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Abstract

We prove various results in additive combinatorics for subsets of random
sets. In particular we extend Sarkdzy’s theorem and a theorem of Green
on long arithmetic progressions in sumsets to dense subsets of random sets
with asymptotic density 0. Our proofs require a transference argument due
to Green and Green-Tao which enables us to apply known results for sets of
positive upper density to subsets of random sets which have positive relative
density. We also prove a density result which states that if a subset of a
random set has positive relative density, then the sumset of the subset must
have positive upper density in the integers.
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Chapter 1

Introduction

1.1 History

Additive combinatorics can be described as a study of the structural prop-
erties of sets of integers, or more generally, additive groups. While this area
has long been of interest to mathematicians, over the past few years there
has been an abundance of collaboration between those who study number
theory, harmonic analysis, combinatorics and ergodic theory. In this intro-
duction we will provide motivation to the work included below through a
discussion of the history of additive combinatorics as well as some (difficult)
conjectures which remain open.

One of the first results in the subject which is today called additive
combinatorics is a coloring result due to van der Waerden proved in 1927.
He was able to show that given integers r and k, if the set of integers is
colored by 7 colors, then there must be k integers in arithmetic progression
which are monochromatic. A related result, due to Schur states that if the
integers are r-colored, then there must be z, y and z, monochromatic, such
that z + y = 2. Both of these problems fall into the category of Ramsey
theory which is concerned with extremal results. We can rephrase them as
follows: Suppose {1, ...,n} is colored with r colors. How large must n be (as
a function of r) to guarantee the desired monochromatic structure?

In 1936 Erdos and Turdn formulated the following conjecture:

Conjecture 1.1.1. Suppose A C N such that
1
POEET
a€A a
Then A must contain arithmetic progressions of arbitrary length.

We remark that this can be seen as an extension of the theorem of van
der Waerden since if we color the integers with finitely many colors, then
certainly one of the color classes will satisfy the hypothesis of Conjecture
1.1.1. However, no such generalization of Schur’s theorem exists since, for
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example, the set of odd integers also satisfies the hypothesis of the Conjec-
ture but there are no three odd numbers which satisfy « + y = z.

While Conjecture 1.1.1 remains open, there have been many interesting
results in that direction. We say that a subset A of the integers has positive
upper density if

lim sup A0, nl > 0.
n—00 n

In 1953, Roth [13] proved that any subset of the integers with positive upper
density must contain arithmetic progressions of length three. A few years
later, building on Roth’s result, Varnavides [17] showed that, in fact, such
a subset must contain many three-term arithmetic progressions. While we
will not elaborate on the details of proof here, we note that the reader can
compare the proof of Roth’s theorem to that of Sarkozy’s theorem on square
differences included in Section 1.4. Similarly the extension of Sarkozy’s
theorem contained in Chapter 2 follows Varnavides’ original argument.

In 1975, Szemerédi extended Roth’s theorem for arithmetic progressions
of arbitrary length. Specifically, he proved the following:

Theorem 1.1.2. Szemerédi’s Theorem. Let k be a positive integer and
let 6 > 0. Then there exists N = N(k,d), such that every subset A of
{1,..,N} such that |A| > 6N must contain an arithmetic progression of
length k.

Motivated by Szemerédi’s work, Furstenberg [4] provided an ergodic
proof of the same theorem. More recently, in 2001, Gowers [5] approached
the problem with a proof that can be seen as a generalization of Roth’s
original argument for three term arithmetic progressions. Many of the ideas
developed by Gowers were used by Green and Tao [8] in proving that the
primes contain arithmetic progressions of arbitrary length.

Inverse problems form another important topic in additive number the-
ory. Suppose that A C {1,...,N}. Freiman’s theorem [3] states that if the
size of the sumset A + A := {a1 + a2 : a1, a2 € A} is small (relative to the
size of A) then A itself must be very structured. To state Freiman’s theorem
precisely, we require a the following definition:

Definition 1.1.3. Suppose that xg, z1, ..., 24 are integers and my, ma, ..., My
are positive integers. A generalized arithmetic progression of dimension d is

defined
d

PI—’:{.To-f-Z)\jxj :OS/\jSmj—l}.
i=1
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If the size of the progression is equal to the product of the m;s, we say that
P is proper.

An illustrative example of a generalized arithmetic progression is defined
by the set P := 6+ {0,3,6,9} + {0, 100,200, 300}. Freiman’s theorem then
states:

Theorem 1.1.4. (Freiman-Ruzsa-Chang) Suppose A C Z and |A] = N
and |{A + A| < C|A|. Then there ezists a proper d-dimensional arithmetic
progression P such that A C P and |P| < CiN where d < [C — 1] and
log(|P|/14]) < C*(log C)*.

Despite many works on the above subjects there remain many open
problems. Even the case of three term arithmetic progressions has not been
satisfactorily solved. In terms of an upper bound, the best known result is

d . . . . (log log N)?
ue to Bourgain [2] in which he shows a set of density § > oz N)TIT (assum-

ing N is sufficiently large) must contain three term arithmetic progressions.
On the other hand, the best lower bound due to Behrend [1] shows that

there exists a subset of{1, ..., N} of size N 1- VR + T which contains no
three term arithmetic progressions.

In the case of Roth’s theorem, there have been some interesting results
for sets which do not satisfy Bourgain’s bounds. In 1996, Kohayakawa,
Luczak and Ra6dl [12] proved a version of Roth’s theorem for sets of asymp-
totic density zero which satisfy the additional hypothesis of positive relative
density in a random set which has density zero in the integers. In 2002,
Green [7] proved a version of Roth’s theorem for sets which have positive
upper density in the primes.

1.1.1 Statement of main results

The purpose of this section is to state the main results contained in this
thesis. Theorems 1.1.5 and 1.1.6 are contained in Chapter 2 and can be found
as Theorem 2.1.2 and Theorem 2.1.4 respectively. The proof of Theorem
1.1.5 can be found in Section 2.4. The proof of Theorem 2.1.4 can be found
in Sections 2.6, 2.7 and 2.8. The purpose of the remainder of this chapter
is to provide an introduction to the ideas used in Chapter 2 and to fill in
certain details that were omitted from [11].

In 1978 Sérkozy [15]) proved a variant on Roth’s theorem showing that
subsets of positive upper density must contain two elements whose differ-
ence is a perfect square. The same result was proved independently by
Furstenberg ([4]) using ergodic theory around the same time. In 1988, Pintz,

3
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Steiger and Szemerédi, using a combination of Fourier analytic and combi-
natorial arguments, showed that any subset of {1,..., N} of size at least
(log N)~cloglogloglog N v muyst contain a square difference. On the other
hand, a construction of Ruzsa shows that there exists a set of size N170-267
which contains no square difference. It is conjectured that for any ¢ > 0,
and N sufficiently large (depending on ¢), there exists a set of size N17¢
which contains no square difference.

In a joint paper with Izabella Laba we prove the following variant of
Sarkozy’s theorem.

Theorem 1.1.5. Suppose that W is a random subset of Zy such that the
events ¢ € W, where x ranges over Zy, are independent and have probability
p=p(N) € (cN79 1] where 0 < 6 < 1/110. Let o > 0. Then the statement

for every set A C W with |A] > oW, there are z,y € A such
that * — y is a non-zero perfect square

is true with probability 1 — 04(1) as N — oo.

If A is a subset of the integers, it is known that the sumset A + A =
{a1 + ag : a1,ap € A} contains ‘more’ additive structure than the original
set. The case when A is a subset of positive upper density has been studied
by Bourgain, Ruzsa, Green and Sanders. For a more detailed discussion of
the history of this problem we direct the reader to the introduction of [11]
included below. We prove the following analogue for subsets of random sets.

Theorem 1.1.6. Suppose that W is a random subset of Zy such that the
events * € W, where x ranges over Zy, are independent and have probability
p=p(N) € (CN79,1], where 0 < 6 < 1/140. Assume that o and k obey

a> Cyloglog N

1.1.1
Vieg N ( )
2loglog N
k <exp T @ 0808 : (1.1.2)
Cs log - (logloglog N + log =)

where Cy, Cy are sufficiently large constants. Then the statement

for every set A C W with |A] > a|W|, the sumset A+ A contains
a k-term arithmetic progression

is true with probability 1 — ok (1) as N — oo.
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1.2 Preliminaries and Notation

Throughout this paper, we will be concerned with subsets of the integers or
subsets of the additive group Zy := Z/NZ. We define e(8) := exp(27if).
We often use the notation A(z) to denote the characteristic function of the
set A. Suppose that f and g are real-valued functions with f(z) > 0 for all
z. We write g(z) = O(f(z)) if |g(z)| < Cf(z) for some constant C > 0.
If f(z) > 0 we write g(z) = o(f(z)) if limp—eo g(z)/f(z) = 0. Finally,
if there exists C7 and C2 such that C1f(z) < g(z) < Caof(z) we write
9(x) = O(f(z)).

-In this setting, we begin with some preliminary definitions and lemmas
which will be used throughout.

Definition 1.2.1. Suppose that f : Zy — C. Then we define the discrete
Fourier transform

F©) =5 32 fla)e(~at/N).
TELN

Definition 1.2.2. If f and g are functions such that f,q : Zny — C, then
we define their convolution

(Fr9)@) = 3 FW)glz—y).

YEZN

Lemma 1.2.3. Suppose that f and g are functions such that f,g : Zn — C.
Then the following identities hold:
(i) Parseval’s identity:

Y ROT@ =5 3 f@i@),

E€EZN z2€LN

(ii) Fourier inversion:

fz) =Y F(&)e(—at/N),
£€eZn

(ii1) Convolution identity:
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We will denote the LP-norm of f by

£ oy := (D (@) P)HP

T€X

and if X = Zy we will write || f||,. We will say that the probability of a set

Ais |
P(A) = —.
(4) = 5
We define the related exzpectation for a function f: Zy — C to be

1
Ef =Eof = > f@)
TELN

It will also be useful to sometimes use the conditional probability and con-
ditional ezpectation, defined respectively,

AN X]| _
PUALK) = S B = 157 T £

1.3 Bohr Sets

In this section, we include some background relating to Bohr sets. In partic-
ular, we provide a detailed exposition of the results required in {11], including
a localized version of a theorem of Chang which is developed in [14].

One of the first uses of Bohr sets in additive number theory came in
a paper of Bourgain [2] in which he improved the upper bound on 73(N)
(the function which denotes the size of the largest subset of {1, ..., N} which
contains no three term arithmetic progression). His proof relies on a density
increment argument, however instead of iterating on arithmetic progressions,
he increases the relative density of a subset in consecutive Bohr sets. As we
will see, one can show that Bohr sets contain long arithmetic progressions.

Definition 1.3.1. A Bohr set is a set of the form B = b+ B(A, ) where
beZn, ACZn, 6 €(0,2) and

B(A,$) :={x € Zn :le(x§/N) = 1| < § for all £ € A}.
We will say that the Bohr set B is of rank d := |A| and of radius §.

In the following lemma, we state two basic facts about Bohr sets that
we will use throughout.
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Lemma 1.8.2. Suppose A C Zy is a set of frequencies, and §, 8,, 62 € (0,2).
Then the following are true,

B(A,8,) + B(A, 85) € B(A, 81 + &) (1.3.3)

|B(A, 8)] < CM|B(A,6/2)] (1.3.4)

for some absolute constant C > 1,

Definition 1.3.3. Let ¢y € (0,1/2) be a small parameter. We will say that
a Bohr set B(A,6) is co-reqular if

P(B(A, (1 +¢§)9) \ B(A, (1~ c)8)) < coP(B(A, 6)).
We will also say that B = b+ B(A,d) is regular if B(A,6) is regular.
If B is a cg-regular Bohr set, then we have the following size bound.
Lemma 1.3.4. Let B(A,d) be a co-regular Bohr set. Then
|B(A,8)] > (c™'c3a)Al.

Proof. We first notice that B(A,d) C B(A, (1 + ¢)d). Hence, by regularity,
we have

IB(A, )\B(A, (1 = c§)8)| < |B(A, (1 4+ c)O)\B(A, (1 — c§)d)]
< co| B(A, 8)).

Hence we must have that B(A, (1—c2)d) is nonempty. Say b € B(A, (1—c3)9).
Now by Property 1.3.3 we have

B(A,c38) + B(A, (1 — c)é) c B(A,6)

and hence

B(A,c26) + b c B(A,6).
Finally using Property 1.3.4 we have |B(A, c26)| > (¢~ !c26)! as desired. O
Lemma 1.3.5. Assume cg is small enough. Then for any A C Zy with

|A] < /coN and for any &g > 0 there exists § € (8p/2,60) so that B(A,§) is
co-reqular.



Chapter 1. Introduction

Proof. We pick radii g > 61 > ... > 041 = 60/2 where k = ©(N) such
that 841 < (1 — ¢3)d; < (1 +c2)d; < 6;—1. By Property 1.3.4 we have

|B(A, 60)| < CIMIB(A, 6o/2).
Hence, by the pigeonhole principle there exists 1 < i < k such that
IB(A, 8i—1)| < CHM|B(A, 6:41)). (1.3.5)
Using this, and the fact that B(A,diy1) C B(A,d;—1), we have
IB(A, (1+¢§)di)| < |B(A, 6i-1)]

< CHNEIB(A, 6:11)]

< CPMKIB(A, (1 - c3)di)].
Since B(A, (1 — c2)d;) € B(A, (1 + c3)d;), we must have

IB(A, (1+ §)a)\B(A, (1= c§)8:)| < |B(A, (1 + c§)d;)| - CT,lmth, (1+c5)s)]

2JAl/k _
< liB, 0+ .

Using the assumptions on |A| and k we have C2M/% = 1 4 O(,/G) which
gives the desired result. [

1.3.1 A localized version of Chang’s theorem

In this section we would like to explain a localized version of Chang’s struc-
ture theorem due to Sanders. We begin with dissociated sets and the state-
ment of Chang’s theorem. We also include a description of Sanders’ result,
its relation to the work of Chang and other ingredients of its proof.

Definition 1.3.6. We say that the set A := {A1, ..., \x} is dissociated if

0,

g
S
P
il

where ¢; € {—1,0,1}, implies ¢; = 0 for every 1 < i < k.

Definition 1.8.7. If A := {\1,..., \y} we say that the cube spanned by A is
the set of the form

J
A= {Z CiAi T A E A,Ci € {—1,0, 1}}
1=1
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The following theorem shows that the set of large Fourier coefficients of
a given subset of the integers must be structured.

Theorem 1.3.8. (Chang’s theorem) Let p,a € (0,1], let A C Zy such
that |A| = aN and define R C Zy by

_ R:={€ € Zy : |A(E)| > pa).
fl_’hen there ezists a mazimal dissociated subset A C R so that R C A and
|A] < 2p7%log(1/a).

In the remainder of this section, we will explain the following proposition
of Sanders which we require to prove Proposition 2.7.1.

Proposition 1.3.9. Suppose B := B(T,§) is a regular Bohr set and that €,
n € (0,1]. Assume f : Zy — R such that supp(f) C B. Then there exists
A C Zy and &' € (0,1] such that

Al < €[Bllog (I £II 7 I /I 2(my)

dne?

5 '
> @|B|log (£ 72 5 1 £ 132 ()

and

~ elB
€ ez 1F©)1 = T2 1))
Cc{é€eZy:|l—e(—x£/N) <nVzeB(TUAJ)}
Sanders proves his theorem with two lemmas which can be compared
with the two conclusions of Theorem 1.3.8. The first step shows that the
~ set of large Fourier coefficients of f must satisfy a structural inclusion. The
second step shows that this inclusion is ‘nice’ in a quantitative sense. Before

we can state the two required lemmas, we must generalize the definition of
dissociated sets in the context of Bohr sets.

Definition 1.3.10. Suppose A := {\1, ..., \g} and m := (m;)¢_, where m; €
Z. Define

d
mA = Z mi)\i
i=1
and

d
|m| := Z m;.
i=1

Let S be a non-empty symmetric neighborhood of 0. Then we say that A is
S-dissociated if mA € S implies m; = 0 for every 1 <i < d.
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With this definition we use the following lemma to show that the set of
large Fourier coefficients of a function f is contained in a highly structured
set.

Lemma 1.3.11. Suppose B := B([',4d) is a reqular Bohr set and let e,
n € (0,1]. Suppose f : Zn — R such that supp(f) C B and define S := {€ €

~

Zy  |F©) > R flos} I A is o mazimal {€ € Zy : [B()| 2 31571
dissociated subset of S then there ezists

' ming L 10

] >>mm{|A]’3d}

such that
Sc{¢eZy:|1—e(—z£/N)|<nVzeB(ITUAJ)}

The proof of this lemma is straightforward and follows from basic facts
about Bohr sets. Since the proof requires several steps, we recommend the
reader consult {14] for a detailed proof.

Lemma 1.3.12. Suppose B, f, €, n and S are as in the previous lemma.
Further, assume that f # 0. Then there exists §" > E\dﬂ such that B(T, ")

is regular and such that if A is a {{ € Zn : |§(§)| > m%}-dissociated subset
of S then

IA] < (Bl 1og(| £ 1/ Wz i)

While the proof of this lemma requires a localized version of Rudin’s
inequality, several steps are similar to the proof of Chang’s theorem. Again
we direct the reader to [14] for a complete proof.

Finally, we would like to mention that Proposition 1.3.9 can also be
seen as a quantitative improvement of the dual version of a local Bessel
inequality of Green and Tao [10]. Using the ideas from Chang’s structure

theorem, Sanders greatly improves the size on |A| with a cost on the size of
5.

1.4 A proof of Sarkozy’s Theorem

In this section we include a proof of Sdrkozy’s theorem following Green [6]
which we require in order to prove Theorem 2.3.1. We also remark that
as in [6] we do not require the best known bounds, and so minimize the
technicalities which results in a less than optimal quantitative bound.

10
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Theorem 1.4.1, (Sarkozy’s theorem) Let 6 > 0 and suppose A C
{1,...,N} so that |A| > 0N. Assume N is sufficiently large. Then there
exist elements x and y in A (x # y) so that x — y is a perfect square.

We begin with some preliminary lemmas and propositions. For the re-
mainder of this section, we assume S to be the set of non-zero squares less
than or equal to N/2.

Proposition 1.4.2. (Squares in uniform sets) Let § > 0. Suppose
AC{1,..,N} such that |A| = 6N. Assume that |A(€)| < o for every £ # 0
where o 1= 2730§13/2 Then there exist z, y € A such that x —y is a perfect
square.

Proof. We first note that A must have density § on at least one of the
intervals [0, N/2] or [N/2,N|. Without loss of generality, assume B :=
AN [0,N/2] is such that |B| > dN/2. If we then consider A and B as
subsets of Zy we can bound the number of integer square differences from
below using the number of square differences modulo N. The number of
square differences modulo NV is larger than

> S(@)B)Aly +z) =N > S(€)B()A(-¢)

z,Y€Zy §€ZN
= N?5(0)B(0)A(0) + N* " (5)(€) B(¢)A(~¢)
£#£0

> N3/252/4

- N max [A@©1° 3 IS©IBEIAEP”
EE€EZN

> N3/252/4 — N2 1?28( lg(g){l/G(ggz:N ‘§(£)|12)1/12_

(- IBEOPY (X 1A©r)™"
E€Zn EEZN

where we have used Parseval’s identity and Holder’s inequality. Using Par-
seval again, we have the bounds }, |B(£)]? < & and 2e |A(&)|? < 6. From

[6] we have ||S|12 < 21%12N~-1/2_ Putting this all together, with the as-
sumption of a-uniformity, we have

N3/2(52
Z S(z)B(y)A(y + =) > _ ol/6 . 919/12 \3/2511/12
T,y€ELN
This quantity is positive with our choice of & as desired. 0

11
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Proposition 1.4.3. (Density increment) Suppose there exists £ € Zy
such that |A(£)] > 27396'3/2|A|/N. Then there exists a progression P with
square difference such that

(i) BBPL > 6+ 2763512

and

(ii) |P| > L NV/os

We require the following lemma cited in [6] from [5]. The proof uses
Weyl’s inequality.

Lemma 1.4.4. Let a € Zy and suppose 92'% <t < N. Then there ezists
some p < t such that |p%a| <t~ /16N,

Proof. (Of proposition 1.4.3) By Lemma 1.4.4, we take t = N'/%, and hence
there exists p < N'/4 such that |p?¢| < N%3/64. We then define the square
difference progression P := {p? 2p?, ..., Lp?} where L = s N/%4. Then, we
have the estimate

P(&)=N"' )" P(z)e(-z¢/N)
r€ELN
L

N3 e(—(jp2)E/N)

7=1

fl

Mu

N— 1

Il

(1- (1~ e(=(p*)E/N)))

1

.
Il

L
=L/N = N7'3" (1 e(~(jp?)&/N)).

j=1

Hence, using the triangle inequality, we have

\P (§)|>———le—e (jpYE/N)]
L 2
2—]\7(1—%5’%5—')
> L
~ 2N

Now we would like to show that A has increased density on some translate
of P. We begin by summing the relative densities over all translates. In the

12
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following calculation we use the definition of convolution as well as Parseval’s
identity and the convolution identity given in Lemma 1.2.3.

%:lAﬂ(w—P)lz = ;le@)(x—P)(y)l?
=3 |Ay* P(z)[*
= ;%jl(m)(e) ’
= NS JAEPIPE)P

> N&2L2(1 + 279261,

This bound shows that we have the desired density increment for a given
progression modulo NV, however we require true Z progressions. Hence, we
need to check that our bound holds for some square progression that doesn’t
split. We say that a progression P is ‘good’ if it is a genuine Z progression
and we denote the set of such progressions by G. Our choice of L gives
Lp2 < Q%NI/G‘INI/2 < N2/3 and hence we know that the set of ‘good’
progressions must have size at least N1/3. Therefore, the contribution to
our estimate above from ‘bad’ progressions is given by

Y lAn(@-P)P <) L* < LANY3,
z¢G z¢G

Hence, we have

D AN (z— P)? > N&2L*(1 + 275%™) — [2N?/3
zeG
Z N(SZLZ(]. + 2—~63511)

for large enough N. On the other hand, we have
Z|Aﬂ z—P |2<max|Aﬂ (z—-P IZIAO (z—P

zelG z€G
< |A|Lmax|AN (z — P)].
z€G

Hence, there exists g € G so that
AN (2o — P)| > 6(1 4 275361)|P)
as desired. O
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Chapter 1. Introduction

Proof of Sarkoézy’s theorem: We use the following iterative argument:

Step 1: Set Py := {1,...,Ng} where Ny := N, Ay := A and §p =
|Ao|/|Po|. If Ag is such that 713(5” < a for each £ # 0, we terminate.
Otherwise, there must exist & such that |A(&)] > 613/2 . 273%, Hence by
Proposition 1.4.3 there exists a square difference progression P; such that

| Ao N Py —63512
— >+ 274
and ]
|| > =N/,

=200

Step 2: Map the set AgN Py to 4, C {1, ..., L1/20N5/64J} =: P. Any
square difference found in Ay will correspond to a square difference in Ag.
Now apply the same argument as in Step 1.

Iterating this argument, we will reach a density of 24y after at most
203511 gteps and a density of 1 after less than 264571! steps. Finally, we
check that after our iterations we still have a set Pi which has at least two
elements. We can check that this happens as long as ¢y N(1/ (42" > 2
which we can guarantee as long as N > exp(exp(cd™11)).

1.5 The transference principle and
pseudorandom sets

The idea of transference enables us deduce results for sets which obey certain
random properties from results which are known for sets of positive upper
density. The first such result of this type is a version of Roth’s theorem
in random sets due to Kohayakawa, Luczak and Rodl [12] which we briefly
described in Section 1.1 and is stated precisely in Section 2.1. A Fourier
analytic proof of the same result is given by Tao and Vu in [16]. The first
such application developed in the Fourier analytic setting was by Green [7]
in order to prove his version of Roth’s theorem in the primes.

Theorem 1.5.1. (Green) Suppose that A C P, where P is defined to be
the set of primes, such that :

. |AN Pp|
lim sup

=a>0

where P, is the set of primes less than or equal to n. Then there exists z,
Yy, z € A such that x + z = 2y.

14



Chapter 1. Introduction

Green’s theorem states that if one considers a subset of the primes with
positive relative density, then Roth’s theorem still holds. In his proof he
exploits the fact that the primes obey certain random properties.

Later, Green and Tao [9] reformulate the transference principle in a
form we use below. The application in their paper allows them to deduce a
version of Roth’s theorem for subsets of Chen primes (those primes p such
that p+ 2 is the product of at most 2 primes) with positive relative density.
This form of the transference principle says that if a set is majorized by
a ‘pseudorandom’ measure then the set can be decomposed into a large
bounded component plus a small uniform component. On the bounded
component we can apply known results for sets of positive upper density,
while the uniform component only contributes a small error term.

Lemma 1.5.2. Assume that f: Zn — [0,00) satisfies E(f) > d > 0 and
I7lg < M (1.5.6)

for some 2 < g < 3. Assume also that f < v, where v: Zy — [0,00) obeys
the pseudorandom condition

12(€) — Le=olloo < 1 (1.5.7)

for some 0 <n < 1. Let

filz) =E(f(z+y1 —y2) : y1,¥2 € Bo),

where
Bo={z: |e72™%=/N _ 1| < ¢, € € Ao}, Ao = {&: |F(€)] > €0}

for some ey to be fized later. Let also fo(z) = f(x) — fi(z). Then

(i) 0 < fi S 1+ (1+P(Bo) ™),

(i) Efy =Ef > 5,

(i1i) | f2(lloo < 3(1 + n)eo,

(w) |fi(O) < ()] for all & € Zy and ¢ = 1,2. In particular, (1.5.6)
holds with f replaced by f».

Proof. (i) To verify that |fi| < 1+ nN/|Bg| we use the definition of fi, the
fact that f is bounded by the pseudorandom function v, and the Fourier
inversion formula 1.2.3 (ii). We have,

15



Chapter 1. Introduction

|f1] = |Ey1,y2€Bo (f(m t4%— y2))|
< lEyl,yzeBo (V(m +4% - y2))|
= |EypeBo ) P€)e(—(z +y1 — y2)¢/N))|

€l

= [EyiyaeBo Y D(E)e(—2&/N)|EByepye(—yE/N)?|

€Ly
< Y (OEyenoe(—yE/N)
£€Zn
< 1+ nN/|Bo|

which completes the proof of (i).
(ii) The fact that Ef; = Ef follows directly from the definition of f;.
(iii) and (iv) We begin with the observation that |f1(£)| < |f(£)| since

AE©) =N3> fi(z)e(-z¢/N)

TE€ELN

=N Z Ey, y.eBo f (2 +y1 — y2)e(—z€/N)
TEZN

= F(&)|Eyen,e(ye/N)?

which verifies (iv) in the case that ¢ = 1. Using this equality, we have

£2(6) = f(&) - f1(6)

~

= f(€)(1 ~ [Eyen, (e(y€/N))P?)

which shows (iv) with ¢ = 2. Now, if £ € Ag then for each y € By we must
have |e(y§/N) — 1] < € by the definition of By. Combining this with the
identity for fo above, we must have

1l

|f2] < 3e0E(v) < 3(1 + n)eo

On the other hand, if { ¢ Ag then by the definition of Ag we have 17(6)] < eo
and hence, combining this with our identity for f, we have

If2] < eo

establishing (iii). O
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Chapter 1. Introduction

The following lemma, from [16], is needed to deduce Lemma 2.2.6 which
allows us to exploit the random properties of v in order to deduce an [4
estimate from an [? one.

Lemma 1.5.3. Suppose that f : Zy — [0,00) satisfies Ef > § > 0 and
assume that f < v, where v satisfies the pseudorandom condition

[7(6) = Te=olloo < m

o~

for some 0 < n < 1. Define A :={{ € Zn : |f(§)] =2 a} for any a > 0.
Then

IA| < 4/0?
for all o > 2n1/2,

Proof of Lemma 2.2.6: By assumption, we have Hﬂ]% < ep/2
Hence, we have

IFI3TE = > 17 )1

£€Zn

= > fert+ Y Ifert

RGIEY &1f(e)>4n

<4 Y fOr+ > S Iferte

{€Zn k2| 1253 ] & f(e)el2k,2k+1]

<on?+ ) 2FCFIe L |f()] ~ 28
k

S CUC/Z + Z 2]C(2+6) . 2—2]6'1"1
k

<M

where we have used Lemma 1.5.3 for the second to last step.
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Chapter 2

Arithmetic structures in
random sets

Arithmetic structures in random sets!
Mariah Hamel and Izabella Laba
Abstract

We extend two well-known results in additive number theory, Sarkdzy’s
theorem on square differences in dense sets and a theorem of Green on long
arithmetic progressions in sumsets, to subsets of random sets of asymptotic
density 0. Our proofs rely on a restriction-type Fourier analytic argument
of Green and Green-Tao.

2.1 Introduction

The purpose of this paper is to extend several basic results in additive num-
ber theory, known for sets of positive density in Zy, to the setting of random
sets of asymptotic density 0. This line of work originated in the paper of
Kohayakawa-Luczak-R6dl [29], who proved a random-set analogue of Roth’s
theorem on 3-term arithmetic progressions. Roth’s theorem [32] asserts that
for any fixed § > 0 there is a large integer Ny such that if N > Np and if A is
a subset of {1,..., N} with |A] > §N, then A contains a non-trivial 3-term
arithmetic progression a,a + r,a + 2r with 7 # 0. The article [29] raises
the following question: are there any sets W, sparse in {1,..., N}, with the
property that any set A containing a positive proportion of the elements of
W must contain a 3-term arithmetic progression? The authors proceed to
answer it in the affirmative for random sets:

' A version of this paper is published. M. Hamel and I. Laba, Additive structures in
random sets, INTEGERS: Electronic Journal of Combinatorial Number Theory, 8 2008.
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Chapter 2. Arithmetic structures in random sets

Theorem 2.1.1. [29] Suppose that W is a random subset of Zy such that
the events x € W, where x ranges over Zy, are independent and have prob-
ability p = p(N) € (CN~Y/2/1]. Fiz a > 0. Then the statement

every set A C W with |A| > a|W| contains a 3-term arithmetic
pProgression

is true with probability 1 — 04(1) as N — oo.

The current interest in questions of this type is motivated by the work of
Green [25] and Green-Tao [26], [27] on arithmetic progressions in the primes,
where the “pseudorandomness” of the almost-primes plays a key role. For
example, Tao-Vu [39, Section 10.2] give an alternative (and simpler) proof of
Theorem 2.1.1 under the stronger assumption that p > CN~¢ with 6 small
enough. While the argument in {29] is combinatorial and uses Szemerédi’s
regularity lemma, the proof in [39] is Fourier-analytic and relies in particular
on a restriction-type estimate from [25], [27].

It is natural to ask which other results from additive number theory can
be extended to the random set setting. While the methods of [29] do not
seem to extend to other questions, the decomposition technique in {27] turns
out to be more robust. We are able to use it to prove random set analogues
of two well-known results: Sarkozy’s theorem on square differences, and a
theorem of Green on long arithmetic progressions in sumsets.

We note that the concept of pseudorandomness has played a major role
in many of the basic extremal results in additive number theory, such as Sze-
merédi’s theorem on arithmetic progressions. Specifically, in order to find a
certain type of an arithmetic structure (such as an arithmetic progression) in
sets of positive density, one often begins by showing that such structures are
common in appropriately defined pseudorandom sets. It is not clear whether
our results will have applications of this type, as the corresponding extremal
results for sets of positive density are already known. On the other hand,
we expect that the methods developed here will be useful in proving similar
results in settings where the background set W is a given set of density zero
with sufficiently good pseudorandom properties (e.g. the primes, the Chen
primes). For example, one could inquire about the arithmetic properties
of sets of the form A + B, where A and B are subsets of the primes with
relative positive density.

We now give the precise statement of our results. Throughout the paper,
W is a random subset of Zy, with each x € Zy belonging to W indepen-
dently with probability p € (0,1]. We will assume that p > N~9, where 8 is
a sufficiently small positive number. In particular, we allow p to go to 0 as
N — co. We also fix § > 0 and let A C W, |A] = 6|W]|.
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Chapter 2. Arithmetic structures in random sets

Sérkozy’s theorem (proved also independently by Furstenberg) states
that for any fixed positive number ¢ there is a large integer Ny such that if
N > Np and if A is a subset of {1,..., N} with |A] > §N, then A contains
two distinct elements z,y such that x — y is a perfect square. The best
known quantitative bound, due to Pintz, Steiger and Szemerédi [31], is that
one may take Np = (log N)~cloglogloglog N Tp the converse direction, Ruzsa
[33] constructed a set of size N'~9267 which contains no square difference.

We are able to prove the following.

Theorem 2.1.2. Suppose that W is a random subset of Zn such that the
events x € W, where x ranges over Zy, are independent and have probability
p=p(N) € (cN79 1) where 0 < 6 < 1/110. Let a > 0. Then the statement

for every set A C W with |A| > aW, there are z,y € A such
that x — y is a non-zero perfect square

is true with probability 1 — 04(1) as N — 0.

We also have an analogous result for higher power differences, see Section
2.5.

If A, B are two sets of integers, we will write A+ B ={a+b: a€
A,b € B}. Let W be a random set as described above, but with 6 € (0,1/2].
One can show using a probabilistic argument that it holds with probability
1—o0(1) that the sumset A+ A of every subset A C W with |A| > a|W| has
density at least a2 in Zy 2. If @ is close enough to 0, then we can prove the
following stronger result using Fourier-analytic methods.

Proposition 2.1.3. Suppose that W is a random subset of Zx such that the
events x € W, where x ranges over Zy, are independent and have probability
p=p(N) € (CN7% 1], where 0 < 8 < 1/140. Then for every B < a, the
statement

for every set A C W with |A| > o|W|, we have |A+ A] > BN
is true with probability 1 — 04,(1) as N — oo.

It is easy to see that one can have |A 4+ A| =~ aN in the setting of the
proposition: let A, = W N (P + z), where P is an arithmetic progression in
Zn of step about a™! and length about a/N. An averaging argument shows
that |Ay| > a|W| for some z, while [4, + Az] < 2|P| =~ aN.

2 We are grateful to Mihalis Kolountzakis for pointing this out to us and communicating
a short proof.
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Chapter 2. Arithmetic structures in random sets

Our second main result concerns the existence of long arithmetic progres-
sions in sumsets. Bourgain [18] proved that if A, B are sumsets of {1,..., N}
with |A| > aN, |B| > BN, then A + B contains a k-term arithmetic pro-
gression with

k > exp(c(aBlog N)Y/® —loglog N). (2.1.1)

The point here is that a sumset has much more arithmetic structure, and
therefore contains much longer arithmetic progressions, than would be nor-
mally expected in a set of a similar size (based on Szemerédi’s theorem, for
example). Bourgain’s bound was improved by Green [23] to

k > exp(c(aflog N)/? —loglog N), (2.1.2)

which is the best known result in this direction so far. An alternative proof
of essentially the same bound was given more recently by Sanders [35]. On
the other hand, Ruzsa [34] gave a construction showing that the exponent
1/2 in (2.1.2) cannot be improved beyond 2/3. Note that if A = B, the
estimate (2.1.2) gives a non-trivial result only when a > (log N)~/2, and
in particular sets with density N~ are not allowed.

The case of sparse sets was considered more recently by Croot-Ruzsa-
Schoen [21]. The authors proved that if A, B C Zy obey |A||B| > (6N)2—FE—1,
then A+ B contains a k-term arithmetic progression. They also gave a con-
struction of sets A C Zy with |A| > N1=¢ where 8 is small enough depend-
ing on € > 0, such tglat A + A does not contain an arithmetic progression
longer than exp(cf~37°).

Our result is the following.

Theorem 2.1.4. Suppose that W is a random subset of Zy such that the
events z € W, where x ranges over Zy, are independent and have probability
p=p(N) € (CN7 1], where 0 < § < 1/140. Assume that a and k obey

a> Ciloglog N

2.1.3
Vieg N ( )
o?loglog N ‘
k < exp . — 1, (2.1.4)
Cs log ;(logloglog N + log )

where Cy, Cy are sufficiently large constants. Then the statement

for every set A C W with |A] > o|W|, the sumset A+ A contains
a k-term arithmetic progression

is true with probability 1 — ok o (1) as N — oo.

23



Chapter 2. Arithmetic structures in random sets

A non-quantitative version of the result, namely that the displayed state-
ment in the theorem is true with probability 1 — o(1) as N — oc if @ and &
are fixed, can be obtained by applying Szemerédi’s theorem to the positive
density set A+ A. Our point, as in [18] or [23], is that the arithmetic progres-
sions indicated by Theorem 2.1.4 are much longer than those in Szemerédi’s
theorem, and that they can be found using a much easier argument. For
comparison, the current best bounds in Szemerédi’s theorem [22] imply that
a set of relative density a in Zy should contain k-term arithmetic progres-
sions with

loglog N
k < loglog (—OTngT~—>
og =

87
which is much weaker than (2.1.4).

The bounds on ¢ in Theorems 2.1.2 and 2.1.4 are due to our choices of
exponents in the proofs and are probably not optimal. The natural threshold
would be 1/2, as in [29]. However, it does not seem possible to extend our
results to all # < 1/2 using the same type of arguments as in this paper.

The article is organized as follows. In the next section we explain the
notation and summarize the known results that will be used repeatedly.
Theorem 2.1.2 is proved in Sections 2.3 and 2.4. Its analogue for higher
power differences, Theorem 2.5.1, is stated and proved in Section 2.5. The
proof of Theorem 2.1.4 is given in Section 2.6, with the proofs of the main
estimates postponed to Sections 2.7 and 2.8. The proof of Proposition 2.1.3,
which involves a simplified version of the argument in the proof of Theorem
2.1.4, concludes the paper.

2.2 Preliminaries

We first explain the notation. We use |A| to denote the cardinality of a set
A C Zy. The probability of a set A is P(A) = N~!|A|, and the ezpectation
of a function f:Zy — C is defined as

Ef=E.f=N"">" f(=a).
TEZN
We will also sometimes use conditional probability and expectation

AN X| _ _ 1
X BUIK) = Eeex (@) = 13 Y f(=)

xeX

P(A|X) =

Whenever the range of a variable (in a sum, expectation, etc.) is not
indicated, it is assumed to be all of Zy. We will also use the notation

24



Chapter 2. Arithmetic structures in random sets

Il = O, 1f(2)P) /P and Ifllzecxy = Qeex |f(z)|P)/P. All constants
throughout the paper will be independent of NV, «a, and k.

The discrete Fourier transform of f is defined by

F(&) = By f(z)e 2mae/N,

We have the usual Plancherel identity ) fg=N-1 > fg and the inversion

formula f(z) = Y ccq,, f F(&)e2miat/N
We deﬁne the convolution of two functions f, g : Zy — C by the formula

(f *g)(z) = Zf Ve—-y)= Y. f(t)g(s)

t,sit+s=x

We have the identity N fg = f/*\g

We recall a few basic results about Bohr sets, all of which are standard
in the literature and can be found e.g. in [28], [39], or in [19] where regular
Bohr sets were first introduced.

Definition 2.2.1. A Bohr set is a set of the form B = b+ B(A,§), where
beZn, ACZn, b€ (0,2), and

B(A,8) ={z e Zy: |e¥™/N _1) <6 for all € € A}.
We will often refer to |A| and & as the rank and radius of B, respectively.

Definition 2.2.2. Let cg be a small positive constant which will remain fized
throughout the paper. We will say that a Bohr set B(A,d) is regular if

P(B(A, (1 +¢3)8) \ B(A, (1 = ¢§)d)) < coP(B(A, 9)).
We will also say that B = b+ B(A, ) is regular if B(A, ) is regular.
Lemma 2.2.3. If B = B(A,0) is a reqular Bohr set, then P(B) > (cc36)IM.

Lemma 2.2.4. Assume that cp is small enough Then for any A C Zn
with |A] < \/coN and any 6o > 0 there is a § € ( ,00) such that B(A, ) is
reqular.

We will need a Fourier-analytic argument which first appeared in [25] in a
slightly different formulation and in [27] as stated, and was adapted in [39] to
arandom set setting. Specifically, [25] and [27] introduced the decomposition
f = f1 + fo defined below, where f; is the “structured” bounded part, and
f2 is unbounded but random. We will need several results concerning the
properties of f; and fa, which we collect in the next two lemmas. The first
one is contained in the proofs of {27, Proposition 5.1] or {39, Theorem 10.20].
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Lemma 2.2.5. Assume that f: Zy — [0,00) satisfies E(f) > > 0 and
171l < M (22.1)

for some 2 < ¢ < 3. Assume also that f < v, where v: Zy — [0,00) obeys
the pseudorandom condition

12(6) — Le=olloo <7 (2.2.2)

for some 0 <n < 1. Let

filz) =E(f(z+y1—y2) : y1,92 € Bo),

where
By ={z: |e72™=/N _ 1| < e, € € Ao}, Ao={¢: |F(E)] > eo}

for some €g to be fized later. Let also fa(x) = f(z) — fi(z). Then

(i) 0 < fi <1+ (14 P(Bo)~)n,

(i) Ef, = Ef,

(iit) || falloo < 3(1 + n)eo,

(i) |fi(§)) < |f(E)) for all € € Zn and i = 1,2. In particular, (2.2.1)
holds with [ replaced by fa.

In order to be able to apply Lemma 2.2.5, we need to have the estimate
(2.2.1) for some 2 < ¢ < 3. To this end we have the following result, based
on the Stein-Tomas argument as used in [25], [27], and contained in the form
we need in [39, Lemma 10.22 and proof of Theorem 10.18].

Lemma 2.2.6. Let f and v be as in Lemma 2.2.5, except that instead of
(2.2.1) we assume that R
I Fllz < Cy=/*

for some € > 0. Then (2.2.1) holds with ¢ = 2 + €.

We adapt this argument to the random setting as in [39, Section 10.2].
Suppose that W is a random subset of Zy such that each € Zy belongs to
W independently with probability p € (0,1). We will assume that p > N~¢,
where 0 < 8 < 1/100. We also fix § > 0 and let A C W, |A| = §|W|. We let

v(z) = p~'W(z), f(z) =p ' Az).
Lemma 2.2.7. Let v and f be the random variables defined above. Then
(i) “l//(Z) — Lecolloo = O(NTY3) with probability 1 — o(1),
(i) |1 FlI2 = N7 f1I12 = O(p~!) < N? with probability 1 — o(1).
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Part (i) of the lemma follows from well-known probabilistic arguments.
It can be found e.g. in [39, Corollary 1.9 and Lemma 4.15], or extracted
from the proof of Lemma 14 in [23]. Observe in particular that (i) with
¢ = 0 says that P(W) = p(1 + O(N~1/%)) with probability 1 — o(1). Part
(ii) follows from this and the Plancherel identity.

2.3 A Varnavides-type theorem for square
differences

The purpose of this section is to prove the following theorem.

Theorem 2.3.1. Let 0 < 0 £ 1 and N > 1 be a prime integer. Let f :
Zn — [0,1] be a bounded function such that

Ef > 6.

Then we have

E(f(n)f(n+r2)|n,r € Zn, 1 <7 < |V/N/3)) > ¢(8) — 0s(1).

Theorem 2.3.1 strengthens Sarkozy’s theorem (stated in the introduc-
tion) in the same way in which a theorem of Varnavides [40] strengthens
Roth’s theorem on 3-term arithmetic progressions. It guarantees the exis-
tence of “many” square differences in a set of positive density, instead of
just one. '

Proof. The proof combines Sarkozy’s theorem with a modification of Var-
navides’s combinatorial argument [40]. We first note that it suffices to prove
the result for characteristic functions. To see this, let f be as in the theorem,
and define A := {n € Zy : f(n) > &/2}. Then |A| > éN/2 and [ > % on A.
Hence, assuming the result for characteristic functions, we have

E(fn)fn+12) 2 SBAM AR +2) 2 Ze(/2).

We now turn to the proof of the result for characteristic functions. Let
A C Zn such that |A| > §N and N is sufficiently large. We will consider
arithmetic progressions

Poyp={z,z+7% . . o+ (-1}, 1<z<z+ (k-1 <N (23.1)

where z,7 € Zy, r < V3N, and where k € N is chosen so that the conclusion
of Sarkézy’s theorem holds for subsets of {1,...,k} which have size at least
L5k
50k.
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Suppose that

, ON
1‘2 < ﬁ (232)
We say that a progression Py, as in (2.3.1) is good if
1
|Ppr N A| > §5k. (2.3.3)

Let G,(N) denote the set of good progressions P, ,(N) for a fixed r. We
claim that

G, (N)] > %(w. (2.3.4)

Indeed, we have
2 2 2 2 2
|AN (kr“, N — kr®)| > |A| — 2kr® > 6N — 2kr® > §(1 — E)N’

where at the last step we use (2.3.2). Each a € AN(kr?, N—kr?) is contained
in exactly k progressions P .. Hence

3 AN Py, | > ki(1— %)N > %MN (k> 8).
r:l<z<z+(k—1)r2<N

On the other hand, the number of progressions P, , for a fixed r is clearly
bounded by IV, hence we have an upper bound

> [ANP,,| < N-%5k+G,(N)k.

z:l<z<z+(k—1)r2<N

Combining these bounds yields (2.3.4) as claimed.
Let G(N) := Zr 7,2<5N Gr(N). Then

G(N) > @‘Sﬂ = ¢1(6)N%/2, (2.3.5)

since k£ depends only on §.

By Sé4rkozy’s theorem, each good progression P, , contains a square dif-
ference. We now count the number of good progressions which may contain
a fixed square difference pair z,z + r. Clearly, z,x + % can be contained
in at most k — 1 progressions with step size % and at most 1k(k 1) pro-
gressions with step size r2/t for integers t > 1. Since k depends only on J,
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the total number of progressions containing x,z + 2 is bounded by cp(8).
Thus the total number of square differences in A must be at least

c1(8) 372 3/2
—=N c(6)N
(0) ()
Subtracting off the trivial progressions (with 72 = 0) gives the desired result.
O

2.4 Proof of Theorem 2.1.2

Let W, A be as in Theorem 2.1.2. At least one of the sets A; = AN{0, N/3),
A = AN[N/3,2N/3), A3 = AN[2N/3,N), say A: (the other two cases are
identical), has size at least |A|/3. Define v, f as in Lemma 2.2.7, but with
A replaced by A;. By Lemma 2.2.7, the assumptions of Lemma 2.2.6 with
n = N~1/5 and € = 1/11 are satisfied with probability 1 — o(1), thus (2.2.1)
holds with ¢ = 23/11. We will henceforth condition on these events. Let
f = fi + f2 as in Lemma 2.2.5, with ¢y = €g(@) small enough to be fixed
later. We would like to ensure that

[ f1lloo < 2. (2.4.1)

By Lemma 2.2.5, this will follow if
N=Y35(1 4+ P(By)™) < 1. (2.4.2)

By Lemma 2.2.3, we can estimate P(Bp) > (ceg)Ao!) while by (2.2.1) and
Chebyshev’s inequality we have |Ag| < (M/eg)?3/11. Now a short calculation
shows that if

1
log — < ¢1loglog N (2.4.3)
€0

with ¢; small enough, which we will assume henceforth, then (2.4.2) and
(2.4.1) hold.
It suffices to prove that

E(f(2)f(z +r)|z,r € Zn,1 <1< /NJ3) 2 ¢(8) — 05(1).  (2.4.4)
Indeed, since A; C [0, N/3), any square difference a—a’ = r? with a,a’ € A;

and 1 < 72 < N/3 must be an actual square difference in Z, not just a square
difference mod N.
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We write f(z)f(z +r?) = Zijzl fi(z) fi(z + r?), and estimate the ex-
pectation of each term. Applying Theorem 2.3.1 to f1, we get a lower bound
on the main term

E(fi(z)fi(z +r2)la,r € Zy,1 <7 < /N/3) > c1(6) —0s(1),  (2.4.5)

if N is large enough so that (2.4.3) holds. We now turn to the error estimates.
We write

E(fa(z) fo(z + )|z, r € Zn,1 < r < /N/3)

= V3N E(fo(z) falz + t)S(t)|z,t € Zn), (2.4.6)
where S(-) denotes the characteristic function of the squares less than N/3.
From Green [24] we have the estimate

”5”12 < 219/12Nﬂ1/2’

based on a number theoretic bound on the number of representations of an
integer as the sum of six squares. Using also Parseval’s identity and Holder’s
inequality, we have

E(f2(z)fa(z + t)S(t)|z,t € Zn)
= Y 1f©P15©)

€N
A 1/12 7
< (X 18OPECY 1Py
§€ly E€Zy
< 2N fo R ol 2
< CN™12L2,
Plugging this into (2.4.6), we see that

E(fo(@) foz + r?)|z, 7 € Zy,1 <7 < /N/3) < e1(8) /4
if €9 was chosen sufficiently small depending on 4. The “mixed” error terms

are estimated similarly. Combining the error estimates with (2.4.5) yields
(2.4.4) as desired.
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2.5 Power differences
In this section we show that a modification of the proof of Theorem 2.1.2
yields an analogous result for higher power differences.

Theorem 2.5.1. Suppose that W is a random subset of Zy such that the
events x € W, where x ranges over Zy, are independent and have probability
p=p(N) € (cN9 1] with 0 < 8 < 0, where 8, is small enough depending
onk € N. Let o > 0. Then the statement

for every set A C W with |A| > aW, 3 z,y € A such that
z—y =n" for somen €N

is true with probability ok (1) as N — 0.

Since the proof is very similar to that of Theorem 2.1.2, we only sketch
the main steps. Instead of Theorem 2.3.1, we will need a similar result for
higher powers, which can be proved by exactly the same argument.

Theorem 2.5.2. Let 0 < § < 1, and let N > 1 be a prime integer. Let
f:Zn — [0,1] be a bounded function such that Ef > §. Then we have

E(f(n)f(n+7")|n,r € Zy, 1 <7 < [{/N/3]) > c(8) — 0s(1).

We now follow the argument in Section 2.4. Define v, f, f1, f2 as in the
proof of Theorem 2.1.2. Applying Theorem 2.5.2 to f;, we see that

E(fi(@)fi(x +r¥)|z,r € Zn,1 <7 < Y/N/3) 2 e(8) — 05,0, (1)

To estimate the error terms, we invoke the asymptotic formula for Waring’s
problem (see e.g. [30]), which implies that

Ry se(z) = |{(a1, ..., a3x) € Znla¥ 4 ... + a¥, = z( mod N)}| < eN2.
By convolution and Parseval identities, this translates to
Pellot < et NV/*L,

where Pj, denotes the characteristic function of the set of k-th powers smaller
than N/3, and c,c; are constants depending on k. Now we are able to
estimate the error terms as in Section 2.4, for example we have

k— k
E(f2(z) fa(z +r)Pu(r)) < [ Bellell foll o 1) ey L 21122
| < ¢ CNVk-1L/0k,

At the last step we used that (2.2.1) holds with ¢ = 162,5:11 if 8y is small
enough. The proof is finished as in Section 2.4.
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2.6 Long arithmetic progressions in sumsets

We now turn to Theorem 2.1.4. In this section we prove the theorem, modulo
the two main estimates (2.6.1), (2.6.7) which will be proved in the next two
sections.

Our proof will combine the arguments of Sanders [35] with those of
Green-Tao [27]. Let W, A be as in Theorem 2.1.4, and define v, f as in
Lemma 2.2.7. We will show that, with high probability, there is a reasonably
large Bohr set B on which we have f x f(z) > 0 for all but a few values
of z. But f = f is supported on A + A, hence all but a small fraction of B
is contained in A + A. The proof is concluded by invoking a pigeonholing
argument from [35], which says that the portion of B contained in A + A
contains a long arithmetic progression.

The details are as follows. Fix k (the length of the progression), and let
o = (16k)™!. We will also assume that k > ko and o < ag , where kg € N
is a sufficiently large absolute constant and ag > 0 is a sufficiently small
absolute constant.

By Lemma 2.2.7, the assumptions of Lemma 2.2.6 with = N~1/5 and
¢ = 1/9 are satisfied with probability 1 — o(1), thus (2.2.1) holds with ¢ =
19/9. Let f = f1+ f2 as in Lemma 2.2.5, with ¢y = ¢, o) small enough to
be fixed later. We will assume that (2.4.3) holds with ¢; sufficiently small;
as in Section 2.4, it follows that || fi]je < 2.

We need an extension of a result of Sanders [35]: there are regular Bohr
sets B := b+ B(I',§) and B’ := b+ B(T',¢') such that

o2
{eeB": (fixfi)@) 2 5 IBl}| > (1-0)|B, (26.1)
and 25
;L
0> W, (2.6.2)
o Clog(a™?!)
5> (W) B (2.6.3)
IT| < o 2log(c™1). (2.6.4)

We establish this in Proposition 2.7.2. We then verify in Section 2.8, via a
restriction-type argument, that if

1 1
log E > o %(log E)(log k)(loglogk + log E)’ (2.6.5)
€0
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with a large enough implicit constant, then

(e e B 1o @)

It follows that

B 10|B|}] <o|B), i=1,2. (2.6.6)

}{meB';(f*f)( _1013|}| (1 - 40)|B/|, (2.6.7)

provided that both (2.4.3) and (2.6.5) hold. A somewhat cumbersome cal-
culation shows that €y can be chosen so as to satisfy both (2.4.3) and (2.6.5),
provided that

Zloglog N
logk < & 0808 (2.6.8)
log (logloglog N + log )
which is equivalent to (2.1.4).
We now invoke Lemma 6.5 in {35}, which says that if
(40)~' < D"t NY/ITL (2.6.9)

then the set on the left side of (2.6.7) contains an arithmetic progression of
length (160)7! = k. Plugging in (2.6.2)-(2.6.4) and solving for N, we see
that (2.6.9) holds if

log N > o %(log? k + log?(— ! ) + log log log k). (2.6.10)

Another cumbersome calculation shows that if we assume (2.6.8), then the
additional condition (2.1.3) suffices to guarantee that (2.6.10) holds. Thus,
assuming both (2.1.3) and (2.1.4), the set on the left side of (2.6.7) contains
a k-term arithmetic progression. Since that set is contained in A + A, the
conclusion of the theorem follows.

In the next two sections we complete the proof by verifying the inequal-
ities (2.6.1), (2.6.6).

2.7 The main term estimate

Proposition 2.7.1. Let B = b+ B(I',§) be a regular Bohr set. Let f :
Zn — R be a function such that supp(f) C B,0< f <1 andEgf=a > 0.
Fiz 0 € (0,1) and let d = |I'|. Then one of the following must be true:

(i) There is a §' > 9;45 such that B’ = b+ B(T', ') is regular and

. a? )
{ze B': (f))@) > TIBI}| 2 (1 - 0B, (2.7.0)
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or
(#i) There is a regular Bohr set B" = b" + B(L'U A, ") such that

E(f|B") > a1+ 27%), (2.7.2)

where |A| < a™?logo™! and §" > 5 loga T

Proof:  We essentially follow the argument of Sanders [35]; however,
some care must be taken to get the right quantitative version. Replacing f
by f(-+b) if necessary, we may assume that b = 0. Let cp be a small enough
constant which will be fixed later. By (28], Lemma 8.2, we can find ¢’ such
that

8" € (coa®6d™1, 2co0%0d™Y) (2.7.3)

and that the set B’ defined in (i) is regular. Suppose that (2.7.1) fails for
this choice of §'; we have to prove that this implies (ii).

The failure of (2.7.1) means that we can find aset S C B'N{z : (f *
fx) < %lel} such that |S| = o|B’|. Let ¢ = f — aB be the “balanced
function” of f. We first claim that

2

oo _
lBHB’I > grga < -+ 0(dd's o). (2.7.4)
zes

To prove this, we write

> (g*9)(

BT 2
1
:W(Z( 2aZB* x)+a2ZB*B ))
reS zeS zeS
The first term obeys
|B[ a20

by the choice of S. The second term is estimated as in [35]. By [35],
Corollary 3.4, we have for z € B’

|f * i—g—l(m) —f* %(O” < dé'é L.
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But f * %{(0) = o, so that f * ]%(x) =a+ O0(ds'67!) for x € B'. Hence

,*;-,,Z,%*f( Ilg,',( +0(dd'67Y)) = ao + 0(dd'67 ). (2.7.6)
€S

Finally, we trivially have B x B(x) < |B| for all z, hence

lBHB’I ZB*B <o+ 0(dds o). (2.7.7)

Combining (2.7.5), (2.7.6), (2.7.7), we get (2.7.4).
We now convert this to a Fourier analytic statement. We have

Y grgl@)= > g*g(x)S(x)

z€S TELN

=N Y g¥g(e)8(¢)

EELN

= N2> 15615

§E€EZN

Hence, by the triangle inequality, (2.7.4) implies that

2 o~y Oz20'
A S ROPEEOI 2 5 rowss ). @19
3
Define .
Li={e ey 1862 2220y

We claim that the main contribution to the sum in (2.7.8) comes from L.
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In fact

e S OPISOI < S T e

£¢L

IN
Q
]
=
™
9
o
e

(A
|

IN

Hence

PR IRE) |>———+0(d5'5—1).

/
IBHB £

Since ]—g—,[|§(§)| is trivially bounded by o, we have

ZI Rl b o5 lp). (2.7.9)
EEIL

We now apply the localized version of Chang’s theorem proved in [35]
(Proposition 4.2) to S C B, with ¢ = a/4 and n = 1/2. We conclude that
there is a set A C Zy and a §f > 0 such that

24
Al <« ) logo™1,

8?4

6//
0> P logo—1’
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and
Lc{¢ely:|1—e?/N<1/2Vze BILUA, .

Choose 6" € (87,26() such that B” := B(I' U A, §") is regular. Note that
this together with (2.7.3) implies that §” obeys the condition in (ii). We
may also assume that 6 < ¢’. Our goal is to get the L? density increment
as in (2.7.2) on a translate of B”.

By the definition of £, we have ﬁg%[u/a\"(g)] > 1/2 for all £ € £. Hence

IBHB”P Zlg E)l IB” )|2 > & +0(d5'5 )
§eL

Again using Plancherel’s identity and the convolution identity we have

1 - /I
o? (15 +0(a7?dd's™)) < ,BHB,,PZW )PIB" )P

(€L
NS
[B(|B”|2 Z N~ Q*B"(f)l
E€EZN
1
[BHB”|2 Z Ig*B”( )I
TEZN

We now apply Lemma 5.2 from [35] and conclude that

U;_”l sup | * B"(z)] > a(14+27* + O(a™2d6'67")) + O(ds"s7 )
> a(l+27%) + O(da™'8'67Y).

We now let the constant cg in (2.7.3) be small enough, so that the error term
is bounded by a27°. The conclusion (ii) follows if we choose b to maximize
|f = B”(b")|. This proves Proposition 2.7.1.

Proposition 2.7.2. Let f : Zy — [0,1] be defined such that

EIEEZNf(x) =a>0.
Let 0 € (0,1]. Then there exist Bohr sets B := b+ B(T,§) and B’ =
b+ B(T, ") such that
’ o’ '
{ze B (f+N)(@) 2 5 [Bl} > (1-0)B,
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and
> o6
|’
« Clog(a™1)
) —_—
> (log(a_l)) ’
and

IT| < o 2log(c™1).

Proof of Proposition 2.7.2: We construct the Bohr sets B and B’ by
iterating Proposition 2.7.1. Let I'g := {0}, and pick o > 1 so that B(Ig, &)
is regular. Define ap := a. Averaging over translates of B(I'g,dp), we see
that there is a by such that E(f|Bo) > ap for By = by + B(T'y,d). By
Proposition 2.7.1, one of the following must hold:

(i) There is a §j > -O“—I?%(‘l such that By := bo + B(I'g, &) is regular and
2
{zeBy: (f+ N@) 2 LUBol}| 2 (1 - )15y, (2.7.10)

(i) There is a regular Bohr set B; := by + B(I'o U Ag, 0;) such that

E(fB1) > ao(1+27%), (2.7.11)

where |To| < ag?log(c™!) and & > H‘_DI%%I?()?’T

If (i) holds, we let B’ = B{, and we are done. If on the other hand (ii)
holds, we repeat the procedure with By replaced by Bj, and continue by
induction. If we have not satisfied (i) by the end of the kth step, we have
found a regular Bohr set By := by + B(I'k, 6k) such that

E(f|Bk) = ax|Bkl,

where
ak > ap1(1+277), (2.7.12)
064 (Sk_l
8 > kol , 2.7.13
£ o FlogloD) (27.13)
and
ICk| = ITk-1] < g1 log(a™). (2.7.14)

The iteration must terminate (upon reaching density 1 on a large enough
Bohr set) after at most

k < log(a™)
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steps, since from (2.7.12) we have
a2 > a1+ 275!
By (2.7.14) we have

Tk < a2 log(o—1) + ag?, log(c™}) + -+ + ag2log(c ™)
m .
< a2 log(o (14297 a2 log(o™1).
j=0

Finally, using our bounds for ay and |I'y|, we have

o )Clog(a_l)

log(c—1)

for some absolute constant C' > 0. This proves Proposition 2.7.2.

5k>>(

’

2.8 The restriction argument

Assume that the hypotheses of Theorem 2.1.4 hold. We need to show that
if f1, f2 are as in Lemma 2.2.5 and B, B’ are the Bohr sets chosen in Propo-
sition 2.7.2, then (2.6.6) holds, i.e.

{ze B': |fax fi(zx)| > T—;—IBI} <o|B|,i=1,2. (2.8.15)

It suffices to prove that
o

) < 2OOUIB| |B/|. (2.8.16)

1fi * falG2(mr) <
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We have
“fl * fZH%/z(B/) = Z (fz * f2)2(;1;)
z€B’
=Y (T swne-v)(X fehe-2)
z€EB! Y z
= Y B@AfE) g Y et
Z,Y,2,u,v E

i) o) 2 37 e
n
= N33 " Bl(—n - )T H&) fitm) faln)
&m

= N33 (B« [ifa) () Ji€) Fa(&)-

3
By Hoélder’s inequality,
1fi % Fall3 2y < N3IB * Fifallno I fiFallioso- (2.8.17)
Applying Young’s inequality, we get
1B * Fifallio < IBl1s |1 Fiflloys. (2.8.18)

Furthermore,

IfiFallire < IFalIE5° Z B(O11fie))

< |1 Al ufzulg/g 17:6) g/

where at the last step we used Holder’s inequality again. Plugging this
together with (2.8.18) in (2.8.17), we see that

1fi * fall22imn < N3IB s 1 fiFaliZos0
— ~ 9/
< N B s (110 W Felioso 17:0105) ™
< N3\ Blls | 201822 11 F2 305 130 o

By Plancherel’s theorem and Lemma 2.2.5(iv), we have
133 < A1 = N U < ap™! = al’.
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Since 8 < 1/20, it follows from Lemma 2.2.6 that

[1fl10/0 = O(1) and || fill 1070 = O(1), i = 1,2.
By Lemma 2.2.5(iii), we have
1 F2lloo < Ceq.
Finally,
|B'|*
N4

— — — B3 ~
1B < 1B 1B < BLyB)

Combining these estimates, we get

/5 IB/|4/5
i * Fallfam) < No&'* S

(2.8.19)

We need the right side of this to be smaller than ;‘—(;()UIBlle’{, i.e. we need
to have '

. BiI2|B 1/5
er/s < ca4al7v—L— 'Nl/s = catoP(B)*P(B)'/®, (2.8.20)

But by Lemma 2.2.3 and (2.6.2)—(2.6.4), P(B) and P(B’) are bounded from
below by

’

“2log Llogk
B) > / i\ (T co a

P(B) > P(B') > (c6")T > <logk>

where we plugged in o = (16k)~!. Hence (2.8.20) holds if

ca )coz“2 log X log k

€0 < a28k_9( (2.8.21)

log k&

A short calculation shows that (2.6.5) is sufficient to guarantee that (2.8.21)
is satisfied.

2.9 Proof of Proposition 2.1.3

Let 0 < ¢ < (a — (3)/10. Define v, f, f1, f2 as in Section 2.6, except that
instead of (2.4.1) we will require

| fillo <140, (2.9.1)
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which holds for large enough N (depending on ¢ and on the ¢ in the defi-
nition of f;) by the same argument as in Section 2.4.
It clearly suffices to prove that

‘{:r €Zn: f*flz)> 0}\ > (& — 100)N. (2.9.2)

Indeed, (2.9.2) shows that the sumset A + A in Zy has size at least N,
hence so does the sumset A + A in Z.
We first claim that if N is large enough, then

[{zeZns fix filz) 2 0aN}| 2 (@ = 30)N. (2.9.3)
To see this, we first note that
1£1% fill = ] = ®N2(1 + O(NT15)). (2.9.4)
On the other hand, if (2.9.3) failed, we would have
If1 % filli <oaN - N +aN(1+o+ O(N"%). (a—30)N
= o’N?%(1 + O(N7%)) — gaN?,

which contradicts (2.9.4). This proves (2.9.3).
The proof of (2.9.2) will be complete if we can show that

(z €%y 1| fi* folm)| > %N} < oN. (2.9.5)

To this end, we repeat the argument in Section 2.8. It suffices to prove that
ola?

Ifi % fll3 < Sggro N, (2.9.6)

As in Section 2.8 (with B = B’ = Zy), we have

i * fall2 < /N3, (2.9.7)

and the right side is smaller than the right side of (2.9.6) if ¢ < 0" a!%,
with a small enough implicit constant. Thus (2.9.5) holds for large enough
N if g was chosen small enough. This proves Proposition 2.1.3
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Chapter 3

Conclusion

3.1 A potential application to primes

One application of the methods used in this paper involves translating results
from the random setting into that of the primes. A theorem of Green [47]
states that if A is a subset of the primes with positive relative density, then A
must contain three terms in arithmetic progression. The strategy developed
by Green in [47] is essentially to exploit certain ‘random’ properties of the
primes (in a Fourier analytic sense). One of the first hurdles to overcome is
that the primes aren’t actually random. For example, the set of primes isn’t
randomly distributed modulo a small prime. To deal with this, one employs
what is today referred to as the W — ¢rick (a nice explanation of this can
be found in {49]). This entails defining a number m which is the product
of small primes. The next step is to consider the residue classes modulo m.
The set of primes contained in a given residue class will then behave in a
satisfactorily random manner. The proof then restricts itself to the portion
of the set A which falls in one particular residue class (pick the residue class
on which A has largest relative density). Working with this chosen portion
of A one applies Roth’s theorem in a manner similar to the application of
Sarkozy’s theorem in the proof of Theorem 2.1.2. Without providing details,
we note that the appropriate choice for v is a modified version of the von
Mangoldt function supported on the chosen residue class.

Combining the results from the manuscript [51] contained in this dis-
sertation, and the framework for the primes of Green [47] or Green and
Tao [49] we can prove a version of Sérk6zy’s theorem in the primes (and
a similar extension for long arithmetic progressions in sumsets). Specifi-
cally, it is possible to show that if A is a subset of the primes with pos-
itive relative density, then A must contain a square difference. However,
we should mention, that in the case of Sarkézy’s theorem such a variation
holds in the primes for density reasons alone. Pintz, Steiger and Szemerédi
[65] show that if a subset A C {1,..., N} contains no square difference, the
|A|/N < (log N)—cleglogloglog N Eor comparison, the prime number theo-
rem states that the number of primes less than an integer N is asymptotic
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to N/log N.

In joint work with Karsten Chipeniuk, we are attempting to prove an
analogue of Theorem 2.1.3 in the setting of the primes. We begin with a
motivating example.

Let P be the set of all primes and define A := {p € P: p=1 mod n}
and consider Ay := {p € A:p < N}. Then, the prime number theorem for
arithmetic progressions gives us quantitative information on the size of Ay.
Namely, we have

1 N
An] = ——— 4+ O(N/log® N).
AN = S T O/ log2 )
Set § := —+. Then, assuming N is sufficiently large, we have |An| > d =2
o(n) log N

On the other hand, Ay + Ay C {m =2 mod n} and hence,

2N
AN + ANl £ — ~ L
n loglogn

The previous example leads us to the following question:

Question 3.1.1. Suppose A C P such that

limsupw =4
where Py := {p < N : p € P}. Is it true that
)
-_ . N?
[An + An|> log log(1/6) N

The question above differs from other applications in the primes since for
a density result, we are not able to consider only one residue class modulo
m. If p is a prime number, then the residue class in which p lies must
be contained in the multiplicative subgroup Z¥, C Z,,. While we are able
to apply a modified version of the convolution lemma from [51] to a given
residue class on which a subset of the primes has large enough relative
density, we must also ensure that the sumset determined by these residue
classes covers enough of Z,,. In particular we must answer the following
question:

Question 3.1.2. St;uppose S C Zy, such that |S| > d¢(m). Is it then true
that |S+S| Z mm?

We intend to answer these questions in an upcoming paper.
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3.2 An improvement to Theorem 2.1.2

Recall that in the statement of Theorem 2.1.2 we define the random set
W C Zy with each element chosen with probability p(N) € (cN~?,1] where
we require 0 < 6 < 1/110. As we noted in Section 2.1, while we expect that
the range should be extended to all § < 1/2 the methods of our paper do
not seem sufficient to establish such a result. In a work [54] that is currently
in preparation, H. Nguyen and V. Vu have proved:

Theorem 3.2.1. Suppose that W is a random subset of Zy such that the
events ¢ € W, where x ranges over Zy, are independent and have probability
p=p(N) € (cN79 1] where 0 < 8 < 1/2. Let & > 0. Then the statement

for every set A C W with |A| > oW, there are z,y € A such
that x — y is a non-zero perfect square

is true with probability 1 — 0,4(1) as N — oo.

They are also able to prove similar results for k-th powers with the
6 < 1/2 replaced by 6 < 1/k. Their proof uses methods from graph theory
relating to the cited work of Kohayakawa, Luczak, and Réd] and in particular
they use Szeméredi’s regularity lemma.

3.3 Future directions

A famous result of Bergelson and Leibman [42] is a polynomial version of
Szemerédi’s theorem.

Theorem 3.3.1. Bergelson-Leibman Let § > 0 and let Py, ..., Py be poly-
nomials in Z[d] such that P;(0) = 0 for every i = 1,...,k. Suppose that N
is sufficiently large depending on § and Py, ..., Py. Then, there exist integers
m and d so that m+ Pi(d) € A foralli=1,...,k.

Bergelson and Leibman’s proof uses ergodic theory and is currently the
only known proof of a polynomial version of Szemerédi’s theorem. Recently,
Tao and Ziegler [59] proved that the primes contain arbitrarily long polyno-
mial progressions, relying on a certain quantitative version of Theorem 3.3.1.
Their proof, similarly to the proof of the Green-Tao theorem on primes in
arithmetic progression, can be divided into three main steps: a polynomial
version of Szemerédi’s theorem, a transference principle and a method to
treat the primes as ‘random’. We should note that despite the similarities
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in the outline, the polynomial version requires several arguments which are
not needed in the case of finding arithmetic progressions in the primes.

There have been certain results using Fourier analysis relating to the
polynomial version of Szemerédi’s theorem. One reason that this is of inter-
est is that the ergodic proof, relying on the axiom of choice, does not provide
any information on when the first occurrence of a given polynomial pattern
must occur in a subset of positive upper density. The first quantitative result
in this direction is due to Green [46]:

Theorem 3.3.2. Suppose that A C {1, ..., N} so that |A]/N > (loglog N)~¢.
Then there exists x, x +y, = + 2y € A such that y = a? + b2,

His proof requires quadratic Fourier analysis. We notice, that using
these methods, Green is able to deduce quantitative bounds on the required
density for a subset of the integers to contain this particular arithmetic pro-
gression. Since Green’s current bound is not sufficient for handling subsets
of the primes, we believe that it would be of interest to consider this prob-
lem in the random setting. We expect that the method of Green-Tao for
handing four-term arithmetic progressions in the primes should provide the
necessary framework for such an application. More specifically, if we assume
that W is a random subset of Zy and A C W has positive relative density
then we would like to construct f and v as in Section 2.2. For such an ar-
gument, we expect that it would be necessary to replace the pseudorandom
condition ||P(§) — 1¢=o|leo < 1 with an appropriate quadratic condition.

A result of Lyall and Magyar [53] can be seen as a special case of the
polynomial version of Szemerédi’s theorem or as a generalization of Sark6zy’s
theorem.

Theorem 3.3.3. Assume that Py, ..., P, € Z[d] are linearly independent
polynomials so that P;(0) = O for each i = 1, ..., and assume the largest
degree of the polynomials P; is k. Suppose that A C {1,..,N} so that
|A|/N > ((loglog N)2/log N) VEE=D " Then there ezists an integer d such
that Pi(d) € A— A for everyi=1, ..., k.

Their proof is Fourier analytic and again provides quantitative bounds
that the ergodic proof does not. We expect that using similar methods
to those in this manuscript we could extend Theorem 3.3.3 to subsets of
random sets. We should remark that Lyall and Magyar are optimistic that
combining their proof with the methods of Pintz, Steiger and Szemerédi
would result in a similar bound to that known for Sarkézy’s theorem. This
method would have the advantage of including all sets of such density, rather
than subsets of random sets or subsets of the primes.
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Finally, we believe that it would be of interest to find a Fourier analytic
proof of the following special case of the Bergelson-Leibman theorem which
can be compared with both Theorem 3.3.2 and Theorem 3.3.3:

Theorem 3.3.4. Suppose that § > 0 and assume A is a subset of the integers
with positive upper density. Then there must exist integers x and y such that
z, 4+ 9%, z+y3 € A

We expect that such a result would require quadratic Fourier analysis,
which would enable us to determine a bound on how soon we could find
three elements of the form z, ¢ + y? and z + 9% in A. If we are then able to
extend this to show that, in fact, A must contain ‘many’ triples of the desired
form, then we would hope to be able to prove a version of Theorem 3.3.4
in the random setting or in the primes. Such a result would provide new
quantitative information for a special case of the Theorem of Tao-Ziegler on
polynomial progressions in the primes.
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