
A System-Level Synthetic

Circuit Generator for FPGA

Architectural Analysis
by

Cindy Mark

B.A.Sc., Queen’s University, 2006

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

Master of Applied Science

in

The Faculty of Graduate Studies

(Electrical and Computer Engineering)

The University Of British Columbia

(Vancouver)

November, 2008

c© Cindy Mark 2008

Abstract

Architectural research for Field-Programmable Gate Arrays (FPGAs) tends to use an

experimental approach. The benchmark circuits are used not only to compare different

architectures, but also to ensure that the FPGA is sufficiently flexible to implement the

desired variety of circuits.

The most common benchmark circuits used for architectural research are circuits

from the Microelectronics Center of North Carolina (MCNC). These circuits are small;

they occupy less than 3% [5] of the largest available commercial FPGA. Moreover, these

circuits are more representative of the glue logic circuits that were targets of early devices.

This contrasts with the trend towards implementing Systems on Chip (SoCs) on FPGAs

where several functional modules are integrated into a single circuit which is mapped

onto one device.

In this thesis, we develop a synthetic system-level circuit generator that connects pre-

existing circuits in a realistic manner to build large netlists that share the characteristics

of real SoC circuits. This generator is based on a survey of contemporary circuit designs

from industrial and academic sources. We demonstrate that these system-level circuits

scale well and that their post-routing characteristics match the results of large pre-existing

benchmarks better than the results of circuits from previous synthetic generators.

ii

Table of Contents

Abstract . ii

Table of Contents . iii

List of Tables . vi

List of Figures . vii

List of Programs . viii

Acknowledgements . ix

1 Introduction . 1
1.1 Motivation . 1
1.2 Research Goals . 3
1.3 Research Approach . 4
1.4 Organization . 4

2 Background . 6
2.1 FPGA Architecture . 7
2.2 Circuit Synthesis for FPGAs . 10
2.3 FPGA Architectural Experimentation 13
2.4 Benchmark Circuits . 14

2.4.1 Benchmark Suite Requirements 14
2.4.2 Circuit Suites . 16
2.4.3 Open Source Circuit Repositories 17
2.4.4 Synthetic Circuits . 17

2.5 Focus and Contribution of Thesis . 26

3 Circuit Analysis . 27
3.1 Overview . 27
3.2 Circuit Model . 28

3.2.1 Definition . 28
3.2.2 Fine-Grained Connections . 29

3.3 Survey Process . 30
3.3.1 Circuit Hierarchy . 31
3.3.2 Network Types . 33

iii

Table of Contents

3.3.3 Leaf Modules . 34
3.3.4 Network Composition . 36

3.4 Summary . 37

4 Circuit Generation . 39
4.1 Generator Overview . 40
4.2 Primary Parameter Generation . 41

4.2.1 No Primary Parameters Specified 42
4.2.2 All Primary Parameters Defined 47
4.2.3 Some Primary Parameters Specified 47

4.3 Detailed Circuit Structure Generation 49
4.4 Circuit Construction . 54

4.4.1 Network Construction . 56
4.4.2 Single Bit Net Construction . 61

4.5 Generation Mechanics . 62
4.6 Summary . 63

5 Validation and Characterisation . 64
5.1 Overview of Experimentation Methodology 64
5.2 Comparison to Previous Circuit Generators 66

5.2.1 Experimental Methodology . 66
5.2.2 Experimental Results . 67
5.2.3 Summary . 74

5.3 Validation against eASIC circuits . 74
5.3.1 Experimental Methodology . 75
5.3.2 Experimental Results . 79
5.3.3 Summary . 83

5.4 Characterisation . 83
5.4.1 Mismatched Pins . 83
5.4.2 Network Type . 85
5.4.3 Rent Parameter for Heterogeneous Circuits 87

5.5 Summary . 88

6 Conclusions . 89
6.1 Summary . 89
6.2 Summary of Contributions . 90
6.3 Future Work . 91

Bibliography . 94

Appendices

A Surveyed Circuits . 99

iv

Table of Contents

A.1 Microprocessor . 99
A.2 Networking . 101
A.3 Multimedia . 102
A.4 Miscellaneous . 104

B Bus Interface Pins . 105

C Network Type Experiment Results . 106

D SoC Post-Placement Example . 109

E eASIC Post-Routing Results . 112

v

List of Tables

3.1 Average Number of Networks per Level 32
3.2 Network Type Distribution . 34
3.3 Dataflow Dimensions . 35
3.4 Module Type Distribution . 35
3.5 Modules with Internal Memory . 36
3.6 Composition of Leaf Module Types per Hierarchy Level 38

4.1 Primary Parameters . 41
4.2 Primary Parameters and Primary Parameter Constraints 42
4.3 Possible Combinations of User Input . 48

5.1 Comparison between Generators . 68
5.2 eASIC Benchmark Suite . 75
5.3 Additional Larger Synthetic Circuits . 79
5.4 Comparison between Network Types . 86

B.1 Slave Bus Interface . 105
B.2 Master Bus Interface . 105

C.1 Characterisation of Network Types: Circuit Properties 107
C.2 Characterisation of Network Types: Post-Routing Results 108

E.1 eASIC 1 Post-Routing Results . 112
E.2 eASIC 2 Post-Routing Results . 112
E.3 eASIC 3 Post-Routing Results . 112
E.4 eASIC 4 Post-Routing Results . 113
E.5 eASIC 5 Post-Routing Results . 113

vi

List of Figures

1.1 Example SoC . 2

2.1 FPGA Cluster . 8
2.2 FPGA Architecture . 9
2.3 Circuit Synthesis Process for FPGA . 10
2.4 Architecture Design Cycle . 13
2.5 GEN Validation Process . 20

3.1 Application of the Circuit Model to an Example SoC Circuit 28
3.2 Hierarchy Depth Distribution . 31
3.3 Number of Networks at Hierarchy Depth 1 32
3.4 Example Network Block Diagrams . 33
3.5 Distribution of the Number of Leaf Modules for each Network Type . . . 37

4.1 Circuit Generation Flow . 40
4.2 Example Sub-Module Connection . 55
4.3 Example Dataflow Network Construction 59
4.4 Example Star Network Construction . 61
4.5 Reset and Interrupt Structures . 62

5.1 Sample Synthetic Circuit from our Tool after Placement 70
5.2 Sample Gnl Circuit after Placement . 71
5.3 Sample GEN Circuit after Placement . 72
5.4 eASIC Memory Block Transformation . 77
5.5 7-input LE Transformation . 78
5.6 Number of Nets Post-Clustering Comparison 80
5.7 Average Net Length Comparison . 81
5.8 Channel Width Comparison . 82
5.9 Critical Path Comparison . 82
5.10 Circuit Size versus Circuit I/O . 84

D.1 Example of SoC Post-Placement Logic Locality 109

vii

List of Programs

4.1 Pseudocode for Network Type Allocation 50
4.2 Pseudocode for Allocation of Leaf Modules 51
4.3 Pseudocode for Hierarchy Depth Dependent Leaf Module Type Probability 53
4.4 Pseudocode for Circuit Construction . 57

viii

Acknowledgements

I would like to thank my supervisor Professor Steve Wilton for his patience and guidance

these two last years. He is truly dedicated to the development of his students and he

was always ready to give help and advice. I am proud to say that I learnt a lot under

his supervision.

I would also like to acknowledge the students in the SoC group; you were always there

to help and to lend a listening ear through all the tough times. I’d like to single out Scott

and Dave who were incredibly helpful during this research. In particular, I would also

like to thank those SoC students who started at the same time as I did: Andrew, Paul,

Darryl, Darius, and Johnny. We shared the same ups and downs and it was comforting

to know that I was not facing the challenges of the two past years alone.

I would like to thank my fellow residents at Green College, notably Tal and Nicolas,

who kept me on an even keel. Without you, this thesis would have taken much longer to

finish.

Lastly, I would like to dedicate this work to my family for their unflagging support

and encouragement.

ix

Chapter 1

Introduction

1.1 Motivation

In the past twenty years, the density of Field-Programmable Gate Arrays (FPGAs) has

increased by 200x [59]. This increase in density has led to new architectures; modern FP-

GAs look significantly different than their early predecessors. The routing architecture

has evolved from a homogeneous gridded network to include a variety of elements. The

logic architecture now consists of “fracturable” lookup-tables arranged in large tightly-

connected clusters. This continued evolution of FPGA architectures is essential to sup-

port the increasing computation requirements of digital systems.

The development of these new architectures often employs an experimental method-

ology. A potential architecture is modelled, benchmark circuits are mapped to the ar-

chitecture, and detailed models are used to evaluate the density and speed [7], and the

power [50] of the implementation. A critical part of this experimental methodology is

the set of benchmark circuits. These circuits must be representative of the circuits that

will eventually be implemented on the FPGA. However, most benchmark suites used

today are more representative of the glue logic circuits that were targets of early devices.

Circuits from the Microelectronics Center of North Carolina (MCNC) have become al-

most ubiquitous in recent publications, yet even the largest of these circuits contains

only 7694 logic elements [65], which is approximately 2.3% of the largest available Altera

Stratix III [5]. Other benchmark circuits are available (e.g. [13]), however, even these

1

Chapter 1. Introduction

are significantly smaller than those that will be implemented in future devices. Com-

mercial vendors have large databases of circuits, but also report that obtaining circuits

representative of those that will be implemented in next-generation devices is a challenge.

CPU

Cache

Scratchpad

Bridge

IP IP

Memory

IP

IP

bus

bus

IP

Figure 1.1: Example SoC: System with two hierarchical levels

A potential solution is to use stochastically-generated benchmark circuits [22, 26, 27,

33, 56]. Typically, these circuits are created using a circuit generator which randomly cre-

ates netlists according to constraints that ensure the netlists share many of the structural

characteristics of real circuits. Although these circuits are not “real”, this approach has a

number of advantages: an FPGA architect can generate as many circuits as desired, the

circuits can be of any size, and often the generator can be further tuned to create only

circuits with certain properties (e.g. datapath circuits in [33]). This latter advantage is

critical during early architectural evaluation, when it is important to understand what

types of circuits work well and what types do not work well. A generator that can create

structures with a particular property can be an invaluable aid as new architectures are

uncovered and evaluated.

These stochastically-generated circuits, however, must be realistic. Most existing gen-

erators build circuits using a “bottom-up” methodology using predetermined structural

parameters and/or Rent’s Rule. The resulting circuits realistically model glue-logic con-

trol or datapath circuits. However, circuits implemented on today’s FPGAs are typically

entire systems consisting of processors and intellectual property (IP) modules connected

2

Chapter 1. Introduction

using buses and on-chip networks. Often, the blocks contain several sub-blocks also con-

nected using buses or networks; an example system is shown in Figure 1.1. It is unclear

how well circuits generated using previous techniques reflect systems designed using such

hierarchical system-on-chip (SoC) techniques.

1.2 Research Goals

This thesis presents a circuit generator which creates benchmark circuits that better reflect

the system-level circuits that are being implemented on today’s FPGAs. The focus is on

the interconnect between the functional modules of the circuit. The generator stitches

together smaller circuits using common connection patterns.

More specifically, the generator has the following characteristics:

• It is based on results from a survey of contemporary circuits.

• It creates circuits by combining modules using bus, dataflow, or star connection

patterns as described in Chapter 3.

• The generated circuits are hierarchical; the modules can themselves consist of sub-

modules connected by buses or networks.

• At the lowest hierarchical level, the modules are obtained from existing benchmark

suites (such as MCNC circuits), or from previous circuit generators.

• Key parameters such as the number of hierarchical levels and the number of modules

in the circuit can be given as constraints to the generator, allowing the user to

generate circuits that reflect current and future system-on-chip circuits.

• If these parameters are not specified by the user, the generator is able to stochas-

tically choose reasonable values. If partial information is provided, the parameters

will be determined using the other data.

3

Chapter 1. Introduction

1.3 Research Approach

There were three stages to this research. First, we performed a careful structural analysis

of existing circuits described in recent academic publications and industrial datasheets.

We analysed 66 circuits and recorded quantities such as the number of hierarchical levels,

the number of sub-modules, and the interconnection pattern between these sub-modules

in each level and the types of the sub-modules. Where possible, we measured the corre-

lation between the various quantities.

Second, we developed a circuit generator that stitches together smaller circuits in a

hierarchical manner using common connection patterns. The generator was calibrated

using the results of the circuit analysis described above. The generation algorithm was

developed to ensure that the modules are connected as realistically as possible. The

algorithm also tries to ensure that there is enough variety between circuits so that the

resulting suite of circuits is suitable for FPGA architectural experimentation.

Third, we characterised the circuits created by the generator. Using academic CAD

tools, we mapped our circuits to a model FPGA, and measured key quantities such

as wirelength and channel width. We repeated the experiment for circuits generated

by previous circuit generators, as well as “real” benchmark circuits obtained from a

structured ASIC company. In doing so, we show that our circuits are more similar to

these “real” circuits than circuits built by previous generators.

1.4 Organization

This paper is organized as follows. Chapter 2 covers background relevant to the thesis,

and describes previous synthetic circuit generators. A new model to encode the structure

of SoC circuits is described in Chapter 3 and it is applied in a survey of contemporary

SoC circuits. Chapter 4 uses the data found during the survey to design and calibrate

4

Chapter 1. Introduction

a synthetic circuit generator. Characterisation and validation of these synthetic system-

level circuits are shown in Chapter 5. Finally, Chapter 6 concludes. Much of this work

was published in [41]

5

Chapter 2

Background

Unlike application specific integrated circuits (ASICs) which are designed to implement

a single circuit, FPGAs are generic platforms that can implement many digital circuits.

By using configurable look-up tables to implement logic functions, and memory cells to

control signal routing, the FPGA can implement a variety of functions. More flexibility

increases the range of circuits that can be implemented; however, this flexibility comes

at a cost since these configurable elements consume power and area. A good architecture

will have as little flexibility as possible while still allowing circuits to be successfully im-

plemented. The FPGA architect has the challenge of balancing flexibility and overhead.

To determine whether a circuit can be efficiently implemented on a particular FPGA

architecture, the circuit must be mapped onto it. While analytical tools are useful to

predict the characteristics of the mapped circuit, researchers validate architectures ex-

perimentally. Benchmark circuits are particularly important for FPGA evaluation. They

not only form a set of common reference points used to compare different architectures,

but they also test the flexibility of the device. A good benchmark suite should be a

representative sample of the structures that should be successfully implemented on the

FPGA.

This chapter first reviews modern FPGA architectures in Section 2.1 and a typical

synthesis flow in Section 2.2. It then discusses FPGA architecture experimentation in

Section 2.3, the ensuing benchmark requirements in Section 2.4.1, and lastly, existing

benchmark sources in Sections 2.4.2 to 2.4.4.

6

Chapter 2. Background

2.1 FPGA Architecture

An FPGA is a configurable integrated circuit. It is composed of programmable logic

elements (LEs) that implement boolean functions, and routing elements that connect

the parts together [8]. A recent trend is the addition of hard blocks that implement

complex logic functions [3]. The programmability of the logic elements and the routing

allow an FPGA to represent a wide variety of logic designs. There are several types of

FPGA architectures. The most common commercially used architecture today is the

island-based architecture which is described in this section. Other possible architectures

are row-based and hierarchical [7, 8].

A LE is the basic building block of the FPGA. It contains a lookup table (LUT) and

a flipflop (FF). Figure 2.1 shows several LEs connected into a cluster [7]. By changing

the values held in the static random access memory (SRAM) cells of the lookup table, a

k-input lookup table can be programmed to implement any k-input logic function. The

output of the lookup table can be stored in a flipflop to implement sequential logic.

Small groups of LEs are connected using an interconnect matrix into clusters [7]. The

clusters are tiled across the FPGA, and a second level of programmable routing connects

all the clusters. The intracluster routing is faster than the intercluster routing because

the wires are shorter and have less parasitic capacitance. Although increasing the size of

the cluster leads to a reduced number of signals being routed using intercluster wires, this

benefit is counterbalanced by the rapid increase in area used by the intracluster routing

as the cluster size grows.

First generation FPGAs consisted of a homogeneous array of clusters. Today, most

FPGAs have a heterogeneous fabric that includes hard blocks such as multipliers, carry

chains, memories, and possibly entire processors (CPU) [1, 38, 64]. While including these

resources adds complexity to the synthesis process, an implementation using hard blocks

is faster and uses less area than an implementation using lookup tables. The result is an

7

Chapter 2. Background

L U T
F F

F F

k i n p u t s

L E

L E

L E

C l u s t e r I n p u t s

L U T

L U T
F F

C l u s t e r O u t p u t s

Figure 2.1: FPGA Cluster

increase in the efficiency of the FPGA. These benefits are only realized, however, if the

hard blocks are used; otherwise, they occupy space that could be used for more general-

purpose configurable logic [28]. To justify adding a hard block, the possible gains must

offset the proportion of circuits that would not make use of this resource.

The intercluster routing fabric in an FPGA consists of wire segments, and the switches

necessary to connect the wires both to each other, and to the clusters. The wire segments

can be of different lengths, ranging from the width of one cluster to the full width of the

chip [8]. Wire segments lie in tracks. Several tracks lie in parallel in each channel, and

the channels cross the chip in the horizontal and vertical directions between the clusters

as seen in Figure 2.2.

Programmable switches are used to connect wires together to make a path between

a source and its sinks. A switch can be implemented using pass transistors or tristate

buffers. Each switch can connect a pair of wires and the settings for these switches are

stored in memory, so the connections are programmable [7].

These switches can be found in the connection block and the switch block. The output

8

Chapter 2. Background

 C l u s t e r C l u s t e r

C l u s t e rC P U

S w i t c h
B l o c k

C h a n n e l

C o n n e c t i o n
B l o c k S w i t c h

B l o c k

S w i t c h
B l o c k

S w i t c h
B l o c k

Figure 2.2: FPGA Architecture

from a logic element is connected to the output of the cluster. Each cluster connects to

the wires in a channel through the connection block. The connection block contains a

number of switches that can each connect a cluster pin to a particular track [37]. The

switch block is a set of programmable switches found at the intersection of the channels

that allows a signal to change tracks. This allows the signal to turn corners or to continue

straight in order to reach its destination.

The connection block and the switch block both have switches for only a subset of

the possible connections. Although this limits the flexibility of the circuit, it reduces the

area occupied by the routing. Several studies [9, 37, 43] have investigated the effect of

different switch patterns on the routability of circuits.

The area occupied by the routing channels forms the majority of the area on an

FPGA. A reduction in the width of the channel leads to significant area savings but the

FPGA area may actually be used more effectively if it has more routing elements [37].

A patch of dense connectivity in the netlist might require that these LEs be placed over

more area so that more routing elements are available [67, 58]. In the worst case, if the

channel is too narrow, the circuit cannot be routed at all.

9

Chapter 2. Background

2.2 Circuit Synthesis for FPGAs

B e h a v i o u r a l D e s c r i p t i o n

H i g h L e v e l S y n t h e s i s

T e c h n o l o g y M a p p i n g

T e c h n o l o g y I n d e p e n d e n t
L o g i c O p t i m i z a t i o n s

C l u s t e r P a c k i n g

P l a c e m e n t

R o u t i n g

S y n t h e s i z e d C i r c u i t

L o g i c G a t e s

L o g i c S y n t h e s i s

P h y s i c a l d e s i g n

N e t l i s t o f L o g i c E l e m e n t s

Figure 2.3: Circuit Synthesis Process for FPGA

Figure 2.3 summarises the steps used to translate a circuit from a high level descrip-

tion to an FPGA implementation. Each of these steps is computationally complex, so

heuristic algorithms are used. The implementation obtained, however, is usually sub-

optimal [7]. Measuring the effectiveness of a particular architecture is inextricably linked

to the effectiveness of the synthesis algorithms.

A designer creates a behavioural description of the circuit, usually in a hardware

description language (HDL). The high level synthesis algorithms analyse the code and

10

Chapter 2. Background

decompose the circuit into simple register transfer level (RTL) gates [16].The first step in

the process is to translate the behavioural code into simple operations. Some optimisa-

tions such as loop unrolling are performed. Then, the operations are scheduled to specific

cycles and allocated to resource units. Often however, designers will work directly at the

RTL level, rather than use high-level synthesis.

Next, during the logic synthesis process, technology independent logic optimisation is

performed to simplify the logic expressions. The operations are then mapped to lookup

tables. Nodes are grouped together such that the group’s inputs and outputs do not

exceed the maximum number allowed. Mapping often uses cut-based algorithms. This

process can be optimised for the depth of the logic (the potential critical path) [12], or

for the logic area by packing as many operations as possible into one lookup table [45].

At this point, the circuit has been transformed to a netlist of blocks and nets.

During physical design, the logic elements are first packed into clusters. Ideally,

related LEs are grouped inside the same cluster thus maximising the use of the faster

intracluster routing [37].

These clusters are then assigned a location in the FPGA fabric such that factors like

the distance between connected clusters, and the density of the nets across the FPGA

are optimised. The closer the connected clusters, the shorter the possible net length and

the lower the expected delay.

Two common techniques used to perform FPGA placement are simulated annealing

algorithms and analytic methods. Simulated annealing [51] first places the clusters ran-

domly onto the FPGA. It uses a cost function to represent the optimality of the current

solution. The cost is proportional to the distance between connected clusters. Pairs of

clusters are randomly selected and swapped. If the move results in a lower cost, the

swap is accepted. If the move results in a higher cost, the move may still be accepted

with a certain probability. The probability of accepting a poor move decreases in later

11

Chapter 2. Background

iterations so that the solution converges. In contrast, analytical methods first derive a

series of quadratic equations that describe the sum of the net lengths attached to each

cluster. Variables are used to describe the cluster locations. Since the solution allows

clusters to be placed on a continuous axis, the challenge is to maintain a good solution

while legalising the solution so that the clusters are at discrete positions [30].

The last step in physical design is to route the nets. Routing can be done using a

two-step or a one-step process. The two-step process consists of global routing followed

by detailed routing. In global routing, the nets are assigned to specific channels. In

detailed routing, specific tracks and routing elements are allocated to each net. While

this method is frequently used in ASIC design, the limited routability in FPGAs is more

easily dealt with using one-step routing. A common algorithm used to perform single step

routing is negotiated congestion [18]. In this method, each routing element is assigned

a cost and nets are routed using the minimum cost path. If there is congestion on a

particular routing element, the cost of that element increases. All the paths are removed,

and every net is rerouted using the new cost until all the paths are successfully routed.

Once this sequence is finished, the resulting circuit has been converted to a bit stream

that can be used to program an FPGA.

T-VPACK/VPR is a commonly used academic suite for physical design. VPR has

been recently updated to use uni-directional wires and to allow heterogeneous blocks [34]

which results in a more realistic representation of a modern FPGA. This updated suite

is used in this research. T-VPACK packs the LEs into clusters such that the number of

intercluster nets on the critical path is minimized [42]. VPR uses simulated annealing to

perform placement and negotiated congestion to perform routing [7].

12

Chapter 2. Background

2.3 FPGA Architectural Experimentation

An FPGA architecture research project starts with the researchers devising a new ar-

chitecture. To take advantage of the architecture’s new features, the synthesis software

often needs to be modified. The benchmark circuits are synthesised to the FPGA, and

then the area, timing and power characteristics of the circuits are measured and eval-

uated. If necessary, modifications are made to the architecture, and the cycle restarts.

This process is shown in Figure 2.4.

P r o p o s e A r c h i t e c t u r e

D e v e l o p / M o d i f y
S y n t h e s i s S o f t w a r e

E v a l u a t e A r c h i t e c t u r e

S y n t h e s i z e B e n c h m a r k
C i r c u i t t o F P G A

C o l l a t e R e s u l t s

Figure 2.4: Architecture Design Cycle: The inner loop iterates over the circuits in the
benchmark suite. The outer loop iterates until the researcher is satisfied with the results.

The primary metrics for evaluating the architecture of an FPGA are speed, area and

power. Speed can only be measured after the circuit has been implemented on the actual

device, but estimates can be obtained after the routing stage when the critical path is

known. The logic depth of the circuit can be used to estimate the critical path, but since

interconnect delay is generally the most significant component in circuit speed, these

estimates are best made after routing.

Area can be measured after routing. At this stage, the circuit has been fully synthe-

sised, and a list of all the elements necessary to implement the design has been compiled.

13

Chapter 2. Background

Area is highly sensitive to the high level algorithms used to convert the behavioural

code into logic elements. Poor algorithms will result in unnecessary logic elements being

generated. As synthesis progresses, there is generally less opportunity to reduce the area.

Measuring the power requires a chip to be built which is costly. As a result, most

architectural experiments place and route the benchmark circuits and estimate the power

consumption. Although transistord-level simulation of a configured FPGA device is the

most accurate method, few researchers use this method because of the time necessary to

simulate a circuit in that detail. Most FPGA researchers use gate-level power estimation.

The majority of the power in an FPGA is dissipated in dynamic switching [15], so it is

important to estimate the activity of the signals. The estimations can either be based on

simulation or probabilitic methods [46]. Both of these methods depend upon the logic

functionality of the circuit.

In addition to speed, area, and power, an FPGA architecture is also judged by its

flexibility. The great advantage of FPGAs is its ability to effectively implement a wide

range of circuits; therefore, an architecture that fails on a pathological circuit structure

is much less useful. Consequently, an FPGA architecture must be tested against a wide

variety of circuits. The broad variation in circuit structures makes it extremely challeng-

ing to analytically characterise the area, speed, and power results for a general circuit.

New analytical tools are now available that can help predict the characteristics of the

architecture [35, 19]; however, new architectures are usually still validated experimentally.

2.4 Benchmark Circuits

2.4.1 Benchmark Suite Requirements

As discussed in the overview, the suite of benchmark circuits represents the range of cir-

cuit structures that are expected to be implemented on the device. The ideal circuit suite

14

Chapter 2. Background

should have a wide range of circuit structures in order to test the proposed architecture

over as many different cases as possible.

The circuits need to show realistic properties after synthesis to an FPGA. In order

measure the area and routing, only the structural properties of the circuits need to

be realistic. To estimate power using activity estimation, the circuit also needs to be

functional so that the logic values can propagate correctly through the circuit.

In architectural experiments that make fine-grained changes to the FPGA fabric,

each change is replicated many times over the FPGA. A medium size circuit might be

large enough to cover several of these instances when implemented on the device. This

circuit, when synthesised, would then provide several different test cases. A coarse-

grained change to the FPGA might be replicated only a few times and a synthesised

circuit might only be placed over one of these instances. Each benchmark then would

represent only one test case.

Larger circuits would generate more test cases per synthesised circuit. In some exper-

iments, it would also allow trends to be evaluated over a greater range of sizes. Circuits

with specific structural properties would have a limited variety of test cases, allowing

a narrow set of conditions to be investigated more deeply. This additional information

would help develop better insight into the properties of the architecture.

These circuits should be in a common format. The Berkeley Logic Interchange Format

(BLIF) is commonly used to represent the netlist of a circuit. It is supported by many

academic tools, but it does not include all modern circuit features. HDL formats such as

Verilog or VHSIC Hardware Description Language (VHDL) are also popular, but these

formats are designed for detailed description of circuits and so may contain complex

structures that may not be supported by academic tools.

15

Chapter 2. Background

2.4.2 Circuit Suites

A common source for benchmark circuits are circuit suites, notably the suite from MCNC.

These circuits were collected in the 1980’s. This suite comprises 205 circuits ranging in

size from 24 LEs to 7694 LEs, and covers several applications, but the majority of the

circuits, at least 85 of the 205 circuits, are state machines or arithmetic logic [65]. Only

the 77 multilevel benchmarks were originally available in BLIF formats, but some of the

others have also since been converted into BLIF files. Although these circuits are small,

their ease of use and wide acceptance make them a popular choice for comparison.

The Quartus University Interface Program (QUIP) benchmark suite [13] is more

recent. It currently contains 45 real circuits. This suite was released by Pistorius et al.

in [48] where they proposed the addition of a “black box” directive to the BLIF format

which would represent hard blocks. Although these circuits are much larger (134,341

LEs) than the MCNC circuits (7694 LEs), only 7 of them can be synthesised to standard

BLIF files, and of those the largest is 9,867 LEs.

Adoption of the “black box” directive would allow researchers to take advantage

of circuit suites that are released by the ASIC community such as the International

Symposium on Physical Design (ISPD) 2007’s placement and routing benchmarks and

the International Conference on Computer Aided Design (ICCAD) 2004’s mixed-size

placement benchmarks.

The eASIC suite is a recently released suite that provides a series of 5 ASIC netlists [17].

Their large size, from 125k to 1.01M elements, attraceive for FPGA research. However,

they are composed of logic cells that do not translate well to FPGA structures.

These ASIC suites are regularly updated, although they only include a few circuits

with each release, and the circuits require conversion to BLIF files to be used for FPGA

synthesis.

16

Chapter 2. Background

2.4.3 Open Source Circuit Repositories

OpenCores [47] is an online repository of open source circuits, often written in an HDL

language. It contains a wide range of circuits and is frequently updated, however, con-

verting circuits into BLIF files is tedious. The circuits in the repository tend to be single

function logic cores which are intended to be stitched together by the user to form more

complete circuits. As a result, the circuits found in the repository are small; one of the

processors contains 5,166 LEs.

2.4.4 Synthetic Circuits

There have been several previous attempts to generate synthetic circuits. These gener-

ators were constructed assuming a homogeneous circuit structure; as described in the

introduction, this may not match the structure of large system-level circuits. There is

little information about how well these circuits scale, since most of the circuits are vali-

dated against the MCNC benchmarks. An advantage of synthetic benchmark circuits is

that they can be “made to order” while other circuit sources are inflexible. The approach

used by previous generators can be divided into two different approaches, bottom up and

mutation.

Rent Parameter Many of these generators attempt to ensure that the Rent parameter

of each output circuit is reasonable. The Rent parameter is used in Rent’s rule and the

parameter is an indicator of the interconnect complexity of a circuit. Rent’s rule is

an experimentally observed relationship between the size of subcircuits returned after

partitioning and the number of I/O pins in the subcircuits [36]. The relationship is

described by the following equation

T = tgp

17

Chapter 2. Background

where T is the number of pins, t is a constant scalar, g is the size of the subcircuit, and

p is the Rent parameter.

The Rent parameter is often measured using recursive partitioning. According to

Rent’s rule, the value of the parameter should be constant as partitioning proceeds. As

shown in [36], however, when the subcircuits are large, the measured p tends to be lower

than when the subcircuits are smaller. This observation is attributed to the efforts of

circuit designers to restrict the number of I/O in the circuit to what can fit on the

perimeter of a minimum-size chip. In [53], it was shown that when partitioning very

small subcircuits p is higher. This is attributed to the lack of hierarchy in the logic of

these small subcircuits.

In all cases, measurement of the Rent parameter is highly dependent on the method

used to partition the circuits. A poor partitioner can return partitions with high pin

counts thus skewing the measured Rent parameter. The work in [23] therefore proposes

the concept of an intrinsic Rent parameter p∗ which is the minimum possible Rent pa-

rameter over any partitioning of that circuit.

Bottom Up

GEN Hutton [27, 26] developed a generator (GEN) using an empirical approach that

was later extended by Kundarewich [33]. The generator is based on a number of structural

circuit characteristics. The characteristics used are the circuit size (nodes and edges),

the number of external inputs and outputs (I/Os), the node shape (the ratio of nodes

at each delay level), the edge shape (the relative distribution of edges between delay

levels), the fanout distribution, and the reconvergence (a function of the nodes’ output

cones). A complementary program, CIRC, was developed to measure the value of these

characteristics for an existing circuit.

Typically, a circuit is first characterised using CIRC to obtain a specification file that

18

Chapter 2. Background

describes that circuit’s properties. This file becomes the input to GEN which builds a

circuit “clone” matching the described properties. The researcher can manipulate the

values in the specification file to tune the properties of the generated clone. The generator

can also assign reasonable values for parameters that the user has left blank.

The generation process has two stages. First, the values in the specification file are

defined if the user left them blank; then, the circuit is generated from this description.

The distributions used to generate values for the blank parameters are based on the

structure of MCNC circuits. The Rent parameter is used to determine the number of

I/Os, but the other parameters depend on the circuit size.

The algorithm next allocates the nodes and edges to a logic delay level according to

the node shape and the edge shape respectively. The values for all four of these variables

are defined in the specification file. Next, the edges are assigned a length. The length of

an edge is defined as the number of logic levels the edge crosses.

The generator then connects these elements into a complete circuit in a multistep

process. The edges are first assigned to the different levels. Each level is assigned a

number of fanout degrees, one degree for each edge in this level. Next, the nodes within

each level are assigned an index. The next step pairs each node with an edge and a

fanout degree. Lastly, a sink is assigned to each edge. The output pins are generated

in a final step. The outputs of the nodes on the bottommost delay level are assigned to

external pins, and any remaining unconnected external pins are driven by random nodes.

Locality is used to help constrain the generation so that the connections are not

completely random. Note that the nodes on each level are ordered. This affects the

generation in two ways. First, the allocation of fanouts to each individual node is done

such that the high fanout values tend to be given to the central nodes in each level.

Second, the locality affects the allocation of sinks. The nodes on the source level and

the nodes on the sink level are divided into a number of intervals equal to the locality

19

Chapter 2. Background

parameter. For each edge, the sink node in the interval closest to the source node is

selected.

To validate this work, the post-routing results of the cloned circuit were compared to

the results of the original circuits using the process shown in Figure 2.5. The difference

between the results for these two circuits averaged between 17% for the wirelength, and

12% for the critical path delay using the hierarchical extension. There is no investigation

into the effects of increasing circuit size.

M C N C C I R C G E N

V P R

C L O N E

V a l i d a t e :
C o m p a r e R e s u l t s

S p e c i f i c a t i o n
F i l e

Figure 2.5: GEN Validation Process

The post-routing results of the generated clones were also compared to the post-

routing results of random netlists. They found that the structural characteristics of the

random circuits did not match patterns observed in the MCNC circuits, and that these

circuits were universally harder to place and route than MCNC circuits of equivalent size.

In the first extension [26], the generator was modified to produce both combinational

circuits and sequential pipeline-style circuits. To generate sequential circuits, a number

of combinational subcircuits are defined and generated. Registers are placed between the

subcircuits so that the result is a pipelined, sequential circuit.

With the extension developed by Kundarewich [33], GEN can also use partitioning

information to develop hierarchical circuits, although the ability to automatically choose

circuit characteristics was lost. CIRC extracts additional information related to the

clustering of the circuit, such as the number of intercluster edges, and the probability

20

Chapter 2. Background

that the outputs of a cluster connects to flipflops or combinational nodes of the subsequent

cluster. This information is used to connect the individually generated clusters together

into one macro-circuit.

Gnl Stroobandt’s generator Gnl [54] uses an analytical approach. The circuit model

is based on Rent’s rule and on the ratio of multiterminal nets in a circuit. The nodes

are recursively clustered in pairs while maintaining the desired Rent parameter. These

circuits were developed to test partitioning algorithms so the primary validation metric

is the degree to which the synthetic circuits’ Rent parameter matches the desired values.

Since the Rent parameter is different at various levels of the circuit [36, 53], Gnl allows

the user to specify the Rent parameter for specific levels of the circuit. Stroobandt obtains

the ratio of multiterminal blocks from [32] which states that 75% of the nets in ASIC

designs are 2 and 3 terminal nets and from further research by [55] which proves that

given Rent’s rule, the distribution of net degrees follows a power law decay. Stroobandt

uses the same distribution for the block terminals, with 75% of the blocks having 2 or

3 terminals and a power law decay distribution for blocks with an increasing number of

terminals.

In Gnl, the user provides a specification file describing the library, the population

of each library element in the circuit, and a step function describing the generation

constraint that will be active when the circuit reaches particular sizes. Each library

element is described by the number of its input and output terminals. The constraints

that can be specified by the user are the Rent parameter, the number of I/O pins, and

the ratio of input to output pins.

The nodes are clustered recursively in pairs. First, the number of external terminals

for the resulting cluster is calculated using the size of the component clusters (sub-

clusters) and the Rent parameter. Again, using the Rent parameter, limits are derived

for the number of connections allowed between the sub-clusters. Limits for nets that stay

21

Chapter 2. Background

purely inside the cluster, nets that connect outside of the cluster, and nets that connect

both within the cluster and outside the cluster are considered. Using a predefined ratio

of external to internal connections, the connections are distributed such that the limits

are obeyed.

The limits imposed on the number of connections per block ensure that the resulting

circuit adheres to Rent’s rule. However, problems can arise if the number of I/Os specified

by the user is low. The number of inputs is easily reduced by merging pins together, but

outputs can only be removed by connecting them to inputs. In order to obey the ratio

of input pins to output pins, the circuit will connect the output pin of a sub-cluster to

the input pin of the same sub-cluster thus generating combinational loops. This problem

becomes more frequent as the circuit grows larger.

Extensions were added to improve the structural characteristics of the circuits. In

order to make the work more suitable for timing-aware experimentation, [62] adds flipflops

when necessary to control the logic depth. Stroobandt compares the resulting average

wirelength both before and after placement with the ISPD98 benchmarks, but there is

no comparison of the maximum path length. In another extension, some randomness is

added to the number of terminals of each cluster so that the Rent parameter does not

adhere so closely to the specified value, but rather shows some variation as might be

expected in a real circuit [62]. This extension also allows the user to specify subcircuits

as part of the library thus allowing heterogeneity to be explicitly defined in the circuits.

PartGen Pistorius’s work in [49] is the most similar to the work described in this thesis.

Pistorius assumes that circuits are composed of several different kinds of logic: regular

and combinational, irregular and combinational, memory, controller, and interconnection,

each of which has its own properties. By varying the proportion of these various types

of logic, this generator is able to mimic different kinds of circuits in a realistic and

controllable manner. The tool joins together sections of logic on a per bit basis into

22

Chapter 2. Background

primary circuits.

The tool is based on the composition of five industrial netlists. This work was devel-

oped to test the partitioning of circuits onto multi-FPGA systems; therefore, the circuits

are validated by comparing the number of FPGAs necessary to implement a circuit built

by GEN versus the equivalent circuit built by Partgen. The regular combinational logic is

created using a multiplier generator. GEN is used to generate the irregular combinational

logic, while the memory and the controller logic are represented using predefined func-

tional elements. The interconnection is generated as necessary to connect the modules

but the properties and the realism of this logic is never explicitly investigated.

Tom Method Another synthetic circuit generator was described in [57]. This genera-

tor was developed in order to build circuits to help the development of a new logic block

clustering algorithm. This generator builds large circuits by randomly connecting BLIF

subcircuits. These circuits were built by connecting the I/Os either in pipeline-style

where the outputs of one block are driven to the inputs of a successor block, clique-style

where the outputs of each block are distributed to the inputs of the other blocks, or

independent-style, where no connections are made between the blocks. These algorithms

result in circuits that contain a large number of I/O pins. The generator was never

explicitely evaluated in [57].

Mutation

Another method to generate circuits is the mutation approach. The most recent such

work is Perturber [22], which modifies only localised portions of the logic so structural

characteristics of the circuit such as fanout, and I/O are kept the same. Other works

include Ghosh [20], and Harlow [24] which are signature-based. This approach charac-

terises circuits using an algorithm to compress a feature of a circuit so that it can be

expressed by a smaller set of values, the signature. All circuits that share the same sig-

23

Chapter 2. Background

nature are expected to have similar values for the specified feature and are assumed to

be comparable in the rest of their properties.

The mutation method is effective at generating a family of circuits similar to an

existing circuit, but it lacks the ability to generate new circuits of different size or of

different structure.

Perturber Perturber was developed to test incremental place and route algorithms [22].

These circuits try to mimic small changes that may be made by a designer as he or she

iteratively develops a design. The user selects a region of the circuit to perturb. Random

pairs of edges that have identical source and sink levels and that are not outputs of either

an input node or a flipflop swap sinks until the desired percentage of the edges have been

modified. In order to preserve the locality of the logic, the algorithm further specifies

that the edge pairs must share a common ancestor within x levels, where x is a user

defined value. This additional constraint improves the post-routing characteristics of the

circuit. With ancestor control, the most significant difference found between the mutated

circuit and the original MCNC circuit was in the average wirelength which differed by

17%.

Ghosh Ghosh generates circuits that have equivalent wiring signatures. Similar to the

work by Grant [22], this method preserves the nodes’ logic depth, and only changes the

edges; however, the changes are not localised to a specific region, and the fanout degrees

of the circuit nodes can also be changed. The signature generation algorithm in [20]

accepts only circuits that are acyclic, and that are composed of circuit elements with

only one or two inputs. This method first organizes the circuit nodes by their maximum

slack. The algorithm then characterises the distribution of node types (input, output,

etc) and the fanout bounds for each of the node types at each delay level. The user

decides what percentage of the edges will be ripped up. The algorithm replaces edges

24

Chapter 2. Background

randomly such that the final circuit respects the signature described earlier.

The resulting circuits are validated by comparing their graph properties against the

properties of randomly generated circuits. The signature of one benchmark circuit was

used to generate 8 sets of circuits each with a different percentage of modified edges. One

hundred circuits are in each set. These 8 sets were placed and routed using OASIS [31], a

standard cell VLSI synthesis suite. For the layout area, there was a maximum difference

of 1.5% within the 100 circuits in each set, and a maximum difference of 33% between

the set of circuits with unmodified edges and the mutant sets. The total wirelength had

a similar difference between the circuits within each set, but a maximum difference of

63% between the original and mutant sets. The amount of redundant logic varied by a

maximum of 6% between the original and the mutant sets.

Harlow Harlow’s method [24] is designed to generate a set of equivalent binary decision

diagrams (BDDs). A BDD is a tree structure which can represent a combinational circuit,

but this work does not directly address the properties of the equivalent circuits. The

generation process first calculates the output values of the original circuit for each set of

possible inputs. Next, the information entropy for the set of output values is calculated.

If there are multiple outputs, the entropy is calculated for each output pin. The entropy

is used as the signature for equivalent circuits. This work simply swaps the order of

the output values in the set; thus generating circuits with the same entropy, but with

different logic functions. The study found that the minimum size BDD representation for

the mutated circuits varied showing that the mutated circuits were structurally different

than the original. The difference found was proportional to the number of output values

that were swapped.

25

Chapter 2. Background

2.5 Focus and Contribution of Thesis

Instead of generating circuits at the bit level, this work generates circuits at the word

level. Existing circuits are connected in a realistic manner into larger circuits. This

approach reflects the modular philosophy used to design the majority of modern circuits.

The algorithm described in this thesis can stochastically generate high level descrip-

tions of SoC-style circuits with little required user input. SoC block diagrams were

examined to determine the distributions of the functional composition and structure

of current circuits. The generator uses these distributions to automatically create the

specified circuits in a top-down manner, first generating logical connections between the

modules in the circuit, then moving to the bit level to make the connections between the

module pins.

By sorting the functional modules into four categories, and by providing three common

connection styles, this method can flexibly generate different types of circuits. The

modularity of the circuits leads to naturally heterogeneous structural properties. This

work examines the ability of the generator to build realistic circuits. It also examines the

generator’s scalability.

The contributions of this thesis are:

1. Results from a characterisation of the composition and structure of contemporary

SoC circuits.

2. A top-down synthetic circuit generator that integrates existing circuits into a larger

SoC-style structure based on the above results.

3. An understanding of how various circuit generation methods respond to scaling.

26

Chapter 3

Circuit Analysis

3.1 Overview

To generate realistic circuits, it is first necessary to understand the characteristics of

modern SoCs. The data described in this chapter lays the foundation for the circuit

generation algorithms and also for future research based on SoC circuits. We know of

no previous work that analyses relationships between SoC characteristics despite the

prevalence of such designs.

In this chapter, we first develop a model that abstracts a real circuit into a standard

form which is more easily characterised. The circuit model described in Section 3.2.1

reflects the modularity and connection hierarchy found in many SoCs. It describes the

word-level connections found between modules; single-bit nets are added to the model in

Section 3.2.2 to represent system-level control signals.

In Section 3.3, the results from the circuit survey are presented. The information

gathered from the survey will be used in Chapter 4 to calibrate the generation algorithms,

and to define default parameters for the stochastic construction of the circuits.

27

Chapter 3. Circuit Analysis

3.2 Circuit Model

3.2.1 Definition

Our model of a SoC circuit is as follows. A circuit is a tree of modules. Each module

can contain a number of lower-level sub-modules. Within a module, the sub-modules are

connected using a common pattern such as a bus, a network-on-chip (NoC), or a datapath

configuration. The interconnect structure within a module will be referred to as that

module’s network. The network includes all the logic and circuitry necessary to connect

the functional modules. The lowest-level modules will be referred to as leaf modules.

These can be processors, memories, or other sequential or combinational logic circuitry.

This structure reflects the SoC design philosophy where IP modules are hierarchically

combined to form a larger circuit.

CPU

Cache

Scratchpad

Bridge

IP IP

Memory

IP

IP

bus

bus

IP

module

module

(a) Original SoC circuit

B U S

B U S C P U

I P I P I P

I P M E M

M E M

I P

(b) Model Representation

Figure 3.1: Application of the Circuit Model to an Example SoC Circuit

Applying this definition to the circuit in Figure 3.1(a) results in the representation

shown in Figure 3.1(b). The top-level module consists of five lower-level sub-modules:

a CPU (central processing unit)/cache, a scratchpad memory, two IP modules, and one

sub-module containing a child network, all connected using an on-chip bus (all but the

sub-module containing the child network are leaf modules). The lower-level module

28

Chapter 3. Circuit Analysis

contains three IP sub-modules and one memory sub-module connected using a bus. All

four of these sub-modules are leaves. The cache memory is connected exclusively to

the CPU, so these two blocks are counted as one module. The bus bridge and the bus

interface logic are considered to be part of the network implementation and thus are not

counted. Our representation is simple, but it still retains the major outline of the circuit.

The International Test Conference (ITC) 2002 benchmark suite [40] for ASIC modular

circuit verification uses a similar circuit model. It also assumes a tree-like hierarchy of

modules. For each module, the benchmark provides its location in the tree, the number

of I/O pins, and some verification information. However, descriptions of the module

contents are not provided, nor is information about the style of connection between

modules.

3.2.2 Fine-Grained Connections

The model describes word-level connections between modules but it does not describe

bit-level connections. These single bit connections tend to be communication flags or

similar signals. They relay information between modules, within networks or even across

the whole chip.

These signals were not visible on the block diagrams that were surveyed to parame-

terise the generator. We assume the existence of reset, interrupt, and clock nets in each

circuit. These are typical cross-chip signals that are used to coordinate activities across

the SoC. Single bit nets between modules or within networks, for example flags that

coordinate transfers between a bus interface and its IP block, are assumed to be included

within the network connection, and so are not explicitly added to the model.

29

Chapter 3. Circuit Analysis

3.3 Survey Process

To calibrate the circuit generator, 66 different SoCs were surveyed. Of these, 42 were

academic designs gathered from conference proceedings that appeared between 2004 to

2008. The remaining 24 were from industrial sources. The chips spanned a wide range

of applications including network communications, multicore processors, and multimedia

and were designed for various platforms, including FPGAs, and ASICs.

The survey characterises these published block diagrams using the circuit model in

Section 3.2. Interpretation was sometimes needed to apply the model to a circuit. For

example, connections between modules were broken so that the resulting structure was

a tree in some cases. Information was extracted from both the block diagrams and

the accompanying text in order to help make these decisions. Ultimately, however, the

analysis was limited to what is provided in the documentation.

The structure and the content of each circuit were studied. The characteristics of

the hierarchy were analysed and the results are reported in Section 3.3.1. Then, to char-

acterise the contents of the circuit, the networks and the leaf modules were categorised

into different types and their frequency is described in Section 3.3.2 and Section 3.3.3

respectively. Lastly, the distribution of the modules per network was analysed and the

results are reported in Section 3.3.4.

Though one of the main goals of this research is to generate realistic, large circuits,

the relationship between the size of the surveyed circuits and circuit model parameters

was not tracked. Since our model treats modules as black boxes, we would need to to

correlate the size of the circuit with the number of elements in our SoC circuit model. The

accompanying documentation usually only provides the size for the circuit as a whole,

and not for each of its components, yet, the content of a module in a block diagram

can vary widely depending on the level of abstraction. As a result, the model cannot

explicitly describe the size of the circuit.

30

Chapter 3. Circuit Analysis

3.3.1 Circuit Hierarchy

The circuit hierarchy was identified in the block diagrams. In some circuits, there were

two unconnected networks. Multimedia circuits, for example, often have separate dat-

apaths for audio and video. These circuits were broken into two designs and analysed

separately. By this definition, the analysis includes 79 different designs. As described

earlier, some connections do not follow a tree structure; these connections were ignored

for this part of the analysis.

Figure 3.2 shows the frequency of hierarchy depths observed in the survey. The

number of circuits seen with a particular hierarchy depth is represented by the vertical

bars. Note that the solid line in Figure 3.2 (and subsequent graphs) represents the

probability distribution that is used in synthetic circuit generation. It will be discussed

in the next chapter. The hierarchy depth is indexed starting from 0. The 0th level, by

definition, has a single network connecting a collection of sub-modules. The maximum

depth seen in the survey was 3; however, this does not include any hierarchy which may

be present inside the leaf modules (and hence is not shown on the block diagrams). Thus,

the true hierarchy depth may be more than what is shown in Figure 3.2.

0 1 2 3
0

8

16

24

32

40

Hierarchy Depth

N
um

be
r

of
 C

irc
ui

ts

P
ro

ba
bi

lit
y

0

0.2

0.4

0.6

0.8

1

Figure 3.2: Hierarchy Depth Distribution

31

Chapter 3. Circuit Analysis

Table 3.1 shows the average number of networks at each hierarchical level. In a full

tree, the number of networks per level would grow exponentially. The results in Table 3.1

show that this is not the case in these circuits; the number of networks for levels one

and higher remains roughly constant. Many of the circuits have only a few modules that

contain sub-modules, making the hierarchy far from a complete tree.

Table 3.1: Average Number of Networks per Level

Max Depth Average
0 1
1 1.81
2 1.75
3 2.16

Figure 3.3 shows the distribution of the number of networks seen at a hierarchy

depth of 1. Characterisation for other levels in the circuits was attempted, but there

were prohibitively few examples.

1 2 3 4 5 6
0

4

8

12

16

20

Number of Networks

N
um

be
r

of
 C

irc
ui

ts

P
ro

ba
bi

lit
y

0

0.1

0.2

0.3

0.4

0.5

Figure 3.3: Number of Networks at Hierarchy Depth 1

32

Chapter 3. Circuit Analysis

3.3.2 Network Types

Networks connect modules together within a hierarchical level. We define three common

connection patterns which will be referred to as bus, dataflow, and star, as shown in

Figure 3.4.

Figure 3.4: Example Network Block Diagrams a) Star b) Dataflow c) Bus

Figure 3.4(a) shows an example of a star connection pattern which is characterised

by a bidirectional flow of data between the head and the tail sub-modules. This sort of

pattern was commonly found in simple embedded controller chips, where the head sub-

module is a CPU and the tail sub-modules are interface modules to off-chip resources.

Figure 3.4(b) shows a dataflow pattern. This is defined by a predominantly unidirec-

tional data flow between sub-modules. These circuits may or may not have feedback.

The dataflow pattern is commonly seen in multimedia chips, and reflects the sequential

nature of these applications. The sub-modules at the ends of the network tend to be inter-

faces for either off-chip communication or for communication with other functional units

in the circuit. Figure 3.4(c) shows a bus interconnect structure, in which all sub-modules

are connected to a common bus using an (often industry-standard) access protocol. Some

of the protocols seen included Advanced Microcontroller Bus Architecture (AMBA) style

33

Chapter 3. Circuit Analysis

Advanced High-Performance (AHB) or Advanced Peripheral (APB) buses [6], and STMi-

croelectronic’s SuperHyway [52]. Other network types (such as packet-based gridded

networks) are possible, however, they rarely occurred in the circuits that were examined,

so we do not present data on them. The ratio of the network types found in the survey

is shown in Table 3.2.

Table 3.2: Network Type Distribution

Type Ratio
Bus 53%
Dataflow 33%
Star 7%
Other 7%

Network characteristics for the bus and dataflow were analysed as well. The bus

widths observed ranged from 16 bits to 256 bits. In order to characterise the dataflow

network, each sub-module was first assigned to a stage. A sub-module is assigned to

the stage subsequent to the the maximum of its predecessors, where the order of stages

represents the number of modules passed in a forward walk along the data connections

between sub-modules from the inputs not allowing feedback. The length of the dataflow is

the number of stages while the width is the maximum number of modules in one stage. We

found that 80% of the dataflow networks are longer than they are wide. Table 3.3 shows

the distribution of dataflow lengths and widths found. The actual number of modules in

the dataflow is generally much less than the maximum obtained by the product of the

length and width.

3.3.3 Leaf Modules

For each circuit, the leaf modules were identified and sorted into five categories according

to their function in the circuit: processors, interfaces, controllers, memory, and miscella-

neous. Logic modules that are necessary for the network implementation are not counted

34

Chapter 3. Circuit Analysis

Table 3.3: Dataflow Dimensions

Length # Circuits
1 2
2 13
3 7
4 9
5 8
6 1
7 1
8 2
8+ 2

Width # Circuits
1 18
2 16
3 4
4 5
5 1
6 1
7 0
8 0
8+ 0

as leaf modules. For example, bus interface modules, bus arbiters, and buffers between

pipelined stages are not counted.

Table 3.4 shows the frequency of each type. Processor circuits can be either CPUs

or GPUs. Interface modules, for example UART interfaces, are used for simple data

transfers between external devices. Controllers, such as memory controllers, are often

built as finite-state machines (FSMs). Some modules that manage more complex data

transfers such as USB controllers also fall into this category. Memory modules are stand-

alone memory blocks such as scratch pad memories. The remaining modules are classified

as miscellaneous and range from image processing circuits to custom purpose circuits.

Table 3.4: Module Type Distribution

Type Overall w/o Memory
Processor 10% 12%
Interface 34% 38%
Controller 22% 24%
Miscellaneous 23% 26%
Memory 10% -

As will be discussed in the following chapter, our synthetic circuit model does not

generate circuits containing memory blocks. The second column of the table shows the

equivalent percentages scaled for the remaining four types. Table 3.4 shows that a chip

35

Chapter 3. Circuit Analysis

will commonly contain many interface modules for communication with other devices.

The modules themselves often contain memory. Many modules are connected to an

private buffer or cache. These memories were not counted as independent modules be-

cause they are accessible by only a single functional unit. As seen in Table 3.5, processors

frequently contain memory; often these memories are configured as one or two levels of

cache. In many cases, the function of the modules implies that there would be internal

memory, but the memory is not labelled on the diagram. Interfaces can include memory

in order to buffer the incoming data, but their memory requirements are low, so often it

is not explicitly shown. The actual percentage of modules that have internal memory is

likely much higher than in Table 3.5.

Table 3.5: Modules with Internal Memory

Type Percentage (%)
Processor 53%
Interface 3%
Controller 5%
Miscellaneous 6%

3.3.4 Network Composition

Finally, the relationship between the networks and the leaf modules was examined. Fig-

ure 3.5 shows the distribution of the number of leaf modules in a network for each of the

three network types.

Buses are generally large since the complexity of implementation remains relatively

constant as the number of sub-modules grows. A dataflow typically has several stages;

short pipelines are relatively rare. Star networks often connect a limited number of

sub-modules because of the communication limits of this topology.

The distribution of leaf modules across the different hierarchy depths was also exam-

ined. These results are shown in Table 3.6. Circuits with only one level of hierarchy and

36

Chapter 3. Circuit Analysis

0 5 10 15
0

3

6

9

12

N
um

be
r

of
 N

et
w

or
ks

Number of Modules

0

0.05

0.1

0.15

0.2

P
ro

ba
bi

lit
y

(a) Bus network

0 1 2 3 4 5 6 7 9 101112 17
0

5

10

15

20

N
um

be
r

of
 N

et
w

or
ks

Number of Modules

P
ro

ba
bi

lit
y

0

0.05

0.1

0.15

0.2

(b) Dataflow network

2 3 4 5 7 13
0

1

2

3

4

5

N
um

be
r

of
 N

et
w

or
ks

Number of Modules
P

ro
ba

bi
lit

y

0

0.04

0.08

0.12

0.16

0.2

(c) Star network

Figure 3.5: Distribution of the Number of Leaf Modules for each Network Type

circuits with multiple levels of hierarchy are separated to isolate the effect of increasing

depth. Only the first two levels are shown because there were only a few circuits with

depths greater than 1. There are two clear trends: CPUs are found more often on the

uppermost levels, and controllers tend to be at the lower levels. Leaf modules are com-

monly arranged such that the main computing elements are connected using a high speed

network, while the peripherals are connected using a lower level, lower speed network.

3.4 Summary

In this chapter, we first presented the circuit model developed to represent SoC style

circuits. The circuit is modelled as a collection of leaf modules, which represent the

37

Chapter 3. Circuit Analysis

Table 3.6: Composition of Leaf Module Types per Hierarchy Level

Multiple Hierarchical Levels
Type Single Level Level 0 Level 1
CPU 26% 17% 7%
Interface 8% 14% 17%
Controller 31% 24% 44%
Miscellaneous 36% 45% 32%

component functional subcircuits. These leaf modules are connected into a tree structure

using networks, which represent the communication patterns used to join the subcircuits.

Fine grained nets are represented in this model by adding reset, interrupt and clock nets

to the system.

The model was then applied to existing circuits in order to characterise SoC designs.

Each circuit was first characterised in terms of its hierarchy and then in terms of its

contents. The networks were categorised into bus, dataflow, and star while the leaf

modules were categorised into processor, controller, interface, memory and miscellaneous.

The distribution of these elements was then measured with respect to different variables.

The next chapter will describe how these trends are used to generate synthetic circuits.

38

Chapter 4

Circuit Generation

This chapter describes the synthetic circuit generation algorithm that was developed as

part of this research. The generator was developed based on observations from the circuit

survey described in the previous chapter. The circuit survey was also used to calibrate

various probability functions used in the generator. A C language implementation of the

algorithms has been made available to the research community.

The generator is required to produce circuits suitable for FPGA architectural ex-

perimentation. Such circuits must be realistic, and there must be enough variety in

the generated circuits to adequately test an architectural feature under evaluation. We

provide the ability to constrain the generation, allowing the user to create a “family”

of benchmark circuits that have a specific number of modules or that have a specific

property.

Since we intend to use these circuits to evaluate physical design CAD tools as well as

FPGA interconnect and logic architecture, we are primarily concerned with the structural

characteristics of the circuits. Of primary importance is the interconnect patterns within

the circuits. Conversely, since we do not intend to use these circuits to evaluate logic

synthesis algorithms, the functionality of our generated circuits is not important. In all

cases, our circuits do not actually “do anything”, but for the types of studies we intend

to perform, this is not a requirement.

This chapter is organized as follows. We first describe an overview of the generator

in Section 4.1. The algorithm is then detailed in Sections 4.2 to 4.4. Finally, Sections 4.5

describes the mechanics of our implementation.

39

Chapter 4. Circuit Generation

4.1 Generator Overview

The structure of our generator is summarised in Figure 4.1. The user supplies parameters

in a constraints file as well as a library of logic circuits that will be used for the leaf

modules in the circuit. The library is divided into different directories according to the

circuit category (processors, controllers, interfaces, and miscellaneous) as described in

Section 3.3.3. In this research, circuits from the MCNC benchmarks were separated

according to their function and used in the library but these circuits can also come from

other existing benchmark sources [47, 65] or even from other synthetic circuit generators

[22, 26, 27, 33, 56].

The generator uses the constraints file and the library of circuits to construct the

synthetic circuit. The result is written in a Berkeley Logic Interchange Format (BLIF)

file, which is the format needed for T-VPACK/VPR synthesis.

B L I F l i b r a r i e s

C i r cu i t
S t r u c t u r e
De f i n i t i on

I n t e r f a c e
G e n e r a t o r

B L I F C i r c u i tG e n e r a t o r

C o n s t r a i n t s

P r i m a r y
P a r a m e t e r
G e n e r a t i o n

Figure 4.1: Circuit Generation Flow

Within the generator, construction consists of three stages. First, the data distribu-

tions seen in the circuit analysis are used to select values for four primary parameters.

These primary parameters describe the overall size and “shape” of the circuit. The se-

lection of primary parameters is described in Section 4.2. The second stage uses these

primary parameters to construct the overall hierarchy of the circuit, in terms of the size

and interconnect pattern of the networks at each level of the hierarchy. This second

stage is described in Section 4.3. The third stage, which is described in Section 4.4, con-

40

Chapter 4. Circuit Generation

nects the leaf module pins at the bit-level to form the networks described by the circuit

structure, and resolves mismatched pin counts between the sub-modules.

4.2 Primary Parameter Generation

The first phase of the generation is to determine values for the primary parameters.

These parameters, which are summarised in Table 4.1, directly describe the high-level

characteristics of the circuit: the hierarchy depth, the total number of networks, the

number of leaf modules and the bus width. The number of leaf modules and networks

set the contents of the circuit while the hierarchy depth roughly constrains the shape

of the network tree. We assume that all buses within a single circuit are of the same

width. This is realistic for many signal processing-style circuits which operate on fixed

size words; the bus width parameter indicates how wide these words are.

Table 4.1: Primary Parameters

Bus Width
Hierarchy Depth
Total Number of Networks
Total Number of Leaf Modules

The user can set values for these primary parameters in the constraints file. Any

combination of these primary parameters can be specified and the unspecified values will

be determined by the algorithm. All other parameters and constraints must be specified.

Default values for these other parameters are described in the following sections. While

the defaults provide a good starting point to generate new circuits, these values should

be tuned to match the characteristics of the circuits in the library or the desired range

of circuit structures.

The following subsections describe how we choose values for any unspecified primary

parameters. We first outline how we choose values for the parameters if none of the

41

Chapter 4. Circuit Generation

parameters are specified by the user, if all of the parameters are specified, and if one or

more parameters are specified.

4.2.1 No Primary Parameters Specified

If no parameters are specified by the user, the algorithm must choose values for all four

parameters.

All parameters except for the bus width are dependent on each other. The value

chosen for the hierarchy depth, for example, affects the reasonable range of choices for

the total number of networks and the total number of leaf modules. Our approach selects

values in this order: the number of hierarchical levels, the total number of networks, and

finally the total number of leaf modules. For each of the latter two parameters, constraints

based on the value of the previous parameter are used to guide the selection. In addition,

the user can specify additional constraints for each of the parameters.

The following subsections describe each parameter; the constraints used for each

parameter are summarised in the second column of Table 4.2. With the exception of

the constraint defining the minimum hierarchy depth, the remaining constraints relate

adjacent primary parameters. For example, the constraint for the number of leaf modules

relates this parameter to the number of networks in the circuit.

Table 4.2: Primary Parameters and Primary Parameter Constraints

Primary Parameter Primary Parameter Constraints
Bus Width Minimum bus width exponent, maximum

bus width exponent
Hierarchy Depth Minimum hierarchy depth
Number of Networks Maximum average number of networks per

level
Number of Leaf Modules Minimum average number of leaf modules

per network, maximum average number of
leaf modules per network

42

Chapter 4. Circuit Generation

Bus Width

The bus width is independent of all other parameters. In this research, the probability

distribution used to stochastially select values for parameters where the range is finite is

chosen to match the observed data gathered during the suvey wherever possible. If there

is insufficient data, the distribution is assumed to be uniform. For this parameter, we

choose a power-of-two between 16 and 256, with all powers-of-two being equally likely.

This range matches the range we observed during our circuit analysis, however the user

can override the upper and lower bound in the constraints file.

Hierarchy Depth

The value for the hierarchy depth is chosen from the exponential probability distribution

p(x) = λe−λx where p(x) is the probability of choosing a hierarchy depth x and λ =

0.97. The value for λ was obtained by fitting the data in Figure 3.2 to the exponential

distribution using the regression tools in Microsoft Excel. In this research, an exponential

distribution was used to stochastically select values for variables where the range is

unbounded. The limited data found in the survey makes it challenging to confidently

select a representative distribution for such variables. The exponential distribution has

the benefit of being simple to generate and to control. The user can override the default

value of λ in the constraints file, and in the case of primary parameters such as the

hierarchy depth, the user can also set the value of the variable manually if desired.

The value chosen for the hierarchy depth is further constrained to be larger or equal

to the minimum hierarchy depth constraint as shown in Equation 4.1. The value for the

minimum hierarchy depth constraint is specified in the user file. Note that the number

of hierarchy levels is one higher than the maximum hierarchy depth (the hierarchy depth

is indexed from 0).

In this generator, an exponential probability distribution is used to stochastically

43

Chapter 4. Circuit Generation

generate values for parameters where the range is unbounded such as the number of

networks found in a circuit.

hierarchy depth ≥ minimum hierarchy depth (4.1)

Total Number of Networks

The selection of a value for the total number of networks is based on the data from

Table 3.1 and Figure 3.3. Figure 3.3 shows the observed distribution of the number of

networks on Level 1. There was insufficient data for the higher levels to observe any

clear trend. However, as shown in Table 3.1, the average number of networks on each

level above 0 stays relatively constant; therefore, it is assumed that the distribution in

the number of networks seen on Level 1 is also true for higher levels.

Rather than choosing a single value for the total number of networks directly, we

compute the sum of n independently generated values, where n is the number of hi-

erarchical levels (determined previously). Each of the n values, ni, corresponds to the

number of networks on hierarchical level i. The value for each ni is generated using an

exponential distribution that is fitted to the data in Figure 3.3 according to the equation

p(ni) = λe−λ(ni−1) where ni ≥ 1. From the data in Figure 3.3, we estimate λ = 0.480,

although the user can override this value in the constraints file.

The total number of networks is then obtained by summing the number of networks

per level over all levels:

total number of networks =

n
∑

i=0

ni (4.2)

where n is the number of hierarchical levels. The total number of networks is then

compared to the upper and lower user defined bounds for this parameter according to

44

Chapter 4. Circuit Generation

the following equations:

total number of networks ≤

max average number of networks per level ∗ (hierarchy depth + 1) (4.3)

total number of networks ≥ max(1, hierarchy depth) (4.4)

where the maximum average number of networks per level is a constraint that is specified

by the user in the constraint file. If either of Equations 4.3 or 4.4 do not hold, a new set

of n values is generated as above.

Note that we have chosen not to include a constraint for the minimum number of

networks per hierarchical level. Such a constraint would help ensure that the number of

networks grows with the hierarchy depth, but as seen in Table 3.1, the average number of

networks for levels above 0 is approximately 2. In order to allow sufficient variation, the

minimum average number of networks per level would have to be set very low. Instead,

as described above, we constrain the total number of networks to be at least as large as

the number of hierarchical depths, which is equivalent to a minimum average number of

networks of 1.

Total number of leaf modules

As seen in Figure 3.5, the network type (bus, dataflow, or star) affects the distribution

of the number of leaf modules in the network. Therefore, to calculate the total number

of leaf modules, it is necessary to know how many networks of each type are present in

the circuit.

Although it would be possible to select the number of each type in the circuit directly

from the results in Table 3.2, doing so would result in the frequency of each network type

in a large circuit approaching the mathematically expected value. To ensure that our

45

Chapter 4. Circuit Generation

generator produces a diverse family of benchmarks even as the size of the circuit grows,

we do the following.

We first determine the number of network types that will be present in the circuit.

This is a value between 1 and 3; a value of 1 means that only one type of network is

represented in the circuit, and a value of 3 means that each network type is represented

at least once in the circuit. We choose this quantity randomly, assuming that probability

of having 1, 2, or 3 types is 40%, 50%, and 10% respectively. The user can override these

values in the constraints file. The number of network types is also constrained by

number of network types ≤ total number of networks (4.5)

If the above does not hold, a new value is chosen.

Once the number of network types is chosen, we choose the number of networks of

each type using the data in Table 3.2. In the following, we denote the number of bus

networks as mbus, the number of dataflow networks as mdataflow, and the number of star

networks as mstar.

Next, the total number of leaf modules in the circuit is generated. For any given

network, the number of leaf modules was assumed to follow an exponential distribution

p(x) = λeλx where p(x) is the probability of choosing x leaf modules and λ depends on

the type of the network, and was obtained from the data obtained during our circuit

analysis. From this analysis, we estimate that λ for a bus network is 0.147, λ for a

dataflow network is 0.120, and λ for a star network is 0.200 (the user can override

these values in the constraints file). We compute the number of leaf modules on each

network independently; in the following we denote the number of leaves on bus network

i as leavesbus,i where (1 ≤ i < mbus), the number of leaves on dataflow network i as

leavesdataflow,i where (1 ≤ i < mdataflow), and the number of leaves on star network i as

leavesstar,i where (1 ≤ i < mstar).

46

Chapter 4. Circuit Generation

We then sum the results as follows:

number of leaves =

mbus
∑

i=0

leavesbus,i +

mdataflow
∑

i=0

leavesdataflow,i +

mstar
∑

i=0

leavesstar,i (4.6)

Finally, the resulting number of leaves is compared to the following constraint:

total number of leaf modules ≤

maximum average number of leaf modules per network ∗ number of networks (4.7)

total number of leaf modules ≥

minimum average number of leaf modules per network ∗ number of networks (4.8)

where the maximum average number of leaf modules per network is specified in the

constraint file. If the above constraints are not satisfied, new values for the number of

leaves on each network are selected, and the process repeats.

4.2.2 All Primary Parameters Defined

If values for all of the primary parameters have been defined by the user, the number of

networks of each type in this circuit is calculated as described in Section 4.2.1. Generation

then progresses to the next stage.

4.2.3 Some Primary Parameters Specified

Section 4.2.1 assumes that the algorithm has the freedom to choose values for all primary

parameters. However, if the user specifies values for some of the parameters, additional

constraints are imposed on the generation of values for the remaining parameters. As an

47

Chapter 4. Circuit Generation

example, if the user specifies that there are 100 leaf modules, then this should influence

the selection of the number of networks. In this section, we describe how these additional

constraints are determined.

There are six possible ways in which the user can partially specify the primary param-

eters, as shown in Table 4.3. In the table, each column represents one possible scenario;

for example, in Scenario A, the user has specified the hierarchy depth and the number

of networks, but not the number of leaf modules. The bus width is not shown, since it is

independent of all other parameters.

Scenarios A and B are straightforward extensions to what was described in the pre-

vious section, and no new constraints are imposed. Scenarios C to F, however, are more

complex and are described below.

Table 4.3: Possible Combinations of User Input

A B C D E F
Hierarchy Depth x x x
Number of Networks x x x
Number of Leaf Modules x x x
x represents a user defined value

Generation for Scenario C

In Scenario C, the number of networks must be chosen. A value is chosen as in Sec-

tion 4.2.1 with the additional constraints:

number of networks ≥
number of leaf modules

maximum average number of leaf modules per network
(4.9)

number of networks ≤
number of leaf modules

minimum average number of leaf modules per network
(4.10)

where the maximum and minimum average number of leaf modules per network are

specified by the user in the constraints file.

48

Chapter 4. Circuit Generation

Generation for Scenarios D and E

In Scenarios D and E, the hierarchy depth must be chosen, and should be constrained

by the specified total number of networks. This is done by adding the following two

constraints to the generation of the hierarchy depth:

hierarchy depth ≤ number of networks (4.11)

hierarchy depth ≥
number of networks

maximum average number of networks per level
− 1 (4.12)

For Scenario E, the value for the number of leaf modules is then computed as described

in Section 4.2.1.

Generation for Scenario F

In Scenario F, there are two unspecified parameters. In this case, the constraints in

Equations 4.9 and 4.10 still apply. Substituting these into Equations 4.11 and 4.12 gives

the following additional constraints on the number of hierarchy levels:

hierarchy depth ≤ number of leaf modules
minimum average number of leaf modules per network

hierarchy depth ≥ number of leaf modules
maximum average number of leaf modules per network

∗

1

maximum average number of networks per level
− 1

(4.13)

4.3 Detailed Circuit Structure Generation

In this stage, the circuit elements are arranged into a tree structure as described by the

model in Section 3.2. Figure 4.2 illustrates the terminology used in the following sections.

This section describes the algorithm employed in this stage.

49

Chapter 4. Circuit Generation

The inputs to this stage are the the primary parameters and the number of networks of

each type from the previous stage. Intermediate values such as the number of networks for

each hierarchy depth that may have been generated in the process of determining values

for primary parameters are discarded. In this manner, the generation of the detailed

circuit structure is independent of the method used to assign values to the primary

parameters.

First, the network tree structure is constructed. Each hierarchy level is assigned a

single network. The algorithm then assigns the remaining networks to a random hierarchy

level. All levels between 1 and the maximum hierarchy depth are equally likely, so that

the expected number of networks on each level is equal. Level 0 is not considered, since

level 0 always contains exactly one network. To connect the networks into a tree, each

network is randomly assigned to a parent network, chosen from the networks on the

previous level. At the end of this step, the modules have been arranged into a tree.

Second, the algorithm labels each network with a type (bus, dataflow, or star). The

number of labels for each network type was determined in the previous stage. As each

network is labelled, the number of unassigned labels for the respective type is decre-

mented. The probability of selecting a type is directly proportional to the number of

unassigned labels of that type.

Program 4.1 Pseudocode for Network Type Allocation

/*Assign network types to networks given the number of each network type

in the circuit*/

for i = 1 to number_networks{

total_unassigned_types = unassigned[bus] + unassigned[dataflow] +

unassigned[star]

network[i]->type = weighted_probability(

unassigned[bus]/total_unassigned_types,

unassigned[dataflow]/total_unassigned_types,

unassigned[star]/total_unassigned_types)

unassigned[network[i]->type] --

}

50

Chapter 4. Circuit Generation

Third, the leaf modules are assigned to the networks. Program 4.2 summarises the

algorithm used. Each network module that has not already been assigned a sub-module

(i.e. if it is not already attached to a child network) is assigned one leaf module. A desired

number of additional leaf modules is generated for each network using the appropriate

exponential distribution function in Figure 3.5. The total number of desired leaf modules

over all the networks is scaled to equal the remaining number of leaf modules. Each

network is allocated a number of leaf modules equal to its desired number of leaf modules

multiplied by the same scaling factor.

Program 4.2 Pseudocode for Allocation of Leaf Modules

remaining_leaves = number_of_leaves

for i = 1 to number_networks{

if network[i]->modules < 1{

network[i]->modules ++

remaining_leaves --

}

}

for i = 1 to number_networks{

desired_leaves[i] = exponential_probability(network[i]->type)

}

total_desired_leaves = sum(desired_leaves)

for i = 1 to number_networks{

network[i]->leaves = desired_leaves[i]/total_desired_leaves*

remaining_leaves;

}

At the end of these three stages, the circuit structure has been specified. Modules

containing networks have been connected into a tree, and have been allocated a certain

number of leaf modules. The networks have been assigned a type. Next, the remaining

details of the circuit structure are defined. An order is assigned to the sub-modules of

dataflow and star modules, and the leaf modules are assigned a type and a library circuit.

The dataflow and the star modules have an implied ordering among their sub-modules.

The algorithm first determines the “shape” of the dataflow module by randomly selecting

51

Chapter 4. Circuit Generation

a width and length for the module. As explained in Section 3.2.1, the length of a dataflow

module is the number of stages found in the network while the width is the maximum

number of sub-modules in one stage. The length is chosen with uniform probability from

1 to the number of sub-modules connected by the network. The width is then chosen

with uniform probability between the maximum and minimum possible values shown in

Equations 4.14 and 4.15.

width ≤ number of sub-modules − length + 1 (4.14)

width ≥
⌈number of sub-modules

length

⌉

(4.15)

One sub-module is assigned to each stage, and one stage is chosen to contain the maxi-

mum number of sub-modules allowed by the width. This ensures that the dataflow will

obey the selected length and width. The remaining sub-modules within the dataflow

module are then randomly assigned a stage within the module. If the selected location

for the sub-module will cause the dataflow to exceed the limits set by the length and

width, a new location is selected.

For the star network, the first sub-module in the star module’s data structure is

chosen to be the head; the rest of the sub-modules are automatically the tails.

Next, a module type is assigned to each leaf module: processor, core, controller, or

interface. The overall probability for each leaf module type is the same as the observed

percentage of leaf modules of that type seen in the survey as shown in Table 3.4. In

order to mimic the changing leaf module composition seen between the different levels

of the hierarchy, as shown in Table 3.6, a user controlled parameter modifies the relative

probability of each type depending whether the module is found on the upper or the lower

half of the circuit structure tree. For example, the user can decide to double or triple a

type’s probability for leaf modules on the top half of the circuit hierarchy. The probability

52

Chapter 4. Circuit Generation

of that type will concomitantly be cut in half or a third respectively for the bottom half

of the hierarchy. Program 4.3 illustrates how the final probability is determined. Note

that if the user decides to change every type identically, the probabilities of each type

remain unchanged.

Program 4.3 Pseudocode for Hierarchy Depth Dependent Leaf Module Type Proba-
bility

/*given the level of the module*/

for i = 1 to number_of_leaf_types {

depth_dep_prob[i] = user_def_weight[i] * original_prob[i]

}

scale_to_sum_1(depth_dep_prob[i])

In addition to adjusting the probability of the module types for the top or bottom

halves of the circuit tree structure, the user can further adjust each module type’s prob-

ability for the middle section and the end sections of a dataflow via a user parameter.

This user parameter also controls the probability of the leaf module types for the head

sub-module and for the tail sub-modules in a star network. The head sub-module will

have the same probability distribution as the sub-modules in the middle of the dataflow

network and the tail sub-modules will have the same probability as the sub-modules at

the ends of the dataflow network. It was observed that the sub-modules at the ends

of a dataflow network and the tail sub-modules in star networks were more likely to be

controllers or interfaces as explained in Section 3.3.1.

Calculation of the probability distribution for the location of the sub-module within

star and dataflow networks is done in a similar manner to the calculation shown above

for the hierarchy depth of the sub-modules. The additional weight factor resulting from

the sub-module location is multiplied with the depth dependent probabilities described

above and the resulting values are scaled to 1.

Once the probability for the different leaf module types has been established, the

program loops through all of the leaf modules and stochastically selects a type using a

53

Chapter 4. Circuit Generation

probability distribution based on the position of the leaf module in the circuit hierarchy

and its position within the network if applicable.

The program then selects the content for each leaf module from the circuits found in

the library. As noted before, the circuit library is separated into four directories, one for

each module type. For each leaf module, the algorithm randomly chooses a circuit from

the matching library directory. The selection of a circuit within the directory is done

with equal probability. The researcher can manipulate the probability of certain circuits

being chosen for each type by changing the mix of circuits found within the directory.

The reset and interrupt modules are selected with uniform probability among the leaf

modules of the circuit. The bus master for a bus network is the node that connects to

the parent network; however, if the top-level network is a bus, a bus master needs to be

selected. In this situation, one of the sub-modules connected by the top-level network is

chosen at random to be a bus master.

At the end of this stage, the circuit structure has been fully specified.

4.4 Circuit Construction

During construction, the circuit structure’s modules are glued together according to the

characteristics of the network types described in the previous section. Section 4.4.1

describes how the pins are glued into the appropriate network connection pattern, and

then Section 4.4.2 shows how the bit-level nets for the reset, interrupt and clock are

connected. Figure 4.2 illustrates the terminology used in this section.

The primary challenge when constructing the circuit is gluing output pins of one

sub-module to input pins of another sub-module in a realistic way. Since the contents

of the modules are treated as a black box, we have no information about the meaning

of individual pins. Thus, during construction, we treat all pins equivalently. The only

exception is the clock pin which can be identified by searching for flipflops in the circuit

54

Chapter 4. Circuit Generation

A

B C D

M o d u l e P i n s

S u b - m o d u l e P i n s

S t a r
N e t w o r k

H e a d
S u b - m o d u l e

T a i l S u b - m o d u l e

M o d u l e

S u b - m o d u l e
P i n s

T a i l S u b - m o d u l e T a i l S u b - m o d u l e

Figure 4.2: Example Sub-Module Connection

and then tracing the clock signal to a module pin. The advantages of this approach are

that it simplifies the model and reduces the amount of information that must be supplied

by the user. The disadvantage is a reduction in the “realism” of the generated circuits.

Typically, for a leaf module, some pins will represent data-type connections and some will

represent control-type connections. Since we do not have information about which pins

are which, it is possible that we connect data pins to control pins or vice versa. However,

we suspect that the inaccuracies in connecting pins in this way will not significantly affect

the architectural conclusions that could be drawn using our circuits.

Since the library circuit files for the leaf modules are chosen randomly, the number of

pins on the sub-modules may not be appropriate for the connection that is being built.

For example, if a module is to consist of a number of sub-modules connected using a

16-bit bus, it is unlikely that all of the selected sub-modules will have exactly 16 bits. As

another example, if we are connecting a star network, it is unlikely that the sub-module

selected as the “head” will contain exactly the same number of pins as the total pin count

for all the tail sub-modules. This problem is illustrated in Figure 4.2. The sub-modules

need to be connected by a star network, but the head sub-module only has 3 outputs,

55

Chapter 4. Circuit Generation

while, in total, the tail sub-modules have 9 outputs. A major challenge in this section

was connecting sub-modules with very different numbers of pins.

4.4.1 Network Construction

The heart of the circuit construction algorithm is the manner in which the sub-modules

are glued together. The circuit is constructed recursively from the bottom of the hierarchy

from the circuit structure description using the algorithm in Program 4.4. The challenge

is to connect modules with mismatched pin counts in a realistic yet robust manner. Each

network type is constructed differently and is described separately below.

Bus

The bus network is inspired by the AMBA AHB/APB single master specification [6]

which was the most common type of bus represented in the survey from Section 3.3.

However, some changes were made to simplify the implementation.

A customised bus interface is generated for each sub-module. The bus interface and

the sub-module are glued together to form a slave or master node. These nodes are, in

turn, connected to form the bus structure. The slaves drive their outputs to a multiplexer

which feeds the bus master. The multiplexer selects the output source using the upper

bits of the address bus. The bus master, in turn, drives the inputs to all of the slaves,

but instead of using a separate arbiter module to activate the slaves as in the AMBA

specification, each slave interface performs its own comparison. This is similar to the

structure used in the Avalon [4] bus topology which is developed for FPGAs. Flags are

present to coordinate the transmission of data between the sub-module and the interface.

For simplicity, we assume that the width of the data bus and the address bus are equal to

the bus width primary parameter. Appendix B describes the pins found on the interface.

In order to accommodate sub-modules with pin counts that do not match the bus

56

Chapter 4. Circuit Generation

Program 4.4 Pseudocode for Circuit Construction

Generate_circuit {

for each module { /* Recurse */

if this module is a leaf

glue selected subcircuit from library

else

generate_circuit(module)

}

/* Generate connection between sub-modules */

case (network type) {

BUS:

randomly select one sub-module to be master

for each sub-module in the module {

generate the bus interface and connect it to the sub-module

}

wire address and data buses to all nodes

DATAFLOW:

for each sub-module in the module

Connect the outputs to the inputs in the adjacent stage

for each sub-module in the module

Connect empty outputs to empty inputs from any later stage

for each sub-module in the module

Connect empty outputs to empty inputs from any earlier stage

STAR:

if the number of sources from the head sub-module exceeds the

total number of sinks from the tail sub-modules

distribute the pins among the tail sub-modules

else

wire each pin to every tail sub-module while they have empty

sinks

if the number of sinks in the head sub-module exceeds the total

number of sources from the tail sub-modules

connect the tail sub-modules to the head sub-module

else

connect an equal number of inputs from every tail sub-module

to the head sub-module, while the tail sub-module has

remaining inputs

}

connect any empty sources or sinks to module pins

}

connect the interrupt nets

connect the reset net

connect the clock net

57

Chapter 4. Circuit Generation

width, two strategies were employed. If there are too few output pins on a sub-module,

the data is replicated onto the other bus interface pins as described in [6]. If there are

too many output pins on the sub-modules, the excess pins are assumed to be module

pins. The cases for the input pins are the same as in [6]. In the rare occurrence that

all of the sub-modules happen to have a pin count that exactly matches the bus width,

one randomly selected sub-module duplicates its outputs to the module pins, and some

of the inputs of another randomly selected sub-module are disconnected and diverted to

the module pins.

Dataflow

The dataflow connection pattern not only allows connections between adjacent sub-

modules, but also allows connections to skip stages and to feed back to previous stages.

The input pins of the sub-modules in the first stage of the network, and the output pins of

the sub-modules in the last stage of the network are always connected to the module pins

to ensure that the module always has inputs and outputs. This algorithm is summarised

in Program 4.4.

Figure 4.3 shows an example of a connected dataflow network. First as many con-

nections as possible are made between adjacent stages. If there are many sub-modules

in adjacent stages, the algorithm connects the outputs from one source sub-module to

the inputs on a sink sub-module until either the outputs of the source are exhausted, or

the inputs on the sink are exhausted. If there are still free outputs on the source, the

outputs are connected to the pins on the the next sink sub-module. If the sink has no

more free inputs, the outputs of the source are then connected to the inputs on the next

sink sub-module.

This algorithm keeps the outputs from a source sub-module grouped together. A

dataflow is expected to have mostly parallel word-level communication between the mod-

58

Chapter 4. Circuit Generation

A B C D E

Figure 4.3: Example Dataflow Network Construction: Dashed lines are made between
adjacent stages, Dash-dot lines cross multiple stages. Dotted lines represent feedback
loops; the intermediary flipflop is not shown. The arrow from sub-module C shows a
connection to the module outputs

ules. This decision helps improve the locality of the circuit connections. This algorithm

may result, however, in some sub-modules being unconnected to sub-modules in the pre-

vious stage; therefore, these sub-modules would not actually belong to their assigned

stage. This should occur rarely though, since the number and pin count of the sub-

modules on each stage is expected to be distributed uniformly given a library where the

circuits’ average number of inputs and outputs are equal.

Connections that skip stages such as the dash-dot line from sub-module A to C in

Figure 4.3 are then added. Any remaining outputs from a stage connect to the inputs

in the closest subsequent stage. Next, feedback loops such as from sub-module D to C

are added. These loops contain intermediary flipflops to prevent combinational loops.

The feedback connections mimic communication flags between sub-modules. Lastly, any

unconnected pins are connected to the module pins. These steps help minimise the

number of unmatched pins that are driven to the module pins.

After these three steps, a sub-module still may not be connected to the rest of the

dataflow network but this dataflow pattern with several parallel streams was seen in the

survey. For example, three colour processing pipelines may operate in parallel. These

examples cannot be broken into multiple designs because they are child networks; the

parent network connects them into one circuit.

This dataflow connection pattern assumes simple unidirectional data movement be-

59

Chapter 4. Circuit Generation

tween modules. More complex dataflow patterns might have stages with bidirectional

data movement. These connections could be mimicked in future versions of this tool

by changing the order in which connections are generated, for example, by generating

feedback loops before connections that skip stages.

Star

The star network connects the outputs of the head sub-module to the inputs of the tail

sub-modules, and the outputs of the tail sub-modules to the inputs of the head sub-

module. The remaining pins become module pins. Mismatches can easily arise between

the pin count of the head sub-module and the pin count for the sum of all the tail sub-

modules. The algorithm used to resolve these issues is described in Program 4.4, and an

example is shown in Figure 4.4.

If there are too many outputs on the head sub-module, the outputs are driven to the

module pins. If there are too few, the output pins are assumed to represent a word. This

word is then connected to each tail sub-module, driving as many of the inputs as possible.

This situation is shown in Figure 4.4(a). Sub-module A has only three outputs, while

the sum of the inputs on the tail sub-modules is nine. The two input pins on sub-module

C are driven by the first two pins of A. The first three pins of sub-module B are driven

by A, and the last pin will be driven by a module pin (not shown).

Similarly, if there are too many inputs on the head sub-module, they are connected

to the module pins, and if there are too few, the excess sub-module pins are diverted

to module pins. We ensure that all of the tail sub-modules are connected to some of

the inputs on the head sub-module. Figure 4.4(b) demonstrates how these pins are

connected if there are too few inputs on the head sub-module. Sub-module A in has only

5 inputs, but the total number of tail sub-module output pins is 6. One pin from each

tail sub-module is connected in turn while the head sub-module still has free input pins.

60

Chapter 4. Circuit Generation

A

B C D

(a) Insufficient outputs from the head
sub-module

A

B C D

(b) Insufficient inputs on the head
sub-module

Figure 4.4: Example Star Network Construction

Sub-module B’s only input pin is connected to sub-module A and sub-module C has one

extra pin left. This pin will be driven by one of the module pins.

We expect the communication in a star network to be word-style, but it is necessary

to distribute the pins from the head sub-module equally to all the tail sub-modules in

order to ensure that all the tails are connected to the head. Although unconnected

modules were allowed in the dataflow network, we expected that adjacent stages would

usually have compatible pin counts, and would rarely result in unconnected modules. In

a star network on the other hand, we expect that the total number of pins on the tail

sub-modules will usually exceed the number of pins on the head sub-module due to the

large number of tail sub-modules in a star network.

4.4.2 Single Bit Net Construction

Lastly, the reset, interrupt, and clock nets are constructed. The clock connects to all the

flipflops in the circuit. The model assumes that there is only a single clock in each circuit

which is driven by an external source.

The reset and the interrupt structures can be seen in Figure 4.5. The reset signal

is modelled by a single bit signal which is driven by one randomly selected leaf module

to all the other modules in the circuit. Similarly, one module in each circuit is assumed

61

Chapter 4. Circuit Generation

to be the interrupt sink, and all the other modules reserve one pin to be an interrupt

flag. The interrupt signals of the modules in each network are combined together with

an OR gate so that the resulting interrupt sink is only 1 bit wide. Interrupt signals are

not added to the bottom hierarchy level of the circuit.

(a) Reset (b) Interrupt

Figure 4.5: Reset and Interrupt Structures

These structures are a simplified representation of actual reset and interrupt signals.

All but the most simple circuits implement these signals using intermediary interrupt

and reset controllers. These controllers store some extra information in buffers to help

process the signal and to help distribute the signal. Although the implementation of

these signals is simplified, they still retain some important characteristics of real resets

and interrupts, such as significant fanout which adds extra complexity to the circuit.

4.5 Generation Mechanics

This generator was written in C. It contains 22.5k lines of code, and it can be run on

either Linux or Windows. Library circuits must be BLIF files, but the output can be

in either VHDL or BLIF output. Generating a circuit takes 70 seconds for a circuit

with 25 modules and 41k logic elements. Most of the generation time is used to read

in and verify the circuits for the leaf modules. Optimally, generation could be done

in linear time, but in practice, the complexity is higher as the circuit needs to iterate

62

Chapter 4. Circuit Generation

over the data in order to ensure validity of the circuit during the construction process.

Circuits up to 150000 LEs in size have been built. This program can be downloaded from

http://www.ece.ubc.ca/~stevew/circuit/circuit agreement.html.

4.6 Summary

In this chapter, the algorithms used to generate synthetic circuits were described. The

generation is separated into three main stages: definition of the primary parameters,

generation of a detailed circuit structure, and construction of the circuit. The first stage

sets values for any primary parameters left empty by the user. The second stage assigns

the elements to the circuit structure tree. The last stage constructs the bit-level nets

that form the networks.

With the exception of the primary parameters, the rest of the generation can only be

controlled indirectly via constraints and probability distribution parameters found in the

constraints file. The probability distributions used in this process are modelled against

the data presented in the previous chapter.

The construction of the circuit is straightforward once the circuit structure has been

defined, but the mismatched pin counts of the sub-modules can lead to excess numbers of

module pins. This chapter presented strategies to reduce the number of module pins for

each network type. These strategies attempted to mimic real circuit structure as much

as possible while still ensuring robustness. In the next chapter, the resulting synthetic

circuits are validated.

63

Chapter 5

Validation and Characterisation

In this chapter, the SoC-style synthetic circuits generated by this work are validated

and characterised. In Section 5.2, the properties of the circuits generated by this work

are compared against the properties of circuits built by previous homogeneous synthetic

circuit generators, namely GEN and Gnl, in order to identify differences in the manner

in which the circuits scale. Then, the results are compared to the post-routing properties

of eASIC benchmark circuits in Section 5.3. This section validates the behaviour of these

generators against the properties of real circuits and demonstrates that the synthetic

circuits described by this work lead to realistic architectural conclusions.

In Section 5.4, the properties of the added network structure are investigated. The

effectiveness of the strategies used to resolve mismatched sub-module I/O pins is evalu-

ated and the post-routing effects of the different network types are explored. Lastly, we

discuss measurement of Rent parameter for heterogeneous circuits.

5.1 Overview of Experimentation Methodology

The circuit library for these experiments contained 61 circuits from the MCNC bench-

mark suite. These circuits contained between 28 and 7694 logic elements. The circuits

were separated into the four different module categories according to their circuit function

as described in [65]. They were supplemented with two circuits from OpenCores [39, 21],

in order to add more diversity to the processor and the interface categories.

The primary parameters were left unspecified unless otherwise noted. Since the

64

Chapter 5. Validation and Characterisation

MCNC circuits are small, some of the values in the constraints file were modified in

order to make it more likely to produce larger circuits containing more modules. The

bus width was allowed to vary from 8 bits to 64 bits in order to match the size of the

MCNC circuits.

Synthetic circuits can be validated using either direct methods or indirect meth-

ods [60]. Direct methods compare the graph properties of synthetic circuits versus “real”

examples. Some examples of these properties are the size, the fanin or fanout of the

LUTs, the amount of redundancy in the logic, etc. This is the primary validation method

for most of the previous efforts in synthetic circuit generation. Nevertheless, this type of

analysis may be less interesting for these new circuits because the majority of each circuit

is composed of the leaf module logic; very little new logic is added. Though this method

does ensure that the synthetic circuits look like real circuits, it is not clear whether the set

of validated properties are sufficient to ensure that the synthetic circuits are comparable

to real circuits for architectural research.

A more interesting mode of validation for FPGA experimentation is the indirect

method. This method compares results from processing the circuits using various tools.

If two circuits are comparable, then a tool should return similar results for both circuits.

Since these new circuits are intended to be used as benchmarks for developing future

architectures, it is critical to ensure that these circuits return FPGA characteristics

similar to those returned by real circuits. For this research, the validation emphasis is on

the post-routing characteristics of our circuits after synthesis, using the T-VPACK/VPR

synthesis suite.

This research compares the Rent parameter, the number of post-clustering nets, the

average post-routing net length, and the minimum channel width with which the circuit

can be routed. Though the circuits are not functional, the critical path was measured as

well in order to gain an understanding of the overall qualities of the circuit’s netlist.

65

Chapter 5. Validation and Characterisation

5.2 Comparison to Previous Circuit Generators

In this section, the synthetic circuit generator is compared against previous work. The

circuits generated using our program are compared against those generated using two

homogeneous circuit generators, GEN and Gnl and differences are identified in the struc-

tural properties and the post-routing characteristics.

5.2.1 Experimental Methodology

Twenty-one circuits of varying sizes were synthesised using our circuit generator. Ta-

ble 5.1 lists statistics regarding these circuits. For each of these synthetic circuits, cir-

cuits were generated using GEN [25] and Gnl [61] where the number of logic elements for

each GEN and Gnl circuit was constrained to be the same as the corresponding synthetic

circuit built by our tool. The size of the circuits in this suite ranges from 5687 to 56296

logic elements which well exceeds the validated range of both GEN and Gnl [26, 61].

Additional parameters for the two previous generators were specified. Based on ex-

perience, Gnl was directed to generate circuits with a Rent parameter of 0.7 for the first

3000 nodes, and 0.66 for the rest of the circuit. In addition, a ratio of 2:1:1 for 2, 3, and 4

terminal logic elements respectively was specified. This ratio differs from the default Gnl

values which defines a large proportion of the logic elements to be single input elements,

which are not necessary in an FPGA setting. A single input logic element is either an

inverter or a buffer. Since a LE represents a k input logic function, the logic function can

easily be modified to include the inverted input value thus rendering the additional LE

unnecessary. The number of flipflops in the Gnl circuits was constrained to be the same

as in the circuits built by our tool. This version of Gnl also inserts additional flipflops

when necessary to control the logic depth [61]. The number of output and input pins was

constrained so that the final circuit was not pin-limited. The default input to output pin

ratio was used.

66

Chapter 5. Validation and Characterisation

The GEN circuits were strictly combinational; the extensions that allowed sequential

circuits were found to be unstable as the circuits scaled. Only the size was specified, so

all the other parameters were generated using their default distributions.

Each circuit was then mapped to a minimum-sized FPGA with minimum channel

width using T-VPACK and VPR 5.0 [34]. The clustering, placement, and routing were

timing-driven. A clustered architecture was used in which each cluster contains four

4-LUTs and has 10 inputs and 4 outputs. Each I/O block was assumed to have 3 pins.

A uni-directional routing architecture with single-length segments was assumed.

5.2.2 Experimental Results

Rent Parameter

The Rent parameter is the exponent factor in Rent’s rule. Rent’s rule is an experimentally

observed relationship between the size of subcircuits returned after partitioning and their

I/O pins. This parameter is an indicator of the interconnect complexity of a circuit.

Experience has shown that Rent parameters of 0.6 to 0.7 are reasonable. Using this

relationship between the number of elements and the number of pins, researchers have

developed equations that can predict various post-synthesis circuit properties such as

wirelength, channel width, etc. Since this value is linked to so many properties, it is

important to model it well.

For all circuits, the Rent parameters shown in Table 5.1 were computed using a

recursive Fiduccia-Mattheyses partitioning algorithm. The Rent parameter for each GEN

and Gnl circuit is shown in Columns 4 and 5 of Table 5.1. Though a Rent parameter

of 0.66 was specified for the Gnl circuits, the average Rent parameter in the resulting

circuits is 0.82. The effect of the I/O pin constraints on the Rent value was investigated

and it was found that the two variables were unrelated. The deviation from the specified

Rent parameter is likely caused by the ratio of multiterminal logic elements in the Gnl

67

C
h
a
p
ter

5
.

V
a
lid

a
tio

n
a
n
d

C
h
a
ra

cterisa
tio

n

Table 5.1: Comparison between Generators

Number Rent Parameter Number of Nets Avg. Net Length Channel Width Crit. Path (ns)
No of LEs New GEN Gnl New GEN Gnl New GEN Gnl New GEN Gnl New GEN Gnl
1 5687 0.71 0.81 0.80 3893 4128 5901 13 30 18 28 90 46 16 25 44
2 6436 0.69 *0.80 0.79 4399 *4885 6725 16 *28 18 40 *74 52 21 *28 46
3 7425 *0.71 *0.82 0.80 *6077 *6257 7855 *19 *27 19 *32 *110 54 *41 *24 41
4 8001 *0.71 0.80 0.80 *6171 5843 8426 *14 30 19 *36 82 56 *40 38 49
5 8468 0.71 0.80 0.81 6673 6553 9009 13 26 19 38 80 54 40 30 53
6 8967 0.72 0.84 0.81 6072 7678 9465 15 39 20 36 124 60 19 38 48
7 10937 0.71 0.67 0.82 7116 5660 11536 18 24 21 40 44 64 32 28 61
8 11643 0.73 0.82 0.82 8509 8917 12732 15 47 24 38 90 70 39 57 60
9 13012 0.71 0.81 0.82 10619 9003 14004 21 39 22 36 84 64 42 38 60
10 13790 0.73 0.83 0.82 10185 10621 14353 15 39 24 38 122 70 38 38 65
11 14099 0.74 *0.82 0.82 9893 *10430 15078 15 *46 24 38 *86 74 39 *49 66
12 14538 0.73 0.82 0.82 10306 12994 15512 14 38 23 38 126 70 40 54 65
13 15778 0.75 0.82 0.82 11474 11900 16176 18 51 24 50 106 74 37 44 68
14 18550 0.75 0.81 0.83 13127 14622 19507 14 34 25 38 128 76 39 49 72
15 19915 *0.74 0.81 0.83 *14877 13216 21196 *17 39 27 *40 86 80 *39 74 83
16 27577 *0.76 0.75 0.84 *20311 16701 28686 *19 36 29 *42 72 90 *40 81 101
17 37466 *0.78 0.65 0.85 *27902 17021 38452 *23 - - *44 - - *47 - -
18 42261 *0.77 0.81 0.85 *30496 26900 51220 *18 - - *52 - - *46 - -
19 46255 *0.77 0.81 0.84 *31913 26219 43898 *18 - - *42 - - *56 - -
20 50275 0.77 0.78 0.85 37494 27600 49034 28 - - 72 - - 55 - -
21 56296 *0.78 0.81 0.82 *41366 33108 57989 *20 - - *62 - - *43 - -
Avg first 16 0.73 0.80 0.82 9356 9338 13510 16 36 23 38 94 66 35 43 61
Starred entries are pin-limited. Empty entries did not complete after 72 hours of place and route.

68

Chapter 5. Validation and Characterisation

circuits. Since the tool was calibrated with a large number of single-input logic elements,

the removal of these elements forces the output of each module to connect to more inputs,

thus increasing the Rent parameter.

Rent parameters in the GEN circuits tend to be higher than average circuits, most

likely because GEN was designed and calibrated assuming smaller benchmark circuits

than the ones generated here. The Rent parameters measured in the new circuits built by

our tool ranged from 0.69 to 0.75 (Column 3). More discussion regarding Rent parameter

calculations for heterogeneous circuits can be found in Section 5.4.2.

Logic Locality

The observed differences between the post-routing characteristics of the different circuit

generators are strongly related to the differences in the locality of the logic. The less lo-

cality, the more interconnected the logic becomes. The circuits from the generator in this

work display stronger locality than circuits built by the previous generators. Figure 5.1

shows a sample synthetic circuit made by this generator after clustering and placement

while Figures 5.2 and 5.3 show sample circuits from GEN and Gnl respectively. The nets

connecting the clusters are shown. The sample circuit generated by our tool contains

two copies of the MCNC benchmark cpu8080, and three smaller interface modules all

connected by a bus. It is easy to observe that the majority of the nets are localised,

leading to distinct groupings of nets. Most of the nets connect only within a module;

only a few nets belong to the network that communicates between modules. Appendix D

shows the clusters used by the logic of each module and its bus interface.

In contrast, the nets for equivalently sized circuits from GEN and Gnl seen in Fig-

ures 5.3 and 5.2 respectively are distributed much more homogeneously; thus as will be

explained in subsequent sections, the net lengths are longer, the channel width is higher,

and the critical path is longer.

69

Chapter 5. Validation and Characterisation

Figure 5.1: Sample Synthetic Circuit from our Tool after Placement

Number of Nets

Columns 6 to 8 of Table 5.1 show the number of nets in the clustered circuits. This is

the number of connections that need to be routed in the channels which is a major factor

in the required amount of routing resources. This number is also related to how well the

clustering tool can share inputs between LEs in a cluster, that is, how many nets can be

absorbed into clusters during clustering.

As seen in the table, the number of nets in the Gnl circuits is on average 45% higher

than in the other circuits. One reason could be that there are too many multiterminal

nets which are more challenging to completely absorb within one cluster. A high number

of multiterminal nets could be linked to the change in the composition of multiterminal

logic elements used in the circuits. As explained before, the single input terminal elements

were removed; thus increasing the ratio of multi-input logic elements. Only 20% of the

MCNC circuits contain such single input LEs, yet, as seen in Table 5.1, the circuits built

70

Chapter 5. Validation and Characterisation

Figure 5.2: Sample Gnl Circuit after Placement

by our generator using the MCNC circuits do not have such high numbers of nets. This

suggests that the Gnl nets do not display the locality that is seen in real circuits and are

therefore too random to be effectively absorbed into clusters.

The number of nets in the GEN circuits and the circuits built by this work is ap-

proximately the same. The locality parameter in GEN is sufficient to generate enough

locality for effective clustering.

Average Net Length

Columns 9 to 11 of Table 5.1 show the average post-routing net length of each imple-

mentation. The average net length is measured in terms of the number of clusters that

the net spans. This characteristic affects how many routing resources are used by a net.

Also, since the intercluster routing is slower than intracluster routing, long nets will add

significantly to the signal delay.

As the table shows, the average net length is significantly higher in both the Gnl

71

Chapter 5. Validation and Characterisation

Figure 5.3: Sample GEN Circuit after Placement

and the GEN circuits than in our new circuits. Experience has shown that average net

lengths for multi-terminal nets in the range of 11 to 15 are reasonable [14]. The longer

net length in the Gnl circuits is likely due to the increased number of nets. This leads to

more congestion in the circuit and in turn, longer nets when a minimum channel width

is used.

The GEN circuits show more than twice the average net length seen in our circuits.

One factor is the higher Rent parameter which leads to a longer net length as explained

in [11], but as seen in Table 5.1 the results vary much more than would be suggested by

the Rent parameter alone. The Gnl circuits have approximately the same Rent parameter

yet when compared to the steady growth in the average net length for Gnl’s circuits, the

results for the GEN circuits vary quite dramatically.

One reason for this difference could be the manner in which Gnl builds the circuits. It

builds circuits by connecting pairs of subcircuits recursively. This allows the connections

to be more localised at higher structural levels. GEN, on the other hand, considers

72

Chapter 5. Validation and Characterisation

the whole circuit at once, and progressively adds more detail to the structure. While a

locality parameter is used to control the generation of nets, this appears to be insufficient

to ensure locality at the higher levels of the structure. We suspect that this was addressed

in later extensions, but they were not used in this experiment.

Minimum Channel Width

The minimum channel width is a measure of the routing resources required to implement

a circuit. This is an important metric as it directly impacts the area of the FPGA. To

model the FPGA area accurately, the benchmark circuits should lead to channel width

requirements very similar to those of real circuits.

Columns 12 to 14 of Table 5.1 show the minimum channel width required to route

each circuit. As expected, the larger number of nets and the higher average net length for

the Gnl and GEN circuits lead to more demand for the routing resources in the circuit,

thus resulting in a higher channel width. An equation describing this relationship is

presented in [19]. Gnl’s average channel width is 1.7x higher than the circuits from this

work, and the GEN circuits are 2.5x our channel width. The variations in the GEN

circuits’ average net length are reflected in the increased channel width. The significant

increase in the channel width for the GEN circuits is likely exacerbated by the lack of

locality in the nets; this results in more congestion.

Critical Path Delay

Finally, Columns 15 to 18 of Table 5.1 show the critical path delay of each mapped

circuit. The critical path delay determines the maximum speed at which the circuit

can run. Though these circuits are not functional, the critical path of the benchmark

circuits should still give an idea of the relative performance of different architectures.

The differences in the critical path between the generated circuits are dominated by the

73

Chapter 5. Validation and Characterisation

major differences in average net length and the number of nets.

Since the GEN circuits are purely combinational, a long critical path is expected.

For such large circuits, there would normally be some flipflops that would break up the

critical path. The Gnl circuits also have long critical paths; in fact, the delay exceeds

that of GEN. As described earlier, however, these circuits have a restricted logic depth.

This makes the length of the critical path rather unexpected. The cause is related to the

results for the previous post-routing parameters. A larger proportion of nets are routed

using slower inter-cluster nets, and the average net length of these circuits is higher than

average. These two factors negate any advantage that was gained by the constrained

logic depth.

5.2.3 Summary

This section investigated the number of nets, the average net length, and the channel

width of the circuits built by our generator, and by Gen and Gnl. This allows us to

evaluate the resource demands of these circuits. The circuits’ critical path reflects the

variations in these different parameters. The results demonstrate that the connections

in our circuits result in simpler circuits that are easier to cluster, place, and route and

require less FPGA resources to implement. Moreover, the place and route algorithms

took several times less computing time to complete for our circuits. These properties

enable the circuits built by this work to scale to larger sizes more readily as will be

demonstrated in the next section.

5.3 Validation against eASIC circuits

This section will compare the results gathered in the previous section against the post-

routing results of a real benchmark suite. This will tell us whether the properties of

74

Chapter 5. Validation and Characterisation

the synthetic circuits mimic those of real circuits. The analysis evaluates the possibility

of using these synthetic benchmark generators for structural FPGA architecture experi-

ments.

5.3.1 Experimental Methodology

eASIC Benchmarks

The eASIC benchmark suite is composed of 5 ASIC netlists [17]. These circuits are from

industrial sources, and were originally released to help test placement algorithms. An

eASIC circuit is composed of flipflops, memory blocks, and eCells. Each eCell represents

a small cluster of logic elements. The logic function implemented by each eCell is not

described to protect the IP; therefore, they cannot be used for FPGA power experiments.

We suspect that other modifications to the netlist were also made to further address IP

concerns.

Each eCell has a maximum of 7 inputs and 2 outputs. In order to make the circuits

suitable for FPGA synthesis, several alterations to the netlist were necessary. Table 5.2

shows the composition of each circuit before and after conversion. The modifications

needed to convert these circuits into a BLIF format with 4-input logic elements are listed

here.

Table 5.2: eASIC Benchmark Suite

Original Converted 4-input BLIF
I/O eCells Flipflop Memory I/O LUTs Flipflops

1 446 832824 87052 282 462 946946 87052
2 102 812200 45478 861 111 875730 45478
3 421 961063 52780 192 422 970204 52780
4 414 102038 23300 44 415 125637 23300
5 154 913853 84505 407 175 1008121 84505

Multiple outputs per eCell Each output becomes its own LUT. The inputs of each

75

Chapter 5. Validation and Characterisation

LUT are still connected to all of the inputs of the original eCell.

No logic function Each LUT is assigned the AND logic function.

Multi-input flipflops These additional pins were likely set/reset logic signals. The

flipflop is replaced as follows. The input signals to the eCell are now fed to a LUT

which in turn drives the flipflop.

Block RAMs The memory block is removed and replaced with logic. Figure 5.4 demon-

strates a memory block conversion if there are more inputs than outputs. Each

output is replaced by a LUT. Each LUT received an equal portion of the inputs to

the original memory block. If one of the LUTs exceeded seven inputs, it was further

decomposed as follows. The inputs were redirected to an array of LUTs each with

up to 7 inputs. This array of LUTS then drives a LUT which in turn drives the

original memory output. The tree never exceeded a depth of two elements. This

process is illustrated in Figure 5.4.

If there are more outputs than inputs, each output is still assigned to a LUT.

However, each input signal now fans out to an equal portion of the LUTs.

While this strategy does change the structure of the circuit, the memory blocks

form less than 1% of the logic. The highest number of outputs found on a memory

block was 32 and the highest number of inputs found was 45, hence the circuit size

is increased by less than 2%.

eCells with no outputs These signals are assumed to have one pin. This pin drives a

new external output.

Multiple clocks All the clock pins are now driven by one external input pin.

Clocked constant signals The clock was removed from these blocks.

76

Chapter 5. Validation and Characterisation

1 5

2

M e m o r y

(a) Original
memory block

4

L U T

7

L U T

L U TL U T

4

(b) Transformed memory block

Figure 5.4: eASIC Memory Block Transformation

To convert these files into a format more standard for FPGA research, the files were

further modified as follows.

Seven input LEs Each LE with more than seven inputs was replaced with a collection

of 4-input LEs. For each such LE, the excess pins were moved to another LEs which

then fed the original LE. This process is shown in Figure 5.5. As shown in [2], the

area delay product for LEs with 4 inputs is marginally better than for LEs with 7

inputs. More importantly, conversion to 4 input LEs makes it easier to compare

the results with the previous experiment.

Combinational logic cycles This problem results from the block RAM conversion.

These circuits were placed and routed using non-timing-driven methods. The table

of post-routing results in Appendix E identifies these circuits.

Intractably large These circuits would require more than 12GB of RAM if they were

synthesised as is [10] using VPR. They were partitioned into smaller circuits to

make these circuits more manageable. These circuits would likewise need to be par-

titioned in order to be implemented even on the largest current FPGA devices [64].

The partitioning of these circuits was performed using kMETIS [29] which parti-

77

Chapter 5. Validation and Characterisation

7

(a) Original
7-input LE

4

3

(b) Transformed 7-
input LE

Figure 5.5: 7-input LE Transformation

tions graphs into k subcircuits. The five eASIC circuits were partitioned into ten

different circuits. The size of the subcircuits was allowed to deviate no more than

10% from the size of a strictly equal partitioning. The partition returned was the

best of 10 runs where the algorithm tried to minimise the number of nets cut.

These circuits were clustered using T-VPACK and then placed and routed using VPR.

The smallest eASIC circuit is already of an appropriate size for VPR synthesis, so the

non-partitioned circuit was also synthesised. The FPGA architecture used was identical

to the one in Section 5.2, but the number of I/O pins allowed per I/O pad was increased

to four instead of three.

Additional Synthetic Circuits

Even after partitioning, the eASIC benchmarks are still much larger than the synthetic

circuits used in Section 5.2. Thus, additional synthetic circuits were generated. The

results from these additional circuits are described in Table 5.3.

78

Chapter 5. Validation and Characterisation

Table 5.3: Additional Larger Synthetic Circuits

No. LEs Rent Nets Avg. Net Length Channel Width Crit. Path (ns)
22 59725 0.79 39015 24 72 32
23 63461 0.79 43519 20 58 80
24 72625 0.80 48133 21 58 52

5.3.2 Experimental Results

This section compares results obtained from the eASIC circuits to those obtained using

our generator as well as GEN and Gnl. The raw data collected from the eASIC circuits

are presented in Appendix E.

Number of Nets after Clustering

Figure 5.6 compares the number of nets after clustering for each of our circuits. Each

point corresponds to one circuit. The x-coordinate of the point indicates the number of

logic elements in the circuit, while the y-coordinate indicates the number of nets after

clustering for that circuit. The points corresponding to circuits from our generator are

connected using a dashed line (“NEW”), while the points corresponding to GEN and Gnl

are connected using solid lines and are labelled appropriately. The results from the eASIC

circuits are plotted as points and not connected using lines. As described earlier, four of

the five eASIC circuits were partitioned, each creating 10 subcircuits. The data for the

set of subcircuits from eASIC circuit 1 are plotted as hollow circles, the subcircuits from

eASIC circuit 2 are plotted as x’s, etc. The fourth eASIC circuit was not partitioned, so

it corresponds to one point on the graph.

Extrapolating the GNL, Gen and “NEW” lines suggests that our circuits better match

the trends observed in the eASIC circuits. Assuming the number of nets in the Gnl

circuits continue to grow as a function of circuit size, we anticipate that if Gnl was used

to create circuits that were of the size of the eASIC circuits, the number of nets would

be considerably larger than in the eASIC circuits (we were not able to perform this

79

Chapter 5. Validation and Characterisation

experiment because of excessive run-times compiling the Gnl circuits).

0 2 4 6 8 10 12

x 10
4

0

1

2

3

4

5

6

7

x 10
4

Size of Circuit (LEs)

N
um

be
r

of
 N

et
s

P
os

t−
C

lu
st

er
in

g

eASIC_1[1..10]
eASIC_2[1..10]
eASIC_3[1..10]
eASIC_4
eASIC_5[1..10]

GNL

GEN

NEW

Figure 5.6: Number of Nets Post-Clustering Comparison

Average Net Length

Figure 5.7 compares the average net length after routing for each of our circuits. Again,

the horizontal axis represents circuit size and each point in the graph corresponds to one

circuit. The points corresponding to our generator, Gnl and GEN are connected using

lines and labelled as before. Again, the partitioned eASIC circuits are represented as

points.

The results in Figure 5.7 suggest that our circuit generator results in more realistic

net lengths as the circuit size becomes large, compared to GEN and Gnl. Compared to

Figure 5.6, there is significantly more variation in the measured net length as a function

of circuit size. We suspect that this is due to the generation of pin-limited designs, as

described in Section 5.4.

Note that in this experiment (and subsequent experiments), we partitioned eASIC

circuit 4 and show the smaller subcircuits that result from this partitioning, as well as

80

Chapter 5. Validation and Characterisation

the original fourth eASIC circuit. In Figures 5.7 to 5.9, we can see that the relationship

between the original eASIC 4 circuit and its subcircuits has approximately the same

slope as the trends exhibited by the circuits built by this tool, again suggesting that the

results built by our tool are realistic.

2 4 6 8 10 12

x 10
4

15

20

25

30

35

40

45

50

Size of Circuit (LEs)

A
ve

ra
ge

 N
et

 L
en

gt
h

eASIC_1[1..10]
eASIC_2[1..10]
eASIC_3[1..10]
eASIC_4[1..10]
eASIC_5[1..10]

GEN

GNL

NEW

Figure 5.7: Average Net Length Comparison

Minimum Channel Width

Figure 5.8 shows the minimum required channel width required to route the circuits. It is

difficult to extrapolate a trend from the results of the GEN circuits; however, the results

for these circuits significantly exceed the results of the partitioned eASIC 4 circuits, and

already match the results for the larger eASIC subcircuits despite being approximately

an order of magnitude smaller in size. The trend shown by the Gnl line suggests that

if Gnl was used to create circuits as large as the eASIC circuits, the channel width

would become unreasonable (again, we could not perform this experiment because of

the excessive place and route times for the Gnl circuits). Extrapolating the results from

our generator, however, suggests that the channel width required by our circuits is more

realistic.

81

Chapter 5. Validation and Characterisation

2 4 6 8 10 12

x 10
4

40

60

80

100

120

Size of Circuit (LEs)

C
ha

nn
el

 W
id

th

eASIC_1[1..10]
eASIC_2[1..10]
eASIC_3[1..10]
eASIC_4[1..10]
eASIC_5[1..10]

GEN

GNL

NEW

Figure 5.8: Channel Width Comparison

Critical Path

The critical path results are shown in Figure 5.9. In this experiment, there is a lot of

spread in the results for the partitioned subcircuits. As explained earlier, the critical

path is highly dependent on the quality of the synthesis tools. Nonetheless, the results

suggest that our critical paths are reasonable for very large circuits.

0 2 4 6 8 10 12

x 10
4

2

4

6

8

10

12

14

Size of Circuit (LEs)

C
rit

ic
al

 P
at

h
D

el
ay

 (
10

ns
)

eASIC_1[1..10]
eASIC_2[1..10]
eASIC_3[1..10]
eASIC_4[1..10]
eASIC_5[1..10]

GNL

GEN

NEW

Figure 5.9: Critical Path Comparison

82

Chapter 5. Validation and Characterisation

5.3.3 Summary

This section demonstrated that circuits built by this work return similar FPGA charac-

teristics as those from real benchmark circuits. If the trends observed for the circuits from

this generator continue for large circuit sizes, the results would be within the range seen

for the partitioned eASIC circuits. This trend holds for the number of post-clustering

nets, the average net length, the channel width and the critical path. This demonstrates

that the circuits from our generator are suitable for FPGA architecture experimentation.

5.4 Characterisation

In this section, the effect of the added network logic on the characteristics of the resulting

SoC circuit is examined. The ability of our generator to realistically connect modules

with mismatched I/Os is examined in Section 5.4.1 and the effect of the network type is

investigated in Section 5.4.2.

5.4.1 Mismatched Pins

In this experiment, the relationship between the circuit size and the number of I/Os

was examined in order to investigate the ability of our generator to realistically connect

modules with mismatched I/O pin counts.

Experimental Methodology

Ninety-eight circuits of varying sizes were generated using the same library as described

in the earlier experiments. To quickly generate circuits with large numbers of modules,

the λ values used to stochastically generate values for the hierarchy depth, number of

networks and number of modules were modified.

83

Chapter 5. Validation and Characterisation

Experimental Results

This new set of circuits and the circuits generated by this tool in Section 5.2 are plotted

on a log-log graph as shown in Figure 5.10. The circuit size in LEs is the x-axis and the

number of I/O found in the circuit is the y-axis. The best-fit line was calculated using a

Matlab package [44].

The relationship between the number of I/O pins and the circuit size was best fitted

using a linear equation of slope 0.059. This result suggests that the number of pins found

on these circuits is proportional to the number of elements in the circuit. However, the

number of pins should be proportional to the square root of the size of the circuit, if the

circuits are not to be pin-limited. This signals that circuits will more and more likely

be pin-limited as the size of the circuits increases. This trend has already been seen in

previous circuit sets. This behaviour indicates that realistic circuits can be built only up

to a certain size using our generator.

10
4

10
5

10
2

10
3

Size of Circuit (LEs)

N
um

be
r

of
 I/

O

NEW
Line of Best Fit: y = 0.059*x

Figure 5.10: Circuit Size versus Circuit I/O

The number of pins found on an SoC-style circuit built by our generator depends

on both the degree of the pin count mismatch between the modules and the number

of modules in the circuit (i.e. the opportunities for mismatch). This suggests that if

84

Chapter 5. Validation and Characterisation

realistic circuits with many modules are to be built, the library of circuits will have to

be chosen such that the circuits’ I/O pins match well, but if circuits with fewer modules

are desired, the contents of the library do not have to be chosen as carefully.

5.4.2 Network Type

Experimental Methodology

To investigate the sensitivity of these statistics to the type of network used in the circuit,

11 sets of benchmarks were created. Each set contains three circuits, all three circuits

within a set have the same hierarchy and leaf modules; they differ only in the type of

network used (bus, dataflow, or star). Physical synthesis was performed using VPR. The

Rent parameter was calculated by partitioning the circuits using a recursive Fiduccia-

Mattheyses algorithm.

Experimental Results

Table 5.4 presents statistics on the circuits and the implementation of these circuits on a

minimum-sized FPGA. For each statistic and each network type, the table presents the

average for all 11 sets for each type of network. The data for each circuit can be found

in Appendix C.

The results show that the bus-based circuits are 25% larger than the dataflow and

the star network. This additional logic implements the interface circuitry required to

coordinate transfers on the bus. Some of the dataflow circuits contain additional flipflops

which are added when feedback loops are introduced. The star-based circuits additionally

contain only the logic required to implement the single bit nets. This added logic is

negligible relative to the average size of the circuits.

The results also show that the dataflow and star-based circuits have significantly more

I/O than the bus-based circuits. This points to an important limitation of this generator.

85

Chapter 5. Validation and Characterisation

Table 5.4: Comparison between Network Types

Average
Bus Dataflow Star

Number LEs 18019 14839 14839
Number I/Os 263 631 765
Rent Parameter 0.737 0.723 0.726.008
Number of Clusters 4559 3667 3656
Number Nets 12758 10712 10724
FPGA size 63x63 71x71 76x76
Net Length 14.5 16.9 17.9
Channel Width 38.5 40.0 40.0
Critical Path(ns) 34.1 33.6 31.6

When connecting circuits in a dataflow pattern, pins are created for the inputs of those

sub-modules in the first stage of the dataflow at the top level, and for the outputs of

those sub-modules in the last stage of the dataflow at the top level. Depending on the

sizes of these sub-modules, this could result in a large number of pins. Similarly for the

star-connected circuits, pins are created for nets not involved in the star pattern. For the

bus circuits, pins are created for all of a leaf module’s inputs or outputs beyond the bus

width. The FPGA size for the dataflow and star circuits is larger than the bus circuits

to accommodate the extra I/O pins.

The average net length of the bus-based circuits is less than that of the other circuits

likely due to the smaller average FPGA size. Nonetheless, bus wires are expected to be

long since they connect different modules. This is counteracted by the locality of the

logic which allows the bus logic to be placed close together as the figures in Appendix D

show.

The other parameters are not strongly affected by the network type.

86

Chapter 5. Validation and Characterisation

5.4.3 Rent Parameter for Heterogeneous Circuits

All circuits used in this work were partitioned to find the Rent parameter. When parti-

tioning heterogeneous circuits, the number of external pins on the subcircuits observed is

expected to show more variation than for homogeneous circuits. The logic contained in

each partition may originate from different sub-modules with different Rent parameters;

thus the number of external pins would vary.

This intuition was formalised in [66] which derives an equation for the Rent parameter

of heterogeneous circuits given the subcircuits’ Rent parameters and sizes. According to

their work, the Rent parameter for heterogeneous circuits should be the weighted average

of the component modules where the weights are proportional to each module’s size. This

work assumes that when the number of partitions is large, each subcircuit only contains

logic from one sub-module.

Ignoring any added logic for the network implementation, and using the same al-

gorithm to calculate the Rent parameters for the sub-modules, the technique in [66]

produced Rent parameters for the circuits built using this generator that are consistently

lower than the values measured using our partitioning method. The average Rent pa-

rameter measured using the equation in [66] for the 11 benchmark sets in Section 5.4.2

is 0.665 while the average values measured using partitioning is 0.729.

Assuming a Rent parameter of 1 for all the additional bus interface logic, the average

Rent parameter for the bus network circuits would then be 0.747, which is slightly higher

than the value measured using partitioning. This suggests that the Rent parameter for

the added bus interface logic is quite high. Though the bus network contains logic to

implement the bus interfaces, the dataflow and star networks contains only a negligible

amount of additional logic. The difference between the measured value using partitioning

and the value predicted using the equation in [66] is likely a result of the complexity of

the nets connecting the different modules.

87

Chapter 5. Validation and Characterisation

This suggests that measuring the Rent parameter using solely the Rent parameters of

the sub-modules is insufficient. Regardless, the Rent parameter calculated using either

partitioning or the equation described in [66] reflects the overall Rent parameter. Care

must be taken when trying to predict circuit characteristics for heterogeneous circuits

using methods derived using Rent’s parameter such as as [11]. If the derivation assumes

a homogeneous Rent parameter to model the change in nets or pins while integrating

over an area, it may not be able to take into account the effect of local variation.

5.5 Summary

This chapter compared the properties of SoC-style circuits built by this generator against

the properties of circuits built by the previous synthetic generators, GEN and Gnl. These

results were also compared to those obtained the eASIC benchmark suite. It was found

that the post-routing results from this circuit generator scale well with respect to size.

Assuming this trend holds as the circuits become larger, the estimated results for these

circuits would be within the observed set of results for the eASIC circuits. The results

from GEN and Gnl were found to quickly increase in complexity with respect to the

size of the circuit. If these post-routing results were projected to the size of the eASIC

benchmarks, the results from these circuits would be larger than the results from the

eASIC benchmarks.

The growth in the number of I/O pins is linear relative to the size of the circuit.

This shows that the mismatch in the pins of the sub-modules limits the range of realistic

circuits that can be built using this generator. The effect of the network logic was isolated

and evaluated. Bus-style networks add on average 25% to the circuit size when MCNC

circuits are used in the library. We found that circuits constructed using the dataflow

and star modules have particularly high I/O pins requirements; however, the remaining

circuit characteristics are relatively unaffected by the network type.

88

Chapter 6

Conclusions

6.1 Summary

The first part of this thesis described the findings of a survey of 66 academic and industrial

SoC circuits. We viewed each circuit as a tree circuit structure where the IP modules

are leaves. Both the structure and the composition of the circuits were analysed. Three

common connection patterns were identified during this analysis: bus, dataflow, and star.

The second part of this thesis described the algorithms used in the stochastic SoC

circuit generator. The probability distributions used in this process were derived using

data from the survey done in the first part of this work. A method was developed to

automatically generate a reasonable set of values for the primary circuit parameters given

that the set may be partially specified by the user. An algorithm was then described

that connects circuit elements into a legal circuit structure. Lastly, bit-level strategies

to connect sub-modules with mismatched pin counts were developed. This generator has

been released to the research community.

In the third part of this thesis, the circuit generator implemented in this work was

evaluated. Circuits from our generator were compared to circuits from the previous

circuit generators GEN and Gnl. These SoC-style circuits show lower FPGA resource re-

quirements than the homogeneous circuits likely due to the locality of our circuits. When

compared to the eASIC benchmark circuits, the post-routing results for our SoC-style

circuits matched the range of values found for the benchmark results. The homogeneous

89

Chapter 6. Conclusions

circuits, on the other hand, grew quickly in complexity and would require far more re-

sources than the eASIC circuits for the same circuit size. The similarity of the resource

requirements between the SoC-style synthetic circuit generator developed in this work

and the eASIC benchmark circuits suggests our synthetic circuits are suitable for FPGA

architecture experimentation.

The number of I/Os on the circuits grows linearly relative to the size of the circuits.

This indicates that the range of realistic circuits that can be built by this generator is

limited by the mismatch in the sub-module pins. The network type does not strongly

affect the circuit characteristics, although bus-style networks add approximately 25%

more logic on average; and dataflow and star networks generally result in more module

I/O.

These stochastic circuits are an important tool in the arsenal of any FPGA architect.

Suitable “real” benchmarks that are large enough to investigate future FPGA architec-

tures are difficult to obtain. Even if they could be obtained, there is value in being able

to generate a “family” of benchmark circuits that have a specific size or that have a

specific property. This allows FPGA architects to study exactly what types of circuit

structures are well supported by a proposed device, and what sort of structures are not

supported well. Synthetic circuits will not replace “real” benchmark circuits entirely,

but used correctly, these synthetic circuits will enable FPGA architecture research that

would otherwise be very difficult to perform.

6.2 Summary of Contributions

This work has made the following contributions:

• Results from a study of contemporary SoC circuit structure and composition were

presented.

90

Chapter 6. Conclusions

• Algorithms for a top-down synthetic SoC circuit generator were developed using

the observations gathered during the survey. These algorithms were implemented

in a software program that has been released to the research community.

• An investigation into the scalability of different synthetic circuit generators was

performed. The post-routing results from this generator closely match the results

generated by the eASIC benchmark circuits, while the results from previous circuit

generators would exceed the eASIC resource requirements. This leads us to believe

that the circuits built by our generator are suitable for use in FPGA architecture

experimentation.

6.3 Future Work

There are a number of areas in this research where further work can be done in order to

make the generator more realistic and more scalable. These improvements can be made

to both the behaviour of the algorithm and also to the contents of the modules.

One area of potential improvement is to modify the behaviour of the generator with

respect to the I/O pins. As described earlier, a large number of pins are created when

the top level contains a dataflow or star connection pattern. The circuit generator is

meant to be used in FPGA architectural experiments, and in most of these experiments,

an excess of I/O pins will not be a problem. However, such a circuit is more likely to

become pad-limited, relaxing the importance of effective packing and making routing

easier. Thus, when using these new circuits in FPGA architectural experiments, it is

important to take note of whether a circuit is pad-limited, and if so, interpret the results

appropriately.

Embedded memory blocks are an important part of modern FPGAs as seen in Tables

3.4 and 3.5. For FPGA architecture experiments involving the logic fabric only, this will

91

Chapter 6. Conclusions

not be a problem; however, to fully exercise all parts of an FPGA, memory should be

included. It would be straightforward to add memory blocks as leaf modules; a more

careful extension would consider common memory connection patterns such as those

described in [63] and integrate these patterns into the circuit generator. These memory

blocks would also help control the number of excess pins, since some pins on large blocks

such as CPUs would normally be expected to connect to an exclusive memory cache.

Another area of future research is to add more elaborate network-on-chip structures

that may be found on future SoC’s. Packet-based gridded networks are emerging as

the number of elements on a SoC grows, and these structures could be included in this

generator. It is anticipated that these structures would contain a large number of point-

to-point connections; the results from Section 5.4.2 suggest that this will influence the

average net length and channel width of the resulting implementation.

92

Support

This work was funded by Altera and the Natural Sciences and Engineering Research

Council of Canada.

93

Bibliography

[1] Actel. Global Resources in Actel Low-Power Flash Devices, 2008.

[2] E. Ahmed and J. Rose. The effect of LUT and cluster size on deep-submicron FPGA
performance and density. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 12(3):288–298, 2004.

[3] Altera. FLEX 8000 Programmable Logic Device Family Datasheet, 11.1 edition,
2003.

[4] Altera. Avalon Interface Specifications, 1.1 edition, 2008.

[5] Altera. Stratix III FPGA Device Family Overview, 2008.

[6] ARM. AMBA Specification, 2nd edition, 2001.

[7] V. Betz, J. Rose, and A. Marquardt. Architecture and CAD for Deep-Submicron
FPGAs. Kluwer Academic Publishers, 1999.

[8] S. D. Brown, R. J. Francis, J. Rose, and Z. G. Vranesic. Field-Programmable Gate
Arrays. Kluwer Academic Publishers, 1992.

[9] Y. W. Chang, D. Wong, and C. Wong. Universal switch modules for FPGA design.
ACM Transactions on Design Automation of Electronic Systems, pages 330–331,
1999.

[10] S. Y. L. Chin and S. J. E. Wilton. Memory footprint reduction for FPGA routing al-
gorithms. In International Conference on Field-Programmable Technology (ICFPT),
pages 1–8, 2007.

[11] P. Christie and D. Stroobandt. On the interpretation and application of Rent’s rule.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 8(6):639–648,
2000.

[12] J. Cong and Y. Ding. Flowmap: An optimal technology mapping algorithm for delay
optimization in lookup-table based FPGA designs. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and systems, 13(1):1–12, January 1994.

[13] Altera Corp. Quartus II University Interface Program (QUIP).
http://university.altera.com/research/unv-quip.html.

[14] J. Das. Personal Communication.

94

Bibliography

[15] V. Degalahal and T. Tuan. Methodology for high level estimation of FPGA power
consumption. In Asia and South Pacific: Design Automation Conference, January
2005.

[16] G. DeMicheli. Synthesis and Optimization of Digital Circuits. McGraw-Hill, 1994.

[17] eASIC. ePrize1, 2008. http://code.google.com/p/eprize1/.

[18] C. Ebling, L. McMurchie, S. A. Hauck, and S. Burns. Placement and routing tools
for the Triptych FPGA. IEEE Transactions on VLSI, 3(4):483–482, December 1999.

[19] W. M. Fang and J. Rose. Modeling routing demand for early-stage FPGA architec-
ture development. In International Symposium on Field Programmable Gate Arrays,
pages 139–148, February 2008.

[20] D. Ghosh, N. Kapur, J. Harlow, and F. Brglez. Synthesis of wiring signature-
invariant equivalence class circuit mutants and applications to benchmarking. In
Design Automation and Test in Europe, pages 656–663, February 1998.

[21] S. Gladston, B. Hoffman, and N. Gregoire. SXP (Simple eXtensible Pipeline) Pro-
cessor. Opencores, 2001.

[22] D. Grant and G. Lemieux. Perturb+mutate: Semi-synthetic circuit generation for
incremental placement and routing. ACM Transactions on Reconfigurable Technol-
ogy and Systems, 1(3):1–24, 2009.

[23] L. Hagen, A. B. Kahng, F. J. Kurdahi, and C. Ramachandran. On the intrinsic
Rent parameter and spectra-based partitioning methodologies. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 13(1):27–37, 1994.

[24] J. Harlow and F. Brglez. Synthesis of ESI equivalence class combinational circuit
mutants. Technical Report 1997-TR@CBL-07-Harlow, North Carolina State Uni-
versity, October 1997. Also available at http://www.cbl.ncsu.edu/publications.

[25] M. Hutton. The Circuit Characterization and Generation Project at the University
of Toronto. http://www.eecg.toronto.edu/∼mdhutton/gen/index.html.

[26] M. Hutton, J. Rose, and D. Corneil. Automatic generation of synthetic sequential
benchmark circuits. IEEE Transactions on Computer-Aided Design, 21(8):928–940,
2002.

[27] M. Hutton, J. Rose, J. Grossman, and D. Corneil. Characterization and param-
eterized generation of synthetic combinational circuits. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 17(10):985–996, 1998.

[28] P. Jamieson and J. Rose. Enhancing the area-efficiency of FPGAs with hard circuits
using shadow clusters. In An Analytical Model Describing the Relationships between
Logic Architecture and FPGA Density, pages 1–8, December 2006.

95

Bibliography

[29] G. Karypis and V. Kumar. Multilevel k-way hypergraph partitioning. Technical
Report 98-036, University of Minnesota, 1999.

[30] J. Kleinhans, G. Sigl, F. Johannes, and K. Antreich. Gordian: VLSI placement
by quadratic programming and slicing optimization. IEEE Transactions on CAD,
10(3):356–365, March 1991.

[31] K. Kozminski and C. Stuart. Version 2.0 of the OASIS system available for distri-
bution. SIGDA Newsletter. vol 22, number 3.

[32] E. S. Kuh and T. Ohtsuki. Recent advances in VLSI layout. Proceedings of the
IEEE, 78(11):237–263, February 1990.

[33] P. Kundarewich and J. Rose. Synthetic circuit generation using clustering and
iteration. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 23(6):869–887, 2004.

[34] I. Kuon and J. Rose. Area and delay trade-offs in the circuit and architecture design
of FPGAs. In International Symposium on Field Programmable Gate Arrays, pages
149–158, February 2008.

[35] A. Lam, S.J.E. Wilton, P. Leong, and W. Luk. An analytical model describing
the relationships between logic architecture and FPGA density. In International
Conference on Field-Programmable Logic and Applications, 1998. forthcoming.

[36] B. S. Landman and R. L. Russo. On a pin versus block relationship for partitions
of logic graphs. IEEE Transactions on Computers, C-20(12):1469–1479, December
1971.

[37] G. Lemieux and D. Lewis. Design of Interconnection Networks for Programmable
Logic. Springer, 2004.

[38] D. Lewis, E. Ahmed, G. Baeckler, V. Betz, M. Bourgeault, D. Cashman, D. Gal-
loway, M. Hutton, C. Lane, A. Lee, P. Leventis, S. Marquardt, C. McClintock,
K. Padalia, B. Pedersen, G. Powell, B. Ratchev, S. Reddy, J. Schleicher, K. Stevens,
R. Yuan, R. Cliff, and J. Rose. The Stratix II logic and routing architecture. In
Field Programmable Gate Arrays (FPGA), pages 14–20, 2005.

[39] O. Lupas. Serial UART. Opencores, 2004.

[40] E. J. Marinissen, V. Iyengar, and K. Chakrabarty. ITC’02 SOC test benchmarks.
http://www.hitech-projects.com/itc02socbenchm/, October 2007.

[41] C. Mark, A. Shui, and S. Wilton. A system-level stochastic circuit generator for
FPGA architecture evaluation. In International Conference on Field Programmable
Technologies, December 2008. forthcoming.

96

Bibliography

[42] A. Marquardt, V. Betz, and J. Rose. Using cluster-based logic blocks and timing-
driven packing to improve FPGA speed and density. In ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, pages 37–46, 1999.

[43] I. Masud and S. J. E. Wilton. A new switch block for segmented FPGAs. In
International Conference on Field Programmable Logic and its Applications, pages
274 – 281, 1999.

[44] F. Moisy. Ezyfit: a free curve fitting toolbox for Matlab. U. Paris Sud. Version 2.2.

[45] R. Murgai, N. Shenoy, R. K. Brayton, and A. Sangiovanni-Vincentelli. Performance
directed synthesis for table look up programmable gate arrays. In Proceedings of the
IEEE International Conference on Computer Aided Design, pages 572–575, Novem-
ber 1991.

[46] F. N. Najm. A survey of power estimation techniques in VLSI circuits. IEEE
Transactions on VLSI Systems, 2:446–455, 1994.

[47] OpenCores. http://www.opencores.org.

[48] J. Pistorius, M. Hutton, A. Mischenko, and R. Brayton. Benchmarking method and
designs targeting logic synthesis for FPGAs. In International Workshop on Logic
Synthesis (IWLS), pages 230–237, May 2007.

[49] J. Pistorius, E. Legai, and M. Minoux. Partgen: A generator of very large circuits
to benchmark the partitioning of FPGAs. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 19(11):1314–1321, 2000.

[50] K. K. W. Poon, S. J. E. Wilton, and A. Yan. A detailed power model for field-
programmable gate arrays. ACM Transactions on Design Automation of Electronic
Systems, 10(2):279–302, 2005.

[51] C. Sechen and A. Sangiovanni-Vincentelli. The Timberwolf placement and routing
package. JSSC, 20(2):510–522, 1985.

[52] STMicroelectronics. UM0339: User manual, 2007.

[53] D. Stroobandt. On an efficient method for estimating the interconnection complexity
of designs and on the existence of region III in Rent’s rule. In Great Lakes Symposium
on VLSI, pages 330–331, 1999.

[54] D. Stroobandt, J. Depreitre, and J. Van Campenhout. Generating new bench-
mark designs using a multi-terminal net model. INTEGRATION: the VLSI journal,
27(2):113–129, 1999.

[55] D. Stroobandt and F. J. Kurdahi. On the characterization of multi-point nets in
electronic designs. In Proceedings of the 8th Great Lakes Symposium on VLSI, pages
344–350, feb 1998.

97

Bibliography

[56] D. Stroobandt, P. Verplaetse, and J. Van Campenhout. Generating synthetic bench-
mark circuits for evaluating CAD tools. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 19(9):1011–1022, 2000.

[57] M. Tom, , and G. Lemieux. Logic block clustering of large designs for channel-width
constrained FPGAs. In Design Automation Conference, 2005.

[58] M. Tom and G. Lemieux. Logic block clustering of large designs for channel-width
constrained FPGAs. In Field Programmable Gate Arrays (FPGA), pages 726–231,
2005.

[59] S. Trimberger. Keynote talk: Redefining the FPGA. In International Conference
on Field-Programmable Logic and Applications, August 2007.

[60] P. Verplaetse, J. V. Campenhout, and D. Stroobandt. On synthetic benchmark
generation methods. In IEEE International Symposium on Circuits and Systems
(ISCAS), pages 213–216, 2000.

[61] P. Verplaetse and D. Stroobandt. Gnl: Generate netlist. http://trappist.elis.

ugent.be/∼dstrooba/gnl/.

[62] P. Verplaetse, D. Stroobandt, and J. Van Campenhout. Synthetic benchmark circuits
for timing-driven physical design applications. In International Conference on VLSI,
pages 31–37, 2002.

[63] S.J.E Wilton. Architecture and Algorithms for Field-Programmable Gate Arrays with
Embedded Memory. PhD thesis, University of Toronto, 1997.

[64] Xilinx. Virtex-5 user guide, May 2006.

[65] S. Yang. Logic Synthesis and Optimization Benchmarks User Guide. MCNC, 3
edition, 1991.

[66] P. Zarkesh-Ha, J. A. Davis, W. Loh, and J. D. Meindl. On a pin versus gate relation-
ship for heterogeneous systems: Heterogeneous Rent’s rule. In Custom Integrated
Circuits Conference (CICC), pages 93–96, 1998.

[67] Y. Zhuo, H. Li, and S. P. Mohanty. A congestion driven placement algorithm for
FPGA synthesis. In Field Programmable Logic and Applications (FPL), pages 1–4,
2006.

98

Appendix A

Surveyed Circuits

The author and either the title of the article/manual or the chip name are listed.

A.1 Microprocessor

Bright, A., Ellavsky, M., et al. Creating the BlueGene/L Supercomputer from
Low-Power SoC ASICs

Shiota, T., Kawasaki, K., et al. A 51.2 GOPS 1.0GB/s-DMA Single Chip Multi-
Processor Integrating Quadruple 8-Way VLIW
Processors

Luftner, T., Berthold, J., et al. A 90nm CMOS Low-Power GSM/EDGE Mul-
timedia Enhanced Baseband Processor with
380MHz ARM9 and Mixed-Signal Extensions

Torrii, S., Suzuki, H., et al. A 600MIPS 120mW 70uA Leakage Triple-CPU
Mobile Application Processor Chip

Analog Devices ADSP-BF54x Blackfin Processor: Hardware
Referencee

Renesas H83644

Renesas SH7721

Renesas SH7785

Infineon TC1775 32-Bit Single-Chip Microprocessor

Cirrus Logic EP7311

99

Appendix A. Surveyed Circuits

Hattori, T., Irita, T., et al. A Power Management Scheme Controlling
20 Power Domains for a Single-Chip Mobile
Processor

Cappelli, A., Lodi, A.,et al. XiSystem: a XiRisc-Based SoC with a Recon-
figurable IO Module

Yohida, Y., Kamei, T. et al. A 4320MIPS Four-Processor Core SMP/AMP
with Individually Managed Clock Frequency for
Low Power Consumption

Chen, Z., Ananthanarayanan, P.,
et al.

A 25W SoC with Dual 2GHz Power Cores and
Integrated Memory and I/O Subsystems

Bae, Y. D., Park, I. C. A 4.75GOPS Single-chip Programmable Proces-
sor Array Consisting of a Multithreaded Proces-
sor and Multiple SIMD and IO Processors

Khan, A., Ruparel, K., et al. Design and Development of 130-nanometer ICs
for a Multi-Gigabit Switching Network System

Cali, L., Lertora, F., et al. Platform IC with Embedded Via Programmable
Logic for Fast Customization

Bocchi, M., De Bartolomeis, C.,
et al.

A XiiRisc-based SoC for Embedded DSP
Applications

Pham, D., Behnen, E., et al. The Design Methodology and Implementation
of a First-Generation CELL Processor: A
Multi-Core SoC

Jung, Y., Kim, J., et al. A Digital 120Mb/s MIMO-OFDM Baseband
Processor for High Speed Wireless LANs

Khan, A., Watson, P., et al. A 90nm Power Optimization Methodology
and its Application to the ARM 1136JF-S
Microprocessor

AMCC PPC405EP

100

Appendix A. Surveyed Circuits

A.2 Networking

Hilton, C., Nelson, B. PNoC: a flexible circuit-switched NoC for
FPGA-based systems

Lee, K., Lee, S.J., Yoo, H.J. Low-Power Network-on-chip for High-
Performance SoC Design

Murali, S.; De Micheli, G. Bandwidth-Constrained Mapping of Cores onto
NoC Architectures

Axis FS Designers Reference Axis Communications
AB

Broadcom Univeral Advanced Docsic 2.0 Downstream

Broadcom Dual Universal Advanced TDMA/SCDMA
PHY-Layer Burst Receive

Broadcom BCM5758: Product Brief - Application Proces-
sor for Network Management Applications

Broadcom BCM4506 - Product Brief - Dual Advanced
Modulation Satellite Receiver

Nathawad, L., Weber, D., et al. An IEEE 802.11a/b/g SoC for Embedded
WLAN Applications

Bonnaud, P.-H., Hammes, M., et
al.

A Fully Integrated SoC for GSM/GPRA in
0.13um CMOS

Mehta, S., Si, W. W., et al. A 1.9 GHz Single-Chip CMOS PHS Cellphone

Broadcom BCM6358

101

Appendix A. Surveyed Circuits

A.3 Multimedia

Broadcom BCM1101: Product Brief - Enterprise IP Phone
Chip

Yamauchi, H., Okada, S., et al. An 81MHz, 1280x720pixelsx30 frame/s MPEG-
4 Video/Audio Codec Processor

Fujiyoshi, T., Shiratake, S., et al. An H.264/MPEG-4 Audio/Visual Codec LSI
with Module-Wise Dynamic Voltage/Frequency
Scaling

Kim, D., Chung, K., et al. An SoC with 1.3Gtexels/s 3D Graphics Full
Pipeline Engine for Consumer Applications

Sohn, J.-H., Woo, J.-H., et al. A 50Mvertices/s Graphics Processor with
Fixed-Point Programmable Vertex Shader for
Mobile Applications

Broadcom BCM3551

Broadcom BCM7038

Broadcom BCM7440

Broadcom BCM7021

Cirrus CS49500/10/20

Cirrus CS4961xx

Corelogic CLI5000/5001/5002

Corelogic CLH31X

Bathaee, M., Ghezelayagh, H., et
al.

A 0.13um CMOS SoC for All Format Blue
and Red Laser DVD Front-end Digital Signal
Processor

Pan, J.-S., Hsu, T.-H., et al. Fully Integrated CMOS SoC for 56/18/16
CD/DVD-dual/RAM Applications with On-
Chip 4-LVDS Channel WSG and 1.5Gb/s SATA
PHY

102

Appendix A. Surveyed Circuits

Chang, Y.-W., Fang, H.-C., et al. 124MS/s Pixel-Pipelined Motion-JPEG 2000
Codec without Tile Memory

Lin, C. C., Guo, J. I., et al. A 160kGate 4.5kB SRAM H.264 Video Decoder
for HDTV Applications

Ueda, Y., Yamauchi, H., et al. 6.33mW MPEG Audio Decoding on a Multime-
dia Processor

Huang, Y. W., Chen, T. C., et al. A 1.3TOPS H.264/AVC Single-Chip Encoder
for HDTV Applications

Vangal, S., Howard, J., et al. An 80-Tile 1.28TFLOPS Network-on-Chip in
65nm CMOS

Abbo, A., Kleihorst, R., et al. XETAL-II: A 107 GOPS, 600mW Massively-
Parallel Processor for Video Scene Analysis

Nam, B.-G., Lee, J., et al. A 52.4mW 3K Graphics Processor with
141Mvertices/s Vertex Shader and 3 Power
Domains of Dynamic Voltage and Frequency
Scaling

Khailany, B., Williams, T., et al. A Programmable 512 GOPS Stream Processor
for Signal, Image, and Video Processing

Kim, S. H., Yoon, J.S., et al. A 36fps 3D Display Processor with a Pro-
grammable 3D Graphics Rendering Engine

Nagano, K., Okamoto, K., et al. A 0.13um CMOS Ultra-compact DVD SoC em-
ploying a Full Digital Equalizing PRML Read
Channel

Huang, C., Ravi, S., et al. Eliminating Memory Bottlenecks for a JPEG
Encoder Through Distributed Logic-Memory
Architecture and Computation-unit Integrated
Memory

Park, S., Cho, H., et al. An Implemented H.24 Video Decoder using
Hardware and Software

103

Appendix A. Surveyed Circuits

A.4 Miscellaneous

Infineon Security & Chip Card ICs SLE 66CX360PE

Innova Card USIP Professional IC

Lewellen, T., Miyaoka, R., et al. System Electronics for the MiCES Small Ani-
mal PET Scanner

Park, J., Hwang, J.-T., Kim, Y.-
C.

FPGA and ASIC implementation of ECC
Processor for Security on Medical Embedded
System

Bainbridge, W. J., Plana, L.A.,
Furber, S.B.

The Design and Test of a Smartcard Chip Using
a CHAIN Self-timed Network-on-Chip

104

Appendix B

Bus Interface Pins

The widths may differ if the sub-module is either the reset source or interrupt sink.

Table B.1: Slave Bus Interface

Bus Side Module Side
RW signal IP load
Address [1..Bus width] IP Data Input [1..Module inputs]
Data to Slave [1..Bus width] IP Data Output [1..(Module outputs - 1)]
Data to Master [1..Bus width] Clock
Clock Reset
Reset
* The RW signal is managed by the interface

Table B.2: Master Bus Interface

Bus Side Module Side
RW signal IP load
Address [1..Bus width] RW signal
Data to Slave [1..Bus width] IP Data Input [1..Module inputs]
Data to Master [1..Bus width] IP Data Output [1..(Module outputs - 2)/2]
Clock IP Address Output [1..(Module ouputs - 2)/2]
Reset Clock

Reset
* The RW signal is managed by the interface

105

Appendix C

Network Type Experiment Results

(Table follows on next page)

106

A
p
p
en

d
ix

C
.

N
etw

o
rk

T
y
p
e

E
x
p
erim

en
t

R
esu

lts

Table C.1: Characterisation of Network Types: Circuit Properties

No. LE (k) No. I/O Rent Parameter No. Clusters (k) No. Nets (k) FPGA size
No B D S B D S B D S B D S B D S B D S
1 17.3 15.8 15.8 450 343 544 0.75 0.75 0.75 4.4 4.0 4.0 12.5 11.3 11.5 67 64 64
2 3.4 1.4 1.4 42 215 95 0.67 0.64 0.65 0.9 0.4 0.4 2.2 1.1 1.1 30 19 19
3 44.0 37.3 37.3 613 854 2739 0.78 0.77 0.77 11.1 9.5 9.4 31.3 26.8 27.8 106 98 229
4 8.1 6.4 6.4 88 114 463 0.72 0.70 0.70 2.0 1.6 1.6 5.1 4.2 4.3 46 41 41
5 10.9 8.0 8.0 103 477 647 0.73 0.70 0.71 2.8 2.0 2.0 7.7 6.0 6.2 53 45 54
6 37.9 29.5 29.5 287 1516 1265 0.78 0.77 0.76 9.6 7.5 7.5 26.9 22.4 21.9 98 127 106
7 7.3 4.1 4.1 31 157 153 0.72 0.70 0.70 1.8 1.0 1.0 4.6 2.7 2.7 43 33 33
8 4.2 3.2 3.2 79 187 193 0.70 0.69 0.70 1.1 0.8 0.8 2.7 2.2 2.2 33 29 29
9 18.6 13.8 13.8 146 695 467 0.75 0.74 0.74 4.7 3.5 3.5 13.1 10.7 10.4 69 60 60
10 14.0 11.6 11.6 325 339 747 0.74 0.73 0.73 3.5 3.0 2.9 10.1 8.6 8.7 60 55 63
11 32.7 28.0 28.0 989 2470 1671 0.77 0.76 0.76 8.3 7.1 7.1 24.1 21.9 21.2 92 206 140
B=Bus; D=Dataflow; S=Star

107

A
p
p
en

d
ix

C
.

N
etw

o
rk

T
y
p
e

E
x
p
erim

en
t

R
esu

lts

Table C.2: Characterisation of Network Types: Post-Routing Results

Average Net Length Channel Width Critical Path (ns)
No B D S B D S B D S
1 18 17 18 52 52 48 39 37 38
2 9 10 11 20 24 26 9 16 17
3 16 17 32 44 44 44 60 62 54
4 17 18 18 42 40 42 24 17 18
5 13 14 14 36 36 36 41 42 40
6 16 21 20 52 54 58 54 47 44
7 14 15 15 30 30 34 23 17 14
8 13 14 14 30 30 32 15 16 12
9 14 16 16 38 42 40 38 39 39
10 14 15 16 38 36 36 38 42 40
11 16 29 23 42 52 44 48 54 46
B=Bus; D=Dataflow; S=Star

108

Appendix D

SoC Post-Placement Example

(a) Module 1

Figure D.1: Example of SoC Post-Placement Logic Locality: Blue squares are clusters
containing that module’s logic; Yellow squares are clusters containing slave interface logic;
Green squares are clusters containing master interface logic; Grey squares are clusters
that are unused by that module; Hollow squares are clusters that are unused by any
module

109

Appendix D. SoC Post-Placement Example

(b) Module 2

(c) Module 3

Figure D.1: Example of SoC Post-Placement Logic Locality (continued)

110

Appendix D. SoC Post-Placement Example

(d) Module 4

(e) Module 5

Figure D.1: Example of SoC Post-Placement Logic Locality (continued)

111

Appendix E

eASIC Post-Routing Results

Table E.1: eASIC 1 Post-Routing Results

LE No. of Nets Net Length Channel Width Critical Path (ns)
0 98884 69175 22.2429 112 136.182
1 95694 67289 23.31 92 124.685
2 97893 58347 21.3289 66 78.8533
3 91313 57582 18.6057 88 *
4 98834 68525 23.2005 102 87.5604
5 92434 64865 24.0966 90 124.31
6 97906 67294 26.2198 82 130.489
7 86710 56592 20.8404 74 90.4157
8 86658 56607 22.0885 78 89.7965
9 100620 68850 24.2235 76 109.458
* Synthesized using timing invariant methods

Table E.2: eASIC 2 Post-Routing Results

LE No. of Nets Net Length Channel Width Critical Path (ns)
0 78031 48227 21.5491 68 77.9169
1 92216 57444 25.9866 102 82.0337
2 83360 51633 22.9695 76 96.247
3 90105 56987 32.3982 80 79.7303
4 93469 57931 42.9972 104 104.229
5 82816 51543 21.7935 70 85.3263
6 92284 57470 24.8204 80 80.4697
7 89677 55472 23.5067 80 93.2832
8 82794 48965 30.243 80 61.7551
9 90978 59629 36.8413 116 111

Table E.3: eASIC 3 Post-Routing Results

LE No. of Nets Net Length Channel Width Critical Path (ns)
0 87862 41521 26.9248 60 44.261
1 92158 49797 25.5695 74 75.6516

112

Appendix E. eASIC Post-Routing Results

Table E.3: eASIC 3 Post-Routing Results (continued)

LE No. of Nets Net Length Channel Width Critical Path (ns)
2 102642 51694 29.1663 68 52.7585
3 107143 51277 31.5987 66 52.437
4 98595 53141 30.5125 82 58.6319
5 87236 44613 25.0459 60 49.3659
6 90567 46133 25.742 64 73.3277
7 101021 52159 28.5409 74 58.2856
8 97490 52676 30.5529 78 56.5732
9 105490 50304 30.9852 102 50.2337

Table E.4: eASIC 4 Post-Routing Results

LE No. of Nets Net Length Channel Width Critical Path (ns)
original 125637 67841 23.2918 72 66.9218
0 13169 7009 15.8132 36 25.8787
1 11168 5231 13.3855 26 13.9489
2 14523 8677 17.1418 46 45.5342
3 11820 6028 12.6745 30 13.5887
4 11714 4990 13.7438 24 11.0972
5 12496 7372 14.5045 40 17.4525
6 11186 7037 14.6926 38 16.4419
7 13043 7395 14.2031 36 14.4713
8 12987 6523 15.8534 36 19.4205
9 13531 7803 14.6069 38 21.3247

Table E.5: eASIC 5 Post-Routing Results

LE No. of Nets Net Length Channel Width Critical Path (ns)
0 101497 68978 20.4291 82 *
1 115249 74865 36.1794 126 60.4511
2 100703 61389 25.3643 76 87.8322
3 99503 63150 18.5145 76 *
4 96888 62367 23.4991 88 84.4122
5 97766 52146 20.4501 62 65.337
6 93425 55366 19.8603 68 136.487
7 95187 59441 25.7129 82 101.227
8 106052 74963 23.5209 106 92.9103
9 101851 74896 24.8286 92 144.563
* Synthesized using timing invariant methods

113

