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Abstract 
 
The goal of this research was to establish a methodology for quantifying performance of 
surgeons and distinguishing skill levels during live surgeries. We integrated three 
physical measures (kinematics, time and movement transitions) into a modelling 
technique for quantifying performance of surgical trainees. We first defined a new 
hierarchical representation called Motor and Cognitive Modelling Diagram for 
laparoscopic procedures, which: (1) decomposes ‘tasks’ into ‘subtasks’ and at the very 
detailed level into individual movements ‘actions’; and (2) includes an explicit 
cognitive/motor diagrammatic representation that enables to take account of the operative 
variability as most intraoperative assessments are conducted at the ‘whole procedure’ 
level and do not distinguish between performance of trivial and complicated aspects of 
the procedure.  Then, at each level of surgical complexity, we implemented specific 
mathematical techniques for providing a quantitative sense of how far a performance is 
located from a reference level: 

(1) The Kolgomorov-Smirnov statistic to describe the similarity between two 
empirical cumulative distribution functions (e.g., speed profiles) 

(2) The symmetric normalized Jensen-Shannon Divergence to compare transition 
probability matrices 

(3) The Principal Component Analysis to identify the directions of greatest variability 
in a multidimensional space and to reduce the dimensionality of the data using a 
weight space.   

Two experimental studies were completed in order to show feasibility of our proposed 
assessment methodology by monitoring movements of surgical tools while: (1) dissecting 
mandarin oranges, and (2) performing laparoscopic cholecystectomy procedures at the 
operating room to compare residents and expert surgeons when executing two surgical 
tasks: exposing Calot’s Triangle and dissecting the cystic duct and artery. 

Results demonstrated the ability of our methodology to represent selected tasks using the 
Motor and Cognitive Modelling Diagram and to differentiate skill levels. We aim to use 
our approach in future studies to establish correspondences between specific surgical 
tasks and the corresponding simulations of these tasks, which may ultimately enable us to 
do validated assessments in a simulated setting, and to test its reliability in differentiating 
skill levels at the operating room as the number of subjects and procedures increase. 
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Chapter 1 

Introduction 
 

Advances in technology during the second half of the past century changed significantly 

our conception of general surgical practice. The advent of fiber optics changed the way 

surgery was being performed and marked a transition towards procedures that seek to 

avoid large exposure of the patient’s inner anatomy [Veelen 2003, Jordan 2000].  

Laparoscopic surgery then emerged as a minimally invasive procedure, which is 

performed using long thin instruments inserted into the body through small incisions in 

order to operate with minimal damage to healthy tissue.   

Reduction in patients recovery time is the major advantage of this type of procedure and 

has driven an increasing interest in using laparoscopic techniques for a wide range of 

applications, in spite of the limitations imposed on the surgeon whose motor abilities are 

hampered due to constraints such as limited degrees of freedom of the surgical tools, loss 

of depth perception since the 3D surgical field was converted into a two-dimensional 

viewing of the inner anatomy, increased operative times (approximately 30% longer than 

standard open procedures) [Berguer 2001], amongst others, as more conventional 

techniques are switched to laparoscopic ones [Veelen 2003, Nguyen 2001, Berguer 

2001].  Figure 1.1 shows a typical operating room setup at UBC Hospital for 

laparoscopic procedures. 
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Figure 1.1: Typical operating room set up for laparoscopic procedures at UBC Hospital (Left: insertion of 
surgical instruments and laparoscope through patient’s abdomen. Right: Surgeon’s view of inner patient’s 

anatomy). 

Because of these technical challenges, it has become more difficult both to acquire and 

teach minimally invasive surgical skills. A survey conducted in the USA to examine how 

surgical skills were taught and evaluated in 266 obstetric and gynaecology programs, 

indicated that most of the residency programs use the operating room (99%) and lectures 

(88%) for instruction, but only 29% had a surgical curriculum which included bench and 

animal laboratory training as part of their program. Overall, 79% of programs use 

subjective evaluation methods to assess skills, which have been shown to often result in 

poor reliability and validity [Hammond 2006].  However, as constraints on instruction in 

the operating room increase (e.g., time for OR teaching has dropped by ~20% since 2006 

at UBC), the number of medical schools turning towards using simulated surgical 

scenarios such as animal or cadaveric labs (although there are many outstanding issues – 

cost, difficulty in reproducing disease, differences with human anatomy, ethical 

concerns) or physical or virtual reality (VR) simulators, should increase rapidly [Bridges 

1999, Babineau 2004, Britt 2007].   
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Therefore, the constraints imposed on surgeons and the current trend towards reducing 

working hours and training in the live operating room has led surgical education to face 

the complex challenge of figuring out how this specialty should be taught and how 

individual competency should be assessed.  

1.1 Monitoring Surgical Training 

A survey of surgery program directors carried out in 2001, revealed that 92% of 

respondents felt there is a need for teaching surgical motor skills outside the operating 

room [Haluck 2001]. Since then, surgical skill laboratories have been developed by 

several groups, which designed and built physical and virtual reality (VR) simulators to 

expose trainees to new skills outside of the operating theatre [Torkington 2001, 

Gallagher 2001, Scott 2000, Derossis 1998, Rosser 1997]. However, in spite of the fact 

that physical and VR simulators allow trainers to acquire objective measurements of the 

trainee and can facilitate the design of step-wise training by controlling or eliminating 

some variability sources, such as differences in patient’s anatomy and disease conditions, 

there are significant gaps in our understanding of how effective simulators are in 

developing surgical skill. 

There is evidence that people with more advanced surgical skills do better in simulators 

than novices and that training in simulators improves skill in simulators [Feldmand 2004, 

Paisley 2001, Gallagher 2001] but there is relatively weak evidence showing that training 

in simulated environments improves performance in live human surgeries. Grantcharov 

and Fried found good correlation between virtual reality simulator (MIST-VR and 
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MISTELS respectively) performances and performance in a pig model of 

cholecystectomy [Grantcharov 2004, Fried 1999].  They measured individual 

laparoscopic skills through tasks such as transferring, cutting, clipping, ligating, suturing, 

and provide scores in terms of speed (faster performance was rewarded with higher 

scores) and precision (by means of penalty scores per task).  An overall score is 

computed as the difference between the timing score and the precision score.  In order to 

compare performances between the two settings (simulator vs. OR), they tested for 

correlation between in vitro and in vivo scores [Fried 1999].  While proving initial 

evidence for transfer of training for basic skills, these studies only provide insights about 

the final performance at each task but do not allow for tracking performance during the 

execution of a particular task. In addition, analysis of continuously-acquired measures 

(e.g., kinematics of the surgical tool) may constitute a better tool for comparing amongst 

settings than using overall score correlations.  

Common problems with studies investigating the issue of transfer of surgical skills 

include a lack of universal agreement on the most appropriate metrics, lack of a ‘gold 

standard’ for assessing operating room performance, lack of integration of cognitive and 

motor skill assessments, and differing skill levels of the participants [Feldman 2004]. 

Since transference of skill acquisition from simulators to OR has not been completely 

established, monitoring motor performance in the OR remains the preferred choice of the 

surgical community [Park 2002]. Currently used performance evaluation methods for the 

operating room [Alleman 2005, Moorthy 2003, Wanzel 2002, McKenzie 2001, Cao 

1999] include direct observation, global assessment and checklists; although these 
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methods have been shown to be effective, they require evaluators to be present in the OR 

for the entire case in order to track requisite movements and errors and they are time-

consuming and therefore costly.  Global assessments are not procedure-specific but rate 

skill using general performance criteria so as to be applicable to different operations 

without modification.  Global assessments are considered the most valid tool for 

evaluating skill level in the OR at present.  Unfortunately global assessments are time 

consuming, which may decrease the frequency of usage, and they rely on surgeons’ 

opinions, which introduces an element of subjectivity into the assessment which can 

potentially decrease the reliability of the assessment [Warf 1999, Scott 2000, Smith 

2001]. Moreover, this type of evaluation provides limited information for further focused 

training since it is performed at the ‘whole procedure’ level and therefore does not 

distinguish between or focus on specific tasks in the surgery, which the trainer may wish 

to emphasize.  It is also subject to intraoperative variability (i.e., patient’s conditions, OR 

staff, equipment, etc), so reliability is difficult to establish with this type of assessment 

and multiple assessments may need to be performed to ensure a fair assessment of a 

trainee’s performance [Alleman 2005, Aggarwal 2004]. 

To overcome the subjectivity disadvantage of checklists, logbooks and direct observation 

assessments, motion analysis of surgeons’ hands or surgical tools has emerged as a 

promising alternative based on the premise that more experienced or competent surgeons 

will have greater economy of movements, with fewer wasted motions and greater speed 

[Moothy 2003, Smith 2001].  Several studies, including some from our laboratory, have 

shown that it is feasible to acquire such measurements in the operating room using 
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optoelectronic or electromagnetic position tracking systems, although to date such 

measurements have required dedicated technical support and so have not been used 

routinely [Aggarwal 2007, Datta 2006, Dosis 2005, Bann 2003, Darzi 2001, McBeth 

2002, Kinnaird 2004].  In addition, using tracking equipment produces large amounts of 

low level data and it is still not clear how such data can be used effectively for 

assessment and training purposes. 

While we do not believe that objective assessment methods will or should replace 

subjective and nuanced feedback from attending surgeons during the training process, but 

we do believe they can offer an unbiased evaluation starting-point for evaluation based 

on quantitative metrics that have the potential to discriminate between skill levels and to 

detect subtle issues in a given trainee’s surgical technique; we also believe they have the 

potential to provide specific feedback to the trainee concerning areas in which 

improvement is needed.  

The primary purpose of this thesis, therefore, is to determine whether intraoperatively-

acquired quantitative tool movement data can potentially be used to distinguish between 

levels of training of surgeons learning to perform laparoscopic procedures and to provide 

insight into specific aspects or elements of their surgical technique that will prove useful 

for instruction and feedback.  

1.1.1 Surgical Assessment Scenarios 

To begin to address these questions, we began by trying to understand how surgical 

educators might wish to use quantitative information if it were available. We began by 
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asking the four surgeon educators involved in this study to outline a number of scenarios 

in which they might consider using quantitative data and the specific criteria they would 

like to use in monitoring surgical motor skills in the operating room. 

Their input was combined with concepts drawn from the literature [Thomas 2006, Khan 

2005]. According to Kahn 2005, areas in which technical skill assessment may be used 

include evaluating an individual against their peer group to compare relative performance 

and identify outliers, identifying both those who under perform and so may need extra 

training as well as those who may be excellent performers within their cohort.  In the 

end, we created a set of 6 scenarios (Table 1.1), which described typical uses surgeons 

might have for a quantified motion assessment system. 

We asked the 4 participating surgeons to rate the scenarios from 1 (most important) to 6 

(least important).  The ordering shown in Table 1.1 corresponds to the consolidated 

answers (mean scores) from all surgeons, who were very consistent in the importance 

given to the first three scenarios.  Scenarios 1, 2, 5 and 6 are essentially identical in terms 

of the analysis required – a single surgeon is to be compared to one or more reference 

groups. Scenario 3 is similar, but the focus is not on a single surgeon but on the group.  

Scenario 4 is primarily concerned with group-to-group comparisons.  Since 5 of the 6 

scenarios rely on comparing an individual to a group, the focus of this study will 

therefore be on making such comparisons, but we will also consider how to adapt these 

comparison techniques to support group to group comparisons. 
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Scenario S1 S2 S3 S4 
Self-monitoring of training 
Residents are interested in reviewing their own performance to identify 
particular difficulties and to test themselves against other surgeons’ 
performance.  Therefore, each new procedure is analyzed in relation to 
previous procedures from that surgeon, to their peer group and to expert 
group performance. 

1 2 1 1 

Regular monitoring of resident’s training 
Attending surgeon S1 is interested in reviewing the progress of resident R1.  
Therefore, at intervals S1 analyzes one or more procedures by R1 in relation 
to previous procedures by R1, by R1’s peer group and by an expert group. 

2 1 2 2 

Annual monitoring of residency program 
The head of the department of surgery’s training program is interested in 
reviewing the performance of the group of residents from time to time, 
specifically to identify outliers (either those who are underperforming and 
may need extra training or those who seem to be excellent performers within 
their group). 

5 3 3 3 

Comparison of different training programs 
An academic society (e.g., SAGES) is interested in assessing quality of 
training at different geographical regions.  Therefore three types of analyses 
are considered relevant:  the performance of residents in region A vs. expert 
groups from both regions A and B; the performance of residents in region B 
vs. expert groups from both regions A and B; and the performance of 
residents in region A vs. the performance of residents in region B. 

6 4 5 4 

Self assessment and peer assessment (certification) of current practice 
Expert surgeon S1 wishes to review his/her own or another expert’s 
performance at regular intervals to verify that his/her performance is within 
expected norms. 

3 5 6 5 

Writing a reference 
An attending surgeon S1 is asked to write a reference for resident R1; 
therefore S1 is interested in reviewing the overall performance of the 
resident to ensure that he/she is able to perform the basic tasks well and 
confidently.  S1 is particularly interested in identifying common strengths 
and difficulties apparent during various executions during a period of 
training. 

4 6 4 6 

Table 1.1: Surgical scenarios for performance assessment of trainees as described by the four surgeon 
educators involved in this study. S# indicates surgeon number and rating varies from 1 (most important) to 

6 (least important). 

1.1.2 Assessment Criteria 

We also asked the same group of surgeons to provide a description of the assessment 

criteria they use or would like to use in the operating room to analyze residents’ 

performance.  They agreed on the eight criteria shown in Table 1.2 similar to those 

described by Sarker 2006, which we in turn categorized as ‘criteria amenable to objective 
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evaluation’ and ‘criteria to be assessed by other techniques’.  We believe that the first 

two criteria can be assessed by developing a multilevel flowchart of a surgical procedure 

(see Chapter 2), while the second two criteria can be assessed by evaluating tool 

movement patterns associated with particular segments of the procedure identified in the 

flowchart (see Chapter 3). 

CRITERIA AMENABLE TO OBJECTIVE EVALUATION 

a. Flow of procedure – forward planning (smooth progression without stopping frequently); appropriate 

selection of subtask order of execution 

b. Surgical technique – correct execution of steps in each subtask (subtask-specific checklist); error rate 

in execution of steps at each subtask 

c. Efficiency – use only necessary movements and reasonable amount of time according to procedure 

difficulty 

d. Competence in use of instruments – confident and fluid movements, bimanual dexterity, depth 

perception (accurate orientation and direction of instruments in the correct plane), appropriate traction, 

minimal damage to tissue 

CRITERIA TO BE ASSESSED BY OTHER TECHNIQUES 

e. Organization of the OR – correct equipment and instrument selection, mode, and connection; 

convenient positioning of equipment to avoid accidents and to facilitate instrument exchange 

f. Knowledge of instruments – familiar with names and tasks performed with each instrument; particular 

selection of instruments 

g. Autonomy – appropriate use of assistant, confident decisions with immediate implementation, 

minimal guidance needed by attending surgeon 

h. Quality – achieve desired outcome of the procedure 

Table 1.2: Assessment criteria identified by the 4 surgeons involved in this study for describing and 
measuring laparoscopic surgical performance in the operating room. 

1.1.3 Certifying Surgical Practice 

A key purpose of objective assessment systems is related to setting standards for 

promoting trainees. Therefore, data obtained from live surgical practice will hopefully be 
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able to be used to define typical levels of performance for novice, intermediate, and 

expert surgeons.  Reliable means for classifying a given surgeon’s typical performance 

will therefore need to be developed before we can begin to design specific licensing 

requirements based on quantitative evaluations.  

Some authors have observed that measured aspects of operative behaviour can likely be 

described by some sort of bell curve-type distribution where on the far left would be the 

‘mavericks’ and on the far right would be the surgical geniuses (Figure 1.2) [Thomas  

2006].  Thomas argued that the aim of assessing surgical competency should be to 

eradicate the mavericks, to emulate the geniuses and thus to move the whole bell curve to 

the right by the spreading of best practices (Figure 1.2) [Thomas 2006].  To accomplish 

this goal, we must be able to do what we described in section 1.1.1 – provide a 

comparison between a given surgeon’s motor (movement) behaviours and that of the 

reference group of surgeons to be emulated and provide instruction to the surgeons so 

that they can modify their techniques accordingly. 

 

 

 

 

Figure 1.2: Potential normal distribution curve for surgical competence (left) and ideal behaviour of the 
surgical competence curve after effective training (right) [Thomas 2006]. 
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In the next sections, we will present a literature review of the potential performance 

measures we might use and how they have been measured and used in the operating 

room to date.  Finally we will introduce our research questions and provide an overview 

of the rest of the thesis. 

1.2 Potential Quantitative Measures  

Time (or speed) and accuracy have often been used as measures of performance in the 

OR [Feldman 2004, Pearson 2002, Risucci 2001] but it is unclear that a task performed 

quickly does not necessarily mean that it was performed well, so time alone is not a 

sufficient measure of surgical skill [Datta 2002].  In addition, time is a summary measure 

and therefore does not provide insight into how a task is executed [Smith 2001].  Other 

kinds of measures have also been shown to be helpful in making assessments in surgical 

simulators: kinematics [Aggarwal 2007, Datta 2006, Dosis 2005, Bann 2003, Darzi 2001, 

Torkington 2001], forces [Rosen 2001, Rosen 2002, Rosen 2006], path length [Ahlberg 

2002], distance traveled by the instruments [Hamilton 2002, Jordan 2000], etc; although 

relatively little work has been done to demonstrate that the patterns found in simulator 

settings transfer to the live operating room [Hyltander 2002, Satava, 2001]. 

Amongst the techniques used to measure performance level and differentiate amongst 

skill groups, the following ones have been published and cited extensively: 
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a) Physical Trainers:  

• Southwestern Center for Minimally Invasive Surgery tasks and ‘Rosser’ tasks: 

Both task sets include transferring and suturing exercises performed under 

videoscopic guidance in a trainer box, and performance is assessed by measuring 

time to execute the tasks [Rosser 1997] 

• MISTELS (McGill Inanimate System for Training and Evaluation of 

Laparoscopic Skills): The original system consisted of 7 tasks performed in a 

trainer box under videoscopic guidance and each task is scored for precision of 

performance and speed, with different penalty scores used for each exercise. 

[Derossis 1998] 

b) Virtual Reality Trainers:  

• MIST-VR (Minimally Invasive Surgical Trainer Virtual Reality): This VR system 

is commercially available and has been studied by several groups in Europe and 

North America. The program consists of 6 tasks of increasing complexity and 

measurements include time, economy of movement (the distance traveled by the 

instrument tip past the target), errors, and economy of diathermy use (total burn 

time) [Hamilton 2002, Jordan 2000] 

c) Operating Room Assessment Tools: 

• Imperial College Surgical Assessment Device: The ICSAD is a computer 

program, which processes data from an electromagnetic sensor attached to the 
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surgeon’s hand during either simulated or live surgery. This software generates 

scores of time, number of movements, speed of travel, and distance traveled by 

each instrument during completion of the task. Besides simulator, this system has 

also been used in a human operating room, and therefore it is the most 

extensively studied to date.  Some validity studies has been carried out with 

ICSAD and has shown construct validity1 as time and number of movements 

discriminated senior from junior surgeons when executing an open vascular 

surgical simulation [Aggarwal 2007, Datta 2006, Dosis 2005, Torkington 2001, 

Smith 2002].    

• Advanced Dundee Endoscopic Psychomotor Tester (ADEPT): In this physical 

simulator, laparoscopic graspers are equipped with sensors to measure angular 

deviations, and the target plate can also measure errors like excessive force. 

Various tasks, involving manipulation of switches and dials can be performed 

under videoscopic guidance and the number of tasks successfully completed, total 

time, and errors are used as performance measures [Francis 2001, Macmillan, 

1999]. 

• Forces and torques exerted by the tools on operative tissues have also been 

examined; both in the form of grip force and tool tip forces [De Visser 2002]. 

Rosen’s group at the University of Washington has done extensive work using 

                                                 

1 Construct Validity differentiates between skill levels.  It is the most common validity test applied to 
surgical simulators, where an expert should show a marked improvement over a novice’s performance on 
analogous tasks.  
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force/torque signatures measured at the hand/tool interface to evaluate 

performance in a porcine model. Rosen uses Markov Modeling on the whole 

procedure force data stream to show the feasibility of correctly classifying 

surgeons into two experience levels based on the similarity of the models 

representing a given surgeon’s low-level tool-tissue interactions to models 

derived from reference groups representing the two experience levels. They 

demonstrated that the forces and torques applied by experts and novices differed, 

as did the time to complete the procedures [Rosen 2001, Rosen 2002, Rosen 

2006] 

Although current simulators have been shown to be a valid tool for training novice 

surgeons in basic psychomotor skills [Park 2002, Grantcharov 2001, Ahlberg 2002, 

Hyltander 2002] as performed and assessed in a simulator, their ability to provide 

valuable guidance at more advanced levels of training has not been established. In 

particular, current simulator technology cannot yet represent the wide range of variability 

seen in patients in the operating room.  In addition, while it is clear that low scores on 

particular simulated tasks suggest that more practice might be required, there has been 

virtually no work done on using intraoperatively-acquired data to identify suboptimal 

performance that can be linked to [Feldman, 2004]. 

In the present study, we concentrate on integrating three types of physical measures (tool 

kinematics, time and movement transitioning) into a modelling technique for quantifying 

performance of surgical trainees while performing at the operating room. 
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1.3 Quantitative Assessments in the Operating Room 

As described above, the vast majority of quantitative studies have been conducted in 

surgical simulators.  To our knowledge, only three main types of performance evaluation 

methods have been tested at the operating room. The advantages and disadvantages of 

each are presented so as to assess the potential of each method and the current trend of 

research in surgical skill assessment. 

• Surgical observation relies on expert surgeons’ qualitative opinions about trainees’ 

performance during individual procedures. In an attempt to add some objectivity to 

this method and to provide a framework for describing procedures, Cao 1999 

introduced the notion of surgical task decomposition using video analysis to identify 

activities and motions in endoscopic procedures. This group developed a hierarchical 

decomposition primarily for the Nissen Fundoplication procedure by decomposing 

the overall procedure into tasks, then tasks into sub-tasks and sub-tasks into 

component motions. Measures of time spent to complete each task and subtask, the 

types of motions and the number of times each motion was used were recorded [Cao, 

1999 MacKenzie, 2001]. Major issues in using this technique included logistical 

problems of scheduling trained observers, patient variability, unreliable evaluation 

due to observers using subjective criteria, time spent and lack of agreement by 

reviewers not only during direct observation but also when using video assessment 

[Alleman 2005]. 
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• The University of Toronto’s OSATS (objective structured assessment of technical 

skills) is to date the only standardized method capable of evaluating procedures in the 

operating room, although it has been used more extensively in animal and simulator 

settings; it uses a global rating system, checklists, and time measurements [Wanzel 

2002, Martin 1997].  Performance during execution of tasks is assessed using 

checklists specific to the operation or surgical task and a global rating scale. The 

global scale is composed of seven variables that represent operative skill.  A reviewer 

uses a 5-point scale to evaluate every variable. The middle and the extreme points are 

described using the following rubric to help the assessor assigning consistent scores 

(Table 1.3).  

 Rating 
Variable 1 2 3 4 5 

Respect for 
tissue 

Often used unnecessary force 
on tissue or caused damage 
by inappropriate use of 
instruments 

 Careful handling of tissue but 
occasionally caused inadvertent 
damage 

 Consistently handled 
tissues appropriately 
with minimal damage 

Time and 
motion 

Many unnecessary moves  Efficient time and motion but 
some unnecessary moves 

 Economy of movement 
and maximum 
efficiency 

Instrument 
handling 

Repeatedly makes tentative 
or awkward moves with 
instruments 

 Competent use of instruments, 
although occasionally appeared 
stiff or awkward 

 Fluid moves with 
instruments and no 
awkwardness 

Knowledge of 
instruments 

Frequently asked for the 
wrong instrument or used an 
inappropriate instrument 

 Know the names of most 
instruments and used 
appropriate instrument for the 
task 

 Obviously familiar 
with the instruments 
required and their 
names 

Use of 
assistants 

Consistently placed assistants 
poorly or failed to use 
assistants 

 Good use of assistants most of 
the time 

 Strategically used 
assistants to the best 
advantage at all times 

Flow of 
operation and 
forward 
planning 

Frequently stopped operating 
or needed to discuss next 
move 

 Demonstrated ability for 
forward planning with steady 
progression of operative 
procedure 

 Obviously planned 
course of operation 
with effortless flow 
from one move to the 
next 

Knowledge of 
specific 
procedure 

Deficient knowledge. Needed 
specific instruction at most 
operative steps 

 Knew all important aspects of 
the operation 

 Demonstrated 
familiarity with all 
aspects of the 
operation 

Table 1.3: Global Rating Scale from OSATS. 
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The OSATS offers several benefits toward the assessment of technical competence as 

it provides standardized assessment criteria, it is portable with good reliability and 

validity when administered in different medical centers and it could be used to track 

the progress of individual residents through training and offer valuable feedback for 

future improvement as the criteria have been shown to discriminate between levels of 

training [Wanzel 2002, Regehr 1998]. However, important drawbacks in using the 

OSATS method are the resources (expensive and logistically complex to administer) 

involved in getting expert surgeons to observe the performance of trainees. 

Therefore, the surgical community would greatly benefit from evaluation systems 

capable of assessing technical skills in real time without needing to rely so heavily on 

expert observers [Sidhu 2004, Moorthy 2003]. 

• Motion analysis-based systems have recently arisen as a potential alternative to 

observer-based methods. They rely on the concept that motions become more 

efficient with level of training, therefore motion measures will reflect skill levels. 

Darzi’s group at Imperial College London has demonstrated that by using 

electromagnetic sensors, surgeons’ hand movements could be tracked and analyzed. 

They have shown a strong correlation between previous laparoscopic experience on a 

simple task in a box trainer and dexterity in more complex tasks such as laparoscopic 

cholecystectomy on a porcine model [Darzi 2001]. In those studies, expert surgeons 

proved to be more economical in terms of the number of movements and more 

accurate when approaching specific surgical targets, which allowed them to utilize 

shorter paths [Aggarwal 2007, Datta 2006, Dosis 2005].  
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We regard this approach as one of the most promising for the future of surgical skill 

assessment; however, we also believe that some issues need to be addressed before 

the system will be useful for instruction.  Darzi’s approach considers major parts of 

the entire surgical procedure (e.g., Calot’s Triangle dissection) without further task 

decomposition, which therefore, does not allow identifying and distinguishing critical 

aspects at subcomponents of the procedure.  A thorough understanding of the flow of 

the procedure in terms of a hierarchical and sequential representation of motor and 

cognitive activities is necessary to (1) identify causes of deviations in the normal path 

due to individual surgeon’s decisions, (2) to describe how the surgical tools are 

actually used following a standardized and structured framework of the procedure, 

and (3) to take account of operative variability by allowing for variable weighting on 

different tasks during a surgical procedure to reflect differences in importance, 

difficulty or relevance for the current level of surgical training. Decomposing surgical 

procedure into simpler tasks will also facilitate providing relevant feedback to the 

trainer by focusing the assessment on problematic areas of the procedure. In addition, 

it is still an open question whether position data from the back of the surgeon’s hand 

is substantially equivalent to that of the tool itself.  Since we would ultimately like to 

include force data describing tool-tissue interactions, we propose to acquire tool tip 

data. 

Our group has previously demonstrated the feasibility of acquiring intraoperative 

measures of tool motion.  Two previous studies [McBeth 2002, Kinnaird 2004] used 

a Northern Digital Polaris Hybrid Optical Tracking System to track the 3D position 



 

 19

of both active infrared light emitting diodes (IRED’s) and passive retro-reflective 

markers in order to acquire postural data and tool tip trajectories. The major 

disadvantage of the optical systems is that they suffer from occlusions in the line of 

sight between the camera and the markers. McBeth found that due to the complicated 

OR set up, the line-of-sight issue prevented him from obtaining reliable data from 

some of the procedures; therefore, Kinnaird improved the tracking method by 

incorporating an electromagnetic system into the tool tracking system.  However, this 

proved to be somewhat cumbersome for the surgeons to use.  Nonetheless both 

studies successfully proved that tracking systems could be used in a reasonably 

practical manner to record surgeons’ motion data while performing live surgical 

procedures.   

1.4 Research Questions 

Our approach to assessing surgical motor performance is based on video analysis and 

position measurements of the surgical tool movements.  We use a hierarchical 

decomposition to represent 3 levels of surgical procedure organization (Task, Subtasks, 

and Actions) and attach time, kinematic and state transition measures to each node of the 

Motor and Cognitive Modelling Diagram (MCMD).  We use a variety of techniques to 

evaluate differences between individual surgeons and reference groups and use a 

dimension reduction technique to make the resulting analysis more comprehensible to the 

trainees and trainers. 
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The overall goals of the present research are to layout and evaluate the feasibility of a 

novel assessment framework and methodology for quantifying and assessing the 

psychomotor performance of surgeons during live surgeries.  

We therefore concentrate on answering the following specific research questions: 

1. Can quantitative measures acquired intraoperatively reliably characterize motor 

performance? 

2. Do surgeons at similar stages of training exhibit similar psychomotor patterns? 

3. Is there a clear separation of patterns between the extremes of the training spectrum? 

4. What data/measures are most useful in separating surgeons along this spectrum? 

5. Can a quantitative analysis produce insights useful for instruction? 

In implementing our approach, two key elements are developed: (1) a ‘language’ for 

modeling surgical procedures, and (2) techniques for representing and processing the 

quantitative data. 

For the first part, the methods include extensive observations of the actual laparoscopic 

cholecystectomy (LapChole) surgical procedure used by attending surgeons at the 

University of British Columbia, followed by multiple interviews and repeated 

applications of ‘think-aloud’ techniques in the operating room.  This cyclic process and a 

validation study allow us to define a set of general symbols which are used to construct 

our MCMD diagram for describing laparoscopic procedures. 

For the second part, we track the motions of two surgical tools which are commonly used 

in the most important phases of the LapChole procedure (Curved Dissector and 
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Atraumatic Grasper). We use a Polhemus 3SPACE Fastrak 6-dof electromagnetic system 

to measure tools’ position and orientation data.  The resulting data stream is segmented 

into tasks, subtasks, and actions based on the times identified in the video analysis for the 

MCMD.  We then apply Principal Components Analysis (PCA) to extract the dominant 

contributors to overall variability and to visualize motor performance as function of level 

of surgical training.  In addition, we assign measures of dissimilarity (Kolgomorov-

Smirnov measure and Jensen-Shanon Divergence) between kinematics and time profiles 

and transition probability matrices in order to compare an individual surgeon’s 

performance to that of different reference groups such as peers or experts. These 

measures provide a more complete representation of the tool use patterns than would be 

possible if using summary or average measures only. 

1.5 Thesis Layout 

The present thesis has been structured as follows: 

Chapter 2 describes our approach to decomposing laparoscopic surgical procedures by 

developing a standardized and structured framework to describe the organization and 

progression of a surgery.  This motor MCMD representation is developed in the context 

of laparoscopic cholecystectomies and we show how the notation is sufficiently rich to 

represent a second laparoscopic procedure – laparoscopic colectomy.  

Chapter 3 presents the proposed general assessment methodology, including extensive 

descriptions of the implemented data acquisition system and a detailed explanation of 
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how we derived and transformed our performance measures into difference scores at the 

various hierarchical levels of our MCMD representation. 

Chapters 4 and 5 describe the results of implementing our proposed methodology in a 

physical simulation study (chapter 4) and in an intraoperative study (chapter 5).   

Chapter 6 summarizes the findings of the thesis by highlighting the main contributions 

and proposes future studies using the methodology developed here to test its reliability in 

comparing large datasets (multiple procedures) of surgeons and to determine any 

correlation between assessment on simulators and assessment at the operating room. 

1.6 Contributions and Significance 

Given that most testing scenarios for performance assessment make use of animal models 

or simulators, we believe that one of the most significant contributions of the present 

research would be to become the first group in North America to develop and apply an 

assessment methodology for measuring surgical performance in a human operating room 

environment. By means of our original motor and cognitive modelling diagram (MCMD) 

we expect to take account of interprocedure variability at various hierarchical levels by 

decomposing the procedure into individual tasks to which we would be able to attach 

performance measures segmented from a continuous data stream, as well as derived 

difference scores, in order to identify critical aspects of the overall surgery for which 

instruction should be emphasized. Through the two experimental studies, we intend to 

demonstrate the feasibility of our methodology by showing that these measures can 

differentiate between skill levels.  In addition, we believe that the ‘difference measure’ 
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concept we introduce here, which produces normalized difference scores lying between 0 

(similar) and 1 (different) regardless of the units measured, will contribute to defining 

scoring scales that the broader surgical education community will find useful and 

intuitive to use.  

A successful demonstration of this quantitative assessment approach could potentially 

become a standard component of intraoperative surgical skill assessment protocols 

following two further developments:  (1) improvements in automatic data segmentation 

and analysis to make the method more practical in day-to-day applications, and (2) 

application to a broader range of subjects from multiple institutions to enable 

construction of a larger and more reliable dataset. 
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Chapter 2 

Task Analysis in Minimally Invasive Surgery 

 

2.1 Introduction  

As described in the previous chapter, the surgical motor performance by a given surgeon 

during live surgeries can vary significantly from procedure to procedure due to 

differences in the patient, the surgical team and the equipment available.  Relatively 

random events, such as the occurrence of unexpected bleeding, can produce a significant 

diversion in the course of the procedure, and differences in patient anatomy can require 

variations in technique or even different surgical steps to be performed [Ignjatović 2006].  

Some patients have aberrant anatomy or other complications (e.g., scarring from previous 

surgeries) that simply make accomplishing the surgical goal more difficult and time-

consuming [Ding 2007, Larobina 2005].  For these reasons, it is difficult to monitor a 

given surgeon’s surgical performance across patients or to compare a given surgeon with 

a reference group either of peers or experts based on whole task measures alone.   

It is therefore necessary to develop a means of representing the flow of surgical 

procedures that can capture the variations in procedures that exist in real patients. In that 

way, we can evaluate surgical motor performance at a more detailed level where the 

tasks being executed are more directly comparable and less affected by inter-patient or 

inter-procedure variability.  For example, if an operation involves a suturing task, it is 
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reasonable to evaluate their suturing ability by focusing on this task, regardless of how 

much surgical effort was required to get to this stage in each particular patient, rather 

than trying to infer how well they suture based on measures such as the overall time 

taken for the procedure (which may include 15 minutes spent trying to deal with 

unexpected bleeding).  Similarly, the way a surgeon moves their tools when performing a 

blunt dissection task is likely quite characteristic of their current level of surgical training 

and skill development, regardless of which specific patient they are currently operating 

on.   

To make these ‘in-context’ sorts of comparisons, therefore, we need to develop a 

‘language’ for describing the flow of a surgical procedure.  At one level, a surgical 

procedure is simply a long series of tool movements that can be described as a position 

vs. time history (or force vs. time).  However, such a description ignores the cognitive 

aspects of a surgical procedure; it does not express the goals the surgeon is trying to 

achieve and does not distinguish between the main tasks they are performing and 

adaptive responses to unforeseen events such as bleeding, nor does it convey any sense 

of progress through the procedure.  To capture such aspects of surgery, we need to 

overlay onto these continuous data streams a description of the goals the surgeon has in 

mind.  In short, we need to add meaning and context to the data stream. Therefore, key 

features required by such a language are the ability to represent various levels of detail, 

sequencing/flow (including loops and branching/options, as well as order-independent 

tasks – i.e., those that can be done in any order, but which all must be done before 
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proceeding), decision points, and interruptions (suspend and resume) [Bittner 2004, 

Berber 2001, Reddick 1993, Cuschieri 1990]. 

In previous work, some authors have found it helpful to describe a surgical procedure in 

a hierarchical form. In order to establish differences between novice and expert surgeons 

in terms of the executed steps during a procedure, Cao 1996 introduced the notion of 

surgical task decomposition using video. They developed a hierarchical decomposition 

for the Nissen Fundoplication surgery by decomposing the whole procedure into tasks, 

then tasks into sub-tasks and sub-tasks into component motions. Later, they proposed 

representations for inguinal repair and laparoscopic cholecystectomy procedures [Cao, 

1999]. Each activity was limited by operational beginnings, endings and target states and 

a measure of time to complete each activity was used as the performance measure.  

Afterwards, McBeth 2002, developed an alternative hierarchical decomposition based on 

Cao’s structure but modified it to improve generality and to incorporate additional 

kinematic features of low-level tool movements. He defined the following five levels 

(Figure 2.1):   

1. The phase level outlines the global goals of the procedure, which are likely to be 

invariant regardless of who performs the procedure.   

2. The stage level outlines local goals required to complete each phase; the stages 

are usually similar in most patients and are usually carried out in a standard order, 

although there may be some variation in ordering, depending on the procedure 

(for example in laparoscopic cholecystectomy surgeons have the choice between 
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performing an ultrasonography test prior to or during the surgery.  At the stage 

level, the surgeon may have to use multiple tools to accomplish the surgical goal.   

3. The task level is similarly defined in terms of a discrete surgical goal, but 

generally involves the use of only a single tool (or pair of tools in the surgeon’s 

two hands).  There is generally the sense that tasks are to be performed 

sequentially according to a predetermined plan, although McBeth did not 

explicitly model the flow of a procedure. 

4. The subtask level describes the set of sub-goals the surgeon uses a single tool to 

achieve.  At this level, there is more possibility for the sequencing between 

subtasks to depend on patient-specific factors; there is also more of a notion of 

cycling between subtasks until the larger goal or sub-goal is achieved, although 

again such cycling was not explicitly modeled.   

5. Finally, actions describe low-level surgical gestures (i.e., individual tool 

‘movements’) such as reaching or sweeping that are used to accomplish a higher-

level surgical goal.  At this level, there is no notion of a surgical goal or of 

forward progress; the individual gestures are viewed as states that the surgeon 

cycles between until the higher-level goal is achieved.   

This five-level hierarchical decomposition was designed to provide a foundation for 

quantitatively analyzing surgeons performing a standardized version of a common 

minimally invasive procedure (in this case, laparoscopic cholecystectomy). 
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Figure 2.1: Hierarchical decomposition of the laparoscopic cholecystectomy by McBeth 2002. 

While helpful in understanding the main tasks that make up selected surgical procedures, 

both Cao and McBeth’s approaches concentrated exclusively on describing motor 

activities using a hierarchy.  Hierarchical decompositions assume that all processes at a 

given level proceed sequentially and do not reflect the branching and decision points that 

occur in real procedures (see Figure 2.2).  Neither representation, therefore, is adequate 

for representing both motor and cognitive aspects of surgery in a unified framework.  

Other studies have also tackled the issue of representing minimally invasive procedures 

(MIS) for assessment purposes; however, as will be explained in the next section, while 
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they have identified some key elements, they have not integrated a consideration of flow 

and decision-making.  

 

 

 

Figure 2.2: The hierarchical decomposition of McBeth does not directly represent event sequences and 
decision points. 

2.1.1 Task Analysis for Representing Minimally Invasive Surgical 

Procedures 

Task analysis is an important tool in the cognitive sciences field, which can be used to 

identify key components of complex activities, such as surgery, that need to be analyzed 

when designing training systems.  From the technological perspective, the application of 

this methodology aimed to provide the foundation for constructing suitable settings for 

the practice of technical skills while taking into account human needs, behaviours and 

limitations.  Potential benefits are reductions in latent human errors caused by lack of 

experience or cognitive processing limits, which in the surgical setting may lead to 

undesirable complications for the patient [Stone 2004, McCloy 2001]. 

An important example of the application of task analysis in the development of surgical 

simulators is the MIST VR system.  An ergonomic evaluation of psychomotor skills was 
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performed in the operating room leading to the definition of a set of simplified tasks 

which collectively represent the skills required while executing the main steps of a real 

laparoscopic procedure (e.g., holding tissue, separating tissue and vessels, left hand and 

right hand instrument control, etc) [Stone 2004, McCloy 2001]. 

However, since there is a growing need to establish ways to reliably assess surgical 

performance in real settings, it has become imperative to perform a more extensive 

analysis of the constituent parts of a procedure.  This has led engineers to develop 

structural methods that provide a standard framework that can objectively describe the 

flow of the procedure.  Although only a few research groups have addressed this issue to 

date, the current approaches have been well-received [Sullivan 2008, Sarker 2006]. 

Cao et al 1996 introduced the notion of surgical task decomposition using video analysis 

to identify activities and motions in endoscopic procedures as a way to establish 

differences between novice and expert surgeons.  They developed a hierarchical 

decomposition in terms of three levels: tasks, sub-tasks and component motions.   

Four basic surgical tasks were identified for the Nissen Fundoplication procedure:  

dissecting tissue, suturing, tying knots, and cutting sutures, for which high levels of skill 

are required.  Measures of time spent to complete each task and subtask, component 

motions and the number of attempts for each of the component motions to achieve the 

task goals, were recorded as performance measures through a qualitative description of 

the end-effector’s movement characteristics and a simple scoring of the number of 

repeated attempts made by the surgeons. 
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Suturing was found to be the longest and most involved of the four surgical tasks, 

followed by tying knots, dissecting tissue, and cutting tissue.  They also found that two 

tasks (cutting sutures and dissecting tissue) shared the same sub-task decomposition (pull 

taut object and snip object), but were differentiated by the time spent due to the particular 

subtask requirements and constraints (mainly precision and safety) and the object (tissue 

or suture) to be divided, which determined the degree of difficulty as expressed by the 

number of motions performed.  Five distinct basic motions were identified:  reach & 

orient, grasp & hold/cut, push, pull, and release 

In 1999, Cao et al. extended their hierarchical decomposition to describe other 

procedures: laparoscopic cholecystectomy, inguinal repair and nissen fundoplication.  In 

this study, they highlighted the importance of performing surgical task analysis for 

assessing new technology by measuring its impact on surgical skill acquisition and 

performance.   

Observational research was carried out to qualitatively describe the procedures in terms 

of increasing levels of detail, from high-level surgical steps down to sub-steps, tasks, 

subtasks, and what they called motions.  For laparoscopic cholecystectomy, which is our 

reference procedure because it is the most commonly performed laparoscopic procedure 

and the one residents first learn to perform, four surgical steps were identified: 1) prepare 

patient, 2) isolate gallbladder, 3) remove gallbladder, and 4) close; where 2) isolate 

gallbladder and 3) remove gallbladder are the major steps.  As will be shown in section 

2.3, this decomposition matches well with our analysis. 
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A third study carried out by this group [MacKenzie 2001] and presented as an integration 

of the two previous ones used a triangle strategy to study user, task and tool in the 

context of the operating room (OR) environment, in contrast to their previous studies 

mainly conducted using pig models.  At this point they extended and developed a 

detailed hierarchical framework for Nissen Fundoplication procedures. One interesting 

issue during this decomposition focused on the comparison of whether or not surgeons 

divided the short gastrics.  Although it is clear that the presence or absence of a certain 

step could be a way to assess experience, they realized that the hierarchical 

decomposition approach is limited in its ability to represent the human cognitive 

processes underlying task performance since it is exclusively based on the observable 

functional aspects of the task.  Therefore we believe that it is necessary to complement it 

with a representation of the flow of the procedure, which will allow us to represent 

surgical decision points and variations or adjustments in technique.  These are the types 

of issues that we intend to contribute with our study and that will be explained in detail in 

section 2.3. 

In another approach not based on structured task decomposition, Berber 2001 critically 

analyzed the intraoperative time utilization for laparoscopic cholecystectomy and 

identified the most important moments of the procedure.  They found that the operation 

time may be divided into seven parts:  trocar entry, laparoscopic ultrasonography, 

dissection of the triangle of Calot, cholangiogram, dissection of gallbladder, placement of 

gallbladder in the endobag, and irrigation-suction process & removal of ports.  Even 

though this study did not suggest any hierarchical analysis of the seven identified phases, 
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it served as a basis of comparison for our study.  In particular, it suggested to us the need 

to include two issues we had not originally identified (i.e., laparoscopic ultrasonography 

and cholangiography) in order to make our representation more general. 

Two recent approaches have added additional insights about the importance of having a 

standard diagrammatic representation for surgical procedures. Weigmman 2007 studied 

surgical errors and their relationship to flow disruptions in cardiovascular surgery. Based 

on a conventional surgical protocol, they identified two types of errors: immediate vs. 

delayed capture errors and found that those errors that were captured immediately were 

more likely to be detected by the same person who committed the error than were events 

captured after a delay.  In terms of the five categories of flow disruption defined in this 

study (teamwork, extraneous interruptions, equipment/technology, resources-based 

issues, supervisory/training-related issues), teamwork/communication accounted for the 

highest percentage (52%) of occurrence of disruptions and constituted the strongest 

predictor of surgical errors. Since this study was performed at a high level of surgical 

description and no exclusion criteria for patients and surgeons were applied, disruptions 

and errors associated with specific surgical steps could not be identified. However, this 

study suggested to us the need to include a way to represent flow disruptions 

[Weigmman 2007]. 

In order to explore the cognitive side of surgical procedures, Sullivan carried out a study 

to investigate if cognitive task analysis (CTA) could capture steps and decision points 

that were not articulated during traditional teaching of a colonoscopy. They created a 

procedural checklist and a 14-point scale for measuring cognitive demands, and made 
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use of the ‘think-aloud’ technique for recording descriptions from three expert surgeons 

about what/how they performed. They found that the surgeons omitted explaining more 

than 50% of the essential steps and critical decisions, which supports the notion that 

expertise is highly automated and that during difficult cases, surgeons tend to stop 

explaining because they become worried about committing an error [Sullivan 2008].  The 

findings of this study also support our contention that it is important to document 

procedural descriptions from multiple expert surgeons in order to standardize 

representations of cognitive aspects of surgical procedures in order to help trainers 

articulate the critical aspects of the surgery prior to going into the OR.  Additionally, 

correlating critical decision points with specific surgical steps would help surgeons to 

devise alternative strategies for ensuring the patient’s safety.  

From a technical point of view and with the aim of providing a qualitative and objective 

analysis of laparoscopic procedures, Rosen 2001 hypothesized that: 1) haptic information 

and tool/tissue interactions performed in laparoscopic surgery are skill-dependent, and 2) 

statistical models (Hidden Markov Models – HMMs) representing these interactions are 

capable of objectively evaluating laparoscopic surgical skills.  The method they chose to 

use was based on an instrumented grasper equipped with F/T sensors at the hand/tool 

interface and a standardized seven-step procedure performed on a pig model. 

Although a formal hierarchy was not developed, they found 14 unique force/torque 

signatures representing 14 types of tool/tissue interactions that they grouped into three 

broader types based on the level of force/torque interaction (Table 2.1).  They then 

analyzed the procedure as continuous cycling between the 3 states but did not include 
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any notion of decision points or progression.  Those states are similar to the ‘actions’ 

described by Cao. 

Type State name State Acron. Force/Torque 
   Fx Fy Fz Tx Ty Tz Fg 
I Idle ID        
 Grasping GR       + 
 Spreading SP       - 
 Pushing PS   -     
 Sweeping (lateral retraction) SW ± ±  ± ±   

II Grasping – Pulling GR-PL   +    + 
 Grasping – Pushing GR-PS   -     
 Grasping – Sweeping GR-SW ± ±  ± ±  + 
 Pushing – Spreading PS-SP   -    - 
 Pushing – Sweeping PS-SW ± ± - ± ±   
 Sweeping – Spreading SW-SP ± ±  ± ±   

III Grasping – Pulling – Sweeping GR-PL-SW ± ± + ± ±  + 
 Grasping – Pushing – Sweeping GR-PS-SW ± ± - ± ±  + 
 Pushing – Sweeping – Spreading PS-SW-SP ± ± - ± ±  - 

Table 2.1: List of tool/tissue interactions identified by Rosen’s study. 

McBeth 2002 (from our lab) developed a second technical approach (i.e., measurement 

of kinematic and postural data in the live operating room setting) in which, in contrast to 

Rosen’s study, the data analysis was performed using an organizational structure 

provided by a hierarchical decomposition.  The aim was to introduce a sense of context 

while describing the procedure in terms of surgical tasks, tool sequences and 

fundamental tool actions (Figure 2.1).  This technique was based on the decomposition 

approach originally described by Cao 1996, but modified to improve generality and to 

incorporate additional quantitative kinematic features on low-level tool movements.  As 

stated earlier, it was composed of five levels: phase, stage, task, sub-task, and action. 

More relevant to the issue of instrument design, Mehta 2001 used motion analysis to 

explore the specific maneuvers that can be performed with various laparoscopic 
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instruments as well as the sequence in which they were executed in order to reveal 

patterns of instrument use during procedures.  This study developed the notion of 

individual tool movements as well as the notion of order of execution for describing how 

a tool is used in terms of those predefined movements. 

A list of distinct instrument maneuvers was identified from a consideration of six 

relatively common types of laparoscopic procedures (Table 2.2):  cholecystectomy, 

nisssen fundoplication, adrenalectomy, appendectomy, splenectomy, and nephrectomy. 

Maneuver Operational definition 
Retracting with grasping Maneuvering a tissue or organ that is inside the jaws of the 

instrument 
Retracting without grasping Maneuvering a tissue or organ while it is not within the jaws of the 

instrument 
Cut ultrasonic Separating tissue planes using the ultrasonic energy generated by the 

ultrasonic shears 
Dissecting Separating tissue planes using the blunt end of an instrument  
Cutting Slicing tissue or sutures using sharp scissors 
Coagulation Cauterizing a vessel without cutting 
Clipping Occluding a vessel or connecting latex drains with a metal clip 
Irrigation and suction Clearing the field of view using saline and/or suction 
Suturing Piercing of tissue with the suture needle 
Suture tying Manipulating the needle or free end of a suture to make a knot 
Specimen/material removal Removing an organ, tissue sample, or surgical material 
Stapling Separating tissues with a mechanical stapling device 
Cut cautery Separating tissue planes using electrical cautery 

Table 2.2: Operational definition of maneuvers in Mehta’s study. 

Moreover, Mehta has advocated for the need to know how an instrument is actually used 

during the surgery and what impact its use has on the flow or dynamics of the procedure, 

which again suggests the need to integrate a description of flow into the hierarchical 

decomposition.   
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With regard to instrument exchange, Mehta found that two and three instrument cycles 

were used in laparoscopic cholecystectomy for achieving the highest level goals of the 

procedures (i.e., at the stage level), with the “curved dissector → clipper → scissors” and 

“hook cautery → suction irrigator” cycles being the most prevalent patterns of instrument 

exchange.   

According to Mehta, one reason often given for why a particular instrument is chosen is 

the diversity of its functions (multifunctionality) because exchange during laparoscopic 

procedures is time-consuming and changing instruments disrupts the flow of the 

procedure which can break the concentration of the surgeons and interfere with their 

planning of the stages which still lie ahead.  Mehta realized that this study was limited by 

the lack of knowledge regarding the circumstances surrounding instrument and maneuver 

changes, since the underlying reasons (i.e., cognitive behaviour) for exchanging certain 

instruments were not addressed. For example, situations such as an accidental rupture of 

a vessel or the availability of specific instruments during a surgery, which might affect 

the instrument exchange patterns, were not taken into account in this study.  Therefore, 

he argued for analyzing instrument use in context (i.e., to explicitly identify which tasks 

are associated with certain patterns and how the flow of the procedure, as indicated by 

choices made by the surgeon, affects the use of instruments).   

These previous studies concentrated primarly on hierarchical representations of MIS 

tasks and therefore do not allow for describing alternatives in execution plans since the 

cognitive element of human behaviour was not included.  However, some of them 



 

 38

recognize the importance of these issues in defining the appropriate context either for 

tool use analysis or monitoring of surgeons’ skill development.   

Since our goal at this point is to combine all these aspects of live surgeries in a single 

framework, it is first necessary to develop an adequate context-based representation for 

MIS procedures; thus, the purpose of the next section is to describe the tools from 

educational psychology, which we used to ensure that all key issues were addressed. 

2.1.2 Task Analysis Methods 

In order to design a framework to represent both motor and cognitive aspects of surgical 

task performance, we turn to the fields of psychology and education theory where a 

variety of task analysis methods have been introduced and developed to understand and 

design training and evaluation processes in a myriad of situations ranging from operating 

nuclear power stations to aircraft to simple car driving.  In these various applications, the 

goals of applying task analysis methodologies are similar – to identify what the learners 

need to know, how they should perform or are performing, what skills they need to 

develop, and how the context may affect their decisions and actions. 

Since training goals for laparoscopic cholecystectomy have already been established 

based on a hierarchical decomposition of activities [McBeth 2002], we are now 

interested in modelling the manner in which individual surgeons move along the task 

structure to achieve those goals. Therefore, the representation of three additional 

elements should be included in the performance analysis:  the elemental behaviours 
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involved in performing the procedure, the way surgeons process information as they 

execute specific tasks, and the influence of context (e.g., unexpected events such as 

bleeding) on the surgeon’s activities.   

2.1.2.1 Purpose of Task Analysis 

There is no unique definition of Task Analysis.  Different descriptions depend on the 

purpose for conducting it, the context in which it is applied and the type of performers 

involved.  Purposes for conducting task analysis include developing job descriptions, 

designing human-computer interactions or designing different forms of instruction.  

From an educational perspective, task analysis could be defined as a process to determine 

statements of learning goals, to describe and prioritize tasks and subtasks that the learner 

will perform, and to develop assessment methods to determine what actually gets taught 

or trained while performing a particular activity [Jonassen 1999]. 

Since learning is a human-centered activity, all learning situations are different according 

to the different possible contexts; therefore there are many different task analysis 

methods.  According to Jonassen 1999, however, there are 5 main kinds of task analyses 

(Figure 2.3): 
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Figure 2.3: Domain of Task Analysis (Jonassen 1999). 

From the variety of task analysis techniques that may arise from the previous domain, we 

focused our approach on two learning analysis methods, which seemed most appropriate 

for our needs:  Hierarchical Analysis and Information-Processing Analysis because they 

offer complementary largely representations of the tasks and the steps needed to 

accomplish them. In addition, we did not find either a technique fully adequate by itself 

and therefore decided to combine and expand them to meet our requirements.  This was 

achieved by analyzing the surgical procedure simultaneously in terms of task complexity 

and task sequences, as shown in Table 2.3.  
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Hierarchical Information-processing 

Solve the question: “What must the learner 
know in order to achieve this task?”   

Solve the question:  “What are the mental and/or physical 
steps that the learner must go through in order to 
complete this task?”  

Developed from general to specific  Developed step-by-step  (It has a start and an end) 

Represented in terms of levels of tasks Represented as a flowchart or an outline  

Based on learning taxonomies  
(from most to least complex ) It is procedural in nature  

Table 2.3: Comparative table:  Hierarchical Analysis Vs Information-Processing Analysis. 

The other methods in Figure 2.3 concentrate mainly on structuring instruction (i.e., how 

trainers ought to teach skills) rather than describing learning (i.e., how people process 

information as they perform tasks), so we did not use them in this particular application. 

The main objective of any task analysis method is to identify the most representative 

activities carried out during the performance of a task. In representing surgical 

procedures, hierarchical analysis would allow us to define the goal structures for the 

surgical tasks in terms of levels of complexity by observing and gathering data from 

video analyses and opinions from expert surgeons.  However, since it is also necessary to 

describe surgeon’s performance as a combination of overt (motor) and covert (cognitive) 

actions, information-processing analysis appears to be a useful way to deal with the 

sequential (procedural) representation.  In this way, it becomes possible to characterize 

individual performances by identifying particular behaviours and decisions (i.e., to define 

all the possible routes that a surgeon may follow to achieve the global goals of the 

procedure). 
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2.1.2.2 Hierarchical Analysis 

Hierarchical Analysis begins by breaking down the activity from more complex to less 

complex tasks in order to identify the prerequisite skills for adequate performance.  For 

example, in the field of problem-solving, any final decision depends on mastery of 

certain rules, which in turn, demands mastery of certain concepts which, in turn again are 

based on knowledge of definitions.  In MIS, isolating the Cystic Duct from the Cystic 

Artery would require surgeons to learn the difference between dissecting and clipping, 

which in turn also requires them to master tool movements such as pushing, grasping or 

sweeping. Therefore, each skill builds on simpler skills to form a learning hierarchy 

[Gagne 1985].  The result of a hierarchical analysis is a tree structure, which portrays the 

dependencies of the various skills and suggests an order in which they should be 

acquired.  

Hierarchies have been frequently used to represent goal structures as a graphic summary. 

Typically, the first step is to use existing references such as texts, manuals and videos to 

construct a comprehensive list of the tasks that make up an activity.  Then the definition 

of the complexity levels allows for grouping of the tasks, which also need to be ordered 

to show the hierarchical relationships for learning.  Finally it is important to determine 

the hierarchy’s accuracy by discussing the results with experts in the topic. 

One good example from daily life is the description of the departure process at an airport 

(Figure 2.4). 
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Figure 2.4: Hierarchy analysis of the departure process at an airport (adapted from 
http://polo.lancs.ac.uk/CDP/Uniport/Dresearch.htm). 

This representation highlights the main benefit provided by a hierarchical analysis: 

decomposition of the tasks from the highest to the lowest level of complexity through an 

appropriate clustering.  It consequently offers a good description of the overall activity 

(e.g., to assess functionality of surgical tools at different levels of the procedure); 

however, it does not adequately express the concepts of flow (sequencing) or optionality 

(decision-making in the face of patient variability or the occurrence of unexpected 

events), so we need to also consider approaches that include these concepts. 

2.1.2.3 Information-Processing Analysis 

As a complement to hierarchical analysis and with the purpose of identifying the mental 

and/or physical steps that a performer needs to go through in order to complete a task, 
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Information-Processing Analysis is commonly used to develop a better description of 

performance in terms of both procedural (observable) and cognitive (non-observable) 

behaviours.  The aim is to provide a graphical representation of the different routes that 

may be followed to complete an activity: for this particular case, the flow of the surgical 

procedure based on a surgeon’s actions. 

Information-Processing Analysis, also known as procedural task analysis was developed 

in 1960 when the behaviourist movement aimed to represent human performance as a 

chain of stimulus-response reactions.  Each step of a task was modeled as a response to a 

given stimulus, which served in turn as a stimulus to the next response step.  

Performance was primarily described as a linear series of steps.  However, it was realized 

that complex tasks involve decisions, and alternative action sequences.  A more complex 

description of task behaviour was therefore necessary, and the computer programming 

method of flowcharting was adopted because it allowed for branching, loops, and 

decision points.  

In general, information-processing analysis analyzes goals by describing the sequence of 

activities that must be executed to complete them.  This method breaks up a goal into its 

component tasks and represents actions, decisions, and paths as a sequence of 

observable (motor skills) and non-observable (executor’s thought processes) 

behaviours.  It reveals the individual’s overt steps and decisions taken to accomplish a 

task, as well as the overall executive routine of the procedure as a whole [Jonassen 

1999].  This type of analysis is usually represented in the form of a flowchart. 
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To conduct an information-processing analysis, it is necessary to gather as much 

information as possible from experts who know how to complete the task.  This data 

acquisition process is mainly implemented by observation (i.e., recording the steps while 

completing the tasks) and think-aloud techniques (i.e., to register thought processes), 

which together may reveal all the possible paths through the procedure. 

An example of an information-processing analysis for the familiar activity of sending an 

email (where the component tasks are mostly observable) is shown below (Figure 2.5). 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: Information-Processing Analysis for sending an email (from INSTRUCTIONAL DESIGN 
KNOWLEDGE BASE – IDKB, Instructional Technology Program, Graduate School of Education, George 

Mason University). 
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This simple example illustrates two key features of value:  sequencing and a decision 

point that leads to two alternative routes through the flowchart. 

Often, the decision-making process is hidden from the observer.  Consider the simple 

example of identifying a geometrical shape as shown in Figure 2.6. 

 

 

 

 

 

 

 

 

 

Figure 2.6: Information-Processing Analysis for the identification of a geometrical shape (from 
INSTRUCTIONAL DESIGN KNOWLEDGE BASE – IDKB, Instructional Technology Program, 

Graduate School of Education, George Mason University). 
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equilateral rather than parallel, so this representation does not properly represent all valid 

paths through the activity. 

2.1.3 Finite State Machines and Petri Nets for Representing Task 

Sequences 

In addition to the task analysis methods described above, we considered using Finite 

State Machines (FSM) or Petri Nets (PN) to model surgical processes. 

A finite state machine is a mathematical model that represents how a system can change 

its state over time as it reacts to internally or externally triggered events.  It is composed 

of states, transitions and actions. A state stores information about the past, i.e. it reflects 

the input changes from the system start to the present moment. A transition indicates a 

state change and is described by a condition that would need to be fulfilled to enable the 

transition. An action is a description of an activity that is to be performed at a given 

moment.  Finite state machines are a subset of Petri Nets in which each transition has 

exactly one input and one output [Brownlee 2006, Gibson 2000].  

Petri Nets are a generalization of Finite State Machines which are particularly well-suited 

for representing systems in which synchronization, concurrency, communication and 

resource sharing are important [Bobbio 1990].  A Petri net consists of places (circles), 

transitions (rectangles), tokens (moving points) and directed arcs (arrows). Arcs connect 

places and transitions - not places and places or transitions and transitions. The places 

from which an arc run to a transition are called the input places of the transition; the 
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places to which arcs run from a transition are called the output places of the transition. A 

transition can only fire when there are tokens in every input place. When it fires, one 

token is taken from every input place, and every output place from the transition gets a 

token [Murata 1989, Peterson 1977]. 

FSMs would not be particularly appropriate for representing surgical flows because there 

is no obvious way to represent sub-processes that are only invoked when certain 

circumstances trigger them, such as the ‘control bleeding’ task other than by explicitly 

representing these interrupting tasks at every point where they could potentially occur, 

which would significantly complicate the diagrammatic representation of the main steps 

of the procedure.  We are aiming to provide a more compact representation of the 

standard steps of a procedure and therefore we are interested in treating unexpected 

conditions such as ‘control bleeding’ as sub-routines that may be used or not as the need 

arises.  In addition, Finite State Machines do not allow for simple representations of 

parallel processes, nor can they represent cognitive elements such as decision points. 

It is similarly difficult to use a Petri net representation directly, although it is somewhat 

more flexible than FSMs.  For example, one could represent AND and OR operations by 

specifying appropriate transition rules.  However, while PNs allow for the representation 

of distributed systems through the notion of multiple tokens, each of which can move 

independently and simultaneously through different places and transitions in the net, 

there is no obvious way to implement the notion of a single actor who is limited to 

moving one token at a time.  We therefore believe that a more straightforward and simple 

representation would be more appropriate for the context of the present research.  
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However, in future work, it may be possible to borrow the notion of distributed 

independent tokens to represent the interactions amongst surgeons, nurses, 

anesthesiologist and any other member of the operating room team. 

2.1.4 Description of the Standard LC Surgical Technique 

Laparoscopic cholecystectomy (LC) is commonly described as a sequence of six major 

activities:  establishment of pneumoperitoneum, ultrasonography, placement of trocars, 

isolate gallbladder, remove gallbladder, and closure [Reddick 1993, Cuschieri 1990]. 

 Establishment of pneumoperitoneum [Reddick 1993, Cuschieri 1990].  The purpose 

of this step is to provide space in order to visualize the abdominal cavity with the 

laparoscope.  It is performed after patient preparation, which includes general 

anesthesia, insertion of catheter and positioning of the patient (Figure 2.7).      

• Insufflation needle is placed through a small skin incision just above the 

umbilicus 

• The abdomen is filled with 3 to 4 liters of carbon dioxide until the 

intraabdominal pressure reads 12-14 mm Hg 

• Insufflation needle is removed and replaced by a 10mm or 11mm trocar 

through which a laparoscope with attached camera is inserted to confirm 

intraperitoneal placement 

• Patient is repositioned to allow the abdominal viscera to fall inferiorly, away 

from the GB 
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Figure 2.7: Establishment of pneumoperitoneum (from Atlas of Endo Cholecystectomy with Auto Suture 
instruments. Zucker K., Bailey R. in cooperation with United States Surgical Corporation). 

 Ultrasonography [Berber 2001, Reddick 1993, Cuschieri 1990].  Although this 

step is mostly performed pre-operatively to confirm the presence of gallstones 

and to detect any dilation of the intrahepatic or extrahepatic bile ducts, it is the 

surgeon’s choice to perform a laparoscopic ultrasonography as a way of assessing 

the feasibility of continuing laparoscopically. When done as part of the 

procedure, it is used to improve the safety of laparoscopic cholecystectomy, 

especially in cases of acute inflammation or distorted anatomy.  
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 Placement of trocars [Reddick 1993, Cuschieri 1990].  Accessory trocars are 

placed using direct laparoscopic guidance to allow insertion of instruments 

(Figure 2.8):   

• One 10mm trocar is placed one-third of the distance between the xiphoid and 

the umbilicus, just to the right of the midline  

• Two 5mm trocars are placed two fingerbreadths below the right costal 

margin, one in the anterior axillary line and the other one in the mid-

clavicular line 

 

Figure 2.8: Placement of trocars (from Atlas of Endo Cholecystectomy with Auto Suture instruments.  
Zucker K., Bailey R. in cooperation with United States Surgical Corporation). 

 Isolate gallbladder [Reddick 1993, Cuschieri 1990].  This step is related to the 

detachment of the gallbladder.  It involves the separation of the gallbladder from 
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the anatomical structures that join it to the rest of the body and the dissection of 

the gallbladder’s bed from the liver.  In this way, complete separation of the 

gallbladder from the body is achieved (Figure 2.9). 

 

 

 

 

 

 

 

 

 

Figure 2.9: Isolate gallbladder (from Atlas of Endo Cholecystectomy with Auto Suture instruments.  
Zucker K., Bailey R. in cooperation with United States Surgical Corporation). 

 Remove gallbladder [Reddick 1993, Cuschieri 1990].  This step consists in the 

extraction of the GB from the intraabdominal space of the patient, usually 

through the umbilical incision.  It involves a complete clearance of waste 

materials produced during the dissection of the gallbladder and the optional use of 

a bag to place the gallbladder before proceeding to extraction (Figure 2.10).  
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Figure 2.10: Remove gallbladder (from Atlas of Endo Cholecystectomy with Auto Suture instruments.  

Zucker K., Bailey R. in cooperation with United States Surgical Corporation). 

 Closure [Reddick 1993, Cuschieri 1990].  This step consists of the withdrawal of 

the trocars and the desufflation and suturing of the stab wound. 

‘Isolate gallbladder’ and ‘remove gallbladder’ constitute the two central steps of the 

procedure, which at a more detailed level can be described in terms of five steps for 

‘isolate gallbladder’: explore anatomy, isolate CD/CA, separate CD, separate CA, dissect 

GB; and three steps for ‘remove gallbladder’: clean-up, bag GB, extract GB. 

 Explore anatomy [Reddick 1993, Cuschieri 1990].  The objectives of this task 

include: 

• Detection of inadvertent injuries caused during insufflation and insertion of 

main trocar/cannula 

• Exclusion of additional unsuspected intra-abdominal pathology 
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• Assessment of the feasibility of laparoscopic cholecystectomy.  This 

objective involves the assessment of the technical difficulty and safety of 

gallbladder excision via the laparoscopic route.   

 Isolate CD/CA [Reddick 1993, Cuschieri 1990].  The objective of this task is to 

expose the cystic duct (CD) and the cystic artery (CA).  Dissection in the form of 

stripping or blunt dissection is used to detach the surrounding tissue from both 

structures facilitating the correct identification of the biliary tree 

 Separate CD [Reddick 1993, Cuschieri 1990].  The objective of this task is to 

separate the gallbladder from the cystic duct.  It is achieved by applying clips to 

the duct at the distal and proximal ends to allow for a safe division of this 

structure.   

 Separate CA [Reddick 1993, Cuschieri 1990].  Similar to the previous activity, 

the objective of this task is to separate the gallbladder from the cystic artery.  It is 

achieved by applying clips to the artery at the distal and proximal ends to allow 

for a safe division of this structure.   

 Dissect GB [Reddick 1993, Cuschieri 1990].  The objective of this task is to 

separate the gallbladder (GB) from its bed that keeps it joined to the liver.  

Dissection in the form of cauterizing is usually performed to achieve this goal.  

Careful must be taken to avoid injuries on the gallbladder that may provoke 

gallstones spillage.   
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 Clean-up [Reddick 1993, Cuschieri 1990].  A clean dissection and separation of 

the structures involved in any minimally invasive surgery is necessary to avoid 

post-operative problems; therefore constant irrigation and suction is performed 

throughout the procedure.  However, for the case of laparoscopic 

cholecystectomy, clean-up is also a required task that needs to be performed just 

before the extraction of the gallbladder, which is the reason for situating it at the 

task level.  

 Bag GB [Reddick 1993, Cuschieri 1990].  Bagging the gallbladder is also an 

optional task.  The decision depends on the surgeon’s preference and on the 

availability of resources at the hospital.  For the majority, it is considered an 

adequate activity to prevent gallstone spillage during the extraction phase. 

 Extract GB [Reddick 1993, Cuschieri 1990].  Removing the detached gallbladder 

from the abdomen is the last intraoperative activity in laparoscopic 

cholecystectomy.  This task is performed by grasping the neck of the gallbladder 

and pulling it gently through the umbilical cannula and out of the abdomen. 

2.1.5 Summary 

Neither the hierarchical nor the information processing analyses are able, individually, to 

adequately represent all the concepts we need to represent in modelling a general surgical 

task.  We require that our task analysis approach expresses the concepts of hierarchy, 

flow and sequencing, explicit and implicit decision-making, freedom to execute selected 
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tasks in arbitrary order, and the need to respond to unexpected events such as bleeding or 

a cardiac emergency. 

Given the various strengths and limitations of the existing hierarchical and information 

processing analyses, we opted to develop a hybrid approach, which combines their 

strengths and addresses their limitations.  This combined framework, which we call a 

Motor Cognitive Modelling Diagram (MCMD), is intended to be suitable for describing 

general surgical tasks in minimally invasive procedures and is presented in section 2.3. 

2.2 Protocol 

This part of our research is devoted to the application of methods from the cognitive 

sciences to provide standardized descriptions of minimally invasive procedures able to 

identify key components of the surgical skills that are relevant during training.  The main 

goal is to develop a method to describe Laparoscopic Cholecystectomy, which integrates 

motor and cognitive actions so as to enable us to represent the surgical context in which 

surgical actions and judgements occur. 

In order to achieve this goal, we applied concepts from the task analysis literature to 

implement an appropriate protocol for developing our new representation of surgical 

procedures (i.e., the MCMD).  This representation is based on the standard elements of 

laparoscopic cholecystectomy and its implementation was developed in consultation with 

two expert surgeons and one expert from the applied psychology field. 
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2.2.1 Methods 

Jonassen 1999 used the term task knowledge structures as a representation of the task 

knowledge that a user might have in order to perform a task, and created a general 

protocol for data gathering when attempting to describe complex activities.  In 

accordance with our needs and goals, we have adjusted and implemented the following 

general methods: 

 Collect information about the task 

• Based on a literature review of surgical techniques, we drafted a preliminary 

hierarchical decomposition of the laparoscopic cholecystectomy (LC) 

procedure by identifying the component steps of the surgery and classifying 

them according to the complexity (i.e., number of surgical goals involved at 

each step).  This was presented in the previous section. 

• Observation:  We attended and videotaped (10) laparoscopic cholecystectomy 

procedures and constructed a checklist in order to facilitate the process of 

verification (i.e., based on literature review about the surgical technique; this 

list was used as a template to mark the order in which activities were 

accomplished; see Appendix A).  We performed two rounds of video analysis.  

The first one was concerned with identifying the individual components of the 

hierarchical levels (i.e, phases, tasks, and subtasks).  During the second round, 

each level was again analyzed to identify the interactions amongst its 
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constituent components (i.e., sequences of activities, deviations in the flow 

due to decision points, serial and parallel activities, etc). 

Furthermore, this observation allowed us to identify the most common 

difficulties encountered during surgery and how experts deal with them.  The 

analysis of the results provided essential information, which allowed us to 

update our diagrams.  

• Think-aloud:  During (6) of the procedures, we asked the surgeon to comment 

out loud on what he was considering as he performed the surgery. This 

information was captured using video and audio recordings.    

• Interviews: We followed the ‘think-aloud’ procedures with an interview in 

which the surgeon reviewed the video with the investigator and added 

additional comments and insights.  A comprehensive analysis of the results 

was conducted in collaboration with the expert to update the preliminary 

diagrams, which were again tested in the operating room several times, in 

addition to the 10 recorded procedures, as a way to perform a follow-up of the 

think-aloud process. 

The general procedure constituted a cycling process of four activities as presented in the 

following timeline (Figure 2.11). 
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Figure 2.11: Representing the information acquisition process for constructing our MCMD framework.  

Finally, we designed a new hierarchical Motor and Cognitive Modelling Diagram 

(MCMD – a kind of flowchart) to capture the task sequences of laparoscopic 

cholecystectomies. We started with the symbols of the information processing analysis 

technique and complemented them with new ones according to our needs. We therefore, 

created a diagram language composed of six primary symbols:  processes, decisions, 

interrupt service routines (ISRs), options points and AND and OR gates (described in 

detail in the following section).  We then tested and refined them during 8 new cases 

until no further changes seemed necessary.  We did not acquire motor performance 

measures during these procedures, but the process nodes are designed to contain these 

measures. 

2.3 Results 

In this section, we provide a detailed explanation of the notation we developed and 

present diagrams describing laparoscopic cholecystectomies. 

2.3.1 Hierarchical Decomposition 

For our hierarchical decomposition, we initially adopted McBeth’s approach since, like 

him, we are also interested in incorporating kinematic features on low-level tool 

Literature review OR observation ‘Think-aloud’ Interview 
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movements for developing our assessment methodology.  However, we made a small 

number of changes in order to maintain the task analysis emphasis on decomposing the 

procedure in terms of the nature of the performed activities rather than on the type of 

surgical tool used to achieve a goal. The surgical tool issue will be included as part of our 

sequential/flow representation described in section 2.3.2. 

Our hierarchical decomposition therefore includes 4 levels of complexity defined as 

follows: 

 Phases:  this level describes larger-scale goals (i.e., they may be broken into sub-

goals), involving more than one anatomical structure, which are performed using one 

or more surgical tools. 

 Tasks:  this level describes manipulation on a single anatomical structure with one or 

more surgical tools in order to achieve a larger goal.  

 Sub-tasks:  this level corresponds to local goals and it describes elemental surgical 

activities performed with one surgical tool per hand; it could also introduce the sense 

of monitoring dominant and non-dominant hand movements separately or 

simultaneously in order to describe bimanual dexterity. This level also allows 

representing the notion of parallelism as sets of sequential activities that might 

represent optional paths during the procedure.  

 Actions:  this is a “goal-free” level that describes tool motion primitives (e.g., 

pushing, sweeping, etc) associated with a single surgical tool, although separate 

models can be created for the tools used by each hand. 
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Following the general procedure presented in Figure 2.11, we first outlined a preliminary 

hierarchical diagram based on an extensive review of literature about the surgical 

technique, which was then iteratively updated after verification with video analysis and 

interviews with expert surgeons. Most of the phases and tasks included in our diagram 

corresponded well with the textbook theory and practice of LC surgery; however, we 

found that there has also been extensive discussion regarding the ultrasonography and 

cholangiogram steps, which could be performed either before or during the procedure 

[Patterson 1997].  

Most of the literature [Fielding 2002, Siperstein 1999, Reddick 1993, Cuschieri 1990] 

and the opinions of the surgeons involved in this research, suggest that ultrasonography 

is a preoperative step. Others [Berber 2001, Siperstein 1999] consider that 

ultrasonography should be included as an intraoperative step as a means of assessing 

whether it is feasible to perform a successful laparoscopic procedure.  Some people have 

studied whether intraoperative ultrasonography (non-invasive, no ionizing radiation) has 

the potential to replace cholangiography in certain cases [Siperstein 1999].  However, 

cholangiography (the current gold standard for detecting leaks) has a crucial role in 

patients with suspected common duct injuries, while sonography has little role in this 

setting, as it cannot identify the site of injury or bile extravasation [Siperstein 1999].  

Overall, laparoscopic ultrasonography (LUS) has been shown to be roughly equivalent to 

intraoperative cholangiography (LCG) in its ability to provide images of the ductal 

system adequately and efficiently, with some studies favourings LCG and other 
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favouring LUS [Petelin 2002].  Therefore we decided to include both options in our 

diagram, in order to provide generality in capturing all acceptable behaviours. 

As described in section 2.1.3, at the phase level, laparoscopic cholecystectomy is 

represented as a sequence of six major activities (Figure 2.12):  establishment of 

pneumoperitoneum, ultrasonography, placement of trocars, isolate gallbladder, remove 

gallbladder, and closure. 

 

 

 

 

Figure 2.12: Phase level in hierarchical decomposition. Dashed line indicates an ‘optional’ activity that 
might be performed either during or before the procedure. 

It is important to note that an ‘optional’ activity usually serves some implicit decision-

making goal.  That is, it is done to help the surgeon make a decision and may therefore 

indicate that the surgical situation is not straightforward. 

Since at the task level we were mainly interested in analyzing surgical activities which 

involve the use of MIS tools, and which the instructing surgeons we collaborate with are 

most concerned with, we provided a hierarchical decomposition for the two central steps 

of the procedure:  ‘isolate gallbladder’ and ‘remove gallbladder’.  This level is then 

composed of eight tasks in total, five for ‘isolate gallbladder’: explore anatomy, isolate 
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CD/CA, separate CD, separate CA, dissect GB; and three for ‘remove gallbladder’: 

clean-up, bag GB, extract GB (Figure 2.13). 

 

 

 

Figure 2.13: Task level in hierarchical decomposition (dashed lines indicate optional tasks). 

After videotape analysis and discussions with expert surgeons, we identified four tasks as 

key components of the procedure to be decomposed at the sub-task level (Figure 2.14) 

since they involve major technical skill proficiency:  isolate CD/CA, separate CD, 

separate CA, and dissect GB.  We found that five sub-tasks were appropriate to describe 

these four mentioned tasks: detach tissue, dissect tissue, cauterize, clip, and divide. 

 

 

 

 

Figure 2.14: Sub-task level in hierarchical decomposition for LC procedures. 
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Moving into the lowest level of the hierarchy and in order to identify the set of discrete 

surgical tool movements used to perform any subtask and which are amenable for 

kinematics assessment, we performed a series of video analyses with expert surgeons 

across all the recorded procedures. Results from these video analyses indicated that 10 

elemental surgical tool motions were sufficient for decomposing our selected subtasks 

(Table 2.4). In comparison to McBeth’s approach, we reduced the number of actions as 

we conceived of ‘release’ as a jaw opening action, which was included as part of other 

actions’ descriptions. ‘Translate’ (i.e., X-Y plane) was also eliminated as we conceived 

of ‘translate’ as belonging to ‘reach’, which in our structure represents the motion of the 

tool in any direction towards a target.  

ELEMENTAL MOTION DESCRIPTION 
Push Repetitive movements of tool into target structure 
Pull Repetitive movements of tool away of target structure 

Reach Movement of tool in any direction towards the target structure 
Orient Rotational movement of the tool 
Sweep Repetitive horizontal movements of the tool to separate tissue 
Spread Repetitive open & close movements of jaws to separate tissue 

Grasp & hold Repetitive open & close movements of jaws attempted to hold 
the target structure between jaws 

Grasp & cut Repetitive open & close movements of jaws attempted to divide 
the target structure 

Idle Visible movement of the tool without touching any structure 
Out Removal of tool from patient’s abdominal cavity 

Table 2.4: Description of the 10 identified elemental motions of the surgical tools used to describe 
subtasks. 

The complete hierarchical decomposition for laparoscopic cholecystectomy implemented 

from our analysis of the surgical technique, which included literature review, video and 

audio analyses of real procedures, and discussions with experts, is presented in Figure 

2.15. 
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Figure 2.15: Hierarchical decomposition for laparoscopic cholecystectomy. Various colours indicate high demanding phases (blue), tasks (red), and subtasks 
(green) in terms of technical skills.
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2.3.2 Motor and Cognitive Modelling Diagram (MCMD) 

Although hierarchical decomposition is a helpful first step in understanding a surgical 

procedure, it does not incorporate the explicit description of flow and sequencing that is 

contained in Information Processing analyses. This becomes especially important when the 

purpose is to describe a surgeon’s performance as a set of actions and decisions influenced 

by the different contexts that are present in the procedure.  Therefore, the main contribution 

of this part of our research focuses on providing a standard notation for modelling surgical 

performance by means of a new representation of the flow of the surgical procedure in 

terms of motor and cognitive behaviours.  

Although the main surgical goal is the same for any Laparoscopic Cholecystectomy 

procedure, it could be achieved by following different routes depending on the surgeon’s 

experience and the influence of inadvertent or variable factors that might cause a particular 

diversion.  To provide an appropriate framework, we have developed MCMD (Motor & 

Cognitive Modelling Diagram), which offers a new way of including the possible contexts 

that lead to changes in routes.  MCMD is composed of a set of diagrams that allows for 

mapping flow between nodes of the hierarchical decomposition. Our set of symbols 

initially came from the information processing analysis technique but as variant 

observations were made, other symbols were added and adjusted to our specific needs.  

All MCMD’s diagrams share the same symbology structure according to the following 

description: 
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PROCESS: 

 Takes time 
 Has properties (e.g., distributions of velocities,  

    forces, etc)

DECISION: 
 Indicates various possibilities 

TRANSITION: 
 Links processes or/and decisions 
 Defines task sequences 
 Takes no time 

OR: 
 Indicates that the procedure may proceed when  

    AT LEAST one input requirement is satisfied 

AND: 
 Indicates that the procedure may proceed ONLY  

    when all input requirements are satisfied 

ISR – Interrupt service routine: 
 Refers to a sub-process that is invoked while  

    performing certain processes (e.g., control bleeding) 
 Has its own task decomposition and diagram 

OPTION POINT: 
 Exist when there are parallel branches which can  

    be performed in either order 
 It allows jumping to other available option points 
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As it will be shown, the flow of the procedure is mainly represented from left to right; 

however, it is important to note that when executing certain tasks and sub-tasks, the 

surgeon may note that it is necessary to perform an otherwise unrelated task (e.g., control 

bleeding, clean-up, and spillage of GB stones).  Since those routines need to be executed at 

specific moments but may be accessed at any time while performing a specific task, we 

have referred to them as Interrupt Service Routines (ISR) – an analogy to computer 

processing where the main task is suspended to allow processing of an urgent event.  We 

have found that ISRs considerably simplify the representation because they eliminate the 

need to include explicit checks for triggering conditions. 

In the following, we will present the components of this new representation by relating 

them to the description of the surgical technique previously presented in section 2.1.3.  This 

description will include MCMD diagrams for tasks, sub-tasks and ISR. 

 Explore anatomy [Cuschieri 1990] (Figure 2.16).  Two important decisions arise 

during this task: 

• Assessment of the anatomy (D1).  At this stage, a preliminary assessment of the 

general anatomy is performed. The situations that may prompt the surgeon to 

convert to open at the very beginning of the procedure include: extensive 

adhesions caused by prior surgery or recurrent attacks of cholecystitis, unusual 

vascular or ductal anatomy, other unsuspected pathology in the abdomen, and 

acute inflammation. 
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• Assessment of the severity of cholecystitis (D2).  The decision involved is 

influenced by the experience of the surgeon in laparoscopic surgery based on 

situations such as:  easy cases, feasible but difficult cases, cases of uncertain 

feasibility (trial dissection), unsuitable cases (for severe acute cholecystitis in 

which a decrease of the cholecystitis is carried out by aspiration of the 

gallbladder fluid contents through healthy fundus). 

 

 

 

 

Figure 2.16: MCMD for explore anatomy at the task level. 

 Isolate Triangle of Calot [Reddick 1993, Cuschieri 1990].  In this task, a thorough 

appreciation of the anatomy of the cystic pedicle is crucial for the safe dissection of 

the cystic duct and artery.  The cystic pedicle outlines the margins of the triangle of 

Calot and contains, between its superior and inferior leaves, the cystic duct (usually 

anteriorly), the cystic artery (above and behind the duct) and the cystic node, which 

is closely applied to the neck of the GB between the duct and the artery.   
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As shown in Figure 2.17, this task may be reached from one of two different routes 

as pointed out by the OR symbol:  (1) after aspiration of the gallbladder because of 

severe cholecystitis which enhances difficulty in grasping the fundus of the 

gallbladder, or (2) after confirming appropriate grasping of the gallbladder due to 

non-severe cholecystitis.   

 

 

 

 

Figure 2.17: MCMD for isolate Triangle of Calot at the task level. 

It is important to note that this particular characteristic of accessing a certain task 

from different routes provides the notion of context-dependent performance; which 

in turn, demands a particular representation and modelling. At this stage we then 

introduced the OR and AND symbols in the subtask representation of the ‘isolate 

triangle of Calot’ process, which is achieved as follows (Figure 2.18): 
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the L-Hook dissectors (P4.1A and P4.1B).  This corresponds to the initial 

dissection around the neck of the GB in which the peritoneum is lysed. 

• Clear and identify the structures contained within the Calot’s triangle and its 

reverse side (D4.1).  Calot’s triangle is the ventral aspect of the area bounded 

by the CD, hepatic duct, and liver edge, and its reverse corresponds to the 

dorsal aspect of this space. 

• Identify precisely the junction between the infundibulum and the origin of CD 

by further blunt dissection, gain as much CD length as possible by stripping 

away the strands of peritoneal, lymphatic, neural, and vascular tissue from the 

CD, and create a window to isolate CD from CA using curved dissecting 

forceps or L-Hook (P4.2A and P4.2B). 

 

 

 

 

 

 

 

Figure 2.18: MCMD for isolate Triangle of Calot at the subtask level. 
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As noted in Figure 2.17 and Figure 2.18, two interrupt service routines (i.e., 

triangle symbol) were included as part of the description:  control bleeding (A) and 

clean-up (B), due to the presence of dissection activities that may generate 

considerable amounts of blood or bile spillage1. 

Bleeding occurs either during the dissection of the cystic pedicle or when the GB is 

detached from the liver; it is the most common cause for enforced conversion.  

However, three options are available for gaining control laparoscopically (Figure 

2.19): a) compression, b) coagulation, and c) clipping, followed by irrigation and 

aspiration (i.e., ISR B) to clear the field.  Since moving from one option to another 

is possible, at this point we introduced the notion of ‘jumping’ between activities by 

using the ‘option’ symbol. If control is not achieved within approximately one to 

two 2 minutes, or there is a persistent blood spillage, then conversion to open 

surgery is necessary. 

 

 

 

 

                                                 

1 Note that any unexpected event can be handled using this representational structure by defining an 
‘Undefined ISR’.  Thanks to Dr. Elizabeth Croft for this suggestion. 
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Figure 2.19: MCMD for ISR A: control bleeding. 

‘Clean-up’ (Figure 2.20) is an ISR that may be invoked any time the surgeon feels 

the need to clear the operative field from blood, bile or debris.  Continuous 

irrigation and suction are the actions to perform. 

 

 

 

 

Figure 2.20: MCMD for ISR B: clean-up. 
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 Cholangiogram [Reddick 1993].  The main objective of this task is to confirm 

identification of the most important structures involved in dissection of the 

gallbladder.  A cholangiogram is helpful to deal with the most important anomaly: a 

short CD entering the common hepatic duct in which the common bile duct (CBD) 

is mistaken for the continuation of the CD; or to assess common bile duct injury. 

The technique involves double-clipping of the gallbladder end of the CD, leaving 

the medial end patent.  A cut is made on the anterior wall of the CD, then a catheter 

is inserted through the CD into the CBD and a contrast fluid is injected during 

image intensification to record the early phases of duct filling.  If reconfirmation of 

anatomy is not achieved, conversion to open is necessary.  Otherwise, verification 

of the presence of CBD stones (CBDS) is performed before proceeding.  Two 

options arise for CBDS depending on surgeon’s decision: conversion to open or 

CBDS treatment (i.e, post-operative ERCP-endoscopic retrograde 

cholagiopancreatography or laparoscopic CBD exploration), (Figure 2.21).   

Also, in this task, three different contexts indicate three different possible routes to 

go through before reaching the following task.  The OR symbol points out that 

following either route is sufficient to move into the following task.  
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Figure 2.21: MCMD for cholangiogram at the task level. 

 Isolate CD/CA (part I) [Cuschieri 1990] (Figure 2.22).  Immediately after the 

isolation and identification of CD and CA, separation of those structures is 

performed.  The order of execution depends on the surgeon’s decision based on 

anatomical findings; however in the usual anatomic position, the CD is dissected 

and divided first, as it is the structure appearing most anteriorly in the field.  To 

provide generality in our task-level MCMD representation, we allowed for any 

order of execution as it is shown in Figure 2.22, in which the only condition to 

proceed into ‘dissect GB’ (Figure 2.28) is set by the AND symbol (i.e., both routes 

need to be passed through before proceeding).   
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Due to the possibility of damaging the cystic bile duct (CBD), an inspection is 

necessary to identify whether or not this complication arose during separation of the 

CD.  If a CBD injury is discovered at this point (D7.4), conversion to open is the 

appropriate decision to make, otherwise, the procedure may proceed (Figure 2.22). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.22: MCMD for isolate CD/CA (part I) at the subtask level.  
Refer to figures 2.19 and 2.20 for ISR A and B. 

 Isolate CD/CA (part II) (Figure 2.23) [Reddick 1993, Cuschieri 1990].  As 
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the dissection of the artery is postponed until the CD has been ligated and divided.   
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• ‘Isolate CA’ is done by applying tension on the infundibulum of the gallbladder 

and blunt dissection from the surrounding tissue using either the curved or the 

L-Hook dissectors (P7.5A and P7.5B). 

• Confirm identification of CA due to the possibility of confusing it with the right 

hepatic artery looping up onto the neck of the gallbladder (D7.5). 

• The CA is double clipped both at the patient’s side and at the gallbladder side 

(P7.6). 

• Divide CA (P7.7). 

 

 

 

 

 

 
Figure 2.23: MCMD for isolate CD/CA (part II) at the subtask level.  

Refer to figures 2.19 and 2.20 for ISR A and B. 

 Dissect GB (Figure 2.24) [Reddick 1993, Cuschieri 1990].  This task consists of the 

mobilization of the detached gallbladder from the liver bed.  ‘Dissect of GB’ can 

only start after both separation of CD and CA have been carried out, as indicated by 

the AND symbol, regardless of the order of execution of these two tasks. 
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After examining the ligated stumps of the CD and CA to ensure that there is no 

leakage of either bile or blood, the dissection starts at the gallbladder neck and 

should proceed along a definite plan towards the fundus as described in the 

following list of activities: 

• The infundibulum is retracted superiorly and laterally as well as distracted 

anteriorly away from its hepatic bed and dissection of the hepatic fossa is 

initiated by electrocauterizing either with the curved or the L-Hook dissector 

(P8.1A and P8.1B). 

• Identification of the appropriate plane of dissection (D8.1). 

• Separate GB from its bed with electrocautery in sweeping motion creating a 

horizontal line of dissection (P8.2 and P8.3). 

At this task, another interpretation of context arose, in which a decision may lead 

not only to different types of actions but also to different ways of performing the 

same action.  This is shown in Figure 2.24 for the decision point “Confirm 

identification of dissection plane”.  The difference between the two displayed 

routes, lead to the same process “Dissect bed of GB from liver” but under two 

different contexts.  When the dissection plane is not identified, the procedure may 

proceed but under caution which indicates more mental load on the surgeon.  This 

factor is not present when the plane is effectively identified.  We expect that the 

influence of these two different contexts will produce different performance 

measurements. 
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Figure 2.24: MCMD for dissect GB at the subtask level (Refer to figures 2.19, 2.20 and 2.25 for ISR A, B 
and C). 

As noted in Figure 2.24, a third interrupt service routine was included as part of the 

description:  GB stones spillage (C), due to the possibility of damaging the fundus 

of the gallbladder and having spillage of stones which occurs in approximately 1/3 

of the cases.   

Situations that may lead to perforation of GB and stone and bile spillage include 

[McKenzie 2006, Patterson 1997]: 

• Damage with the sharp teeth of a grasper instrument or shearing by the back-

and-forth traction as GB is moved to enhance exposure. 

• GB may be entered inadvertently during its dissection from the liver bed. 

• During the force delivery to free a tense GB through a too-narrow umbilical port 

orifice.   
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The solution to this problem would be to retrieve all stones immediately, place them 

in an intraperitoneal specimen bag, and park the bag on the liver.  Immediately after 

the GB is dissected off the liver, it should be placed in the specimen bag with the 

stones and be removed through the umbilical port opening, Figure 2.25.   

 

 

 

 

 

 

Figure 2.25: MCMD for ISR C: GB stones spillage. Refer to figure 2.20 for ISR B. 

 Bag GB [Reddick 1993] (Figure 2.26).  The purpose of this optional task is to place 

the gallbladder into a specimen bag in order to facilitate the extraction process and 

to avoid spillage of GB stones due to the forces exerted when passing it through the 

umbilical port. 
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Figure 2.26: MCMD for bag GB at the task level. 

 Extract GB [Reddick 1993].  It corresponds to the removal of the gallbladder from 

the intraoperative field usually through the umbilicus port.  As shown in Figure 

2.27, this task may be performed after passing through one of two possible routes 

(i.e., two different contexts), as indicated by the OR symbol:  either after dissecting 

GB or after bagging GB.  “Extract GB” constitutes the last intraoperative task. 

 

 

 

 

Figure 2.27: MCMD for extract GB at the task level. 

The complete MCMD representation for the task level of the hierarchical decomposition for 

laparoscopic cholecystectomy is presented in Figure 2.28 and Figure 2.29. 
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Figure 2.28: Complete MCMD for the task level (Phase: Isolate GB). 
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Figure 2.29: Complete MCMD for the task level (Phase: Remove GB). 

In defining our MCMD framework we went through various iterations for identifying the 

necessary set of symbols.  We started with the notions from the information processing 

analysis where processes and decision points were explicitly represented.  Then, the need 

for representing the access to a certain task from different routes (i.e., either by selecting 

amongst different options or by imposing the requirement of completing previous options 

before proceeding) led us to include OR and AND symbols. Finally, as the number of 

iterations in our methodology increased taking us to more detailed levels of description, 

‘interrupt service routines’ (ISR) and ‘option points’ were defined in order to account for 

‘suspend and resume’ tasks and the possibility of ‘jumping’ between different activities 

respectively. In the end, we found that these seven symbols were sufficient for providing a 

thorough motor and cognitive diagrammatic representation for laparoscopic 

cholecystectomy. 
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2.4 Validation of Results 

In order to provide an argument for using these MCMD symbols to represent other types of 

MIS procedures, we performed a validation process by creating the corresponding MCMD 

diagram for Laparoscopic Colectomy procedures (i.e., surgical resection of any extent of 

the large bowel (colon)). 

2.4.1 Procedure 

The methods described in section 2.2 were applied as follows. 

• We videotaped 6 laparoscopic colectomy (i.e., Sigmoid Colectomies and Right 

Hemicolectomies) procedures performed by two expert surgeons and manually 

identified typical surgical tasks and alternatives  

• For all of them, we performed a think-aloud process with the surgeons 

describing performed tasks and decisions in real time    

• We then interviewed the surgeons to complement the think-aloud process with 

any additional information that they considered relevant for the diagram 

description 

• Finally, we used the MCMD symbols to design the corresponding diagrams for 

both types of colorectal surgeries.  
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2.4.2 Results 

There are three important stages that must be performed for a safe colon resection:  

Mobilization, Devascularization, and Anastomosis [Zerey 2006, Martel 2006, Finlayson 

2005].  The general technique for laparoscopic colectomy involves laparoscopic 

mobilization and transection of the mesentery and bowel.  The anastomosis of the colon can 

be done either intracorporeally or extracorporeally.  Finally, the specimen is removed from 

the abdomen usually via the same incision through which the anastomosis may be 

perfomed [Zerey 2006, Martel 2006, Finlayson 2005]. 

Sometimes, hand-assisted laparoscopic colectomy, which is a hybrid between laparoscopic 

and open techniques, is used to facilitate the retraction, mobilization, and dissection of the 

bowel, since the surgeon maintains tactile sensation with the structure [Zerey 2006, Martel 

2006]. 

The hierarchical decomposition for this procedure is presented in Figure 2.30.  Each task 

can be decomposed into a set of subtasks, which can be represented with our MCMD 

representation as shown in Appendix B.  As it is a large diagram structure, Figure 2.31 

presents the MCMD corresponding to selected portions of the mobilization and 

devascularization phases in a sigmoid colectomy procedure. We used the same set of 

symbols as for LapChole and found that no further symbols were necessary, though the 

procedural representation was naturally different.  This fact highlights the generality of our 

MCMD symbology and its suitability for providing compact and structured graphical 

representations for MIS procedures. 
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Figure 2.30: Hierarchical decompositions for Laparoscopic Colectomy procedures. 
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Figure 2.31: MCMD representation for portions of the mobilization and desvascularization phases in a Laparoscopic Sigmoid Colectomy procedure. 
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2.5 Discussion 

In this chapter we have shown how we adapted methods from the cognitive sciences to 

describe surgical procedures with the aim of identifying key components of the surgical 

skills, which are important in the training phase.  Since minimally invasive surgery requires 

high technical skill proficiency, we have concentrated on the description of Laparoscopic 

Cholecystectomy as the most widely practiced procedure in the field of less invasive 

surgery and one of the earliest ones introduced to trainees.  However, for validation 

purposes, we also developed the graphical description for laparoscopic colon resection 

surgery. 

As shown in Figure 2.15, our hierarchical decomposition corresponds well to the results 

obtained by other research groups [McBeth 2002, Berber 2001, Cao 1996].  It is a four-

level representation involving: phases, tasks, sub-tasks, and actions – which forms the basis 

for our MCMD (Motor and Cognitive Modelling Diagram). 

The goal of this part of our research was to provide a method to describe the flow of a 

surgical procedure by integrating motor and cognitive activities, as a way to represent 

surgeons’ behaviour.  Therefore, we developed a symbol notation to represent processes, 

decision points, transitions, conditions to proceed, and independent routines.  The result 

consisted in a generally left-to-right graphical representation of the flow of the procedure 

and the possible routes that might be followed to achieve the overall objective (i.e., removal 

of the gallbladder). 
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The MCMD constitutes a standard and structured framework for developing objective 

methods to model surgeon’s performance under different surgical contexts (i.e., where 

‘context’ is understood as a group of factors or situations that lead to specific decision 

and/or actions).  It is composed of a set of diagrams for the task and the sub-task levels of 

the hierarchy.  Figure 2.28 and Figure 2.29 constitute the representation of the complete 

task level and Figure 2.18 (i.e., isolate GB), Figure 2.22 and Figure 2.23 (i.e., isolate 

CD/CA), and Figure 2.24 (i.e., dissect GB) correspond to the three key components of the 

procedure.  Accordingly, MCMD’s notation allowed for representing ISRs (interrupt 

service routines) as processes that may be executed if necessary (i.e., control bleeding, 

Figure 2.19; clean-up, Figure 2.20; and GB stone spillage, Figure 2.25). 

At the action level, there is no sequence analysis (i.e., no MCMD) since any subtask may 

be achieved using many different combinations of elemental motions; however, sequence 

analysis at task & subtask levels are necessary to provide the appropriate context to 

analyze elemental motions.  These elemental motions are in fact the elements that might be 

quantified using motor performance metrics (e.g., kinematics & forces). 

The described results showed the potential of our MCMD to become a standardized 

notation for modelling laparoscopic surgical procedures in a way that enables an individual 

to understand differences in surgical performance as deviations from the normal 

procedural path.  Moreover, it serves as a structured framework for including objective 

performance measures (e.g., time, kinematics, forces) in developing context-based surgical 

assessment systems.  In chapter 3, we will present a new surgical performance assessment 

methodology we have developed based on this MCDM framework. 
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Chapter 3 

Performance Assessment Analysis for MIS skills 

3.1 Introduction  

Surgical competence involves numerous elements such as knowledge, judgement, 

communication, and manual dexterity.  Due to the increasing technical difficulties 

involved in performing more advanced minimally invasive surgical procedures, there is 

widespread interest in designing objective methods for monitoring skill development in 

surgeons-in-training which incorporate performance measures such as time, tool 

kinematics and interaction forces [Seymour 2004, Smith 2001, Rosen 2001].  Such 

quantitative measures are expected to be useful for several purposes [Khan 2005]: 

a) Monitoring of training – to compare one’s relative performance with respect to 

one’s peer group to identify particular difficulties and strengths, or to compare 

performance of residents under one’s supervision 

b) Comparison of different training programs – to assess effectiveness and quality of 

training in different programs 

c) Selection of candidates – to determine the feasibility of using motor skill 

measurements to screen candidates for special training programs1 

                                                 

1 This proposed use is likely to be controversial, but is included here for the sake of completeness. 
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d) Evaluation of new surgical instruments – to assess the impact of newly designed 

surgical tools on the flow or dynamics of the procedure and consequently on 

surgeons’ performance 

However, quantitatively assessing the motor skills of surgeons in the operating room 

remains problematic and has become an important research topic since current formal 

structured evaluation methodologies are time consuming and somewhat subjective.  Most 

current approaches rely primarily on comments from the trainees’ attending surgeons, 

which have been shown to be subject to bias [Khan 2005].  Therefore, in order to better 

monitor the progress of trainees, quantitative and time-efficient methods are required to 

evaluate the trainees’ developing motor skills in the live operative setting [Moorthy 

2003].  Furthermore, variability from one procedure to another represents a significant 

challenge that needs to be addressed while developing these methods [Aggarwal 2007, 

Datta 2006, Dosis 2005, Bann 2003, Darzi 2001].  

Because of this interprocedure variability, most research on technical skill assessment in 

laparoscopic surgery has been performed on simulators [Aggarwal 2004], where such 

variability can be eliminated and has focussed on analyzing generic motor skills [Sarker 

2006, Taffinder 1998, Martin 1997], but it is not yet clear how relevant such assessments 

are to skills performed in the operating room.  Our group has developed a hierarchical 

motor/cognitive modelling approach (the MCMD presented in chapter 2) that should 

enable us to represent live surgical tasks ‘in context’ and thereby facilitate making 

comparisons across real procedures and incorporating a variety of objective performance 

measures [Cristancho 2006].   
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In this chapter we describe a new methodology based on the Motor Cognitive Modeling 

Diagram (MCMD; see Chapter 2) for analyzing how surgeons handle their surgical tools.  

Our main goal is to test whether quantitative data analysis based on performance 

measures such as holding times, tool kinematics and patterns of movement transitions is 

able to distinguish skill levels in the OR.   

After presenting our proposed methodology in this chapter, in chapters 4 and 5 we will 

describe its implementation in a simulation study (chapter 4) and in an intraoperative 

study (chapter 5) which concentrates on answering our five primary research questions 

presented in chapter 1: 

a) Can quantitative measures reliably characterize surgical motor performance? 

b) Do surgeons at similar stages of training exhibit similar patterns? 

c) Is there a clear separation of patterns across the training spectrum? 

d) What data/measures are most useful in separating surgeons along this spectrum? 

e) Can a quantitative analysis produce insights useful for instruction? 

3.2 Performance Measures 

In Chapter 2 we introduced a new diagrammatic representation (MCMD) for 

Laparoscopic Cholecystectomies, which describes the procedure goals in terms of 

surgical activities associated with specific motor and cognitive skills.  Data from the use 
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of surgical tools may be attached to the activity nodes in the diagram, which will 

facilitate the analysis of surgical tool use patterns.   

Exposing the Calot’s Triangle, dissecting the cystic duct and artery (CD/CA), and 

detaching the gallbladder from the liver were identified by a group of expert surgeons at 

Vancouver Hospital as the key surgical steps in Laparocospic Cholecystectomy.  The 

surgeons noted that the first two demand the highest levels of technical proficiency and 

were therefore selected as our main focus for study.   

Preliminary video analysis from procedures executed by the expert surgeons involved in 

this study indicated that a curved dissector and an L-Hook dissector were the tools of 

choice for the dominant hand, while an atraumatic grasper was the primary tool used in 

the non-dominant hand (Figure 3.1).  

 

 

 

 

Figure 3.1: Surgical tools used for Laparascopic Cholecystectomy at UBC Hospital 
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given patient, but there was an overall preference for using the curved dissector for these 

two tasks.  All surgeons preferred to use the L-hook dissector for the gall bladder 

detachment task. 

In this section, we discuss what kinds of measurements can potentially be acquired in the 

operating room, how they are related to the assessment criteria identified in Section 

1.1.2, and how they can be acquired in the operating room.   

3.2.1 Candidate Performance Measures  

It is clear from the literature that time has become an important variable for measuring 

performance and that it can be reasonably easily, though somewhat laboriously, derived 

from video recordings (Keyser 2000, Fried 1999, Derossis 1998, Starkes 1998, Taffinder 

1998).  However, by itself, time only partially describes motor performance and does not 

always correlate strongly with other measures of skilful tool use [Childs 1980]. 

Previous studies in our lab have demonstrated the feasibility of using tool kinematics to 

characterize motor performance of an individual surgeon [Kinnaird 2004, McBeth 2002].  

Position tracking proved to be practical in the OR environment and kinematics measures 

were comparatively easily extracted from position data [Torkington 2001, Rosen 2001]. 

Similarly, the Imperial College Surgical Assessment Device (ICSAD) utilizes an 

electromagnetic tracker attached to the surgeon’s hand to track hand movements on a 

standardized task [Grober 2003, Smith 2001, Taffinder 1998]. 
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Forces and torques exerted by the tools on operative tissues have also been examined, 

both in the form of grip force and tool tip forces [de Visser 2002, Morimoto 1997]. 

Rosen’s group at the University of Washington has done extensive work using 

force/torque signatures to evaluate performance in a porcine model.  Our group made 

similar modifications to a surgical tool and acquired force measurements in live 

surgeries; however, these modifications resulted in a cumbersome tool for the surgeon 

and made data gathering more complicated [Kinnaird 2004].  In addition, it is difficult to 

measure the trocar interaction forces, which introduces a confounding factor that is not 

easily dealt with. 

Since our primary focus is on developing a new method for describing and assessing 

performance, we concentrated on analyzing more readily obtained measures: time, 

kinematics and movement transitions.  Other measures we might consider, such as tool-

tissue interaction forces or physiological measurements such as stress and pulse rate, 

would potentially involve modifications of the tools or ‘interference’ with the surgeon 

and we therefore will defer them to future studies. 

3.2.2 Measurement and Preliminary Data Processing 

In this section, we concentrate on describing the general methodology of our approach; 

discussion of methods specific to the simulator and OR experiments (e.g., numbers of 

subjects and procedures and other details) will be addressed in Chapters 4 and 5, 

respectively.  However, for explanatory purposes we will use the operating room 

experiment as the context for describing how we acquire measurements and extract the 
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desired information from the whole procedure data stream.  In this chapter, we will focus 

on the data processing techniques used in the following two chapters. 

3.2.2.1 Sequencing and Time 

It is feasible and practical, though somewhat tedious, to use video recordings to assess 

the times and state transitions for states at all levels of the hierarchical decomposition 

diagram described in Chapter 2.  In the OR study, we use a video analysis to identify the 

surgical steps executed by the surgeon based on our MCMD decomposition.  We 

therefore divide the whole video into small video clips representing the surgical tasks of 

the procedures (i.e., ‘Isolate Triangle of Calot’), for which we annotate the start and end 

times and identify the order of execution.   

Individual video clips are then analyzed and segmented in the same manner to separate 

the tasks into its constituent subtasks (i.e., ‘Expose Triangle’ and ‘Dissect CD/CA’).  A 

new set of video clips are then obtained and further decomposed into their component 

actions (i.e., push, pull, reach, orient, sweep, etc). The time records and order of 

execution for subtasks and actions are also collected.  In order to be consistent during the 

video segmentation process, we assure that the MCMD decomposition at each level of 

the procedure provides an explicit description of when a task, subtask and action initiates 

and ends (Chapter 2).  Figure 3.2 presents an example of a video frame for the 

laparoscopic cholecystectomy procedure that we will use in the OR study.  Left and right 

pictures present the start and end points of the ‘Dissect CD/CA’ subtask respectively.  

The intra-abdominal image is digitally captured using a Stryker Laparoscopic Camera 

system and the iMovie software from Apple operating system is used to segment the 
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video clips and to register the time records with a resolution of 33 milliseconds (1 frame, 

which lasts 1/30th of a second).  As this task segmentation process is performed 

manually, it is exhausting and time consuming; therefore, automatic methods need to be 

developed in the future to make this methodology more robust and practical. 

 

 

 

 

Figure 3.2: Example of start (left) and end (right) points for the ‘Dissect CD/CA’ subtask during a 
laparoscopic cholecystectomy procedure. ‘Expose Triangle’ initiates when the gallbladder is first stretched 
out and finalizes when the cystic pedicle is identified; ‘Dissect CD/CA’ initiates when the tip of the tool is 
first inserted between the two anatomic structures and finalizes when both structures have been completely 

freed from each other. 

While in principle we would want to analyze performance for all tasks and subtasks, in 

this research we will concentrate particularly on the Expose Calot’s Triangle (ECT) and 

Dissect Cystic Duct and Artery (DCDA) tasks as they include the most demanding 

activities for surgeons in terms of motor skills. 

3.2.2.2 Kinematics 

In this section we will describe the position tracking system that we chose and the data 

processing steps we follow for obtaining the desired performance measures. 
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Position measurement system: 

In our experimental set up, we use an electro-magnetic Polhemus FASTRAK system, 

which continuously records 3D position and orientation data at 120 Hz from a receiver 

relative to a transmitter (static accuracy of 0.03 inches RMS for the X, Y, or Z position; 

0.15° RMS for receiver orientation [Polhemus 2002]).  We provide two custom-designed 

clips to which the small tracking sensors (approximately 1 cm3) were attached; at the 

beginning of the procedure, the surgeon attaches the clips to the surgical tools so that we 

could track the tools’ position (Figure 3.3). 

As will be explained in Chapter 5, in the OR study, we will be focusing on certain tasks 

where surgeons are most interested in looking at how residents identify and dissect 

anatomical structures of the gallbladder and the liver. These tasks can be achieved by 

using the Curved dissector, the L-Hook dissector or a combination of the two tools. 

However, given that whenever the L-Hook dissector was used, the position signal was 

corrupted due to an alteration in the electromagnetic field promoted by the operational 

feature of this tool, surgeons agree to use the Curved dissector instead. We considered 

fiber optics as an alternative to resist noise from L-Hook but since we did not have this 

system available, it was not possible to incorporate it in the present study (Appendix C).  

However, since the two tasks the surgeons are most interested in could be, and usually 

are, performed using the Curved dissector, we limit all the surgeons to using that tool in 

our studies. 
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Processing data: 

There are two key stages of data processing: (1) computing transformations to express 

the data in an appropriate reference frame, and (2) filtering the data to obtain the desired 

voluntary movement information. 

Since surgical tools may be used at relatively arbitrary orientations relative to the 

operating table, there is little natural relevance of the table’s coordinate frame to that of 

the surgical tasks.  We therefore opt to describe all motions relative to the tool’s 

instantaneous tip location, using the terms lateral, vertical and axial to describe the 

motions. 

In order to obtain the location and orientation of the tool tip at every instant, we locate an 

‘instantaneous’ inertial reference frame at the sensor position and report the tip motion 

with respect to it (Figure 3.3).  Therefore, the ‘instantaneous’ reference frame at the 

sensor position changes at every sensor reading with respect to the global frame, but 

remains fixed with respect to the tool tip movement.  

 

 

 

Figure 3.3: Tool tip and sensor locations. The tool tip motion is reported with respect to an instantaneous 
inertial reference frame is located at the sensor position 

Tool tip 
Sensor 
position 
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Therefore, by obtaining the location of the sensor with respect to the transmitter (global 

frame) at every instant (i) and performing a calibration process (described below) to 

compute the relative position of the tip with respect to the sensor position ( s
tx ), we 

calculate the position of the tip and consequently its motion with respect to the global 

frame at every instant (Equation 3.1, t: tip location; s: sensor reference frame; G: global 

reference frame).  

(xt
G ) i = (Ts

G ) i xt
s  Eq. 3.1 

Afterwards, we are able to compute the instant-by-instant (i) motion of the tip in terms of 

the instantaneous sensor inertial frame (Equation 3.2). 

xt
s

•⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

i

= Ts
G( )i

−1
xt

G
•⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  Eq.3.2 

In order to find the calibration transformation matrix between the sensor and the tip of 

the tool (i.e., to find the position of the tip with respect to the sensor, s
tx ), we first 

estimate the tip location as the center of a sphere obtained by moving the tool handle in 

circles about a fixed tool tip location (we use a testing table and define an origin point for 

positioning the transmitter; then in the center of the table, we place a wooden cube with a 

hole through which the tip of the tool is inserted in order to fix its location with respect to 

the transmitter). We then use the collected sphere data and apply a non-linear least 

squares optimization approach in order to find the location of the tip (center of the sphere 

(x,y,z)) with respect to the global frame (Equation 3.3). 
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 Eq. 3.3 

Initial estimated value  xt
s

∧

 : (0, 30, 0) cm 

Optimization problem: Minimize C( xt
s

∧
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⎥ 
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2

i
∑  

In general, we are not only interested in position but also in velocity, acceleration and 

jerk2 in each of the cartesian directions (Figure 3.4).   

 

 

 

 
Figure 3.4: Tool tip cartesian directions 

Since we are making discrete time position measurements, we need to design an 

appropriate filtering and differentiation process to estimate the position derivatives. We 

use a Generalized Cross Validation (GCV) technique to find an optimal smoothing 

parameter for fitting a spline (i.e., a smoothed polynomial) to the position data set 

[Hodgson 1994, Dohrmann 1988]. Then the derivatives of the fitted polynomial result in 

estimates of velocity, acceleration and jerk.   

                                                 

2 We measured position and extracted derivatives up to jerk measures, since further derivatives implied 
adding noise to data. 
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A frequency spectral analysis is also completed using a Fast Fourier Transform (FFT) to 

show signal power levels of the position signal and higher order derivatives. Figure 3.5 

shows the FFT spectrum for the raw position data in the axial direction derived from all 

subjects during execution of the ‘peeling’ subtask from the simulator experiment 

described in Chapter 4.  No frequency content was found near 60Hz, which indicates that 

the system did not suffer from undersampling problems. 

This task, which involves only hand movements, should only produce voluntary 

frequencies below 15Hz [Zhang 2005, Raethjen 2000]; however, our FFT analysis shows 

higher frequencies between 20 and 40Hz.  We suspected that these are likely due to 

structural resonances in the tool, so we computed the frequency of the first mode of 

vibration for the surgical tool (Curved dissector) assuming that it behaves as a simple 

cantilever beam.  The natural frequency for the beam and the structural parameters of the 

tool are as follows: 

fn =
Cn
2π

EI
µL4  

 
fn  = natural frequency in cycles per second (Hz) 

E = modulus of elasticity of the material 

I = moment of inertia 

L = length  

µ = mass per unit length 

Cn = coefficient for the different resonant modes  (C1 = 3.52, C2 = 22.4, C3 = 61.7) 
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Figure 3.5: Samples of the FFT spectrum for position data in the axial direction for all subjects (N: novices, NovT: novices-with-training, and E: experts) while 
executing ‘peeling’ during the mandarin experiment described in Chapter 4. 
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Parameters for Curved dissector: 

L = 32cm = 0.32 m 

DO (outer diameter) = 5mm = 0.005 m 

DI (inner diameter) = 3.5 mm = 0.0035 m 

ρ (stainless steel) = 8000 Kg/m3 →  µ = A . ρ = π . r2 . ρ = 0.1574 Kg/m 

E (stainless steel) = 193 x 109 Pa 

I = π/64 (DO^4 - DI^4) = 0.005π/64 = 2.33 x 10-11 m4 

C1 = 3.52 

Hence the first mode of vibration of the Curved dissector is located around f1 = 29 Hz.  

This estimate suggests that structural resonances may well be the source of these higher 

frequency components in the position signal.  Ideally, we would like to filter out these 

higher frequencies and retain the lower frequency voluntary signals, but, given the relative 

proximity of the resonance frequency to the voluntary frequencies, we decided to apply a 

filtering stage with a cutoff around 20Hz by using a modified GCV approach. In order to 

obtain an appropriate smoothing parameter, we use some of the acquired data as training 

data and apply a straight GCV algorithm that produces a very low B value (B=10-11), which 

is then used to filter all the computed kinematics data.  Figure 3.6 shows the FFT spectrum 

for the post-filtered axial velocity for one typical novice (N1) and one typical expert (E2). 
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Figure 3.6: Samples of the FFT spectrum after GCV filtering (smoothing parameter B=10-11) for one typical 
novice (left) and one typical expert (right) while executing ‘peeling’ during the mandarin experiment 

The power spectrums indicate similarity in the frequency component for which the stronger 

peaks occurs (about 10Hz) but some differences in the magnitude of the power content 

(Novice in the range of 0.08m2/sec2; and expert in the range of 1.5m2/sec2), which indicates 

that the expert is likely moving significantly faster than the novice but at roughly the same 

frequencies (i.e., moving with larger amplitudes). 

3.2.3 Link Between Criteria and Metrics 

As part of the collaborative work with the group of surgeons involved in our research, we 

are committed to present our results in an accessible and comprehensible way for follow-up 

and feedback purposes.  On the basis of the assessment criteria and performance metrics 

identified previously (Section 1.1.2), we focus our methodology on analyzing two features 

of strong interest to surgeons: 

1. Competence and coordination (bimanual dexterity) in using surgical tools 
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2. Flow of procedure described as selection of surgical steps and order of execution  

Table 3.1 shows how these criteria can be linked to measures of time, kinematics and 

transitions. 

 MEASURE 
CRITERIA MCMD Time Kinematics Transitions 
Competence  

     

Coordination (Bimanual  
Dexterity)     

Flow of  
procedure     

Table 3.1: Criteria/Metric combinations based on the definition of surgical scenarios and assessment criteria 
provided in Chapter 1 

3.3 Proposed Performance Assessment Methodology  

As presented in Chapter 2, our hierarchical representation decomposes larger surgical goals 

(tasks) into local goals (subtasks) and at the very detailed level into individual movements 

(actions).  Tool use (i.e., competence and coordination) is assessed for each state at each 

level in the MCMD by describing the time spent in each state, the kinematic profiles (in the 

form of probability distributions), and patterns of tool use (in the form of transition 

probabilities between states).  Our assessment methodology then builds on this structured 

data in order to provide an appropriate context for each surgical activity.  Figure 3.7 

illustrates the general flow of computations:  we begin at the highest levels of the MCMD 

by computing summary (i.e., descriptive) measures for the surgical tasks, the subtasks and 

the actions, as indicated by the descending blue line.  Next, we compute difference 
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measures at each level, as indicated by the horizontal arrows.  Finally, we propagate 

difference measures from the lowest level to higher ones, as indicated by the green arrow. 

 

 

 

 

Figure 3.7: Representing downwards and upwards flow of quantitative computations of surgical performance 
based on the MCMD hierarchical description for minimally invasive surgical procedures.  Horizontal arrows 
indicates that difference measures are computed at the various levels and then propagated up as indicated by 

the green arrow. 

More specifically, from top to bottom in Figure 3.7, we use summary (descriptive) 

measures (e.g., average speed, average time) to represent performance at higher levels and 

to localize possible sources of differences between subjects.  From bottom to top in Figure 

3.7, we use difference measures computed at the lowest level in order to perform explicit 

and quantitative comparisons between subjects, which are then propagated up in the 

hierarchy to characterize differences at various points of the procedure.   

In order to keep track of the different calculations we perform at every level and to be 

explicit in their description, Figure 3.8 shows our selected symbology for representing our 

descriptive measures at the task, subtask and action levels for the MCMD from subject i 

during procedure j, which we will designate as Mij, and across all his/her consolidated 

procedures, which we will designate as Mi•. 

Task

Subtask

Action

Difference 
Measures 

Summary 
Measures 
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Type of representation Type of variables 
 

Cumulative Distribution  
Function (CDF) 

 
 

t : time 
v: velocity (l: lateral, a: axial, v: vertical) 
a: acceleration (l: lateral, a: axial, v: vertical) 
J : jerk (l: lateral, a: axial, v: vertical) 

 
Transition probability  
matrix (TPM) 

 

 
TPmn: transition probability from state m to state n 

 
Point / summary 
measures 

 

t : average time 
v: average velocity (l: lateral, a: axial, v: vertical) 
a: average acceleration (l: lateral, a: axial, v: vertical) 
J : average jerk (l: lateral, a: axial, v: vertical) 

 

 

Mij – MCMD for subject i, procedure j 

Mij.Tk = task k 

Mij.Tk.Sl = subtask l 

Mij.Tk.Sl.Am = action m 

•

•

•

[  ]

[  ]
•
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Figure 3.8: Diagrammatic scheme for computing descriptive measures for subject i during procedure j 
(i.e.,Mij) and across all consolidated procedures (indicated by Mi•, which is formed by concatenating all 

samples from the different procedures). An underline indicates vectors either of discrete time ( t ) and 
kinematic ( v , a, J ) measures or average time ( t ) and average kinematic ( v, a, J ) measures during single 
executions3. All kinematic measures are acquired along three directions of movement: lateral, axial, and 

vertical. Other measures could potentially be used (eg., range of movements, forces, etc). TPmn indicates the 
probability from transitioning from movement m to movement n; every subtask is composed of 10 

movements (ie., actions) which are cycled through to achieve the subtask 

Figure 3.9 shows the associated symbology for representing difference measures when 

comparing between subjects i and q, which we will designate as Diq.  Another possible 

comparison would be between a subject and a reference group; in this case, we use a capital 

letter to designate a group, so the notation would become DiQ (ie., comparing subject i and 

reference group Q). 

 

 

 

                                                 

3 It is important to note that a variety of summary measures can be used such as mean, median, any other 
percentile or maximum.  In our approach we did not specifically used the maximum as it is a single data point 
highly variable and therefore unreliable.  

Mi• – consolidated across all procedures from subject i  

… T 

S 

A 

Mi1 

Mi2 

Mi• 
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Figure 3.9: Diagrammatic scheme for computing difference measures for some representative parameters 
(e.g., time, speed) when comparing subjects i and q (i.e.,Diq) across all consolidated procedures for each 

subject (Mi• and Mq•). For example, DE1R1.T1.S2.A5.t corresponds to a difference measure computed based on 
the time distributions for action 5, subtask 2, and task 1 between subject E1 (i.e., Expert 1) and subject R1 (i.e., 

Resident 1) 

This computation scheme is based on three analysis stages: Acquisition, Description, and 

Evaluating Differences. The next two sections will outline the data processing for the 

Description and Evaluating Differences stages.  First, we describe how we quantitatively 

represent at each level of our hierarchy the three previously-described surgical assessment 

criteria (Table 3.1).  Then we describe how we use difference measures to perform 

comparisons between subjects, as well as how we propagate the results of low-level 

analyses up to higher levels so that it becomes useful for instruction.  As described at the 

beginning of the chapter, there are external factors, particularly in the intraoperative setting, 

that influence motor performance and which cannot be controlled by the surgeons; 

therefore, we also outline our approach to determining how repeatable our measures are for 

individual subjects across multiple procedures. 

3.3.1 Describing Data 

In this section we describe the computations we perform to describe and summarize the 

performance of each surgeon during each procedure at the task and subtask level and at the 

T 

S 

A 

Mq• 
T

S

A

Mi• 

Diq.Tk.Sl.Am.e 
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action level in relation to the three surgical assessment criteria identified earlier:  flow, 

competence, and coordination. 

3.3.1.1 Task/Subtask Level 

Here we introduce how we assess the criteria of flow, competence and coordination at the 

task and subtask levels using the selected performance measures (Figure 3.8).  There are no 

substantial differences in how we analyze performance at these two levels. 

3.3.1.1.1 Flow 

Motor Cognitive Modelling Diagram (MCMD)  

In terms of our MCMD representation, flow can be described as the order of execution of 

the tasks and subtasks in the MCMD.  We assign a new MCMD (Mij) to each subject (i) 

and procedure (j).  This MCMD is a data structure, which consists of several constituent 

elements as outlined below.  In general, we will use dot notation to indicate an element of 

an MCMD (eg, Mij.T1 refers to task 1 of the data structure Mij). 

Flow in a given MCMD is represented as an ordered list of states in the MCMD, which 

might include the routing to any optional path deviations such as the interrupt service 

routines (ISR) as described in Chapter 2.  For example, in the laparoscopic 

cholecystectomy procedure used in our OR study, the MCMD is composed of four standard 

stages: trocar preparation, isolate gallbladder, remove gallbladder, and closure. For each 

procedure we first identified the set of tasks executed in order to perform the gallbladder 

separation.  As each task constitutes a larger goal in the procedure, which is further 
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decomposed into a set of subtasks, we then proceed to identify in the video recording not 

only the type of subtask but also the order of execution.  The order of subtask execution is 

stored as a vector, S, of the subtask node numbers visited during a particular procedure.  

Thus, element Mij.Tk.Sl represents the subtask l of the task k executed by subject i during 

procedure j. 

Time  

Once executed tasks and subtasks are identified using the MCMD, the time spent in each 

state during each entry can be identified in a video analysis by manually determining the 

start and end points according to previously defined criteria.  For example, in the OR study, 

we used the surgical definitions from Chapter 2 for each subtask to set its corresponding 

initial and final limits: ‘Expose Triangle’ begins when the gallbladder is first stretched out 

and ends when the cystic pedicle is identified, and ‘Dissect CD/CA’ begins when the tip of 

the tool is first inserted between the two anatomic structures and ends when both structures 

have been completely freed from each other.  These times are stored as a vector t associated 

with each node in the MCMD; we use Mij.Tk.Sl.t to represent the vector of times associated 

with subtask l and task k (Figure 3.8).   

3.3.1.1.2 Competence and Coordination 

Kinematics  

For describing competence in use of tools and bimanual coordination, kinematics of the 

tool movement become important measures as velocity, acceleration and jerk profiles are 

unique to every execution and every subject.  In our approach, we use two types of 
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kinematics measures: summary measures to represent a performance in terms of a single 

value (e.g., mean velocity during a particular subtask), and detailed measures to describe 

trends during a subtask execution in the form of Cumulative Distribution Functions (CDFs) 

(Figure 3.10).  

 

 

 

Figure 3.10: Representation of a Cumulative Distribution Function.  A CDF describes the probability 
distribution of a real-valued random variable X and is given by F(x) = P(X < x) 

Average and CDF kinematics can be separately computed for each subtask executed either 

by the dominant or the non-dominant hand.  Therefore, following our dot notation, we use 

for example, Mij.Tk.Sl. vad to represent the average velocity in the axial direction for the 

dominant hand associated with subtask l of task k in the MCMD for subject i and procedure 

j.  The same notation is used for the other performance variables described in Figure 3.8. 

For representing bimanual coordination, we use two types of measures to compare tool 

kinematics distributions from dominant and non-dominant hands: Mutual Information as a 

measure of independence and the Kolgomorov-Smirnov (KS) statistic as a measure of 

dissimilarity. 

Mutual Information (I) measures the dependence between two distributions.  In our context, 

it would provide an indication of the information that dominant hand (X) and non-dominant 

F(x) 

X
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hand (Y) distributions share while executing a subtask (i.e., how much knowing one of the 

variables reduces the uncertainty about the other) and is expressed in terms of the entropies 

of the marginal distributions H(x) and H(y) and the joint distribution H(x,y). 

I (x, y) = H (x) + H (y) − H (x, y)  

H (x) = − p(x)Ln(p(x))
x

∑ H (y) = − p(y)Ln(p(y))
y

∑ H (x, y) = − p(x, y)Ln(p(x, y))
x,y
∑  

In order to also provide an intuitive score between 0 and 1 to represent either existence or 

absence of independence, we use a normalized variant of the mutual information known as 

the symmetric uncertainty measure (U) [Witten 2005]. 

U (x, y) = 2 ×
I (x, y)

H (x) + H (y)
 

We employ the Kolgomorov-Smirnov (KS) statistic to represent the degree of asymmetry 

in use of the dominant and non-dominant hand (Section 3.4.1).  KS quantifies the 

discrepancy between two distributions in terms of the maximum vertical distance D 

between CDFs (Figure 3.11).  

 

 

 

Figure 3.11: The K-S statistic. D represents the maximum vertical distance between two distributions 

This is a normalized measure, which varies between 0 (meaning that distributions are 

similar) and 1 (meaning the distributions are different).  In this way, we can compare the 

D 

CDF 
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velocity profiles of the two hands of a subject (represented as Mij.Tk.Sl. v vectors) when 

executing a particular subtask and determine if there are significant differences in speed.  

We will see later that the KS statistic is also very helpful in expressing differences in CDFs 

between subjects. 

3.3.1.2 Action Level 

At the action level, there is no sense of progression as transitions between states occur 

because these states represent brief surgical actions that are repeated and cycled between 

multiple times to achieve a surgical goal.  Such transitions can therefore occur 

bidirectionally and any given state can be visited many times during execution of a subtask.  

We therefore do not represent transitions as a route through the MCMD, but as a Markov-

type model, as described below. 

3.3.1.2.1 Flow  

Markov Modelling  

At the action level, we monitor flow by representing transitions from one state to another.  

In our approach, we decompose each subtask into a set of 10 movements (‘pull’, ‘push’, 

‘reach’, ‘orient’, ‘sweep’, ‘spread’, ‘grasp & hold’, ‘grasp & cut’, ‘idle’, ‘out’) as described 

in Chapter 2.  Transitions between these 10 states can be represented using a Markov 

modelling scheme (Figure 3.12). 
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Figure 3.12: State-transition diagram for representing flow at the action level.  Each state is characterized by 
probability value, which represents the possibility of transitioning from one state to another 

A Markov process is a process in which the probability of moving from state ‘a’ to state ‘b’ 

depends (only) on the previous n states visited.  The process is called an order n model 

where n is the number of states affecting the choice of next state.  The simplest Markov 

process is a first order process, where the choice of state is made purely on the basis of the 

previous state. In our situation, the future evolution of the process (i.e., the movement that 

will be chosen by the surgeon) is determined by the description of the present state or 

movement. For a first order process with ‘s’ states, there are s2 transitions between states if 

one assumes that it is possible for any one state to follow another. Transitions between 

actions are represented by computing the probability Pab of transitioning from state ‘a’ to 

state ‘b’ as the ratio between the number of a→b transitions and the total number of 

transitions from state ‘a’ to any other state. The s2 probabilities may be collected together 

into a state transition matrix, which represents the overall behaviour of the system (Figure 

3.13) [Howard 1971]. 
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 Figure 3.13: Example of a state transition diagram and probability transition matrix 

All subtasks share the same diagram structure but differ in the transition probability 

matrices computed for each subtask and subject (Mij.Tk.Sl.TPM = transition matrix for 

subtask l).4 

Time  

For every visit to each Markov state, a unique visit duration time is determined using video 

segmentation as described earlier to identify start and end points of each action and this 

duration is associated with the state. After visiting a state ‘a’ on multiple occasions, a 

vector of time measurements Mij.Tk.Sl.Am.t, which we call the holding time vector, is 

computed for action m, subtask l, task k. We then fit analytical distributions to these 

holding time vectors to derive parameters describing the holding time distributions (see 

Section 3.4.2 for more details about this computation). 

 

                                                 

4 We actually use a semi-Markov model because the simplest Markov models make the assumption that dwell 
(or holding) times in a given state follow exponential distributions; this assumption does not match our data 
well, so we use modified models which allow us to introduce more accurate dwell-time distributions (this is 
described in more detail in section 3.4.2).  At this stage, it is sufficient to note that we use transition 
probabilities between states to model flow at the action level. 
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3.3.1.2.2 Competence and Coordination 

Kinematics  

Based on the previous time records, kinematics data (particularly velocity) in the three 

cardinal directions is then segmented for each action visit. Execution speed is then 

computed and every visit is represented as a set of speed data points v = v , which are 

stored as a vector Mij.Tk.Sl.Amv associated with action m in the state-transition diagram 

(Figure 3.8). Hence, besides holding times CDFs, we also use speed CDFs to describe 

every action in the state transition diagram of Figure 3.12.  

3.3.2 Evaluating Repeatability  

As we have pointed out above, one of the most significant issues in making intraoperative 

measures is the existence of external factors that influence motor performance and that are 

outside of the surgeons’ control; therefore, it is important to assess the repeatability of the 

measurements at each level of the MCMD for each subject.  

We have devised three ways for computing repeatability, depending on the type of measure 

being assessed: 

(a) When we have measures represented as distributions such as speed profiles, the 

Kolgomorov-Smirnov statistic (KS) is useful to compute differences as it describes the 

similarity between two empirical cumulative distribution functions by measuring (on a 

scale from 0 to 1) the maximum vertical distance between the two profiles (Section 3.4.1).  

Low KS values indicate similarity. 
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(b) When we have measures represented as probabilities, we use the symmetric normalized 

Jensen-Shannon Divergence as a similarity measure for comparing transition probability 

matrices, which individual rows are basically probability distributions of the states 

transitioning behaviour in a state transition diagram 

(c) When we have multiple and different types of measures (e.g., time, velocity, 

acceleration, jerk) to consider simultaneously – perhaps across multiples scenarios (e.g., 

‘peel’ and ‘detach’, or ‘isolate’ and ‘dissect’ subtasks), a multidimensional space is 

required for the corresponding representation.  We use the Principal Component Analysis 

(PCA) to identify the directions of greatest variability in this multidimensional space and to 

reduce the dimensionality of the data by representing it in a low dimensional weight space.  

Repeatability is then reported as the standard deviation of distances with respect to a mean 

position in the weight space.  A thorough explanation of this technique is provided in 

Section 3.4.4 and specific details of its implementation, for the two different experimental 

scenarios, is described in Chapters 4 and 5. 

3.3.3 Evaluating Differences 

In the present section we conceptually describe the computational framework we have 

developed for assessing differences across subjects at the subtask and action levels and how 

we propagate the extracted measures upwards in the hierarchical representation.  

Since we will have available numerous different types of performance measures, it will be 

infeasible and overwhelming to present the reviewer with many direct comparisons in the 

units associated with each independent performance measure (e.g., velocity, force, time), 
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especially since we do not know a priori which measurements will be most useful in 

drawing distinctions between surgeons (or indeed whether a single measure will provide as 

much discrimination as a combination of measures).  We therefore need a mechanism for 

consolidating the various difference measures in a dimensionless form and which enables 

us to learn which combination of parameters provides the greatest discriminatory value.  A 

multiple-parameter comparison (as opposed to a parameter-by-parameter comparison) 

would therefore help in compacting the relevant information and providing instructional 

insights when looking at the overall performance of a subject.     

For training and analytical purposes, the user will be looking at summary measures at 

higher levels and will then drill down to look at more details.  There are two distinct issues 

here: (1) different performance measures have different units, which means that we need a 

method for converting differences into normalized values, and (2) there are potentially 

many different performance measures, which means that we need a technique for 

automatically or semi-automatically identifying those measures or combination of measures 

which contribute most to differentiating between subjects and groups.  The first issue 

motivates our use of Kolmogorov-Smirnov statistics and the Jensen Shannon divergence 

measure, both of which can naturally convert differences in dimensional variables to 

dimensionless quantities without needing to specify arbitrary reference values for 

normalization, while the second motivates our use of Principal Component Analysis (PCA) 

to identify linear combinations of variables which contribute the most to data variance and 

thereby enable us to effectively reduce the overall dimensionality of our data set.  The 

details of how to compute the various measures will be explained in Section 3.4. 
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3.3.3.1 Conceptual Computational Framework  

The primary goal of our analysis is to be able to compare the performances of individuals to 

their peer group, to experts, and to other groups along the skill development continuum. As 

described in Figure 3.8, we might have three types of variables available: point estimates, 

cumulative distribution functions (CDFs), and transition probability matrices.  

Fundamentally, for any comparison we might make, in our studies we have devised two 

ways of describing differences: 

(1) Evaluating Distances Between Points in Weight Space Based on Descriptive Variables: 

When simultaneous consideration of multiple measures is required, we make comparisons 

in a multidimensional ‘performance space’ after processing the space using Principal 

Components Analysis, which allows us to assess differences across a whole range of 

parameters (e.g., point measures of time, velocity, force, pulse rate, etc) simultaneously by 

transforming the data into a normalized ‘weight’ space (as described in section 3.4.4).  

Differences are calculated by measuring the distance from a subject’s position to a group’s 

center (every subject is represented as a data point in the PCA plot) and applying ANOVA 

tests to evaluate the null hypothesis that the subject’s underlying data distribution does not 

differ from the group. In terms of the other types of variables we deal with, CDFs and 

transition matrices become difficult to include in a PCA analysis because each is composed 

of so many data points. The transition matrices (size 10x10) are the most problematic 

variables because they consist of 100 values and cannot be easily summarized. However a 

plausible solution for CDFs would be to discretize them as percentiles (i.e., 10%, 15%, 
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20%, etc), which would produce a manageable number of variables to include in a PCA 

analysis.  

(2) Computing Differences Directly Followed By Dimension Reduction Using PCA: 

Alternatively we can compute comparisons directly (i.e., not in weight space). In this case, 

CDFs and transition matrices become easier to deal with, as there are statistical measures 

such as the Kolgomorov-Smirnov statistic and the Jensen-Shannon Divergence that allow 

us to compare distributions and transition probabilities (Section 3.4.1, 3.4.3).  T-statistics 

can also be used to directly compare point estimates. The result of such comparisons is a 

vector of difference measures (D-measures) for a given action or subtask between a given 

subject and either another individual or an averaged set of data from a defined group of 

subjects.   

In contrast to (1) where we are representing individual subjects as individual data points in 

the PCA plot before computing differences, the method of directly computing differences 

considers pairs of subjects, as the result is a difference measure between two individuals or 

between an individual and a group.  The advantage of this approach is greater ease in 

incorporating CDFs and transition probability matrix difference measures, but the 

computational complexity of adding new data increases in proportion to the amount of 

existing data since new comparisons can potentially be made to all existing subjects in the 

data base.  In contrast, the computational effort in using method 1 is independent of the 

amount of existing data. 
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3.3.3.1.1 Task/Subtask 

At the task/subtask level, we represent performances in terms of summary measures such as 

average time and average velocity (all measures available at the subtask level are presented 

in Figure 3.8), which are then grouped and simultaneously analyzed using PCA (Section 

3.4.4).  

In order to plot data from multiple subjects and procedures, key descriptive measures for a 

given task or subtask are entered into a large matrix in which each row represents data from 

a single subject and procedure, as show in Table 3.2.  For each subject ‘i’ and each 

procedure ‘j’ (Mij), we defined multi-element vectors consisting of various measures 

Mij.Tk.Sl.rr (r: time, velocity, acceleration, jerk, etc) for subtask l. All subjects can then be 

grouped into a gxh matrix (g: i∑ j∑ , total number of experiment repetitions (rows); h: 

number of dimensions (columns)).  

Subject / procedure Subtask l Subtask l+1 
S11 M11.Tk.Sl.r1 … M11.Tk.Sl.rr M11.Tk.Sl+1.r1 … M11.Tk.Sl+1.rr 
S21 M21.Tk.Sl.r1 … M21.Tk.Sl.rr M21.Tk.Sl+1.r1 … M21.Tk.Sl+1.rr 
… … … … … … … 
Sij Mij.Tk.Sl.r1 … Mij.Tk.Sl.rr Mij.Tk.Sl+1.r1 … Mij.Tk.Sl+1.rr 

Table 3.2: Data arranged for PCA analysis at the subtask level.  Each entry represents a summary measure 
‘r’such as average time, average velocity, average force, etc for every subject and procedure 

Note that all measures are summary measures. CDFs can be represented as values at pre-

selected percentile values (e.g., the 25th, 50th, 75th).  The number of columns will vary 

depending on how many measures are used. More than one task or subtask can be 

considered simultaneously by adjoining the corresponding matrices. Once data for multiple 
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subjects is entered, the dimensionality of the data set can normally be reduced by applying 

a Principal Component Analysis and the results for each row can be plotted in a lower 

dimensional ‘weight space’ – in practice, we have often found that 2D is acceptable 

(Figure 3.14).  Different executions by particular subjects or groups can then be easily 

visualized and measures of proximity of a subject to another subject or to different groups 

can be assessed. 

 

 

 

Figure 3.14: Example of intrasubject, intra- and intergroup trial positioning in the PCA weight space (k : 
procedure #; i : subject #; j : group #). Horizontal and vertical axes represent the 1st and 2nd principal 

components or directions of the maximum variability in the data (Section 3.4.4) 

Special considerations: Before describing how we compute differences at the action level, 

it is necessary to outline the structural representation of a subtask. For explanatory purposes 

herein, we concentrate on representing how an individual i (e.g., a resident) is evaluated 

against another subject q (e.g., an expert).  

For any subject i the following data is available for any two procedures j and y (Figure 

3.15):  
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Repetition j      Repetition y 

 

 

 

 

 

Nij = M ij.Tk .Sl.N = M ij.Tk .Sl.A1.n, M ij.Tk .Sl.A2.n, M ij.Tk .Sl .A3.n, M ij.Tk .Sl.A4 .n, M ij.Tk .Sl.A5.n[ ]        

Niy = M iy .Tk .Sl.N = M ij.Tk .Sl.A1.n, M iy .Tk .Sl.A2.n, M iy .Tk .Sl .A3.n, M iy .Tk .Sl.A4 .n, M iy .Tk .Sl.A5.n[ ] 

Wij = M ij.Tk .Sl.W = M ij.Tk .Sl.A1.w, M ij.Tk .Sl.A2.w, M ij.Tk .Sl .A3.w, M ij.Tk .Sl.A4 .w, M ij.Tk .Sl.A5.w[ ] 

Wiy = M iy .Tk .Sl.W = M iy .Tk .Sl.A1.w, M iy .Tk .Sl.A2.w, M ij.Tk .Sl .A3.w, M iy .Tk .Sl.A4 .w, M iy .Tk .Sl.A5.w[ ] 

Figure 3.15: Diagrammatic and conceptual representation of the quantitative data available at the action level 
for one subject when executing a specific subtasks multiple times. The circled diagram is a state transition 

diagram representing the movements or actions available at each subtask. 

Every diagram corresponds to the same executed subtasks for two different repetitions j and 

y.  Each state in the diagrams is a symbolic representation of an individual movement (e.g., 

push, pull, orient, etc) to which holding time (ht) and kinematic measures (K: velocity, 

acceleration, jerk) profiles can be attached.  The N and W vectors contain information 

about number of visits to (N) or amount of time in (W) each state.  Additionally each model 

produces a transition probability matrix TPMij or TPMiy.  The diagrams and the variables 

attached constitute Semi-Markov model representations for each subject/subtask (Section 

3.4.2). 
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In order to represent a ‘mean’ performance for subject Mi, we merge across all executed 

repetitions of the same subtask: 

TPM i ≡ TPM ij + TPMiy + ...

Ni ≡ Nij + Niy + ...

Wi ≡ Wij + Wiy + ...

ht,K ≡ concatenate ⋅ vectors  

3.3.3.1.2 Action  

At the action level, we use the following direct comparison methods: 

• Comparing TPM matrices:  Since the TPM matrices are estimates of the probability 

distributions of the states’ transitioning behaviour (in our application, the size of the 

TMPs is 10x10 because there are 10 actions), we use the Jensen-Shannon 

divergence JSD (Section 3.4.3) to compare TPM matrices derived from our pre-

defined Semi-Markov models.  However since all states were not visited equally 

often, the standard JSD metric might underestimate the importance of frequently 

visited states (i.e., all transition probability values in a TPM are estimated on an 

equal footing, no matter how many times each state was visited); therefore, we 

modified the metric by applying it to versions of the matrices normalized ( T˜ P M i ) by 

the means of the N vectors in order to increase the weighting on frequently visited 

states.   

T˜ P M i = diag(Ni) × TPMi row ⋅ normalized( ) 
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As a result, our difference measure for TPM matrices from subjects ‘i’ and ‘q’ is 

computed as ∆ T˜ P M i T˜ P M q( ) using the Jensen-Shanon Divergence measure 

explained in Section 3.4.3. 

• Comparing vectors of holding time (ht) and kinematics (K) distributions:  For each 

state (i.e., movement), we have attached holding times (Mij.Tk.Sl.Amt) and 

kinematics (Mij.Tk.Sl.Amv) profiles in the form of CDFs.  Holding times measure 

the duration of each visit and kinematics describe the tool motion during the visit.  

We also define both summary values and detailed measures for the kinematics data 

(K: velocity, acceleration, jerk).  A summary measure is computed once per state 

visit and typically represents an average (eg, average velocity) during the visit; the 

collection of all summary measures across all visits to a state can be described using 

a cumulative distribution function.  A detailed measure will typically be the 

collection of all data points measured during a single visit and cumulative 

distribution functions are used to concatenate all the individual measurements 

acquired during all the visits. 

         Summary   Detailed 
  

 

We use D values from the Kolmogorov-Smirnov statistic (Section 3.4.1) to measure 

differences between cumulative distribution functions.  To compare two subjects, ‘i’ 

and ‘q’, we form a Diq matrix (composed of submatrices Ds and Dd) from all D 

metrics ( Diq
t , Diq

K , Diq
K ) across states and performance measures (Figure 3.9). 

t K K
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Special considerations: In computing these D measures at the action level, we 

realize that different subjects may use the ten different fundamental surgical actions 

in vastly different proportions.  In particular, surgeons in training may not avail 

themselves of as broad a range of surgical actions as experts; indeed, we observed 

that on some occasions individual surgeons rarely if ever used certain actions.  We 

therefore have to take account when computing some D values of the fact that some 

comparisons are made on the basis of large numbers of samples from both subjects 

and may therefore be considered reliable difference measures, while other 

comparisons may be made on the basis of few samples from one or both subjects 

and so are far less reliable and should be given less weight in the analysis (Figure 

3.16). 
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Figure 3.16: Schematic representation of difficulty in computing reliable D measures when number 
of points in a particular distribution varies widely 

Because the number of points in each distribution might vary widely due to 

limitations in the amount of available data, we weighted Ds and Dd in proportion to 

the square root of the largest number of samples, ns in either of the two distributions 

used to compute each D value.  This method emphasizes states which at least one 

subject visits frequently.  However, expert surgeons sometimes believe that a less 

frequently used movement (action) is actually more critical for performing a good 

surgery, in which case the weighting could also be adjusted to incorporate this 

expert knowledge.  We therefore allow for incorporation of  ‘a priori belief’ (b=1: 

average importance; b=0: no importance; b>1: greater importance) based on 

surgeons’ opinions and used this weighting in addition to ns to adjust the weighting 

of the D matrix:   

˜ D a , ˜ D d =
diag nb( )

max(ns) max(bs)
× Da ,Dd  

˜ D iq = ˜ D a ˜ D d[ ] 

D D
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3.3.3.2 Bootstrapping Approach for Computing Confidence Level 

In our applications, difference scores, such as D values derived from the K-S statistic, are 

computed based on two empirical CDFs (C1, C2), each of which has a finite number of 

samples in them, so the value (D12) we find is itself an estimate of the true difference 

between the two sets. In order to test hypotheses and to recognize difference values, which 

indicate statistically significant differences, we need to assign confidence intervals to our 

estimates.  Since the statistics we use to evaluate differences are rarely well-approximated 

as normally distributed, we use a bootstrapping approach in which we synthetically 

resample the data sets a large number of times (according to the techniques described by 

[Efron, 1986]) and re-compute the resulting D values. Hence we are able to establish a 

distribution of D values as shown in Figure 3.17 and the 5% and 95% confidence bounds 

can be easily identified on the cumulative distribution curve.  

 

 

 

 

 
Figure 3.17: Resampling cumulative probability distributions of two finite data sets to establish confidence 

bounds on an estimate for D. The right illustration depicts the 5% and 95% confidence bounds on the estimate 
for D 
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3.3.3.3 Propagating Difference Measures Upward 

Once we have computed difference measures at the most detailed level of the MCMD (ie, 

the action level), we will have a large number of difference measures to deal with since 

numerous measures Diq.Tk.Sl.Am.r (r: time, velocity, acceleration, etc.) are computed for 

each of the ten action states.  The surgical trainer needs to be able to identify which of these 

measures indicate important differences between the subject under consideration and the 

reference group, and this data needs to be summarized in a useful way when it is 

consolidated into summary measures associated with the corresponding subtask at the next 

level in the MCMD.  In this section we discuss how we propagate this collection of D-

measures upwards (Figure 3.7). 

Subtask Level 

As described in section 3.3.3.1.2, at the action level, we compute difference (D) measures 

derived from comparing movement transitions, time, and kinematics profiles for each of the 

10 predefined actions.  D-values might be computed for subject-to-subject, subject-to-

group, or group-to-group comparisons.  We follow the same strategy for propagating them 

upwards; however, for explanatory purposes we use subject-to-subject comparison herein. 

At the action level, every comparison is represented as a collection of D measures for each 

action arranged as a single row.  In order to propagate them to the subtask level, we simply 

concatenate all rows in order to form a k x w matrix, where k corresponds to the number of 

subject-to-subject comparisons Mivs.Mq (where Mi and Mq can be from the same group – 
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eg, E: Experts, EI vs. EJ; R: Residents, RI vs. RJ – or from different groups – RI vs. EJ) and 

w corresponds to the number of extracted performance measures. 
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For each subject-to-subject comparison (ie, each row), we use 1 JSD value; 10 D values 

(per variable) for average time, and average velocity, acceleration, and jerk profiles; 10 D 

values (per variable) for detailed velocity, acceleration, and jerk profiles (as described in 

Section 3.3.3.1.2). Afterwards, the matrix is processed using Principal Component Analysis 

(PCA) in order to reduce dimensionality so that each row can be plotted in a low 

dimensional ‘weight space’ and measures of proximity between subjects’ pairs can be 

implemented. 

Task Level 

In propagating difference measures from the subtask to the task level, we follow the same 

approach as before but instead of concatenating D values for actions, we use D values for 

subtasks.  The same PCA analysis is carried out at this level. 

3.4 Mathematical Formulation of Difference Measures 

In the previous section we presented the conceptual framework we used in computing 

difference values, but did not fully describe the various difference measures we used.  In 

this section, we provide further details on the following mathematical methods used: 
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• The Kolmogorov-Smirnov (KS) statistic for representing and computing differences 

from time and kinematics cumulative probability distributions 

• Semi-Markov models for representing movement transitions and the Jensen-Shannon 

Divergence (JSD) measure as a way of computing differences between transition 

matrices.  

• Principal Component Analysis as a method for reducing the dimensionality of our 

difference measures and for assessing differences across multiple measures 

simultaneously. 

3.4.1 Kolmogorov-Smirnov Statistic for Time and Kinematics Profiles 

Comparison 

Whenever we have available vectors (X) of data such as a set of 100 velocity points or a set 

of 120 time measures representing 120 visits to a particular action, we may visualize them 

as histograms showing what proportion of data points fall into each of several specified 

categories (see Figure 3.19 left); these histograms may be replotted as cumulative 

distribution functions CDFs, which can be thought of as the integral of the distribution 

plotted in the histogram (Figure 3.18).  
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Figure 3.18: Example of a vector of speed values represented as a histogram (left) and as a cumulative 
distribution function (right).  A CDF describes the probability distribution of a real-valued random variable X 

and is given by F(x) = P(X < x) 

Since drawing a histogram of experimental data always requires putting the data into bins, 

and since the discretization resulting from selecting the bin size always results in the loss of 

information, we opt to use cumulative distribution functions instead.  CDFs are also useful 

because the median is immediately apparent, while it is only approximately shown in a 

histogram.  Another important reason for using CDFs rather than histograms is the 

possibility of using the Kolmogorov-Smirnov (KS) test for assessing differences between 

distributions. The KS statistic characterizes the difference between two distributions as the 

maximum vertical difference (D) between CDFs (Figure 3.19). It varies between 0 

(similar) and 1 (different), which is helpful because this difference measure is intrinsically 

normalized; no special scaling or other treatment of the original data is required.   
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Figure 3.19: The KS statistic (D is the maximum vertical distance between two cumulative distribution 
functions).  D varies between 0 (similar) and 1 (different) 

The KS statistic is normally used to test whether CDFs drawn from different groups 

defined in a particular experiment are statistically distinct from one another.  There are 

statistical tests available to calculate the p-value for comparing two different distributions 

[Hodgson 2002, Drew 2000].  While more commonly used tests such as Student’s t-test and 

the F test detect differences only in the average or the variance of two groups, respectively, 

the KS test picks up any sort of difference in the CDFs of two groups, whether differences 

in the mean, in the variance or in the shape of the distributions (though in general it will not 

be as sensitive as an explicitly parametric test on distributions which match the assumptions 

behind the parametric analysis) [Von Mises, 1964]. 

In addition to performing hypothesis testing, we often want to use the KS statistic directly 

as a measure of difference (eg, to assess the extent of difference between how a particular 

subject performs a surgical task and how a reference group performs the same task).  In 

these circumstances, we need to assign a confidence interval to the measure, as mentioned 

above in section 3.3.3.2; this is slightly different from the standard use of the Kolmogorov-

Smirnov statistic, where one wishes to test the hypothesis that the two distributions are 

CDF 

D
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different.  In this latter case, there is an established procedure for calculating the p value. 

However, to assign a confidence interval to the statistic directly, there is no simple 

approach that we know of which would work for arbitrary distributions.  We therefore 

chose to use a approach in which we synthetically resample the data sets a large number of 

times [Efron, 1986] and re-compute the resulting D values in terms of a distribution where 

the 5%-95% confidence bounds can be easily identified on the resulting cumulative 

distribution curve.  

In addition, to assess the significance of the particular D values we find, we also compute 

typical D values for intragroup comparisons and for intergroup comparisons between the 

most widely spread groups in our dataset.  This allows us to place a particular difference 

measure on a scale representing the smallest and largest D values we could reasonably 

come across.  The wider the range of possible D values and the tighter the confidence 

interval, the more reliable the estimate is.  We are then interested in weighting the D values 

in order to reduce the influence of those unreliable D measures, particularly as the amount 

of data (number of columns) increases in the PCA analyses.  We propose relating the 

weight ‘w’ to some function of Dmax and Dmin, such that it goes down as Dmin rises or Dmax 

decreases.  A candidate function would be w(r), where r = Dmax / Dmin. 

In summary, we use D values either for computing differences or to test null hypotheses.  

3.4.2 Markov Models for Action Level Analysis 

At the action level of the MCMD, which describes motion primitives (e.g., pushing, 

pulling, sweeping, etc), there is no notion of a surgical goal; therefore, the motion 
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primitives are viewed as states that the surgeon cycles between until the higher-level goal is 

achieved (Figure 3.20). These movements do not have an order of execution and happen 

almost at random, (i.e., the surgeon would have a difficult time explaining why they 

decided to move from a pushing action to a sweeping action to a grasping action;  they 

would likely say that these are simply the actions that are required to accomplish the 

surgical goal, but they would not say to a resident that there is an explicit order of sweep, 

push, grasp, etc. required to accomplish the goal; rather, they would tend to instruct the 

resident by saying something like “dissect this structure until this other structure is 

visible”); therefore, we represented them on an interconnected diagram or state transition 

diagram and used transition probabilities between states to model flow at the action level.  

Dr. Jacob Rosen at the University of Washington has been using Markov models for 

characterizing magnitudes of forces and torques (F/T) measured at the human/tool interface 

in order to distinguish between surgical skill levels when performing laparoscopic 

cholecystectomies on pigs.  Initially, a set of 14 tool/tissue interactions were identified by 

visual inspection and the magnitudes of the force/torque profiles were used to classify the 

14 interactions into 3 groups (low, medium, high) of magnitudes, which constituted a 3-

state Markov model.  Individual models were trained for each surgical step and each skill 

group and a statistical distance (based on the parameters µ and σ of each F/T distribution at 

each state) was then used to determine how far a subject is from the expert group [Rosen 

2006, 2001].  Based on this work and other applications of Markov models to modeling 

human tasks, we considered whether some variant of Markov models was appropriate for 

this project. 
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Figure 3.20: State-transition diagram for the action level defined in our application.  10 discrete tool 
movements describes this level and transitioning between states occurs probabilistically 

Markov models (MMs) can be generally classified as continuous or discrete.  Continuous 

CMMs model the tendency to leave a state as constant over time.  This is known as the 

‘race condition’ of the CMM and leads to dwell times in a state that are characterized by 

exponential distributions.  In our model each state has an inherent cognitive load and 

requires completion of a finite task; these factors influence the execution of the movement 

such that the probability of leaving the state soon after entry is low and increases over time 

until it is greatest near the expected mean residency time, after which it again drops off.  

The exponential distribution is therefore not a good model of our situation [Meyn 1993, 

Doob 1953]. Discrete MMs exhibit similar behaviour; transitions occur at discrete intervals 

and the probability of leaving is constant during each interval; this produces a dwell time 

distribution that is best represented as a geometric distribution [Meyn 1993, Doob 1953], 

which again does not match the expected dwell time distributions in our experiments 

(Figure 3.21).   
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Figure 3.21: Complement of the Cumulative Distribution Function for dwell times (probability of remaining 
in the state after a time t): (left) the exponential and geometric behaviour of classical Markov Models, and 
(right) the behaviour of a human when executing a task with inherent cognitive load as that of a surgeon 

during surgical procedures 

We therefore decided to use semi-Markov models to represent the non-exponentially-

distributed holding times in each state we expect to see.  A semi-Markov model is a process 

whose successive state occupancies are governed by the transition probabilities of a 

Markov process, but whose stay in any state is described by a random variable that depends 

on the state presently occupied and on the state to which the next transition will be made 

[Howard 1971]. 

The assumptions embodied in Semi-Markov Models are that transition probabilities only 

depend on the current state (so they have the same transition matrix representation as a 

classical Markov model) and that the holding time distribution could be a function of the 

subsequent state (ie, there could be a longer expected time if the next state indicated that 

the surgeon thought this was a difficult case) [Haverkot 2001].  We used this at the task and 

subtasks levels as well. 
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time time 



 

 142

To test our assumption that holding times in the action states were not well modelled as 

exponential distributions, we performed a distribution fitting test using three types of 

distributions: Exponential, Weibull, and Lognormal. These last two were chosen as 

candidate distributions because they have been used in other human task applications to 

model task completion times, particularly for very quick tasks [Zhang 2007, Murthy 2003, 

Giuntini 2000].  We used holding time data from the most executed movements (about 4 

actions) per subtask (Expose Triangle and Dissect CD/CA) while performing one selected 

procedure for each one of the 3 experts and 3 residents who performed the experiment 

described in Chapter 5. In total, we performed 12 distribution comparisons per subject (4 

actions x 3 distributions). 

Using the Distribution Fitting Tool from Matlab, which performs a non-linear least square 

fit, we obtained the parameters for each fitting based on the actual vectors of times for each 

action (Figure 3.22).  These vectors are obtained from measuring time spent during each 

visit to the state; if a state is visited 100 times; we get a 100-element vector with 100 

holding time values.  Using the Kolgomorov-Smirnov statistic (Section 3.4.1, we found that 

in all cases either a lognormal or a weibull distribution provided a better model for the 

holding time distributions than an exponential distribution (Appendix D). 
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Figure 3.22: Example of the distribution fitting process with the three selected distributions (Exponential, 
Lognormal, and Weibull) performed on time measurements, which represented time (in seconds) spent at 

each action during each visit.  The degree of fit was evaluated based on the D values between each 
distribution and the experimental data. 

The primary contributions we seek to provide with regard to the use of Markov-like models 

for modeling surgical procedures are (1) to recognize that dwell times in surgical states are 

not well-modeled by the exponential dwell time assumptions of the standard Markov model 

and (2) to provide a different metric for comparing different Markov models which is more 

intuitive and does not require a hidden discrete Markov model. 

3.4.3 Jensen-Shannon Divergence as a Similarity Measure for Markov 

Models 

The pattern of tool movements executed by each subject is modelled by a semi Markov 

process.  In our assessment methodology we need to compute difference measures for the 
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different elements of a semi Markov model.  Here we consider how to compute a difference 

measures for a pair of transition probability matrices. 

Several measures have been proposed as metrics for Markov models [Bicego 2004, Qian 

2003, Wu 2001, Lyngso 1999].  However, all of them deal with measuring similarity of 

sequences, and therefore are inherently related to Hidden Markov Models, where the states 

are not directly apparent and the transition probabilities not explicitly available.  Some of 

the concepts are based on co-emission probabilities of various HMMs, or on using word 

frequencies (based on the principle that similar sequences (or time series) share similar 

words for the case of DNA analysis). 

Since we have the transition probability matrix directly available to us, we should compute 

the difference measure directly on these matrices [Qian 2003]. 

In consultation with Professor Kevin Murphy from the Computer Science Department at 

UBC, we decided to use the Jensen-Shannon Divergence (JSD) as our similarity measure 

for the probability distributions derived from the transition matrices in our Semi-Markov 

model approach.  The JSD is derived from the Kullback-Leibler Divergence (KL), which is 

a standard information-theoretic measure of the dissimilarity of two probability functions 

[Dagan 1999], and is defined as (Equation 3.4, ‘i’ refers to a discrete probability function): 

KL p q( )= pi log pi

qii
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It is important to note that KL is not a distance metric itself since it is not symmetric and 

moreover, does not satisfy the triangle inequality.  On the other hand, the JSD (Equation 

3.5) is a symmetrized version of the KL divergence.  Additionally, it is always well defined 

and bounded, and its square root is a true metric for the probability distributions space (i.e., 

its square root is symmetric, null only when the probability distributions coincide and it 

verifies the triangle inequality) [Majtey 2005, Endres 2003, Lee 1999]. 

Since we would prefer to use difference which range from 0 to 1 (Section 3.3.2), we first 

find the maximum possible value for JSD and then normalized it as follows: 
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When p and q are two distinct deterministic distributions:   

( ) 2log2qpJSD
max

= ; so we define 
( )

( )
max

pq
qpJSD

qpJSD
=∆  

Therefore, the properties of our metric are: 

• ∆pq ≥ 0 

• ∆pq = ∆qp 

• 0 ≤ ∆pq ≤ 1 with ∆pq = 0 if and only if p = q 

≥0 ≤0 ≤0 
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• ∆pq + ∆qr ≥ ∆pr 

For the case when pi = 0, computation of the logarithm is not possible, but 

since ( ) 0plogplim ii0pi

=
→

, it is still possible to compute the JSD.  JSD divergence is applied as 

a similarity measure for comparing T matrices, which individual rows are basically 

probability distributions of the states transitioning behaviour (Section 3.4.2). 

3.4.4 Principal Component Analysis for Separating Skill Levels 

In our approach, we deal with multiple performance measures (e.g., time, velocity, 

acceleration, jerk) across multiple tasks (e.g., ‘peel’ and ‘detach’, or ‘isolate’ and ‘dissect’ 

tasks), which make our data set not only multidimensional in nature, but multidimensional 

with high dimensionality (up to dozens of more dimensions).  Since we are aiming to 

convey results to surgeons, we need to be able to express the patterns in the data as intuitive 

representations of subjects’ behaviours.  Thus, we use Principal Component Analysis to 

dramatically reduce the dimensionality of the data by projecting it into a ‘weight space’, as 

described below.  We have found that we can often capture upwards of 90% of the 

variability in the data with as few as 2 or 3 dimensions. 

3.4.4.1 Principal Component Analysis 

The method is based on expressing the data in terms of a weighted sum of the eigenvectors 

of the covariance of the data.  In this way, data points are remapped into a weight space 

which represents the contributions from each of the eigenvectors; therefore these vectors 

represent the directions of greatest variance in the original data (see Figure 3.23).   
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Figure 3.23: Graphical description of the transformation of the data into the PCA space. PCA is a weighting 
space in which a set of data might be represented in terms of a vector of weights (i.e., principal components, 
shown in yellow and blue), which multiply eigenvectors (shown in green) which correspond to the directions 

of the maximum variability in the original high dimensional data space [Jolliffe 2002]. 

Since the various elements of the data vectors may have different units and may be of 

markedly different magnitudes, it is standard practice to normalize each element by the 

standard deviation of the set of all corresponding elements across all samples and to 

subtract the global mean [Johnson 2002, Jackson 1991].  With the PCA, the eigenvectors 

are meaningful and provide information about the principal correlations between variables.  

By observing which elements of the principal eigenvector have the largest values, one gains 

insight into which variables or combination of variables make the dominant contribution to 

variability in the data set. 
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3.4.4.2 Determining Number of Dimensions to Include in Analysis 

The PCA finds the directions of greatest variance in the data set. By selecting a small 

number of high variance dimensions, we can capture most of the variance in the data with 

only a small number of variables.  Therefore, it is necessary to make a principled choice of 

how many dimensions to work with. 

Some traditional methods involve plotting the eigenvalues against the number of principal 

components and finding the “elbow” on the graph (i.e., the point where the graph of 

eigenvalues levels out), or limiting the variance accounted for by a set of PCs [Jolliffe 

2002].  However, since those methods often rely on a visual heuristic, we propose using a 

more objective condition based on the reasoning behind the Principle of Parsimony, which 

is defined as the conceptual tradeoff between the squared bias and variance vs. the number 

of model parameters. Model selection methods such as Akaike’s Information Criterion 

(AIC) or Bayesian Information Criterion (BIC) implicitly employ some notion of this 

tradeoff [Burnham 2004, Burnham 2002, Breiman 1992].  We then define a trade-off 

between the error expressed in terms of the variability accounted for and the complexity as 

the number of dimensions increases.  We use the unexplained variability represented by 

each component or the variability explained by all components beyond the one being 

considered (100% - VAF) as an error measure, and the number of PCs as a complexity 

measure. We then define a dimensionality-decision criterion, which is an analog of an 

information criterion, to be the sum of the error and complexity measures and plot this 

against the number of principal components used. We chose the projection on the PC axis 
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of the minimum point from the trade-off variable to be the optimal number of principal 

components to retain (Figure 3.24). 

 

 

 

 

 

Figure 3.24: Examples of proposed method for selecting number of PCs in Simulator an OR studies (blue: 
complexity measure; red: (1 - VAF); green: sum of the two parameters); large dot: optimal point 

In the studies reported later (Chapters 4 and 5), we perform PCA on high dimensional data 

sets (~36 and 15 variables respectively).  The figure above shows the fraction of variance 

unaccounted for in these data sets as a function of the number of PCs retained vs. the 

complexity associated with including more dimensions.  These plots show that a minimum 

of the sum of these two values occurs at a dimension of about 3-5, at which point 80-90% 

of the total data variance is accounted for.  We typically present plots showing the two 

principal components, which often accounts for 70-80% of the total variance, for purposes 

of visualization, though we normally retain as many principal components in the analysis as 

are specified by the analysis described above. 
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3.4.4.3 Dealing With Missing Data 

As explained in Section 3.3.3.1.2, some surgeons may not take advantage of the full 

repertoire of behaviours (e.g., actions) allowed for in the MCMD and therefore some 

elements of the matrices may be missing data.  According to the literature [Jolliffe 2002, 

Johnson 2002, Jackson 1991] the most common ways of dealing with such situations are: 

• Deleting entirely any observation (i.e., a row) for which at least one of the variables 

has a missing value or replace it with zero 

• Replacing missing values for a variable by the mean of all values in the 

corresponding row of the variable (i.e., imputation) 

We have two types of PCA matrices: (1) based on difference measures (i.e., JSD and 

Dvalues) where rows correspond to pairs of subjects being compared and columns 

correspond to performance measures, and (2) based on actual measurements (i.e., holding 

times and average kinematics) for each subtask where rows correspond to individual 

subjects and columns correspond to the type of measurement.  Consequently, in our case, 

the first method is not applicable since ignoring whole rows means ignoring comparison 

possibilities across subjects; moreover, replacing missing data with zeros can significantly 

distort the results of the PCA.  In our application given that every row corresponds to a set 

of measures from a same single subject or from a same subject-to-subject pair, we therefore 

implemented the second method which would not alter the PCA analysis significantly.  
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3.4.4.4 Assessing Repeatability of PCA Analysis 

When computing a PCA for a given set of data, it is reasonable to ask how stable the 

resulting eigenvectors are likely to be to resampling.  Two main approaches have been 

developed to discuss what it is known as the ‘sensibility’ of PCA [Jolliffe 2002]: 

• Index of repeatability of PC directions, proposed by Dudzinski [Dudzinski 1975].  

They examined how much the directions of the principal components from samples 

of different sizes differ from those of the population from which the samples were 

derived.  In this method, for each component of interest the angle between the 

vector of coefficients in the population and in the sample is calculated; then a 

repeatability index is defined ad-hoc as the proportion of times in repeated samples 

that this angle has a cosine greater than 0.95.  Although this index was custom-

designed for that particular application, one generalization would be to report the 

RMS angular deviation itself. 

• Criterion of stability for eigenvectors, proposed by Daudin [Daudin 1988].  They 

suggested a function to measure the distance between subsets of k PCs in order to 

choose how many PCs to retain. 

We built on the ideas of Daudin 1988 to compute a stability index for subsets of PCs using 

a bootstrap approach [Besse 1992, Daudin 198, Besse 1988].   

Given a data matrix X(P) of size mxn, where m = number of samples and n = number of 

variables, and (P) represents the population of data obtained experimentally, a PCA 

analysis produces an mxm matrix, U(P), where each column represents one of the 
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eigenvectors, and a transformed data matrix Z(P) = U(P)’ X(P) that is also mxn, where each 

column represents the weight applied to the first PCA eigenvector.  

X(P) is then resampled to get a particular (re)sample X, where the individual rows of X can 

be drawn from any row in X(P), so X is a row-shuffled version of X(P). After performing a 

PCA on X, a new set of eigenvectors U and a transformed sample Z are obtained. 

For the stability computation, we then have: 

X(P): original sample 

U(P): PCA eigenvectors 

Z(P): transformed original sample 

X : resampled data 

U : PCA eigenvectors computed from resampled data 

The transformed sample Z is obtained as Z = U’ * X(P) – i.e., we use the resampled 

eigenvectors, but process the original data X(P) rather than the resampled data X; this 

enables us to compare how variable the transformed data is under different PCA 

eigenvector estimates.  

The variability Ak for the Ek subspace composed of the first k eigenvectors in the resampled 

data relative to the Ek
(P) subspace composed of the first k eigenvectors in the original data, 

is then defined, following [Daudin 1988], as:  

∑
=

=
k

ji
ijkA

1,

2ϑ  
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where =ijϑ  corr(P)(Zi
(P), Zj) – i.e., the correlation in the original dataset between the ith 

variable of the transformed original data and the jth variable of the transformed resampled 

PCA. 

If U = U(P), then the correlation coefficients will all be 1. If it differs, then there will be 

some divergence. If the first eigenvector does not shift much, then Z1 will be approximately 

equal to Z1
(P) and the correlation will be high. 

The stability measure ‘S’ and the stability index ‘S_index’ (0 means full stability; 1 means 

no stability) are subsequently computed as: 

( )2kAES k −=  

1_0_ ≤≤= indexSkSindexS  

The results from the implementation of these computations are presented in Chapter 4. 

3.5 Overview of Experiments 

Our main goal in this thesis is to test whether quantitative data analysis based on 

performance measures such as holding times, kinematics and patterns of movement 

transitions is able to distinguish between skill levels in the operating room (OR).   

After consulting surgeons at Vancouver Hospital who are responsible for training residents, 

the research team decided to concentrate on analyzing performance during laparoscopic 
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cholecystectomy procedures.  We began by developing the MCMD described earlier and 

then developed the analytical approach outlined in this chapter.   

In the remaining chapters, we apply this methodology in two experimental conditions: (1) a 

physical surgical simulator, and (2) the live operating room. 

For the first scenario, a physical simulator, the task was to dissect 2-3 mandarin oranges. 

Three groups of subjects representing three different skill levels participated in this study.  

We applied our proposed assessment methodology and were specifically interested in 

evaluating if (1) intrasubject repeatability was good, (2) scores for trainees with similar 

skill levels were similar, and (3) scores for trainees at different stages were significantly 

different.  We presumed that if these conditions were met, the technique would be worth 

testing in the live operative setting.   

In a second stage, we proposed moving into a real surgical setting in which the surgical task 

is less standardized and more subject to interprocedure variability.  For this second 

experiment, we monitored movements of a curved dissector and an atraumatic grasper 

during 18 laparoscopic cholecystectomy procedures. From the tools’ positions, we 

extracted our performance measures and applied our methodology to compare residents and 

expert surgeons executing two key surgical tasks: exposing Calot’s Triangle and dissecting 

the cystic duct and artery (CD/CA). 

The results for these two experiments are presented in Chapter 4 (Simulator Study) and 

Chapter 5 (OR Study). Figure 3.25 shows a summary of the main steps for the 

implementation of our methodology. 
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Figure 3.25: Summary diagram of the main steps of the proposed methodology for assessing surgical 
performance at the operating room.  This framework was applied for both the Simulator and the OR studies. 
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Chapter 4 

Feasibility of Using Kinematics Performance Measures 
to Monitor Laparoscopic Skills 
 

4.1 Introduction 

The first attempts to train laparoscopic skills outside the operating room used didactic 

lectures with some hands-on simulator practice (synthetic and porcine models) to allow 

trainees to acquire skills in a controlled environment, which is especially effective for 

developing basic skills [Fried 1999, Derossis 1998, Rosser 1997, ].  However, this 

method has been criticized for being unrealistic; therefore, the idea of more realistic 

pilot-like training was developed and various types of virtual reality (VR) simulators 

were proposed such as the MIST-VR, LapSim, Xitact LS500, LapMentor, ProMIS, and 

Reachin Laparoscopic Simulators which involve more realistic tasks and more objective 

assessment modules in the form of graded exercises at different skill levels using 

objective performance measures [Aggarwal 2004]. 

Practicing skills on VR simulators has shown positive learning curves for trainees who 

improved their performances until they matched that of the expert surgeons on the same 

simulated tasks [Gallagher 2002]. Using the MIST-VR tasks (touching, grasping, 

transferring, and applying diathermy to virtual spheres and cubes within a computer-

generated wire frame), Gallagher’s group showed that on average novices’ performances 

converged to that of an expert for these basic tasks after four or five training sessions as 



 157

simulated tasks are likely still not sufficiently representative of the actual operating room 

and the evidence of effective transfer of skills is still somewhat under-developed.  In fact, 

what is desirable is to see a speed on the OR learning curve and therefore, it is still 

necessary to measure the effectiveness of simulators before fully incorporating them into 

the general surgical curriculum [Gallagher 2002, Smith 2001].  Few, if any, would claim 

that measures of performance in a simulator accurately reflect intraoperative skills, so it 

is still necessary to conduct intraoperative assessments.  Indeed, quantitative methods for 

assessing intraoperative performance will eventually be needed to demonstrate that 

performance on a simulator can be considered equivalent to that in the OR. 

Despite the ongoing discussion about the efficacy and transferability of simulator 

training, it remains comparatively expensive to run intraoperative tests, so it is often most 

cost-effective to test new skill assessment methods on simulators prior to their 

application in the operating room environment.   

In the previous chapter, we outlined an analytical approach to deal with surgical motor 

skill assessment.  We integrated three types of physical measures (kinematics, time and 

movement transitions) into a modelling technique for quantifying performance of 

surgical trainees.  We first created a hierarchical representation to decompose larger 

surgical goals into clearly identifiable tasks amenable to being monitored by our 

measures.  Then, at each level of surgical complexity, we implemented specific 

mathematical techniques to derive intuitive scores for providing a quantitative sense of 

how far a performance is located from a reference level (i.e., expert surgeons group or a 

peer group). 



 158

Before testing this methodology in the operating room, where the experimental 

complexity and variability is relatively high, we decided to first use data from a physical 

surgical simulator in order to make sure that our assumptions are reasonably plausible, 

and to verify that our data acquisition and processing methods work well in 

differentiating skill levels.  Therefore, our specific objectives at this stage were: (1) to 

acquire motor performance data on a simulated surgical task (performed in a dry lab 

setting on inanimate anatomical models) from three sets of subjects representing different 

stages of training:  novices, mid-stage trainees, and experts; and (2) to test whether or not 

our proposed analytical method is able to reliably distinguish between these three groups 

of subjects. 

More specifically, we were interested in evaluating if (1) intrasubject repeatability is 

good, (2) scores for trainees with similar skill levels are similar, and (3) scores for 

trainees at different stages are significantly different.  If these conditions are met, the 

technique will be worth testing in the live operative setting.   

In this study, we focused on two levels of analysis:  First, we conducted an investigation 

of average kinematics to determine whether it is possible to find differences between 

subjects; and second, we assessed details at the action level to determine if our analytical 

approach was able to identify where in the surgical process any such differences arose. 
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4.2 Methods 

After consulting with the attending surgeons involved in this study, we determined that 

the task of peeling a mandarin orange and separating the segments would require the 

principal surgical skills they were interested in assessing. 

In this section, we describe the details of the ‘mandarin’ experiment in terms of the 

number of subjects and skill groups recruited, the equipment set up and the specific 

analytical methods used to compare subjects’ performances at the subtask and action 

levels. 

4.2.1 Participants 

We recruited three sets of subjects to represent different stages of training:  novices 

(represented by three graduate students with no specific surgical training), novices with 

training (represented by three graduate students who received a half-hour of training 

from an expert surgeon), and experts (represented by three attending surgeons).  All 

subjects signed consent forms as requested by UBC Research Ethics Board (Appendix E) 

in order to respect confidentiality and to assure that the data acquired will be only used 

for research purposes relating to the present study.  

4.2.2 Experiment Setup 

We simulated a surgical dissection task by asking participants to use laparoscopic tools 

to peel and separate the segments of two to three mandarin oranges placed in a training 

box.  
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The movements of the laparoscopic tool for the dominant hand were tracked using an 

electro-magnetic Polhemus sensor, which continuously recorded 3D position and 

orientation data at 120 Hz while the task was being executed (static accuracy of 0.03 

inches RMS for the X, Y, or Z position; 0.15° RMS for receiver orientation [Polhemus 

2002]).  As described in chapter 3, we calibrated the tool by estimating the tip location as 

the center of a sphere described when moving the tool handle in circles about a fixed tool 

tip location. We used the collected sphere data and apply a non-linear least squares 

optimization approach in order to find the location of the tip with respect to the global 

frame. 

In addition, the execution of the task was recorded on videotape so that the investigator 

could later correlate the movement patterns with discrete phases of the task execution 

(Figure 4.1). Polhemus system was first initialized followed by the video system 10 

seconds later and during the pre-processing stage, we eliminated the first 10 seconds of 

Polhemus data so as to establish a synchronization point between both systems. 

 

 

 

 

 

Figure 4.1: Equipment setup for Mandarin Experiment 
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Following initial instruction in the task and demonstration by the investigator, subjects 

performed the task at their own pace. Afterwards, the acquired data was processed 

(Section 3.2.2.2) to extract kinematic measures from the tool movements. 

4.2.3 Analytical Methods 

Similarly to the surgical representation we have provided in Chapter 2, the mandarin 

dissection task was described using our MCMD structure (Figure 4.2). Four subtasks 

were identified: (A) Explore, (B) Peel skin, (C) Detach segments, (D) Place segments, 

with B and C as the most challenging tasks.  For the detailed analysis, each subtask was 

correspondingly represented as combinations of 10 tool movements following the 

conventions defined in Chapter 2.  

 

 

 

 

 

Figure 4.2: MCMD for the Mandarin Dissection Task 

We performed two separate analyses: (1) Subtask level: examination of the 3D average 

kinematics of the surgical tool movement when executing the two main experimental 

subtasks (Peel Skin and Detach Segment) to identify broad differences; and (2) Action 

level: decomposition and analysis of individual subtasks using our pre-defined set of ten 
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actions (e.g., push, sweep, spread, etc) based on our assessment methodology (Chapter 3) 

in order to identify at a detailed level the sources of any detected differences between 

groups. We followed the flow of steps summarized in figure 3.25 from Chapter 3 to 

present the corresponding methods and results for the Mandarin experiment. 

4.2.3.1 Subtask Level  

The position data from the mandarin dissection task was initially segmented into its four 

subtasks by manually identifying the start and end points using video analysis. ‘Peel 

skin’ consisted of removing some mandarin skin to allow for detaching the inner 

segments. It begins when the tip of the tool first breaks in the skin and ends when at least 

one segment is completely uncovered. ‘Detach segment’ consists of isolating each 

segment by separating the neighbouring segments’ walls. It begins when the tip of the 

tool is first inserted between two walls and ends when the segment has been completely 

freed from the rest of the mandarin. The video clips were collected for further 

decomposition at the action level and the time records were used to segment the 

corresponding position data streams.  Afterwards, the 3D velocities of the tool motion 

during each segmented subtask were derived by differentiation using a generalized cross 

validation (GCV) algorithm (Section 3.2.2.2). 

For each subject ‘i’ and procedure (i.e., mandarin) ‘j’ (Sij), we defined a 6-element vector 

consisting of the average tooltip velocities in each of the three cardinal directions (i.e., 

l:lateral, a:axial, v:vertical) for each of the two main subtasks. Although we could 

analyze each subtask separately, herein we grouped them so as to provide a performance 

description of the overall task. All subjects were then grouped into a nxm matrix (n: 
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i∑ j∑ , total number of experiment repetitions; m: number of dimensions, m=6 for this 

application). All subtasks (‘peel’ or ‘detach’) repetitions during one single procedure 

were concatenated in single vectors and each entry in the Table 4.1 corresponds to the 

average of the consolidated data for all subtasks in a given procedure. 

Subject / trial B. Peel skin C. Detach segment 
S11 V11lB V 11aB V 11vB V 11lC V 11aC V 11vC 
S21 V 21lB V 21aB V 21vB V 21lC V 21aC V 21vC 
… … … … … … … 
Sij V ijlB V ijaB V ijvB V ijlC V ijaC V ijvC 

Table 4.1: Velocity data arrange for PCA analysis at the subtask level 

As described in section 3.4.4.1, we then normalized the data by dividing each element in 

a column by the column’s standard deviation (defined across all trials and subjects), and 

used Principal Components Analysis (PCA) to extract the dominant contributors to 

overall variability to simplify the presentation of the data to the trainer. By analogy to the 

display in Figure 3.23, the PCA produces an m column matrix, B, of eigenvectors of 

length m, a weight matrix ω (nxm), where each row represents a remapping of the 

original data into a weight space such that the original data can be reconstructed as 

ω iBi∑ , and the variance explained by the corresponding principal component. 

We then plotted the unaccounted variance against the complexity measure (proportional 

to number of dimensions) to select the appropriate number of dimensions to retain in this 

new weight space (Section 3.4.4.2). The aim is to reduce the dimensionality of the data in 

such a way to facilitate the visual presentation of the data (in this case from 6D to 2D, 

Figure 3.23). 
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In this weight space, each subject’s execution is represented as a data point and groups of 

points correspond to repetitions from a single subject or from subjects belonging to the 

same skill level. It is in turn possible to use the concept of distance to assess variation 

within and between individuals and groups. We separately evaluated the two null 

hypotheses that the three groups all have the same means, and that the nine subjects all 

have the same mean.  We reported the ratio of mean square distance (MSD) in the PCA 

weight space from the mean position of all trials executed by a specific group or subject 

to the MSD from the global mean position to describe variability for specific groups or 

subjects.  We statistically evaluated our comparison using a one-way ANOVA (see 

Appendix G) test for group comparison (intergroup DoF=2; intragroup DoF=19; α=0.05) 

and a one-way ANOVA test for subject comparison (intersubject DoF=8; intrasubject 

DoF=13; α=0.05). 

To evaluate whether or not group performance measures shift progressively in the weight 

space as surgical skill level increases, as illustrated in Figure 4.3, we tested the null 

hypothesis that the intergroup distances between the novices and the other two groups 

was zero and that distances between each subject and the mean expert position are equal. 

We therefore computed the distances from each subject and to the center of the experts’ 

group (selected as the reference level) and used a non-parametric test (Mann-Whitney) to 

show statistical significance (p-value < 0.05). 
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Figure 4.3: Schematic representation of hypothesized shift in group performance measures with increasing 
skill level (shown by arcs) 

We hypothesize that plots of the extracted principal components and the derived 

variation measures will show consistency in individual performance, similarity amongst 

individuals at similar levels of training and distinctions between the different groups of 

subjects when comparing them across various executed subtasks (i.e., ‘Peel Skin’ and 

‘Detach Segment’).  To test our three hypotheses, we computed the contributions to total 

variability from intrasubject, intragroup (i.e., equivalent stages of training) and between 

group variations and report these numbers as percentages of total variation from the 

global data mean.  

4.2.3.2 Action Level 

Moving further down in the hierarchy, we also compared performances of single 

subtasks by decomposing them into 10 characteristic actions: push, pull, reach, orient, 

sweep, spread, grasp&hold, grasp&cut, idle, and out.  The process of segmenting and 

obtaining the times records for these actions was achieved by identifying the start and 

end points through video analysis according to the action definitions provided in Chapter 

2. For each subtask repetition during each experiment execution (Sij), Excel templates 

were used to record the timing information and to compute the matrix of action 

Experts 

Novices 

ω2 

ω1 

Intermediate 
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transitions.  Table 4.2 presents an example of how data is processed in Excel to obtain 

the list of transitions and holding times for one subtask execution. 

 TIME IN TIME OUT   
ACTION min sec 30ths min sec 30ths Transition HT (sec) 

Reach 0 0 0 0 4 20 Reach-Push 4.67 
Push 0 4 20 0 5 0 Push-Reach 0.33 

Reach 0 5 0 0 6 22 Reach-Out 1.73 
Out 0 6 22 0 8 26 Out-Idle 2.13 
Idle 0 8 26 0 9 19 Idle-Out 0.77 
Out 0 9 19 0 10 1 Out-Reach 0.40 

Reach 0 10 1 0 10 22 Reach-Out 0.70 
…         

Table 4.2: Decomposition of a particular subtask into its corresponding set of executed actions.  Start and 
end times for each action were registered and every action transition was obtained 

Using the list of time in and time out values, we segmented the kinematics signal of the 

subtask and were therefore able to associate segments of the kinematics data with each 

action. At this level, we characterized each action using distributions of holding times 

and kinematic measures (both summary and detailed, Section 3.3.3.1.2), and we 

computed the transition matrices representing the state transitions. 

To evaluate the same hypotheses described above for the subtask level that there were no 

intergroup differences, we first computed direct differences between two subjects as it is 

easier to compare distributions and transition matrices this way (section 3.3.2).  For 

comparing performances between two subjects Mr1 and Me1 (resident #1 vs. expert #1), 

we defined: (a) Mr1.Tk.Sl.Amv1 and Me1.Tk.Sl.Amv as the group of kinematic (e.g., 

velocity) distributions for all executed actions; (b) Mr1.Tk.Sl.Amt and Me1.Tk.Sl.Amt as the 

                                                 

1 Represents vector of velocity measures for m action during execution of l subtask and k task 
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group of holding time distributions for all executed actions; and (c) TMPr1 and TMPe1 as 

the action transition probability matrices. We then computed difference measures for the 

various corresponding kinematics (Mr1.Tk.Sl.Amv vs. Me1.Tk.Sl.Amv) and holding time 

(Mr1.Tk.Sl.Amt vs. Me1.Tk.Sl.Amt) distributions using the Kolgomorov-Smirnov statistic 

(D measure); and difference measures for the transition matrices using the Jensen-

Shanon divergence (JSD measure) after modelling the system as a Semi-Markov process 

(Section 3.4.3). 

Across all subject comparisons, we obtained a v x w matrix, where v corresponds to the 

number of subject comparisons (Mr1 vs. Me1) and w to the number of extracted 

performance measures. 

  

Mr1vs.ME1
Mr1vs.ME2

M

Mr3vs.ME3

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

=

JSDr1e1
M

JSDr3e3
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27Dr1e1.Tk .Sl.Am .(v,a,j) 27Dr1e1.Tk .Sl.Am .(v,a,j)
M M

27Dr3e3.Tk .Sl.Am .(v,a,j) 27Dr3e3.Tk .Sl.Am .(v,a,j)

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 

For the mandarin experiment at the action level there were 36 subject-to-subject 

comparisons: n(n-1)/2 = 3 intragroup comparisons for novices, nn(nn-1)/2 = 3 intragroup 

comparisons for novices-with-training, e(e-1)/2 = 3 intragroup comparisons for the 

attendings, nxnn = 9 intergroup comparisons between novices and novices-with-training, 

nxe = 9 intergroup comparisons between novices and attendings, nnxe = 9 and intergroup 

comparisons between novices and novices-with-training. We also computed 64 

difference (D) measures for each row: 1 JSD value; 9 D values (per variable) for average 

time, and summary velocity, acceleration, and jerk profiles (36 total); 9 D values (per 
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variable) for detailed velocity, acceleration, and jerk profiles (27 total)2. We then used 

PCA as described in section 3.4.4 to reduce the dimensionality of this data. 

4.2.3.3 Stability of Principal Components 

For assessing the stability of principal components we implemented a bootstrapping 

approach to create resamples of the original dataset and followed the approach described 

in section 3.4.4.4 in order to  study the stability of the principal components derived from 

the PCA analyses.  

Our original data matrix, X(P), was a 21x6 matrix corresponding to 21 subjects and 6 

velocity measures at the subtask level, and a 64x36 matrix corresponding to 36 subject-

to-subject pairs and 64 difference measures (D) at the action level. After applying PCA 

on X(P), we obtain: 

• a 6x6 U(P) (for subtask level) or a 36x36 U(P) (for action level) matrix containing 

the PCA eigenvectors of the original data X(P), and  

• a 21x6 Z(P) (for subtask level) or a 64x36 Z(P) (for action level) matrix containing 

the transformed original data  

We then create 100 resamples of X by bootstrapping X(P) 100 times and apply PCA on 

each resampled dataset, which produces the corresponding 100 U matrices for the 

resamples. 

                                                 

2 We reduced our set of actions to 9 since ‘Grasp&Cut’ was not applicable to this experiment. 
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For computing the variability Ak for the Ek subspace composed of the first k eigenvectors 

in the resampled data around the Ek
(P)

 subspace composed of the first k eigenvectors in 

the original data, we estimate the 100 transformed Z data matrices as Z = U’ * X(P) and 

compute the 100 Ak values and the stability index S for each Ek subspace (see section 

3.4.4.4 for details). 

4.3 Results 

In this section we present the results from implementing our proposed methodology to 

the Mandarin experiment at two levels of analysis. 

4.3.1 Subtask Analysis 

4.3.1.1 Overview of Kinematic Data 

Figure 4.4 shows samples of cumulative distributions of velocity components for three 

subjects (E1, NovT1, Nov1) and the corresponding root-mean-square values, which are 

the actual variables that are arranged into a matrix and used in the PCA analysis.  It is 

apparent that for both subtasks, there is significant separation between the subjects with 

the novices performing at a slower pace than the novices-with-training and the experts.  

NovT subjects seem to use middle range velocities with is consistent with the idea that 

improvement in motor skills is related to progressive training. 
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Figure 4.4: Samples of Cumulative Distribution Functions (CDF) for velocity components in different 
directions for two subtasks for a representative subject from each group.  Colored dots indicate mean 

velocity for each subject, direction and task 

4.3.1.2 PCA Analysis 

At first we analyzed the influence of time and velocity and therefore defined a 8D data 

set composed of 6 rms (root-mean-square) velocity components (lateral, axial, and 

vertical velocities for ‘Peel skin’ and ‘Detach segment’ respectively) and the average 

time spent at each subtask. Since velocities seemed to be the dominant differentiator 
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(Appendix F), we reduced the dataset and only concentrated on analyzing velocities in a 

6D space. 

We performed a PCA analysis and by applying our PC selection method (Section 3.4.4.2) 

found that by retaining only the first two principal components it was possible to explain 

~80% of the variance across all subjects and subtasks (Figure 4.5).  

 

 

 

 

 

 

Figure 4.5: Selecting number of Principal Components for 6D dataset blue: complexity measure; red: 
variance unaccounted for; green: dimensionality-decision criteria (sum of the two parameters); optimum 

indicated by large green dot 

Analysis of the coefficients and signs of the first two principal components (Figure 4.6 

and Figure 4.7) showed: (1) that in the first principal eigenvector, all velocity variables 

covary, which indicates that the primary feature characterizing the subjects is the overall 

speed with which they move the tool; and (2) that the second eigenvector displays a 

contrast between the vertical and lateral velocity components.  This effect was more 

prevalent in the ‘detach’ subtask as indicated by the larger PC value there.  
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Figure 4.6: Normalized coefficients for PC1 in 6-D data set composed of kinematic parameters3 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 4.7: Normalized coefficients for PC2 in 6-D data set composed of kinematic parameters4 

                                                 

3 The principal components were normalized (multiplied by # of ⋅PCs ) 
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The position of each trial in PCA-weight space is shown in Figure 4.8.  It appears that 

intrasubject repeatability is generally high, that the data from subjects of comparable 

training level is in relatively close proximity to one another, and that there are significant 

variations between groups. It also appears from the plot that variation in the 2nd direction 

is primarily due to variation amongst experts. In the next section, we test these 

observations statistically. 

 
Figure 4.8: Cross-plot of the first 2 principal components for the three subject groups tested.  [x,+,*]:  

novices (Nov); [ ,O, ]: novices with training (NovT); [( ) ]: experts (Exps); [ ]: expert #1 (E#1) 
measured while instructing NovT group; [ ]: expert #1 

Figure 4.9 (pieplot) shows the contributions to total variability for the velocity 6-D 

analysis.  The low values of intrasubject and intragroup variability support the qualitative 

observations that the greatest contributor to overall variability is difference in degree of 

                                                                                                                                                 

4 The principal components were normalized (multiplied by # of ⋅PCs ) 
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24%

7%

69%

training.  The one-way ANOVA test implemented for group comparisons (intergroup 

DoF=2; intragroup DoF=19; α=0.05), showed that there is detectable intergroup 

variation and detectable intragroup (subjects within a group) variation.  

 

 

 

Figure 4.9: Contributions to total variability. [ ]: intrasubject variability; [ ]: intragroup variability;            
[  ]: intergroup variability (one-way ANOVA F=38.37; Fcrit.=3.52 at α=0.05) 

Additionally: 

a) Figure 4.10 shows that intrasubject variability is lowest with the novices and 

increases with experience level. The one-way ANOVA test implemented for 

subject comparisons showed there is detectable intersubject variation and 

detectable intrasubject (trials within a subject) variation.  (intersubject DoF=8; 

intrasubject DoF=13; F=5.96; Fcrit.=2.77 at α=0.05;) 

 

 

 

 

 
Figure 4.10: Intrasubject variabilities for the three skill levels 
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b) The root-mean square (RMS) distances between different groups are considerably 

larger than the RMS distances within groups for the subjects included in this 

experiment (Mann-Whitney test, p-value = 0.049); this is consistent with the idea 

that training changes motor patterns (Figure 4.11).  

 

 

 

 

 

 

 

 

 

 

Figure 4.11: Distances (average) within groups and distances between groups 

c) The distances from each subject to the mean expert position is shown in Figure 

4.12. Mann-Whitney test (p-value = 0.049) showed that distances between 

novices and experts’ center are considerably larger than distances between 

novices-with-training and experts’ center and distances between experts and 

experts’ center. 
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Figure 4.12: Distances between each subject’s center and experts’ group center 

We also noticed in Figure 4.8 that expert #1’s performance while instructing was more 

similar to that of the trainee group than to the expert group or to his own typical 

performance.  The RMS distance of these instructional trials was 1.62 to the centre of the 

novices-with-training group and 3.63 to the centre of the experts’ group, which suggests 

that this surgeon changed his performance to more closely match the capabilities of those 

he was instructing. 

4.3.2 Action Analysis 

4.3.2.1 Overview of Kinematic Data 

Figure 4.13 and Figure 4.14 show samples of cumulative distributions of velocities for 9 

actions and three subjects (E1, NovT1, Nov1) while executing each subtask (Peel and 

Detach).  Subjectively, there appears to be high intrasubject consistency across 

experiment repetitions. This is confirmed (Figure 4.15 and Figure 4.16) by the low K-S 

values between intrasubject pairs of distributions form different task repetitions for the 

peel and detach subtasks.   
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Figure 4.13: Samples of CDFs for velocity components (horizontal axes) at each action during ‘Peel’ for 
representative subjects from the different groups. Empty plots indicate subject did not use the specified 

action in performing the task. 
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Figure 4.3: Samples of CDFs for velocity components (horizontal axes) at each action during ‘Detach’ for 

representative subjects from the different groups Empty plots indicate subject did not use the specified 
action in performing the task. 
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Figure 4.15: Consistency measure (mean D values) for actions executed by one novice, one novice with 

training and one expert while in ‘Peel’ subtask 

 

 

 

 

 

 

 

Figure 4.16: Consistency measure (mean D values) for actions executed by one novice, one novice with 
training and one expert while in ‘Detach’ subtask 
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We also found, using paired t-tests, that intersubject differences within a group were 

significantly larger than intrasubject differences, and that intersubject differences 

between groups were significantly larger than intersubject differences within groups 

(Figure 4.17).  

 

 

 

 

 

 

 
Figure 4.17: Intrasubject, intra- and intergroup comparisons (mean D values) for actions in ‘Peel’ subtask. 

Paired t-test between intrasubject (orange) and intragroup (pink) D values: p-value = 0.003  
Paired t-test between intrasubject (orange) and intergroup (blue) Dvalues: p-value < 0.0001 

4.3.2.2 PCA Analysis 

Applying our PC dimension selection method, we found that the first three principal 

components should be retained to explain most of the variance across all subjects and 

subtasks (Figure 4.18).  However, since there was little difference in the dimensionality-

decision criteria for two and three principal components, we decided, for ease of 

visualization and interpretation, to present the data in a two-dimensional space (i.e., 

retaining more than 75% of the information), though we computed all distances in the 3D 

space weight.   
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Figure 4.18: Selecting number of Principal Components for 36D dataset. Blue: complexity measure; Red: 
variance unaccounted for; Green: dimensionality-decision criteria (sum of the two parameters) 

The distribution of data points on the PCA plot in Figure 4.19 shows that differences in 

intragroup (pairs of subjects from the same skill level) and intergroup (pairs of subjects 

from different skill levels) comparisons are primarily differentiated along the horizontal 

axis.  Intragroup comparisons are located on the left while comparisons between novices 

and experts are located on the right (see circled points).  Data points in between are 

representations of comparisons of novices-with-training to either experts or novices. It 

also appears that comparisons between novices (N) and novices-with-training (NovT) are 

generally closer to the intragroup comparisons, while novices-with-training (NovT) vs. 

experts (E) appear to be closer to the comparisons between novices and experts. 
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Figure 4.19: Cross-plot of the first 2 principal components for the 36 subject pairs tested.  
Left circle - [ ]: Experts vs. Experts, [ ]: Novices vs. Novices, [ ]: NovT vs. NovT 

Right circle - [ , , ]:  Novices (N1,N2,N3) vs. Experts (E1,E2,E3)  
In between -  [ , , ]: (NovT1,NovT2,NovT3) vs. (N1,N2,N3) and  

[ ,+,•]:(NovT1,NovT2,NovT3) vs. (E1,E2,E3) 

Interpretation of principal component eigenvectors (Appendix F) indicated that times did 

not contribute strongly to differentiating between subjects or groups.  Figure 4.20 to 

Figure 4.22 show representation of 63 components of the corresponding first 3 

eigenvectors at the action level:  

a) The first eigenvector suggests that difference measures derived from kinematics 

( ) ( )[ ]javDvaluesjavDvalues ,,,,  provide most of the differentiation and 

that holding time contributions play relatively smaller role (Figure 4.20) 
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b) The second eigenvector shows that kinematics Dvalues provide major contrast 

between [Grasp&Pull and Orient] vs [Push and Sweep] (i.e., contrast of how 

selected movements outperformed) 5 (Figure 4.21) 

c) The third eigenvector shows Grasp&Hold and Idle with higher coefficient 

values over the other actions (i.e., contrast between the less action oriented 

movements).  Moreover, PC3 gave more importance to average vel (v ) over 

the other kinematic measures (Figure 4.22) 

 

                                                 

5 Since time did not contribute strongly to the analysis, we did not present its D value in figures 4.21 and 
4.22 
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Figure 4.20: Coefficients for PC1 
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Figure 4.21: Coefficients for PC2 
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Figure 4.22: Coefficients for PC3
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To test the hypothesis that subjects in different groups can be reliably distinguished form 

one another, we computed distances between the points on Figure 4.19: between each 

novice and expert pair and between subjects in the same group (Figure 4.23). A Mann-

Whitney test (p=0.01) showed that the novice-to-novice and expert-to-expert 

comparisons (i.e, subject pairs from the same skill level) could be distinguished from the 

novice-to-expert comparisons.  

 

 

 

 

 

 
Figure 4.23: Distances from each novice and expert pair [ , , , ] to intra-experts’ center (+) in the 

PCA space of Figure 4. (Mann-Whitney test, p=0.01) 

4.3.3 Analysis of Stability in Principal Components 

Since the previous PCA analysis revealed the importance of kinematics as a reliable 

performance measure, we performed a variability test in order to investigate how 
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checked to see if the eigenvectors we obtained from the PCA analysis were reasonably 
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stable as more repetitions of experiments are simulated.  Using the methodology 

explained in Section 4.2.3.3, we made the following observations: 

a) Figures 4.24 and 4.25: The graphical representation of Ak shows that as the 

number of dimensions (k) increases, the Ek subspace becomes progressively fully 

stable (Ak converges to k for k = 3 at the subtask level and k = 14 at the action 

level). 

b) Figures 4.26 and 4.27: The plots of the stability index ‘S_index’ shows that a 

stability above 80% is achieved at k=2 and k=3 for the subtask and action levels 

respectively, which corresponded well to the values estimated using our PC 

selection method analysis. 

 



 

 

189

 

 

 

 

 

 

 

 

 

 

Figure 4.24: Variability of subspace Ek around Ek
(P)

 (composed of the k first eigenvectors) – subtask level 
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Figure 4.25: Variability of subspace Ek around Ek
(P)

 (composed of the k first eigenvectors) – action level  
(plotted up to 14 dimensions; the subspaces are roughly fully stable from k = 14) 
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Figure 4.26: Stability indices when increasing subspace dimension (k: # of eigenvectors) – subtask level 
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Figure 4.27: Stability indices when increasing subspace dimension (k: # of eigenvectors) – action level 
(plotted up to 14 dimensions; the subspaces are roughly fully stable from k = 14) 
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4.4 Summary 

In chapter 3, we outlined an analytical approach to deal with surgical motor skill 

assessment which integrated three types of physical measures (kinematics, time and 

movement transitions) into a modelling framework for quantifying performance of 

surgical trainees.  The primary purpose of the surgical simulated experiment described in 

the present chapter was to test whether or not our proposed analytical method was able to 

reliably distinguish between three groups of subjects representing different stages of 

training:  novices, mid-stage trainees, and experts, and to demonstrate the reliability of 

our measurement equipment and our selected performance measures.  

We simulated a surgical dissection task by asking participants to use laparoscopic tools to 

peel and separate the segments of two to three mandarin oranges placed in a training box.  

The movements of the laparoscopic tool for the dominant hand were tracked using a 

magnetic sensor, which continuously recorded 3D position and orientation data at 120 Hz 

while the task was being executed.  This position tracking system was selected to 

overcome the ‘line-of-sight’ issue in spite of its limited accuracy when compared with the 

optoelectronic system. In addition, the execution of the task was recorded on videotape 

and time records were obtained so to correlate the movement patterns with discrete 

phases of the task execution. Afterwards, kinematics data was derived by differentiation 

using a generalized cross validation algorithm. 

We decomposed the dissection task into 4 subtasks: ‘explore’, ‘peel skin’, ‘detach 
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segment’, and  ‘place segment’ and concentrated on analyzing performance for ‘peel 

skin’ and ‘detach segment’ as the most descriptive subtasks when considering physical 

performance measures. 

At the subtask level, we applied Principal Component Analysis (PCA) over multi-

element vectors consisting of the average execution times and tooltip average velocities 

in each of the three cardinal directions (l:lateral, a:axial, v:vertical) for each of the two 

subtasks.  In this weighted space, each subject’s execution was represented as a data point 

and groups of points corresponded to repetitions from a single subject or from subjects 

belonging to the same skill level.  Therefore, PCA representation in this application 

allowed for grouping subjects according to the technical proficiency levels perceived by 

our measuring system and therefore, we used the concept of distance to measure group 

membership (Figure 4.3). 

Examination of the PC coefficients indicated that times did not provide much information 

to the analysis since their contributions were considerably lower than those provided by 

velocities.  This suggested that kinematics perform better than time in differentiating 

subjects’ performances at the subtask level. Additionally, we found that while the first PC 

separates skill levels, the second PC has to do with representing differences among the 

experts group (Figure 4.8). 

We computed the ratio of mean square distance (MSD) in the PCA weight space from the 

mean position of all trials executed by a specific subject or group to the MSD from the 

global mean position to describe variability for specific subjects and groups. The low 
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values of intrasubject (7%) and intragroup (24%) variability supported the qualitative 

observations that the greatest contributor to overall variability was difference in degree of 

training.  Moreover, we found that the intersubject variability for each group (Experts: 

22%; Novices with training: 31%; Novices: 5%) seems larger after training, which might 

suggest that training could enable operators to try more flexible strategies. The distances 

between different groups were considerably larger than the distances within groups, 

which is consistent with the idea that training might change motor patterns. 

At the action level, we also compared performances of single subtasks by decomposing 

them into their characteristic actions as a set of 10 elemental tool tip motions: push, pull, 

reach, orient, sweep, spread, grasp&hold, grasp&cut, idle, out.  Using video analysis and 

the previously defined start and end points, we derived a list of action transitions with the 

corresponding time spent at a specific action before transitioning to another (i.e, holding 

times). The time records were then used to segment the kinematics signal of the subtask 

into the kinematics data for each action. We then characterized every action using 

distributions of holding times and kinematics and used Kolgomorov-Smirnov statistic (D) 

to measure differences from these two parameters.  Additionally, we computed transition 

probability matrices and used Jensen-Shanon divergence (JSD) to define a third 

difference measure.  All JSD and D values for every action were grouped into a 64-

element matrix and PCA was then applied to test the hypothesis that in this weight space 

our difference measures were able to provide skill level separation when comparing 

subjects from the same group (e.g., experts vs. experts) and subjects from different 
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groups (e.g., novices vs. experts). 

The distribution of data points on the PCA space showed that differences in intragroup 

(pairs of subjects from the same skill level) and intergroup (pairs of subjects from 

different skill levels) comparisons are primarily differentiated along the horizontal axis 

and a distance measure quantitatively demonstrated that novice-to-novice and expert-to-

expert comparisons (i.e, subject pairs from the same skill level) were located close 

together in one group while novice-to-expert comparisons belonged to a different group 

(Figure 4.19).  Analysis of the PC coefficients indicated that out of the three performance 

measures considered (time, kinematics, transitions), difference measures derived from 

kinematics provide most of the differentiation between skill groups at the action level as 

well. 

In addition, a study on the variability of our principal components as the number of 

experiments increase, demonstrated that our PCA analysis is generally stable for the 

number of eigenvectors we are retaining at both subtask and action levels.  

Although current simulators have been shown to be a valid tool for training novice 

surgeons in basic psychomotor skills [Park 2002, Grantcharov 2001, Ahlberg 2002, 

Hyltander 2002] as performed and assessed in a simulator, their ability to provide 

valuable guidance at more advanced levels of training has not been established.  We 

believe that by using the MCMD we have developed to describe laparoscopic surgical 

procedures into a standardized framework, it will be possible to focus analytical attention 

on specific surgical tasks and therefore potentially to establish stronger correspondences 
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between selected surgical tasks and the corresponding simulations of these tasks, which 

may ultimately enable us to do validated assessments in a simulated setting. 

The most common performance measures used in simulators to discriminate senior from 

junior surgeons include time, number of movements, number of errors, path length, 

distance and travelled by the instrument [Datta 2006, Ahlberg 2002, Torkington 2001, 

Smith 2002, Macmillan 1999; Francis 2001]. Tool-tissue interaction forces and tool 

kinematics have also been explored respectively by Rosen’s group at the University of 

Washington and our group, but they are not yet in widespread use due to the complexities 

involved in modifying surgical instruments to accept the necessary sensors [Rosen 2006, 

Rosen 2002, Rosen 2001, Kinnaird 2004, McBeth 2002].  For the present study we 

implemented three measures of performance: time, pattern of movement transitions and 

tool kinematics, which were attached to the nodes of our MCMD in order to provide data 

representation for isolated tasks so as to identify specific sources of performance 

differences between subjects. Computation and analysis of intuitive difference measures 

(JSD and D values) have clearly shown that across subjects, tool kinematics data show 

detectable differences among skill levels.  In addition, we have introduced a principal 

component analysis (PCA), not yet explored by other surgical performance assessment 

studies, which has allowed us to perform simultaneous analysis of multiple measures by 

reducing the dimensionality of the data.  It has also proved to be useful and practical in 

determining intrasubject, intragroup, and intergroup variabilities. 

On the basis of the presented results which clearly show differentiation between skill 
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levels, we decided to move into an intraoperative pilot study.  In Chapter 5 we will 

describe the corresponding implementation and results for assessing performance 

between expert surgeons and residents during laparoscopic cholecystectomy procedures. 
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Chapter 5 

Intraoperative Study 
 

5.1 Introduction 

In the previous chapter we presented the results of applying our assessment methodology 

in a physical simulation. By measuring the kinematics of the surgical tool motion, time 

and tool movement transitions, we found the kinds of intrasubject consistency in 

performance, intersubject similarity and intergroup differences that we would need to in 

order to use this technique clinically.  This justifies moving on to a clinical trial in order 

to investigate whether intra- and inter-subject variabilities in the operating room (OR) 

setting follow similar patterns. 

In contrast to the controlled simulator environment, assessing skills in the OR adds more 

variables such as variations in the patient’s anatomic features, and the experience level of 

the surgical team, or unanticipated equipment problems, which to a greater or lesser 

extent might influence surgeons’ performance and therefore affect the reliability of an 

intraoperative assessment system. 

Standard and widely accepted skill evaluation methods for use in the operating room 

include direct observation assessment and checklists, both time consuming and subject to 

bias.  Objective systems for this environment are under development and to our 

knowledge Dr. Ara Darzi’s group at the Imperial College and our group are the only two 
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approaches currently using data from the operating room for testing assessment 

methodologies [Aggarwal 2007].   

As described in the previous chapter, we have found that our methodology can 

differentiate between different skill or experience levels in a physical simulator 

[Cristancho 2007]. The purpose of the study reported in this chapter is to see whether it 

can differentiate between skill levels in a live OR setting.  To that end, we acquired 

intraoperative data from two sets of subjects representing the extreme two stages of 

training: attending surgeons with extensive laparoscopic experience and residents just 

learning laparoscopic cholecystectomies. 

Our primary hypotheses are similar to these tested in the physical simulator study: 

(1) the intrasubject variability of extracted measures of tool use patterns will be less than 

the intragroup and intergroup variations in these measures, and 

(2) the extracted patterns of the surgical tool movements will enable us to distinguish 

between trainees at different stages of their training when performing in the 

intraoperative setting. 

In this study, we also include measurements from both the dominant and the non-

dominant hand in order to establish if dexterity in using the non-dominant hand helps 

differentiates between groups.  We therefore used two techniques for representing 

bimanual coordination: a measure of dependence and a measure of differentiation 

between the velocity distributions of both hands when executing individual subtasks. 
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The results of this study will hopefully provide us with a foundation to conduct a larger 

intraoperative study in the future to test if the proposed methodology may be practically 

and usefully incorporated into the evaluation process of the surgical residency 

curriculum. 

5.2 Protocol  

To determine if our quantitative analysis technique provides repeatable results in the 

operating room that can be used to monitor development of surgical motor skills during 

training, we assessed several surgeons in the early stages of their training and several 

attending surgeons because these two groups represent the widest possible separation of 

skill levels that we can observe in the OR performing whole laparoscopic 

cholecystectomy procedures.  To evaluate the repeatability of our technique, we assessed 

each surgeon on three different occasions. 

5.2.1 Participants 

We recruited two sets of subjects to represent different stages of training:  residents 

(represented by three 4th year surgical residents, i.e., mid-stage of training, but they are 

beginning to perform laparoscopic cholecystectomies), and experts (represented by three 

attending surgeons). 

Both the Vancouver Coastal Health Authority and the UBC Research Ethics Board 

granted ethics approval to this study (Appendix E). Residents were protected from 

coercion by ensuring that their clinical supervisors were not involved in the participation 

request process and so would not know which particular residents are invited to 
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participate in the study, or what the reply of any individual resident was. We were not 

able to protect against supervisors knowing the identity of residents who accepted the 

invitation to participate because their surgeries would be instrumented and monitored and 

the presence of the equipment was obvious.  Residents were, however, protected from 

potential judgment because clinical supervisors were not be shown data with particular 

residents’ identifying information attached. 

5.2.2 Experimental Setup  

We observed surgeons in the operating room performing 3 Laparoscopic 

Cholecystectomies (LC) per subject using standard surgical tools. LCs were chosen 

because it is one of the earliest procedures that a resident is introduced to the beginning 

of their training, it is the most commonly performed laparoscopic procedure [Tendick 

2000], and it has become an ‘index’ operation for ongoing assessment of laparoscopic 

skills. 

Using the position measurement system and techniques described in Section 3.2.2.2, we 

extracted kinematic measures which characterize the movements made by the surgeon 

(eg, velocities, accelerations, and jerks).  In addition, we recorded the video from the 

laparoscopic camera, which provides a view from inside the body, and we used this video 

to manually segment the surgical tasks, subtasks and actions as described in Chapter 2.  

Figure 5.1 shows an overview of our equipment setup in the operating room.   
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Figure 5.1: Overview of the operating room setup 

All equipment used was approved by the Biomedical Engineering Department at UBC 

Hospital, and sterilized using ETO (Ethylene Oxide), where appropriate (Figure 5.2).   



 204

 

 

 

 

 

 

 

 

 

 

Figure 5.2: Sterilized sensors as delivered by SPD department and when used in actual procedures 

5.2.3 Analytical Methods 

Following the MCMD surgical description provided in Chapter 2, three hierarchical 

levels were defined for the OR study.  For this study, we focused on a single task 

(‘Isolate Cystic Duct / Cystic Artery’, Figure 5.3) because the two key subtasks, ‘Expose 

Triangle’ and ‘Dissect CD’ were identified by the expert surgeons as the most 

demanding steps of the procedure in terms of the surgical dexterity required, we therefore 

further focused our analysis on these two subtasks. 

Custom-designed clip 
(material: ABS plastic) 
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Figure 5.3: MCMD decomposition for the surgical task ‘Isolate CD/CA’ 

As with the mandarin experiment described in the previous chapter, we performed two 

separate analyses: (1) Subtask level: examination of the 3D average kinematics of the 

surgical tool movement when executing the two main surgical subtasks (Expose Triangle 

and Dissect CD/CA) to identify broad differences in execution; and (2) Action level: 

decomposition and analysis of individual subtasks into our pre-defined set of ten actions 

(e.g., push, sweep, spread, etc) using our assessment methodology (Chapter 3) to localize 

any sources of differences in motor performance.  We follow the flow of steps 

summarized in figure 3.26 from Chapter 3 in presenting the corresponding methods and 

results for this OR study. 

P4. 
Isolate 
CD/CA 

P2. 
Open 

D4.1 
Confirm 

exposure of 
Calot’s 
triangle 

A B

A B

P4.2A  
Dissect 

CA from CD 
(with curved) 

P4.2B  
Dissect 

CA from CD 
(with L-Hook) 

A B 

A B 

P4.1B  
Dissect tissue from 
Hartmann’s pouch 

(with L-Hook) 

P4.1A 
Dissect tissue from 
Hartmann’s pouch 

(with curved) 



 206

5.2.3.1 Subtask Level 

The position data from the two main subtasks ‘Expose Triangle’ and ‘Dissect CD/CA’ 

was separated from the whole procedure data stream by manually identifying the start 

and end points using video analysis. ‘Expose Triangle’ consists of retracting the 

gallbladder and dissecting some of the surrounding tissue so as to open the cystic pedicle 

space and to identify where the cystic duct and the cystic artery lie. It begins when the 

gallbladder is first stretched out and ends when the cystic pedicle is identified. ‘Dissect 

CD/CA’ consists of identifying and isolating the cystic duct from the cystic artery by 

dissecting the surrounding tissue. It begins when the tip of the tool is first inserted 

between the two anatomic structures and ends when both structures have been 

completely freed from each other. The video clips were collected for further 

decomposition at the action level and the timing records were used to segment the data 

streams.  Afterwards, the 3D kinematics of the tool motion during each segmented 

subtask were derived by differentiation using a generalized cross validation algorithm 

(GCV) (Section 3.2.2.2). 

For each subject ‘i’ and procedure ‘j’ (Sij), we first defined a 3-element (for each 

individual subtask) or 6-element (when analyzing both subtasks simultaneously) vector 

consisting of the tooltip velocities in each of the three cardinal directions (i.e., l:lateral, 

a:axial, v:vertical) for each of the two subtasks (‘Expose Triangle’ and ‘Dissect 

CD/CA’). All subjects were then be grouped into a nxm matrix (n: i∑ j∑ , total number 

of procedures; m: number of dimensions, m=3 or m=6). All subtask repetitions during a 
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single procedure are concatenated into single vectors and each row entry in the Table 5.1 

corresponds to averages of the consolidated data.  

Subject / trial Expose Triangle Dissect CD/CA 
S11 V11lB V 11aB V 11vB V 11lC V 11aC V 11vC 
S21 V 21lB V 21aB V 21vB V 21lC V 21aC V 21vC 
… … … … … … … 
Sij V ijlB V ijaB V ijvB V ijlC V ijaC V ijvC 

Table 5.1: Velocity data arranged for PCA analysis at the subtask level 

In a second version of the analysis, we also included average time execution for each 

subtask into the rows of table 5.1, thereby increasing the number of columns to m=4 for 

individual subtasks or m=8 for simultaneous analysis of both subtasks.  This was done to 

assess if duration of subtask execution contained any diagnostically-useful information. 

Due to the large amount of data available in the data stream, we decided to additionally 

perform a more detailed look at the data in order to determine if adding more information 

to the analysis other than averages would provide more discriminatory power for 

differentiating between skill groups on either one or both surgical subtasks. We therefore, 

obtained samples from the velocity profiles at every 5th percentile over the middle 50% 

of the range for each movement direction and each individual subtask.  For example, the 

data table for a detailed analysis (25th to 75th percentiles) of the dominant hand 

movement in the axial direction while executing ‘Expose Triangle’ became as is shown 

in Table 5.2. 
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Subject / trial 25th 30th 35th … … 75th 
S11 V11a25th V11a30th V11a35th   V11a75th 
S21 V11a25th V21a30th V11a35th   V11a75th 
… … … … … … … 
Sij V11a25th Vija30th V11a35th   V11a75th 

Table 5.2: Data arranged for percentile analysis of velocity profiles of the dominant hand movement in the 
axial direction while Exposing Calot’s Triangle 

We restricted our detailed analysis to values located from the 25th percentile to the 75th 

percentile as it would correspond to the median area of the data set and we expect that 

most of the measures that would represent a surgeon’s performance will fall within this 

range. We looked at the percentile full range (from 5th to 100th) and found out that it did 

not show significant differences in the variability analysis with respect to the 25th to 75th 

range1.  

In order to facilitate the presentation of results, we separated our analysis into two 

categories as presented below.  

Analysis of AVERAGE data: 

(a) Average tool tip velocities for “Expose triangle”  

(b) Average tool tip velocities for “Dissect CD/CA”  

(c) Average tool tip velocities and time for “Expose triangle”  

(d) Average tool tip velocities and time for “Dissect CD/CA”  

                                                 

1 The fractions of variability (intrasubject, intragroup, and intergroup) were essentially independent of the 
range of data used and there was very little variation in the locations of the points along the first PC 
direction (Appendix H). 
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Analysis of DETAILED data:  

(a) 25th to 75th percentiles, at 5 percentile increments, of velocity profiles for each 

movement direction (lateral, axial, vertical) analyzed separately during ‘Expose 

Triangle’  

(b) 25th to 75th percentiles, at 5 percentile increments, of velocity profiles for each 

movement direction (lateral, axial, vertical) analyzed separately during ‘Dissect 

CD/CA’  

(c) 25th to 75th percentiles, at 5 percentile increments, of velocity profiles for all 

movement directions analyzed altogether (Expose triangle)  

(d) 25th to 75th percentiles, at 5 percentile increments, of velocity profiles for all 

movement directions analyzed altogether (Dissect CD/CA)  

Once the data from each category is arranged into the corresponding matrix form (see 

Table 5.1 and Table 5.2), we normalized it by dividing each element by the column 

standard deviation (defined across all procedures and subjects), and used Principal 

Components Analysis (PCA, as described in Section 3.4.4) to extract the dominant 

contributors to overall variability to simplify the presentation of the data to the trainer.  

We applied our dimensionality-decision criterion to select the appropriate number of 

dimensions to retain in the new space provided by PCA (Section 3.4.4.2). 

To test the hypothesis that level of skill development is apparent in intraoperatively 

acquired quantitative measurements, we computed the contributions to variability in the 

PCA weight space (defined as the mean squared distance of points in the weight space 
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relative to the global mean position across all subjects and groups) due to intrasubject, 

intragroup and intergroup variability. We evaluated the null hypothesis that residents and 

experts all have the same means using a nested ANOVA test (Fcritical = 7.71, α = 0.05, 

intragroup DoF = 4, intergroup DoF = 1) (Appendix G). 

As this was a pilot study, we were not yet sure how much variability to expect in surgical 

performance between groups.  Our preliminary study indicated very good intra-subject 

repeatability and reasonable intragroup consistency, but it was initially unknown whether 

these results would hold for the live operating room situation. 

Since in the OR study we monitored both dominant and non-dominant hands, we also 

investigated bimanual coordination by defining two types of measures based on the 

kinematics profiles for each subtask.  We first tested the hypothesis that the velocity 

distributions of the two hands are independent of one another (or, conversely, the extent 

to which joint interactions are needed to explain the overall distribution).  A normalized 

variant of the Mutual Information between two distributions (Section 3.3.1.1.2) was 

computed for ‘Expose Triangle’ and ‘Dissect CD/CA’ separately for each of the 18 

recorded procedures.   

A second measure for bimanual coordination was defined to test the assumption that lack 

of experience would result in the subject concentrating on single hand movements at a 

time (i.e., faster movements with the dominant hand are accompanied by slower 

movements of the non-dominant hand).  We therefore used the Kolgomorov-Smirnov 

statistic to compute differences between the speed distributions of both hands derived 

from execution of each subtask and reported the corresponding D values.  We used 
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Mann-Whitney tests to evaluate if the distributions of coordination difference measures 

differ between groups. 

5.2.3.2 Action Level 

Following the same methodology as in the physical simulator, we compared 

performances of single subtasks by decomposing them into their characteristic actions as 

a set of 10 elemental tool tip motions: push, pull, reach, orient, sweep, spread, 

grasp&hold, grasp&cut, idle, out.  The process of segmenting and obtaining the times 

records for these actions was achieved by identifying the start and end points through 

video analysis according to the action definitions provided in Chapter 2. For each subtask 

repetition during each procedure (Sij), Excel templates were used to register this 

information temporally and to derive the list of action transitions with the corresponding 

time spent at a specific action before transitioning to another (i.e, holding times).  Table 

5.3 presents an example of how data is processed in Excel to obtain the list of transitions 

and holding times for one subtask execution. 

 TIME IN TIME OUT   
ACTION min sec 30ths min sec 30ths Transition HT (sec) 

Reach 0 0 0 0 4 20 Reach-Push 4.67 
Push 0 4 20 0 5 0 Push-Reach 0.33 

Reach 0 5 0 0 6 22 Reach-Out 1.73 
Out 0 6 22 0 8 26 Out-Idle 2.13 
Idle 0 8 26 0 9 19 Idle-Out 0.77 
Out 0 9 19 0 10 1 Out-Reach 0.40 

Reach 0 10 1 0 10 22 Reach-Out 0.70 
…         

Table 5.3: Decomposition of a particular subtask into its corresponding set of executed actions.  Start and 
end times for each action were registered and every action transition was obtained. 
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Using the list of time in and time out values, we segmented the kinematics signal of the 

subtask and were able to separate the kinematics data for each action. At this level, we 

characterized every action using distributions of holding times and kinematics, and we 

computed a matrix describing the transition patterns. 

We computed direct differences between two subjects as it is easier to compare 

distributions and transition matrices this way (section 3.3.2).  For comparing 

performances between two subjects Mr1 and Me1 (resident #1 vs. expert #1), we defined: 

(a) Mr1.Tk.Sl.Amv2 and Me1.Tk.Sl.Amv as the group of kinematic (e.g., velocity) 

distributions for all executed actions; (b) Mr1.Tk.Sl.Amt and Me1.Tk.Sl.Amt as the group of 

holding time distributions for all executed actions; and (c) TMPr1 and TMPe1 as the 

action transition probability matrices. We then computed difference measures for the 

various corresponding kinematics (Mr1.Tk.Sl.Amv vs. Me1.Tk.Sl.Amv) and holding time 

(Mr1.Tk.Sl.Amt vs. Me1.Tk.Sl.Amt) distributions using the Kolgomorov-Smirnov statistic 

(D measure); and difference measures for the transition matrices using the Jensen-

Shanon divergence (JSD measure) after modelling the system as a Semi-Markov process 

(Section 3.4.3). 

Across all subject comparisons, we obtained a vxw matrix, where v corresponds to the 

number of subject comparisons (Mr1 vs. Me1) and w to the number of extracted 

performance measures. 

                                                 

2 Represents vector of velocity measures for m action during execution of l subtask and k task 
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For the OR experiment at the action level there were 15 subject-to-subject comparisons: 

n(n-1)/2 = 3 intragroup comparisons for residents, e(e-1)/2 = 3 intragroup comparisons 

for the attendings, and nxe = 9 intergroup comparisons between residents and attendings. 

We also computed 71 D measures for each row: 1 JSD value; 10 D values (per variable) 

for average time, and summary velocity, acceleration, and jerk profiles (40 total); 10 D 

values (per variable) for detailed velocity, acceleration, and jerk profiles (30 total). Given 

the large number of elements in each row, we again used Principal Components Analysis 

to reduce the dimensionality of the difference matrix and a Mann-Whitney test to test the 

null hypothesis that there is no distinction between intragroup (same skill level) and 

intergroup (different skill levels) comparisons. 

We also used Semi-Markov models to represent the transitions between action states and 

the times spent in each of them.  As discussed in section 3.4.2, we performed a 

distribution fitting test using 3 candidate parametric distributions: Exponential, Weibull, 

and Lognormal to determine which kind of distribution best modeled the holding time 

distribution of each state; the Weibull and the Lognormal proved to offer best fits than 

the Exponential.  

In estimating the confidence intervals for the parameters of the selected parametric 

distributions, we used a bootstrapping approach by resampling with replacement 1000 

times our original time vectors and calculating the corresponding distribution parameters 

for each set.  The experimental set of parameters was sorted and the percentile quartile 
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method with a 95% confidence level (α=0.05) was applied to obtain each parameter 

confidence interval (Equation 4.1, Appendix D.1 and D.2) 

CI=[N(1-α)th, (N*α)th] Eq. 4.1 

We then implemented the corresponding Semi-Markov models for each subject / each 

subtask (Appendix D.3) by additionally computing the movement transition probabilities 

and the corresponding confidence intervals. Transition probabilities (Pij) were obtained 

from the ratio between the number of transitions from action ‘i’ to action ‘j’ by the total 

number of transitions from action ‘i’ to all other possible actions.  To establish the 

confidence interval for the transition probabilities we used Equation 4.2 for α=0.05 

[Walpole 2007]: 

p
∧
− zα / 2

p
∧

q
∧

n
< p < p

∧
+ zα / 2

p
∧

q
∧

n
 Eq. 4.2 

Where 
∧

p  is the estimated transition probability, and n is the number of transitions used 

to calculate the transition probability, and q=1-p. 

We used the parameters of the holding time distributions and the movement transition 

probabilities with their corresponding confidence intervals for characterizing the Semi-

Markov diagrams of every subject’s subtask execution. 

5.3 Results 

In this section, we describe the results for implementing our proposed methodology to 

compare surgeon’s performance in the operating room.  Two variability analyses are 
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reported in order to find out if there is separation of patterns across the training spectrum 

and to determine which data/measures are most useful in separating surgeons along this 

spectrum.  Additionally, we present the implementation of a Semi-Markov modelling 

approach to describe motor behaviour at the action level and the results for an initial 

approximation to characterize and measure bimanual coordination in this particular 

surgical context. 

5.3.1 Variability Analysis at the Subtask Level 

Based on the kinematics profiles from our subtasks of interest: Expose Triangle and 

Dissect CD/CA, we applied Principal Component Analysis to study: (1) if one type of 

measure (i.e., average or detailed in the form of percentiles) is more capable of 

discriminating between groups than the other; and (2) if either one or both subtasks carry 

information about group differentiation.   

Figure 5.4 shows samples of cumulative distributions of velocity in the axial direction 

for all procedures (left) and one representative procedure (right) per subject (R: residents; 

E: experts).  It appears that there is high repeatability in individuals as all residents and 

experts’ executions are roughly together, with the residents being apparently more 

consistent across procedures.  As presented on the left side plots, it also seems that there 

is a more distinct separation of groups during the ‘Expose Triangle’ subtask than in the 

‘Dissect CD/CA’ where various procedures from residents (reddish) and experts 

(greenish) appear to overlap more. 
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Figure 5.4: Samples of Cumulative Distribution Functions (CDF) for velocity in the axial direction for the 
two subtasks for all procedures (left) and one representative procedure (right) from each subject.  Reddish 

colours correspond to residents and greenish colours correspond to experts 

For the analysis based on measure averages, we computed the root-mean-square values 

of the velocity profiles and arranged various matrices to be used in the PCA analysis 

(Table 5.4). The total number of rows corresponds to the total number of recorded 

procedures (n=18 for this study) and the total number of columns corresponds to the 3 

velocity components – lateral, axial, and vertical – during ‘Expose triangle’ or ‘Dissect 
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CD/CA’ subtasks.  With average times spent during execution of each subtask are 

included, the number of columns becomes 4.  

Type of average analysis PCA matrix size 
(a) Average tool tip velocities for “Expose triangle”  18x3 
(b) Average tool tip velocities for “Dissect CD/CA”  18x3 
(c) Average tool tip velocities and time for “Expose triangle”  18x4 
(d) Average tool tip velocities and time for “Dissect CD/CA”  18x4 

Table 5.4: PCA matrix sizes for various types of average analysis 

By applying our PC selection method (Section 3.4.4.2) we found that retaining only the 

first principal component explains most of the variance across all subjects and subtasks. 

Figure 5.5 shows the PC selection results for the cases shaded in Table 5.4. However, as 

in the Mandarin experiment, we used the first two PCs when plotting our data in order to 

gain further insight in the interpretation of the data. 

 

 

 

 

 

Figure 5.5: Selecting number of Principal Components for cases (a), and (c) in table 5.4. Blue: complexity 
measure (# of PCs); Red: variance unaccounted for; Green: dimensionality-decision criteria (sum of the 

two parameters); optimal indicated by large green dot 
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Figure 5.6 and Figure 5.7 show the variability results for the various cases listed in 

Table 5.4 when monitoring the dominant hand.  A nested ANOVA (intragroup DoF = 4, 

intergroup DoF = 1) showed significant contributions of group membership (p<0.05) in 

differentiating skill levels.  Note that generally residents are located on the right hand 

side of the plot while experts are located on the left hand side along the first principal 

component.  This apparent separation is also highlighted, as the intergroup component 

was considerably higher than the intrasubject and intragroup components in all four 

cases. 
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Analysis of average tip velocity 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.6: PCA variability analysis (Dominant hand) – Average tool tip velocity (* indicates statistical significant)  

Top: the positions of trials in the PCA space; Bottom: Sum of squares of each variability component
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Analysis of average tip velocity and times 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.7: PCA variability analysis (Dominant hand) – Average tool tip velocity and times. (* indicates statistical significant)  

Top: the positions of trials in the PCA space; Bottom: Sum of squares of each variability component
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To determine whether the details of the velocity distributions convey more nuanced 

information that can be used to discriminate between groups, we extracted values from 

the velocity profiles at every 5th percentile from 25th to 75th percentile and again 

constructed the matrices be used in the PCA analysis (Table 5.5). The total number of 

rows corresponds to the total number of recorded procedures (n=18 for this study) and the 

total number of columns corresponds to 11 values for lateral, axial, and vertical 

movements individually for each subtask, or 33 values when analyzing all the three 

movement directions at the same time for each subtask. 

Type of average analysis PCA matrix size 
(a) 25 to 75 percentiles of velocity profiles for each movement 
direction (lateral, axial, vertical) during ‘Expose Triangle’ 18x11 

(b) 25 to 75 percentiles of velocity profiles for each movement 
direction (lateral, axial, vertical) during ‘Dissect CD/CA’ 18x11 

(c) 25 to 75 percentiles of velocity profiles for all movement 
directions concatenated together (Expose triangle) 18x33 

(d) 25 to 75 percentiles of velocity profiles for all movement 
directions concatenated together (Dissect CD/CA) 18x33 

Table 5.5: PCA matrix sizes for various types of detailed (i.e., percentile) analysis 

According to our selection method (Figure 5.8 for shaded cases on Table 5.5), one and 

two principal components were sufficient to represent the variance across the data set for 

all cases in table 5.5.  Since we have previously shown in the Mandarin experiment that a 

2D description is effective to visualize differences; we then chose to use a 2D 

representation in order to be consistent in presenting results. 
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Figure 5.8: Selecting number of Principal Components for cases (a), and (c) on table 5.5. Blue: complexity 

measure (# of PCs); Red: variance unaccounted for; Green: dimensionality-decision criteria (sum of the 
two parameters); optimal indicated by large green dot 
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Analysis of detailed (25th to 75th percentiles) velocity profiles for individual movement directions during ‘Expose triangle’ 
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Figure 5.9: PCA variability analysis (Dominant hand) – 25th to 75th percentiles (individual directions ‘Expose triangle’) (* indicates statistical significant)  

Top: the positions of trials in the PCA space; Bottom: Sum of squares of each variability component 
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Analysis of detailed (25th to 75th percentiles) velocity profiles for individual movement directions during ‘Dissect CD/CA’ 
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Figure 5.10: PCA variability analysis (Dominant hand) – 25th to 75th percentiles (individual directions ‘Dissect CD/CA’) (* indicates statistical significant)  

Top: the positions of trials in the PCA space; Bottom: Sum of squares of each variability component
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Analysis of detailed (25th to 75th percentiles) velocity profiles including all movement directions during each individual subtask 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5.11: PCA variability analysis (Dominant hand) – 25th to 75th percentiles (ALL directions; individual subtasks) (* indicates statistical significant)  
Top: the positions of trials in the PCA space; Bottom: Sum of squares of each variability component
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NON-DOMINANT HAND (left hand for all subjects) VARIABILITY RESULTS 
Analysis of average tip velocity 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Figure 5.12: PCA variability analysis (Non-dominant hand) – Average tool tip velocity (* indicates statistical significant)  
Top: the positions of trials in the PCA space; Bottom: Sum of squares of each variability component 

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

PCA over tipvel magnitude - LEFTH HAND - "expose triangle"

 

 
E1
E2
E3
R1
R2
R3

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

PCA over tipvel magnitude - LEFT HAND - "dissect CD/CA"

 

 
E1
E2
E3
R1
R2
R3

F = 4.35; p = 0.11  F = 2.30; p = 0.20 

0

5

10

15

20

25

30

35

Intrasubject Intragroup Intergroup
0

5

10

15

20

25

30

35

Intrasubject Intragroup Intergroup

M
ea

n 
sq

ua
re

 d
is

ta
nc

e 

M
ea

n 
sq

ua
re

 d
is

ta
nc

e 

2n
d 

P
rin

ci
pa

l C
om

po
ne

nt
 

2n
d 

P
rin

ci
pa

l C
om

po
ne

nt
 

1st Principal Component 1st Principal Component 



 

229

0

5

10

15

20

25

30

35

Intrasubject Intragroup Intergroup

Analysis of average tip velocity and times 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.13: PCA variability analysis (Non-Dominant hand) – Average tool tip velocity and times (* indicates statistical significant)  

Top: the positions of trials in the PCA space; Bottom: Sum of squares of each variability component
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Analysis of detailed (25th to 75th percentiles) velocity profiles for individual movement directions during ‘Expose triangle’ 
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Figure 5.14: PCA variability analysis (Non-dominant hand) – 25th to 75th percentiles (individual directions ‘Expose triangle’) (* indicates statistical significant)  
Top: the positions of trials in the PCA space; Bottom: Sum of squares of each variability component 
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Analysis of detailed (25th to 75th percentiles) velocity profiles for individual movement directions during ‘Dissect CD/CA’ 
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Figure 5.15: PCA variability analysis (Non-dominant hand) – 25th to 75th percentiles (individual directions ‘Dissect CD/CA’) (* indicates statistical significant)  

Top: the positions of trials in the PCA space; Bottom: Sum of squares of each variability component
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Analysis of detailed (25th to 75th percentiles) velocity profiles including all movement directions during each individual subtask 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5.16: PCA variability analysis (Non-dominant hand) – 25th to 75th percentiles (ALL directions; individual subtasks) (* indicates statistical significant)  
Top: the positions of trials in the PCA space; Bottom: Sum of squares of each variability component
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Our variability analysis at the subtask level indicated that:  

(1) The first PC explained the majority (> 80%) of the variation, and there was little 

contribution of the second principal component.  

(2) The nested ANOVA tests for both ‘Expose Triangle’ and ‘Dissect CD/CA’ subtasks 

when monitoring the dominant hand showed a significant intergroup contribution to 

variability, which indicates that the velocity measure is able to distinguish between 

residents and experts 

(3) This result is consistent with the data points shown in the PCA plots where it seems 

that there is consistent separation between the residents at the right side of the plot and 

the experts spread over a wider range on the left side of the plot 

(4) In contrast, the test failed to find such a distinction between the residents and experts 

when monitoring the non-dominant hand 

5.3.2 Variability Analysis at the Action Level 

At the action, we investigated whether: (1) there is any significant variation in movement 

behaviour for factors considered one at a time from procedure to procedure; and (2) if a 

PCA analysis including all of our difference measures provides group separation when 

comparing subjects from the same group (i.e., experts vs experts; residents vs residents) 

and subjects from different groups (experts vs residents). 
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5.3.2.1 Variation From Procedure to Procedure 

To test the first hypothesis, we compared the kinematics profiles of each movement 

across all the procedures performed by one resident and one expert (Figure 5.17) using 

the Kolmogorov-Smirnov statistic (D-value), which measures the discrepancy between 

two empirical distributions (Section 3.4.1) on a 0 to 1 scale.  It is interesting to note that 

while the resident seems consistent across the three procedures, the expert varied widely 

from a ‘fast’ procedure to a ‘slow’ one.  We believe that variations in the procedure 

difficulty might have an influence here since training guidelines only allow the residents 

to handle relatively simple cases while the experts can deal with cases of any degree of 

difficulty. 

Figure 5.17: Samples of velocity profiles (CDF) for E1 and R1 across 3 procedures each and for 3 types of 
movements during ‘Expose Triangle’ (blue: Push; red:  Pull; yellow: Reach) 
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statistic.  In general, a visual inspection indicates that there is more intrasubject variation 

amongst the experts, and the intergroup variation is modestly greater than the intragroup 

variation. 
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Figure 5.18: Ranges of D-values from comparing tip velocity profiles for the 10 actions during each subtask (red lines indicate mean Dvalue)
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Figure 5.19 and 5.20 present difference measures computed from comparing time 

profiles and transitions for the 10 actions using the Kolgomorov-Smirnov and the Jensen-

Shannon Divergence statistics respectively.  Both show that there is no detectable 

difference in intra- and inter-group variability, which suggests that time or transition 

matrices alone are relatively weak predictors of group membership.    
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Figure 5.19: Ranges of D-values from comparing time profiles for the 10 actions during each subtask (red 
lines indicate mean Dvalue) 
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Figure 5.20: Ranges of JSD values from comparing movement transition matrices during each subtask (red 
lines indicate mean JSD value) 
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Procedure to procedure variability across subjects and groups in terms of D values (for 

kinematics and time profiles) and JSD values (for movement transitions) showed 

kinematics as the performance measure providing difference values for individual 

resident-to-experts comparison above the average expert-to-expert comparison level, i.e., 

> 0.3 (Figure 5.18, right and middle plots respectively).  Figure 5.19 and Figure 5.20 

did not show the same feature for comparing time and movement transitions.  However, 

it is important to note that the reference levels (i.e., red lines in Figure 5.18 to Figure 

5.20) correspond to average of difference values among all procedures irrespective of the 

difficulty of the cases. 

In order to quantify the differences among procedures in terms of patient anatomy 

conditions (Table 5.6), we asked two experienced laparoscopic surgeons to jointly assess 

the difficulty of each case by examining the recorded videos and reporting a score 

between 1 (least difficult) and 5 (most difficult).  Both evaluators were blinded as to the 

identities of the operating surgeons. 

 

 

 

 
Table 5.6: Patient conditions associated to procedure difficulty (provided by the evaluators) 

 

Score Patient-related conditions 

1  
(least difficult) 

Pelvic surgery 
Petite patient 

Narrow costal margin 

 
 

5  
(most difficult) 

 
 

Chronic cholecystitis 
Obesity 

Fatty liver 
Foregut surgery 

Bleeding dyscrasia 
Acute cholecystitis 
Choledocholithiasis 
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Table 5.7: Procedure difficulty scores from video analysis 

As presented in Table 5.7 and considering that it was not possible to incorporate 

exclusion criteria for the study due to the limited number of procedures available, 

difficulty scores spanned across the predefined scale (from 1 to 5), which added an 

additional factor affecting subjects comparisons.  We believe that this issue was evident 

by the relative wide ranges of difference values, especially some corresponding to the 

experts group, which served as our reference level (Figure 5.18 to Figure 5.20)  

5.3.2.2 PCA Analysis 

To test the second hypothesis that a PCA analysis of all 713 measures considered 

simultaneously will be able to provide intergroup separation, we constructed the 

following matrix (each row corresponds to a single subject-to-subject comparison) and 

then we performed a PCA analysis. 

JSD Dvalues ht( ) Dvalues v ,a , j ( ) Dvalues v,a, j( )[ ] 

                                                 

3 1 JSD value; 10 D values (per variable) for average time, and summary velocity, acceleration, and jerk 
profiles (40 total); 10 D values (per variable) for detailed velocity, acceleration, and jerk profiles (30 total) 

 Subject E1 Subject E2 Subject E3 Subject R1 Subject R2 Subject R3 
Procedure 1 1 3 5 4 4 2 
Procedure 2 2 2 3 5 1 2 
Procedure 3 1 1 3 3 3 1 

nx1 nx10 nx30 nx30 
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where n=154 (number of subject-to-subject comparisons). In selecting the number of 

principal components for dimensionality reduction, we found that between 4 and 5 

components struck the best balance between accounting for most of the variability in the 

data sets and the number of dimensions needed (Figure 5.21). 

 

 

 

 

 

 

Figure 5.21: Selecting number of Principal Components for each subtask at the action level; blue: 
complexity measure; red: variance unaccounted for; green: dimensionality-decision criteria (sum of the two 

parameters); optimal indicated by large green dot. Left: ‘Expose triangle’; Right: ‘Dissect CD/CA’ 

In order to test if comparing subjects belonging to the same skill level and subjects from 

different levels provides differentiation between the two types of comparisons (groups) 

at each subtask, we plotted the first two principal components for each subtask to 

facilitate the graphical representation of the data (Figure 5.22 and Figure 5.23) and then 

                                                 

4 r(r-1)/2 = 3 intragroup comparisons for residents, e(e-1)/2 = 3 intragroup comparisons for the attendings, 
and rxe = 9 intergroup comparisons between residents and attendings.  
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computed a Mann-Whitney test to test the hypothesis that intragroup variability was less 

than intergroup variability5. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.22: PCA analysis for ‘Expose Triangle’ at the action level 

 

                                                 

5 Distances were computed in a 5D space.  
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Figure 5.23: PCA analysis for ‘Dissect CD/CA’ at the action level 
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test is significant for separating between groups in both subtasks; however, there appears 

to be some intermingling of subjects from the two groups in the ‘Dissect CD/CA’ 

subtask, which could be related with the lack of group differentiation found at the action 

level in the single measure comparisons. 

5.3.3 Semi-Markov Modelling of Surgical Motor Performance 

Following the theoretical arguments provided in Section 3.4.2 for choosing a semi-

Markov approach to model action transitions and average times to complete individual 

actions, we first demonstrate that exponential distributions do not appropriately model 

state holding times in the operative setting.  

Figure 5.24 shows an example of comparing the empirical cumulative distribution 

function for resident R1 executing the ‘Spread’ action during ‘Dissect CD/CA’ against 

three parametric distributions: Exponential, Weibull, and Lognormal.   

 

 

 

 

 

 
 
 

Figure 5.24: Distribution fitting example for Spread-R1 during Dissect CD/CA 
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Figure 5.25 presents the set of 4 actions most used by R1 during ‘Dissect CD/CA’ with 

their corresponding D values from the distribution fitting procedure explained in Section 

3.4.2. The exponential distribution generated the highest D value which indicated that the 

time profiles for each action are more accurately represented using either a Weibull or 

Lognormal characteristic.  In our model implementation, we decided to select the 

distribution with the lowest D value amongst the three to represent holding time 

parameters.  

Figure 5.25: D values for the distribution fitting of holding time profiles of the set of 4 actions most used 
by resident R1 during Dissect CD/CA 

Based on the previous selection, we built the corresponding Semi-Markov models for 
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Figure 5.26 and Figure 5.27 show the corresponding Semi-Markov models for subjects 

E1 and R1 for each individual subtask. This representation only includes transitions 

(represented by arcs) with confidence values less than the computed transition probability 

(Pij) value as the significant ones and reveals that E1 effectively only used four actions, 

while R1 required seven movements to complete the same subtask. 

The average time to execute a specific action can be computed from the parameters of 

either a Lognormal or a Weibull distribution as shown in Equations 4.3 and 4.4 and this 

average time is included along with the transition probability as the state parameters in 

the SMM representations. 

t = exp(m) m:log location (Lognormal) Eq. 4.3 

t = a*gamma(1+1/b) a: scale; b: shape (Weibull) Eq. 4.4 
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 ‘Expose Triangle’ SMM models for dominant hand (Pij & ht): 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5.26: Semi-Markov models for subjects E1 and R1 during ‘Expose Triangle’ (models include transitions (represented by arcs) with confidence values less than 
the computed transition probability (Pij) value) 
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‘Dissect CD/CA’ SMM models for dominant hand (Pij & ht): 

 

 
 

Figure 5.27: Semi-Markov models for subjects E1 and R1 during ‘Dissect CD/CA’ (models include transitions (represented by arcs) with confidence values less than 
the computed transition probability (Pij) value) 
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5.3.4 Representing Bimanual Dexterity 

Since we monitored movements from both dominant and non-dominant hands, it was also 

of interest to explore whether measures of bimanual coordination can differentiate 

amongst surgical skill levels. Figure 5.28 presents cross-plots of right hand (x-axis) vs. 

left hand (y-axis) speed data for one selected case for each expert and each resident 

included in the study. 
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Figure 5.28: Cross-plots of speed data for right hand vs. left hand movements during ‘Expose Triangle’ subtask.  Top row includes selected cases for each of the 
three expert surgeons and bottom row includes the corresponding ones for residents. 
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A visual inspection seems to indicate that while experts tend to move both hands at a 

similar speed, residents tend to move the right hand (being the dominant hand for all 

subjects) more quickly than the left hand.  In order to quantitatively assess bimanual 

coordination, we first derived kinematics profiles from dominant and non-dominant tool 

movements and computed the mutual information of the two distributions as a measure of 

the degree of dependency between them.   

Figure 5.29 shows the reported mutual information values for the 18-recorded 

procedures.  Values close to zero indicate that the two distributions are independent. 

 

 

 

 

 

 
Figure 5.29: Mutual Information between dominant and non-dominant speed distributions during ‘Expose 

Triangle’ subtask across three procedures per subject (E: Experts; R: Residents) 

The mutual information values indicated almost no dependence between dominant and 

non-dominant speed distributions. In addition, a Mann-Whitney test comparing the 

mutual information values for all subjects showed that this measure did not provide 

significant group differentiation between expert and residents (p-value = 0.45) in terms of 

the degree of dependency between both hands. 
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A second measure of bimanual coordination was applied which is based on comparing 

directly how similar the two speed distributions are by using the Kolgomorov-Smirnov 

(KS) statistic.  In the same way as for mutual information, values close to zero in the KS 

computation indicate similarity.  Figure 5.30 presents the cumulative distribution 

functions for dominant and non-dominant hand movements for the selected cases of 

Figure 5.28 and Figure 5.31 show the corresponding values from the KS computation 

which represent the degree of asymmetry in use of the dominant and the non-dominant 

hands.   
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Figure 5.30: Cumulative distribution functions for dominant and non-dominant speed distributions during ‘Expose Triangle’ subtask. Top row includes selected 
cases for each of the three experts and bottom row includes selected cases for each of the three residents
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Figure 5.31: Kolgomorov-Smirnov statistic (D values) from comparing dominant and non-dominant speed 
distributions during ‘Expose Triangle’ subtask across three procedures per subject (E: Experts; R: 

Residents) (blue: procedure #1, red: procedure #2, yellow: procedure #3) 

Except for one procedure from E3 (procedure #3) and one from R3 (procedure #1), D 

values for all subjects indicated similarity between dominant and non-dominant speed 

distributions, which did not support the initial visual inspection from Figure 5.28.  We 

believe that this is due to the much higher concentration of data points around the lower 

left corner relative to the right upper corner of the cross-plots;  in effect, even if there are 

differences, there are so few occasions when these differences occur that they do not 

achieve statistical significance. In addition, the Mann-Whitney test comparing the 

computed D values did not show significant differentiation between groups (p-value = 

0.23). 
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5.4 Summary 

The primary purpose of this study was to evaluate whether our proposed quantitative 

assessment methodology based on three performance measures (time, kinematics and 

movement transitioning of the surgical tool tip) was able to quantify motor aspects of live 

surgical performance and to use these measures to distinguish between trainees at 

different levels of development when working in the operating room environment. We 

acquired intraoperative data from two sets of subjects representing the two extreme ends 

of the surgical skill spectrum: Residents and Experts, and selected the laparoscopic 

cholecystectomy as our baseline procedure for study, as it is the most commonly and 

well-defined minimally invasive procedure [Tendick 2000]. The position of the tool tip 

was recorded by using an electromagnetic measurement system because it does not suffer 

from line-of-sight problems, which allows for continuous data recording and velocity 

data was then derived by differentiation.  A laparoscopic camera was also used to record 

the intrabdominal view of the surgery and a video analysis was performed to identify the 

times and movement patterns from the discrete phases of the procedure execution. 

Using our MCMD approach from Chapter 2, ‘Expose Triangle’ and ‘Dissect CD’ were 

identified by the expert surgeons as the most demanding steps of the procedure in terms 

of the surgical dexterity required; therefore, in the present study we focused on analyzing 

performance during these two subtasks. The Curved and L-Hook dissectors were the 

tools of choice for the dominant hand, while an atraumatic grasper was used for the non-

dominant hand.  However, due to the susceptibility of the electromagnetic sensor to the 

electrical noise produced by the L-Hook dissector during cautery, the expert surgeons 
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involved in this study agreed to limit themselves to using the curved dissector for the 

dominant hand. Fiber optic position sensors may be sufficiently accurate and sufficiently 

resistant to the interference caused by cautery to allow them to be used for future studies 

of this type using an L-Hook dissector. 

At the subtask level we derived multi-element vectors consisting of the average execution 

time, the average tooltip velocities, and detailed samples from the velocity profiles every 

5th percentile in each of the three cardinal directions (lateral, axial, vertical) for each of 

the two subtasks (‘Expose Triangle’ and ‘Dissect CD/CA’).  We then used Principal 

Components Analysis (PCA) to extract the dominant contributors to overall variability 

and computed the ratio of mean square distance (MSD) in the PCA weight space from the 

mean position of all procedures executed by a specific subject or group to the MSD from 

the global mean position to describe variability for specific subjects and groups. 

We found that separation between groups was significant for both subtasks while 

performing with the dominant hand and that the intergroup mean square (MS) was higher 

in the ‘Expose Triangle’ subtask than in the ‘Dissect CD/CA’ subtask.  Analysis of the 

non-dominant hand indicated that separation between groups was not significant for any 

case.   

Additionally, in an attempt to explore whether measures of bimanual coordination could 

differentiate amongst surgical skill levels, we reported the mutual information and the 

Kolgomorov-Smirnov statistic between the kinematics distributions from dominant and 

non-dominant tool movements; however, tests of significance indicated that neither of 

these two measures provided significant group differentiation between expert and 
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residents. A recent study on bimanual coordination for simulated surgical tasks (e.g., 

transferring pegs) used a similar approach based on the concept of the phase portrait and 

hypothesized that they would find a significant difference whenever there is out of phase 

movement, which implies high velocity of one tool when the velocity of the other tool is 

low [Narazaki 2007]. However, the differences they report were small and only present in 

two of the tasks, and the standard deviations across populations were large relative to the 

purported intergroup differences.  Small differences will make it difficult to track 

development in bimanual skill in one subject or even to reliably differentiate within a 

group. There is little evidence to date for large (or even any) bimanual coordination 

differences between groups, though Narazaki’s approach does suggest that some small 

difference may exist. 

At the action level, we compared performances of single subtasks by decomposing them 

into their characteristic actions as a set of 10 elemental tool tip motions: push, pull, reach, 

orient, sweep, spread, grasp&hold, grasp&cut, idle, out, represented as Semi-Markov 

models.  

Using video analysis and the previously defined start and end points, we derived a list of 

action transitions with the corresponding time spent at a specific action before 

transitioning to another (i.e, holding times). The time records were then used to segment 

the kinematics signal of the subtask into the kinematics data for each action. We then 

characterized every action using distributions of holding times and kinematics and used 

the Kolgomorov-Smirnov statistic (D) to measure differences in these two parameters.  In 

addition, we computed transition probability matrices and used the Jensen-Shanon 
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divergence (JSD) to define a third difference measure.  We found that kinematics 

measures produced difference values for intergroup comparisons which were 

significantly greater than the average expert-to-expert comparison level, though the 

degree of difference or separation was considerably less than we found in the physical 

simulation.  We believe that the significant variability in the complexity of cases studied 

likely contributed to this interprocedural variability, which makes it more challenging to 

assess differences in skill level based on intraoperatively-acquired data. 

All JSD and D values for every action were then grouped into a multi-element matrix and 

a PCA analysis was then performed to test the hypothesis that in this weight space our 

difference measures were able to provide skill level separation when comparing subjects 

from the same group (e.g., experts vs. experts) and subjects from different groups (e.g., 

novices vs. experts). At the action level, we found that data from “Expose Triangle” 

subtask clearly differentiates the set of comparisons amongst peers from comparisons 

amongst subjects belonging to different groups, though data from the “Dissect CD/CA” 

subtask does not. This is somewhat different from the PCA analysis at the subtask level 

where the test is significant for separating between groups in both subtasks.  This 

suggests that low level behaviour may be more subject to individual patient differences, 

while higher live movement characteristics may be more reliable. 

Previous studies using motion analysis-based systems to track surgeons’ hand movements 

have shown significant differences (for time taken, total path length, and number of 

movements) between two groups of surgeons while performing laparoscopic 

cholecystectomies [Aggarwal 2007, Datta 2006]. We regard this approach as one of the 
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most promising for the future of surgical skill assessment; however, we also believe that 

some issues that we addressed in the present study need to be included before the system 

will be useful for instruction.   

Darzi’s approach considers major parts of the entire surgical procedure (e.g., Calot’s 

Triangle dissection) without further task decomposition. Using the MCMD we have 

developed to isolate selected surgical tasks, rather than looking at an undifferentiated 

stream of data, will facilitate: (1) identifying causes of deviations in the normal path due 

to individual surgeon’s decisions, (2) describing how the surgical tools are actually used 

following a standardized and structured framework of the procedure, and (3) taking into 

account the operative variability by allowing for variable weighting on different tasks 

during a surgical procedure to reflect differences in importance, difficulty or relevance 

for the current level of surgical training. Besides the parameters used by [Aggarwal 2007, 

Datta 2006], our methodology also demonstrated the feasibility of acquiring and using 

the kinematics (velocity, acceleration and jerk profiles) of the surgical tools for 

differentiating among skill groups when performing at the operating room.  

While it is clear that low scores on particular simulated tasks suggest that more practice 

might be required, there has been virtually no work done on using intraoperatively-

acquired data to identify suboptimal performance [Feldman 2004].  In our approach, 

differences in performance for individual portions of the procedures were described in 

terms of intuitive scores (i.e., 0: similar; 1: different), which would facilitate providing 

specific and relevant feedback to trainees concerning areas in which improvement is 

needed.  In addition, simultaneous analysis of multiple measures by means of a 
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dimensionality reduction technique (i.e., PCA) proved to be useful and practical in 

determining intrasubject, intragroup, and intergroup variabilities. 

Furthermore, when comparing the results from the two experimental studies we 

implemented, it was also evident that differences identified in a simulated experiment 

seem not to be completely transferable to the operating room scenario, where the 

conditions are not as controllable as in the simulation.  While we found significant 

differences among groups for all the tasks considered in the simulator, in the live 

surgeries, performances of trainer and trainees diverged only for one of the surgical tasks. 
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Chapter 6 

Discussion & Future Work 

 

6.1 Introduction 

The goal of the research presented in this thesis was to establish a methodology for 

quantifying performance of surgeons and distinguishing skill levels during live surgeries. 

We have integrated three types of physical measures (kinematics, time and movement 

transitioning) into a modelling technique for quantifying performance of surgical trainees.  

We first created a hierarchical representation to decompose larger surgical goals into 

clearly identifiable tasks amenable to being monitored by our measures.  Then, at each 

level of surgical complexity, we implemented specific mathematical techniques to derive 

intuitive scores for providing a quantitative measure of how far a performance is located 

from a reference level (e.g., a group of expert surgeons).  To show the reliability of the 

established performance parameters, we also implemented various statistical methods to 

measure repeatability across subjects and groups. 

Two experimental studies were completed in order to show the feasibility of our proposed 

assessment methodology: (1) performance in a physical surgical simulator, and (2) in the 

operating room. We therefore concentrated on answering the following specific research 

questions: 
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1. Can quantitative measures acquired intraoperatively reliably characterize motor 

performance? 

2. Do surgeons at similar stages of training exhibit similar psychomotor patterns? 

3. Is there a clear separation of patterns between the extremes of the training spectrum? 

4. What data/measures are most useful in separating surgeons along this spectrum? 

5. Can a quantitative analysis produce insights useful for instruction? 

For the simulator scenario, the task was to dissect 2-3 mandarin oranges; this was 

performed by three groups of subjects representing three different skill levels.  We 

applied our proposed assessment methodology and evaluated if (1) intrasubject 

repeatability was good, (2) scores for trainees with similar skill levels were similar, and 

(3) scores for trainees at different stages were significantly different.  We presumed that 

if these conditions were met, the technique would be worth testing in the live operative 

setting.   

In a second stage, we moved into the less controlled environment of real surgical 

procedures.  For this second experiment, we monitored movements of a curved dissector 

and an atraumatic grasper during 18 laparoscopic cholecystectomy procedures performed 

by two sets of three surgeons – one set of residents and one of attending surgeons. From 

the tools’ positions, we extracted various performance measures and applied our 

methodology to compare residents and expert surgeons executing two key surgical tasks: 

exposing Calot’s Triangle and dissecting the cystic duct and artery (CD/CA). 

Results from these two studies demonstrated the ability of our methodology to 

differentiate skill levels and we therefore plan to use this system in future studies for the 
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purpose of measuring motor performance both in simulators and in the operating room, 

and for developing a database of performance measures of surgeons at various skill levels 

for reference purposes. 

6.2 Review of Present Research 

In this section, we will summarize the main results and conclusions derived from 

answering the proposed research questions through our two experimental studies. 

6.2.1 Experience With Data Acquisition System 

The data acquisition system proved to be an efficient set up to be used in the operating 

room (OR) where space and time constraints must be dealt with.  The computer station, 

which was the only additional element to the normal OR set up, occupied only 60x60cm2. 

The custom-designed clip for attaching the sensor to the tool was found to be practical for 

the surgeons since it only required a two minute calibration process before each 

procedure and eliminated the problem of unbalanced loading experienced with the 

instrumented surgical tool used in previous studies in our lab [Kinnaird, 2004].  In 

general, the surgeons expressed no significant concerns with our data acquisition set up 

except that they were not able to use the L-Hook dissector due to the interference 

introduced by the cautery. 

Other issues we had to deal with during the data acquisition phase of this study included 

the introduction of new operating room scheduling policies which reduced the OR time 

available for the attending surgeons participating in the study, complicated procedure 
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scheduling and extended the period of data collection (the time needed to collect the 

minimum of 18 procedures we required).  In addition, the video segmentation process 

was exhausting and time consuming since it was performed manually; each one-hour 

procedure required approximately 8-10 hours of segmentation work. 

6.2.2 Proposed Performance Assessment Methodology 

Our assessment methodology starts by defining a new hierarchical representation 

(MCMD) for laparoscopic procedures, which decomposes larger surgical goals (tasks) 

into local goals (subtasks) and at the very detailed level into individual movements 

(actions).  To our knowledge, this is the first performance assessment study to include a 

explicit cognitive and motor diagrammatic representation that enables the investigator to 

take account of the operative variability;  most previous intraoperative assessments are 

conducted at the ‘whole procedure’ level and do not distinguish between performance of 

more or less challenging elements of the overall procedure. 

The proposed methodology proved to be feasible for differentiating surgical skill levels, 

however it is not yet practical in terms of the data handling as the video segmentation was 

performed manually.  Therefore more effort would be needed before it could potentially 

be integrated in day-to-day applications to provide feedback in real time. 

6.2.3 Physical Simulator (Mandarin) Experiment 

The primary purpose of the surgical simulated experiment was to test whether or not our 

proposed analytical method was able to reliably distinguish between three groups of 
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subjects representing different stages of training:  novices, novices following explicit 

instruction, and experts. We simulated a surgical dissection task by asking participants to 

use laparoscopic tools to peel and separate the segments of two to three mandarin oranges 

placed in a training box. The movements of the laparoscopic tool for the dominant hand 

were tracked while the task was being executed. 

At the subtask level, we constructed six-element vectors consisting of the tooltip average 

velocities and used Principal Components Analysis to reduce the dimensionality of this 

data to 2.  In the resulting 2D weight space, we showed that we could readily differentiate 

between different technical proficiency levels and an analysis of the PCA eigenvectors 

suggested that velocity information was a more significant contributor to making 

distinctions between groups than time.  The low values of intrasubject (7%) and 

intragroup (24%) variability indicated that the greatest contributor to overall variability 

was difference in degree of training, which is consistent with the idea that level of 

training should be visible in the movement patterns. 

At the action level, we applied PCA to a high-dimensional (64x36) data set based on 

difference measures extracted in each of the nine fundamental surgical actions studied, as 

well as on a difference measure based on the transition probability matrix.  We again 

found that we could clearly distinguish between skill levels.  Analysis of the PC 

coefficients indicated that difference measures related to tool tip velocities provided the 

greatest degree of differentiation between skill levels.  

In order to answer our research questions, we found that the PCA technique applied over 

the three performance measures used in this study (time, tool kinematics, movement 
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transitions) allowed for representing and grouping subjects according to the technical 

proficiency levels, and for using the concept of distance to measure group membership.  

Moreover the PCA technique suggested that tool kinematics perform better than the other 

two measures in differentiating subjects’ performances at the subtask level.  The 

variability analysis indicated that intrasubject repeatability was generally high, that the 

data from subjects of comparable training level was in relatively close proximity to one 

another, and that there were significant variations between groups, which showed 

separation of skill levels between the extremes of the training spectrum.  These findings 

comprise the most important early test of a proposed assessment technique. 

6.2.4 Operating Room Study 

The simulator study established the feasibility of using our proposed methodology to 

differentiate amongst different skill levels in a simulated setting; this justified testing our 

approach in the operating room environment. We therefore acquired intraoperative data 

from two sets of subjects representing the two extreme stages of training: Residents and 

Experts.  We selected the laparoscopic cholecystectomy as our baseline procedure for 

study as it is one of the most commonly performed and studied minimally invasive 

procedures.  It is also one of the first procedures a resident surgeon learns to perform so it 

enables us to study surgeons in training at the earliest possible point in their training. 

Using our MCMD approach, the ‘Expose Triangle’ and the ‘Dissect CD’ subtasks were 

identified by the expert surgeons as the most demanding steps of the procedure in terms 

of the surgical dexterity required; therefore, in the OR study we focused on analyzing 

performance during these two subtasks. The surgeons recommended the curved dissector 
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and the atraumatic grasper as the tools of choice for the dominant hand and non-dominant 

hand, respectively. 

In answering our research questions, the same methodology used in the simulation study 

was applied for analyzing performances at the subtask and action levels. An ANOVA test 

at the subtask level indicated that intergroup differences were significant for both 

subtasks when monitoring the dominant hand.  In contrast, at the action level, we found 

that any intergroup differences in performance during the ‘Dissect CD/CA’ subtask did 

not reach statistical significance, while the ‘Expose Triangle’ subtask did exhibit 

significant differences.  

Analysis of the relative contributions of time, kinematic and transition probability 

measures to the dominant eigenvectors in the PCA analysis showed that kinematic 

measures provided the strongest differentiation between groups, though the degree of 

difference or separation was considerably less than we found in the physical simulation.  

We found little evidence for any bimanual coordination differences between groups;  this 

is consistent with a recent study which showed that differences which might exist in 

certain simulated surgical tasks such as transferring pegs are comparatively small 

[Narazaki, 2007].  Moreover, in our approach, differences in performance for individual 

portions of the procedures were described in terms of intuitive scores (i.e., 0: similar; 1: 

different), which would facilitate providing specific and relevant feedback to trainees 

concerning areas in which improvement is needed. 

Taken together, these observations suggest that there is good potential for discriminating 

between skill levels in both simulated and live operative settings, although the existing 
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performance measures may not yet be sufficiently sensitive to enable fine discrimination 

across the spectrum of skill development.  Further measures related to tissue-handling 

behaviours (eg, forces applied) and a more direct assessment of the quality of the results 

of the tissue interactions may well be required to achieve finer discrimination. 

6.3 Contributions 

This thesis describes several important contributions: 

1. Design of a New Graphical Language For Describing Surgical Flow:   By 

combining two task analysis techniques (Hierachical Analysis and Information 

Processing Analysis) we developed our motor and cognitive modelling diagram 

(MCMD).  This new graphical representation of surgical procedures, which includes 

conventional symbols from flowchart diagrams and Boolean logic diagrams, together 

with new symbols needed to describe surgical events, enables us to model both 

motor and cognitive aspects of surgery in a unified diagram.  Using the MCMD, we 

can record and analyze differences in surgical sequences selected by surgeons during 

different procedures. 

2. Design of a Hierarchical Framework for Representing Quantitative Data in 

Context and Performing Similarity Analysis Between Subjects and Groups:  Our 

motor and cognitive modelling diagram (MCMD) enables us to combine quantitative 

performance measures on a sample-by-sample basis with information related to the 

flow of the surgical procedure and to organize it in a hierarchical form.  This provides 

a mechanism for concentrating the trainee’s and the trainer’s attention on key 
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elements of the procedure where differences in performance might occur and enables 

the analysis to take account of inter-procedural variability.   

3. Demonstration that Quantitative Performance Measures Can Differentiate 

Between Skill Levels in Both Simulated and Live Settings:  Our methodology also 

demonstrated the feasibility of acquiring and using measures of surgical tool motions 

to differentiate amongst surgeons with different skill levels when performing in the 

operating room.  Differences in performance for individual portions of the procedures 

were described in terms of intuitive scores and simultaneous analysis of multiple 

measures by means of a dimensionality reduction technique (i.e., PCA) proved to be 

useful and practical in determining intrasubject, intragroup, and intergroup 

variabilities. 

4. Demonstration of Differences in Sensitivity Between Simulators and the Live 

Operative Environment:  While the results from the two experimental studies 

showed that our approach could distinguish between skill levels in both simulated and 

live surgical settings, the discrimination seemed stronger in the simulated setting, 

likely due to the greater interprocedural variations in the operating room.  Our 

technique showed the potential for semi-automatically identifying which 

combinations of performance measures offer the most discrimination between 

subjects and groups in the OR setting, which provides guidance for choosing metrics 

to be obtained in simulators and focuses attention on the most critical performance 

measures to be evaluated when investigating transference of skill between simulators 

and the OR 
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6.4 Limitations 

The following limitations were encountered during the course of the present thesis: 

• Sample size – This study was designed primarily as an evaluation of the 

feasibility of using a new representational structure for analyzing surgeries.  We 

therefore studied a relatively small number of subjects, which prevented us from 

making any claim that we have obtained a reasonable representation of the range 

of the population the sample has been drawn from; we would not be surprised to 

find future samples that lie considerably outside the range initially found.  We are 

therefore not able to make general claims about these populations (ie, of the form 

‘expert surgeons behave this way’). 

• Type of tracking system – We opted to use an electromagnetic tracking system 

because of its high update rate, reasonable accuracy, and low profile, which made 

it relatively easy to attach to existing surgical instruments.  However, because it is 

based on sensing electromagnetic fields, it is susceptible to the electrical noise 

produced by cautery tools, which prevented us from monitoring some of the tools 

(e.g., L-Hook dissector) commonly used by surgeons.   

In addition, the impact of the accuracy of the tracking system could not be directly 

evaluated - magnetic trackers are susceptible to distortion when in proximity with 

metal objects and we had no ‘gold standard’ against which to evaluate absolute 

accuracy in the operating room (simulators can place ‘virtual target points’, but 

these are not available in the OR).  However, since most of the performance 
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measures we used were not position-dependent, but based more on position 

derivatives, we expect that absolute position errors should have little impact on 

our conclusions. 

In terms of the coordinate frame, it is also important to note that our current 

convention is orientation-independent and therefore free of orientation errors that 

might be introduced if we used a body-oriented frame. 

• Kinematics measurement only – In this study, we restricted ourselves to recording 

kinematic measures.  Force measures were not included in the present study due 

to the complexity of designing and building an instrument that could be used in 

the OR without hampering the execution of a procedure (our group does have 

prior experience with such instruments [Kinnaird 2004], but concluded that the 

current instruments were unsuitable for this study).  Therefore, an improvement in 

instrumentation is required before we are able to obtain force measurements and 

include them in our analytical framework as an additional performance measure.  

In addition, we did not directly assess the quality of the surgical tasks and 

subtasks, nor did we track surgical outcome measures.  This prevented us from 

establishing relationships between development of motor skills and surgical 

outcome. Quality could potentially be assessed by implementing image-

processing techniques for analyzing the videos of specific steps in the procedure 

(e.g., to determine the extent of burnt area when detaching the gallbladder from 

the liver bed).  However since there are significant technical challenges involved 
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in doing this automatically, a reasonable first step in future studies would be to 

incorporate manual assessment by means of rating scales and expert surgeons 

analyzing the video. 

• Only Monitoring Curved Dissector – As discussed above, the incompatibility of 

cautery and our electromagnetic tracker meant that we were restricted to assessing 

surgical tasks that could be performed using the curved dissector, rather than an 

L-hook cauterizing dissector (ie, the ‘Expose triangle’ and ‘Dissect CD/CA’ tasks, 

but not the ‘Dissecting GB from the liver bed’ task, which is normally performed 

using the L-Hook dissector).  This issue also prevented us from being able to 

monitor preferred surgical practice in a situation where the L-hook dissector was 

the preferred tool. 

• Residents not included in simulator study – We did not include residents in the 

simulator study and so were not able to determine whether differentiation between 

skill levels in the operating room is greater or less than in the simulator.  Our 

original intent was to test feasibility of distinguishing skill levels in the simulator, 

so we chose people at the extreme ends of the skill spectrum.  We acknowledge 

that it would have been useful to include residents as part of the simulator study, 

but since this was intended to be a rapid proof-of-concept test and there would 

likely have been delays introduced due to the more complex resident recruitment 

protocols required, we decided to perform this study with graduate students 

serving as the novice and novice-with-training groups. 
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• Type of simulation task – Given the physical nature of the mandarin dissection 

task, we were able to obtain actual tool movement data for testing the feasibility 

of our methods.  However, this task was not designed to directly correspond to 

any particular surgical task, but was chosen simply to require related surgical 

skills.  We therefore cannot directly evaluate whether or not the simulator task is a 

realistic approximation of a target live surgical task. 

• Manual video segmentation - The video segmentation process was exhausting and 

time consuming since it was performed manually as automatic tools are still not 

available; each one-hour procedure required approximately 8-10 hours of 

segmentation work. 

6.5 Related Work 

In developing systems for training and assessing surgical skills, four elements need to be 

addressed before the final implementation of those systems into the surgical curriculum: 

(1) defining and standardizing the performance metrics, (2) differentiating amongst skill 

levels, (3) providing effective feedback, and (4) deciding upon the outcome measures to 

be achieved [Satava, 2004]. 

At present, testing technical skills has been performed using simulators, animal and 

human operating rooms, and have included objective and subjective methods [Britt 2007, 

Aggarwal 2004, Moorthy 2002].  Objective or quantitative methods have been mostly 

developed and used in simulator contexts, with only two approaches currently tested in 
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the operating room: the Imperial College Surgical Assessment Device (ICSAD) and the 

BlueDRAGON [Rosen 2006, Aggarwal 2007, Datta 2006, Dosis 2005, Darzi 2001]. 

Both approaches have mainly concentrated on differentiating between skill levels by 

using distinct performance measures; however the issue of providing specific feedback by 

decomposing and analyzing individual portions of the procedure has not been addressed 

yet.  Darzi pointed out that the reason why they could not find differences in all tasks was 

possibly because each surgeon used the surgical technique they are most confident with, 

and therefore he claims there is a need for developing tools for representing different 

surgical techniques (i.e., representing flow of procedure and types of surgical tools used) 

[Datta 2006]. 

In addition to differentiating skill levels in both the simulator and the operating room 

settings, we believe that our approach complements previous work such as ICSAD and 

BlueDRAGON by addressing the issue of providing feedback that is of value in training 

and evaluating surgeons.  Our MCMD enables us to identify specific points in the 

procedure where differences happen and to track them down in the hierarchy to the level 

where surgical tool movements (e.g., push, pull, reach) are described.  In this way, a 

trainee is able to identify if his/her performance is different from that of an expert 

because they chose a different path (at the task and subtask levels) or used different tool 

movements (at the action level). 

Moreover, previous work in simulators and in the OR have so far performed individual 

analysis for each performance measure with no intuitive scores that would help to 

facilitate interpretation by the surgical trainer [Rosen 2006, Aggarwal 2007, Datta 2006, 
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Dosis 2005, Darzi 2001, Gallagher 2004, Fried 1999, Scott 2000]. Thus, the PCA feature 

of our framework developed for implementing simultaneous analysis of multiple 

measures has also complemented previous studies by enabling us to automatically 

identify those combinations of performance metrics which provide the greatest ability to 

discriminate between skill levels. 

We therefore believe that our framework has gone beyond differentiating amongst skill 

levels as demonstrated by other approaches, and has contributed significantly to the 

development of systems for training and assessing surgical skills by providing (1) a tool 

for graphically representing the surgical flow, and (2) an analytical scheme for including 

various performance measures and deciding which measures are most useful in 

discriminating surgical levels. 

6.6 Recommendations For Future Studies 

As this is a newly proposed assessment methodology, several aspects of the approach 

warrant further investigation to assess and maximize its overall reliability and clinical 

utility.  To make the data acquisition system and process more practical, we recommend 

the following adjustments and enhancements to our setup and approach: 

• Find a way to make measurements of the L-Hook dissector (cauterizing tool) to 

provide more flexibility in the dissection task, since this is a common and even 

preferred surgical option.  This would require us to replace the electromagnetic 

tracker with a fibreoptic-based system which will be more resistant to the 

interference problems created by the cautery unit’s operation. 



 279

• Expand the set of physical measures monitored by incorporating force sensing and 

scene perception (recommended by the attending surgeons) to determine if the 

non-dominant hand is providing appropriate traction, if the dominant hand is 

applying appropriate forces to the tissues, and if the anatomical structures are 

appropriately exposed.  The force sensing is relatively challenging because the 

force sensor would need to be mounted near the tool tip, so the tool itself would 

need to be redesigned to incorporate such a sensor.  The scene perception 

software would likely also be a challenging project. 

• Design an integrated data acquisition and calibration program capable of 

acquiring data from multiple sensors and simultaneously registering the intra-

abdominal view from the laparoscopic video system 

• Develop an automatic movement segmentation method to enhance the objectivity 

of the assessment system and improve the data post-processing.  An interesting 

approach has been proposed by Dr. Allison Okamura’s group at Johns Hopkins 

University, which uses automatic techniques based on Hidden Markov Models 

(HMM) for detecting and segmenting raw motion data from a surgical task to 

produce a labelled sequence of surgical gestures [Lin 2006, Lin 2005, Murphy 

2004, Murphy 2003].  Using simulated surgical tasks executed with the daVinci 

system, Murphy 2004 applied Linear Discriminant Analysis (LDA) to separate the 

surgical motions and used statistical methods such as HMM to perform the 

recognition step [Murphy 2004].  Although this approach has only been tested in 
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simulated environments, it seems to be a promising approach to segmenting 

motion data from live surgeries. 

• Evaluate the feasibility of using a vision system for monitoring the organization 

of the OR – correct equipment and instrument selection, mode, and connection; 

convenient positioning of equipment to avoid accidents and to facilitate 

instrument exchange. These criteria were identified as essential by the 4 surgeons 

involved in this study for ensuring a safe procedure and cannot be assessed by the 

tool tip measures presented in this thesis. 

• Develop techniques to automatically assess the quality of the various surgical 

steps involved in a procedure.  This is a virtually unexplored area of research. 

• Acquire data from both the hand and the tool to compare the results from our 

study and Darzi’s group findings (see Chapter 1) 

In the longer term, the following questions need to be addressed: 

(1) How many procedures do we need to record from an individual surgeon to reduce 

patient/procedural variability to a nominal level? 

(2) What is the minimum number of performance variables needed to get a 

representative measure of a surgeon’s skill level? 

(3) Is it possible to find better measures for reliably representing and assessing 

bimanual coordination in the human operating room? 

(4) Can performance assessment in the simulator correlate with technical 

performance in the actual surgical setting? 
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As the main goal of the present research was to prove the feasibility of our new 

performance assessment methodology based on quantitative measures, we suggest a two-

fold study for the next stage:  

(1) Testing its reliability in differentiating skill levels in the operating room based on 

an increased number of participants and procedures 

(2) Determining (if any) the correlation between assessment on simulators and 

assessment in the operating room 

For the first part, we propose using the same data acquisition and processing protocol 

presented in this thesis to create a database of residents and expert surgeons executing 

multiple procedures; we would also document any characteristics of the patient which 

might affect the procedure’s difficulty, which would potentially allow us to partition the 

data according to difficulty level to improve repeatability and enable us to explore the 

influence of case difficulty on surgical tool movement patterns.  These databases would 

allow us to better understand the range of performance at a given skill level and the 

extent of shifts in performance with differing degrees of surgical experience.    

As surgical simulators develop to emulate particular surgical tasks, we propose to directly 

compare movement patterns executed by surgeons in the operating room and on the 

corresponding simulated surgical task to determine if any differences detected are within 

the range of normal variation expected when only operative situations are examined.  If 

so, and if the differences on the simulated tasks between groups are similar to those found 

in the live surgical tasks, we would have a basis for claiming that these simulations are 
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acceptable substitutes for the live operating room for the purposes of training and 

evaluation. 

Another interesting topic for future studies would be to evaluate skills across different 

types of surgeries – at the subtask level, essentially the same processes (dissection, 

suturing, etc.), can be performed in different surgical procedures with different task level 

goals.  By explicitly identifying some tasks which are considered to be common across 

different surgical procedures, we can evaluate the hypothesis that performance by a single 

surgeon on common subtasks is sufficiently similar, independent of the overall surgical 

procedure being performed, to allow an assessment of surgical skill on that class of 

subtask.  Addressing this issue would then require us to utilize a ‘subroutine comparison’ 

by means of detecting at the subtask level the common subtasks (e.g., tissue dissection) 

and directly comparing a subject’s motor performance measures for the corresponding 

subtasks independent of the type of surgery.  If ranges of motor skills are similar, then 

monitoring performance on a given type of procedure would provide insight into how 

well a surgeon would likely execute the same subtask in another surgical context. 

6.7 Conclusion 

As a final point, we do not regard objective assessment methods as a substitute for the 

attending surgeon in the training process; instead, we believe they can offer a valuable 

evaluation starting-point based on quantitative metrics that have the potential to 

discriminate between skill levels.  In this research, we developed a new assessment 

methodology for quantifying surgeons’ performance during key portions of the 

procedure, as identified using our MCMD, despite the fact that it is not yet practical due 
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to its computational complexity. As more work is done in standardizing and simplifying 

this approach, its ability to compare a resident’s performance with respect to a group 

either of their peers or of expert surgeons will allow us to draw finer distinctions such as 

whether or not a given resident is keeping up with his/her year level.  In addition, by 

identifying the points of greatest difference, attending surgeons can eventually use this 

information to provide more specific feedback to the trainee and better monitor their 

progress through their training program. 
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APPENDIX A 
 

VIDEO VERIFICATION – Checklist 

 

Surgeon:  _______________________________   Trial #:  ______ 

Date of surgery:  _________________________ 

 

• Explore: 

• Assess anatomy: 

Open 

Assess cholecystitis 

• Assess cholecystitis: 

Aspirate GB 

Isolate CD/CA 

• Isolate CD/CA: 

Control bleeding 

Confirm identification of CD/CA 

• Confirm identification of CD/CA: 

Cholangiogram      

Reconfirm identification:    Open               

                                            Notice CBDS 

Assess possible CBDS 

• Notice presence of CBDS: 

Open 

LCBE 

      Assess possible CBD injury 

• Assess possible CBD injury: 

Open 

Separate CD or CA 

• Separate CD: 

Control bleeding 

Separate CA 

Dissect GB 

• Separate CA: 

Control bleeding 

Separate CD 

Dissect GB 

• Dissect GB: 

Control bleeding 

Clean-up 

• Clean-up: 

Control bleeding 

Bag GB 

Extract GB 

• Bag GB: 

Clean-up 

Extract GB 

• Extract GB: 

End 
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APPENDIX B 

 MCMD for Laparoscopic Right Hemicolectomy – Task Level 
 

 
 

II 
15. 

Check complete 
mobilization 

16.  
Exteriorize 

bowel 

17.  
Bowel 

resection 

18.  
Anastomosis 

19.  
Return bowel 
to abdominal

cavity 

End 

20. 
Clean-up 

(B) 

14. 
Mobilize 
ileocecal 
junction 

1. 
Explore 

2. 
Assess 

feasibility 

5. 
Expose right 
mesocolon 

13. 
Mobilize lateral 
ascending colon

12. 
Mobilize 
hepactic 
flexure 

6. 
Confirm 

identification 
of ileocolic 

vessels 

I 

I 

3. 
Open 

4.  
Convert to 

hand-assisted

A B A B A B 

3. 
Open 

7.  
Isolate 

ileocolic 
vessels 

A B A B 

8.  
Divide 

ileocolic 
vessels 

9. 
Dissect right 
mesocolon 

A B A B A B 

10.  
Isolate 

right colic 
vessels 

11.  
Divide 

right colic 
vessels 

II 

3. 
Open 
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MCMD for Laparoscopic Sigmoid Colectomy – Task Level 
 

1. 
Explore 

2. 
Assess 

feasibility 

6. 
Mobilize 

rectosigmoid 
junction 

5. 
Confirm 

identification 
of left ureter 

I 

3. 
Open 

4.  
Convert to 

hand-assisted 

B A 

3. 
Open 

7.  
Isolate 

Sup. Hemorr. 
artery 

A B A B 

A B A B 

9.  
Isolate 

Inf. Mesent. 
artery 

10.  
Divide 

Inf. Mesent. 
artery 

8.  
Divide 

Sup. Hemorr. 
artery 
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I 

3. 
Open 

11. 
Achieve complete 

mobilization 

12.  
Transect bowel 

at distal 
resection line

24.  
Anastomosis 

16.  
Return bowel 
to abdominal 

cavity

End 

26. 
Clean-up 

(B)

13.  
Exteriorize 

bowel 

14.  
Transect bowel 

at proximal 
resection line 

15.  
Insert circular 

anvil into 
proximal end

19. 
Mobilize 
further 

18. 
Confirm ability of 

anvil to reach 
anastomotic 

site 

21. 
Confirm 

orientation of 
proximal  

bowel 

22. 
Correct 

orientation

23.  
Insert circular 

stapler 
transanally

25.  
Test 

anastomosis

II

II 

17. 
Check ability of anvil 
to reach anastomotic 

site 

20. 
Check orientation of 

proximal  
bowel
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APPENDIX C 

Alternative Position Tracking Systems 
 
 

Our group has previously used two types of position tracking systems: optical (Northern 

Digital Polaris System) and electromagnetic (Polhemus 3SPACE Fastrak). It has been 

shown that use of optoelectronic tracking often misses significant segments of data, which 

reduces the completeness and validity of the data records [McBeth 2002].  Optoelectronic 

systems are also sensitive to ambient light from OR lamps, although this is a far less 

significant problem [Wagner 2002].  On the other hand, while electromagnetic tracking 

eliminates the line-of-sight requirement, it suffers from lower accuracy and is more subject 

to distortion than the optical one.  Milne evaluated the accuracy of electromagnetic trackers 

under the effect of different metals as those commonly present at the operating room.  This 

group reported that the accuracy quoted by the product manual (2.5mm RMS) could only 

be achieved in the operating room with a transmitter-receiver distance between 22.5cm and 

64cm [Milne 1996].  This same relationship between metal effects and transmitter-receiver 

separation was reported by Nixon et al [Nixon 1998]. 

Recently, fiber optic-based systems have been introduced for position tracking to be used in 

applications that are not possible with conventional electrical based sensors due to 

measurement requirements such as extreme temperature, small size, high sensor count, or 

high electromagnetic energy or radiation environments.  In June 2007, a shape-sensing 

optical fiber ‘smart fiber’ was introduced for minimally invasive surgery applications, 

specifically to be integrated into Intuitive Surgical's products, which includes the da Vinci® 
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Surgical System1.  Although it is a promising system for our application, the system was 

unavailable at the start of our research. 

Figure C.1 shows a spider plot for comparing the three tracking systems being considered 

in terms of the technical features such as accuracy, update rate, workspace, compactness, 

immunity to electromagnetic (EM) noise and tracking continuity.  

 

 

 

 

 

 

 

 

Figure C.1: Comparison plot of three position-tracking systems (optical, electromagnetic, and fiber optics) in 
terms of six technical features (accuracy, update rate, workspace, compactness, immunity to EM noise, and 

tracking continuity) 

Given that we are looking at general profiles, high accuracy is not so important in this 

context while continuous tracking is required; therefore, in our approach we used the 

Polhemus 3SPACE Fastrak 6-dof electromagnetic system to obtain uninterrupted data 

streams.   

 

                                                 
1 http://www.lunainnovations.com/products/dss.htm (June 2007) 
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APPENDIX D 
Semi-Markov Modelling 

 

D.1 Distribution fitting using D values for holding time profiles of most used actions per subtask 
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Dissect CD/CA 
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D.2 Parameter and confidence interval estimation of holding time distributions  

In our model implementation, we selected the distribution with the lowest D value from 

above to represent holding time profiles and implemented a bootstrapping approach for 

computing the corresponding confidence intervals for the distribution parameters. 

 

Assuming that the distribution fit hi uses two parameters (ai, bi), we first replicated 1000 

times the original holding time data as h*
i (sampling with replacement) using ai, bi.  

Therefore if hi = [hi1 hi2 hi3 … hiN]’ (column vector) with length N, we created 1000 vectors 

of length N each one represented as [h*
i(1) h*

i(2) … h*
i(k) … h*

i(1000)]. For each h*
i(k) = 

[h*
i1 h*

i2 … h*
iN]’, we computed a*

i(k), b*
i(k) in order to obtain sets of  parameters a*

i = 

[a*
i(1) a*

i(2) … a*
i(k) … a*

i(1000)]’ and b*
i = [b*

i(1) b*
i(2) … b*

i(k) … b*
i(1000)]’. We 

finally used the distributions of a*
i, b*

i and the percentile quartile method to estimate the 

corresponding confidence intervals (α = 0.05): 

Confidence level = 100(1-2α) = 95% 

CI=[L(1-α)th, (L+α)th] with L=1000; 

 

The following plots show the estimated parameters and confidence intervals for the 

parameters of the selected distributions (LN: Lognormal; WB: Weibull) for the most used 

actions at each subtask.  Parameter ‘a’ is presented on the right side and parameter ‘b’ on 

the left side of each individual plot.  For lognormal, a: mean (mu); b: standard deviation 

(sigma).  For Weibull, a: shape; b: scale. 
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Dissect CD/CA 
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D.3 Semi-Markov models for each subject/subtask 

Expose Triangle 
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LogN 
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& hold

Pull 
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Idle 
LogN 
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Orient 

Grasp  
& cut
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Spread
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Includes significant transitions (CItran. < pij) and average holding times (t) 
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Expert 3: Non-dominant hand (left) and Dominant hand (right); 
Includes significant transitions (CItran. < pij) and average holding times (t) 
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± 0.16 

0.35 
± 0.16 

0.85 
± 0.12 

0.69 
± 0.16 

0.48 
± 0.15 

0.37 
± 0.17 

0.29 
± 0.25 0.46 

± 0.24 

Resident 1: Non-dominant hand (left) and Dominant hand (right); 
Includes significant transitions (CItran. < pij) and average holding times (t) 

Push 

Reach 

Grasp & hold 
LogN 

(t: 7.86s) 

Pull 
LogN 

(t: 1.03s) 

Sweep 

Idle 

Orient 

Grasp  
& cut

Out

Spread

0.30 
± 0.26 

0.75 
± 0.79 

0.57 
± 0.18 

0.83 
± 0.13 

0. 30 
± 0.26 

0. 31 
± 0.23 

0.82 
± 0.25 

0.63 
± 0.42 
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Resident 2: Non-dominant hand (left) and Dominant hand (right); 
Includes significant transitions (CItran. < pij) and average holding times (t) 

Push 
LogN 

(t: 0.87s) 

Reach 
LogN 

(t: 1.01s) 

Grasp  
& hold

Pull 
Weibull 
(t: 2.35s) 

Sweep

Idle 
LogN 

(t: 2.57s)

Orient 

Grasp  
& cut

Out

Spread

0.24 
± 0.10 

0.62 
± 0.07 

0.57 
± 0.09 

0.30 
± 0.12 

0.74 
± 0.11 

1.00 
± 0.00 

0.60 
± 0.28 

0.89 
± 0.15 

0.88 
± 0.24 

0.52 
± 0.26 

0.41 
± 0.29 

Push 

Reach 

Grasp & hold 
LogN 

(t: 10.46s) 

Pull 
LogN 

(t: 0.98s) 

Sweep 

Idle 

Orient 

Grasp  
& cut

Out

Spread

0.78 
± 0.15 

0.63 
± 0.17 

0.78 
± 0.12 0.27 

± 0.24 

0.67 
± 0.65 
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Resident 3: Non-dominant hand (left) and Dominant hand (right); 
Includes significant transitions (CItran. < pij) and average holding times (t) 

Push 
LogN 

(t: 0.96s) 

Reach 
Weibull 
(t: 2.35s) 

Grasp  
& hold

Pull 
Weibull 
(t: 3.51s) 

Sweep

Idle 

Orient

Grasp  
& cut

Out

Spread

0.64 
± 0.13 0.47 

± 0.11 
0.81 
± 0.10 

0.82 
± 0.20 

0.32 
± 0.12 

0.87 
± 0.18 0.95 

± 0.10 

Push 

Reach 

Grasp & hold 
Weibull 

(t: 16.47s) 

Pull 
LogN 

(t: 1.28s) 

Sweep 

Idle 

Orient 

Grasp  
& cut

Out

Spread

0.23 
± 0.22 

0.87 
± 0.12 

0.77 
± 0.12 

0.76 
± 0.19 
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Dissect CD/CA 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Expert 1: Non-dominant hand (left) and Dominant hand (right); 

Includes significant transitions (CItran. < pij) and average holding times (t) 

Push 
LogN 

(t: 0.52s)

Reach 
LogN 

(t: 0.40s) 

Grasp  
& hold

Pull 
LogN 

(t: 0.90s) 

Sweep

Idle 

Orient

Grasp  
& cut

Out

Spread 
Weibull 
(t: 0.46s) 

0.30 
± 0.18 

0.30 
± 0.15 

0.22 
± 0.16 

0.38 
± 0.14 

0.65 
± 0.18 

0.41 
± 0.16 

0.58 
± 0.11 

0.53 
± 0.22 

0.91 
± 0.18 

Push 

Reach 

Grasp & hold 
Weibull 

(t: 13.39s) 

Pull 
LogN 

(t: 0.81s) 

Sweep 

Idle 

Orient 

Grasp  
& cut

Out

Spread

0.87 
± 0.15 

0.81 
± 0.16 

0.55 
± 0.40 

0.71 
± 0.40 
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Expert 2: Non-dominant hand (left) and Dominant hand (right); 
Includes significant transitions (CItran. < pij) and average holding times (t) 

Push 
Weibull 
(t: 0.78s) 

Reach 
LogN 

(t: 0.82s) 

Grasp  
& hold

Pull 
LogN 

(t: 1.38s) 

Sweep

Idle 

Orient

Grasp  
& cut

Out

Spread 
LogN 

(t: 0.89s) 

0.46 
± 0.08 

0.95 
± 0.10 0.66 

± 0.06 

0.82 
± 0.08 

0.39 
± 0.09 

0.94 
± 0.11 

0.85 
± 0.11 

0.44 
± 0.25 

0.12 
± 0.09 

0.97 
± 0.06 

0.67 
± 0.15 

Push 

Reach 

Grasp & hold 
LogN 

(t: 7.70s) 

Pull 
LogN 

(t: 0.93s) 

Sweep 

Idle 

Orient 

Grasp  
& cut

Out

Spread

0.92 
± 0.07 

0.94 
± 0.05 

0.75 
± 0.49 

0.91 
± 0.18 
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Expert 3: Non-dominant hand (left) and Dominant hand (right); 
Includes significant transitions (CItran. < pij) and average holding times (t) 

Push 
LogN 

(t: 1.36s) 

Reach 
LogN 

(t: 0.65s) 

Grasp  
& hold

Sweep

Idle 

Orient

Grasp  
& cut

Out

Spread 
Weibull 
(t: 2.03s) 

0.45 
± 0.15 

0.66 
± 0.11 

0.88 
± 0.16 

0.33 
± 0.16 

0.51 
± 0.22 

Pull 

0.74 
± 0.21 

Push 

Reach 

Grasp & hold 
LogN 

(t: 5.92s) 

Pull 
Weibull 
(t: 1.63s) 

Sweep 

Idle 

Orient 

Grasp  
& cut

Out

Spread

0.93 
± 0.09 

0.97 
± 0.06 
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Resident 1: Non-dominant hand (left) and Dominant hand (right); 
Includes significant transitions (CItran. < pij) and average holding times (t) 

Push 
LogN 

(t: 0.73s) 

Reach 
LogN 

(t: 0.60s) 

Grasp  
& hold

Pull 
LogN 

(t: 1.26s) 

Sweep

Idle 

Orient

Grasp  
& cut

Out

Spread 
LogN 

(t: 1.03s)

0.48 
± 0.07 

0. 31 
± 0.14 

0. 10 
± 0.09 

0. 29 
± 0.10 

0. 60 
± 0.14 

0. 55 
± 0.11 0. 20 

± 0.09 

0. 68 
± 0.14 

0. 64 
± 0.10 

0. 57 
± 0.12 

0. 37 
± 0.15 

0. 16 
± 0.11 

0. 46 
± 0.09 

0.13 
± 0.09 0. 32 

± 0.14 Push 

Reach 

Grasp & hold 
LogN 

(t: 5.52s) 

Pull 
LogN 

(t: 0.84s) 

Sweep 

Idle 

Orient 

Grasp  
& cut

Out

Spread

0.91 
± 0.07 

0.87 
± 0.08 

0.67 
± 0.46 

0.75 
± 0.22 

0.60 
± 0.55 

0.75 
± 0.49 
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Resident 2: Non-dominant hand (left) and Dominant hand (right); 
Includes significant transitions (CItran. < pij) and average holding times (t) 

Push 
LogNl 

(t: 0.67s) 

Reach 
LogN 

(t: 1.10s) 

Grasp  
& hold

Pull 
Weibull 
(t: 1.95s) 

Sweep

Idle 

Orient 

Grasp  
& cut

Out

Spread 
LogN 

(t: 0.83s) 

0.60 
± 0.06 

0.30 
± 0.10 

0.26 
± 0.08 

0.29 
± 0.08 

0.81 
± 0.07 

0.97 
± 0.06 

0.48 
± 0.24 

0.68 
± 0.07 

0.92 
± 0.16 

0.42 
± 0.26 

0.64 
± 0.06 

0.91 
± 0.18 

0.71 
± 0.26 

Push 

Reach 

Grasp & hold 
LogN 

(t: 11.19s) 

Pull 
LogN 

(t: 1.14s) 

Sweep 

Idle 

Orient 

Grasp  
& cut

Out

Spread

0.80 
± 0.10 

0.86 
± 0.08 

0.77 
± 0.18 
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Resident 3: Non-dominant hand (left) and Dominant hand (right); 

Includes significant transitions (CItran. < pij) and average holding times (t) 

Push 
Weibull 
(t: 1.92s) 

Reach 
LogN 

(t: 1.14s) 

Grasp  
& hold

Pull 
Weibull 
(t: 3.03s) 

Sweep

Idle 

Orient 

Grasp  
& cut

Out

Spread 
LogN 

(t: 1.32s)

0.63 
± 0.05 

0.18 
± 0.13 

0.14 
± 0.08 

0.47 
± 0.07 

0.78 
± 0.09 

0.87 
± 0.08 0.14 

± 0.08 

0.62 
± 0.20 

0.80 
± 0.07 

0.90 
± 0.11 

0.32 
± 0.26 

0.43 
± 0.07 

0.83 
± 0.19 

0.64 
± 0.25 

Push 

Reach 

Grasp & hold 
Weibull 

(t: 22.63s) 

Pull 
LogN 

(t: 1.24s) 

Sweep 

Idle 

Orient 

Grasp  
& cut

Out

Spread

0.91 
 0.06 

0.78 
 0.09 

0.82 
 0.13 0.21 

 0.16 

0.67 
± 0.65 
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APPENDIX E 

OR Protocol and Ethics Documents 

 

C.1 OR and tool cleaning protocol  

 

Required equipment: Fastrak Polhemus system (interface unit, magnetic transmitter and 

receivers), Laptop, and testing surgical tool (disposable Maryland dissector) 

Start up time: 45min before scheduled set up of the operating room 

 

Procedure: 

• Pick up experimental tools at Sterile Processing Department 

• Using the testing tool, train the surgeon in attaching the clip (it is the device that allows 

attaching the magnetic sensor to the tool shaft) 

• Ask for surgeon’s signature on the consent form 

• Initial equipment setup: 

 Connect laptop and Polhemus 

 Create two text files: freq_test.txt and case#1.txt 

 Attach the transmitter to the reference site (box) with duct tape 

 Use the testing tool to perform the frequency test (i.e., acquire 10 seconds of data 

and compute the actual sampling frequency) – see How to use GUI below 

• Set up video recording: 

 Turn on STRYKER video equipment 
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 Fill in case information 

 Select the ‘camera’ icon 

 Select the ‘film’ icon 

 It is ready to start recording 

• Leave the operating room and wait until patient is anaesthetized 

• Procedure begins and surgeon secures the clip to the experimental tools 

• When the surgeon indicates that he/she is ready to use the experimental tools, ask 

him/her to carefully drop the cables on the floor so to not damage the sterile field. 

• Plug in the cables to the tool interface units and turn it on 

• How to use GUI: 

 Turn on Polhemus and wait until light stops flashing 

 Open FTGui 

 Load text file using the ‘logged’ button 

 Select ‘continuous’ mode 

 Select ‘options’, then ‘output’, and select ‘metric’ 

 It is ready to start acquiring data 

• Start simultaneously video recording and Polhemus equipments 

• After gallbladder extraction, stop both equipments 

• Save video on DVD from STRYKER video recording system, pick up tools from nurse 

station and leave OR 
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Cleaning protocol designed by Sterile Processing Department at UBC Hospital 
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C.2 Ethics Certificates of Approval 
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C.3 Request for subject participation and Consent Form 

Quantitative Modelling of Surgical Motor 
Actions 

Request for Participation 

Would you like to help to apply and evaluate a new methodology for 
quantifying and assessing minimally invasive surgical performance so that 
future residents can keep track of their own progress? 

We are performing a study to intraoperatively apply a new methodology for quantifying 
and assessing motor and cognitive aspects of surgical performance. As a participant, you 
will be asked to perform 2-3 laparoscopic cholecystectomy procedures as you normally do 
and under the supervision of your attending surgeon, using standard surgical tools.  We will 
provide you with two small plastic clips to each of which will be attached a small magnetic 
sensor cube approximately 10-15 mm on edge. Whenever feasible during the procedure, 
you will clip the sensor to the tool you are currently using;  the movements of the 
laparoscopic tool will then be tracked while you perform your normal surgical tasks.  The 
surgery will be videotaped so that the investigator can later correlate the movement patterns 
with specific phases of the surgery.  The acquired data will be processed afterwards to 
calculate the kinematic features (eg, velocities, accelerations, and jerks) of the tool 
movements. 

If you are interested in participating, please call or email Sayra M. Cristancho (822-8785, 
scrista@interchange.ubc.ca) for information on enrolling in this study.  Thank you for your 
consideration. 

 

Principal Investigator: Neely Panton, MB, BS, FRCSC, FACS. 

Graduate Student: Sayra M. Cristancho, PhD. Candidate, Department of Mechanical 
Engineering, (604)822-8785 

Co-Investigator(s): Antony Hodgson, PhD, UBC Department of Mechanical 
Engineering,  
604-822-3240; Adam Meneghetti, MD, UCSF; Karim Qayumi, MD, 
PhD; George Pachev, PhD. 

 

This study is for the PhD thesis of Sayra M. Cristancho, UBC Department of Mechanical 
Engineering. 
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Vancouver, September 2006 
 
To: Surgical Residents (4th and 6th year) at UBC 
Subject:   Recruiting research participants 
 
Dear Potential Participant: 
Would you like to help to apply and evaluate a new methodology for quantifying and 
assessing minimally invasive surgical performance so that future residents can keep track of 
their own progress? 

We are developing a new methodology for quantifying and assessing motor and cognitive 
aspects of surgical performance.  We will be analyzing performance data acquired during 
actual surgical tasks (performed in the operating room), and testing whether or not the 
methodology so developed is able to distinguish between trainees at different levels of 
development;  we would therefore like to invite you to participate.   

If you choose to do so, you will be asked to perform 2-3 laparoscopic cholecystectomy 
procedures as you normally do and under the supervision of your attending surgeon, using 
standard surgical tools.  We will provide you with two small plastic clips to each of which 
will be attached a small magnetic sensor cube approximately 10-15 mm on edge. Whenever 
feasible during the procedure, you will clip the sensor to the tool you are currently using;  
the movements of the laparoscopic tool will then be tracked while you perform your normal 
surgical tasks.  The surgery will be videotaped so that the investigator can later correlate the 
movement patterns with specific phases of the surgery.  The acquired data will be 
processed afterwards to calculate the kinematic features (eg, velocities, accelerations, and 
jerks) of the tool movements. 

If you are interested in participating, please call or email Sayra M. Cristancho (822-8785, 
scrista@interchange.ubc.ca) for information on enrolling in this study.  Thank you for your 
consideration.  

Participation is purely voluntary and potential subjects are under no  
obligation to participate. 

Principal Investigator: Neely Panton, MB, BS, FRCSC, FACS. 

Graduate Student:  Sayra M. Cristancho, PhD. Candidate, Department of Mechanical 
Engineering, (604)822-8785 

Co-Investigator(s): Antony Hodgson, PhD, UBC Department of Mechanical 
Engineering, 604-822-3240; Adam Meneghetti, MD, UCSF; Karim Qayumi, MD, PhD; 
George Pachev, PhD 

 T H E  U N I V E R S I T Y O F B R I T I S H  C O L U M B I A  

 

 
 

 

Department of Mechanical Engineering 
6250 Applied Science Lane 
Vancouver, B.C.  Canada   V6T 1Z4 
 

Tel:  (604) 822-3240 
Fax: (604) 822-2403 
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Consent Form 
 

Quantitative Modelling of Surgical Motor 
Actions 

 
Principal Investigator:  Neely Panton, MB, BS, FRCSC, FACS, UBC Faculty of Medicine, 

Dept. of Surgery 
Graduate Student: Sayra M. Cristancho, PhD. Candidate, Department of Mechanical 

Engineering, (604)822-8785 
Co-Investigator(s): Antony Hodgson, PhD, UBC Department of Mechanical Engineering,  

604-822-3240 
 Karim Qayumi, MD, PhD, UBC Faculty of Medicine, Dept. of 

Surgery; 
Adam Meneghetti, MD, UCSF, UBC Faculty of Medicine, Dept. of 
Surgery; 
George Pachev, PhD, UBC Faculty of Medicine, Division of 
Educational Support and Development. 

 
You are invited to participate in this study, which is for the graduate thesis of the student 
named above.  The information gathered in this study (tool motions, as well as videotapes 
of the procedures) will be used to compare how subjects handle surgical tools in actual 
surgical tasks. The graduate student and the co-investigators will be the only ones with 
access to the data, and the identity of the participants will not be disclosed in any resulting 
publications.  The results of this study will be used to design a future larger intraoperative 
study. 

Purpose: 
The purpose of this pilot study is to apply a new methodology for quantifying and assessing 
motor and cognitive aspects of surgical performance by analyzing performance data 
acquired during actual surgical tasks (performed in the operating room), and to test whether 
or not the methodology so developed is able to distinguish between trainees at different 
levels of development.  You have been asked to participate in this experiment because you 
are currently in a hospital-based training position.  

 T H E  U N I V E R S I T Y O F B R I T I S H  C O L U M B I A  

 

 
 

 

Department of Mechanical Engineering 
6250 Applied Science Lane 
Vancouver, B.C.  Canada   V6T 1Z4 
 

Tel:  (604) 822-3240 
Fax: (604) 822-2403 
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Exclusion Criteria: 
Residents below their 4th year of training will be excluded since they are only allowed to 
perform selected aspects of the procedure and therefore, continuous data recording would 
be impossible. 

Study Procedures: 
If you choose to participate, we will ask you to perform 2-3 laparoscopic cholecystectomy 
procedures as you normally do (residents will perform under the corresponding attending 
surgeon’s supervision), so your total commitment to this study will be the duration of these 
procedures (ie, up to ~5h).  During the surgery, you will use standard surgical tools. We 
will provide you with two small plastic clips to each of which will be attached a small 
magnetic sensor cube approximately 10-15 mm on edge (ie, approximately sugar-cube-
sized). Whenever feasible during the procedure, you will clip the sensor to the tool you are 
currently using; the movements of the laparoscopic tool will then be tracked while you 
perform your normal surgical tasks.  The surgery will be videotaped so that the investigator 
can later correlate the movement patterns with specific phases of the surgery.  The acquired 
data will be processed afterwards to calculate the kinematic features (eg, velocities, 
accelerations, and jerks) of the tool movements.  We have carefully designed the measuring 
tool in consultation with attending surgeons so as to ensure that it will not interfere with 
performing the surgical procedure;  however, should you at any time feel that it is 
interfering with your surgical activity, you may remove it (this process takes less than 1 
second) and proceed without it. 

Confidentiality: 
Your confidentiality will be respected. No information that discloses your identity will be 
released or published without your specific consent to the disclosure.  However, research 
records identifying you may be inspected in the presence of the Investigator or his or her 
designate by representatives of the UBC Research Ethics Board for the purpose of 
monitoring the research.  However, no records which identify you by name or initials will 
be allowed to leave the Investigators' offices. 
 
The videotapes will be stored in a locked filing cabinet in the Centre of Excellence for 
Surgical Education and Innovation.  The computer data will be stored on a secure computer 
system in files protected by a password known only to the investigators.  The only 
identifying information that will be associated with any publication of the data will be the 
year level of your residency.  The videotapes and data will be stored indefinitely and may 
be used again for derivatives or extensions of this research project, but will not be used for 
any other purposes without your explicit permission. 
 
You will be able to ask either Dr. Hodgson or the responsible graduate student to review 
your own data at the conclusion of the entire study for purposes of feedback and personal 
improvement. 
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Benefits/Remuneration/Compensation: 
You will be offered a $10 café gift card for participating in this study.  Other than that, 
there are no explicit benefits you will receive. 

Risks 
You may experience some anxiety from being observed and measured.  Otherwise, there 
are no known risks associated with this study. 

Compensation for Injury: 
Although we anticipate no increased risk of injury, signing this consent form in no way 
limits your legal rights against the sponsor, investigators, or anyone else. 

Conflict of Interest: 
None of the investigating team has any financial or other material interest in the outcome of 
this study, nor is it being sponsored by any entity with a financial interest in the outcome. 

Contact for information about the study: 
If you have any questions or desire further information with respect to this study, you may 
contact Sayra M. Cristancho at 604-822-8785 or Dr. Antony Hodgson at 604-822-3240. 

Contact for concerns about the rights of research subjects: 
If you have any concerns about your treatment or rights as a research subject, you may 
contact the Research Subject Information Line in the UBC Office of Research Services at 
604-822-8598. 

Right To Withdraw: 
Your participation in this study is entirely voluntary and you may refuse to participate or 
withdraw from the study at any time without jeopardy to your standing in your training 
program.  Data collected up to the point of your withdrawal from the study will be kept for 
data analysis purposes under the strict provisions of confidentiality described above. 

Consent: 
Your signature below indicates that you have received a signed and dated copy of this 
consent form for your own records and that you consent to participate in this study.   
 
Your signature does not imply that you have waived any legal rights in agreeing to 
participate in this study. 
 
____________________________________________________ 
Subject Signature     Date 
 
____________________________________________________ 
Printed Name of the Subject signing above. 
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____________________________________________________ 
Witness Signature     Date 
 
____________________________________________________ 
Printed Name of the Witness signing above. 
 
 
 
____________________________________________________ 
Principal Investigator / Delegated Representative Date 
 
____________________________________________________ 

Printed Name of the Principal Investigator or Delegated Representative signing above.
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APPENDIX F 

Discussion of 6D vs. 8D in Simulator Experiment 

Since we had available time and kinematic data, for the PCA analysis we first defined a 8D 

data set composed of 6 rms (root-mean-square) velocity components (lateral, axial, and 

vertical velocities for ‘Peel skin’ and ‘Detach segment’ respectively) and the average time 

spent at each subtask. 

The normalized PC coefficients (Figure F.1) indicated that times did not provide much 

information to the analysis since their contributions for the first principal eigenvector PC1 

were considerably lower than those provided by velocities.  This suggested that kinematics 

perform better than time in differentiating subjects’ performances; therefore, we reduced 

the dataset and only concentrated on analyzing velocities in a 6D case for describing the 

main computations of section 4.3.1.2.   

 

 
 
 
 
 

 

 

Figure F.1: Normalized (multiplied by #of ⋅ PCs ) coefficients for PC1 in 8-D data set. Blue color means 
time parameter; orange color means kinematic parameter
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APPENDIX G 
Variability analysis for PCA results – OR study 

 

G.1 One-way anova [McDonald 2008] 

When to use it 

In a one-way anova (also known as a single-classification anova), there is one measurement 

variable (e.g., mean velocity) and one nominal variable (e.g., subjects in the residents’ 

group). Multiple observations of the measurement variable are made for each value of the 

nominal variable. 

 

Null hypothesis 

The statistical null hypothesis is that the means of the measurement variable are the same 

for the different categories of data; the alternative hypothesis is that they are not all the 

same. 

 

How the test works 

The basic idea is to calculate the mean of the observations within each group, then compare 

the variance among these means to the average variance within each group. Under the null 

hypothesis that the observations in the different groups all have the same mean, the 

weighted among-group variance will be the same as the within-group variance. As the 

means get further apart, the variance among the means increases. The test statistic is thus 

the ratio of the variance among means divided by the average variance within groups, or Fs.  
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This statistic has a known distribution under the null hypothesis, so the probability of 

obtaining the observed Fs under the null hypothesis can be calculated. 

The shape of the F-distribution depends on two degrees of freedom, the degrees of freedom 

of the numerator (among-group variance) and degrees of freedom of the denominator 

(within-group variance). The among-group degrees of freedom is the number of groups 

minus one. The within-groups degrees of freedom is the total number of observations, 

minus the number of groups. Thus if there are n observations in a groups, numerator 

degrees of freedom is a-1 and denominator degrees of freedom is n-a. 

 

Assumptions 

Any ANOVA test makes two assumptions: (1) normality, and (2) homoscedasticity which 

indicates that the within-group variances of the groups are all the same.  

It is possible to test the goodness-of-fit of a data set to the normal distribution. McDonald  

does not suggest doing this, because many data sets that are significantly non-normal would 

be perfectly appropriate for an anova.  Instead, if having a large enough data set, McDonald  

suggests simply looking at the frequency histogram. If it looks more or less normal, 

performing an anova is likely feasible.  

In terms of homoscedasticity, the usual test for homogeneity of variances is Bartlett's test. 

This test is used when having one measurement variable, one nominal variable, and one 

want to test the null hypothesis that the variances of the measurement variable are the same 

for the different groups.  

If the data do not fit the assumptions, it is often possible to find a data transformation that 

makes them fit.  To transform data, a mathematical operation (i.e., log-transformation, 
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square-root transformation) is performed on each observation, and then these transformed 

numbers are used in the statistical test.  If any transformations are used to adjust the data to 

match the assumptions, then it is necessary to use either the Kruskal–Wallis or Welch's 

anova instead of one-way anova when there are more than two groups. 

 

G.2 Nested anova [McDonald 2008] 

When to use it 

One uses a nested anova when having one measurement variable and two or more nominal 

variables. The nominal variables are nested, meaning that each value of one nominal 

variable (the subgroups) is found in combination with only one value of the higher-level 

nominal variable (the groups).  Nested analysis of variance is an extension of one-way 

anova in which each group is divided into subgroups and subgroups into sub-subgroups, 

etc.  

 

Null hypotheses 

A nested anova has one null hypothesis for each level. In a two-level nested anova, one null 

hypothesis would be that the subgroups within each group have the same means; the second 

null hypothesis would be that the groups have the same means. 

 

Assumptions 

Nested anova tests, like all anovas, assume that the observations within each subgroup are 

normally distributed and have equal variances. 
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How the test works 

In a one-way anova, the test statistic, Fs, is the ratio of two mean squares: the mean square 

among groups divided by the mean square within groups. If the variation among groups 

(the group mean square) is high relative to the variation within groups, the test statistic is 

large and therefore unlikely to occur by chance. In a two-level nested anova, there are two 

F statistics, one for subgroups (Fsubgroup) and one for groups (Fgroup). The subgroup F-

statistic is found by dividing the among-subgroup mean square, MSsubgroup (the average 

variance of subgroup means within each group) by the within-subgroup mean square, 

MSwithin (the average variation among individual measurements within each subgroup). 

The group F-statistic is found by dividing the among-group mean square, MSgroup (the 

variation among group means) by MSsubgroup. The P-value is then calculated for the F-

statistic at each level.  For a nested anova with three or more levels, the F-statistic at each 

level is calculated by dividing the MS at that level by the MS at the level immediately 

below it. 

 

In the present research, we tested log-transformation for our data; these seemed to produce 

adjustments which satisfied both normality and homoscedasticity assumptions.  We 

therefore used ANOVA tests to test our null hypotheses. 
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G.3 Statistical analysis for the OR study 

In order to show significance in group separation provided by the principal component 

analysis, we implemented a nested variability analysis (procedure-subject-group) in terms 

of distance measures on the PCA space by showing total variability to be the sum of three 

variability components : intrasubject, intragroup, and intergroup, based on the following 

analysis for a 2-dimensional PCA space. 

 

 

 

 

 

By defining: 
xkij : position of trial ‘k’ for subject ‘i’ who belongs to group ‘j’ 
xij : position of center of all trials for subject ‘i’ who belongs to group ‘j’ 
x j : position of center of all trials for all subjects belonging to group ‘j’ 
x : position of overall center for all trials, all subjects, all groups 
 

we then have : 

VT = xki − x( )2
k
∑

i
∑

j
∑ = xkij − xij( )2

k
∑

i
∑

j
∑ + ni xij − x j( )2

i
∑

j
∑ + n j x j − x( )2

j
∑  

 
 

As an example we present the variability computation and significance test for one of our 

operating room analyses. 

intrasubject intragroup intergroup 

x  
xkij

x j  

x ij  
k : trial # nk : total # of trials, all subjects 
i : subject # ni : total # of trials per subject 
j : group # nj : total # of trials per group 
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Based on the PCA algorithm, we first computed the positions of each subject’s trial ( xkij : 

Eik and Rik), each subject’s center ( xij : Ei and Ri), each group’s center ( x j : E and R) and 

the overall center ( x).  

 
 

Point on PC1 
axis 

Point on PC2 
axis 

E11 -3.6362 0.5454 
E12 -0.69 -0.2278 
E13 0.8773 0.0472 
E21 -1.2903 -0.4023 
E22 -2.3522 -0.0706 
E23 -3.7353 -0.1246 
E31 0.0448 -0.0499 
E32 0.434 -0.09 
E33 0.1927 -0.3788 
R11 1.7107 0.032 
R12 0.3482 0.3139 
R13 0.4581 0.267 
R21 1.4062 0.226 
R22 1.1498 0.0122 
R23 1.4617 -0.0041 
R31 0.5337 -0.3256 
R32 1.3706 0.2461 
R33 1.7162 -0.016 

 

 Subjects’ means 
E1 -1.1496 0.1216 
E2 -2.4592 -0.1991 
E3 0.2238 -0.1729 
R1 0.839 0.2043 
R2 1.3392 0.0780 
R3 1.2068 -0.0318 

 

 Groups’ means 
Center E -1.1283 -0.0834 
Center R 1.1283 0.0835 
Overall 
mean -6.1679E-17 5.5555E-06 

 

 

 

 

Distances between each subject’s trial and subject’s center (intrasubject), distances between 

each subject’s center and group’s center (intragroup) and distances between each group’s 

center and the overall center were then calculated (intergroup), and the sum of squares (SS) 

were computed for each component. 



 338

xkij − xij( )2
k
∑

i
∑

j
∑

ni xij − x j( )2
i
∑

j
∑

n j x j − x( )2
j
∑

 

Table1 Distances of each trial w.r.t each subject's mean Dist. square 
E11 2.5224 6.3626 
E12 0.5774 0.3333 
E13 2.0283 4.1140 
E21 1.1865 1.4077 
E22 0.1673 0.0280 
E23 1.2782 1.6338 
E31 0.2172 0.0472 
E32 0.2259 0.0510 
E33 0.2082 0.0434 
R11 0.8886 0.7895 
R12 0.5029 0.2529 
R13 0.3860 0.1490 
R21 0.1624 0.0264 
R22 0.2005 0.0402 
R23 0.1475 0.0217 
R31 0.7344 0.5394 
R32 0.3226 0.1041 
R33 0.5096 0.2597 

   SS - Intrasubject 16.2040 
 

Table2 Distances of subject mean w.r.t group's mean Dist square D^2 * 3 
E1 0.2062 0.0425 0.1275 
E2 1.3359 1.7847 5.3541 
E3 1.3551 1.8364 5.5092 
R1 0.3136 0.0983 0.2950 
R2 0.2109 0.0445 0.1335 
R3 0.1395 0.0195 0.0584 

  SS - Intragroup 11.4777 
 

Table3 Distance of group men w.r.t to overall mean  D^2 D^2 * 9 
Center E 0.4195 0.1760 11.4587 
Center R 2.0432 4.1747 11.4587 

  SS - Intergroup 22.9174 
 

intrasubject 

intragroup 

intergroup 
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We evaluated the null hypothesis that residents and experts all have the same means using a 

nested ANOVA test, and the mean sum of squares (MS) explained by intrasubject, 

intragroup and intergroups components were then plotted. 

H01: Subjects within each group all have the same means 
   

Source of variation Mean square (MS) Degrees of Freedom 

Intrasubject 1.3503 12 
Intragroup 2.8694 4 
   

Fsubgroup P-value F critical at  
α=0.05* 

2.12 0.140 3.26 
   
   
H02: Experts and residents have the same means 
   

Source of variation Mean square (MS) Degrees of Freedom 

Intragroup 2.8694 4 
Intergroup 22.9173 1 
   

F P-value F critical at  
α=0.05* 

7.99 0.047 7.71 
 

* From table of critical values for F distribution 
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APPENDIX H 
PCA and variability analyses using median (25th to 75th ) vs. full percentile ranges (5th to 100th ) 
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