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Abstract

We consider the decomposition of a maximal monotone operator into the

sum of an antisymmetric operator and the subdifferential of a proper lower

semicontinuous convex function. This is a variant of the well-known decom-

position of a matrix into its symmetric and antisymmetric part. We analyze

in detail the case when the graph of the operator is a linear subspace. Equiv-

alent conditions of monotonicity are also provided.

We obtain several new results on auto-conjugate representations includ-

ing an explicit formula that is built upon the proximal average of the as-

sociated Fitzpatrick function and its Fenchel conjugate. These results are

new and they both extend and complement recent work by Penot, Simons

and Zălinescu. A nonlinear example shows the importance of the linearity

assumption. Finally, we consider the problem of computing the Fitzpatrick

function of the sum, generalizing a recent result by Bauschke, Borwein and

Wang on matrices to linear relations.
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Chapter 1

Introduction

This thesis addresses two issues: decompositions of a monotone operator

with a linear graph, and auto-conjugate representations of a monotone op-

erator with a linear graph.

It is well known that every matrix A in Rn×n can be decomposed into

the sum of a symmetric matrix and an antisymmetric matrix by

A = A+A⊺

2 + A−A⊺

2 ,

where A+A⊺

2 is a gradient of a quadratic function. Our goal is to decompose

more general mappings, namely maximal monotone operators. Both pos-

itive semidefinite matrices and gradients of convex functions are maximal

monotone.

At present there are two famous decompositions: Asplund decomposi-

tion and Borwein-Wiersma decomposition. In 1970, Asplund decomposition

was introduced by E. Asplund who showed that a maximal monotone and

at most single-valued operator A with int dom A 6= ∅ is Asplund decompos-

able. In 2006, J. Borwein and H. Wiersma introduced the Borwein-Wiersma

decomposition in [12], which is more restrictive. Borwein-Wiersma verified

that a maximal monotone operator that is Borwein-Wiersma decomposable
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Chapter 1. Introduction

is also Asplund decomposable in finite dimensional spaces. One goal of our

thesis is to show that maximal monotone operators with linear graphs are

Borwein-Wiersma decomposable.

The idea of representing a set by nice functions is classical. For example,

for a closed set C, one can define the distance function

dC(x) := inf
c∈C

{
‖x − c‖

}
.

Then dC is 1-Lipschitz and

C =
{

x | dC(x) = 0
}

.

One can also define the lower semicontinuous function ιC where ιC(x) = 0

if x ∈ C and +∞ otherwise, then

C =
{
x | ιC(x) = 0

}
.

In the later part of this thesis, we want to find auto-conjugate repre-

sentations for a maximal monotone operator with a linear graph. An auto-

conjugate function is a convex function. One very important result provided

by Penot, Simons and Zǎlinescu shows that an auto-conjugate f represents

an induced maximal monotone operator A = G(f).

In order to create auto-conjugate representations, we introduce the Fitz-

patrick function and the proximal average. In 1988, Simon Fitzpatrick

defined a new convex function FA in [18] which is called the Fitzpatrick

function associated with the monotone operator A. Recently, Fitzpatrick

2



Chapter 1. Introduction

functions have turned out to be a very useful tool in the study of maximal

monotone operators, see [2, 4, 8, 9, 18]. The proximal average was first in-

troduced in [6] in the context of fixed point theory. In its simplest form, the

proximal average is denoted here by P (f0, f1), where f0 and f1 are proper

lower semicontinuous and convex functions. The recent works in [5, 7, 9]

give numerous properties that are very attractive to Convex Analysts.

Now we come back to our question. In [24], Penot and Zǎlinescu showed

that a maximal monotone operator A can be represented by an auto-conjugate

function hFA
, using a partial epigraphical sum. In [9], Bauschke and Wang

showed that P (FA, F ∗
A

⊺) is an auto-conjugate representation for a maxi-

mal monotone operator A. Until now there has been no clear formula for

P (FA, F ∗
A

⊺), even if A is a linear, continuous and monotone operator. In this

thesis, we give an explicit formula for P (FA, F ∗
A

⊺) associated with a maximal

monotone operator A with a linear graph. We find that P (FA, F ∗
A

⊺) = hFA
.

This is a new result.

The thesis is organized as follows.

Chapter 2 contains some auxiliary and basic results on monotone oper-

ators, subdifferentials and Moore-Penrose inverses.

In Chapter 3, it is shown that the inverse of a linear and monotone

operator is Borwein-Wiersma decomposable.

Chapter 4 contains our first main result: A maximal monotone operator

with a linear graph is Borwein-Wiersma decomposable. In addition, the

remainder of this chapter gives some equivalent conditions of monotonicity

of operators with linear graphs.

Chapter 5 discusses auto-conjugate representations. We give an explicit

3



Chapter 1. Introduction

formula for P (FA, F ∗
A

⊺) associated with a linear and monotone operator A,

which is our second main result. Furthermore, we show that P (FA, F ∗
A

⊺) =

hFA
.

In Chapter 6, we give a specific example of a nonlinear monotone oper-

ator: ∂(− ln) such that P (F∂(− ln), F
∗⊺
∂(− ln)) 6= hF∂(− ln)

. This illustrates the

necessity of the linearity assumption.

Finally, in Chapter 7 we extend auto-conjugate representation results

from linear and monotone operators to monotone operators with linear

graphs. Here we also discuss one open question: Expressing FA+B in terms

of FA and FB . We show that FA+B = FA�2FB (Here �2 means the inf

convolution for the second variable). This generalizes one of the results

provided by Bauschke, Borwein and Wang in [4].

Throughout this thesis, X denotes a Hilbert space with inner product

〈·, ·〉, norm ‖ · ‖, and Id is the identity mapping in X. The unit ball is

B =
{

x ∈ X | ‖x‖ ≤ 1
}

.

We further set

R+ =
{

x ∈ R | x ≥ 0
}

, R− =
{
x ∈ R | x ≤ 0

}
,

R++ =
{

x ∈ R | x > 0
}

, R−− =
{
x ∈ R | x < 0

}
.

For a subset C ⊂ X , the closure of C is denoted by C. The arrow “→” is used

for a single-valued mapping, whereas “⇉” denotes a set-valued mapping.

4



Chapter 2

Auxiliary results

2.1 Definitions

We first introduce some fundamental definitions.

Definition 2.1.1 Let T : X ⇉ X. We say T is monotone if

〈x∗ − y∗, x − y〉 ≥ 0,

whenever x∗ ∈ T (x), y∗ ∈ T (y).

Definition 2.1.2 Let A : X → X. We say A is positive semidefinite if

〈x,Ax〉 ≥ 0, ∀x ∈ X.

Example 2.1.3 Let A : X → X be linear. Then A is monotone, if and only

if, A is positive semidefinite.

Proof. “⇒” For every x ∈ X, by monotonicity and linearity of S we have

〈Ax, x〉 = 〈Ax − A0, x − 0〉 ≥ 0. (2.1)

(2.1) holds by A0 = 0 (since A is linear).

“⇐” For every x, y ∈ X, since A is positive semidefinite, we have

5



Chapter 2. Auxiliary results

〈
Ax − Ay, x − y

〉
=

〈
A(x − y), x − y

〉
≥ 0. (2.2)

�

Definition 2.1.4 Let A : X → X be linear. We define qA by

qA(x) = 1
2 〈x,Ax〉, ∀x ∈ X. (2.3)

Definition 2.1.5 Let A : X → X be linear and continuous. Then A∗ is the

unique linear and continuous operator satisfying

〈Ax, y〉 = 〈x, A∗y〉, ∀x, y ∈ X. (2.4)

Remark 2.1.6 Let A : Rn → Rn be linear. Then A∗ = A⊺.

Definition 2.1.7 Let A : X → X be linear and continuous. We say that A

is symmetric if A∗ = A.

Remark 2.1.8 Let A : X → X be linear and continuous. Then A is mono-

tone ⇔ A∗ is monotone.

Definition 2.1.9 Let A : X → X be linear and continuous. We say that A

is antisymmetric if A∗ = −A.

Remark 2.1.10 Let A : X → X be linear and continuous. Then A+A∗

2 is

symmetric and A−A∗

2 is antisymmetric.

6



Chapter 2. Auxiliary results

Definition 2.1.11 (Symmetric and antisymmetric part) Let A : X →

X be linear and continuous. Then A+ = 1
2A + 1

2A∗ is the symmetric part

of A, and A◦ = A − A+ = 1
2A − 1

2A∗ is the antisymmetric part of A.

Remark 2.1.12 Let A : X → X be linear and continuous. Then qA = qA+.

Proof. Let x ∈ X.

2qA+(x) = 〈A+x, x〉 = 〈A∗+A
2 x, x〉

= 〈A∗x
2 , x〉 + 〈Ax

2 , x〉 = 〈x
2 , Ax〉 + 〈Ax

2 , x〉

= 〈Ax, x〉 = 2qA(x).

�

Here is a basic property.

Fact 2.1.13 Let A : X → X be linear and continuous. Then A is mono-

tone, if and only if, A+ is monotone.

Proof. By Example 2.1.3 and Remark 2.1.12. �

Definition 2.1.14 Let T : X ⇉ X be monotone. We call T maximal

monotone if for every (y, y∗) /∈ gra T there exists (x, x∗) ∈ graT with

〈x − y, x∗ − y∗〉 < 0.

Fact 2.1.15 Let A : X ⇉ X be maximal monotone and (x0, x
∗
0) ∈ X × X.

Let Ã : X ⇉ X such that gra Ã = gra A − (x0, x
∗
0) ( i.e., a rigid translation

of gra A). Then Ã is maximal monotone.

Proof. Follows directly from Definition 2.1.14. �

7



Chapter 2. Auxiliary results

Example 2.1.16 Every continuous monotone operator A : X → X is max-

imal monotone.

Proof. [26, Example 12.7]. �

Let us introduce an essential result that will be used often.

Fact 2.1.17 Let A : X → X be linear, continuous and monotone. Then

ker A = ker A∗ and ranA = ranA∗.

Proof. See [4, Proposition 3.1]. �

Fact 2.1.18 Let A : X → X be linear and continuous. Then

qA is convex ⇔ A is monotone ⇔ qA(x) ≥ 0, x ∈ X,

and

∇qA = A+.

Proof. See [3, Theorem 3.6(i)]. �

Definition 2.1.19 Let f : X → ]−∞,+∞]. We say f is proper lower

semicontinuous and convex if

f(x0) < +∞, ∃ x0 ∈ X,

f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y), ∀λ ∈ ]0, 1[, ∀x, y ∈ X,

lim inf
y→x

f(y) = lim
δ→0+

inf f(x + δB) ≥ f(x), ∀x ∈ X.

Definition 2.1.20 Let f : X → ]−∞,+∞] be proper lower semicontinuous

8



Chapter 2. Auxiliary results

and convex. The subdifferential mapping ∂f : X ⇉ X is defined by

x 7→ ∂f(x) :=
{

x∗ | 〈x∗, y − x〉 + f(x) ≤ f(y), ∀y
}
.

One of motivations for studying monotone operators comes from the

following Fact.

Fact 2.1.21 (Rockafellar) Let f : X → ]−∞,+∞] be proper lower semi-

continuous and convex. Then ∂f is maximal monotone.

Proof. See [28, page 113] or [31, Theorem 3.28]. �

Fact 2.1.22 Let A : X → X be linear and monotone. Then A is maximal

monotone and continuous.

Proof. See [23, Corollary 2.6 and Proposition 3.2.h]. �

Definition 2.1.23 For a set S ⊂ X, ιS : X → ]−∞,+∞] stands for the

indicator function defined by

ιS(x) :=





0, if x ∈ S;

+∞, otherwise.

Fact 2.1.24 Suppose that S is a nonempty convex subset of X. Then ιS is

proper lower semicontinuous and convex, if and only if, S is closed.

Proof. See [22, Example.(a)]. �

Definition 2.1.25 The space ℓ2 consists of all sequences of real numbers

9



Chapter 2. Auxiliary results

(ξ1, ξ2, . . .) for which

‖(ξ1, ξ2, . . .)‖2 < ∞,

where

‖(ξ1, ξ2, . . .)‖2 := (

∞∑

i=1

|ξi|
2)

1
2 ,

and where

〈ξ, γ〉 =

∞∑

i=1

〈ξi, γi〉, ∀ξ = (ξi)
∞
i=1, γ = (γi)

∞
i=1 ∈ ℓ2.

Fact 2.1.26 (ℓ2, ‖ · ‖2) is a Hilbert space.

Proof. See [27, Example 3.24]. �

Example 2.1.27 Let X be (ℓ2, ‖ · ‖2) space and A : X → X : (xn)∞n=1 7→

(xn

n
)∞n=1. Then A is maximal monotone and continuous.

Proof. Clearly, A is linear. Now we show A is monotone. Let x = (xn)∞n=1 ∈

X. Then

〈x, Ax〉 =
∞∑

n=1

x2
n

n
≥ 0.

By Example 2.1.3, A is monotone. By Fact 2.1.22, A is maximal monotone

and continuous. �

Lemma 2.1.28 Let S be a linear subspace of X. Suppose x ∈ X and α ∈ R

satisfy 〈x, s〉 ≤ α,∀s ∈ S. Then x⊥S.

10



Chapter 2. Auxiliary results

Proof. Let s ∈ S. By assumption, we have

〈x, ks〉 ≤ α, ∀k ∈ R ⇒〈x, s〉 ≤ 0, if k > 0

〈x, s〉 ≥ 0, if k < 0

⇒ 〈x, s〉 = 0, ∀s ∈ S

⇒ x⊥S.

�

Fact 2.1.29 Suppose that S is a closed linear subspace of X. Then

∂ιS(x) = S⊥, ∀x ∈ S.

Proof. Let x ∈ S. We have

x∗ ∈ ∂ιS(x) ⇔ 〈x∗, s − x〉 ≤ ιS(s) − ιS(x), ∀s ∈ X

⇔ 〈x∗, s − x〉 ≤ 0, ∀s ∈ S

⇔ x⊥S (by Lemma 2.1.28).

�

Fact 2.1.30 Let f, g : X → ]−∞,+∞] be proper lower semicontinuous and

convex. Suppose that f is differentiable everywhere. Then

∂(f + g)(x) = ∇f(x) + ∂g(x), ∀x ∈ dom g.

Proof. See [22, Theorem 3.23]. �

Example 2.1.31 Suppose that j(x) = 1
2‖x‖

2, ∀x ∈ X and S ⊂ X is a

11
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closed subspace. Then ∂(j + ιS) is maximal monotone. In particular, ∂(j +

ιS)(x) = x + S⊥, ∀x ∈ S.

Proof. By Fact 2.1.24, ιS is proper lower semicontinuous and convex. Hence

j + ιS is proper lower semicontinuous and convex. By Fact 2.1.21, ∂(j + ιS)

is maximal monotone.

Let x ∈ S. By Fact 2.1.30, Fact 2.1.18 and Fact 2.1.29,

∂(j + ιS)(x) = ∇j(x) + ∂ιS(x) = ∇qId(x) + ∂ιS(x) = x + S⊥. �

Fact 2.1.32 Let A : X → X be linear and continuous such that ran A is

closed. Then ∂ιran A(x) = (ran A)⊥ = ker A∗, ∀x ∈ ran A.

Proof. Let x ∈ ran A. By Fact 2.1.29, ∂ιran A(x) = (ran A)⊥. Now we show

that (ran A)⊥ = ker A∗. We have

x∗ ∈ (ran A)⊥ ⇔ 〈x∗, Ax〉 = 0, ∀x ∈ X

⇔ 〈A∗x∗, x〉 = 0, ∀x ∈ X

⇔ A∗x∗ = 0 ⇔ x∗ ∈ ker A∗.

�

Definition 2.1.33 Let A : X → X. The set-valued inverse mapping, A−1 : X ⇉

X, is defined by

x ∈ A−1y ⇔ Ax = y.

The following is the definition of the Moore-Penrose inverse, which will

play an important role in our Theorems.

12
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Definition 2.1.34 Let A : X → X be linear and continuous such that ran A

is closed. The Moore-Penrose inverse of A, denoted by A†, is defined by

A†b = argminA∗Au=A∗b‖u‖, ∀b ∈ X.

In the following we always let A† stand for the Moore-Penrose inverse of a

linear and continuous operator A.

Remark 2.1.35 Let A : X → X be linear and continuous such that ran A

is closed. Then by [19, Theorem 2.1.1],

A†y ∈ A−1y, ∀y ∈ ranA.

In particular, if A is bijective, then

A† = A−1.

2.2 Properties of A†

By the Remark above, we know that A† |ran A is a selection for A−1. This

raises some questions: What is the relationship between them? If one of

them is monotone, can we deduce that the other one is also monotone?

Fact 2.2.1 Let A : X → X be linear and continuous. Then ran A is closed,

if and only if, ran A∗ is closed.

Proof. See [19, Theorem 1.2.4]. �

13
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Fact 2.2.2 Let A : X → X be linear and continuous such that ran A is

closed. Then A† is linear and continuous.

Proof. See [19, Corollary 2.1.3]. �

Fact 2.2.3 Let A : X → X be linear and continuous such that ran A is

closed. Then ran A† = ran A∗.

Proof. See [19, Theorem 2.1.2]. �

Fact 2.2.4 Let A : X → X be linear and continuous such that ran A is

closed. Then (A†)∗ = (A∗)†.

Proof. See [19, Exercise 11 on page 111] and [21, Exercise 5.12.16 on page

428]. �

Proposition 2.2.5 Let A : X → X be linear, continuous and monotone

such that ran A is closed. Then

ran A = ran A∗ = ran A† = ran(A†)∗, ker A = ker A∗ = ker(A†) = ker(A†)∗.

Proof. By Fact 2.1.17 and Fact 2.2.1,

ran A = ran A∗. (2.5)

By Fact 2.2.3 and (2.5), we have

ran A = ran A∗ = ranA†. (2.6)

14
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By Fact 2.2.1, ran A∗ is closed. By Remark 2.1.8, A∗ is monotone. Apply

(2.6) with replacing A by A∗, we have

ran A∗ = ranA∗∗ = ran(A∗)†. (2.7)

By Fact 2.2.4 and (2.6), we have

ranA∗ = ran A = ran(A†)∗ = ran A†.

Then (ran A∗)⊥ = (ran A)⊥ =
(
ran(A†)∗

)⊥
= (ran A†)⊥, thus by Fact 2.1.32,

ker A = ker A∗ = ker(A†) = ker(A†)∗ . �

Proposition 2.2.6 Let A : X → X be linear. Suppose y ∈ ranA. Then

A−1y = y∗ + ker A, ∀y∗ ∈ A−1y.

Proof. Let y∗ ∈ A−1y and z∗ ∈ ker A. Then Ay∗ = y and

A(y∗ + z∗) = Ay∗ + Az∗ = y + 0 = y.

Thus y∗ + z∗ ∈ A−1y. Hence y∗ + ker A ⊂ A−1y.

On the other hand, let y∗1 ∈ A−1y. Then Ay∗1 = y and for each y∗ ∈ A−1y,

A(y∗1 − y∗) = Ay∗1 − Ay∗ = y − y = 0.

Thus y∗1 − y∗ ∈ ker A, i.e., y∗1 ∈ y∗ + ker A. Then A−1y ⊂ y∗ + ker A. �

Corollary 2.2.7 Let A : X → X be linear and continuous such that ran A

is closed. Then A−1y = A†y + ker A, ∀y ∈ ranA.

15
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Proof. By Remark 2.1.35 and Proposition 2.2.6. �

In order to further illustrate the relationship between A† and A, we

introduce the concept of Projector.

Fact 2.2.8 Let M be a closed subspace of X. For every vector x ∈ X,

there is a unique vector m0 ∈ M such that ‖x − m0‖ ≤ ‖x − m‖ for all

m ∈ M . Furthermore, a necessary and sufficient condition that m0 ∈ M be

the unique minimizing vector is that x − m0 be orthogonal to M .

Proof. See [20, Theorem 2 on page 51]. �

The Fact above ensures that the following mapping is well defined.

Definition 2.2.9 (Projector) Let M be a closed subspace of X. The Pro-

jector, PM : X → M , is defined by

PMx = argminm∈M‖x − m‖ , x ∈ X. (2.8)

Here is a result that will be very helpful for our problems.

Proposition 2.2.10 Let A : X → X be linear and monotone such that

ran A is closed. Then qA† = qA†Pran A.

16
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Proof. Let x ∈ X. Then we have

2qA†(x) =
〈
x, A†x

〉
(2.9)

=
〈
Pran Ax + Pker Ax, A†(Pran Ax + Pker Ax)

〉
(2.10)

=
〈
Pran Ax + Pker Ax, A†(Pran Ax)

〉
(2.11)

=
〈
Pran Ax, A†(Pran Ax)

〉
+

〈
Pker Ax, A†(Pran Ax)

〉
(2.12)

=
〈
Pran Ax, A†(Pran Ax)

〉
+

〈
Pran Ax, (A†)∗(Pker Ax)

〉
(2.13)

=
〈
Pran Ax, A†(Pran Ax)

〉
(2.14)

= 2qA†(Pran Ax). (2.15)

Note that (2.10) holds since X = ran A⊕ker A by Fact 2.1.32 and Fact 2.1.17.

(2.11) holds since Pker Ax ∈ ker A = ker A† by Proposition 2.2.5.

(2.14) holds by (A†)∗(Pker Ax) = 0, since ker(A†)∗ = ker A by Proposi-

tion 2.2.5. �

Fact 2.2.11 Let A : X → X be linear and continuous such that ran A is

closed. Then AA† = Pran A.

Proof. See [19, Theorem 2.2.2]. �

Corollary 2.2.12 Let A : X → X be linear, continuous and monotone such

that ran A is closed. Then A† is monotone.

Proof. Since A† is linear and continuous by Fact 2.2.2, by Fact 2.1.18 it

suffices to show that qA†(x) ≥ 0,∀x ∈ X.
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Let x ∈ X and y = A†(Pran Ax). Then Ay = AA†(Pran Ax) = Pran Ax by

Fact 2.2.11. By Proposition 2.2.10, we have

2qA†(x) = 2qA†(Pran Ax) (2.16)

= 〈A†(Pran Ax), Pran Ax〉 (2.17)

= 〈y, Ay〉 (2.18)

≥ 0, (2.19)

in which (2.19) holds since A is monotone. �

Fact 2.2.13 Let A : X → X be linear and continuous such that ran A is

closed. Then A†† = A.

Proof. See [19, Exercise 7 on page 110]. �

Theorem 2.2.14 Let A : X → X be linear and continuous such that ran A

is closed. Then A is monotone, if and only if, A† is monotone.

Proof. “⇒” By Corollary 2.2.12.

“⇐” Since ranA† = ran A is closed by Proposition 2.2.5, we apply Fact 2.2.13

and Corollary 2.2.12 to A† to conclude that A†† = A is monotone. �

Here is a useful result that will be used very often.

Proposition 2.2.15 Let A : X → X be linear, symmetric and continuous

such that ran A is closed. Then

qA†(x + Ay) = qA†(x) + qA(y) + 〈Pran Ax, y〉, ∀x, y ∈ X.
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Proof. Let x ∈ X, y ∈ X. Then

qA†(x + Ay) (2.20)

= 1
2 〈A

†x + A†Ay, x + Ay〉 (2.21)

= qA†(x) + 1
2 〈A

†Ay,Ay〉 + 1
2〈A

†x,Ay〉 + 1
2〈A

†Ay, x〉 (2.22)

= qA†(x) + 1
2 〈AA†Ay, y〉 + 1

2〈AA†x, y〉 + 1
2

〈
y, (A†A)∗x

〉
(2.23)

= qA†(x) + 1
2 〈Pran A(Ay), y〉 + 1

2〈Pran Ax, y〉 + 1
2〈y,AA†x〉 (2.24)

= qA†(x) + qA(y) + 1
2〈Pran Ax, y〉 + 1

2〈y, Pran Ax〉 (2.25)

= qA†(x) + qA(y) + 〈Pran Ax, y〉, (2.26)

in which, (2.24) by Fact 2.2.11 and Fact 2.2.4, (2.25) by Fact 2.2.11. �

Corollary 2.2.16 Let A : X → X be linear, symmetric and continuous

such that ran A is closed. Then

qA†(Ax) = qA(x), ∀x ∈ X.

Proof. Apply Proposition 2.2.15 to A with x replaced by 0 and y replaced

by x. �

Fact 2.2.17 Let A : X → X be linear and continuous such that ran A is

closed. Then A†A = Pran A†.

Proof. See [19, Theorem 2.2.2]. �
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Corollary 2.2.18 Let A : X → X be linear, continuous and monotone such

that ran A is closed. Then

AA† = A†A = Pran A.

Proof. By Proposition 2.2.5, ran A = ran A†. Then follows directly from

Fact 2.2.11 and Fact 2.2.17. �
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Chapter 3

Inverse of linear monotone

operators

It is well known that a linear, continuous and monotone operator A can be

decomposed into the sum of a symmetric operator A+ and an antisymmetric

operator A◦: A = A+ + A◦.

By Fact 2.1.18, A is also decomposed into the sum of the subdifferential

of a proper lower semicontinuous and convex function ∇qA and an anti-

symmetric operator A◦: A = ∇qA + A◦. Such a decomposition is called a

Borwein-Wiersma decomposition.

3.1 Borwein-Wiersma decomposition

Definition 3.1.1 (Borwein-Wiersma decomposition) We say A : X ⇉

X is Borwein-Wiersma decomposable or simply decomposable if

A = ∂f + S,

where f is proper lower semicontinuous and convex, and S is antisymmetric.

What kind of operators are Borwein-Wiersma decomposable?
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Definition 3.1.2 We say A : Rn ⇉ Rn is skew if there exists a linear and

antisymmetric operator B such that B |dom A= A |dom A .

Fact 3.1.3 Let A : Rn ⇉ Rn be maximal monotone and at most single-

valued. Suppose that 0 ∈ dom A,dom A is open and A is Frechet differen-

tiable on dom A. Then A is Borwein-Wiersma decomposable, if and only if,

A −∇fA is skew, where

fA : domA → R : x 7→

∫ 1

0
〈A(tx), x〉 dt.

Proof. See [12, Theorem 3]. �

3.2 Asplund decomposition

Here we also introduce another famous decomposition: Asplund decompo-

sition, see [1].

Definition 3.2.1 We say A : X ⇉ X is acyclic with respect to a subset C

if

A = ∂f + S,

where f is proper lower semicontinuous and convex, and S is monotone,

which necessarily implies that ∂f is constant on C. If no set C is given,

then C = dom A.

Definition 3.2.2 (Asplund decomposition) We say A : X ⇉ X is As-

plund decomposable if

A = ∂f + S,
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where f is proper lower semicontinuous and convex, and S is acyclic with

respect to dom A.

The following tells us which operators are Asplund decomposable.

Fact 3.2.3 (Asplund) Let A : Rn ⇉ Rn be maximal monotone such that

int dom A 6= ∅ and A is at most single-valued. Then A is Asplund decom-

posable.

Proof. See [12, Theorem 13]. �

By the following result, we can find out the connection between the

decompositions.

Fact 3.2.4 Let A : Rn → Rn be antisymmetric. Then A is acyclic.

Proof. See [12, Proposition 15]. �

Remark 3.2.5 Let A : Rn ⇉ Rn be maximal monotone and Borwein-Wiersma

decomposable via

∂f + S,

where f is proper lower semicontinuous and convex, and S is antisymmetric.

Then such a decomposition is also an Asplund decomposition.

3.3 The Borwein-Wiersma decomposition of the

inverse

As mentioned earlier, a linear, continuous and monotone operator is Borwein-

Wiersma decomposable. It is natural to ask whether its set-valued inverse
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mapping is also Borwein-Wiersma decomposable.

Theorem 3.3.1 Let A : X → X be linear, continuous and monotone such

that ran A is closed. Then

A−1 = ∂f + (A†)◦,

where f := qA† + ιran A is proper lower semicontinuous and convex, and

(A†)◦ is antisymmetric. In particular, A−1 is decomposable.

Proof. By Fact 2.2.2 and Corollary 2.2.12, A† is linear, continuous and

monotone. Then by Fact 2.1.18 we have qA† is convex function, differentiable

and ∇qA† = (A†)+. Since ran A is a closed subspace of X, by Fact 2.1.24

ιran A is proper lower semicontinuous and convex. Hence f is proper lower

semicontinuous and convex.

We show that the convex function f satisfies

∂f(x) + (A†)◦x =





A†x + ker A, if x ∈ ranA;

∅, otherwise.
(3.1)

Indeed, since f is convex, ∀x ∈ ranA we have

∂f(x) = ∂(qA† + ιran A)(x)

= ∇qA†(x) + ∂ιran A(x) ( by Fact 2.1.30)

= (A†)+x + ker A∗ (3.2)

= (A†)+x + ker A, (3.3)
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where (3.2) holds by Fact 2.1.32, and (3.3) by Proposition 2.2.5.

Thus

∂f(x) + (A†)◦x = (A†)+x + ker A + (A†)◦x = A†x + ker A, ∀x ∈ ranA.

If x 6∈ ran A = dom f , by definition ∂f(x) = ∅. Hence (3.1) holds.

By Corollary 2.2.7, we have that

A−1x = A†x + ker A, ∀x ∈ ran A. (3.4)

Thus,

A−1x =





A†x + ker A, if x ∈ ran A;

∅, otherwise.
(3.5)

By (3.1) and (3.5), we have A−1 = ∂f + (A†)◦. �

Proposition 3.3.2 Assume T : X ⇉ X is monotone, then T−1 is mono-

tone. Moreover, if T is maximal monotone, then so too is T−1.

Proof. Use Definition 2.1.1 and Definition 2.1.14 directly. �

Due to Phelps and Simons, we obtain the following Proposition.

Proposition 3.3.3 Let A : X → X be linear, continuous and monotone

such that A is one-to-one and symmetric. Then

A−1 = ∂f,

where f(x) := supy∈ran A

{
〈A−1y, x〉− 1

2 〈A
−1y, y〉

}
(∀x ∈ X) is proper lower

25



Chapter 3. Inverse of linear monotone operators

semicontinuous and convex. If X = Rn, then A−1 = ∇qA−1. In particular,

A−1 is decomposable.

Proof. By Example 2.1.16, A is maximal monotone. Then by Proposi-

tion 3.3.2, A−1 is maximal monotone. Since A is linear and one-to-one ,

A−1 is single-valued and linear on ranA.

In the following we show that

〈x,A−1y〉 = 〈y,A−1x〉, ∀x, y ∈ ran A.

Let x, y ∈ ranA. Then there exist unique x1, y1 ∈ X such that x = Ax1, y =

Ay1. We have

〈x,A−1y〉 = 〈Ax1, y1〉 = 〈x1, Ay1〉 = 〈A−1x, y〉.

By [23, Theorem 5.1], f is proper lower semicontinuous and convex, and

A−1 = ∂f.

If x = Rn, we have A is invertible. By assumption, A−1 is symmetric and

monotone. By Fact 2.1.18, A−1 = ∇qA−1. �
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Monotone operators with

linear graphs

Theorem 3.3.1 tells us that the set-valued inverse A−1 of a linear, continuous

and monotone operator A is Borwein-Wiersma decomposable. Naturally,

this raises the following question: Are maximal monotone operators with

linear graphs also Borwein-Wiersma decomposable? This chapter answers

the question above. It also gives some important equivalent conditions of

monotonicity and maximal monotonicity of operators with linear graphs.

Let us first introduce some interesting results about these operators.

4.1 Linear graph

Fact 4.1.1 Let S,M be closed linear subspaces of X. Then

S = M ⇔ S⊥ = M⊥, S 6= M ⇔ S⊥ 6= M⊥.

Proof. Follows directly by S⊥⊥ = S,M⊥⊥ = M. �
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Definition 4.1.2 Let A : X ⇉ X. We define domA, ran A by

dom A := {x | Ax 6= ∅}

ran A := {x∗ | x∗ ∈ Ax, ∃x ∈ dom A}.

Proposition 4.1.3 Let A : X ⇉ X such that gra A is a linear subspace of

X × X. For every x, y ∈ dom A, the following hold.

(i) A0 is a linear subspace of X.

(ii) Ax = x∗ + A0, ∀x∗ ∈ Ax.

(iii) αAx + βAy = A(αx + βy), ∀α, β ∈ R with α 6= 0 or β 6= 0.

(iv) If A is monotone, then dom A⊥A0, hence dom A ⊂ (A0)⊥, A0 ⊂

(dom A)⊥.

(v) If A is monotone, then

〈x, x∗〉 ≥ 0, ∀(x, x∗) ∈ gra A.

Proof. Obviously,

dom A =
{

x ∈ X| (x, y) ∈ gra A, ∃y ∈ X
}

(4.1)

and dom A is a linear subspace of X.

(i): ∀α, β ∈ R, ∀x∗, z∗ ∈ A0 we have

(0, x∗) ∈ graA (0, z∗) ∈ graA.
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As graA is a linear subspace of X × X,

α(0, x∗) + β(0, z∗) = (0, αx∗ + βz∗) ∈ graA.

This gives αx∗ + βz∗ ∈ A0. Hence A0 is a linear subspace.

(ii): We first show that

x∗ + A0 ⊂ Ax, ∀x∗ ∈ Ax.

Take x∗ ∈ Ax, z∗ ∈ A0. Then

(x, x∗) ∈ gra A and (0, z∗) ∈ gra A.

Since graA is a linear subspace,

(x, x∗ + z∗) ∈ graA.

That is, x∗ + z∗ ∈ Ax. Then x∗ + A0 ⊂ Ax.

On the other hand, let x∗, y∗ ∈ Ax. We have

(x, x∗) ∈ gra A, (x, y∗) ∈ gra A.

Since graA is a linear subspace,

(x − x, y∗ − x∗) = (0, y∗ − x∗) ∈ graA.

Then y∗ − x∗ ∈ A0. That is, y∗ ∈ x∗ + A0. Thus Ax ⊂ x∗ + A0. Hence (ii)
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holds.

(iii): Let α, β ∈ R. Take x∗ ∈ Ax, y∗ ∈ Ay. Then we have

(x, x∗) ∈ gra A, (y, y∗) ∈ gra A.

Since gra A is a linear subspace, we have (αx + βy, αx∗ + βy∗) ∈ gra A.

That is, αx∗ + βy∗ ∈ A(αx + βy).

Then by (ii) we have

Ax = x∗ + A0, Ay = y∗ + A0, A(αx + βy) = αx∗ + βy∗ + A0. (4.2)

Suppose that α 6= 0. By (i)

αA0 + βA0 = A0. (4.3)

Then by (4.2) and (4.3),

αAx + βAy = α(x∗ + A0) + β(y∗ + A0)

= αx∗ + βy∗ + (αA0 + βA0)

= αx∗ + βy∗ + A0

= A(αx + βy).

(iv): Pick x ∈ dom A. By (4.1) there exists x∗ ∈ X such that (x, x∗) ∈

gra A. Then by monotonicity of A, we have

〈x − 0, x∗ − z∗〉 ≥ 0, ∀z∗ ∈ A0.
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That is,

〈x, x∗〉 ≥ 〈x, z∗〉, ∀z∗ ∈ A0. (4.4)

Since A0 is a linear subspace by (i), by Lemma 2.1.28 and (4.4),

x⊥A0, ∀x ∈ dom A

⇒ dom A⊥A0

⇒ dom A ⊂ (A0)⊥, A0 ⊂ (dom A)⊥.

(v): Since (0, 0) ∈ gra A,

〈x, x∗〉 = 〈x − 0, x∗ − 0〉 ≥ 0, ∀(x, x∗) ∈ graA.

�

Remark 4.1.4 Proposition 4.1.3(ii) is a useful representation. It means

Ax = Ãx + A0, ∀x ∈ dom A, Ãx ∈ Ax.

Later, we will show the selection map Ã can be chosen to be linear!

4.2 Maximal monotonicity identification

The next three results are well known.

Fact 4.2.1 Let A : X ⇉ X be maximal monotone. Then Ax is closed and

convex, ∀x ∈ X.
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Proof. Fix x ∈ X. If x /∈ domA, then Ax = ∅ is closed and convex. So

suppose x ∈ dom A. Let (x∗
n) ⊂ Ax such that x∗

n → x∗. In the following

we show that x∗ ∈ Ax. For every (y, y∗) ∈ gra A, by monotonicity of A, we

have

〈y − x, y∗ − x∗
n〉 ≥ 0. (4.5)

Letting n → ∞ in (4.5), we see that

〈y − x, y∗ − x∗〉 ≥ 0, ∀(y, y∗) ∈ gra A. (4.6)

By (4.6) and maximal monotonicity of A, we have (x, x∗) ∈ gra A. That is,

x∗ ∈ Ax. Hence Ax is closed.

Now we show that Ax is convex. Let δ ∈ [0, 1]. For every x∗
1, x

∗
2 ∈ Ax, we

have

〈y − x, y∗ − x∗
1〉 ≥ 0 (4.7)

〈y − x, y∗ − x∗
2〉 ≥ 0, ∀(y, y∗) ∈ gra A. (4.8)

Adding (4.7)×δ and (4.8)×(1 − δ) yields

〈y − x, y∗ − (δx∗
1 + (1 − δ)x∗

2)〉 ≥ 0, ∀(y, y∗) ∈ gra A. (4.9)

Since A is maximal monotone, (x, δx∗
1 + (1 − δ)x∗

2) ∈ graA, i.e., δx∗
1 + (1 −

δ)x∗
2 ∈ Ax. Thus Ax is convex. �

Proposition 4.2.2 Let A,B : X ⇉ X be monotone. Then A + B is mono-

tone.
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Proof. Let (x, x∗), (y, y∗) ∈ gra(A + B). Then there exist

(x, x∗
1), (y, y∗1) ∈ gra A

(x, x∗
2), (y, y∗2) ∈ gra B

such that

x∗ = x∗
1 + x∗

2

y∗ = y∗1 + y∗2.

Then

〈x − y, x∗ − y∗〉 = 〈x − y, x∗
1 + x∗

2 − y∗1 − y∗2〉

= 〈x − y, x∗
1 − y∗1〉 + 〈x − y, x∗

2 − y∗2〉 ≥ 0.

Hence A + B is monotone. �

Fact 4.2.3 Let A : X ⇉ X be maximal monotone. Then dom A is convex.

Proof. See [31, Theorem 3.11.12]. �

Fact 4.2.4 Let A : X ⇉ X be maximal monotone. Then A + ∂ιdom A = A.

Proof. By Fact 4.2.3 and Fact 2.1.24, ιdom A is proper lower semicontinuous

and convex. Then by Proposition 2.1.21, ∂ιdom A is monotone. Then by

Fact 4.2.2, A + ∂ιdom A is monotone.
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Suppose x ∈ dom A. Then since 0 ∈ ∂ιdom A(x) ,

(A + ∂ιdom A)(x) = Ax + ∂ιdom A(x) ⊃ Ax.

Suppose x /∈ dom A. Then since Ax = ∅,

(A + ∂ιdom A)(x) ⊃ Ax, ∀x ∈ X.

Since A is maximal monotone, A + ∂ιdom A = A. �

The following are interesting properties about maximal monotonicity of

monotone operators with linear graphs.

Proposition 4.2.5 Let A : X ⇉ X be monotone such that gra A is a linear

subspace of X × X. Then

A is maximal monotone ⇒ dom A = (A0)⊥.

Proof. Suppose to the contrary that dom A 6= (A0)⊥. By Proposition 4.1.3(i)

and Fact 4.2.1, A0 is a closed subspace. By Fact 4.1.1, (dom A)⊥ 6= (A0)⊥⊥ =

A0. Then by Proposition 4.1.3(iv), we have

(dom A)⊥ = (dom A)⊥ ' A0. (4.10)

Thus there exists ω∗ ∈ (dom A)⊥ \ A0. By ω∗ ∈ (dom A)⊥, we have

〈ω∗, x〉 = 0, ∀x ∈ domA. (4.11)
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Since ω∗ /∈ A0, (0, ω∗) /∈ graA. By maximal monotonicity of A, there exists

(x0, x
∗
0) ∈ gra A such that

〈x∗
0, x0〉 − 〈ω∗, x0〉 = 〈x∗

0 − ω∗, x0 − 0〉 < 0. (4.12)

By (4.11) and (4.12), 〈x∗
0, x0〉 < 0, which is a contradiction to Proposi-

tion 4.1.3(v). �

Proposition 4.2.6 Let A : X ⇉ X be monotone such that gra A is a linear

subspace of X × X and A0 is closed. Then

domA = (A0)⊥ ⇒ A is maximal monotone.

Proof. Let (x, x∗) ∈ X × X satisfy that

〈x − y, x∗ − y∗〉 ≥ 0, ∀(y, y∗) ∈ gra A. (4.13)

In the following we will verify that (x, x∗) ∈ gra A.

By (4.13) we have

〈x, x∗〉 ≥ 〈x, z∗〉, ∀z∗ ∈ A0.

Since A0 is a linear subspace by Proposition 4.1.3(i), by Lemma 2.1.28 we

have x⊥A0, i.e., x ∈ (A0)⊥ = dom A.

Take x∗
0 ∈ Ax. For every v∗ ∈ Av, we have x∗

0 + v∗ ∈ A(x + v) by Proposi-
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tion 4.1.3(iii). By (4.13), we have

〈x − (x + v), x∗ − (x∗
0 + v∗)〉 ≥ 0, ∀(v, v∗) ∈ graA.

That is,

〈v, v∗〉 ≥ 〈v, x∗ − x∗
0〉, ∀(v, v∗) ∈ gra A. (4.14)

By Proposition 4.1.3(iii), we have 1
n
v∗ ∈ A( 1

n
v). Then by (4.14),

〈 1
n
v, 1

n
v∗〉 ≥ 〈 1

n
v, x∗ − x∗

0〉, ∀(v, v∗) ∈ gra A. (4.15)

Multiply (4.15) both sides by n and then let n → ∞ to see that

〈v, x∗ − x∗
0〉 ≤ 0, ∀v ∈ dom A. (4.16)

Since dom A is a linear subspace, by Lemma 2.1.28, (x∗−x∗
0)⊥ dom A. Since

A0 is closed, we have

(x∗ − x∗
0) ∈ (dom A)⊥ = (A0)⊥⊥ = A0. (4.17)

According to Proposition 4.1.3(ii), x∗ ∈ x∗
0 + A0 = Ax. �

Here is an important result in this chapter.

Theorem 4.2.7 Let A : X ⇉ X be monotone such that gra A is a linear

subspace of X × X and dom A is closed. Then

A is maximal monotone ⇔ domA = (A0)⊥, A0 is closed.
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Proof. Since A is maximal monotone, A0 is closed by Fact 4.2.1. Combine

Proposition 4.2.5 and Proposition 4.2.6. �

Theorem 4.2.7 gives an equivalent condition in infinite-dimensional spaces.

When we consider it in finite-dimensional spaces, can we get further results?

Now we discuss this in detail.

Proposition 4.2.8 Let A : Rn ⇉ Rn be monotone such that graA is a

linear subspace of Rn × Rn. Then dim(gra A) = dim(dom A) + dim A0.

Proof. We shall construct a basis of gra A.

By Proposition 4.1.3(i), A0 is a linear subspace. Let
{

x∗
1, · · · , x∗

k

}
be

a basis of A0 and
{

xk+1, . . . , xl

}
be a basis of dom A. We show that

{
(0, x∗

1), . . . , (0, x
∗
k), (xk+1, x

∗
k+1), · · · , (xl, x

∗
l )

}
is a basis of gra A, where x∗

i ∈

Axi, i ∈ {k + 1, · · · , l}. We first show that

{
(0, x∗

1), . . . , (0, x
∗
k), (xk+1, x

∗
k+1), · · · , (xl, x

∗
l )

}

is linearly independent. Let αi, i ∈ {1, · · · , l}, satisfy that

α1(0, x
∗
1) + · · · + αk(0, x

∗
k) + αk+1(xk+1, x

∗
k+1) + · · · + αl(xl, x

∗
l ) = 0.

Hence

αk+1xk+1 + · · · + αlxl = 0 (4.18)

α1x
∗
1 + · · · + αkx

∗
k + αk+1x

∗
k+1 + · · · + αlx

∗
l = 0. (4.19)

37



Chapter 4. Monotone operators with linear graphs

Since
{

xk+1, . . . , xl

}
is linearly independent, by (4.18) we have αi = 0, i ∈

{k+1, · · · , l}. Then since
{

x∗
1, · · · , x∗

k

}
is linearly independent, by (4.19) we

have αi = 0, i ∈ {1, · · · , k}. Thus αi = 0, i ∈ {1, · · · , l}. Hence
{
(0, x∗

1), . . . , (0, x
∗
k), (xk+1, x

∗
k+1), · · · , (xl,

is linearly independent.

Let (x, x∗) ∈ graA. Then there exists βi, i ∈ {k + 1, · · · , l} satisfying that

βk+1xk+1 + · · · + βlxl = x.

Thus

βk+1x
∗
k+1 + · · · + βlx

∗
l ∈ Ax.

By Proposition 4.1.3(ii), there exists z∗ ∈ A0 such that

βk+1x
∗
k+1 + · · · + βlx

∗
l + z∗ = x∗.

Then there exists βi, i ∈ {1, · · · , k} satisfying that

z∗ = β1x
∗
1 + · · · + βkx∗

k.

Thus

(x, x∗) = β1(0, x
∗
1) + · · · + βk(0, x

∗
k) + βk+1(xk+1, x

∗
k+1) + · · · + βl(xl, x

∗
l ).

Hence
{

(0, x1), . . . , (0, xk), (xk+1, x
∗
k+1), · · · , (xl, x

∗
l )

}
is a basis of gra A. Then

dim(gra A) = dim(dom A) + dim(A0).
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�

From Proposition 4.2.8, we now get a satisfactory characterization.

Proposition 4.2.9 Let A : Rn ⇉ Rn be monotone such that graA is a

linear subspace of Rn × Rn. Then

A is maximal monotone ⇔ dim gra A = n.

Proof. Since linear subspaces are closed in finite-dimensional spaces, by

Proposition 4.1.3(i) and Theorem 4.2.7 we have

A is maximal monotone ⇔ dom A = (A0)⊥. (4.20)

Assume that A is maximal monotone. Then

dom A = (A0)⊥.

Then Proposition 4.2.8 implies

dim(gra A) = dim(dom A) + dim(A0)

= dim((A0)⊥) + dim(A0)

= n,

as (A0)⊥ + A0 = Rn.

Conversely, let dim(gra A) = n. By Proposition 4.2.8, we have
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dim(dom A) = n − dim(A0).

As dim((A0)⊥) = n−dim(A0) and dom A ⊂ (A0)⊥ by Proposition 4.1.3(iv),

we have

dom A = (A0)⊥.

By (4.20), A is maximal monotone. �

4.3 Constructing a good selection

When we proved Theorem 3.3.1, most of the much focused on finding a lin-

ear, continuous and monotone operator Ã such that Ã |dom A−1 is a selection

of A−1. Now for a maximal monotone operator A with a linear graph, we

also want to find such an operator.

Fact 4.3.1 Let S be a nonempty closed convex subset of X. Then for each

x ∈ X there exists a unique s0 ∈ S such that

‖x − s0‖ = min
{
‖x − s‖ | s ∈ S

}
.

Proof. See [19, Corollary 1.1.5]. �

By Fact 4.3.1, we can define the projector onto a nonempty closed convex

subset of X.

40



Chapter 4. Monotone operators with linear graphs

Definition 4.3.2 Let S be a nonempty closed convex subset of X. We define

the projector PS : X → X by

PSx = argmins∈S‖x − s‖, x ∈ X.

Fact 4.3.3 Let S be a closed linear subspace of X and x0 ∈ X. Then PS is

linear, continuous and

PS+x0x = x0 + PS(x − x0), ∀x ∈ X (4.21)

PSx + PS⊥x = x (4.22)

P ∗
S = PS . (4.23)

Proof. (4.21): Let x ∈ S. By Definition 4.3.2,

‖x − x0 − PS(x − x0)‖ ≤ ‖x − x0 − s‖ = ‖x − (x0 + s)‖, ∀s ∈ S.

By Fact 4.3.1, PS(x − x0) ∈ S. Thus x0 + PS(x − x0) ∈ S + x0. By Defini-

tion 4.3.2, PS+x0x = x0 + PS(x − x0).

(4.22) holds by S⊕S⊥ = X. For the other parts see [27, Theorem 5.51(a)]. �

Definition 4.3.4 Let A : X ⇉ X such that graA is a linear subspace of

X × X. We define QA by

QAx =





PAxx, if x ∈ dom A;

∅, otherwise.
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Proposition 4.3.5 Let A : X ⇉ X be maximal monotone such that gra A

is a linear subspace of X × X. Then QA is single-valued on dom A and a

selection of A.

Proof. By Fact 4.2.1, Ax is nonempty closed convex, for every x ∈ dom A.

Then by Fact 4.3.1, QA is single-valued on dom A and a selection of A. �

Proposition 4.3.6 Let A : X ⇉ X be maximal monotone such that gra A

is a linear subspace of X ×X. Then QA is monotone, and linear on dom A.

Moreover,

QAx = P(A0)⊥(Ax), ∀x ∈ dom A. (4.24)

Proof. By Proposition 4.1.3(i) and Fact 4.2.1, A0 is a closed subspace. Let

x∗ ∈ Ax. Then

QAx = PAxx = Px∗+A0x (4.25)

= x∗ + PA0(x − x∗) = x∗ + PA0x − PA0x
∗ (4.26)

= PA0x + P(A0)⊥x∗ (4.27)

= P(A0)⊥x∗ (4.28)

= P(A0)⊥(Ax), (4.29)

in which, (4.25) holds by Proposition 4.1.3(ii), (4.26) and (4.27) by Fact 4.3.3.

(4.28) holds since PA0x = 0 by Proposition 4.1.3(iv).

Thus (4.24) holds. Since QAx is single-valued by Remark 4.3.5, then P(A0)⊥(Ax)

is single-valued.
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Now we show that QA is linear on dom A. Take x, y ∈ dom A and α, β ∈ R.

If α = β = 0, by Proposition 4.1.3(i), we have

QA(αx + βy) = QA0 = PA00 = 0 = αQAx + βQAy. (4.30)

Assume that α 6= 0 or β 6= 0. By (4.24), we have

QA(αx + βy) = P(A0)⊥A(αx + βy) (4.31)

= αP(A0)⊥(Ax) + βP(A0)⊥(Ay) (4.32)

= αQAx + βQAy, (4.33)

where (4.32) holds by Proposition 4.1.3(iii) and Fact 4.3.3, (4.33) by (4.24).

By Proposition 4.3.5, QA is a selection of A. Since A is monotone, QA is

monotone. �

Proposition 4.3.7 Let Y be a closed linear subspace of X. Let A : X ⇉ X

be monotone such that A is linear on Y and at most single-valued. Then

PY APY is linear, continuous and maximal monotone.

Proof. Clearly, PY APY is linear since PY is linear by Fact 4.3.3 and A is

linear on Y . In the following we show that PY APY is monotone.

Let x ∈ X. Then

〈x, PY APY x〉 = 〈P ∗
Y x, A(PY x) = 〈PY x, A(PY x)〉 (4.34)

≥ 0, (4.35)
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where (4.34) holds by Fact 4.3.3. Inequality (4.35) holds since A is mono-

tone.

By Example 2.1.3, PY APY is monotone. Then by Fact 2.1.22, we have

PY APY is continuous and maximal monotone. �

Now we show that we found the operator we were looking for.

Corollary 4.3.8 Let A : X ⇉ X be maximal monotone such that graA is

a linear subspace of X × X and domA is closed. Then Pdom AQAPdom A is

linear, continuous and maximal monotone. Moreover, Pdom AQAPdom A =

QAPdom A, (Pdom AQAPdom A) |dom A= QA and Ax = (Pdom AQAPdom A)x +

A0,∀x ∈ dom A.

Proof. The former holds by Proposition 4.3.6 and Proposition 4.3.7. By

Proposition 4.3.6 and Proposition 4.2.5, we have (QAPdom A)x ∈ (A0)⊥ =

dom A,∀x ∈ X. Then by Proposition 4.3.5, (Pdom AQAPdom A)x = QAx ∈

Ax,∀x ∈ dom A. By Proposition 4.1.3(ii), Ax = (Pdom AQAPdom A)x +

A0,∀x ∈ dom A. �

Remark 4.3.9 By Corollary 4.3.8, we know that QA |dom A is continuous

on dom A. But if we omit the assumption that dom A be closed, then we

can’t guarantee that QA |dom A is continuous on domA.

Example 4.3.10 Let X be (ℓ2, ‖ · ‖2) space and A : X → X : (xn)∞n=1 7→

(xn

n
)∞n=1. Then QA−1 |dom A−1 is not continuous on dom A−1.

Proof. We first show that QA−1 = A−1 is maximal monotone with a linear

graph, but domA−1 = ranA is not closed.

Clearly, A is linear and one-to-one. Thus QA−1 = A−1 and gra A−1 is a
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linear subspace. By Example 2.1.27, A is maximal monotone. By Proposi-

tion 3.3.2, A−1 is maximal monotone.

By Proposition 4.2.5, ranA = dom A−1 = (A−10)⊥ = (0)⊥ = X. Now we

show that ranA is not closed, i.e, ranA 6= X.

On the contrary, assume ranA = X. Let x = (1/n)∞n=1 ∈ X. Then we have

A−1x = (1)∞n=1 /∈ X. This is a contradiction. Hence ran A is not closed.

In the following we show that QA−1 = A−1 is not continuous on ran A =

dom A−1.

Take { 1
n
en} ⊂ ran A, where en = (0, · · · , 0, 1, 0, · · · ) : the nth entry is 1 and

the others are 0. Clearly, 1
n
en → 0. But ‖A−1( 1

n
en)− 0‖ = ‖en‖ 9 0. Hence

QA−1 = A−1 is not continuous on ran A. �

4.4 The first main result

Now we come to our first main result in this thesis.

Theorem 4.4.1 Let A : X ⇉ X be maximal monotone such that gra A is a

linear subspace of X × X and dom A is closed. Then

A = ∂f + Ã◦,

where f := q
Ã

+ ιdom A is proper lower semicontinuous and convex, Ã =

Pdom AQAPdom A is linear, continuous and maximal monotone, and Ã◦ is

antisymmetric. In particular, A is decomposable.

Proof. By Corollary 4.3.8, Ã is linear, continuous and maximal monotone.

Then by Fact 2.1.18, q
Ã

is convex, differentiable and ∇q
Ã

= Ã+. Since
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dom A is a closed subspace, by Fact 2.1.24 ιdom A is proper lower semicon-

tinuous and convex. Hence f is proper lower semicontinuous and convex.

By Theorem 4.2.7, (dom A)⊥ = (A0)⊥⊥ = A0. Let x ∈ dom A. We have

∂f(x) = ∂(q
Ã

+ ιdom A)(x)

= ∇q
Ã
(x) + ∂ιdom A(x) (By Fact 2.1.30)

= Ã+x + (dom A)⊥ (by Fact 2.1.18 and Fact 2.1.29)

= Ã+x + A0.

Thus ∀x ∈ dom A,

∂f(x) + Ã◦x = Ã+x + A0 + Ã◦x = Ãx + A0 (4.36)

= Ax, (4.37)

where (4.37) holds by Corollary 4.3.8. If x /∈ domA, by definition ∂f(x) =

∅ = Ax.

Hence we have Ax = ∂f(x) + Ã◦x, ∀x ∈ X. �

In general, a convex cone is not a linear subspace. We wonder if there

exists a maximal monotone operator with a convex cone graph such that its

graph is not a linear subspace.

The following gives a negative answer.

Fact 4.4.2 A convex cone K is a linear subspace, if and only if, −K ⊂ K.

Proof. See [25, Theorem 2.7]. �
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Proposition 4.4.3 Let A : X ⇉ X be maximal monotone such that gra A

is a convex cone. Then gra A is a linear subspace of X × X.

Proof. By Fact 4.4.2, it suffices to show that

− graA ⊂ graA.

Assume that (x, x∗) ∈ graA. We show that −(x, x∗) ∈ gra A. Let (y, y∗) ∈

gra A. As gra A is a convex cone,

(x, x∗) + (y, y∗) = (x + y, x∗ + y∗) ∈ gra A.

Thus

〈x + y, x∗ + y∗〉 ≥ 0.
(

since A is monotone and (0, 0) ∈ gra A
)

This means

〈−x − y, −x∗ − y∗〉 ≥ 0

〈(−x) − y, (−x∗) − y∗〉 ≥ 0, ∀(y, y∗) ∈ graA.

Since A is maximal, we conclude that

(−x,−x∗) ∈ gra A, −(x, x∗) ∈ gra A.

Hence graA is a linear subspace. �
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In [14], Butnariu and Kassay discuss monotone operators with closed

convex graphs. Actually, if such operators are maximal monotone, their

graphs are affine sets.

Fact 4.4.4 C ⊂ X is an affine set ⇔ ∃c0 ∈ C, C − c0 is a linear subspace.

Proof. See [31, page 1]. �

Proposition 4.4.5 Let A : X ⇉ X be maximal monotone such that gra A

is a convex subset. Then graA is an affine set.

Proof. Let (x0, x
∗
0) ∈ gra A and Ã : X ⇉ X such that gra Ã = gra A −

(x0, x
∗
0). Thus gra Ã is convex and (0, 0) ∈ gra Ã. By Fact 2.1.15, Ã is

maximal monotone. By Fact 4.4.4, it suffices to verify that gra Ã is a linear

subspace. By Proposition 4.4.3, it suffices to show that gra Ã is a cone.

Let k ≥ 0 and (x, x∗) ∈ gra Ã. We consider two cases.

Case 1: k ≤ 1.

k(x, x∗) = k(x, x∗) + (1 − k)(0, 0) ∈ gra Ã. (4.38)

Case 2: k > 1.

Let (y, y∗) ∈ gra Ã. By (4.38), 1
k
(y, y∗) ∈ gra Ã. Thus,

〈kx − y, kx∗ − y∗〉 = k2〈x − 1
k
y, x∗ − 1

k
y∗〉 ≥ 0.

Since Ã is maximal monotone, k(x, x∗) ∈ gra Ã.

Hence gra Ã is a cone. �
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4.5 Monotonicity of operators with linear graphs

In general, it is not easy to identify whether an operator is monotone. But

if an operator with a linear graph and a basis is known, then we can use

linear algebra to verify monotonicity and strict monotonicity.

Theorem 4.5.1 Let A : X ⇉ X and gra A = span
{

(m1,m
∗
1), · · · , (mn,m∗

n)
}

.

Then the following are equivalent

(i) A is monotone.

(ii)

The matrix B :=




〈m1,m
∗
1〉 〈m1,m

∗
2〉 · · · 〈m1,m

∗
n〉

〈m2,m
∗
1〉 〈m2,m

∗
2〉 · · · 〈m2,m

∗
n〉

...
. . .

. . .
...

〈mn,m∗
1〉 〈mn,m∗

2〉 · · · 〈mn,m∗
n〉




is monotone.

(iii) B+ is positive semidefinite.

Proof. Since gra A = span
{

(m1,m
∗
1), . . . , (mn,m∗

n)
}
, ∀(x, x∗) ∈ gra A,∃α1, . . . , αn

such that

(x, x∗) =

n∑

i=1

αi(mi,m
∗
i ).
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Then A is monotone

⇔ 〈x − y, x∗ − y∗〉 ≥ 0, ∀(x, x∗) ∈ graA,∀(y, y∗) ∈ graA

⇔ 〈

n∑

i=1

(αi − βi)mi,

n∑

i=1

(αi − βi)m
∗
i 〉 ≥ 0

where (x, x∗) =
n∑

i=1

αi(mi,m
∗
i ) = (

n∑

i=1

αimi,
n∑

i=1

αim
∗
i )

(y, y∗) =

n∑

i=1

βi(mi,m
∗
i ) = (

n∑

i=1

βimi,

n∑

i=1

βim
∗
i )

⇔ 〈

n∑

i=1

γimi,

n∑

i=1

γim
∗
i 〉 =

n∑

i=1

n∑

j=1

〈mi,m
∗
j 〉γiγj ≥ 0, ∀γi ∈ R

= (γ1, . . . , γn)B(γ1, . . . , γn)⊺ ≥ 0, ∀γi ∈ R

⇔ ν⊺Bν ≥ 0, ∀ν ∈ Rn

⇔ B is monotone (by Example 2.1.3)

⇔ B+ is positive semidefinite (by Fact 2.1.13 and Example 2.1.3).

�

We also have a way to identify whether an operator with a linear graph

is strictly monotone. First we give the definition of strictly monotone.

Definition 4.5.2 A strictly monotone operator T : X ⇉ X is a mapping

that satisfies

〈x∗ − y∗, x − y〉 > 0,

whenever x∗ ∈ T (x), y∗ ∈ T (y) and x 6= y.
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Definition 4.5.3 Let A : X → X. We say A is positive definite if

〈x,Ax〉 > 0, ∀x 6= 0.

Theorem 4.5.4 Let A : X ⇉ X and gra A = span
{

(m1,m
∗
1), . . . , (mn,m∗

n)
}

.

Suppose that
{
m1, . . . ,mn

}
is linearly independent. Then A is strictly

monotone, if and only if, the matrix

B =




〈m1,m
∗
1〉 〈m1,m

∗
2〉 · · · 〈m1,m

∗
n〉

〈m2,m
∗
1〉 〈m2,m

∗
2〉 · · · 〈m2,m

∗
n〉

...
. . .

. . .
...

〈mn,m∗
1〉 〈mn,m∗

2〉 · · · 〈mn,m∗
n〉




is positive definite.

Proof. Since gra A = span{(mi,m
∗
i )}

n
i=1, A is strictly monotone

⇔ 〈x − y, x∗ − y∗〉 > 0, ∀(x, x∗), (y, y∗) ∈ gra A with x 6= y

⇔ 〈

n∑

i=1

(αi − βi)mi,

n∑

i=1

(αi − βi)m
∗
i 〉 > 0

where (x, x∗) =

n∑

i=1

αi(mi,m
∗
i ) = (

n∑

i=1

αimi,

n∑

i=1

αim
∗
i )

(y, y∗) =
n∑

i=1

βi(mi,m
∗
i ) = (

n∑

i=1

βimi,
n∑

i=1

βim
∗
i )

.
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Since m1, . . . ,mn are linearly independent,

x 6= y ⇔ (α1, . . . , αn) 6= (β1, . . . , βn)

⇔ γ := (α1 − β1, . . . , αn − βn) 6= 0,

A is strictly monotone

⇔ 〈
n∑

i=1

γimi,
n∑

i=1

γim
∗
i 〉 > 0, for γ 6= 0 (4.39)

⇔ γ⊺Bγ > 0, ∀γ ∈ Rn with γ 6= 0 (4.40)

⇔ B is positive definite. (4.41)

Just as in the proof of Theorem 4.5.1, we see that (4.40) holds. �
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Auto-conjugates

5.1 Auto-conjugate representation

Definition 5.1.1 Let f : Rn × Rn → ]−∞,+∞] . We define f⊺ by

f⊺(x, x∗) = f(x∗, x), ∀(x, x∗) ∈ Rn × Rn.

Definition 5.1.2 (Fenchel conjugate) Let f : Rn → ]−∞,+∞] . The Fenchel

conjugate of f , f∗, is defined by

f∗(x∗) = sup
x

{
〈x∗, x〉 − f(x)

}
, ∀x∗ ∈ Rn.

Fact 5.1.3 Let f : Rn → ]−∞,+∞] be proper lower semicontinuous and

convex. Then f∗∗ = f.

Proof. See [26, Theorem 11.1]. �

Proposition 5.1.4 Let f, g : Rn → ]−∞,+∞] satisfy f ≤ g. Then f∗ ≥ g∗.

Proof. Follows directly by Definition 5.1.2. �

Definition 5.1.5 (Auto-conjugate) Let f : Rn × Rn → ]−∞,+∞] be
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proper lower semicontinuous and convex. We say f is auto-conjugate if

f∗⊺ = f.

Here are some examples of auto-conjugate functions.

Example 5.1.6 (Ghoussoub ’06/[17]) Let ϕ : Rn → ]−∞,+∞] be proper

lower semicontinuous and convex, and A : Rn → Rn be linear and antisym-

metric. Then

f(x, x∗) := ϕ(x) + ϕ∗(x∗)

f(x, x∗) := ϕ(x) + ϕ∗(−Ax + x∗) (∀(x, x∗) ∈ Rn × Rn)

are auto-conjugate.
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Proof. The first function is a special case of the second one when A = 0. So,

it suffices to show the second case. Let (x, x∗) ∈ Rn × Rn. Then we have

f∗(x∗, x)

= sup
(y,y∗)

{
〈y, x∗〉 + 〈y∗, x〉 − f(y, y∗)

}

= sup
(y,y∗)

{
〈y, x∗〉 + 〈y∗, x〉 − ϕ(y) − ϕ∗(−Ay + y∗)

}

= sup
(y,y∗)

{
〈y, x∗〉 + 〈Ay, x〉 + 〈−Ay + y∗, x〉 − ϕ(y) − ϕ∗(−Ay + y∗)

}

= sup
y

sup
y∗

{
〈y, x∗〉 + 〈Ay, x〉 + 〈−Ay + y∗, x〉 − ϕ(y) − ϕ∗(−Ay + y∗)

}

= sup
y

{
〈y, x∗〉 + 〈y,−Ax〉 − ϕ(y) + sup

y∗

{
〈−Ay + y∗, x〉 − ϕ∗(−Ay + y∗)

}}

= sup
y

{
〈y,−Ax + x∗〉 − ϕ(y)

}
+ ϕ∗∗(x)

= ϕ∗(−Ax + x∗) + ϕ(x)
(
by Fact 5.1.3

)

= f(x, x∗).

�

Now we introduce some basic properties of auto-conjugate functions.

Lemma 5.1.7 (Penot-Simons-Zǎlinescu ’05/[24],[29]) Let f : Rn×Rn →

]−∞,+∞] be auto-conjugate. Then

f(x, x∗) ≥ 〈x, x∗〉, ∀(x, x∗) ∈ Rn × Rn.
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Proof. Let (x, x∗) ∈ Rn × Rn. Then

f(x, x∗) = f∗(x∗, x) = sup
(y,y∗)

{
〈y, x∗〉 + 〈y∗, x〉 − f(y, y∗)

}

≥〈x, x∗〉 + 〈x∗, x〉 − f(x, x∗).

Thus 2f(x, x∗) ≥ 2〈x, x∗〉. That is , f(x, x∗) ≥ 〈x, x∗〉. �

Proposition 5.1.8 Let f, g : Rn×Rn → ]−∞,+∞] be auto-conjugate such

that f ≤ g. Then f = g.

Proof. Let (x, x∗) ∈ Rn × Rn. By assumptions, f(x, x∗) ≤ g(x, x∗).

On the other hand, by Proposition 5.1.4, f∗(x∗, x) ≥ g∗(x∗, x). Since f, g

are auto-conjugate, f(x, x∗) ≥ g(x, x∗). Hence f(x, x∗) = g(x, x∗). �

Proposition 5.1.9 Let f : Rn × Rn → ]−∞,+∞]. Then f∗⊺ = f⊺∗.

Proof. Let (x, x∗) ∈ Rn × Rn. Then

f⊺∗(x∗, x) = sup
(y,y∗)

{
〈(y, y∗), (x∗, x)〉 − f⊺(y, y∗)

}

= sup
(y,y∗)

{
〈(y∗, y), (x, x∗)〉 − f(y∗, y)

}

= f∗(x, x∗) = f∗⊺(x∗, x).

�

Fact 5.1.10 (Fenchel-Young inequality) Let f : Rn → ]−∞,+∞] be proper
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lower semicontinuous and convex, and x, x∗ ∈ Rn. Then

f(x) + f∗(x∗) ≥ 〈x, x∗〉,

and equality holds, if and only if, x∗ ∈ ∂f(x).

Proof. See [25, Theorem 23.5] and [25, page 105]. �.

Definition 5.1.11 Let f : Rn × Rn → ]−∞,+∞] . We define G(f) by

x∗ ∈ G(f)x ⇔ f(x, x∗) = 〈x, x∗〉.

Here is an important property of auto-conjugates, which provides our

main motivation for studying them.

Fact 5.1.12 (Penot-Simons-Zǎlinescu ’05) Let f : Rn×Rn → ]−∞,+∞]

be auto-conjugate. Then G(f) is maximal monotone.

Proof. See [29, Theorem 1.4.(a)]. �

Definition 5.1.13 (Representation) Let f : Rn × Rn → ]−∞,+∞] and

A : Rn ⇉ Rn. If A = G(f), we call f a representation for A. If f is auto-

conjugate, we call f an auto-conjugate representation for A.

Proposition 5.1.14 Let ϕ : Rn → ]−∞,+∞] be proper lower semicon-

tinuous and convex, and A : Rn → Rn be linear and antisymmetric. Let

f(x, x∗) := ϕ(x) + ϕ∗(−Ax + x∗) (∀(x, x∗) ∈ Rn × Rn). Then f is an auto-

conjugate representation for ∂ϕ + A.
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Proof. By Example 5.1.6, f is auto-conjugate. Then we have

〈x, x∗〉 = f(x, x∗)

⇔ 〈x,−Ax + x∗〉 = ϕ(x) + ϕ∗(−Ax + x∗)

⇔ x∗ − Ax ∈ ∂ϕ(x) (by Fact 5.1.10)

⇔ (x, x∗) ∈ gra (∂ϕ + A).

Hence f is an auto-conjugate representation for ∂ϕ + A. �

Definition 5.1.15 Let f, g : Rn × Rn → ]−∞,+∞] . We define

(f�2g)(x, x∗) = inf
y∗

{
f(x, x∗ − y∗) + g(x, y∗)

}
, ∀(x, x∗) ∈ Rn × Rn.

Definition 5.1.16 Let f, g : Rn → ]−∞,+∞] . We define

(f ⊕ g)(x, x∗) = f(x) + g(x∗), ∀(x, x∗) ∈ Rn × Rn.

Definition 5.1.17 We define

π1 : Rn × Rn → Rn : (x, y) 7→ x.

Fact 5.1.18 Let f, g : Rn × Rn → ]−∞,+∞] be proper lower semicontinu-

ous and convex. Set ϕ = f�2g. Assume

ϕ(x, x∗) > −∞, ∀(x, x∗) ∈ Rn × Rn,
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and

⋃

λ>0

λ
[
π1 dom f − π1 dom g

]
,

is a linear subspace of Rn. Then

ϕ∗(x∗, x) = min
y∗

{
f∗(x∗ − y∗, x) + g∗(y∗, x)

}
, ∀(x, x∗) ∈ Rn × Rn.

Proof. See [29, Theorem 4.2]. �

Proposition 5.1.19 Let f, g : Rn × Rn → ]−∞,+∞] be auto-conjugate

such that (π1 dom f − π1 dom g) is a linear subspace of Rn. Suppose M =

f�2g. Then

M(x, x∗) = min
y∗

{
f(x, x∗ − y∗) + g(x, y∗)

}
, ∀(x, x∗) ∈ Rn × Rn.

and M is an auto-conjugate representation for G(f) + G(g).

Proof. By Lemma 5.1.7,

M(x, x∗) ≥ inf
y∗

{
〈x, y∗〉 + 〈x, x∗ − y∗〉

}
= 〈x, x∗〉, ∀(x, x∗) ∈ Rn × Rn.

(5.1)

Since (π1 dom f−π1 dom g) is a linear subspace,
⋃

λ>0 λ
[
π1 dom f−π1 dom g

]
=

(π1 dom f − π1 dom g) is a linear subspace. Let (x, x∗) ∈ Rn × Rn. By
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Fact 5.1.18, we have

M∗(x∗, x) = min
y∗

{
f∗(x∗ − y∗, x) + g∗(y∗, x)

}

= min
y∗

{
f(x, x∗ − y∗) + g(x, y∗)

}

= M(x, x∗).

Hence

M(x, x∗) = min
y∗

{
f(x, x∗ − y∗) + g(x, y∗)

}
, ∀(x, x∗) ∈ Rn × Rn. (5.2)

and M is auto-conjugate.

In the following we show that M is a representation for G(f)+G(g). Suppose

(x, x∗) satisfies

M(x, x∗) = 〈x, x∗〉.

For every y∗ ∈ Rn, since f, g are auto-conjugate, by Fact 5.1.7 we have

f(x, x∗ − y∗) ≥ 〈x, x∗ − y∗〉,

g(x, y∗) ≥ 〈x, y∗〉, and

M(x, x∗) ≥ 〈x, x∗〉. (5.3)
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Then by (5.2) and (5.3),

(x, x∗) ∈ gra G(M)

⇔ M(x, x∗) = 〈x, x∗〉

⇔ ∃s∗ such that 〈x, x∗〉 = M(x, x∗) = f(x, x∗ − s∗) + g(x, s∗)

⇔ ∃s∗ such that 0 = f(x, x∗ − s∗) − 〈x, x∗ − s∗〉 + g(x, s∗) − 〈x, s∗〉

⇔ ∃s∗ such that 〈x, x∗ − s∗〉 = f(x, x∗ − s∗), 〈x, s∗〉 = g(x, s∗)

⇔ ∃s∗ such that (x, x∗ − s∗) ∈ gra G(f), (x, s∗) ∈ gra G(g)

⇔ x∗ ∈
(
G(f) + G(g))x.

�

Now this raises the following question: Given a maximal monotone op-

erator A, can we find an auto-conjugate representation for A?

Before answering this question, we introduce some definitions.

5.2 The Fitzpatrick function and the proximal

average

Definition 5.2.1 (Fitzpatrick function ’88) Let A : X ⇉ X. The Fitz-

patrick function of A is

FA : (x, x∗) 7→ sup
(y,y∗)∈gra A

〈x, y∗〉 + 〈y, x∗〉 − 〈y, y∗〉.

Fact 5.2.2 Let A : Rn ⇉ Rn be monotone such that gra A is nonempty.

Then FA is proper lower semicontinuous and convex.
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Proof. See [8, Fact 1.2]. �

Fact 5.2.3 Let A : Rn → Rn be linear and monotone. Then

q∗A(x) = ιran A+(x) + q(A+)†(x), ∀x ∈ Rn.

Proof. See [25, page 108] and Corollary 2.2.18. �

Fact 5.2.4 Let A : Rn → Rn be linear and monotone. Then

FA(x, x∗) = ιran A+(x∗ + A∗x) + 1
2q(A+)†(x

∗ + A∗x), ∀(x, x∗) ∈ Rn × Rn.

Proof. Let (x, x∗) ∈ Rn × Rn. By [4, Theorem 2.3],

FA(x, x∗)

= 2q∗A+
(1
2x∗ + 1

2A∗x)

= ιran A+(1
2x∗ + 1

2A∗x) + 2q(A+)†(
1
2x∗ + 1

2A∗x) (by Fact 5.2.3)

= ιran A+(x∗ + A∗x) + 1
2q(A+)†(x

∗ + A∗x).

�

Fact 5.2.5 Let A : Rn → Rn be linear and monotone. Then

F ∗
A(x∗, x) = ιgra A(x, x∗) + 〈x,Ax〉, ∀(x, x∗) ∈ Rn × Rn.

Proof. See [4, Theorem 2.3]. �

62



Chapter 5. Auto-conjugates

Proposition 5.2.6 Let A : Rn → Rn be linear and monotone. Then A+k Id

is invertible, for every k > 0.

Proof. Let x satisfy that

(A + k Id)x = 0.

Then we have Ax = −kx. By the monotonicity of A, we have

k‖x‖2 = 〈x, kx〉 = 〈x, −Ax〉 = −〈x, Ax〉 ≤ 0.

Then x = 0. Hence A + k Id is invertible. �

Definition 5.2.7 (Proximal average) Let f0, f1 : Rn × Rn → ]−∞,+∞]

be proper lower semicontinuous and convex. We define P (f0, f1), the prox-

imal average of f0 and f1, by

P (f0, f1)(x, x∗)

= −1
2‖(x, x∗)‖2 + inf

(y1,y∗
1)+(y2,y∗

2)=(x,x∗)

{
1
2f0(2y1, 2y

∗
1) + 1

2f1

(
2y2, 2y

∗
2

)

+ ‖(y1, y
∗
1)‖

2 + ‖(y2, y
∗
2)‖

2
}
, ∀(x, x∗) ∈ Rn × Rn.

Remark 5.2.8 Let f0, f1 : Rn ×Rn → ]−∞,+∞] be proper lower semicon-

tinuous and convex. Then

P (f⊺

0 , f⊺

1 ) =
(
P (f0, f1)

)
⊺

.

Fact 5.2.9 Let f0 and f1 : Rn → ]−∞,+∞] be proper lower semicontinuous
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and convex. Then

P (f0, f1)(x, x∗)

= inf
(y,y∗)

{
1
2f0(x + y, x∗ + y∗) + 1

2f1(x − y, x∗ − y∗) + 1
2‖(y, y∗)‖2

}
,

∀(x, x∗) ∈ Rn × Rn.

Proof. Let (x, x∗) ∈ Rn × Rn. Then

P (f0, f1)(x, x∗)

= −1
2‖(x, x∗)‖2 + inf

(y1,y∗
1)+(y2,y∗

2)=(x,x∗)

{
1
2f0(2y1, 2y

∗
1) + 1

2f1

(
2y2, 2y

∗
2

)

+ ‖(y1, y
∗
1)‖

2 + ‖(y2, y
∗
2)‖

2
}

= −1
2‖(x, x∗)‖2 + inf

(y,y∗)

{
1
2f0

(
2x+y

2 , 2x∗+y∗

2

)
+ 1

2f1

(
2x−y

2 , 2x∗−y∗

2

)

+
∥∥(x+y

2 , x∗+y∗

2 )
∥∥2

+
∥∥(x−y

2 , x∗−y∗

2 )
∥∥2

}

= inf
(y,y∗)

{
1
2f0(x + y, x∗ + y∗) + 1

2f1(x − y, x∗ − y∗) + 1
2‖(y, y∗)‖2

}
.

�

Definition 5.2.10 Let f : Rn ×Rn → ]−∞,+∞] be proper lower semicon-

tinuous and convex and hf define by

hf (x, x∗) = inf
{

1
2f(x, 2x∗

1)+
1
2f∗(2x∗

2, x) | x∗ = x∗
1+x∗

2

}
, ∀(x, x∗) ∈ Rn×Rn.

Now we begin to answer the question above.

Fact 5.2.11 (Bauschke-Wang ’07) Let A : X ⇉ X be maximal mono-
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tone. Then P (FA, F ∗
A

⊺) is an auto-conjugate representation for A.

Proof. See [9, Theorem 5.7]. �

Fact 5.2.12 (Penot-Zǎlinescu ’05) Let A : X ⇉ X be maximal mono-

tone such that aff(dom A) is closed. Then hFA
is an auto-conjugate repre-

sentation for A.

Proof. See [24, Proposition 4.2].

�

5.3 The second main result

Our main goal is to find a formula for P (FA, F ∗
A

⊺) associated with a linear

and monotone operator A. Until now, there was no explicit formula for that.

Theorem 5.3.1 Let A : Rn → Rn be linear and monotone. Then

P (FA, F ∗
A

⊺)(x, x∗) = ιran A+(x∗ − Ax) + 〈x, x∗〉 + q(A+)†(x
∗ − Ax),

∀(x, x∗) ∈ Rn × Rn.

65



Chapter 5. Auto-conjugates

Proof. Let (x, x∗) ∈ Rn × Rn. By Fact 5.2.2 and Fact 5.2.9, we have

P (FA, F ∗
A

⊺)(x, x∗)

= inf
(y,y∗)

{
1
2FA(x + y, x∗ + y∗) + 1

2F ∗
A

⊺(x − y, x∗ − y∗) (5.4)

+ 1
2‖(y, y∗)‖2

}

= inf
(y,y∗)

{
1
2FA(x + y, x∗ + y∗) + ιgra A(x − y, x∗ − y∗) (5.5)

+ 1
2〈x − y,A(x − y)〉 + 1

2‖(y, y∗)‖2
}

= inf
y

{
1
2FA(x + y, 2x∗ − A(x − y)) + 1

2〈x − y,A(x − y)〉 (5.6)

+ 1
2‖(y, x∗ − A(x − y))‖2

}

= inf
y

{
ιran A+

(
2x∗ − A(x − y) + A∗x + A∗y

)
(5.7)

+ 1
4q(A+)†

(
2x∗ − A(x − y) + A∗x + A∗y

)

+ 1
2〈x − y,A(x − y)〉 + 1

2‖y‖
2 + 1

2‖x
∗ − A(x − y)‖2

}
,

in which, (5.5) holds by Fact 5.2.5, (5.6) by y∗ = x∗ − A(x − y), and (5.7)

by Fact 5.2.4.

Since

2x∗ − A(x − y) + A∗x + A∗y

= 2x∗ − 2Ax + Ax + Ay + A∗x + A∗y

= 2x∗ − 2Ax + (A + A∗)(x + y)

= 2x∗ − 2Ax + 2A+(x + y), (5.8)
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Thus 2x∗ − A(x − y) + A∗x + A∗y ∈ ranA+ ⇔ x∗ − Ax ∈ ran A+. Then

ιran A+(2x∗ − A(x − y) + A∗x + A∗y) = ιran A+(x∗ − Ax). (5.9)

We consider two cases.

Case 1: x∗ − Ax /∈ ran A+. By (5.7) and (5.9), P (FA, F ∗
A

⊺)(x, x∗) = ∞.

Case 2: x∗ − Ax ∈ ran A+. By Proposition 2.2.15 applied to A+ with x

replaced by x∗ − Ax and y replaced by x + y, we have

1
4q(A+)†(2x

∗ − A(x − y) + A∗x + A∗y)

= 1
4q(A+)†(2x

∗ − 2Ax + 2A+(x + y)) (by (5.8))

= 1
4 · 22q(A+)†(x

∗ − Ax + A+(x + y))

= q(A+)†(x
∗ − Ax + A+(x + y))

= q(A+)†(x
∗ − Ax) + 〈Pran A+(x∗ − Ax), x + y〉 + qA+(x + y)

= q(A+)†(x
∗ − Ax) + 〈x + y, x∗ − Ax〉 + 1

2〈x + y, A(x + y)〉. (5.10)

By (5.7), (5.9) and (5.10), we have

P (FA, F ∗
A

⊺)(x, x∗)

= q(A+)†(x
∗ − Ax) + inf

y

{
〈x + y, x∗ − Ax〉 + 1

2〈x + y, A(x + y)〉

+ 1
2〈x − y,A(x − y)〉 + 1

2‖y‖
2 + 1

2‖x
∗ − A(x − y)‖2

}
.
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Since

1
2〈x + y, A(x + y)〉 + 1

2 〈x − y,A(x − y)〉

= 〈x, Ax〉 + 〈y, Ay〉,

we have

〈x + y, x∗ − Ax〉 + 1
2〈x + y, A(x + y)〉 + 1

2 〈x − y,A(x − y)〉

= 〈x, x∗〉 − 〈x, Ax〉 + 〈y, x∗〉 − 〈y, Ax〉 + 〈x, Ax〉 + 〈y, Ay〉

= 〈x, x∗〉 + 〈y, Ay〉 + 〈y, x∗〉 − 〈y, Ax〉.

Then

P (FA, F ∗
A

⊺)(x, x∗)

= q(A+)†(x
∗ − Ax) + 〈x, x∗〉 + inf

y

{
〈y, Ay〉 + 〈y, x∗〉 − 〈y, Ax〉

+ 1
2‖y‖

2 + 1
2‖x

∗ − Ax + Ay‖2
}

= q(A+)†(x
∗ − Ax) + 〈x, x∗〉 + inf

y

{
〈y, Ay〉 + 〈y, x∗〉 − 〈y, Ax〉

+ 1
2‖y‖

2 + 1
2‖x

∗ − Ax‖2 + 1
2‖Ay‖2 + 〈Ay, x∗ − Ax〉

}
.
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Since 〈y, Ay〉 + 1
2‖y‖

2 + 1
2‖Ay‖2 = 1

2‖y + Ay‖2,

P (FA, F ∗
A

⊺)(x, x∗)

= q(A+)†(x
∗ − Ax) + 〈x, x∗〉 + 1

2‖x
∗ − Ax‖2

+ inf
y

{
1
2‖y + Ay‖2 + 〈y, x∗ − Ax + A∗(x∗ − Ax)〉

}

= q(A+)†(x
∗ − Ax) + 〈x, x∗〉 + 1

2‖x
∗ − Ax‖2

+ inf
y

{
1
2‖y + Ay‖2 + 〈y, (Id +A∗)(x∗ − Ax)〉

}

= q(A+)†(x
∗ − Ax) + 〈x, x∗〉 + 1

2‖x
∗ − Ax‖2

− sup
y

{
〈y, (Id +A∗)(Ax − x∗)〉 − q(Id +A∗)(Id +A)(y)

}

= q(A+)†(x
∗ − Ax) + 〈x, x∗〉 + 1

2‖x
∗ − Ax‖2

− q∗(Id +A∗)(Id +A)

(
(Id +A∗)(Ax − x∗)

)

= q(A+)†(x
∗ − Ax) + 〈x, x∗〉 + 1

2‖x
∗ − Ax‖2

− q(
(Id +A∗)(Id +A)

)†

(
(Id +A∗)(Ax − x∗)

)
(by Proposition 5.2.3

and Proposition 5.2.6)

= q(A+)†(x
∗ − Ax) + 〈x, x∗〉 + 1

2‖x
∗ − Ax‖2

− q(Id +A)−1(Id +A∗)−1

(
(Id +A∗)(Ax − x∗)

)
(by Remark 2.1.35)

= q(A+)†(x
∗ − Ax) + 〈x, x∗〉 + 1

2‖x
∗ − Ax‖2 − 1

2‖x
∗ − Ax‖2

= 〈x, x∗〉 + q(A+)†(x
∗ − Ax).
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Combining the results above, we have

P (FA, F ∗
A

⊺)(x, x∗) = ιran A+(x∗ − Ax) + 〈x, x∗〉 + q(A+)†(x
∗ − Ax),

∀(x, x∗) ∈ Rn × Rn.

�

Proposition 5.3.2 Let A : Rn → Rn be linear and monotone. Then

π1 [dom P (FA, F ∗
A

⊺)] = Rn.

Proof. By Theorem 5.3.1,

P (FA, F ∗
A

⊺)(x,Ax) = 〈x,Ax〉 < ∞, ∀x ∈ Rn.

Thus (x,Ax) ∈ dom P (FA, F ∗
A

⊺),∀x ∈ Rn. Hence

π1 [dom P (FA, F ∗
A

⊺)] = Rn.

�

Corollary 5.3.3 Let A : Rn → Rn be linear, symmetric and monotone.

Then

P (FA, F ∗
A

⊺) = qA ⊕ (ιran A + qA†).
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Proof. Let (x, x∗) ∈ Rn × Rn. By Theorem 5.3.1, we have

P (FA, F ∗
A

⊺)(x, x∗) = ιran A(x∗ − Ax) + 〈x, x∗〉 + qA†(x∗ − Ax)

= ιran A(x∗) + 〈x, x∗〉 + qA†(x∗ − Ax).

Now suppose x∗ ∈ ran A. By Proposition 2.2.15, we have

qA†(x∗ − Ax) = qA(x) + qA†(x∗) − 〈x, Pran Ax∗〉

= qA(x) + qA†(x∗) − 〈x, x∗〉.

Thus

P (FA, F ∗
A

⊺)(x, x∗) = qA(x) + qA†(x∗).

Combining the conclusions above,

P (FA, F ∗
A

⊺)(x, x∗) = ιran A(x∗) + qA(x) + qA†(x∗)

=
(
qA ⊕ (ιran A + qA†)

)
(x, x∗), ∀(x, x∗) ∈ Rn × Rn.

�

Corollary 5.3.4 Let A : Rn → Rn be linear and antisymmetric. Then

P (FA, F ∗
A

⊺) = ιgra A.

Proof. Follows directly by Theorem 5.3.1. �
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Corollary 5.3.5 Let A : Rn → Rn be linear and monotone. Then

(
∀(x, x∗) ∈ Rn × Rn

)
P (FA, F ∗

A
⊺)(x, x∗) ≥ 〈x, x∗〉

P (FA, F ∗
A

⊺)(x,Ax) = 〈x,Ax〉.

Proof. Apply Theorem 5.3.1 and Corollary 2.2.12. �

For a linear and monotone operator A, Fact 5.2.11 shows P (FA, F ∗
A

⊺) is

auto-conjugate. Now we give a new proof.

Proposition 5.3.6 Let A : Rn → Rn be linear and monotone. Then P (FA, F ∗
A

⊺)

is auto-conjugate.

Proof. Let (x, x∗) ∈ Rn × Rn. By Theorem 5.3.1, we have

P (FA, F ∗
A

⊺)∗(x∗, x)

= sup
(y, y∗)

{
〈(x∗, x), (y, y∗)〉 − ιran A+(y∗ − Ay) − 〈y, y∗〉 (5.11)

− q(A+)†(y
∗ − Ay)

}

= sup
(y, w)

{
〈(y, A+w + Ay), (x∗, x)〉 − ιran A+(A+w) (5.12)

− 〈y, A+w + Ay〉 − q(A+)†(A+w)
}

= sup
(y, w)

{
〈y, x∗〉 + 〈A+w + Ay, x〉 − 〈y, A+w + Ay〉 − qA+(w)

}
(5.13)

= sup
y

sup
w

{
〈y, x∗〉 + 〈A+w + Ay, x〉 − 〈y, A+w + Ay〉 − qA+(w)

}

= sup
y

{
〈y, x∗〉 + 〈Ay, x〉 − 〈y, Ay〉 + sup

w

{
〈w,A+x〉 − 〈A+y, w〉 (5.14)

− qA+(w)
}}

.
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(5.12) holds by y∗ − Ay = A+w and (5.13) by Corollary 2.2.16.

By (5.14),

P (FA, F ∗
A

⊺)∗(x∗, x)

= sup
y

{
〈y,A∗x + x∗〉 − 〈y, Ay〉 + q∗A+

(A+x − A+y)
}

= sup
y

{
〈y,A∗x + x∗〉 − 〈y, Ay〉 + q(A+)†(A+x − A+y)

}
(5.15)

= sup
y

{
〈y,A∗x + x∗〉 − 〈y, Ay〉 + qA+(x − y)

}
(5.16)

= sup
y

{
〈y,A∗x + x∗ − A+x〉 − qA(y) + qA(x)

}
(5.17)

= q∗A(A∗x + x∗ − A+x) + qA(x)

= ιran A+(A∗x + x∗ − A+x) + q(A+)†(A
∗x + x∗ − A+x) + qA(x) (5.18)

(5.15) and (5.18) holds by Proposition 5.2.3, (5.16) by Corollary 2.2.16 and

(5.17) by Remark 2.1.12.

Note

A∗x + x∗ − A+x = x∗ − Ax + Ax + A∗x − A+x = x∗ − Ax + A+x. (5.19)

Thus

ιran A+(A∗x + x∗ − A+x) = ιranA+(x∗ − Ax). (5.20)

If x∗ − Ax /∈ ran A+. By (5.18) and (5.20), P (FA, F ∗
A

⊺)∗(x∗, x) = ∞.

Now suppose x∗ − Ax ∈ ranA+. By Proposition 2.2.15 applied to A+ with
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x replaced by x∗ − Ax and y replaced by x,

q(A+)†(A
∗x + x∗ − A+x)

= q(A+)†(x
∗ − Ax + A+x) (by (5.19))

= q(A+)†(x
∗ − Ax) +

〈
Pran A+(x∗ − Ax), x

〉
+ qA+(x)

= q(A+)†(x
∗ − Ax) + 〈x∗ − Ax, x〉 + qA(x) (by Remark 2.1.12)

= q(A+)†(x
∗ − Ax) + 〈x∗, x〉 − qA(x).

Then by (5.18) and (5.20), P (FA, F ∗
A

⊺)∗(x∗, x) = q(A+)†(x
∗ − Ax) + 〈x, x∗〉.

Combining the results above, we have

P (FA, F ∗
A

⊺)∗(x∗, x) = ιran A+(x∗ − Ax) + q(A+)†(x
∗ − Ax) + 〈x, x∗〉

= P (FA, F ∗
A

⊺)(x, x∗) (by Theorem 5.3.1),

∀(x, x∗) ∈ Rn × Rn.

�

Proposition 5.3.7 Let B : Rn → Rn be linear, symmetric and monotone.

Let x ∈ Rn. Then

〈x,Bx〉 = 0 ⇔ Bx = 0.
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Proof. “⇐” Clear.

“⇒” Take y ∈ Rn and α > 0. We have

0 ≤ 〈αy + x,B(αy + x)〉 (5.21)

= 〈x,Bx〉 + 2α〈y,Bx〉 + α2〈y,By〉

= 2α〈y,Bx〉 + α2〈y,By〉, (by 〈x,Bx〉 = 0)

⇒ 0 ≤ 2〈y,Bx〉 + α〈y,By〉 (5.22)

⇒ 0 ≤ 〈y,Bx〉, ∀y ∈ Rn (5.23)

⇒ Bx = 0,

in which, (5.21) holds by monotonicity of B, (5.22) by multiplying 1
α

in both

sides, and (5.23) by letting α → 0+. �

Corollary 5.3.8 Let B : Rn → Rn be linear, symmetric and monotone.

Then

ker B = {x | qB(x) = 0}.

Corollary 5.3.9 Let B : Rn → Rn be linear, symmetric and monotone. Let

x ∈ Rn. Then (ιran B + qB†)(x) = 0, if and only if, x = 0.

Proof. “⇐” Clear.

“⇒” By assumption, we have

x ∈ ran B (5.24)

0 = 〈x, B†x〉. (5.25)
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By Fact 2.2.2, Fact 2.2.4 and Corollary 2.2.12, B† is linear, symmetric and

monotone. By (5.25) and Proposition 5.3.7 applied to B†, B†x = 0. Then

by (5.24) and Fact 2.2.11, x = Pran Bx = BB†x = 0. �

Corollary 5.3.10 Let A : Rn → Rn be linear and monotone.

(∀(x, x∗) ∈ Rn × Rn) P (FA, F ∗
A

⊺)(x, x∗) = 〈x, x∗〉 ⇔ (x, x∗) ∈ gra A.

Proof. By Theorem 5.3.1 and Corollary 5.3.9. �

Corollary 5.3.11 Let A : Rn → Rn be linear and monotone. Then

P (FA, F ∗
A

⊺) is an auto-conjugate representation for A.

Proof. By Proposition 5.3.6 and Corollary 5.3.10. �

For a linear and monotone operator A, what is hFA
?

Proposition 5.3.12 Let A : Rn → Rn be linear and monotone. Then

hFA
= P (FA, F ∗

A
⊺).
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Proof. Let (x, x∗) ∈ Rn × Rn. Then

hFA
(x, x∗)

= inf
{

1
2FA(x, 2x∗

1) + 1
2F ∗

A(2x∗
2, x) | x∗ = x∗

1 + x∗
2

}

= inf
y∗

{
1
2FA(x, 2(x∗ − y∗)) + 1

2F ∗
A(2y∗, x)

}

= inf
y∗

{
1
2FA(x, 2(x∗ − y∗)) + ιgra A(x, 2y∗) + qA(x)

}
(5.26)

= 1
2FA(x, 2x∗ − Ax) + qA+(x) (by 2y∗ = Ax and Remark 2.1.12)

= ιran A+(2x∗ − Ax + A∗x) + 1
4q(A+)†(2x

∗ − Ax + A∗x) + qA+(x), (5.27)

where (5.26) holds by Fact 5.2.5, and (5.27) by Fact 5.2.4.

Note that

2x∗ − Ax + A∗x = 2x∗ − 2Ax + 2A+x. (5.28)

Then 2x∗ − Ax + A∗x ∈ ranA+ ⇔ x∗ − Ax ∈ ranA+. Thus

ιran A+(2x∗ − Ax + A∗x) = ιran A+(x∗ − Ax). (5.29)

If x∗ − Ax /∈ ran A+, hFA
(x, x∗) = ∞ by (5.27) and (5.29).

Now suppose that x∗ − Ax ∈ ran A+. By Proposition 2.2.15 applied to A+
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with x replaced by x∗ − Ax and y replaced by x, we have

1
4q(A+)†(2x

∗ − Ax + A∗x)

= 1
4q(A+)†(2x

∗ − 2Ax + 2A+x) (by (5.28))

= q(A+)†(x
∗ − Ax + A+x)

= q(A+)†(x
∗ − Ax) + 〈x, Pran A+(x∗ − Ax)〉 + qA+(x)

= q(A+)†(x
∗ − Ax) + 〈x, x∗ − Ax〉 + qA+(x)

= q(A+)†(x
∗ − Ax) + 〈x, x∗〉 − qA+(x) (by Remark 2.1.12).

Then by (5.27) and (5.29),

hFA
(x, x∗) = 〈x, x∗〉 + q(A+)†(x

∗ − Ax).

Combining the results above,

hFA
(x, x∗) = ιran A+(x∗ − Ax) + 〈x, x∗〉 + q(A+)†(x

∗ − Ax)

= P (FA, F ∗
A

⊺)(x, x∗) (by Theorem 5.3.1),

∀(x, x∗) ∈ Rn × Rn.

�

Proposition 5.3.13 Let A : Rn ⇉ Rn be monotone such that gra A is

nonempty. Then

hFA
= hF

∗⊺

A
.
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Proof. Let (x, x∗) ∈ Rn × Rn. By Definition 5.2.10, we have

hF
∗⊺

A
(x, x∗) = inf

{
1
2F ∗

A
⊺(x, 2x∗

1) + 1
2(F ∗

A
⊺)∗(2x∗

2, x) | x∗ = x∗
1 + x∗

2

}
(5.30)

= inf
{

1
2F ∗

A(2x∗
1, x) + 1

2FA(x, 2x∗
2) | x∗ = x∗

1 + x∗
2

}
(5.31)

= inf
{

1
2F ∗

A(2x∗
2, x) + 1

2(FA(x, 2x∗
1) | x∗ = x∗

1 + x∗
2

}
(5.32)

= hFA
(x, x∗), (5.33)

where (5.31) holds by Proposition 5.1.9, Fact 5.2.2 and Fact 5.1.3. �

Corollary 5.3.14 Let A : Rn → Rn be linear and monotone. Then

hFA
= hF

∗⊺

A
= P (FA, F ∗

A
⊺).

5.4 An example

In the following we give an example of Theorem 5.3.1.

Example 5.4.1 Let

A =




cos θ − sin θ

sin θ cos θ




be the rotation of angle θ ∈ [0, π
2 [. Then A∗ = A−1 and

P (FA, F ∗
A

⊺)(x, x∗) = 1
2 cos θ

‖x∗ − Ax‖2 + 〈x, x∗〉

= 1
2 cos θ

‖x∗ − sin θRx‖2 + cos θ
2 ‖x‖2,
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where

R =




0 −1

1 0


 .

Proof. By assumptions, we have

A+ = cos θ Id AA∗ = Id R∗R = Id . (5.34)

By Theorem 5.3.1 and Remark 2.1.35, we have

P (FA, F ∗
A

⊺)(x, x∗) = 1
2 cos θ

‖x∗ − Ax‖2 + 〈x, x∗〉. (5.35)

By (5.35), (5.34), and A = cos θ Id + sin θR, we have

P (FA, F ∗
A

⊺)(x, x∗)

= 1
2 cos θ

(
‖x∗‖2 + 〈A∗Ax, x〉 − 2〈x∗, Ax〉

)
+ 〈x, x∗〉

= 1
2 cos θ

(
‖x∗‖2 + ‖x‖2 − 2〈x∗, cos θx + sin θRx〉

)
+ 〈x, x∗〉

= 1
2 cos θ

(
‖x∗‖2 + ‖x‖2 − 2 sin θ〈x∗, Rx〉

)

= 1
2 cos θ

(
‖x∗‖2 + sin2 θ‖x‖2 − 2 sin θ〈x∗, Rx〉 + cos2 θ‖x‖2

)

= 1
2 cos θ

‖x∗ − sin θRx‖2 + cos θ
2 ‖x‖2.

�

Fact 5.4.2 Let A : Rn ⇉ Rn be monotone such that gra A is nonempty.

Then F⊺

A−1 = FA.

Proof. See [8, Fact 1.2]. �
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Corollary 5.4.3 Let A : Rn ⇉ Rn be monotone such that graA is nonempty.

Then

P (FA−1 , F ∗⊺
A−1) =

(
P (FA, F ∗

A
⊺)

)
⊺

.

Proof. By assumptions and Proposition 3.3.2, A−1 is monotone and gra A−1

is nonempty. Then by Proposition 5.1.9, Fact 5.4.2 and Remark 5.2.8,

P (FA−1 , F ∗⊺

A−1) = P (F⊺

A, F⊺∗
A−1) = P (F⊺

A, F ∗
A) =

(
P (FA, F ∗

A
⊺)

)
⊺

.

�

Theorem 5.4.4 Let A : Rn → Rn be linear, monotone and invertible. Let

(x, x∗) ∈ Rn × Rn. Then

0 ∈
∂P (FA,F ∗

A
⊺)(x,x∗)

∂x∗ ⇔ x∗ = A◦x (5.36)

0 ∈
∂P (FA,F ∗

A
⊺)(x,x∗)

∂x
⇔ x = (A−1)◦x∗. (5.37)

Proof. By Fact 2.2.2, Fact 2.2.4, Fact 2.1.13 and Corollary 2.2.12, (A+)† is

linear, symmetric and monotone.
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Now (5.36): Follows from Theorem 5.3.1, Fact 2.1.18 and Fact 2.1.30,

0 ∈
∂P (FA,F ∗

A
⊺)(x,x∗)

∂x∗

⇔ 0 ∈ ∂ιran A+(x∗ − Ax) + x + (A+)†(x∗ − Ax), x∗ − Ax ∈ ran A+

⇔ 0 ∈ ker A+ + x + (A+)†(x∗ − Ax), x∗ − Ax ∈ ranA+ (by Fact 2.1.32)

⇔ 0 ∈ x + (A+)−1(x∗ − Ax), x∗ − Ax ∈ ran A+ (by Corollary 2.2.7)

⇔ −x ∈ (A+)−1(x∗ − Ax), x∗ − Ax ∈ ranA+

⇔ x∗ − Ax ∈ −A+x

⇔ x∗ ∈ Ax − A+x = A◦x.

Then (5.37) Follows from Corollary 5.4.3 and (5.36). �

Proposition 5.4.5 Let A : Rn → Rn be linear and monotone, and h(x∗) :=

P (FA, F ∗
A

⊺)(0, x∗) (∀x∗ ∈ Rn). Then ∂h = (A+)−1.

Proof. By Theorem 5.3.1,

h(x∗) = ιran A+(x∗) + q(A+)†(x
∗), ∀x∗ ∈ Rn.

By Fact 2.2.2, Fact 2.2.4, Fact 2.1.13 and Corollary 2.2.12, (A+)† is linear,

symmetric and monotone. Thus by Fact 2.1.30 and Fact 2.1.18,

∂h(x∗) =





∂ιran A+(x∗) + (A+)†x∗, if x∗ ∈ ranA+;

∅, otherwise.
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Now suppose x∗ ∈ ran A+. By Fact 2.1.32 and Corollary 2.2.7,

∂h(x∗) = ker A+ + (A+)†x∗ = (A+)−1x∗.

Next suppose x∗ /∈ ran A+. Clearly, (A+)−1x∗ = ∅ = ∂h(x∗). In all cases,

∂h = (A+)−1. �

Remark 5.4.6 In general, let us consider g(x, x∗) := f(x)+f∗(x∗) (∀(x, x∗) ∈

Rn × Rn), where f : Rn → Rn is proper lower semicontinuous and convex.

Let h(x∗) = g(0, x∗) = f(0) + f∗(x∗) (∀x∗ ∈ Rn). Thus by [26, Proposition

11.3],

∂h(x∗) = ∂f∗(x∗) = (∂f)−1(x∗), ∀x∗ ∈ Rn.

5.5 Relationship among auto-conjugate

representations

Let A : Rn → Rn be linear and monotone. Suppose f(x, x∗) = qA(x) +

q∗A(−A◦x+x∗) (∀(x, x∗) ∈ Rn×Rn). By Proposition 5.1.14 and Fact 2.1.18,

f is an auto-conjugate representation for A++A◦ = A. By Corollary 5.3.11,

P (FA, F ∗⊺
A ) is also an auto-conjugate representation for A. The next Propo-

sition does that.

Proposition 5.5.1 Let B : Rn → Rn be linear, symmetric and monotone,

and A : Rn → Rn be linear and antisymmetric. Let f(x, x∗) = qB(x) +
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q∗B(−Ax + x∗) (∀(x, x∗) ∈ Rn × Rn). Then

f = P (F(A+B), F
∗⊺
(A+B)).

Proof. Let (x, x∗) ∈ Rn × Rn. By Fact 5.2.3,

f(x, x∗) = qB(x) + ιranB(−Ax + x∗) + qB†(−Ax + x∗). (5.38)

By Theorem 5.3.1, we have

P (F(A+B), F
∗⊺
(A+B))(x, x∗)

= ιran B

(
x∗ − (A + B)x

)
+ 〈x, x∗〉 + qB†

(
x∗ − (A + B)x

)

= ιran B(x∗ − Ax) + 〈x, x∗〉 + qB†(x∗ − Ax − Bx)

If x∗ − Ax /∈ ran B, P (F(A+B), F
∗⊺
(A+B))(x, x∗) = ∞.

Now suppose x∗ − Ax ∈ ran B. By Proposition 2.2.15 applied to B with x

replaced by x∗ − Ax and y replaced by −x,

qB†(x∗ − Ax − Bx)

= 〈Pran B(x∗ − Ax), −x〉 + qB†(−Ax + x∗) + qB(−x)

= 〈x∗ − Ax, −x〉 + qB†(−Ax + x∗) + qB(−x)

= −〈x, x∗〉 + qB†(−Ax + x∗) + qB(x) (by 〈Ax, −x〉 = 0).
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Hence

P (F(A+B), F
∗⊺
(A+B))(x, x∗) = qB(x) + ιran B(−Ax + x∗) + qB†(−Ax + x∗)

= f(x, x∗) (by (5.38)), ∀(x, x∗) ∈ Rn × Rn.

�

Proposition 5.5.2 Let A,B : Rn → Rn be linear and monotone. Then

P (F(A+B), F
∗⊺
(A+B)

) = P (FA, F ∗
A

⊺)�2P (FB , F ∗
B

⊺).

Proof. Let (x, x∗) ∈ Rn × Rn. By Theorem 5.3.1,

P (FA, F ∗
A

⊺)�2P (FB , F ∗
B

⊺)(x, x∗)

= inf
y∗

{
P (FA, F ∗

A
⊺)(x, x∗ − y∗) + P (FB , F ∗

B
⊺)(x, y∗)

}

= inf
y∗

{
ιran A+(x∗ − y∗ − Ax) + 〈x, x∗ − y∗〉 + q(A+)†(x

∗ − y∗ − Ax)

+ 〈x, y∗〉 + ιran B+(y∗ − Bx) + q(B+)†(y
∗ − Bx)

}

= 〈x, x∗〉 + inf
y∗

{
ιran A+(x∗ − y∗ − Ax) + q(A+)†(x

∗ − y∗ − Ax)

+ ιran B+(y∗ − Bx) + q(B+)†(y
∗ − Bx)

}

≤ 〈x, x∗〉 + ιran(A++B+)(x
∗ − Ax − Bx) (5.39)

+ inf
y∗

{
ιran A+(x∗ − y∗ − Ax) + q(A+)†(x

∗ − y∗ − Ax)

+ ιran B+(y∗ − Bx) + q(B+)†(y
∗ − Bx)

}
.
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Now suppose x∗−Ax−Bx ∈ ran(A++B+). Let x∗−Ax−Bx = (A++B+)p

and y∗0 := B+p + Bx. Thus

x∗ − y∗0 − Ax = x∗ − B+p − Bx − Ax = (A+ + B+)p − B+p = A+p,

y∗0 − Bx = B+p.

Then by (5.39),

P (FA, F ∗
A

⊺)�2P (FB , F ∗
B

⊺)(x, x∗)

≤ 〈x, x∗〉 + ιran A+(x∗ − y∗0 − Ax) + q(A+)†(x
∗ − y∗0 − Ax)

+ ιran B+(y∗0 − Bx) + q(B+)†(y
∗
0 − Bx)

= 〈x, x∗〉 + q(A+)†(A+p) + q(B+)†(B+p)

= 〈x, x∗〉 + qA+(p) + qB+(p) (5.40)

= 〈x, x∗〉 + q(A++B+)(p)

= 〈x, x∗〉 + q(A++B+)†(x
∗ − Ax − Bx), (5.41)

in which, (5.40) and (5.41) hold by Corollary 2.2.16.

Combining the results above,

P (FA, F ∗
A

⊺)�2P (FB , F ∗
B

⊺)(x, x∗)

≤ ιran(A++B+)(x
∗ − Ax − Bx) + 〈x, x∗〉 + q(A++B+)†(x

∗ − Ax − Bx)

= P (F(A+B), F
∗⊺
(A+B))(x, x∗) (by Theorem 5.3.1), ∀(x, x∗) ∈ Rn × Rn.

By Proposition 5.3.2, π1 [dom P (FA, F ∗
A

⊺)] = π1 [dom P (FB , F ∗
B

⊺)] = Rn.

Then by Proposition 5.3.6 and Proposition 5.1.19, P (FA, F ∗
A

⊺)�2P (FB , F ∗
B

⊺)
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is auto-conjugate. Thus by Proposition 5.3.6 and Proposition 5.1.8,

P (FA, F ∗
A

⊺)�2P (FB , F ∗
B

⊺) = P (F(A+B), F
∗⊺
(A+B)). �

Lemma 5.5.3 Let A : Rn → Rn be linear, symmetric and monotone. Then

P (FA, F ∗
A

⊺)(x,Ay) = P (FA, F ∗
A

⊺)(y,Ax), ∀(x, y) ∈ Rn × Rn.

Proof. Let (x, y) ∈ Rn × Rn. By Corollary 5.3.3 and Corollary 2.2.16,

P (FA, F ∗
A

⊺)(x,Ay) = ιran A(Ay) + qA(x) + qA†(Ay) = qA(x) + qA(y).

On the other hand,

P (FA, F ∗
A

⊺)(y,Ax) = ιran A(Ax) + qA(y) + qA†(Ax) = qA(x) + qA(y).

Thus

P (FA, F ∗
A

⊺)(x,Ay) = P (FA, F ∗
A

⊺)(y,Ax).

�

Proposition 5.5.4 Let A : Rn → Rn be linear, symmetric and monotone.

Then f = P (FA, F ∗
A

⊺), if and only if, f is auto-conjugate satisfying f(x,Ay) =

f(y,Ax) (∀(x, y) ∈ Rn × Rn) and f(0, 0) is finite.

Proof. “⇒” By Proposition 5.3.6, Lemma 5.5.3 and Corollary 5.3.5.

“⇐” Let (x, x∗) ∈ Rn × Rn. We prove in two steps.

Step 1: We will verify that f(x, x∗) = ∞, if x∗ /∈ ran A.

Since Rn = ran A ⊕ ker A, x∗ = Pran Ax∗ + Pker Ax∗. Since x∗ /∈ ran A,
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Pker Ax∗ 6= 0. Thus

〈Pker Ax∗, x∗〉 = 〈Pker Ax∗, Pran Ax∗ + Pker Ax∗〉 = ‖Pker Ax∗‖2 > 0. (5.42)

Thus by assumptions,

f(kPker Ax∗, 0) = f(kPker Ax∗, A0) = f(0, AkPker Ax∗) = f(0, 0), ∀k ∈ R.

(5.43)

Then by Fact 5.1.10,

f(x, x∗) + f(0, 0) = f(x, x∗) + f(kPker Ax∗, 0) = f(x, x∗) + f∗(0, kPker Ax∗)

≥ 〈x∗, kPker Ax∗〉 → ∞, as k → ∞. (by (5.42)) (5.44)

Since f(0, 0) is finite, by (5.44) f(x, x∗) = ∞.

Step 2: Suppose that x∗ ∈ ranA. Let x∗ = Ap. By Fact 5.1.10,

f(x,Ap) + f(p,Ax) = f(x,Ap) + f∗(Ax, p) ≥ 〈p,Ap〉 + 〈x,Ax〉

⇒ 2f(x,Ap) ≥ 〈p,Ap〉 + 〈x,Ax〉 (by f(x,Ap) = f(p,Ax))

⇒ f(x, x∗) ≥ qA(x) + qA(p) = qA(x) + qA†(x∗), (5.45)

in which, (5.45) by x∗ = Ap and Corollary 2.2.16.

By conclusions above and Corollary 5.3.3, we have

f(x, x∗) ≥ ιran A(x∗) + qA(x) + qA†(x∗) = P (FA, F ∗
A

⊺)(x, x∗), ∀(x, x∗).
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Then by Corollary 5.3.11 and Proposition 5.1.8 , we have

f = P (FA, F ∗
A

⊺).

�

5.6 Nonuniqueness

We now tackle the following question: Given a linear and monotone op-

erator, are auto-conjugate representations for A unique? The answer is

negative. We will give several different auto-conjugate representations for

Id. By Corollary 5.3.3, we have

P (FId, F ∗
Id

⊺) = 1
2‖ · ‖

2 ⊕ 1
2‖ · ‖

2.

Proposition 5.6.1 Let j(x) = 1
2x2, ∀x ∈ R. Assume g is such that g∗(−x) =

g(x) ≥ 0, ∀x ∈ R. Then

f(x, y) := j
(

x+y√
2

)
+ g

(
x−y√

2

) (
∀(x, y) ∈ Rn × Rn

)

is an auto-conjugate representation for Id .
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Chapter 5. Auto-conjugates

Proof. We first show that f is auto-conjugate. Let (x, y) ∈ R × R. Then we

have

f∗(y, x)

= sup
(v,w)

{
〈v, y〉 + 〈w, x〉 − j(v+w√

2
) − g(v−w√

2
)
}

= sup
(v,w)

{
〈v+w

2 , x + y〉 − 〈v−w
2 , x − y〉 − j(v+w√

2
) − g(v−w√

2
)
}

(5.46)

= sup
(v,w)

{
〈v+w√

2
, x+y√

2
〉 − 〈v−w√

2
, x−y√

2
〉 − j(v+w√

2
) − g(v−w√

2
)
}

= sup
(s,t)

{
〈s, x+y√

2
〉 − 〈t, x−y√

2
〉 − j(s) − g(t)

}
(5.47)

= sup
s

{
〈s, x+y√

2
〉 − j(s)

}
+ sup

t

{
− 〈t, x−y√

2
〉 − g(t)

}

= j∗(x+y√
2

) + g∗(−x−y√
2

)

= j(x+y√
2

) + g(x−y√
2

)
(
since j∗ = j by [7, Proposition 3.3(i)]

)

= f(x, y).
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Chapter 5. Auto-conjugates

Hence f is auto-conjugate.

Note that (5.46) holds since

〈v+w
2 , x + y〉 − 〈v−w

2 , x − y〉

= 1
2

(
〈v + w, x + y〉 − 〈v − w, x − y〉

)

= 1
2

(
〈v, x〉 + 〈v, y〉 + 〈w, x〉 + 〈w, y〉 − 〈v, x〉 + 〈v, y〉

+ 〈w, x〉 − 〈w, y〉
)

= 1
2

(
2〈v, y〉 + 2〈w, x〉

)

= 〈v, y〉 + 〈w, x〉.

In the following we show that (5.47) holds. Clearly, for every (v,w) there

exists (s, t) such that

〈v+w√
2

, x+y√
2
〉 − 〈v−w√

2
, x−y√

2
〉 − j(v+w√

2
) − g(v−w√

2
)

= 〈s, x+y√
2
〉 − 〈t, x−y√

2
〉 − j(s) − g(t).

On the other hand, for every (s, t), there exists v0 =
√

2
2 (s+t), w0 =

√
2

2 (s−t)

such that

〈v0+w0√
2

, x+y√
2
〉 − 〈v0−w0√

2
, x−y√

2
〉 − j(v0+w0√

2
) − g(v0−w0√

2
)

= 〈s, x+y√
2
〉 − 〈t, x−y√

2
〉 − j(s) − g(t).

Hence (5.47) holds.

We now show that f is a representation for Id. First we show that g(0) = 0.
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By assumptions, g(0) ≥ 0. On the other hand,

g(0) = g∗(−0) = g∗(0) = sup
v
{−g(v)} ≤ 0.

Hence g(0) = 0.

Then we have

(x, y) ∈ G(f)

⇔ f(x, y) = 〈x, y〉

⇔ 1
4‖x + y‖2 + g(x−y√

2
) = 〈x, y〉

⇔ 1
4‖x − y‖2 + g(x−y√

2
) = 0

⇔ 1
4‖x − y‖2 = 0, g(x−y√

2
) = 0 (by g ≥ 0)

by g(0) = 0

⇔ x = y ⇔ (x, y) ∈ gra Id .

Hence f is an auto-conjugate representation for Id. �

Remark 5.6.2 If we set g = j in Proposition 5.6.1, f = P (FId, F ∗
Id

⊺).

Now we give three examples based on Proposition 5.6.1.

Example 5.6.3 The function

g := ιR+

satisfies the conditions of Proposition 5.6.1. Figure 5.1 is corresponding to

f .
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−2

−1

0 y−4
2

−2

1
1

0

0
−1x

2

2
−2

4

Figure 5.1: The function f (blue) and z = xy (gold), and their intersection
line (cyan), gra Id (red).

Proof. Let x ∈ R. We consider two cases.

Case 1: x ≥ 0. We have

g∗(−x) = sup
v

{
〈v,−x〉 − ιR+(v)

}
= sup

v≥0

{
〈v,−x〉

}
= 0 = g(x).

Case 2: x < 0. Then

g∗(−x) = sup
v

{
〈v,−x〉 − ιR+(v)

}
= sup

v≥0

{
〈v,−x〉

}
= ∞ = g(x).

Hence g∗(−x) = g(x). �
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2
1

x0
−1

−2

−2−1

y

012

−2.5

0.0

2.5

5.0

7.5

Figure 5.2: The function f (blue) and z = xy (gold), and their intersection
line (cyan), gra Id (red) .

Example 5.6.4 Set

g(x) :=





x2, if x ≥ 0;

1
4x2, if x ≤ 0

.

Then g satisfies the conditions of Proposition 5.6.1. Figure 5.2 is corre-

sponding to f .
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Proof. Let x ∈ R. We consider two cases.

Case 1: x ≥ 0. We have

g∗(−x) = sup
v

{
〈v,−x〉 − g(v)

}

= sup
v≤0

{
〈v,−x〉 − g(v)

}
(since g ≥ 0, g(0) = 0)

= sup
v≤0

{
〈v,−x〉 − 1

4v2}

= sup
v≤0

{
h0(v)

}
,

where h0(v) := 〈v,−x〉 − 1
4v2.

Let

0 = ∇h0(v) = −x − 1
2v.

Then v0 = −2x ≤ 0 is a critical point of h0. Since h0 is concave on R−, its

critical point is its maximizer. Then

g∗(−x) = h0(v0) = 〈−2x,−x〉 − x2 = x2 = g(x).

Case 2: x < 0. We have

g∗(−x) = sup
v

{
〈v,−x〉 − g(v)

}

= sup
v≥0

{
〈v,−x〉 − g(v)

}
(since g ≥ 0, g(0) = 0)

= sup
v≥0

{
〈v,−x〉 − v2

}

= sup
v≥0

{
h1(v)

}
,
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where h1(v) := 〈v,−x〉 − v2

Let

0 = ∇h1(v) = −x − 2v.

Then v1 = −1
2x ≥ 0 is a critical point of h1. Since h1 is concave on R+, its

critical point is its maximizer. Then

g∗(−x) = h1(v1) = 〈−1
2x,−x〉 − 1

4x2 = 1
4x2 = g(x).

Hence g∗(−x) = g(x). �

Example 5.6.5 Set p > 1, 1
p

+ 1
q

= 1.

g(x) :=





1
p
xp, if x ≥ 0;

1
q
(−x)q, if x ≤ 0.

satisfies the conditions of Proposition 5.6.1. Figure 5.3 is corresponding to

f .

Proof. Let x ∈ R. We consider two cases.

Case 1: x ≥ 0. We have

g∗(−x) = sup
v

{
〈v,−x〉 − g(v)

}

= sup
v≤0

{
〈v,−x〉 − g(v)

}
(since g ≥ 0, g(0) = 0)

= sup
v≤0

{
〈v,−x〉 − 1

q
(−v)q

}

= sup
v≤0

{
g0(v)

}
,
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2

0

1

x

0

5

−1

10

−2

15

Figure 5.3: The function f (blue) and z = xy (gold) , and their intersection
line (cyan), gra Id (red), where p = 4.

where

g0(v) := 〈v,−x〉 − 1
q
(−v)q.

Then let

0 = ∇g0(v) = −x + (−v)q−1.

Thus v0 := −x
1

q−1 ≤ 0 is a critical point of g0.

Since ∇2g0(v) = −(q− 1)(−v)q−2 ≤ 0 (∀v < 0), by the continuity of g0, g0
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is concave on R−. Then its critical point is its maximizer. Thus

g∗(−x) = g0(v0)

= 〈−x
1

q−1 ,−x〉 − 1
q
x

q
q−1

= (1 − 1
q
)x

q
q−1

= 1
p
xp (by 1

p
+ 1

q
= 1)

= g(x).

Case 2: x < 0. We have

g∗(−x) = sup
v

{
〈v,−x〉 − g(v)

}

= sup
v≥0

{
〈v,−x〉 − g(v)

}
(since g ≥ 0, g(0) = 0)

= sup
v≥0

{
〈v,−x〉 − 1

p
vp

}

= sup
v≥0

{
g1(v)

}
,

where

g1(v) := 〈v,−x〉 − 1
p
vp.

Then let

0 = ∇g1(v) = −x − vp−1.

Thus v1 := (−x)
1

p−1 > 0 is a critical point of g1.

Since ∇2g1(v) = −(p − 1)vp−2 ≤ 0 (∀v > 0), by the continuity of g1, g1 is
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concave on R+. Then its critical point is its maximizer. Thus

g∗(−x) = g1(v1)

= 〈(−x)
1

p−1 ,−x〉 − 1
p
(−x)

p
p−1

= (1 − 1
p
)(−x)

p
p−1

= 1
q
(−x)q

= g(x).

Hence g∗(−x) = g(x). �

Remark 5.6.6 Example 5.6.3, 5.6.4 and 5.6.5 each provide a function f

that is an auto-conjugate representation for Id with f 6= P (FId, F ∗
Id

⊺).
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Chapter 6

Calculation of the

auto-conjugates of ∂(− ln)

Throughout this chapter, − ln is meant in the extended real valued sense,

i.e., − ln(x) = ∞ for x ≤ 0.

In Chapter 5, Proposition 5.3.12 shows that hFA
= P (FA, F ∗

A
⊺) for a linear

and monotone operator A. Now we will show that for the nonlinear mono-

tone operator ∂(− ln) we have P (F∂(− ln), F
∗⊺
∂(− ln)) 6= hF∂(− ln)

. Throughout

the chapter, we denote

C : =
{

(x, x∗) ∈ R × R | x ≤ − 1
x∗ < 0

}

D : =
{

(x, x∗) ∈ R × R | x∗ ≤ − 1
2x

< 0
}

E : =
{

(x, x∗) ∈ R × R | x∗ ≤ − 1
4x

< 0
}

.

100



Chapter 6. Calculation of the auto-conjugates of ∂(− ln)

6.1 Fitzpatrick function for ∂(− ln)

Fact 6.1.1 Let f = − ln . Then

F∂f (x, x∗) =





1 − 2x
1
2 (−x∗)

1
2 , if x ≥ 0, x∗ ≤ 0;

∞, otherwise.

Proof. See [8, Example 3.4]. �

Fact 6.1.2 Let f = − ln . Then

F ∗
∂f (x∗, x) = −1 + ιC(x∗, x).

Proof. See [8, Example 3.4]. �

Fact 6.1.3 (Rockafellar) Let f = − ln .

f∗(x∗) =





−1 − ln(−x∗), if x∗ < 0;

∞, otherwise,

Proof. See [8, Example 3.4]. �

Remark 6.1.4 Let f = − ln . Recall

(f ⊕ f∗)(x, x∗) := f(x) + f∗(x∗), ∀(x, x∗) ∈ R × R.

By Fact 6.1.3,

dom(f ⊕ f∗) = R++ × R−−.
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Chapter 6. Calculation of the auto-conjugates of ∂(− ln)

Proposition 6.1.5

D $ E $ R++ × R−−.

Proof. We first verify that D $ E.

Let (x, x∗) ∈ D. Thus x > 0. Then − 1
2x

≤ − 1
4x

. By (x, x∗) ∈ D,

x∗ ≤ − 1
2x

≤ − 1
4x

< 0.

Thus (x, x∗) ∈ E. Then D ⊂ E.

On the other hand, (1,−1
4 ) ∈ E, but (1,−1

4 ) /∈ D. Thus D 6= E.

Hence D $ E.

It is clear we have E $ R++ × R−−.

Thus combining the results above, D $ E $ R++ × R−−. �

6.2 Proximal average of ∂(− ln) and hF∂f

Proposition 6.2.1 Let f = − ln . Then

dom P (F∂f , F ∗⊺
∂f ) = E.

Proof. Let By [7, Theorem 4.6],

domP (F∂f , F ∗⊺
∂f ) = 1

2 dom F∂f + 1
2 dom F ∗⊺

∂f . (6.1)
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In the following we will show that

dom P (F∂f , F ∗⊺
∂f ) = 1

2 dom F ∗⊺
∂f . (6.2)

By Fact 6.1.1, (0, 0) ∈ dom F∂f , then by (6.1), we have

1
2 domF ∗⊺

∂f ⊂ dom P (F∂f , F ∗⊺
∂f ). (6.3)

Next we show that

1
2 dom F ∗⊺

∂f = E. (6.4)

Indeed,

(x, x∗) ∈ 1
2 dom F ∗⊺

∂f

⇔ (2x∗, 2x) ∈ dom F ∗
∂f ⇔ 2x∗ ≤ − 1

2x
< 0 (by Fact 6.1.2)

⇔ x∗ ≤ − 1
4x

< 0 ⇔ (x, x∗) ∈ E.

Hence (6.4) holds.

Then by (6.4) and (6.3),

E ⊂ dom P (F∂f , F ∗⊺
∂f ). (6.5)

In the following, we will verify that

1
2 dom F∂f + E ⊂ E. (6.6)
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Let (y, y∗) ∈ 1
2 dom F∂f and (x, x∗) ∈ E. By Fact 6.1.1 we have

y ≥ 0, y∗ ≤ 0, x > 0, x∗ < 0, 4xx∗ ≤ −1.

Thus x + y ≥ x > 0, x∗ + y∗ ≤ x∗ < 0. Then we have 4(x + y)(x∗ + y∗) ≤

4xx∗ ≤ −1, i.e., (x, x∗)+(y, y∗) ∈ E. Hence (6.6) holds. Thus by (6.6), (6.4)

and (6.1), domP (F∂f , F ∗⊺
∂f ) ⊂ E. Then by (6.5), domP (F∂f , F ∗⊺

∂f ) = E. �

Lemma 6.2.2 Let x, x∗, y∗ ∈ R with y∗ ≤ 0.Then

ιC(2x∗ − 2y∗, x) = ιC(2x∗ − 2y∗, x) + ιD(x, x∗).

Proof. We consider two cases.

Case 1: (2x∗ − 2y∗, x) /∈ C. Clear.

Case 2: (2x∗ − 2y∗, x) ∈ C. By assumptions,

2x∗ ≤ 2x∗ − 2y∗ ≤ − 1
x

< 0 ⇒ x∗ ≤ − 1
2x

< 0 (by y∗ ≤ 0).

Thus (x, x∗) ∈ D. Then ιD(x, x∗) = 0. �

Remark 6.2.3 Let x, x∗ ∈ R. Then

ιR+(x) + ιD(x, x∗) = ιD(x, x∗).

Proof. Follows directly from the definition of D . �
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-5.0-2.5
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0.0
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0.0 -2.5 5.0-5.0

Figure 6.1: The function hF∂f
.

Proposition 6.2.4 Let f = − ln . Then

hF∂f
(x, x∗) = −(−1 − 2xx∗)

1
2 + ιD(x, x∗), ∀(x, x∗) ∈ R × R.

Consequently, dom hF∂f
= D. Figure 6.1 illustrates hF∂f

.

Proof. Let (x, x∗) ∈ R × R. By Fact 6.1.1 and Fact 6.1.2, we have

hF∂f
(x, x∗)

= inf
y∗

{
1
2F∂f (x, 2y∗) + 1

2F ∗
∂f (2x∗ − 2y∗, x)

}

= inf
y∗≤0

{
1
2 − |x|

1
2 (−2y∗)

1
2 + ιR+(x) + 1

2F ∗
∂f (2x∗ − 2y∗, x)

}

= inf
y∗≤0

{
1
2 − |x|

1
2 (−2y∗)

1
2 + ιR+(x) + ιC(2x∗ − 2y∗, x) − 1

2

}

= inf
y∗≤0

{
− |x|

1
2 (−2y∗)

1
2 + ιR+(x) + ιC(2x∗ − 2y∗, x) + ιD(x, x∗)

}
(6.7)

= inf
y∗≤0

{
− |x|

1
2 (−2y∗)

1
2 + ιC(2x∗ − 2y∗, x) + ιD(x, x∗)

}
, (6.8)
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where (6.7) holds by Lemma 6.2.2, (6.8) by Remark 6.2.3.

Now we consider two cases.

Case 1: (x, x∗) /∈ D. Thus hF∂f
(x, x∗) = ∞.

Case 2: (x, x∗) ∈ D. Thus x > 0. Then

hF∂f
(x, x∗)

= inf
y∗≤0

{
− x

1
2 (−2y∗)

1
2 + ιC(2x∗ − 2y∗, x)

}

= inf
(2x∗−2y∗≤− 1

x
<0, y∗≤0)

{
− x

1
2 (−2y∗)

1
2

}
(6.9)

= −(2x)
1
2 sup

(2x∗−2y∗≤− 1
x

<0, y∗≤0)

{
(−y∗)

1
2

}

= −(2x)
1
2 sup

(0≤−2y∗≤−2x∗− 1
x

)

{
(−y∗)

1
2

}

= −(2x)
1
2 (− 1

2x
− x∗)

1
2 (6.10)

= −(−1 − 2xx∗)
1
2 (by x > 0),

where (6.9) holds by letting 2x∗ − 2y∗ ∈ C. (6.10) holds by 0 ≤ − 1
2x

− x∗

since (x, x∗) ∈ D.

Thus combining the results above,

hF∂f
(x, x∗) = −(−1 − 2xx∗)

1
2 + ιD(x, x∗), ∀(x, x∗) ∈ R × R.

�

Corollary 6.2.5 Let f = − ln . Then P (F∂f , F ∗⊺
∂f ), f⊕f∗ and hF∂f

are three

different functions.
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Proof. By Remark 6.1.4, we have dom(f⊕f∗) = R++×R−−. Then by Propo-

sition 6.2.1 and Proposition 6.2.4, domP (F∂f , F ∗⊺
∂f ) = E and dom hF∂f

= D.

By Proposition 6.1.5,

dom hF∂f
$ dom P (F∂f , F ∗⊺

∂f ) $ dom(f ⊕ f∗).

Hence P (F∂f , F ∗⊺
∂f ), f ⊕ f∗ and hF∂f

are all different. �

Remark 6.2.6 We don’t have an explicit formula for P (F∂(− ln), F
∗⊺
∂(− ln)).
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Chapter 7

Proximal averages of

monotone operators with

linear graphs

We have given some auto-conjugate representation results for linear and

monotone operators. Now we extend them to monotone operators with

linear graphs. Background worked on linear relations can be found in the

book by Cross [16].

7.1 Adjoint process of operators with linear

graphs

Definition 7.1.1 Let C be a nonempty cone of Rn. The polar of C, C−,

is defined by

C− :=
{
x∗ | 〈c, x∗〉 ≤ 0,∀c ∈ C

}
.

Remark 7.1.2 If C is a linear subspace of Rn, then by Lemma 2.1.28,

C− = C⊥.
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Definition 7.1.3 Let A : Rn ⇉ Rn be such that graA is a convex cone.

The adjoint process of A, A∗, is defined by

graA∗ :=
{

(x, x∗) | (x∗,−x) ∈ (gra A)−
}

.

Lemma 7.1.4 [16, Proposition III.1.3] Let A : Rn ⇉ Rn be such that gra A

is linear. Suppose k ∈ R with k 6= 0. Then (kA)∗ = kA∗.

Proof. By Remark 7.1.2,

(x, x∗) ∈ gra(kA)∗ ⇔ (x∗,−x) ∈ (gra kA)− = (gra kA)⊥

⇔ 〈(x∗,−x), (v, v∗)〉 = 0, ∀(v, v∗) ∈ gra(kA)

⇔ 1
k
〈(x∗,−x), (v, v∗)〉 = 0, ∀(v, v∗) ∈ gra(kA)

⇔ 〈( 1
k
x∗,−x), (v, 1

k
v∗)〉 = 0, ∀(v, v∗) ∈ gra(kA)

⇔ 〈( 1
k
x∗,−x), (v,w∗)〉 = 0, ∀(v,w∗) ∈ gra A

⇔ (x, 1
k
x∗) ∈ graA∗ ⇔ x∗ ∈ kA∗x.

Hence (kA)∗ = kA∗. �

Remark 7.1.5 Let A : Rn ⇉ Rn be such that gra A is linear. Then graA∗

is a linear graph.

Remark 7.1.6 Let A : Rn ⇉ Rn be such that gra A is linear. Then A∗0 =

(dom A)⊥.

Proof. See [16, Proposition III.1.4 (b)]. �
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Definition 7.1.7 Let A : Rn ⇉ Rn be such that graA is linear. We say

that A is symmetric if A∗ = A.

Definition 7.1.8 Let A : Rn ⇉ Rn be such that graA is linear. We say

that A is antisymmetric if A∗ = −A.

Fact 7.1.9 Let A,B : Rn ⇉ Rn be such that graA and graB are linear.

Then (A + B)∗ = A∗ + B∗.

Proof. See [11, Theorem 7.4]. �

Fact 7.1.10 Let A : Rn ⇉ Rn be such that gra A is a closed convex cone.

Then gra A∗∗ = − gra A.

Proof. See [13, Exercises 7 page 119]. �

Corollary 7.1.11 Let A : Rn ⇉ Rn be such that gra A is linear. Then

A∗∗ = A.

Proof. Since gra A is a linear subspace, − gra A = gra A. Thus by Fact 7.1.10,

gra A∗∗ = gra A. Hence A∗∗ = A. �

Corollary 7.1.12 Let A : Rn ⇉ Rn be such that graA is a linear subspace.

Then dom A∗ = (A0)⊥.

Proof. By Remark 7.1.5 and Remark 7.1.6, we have (A∗)∗0 = (dom A∗)⊥.

Then by Corollary 7.1.11, A0 = (dom A∗)⊥. Thus dom A∗ = (A0)⊥. �

Remark 7.1.13 Let A : Rn ⇉ Rn be such that gra A is linear. By Fact 7.1.9,

Remark 7.1.5, Corollary 7.1.11 and Lemma 7.1.4, A+A∗

2 is symmetric and

A−A∗

2 is antisymmetric.
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Definition 7.1.14 (Symmetric and antisymmetric part) Let A : Rn ⇉

Rn be such that graA is linear. Then A+ = 1
2A + 1

2A∗ is the symmetric

part of A, and A◦ = 1
2A − 1

2A∗ is the antisymmetric part of A.

Remark 7.1.15 Let A : Rn ⇉ Rn be such that gra A is a linear subspace.

Then by Corollary 7.1.12, dom A+ = dom A◦ = dom A ∩ (A0)⊥.

Corollary 7.1.16 Let A : Rn ⇉ Rn be such that graA is a linear subspace.

Then A can be decomposed into the sum of a symmetric operator with a

linear graph and an antisymmetric operator with a linear graph, if and only

if, dom A = (A0)⊥. In that case, A can be decomposed as : A = A+ + A◦.

Proof. “⇒” Let B : Rn ⇉ Rn be a symmetric operator with a linear graph

and C : Rn ⇉ Rn be an antisymmetric operator with a linear graph such

that A = B + C. By Fact 7.1.9, A∗ = B∗ + C∗ = B − C. Then dom A∗ =

dom B ∩ dom C = dom A. By Corollary 7.1.12, domA = (A0)⊥.

“⇐” By Remark 7.1.15, dom A+ = dom A◦ = dom A. By Corollary 7.1.12,

dom A∗ = (A0)⊥ = domA. Thus, by Remark 7.1.5 and Proposition 4.1.3(iii),

A+x + A◦x = 1
2(Ax + A∗x + Ax − A∗x) = Ax + A∗0

= Ax + (dom A)⊥ = Ax + A0 (by Remark 7.1.6)

= Ax (by Proposition 4.1.3(iii)), ∀x ∈ dom A.

�

Remark 7.1.17 Consider an operator A : Rn ⇉ Rn with gra A = {(0, 0)}.

Then we have dom A = {0} 6= Rn = (A0)⊥. Clearly, graA∗ = Rn × Rn.
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Thus (A+ +A◦)0 = A+0+A◦0 = Rn +Rn = Rn 6= A0. Thus A 6= A+ +A◦.

By Proposition 7.1.16, A can not be decomposed into the sum of a symmetric

operator with a linear graph and an antisymmetric operator with a linear

graph.

Remark 7.1.18 Let S be a linear subspace of Rn. Then S is closed.

Corollary 7.1.19 Let A : Rn ⇉ Rn be maximal monotone such that gra A

is a linear subspace. Then A = A+ + A◦.

Proof. By Remark 7.1.18, Proposition 4.2.5 and Corollary 7.1.16. �

Definition 7.1.20 Let C be a nonempty convex subset of Rn and x0 ∈ Rn.

The normal cone of C at x0, NC(x0), is defined by

NC(x0) :=





{
x∗ | 〈x∗, c − x0〉 ≤ 0,∀c ∈ C

}
, if x0 ∈ C;

∅, otherwise.

Fact 7.1.21 Let C be a nonempty convex subset of Rn and x0 ∈ C. Then

NC(x0) = ∂ιC(x0). If C is a linear subspace of Rn, then NC(x0) = ∂ιC(x0) =

C⊥ by Fact 2.1.29.

Remark 7.1.22 Let A : Rn → Rn be linear and S be a linear subspace of

Rn. Then gra(A + NS) is a linear subspace of Rn × Rn.

Fact 7.1.23 Let B : Rn → Rn be linear and S be a linear subspace of Rn

such that A = B + NS . Then A∗ = B∗ + NS .
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Proof. Since gra A is a linear subspace by Remark 7.1.22, then by Re-

mark 7.1.2 and Fact 7.1.21 we have

(x, x∗) ∈ graA∗

⇔ (x∗,−x) ∈ (gra A)−

⇔ (x∗,−x) ∈ (gra A)⊥

⇔ 〈x∗, y〉 − 〈x, y∗〉 = 0, ∀y∗ ∈ Ay

⇔ 〈x∗, y〉 − 〈x,By + S⊥〉 = 0, ∀y ∈ S. (7.1)

Let y = 0 in (7.1). We have 〈x, S⊥〉 = 0. Thus x ∈ S. Then

(x, x∗) ∈ gra A∗

⇔ x ∈ S, 〈x∗, y〉 − 〈x,By〉 = 0, ∀y ∈ S

⇔ x ∈ S, 〈x∗ − B∗x, y〉 = 0, ∀y ∈ S

⇔ x ∈ S, (x∗ − B∗x)⊥S

⇔ x ∈ S, x∗ ∈ B∗x + S⊥

⇔ x∗ ∈ (B∗ + NS)(x) (by Fact 7.1.21).

Hence A∗ = B∗ + NS . �

Remark 7.1.24 Fact 7.1.23 is a special case of [13, Exercises 14 (f) page

120].

Remark 7.1.25 Let B : Rn → Rn be linear and S be a linear subspace of

Rn. Suppose A = B + NS . Then by Fact 7.1.23, A+ = B+ + NS, A◦ =
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B◦ + NS and A = A+ + A◦.

Now we recall the definition of QA.

Definition 7.1.26 Let A : Rn ⇉ Rn be such that gra A is a linear subspace

of Rn × Rn. We define QA by

QAx =





PAxx, if x ∈ dom A;

∅, otherwise.

Proposition 7.1.27 Let A : Rn ⇉ Rn be such that gra A is a linear sub-

space. Then QA is single-valued and linear on dom A, and QA is a selection

of A.

Proof. Since A0 is a closed subspace by Proposition 4.1.3(i) and Remark 7.1.18,

Ax (∀x ∈ domA) is a closed convex by Proposition 4.1.3(ii). By Fact 4.3.1,

QA is single-valued on domA and QA is a selection of A. Very similar to

the proof of Proposition 4.3.6, we have QA is linear on dom A. �

Corollary 7.1.28 Let A : Rn ⇉ Rn be such that graA is a linear subspace.

Then

Ax =





QAPdom Ax + A0, if x ∈ dom A;

∅, otherwise,

where QAPdom A is linear.

Proof. By Proposition 7.1.27 and Proposition 4.1.3(ii). �

Proposition 7.1.29 Let A : Rn ⇉ Rn be such that gra A is a linear sub-

space. Assume A can be decomposed into the sum of a symmetric operator
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with a linear graph and an antisymmetric operator with a linear graph. Then

such a decomposition is not unique.

Proof. By Corollary 7.1.28, Corollary 7.1.16 and Fact 7.1.21,

A = QAPdom A + Ndom A.

Thus,

A = (QAPdom A)++
(
(QAPdom A)◦+NS

)
= ((QAPdom A)++NS)+(QAPdom A)◦.

By Fact 7.1.23, (QAPdom A)+, (QAPdom A)++NS are symmetric and
(
(QAPdom A)◦+

NS

)
, (QAPdom A)◦ are antisymmetric. Since (QAPdom A)+ 6= (QAPdom A)+ +

NS and (QAPdom A)◦ + NS

)
6= (QAPdom A)◦ as S 6= Rn, the decomposition

is not unique. �

Theorem 7.1.30 Let A,B,C : Rn ⇉ Rn be such that gra A, gra B and

gra C are linear subspaces. Assume B is symmetric and C is antisymmetric

such that A = B + C and domB = dom C. Then B = A+, C = A◦.

Proof. By Fact 7.1.9, A∗ = B−C. Thus by assumptions, domB = dom C =

dom A = dom A∗. Thus dom A+ = dom A◦ = dom B = dom C = dom A.

By Corollary 7.1.12, domB = dom B∗ = (B0)⊥,dom C = dom C∗ = (C0)⊥.

Thus (B0)⊥ = (C0)⊥. Since C0, B0 are closed linear subspaces by Propo-

sition 4.1.3(i) and Remark 7.1.18, B0 = C0. Let x ∈ dom A. Then by
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Proposition 4.1.3(iii) and Proposition 4.1.3(ii),

A+x = 1
2(Bx + Cx + Bx − Cx) = Bx + C0 = Bx + B0 = Bx,

A◦x = 1
2(Bx + Cx − Bx + Cx) = B0 + Cx = C0 + Cx = Cx.

Hence B = A+, C = A◦. �

Corollary 7.1.31 Let A : Rn ⇉ Rn be maximal monotone such that gra A

is a linear subspace of Rn×Rn. Then A = Pdom AQAPdom A +Ndom A, where

Pdom AQAPdom A is linear and monotone.

Proof. Since dom A is a closed linear subspace by Remark 7.1.18, then by

Theorem 4.4.1, Pdom AQAPdom A is linear and monotone, and A = ∂(q
Ã

+

ιdom A) + Ã◦, where Ã = Pdom AQAPdom A.

Then by Fact 2.1.18, Fact 2.1.30 and Fact 7.1.21,

A = Ã+ + ∂ιdom A + Ã◦ = Pdom AQAPdom A + Ndom A.

�

Remark 7.1.32 Let A : Rn ⇉ Rn such that gra A is a linear subspace of

Rn. Then graA−1 is a linear subspace of Rn × Rn.
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7.2 Fitzpatrick functions of monotone operators

with linear graphs

Definition 7.2.1 Assume A : Rn ⇉ Rn. The set-valued inverse mapping,

A−1 : Rn ⇉ Rn, is defined by

x ∈ A−1y ⇔ y ∈ Ax.

Definition 7.2.2 Let A : Rn ⇉ Rn and S be a subset of Rn. Then AS is

defined by

AS :=
{
x∗ | x∗ ∈ As, ∃s ∈ S

}
.

Proposition 7.2.3 Let B : Rn → Rn be linear and S be a linear subspace

of Rn such that A = B + NS . Then

(i) x ∈ ranA ⇔ x + S⊥ ⊂ ran A

(ii) A−1x = A−1(x + S⊥).

Proof. (i): By Fact 7.1.21, ranA = ran(B |S) + S⊥. Thus S⊥ + ranA =

ran A. Then

x ∈ ran A ⇔ x + S⊥ ⊂ S⊥ + ran A = ran A.

Hence (i) holds.

(ii): Clearly, A−1x ⊂ A−1(x+S⊥). In the following we show A−1(x+S⊥) ⊂

A−1x.
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By Fact 7.1.21,

y ∈ A−1(x + S⊥) ⇒ y ∈ A−1(x + t), ∃t ∈ S⊥

⇒ x + t ∈ Ay = By + NS(y) = By + S⊥, y ∈ S

⇒ x ∈ By + S⊥ = By + NS(y) = Ay

⇒ y ∈ A−1x.

Thus A−1(x + S⊥) ⊂ A−1x. Hence A−1x = A−1(x + S⊥). �

Lemma 7.2.4 Let B : Rn → Rn be linear and symmetric, and S be a sub-

space of Rn. Suppose that x ∈ ran(B + NS). Then 〈x, (B + NS)−1x〉 is

single-valued. Moreover, if y0 ∈ (B + NS)−1x, then 〈x, (B + NS)−1x〉 =

〈y0, By0〉.

Proof. Let x∗
1, x

∗
2 ∈ (B + NS)−1x. Then x∗

1, x
∗
2 ∈ S and by Fact 7.1.21,

x ∈ (B + NS)x∗
1 = Bx∗

1 + S⊥, x ∈ (B + NS)x∗
2 = Bx∗

2 + S⊥. (7.2)

Then we have

B(x∗
1 − x∗

2) ∈ S⊥. (7.3)
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By (7.2), there exists t ∈ S⊥ such that x = Bx∗
1 + t. Then

〈x, x∗
1 − x∗

2〉 = 〈Bx∗
1 + t, x∗

1 − x∗
2〉

= 〈Bx∗
1, x∗

1 − x∗
2〉 (7.4)

= 〈x∗
1, B(x∗

1 − x∗
2)〉

= 0, (7.5)

in which, (7.4) holds by t ∈ S⊥ and x∗
1 − x∗

2 ∈ S, and (7.5) holds by (7.3)

and x∗
1 ∈ S.

Thus 〈x, x∗
1〉 = 〈x, x∗

2〉. Hence 〈x, (B + NS)−1x〉 is single-valued.

Let y0 ∈ (B + NS)−1x. Then y0 ∈ S and x ∈ (B + NS)y0 = By0 + S⊥ by

Fact 7.1.21. Let t0 ∈ S⊥ such that x = By0 + t0. Since 〈x, (B + NS)−1x〉

is single-valued,

〈x, (B+NS)−1x〉 = 〈x, y0〉 = 〈By0+t0, y0〉 = 〈y0, By0〉 (by y0 ∈ S, t0 ∈ S⊥).

�

Lemma 7.2.5 Let B : Rn → Rn be linear and S be a linear subspace of Rn

such that A = B + NS . Suppose (x, x∗) ∈ S × Rn. Then

ιran A+(x∗ − Bx) = ιran A+(x∗ − Ax),

i.e., x∗ − Bx ∈ ran A+ ⇔ x∗ − Ax ⊂ ran A+.

119



Chapter 7. Proximal averages of monotone operators with linear graphs

Moreover if x∗ − Bx ∈ ran A+, then

〈
x∗ − Bx, (A+)−1(x∗ − Bx)

〉
=

〈
x∗ − Ax, (A+)−1(x∗ − Ax)

〉
.

Proof. By Fact 7.1.21,

Ax = Bx + S⊥. (7.6)

By Remark 7.1.25 and Proposition 7.2.3(i) applied to A+,

ιran A+(x∗ − Bx) = ιran A+

(
x∗ − Bx + S⊥)

= ιran A+

(
x∗ − Ax

)
(by (7.6)).

Let x∗ − Bx ∈ ran A+. By Remark 7.1.25, (A+)−1(x∗ − Bx) ⊂ S, then we

have

〈
x∗ − Bx, (A+)−1(x∗ − Bx)

〉

=
〈
x∗ − Bx + S⊥, (A+)−1(x∗ − Bx)

〉

=
〈
x∗ − Bx + S⊥, (A+)−1

(
x∗ − Bx + S⊥)〉

(7.7)

=
〈
x∗ − Ax, (A+)−1

(
x∗ − Ax

)〉
, (7.8)

in which, (7.7) holds by Proposition 7.2.3(ii), (7.8) by (7.6). �

Remark 7.2.6 Let B : Rn → Rn be linear and S be a linear subspace of Rn

such that A = B+NS. Suppose (x, x∗) ∈ S×Rn such that x∗−Bx ∈ ran A+.
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By Remark 7.1.25, Lemma 7.2.4 and Lemma 7.2.5, we see that

〈
x∗ − Ax, (A+)−1(x∗ − Ax)

〉

is single-valued.

Proposition 7.2.7 Let B : Rn → Rn be linear and S be a linear subspace

of Rn such that A = B + NS. Suppose (x, x∗) ∈ S ×Rn. Then (x∗ −Ax) ⊂

ran A+ or (x∗ − Ax) ∩ ran A+ = ∅.

Proof. Suppose that (x∗ − Ax) ∩ ran A+ 6= ∅. By Fact 7.1.21, there exists

t ∈ S⊥ such that x∗−Bx+ t ∈ ran A+. Then by Fact 7.1.21, Remark 7.1.25

and Proposition 7.2.3(i), we obtain x∗ − Ax = x∗ − Bx + S⊥ = x∗ − Bx +

t + S⊥ ⊂ ran A+. �

Definition 7.2.8 Let A : Rn ⇉ Rn. We define ΦA : Rn ⇉ Rn by

ΦA(x) =





A−1x, if x ∈ ran A;

{0}, otherwise.

Remark 7.2.9 Let B : Rn → Rn be linear and S be a linear subspace of

Rn such that A = B + NS . Then by Proposition 7.2.7 and Remark 7.2.6,

〈
x∗ − Ax, ΦA+(x∗ − Ax)

〉 (
(x, x∗) ∈ S × Rn

)

is single-valued. By Lemma 7.2.4 and Remark 7.1.25,
〈
x, ΦA+(x)

〉
(x ∈

Rn) is single-valued.
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Lemma 7.2.10 Let A : Rn → Rn such that graA is a linear subspace of

Rn × Rn. Let k ∈ R with k 6= 0. Then ΦA(kx) = kΦA(x), ∀x ∈ Rn.

Proof. Let x ∈ Rn. We consider two cases.

Case 1: x /∈ ran A. Then kx /∈ ran A. Thus we have kΦA(x) = ΦA(kx) = 0.

Case 2: x ∈ ran A. Then kx ∈ ran A. Then by Remark 7.1.32 and Proposi-

tion 4.1.3(iii), kΦA(x) = kA−1x = A−1(kx) = ΦA(kx). �

Corollary 7.2.11 Let B : Rn → Rn be linear and S be a linear subspace of

Rn such that A = B + NS . Let k ∈ R. Then

ιS(x) + ιran A+(x∗ − Bx) + k
〈
x∗ − Bx, ΦA+(x∗ − Bx)

〉

= ιS(x) + ιran A+(x∗ − APSx) + k
〈
x∗ − APSx, ΦA+(x∗ − APSx)

〉
,

∀(x, x∗) ∈ Rn × Rn.

Proof. Combine Lemma 7.2.5 and Remark 7.1.25. �

Fact 7.2.12 Let B : Rn ⇉ Rn be linear and monotone, and S be a linear

subspace of Rn. Then B + NS is maximal monotone.

Proof. See [28, Theorem 41.2]. �

Fact 7.2.13 Let B : Rn ⇉ Rn be linear, symmetric and monotone, and S

be a linear subspace of Rn. Then ran(B + NS) = ran B + S⊥.

Proof. Combine Remark 7.1.25, Fact 7.2.12, [4, Corollary 4.9] and [28, 19.0.3

page 70]. �
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Lemma 7.2.14 Let B : Rn → Rn be linear and monotone, and S be a linear

subspace of Rn. Then

(qB + ιS)∗(x) = ιran(B++NS)(x) + 1
2

〈
x, Φ(B++NS)(x)

〉
, ∀x ∈ Rn.

Proof. Let x ∈ Rn. Then

(qB + ιS)∗(x) = sup
y∈Rn

{
〈y, x〉 − qB(y) − ιS(y)

}
.

Let

g(y) := 〈y, x〉 − qB(y) − ιS(y).

A point y is a maximizer of g, if and only if, it is a critical point. Then by

Fact 2.1.30, Fact 2.1.18 and Fact 7.1.21,

0 ∈ ∂g(y) = x − B+y − NS(y) = x − (B+ + NS)(y).

We consider two cases.

Case 1: x ∈ ran(B++NS). Let y0 satisfy that x ∈ (B++NS)y0. Then y0 ∈ S

and x ∈ B+y0 + S⊥ by Fact 7.1.21. Let t ∈ S⊥ such that x = B+y0 + t.
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Since y0 is a critical point,

(qB + ιS)∗(x) = g(y0) = 〈y0, x〉 −
1
2〈y0, B+y0〉 (by Remark 2.1.12)

= 〈y0, B+y0 + t〉 − 1
2 〈y0, B+y0〉 (by x = B+y0 + t)

= 〈y0, B+y0〉 −
1
2 〈y0, B+y0〉 (by y0 ∈ S and t ∈ S⊥)

= 1
2〈y0, B+y0〉

= 1
2〈x, (B+ + NS)−1x〉 (by Lemma 7.2.4 applied to B+)

= 1
2

〈
x, Φ(B++NS)(x)

〉
.

Case 2: x /∈ ran(B+ + NS). By Fact 7.2.13, ran(B+ + NS) = ran B+ + S⊥.

Thus by Fact 2.1.32,

(
ran(B+ + NS)

)⊥
= (ran B+ + S⊥)⊥ = (ran B+)⊥ ∩ (S⊥)⊥ = ker B+ ∩ S.

Then we have Rn = ran(B+ + NS) ⊕ (ker B+ ∩ S) and x = Pran(B++NS)x +

Pker B+∩Sx. Since x /∈ ran(B+ + NS), Pker B+∩Sx 6= 0. Thus

〈Pker B+∩Sx, x〉 = 〈Pker B+∩Sx, Pran(B++NS)x + Pker B+∩Sx〉

= ‖Pker B+∩Sx‖2 > 0. (7.9)

Then by Fact 5.1.10,

(qB + ιS)∗(x) = (qB + ιS)∗(x) + (qB + ιS)(kPker B+∩Sx) (7.10)

≥ 〈kPker B+∩Sx, x〉 → ∞, as k → ∞
(
by (7.9)

)
,
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where (7.10) holds since (qB + ιS)(kPker B+∩Sx) = 0 by Remark 2.1.12 and

Pker B+∩Sx ∈ ker B+ ∩ S.

Combining the conclusions above, we have

(qB + ιS)∗(x) = ιran(B++NS)(x) + 1
2

〈
x, Φ(B++NS)(x)

〉
, ∀x ∈ Rn.

�

Proposition 7.2.15 Let B : Rn → Rn be linear and monotone, and S be a

linear subspace of Rn. Then

F(B+NS )(x, x∗)

= ιS(x) + ιran(B++NS)(B
∗x + x∗) + 1

4

〈
B∗x + x∗, Φ(B++NS)(B

∗x + x∗)
〉
,

∀(x, x∗) ∈ Rn × Rn.

Proof. Let (x, x∗) ∈ Rn × Rn. By Fact 7.1.21, we have

F(B+NS )(x, x∗)

= sup
(y,y∗)∈gra(B+NS)

{
〈y∗, x〉 + 〈x∗, y〉 − 〈y, y∗〉

}

= sup
y∈S

{
〈By + S⊥, x〉 + 〈x∗, y〉 − 〈y, By + S⊥〉

}

= ιS(x) + sup
y∈S

{
〈By, x〉 + 〈x∗, y〉 − 〈y,By〉

}
(7.11)

= ιS(x) + sup
y∈Rn

{
〈y, B∗x + x∗〉 − 〈y,By〉 − ιS(y)

}

= ιS(x) + 2 sup
y∈Rn

{
〈y, 1

2 (B∗x + x∗)〉 − qB(y) − ιS(y)
}

(7.12)
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where (7.11) holds by y ∈ S.

By (7.12), we have

F(B+NS )(x, x∗) = ιS(x) + 2(qB + ιS)∗
(

1
2(B∗x + x∗)

)

= ιS(x) + ιran(B++NS)(B
∗x + x∗) (7.13)

+
〈

1
2(B∗x + x∗),Φ(B++NS)(

1
2 (B∗x + x∗)

)〉

= ιS(x) + ιran(B++NS)(B
∗x + x∗) (7.14)

+ 1
4

〈
(B∗x + x∗),Φ(B++NS)(B

∗x + x∗)
〉
.

(7.13) holds by Lemma 7.2.14 and Remark 7.1.22. (7.14) holds by Re-

mark 7.1.22 and Lemma 7.2.10. �

Remark 7.2.16 Let S be a linear subspace of Rn. By Fact 7.2.13, ranNS =

S⊥. By Proposition 7.2.15,

FNS
(x, x∗) = ιS(x) + ιS⊥(x∗), ∀(x, x∗) ∈ Rn × Rn.

Corollary 7.2.17 Let A : Rn ⇉ Rn be maximal monotone such that gra A

is a linear subspace. Then

FA(x, x∗)

= ιdom A(x) + ιran A+(A∗Pdom Ax + x∗)

+ 1
4

〈
A∗Pdom Ax + x∗,ΦA+(A∗Pdom Ax + x∗)

〉
,∀(x, x∗) ∈ Rn × Rn.
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Proof. By Corollary 7.1.31, there exists a linear and monotone operator

B : Rn → Rn such that

A = B + Ndom A.

By Proposition 7.2.15 and Remark 7.1.25, we have

FA(x, x∗) = F(B+Ndom A)(x, x∗)

= ιdom A(x) + ιranA+(B∗x + x∗) + 1
4

〈
B∗x + x∗, ΦA+(B∗x + x∗)

〉

= ιdom A(x) + ιranA+(−B∗(−x) + x∗)

+ 1
4

〈
− B∗(−x) + x∗, ΦA+(−B∗(−x) + x∗)

〉

= ιdom A(x) + ιranA+

(
− A∗Pdom A(−x) + x∗) (7.15)

+ 1
4

〈
− A∗Pdom A(−x) + x∗, ΦA+

(
− A∗Pdom A(−x) + x∗)〉

= ιdom A(x) + ιranA+

(
− A∗(−Pdom Ax) + x∗) (7.16)

+ 1
4

〈
− A∗(−Pdom Ax) + x∗, ΦA+

(
− A∗(−Pdom Ax) + x∗)〉

= ιdom A(x) + ιranA+(A∗Pdom Ax + x∗) (7.17)

+ 1
4

〈
A∗Pdom Ax + x∗, ΦA+

(
A∗Pdom Ax + x∗)〉,

where (7.15) holds by Fact 7.1.23 and Corollary 7.2.11 applied to B∗ and

A∗. (7.16) holds by Fact 4.3.3, and (7.17) by Remark 7.1.5 and Proposi-

tion 4.1.3(iii). �

Proposition 7.2.18 Let B : Rn → Rn be linear and monotone, and S be a
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linear subspace of Rn. Then

F ∗
(B+NS )(x

∗, x) = ιS(x) + ιS⊥(x∗ − Bx) + 〈x,Bx〉,

∀(x, x∗) ∈ Rn × Rn.

Proof. Let (x, x∗) ∈ Rn × Rn. By Proposition 7.2.15,

F ∗
(B+NS )(x

∗, x)

= sup
(y,y∗)

{
〈y, x∗〉 + 〈y∗, x〉 − ιS(y) − ιran(B++NS)(B

∗y + y∗)

− 1
4

〈
B∗y + y∗, Φ(B++NS)(B

∗y + y∗)
〉}

= sup
(y∈S,w∈S)

{
〈y, x∗〉 + 〈B+w − B∗y + S⊥, x〉 − 1

4〈B+w,w〉
}

(7.18)

= ιS(x) + sup
(y∈S,w∈S)

{
〈y, x∗〉 + 〈B+w − B∗y, x〉 − 1

4〈B+w,w〉
}

= ιS(x) + sup
(y∈S, w∈S)

{
〈y, x∗ − Bx〉 + 〈B+w, x〉 − 1

4 〈w,B+w〉
}

= ιS(x) + ιS⊥(x∗ − Bx) + sup
w∈S

{
〈B+w, x〉 − 1

4〈w,B+w〉
}

= ιS(x) + ιS⊥(x∗ − Bx) + 1
2 sup

w∈S

{
〈w, 2B+x〉 − qB(w)

}
(7.19)

= ιS(x) + ιS⊥(x∗ − Bx)

+ 1
2 sup

w∈Rn

{
〈w, 2B+x〉 − qB(w) − ιS(w)

}

= ιS(x) + ιS⊥(x∗ − Bx) + 1
2(qB + ιS)∗(2B+x)

= ιS(x) + ιS⊥(x∗ − Bx) + ιran(B++NS)(2B+x) (7.20)

+ 1
4〈2B+x,Φ(B++NS)(2B+x)〉

= ιS(x) + ιS⊥(x∗ − Bx) + 〈x,Bx〉, (7.21)
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in which, (7.18) holds by B∗y + y∗ ∈ (B+ + NS)w = B+w + S⊥(w ∈

S) by Fact 7.1.21, and by Lemma 7.2.4. (7.19) holds by Remark 2.1.12.

(7.20) holds by Lemma 7.2.14, and (7.21) by Lemma 7.2.4 since 2x ∈ (B+ +

NS)−1(2B+x) as x ∈ S by Fact 7.1.21. �

Remark 7.2.19 Let S be a linear subspace of Rn. By Fact 7.2.13, ranNS =

S⊥. Then by Proposition 7.2.18,

F ∗
NS

(x∗, x) = ιS(x) + ιS⊥(x∗), ∀(x, x∗) ∈ Rn × Rn.

Corollary 7.2.20 Let S be a linear subspace of Rn. Then FNS
is auto-

conjugate.

Proof. Combine Remark 7.2.16 and Remark 7.2.19. �

Remark 7.2.21 Remark 7.2.16 and Remark 7.2.19 are special cases of [8,

Example 3.1].

Remark 7.2.22 Let B : Rn → Rn be linear and monotone, and S be a

linear subspace of Rn such that A = B+NS. Suppose x ∈ S. Then 〈Ax, x〉 =

〈x,Bx〉.

Proof. Apply Ax = Bx + S⊥, which follows from Fact 7.1.21. �

Corollary 7.2.23 Let A : Rn ⇉ Rn be maximal monotone such that gra A

is a linear subspace. Then

F ∗
A(x∗, x) = ιdom A(x) + ι(dom A)⊥(x∗ − APdom Ax) + 〈x,APdom Ax〉,

∀(x, x∗) ∈ Rn × Rn.
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Proof. Let (x, x∗) ∈ Rn × Rn. By Corollary 7.1.31, there exists a linear

and monotone operator B : Rn → Rn such that A = B + Ndom A. Then by

Proposition 7.2.18,

F ∗
A(x∗, x) = ιdom A(x) + ι(dom A)⊥(x∗ − Bx) + 〈x,Bx〉. (7.22)

Suppose x ∈ dom A. Since dom A is a subspace of Rn and

x∗ − Bx ∈ (dom A)⊥ ⇔ x∗ − Bx + (dom A)⊥ ⊂ (dom A)⊥.

By Fact 7.1.21, x∗ − Bx + (dom A)⊥ = x∗ − Ax. Thus

ι(dom A)⊥(x∗ − Bx) = ι(dom A)⊥(x∗ − Ax) = ι(dom A)⊥(x∗ − APdom Ax).

(7.23)

By Remark 7.2.22,

〈x,Bx〉 = 〈Ax, x〉 = 〈APdom Ax, x〉. (7.24)

Thus by (7.22), (7.23) and (7.24),

F ∗
A(x∗, x) = ιdom A(x) + ι(dom A)⊥(x∗ − APdom Ax) + 〈APdom Ax, x〉,

∀(x, x∗) ∈ Rn × Rn.

�
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7.3 The third main result

Lemma 7.3.1 Let B : Rn → Rn be linear and monotone, and S be a linear

subspace of Rn. Suppose that x ∈ S, x∗ ∈ Rn and y∗ ∈ Rn. Then

ιran(B++NS)(B
∗x + y∗) + ιS⊥(2x∗ − y∗ − Bx)

= ιran(B++NS)(x
∗ − Bx) + ιS⊥(2x∗ − y∗ − Bx). (7.25)

Proof. We consider two cases.

Case 1: 2x∗ − y∗ − Bx /∈ S⊥. Clear.

Case 2: 2x∗ − y∗−Bx ∈ S⊥. Let t ∈ S⊥ such that y∗ = 2x∗ −Bx+ t. Thus

B∗x + y∗

= B∗x + 2x∗ − Bx + t = Bx + B∗x + 2x∗ − Bx − Bx + t

= 2x∗ − 2Bx + 2B+x + t. (7.26)

On the other hand, since t ∈ S⊥, Fact 7.1.21 implies

2B+x + t ∈ (B+ + NS)(2x). (7.27)

Then by Remark 7.1.22, (7.26) and (7.27), we have

B∗x + y∗ ∈ ran(B+ + NS) ⇔ x∗ − Bx ∈ ran(B+ + NS). (7.28)

Thus ιran(B++NS)(B
∗x + y∗) = ιran(B++Ns)(x

∗ − Bx).

Hence (7.25) holds. �
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Corollary 7.3.2 Let B : Rn → Rn be linear and monotone, and S be a

linear subspace of Rn. Suppose that x, x∗, y∗ ∈ Rn. Then

ιS(x) + ιran(B++NS)(B
∗x + y∗) + ιS⊥(2x∗ − y∗ − Bx)

= ιS(x) + ιran(B++NS)(x
∗ − Bx) + ιS⊥(2x∗ − y∗ − Bx).

Proof. Apply Lemma 7.3.1. �

Proposition 7.3.3 Let A : Rn ⇉ Rn be maximal monotone such that gra A

is a linear subspace. Then

hFA
(x, x∗)

= ιdom A(x) + ιran A+(x∗ − APdom Ax) + 〈x, x∗〉

+ 1
2

〈
x∗ − APdom Ax, ΦA+(x∗ − APdom Ax)

〉
, ∀(x, x∗) ∈ Rn × Rn.

Proof. By Corollary 7.1.31, there exists a linear and monotone operator

B : Rn → Rn such that

A = B + NS ,
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where S = dom A. Let (x, x∗) ∈ Rn × Rn.

By Proposition 7.2.15 and Proposition 7.2.18,

hFA
(x, x∗)

= inf
y∗

{
1
2FA(x, 2y∗) + 1

2F ∗
A

(
2(x∗ − y∗), x

)}

= inf
y∗

{
ιS(x) + ιran(B++NS)(B

∗x + 2y∗)

+ 1
8

〈
B∗x + 2y∗, Φ(B++NS)(B

∗x + 2y∗)
〉

+ ιS⊥(2x∗ − 2y∗ − Bx) + 1
2〈x,Bx〉

}

= ιS(x) + 1
2〈x,Bx〉 + inf

y∗

{
ιran(B++NS)(B

∗x + 2y∗)

+ 1
8

〈
B∗x + 2y∗, Φ(B++NS)(B

∗x + 2y∗)
〉

+ ιS⊥(2x∗ − 2y∗ − Bx)
}

= ιS(x) + ιran(B++NS)(x
∗ − Bx) + 1

2〈x,Bx〉 (7.29)

+ inf
y∗

{
1
8

〈
B∗x + 2y∗, Φ(B++NS)(B

∗x + 2y∗)
〉

+ ιS⊥(2x∗ − 2y∗ − Bx)
}

= ιS(x) + ιran(B++NS)(x
∗ − Bx) + 1

2〈x,Bx〉 (7.30)

+ inf
t∈S⊥

{
1
8

〈
B∗x + 2x∗ − Bx + t, Φ(B++NS)(B

∗x + 2x∗ − Bx + t)
〉}

,

in which, (7.29) holds by Corollary 7.3.2, (7.30) by 2y∗ = 2x∗ −Bx + t, t ∈

S⊥.

If x /∈ S or x∗ − Bx /∈ ran(B+ + NS), hFA
(x, x∗) = ∞ by (7.30).

Now suppose x ∈ S = dom A and x∗ − Bx ∈ ran(B+ + NS). Then there

exists y0 ∈ S such that x∗ − Bx ∈ (B+ + NS)y0. Thus by Fact 7.1.21,
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x∗ − Bx ∈ B+y0 + S⊥. Then

〈B+x, y0〉 = 〈x,B+y0〉 = 〈x, x∗ − Bx〉 = 〈x, x∗〉 − 〈x,Bx〉. (7.31)

Note that

B∗x + 2x∗ − Bx + t = Bx + B∗x + 2x∗ − Bx − Bx + t

= 2x∗ − 2Bx + 2B+x + t. (7.32)

By Fact 7.1.21,

2B+x + t ∈ (B+ + NS)(2x). (7.33)

Then by Remark 7.1.22, (7.32) and (7.33),

B∗x + 2x∗ − Bx + t ∈ (B+ + NS)(2y0 + 2x). (7.34)

134



Chapter 7. Proximal averages of monotone operators with linear graphs

Then by (7.34), (7.31), (7.30) and Lemma 7.2.4,

hFA
(x, x∗)

= 1
2〈x,Bx〉 + 1

8

〈
B+(2y0 + 2x), 2y0 + 2x

〉

= 1
2〈x,Bx〉 + 1

2

〈
B+(y0 + x), y0 + x

〉

= 1
2〈x,Bx〉 + 1

2 〈B+y0, y0〉 + 〈B+x, y0〉 + 1
2〈B+x, x〉

= 1
2〈x,Bx〉 + 1

2 〈B+y0, y0〉 + 〈x, x∗〉 − 〈x,Bx〉 + 1
2〈B+x, x〉

= 1
2〈B+y0, y0〉 + 〈x, x∗〉 (by Remark 2.1.12)

= 〈x, x∗〉 + 1
2〈x

∗ − Bx, (B+ + NS)−1(x∗ − Bx)〉

= 〈x, x∗〉 + 1
2〈x

∗ − Bx, (A+)−1(x∗ − Bx)〉 (by Remark 7.1.25)

= 〈x, x∗〉 + 1
2

〈
x∗ − Ax, (A+)−1(x∗ − Ax)

〉
(by Lemma 7.2.5)

= 〈x, x∗〉 + 1
2

〈
x∗ − Ax, ΦA+(x∗ − Ax)

〉
(by Lemma 7.2.5)

= 〈x, x∗〉 + 1
2

〈
x∗ − APdom Ax, ΦA+(x∗ − APdom Ax)

〉
. (7.35)

Thus combining (7.30) and (7.35),

hFA
(x, x∗)

= ιdom A(x) + ιran A+(x∗ − Bx) + 〈x, x∗〉 (by Remark 7.1.25)

+ 1
2

〈
x∗ − APdom Ax, ΦA+(x∗ − APdom Ax)

〉

= ιdom A(x) + ιran A+(x∗ − APdom Ax) + 〈x, x∗〉 (by Lemma 7.2.5)

+ 1
2

〈
x∗ − APdom Ax, ΦA+(x∗ − APdom Ax)

〉
, ∀(x, x∗) ∈ Rn × Rn.

�
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Remark 7.3.4 Let S be a linear subspace of Rn and A : Rn → Rn be in-

vertible. Then dim AS = dim S.

Proposition 7.3.5 Let S be a linear subspace of Rn and A : Rn → Rn be

linear and monotone. Suppose that AS ⊂ S. Then (Id +A)S = S.

Proof. By assumptions, (Id +A)S is a linear subspace and

(Id +A)S ⊂ S + AS ⊂ S. (7.36)

Since (Id+A) is invertible by Proposition 5.2.6, by Remark 7.3.4, dim(Id +A)S =

dim S. Then by (7.36), (Id +A)S = S. �

Corollary 7.3.6 Let S be a linear subspace of Rn and A : Rn → Rn be

linear and monotone. Suppose that ran A ⊂ S. Then (Id +A)−1A+S ⊂ S.

Proof. By Fact 2.1.17, ran A∗ = ran A ⊂ S. Thus A+S ⊂ ran A+ ⊂

S. By Proposition 7.3.5, A+S ⊂ S = (Id+A)S. Then (Id +A)−1A+S ⊂

(Id +A)−1(Id +A)S = S. �

Lemma 7.3.7 Let B : Rn → Rn be linear and monotone, and S be a linear

subspace of Rn. Suppose that x, y ∈ S and x∗, y∗ ∈ Rn. Then

ιran(B++NS)

(
B∗(x + y) + x∗ + y∗

)
+ ιS⊥

(
x∗ − y∗ − B(x − y)

)

= ιran(B++NS)(x
∗ − Bx) + ιS⊥

(
x∗ − y∗ − B(x − y)

)
. (7.37)

Proof. We consider two cases.

Case 1: x∗ − y∗ − B(x − y) /∈ S⊥. Clear.
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Case 2: x∗−y∗−B(x−y) ∈ S⊥. Let t ∈ S⊥ such that y∗ = x∗−B(x−y)+t.

Thus

B∗(x + y) + x∗ + y∗

= B∗(x + y) + 2x∗ − B(x − y) + t

= B∗(x + y) + B(x + y) − B(x + y) + 2x∗ − B(x − y) + t

= 2B+(x + y) + t + 2x∗ − 2Bx. (7.38)

On the other hand, since t ∈ S⊥, Fact 7.1.21 implies

2B+(x + y) + t ∈ (B+ + NS)(2x + 2y). (7.39)

Then by Remark 7.1.22, (7.39) and (7.38), we have

B∗(x + y) + x∗ + y∗ ∈ ran(B+ + NS) ⇔ x∗ − Bx ∈ ran(B+ + NS).

Thus ιran(B++NS)

(
B∗(x+y)+x∗+y∗

)
= ιran(B++NS)(x

∗−Bx). Hence (7.37)

holds. �

Corollary 7.3.8 Let B : Rn → Rn be linear and monotone, and S be a

linear subspace of Rn. Suppose that x ∈ Rn, y ∈ S and x∗, y∗ ∈ Rn. Then

ιS(x) + ιran(B++NS)

(
B∗(x + y) + x∗ + y∗

)
+ ιS⊥

(
x∗ − y∗ − B(x − y)

)

= ιS(x) + ιran(B++NS)(x
∗ − Bx) + ιS⊥

(
x∗ − y∗ − B(x − y)

)
.

Proof. Apply Lemma 7.3.7. �

137



Chapter 7. Proximal averages of monotone operators with linear graphs

Theorem 7.3.9 Let A : Rn ⇉ Rn be maximal monotone such that gra A is

a linear subspace. Then

P (FA, F ∗
A

⊺) = hFA
.

Proof. By Corollary 7.1.31,

A = B + NS ,

where B = PSQAPS , S = dom A. Let (x, x∗) ∈ Rn × Rn.

By Fact 5.2.2, Fact 5.2.9, Proposition 7.2.15 and Proposition 7.2.18,

P (FA, F ∗
A

⊺)(x, x∗)

= inf
(y,y∗)

{
1
2F(B+NS)(x + y, x∗ + y∗) + 1

2F ∗⊺
(B+NS )(x − y, x∗ − y∗)

+ 1
2‖y‖

2 + 1
2‖y

∗‖2
}

= inf
(y,y∗)

{
ιS(x + y) + ιran(B++NS)

(
B∗(x + y) + x∗ + y∗

)
+ ιS(x − y)

+ 1
8

〈
B∗(x + y) + x∗ + y∗, Φ(B++NS)

(
B∗(x + y) + x∗ + y∗

)〉

+ ιS⊥

(
x∗ − y∗ − B(x − y)

)
+ 1

2

〈
x − y,B(x − y)

〉
+ 1

2‖y‖
2

+ 1
2‖y

∗‖2
}

= ιS(x) + inf
y∈S, y∗∈Rn

{
ιran(B++NS)

(
B∗(x + y) + x∗ + y∗

)
(7.40)

+ 1
8

〈
B∗(x + y) + x∗ + y∗, Φ(B++NS)

(
B∗(x + y) + x∗ + y∗

)〉

+ ιS⊥

(
x∗ − y∗ − B(x − y)

)
+ 1

2

〈
x − y,B(x − y)

〉
+ 1

2‖y‖
2

+ 1
2‖y

∗‖2
}

,

138



Chapter 7. Proximal averages of monotone operators with linear graphs

where (7.40) holds by ιS(x + y) = 0, ιS(x − y) = 0 ⇔ x, y ∈ S.

By (7.40) and Corollary 7.3.8,

P (FA, F ∗
A

⊺)(x, x∗)

= ιS(x) + ιran(B++NS)(x
∗ − Bx)

+ inf
y∈S, y∗∈Rn

{

1
8

〈
B∗(x + y) + x∗ + y∗, Φ(B++NS)

(
B∗(x + y) + x∗ + y∗

)〉

+ ιS⊥

(
x∗ − y∗ − B(x − y)

)
+ 1

2

〈
x − y,B(x − y)

〉
+ 1

2‖y‖
2

+ 1
2‖y

∗‖2
}

= ιS(x) + ιran(B++NS)(x
∗ − Bx) + inf

y∈S, t∈S⊥

{
1
8

〈
C0, Φ(B++NS)(C0)

〉

(7.41)

+ 1
2

〈
x − y,B(x − y)

〉
+ 1

2‖y‖
2 + 1

2‖x
∗ − B(x − y) + t‖2

}
,

where (7.41) holds by y∗ = x∗ − B(x − y) + t, t ∈ S⊥, where C0 := B∗(x +

y) + 2x∗ − B(x − y) + t (B∗(x + y) + x∗ + y∗ = C0).

Suppose that x ∈ S and x∗ −Bx ∈ ran(B+ + NS). Then exists y0 ∈ S such

that x∗−Bx ∈ (B++NS)y0. Thus by Fact 7.1.21, x∗−Bx ∈ (B++NS)y0 =

B+y0 + S⊥. Thus

〈x,Bx + B+y0〉 = 〈x, x∗〉 (by x ∈ S). (7.42)
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On one hand,

C0 = B∗(x + y) + B(x + y) − B(x + y) + 2x∗ − B(x − y) + t

= 2B+(x + y) + t + 2x∗ − 2Bx. (7.43)

On the other hand, since t ∈ S⊥, Fact 7.1.21 implies

2B+(x + y) + t ∈ (B+ + NS)(2x + 2y). (7.44)

Then by Remark 7.1.22, (7.44) and (7.43)

C0 ∈ (B+ + NS)(2x + 2y + 2y0). (7.45)

Then by (7.45), (7.41) and Lemma 7.2.4,

P (FA, F ∗
A

⊺)(x, x∗)

= inf
y∈S, t∈S⊥

{
1
8

〈
2B+(x + y + y0), 2x + 2y + 2y0

〉

+ 1
2

〈
x − y,B(x − y)

〉
+ 1

2‖y‖
2 + 1

2‖x
∗ − B(x − y) + t‖2

}

= inf
y∈S, t′∈S⊥

{
1
2

〈
B+(x + y + y0), x + y + y0

〉

+ 1
2

〈
x − y,B(x − y)

〉
+ 1

2‖y‖
2 + 1

2‖B+y0 + By + t′‖2
}

≤ inf
y∈S

{
1
2〈B+(x + y + y0), x + y + y0〉

+ 1
2 〈x − y,B(x − y)〉 + 1

2‖y‖
2 + 1

2‖B+y0 + By‖2
}

.
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Note that (by Remark 2.1.12)

1
2

〈
B+(x + y + y0), x + y + y0

〉
+ 1

2

〈
x − y,B(x − y)

〉

= 1
2

〈
B+(x + y0) + B+y, (x + y0) + y

〉
+ 1

2

〈
x − y,B+(x − y)

〉

= 1
2

〈
B+(x + y0), x + y0

〉
+ 〈y,B+(x + y0)〉 + 1

2〈y,B+y〉 + 1
2〈x,B+x〉

+ 1
2 〈y,B+y〉 − 〈y,B+x〉

= 1
2

〈
B+(x + y0), x + y0

〉
+ 〈y,B+y0〉 + 〈y,B+y〉 + 1

2〈x,B+x〉

= 1
2 〈B+x, x〉 + 〈B+y0, x〉 + 1

2 〈B+y0, y0〉 + 〈y,B+y0〉 + 〈y,B+y〉 + 1
2〈x,B+x〉

= 〈x,Bx〉 + 〈B+y0, x〉 + 1
2 〈B+y0, y0〉 + 〈y,B+y0〉 + 〈y,B+y〉

=
〈
x,Bx + B+y0

〉
+ 1

2 〈B+y0, y0〉 + 〈y,B+y0〉 + 〈y,B+y〉

= 〈x, x∗〉 + 1
2〈B+y0, y0〉 + 〈y,B+y0〉 + 〈y,B+y〉 (by (7.42)).

Thus

P (FA, F ∗
A

⊺)(x, x∗)

≤ 1
2〈y0, B+y0〉 + 〈x, x∗〉 (7.46)

+ inf
y∈S

{
〈y,B+y0〉 + 〈y,B+y〉 + 1

2‖y‖
2 + 1

2‖B+y0 + By‖2
}
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Note that

〈y,B+y0〉 + 〈y,B+y〉 + 1
2‖y‖

2 + 1
2‖B+y0 + By‖2

= 〈y,B+y0〉 + 〈y,B+y〉 + 1
2‖y‖

2 + 〈y,B∗B+y0〉 + 1
2 〈y,B∗By〉 + 1

2‖B+y0‖
2

=
〈
y, (Id+B∗)B+y0

〉
+ 1

2

〈
y,

(
B + B∗ + Id +B∗B

)
y
〉

+ 1
2‖B+y0‖

2

= 〈y, (Id +B∗)B+y0

〉
+ 1

2〈y, (Id +B∗)(Id +B)y
〉

+ 1
2‖B+y0‖

2.

Then by (7.46), we have

P (FA, F ∗
A

⊺)(x, x∗)

≤ 1
2 〈y0, B+y0〉 + 1

2‖B+y0‖
2 + 〈x, x∗〉 (7.47)

+ inf
y∈S

{〈
y, (Id +B∗)B+y0

〉
+ 1

2〈y, (Id +B∗)(Id +B)y
〉}

≤ 1
2 〈y0, B+y0〉 + 〈x, x∗〉 + 1

2‖B+y0‖
2 − 1

2‖B+y0‖
2 (7.48)

= 1
2 〈y0, B+y0〉 + 〈x, x∗〉

= 〈x, x∗〉 + 1
2〈x

∗ − Bx, (B+ + NS)−1(x∗ − Bx)〉 (7.49)

= 〈x, x∗〉 + 1
2

〈
x∗ − Ax, (A+)−1(x∗ − Ax)

〉
(7.50)

= 〈x, x∗〉 + 1
2

〈
x∗ − Ax, ΦA+(x∗ − Ax)

〉
(by Lemma 7.2.5)

= 〈x, x∗〉 + 1
2

〈
x∗ − APdom Ax, ΦA+(x∗ − APdom Ax)

〉
, (7.51)

in which (7.48) holds by letting y = −(Id+B)−1B+y0 ∈ S, where y ∈ S by

Corollary 7.3.6.

(7.49) holds Lemma 7.2.4, (7.50) by Remark 7.1.25 and Lemma 7.2.5.
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Combining (7.41) and (7.51),

P (FA, F ∗
A

⊺)(x, x∗)

≤ ιS(x) + ιran(B++NS)(x
∗ − Bx) + 〈x, x∗〉

+ 1
2

〈
x∗ − APdom Ax, ΦA+(x∗ − APdom Ax)

〉

= ιdom A(x) + ιranA+(x∗ − APdom Ax) + 〈x, x∗〉 (by Remark 7.1.25, Lemma 7.2.5)

+ 1
2

〈
x∗ − APdom Ax, ΦA+(x∗ − APdom Ax)

〉

= hFA
(x, x∗) (by Proposition 7.3.3), ∀(x, x∗) ∈ Rn × Rn.

By Fact 5.2.11, Fact 5.2.12 and Proposition 5.1.8, P (FA, F ∗
A

⊺) = hFA
. �

Corollary 7.3.10 Let A : Rn ⇉ Rn be maximal monotone such that gra A

is a linear subspace. Then

P (FA, F ∗
A

⊺) = hFA
= hF ∗

A
⊺ .

Proof. Combine Theorem 7.3.9 and Proposition 5.3.13. �

Theorem 7.3.11 Let B : Rn → Rn be linear and monotone, and S be a

linear subspace of Rn. Then

P (F(B+NS ), F
∗⊺
(B+NS ))(x, x∗) = hF(B+NS )

(x, x∗) = hF
∗⊺

(B+NS)
(x, x∗)

= ιS(x) + ιran(B++NS)(x
∗ − Bx) + 〈x, x∗〉

+ 1
2

〈
x∗ − Bx, Φ(B++NS)(x

∗ − Bx)
〉
, ∀(x, x∗) ∈ Rn × Rn.
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Proof. Let A = B + NS . Let (x, x∗) ∈ Rn × Rn. By Fact 7.2.12 and Re-

mark 7.1.22, A is maximal monotone with a linear graph. Thus by Propo-

sition 7.3.3, Corollary 7.3.10, Remark 7.1.25 and Corollary 7.2.11,

P (F(B+NS ), F
∗⊺
(B+NS ))(x, x∗) = hF(B+NS )

(x, x∗) = hF
∗⊺

(B+NS)
(x, x∗)

= ιdom A(x) + ιranA+(x∗ − APdom Ax) + 〈x, x∗〉

+ 1
2

〈
x∗ − APdom Ax, ΦA+(x∗ − APdom Ax)

〉

= ιS(x) + ιran(B++NS)(x
∗ − Bx) + 〈x, x∗〉

+ 1
2

〈
x∗ − Bx, Φ(B++NS)(x

∗ − Bx)
〉
.

�

7.4 The Fitzpatrick function of the sum

Fact 7.4.1 Let A,B : Rn ⇉ Rn be monotone. Then

FA+B ≤ FA�2FB . (7.52)

Proof. See [8, Proposition 4.2]. �

In (7.52), equality doesn’t always hold, see [8, Example 4.7]. It would

be interesting to characterize the pairs of monotone operators (A,B) that

satisfy the identity FA+B = FA�2FB .

Lemma 7.4.2 Let B : Rn → Rn be linear and monotone, and S be a linear

subspace of Rn. Then F(B+NS ) = FB�2FNS
.
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Proof. Let (x, x∗) ∈ Rn × Rn. By Fact 5.2.4 and Remark 7.2.16, we have

(FB�2FNS
)(x, x∗)

= inf
y∗

{
FB(x, y∗) + FNS

(x, x∗ − y∗)
}

= inf
y∗

{
ιran B+(y∗ + B∗x)

+ 1
2q(B+)†(y

∗ + B∗x) + ιS(x) + ιS⊥(x∗ − y∗)
}

= ιS(x)

+ inf
y∗

{
ιran B+(y∗ + B∗x) + 1

2q(B+)†(y
∗ + B∗x) + ιS⊥(x∗ − y∗)

}

≤ ιS(x) + ιran(B++NS)(x
∗ + B∗x) (7.53)

+ inf
y∗

{
ιran B+(y∗ + B∗x) + 1

2q(B+)†(y
∗ + B∗x) + ιS⊥(x∗ − y∗)

}
.

Next we will show that (FA�2FNS
)(x, x∗) ≤ F(B+NS )(x, x∗).

Now suppose x ∈ S and x∗+B∗x ∈ ran(B+ +NS). Then there exists y0 ∈ S

such that

x∗ + B∗x ∈ (B+ + NS)y0. (7.54)

By Fact 7.1.21, there exists t ∈ S⊥ such that x∗ + B∗x = B+y0 + t.

Let y∗0 = x∗ − t. Then by x∗ + B∗x = B+y0 + t,

y∗0 + B∗x = x∗ + B∗x − t = B+y0. (7.55)
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By (7.53), (7.55) and Lemma 7.2.4,

(FB�2FNS
)(x, x∗)

≤ ιran B+(y∗0 + B∗x) + 1
2q(B+)†(y

∗
0 + B∗x) + ιS⊥(x∗ − y∗0)

= 1
2q(B+)†(B+y0)

= 1
2qB+(y0) (by Corollary 2.2.16)

= 1
4

〈
B∗x + x∗, (B+ + NS)−1(B∗x + x∗)

〉
(by (7.54))

= 1
4

〈
B∗x + x∗, Φ(B++NS)(B

∗x + x∗)
〉
. (7.56)

Thus combining (7.53) and (7.56),

(FA�2FNS
)(x, x∗)

≤ ιS(x) + ιran(B++NS)(x
∗ + B∗x) + 1

4

〈
B∗x + x∗, Φ(B++NS)(B

∗x + x∗)
〉

= F(B+NS )(x, x∗) (by Proposition 7.2.15), ∀(x, x∗) ∈ Rn × Rn.

By Fact 7.4.1, F(B+NS) = (FB�2FNS
). �

Fact 7.4.3 Let A,B : Rn → Rn be linear and monotone. Then

F(A+B) = FA�2FB .

Proof. See [4, Corollary 5.7]. �

Fact 7.4.4 Let S1, S2 be linear subspaces of Rn. Then

F(NS1
+NS2

) = FNS1
�2FNS2

.
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Proof. See [8, Example 4.4]. �

Fact 7.4.5 Let S1, S2 be linear subspaces of Rn. Then NS1 +NS2 = NS1∩S2 .

Proof. Clearly, dom(NS1 + NS2) = S1 ∩ S2 = dom NS1∩S2 . Let x ∈ S1 ∩ S2.

By Fact 7.1.21,

(NS1 + NS2)(x) = (S1)
⊥ + (S1)

⊥ = (S1 ∩ S2)
⊥ (by [27, Exercises 3.17])

= NS1∩S2(x).

�

Proposition 7.4.6 Let B1, B2 : Rn → Rn be linear and monotone, and

S1, S2 be linear subspaces of Rn such that A1 = B1 + NS1 , A2 = B2 + NS2 .

Then F(A1+A2) = FA1�2FA2 .

Proof. Let (x, x∗) ∈ Rn × Rn. Then we have

(FNA1
�2FNA2

)(x, x∗)

=
(
F(B1+NS1

)�2F(B2+NS2
)

)
(x, x∗)

= inf
y∗+z∗=x∗

{
F(B1+NS1

)(x, y∗) + F(B2+NS2
)(x, z∗)

}

= inf
y∗+z∗=x∗

{
inf

y∗
1+y∗

2=y∗

{
FB1(x, y∗1) + FNS1

(x, y∗2)
}

(by Lemma 7.4.2)

+ inf
z∗1+z∗2=z∗

{
FB2(x, z∗1) + FNS2

(x, z∗2)
}}

(by Lemma 7.4.2)

= inf
y∗
1+y∗

2+z∗1+z∗2=x∗

{
FB1(x, y∗1) + FNS1

(x, y∗2) + FB2(x, z∗1) + FNS2
(x, z∗2)

}
.
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Thus

(FNA1
�2FNA2

)(x, x∗)

= inf
u∗+v∗=x∗

{
inf

u∗
1+u∗

2=u∗

{
FB1(x, u∗

1) + FB2(x, u∗
2)

}

+ inf
v∗1+v∗2=v∗

{
FNS1

(x, v∗1) + FNS2
(x, v∗2)

}}

(by Fact 7.4.3 and Fact 7.4.4)

= inf
u∗+v∗=x∗

{
F(B1+B2)(x, u∗) + F(NS1

+NS2
)(x, v∗)

}

= inf
u∗+v∗=x∗

{
F(B1+B2)(x, u∗) + FNS1∩S2

(x, v∗)
}

(by Fact 7.4.5)

= F(B1+B2+NS1∩S2
)(x, x∗) (by Lemma 7.4.2)

= F(B1+B2+NS1
+NS2

)(x, x∗) (by Fact 7.4.5)

= F(A1+A2)(x, x∗).

�

Corollary 7.4.7 Let A,B : Rn ⇉ Rn be maximal monotone such that gra A

and gra B are linear subspaces. Then F(A+B) = FA�2FB .

Proof. By Corollary 7.1.31, there exist linear and monotone operators

A1, B1 : Rn → Rn such that A = A1 + Ndom A and B = B1 + Ndom B .

Since dom A and dom B are subspaces of Rn, by Proposition 7.4.6,

F(A+B) = FA�2FB .

�
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Remark 7.4.8 Corollary 7.4.7 generalizes the result of Bauschke, Borwein

and Wang in [4].
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Chapter 8

Future work

Our future work is the following

• Simplify some of earlier technic proofs.

• Extend main results to a Hilbert space and a possibly (reflexive) Ba-

nach space.

• Since Asplund’s decomposition of monotone operators is based on

Zorn’s Lemma, it would be very interesting to find a constructive proof.
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