with N =3 nodes and L =6 links. In this network, each

node has two outgoing links, one to each of the other two nodes. For all nodes n e f, we set the

minimum persistent probability P,’’ = 0.01 and the maximum total probability P,!” = 0.99. We

also set asynchronism measure H = 10. The peak rates of 6 links are ‘y 6 Mbps, 72=36 Mbps,

73=9 Mbps, ‘y =12 Mbps, 75=18 Mbps, and 76=54 Mbps. Communication delays among nodes

are up to 9 slots and the packet error rate is 0.1 (i.e., on average, 10% of the messages are lost).

Fig.5.4(a) shows the trajectories of adjusted persistent probabilities and their optimal values

when a = 2 (which is greater than 1). In this case, the global optimal persistent probabilities

*[0260.11,0.21,0.18,0.l6,o.09]T.We see that Algorithm 5 converges to * within less than

300 slots, even with communication delay and message loss. Similar results when a = 0.6 (which

is less than 1) are shown in Fig.5.4(b). In this case, p= [0.06,0.21,0.07,0.09,0.18,0•381T Again,

we see that Algorithm 5 asynchronously converges to p within 320 time slots.

Next, consider a chain topology with N = 3 nodes and L = 4 links (see Fig. 5.3). Note that

this belongs to the general topology case, where each node only interferes with a subset of other

links. For all nodes n e .A/, we set P,”m = 0.01 and prnax
= 0.99. We also set, ‘ = 6 Mbps, 72

= 36 Mbps, 73 = 9 Mbps, and 4 = 12 Mbps. Communication delays, asynchronism measure,

and packet loss rate are the same as the previous experiment. Simulation results when a = 2 and

a = 0.6 are shown in Fig. 5.5(a) and Fig. 5.5(b), respectively. We see that the optimal persistent

probabilities are achieved very fast and Algorithm 6 can tolerate both delay and message loss.
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5.4.2 Signalling Overhead

High signalling overhead is a critical problem for algorithms which require cooperation among

nodes in a wireless ad-hoc network. In this section, we compare the signalling overhead in

our proposed algorithms with the subgradient-based algorithm [98]. In the simulation, wireless

nodes are randomly located in 100 m x 100 m and 1 km x 1 kin fields for single-cell and

general topologies, respectively. The communication and interference ranges are 150 m and 300

m, respectively. Each node has an outgoing link to any of its neighboring nodes within its

communication range. The peak transmission rates (i.e., for all i e are selected randomly

between 6 Mbps to 54 Mbps. Utility parameter c is set to 2 which models harmonic mean

fair allocation. We assume that each message value requires two bytes. Thus, the signalling

overhead for each algorithm is defined as the total required message exchange (in KBytes) that

the algorithm needs before it reaches the corresponding optimal solution of problem (5.7). Results

for single-cell and general topologies when number of nodes N varies from 5 to 30 are shown in

Fig. 5.6(a) and Fig. 5.6(b), respectively. We see that increasing the number of nodes increases the

signalling overhead. However, Algorithm 5 and 6 manage to reach the optimal solutions via much

less signalling. Compared to the subgradient-based algorithm and when N = 30, Algorithm 5 and

Algorithm 6 reduce the signalling overhead by 1120% (from 55.2 KByte to 4.5 KByte) and 810%

(from 111.3 KByte to 10.8 KByte), respectively. Notice that one reason for the superiority of our

algorithms is their faster convergence. In addition, Algorithm 5 reduces the message amount by

half, which also contributes to reducing the signalling overhead.
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5.4.3 Robustness

Since the underlying communication channels are not ideal, transmitted messages by MAC pro

tocols may be delayed or even be lost. In this section, we show that our proposed algorithms are

robust with respect to both message delay and loss. The simulation model is the same as that

in Section 5.4.2. We only consider general topologies with N = 30 nodes. Results for single-cell

topologies are similar. The simulation time is set to 50, 000 time slots. For each algorithm, we

measure the optimality of the achieved network utility at the end of each simulation run.

First, we assume that the communication delay varies from 10 to 50 time slots. Results are

shown in Fig. 5.7(a). We see that by increasing delay up to 50 time slots, the subgradient-based

algorithm leads to 8.4% optimality loss while Algorithm 6 can always find the exact optimal

solutions. Notice that although Algorithm 6 is robust to communication delay, higher delays

can cause more iterations for the algorithm to converge. In our simulation model, Algorithm

6 converges to the optimal persistent probabilities on average after 421, 1581, 3641, 6472, and

9923 time slots when communication delay is 10, 20, 30, 40, and 50 time slots, respectively.

Convergence time versus the communication delay is illustrated in Fig. 5.8.

Next, we consider the effect of message delay when the packet error rate varies from 0.1 (i.e.

10% of the messages are lost) to 0.5 (i.e., 50% of the messages are lost). Results are shown in

Fig. 5.7(b). We see that Algorithm 6 is robust to message loss. On average, it converges to the

optimal persistent probabilities after 312, 473, 531, 629, and 727 time slots when packet error rate

is 0.1, 0.2, 0.3, 0.4, and 0.5, respectively. Notice that both Algorithm 6 and the subgradient-based

algorithm are less sensitive to message loss compared to long delays.
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5.4.4 Comparison with IEEE 802.11 DCF

Since our proposed algorithms achieve the global optimal solution of problem (5.7), they establish

a performance upper-bound for all MAC algorithms that are designed to solve the same problem.

On the other hand, they can resolve some of the existing problems in the current 802.11 DCF,

e.g., its well-known short-term fairness problem due to binary exponential backoff. Next, we

compare Algorithm 6 with DCF in terms of both system throughput and Jam’s fairness index

[89] when N = 30. The short-term fairness is obtained using a sliding window of size 200 slots.

Results when utility parameter a varies from 0.5 to 5 are shown in Fig. 5.9. Each point represents

the average results from simulating 10 random general topologies. We see that, parameter a acts

as a knob in Algorithm 6 to control the tradeoff between efficiency and fairness. By increasing a

30
Communication Delay
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we can make the system more fair but less efficient (and vice versa). If a = 0.5, then the system

throughput is 54.9% higher than DCF (see Fig. 5.9(a)). Besides, for any choice of a e [0.5, 5],

the fairness is much better than DCF (see Fig. 5.9(b)).

5.5 Summary

In this chapter, we designed two distributed contention-based MAC algorithms to solve a NUM

problem at link-layer in wireless ad hoc networks. Both algorithms globally converge to the unique

global optimal solution of the NUM problem under mild technical conditions on the system

parameters. In particular, it is true for a-fair utility functions with a e (0, 1), in which case

the NUM problem cannot be transformed into a convex optimization problem using logarithmic

change of variables as in the previous literature, and thus, it is already challenging to prove the

uniqueness of the optimal solution before designing any algorithm.

Besides supporting a wider range of utility functions, our algorithms have several other ad

vantages over previous algorithms, including less message passing, fully asynchronous updates,

robustness to message delays and losses, and fast convergence. Simulation results show that our

algorithms converge faster than the recently proposed algorithm iii [981 with significantly less

signaling overhead. They are also robust to message delays and losses due to channel errors.

Moreover, they achieve better efficiency-fairness trade-off compared to the IEEE 802.11 DCF.
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Figure 5.9: Comparison between DCF and Algorithm 6 in terms of system throughput and
fairness index when utility parameter a varies from 0.5 to 5. Each point represents
the average results from simulating 10 random general topologies, each including 30
nodes. (a) Aggregate network throughput, (b) Jam’s fairness index.
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5.6 Analytical Proofs

5.6.1 Proof of Theorem 10

Lemma 6 For each node n E /, we have:

1/pflifl
— Bn —

Jjmax / ,min
‘n fin —

1/prnifl
— B>

pmax / pmin
‘ri I’n — n

(5.47)

-‘(w+ vm(P_n)), VjEBn, (5.43)

/lWn, ViéC, (5.44)

/‘ (w + Vvn(P-n)) V i E £n\Bn, (5.45)

/‘Wn, ViEn\Cn. (5.46)

Proof: From (5.12) and knowing that £n\An {i15. . . , i,}, for each link i e 13,. we have:

— B <Zje\A (7i+i/7j)’ + 7Vn(p_n)n

a—I
= (///F1)(iEfl\Afl yi/yj) +

(w +

where the last inequality comes from the fact that Eç/ for all i E L3. Recall

that i = min{J, c} and k+l Proof of (5.44) is similar. We prove (5.45) by contradiction.

Assume that there exists i e £n’ytn such that (5.45) does not hold. It is clear that 6 u. We
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have:

1/prnifl
— L + a (z=1 (1/i)’ + vn(p_n)) (5.48)

-L+(- 1)+S-( 1) <( + Vn(Pn)) +Ze()’ (549)

1/prnifl
— L + e — 1 < (/yl)’ + /ijvn(p_n), (5.50)

where the last inequality results from the fact that 1 for all I = e,. . . ,S which implies

/‘(-yj/’yj)’ < a — e + 1. Comparing with (5.12), inequality (5.50) implies that e C

which contradicts the assumption that i e Proof of (5.46) is similar.

Since the objective function of problem (LOCAL-NUM) is strictly concave in p,,, its solution

is unique [16, Pp. 137] and satisfies the following necessary and sufficient KKT conditions7 [16,

pp. 244]:

Vie, (5.51)

<prnax (5.52)

_____

—

vn(p_n)
• = —

V i é £n, (5.53)
7i z’ ( —iEPt)

)‘. (Z — prnax)
= 0, (5.54)

s, (prnin
pj) = 0, Vie £,,,, (5.55)

0, Si > 0, V i e £, (5.56)

where denotes the Lagrange multiplier corresponding to constraint pj P’ and S

denotes the Lagrange multiplier corresponding to constraint pj p,m for each i £,. Now we

71t is clear that Slater’s condition [16, pp. 226] always holds as long as <prnax for all nodes n E N.
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need to show that (5.14) leads to (5.51) to (5.56).

Condition (5.51) directly results from (5.14). We also have:

z f()
A pmin + ZiE\A — AThP,’) /( /w71)— 11ri1 71

prnax
— A pmin

_______

(5.57)

= A 17mm + n n (z /(1/7)_1)
by (&15) prnax

n wn

Thus, condition (5.52) also holds. Two cases are possible:

Case I: Z f() <prnax which only happens if Zie\A f(p71) <Pmax — A 17mm
71

Thus, there exists 1 e£71\A71 such that

(1/ ç/’) (i — A Pmmn)/(w71+vn(P_n)) < prnax — A Pmin/(
K’wn),n ‘1fl17j Infl

(i —A71P’)/(w71+/v71(p_71)) < prnax — A pmin/71 (5.58)‘1flri I

Multiplying both sides of this inequality by /(i/7)’, for any link i e£71\A, we have

(1/ ‘) (i —A71P)/(w71+Vtn(P_n)) <(Pm —

A 17min)/( 1w)n

Hence,

f(p_71)—max (Prnmn (1/ _1) (1_A71P)/(w71+v71(p_71))) ,Vi é£71\A71. (5.59)

In this case, we have c <ç and i = min{, c} = o. In other words, A71 = l3 and A71 = B71. We
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prove this by contradiction. Assume that u > ç and i = c. We have:

mm by (5 13)1 — (L — ç)prnin by (5.58) prnax
— (L — c)P < ç/Eiprnin

+ /Vn(p_n) >=i /7ii)’ —

Thus,

1/pin
— L + c < (z1 (1/7j1)’+ (5.60)

Comparing (5.60) and (5.12), we have e 13,. This implies that o <ç which contradicts our

counter assumption u> c. Thus, k = cT and we have:

= t3, A = B. (5,61)

We can verify that conditions (5.53)-(5.55) hold forpTh=f(p) if we set A,=0, and

vn(p_n) / 1

= (1_AflPflm1n_Efl\Afl f(p_)) — (5.62){ 0,
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Next, we need to show that (5.56) holds. For each i e A,7,, we have:

Thus, S > 0 for all i e C,., and (5.56) holds. Finally, for each i e £,.,,\A we have:

prnax A71P, by (5.58)

____

>
a!

V7

and (5.45) prnin
by (5.61)

which guarantees that the upper bound in (5.14) is indeed greater than the lower bound.

Case II: ZiE f() — pmax which happens only if_-‘n

We already know that

ZiEL\A f(p_)
= pmax

— A rmin
Ti fl1 (5.64)

(prnax
— AP)/( /F’w)

by (5J5) prnax
— A pmin

Ti fl iiTi (5.65)

v.,,, (p)

( 1 — A 0mm
— Zje\A f(_))ni Ti

vn(P_n)

(1—APin)
1/7’

jE\A Wn+ \/Vn(p_n)

a

by (5.59)
>

by (5.15)

by (5.43)
>

and (5.61)

( 1/P_A

/‘(i— A 0min’
.Ti1TL .‘

1 A 0mm

c/F1 (w+ /vn(P_n))
(5.63)
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From (5.64) and (5.65) and since f(p) (P — AP’)/( ç/F’w) for all e

f(p_)=(P — AP)/( ‘w), Vie (5.66)

From (5.14) and (5.66) we have

(i — AThP,in) /(w + c/vn(p_n)) (P’ — AnP,”)/wn. (5.67)

In this case, we have o- > c and t = min{a,c} = c. In other words, A = C,, and A = C.

We prove this by contradiction. Assume that a <c and , = a. We have:

— (L — a)Pifl by (5.67) 1 — (L — a)Pmifl by (5.12)

_________

<

_________ _______

< (5.68)
Z1 ‘(l/7j)’ — Z_1 /(1/7i)’ + /vn(p_n) —

Thus,

prnax/prnin
— L + a (z1 (i/71)’). (5.69)

Comparing (5.69) and (5.13), we have i1 e C. This implies that a ç which contradicts our

counter assumption a < c. Thus, i = c and we have:

A=C. (5.70)

We can verify that conditions (5.53)-(5.55) hold for each p = f(p_7) if we set

w \

(/))a

A
(P

‘a

= max
— A Pmin )

— 1 — prnax
(5.71)

n n1ri /
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and
/ \ /
I

________

_I 1 ‘feA.= i\p_Anp) Tprnin)
(5.72)

0, ifiEL\A.

Next, we need to show that condition (5.56) holds. From (5.67) and by reordering,

w(]. — (w, + /vn(p_n))(P — AP”)

— AP,”) /v(p_)/(l — Pm). (5.73)

On the other hand, from (5.44) and (5.70) and by reordering,

— AP1) > 1/( /ipmin) (5.74)

Replacing (5.73) in (5.71), we have ) 0. On the other hand, replacing (5.74) in (5.72), we

have 5 0 for all i e £,. Thus, condition (5.56) holds. Finally, for each i e we have:

r and (5.46)
(prnax — AP,’1T1)/( /7’wn) Ptm1’, (5.75)

by (5.70)

which guarantees that the upper bound in (5.14) is no less than the lower bound.

5.6.2 Proof of Theorem 12

If c 1, then for any i, i e P such that j3 —< j5, we have: 13j j3, for all j e £. Thus,

1—Zjecsj 1—jEpj, Vs eJf, (5.76)

VjL (5.77)
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From (5.76) and (5.77),

m8(j3_) ms(j5_), V S é .A, (5.78)

v(j5_) v(j5_), V i E £, (5.79)

w + /v(_) w + /v(_) V j 1, (5.80)

fQj-), V i e iZ. (5.81)

Thus, vector function f(p) is a monotone increasing mapping. If a 1, then the sign of the

inequalities in (5.78)-(5.81) is reversed and f(p) becomes monotone decreasing.

5.6.3 Proof of Theorem 13

Since H is bounded, the local memory of each node n e Al is updated infinitely often as t —* 00.

Thus, the total asynchronism assumption [18, pp. 430] holds. First consider the case with a 1.

Let pmin and pmax denote two N x 1 vectors withall entries equal to pmin and pmax respectively.

Since f(p*) z* pmin .< < plflX, and f(.) is monotone increasing, we have:

pmfl f(pmifl) <
<
f(pmX) .< prnaX• (5.82)

Note that, for each n e Al and j e , f(prnin) > prnifl > pmin and f(prnax) < prnax < prnax

Let fk(p) denote the composition of f with itself k times, where f°(p) = p. Starting from (5.82)

and applying f for k 0 times, we have:

fk(pmin) fk+l(pmin) fk+l(pmax) < fk(13max). (5.83)
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We also define: pk
= {p: fk(pmin) < < fk(,,max)} If e pk, then f(p) e pk+1 From

(5.83), pk+1 ç pk for all k > 0. We can also show (by contradiction) that if pk {p*}, then

pk+2 pk That is, pk--2 c pk Thus, lim fk(pmin)
= lim÷ fk(pmaX) = p*• Besides, if

pi e pk, then (pi, ,Pi—1,Ji,Pi+1,” ,pL) E pk for any k > 0. Therefore, both synchronous

convergence and box conditions [18, PP. 431] hold. From asynchronous convergence theorem [18,

pp. 431], starting from any point in p0, Algorithm 5 will converge to p. Since P ç P°, the proof

for c 1 is complete. Now consider the case with c < 1, from Theorem 12, the mapping f(.) is

monotone decreasing. We have:

pmfl f(prnax) f(pmfl) prnax (5.84)

Comparing with (5.82), the orders of f(prnifl) and f(pm)is exchanged in (5.84). Applying f(.)

once more, we have:

f(prnax) f2(pmin) f2(pffix) f(pmin)

By mathematical induction, we can show that

fk(pmax) < fk+l(pmin) .< * .< fk+l(pmax) fk(pmin) if k is odd,

fk(pmin) .< fk+l(pmax) .< .< fk+l(pmin) ...< fk(pmax), if k is even.

For each (either odd or even) k 0, we define:

pk
= {p: min[fk(pm), fk(pmax)]

- p -< max[fk(pmmn), fk(pmax)]}
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The rest of the proof follows the case of a 1.

5.6.4 Proof of Theorem 14

For each 3* e F and each link i e f, Theorem 10 states that j3 is the unique global optimal

solution of convex problem (LOCAL-NUM), and satisfies the KKT conditions in (5.51)-(5.56).

We denote the corresponding Lagrange multipliers by and for all i £,. We also define

= (, V n E f) and *
= (Sr, V i e L). On the other hand, since any local optimum j3 E S is

a regular point [15, pp. 315] of non-convex problem (5.7), and so must satisfy the KKT necessary

conditions [15, Proposition 3.3.1], for any i E 1V,

V’ -* < pmax
LdiEJPi — n

1 ( 1 v(p) ‘
—

—

— —

* (ç’ pmax’\ — ii
“n V—diEL Pi — ‘n j —

*(pmin
vi n —jj—v,

A0, S0,

n(-n) = (flSEN\{fl}(1 — >0. (5.91)

We define, A*
= (, V n E .A/) and *

= ‘v/i £) Jf (13*A**) satisfies the KKT

i:
Pn, Vme/, ieI, (5.85)

V n e .Af, (5.86)

V n E J\f, i E £,,

V ?7 e .N,

V n E .Af, i e £,,

V i e £,

where

(5.87)

(5.88)

(5.89)

(5.90)
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conditions in (5.51)-(5.56) for all wireless nodes n e Al, then the tuple:

(13* (/y(13),Vn eAl), (&/y(13),Vm e Al, i e (5.92)

satisfies (5.85)-(5.90). On the other hand, if tuple (3*, A”, o*) satisfies the KKT conditions in

(5.85)-(5.90), then the tuple

(13* (*yn(13*)VTh cAl), (y(13),Vn cAl, i e (5.93)

satisfies conditions (5.51)-(5.56) for all n E Al. The former implies that F C S while the later

implies $ c F. Thus, set F = S.

5.6.5 Proof of Theorem 15

For any p e P, the Jacobian J(p) is defined as an L x L matrix whose entry in row i and column

j is c9f/8p3. Consider node m e Al and each i e £,, we have:

0, ifje,

J(p) = i(1—APm)m

________

(5.94)
‘ PjYj ) Pj )

if k c £.., s m.

This is under the assumption that f E pmax
— AThP)/ If f is chosen

to be one of the boundary points, then the corresponding entry is 0. Thus, (5.94) provides
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upper-bounds (in absolute values) on the entries of the Jacobian. We can show that:

I — A pminV’ (1—k3Pk’’ I £ + I

I1JII = max ) Pj72 ) \1kEPk Pj

zE,nEN 18\{n} + vn(p_n))2

1—a I (7ivn(p_n)) f’_Ltm 1

iEinEf (1+Qyjv(p_))’)2 Jj_pmaic + pmin
1—0(v’’,vtma).

(5.95)

Note that 1 — < 1 and > 1 for all i E £\A. Function xh/a/(1 + xh/a)2

is always non-negative and less than 0.25. It has a unique maximum at x = 1. The function

is monotonically increasing for 0 < x < 1 and monotonically decreasing for x > 1. Its value

approaches zero as either x —* 0 or x —* 00. We can similarly show that:

1—a
max 1—cr 1IJ(p) Iii a

vtmax) (p) ( — L/L —

(5.96)

From (5.26), (5.95), and (5.96), we have [18, pp. 635]:

IIJ(p)112 \/IIJ(p)I1D0 IJ(p)IIi < 1. (5.97)

Let j3, j5 E P. From (5.97) and by Cauchy Schwarz inequality,

IIf(i3) — f(i3)112 IIJ(p)112 lIP — 13112 < lIP — P112,

where p is a convex combination of j5 and 3. Thus, f is12-norm contraction mapping.

5.6.6 Proof of Theorem 18

Following the same argument as in Section 5.6.5, condition (5.36) implies that for each p E 2, we

have: v’7iIJ’(p)II2< 1 where J’(p) denotes the Jacobian matrix of f’(p). From linear algebra,

we also know that for each N x 1 vector a, we have hall00 hall2 v’NIlalI00. Let e P.
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Using the Cauchy-Schwarz inequality,

IIf’(i) — f’(i)II IIf’(i5) — f’(13) 12 IIJ’(p)112 Il — P112 < lIP — pII2/V’ II — iII.

Condition (5.36) guarantees that function f’(•) is an norm contraction. Thus, it asyn

chronously converges to its unique fixed point. From Theorem 16, this implies that Algorithm 6

converges to the unique global optimal solution of problem (5.7).
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Chapter 6

Utility Optimal Random Access:

Optimal Performance without

Frequent Explicit Message Passing

In the existing contention-based MAC protocols, there is a tradeoff between system performance

(e.g., throughput and fairness) and the amount of explicit message passing required among wire

less users. One example is the IEEE 802.11 DCF, where users do not explicitly exchange any

message related to their transmission probabilities and adapt their transmission probabilities only

based on the binary implicit feedback from the network (e.g., collision or not). In this chapter,

we use “messages” to denote control signals that are explicitly related to users’ transmission

probabilities. IEEE 802.11 DCF does not have any explicit message passing, although it has

various other control signals (e.g., RTS/CTS/ACK). Lack of message exchange typically leads to

low throughput and unfair resource allocation [97]. On the other hand, several MAC algorithms

(e.g., [47, 51, 98]) have been designed based on the framework of NUM which lead to the op

timal system performance without taking the signalling overhead into account. However, these

algorithms require extensive frequent message passing among users. Considering the fact that

any message transmission leads to additional contention in a random access network, this chapter
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aims to address the following question: Is it possible to design a MA C algorithm that can achieve

the optimal performance without frequent explicit message passing?

We provide a positive answer to the above question in some special but important cases,

based on the NUM-based MAC algorithms we proposed in [104]. Compared with the previous

algorithms (e.g., [47, 51, 98]), the algorithms in [104] support a wider range of utility functions,

converge faster, and allow fully asynchronous operations among users. However, frequent explicit

message passings are still needed in [104]. In this chapter, we show that in the simple case of

a single-cell interference topology (e.g., as in wireless personal and local area networks), we can

completely eliminate the need for frequent message passing. Users will be able to estimate the

required information through local observation of the channel contention history. We prove the

convergence of our algorithm under various channel conditions. If the channel is perfect and the

estimations are asymptotically accurate, then the optimality of the algorithm is also guaranteed.

The estimation techniques we use here are related to [100, 105]. However, our estimation model

is more elaborate and captures more information (i.e., each user’s transmission probability).

Simulation results show that our algorithm is robust to changes in user populations and channel

conditions. These encouraging results provide important insights and useful hints to design fully

distributed utility optimal MAC algorithms without frequent explicit message passing for more

general topologies.

The rest of this chapter is organized as follows. The system model is described in Section 6.1.

Our algorithm is presented in Section 6.2. Convergence and optimality are proved in Section 6.3.

Simulation results are shown in Section 6.4. A summary is given in Section 6.5.
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6.1 System Model

Consider a single-hop wireless ad-hoc network with J\f = {1,.. . , N} as the set of wireless links.

Each link, together with its dedicated transmitter and receiver nodes, is called a user. A sample

network with 3 users is shown in Fig. 6.1. We assume that each user’s receiver node can hear

every other user’s transmissions. Thus, each user interferes with all other users. This models

some important wireless networks including wireless personal area networks where wireless devices

interact with each other (e.g., in an office) and indoor wireless local area networks where the nodes

interact with each other and an access point (e.g., in a large conference room). Time is divided

into equal-length slots. At each slot, user i transmits with probability i e = PmX] with

0< Pmin <Jm < 1. A transmission is successful only if it is the only transmission in the current

slot. Let r denote the average data rate for user i. We have [80]:

rj(p) = ‘yjpj fJje-\{j}(l
—

pj), Vi é J\1, (6.1)

where p = (p,, Vi e £) is the vector of all users’ transmission probabilities and denotes the

fixed peak data rate for user i. Each link i £ maintains a utility which is an increasing and

concave function of r and indicates link i’s level of satisfaction on its average data rate. The

utility of link i is denoted by uj(rj(p)) which is also a function of p. We are interested in finding

the value of p that solves the following NUM problem [44, 53]:

max uj(rj(p)), (6.2)

where P = {p : pj e P, Vi e .Af}, and the utility functions are a-fair [50]. That is, uj(rj(p)) =

(1 — a)’rj(p)1 if a é (0, 1) U (1, co), and uj(rj(p)) = 1ogr(p), if a = 1. In [104], we have

shown that the a-fair utility functions can model a wide range of efficient and fair allocations.
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Figure 6.1: A single-hop wireless ad-hoc network with N = 3 users. Each user includes a wireless
link and its dedicated transmitter and receiver nodes.

6.2 Algorithm with No Explicit Message Passing

Local Optimization

For each user i, consider the following local optimization problem:

max uj(rj(pi,p_j)), (6.3)

where pj = (pd, Vj e .A/\{i}) denotes the transmission probabilities of all users other than user

i. To solve problem (6.3), user i will choose pj to maximize the total network utility, assuming

that none of the other users change their transmission probabilities.

Theorem 19 For each user i e .A/, the unique global optimal solution of problem (6.3,) is p(pj) =

f(p1), where the mapping function f(p) is defined as

_________

pmax

f(pj) = [1/ (1+ vj(pj))]
..

(6.4)

Here [x] = max [mm [x, a] , b] and vj(p_j) = Yi1 ZjEN\{i} (1/7)’ (l/p — 1)’.

The proof of Theorem 19 is similar to that of Theorem 13 and is omitted for brevity. It is clear

that if user i wants to compute (6.4), the only information it needs from other users is vj(p_).
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If each user i can estimate the value of

m = (1/7)’ (l/p — 1)’, V j e f, (6.5)

then it can compute vj(p_j)=7j’ Zjeg\{} m and set p=f(p). Notice that for each je/,

m3 is bounded between Mmifl and MrnaX. If a> 1, then =(1/7m)_(1/Pmax —

and umax (1/7mifl)a_1(l/pmifl
— 1)_1 where pmin

= minéj-Pm11’, pmax
=

7=minjEf7, and7max=mjeN7j.If a<1, then Mmin=(l/7mi1_1(l/Pmi11 — 1)1 and

=(1/7max)a_l(1/Pma
— 1)—’. As shown in [104, Section Tv-A], if each user i updates

its transmission probability i accordingly to (6.4), then the whole system will converge to the

optimal solution of problem (6.2). The key question is how to obtain the values of m for all

j i. Next, we answer this question through local observations of the shared channel.

Learning from Contention History

From (6.5), we see that only the values of ‘yj and Pi are required to calculate the value of m.

Notice that a is the same for all users. The value of the peak rate yj depends on the channel

gain between the transmitter and receiver of user j; thus, it can only be measured by user i and

then announced to the whole network once user i joins the network. The remaining task is to

determine how to obtain the value of p3.

From user i’s viewpoint, any time slot falls into one of the following possible states: idle (no

user transmits), busy (at least one other user transmits), success (user i transmits successfully),

and failure (user i transmits but it fails). Let p4le, JUSY pucc, and denote the probabilities

of experiencing these four states, respectively. Also let denote the packet error rate of the
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channel from the transmitter node of user j to the receiver node of user i. We have:

pdle
=fl.El—Pj) (6.6)

busy
= (1

— fljev\{i}(1
—

pj)) (1
—

pj)
—

flj(1
—

(6.7)

(1
—

— dle,

pUCC

(6.8)
— idle (1 err
— 1_pi Pi ‘. 1’

pfail
= — FIjE.Ar\{i}(1

—

pd)) ± pr
— (1

— fljer\{i}(1
— p))pr)

(6.9)

—

Pi idle)(l
— p[).

From (6.6), the channel is idle if all users are silent. We note that for each user j E .N, the

probability of being silent is (1
—

ps). From (6.7), the channel is busy from user i’s viewpoint if

user i is silent (so that it can sense the channel) and at least one other user j i is transmitting

packets. The former has probability (1 —p) while the latter has probability (1— flje\{i} (1 pj)).

Multiplying the two terms and after reordering, the probability in (6.7) is resulted. From (6.8),

the transmission from the transmitter node of user i to the receiver node of user i is successful if

the transmitter node of user i transmits the packet, no other user j i transmits any packet at

the same time, and the transmitted packet is not corrupted. Notice that the latter happens with

probability (1
— p). Finally, from (6.9), user i observes a failure slot if it transmits a packet

and the transmitted packet either collides with some other transmission(s), or gets corrupted, or

both. We notice that pidle and busy do not depend on the value of r[ while pucc and pl do.

Since user i knows the local transmission probability j, it can estimate pdle using either (6.6) or

any of the expressions in (6.7)-(6.9). However, it is clear that user i is still unable to estimate the

individual transmission probability Pj for any j i even if it can accurately estimate all the state
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probabilities pi4le, pUCC, and p”. In fact, finding the values of individual transmission

probabilities requires gathering more individual information from other users as we explain next.

Recall that, at a busy slot seen by user i e .N, at least one other user transmits. Since users

can hear each other, user i may successfully decode the transmission of user j i with probability;

pdecd
pj(jJlEA,.\{.}(1 —))(l —pf) = (/(1 —h)) (1i-(1 —pi)) (1 —pJ). (6.10)

Let denote the number of slots between any two consecutive successful decoding of trans

missions of user j by user i. We have:

1ecd
= 1/(1 + n’), (6.11)

where is the mean value of n’7 and can be locally estimated by user i through observation

of the channel contention history. Notice that in practice, the transmitted signal by user j can

be decoded by the network interface of user i’s receiver node; however, as its destination MAC

address is not the same as the one in user i, the packet is simply discarded. Now, user i needs to

obtain the sender’s MAC address from the packet header before discarding the packet.

Similarly, let kdle denote the number of non-idle slots that user i observes between any two

consecutive idle time slots. User i can estimate pdle as follows [100]:

pi4le
= 1/(1 +n1e), (6.12)

where dle is the mean value of dIe Substituting (6.6), (6.11), and (6.12) into (6.10), for each

j E /\{i}, we have:

l/p -1 = ((1 + decd)/(1 +ñ1e)) (1 -m• (6.13)

Let 711e and J,id1e denote the set of time slots at which user i observes an idle slot and
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decodes the transmissions of user j i, respectively. We estimate ñldle and ñ7Dd iteratively as:

nclle(t +1) (1 — (6.14)

+ 1) = (1— ,j (t))ñ72d(t) (t) I{t e decd}’ (6.15)

where ñd1e (t), id1e (t) decd (t) and ndecd (t) denote the estimation of id1e the measurement of

d1e the estimation of ñd, and the measurement of at time slot t, respectively, and I{.}

is an indicator function. Here pj and Qij are tapering stepsizes. Based on the asynchronous

stochastic approximation theory [106), we know that the estimation error decreases to zero when

users do not change their transmission probabilities.

For each user i and any other user j i, given 7j, ñ’r’ and ñd1e, we define:

ml(t) = (1/)’ ((1 + n(t))/(1 + d1e(t))), Vj \{i}, (6.16)

where ml(t) denotes the estimation of m made by user i at time slot t. In general,

m(t) = ,6(t) mj(t), (6.17)

where 3(t) > 0 is the estimation gain, which can represent accurate estimation (i.e., /3(t) =

1), over-estimation (i.e., /3(t) > 1) or under-estimation (i.e., /31(t) < 1). From (6.13), if the

estimations on and nhle are accurate and the channel is perfect (with zero packet error

rate), then /31(t) = 1 and we have ml(t) = mj(t) for all j E J\f\{i}. Notice that if the value of

the existing packet error rate pJ is known (e.g., via measurements at the physical layer), then

we can redefine ml(t) = (1/7j)1 ((1 + ñd(t))/(1 + ñd1e(t)))’/(1
—

p)’ and obtain a

more accurate estimation by canceling out the effect of channel imperfections. However, in this

chapter, we consider the general case and assume that the packet error rates are not known.

For each user i e .N and for all i e A[\{i}, we set T,m such that as time goes by, the

minimum difference between any two consecutive time slots in the union of sets {,m’ ‘ .i E
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.Af\{i}} increases. This implies that for each j, we update m less frequently to be able to collect

more samples of ndle and Thus, the estimations of mean values ñdle and improve

gradually and become asymptotically accurate. We also reset the tapering stepsizes p2 and p.j,

to 1 after each t e Tim so that the errors in previous estimations do iiot affect new estimations.

Based on these assumptions, there exists a > 0 such that limt,c, i3(t) = From (6.16) and

(6.17),

= 1/(1 —pJY’, Vi,j e f, i j.

If the channel is perfect, then = 1 and all estimations are asymptotically accurate. For a

lossy channel, if a < 1, then < 1 and m is asymptotically under-estimated for all j i. On

the other hand, if a > 1, then > 1 and rn is asymptotically over-estimated.

Distributed Algorithm

Our proposed distributed MAC algorithm with no explicit message passing (except when each

user joins or leaves the network) is shown in Algorithm 7. In this algorithm, each user i e N

continuously updates nule and = (cd, Vj eN\{i}) based on its local observations from

the shared channel to estimate m2 = (m, Vj e .Af\{i}). Then, it chooses j according to (6.4)

with v
= Zje\{i} m. Sets and Ti,rn are two unbounded sets of time slots at which user i

updates IN and m2, respectively. Notice that the updates are asynchronous across users which

includes synchronous updates as a special case.
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Algorithm 7 Executed by each user i e A.
1: Allocate memory for pj and m = (mi,.. , mjr).

2: Allocate memory for ñecd and ñecd = (ncicd,... ,

3: Randomly choose p, e [pmin, pmax].

4: Randomly choose m é [Mm, M’] for all j E /.
5: Choose ñdIe = 1 and decd = 1 for all j E JV.

6: Broadcast the fixed data rate 7j to all other users.
7: repeat
8: Transmit with probability Pi.

9: Update nle and ñ’1 according to Eqs. (6.14) and (6.15).
10: if t E T then

prnax

11: Update i= [1/ (1+a_1 ZjE\{i} m )] ;min

12: end if
13: if t e T,m then
14: Update m according to Eq. (6.16).
15: end if
16: until the user decides to leave the network.
17: Broadcast termination message.

6.3 Convergence and Optimality

For each i e4 and at any time t e Algorithm 7 updates

pmax

p(t+ 1) = f(p_,t) = [1/ (1 + /v(p_,t) )]jmin,

where v(pj, t)
= ZjeN\{i} (i/yj)1(l/p — 1)a_1 I(t). For any t 0, we define f’(p, t) =

(f(pj, t), Vi e /). Notice that f’(p, t) is a time-varying vector mapping. Since 3(t) approaches

as t —* cc for all i, j e .A/, the sequence of mapping {f’ (p, t)} converges to a unique mapping

f’ (p, cc) as t —÷ cc. That is, for any p E P and any e’ > 0, there exists t, > 0 such that

IIf’(p,t) — f’(p,cc)II < e’ for all t ti.

Theorem 20 Assume there exists t 0 such that for all t t and any p E P. we have:

amaxj’t / 1 —

\2 / max \ 1
“ a

(V’m1,V/rna)j 1 1 —F I < 1, (6.18)
Ømln(t) \ a 7mm J
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where

/3rnin(t) = mm i3(t), (6.19)
‘L,EJV

I3rnax(t) = max j3(t), (6.20)

=Inax{p.(11
Pmin)’Pm(l pm)}’ (6.21)

pmax(1 — pmin
F— 622

—
pmin(

— P)’

I //max\1/c

ifV’m<1
(+(Vmax)l)2’ .‘ —

(v’’,v”m)= (V!mh)1/”
if v/mm > 1 (6.23)

(1+(VFmrn)’)2’ —

0.25, otherwise.

Then, Algorithm 7 globally and asynchronously converges to the unique fixed point of f’ (p, oo).

Notice that V’m and v’m are the lower and upper bounds on v(p, t) for each i e N and at

any time t. If c 1, then V’mm=(N — l)Mmmn(7min)_1 and Vlax=(N — 1)Mmax(7m)_l.

If c < 1, then V!mi=(N — 1)Mmmn(7m)a_l and Vfrnax=(N —

The proof of Theorem 20 is given in Section 6.6.1. Notice that, at any time t 0,

(Mm1/Mm) </3min(t) 3m(t) (Mmc/MmuI). (6.24)

We notice that all the terms in (6.18), except F, are bounded and independent of the number of

users N. Thus, can be arbitrarily close to 0 if N is large enough:
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Corollary 4 For any choice of system parameters, there exists an integer N > 0, such that

Algorithm 7 globally and asynchronously converges to the unique fixed point of mapping f’ (p, oo),

if the number of users N> IJ, i.e., there are enough users competing for the channel.

Theorem 20 is general and does not depend on the exact values of the estimation errors as

t —÷ oo; however, the performance at the asymptotic fixed point still depends on the accuracy of

the estimations. The following Theorem can be shown for perfect channel case.

Theorem 21 If the channel is perfect such that 1imt_ 3min(t) = limt_ 3rnax(t) = 1, then the

unique ,fixed point of Algorithm. 7 is the unique global optimal solution of problem (6.2.

The proof of Theorem (21) is similar to that of Theorem 15 and is omitted. Note that since

limt, /3(t) = 1, f’(p, oo) = f(p) = (fj(p), Vi e .Af) where f(p) is as in (6.4).

From Theorems 20 and 21, if the channel is perfect and (6.18) holds, Algorithm 7 asyn

chronously converges to the unique optimal solution of non-convex problem (6.2). If the channel

is not perfect, although the algorithm still converges, optimality is not always guaranteed.

6.4 Simulation Results

To evaluate the performance of our proposed distributed algorithm, we develop a discrete-event

simulator that implements Algorithms 7 and the IEEE 802.11 DCF access method.

We first consider a network with N = 4, pmin
= 0.01, and pmax

= 0.99. We set ‘y = 6, 72

= 18, -y = 36, and -y = 54, all in Mbps. Utility parameter a = 0.5 < 1. Notice that none of

the previous NUM-based MAC algorithms (e.g, [47, 51, 98]) support a-fair utility functions with

a e (0, 1) because of non-convexity (see [104, Sections II and IV-A]). Each slot is 20 s (as in
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Figure 6.2: Simulation results for Algorithm 7 when a = 0.6. The number of users and the fea

tures of the communication channel change after t = lOs. The optimal probabilities
before t = lOs (i.e., dashed lines) and after t = lOs (i.e., dotted lines) are accurate
and obtained using Algorithm 5.

802.lla) and the simulation time is 20s. We assume that from time t = 0 to t = lOs. the channel

is perfect and N = 4. Then, from t = lOs to t = 20s, the channel is lossy and N = 3 (i.e.,

user 4 leaves the network). Packet error rates are randomly selected between 0 and 0.01 (i.e., the

maximum allowed packet error rate in 8O2.lla) at t = lOs and theii become fixed until t = 20s.

Results are shown in Fig. 6.2. We see that Algorithm 7 converges to a small neighborhood of the

optimal values very fast. It is also robust to the change of user population and channel conditions.

Similar results have also been obtained for a 1.

It is well-known that 802.11 DCF has a short-term fairness problem, due to binary exponential

2 4 6 8 10 12 14 16 18 20
Time (sec)
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backoff. Next, we compare 802.11 DCF with Algorithm 7 in terms of both system throughput and

Jam’s fairness index [89]. The short-term fairness is obtained using sliding windows with size of

200 slots. There are N 10 users in the network and their fixed peak rates are randomly selected

between 6 and 54 Mbps. Simulation time is lOOs. The results when a varies between 0.5 to 5

are shown in Fig. 6.3. We see that, parameter a acts as a knob to control the tradeoff between

efficiency and fairness. By increasing a we can make the system more fair but less efficient (and

vice versa). If a = 0.5, then throughput is 29.7% higher than DCF (see Fig. 6.3(a)). Besides, for

any choice of a e [0.5,5], the fairness is much better than DCF (Fig. 6.3(b)).

6.5 Summary

In this chapter, we designed a distributed contention-based MAC algorithm to solve a NUM

without frequent explicit message passing among users. Our algorithm is fully asynchronous

problem, enjoys fast convergence, and supports a wider range of utility functions compared to

previously proposed NUM-based MAC algorithms. Simulation results show that our algorithm

achieves a better efficiency-fairness trade-off compared with the IEEE 802.11 DCF. It is also

robust to the changes of user population and channel conditions.

6.6 Analytical Proofs

6.6.1 Proof of Theorem 20

For any p e P and t t, the Jacobian J(p, t) is defined as an N x N matrix whose entry in row

i and column j is 8f(p, t)/0p3. We can show that,
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IIJ’(p,t)IIoo (Ii — cl/a) ‘P , (6.25)

IIJ’(p, t)IIi (I’ — al/a) (max(t)/min(t)) ‘P (Qrnax/rnin) p)l_a (6.26)

Let j3,j3 P. From (6.18), (6.25), (6.26), and by Cauchy Schwarz inequality, we have:

IIf’( t) — f’(j3, t)112 jJ’(p, t)112 lli — P112 /jIJ’(p, t)IIllJ’(p, t)lIi lip — P112 < lIP — P112,

where p is any convex combination of i and Thus, for any t > t, vector function f’(p, t) is a

contraction mapping [18, PP. 181] and has a unique fixed point [18, PP. 183], denoted by p. We

also denote the unique fixed point of mapping f’ (p, oc) by p. Thus,

Wf’(p t)
—I2 1t lip — pIi2 < 77, (6.27)

where ?7t = iIJ’(p, t)li, = maxt>ti , and = ll — pIJ2. Note that < 1 and is bounded.

Since f’ (p, t) is continuous at p and limt,0 f’ (p, t) = f’ (p, oc), we have limt p = p. In

other words, Ve > 0, to > t, such that Vt to,

* * <Pt — P00 2 —

Together with (6.27), we have If’ (p, t)— pJI2 hf’ (p, t)—pii2+iip— p,lI2 Similarly,

f’ (f’(p,t) ,t+ 1) —pII2 If’ (f’(p,t) ,t+ 1) —i+iW2±II’+i —pII2
(jf’(p,t) —pII2+W+i —p2)+e (+e+e)+e=(i+2e)+e. (6.29)

For any k 0, we recursively define fC(p,
t)

= f’(f’’(p, t), t + k — 1) where f’° = p. From

(6.29), and by mathematical induction, we can show that for any k 0,
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For any e > 0, there exist k such that if k k6, then . By choosing e
= () ,

f!k(pt) -p< fm(p,t)
_p<+ =e, (6.30)

For all t>to, define e=maxk>o Pt e = maxk>o,PFE2
IIfIk±t_to(p/,to) —pII and

max[e, 2(1+) el, if t < to+C,
Ct = (6.31)

[, 2(1-j-) , 1max Let, x (C) Ct_C], otherwise,

where function (C) = ($f+i), integer constant C = rlog()/log (17)1 +1, and 1 denotes

the ceiling function. From (6.28) and (6.30), {e} and {Et} are infinite decreasing sequences and

converge to zero as t —* cc. Construct a new time sequence {} where = to ± IC for all integer

I 0. Since x (C) < 1, sequence {Et} is also decreasing and in particular, we have lim1_e = 0.

For each I > 0, define P = {p: li — e}. It is clear that p e P and P÷1 c P for

all I 0. Furthermore, C P for some finite li’. For any p e

iIP—PJ± p1 <eEi ±E.

From (6.30), we know that f” (p ) p*W < k + + If = e, then

On the other hand, if e = 2(1+i) or if e = X(C)EI_C, then e- e and

Thus, for all three possibilities in (6.31), we have

If’°(p,ti) -pI <f =x(C)e

Thus, V p e P-1, 1
C

(p, t) e P÷’. Since synchronous convergence and box conditions hold,

Algorithm 7 globally and asynchronously converges to p [18, pp. 431].
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(a)
16 I I

__________________

* Algorithm 7

0.5 0.6 0.70.80.91 2 3 4 5

(b)

0.5 0.6 0.7 0.80.91 2 3 4 5
Utility Parameter oe.

Figure 6.3: Comparison between Algorithm 7 and 802.11 DCF when the number of users N =

10. Notice that, neither Algorithm 7 nor 802.11 DCF use any frequent explicit
message passing. However, Algorithm 7 results in significantly better throughput
fairness tradeoff.
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Chapter 7

Distributed Optimal Multi-Interface

Multi-Channel Random Access

Most of the recently proposed channel and interface assignment algorithms for MC-WMNs (e.g.,

see Chapters 2, 3, and 4) are based on formulating combinatorial channel assignment problems

and discrete optimization. Each NIC is assumed to be assigned to exactly one fixed chan

nel. Examples include graph coloring problems [78], integer optimization problems [61, 107], and

mixed-integer optimization problems [70, 108]. It is known that the combinatorial problems are

NP-hard [34]. That is, finding the optimal solutions may require examining all the possible

combinations within the search space. Thus, the combinatorial channel assignment algorithms

are usually computationally complicated. In addition, they display poor performance gain as the

ratio between the number of channels and the number of NICs at each node increases [61, 108].

Finally, the distributed implementation of the combinatorial channel assignment algorithms is

difficult because of several design challenges such as the ripple-effect problem [61].

In this chapter, we overcome the performance bottlenecks of the previous combinatorial chan

nel and interface assignment algorithms in all the aforementioned aspects. We first derive the

mathematical models for average link data rates in single-channel reception and multi-channel re
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ception8 scenarios. We also consider the case when not only the orthogonal (i.e., non-overlapped)

channels, but also the partially-overlapped frequency channels are being used. The NUM problem

is then formulated for each scenario. Our models are extensions of the results on NUM-based

single-interface single-channel random access in Chapter 5. Finally, we propose two fast, fully

distributed, and easy to implement algorithms, called distributed multi-interface multi-channel

random access (DMMRA), to solve the formulated NUM problem for each scenario. We prove

that DMMRA always outperforms combinatorial channel assignment. We also analytically study

the optimality and convergence properties of our proposed algorithms. Simulation results show

that DMMRA algorithm with single-channel reception leads to 36% and 23% higher network util

ity and aggregate throughput compared to the utility-optimal combinatorial interface assignment

and channel allocation algorithm in [107] (i.e., a modified version of the algorithm in Chaper

3. When multi-channel reception model is implemented, the utility and throughput are further

increased by 57% and 71%, respectively. On the other hand, in both single-channel reception and

multi-channel reception scenarios, using all available partially overlapped channels result in sig

nificant performance improvement compared to the case where only the non-overlapped channels

are being used. Our proposed algorithms are also robust to communication delay and delayed

information exchange.

The rest of this paper is organized as follows. The data rates for various scenarios are modeled

in Section 7.1. The NUM problems are formulated in Section 7.2. The DMMRA algorithms are

proposed in Section 7.3. Simulation results are presented in Section 7.4. A summary of the

chapter is given in Section 7.5. Analytical proofs of all theorems are given in Section 7.6.

81n this paper, multi-channel reception refers to a hardware implementation scenario, where each NIC can
correctly decode multiple simultaneously received packets if they are transmitted over orthogonal channels. This
differs from the receiver diversity model in MIMO systems (cf. [109]). Multi-channel reception is studied in Section
7.1.2.
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7.1 System Model

Consider a multi-interface multi-channel wireless ad-hoc network with N = { 1,... , N} as the set

of wireless nodes and L = {1,. .. , L} as the set of unidirectional wireless links. For each node

n E N, we denote the set of incoming links by £‘ C £, with size L = I I, and the set of

outgoing links by £U C £, with size LoI1t = ut1• We also define N = {m : (m, n) e

as the set of in-neighbors and Nut = {m : (n, m) e as the set of out-neighbors of node n,

respectively. The set of available frequency channels is denoted by C = {1,... , C}. The set of

NICs for each node n e N is denoted by I,, with size I, = . Each node n E N has Lt

separate queues, where each queue stores the packets for one of the outgoing links of node n (see

Fig. 7.1). Time is divided into equal-length slots9. At each time slot, node n may choose to

transmit packets to each of its out-neighbors m e Nt using its NIC i e I over channel c e C

with a link persistent probability For the network in Fig. 7.1, node n has = 2 NICs and

L = 2 outgoing links, where 2 = {i, j} and Nt = {m, s}. We also have: C = {1, 2, 3}. In

node n, those packets which are destined to node m are enqueued in queue [n, m]. Similarly, the

packets which are destined to node s are enqueued in queue [n, s]. At each time slot, a packet

from queue [n, m] is sent to node m (i.e., through link (n, m)) using NIC i over channels 1, 2,

or 3, with probabilities and respectively. Each NIC may only transmit one

packet at a time. Next, we obtain the average data rate model for each wireless link for various

multi-interface multi-channel wireless networking scenarios.

9The length of the time slots should be large enough, compared to the channel switching delay at NICs, i.e.,
the time it takes for an NIC to switch from one channel to another. In the current commercial NICs, the channel
switching delay is between 100 us to 224 ts [9].

161



Chapter 7. Multi-Interface Multi-Channel Random Access

Wireless
links

V A
/

Figure 7.1: An ad-hoc network with N = {n, m, s} as the set of nodes. Each node has 2 NICs
and there are C = 3 channels available, denoted by 3 colors. Nodes m and s are
the out-neighbors of node n. We have: I={i,j}.

7.1.1 NICs with Single-Channel Reception

In this section, we consider the case where each NIC can decode the received packets over only

one channel at a time. We assume that all the available channels are orthogonaP°. For each node

n e N, let denote the probability that node n listens to channel c e C using its NIC i e I.

To be able to listen to channel c, NIC i on node n needs to be in the receive mode (i.e., does

not transmit any packet) and also operates over channel c. The key feature of the single-channel

reception model is that if node ri is in the receive mode, and operates over channel d c, then

it cannot decode the signals transmitted over channel c. Most of the existing commercial NICs

implement such a single-channel reception model. In this case, for each node n eN, we have11:

ZcEC
(p,c)

+ Q$) = 1, Vi e In, (7.1)

‘°The case where some of the available channels are partially-overlapped is studied in Section 7.1.3.
“Here we assume that each NIC operates either in transmit or receive mode. If an NIC also operates in idle

mode, then the equality in (7.1) is replaced with non-strict inequality “<“ and NIC i E 2 would be operating in

idle mode with probability 1—E5
(p,)(c) +Q).

node m

node n
node s
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where pi)(t denotes the probability that node n transmits some data from NIC i e over

channel cC to one of its out-neighbors. We call the node persistent probability for NIC i

of node n over channel c. We have:

p(i)(c) — (i)(c)
— mEJf12tPnm

For each link (n, m) e £, we first consider the case where there is no interference in the

network (Le., assuming that there are only two nodes). Let denote the action set for all cases

where at least one NIC j 1 transmits packets over frequency channel c. The probability of

this happening is:

(A)) = 1
— [IjEIm (i —

. (7.3)

Let denote the action set for all cases where no NIC on node m transmits packets over

channel c, and no NIC listens to channel c either. The probability of this happening is:

iF’ (A)) = ]JjEIm (i — — Q()
. (7.4)

Since the sets and are two disjoint sets (i.e., n is an empty set), we have:

(A u A)) =i (A2) + i (A?). (7.5)

The transmission from NIC i e lEfl, on sending node n e over channel c e C can be received

correctly by the receiving node m e J*qut only if at least one NIC j Elm is listening to channel c

and none of the other NICs on node m are transmitting packets over frequency channel c. From

(7.3)- (7.5), this happens with probability:

1 — i (A) u A2) =
j (i — p(i)(c))

—

j (i — pU)(c) —

. (7.6)

Next, we model the effect of interference in a network with N > 2 nodes. For each pair of

nodes s, mE.Af, we define S= 1 if node s is within the interference range of node m, and ‘5sm 0
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otherwise. Since the interference range is at least as large as the communication range, Ssm = 1

if s e A transmission from NIC i on node n to node m via link (n, m) e £ over channel c

does not encounter collision if there is no simultaneous transmission over channel c from any NIC

jEIn\{i} on node m, and any NIC keI on nodes with Ssm=1. This happens with probability:

(F1jEIn\{j} (i
— p4i)(c)))

(FIsEg\{n,m} flkEZ8 (i
— 5smPs)). (7.7)

For each wireless link (n, m) e £, let Tnm denote the average data rate, which is a function of

the following persistent and listening probability vectors:

= (pC) vn e /, m é jVout, j é in, c e c), (7.8)

Q = (Q)(C) VnE/, i eI, cEC). (7.9)

From (7.2), (7.6) and (7.7), we have [80]12:

rnm(p, Q) = ZCEC
7c) (fl.\{} (i — pU)(c)))

(fIseJ.r\{n,m} EIkE2 (i.
—

p(k)(c))) (7.10)

(n (1 (j)(c)’ (1 (j)(c) ,—(j)(c)’’\
jEmk m ) 2rnk

m ‘dm

where denotes the fixed peak data rate13 for link (n, m) over frequency channel c (i.e., the

data rate achieved by link (n, m) over channel c if there is no other transmission in the network

at the same time). The data rate model in (7.10) sums up all the average data rates that can be

achieved by transmitting packets from each NIC i E I and over each channel C E C.

12The node persistent probability vector P = Vn E f, i El,,., CE C) can always be constructed from the
link persistent probability vector p using (7.2). Thus, for each link (n, m) E , we can denote the average data rate
for the single-channel reception scenario as mm (p, Q), rather than ran,. (p, P, Q), to avoid redundancy.
‘31n general, -y -y, for any c d as the channel properties are different at different frequency bands.
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7.1.2 NICs with Multi-Channel Reception

Next, consider the case where each NIC can decode multiple simultaneously received packets as

long as they are transmitted over different orthogonal channels. That is, each NIC does not listen

to only one channel while it is in the receive mode. Instead, it listens to all frequency channels

arid applies the band-pass channel filters to all the received signals. The output of each filter is

then processed separately (i.e., in parallel) to distinguish transmissions over different channels [95].

Figs. 7.2 (a) and (b) show the basic building blocks of the receiver device when the single-channel

reception and multi-channel reception models are being implemented, respectively. We notice

that, most of the existing commercial NICs do not yet implement multi-channel reception model.

However, we will show in Section 7.4 that it can significantly improve the network performance.

Thus, it is an attractive and promising candidate for future deployment.

As in Section 7.1.1, we first assume that there is rio iiterference in the network. Let

denote the action set where all NICs on node m transmit packets on some channels other than

channel c, and no NIC is in the receive mode. We have:

ip’ (A)
= F1jm ZdeC\{c}

(i)(d) (7.11)

(c) . . . . (c) ‘(—c)Since the sets Am (defined in Section 7.1.1) and Am are disjoint (i.e., Am fl Am is an

empty set), we have:

IP (A) u A)) = IP (A)) + (A)). (7.12)

In the multi-channel reception model, for any link (n, m) e £, the transmission from NIC

i e 1 on node n e .iV over channel c e C can be received correctly by node m e J\/ut if at least

one NIC j 2 is in the receive mode and none of the other NICs on node m are transmitting
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packets over channel c. From (7.3), (7.11), and (7.12), this happens with probability:

1 — (A) u A(_c))
= (i. —

pCi)(c))
—- fTjEln ZdEC\{c} p$1)@). (7.13)

When the interference is taken into account, from (7.2), (7.7), and (7.13), for each link (n, m) E

we have:

rnm(p) = iEZ ZccC
7(c)()(c)

(fliEz\{} (i — p(i)(c)))

(flseiv\{n,rn} FlkeI3 (i
— sm (7.14)

(rr ( DO)(c)’\ 1—f (j)(d)
kh1jEIm 1 — 4 m ) — lljerm L.dEC\{c} I m

Note that since a node can listen to all channels when it is in the receive mode, the data rate

model in (7.14) does not depend on the listening probability vector Q.

(a) Single-Channel Reception

Estimated
Received

Signal
Message

Signal

Estimated
Message

Signal

Estimated
Received Message

Signal Signal

Estimated
Message

Signal

Figure 7.2: Building blocks of the receiver unit in single-channel reception and multi-channel
reception models. BPF stands for band-pass filter. For each channel c e C, the
central frequency of the channel filter is shown by f.

(b) Multi-Channel Reception

166



Chapter 7. Multi-Interface Multi-Channel Random Access

7.1.3 Partially Overlapped Frequency Channels

In this section, we extend the data rate models in (7.10) and (7.14) to the general cases, where

both orthogonal (i.e., non-overlapped) and partially overlapped channels are being used. In this

regard, we borrow the concept of multiple interference ranges from our recent work in [110, Section

II-D]. For each pair of nodes s, m e A, we define = 1 if node s is within the interference

range of node m, while node s is operating over channel c and node m is operating over channel

d; otherwise, = 0. In general, the smaller the frequency spectrum overlapping between two

channels c and d, the shorter the corresponding interference range (cf. [110, Fig. 3]). In fact,

as two wireless links use lower overlapped channels, the less is the interference power that they

cause on each other’s transmissions. Thus, the interfering transmissions need to be in shorter

distance to corrupt each other’s packets.

We first assume that NICs use single-channel reception model and there is no interference in

the network. For each link (n, m) e £, let denote the action set for all cases where at least

one NIC j é Im transmits packets on some channel d e C such that = 1. Also, let

denote the action set for all cases where no NIC on node m transmits packets on any channel

(ed)deC such that ömm =1, and no NIC listens to channel c either. We have:

P (Bin) = 1
—

]JjEIm (i
— ZdEC PV(d)) , (7.15)

ip (E)) = jj (1—ZdEC
(cd) pCi)(cl) — QCJ)(c)) (7.16)

Since the sets and are disjoint sets, we have:

i_p () U n) =fljalm(1_ZdaC $°)
—

fljEZm (i
— Zdec

p)(d)
—

QO)(c))

(7.17)

To model the interference, we can modify the collision avoidance probability model in (7.7)
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as:

ItT ,ç(cd),(j)(d)’\’ ( (
11jeZ\{i} - — /—deC vrjm )) llsEAf\{n,m} 11kE25 — L.dEC usm 1s . 7.18

From (7.17) and (7.18), when the NICs implement single-channel reception and all partially

overlapped channels are available, the average data rate of link (n, m) e .C is:

mm (p, Q) = ZiEInZcEC7flmPflm (fIjI\{} (i
—

ZdECöThm
p,)()))

(FIsJsf\{n,m} Flke13 (i ZdEC
(cd) p(k)(d))) (7.19)

ItT x(cd)p(i)(d)’\ i—i 11 x x(cd)p(i)(d) r)(j)(c)
L4dCvmm m ) — 11jeZm LddEC’mm m ‘m

We now consider the multi-channel reception scenario. For any link (n, m) e £, let

denote the set of actions for all cases where no NIC on node m transmits packets over channel c

or any other channel d E C\{c} such that = 1, and no NIC is silent either. In other words,

all NICs on node m transmit packets on some channels other than those channels that have (full

or partial) overlapping with channel c. We have:

p (E(_c))
= flIm ZdEC (i —

7i)(d) (7.20)

Notice that for any node m e N, if frequency channels c, d e C are either fully or partially

overlapped, then 1 — = 0. From (7.15), (7.18), and (7.20), when the NICs use multi-channel

reception and all non-overlapped as well as partially overlapped channels are being available, the

average data rate of link (n, m) £ is:

Tnm (P) = (fljEI\{} (i
— dEC

8(cd) p(i)(d)))

(FIsEJ’..f\{n,m} fIkE2 (i
— ZdEC

P8(k)(d))) (7.21)

(1—1 (1 (cd)7j(j)(d)’\, i_i Ii x(cd)’\ (i)(d)
i11jEXm V/_sdeC Vmml m ) — 11EIm Z—’dEC — vmm) m

It can be verified that, if all the channels are orthogonal (i.e., 6 = 0 for all s, m e N and
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any c d), then the rates in (7.19) and (7.21) reduce to (7.10) and (7.14), respectively.

7.2 Network Utility Maximization

The formulation in (7. 1)-(7.21) models the average link data rates for different multi-interface

multi-channel random access scenarios. In this section, we formulate the random access problems

in those scenarios according to the NUM framework (cf. [44]).

7.2.1 Problem Formulation

Within the NUM framework, the resource allocation problem can be formulated either at link

layer [98, 104] or at transport layer [44]. Here, for the ease of exposition, we limit our study

to the link-layer NUM’4. In this regard, each link (n, m) e L is assumed to maintain a utility

u(r), which is an increasing and concave function of its rate mm and indicates the degree of

satisfaction of link (n, m) on its data rate. The utility of link (n, m) is also a function of all the

persistent and listening probabilities p and Q. Assuming that the single-channel reception model

is used, we are interested in finding the optimal solution of the following NUM problem:

maximize ZnEji ZmEj0t’t u(rnm(p, Q)), (NUMS)

where the data rates are as in (7.10) if only the orthogonal channels are used, and as in (7.19) if

both orthogonal and partially overlapped channels are used. We also have:

4 ={ (p, Q): c) p(i)(c) Q)(c) e [0,11,

(i)(c) — (i)(c) ( (i)(d) (i)Q1)’\
_n

— mCJV?t Pam ‘ dEC n + r ) —

1,

VnEf, mENot EIa, cC}.

14We can extend the model to a transport-layer NUM similar to the joint congestion control and medium access
control design in [111].
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On the other hand, if multi-channel reception is used, then the following NUM problem is being

solved:

maximize >ZnEJ\1 ZmE,ut u(rnm(p)), (NUMM)

where the data rates are as in (7.14) if only the orthogonal channels are used, and as in (7.21) if

both orthogonal and partially overlapped channels are used. We have:

— (i)(c) (i)(c) in 1 (i)(c) — (i)(c)
— 7 . Pmm n E j — mENt Pnm

mEut, IEIn, cEC}.

Notice that the sets and ‘P are formed by linear constraints. Thus, and ‘I’ are convex

sets [16]. Various concave utility functions can also be considered to achieve different network

design objectives. A popular class of utility functions are a-fair utilities [50], where for each link

(n, m) e £, we have:

(1 — a)’r, if a e (0,1) U (1, co),
u(rnm) = (7.22)

log Tnm, if a = 1.

Using (7.22), a wide range of efficient and fair resource allocations among the link-layer flows can

be modeled. In particular, optimization problems (NUM-S) and (NUM-M) reduce to throughput

maximization with a — 0, to proportional fair allocation with a = 1, to harmonic mean fairness

with a = 2, and to max-mm fairness with a —* oc.

Unlike most of the previously proposed optimization-based channel assignment models, where

the formulated optimization problems are combinatorial and discrete-valued (cf. [61, 72, 107, 108,

112, 113]), problems (NUM-S) and (NUM-M) are continuous-valued optimization problems. They

make the analysis of our models substantially easier. Notice that, within the NUM framework at

the link-layer, the combinatorial channel assignment problem can be formulated as the following
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mixed-integer optimization problem [107]:

maximize ZnE/ ZmE.A10ut u(rnm(p, Q)),
(P,Q)E, ‘eT

subjectto ZCECXfl_1, VnEJ’f, iEI1,
(NUM-C)

p(i)(c) <
Vn E/, i ei, cE C,

Q)(c)< )(c) VThE/, iE1, cEC,

where for each node n E f, any NIC i e I, and each channel c e C, the integer variable

is defined as:

1, if NIC i operates over channel c,
= (7.23)

0, otherwise.

We also have x = VneAr, iI céC) and

T={x:x)(c)E{O,1}, VnE,iEIncEC}.

From the first constraint in (NUM-C), each NIC can be assigned to exactly one channel. In the

context of combinatorial channel assignment, the selection of the operating frequency channel for

each NIC is called interface-to-channel binding [61]. From the second and the third constraints,

NIC i cannot transmit over or listen to channel c E C if it is not operating on channel c. By solving

the mixed-integer optimization problem (NUM-C), we can select not only the operating channel

for each NIC, but also the persistent and listening probabilities corresponding to the operating

channel of each NIC to achieve utility-optimal network performance within the combinatorial

channel and interface assignment framework.

Theorem 22 Let UcR, U7GR, and U07flb denote the optimal solution of problems (NUM-S),

(NUM-MJ, and (NUM-C), respectively. We can show the following:
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(a) Random access with multi-channel reception outperforms random access with single-channel

reception:

Uk < TT*
SCR — UMCR.

(b) Random access with single-channel reception outperforms NUM-based combinatorial channel

assignment:

TT* ._-rr* (
‘Comb — ‘-‘SCR

The proof of Theorem 22 is given in Section 7.7. For better understanding of the inequalities

in (7.24) and (7.25), we consider two examples and compare the optimal utilities UCR,

-1 Tr*an MCR

7.2.2 Examples

First, consider a unidirectional ring topology with N =3 nodes, L =3 links, and C =3 channels.

The utilities are logarithmic (i.e., c = 1). Each node has one NIC. We have: N = {n, m,

(c (c) (c)={(m,m),(m,s),(s,n)}, and C={1,2,3}. For any céC, y=y = = 11Mbps. In

this scenario, combinatorial channel assignment strategies can only assign the same channel to

all NICs in the network. Otherwise, at least two nodes cannot communicate with each other15.

Thus, we have: Uomb = 3 log(11 x x (1
— ) x (1— )) = 1.465, where each link is optimally

active with probability . On the other hand, U=3log(ll x x (1—0) x (1—))=3.035,

h (1)(1) — (1)(3)
— 1 (1)(2) — (1)(3) — (1)(1) — (1)(2)

— 0
(1)(2) — f—)(1)(1)

— 1w ere n — Qm — , n — n — Qn — Qn — , m — —

(1)(1) — (1)(3) — ,-(1)(2) — —(1)(3)
—

(1)(3) — ,.-(1)(2)
— 1 ,

(1)(1) — (1)(2) — ,._)(1)(1) —

rn — m — “em — — U, s — — , an
— — —

!SThis is one of the key limitations of the combinatorial channel assignment models. In fact, as shown in [61, 108],
combinatorial channel assignment algorithms display poor performance gain as the ratio between the number of
channels and the number of NICs at each node increases. In this example, there are multiple channels available,
while each node has only one NIC.
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QX3)
= 0. That is, on average, each wireless node transmits to its out-neighbor on one channel

during half of the time slots and listens to its in-neighbor on a different channel during the other

half of the time slots. As a result, each of the 3 wireless links in the network is active on a distinct

channel and the available frequency spectrum is fully utilized. Performance improvement is in

the factor of = 2.1. In this example, we have:

rr rr — rr
Comb ‘-SCR — MCR

Next, consider a bidirectional ring topology, where .N = {n, m, s} and C = {(n, m), (m, n)

(m, s), (s, m), (s, n), (n, s)}. The rest of the parameters are the same as the previous example.

Again, any combinatorial channel assignment assigns the same channel to all NICs. We have:

Uomb = 6log(11 x x (1
—

x (1
—

= —1.229, where each link is optimally active with

probability . Each node is also optimally active with probability 2 x = as it has two outgoing

links. On the other hand, UCR = 6log(11 x 0.2113 x (1 — 0.2113) x 0.5774) = 0.341, where

each node listens to one distinct channel with probability 0.5774. Each node also transmits to

its out-neighbors using two different channels, other than the channel that it listens to. Finally,

U1CR = 6log(11 x x (1 —0) x (1
—

= 1.9107, where each node transmits to both of its out-

neighbors using one of the three channels with probability . Each NIC is silent with probability

In this example, we have:

rr* rr* rr*
UComb < USCR < UMCR.

Theorem 22 and the above examples show that our proposed random access models can

outperform combinatorial channel and interface assignment. We will investigate this issue further

in Section 7.4.2.
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7.3 DMMRA Algorithms

Although the objective functions in problems (NUM-S) and (NUM-M) are concave in link rates

r = (mm, V (n, m) e £), they are not concave in persistent and listening probabilities p and Q

due to the product forms in (7.10), (7.14), (7.19), and (7.21). Thus, finding the optimal solutions

of these non-convex optimization problems are not easy in general. In this section, we discuss

some of the features of problems (NUM-S) and (NUM-M) which will help us to develop our

distributed multi-interface multi-channel random access (DMMRA) algorithms.

7.3.1 Local NUM Problems

For each node ne]’.1 and any NIC i E I7, we define:

(i) = (c) Vm jout, c c), (7.28)

Q = (c Vc e c) , (7.29)

to be the persistent and listening probabilities of NIC i, respectively. Consider the following local

and myopic optimization problem in NIC i e I, when the single-channel reception model is

being used:

maximize ZmJ\I ZSEJV0Ut u(rms(p, Q)). (LOCALNUMS)

Here, the average data rates are as in (7.10) and we have:

(i) ........
(0 (0 . (0(c) (0(c) (0(c) r 1

n —1 \Pn , n, / Prim ‘ n ‘ ri C ‘

p(O(c) — (i)(c) (7.30)
— rriE.A101tPThTI

YZdC
(phi d)+Q(d)) = 1, Vm eJ’10t, cEC}.
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Similarly, consider the following local and myopic problem when the multi-channel reception

model is used:

jout U(rms(p)). (LOCALNUMM)
p ec

Here, the average data rates are as in (7.14) and we have:

j(i) ={ p():
c) p(O(c)

e [0, 1], dC
p(i)(d)

< 1,
(7.31)

Zmejvut P?r Vm eJ\f0t, cC }.

The objective functions in (LOCAL-NUM-S) and (LOCAL-NUM-M) are the same as the objec

tive functions in (NUM-S) and (NUM-M), respectively. However, the optimization variables in

(LOCAL-NUM-S) and (LOCAL-NUM-M) are local to NIC i in node ri.

Consider the case where the single-channel reception model is being used. We define:

p) (i) Vj eI\{i}, Vk Elm, m EN\{n}), (7.32)

= (Q Vj eI\{i}, Q, Vk Elm, m f\{n}). (7.33)

The above are the persistent and listening probabilities corresponding to all NICs in the network

(i (i)other than NIC z in node n. By solving problem (LOCAL-NUM-S), we can select p’ and Q

such that the total utility is maximized assuming that and Qare fixed (i.e., the persistent

and the listening probabilities of the other NICs in the network do not change). Solving problem

(LOCAL-NUM-M) leads to similar results if multi-channel reception model is being used. We

can show the following key theorem:

Theorem 23 Problems (LOCAL-NUM-S) and (LOCAL-NUM-M) are convex optimization prob

lems.

The proof of Theorem 23 is given in Section 7.8. From Theorem 23, we can use various convex
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programming techniques (cf. [16]) to solve problems (LOCAL-NUM-S) and (LOCAL-NUM-M).

The optimal solutions of problems (LOCAL-NUM-S) and (LOCAL-NUM-M) can also be obtained

in closed-form for some simple scenarios:

Theorem 24 For a two-node single-interface multi-channel network (i.e., when N 2, C > 1,

and I, = 1 for all n e N) with a-fair utilities, the optimal solution of problem (LOCAL-NUM-M)

can be obtained as:

(j)*

= M (p) 1, Vn eN, i e I, (7.34)

where 1 is a unit C x 1 vector and M(pZ)) is a C x C matrix with its entry in the ctl row and

dth column is:
(d) (c)

(ps_i))
= 1 +

7nm/7nm (7.35)

I( eECPm (c)
1/ -, (e) (j)(e)7nm

V \ 1-eC 7mnPmn

Here j denotes the (only) NIC of node m.

The proof of Theorem 24 is given in Section 7.9. Although the solution in (7.34) always exists,

it may not always be unique. In general, when the network has a large number of nodes, for any

arbitrary topology, we can use the interior-point method (1PM) [16, Chapter 11] to solve the

convex problems in (LOCAL-NUM-S) and (LOCAL-NUM-M) via local iterations. 1PM can find

the optimal solution of convex optimization problems in polynomial time [16].

Finally, we notice that for each node n e N and any of its NICs i e I,-, we can rewrite the

objective function of problem (LOCAL-NUM-S) to be as follows:

SEns1ZmEN(rm8(Th Q)) +
f(i), Q(_i)) (7.36)

(—i) (—i) (i) (‘where F only depends on p and Q , but not p and Q’’. Recall that 6, = 1 if
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node ii is within the interference range of node s. By writing the objective function of prob

lem (LOCAL-NUM-S) in the form of (7.36), we divide it into two parts. The first part (i.e.,

ZSE,V,Ssn=1 ZmEJf u(rms(p, Q))) depends on the optimization variables p and Q. The sec

ond part (i.e., P(p), Q)) is a constant. Thus, the value of I’ needs not be known to solve

problem (LOCAL-NUM-S). On the other hand, for any link (m, s), where s e f, S = 1,

and m e AI’, the data rate Tm8 is fully modeled if the persistent and listening probabilities of

nodes within 2R distance of node n are known. Here, R1 = maxme Rm and for each

node m e /, Rm is the interference range of node m. Thus, the convex optimization problem

(LOCAL-NUM-S) can easily be solved locally, as long as all nodes within 2Rm distance of node

n can inform their persistent and listening probabilities to node n. The same statement is true

for the convex optimization problem (LOCAL-NUM-M).

7.3.2 Algorithms

Our proposed DMMRA algorithms, when the single-channel reception and multi-channel recep

tion models are being used, are shown in Algorithm 8 (DMMRA-S) and Algorithm 9 (DMMRA

M), respectively. For each node n E JV and any of its NICs i e I,, let be an unbounded

set of time slots at which node n updates NIC i’s persistent and listening probabilities. We

assume that the updates are asynchronous across the network. That is, fl = {} for all

j e I\{i} and 7-k)
= {} for all m E A1\{n} and any k E Im. In line 2 of Algorithm

8, node n randomly initiates all of its persistent and listening probabilities. Lines 4 to 14 are

then executed repeatedly at every time slot until node n leaves the network or switches off. In

lines 4 to 6, node n either transmits or receives packets according to its persistent and listening

probabilities. On the other hand, lines 8 to 10 are executed only if there exists an NIC i e 2 such
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Algorithm 8 - DMMRA-S: Executed by each node n e N when the NICs implement single-
channel reception.

1: Allocate memory for p and Q.
2: Randomly choose p and Q such that (p, Q) e .
3: repeat
4: for each NIC i e Z, do
5: Either transmit to node m e jfout on channel c E C or listen to channel c e C

(i)(c) (i)(c)with probabilities Prim and Q7 , respectively.
6: end for
7: If t TJ’ for some i I then
8: Solve problem (LOCAL-NUM-S) using 1PM [16].

9: Update p and Q according to the solution.
(i) (i) max10: Inform p and Q to nodes in 2R distance.

11: end if
12: if a message is received from another node then
13: Update p and Q accordingly.
14: end if
15: until node n leaves the network.

that t TT. That is, the current time slot is a time slot at which the persistent and listening

probabilities of NIC i need to be updated by solving problem (LOCAL-NUM-S). Recall from

Theorem 23 that problem (LOCAL-NUM-S) is convex. Thus, it can easily be solved using 1PM.

In line 10, node n announces its updated persistent and listening probabilities to all nodes within

its 2R distance, where umax is defined in Section 7.3.1. This can be done using limited-scope

message .flooding’6 [12, pp. 408]. Upon reception of the new probability values from other nodes,

in line 13, node n updates its local memory accordingly. Finally, for distributed implementation

of Algorithm 8, we need to slightly modify the feasible sets in (7.30) such that for each n eN,

any NIC ieI, and each we have: E[e, 1—c], where 0< c << is a small

design parameter (e.g., c = 10_6). This requires all NICs to listen to all channels and transmit

over all channels with arbitrarily small but non-zero probabilities. Similar assumptions are made

to avoid node starvation in the single-channel random access algorithms in [98] and [104].

‘6We measure the signalling overhead for each of our proposed DMMRA algorithms in Section 7.4.4.
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Algorithm 9 - DMMRA-M: Executed by each node n e .A/ when the NICs implement multi-
channel reception.

1: Allocate memory for p.
2: Randomly choose p such that p e II’.
3: repeat
4: for each NIC i E 1 do

out . . . (i)(c)
5: Transmit to node méN on channel c eC with probability p
6: end for
7: if t for somei eI then
8: Solve problem (LOCAL-NUM-M) using 1PM.

9: Update p according to the solution.
10: Inform to nodes within 2Rrna distance.
11: end if
12: if a message is received from another node then
13: Update p accordingly.
14: end if
15: until node n leaves the network.

Algorithm 9 works similarly. The persistent probabilities are adjusted by solving the convex

optimization problem in (LOCAL-NUM-M). Notice that, in general, Algorithm 9 is computation-

ally less complicated compared to Algorithm 8 as problem (LOCAL-NUM-M) has fewer variables

and also fewer constraints compared to (LOCAL-NUM-S). Both Algorithms 8 and 9 are fully

distributed and allow each node to adjust its operation based on a few simple local tasks and

some limited-scope message exchange with other nodes.

7.3.3 Optimality and Convergence

In this section, we analytically investigate the optimality and convergence properties of DMMRA

algorithms. For each node n eJV and any NIC i eI7, we define:

(i) 1’ (—i) (—i)
f,scR Pn Q

(7.37)
= arg max ZrnE ZsENt u(rrns(p, Q)),
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and

(i) / (—i)\
f,A1cR ) = arg max ZmEjVsCJVt U(Tms(p)). (7.38)

pe’-Ti

We also define fscR = (fscR, V i E 1, n e N) and fMCR = (fwcR’ V Th eN, j é Z)

the mapping functions corresponding to Algorithms 8 and 9, respectively. Let .FSCR and FMCR

denote the set of fixed points (cf. [18, pp. 181]) of mappings fscR and fp1cR, respectively.

That is, if (p* Q*) e .FSCR, then fscR(p, Q) = (,* Q*). Similarly, if p e FMCR, then

fAcR(P)
= p* Also let SSCR and SMCR denote the set of all stationary points (cf. [15, pp.

194]) of optimization problems (NUM-S) and (NUM-M), respectively. Note that all local (and

thus global) optimal solutions of problems (NUM-S) and (NUM-M) belong to the sets 8SCR and

8MCR, respectively. We can show the following key results:

Theorem 25 ..‘FSCR = 8SCR and ‘MCR = SSICR•

The proof of Theorem 25 is given in Section 7.10. From Theorem 25, any fixed point of

Algorithm 8 is indeed a stationary point of optimization problem (NUM-S) and vice versa. The

same statement is true for Algorithm 9 and optimization problem (NUM-M).

Theorem 26 (a) For any choice of system parameters, the fixed point of Algorithm 8 (Algorithm

9) always exists. (b) If the number of channels C = 1, then Algorithm 8 (Algorithm 9) has a

unique fixed point. (c) If C> 1, then Algorithm 8 (Algorithm 9) has at least two (i.e., non-unique)

fixed points.

The proof of Theorem 26 is given in Section 7.11. From Theorem 25 and Theorem 26(b), if

the number of channels C = 1, then the unique fixed point of Algorithm 8 (Algorithm 9) is the
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unique global optimal solution (i.e., the only stationary point) of problem (NUM-S) (problem

(NUM-M)). On the other hand, from Theorem 25 and Theorem 26(c), if C> 1, then any fixed

point of Algorithm 8 (Algorithm 9) is at least a local maximum of problem (NUM-S) (problem

(NUM-M)).

Next, we discuss convergence. Let USCR (t) and UMCR (t) denote the aggregate network utili

ties at time slot t, while running Algorithms 8 and 9, respectively. We can show that:

Theorem 27 For any choice of system parameters, (a) At each time slot t, the instantaneous

aggregate network utilities USCR(t) and UMCR(t) are upper bounded:

USCR(t), UMCR(t) <L u(Ci 7max) V(n, m) (7.39)

where Jm
= maxnEv I,- and 7max

= max(n,m)e1,ccc ‘YL. (b) The instantaneous network utilities

USCR(t) and Uj1CR(t) are non-decreasing. That is, for any T> 2,

USCR(1) USCR(2) USCR(T), (7.40)

UMQR(l) UMCR(2) UMCR(T). (7.41)

(c) Starting from any arbitrary initial point (p, Q) and p, Algorithms 8 and 9 asynchronously

converge to one of their fixed points, respectively. That is, there exist UcR and UJ4CR such that:

UCR = lim USCR(t), (7.42)
t—*oo

and

UJ,ICR = lim UAJGR(t). (7.43)
t-+oo

The proof of Theorem 27 is given in Section 7.12. Notice that, from Theorem 25, UCR and
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are the local maxima of optimization problems (NUM-S) and (NUM-M), respectively. In

many cases, the achieved fixed points are not only locally optimal, but also globally optimal. For

example, we can verify that for the sample topologies in Section 7.2.2, we have: UcR =

and U7cR = U7cR. We further discuss optimality in Section 7.4.7.

7.4 Performance Evaluation

In this section, we evaluate the performance of our proposed DMMRA algorithms. We study

the convergence, robustness, and optimality properties, evaluate the performance gain of assign

ing partially overlapped channels, and measure the signalling overhead for both Algorithms 8

and 9. We also compare DMMRA with utility-optimal combinatorial interface assignment and

channel allocation (UO-CIACA) [107] and multi-channel medium access control (MMAC) [114]

algorithms.

In our simulation model, we consider ten different random topologies. Unless otherwise is

stated, each topology includes N =10 nodes, randomly located in a 500 m x 500 m square field.

Communication and interference ranges are 150 m and 250 m, respectively. The peak data rates

(i.e., -y for all (n, m) E and c e C) are selected randomly between 6 and 54 Mbps, as in the

IEEE 802.lla standard. Except in Section 7.4.3, where we study the impact of utility parameter

c, the utility functions are assumed to be logarithmic. Each time slot is 1 sec. The simulation

time is 1000 time slots.
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7.4.1 Convergence

In this experiment, we set the number of channels C = 6 and the number of NICs I = 2 for

all n e .A/. The trends of the network utilities for the first simulated topology (i.e., topology

number 1) when the DMMRA algorithms are being used are shown in Fig. 7.3. We can see that

both Algorithms 8 and 9 converge to their fixed-points very fast, i.e., within 152 and 146 time

slots, respectively. We can also observe that the utility values are non-decreasing and bounded,

which confirm the results in Theorem 27(b). At the steady state, Algorithm 8 results in 34%

higher utility, compared to UO-CIACA. Using Algorithm 9, the utility is further increased by

40%. Thus, equations (7.40) and (7.41) hold as strict inequalities in this case. Similar results are

observed for other topologies.

7.4.2 Comparison with Combinatorial Channel Assignment

Next, we compare DMMRA with UO-CIACA [107] in terms of both utility and throughput.

Simulation setting is the same as in Section 7.4.1. Results are shown in Fig. 7.4. In this figure,

each point is the average of the measurements for all ten simulated topologies. We can see that

both utility and throughput increase as there are more channels available. Algorithm 8 results in

36% and 23% higher utility and throughput, compared to UO-CIACA, respectively (see Theorem

22(b)). Using Algorithm 9 leads to further 57% and 71% increase in utility and throughout,

respectively (see Theorem 22(a)).

7.4.3 Impact of Utility Parameter a

Recall from Section 7.2.1 that by changing the utility parameter a, various design objectives can

be modeled. In particular, a can act as a knob in Algorithms 8 and 9 to control the trade-off
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Figure 7.3: Trend of the network utility versus time slots using Algorithms 8 and 9 for the first
simulated topology.
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Figure 7.4: Comparison between Algorithms 8 and 9 with (UO-CIACA) algorithm [107] in terms
of both utility and throughput. The number of available channels varies from 1 to
6. (a) Network utility, (b) Aggregate throughput.
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between efficiency and fairness. In this section, we compare DMMRA-S algorithm with MMAC

[114]. MMAC is the multi-channel extension of the IEEE 802.11 distributed coordination func

tion. For each NIC, it assigns the channel which has the least scheduled transmission within the

neighborhood. MMAC is designed for single-interface multi-channel networks. It also assumes

that each NIC can listen to only one channel at a time. Thus, MMAC is most comparable with

Algorithm 8, where = 1 for all n e jV. We assume that the number of channels C = 6. Running

both Algorithm 8 and MMAC for all ten topologies, the network throughput and fairness index,

when a varies between 0.5 and 5, are shown in Fig. 7.5 (a) and (b), respectively. The fairness

index is calculated among the data rates of all links as in [89]. We can see that, by increasing a,

we can make the system more fair, but less efficient (and vice versa). If a 0.5, then Algorithm 8

results in 74% higher throughput, compared to MMAC. If a = 5, then Algorithm 8 results in 97%

higher fairness index. Thus, Algorithm 8 can be set to achieve efficiency or fairness (or both).

Notice that for a e (0.5, 2), Algorithm 8 makes the system both more fair and also more efficient.

Similar results are observed for Algorithm 9.

7.4.4 Signalling Overhead

Both Algorithms 8 and 9 require message exchange among the neighboring nodes. In this section,

we measure the signalling overhead for each algorithm and compare it with the aggregate network

throughput. We assume that each probability value occupies two bytes. Thus, for each node

n e /, the message size is 2C(L,h1t + 2) bytes and 2C(Lt + 1) bytes for Algorithms 8 and 9,

respectively. For each NIC i e I,, we assume the use of limited-scope message flooding [12, pp.

408] to distribute (p, Q) (for single-channel reception scenario) and p (for multi-channel

reception scenario) to all nodes within 2Rrnax distance. The signalling overhead (in Kbps) and
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throughput (in Mbps), when the number of nodes N varies from 10 to 50, are shown in Fig. 7.6

(a) and (b), respectively. The signalling overhead increases as the number of nodes increases.

However, it is always negligible compared to the throughput (i.e., less than 0.002%). We also

notice that Algorithm 9 always incurs lower signalling overhead as it has smaller messages and

converges faster. When N = 50, Algorithm 9 results in 37% lower signalling overhead and 91%

higher throughput, compared to Algorithm 8.

7.4.5 Partially Overlapped Channel Assignment

Given the data rate models in (7.19) and (7.21), Algorithms 8 and 9 can be used to assign not

only the non-overlapped channels, but also the partially overlapped channels. This is particularly

important when the number of orthogonal channels is limited; e.g., as in IEEE 802.llb standard,

where only 3 out of 11 channels are non-overlapped. The throughput, when the IEEE 802.llb

standard is used, is shown in Fig. 7.7. The channel filters are assumed to be raised cosine with

roll-off factors equal to 1 (cf. [95]). The dashed lines correspond to the measured throughput

when either single channel (i.e., channel 1), two non-overlapped channels (i.e., channels 1 and

6), or three non-overlapped channels (i.e., channels 1, 6, and 11) are used. We see that, using

Algorithm 9, assigning the partially overlapped channels 1, ..., 6, instead of assigning only

non-overlapped channels 1 and 6, results in 11% higher throughput. By assigning all partially

overlapped channels 1, ..., 11, instead of assigning only the non-overlapped channels 1, 6, and

11, the throughput is increased by 13%. Similar results are observed for Algorithm 8. Here,

the improvements are achieved without using extra resources. Thus, the available spectrum is

utilized more efficiently.
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Figure 7.6: Signalling overhead and aggregate network throughput for Algorithms 8 and 9 when
the number of nodes N varies from 10 to 50. Each node is equipped with 2 NICs
and there are 6 orthogonal channels available.
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Figure 7.7: Performance improvement when both orthogonal and partially overlapped channels
are being used. The number of available channels is varied from 1 to 11.

7.4.6 Impact of Delayed and Outdated Information

In some practical scenarios, the nodes may receive outdated information about the persistent and

listening probabilities of other nodes. This can be due to communication delay (e.g., queueing

or propagation delay) or message loss. The latter can occur due to channel imperfections (e.g.,

fading) or packet collision. In this section, we study the effect of outdated information exchange

on the performance of DMMRA algorithms. In particular, we consider the case where the com

munication medium imposes random delay on the exchanged messages. The trend of the network

utility for the first simulated topology, when Algorithm 8 is being used and the messages experi

ence delay up to 10 time slots (i.e., 10 seconds), is shown in Fig. 7.8. We can see that Algorithm
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8 still converges to its fixed-point, even though the information used by the nodes is outdated.

However, communication delay may cause utility fluctuation (compare Fig. 7.8 and Fig. 7.3).

That is, at some time instances, since the node, which executes DMMRA, may not have accurate

information about the persistent and listing probabilities of its neighboring nodes, the value of

the utility may be decreased. Nevertheless, Algorithm 8 still (asynchronously) converges to its

fixed point, but with lower convergence speed. Similar results are obtained for Algorithm 9. From

the results in Fig. 7.9, we can also see that as the delay increases from 0 to 10 time slots, the

convergence time increases by 98% and 83% for Algorithms 8 and 9, respectively. We notice that

Theorem 25 still holds. In fact, the fixed-points of DMMRA algorithms are independent of delay.

Thus, the fixed points of Algorithms 8 and 9 are still guaranteed to be the stationary points of

problems (NUM-S) and (NUM-M), respectively.

7.4.7 Optimality

From Theorem 25, every fixed point of DMMRA algorithms is a stationary point of the formulated

NUM problems. That is, each fixed-point is at least a local maximum. However, the fixed-points

may not always be globally maximum. In this section, we investigate the optimality of Algorithms

8 and 9. Results are shown in Fig. 7.10. In this figure, the average utility is compared with the

optimal utility for each topology. To obtain the results, we calculate the utility at all fixed-points.

This is done by partitioning the search space and running DMMRA with the initial points varying

among the partitions. Specifically, for each topology, we obtain both mean utility value and

maximum utility value among all fixed-points. The former indicates the average performance of

our proposed DMMRA algorithms, while the latter indicates the optimal performance. From the

results in Fig. 7.10, DMMRA achieves near-optimal solutions for all ten simulated topologies, On
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Figure 7.8: Trend of the network utility versus time slots using Algorithms 8 for the first sim
ulated topology in the presence of communication delay.

average, Algorithms 8 and 9 result in 96.5% and 97.4% optimality, respectively. In fact, although

the fixed-points are not always globally optimal, they lead to near-optimal performance.

7.5 Summary

In this chapter, we formulated a novel continuous multi-interface multi-channel random access

model. Both single-channel reception and multi-channel reception scenarios were considered and

the data rate models were obtained accordingly. We then formulated a multi-interface multi

channel NUM problem and proved that its optimal solution outperforms most of the previously

proposed combinatorial channel assignment strategies. We also proposed a simple, fast, and

Utility Fluctuation
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Figure 7.9: Impact of delay on convergence time.

distributed algorithm, called DMMRA, to solve the formulated NUM problem. DMMRA re

quires each node to only iteratively solve a local, myopic, and convex optimization problem. The

convergence and optimality of the proposed algorithm were proved. Simulation results show

that DMMRA with single-channel reception results in 36% and 23% higher network utility and

throughput compared to combinatorial channel assignment. If multiple-channel reception is being

used, then the utility and the throughput further increase by 57% and 71%, respectively.
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7.6 Analytical Proofs

7.7 Proof of Theorem 22

Part (a): For each wireless node m é A1, any of its NICs j é 1m, and each frequency channel

c e C, we have:

1_P)(c) _q(i)(c) by(7.1)
—dEC\{c}

p(j)(d)+
dEC\{c}

Q(3)(d)

(i)(d)
L.dEC\{c} m

Replacing the above inequality in (7.4) and (7.11), we have:

‘P (A) iil (-), (744)
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which also implies that (i—IP(A U A)) (1—IP(A u A)). Hence mm jfl (7.14) is always

greater than or equal to the one in (7.10). Since the utility function U(mnm) is an increasing

function of mm, the inequality (7.24) is resulted when we sum up the utilities of all links.

Part (b): Let A denote the feasible set of problem (NUM-C). It is clear that, A 1. Thus,

any (p, Q) e A is also a feasible solution of problem (NUM-S). Hence, no (, ) A can lead

to an aggregate network utility which is greater than the optimal utility UCR over the set .

Therefore, the inequality in (7.25) always holds.

7.8 Proof of Theorem 23

For each node n e .Af and any NIC i e I,, the objective function of problem (LOCAL-NUM-S)

can be written as:

Z ( (i)(c) (i)(c) (i)(c) ( (i)(c)
meKt U cEC kn,m Pnm + (,irn 1

—

+ mE.Af (ZcEc(@?$?$) (ip(i) (c))+Q)(C)))

Z ( i)(c) (1 x (i)(c)”
+ mEJf\{n} seK,ut\{n} I\ eeC /—‘n,ms —

u,

where for each node m e .Af0t and any channel c E C,

(i)(c)_ (e) 1’ ( p(i)(C)
n,m — 7nm jeI\{i} —

(n I p(k)(c)
sei’.f\{n,rn} kI5 lV57fl S

(f1im(1
—

— F1iim(1
—

p4_
Q(t)(C)))

(i)(c) — (c) (i)(c)I 1j p(k)(c)
(n,m

— jeZ\{i} Ynm Pnm keX\{i,j} —

(n Il (k)(e)
sEN\{n,m} kEZ5 VUsm

(n31(i—

—

n1,(i— P$V(c)_ Q(a)(c)))
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For any node mEJV and any channel eEC,

(i)(c) (c) (k)(c)
8n,m = 7mnPmn (FIsEJV\{m,n} FuEls (i —

(j)(c)\ \
(flvEIm\{k} (i — (flI\{} (i — fl

(l)(c))\

(i)(c) c—, (c) (k)(c)
n,m = kEIm7mnPmn (fls{m,n}n118 (i

— )

m 1j (flex\{} (i — PflQ?c2)(C))).(FlvEIra\{k} Q — p(vXc)V\

For any link (rn,n)E\( Ut) and each cEC,

,8(i)(c) = (c) (j)Q)
(lJjEIm\{k} (i — p(i)(c)))

fl,TTIS L.kEIm 7ms Pms

(HvEW\{m,s,n} fl1EI (i
—

(nIEIS(1
— pQ)(c))

— fl• (1_P1)(c)_Q1)(cD)))

()(c) depend (—i) (—i)Notice that (i)(c) ,(i)(c) O)(c) and 13n,ms only on p and Q . In fact, theycn,m , ,n,rn , n,m , ri,m

can be treated as constants as far as problem (LOCAL-NUM-S) is concerned. Since the utility

functions are concave, the objective function of problem (LOCAL-NUM-S) is a summation of

(z)
concave-affine compositions over p and Q. Therefore, it is concave [16, pp. 84]. Clearly,

is also a convex set. Together, these imply that problem (LOCAL-NUM-S) is a convex

optimization problem. The proof for (LOCAL-NUM-M) is similar and is omitted.

7.9 Proof of Theorem 24

Let N = {n, m}, £r, = {i}, and £m = {j}. For wireless link (n, m) e £, we have:

(c) (i)(c)
rnm(p) = ZcC7nmPnm — dECPmfl) (745)
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The data rate rmn(p) can also be obtained similarly. We can re-write optimization problem

(LOCAL-NUM-M) as:

maximize u
((1 eC (zC

(c)(c)))

p C (7.46)

(‘—Ccp)).

From Theorem 23, problem (7.46) is a convex optimization problem. By solving the Karush

Kuhn-Tucker (KKT) sufficient and necessary optimality conditions (cf. [16, pp. 244]) and

rearrangement the terms, we can show that for any fairness index Q and for any channel c E C,

(- (i_z (Zec
((d/(C))d) *

(> (e) (j)(e)* I —

(i)(d)* (7.47)

eec 7mnPmri ) / — deC Prim

From (7.35) and (7.47), the optimal solution of convex optimization problem (7.46) can be ob

tained by solving the following system of linear equations:

Zdec
((_i)) (i)(d)*

= Vc e c. (7.48)

In vector representation, (7.48) is equivalent to:

M (p)) (j)*

= 1 (7.49)

The solution of the system of linear equations in (7.49) is obtained as in (7.34). In general, the

closed-form solution can also be obtained using substitution method (cf. [115]). Notice that, any

optimal solution of problem (7.46) should satisfy (7.49). Since problem (7.46) is always a feasible

optimization problem (cf. [15, pp. 9]), the solution in (7.34) always exists, regardless of the

choice of system parameters. However, the solution may not be unique. For example, if o = 1,

any persistent probability vector is globally optimal as long as Zc
c)

= .
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7.10 Proof of Theorem 25

Consider the case where the NICs implement single-channel reception. For any fixed point

(j)* (z)(p* Q*)
e FSCR, the tuple (pn , Q ,

is an optimal solution of the convex optimization prob

lem in (LOCAL-NUM-S) for any i e 2, for all n e N; otherwise, there would exist some NIC

j e 2 for some node n e N which deviates its persistent or listening probabilities from the fixed

point to achieve a better solution for its local optimization problem (see line 10 in Algorithm 8).

(j)* ()*
Thus, for any node n. e N and each of its NICs i e I, the tuple (pn , Q )

needs to satisfy

the following KKT conditions [16, pp. 244]. For each channel c e C,

(i)(c) (i)(c) (i)(c)
n,m (n,m

— vEN0ut (i)(d) (i)(d)* (1_pi)(d)*
)) )(EdEc

jd ()(d)*
+ $4)(1_p(i)(d)*

)) ) Pnvsn,m Pnm

(7.50)
— ZvEJ’f( ((i)(d) ,(i)(d)) (l_P, *)+,,(d) Q(i)(d)\

dEC ( —

________________________

—

— ZveJ1\{n}Zse.A/t\{n} (EdEc 1_6Sp*)a = fl rim , V m

___________________________________________________

(i)

(i)(c) (7.51)ZvEJffl((( (i)(d) (i)(d) =
—

SOfl,V -1fl,V

VEUPflV +Q$—1) = 0, (7.52)(z n

8(i)(c) (i)(c)* (i)(c) (i)(c)*
= 0 (7.53)nm Pnm 0, 11m Qri

(i)(c)
Pnm

*

0,
Q(i)(C) 0, (7.54)

(i)(c)*
= Z Priv , (7.55)

n

where .,.$ S(i)(c) (i)(c)
rim , and u, are the Lagrange multipliers corresponding to the constraints in

(7.30). On the other hand, by definition (cf. [15, pp. 1941), any stationary point in 8SCR

satisfies all KKT conditions of problem (NUM-S). Since the objective functions in (NUM-S) and

(LOCAL-NUM-S) are the same and the set of constraints in (NUM-S) is the union of the sets of

constraints in (LOCAL-NUM-S) for all NICs, the KKT conditions for non-convex optimization
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problem (NUM-S) are indeed the union of the conditions in (7.50)-(7.55) for all i e 2 and

any n e N. Thus, any fixed point (p*, Q*) e FSCR is also a stationary point. This implies

that, FSCR c SSCR. Following a similar argument, we can show that, SSCR FSCR. Since

.FSCR c SSCR and SSCR c .FSCR, we have: FSCR =8SCR•

7.11 Proof of Theorem 26

Part (a): It is easy to verify that for any node n e N and any NIC i e I, we can select

=
and PI

= Qi)(c) = for all c e C and any m e ut as a feasible (not

necessarily optimal) solution for problem (NUM-S). Similarly, we can select p
= L and

for all c e C and m e £‘ as a feasible solution for problem (NUM-M). Thus, 1

and I’I > 1. Since both problems (NUM-S) and (NUM-M) are feasible problems, they have

at least one stationary point [15, pp. 194. From this, together with Theorem 25, we have:

FSCRI = ISSCRI > 1 and IFMcR = ISMCRI 1.

Part (b): From [98, Lemma 2], in a single-channel network, problems (NUM-S) and (NUM-M)

can be transformed to equivalent convex optimization problems using the logarithmic change of

variables. Since a convex problem has a unique stationary point, we have: ISSCRI = SMcl?I = 1.

From this, together with Theorem 25, IFSCRI = IFMcRI = 1 and the fixed points are unique.

Part (c): We prove this part by contradiction. Consider Algorithm 8 and assume that it has

a unique fixed point (p, Q). From Theorem 25, (p, Q) is also a stationary point of optimization

problem (NUM-S). Now consider another point (, Q), where for all nodes n E N, any NIC

i e 1, any channel c e C and any node m £ut, we have:

—(i)(c) —- (i)(C-c+1)
— (—)(i)(C——c+1) (7

Prim — Pnm , —
“ n
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For example, if the number of frequency channels C = 4, then we have: = 2)=

(i)(3) _(i)(3) (i)(2) _(i)(4) (i)(i)
Pnm , Prim = Prim , and Prim = Pnm . From (7.10) and (7.19), it is easy to verify that:

r(p, Q) = r(j5, ). Thus, (, Q) is a stationary point of optimization problem (NUM-S). From

Theorem 25, it is also a fixed point of Algorithm 8. However, this contradicts the assumption

that (p, Q) is a unique fixed point. The proof for Algorithm 9 is similar.

7.12 Proof of Theorem 27

Part (a): From (7.10), (7.14), (7.19), and (7.21), for each (n,m)E,

— ‘ç’ ç-’ C - V’ rmax max — rmax maxmm
— LdjeXn /dcEC 7nm — L.dCEC 7 — 7

Thus, the utility of each wireless link (n, m) e £ is upper bounded by u(C irnax 7maX) and the

aggregate network utility is upper bounded by L u(C irnax 7max).

Part (b): We prove this part by contradiction. First consider the case where the NICs

implement multiple-channel reception model and assume that at some time slot t e [2, T],

USCR(t — 1) > USCR(t). In that case, there exist a node n and an NIC i e I7 such that

t E and solving problem (LOCAL-NUM-S) at NIC i reduces the network utility (i.e., the

objective function in problem (NUM-S)). However, this is impossible as the objective functions

in problems (LOCAL-NUM-S) and (NUM-S) are the same. Thus, USCR(t — 1) < USCR(t) and

(7.40) holds. The proof for (7.41) is similar.

Part (c): The existence of the limitations in (7.42) and (7.43) is directly resulted from parts

(a) and (b). Notice that any bounded non-decreasing sequence of real numbers always converges

to a fixed point.
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Two-Fold Pricing to Guarantee

Individual Profits and Maximum

Social Welfare in Multi-Hop Wireless

Access Networks

Various pricing schemes have recently been proposed either to encourage collaboration among

the network elements or to utilize the network resources efficiently. Pricing as a tool for resource

allocation was first proposed in [44, 46] for congestion control among elastic traffic sources. In

this regard, the network is designed to solve a network utility maximization (NUM) problem

across all traffic sources, subject to the link capacity constraints. The corresponding Lagrange

multipliers are interpreted as the congestion prices. Each source which uses a link resource is

charged with the link’s congestion price. The transmission rates and the congestion prices are

iteratively updated using the gradient projection method until the global optimal network utility

is achieved. The work in (44] has been extended to other resource allocation problems such

as medium access control, power control, frequency channel assignment, and spectrum sharing
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[30, 47, 116, 117, 118, 119, 1201. Recently, it has also been shown that the gradient updates

can be replaced by the best-response updates to achieve faster convergence and more robust

performance [54].

Another thread of research focuses on using pricing to encourage collaboration among the

nodes [121, 122, 123, 124, 125, 126, 127, 128, 129]. In a multi-hop network, where the nodes

need to forward packets for other nodes, the optimal network performance might be at the cost

of performance degradation for some intermediate relay nodes. When the intermediate nodes

have no incentive to collaborate, the well-known forwarder’s dilemma (cf. [130]) can occur,

where no node forwards the packets for other nodes. To resolve this problem, incentives can be

offered to the relay nodes in the form of payments or rewards in turn for their help in forwarding

other nodes’s traffic. In general, achieving the optimal network performance may not be always

guaranteed in the incentive-based strategies as they mainly take the individual profit objectives

into consideration. The problem of designing pricing models for Internet service providers (ISPs)

in a fixed wired network has been studied in [122, 123, 124, 125]. In [122], He and Wairand

proposed a pricing scheme which encourages the ISPs to collaborate to achieve a fair revenue

sharing. In [123], Shen and Basar studied the pricing problem in wired access networks using

game theory. The ISPs are modeled as strategic players to maximize their revenue and the users

are modeled as natural players to maximize their utilities. The interaction between each ISP

and its associated users is modeled as a Stackelberg game. In [124], Davoli et al. considered the

pricing problem where the ISPs do not have any knowledge about users’ utility functions. Pricing

for multicast wired Internet has also been studied in [125].

The pricing models for wired networks cannot be easily extended to wireless access networks.

In general, there are two main challenging issues that need to be addressed in wireless access
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networks: channel imperfection (e.g., wireless fading), and interference. In [126], Neely proposed

an economic model for wireless ad-hoc networks, with stochastic channel states, within the general

framework of back-pressure algorithms [131, 132]. The relay prices are used to encourage packet

forwarding. However, it is essentially assumed that the network is interference-free That is,

each node can transmit with an arbitrary high transmission power without interfering with other

nodes. Interference-free pricing has also been addressed in [127] and [128].

In general, most of the previously proposed pricing models in the literature have one or more

of the following performance bottlenecks: (1) network resources are not efficiently (i.e., optimally)

allocated, (2) individual profits are not taken into consideration, and (3) interference among the

wireless transmissions is not taken into account. In this chapter, we address these performance

bottlenecks in all three aspects. In particular, we extend the work by Neely [126] and propose a

market-based network model with two-fold pricing (TFP) which fully incorporates the effect of

interference. Our model uses relay-pricing to encourage nodes to collaborate and forward each

other’s packets. We also use interference-pricing to encourage the wireless relay nodes to properly

share the common network resources. Together, the relay and interference prices incorporate both

cooperative and competitive interactions among the nodes. We analytically prove that for a wide

range of pricing functions, our proposed TFP scheme leads to a guaranteed positive profit for each

individual node. The profit increases as the node forwards more packets. This better pays off the

collaborative nodes. Finally, assuming the presence of slow-fading channels, we obtain the relay

and interference pricing functions in a code division multiple access (CDMA) network such that

not only the positive individual profits are guaranteed, but also the network social welfare and

the network utility are maximized. Compared with the single-fold pricing (SFP) model in [126],

simulation results show that our TFP scheme can increase the social welfare and the network
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throughput by 24.6% and 14.7%, respectively. It also leads to more fair revenue sharing among

the nodes as it results in 18.3% higher fairness index.

The rest of this chapter is organized as follows. Our proposed two-fold pricing model is

described in Section 8.1. The key properties of our model are analytically proved in Section 8.2.

Simulation results are presented in Section 8.3. A summary is given in Section 8.4.

8.1 Market-Based Wireless Access Network Model with

Two-Fold Pricing

8.1.1 System Model

Consider a stationary wireless access network. Let J’f, with size IA/i = N, denote the set of

wireless relay nodes and £, with size I £ = L, denote the set of unidirectional wireless links. For

each node nEV, the set of all incoming and outgoing links are denoted by £ C £ and £t CL,

respectively. We also define JV, = {m: (m, ii) e £} and j.4ut
= {m: (n, m) E £t} as the

set of in-neighbors and the set of out-neighbors of node n, respectively. Wireless relay nodes

are assumed to be independent commercial entities. Together, they form a wireless backbone to

provide connectivity among wireless users in a multi-hop manner. The set of users is denoted by

D, with size ID! = D. Each relay node n eJV offers connectivity only to a subset of users, denoted

by D c V. Each user is offered connectivity from exactly one wireless relay node. All users

i, j e D are able to communicate directly with each other. However, if any user i e V,3 wants

to send data to another user k e V, where c E f\{n}, it should first transfer the data to node

n, and the data are then transferred to node c via the intermediate wireless relay nodes before

delivering to user k. In turn, node n charges user i for its offered connectivity service. We assume
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Figure 8.1: A sample multi-hop wireless access network with six wireless relay nodes, labeled as
n,m,s,a,b,c, and fifteen wireless users. Here D = {i,j} and k e DC. Users i and

j can directly communicate with each other. However, if user i (or user j) wants
to send data to user k, it should first transfer data to its associated wireless relay
node (i.e., node n), and the data are then transferred to wireless relay node c via
the intermediate nodes (e.g., wireless relay nodes s and a) in a multi--hop manner
before being delivered to wireless user k. In turn for the Drovided connectivity
service, wireless relay node n and all the intermediate wireless relay nodes are paid
according to their offered relay prices.

that all wireless relay nodes communicate over the same frequency band which is different from

those frequency bands used by the users to communicate with each other and their associated

wireless relay nodes. This avoids interference between access and relay transmissions. However,

the transmissions among the wireless relay nodes can still interfere with each other. A sample

wireless access network is shown in Fig. 8.1. In this figure, there are N = 6 wireless relay nodes,

labeled as n, rn, s, a, b, and c. There are also D = 15 wireless users.

Each wireless relay node n e .A( is assumed to have N—i separate queues to store the incoming

data according to their final destination. All data that are destined to any of the users of relay

205



Chapter 8. Two-Fold Pricing

node ceN\{n} are stored in the queue. The contents of the queue are called commodity

c data. For each commodity c data, node n maintains a set ç A1t, which includes its

neighboring relay nodes with minimum hop-counts to node c and can relay commodity c data

(c) (c) (c) (c)towards node c. For example, h = {m, s}, l1m = {a}, fl = {a}, and fla = {c} in Fig. 8.1.

Time is divided into equal-length slots T = {O, 1, 2,. .
. }. For each link (n, m) e £, let 2nm

denote the set of all possible channel states. Channel states can vary (e.g., due to wireless fading).

At each time slot t e T, the current channel state is denoted by wrjm(t) e flnm. We stack up

the channel states of all links at time t and denote the obtained L x 1 vector by w(t). That is,

= (wnm(t), V n, m E N, (n, m) E £). Let T C T denote the set of time slots at which the

channel state vector w changes. We assume that ‘ has an independent and identical distribution

(i.i.d.) over time slots 7.,. We also assume the slow-fading scenario such that:

It2 — t1j > A, Vt1,t2 e Ta,, (8.1)

where A>> 1. That is, there are at least A time slots between any two consecutive changes in

channel states. We will consider the fast fading case (i.e., when A —* 1) in Section 8.3.

For each wireless relay node n e N and any of its neighboring nodes m e letp4(p(t), w(t))

o denote the transmission rate offered to commodity c data over link (n, m) during time slot t.

Here, p(t) = (p(t), Vn, meN, VceN\{n}, (n, m) ei) denotes the L(N — 1) x 1 vector of

transmission powers for all links and all commodities. The scalar pAL(t) > 0 denotes the trans

mission power corresponding to the transmission of commodity c data over link (n, m). In this

chapter, we assume that all nodes use CDMA technology. At each time slot t e T and for each

wireless relay node n e N, the commodity c e .Af\{n} data transmission rate over wireless link
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(n,m) e Lout can be modeled as [133]:

p(t),w(t))=Aslog(l+nmm(t)PThrn(t)),
(8.2)

nm(p_n(t)) + Tim

where A3 denotes the channel symbol rate, K is the processing gain, Tim denotes the noise power at

the receiver node m, hnm is the channel power gain from relay node n to relay node m, p_(t) =

(p(t), Vme.Af\{n}, sE.Nt, dEAr\{m}) denotes the transmission power of all nodes other

than node n, and Inm(p_n(t)) is the aggregate interference power on link (n, m). Notice that

the term K hnm wmm(t) p)n(t)/(Inm(p_n(t)) + Tim) is the signal to interference plus noise ratio

(SINR) for commodity c data transmissions over link (n, m). We have:

Inm(P_n(t))=>ZaEJ\{n} ham (ZdEJr\{n} ZbEJVUtPab(t)). (8.3)

Each node n eN limits its total transmission power such that
ZCEv\{fl} ZmEut

<prnax

where prnax > 0 is fixed. Thus, the transmission rates are always bounded. We can define:

in
= max, Zc6f\{n} ZmE6f4(p, w), (8.4)

and

out
= max, ZcN\{n} ZmEuti44(p, w), (8.5)

as the maximum data rate on any incoming and any outgoing link of node n eN, respectively.

8.1.2 Two-Fold Relay and Interference Pricing

Pricing among the wireless relay nodes

In our market-based model, at any time slot t e T, if wireless relay node n e N transmits

commodity c data with rate t(p(t), w(t)) to its neighboring wireless relay node meN,t, then

it pays p$(p(t), w (t)) q (t) units of currency to node m as relay service charge. Here (t) 0
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denotes the relay price corresponding to commodity c data, advertised by wireless relay node m.

In total, at time slot t, node n pays:

Zc/\{n}4(p(t), w(t)) $(t) (8.6)

units of currency to any neighboring wireless relay node m as relay service charge.

Similarly, in total, node n receives (Z-\14(p(t), w(t))) (t) units of currency from any

wireless relay node m e N,’ for its offered relay service.

Besides the mutual relay services that the neighboring wireless relay nodes offer to each other,

relay nodes also affect each other’s operation through interference power as shown in (8.2) and

(8.3). From (8.3), for each wireless relay node n e .N, the higher the total transmission power

ZcEJf\{n} ZmEJV1t p(t), the greater is the interference power that wireless relay node n causes

on other nodes. In our pricing model, at each time slot t, wireless relay node n pays:

(ci\{n} ZmENit p(t)) (t) (8.7)

units of currency to each wireless relay node a e J’f\{n} as interference compensation charge. Here

n) (t) 0 denotes the interference price informed by relay node a to node n. Unlike the relay

prices which vary depending on the commodity data, the interference prices are the same for all

commodities as the contents of the transmissions do not affect their interference level. Instead,

the interference prices may vary depending on the node locations. The closer two relay nodes are

located, the higher is the corresponding channel power gain. This results in higher interference

power and consequently higher interference price. Similar to (8.7), at each time slot t e T, node

n receives (d\{a} bEJ\1a01t (t)) (t) units of currency from node a as the compensation

for the interference node a causes on the transmissions of node n.

For each wireless relay node n e A!’ and at any time slot t e 7”, let U (t) denote the current
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commodity cA/\{n} queue backlog. We define U(t) = (u(t), Vnf, VcV\{n}) as the

vector of queue backlogs in all wireless relay nodes at time slot t. The relay and the interference

prices are assumed to be set as follows:

= U(t—T),... , U(t),p(t—T),... ,p(t)), V c1\{n}, (8.8)

= 4)(U(t—T),... , U(t),p(t—T),... ,p(t)), V aA(\{n}, (8.9)

where I > 1 is a design parameter and i (.) and () are two non-negative real scalar

pricing functions of all queue backlogs and all transmission powers at time slots {t — I, t — I +

1,. . . , t}. The above pricing functions are general and can model various relay and interference

adjustment schemes. We only make a few technical assumptions. First, if U, (t) > 0, then

(.) > 0. That is, if relay node n already has some backlogged commodity c data, it will

not offer free relay service. Second, if ZCEJr\{fl} U, (t) > 0 and ZcE,v\{n} ZmE.A4ut p(t) > 0,

then ‘]‘ (.) >0. That is, if relay node n has any backlog and it is currently transmitting some

data on at least one of its outgoing links, it will not set its advertised interference prices to

zero. Third, () is an increasing function of U,(t). Finally, there exists a large enough

but bounded constant Vtm such that for any commodity c é f\{n} and any time slot t e T,

) (t) < mU) (t). In general, the unbounded sets of time slots at which the vector of

relay prices (t) = ((t), Vn e N, ceAr\{n}) and the vector of interference prices &(t) =

($(t), Vn e N, a eN\{n}) are being updated are denoted by T cT and T CT, respectively.

Pricing between each wireless relay node and its users

In our market-based model, each wireless relay node n E N provides relay service for its associated

wireless users according to its relay prices. At each time slot t E T, if wireless user i E D wants
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to send data to another user k e DC (for c n) at rate r (t), it needs to pay r (t) (t) units

of currency to wireless relay node n as relay service charge. At time slot t, in total, user i pays:

CE\{fl} ZkEVC r(t) (8.10)

We assume that wireless relay node ri assigns all its users with a maximum allowed sending rate

RX according to its processing capacity. Each user i E D also maintains a non-negative,

increasing, and strictly concave utility function g(r (t)) for any k e D\D which indicates a

monetary measure of user i’s level of satisfaction from sending rate r(t). Thus, user i adjusts

its rates r = (r(t), Vk e D\D) by solving the following local optimization problem:

max ZCEJV\{fl} ZkeD
(k)((k)(t))

— r(t))(t))
“ )_ (8.11)

t \ (k)(t<Rm5.
. L.iJf\{n} L..’keD r

—

Notice that the objective function of the above optimization problem is always non-negative as

at least for r=O, it is equal to zero. We define user i’s profit at each time slot t e T as:

t9(t)
= (ZCEJV\{fl} ZkEvgrt)

— (CEw\{fl}5ZkEv r(t))b)(t)). (8.12)

From (8.11), user i adjusts r(t) to maximize its profit subject to the total rate constraint. Unlike

the network model in [126], where each relay node can only support at most one user, here we

allow each relay node to offer the connectivity service to an arbitrary number of users.

8.1.3 Resource Allocation

At each time slot t e T, given the advertised relay prices from all its out-neighbors, node n eiV

can compute dfferential relay price for any mE.AI7tand each cN\{n} as [126]:

= 4)(t) — )(t) — max (8.13)
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where max = vm umax denotes the largest possible change in any relay price during one

time slot. Here, vm = max1/m8 and um = max{4’ out in
± RX} represent

the largest possible change in any queue backlog, where 11ax, in and fl1aX, out are defined in

(8.4) and (8.5), respectively. At the beginning of each time slot t e T, relay node n measures

Wnm (t) for all of its outgoing wireless links (n, rn) e £ut and adjusts its transmission powers

p, (t) = (p(t), V c e N\{n}, mE Nout) by solving the following local optimization problem:

p(t)?O
ZcEK\{n}Zm.Aft t(p(t), w(t)) ö(t)

— (Ze1\{}Zm’tp}n(t)) (aéi\{n}kt)
(8.14)

< pmax
5.

. L.scW\{ri} L.rne.A4Ut Pnm. I — n

p(t)=0, V cE J’f\{n}, m or c crn(t) or o(t) 0,

where is as in (8.2), i- is defined in Section 8.1.1, and we have:

c(t)=arg max S(t), Vnf, rne41t. (8.15)
c:mE’t4f

The optimal objective function in (8.14) is always non-negative since at least when p(t)=O, the

objective function is equal to zero. Comparing to the resource allocation problem in [126], the

objective function in (8.14) has an extra negative term:

— (Zc\{n}rnEgt p(t)) (aEN\{n} (t)), (8.16)

which denotes the total interference compensation charge that wireless relay node n should

pay to other relay nodes. By solving (8.14), node n finds the trade-off between maximizing

ZcEJf\{n}ZmEjVm1t
i(p(t), w(t))6(t) (i.e., the original objective function in [126]) and mini

mizing its interference compensation cost. Each node then implements the same routing strategy

as in [126]. That is, node n transmit.s commodity cm(t) data on link (n, m) as long as öm(t)) >0
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No commodity CCm(t) data is sent on link (n, m) at time t.

Theorem 28 Let p(t) denote the optimal solution of problem (8.L4). Assuming that K >> 1

and all links operate in the high SINR regime (cf. [30, 133]), for each neighboring relay node

mEJVout and any commodity c e J\f\{n}, if c = cm(t), S(t) > 0, and m e then:

1 S(m(t)) ij prnax ‘1
p) (t) = mm nm

(n) t S(a(t))
(8.17)

i. aEJ’f\{n} /)a ( ) ZaEJf0ut na )
otherwise, p,? (t) = 0.

Theorem 28 provides a closed-form solution for the constrained optimization problem in (8.14).

The proof of Theorem 28 is given in Section 8.5.1. We show that (8.17) satisfies the necessary

and sufficient Karush-Kuhn-Tucker (KKT) optimality conditions (cf. [16]).

8.2 Guaranteed Positive Individual Profits and Maximum

Social Welfare

Recall from Section 8.1.1 that each wireless relay node n e N is a self-interested independent

commercial entity. Thus, it is willing to make money out of its offered relay and connectivity

services. In this regard, at each time slot t T we define node n’s profit as:

x(t) = ZcE\{n} Ziev ZkeD r(t) (t)

± ZCev\{} 4(p(t), w(t)) (t)
— ZmEjvt ZCEJr\{fl} (p(t), w (t))} (t)

I Z / (a) (d) / (n) (c)
‘ aJ’f\{n} Y” V’) di\f\{a} bEJfa0Ut Pab V) — aEV\{n} ya V’I cJ1\{n}

(8.18)

The first term in (8.18) is the total relay charges from all wireless users i E D. The second

and the third terms denote the total relay charges from and to all the neighboring wireless relay
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nodes, respectively. The fourth and the fifth terms denote the total interference charges from and

to all other nodes a E N\{n}, respectively. We are now ready to present our first key result:

Theorem 29 For each T>> 1 and any wireless relay node n e N, we have:

Z=0x(t) Z=oZaEAr\{n}(t) (ZdEN\{a}ZbENoutP(t)). (8.19)

The proof of Theorem 29 is given in Section 8.5.2. From Theorem 29, each relay node is

guaranteed to obtain a profit which is at least as high as the right-hand side (RHS) of (8.19). All

the terms in the RHS of (8.19) are non-negative. From the assumptions on the pricing functions

in Section 8.1.2, the RHS of (8.19) is zero only if for the duration from time t = 0 to t = T, no

relay node in set N\{n} transmits any data and there is no data in any of the N — 1 queues in

node n. This happens only if either N = 1 and there is no other relay node in the network or

node n has set its relay prices too high so that none of its users and neighboring relay nodes are

interested in transferring their data to node n. The former is the case when there is no need to

relay node m as all users in set D = V can communicate with each other directly. The latter is

the case when node n is reluctant to contribute as a part of the wireless access network.

Corollary 5 Each wireless relay node that contributes in relaying data is guaranteed to receive

a positive-valued profit. The profit increases as the node forwards more packets.

Theorem 29 and Corollary 5 are general and apply to any choice of user utilities and pricing

functions. Next, we determine the pricing functions and for all relay nodes n e N,

any commodity c e .iV\{n}, and any neighboring relay node m e N,t to maximize the network

social welfare; i.e., the aggregate profit across all wireless relay nodes and users:

Zne.N xn(t) + z;=1 piED t9(t). (8.20)
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Lemma 7 The social welfare model in (8.20,.) is equal to the following:

t=i ZnjvZin ZcEJf\{n} ZkDg(r(t)). (8.21)

The proof of Lemma 7 is given in Section 8.5.3. From Lemma 7, the monetary exchanges

among the relay nodes and the users cancel out each other. Eq. (8.21) is the aggregate network

utility across all users. Thus, maximizing the social welfare in our TFP model is equivalent to

maximizing the network utility. This helps us to present our second key result as follows.

Theorem 30 Given T (i.e., the set of time slots), T (i.e., the set of time slots at which the

vector of channel states w changes), and A> 1 (i.e., the fading parameter), let:

= T, T = T, and T = A, (8.22)

where T,., T,,, and r are defined in Section 8.1.2. The aggregate network utility and the network

social welfare are maximized if each wireless relay node n E .Af at each time slot t’ E T sets:

= V U,(t’), Vc.A[\{n}, (8.23)

and also at each time slot t e {t’,. . . , t’ + T} C 7, each node n E .N sets:

1S(Cm(t’))t1\ O
= ham

(t”
VaeJ\f\{n}, (8.24)

mEJ/otLt nmP—n\ ii ‘7m

where V> 0 is an arbitrary design parameter.

The proof of Theorem 30 is given in Section 8.5.4. The key is to show that our proposed two

fold pricing functions result in solving the well-known maximum weight matching problem (cf.

[131, 132]) periodically (i.e., every T = A time slots). Together, Theorems 29 and 30 show that if

the transmission powers, relay prices, and interference prices are set according to (8.17), (8.23),

and (8.24), respectively, then not only each relay node receives a guaranteed positive profit, but

also the social welfare and the network utility are maximized. The pseudocode of the pricing
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algorithms that each node and each user need to execute are given in Algorithms 10 and 11,

respectively. In lines 5 to 7 and lines 17 to 19 of Algorithm 10, the relay and interference prices

are adjusted according to Theorem 30, respectively. On the other hand, in lines 21 to 28, the

transmission powers are set according to Theorem 28. Notice that Algorithm 11 simply adjusts

the transmission rates of the users based on the optimal solutions of the profit maximization

problem in (8.11).

Algorithm 10 Executed by each wireless relay node n e JV
1: Randomly choose the relay prices, interference prices, and the transmission powers.
2: repeat

3: Transmit commodity c E .IV\{n} data to out-neighbor node m E with power p.
4: if tT then

5: for all commodity c E A1\{n} do Set = V u. end

6: Inform relay prices çb =
(a), Vc E .N\{n}) to all its in-neighbors and users.

7 for all out-neighbors m e do
8: for all commodity c E .Af\{n} do Set = — — max. end
9: Set Cm = argmax E(c) Snm(c).

10: end
11: end
12: if then
13: for all relay nodes a E /\{n} do

14: Set = Zrnjqout (harn/(Inm + 7m)) max{S jm), 0}.
15: end
16: Inform interference prices ‘çb = Va e .Af\{n}) to all other nodes.
17: Set p = 0.
18: for all out-neighxr m E do
19: if Zm ,ut

Thm
< (ZaI\{m}

an)) then
(c)

— £(cm) / (‘c-’ (n)u. Jeb Pmm — vnm i i,L.daEJ\f\{n} Ya

21: else
22: Set (c) = (om)Prnax) / (ZaEN,,ut Sna).

23: end
24: end
25: end
26: Charge any node meJV and any iEV for relaying commodity cE.Af\{n} data at price

27: Pay any node m E Jf7ut for relaying commodity c e N\{n} data at price

28: Charge any other node a e .Af\{n} for the interference it causes on node n at price

29: Pay any other node a e A1\{n} for the interference node n causes on it at price gin)

30: until the wireless relay node n switches off.
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Algorithm 11 Executed by each wireless user i e D,
1: repeat
2: Set the transmission rates r by solving the convex optimization problem in (8.11).

3: Pay wireless relay node n for relaying any commodity c e ..A/\{n} data at price
4: until the wireless user i switches off or leaves the network.

8.3 Simulation Results

In this section, we evaluate the performance of our proposed TFP scheme and compare it with a

recently proposed SFP scheme in [126], where only the relay prices are taken into account and the

network is assumed to be interference-free. We consider three performance metrics: 1) network

social welfare, 2) fairness index, and 3) aggregate throughput. The fairness index is calculated

among the profits that the wireless relay nodes achieve [89]:
x(t))2 where T = 5000

NflEN(1x(t))

is the simulation time. Each wireless relay node n provides the connectivity for D! = 5 wireless

users. Each wireless user is interested in sending data to two other (randomly selected) users

inside the network. We consider ten different random topologies. In each topology, the wireless

relay nodes are randomly located in a 1 km x 1 km square field and the communication range is

200 m. There is a link between any two neighboring wireless relay nodes if they are within the

communication range of each other. For each wireless relay node n e N, we have: prnax
= 20 W

and R&X = 100 kbps. The transmission power, relay prices, and the interference prices are set

according to (8.17), (8.23), and (8.24), respectively. The unit of currency is selected such that for

a unit quieue backlog, relaying 1 Mbps data costs 1 cent, i.e., 0.01 dollar. Unless stated otherwise,

we assume the presence of slow-fading channels with the fading parameter A = 10. The impact

of fast-fading is also studied in Section 8.3.3.
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8.3.1 Performance Comparison with Single-Fold Pricing

The network social welfare and throughput, when the number of relay nodes N varies from 10 to

50, are shown in Fig. 8.2 (a) and (b), respectively. Each point is the average of the measurements

for all 10 simulated topologies. We can see that our proposed TFP always outperforms the SFP

scheme in [126], in terms of both throughput and social welfare. The performance gain increases

as N increases. It is because our interference pricing scheme better leverages optimal resource

allocation. As the number of nodes increases, more nodes interfere with each other’s transmissions

and optimal interference control becomes crucial. In fact, as Theorem 30 shows, TFP leads to

maximum social welfare. Considering the case where N = 50, TFP results in 24.6% higher social

welfare and 14.7% higher throughput compared to SFP.

The exact value of the social welfare, fairness index, and throughput for each of the 10

simulated topologies, where N = 50, are shown in Fig. 8.3 (a), (b), and (c), respectively. From

Fig. 8.3 (a) and (c), TFP always results in higher social welfare as well as higher throughput

compared to SFP. From Fig. 8.3 (b), TFP also always acts more fair. Recall from Theorem 29

that TFP guarantees high positive profits for all relay nodes. In fact, having the interference

prices helps those relay nodes that do not experience high traffic demand. Instead, they make

some money out of the interference charges. This results in a more fair revenue sharing among

the nodes. On average, TFP leads to 18.3% higher fairness index compared to SFP.

8.3.2 Maximum Weight Matching

At each time slot t E T, we define:

0(t)
= nE\iZcEN\{n} mEj\[ut L?n(p(t),W(t))S1(t’), (8.25)
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Figure 8.2: Network social welfare and aggregate throughput when the number of wireless relay
nodes N varies from 10 to 50. Each wireless relay node provides network connec
tivity for 5 wireless users. Each point is the average of the measurements for all ten
topologies: (a) Network social welfare, (b) Aggregate network throughput.
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Figure 8.3: Simulation results for each of the 10 random simulated topologies when N = 50
and the communication channels experience slow-fading (i.e., A = 10): (a) Network
social welfare, (b) Fairness index among the profits achieved by wireless relay nodes,
and (c) Aggregate network throughput.

where t’ is the smallest time slot in set 7 such that: t t’. In other words, t’ is the most

recent time slot at which the vector of channel states w has changed. We notice that, 9(t) is

indeed the same as the objective function in the maximum weight matching problem in (8.46).

From Theorem 30, TFP results in maximum network social welfare and maximum network utility

by periodically solving optimization problem (8.46), i.e., maximizing the values of 0(t). This is

illustrated in Fig. 8.4. In this figure, the trend of 0(t) for topology number 1 is shown versus

the time slots. Notice that, the fading parameter A = 10. Thus, the vector of channel states w

randomly changes every 10 time slots. This implies that the optimal solution of the maximum
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weight matching problem also changes every 10 time slots. For proper operation, TPF needs to

converge to the new optimal solution accordingly. This is shown in the zoomed area in Fig. 8.4

(b). Clearly, the convergence is fast. From the results in Fig. 8.4 (a) and (b), we can also see that

TFP always results in substantially higher maximum weight matching objective e(t), compared

to SFP. The higher the maximum weight matching objective, the higher is the aggregate network

utility [132]. From Lemma 7, this also implies higher network social welfare.

8.3.3 Impact of Fast-Fading

In the previous experiments, we assumed that the channels experience slow-fading. In this section,

we study the impact of fast-fading. Results for all the ten simulated topologies, where the number

of wireless relay nodes N = 50 and the fading parameter A = 2, are shown in Fig. 8.5. In this

scenario, the channel states randomly change every 2 time slots. As a result, our proposed

distributed transmission power adjustment mechanism (see lines 22 to 29 in Algorithm 10) does

not have enough time to converge to the new optimal solution of the maximum weight matching

problem after each change in the channel states. Thus, the optimal performance is not always

achieved. Nevertheless, from the results in Fig. 8.5 (a) and 8.5 (c), TFP still results in 46.3%

higher social welfare and 32.4% higher throughput, compared to SFP. On the other hand, from

Fig. 8.5 (b), TFP is 35.2% more fair compared to SFP in this scenario.

In summary, assuming the presence of slow-fading channels, our proposed TFP scheme leads

to not only higher aggregate profit across the nodes and users, but also more fair revenue distri

bution among the relay nodes. It also results in significantly higher network throughput. When

the underlying communication channels experience fast-fading, although TFP still results in sub

stantially better performance compared to SFP, optimality may not be always guaranteed.
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Figure 8.4: Trend of the maximum weight matching objective 9(t) versus time slots: (a) During
the whole simulation time, i.e., 5000 time slots, (b) During the first 200 time slots.
Notice that every T = A = 10 time slots, the channel states change randomly
and the maximum weight matching objective converges to its new optimal value
accordingly.
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Figure 8.5: Simulation results for each of the 10 random simulated topologies when N = 50 and
the communication channels experience fast-fading (i.e., A = 2): (a) Network social
welfare, (b) Fairness index among the profits achieved by wireless relay nodes, and
(c) Aggregate network throughput.
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8.4 Summary

In this chapter, we proposed a market-based wireless access network model with two-fold pricing

(TFP), where several self-interested wireless relay nodes provide the connectivity service for wire

less users. The relay-prices are used as incentives to encourage nodes to collaborate and forward

each other’s packets. The interference-prices are also used to leverage optimal resource alloca

tion. Together, the relay and interference prices incorporate both cooperative and competitive

interactions among the nodes. The positive profit for each individual wireless relay node is guar

anteed for a wide range of pricing functions. Assuming that CDMA technology is being used for

transmissions, the relay and interference pricing functions are then determined to also maximize

the network social welfare and aggregate network utility. Compared with the single-fold price

(SFP) scheme in [126], where only the relay prices are taken into account, simulation results show

that TFP increases the network social welfare and aggregate throughput by 24.6% and 14.7%,

respectively. TFP also leads to significantly more fair revenue sharing and profit distribution

among the wireless relay nodes with 18.3% higher fairness index.

For future work, we plan to extend our model to other multiple access technologies, such as

the contention-based medium access control scheme in the IEEE 802.11 distributed coordination

function. We shall also consider the effect of user mobility and roaming.

8.5 Analytical Proofs

8.5.1 Proof of Theorem 28

Knowing that all the constraints are linear and the objective function is strictly concave, problem

(8.14) is a convex optimization problem. Therefore, it has a unique local (thus global) optimal
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solution. In a high SINR regime, the optimal solution should satisfy the following necessary and

sufficient Karush-Kuhn-Tucker (KKT) optimality conditions [15, Proposition 3.3.1]:

(Cm(t))
. / *(Cm(t))(t) $‘(t) = V m é Nout (8.26)0nm (r),pnm

N (Zmemn
*(cnm(t))

—

= o, (8.27)out Prim ( )

mP*(m(t = 0nm ‘ ) , V m E JfOut (8.28)

0, t:7m> 0, VméAf,’t, (8.29)

*(Cm(t)) (t <where ? denotes the Lagrange niultiplier corresponding to constraint
ZmEN0Ut Pnm

*(Cm(t))and CTm denotes the Lagrange multiplier corresponding to constraint Pnm (t) 0 for

each wireless link (n, m) e We can show that if

prnax
Zmat m(t(t)

< a\{n} )(t)), (8.30)

then the KKT conditions (8.26)-(8.29) are satisfied by setting A = 0 and Om = 0 for all links

(n. m) e £ot In this case, for each link (n, m) e and any commodity C = Cm(t) such that

S(t) > 0, we h *(c) •(Cm(t)) ‘(t)). On the other hand, ifave Pnm (t) Onm /(I_daEN

ZmEJq
önm(t))ft\

out nm ) — aEK\{ri} t)), (8.31)

then the KKT conditions are satisfied by setting mn = 0 for all links (n, m) e Lt and

by (8.31)
—

(ZrnE
(Cm(t))(t) — prnax

(Zae\{n} t)))
/prnax > 0. (8.32)

— ,tout 0nm
n

Notice that, in this case, for each link (n, m) e Lt and any commodity c = Cm(t) such that

(ca(t))*(c)
> 0, we have Prim (t) = $m(t))(t) P,”/ (aE./,ut Sria (),j. Thus, since p(t) is

the only point that satisfies the KKT conditions in (8.26)-(8.29), it is indeed the unique global

optimal solution for the local transmission power control problem in (8.14).
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8.5.2 Proof of Theorem 29

From (8.13) and (8.18), for any node n e A1 and at any time t E T, we have:

(cxn(t) = X(t) + ZcjV\{n} ZmN nn(p(t),(t))(t)

ZcEjV\{n} ZmEut(p(t), c (t)) ((t) -t)- max)

= [ Zcein ZmEut (p(t), w(t)) S(t)

ZaEK\{n}
(n) (t) ZcE\{n} ZmEut p(t)] (8.33)

(k)(t)+ (c)
+ [ zCwfl (ZEDZkEDr mE1mfl(P(t), w(t))) kt)

(c)
— ZcN\{n} ZmEut nrn (p(t), (t)) (() max)]

+ ZaEJf\{n}bn (t) ZdEN\{a}ZbEut p (t).

Since the optimal objective function in (8.14) is non-negative,

(p(t),w(t))S(t)— > ij(t) > p(t) 0. (8.34)
cEN\{n} mt aEf\{n} cE\{n} mNt

Following the proof of [126, Theorem 2b], we can also show that:

(k)
ZcEN\{n} (ZievnZkevcni (t) +ZmEN (p(t), w (t))) t)

(8.35)
(c)

— ZcE\{m} ZmEt nm(p(t), (t)) ((t) — max) 0.

By replacing (8.34) and (8.35) in (21) we have:

(m)xn(t) ZaeAr\{n} (t) ZdEAr\{a} ZbEJ%fut p(t). (8.36)

Adding up both sides for t= 1, ... , T, the inequality in (8.19) results.
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8.5.3 Proof of Lemma 7

Replacing ?9(t) and xn(t) in (8.20) by (8.12) and (8.18), respectively, we have:

x(t) + Z1 ZiED 9(t)

= z (zZiED ZkEDC
r(t) (t)

(c)(c)
± ZmjV ZcEf\{n} iimm(P(t), w(t)) (t)

— Zci\{n} ltnm(p(t), w(t))q$2(t)

(c) ‘\(a)
+ aEfif\{n} (t)dEp\{a}ZbENout (t)_ZaEN\{nøi (t) cI\{n} Zme1t Pnm(t))

(k)((k)(t)) (k) (c)
± Zl ZnE ziv (Zc\{n} ZkeD g

— nE\{n} ZkED r (t) (t))

(k) (c)
= zi (ZCE\{} ZiED ZkEDr(t) (t) — r (t) (t))

(c)
+ ( (ZnEJrZCeiv\{n} tmn(P(t),1’(t))(t))

(c)
— (Znv cE1\{n} ZmEt nm(p(t), w(t)) (t)))

+ Z1 ((zfl ZaEN\{n}
(a)

(t) ZdEN\{a} bEutp(t))

— (Zne ZaE\{n}
(m)

(t) ZcN\{n} ZmEut p(t)))

(k) (k)
+ Z jED cN\{n} ZkED g (r (t))

(k) (k)
= Zt=i Zneiv ZiED cf\{n} ZkED g (r (t)).

(8.37)

The last line in (8.37) is indeed the same as (8.21). Notice that we have:

(p(t),w(t)))(t) = p(t),w(t))(t), (8.38)
nEJV cE.Af\{n} mEJ\I flEJ\1 c)’f\{n} mE.fV1t

and

,(a)(d) =
)(t)p(t). (8.39)

nEJ\1 aE.A[\{n} dE.Af\{a} bE.N”t nEJ.f aiV\{n} cEiV\{n} mEN,9’t

In (8.38), the left hand side denotes the aggregate relay price that all wireless relay nodes receive

while the right hand side denotes the aggregate relay price all wireless relay nodes pay. Similarly,
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in (8.39), the left hand side is the aggregate interference price that all relay nodes receive while

the right hand side is the aggregate interference price all relay nodes pay.

8.5.4 Proof of Theorem 30

Given t’ e T, for each time slot t e {t’,. .. , t’ + T }, consider two arbitrary non-negative valued

transmission power vectors 13(t) and 75(t) such that:

(t) -< 13(t), (8.40)

where the inequality is interpreted coordinate-wise. That is, for any wireless link (n, m) e £ and

each commodity c E N\{n}, we have (t) From (8.3), we can show that:

1nm(_n(t)), Vn e N, m e (8.41)

l/(inrn(n(t)) + m) < l/(Inm(13_n(t)) + im), Vu E N, m e N0t (8.42)

> (t)), Vn eN, a c- N\{n}, (8.43)

1/ ZaE)1’\{n}
thin) ((t)) 1/ ZaEV\{n}

/4) ((t)), Vu C N. (8.44)

Replacing (8.44) in (8.17), we have:

(t +1) 3(t + 1). (8.45)

From (8.40) and (8.45), the update formulation in (8.17) forms a monotone mapping [18]. Mono

tone mappings satisfy both synchronous convergence and box conditions [18, pp. 431]. Thus,

from the asynchronous convergence theorem [18], the transmission powers will converge to a fixed

point, assuming that T = A is large enough. By definition, p should denote the optimal solution

of the local optimization problem in (8.14) for all relay nodes. Next, we show that p also denotes
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the unique optimal solution of the following maximum weight matching problem [131, 132]:

max ZnEAI ZcEr\{n}ZmEvout t(p(t), (t)) s$(t’)

s.t. ZcEj\{n}ZmEft p(t) <Pt, Vn eN (8.46)

p(t) = 0, VneN, ceN\{n}, m74 or c Cm(t’) or S(t’) 0.

Notice that the objective function in (8.46) is different from the objective function in (8.14) as

it is the weighted summation of the data rates over all links. Problem (8.46) is indeed the key

resource allocation problem to be solved by the back-pressure algorithms [131, 132]. Using the

logarithmic change of variables (cf. [30, Theorem 1]), we can transform problem (8.46) to an

equivalent convex problem. Thus, problem (8.46) has a unique optimal solution (cf. [15]). Let

p* denote the unique optimal solution of problem (8.46). From KKT conditions, we have:

_________

(db(t’))(/)
*

(t’)) Z\{m} ZbEut(t) hnb/*(t))+ = Pnm, V e N, m e N0ut (8.47)
Pnrr

( *(Cnm(t’)) — pmax)
= 0, V n e N (8.48)rnetv’t Pnrn (i)

*QnmPnmm(t(t) = 0, V n E N, m C Nout (8.49)

P 0, 0, V m e N. m e Nout (8.50)

where for each node n e N, p denotes the Lagrange multiplier corresponding to constraint

mEJvtPflm (t) <P’ and P.m denotes the Lagrange multiplier corresponding to con

straint *(cm(t’)) 0. Comparing with (8.27)-(8.29), the KKT conditions (8.48)-(8.50) hold ifPnm (i)

we set p p = Az,, and m = m’ for all nodes n e N and all links (n, m) E0ut. In this

case, since

_____________

by (8.24)

0ut

hb I(*) + 11b —

aJ’.f\{n} bEJVa aEfi/\{n}
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the KKT condition in (8.47) is also resulted from (8.26). Thus, p =
p is indeed the unique

optimal solution of the maximum weight matching problem in (8.46). In other words, given the

interference pricing model in (8.24), optimization problem (8.46) is solved every T = A time

slots. This, together with (8.23), results in achieving maximum aggregate network utility (cf.

[132] and [134, Theorem 41). From Lemma 7, obtaining the maximum aggregate network utility

also implies achieving maximum network social welfare.
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Conclusions and Future Work

9.1 Summary of Work Accomplished

In this thesis we have considered various optimal resource management problems in wireless access

networks More specifically, we have considered three problems under the general framework of

network utility maximization:

Cross-Layer Interface Assignment and Channel Allocation for MC-WMNs: In

Chapters 2, 3, 4, and 7 of the thesis we developed practical cross-layer channel and interface

assignment algorithms to optimize the network performance in MC-WMNs. It was a chal

lenging task because of the lack of accurate and tractable capacity models and the inherent

discrete properties of the channel and interface assignment problems. We first developed a

linear link capacity model using the concepts of multi-channel contention graph and binary

linearization (see Chapters 2, 3). We also proposed a novel continuous capacity model in

the context of multi-interface multi-channel random access (see Chapter 7). Unlike the

prior work, we took into account not only the orthogonal (i.e., non-overlapped) frequency

channels, but also the partially overlapped channels (see Chapter 4). This specially en

abled us to fully utilize the available frequency spectrum. We then formulated a family of

NUM problems which could incorporate the features of the multi-channel WMNs. Using
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various techniques from the optimization theory and the theory of parallel and distributed

computation, we solved the formulated problems both in centralized and distributed fash

ions. Compared to the previous channel and interface assignment algorithms, our proposed

algorithms achieve better efficiency-fairness tradeoff and have reduced computational com

plexity. They also closely collaborate with other network resource management algorithms

such as MAC, routing, and congestion control.

Simple, Robust, and Optimal Random Access: In Chapters 5 and 6, we considered

the NUM problem at MAC layer when the optimization variables are the persistent prob

abilities of the wireless nodes. Most of the previous NUM-based random MAC algorithms

have one or more of the following performance bottlenecks: (1) extensive signaling overhead,

(2) requiring synchronization among wireless nodes, (3) slow convergence speed, and (4)

supporting a limited range of utility functions under which the NUM is shown to be a con

vex problem. Thus, most of the previously proposed NUM-based random MAC algorithms

are not adequate for practical implementation. Our proposed random MAC algorithm in

Chapter 5 overcomes these bottlenecks in all four aspects. First, it only requires a limited

message passing among the nodes. The signaling overhead is reduced by a factor of 10. Sec

ond, our algorithm is fully asynchronous. This minimizes the coordination overhead and

allows maximum heterogeneity among wireless nodes in terms of computational complexity

and software implementation. Furthermore, our algorithm is robust to arbitrary large but

finite message passing delays as well as message loss. Third, our algorithm can achieve much

faster convergence. Finally, our proposed algorithm has provable convergence, optimality,

and robustness properties under a wide range of utility functions, even if the corresponding
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NUM problems are non-convex. We then modified the algorithm to eliminate the need

for frequent message passing in Chapter 6. In the proposed algorithm, each wireless node

simply observes the contention history and accordingly assigns its persistent probabilities

to maximize the NUM problem. This is of critical importance in practice, since any explicit

message passing among wireless users will lead to further contentions in the network and

reduce the network performance.

• Two-Fold Pricing for Multi-Hop Wireless Access Networks: In Chapter 8, we

proposed a market-based model with two-fold pricing for wireless access networks. In our

model, the relay-pricing is used to encourage nodes to forward each other’s packets. That

is, each node receives a payment for the relay service it provides. We also considered

interference-pricing to leverage optimal resource allocation. Together, the relay and the

interference prices incorporate both cooperative and competitive interactions among the

nodes. We proved that two-fold pricing guarantees positive profit for each individual wireless

node under a wide range of pricing functions. The profit increases as the node forwards

more packets. Thus, the cooperative nodes are well rewarded. We then determined the

relay and the interference pricing functions such that the network social welfare and the

aggregate network utility are maximized. Simulation results show that, compared to a

recently proposed single-fold pricing model where only the relay prices are considered, our

proposed two-fold pricing scheme significantly increases the total network profit and the

network throughput. It also leads to more fair revenue sharing and profit distribution

among the wireless nodes.
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9.2 Future Work

This thesis can be extended in several aspects. Here, we present overview some possible directions

for future work.

Tackling Non-Convex Optimization Problems: The analysis techniques we proposed

in Chapter 5 are quite general and can be used to tackle various other non-convex opti

mization problems in communications and networking. The key idea is to break down the

original problem into several local and myopic problems from each node’s point of view.

In many cases (as in the case for random access as well as multi-interface multi-channel

random access), the local problem turns out to be convex. This implies that each node can

easily solve its local resource management problem. In some cases, the closed-form solu

tion can also be obtained as in Theorems 10 and 11. Then, we can apply several mapping

analysis techniques (see Section 1.2.3) to derive the behavior of the system when each node

only solves its own local and myopic optimization problem.

• Algorithms with No Explicit Frequent Message Passing: The novel distributed

learning strategies in Chapter 6 can also be applied to other resource management problems

to achieve signalling-free protocols. In particular, it is easy to extend the multi-interface

multi-channel random access algorithm in Chapter 7.

• Partially Overlapped Channel Assignment: The mathematical formulations in Chap

ter 4 can be used to extend a wide range of frequency channel assignment algorithms in

the literature that only use orthogonal channels. In fact, different from the general theme

of this thesis which uses optimization as the main solution tool, the proposed models in
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Chapter 4 can even be used for related heuristic channel assignment algorithms.

• Channel Assignment Using Convex Optimization: The continuous capacity model

that we have provided in Chapter 7 can be used in different problems, other than the

formulated NUM problem. In many cases, the local and myopic problem of each wireless

node remain convex, which enables us to take the advantages of the existing wide range of

convex programming tools.

• Two-Fold Pricing for Other Access Technologies: Here in this thesis, we limited our

two-fold pricing model to the case where the CDMA technology is being used. However,

our interference pricing model in Chapter 8 can easily be replaced by the corresponding

models for other access technologies such as random multiple access as in Chapter 5.
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