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Abstract

Medical image analysis is a ubiquitous and essential part of modem health care. A

crucial first step to this is segmentation, which is often complicated by many factors

including subject diversity, pathology, noise corruption, and poor image resolution.

Traditionally, manual tracing by experts was done. While considered accurate, this

process is time consuming and tedious, especially when performed slice-by-slice on

three-dimensional (3D) images over large datasets or on two-dimensional (2D) but

topologically complicated images such as a retinography. On the other hand, fully-

automated methods are typically faster, but work best with data-dependent, carefully

tuned parameters and still require user validation and refinement.

This thesis contributes to the field of medical image segmentation by proposing a

highly-automated, interactive approach that effectively merges user knowledge and

efficient computing. To this end, our work focuses on graph-based methods and offer

globally optimal solutions. First, we present a novel method for 3D segmentation based

on a 3D Livewire approach. This approach is an extension of the 2D Livewire

framework, and this method is capable of handling objects with large protrusions,

concavities, branching, and complex arbitrary topologies. Second, we propose a method

for efficiently segmenting 2D vascular networks, called ‘Live-Vessel’. Live-Vessel

simultaneously extracts vessel centrelines and boundary points, and globally optimizes

over both spatial variables and vessel radius. Both of our proposed methods are validated

on synthetic data, real medical data, and are shown to be highly reproducible, accurate,

11



and efficient. Also, they were shown to be resilient to high amounts of noise and

insensitive to internal parameterization.
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Chapter 1

Introduction and
Background

Today, medical imaging is ubiquitous and essential for medical professionals in patient

diagnosis, treatment planning, and computer-aided surgery. Since most imaging

techniques are non-invasive, the study of anatomical structure and disease progression in

vivo is possible. Some examples of three-dimensional (3D) medical imaging are

computer tomography (CT) to detect calcified tissue, magnetic resonance imaging (MRI)

for imaging soft tissue, and magnetic resonance angiography (MRA) for capturing

vasculature. Two-dimensional (2D) medical imaging includes X-ray (what CT is based

on), and retinography which captures the blood vessels in the eye.
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1.1 Problem Statement and Motivation

In almost all medical image applications, segmentation is a vital precursor step.

Image segmentation in the broadest sense is the division and classification of an image

into areas or regions of interest. However, unlike mainstream multimedia graphics,

medical imaging has relatively poor image quality due to low resolution and high noise,

which poses problems in designing effective segmentation algorithms. Also, since

medical imaging is often used to study disease across many patients, biological diversity

and pathology hinders algorithm robustness and accuracy. Furthermore, segmentation of

3D objects over large datasets raises design challenges to algorithm extensibility and

computational speed. These problems have fuelled interest in finding alternatives to the

predominant segmentation choices today: the slow but accurate manual tracing approach

and the usually faster but inflexible fully-automated approaches.

The impact of developing successful segmentation algorithms is extremely large;

thus much research in medical image processing is focused in this area. An obvious

motivation is that a region of interest (ROT) can be visualized more clearly after

segmentation than with the image background. Also, in 3D, embedded objects can only

be visualized as a whole after segmentation, rather than viewed slice-by-slice.

Segmentation is also necessary for volume and shape analysis in establishing statistical

norms and disease research, for instance, in Parkinson’s disease [1] and Alzheimer’s

disease [2] research, both of which are done on 3D data. Vessel segmentation from

medical imaging is also important in studies of brain tumour vasculature [3], intracranial

aneurysms [4], and diagnoses and research of diabetes and hypertension [5][6].
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Moreover, both rigid body registration and deformable registration techniques benefit

from segmentation, in localizing the region of interest to reduce the high computation

complexity as well as increasing the accuracy of registration [7].

1.2 Overview of Image Segmentation Approaches

Medical image segmentation techniques are extremely varied. This section

focuses on the benefits and drawbacks of manual, automatic, and semi-automatic

techniques.

1.2.1 Manual Segmentation

Manual segmentation is the technique that requires the user to specify each image

unit (pixel or voxel) as foreground or background. This is typically done using a mouse

or a graphics tablet. The actual delineation process varies from manually ‘painting’ each

pixel in the object of interest to tracing the segmentation contour around the object by an

‘expert’ — a user familiar to the object being segmented. Since manual segmentation is

often considered accurate, it can be used to ‘train’ the parameters of automatic

segmentation techniques (Section 1.2.2). However, while manual segmentation results are

often used as the ‘gold standard’ for benchmarking other techniques’ accuracy, they still

suffer from inter and intra-subject variability [8] and user fatigue [9]. Also, for large

volumes and large patient datasets, manual segmentation is highly tedious and time

consuming because careful delineation is required for each 2D slice within a volume.

Moreover, manually extracted contours viewed from an orthogonal direction typically

appear jagged because boundary smoothness is not enforced between slices. Lastly,
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oftentimes a user may not be able to see structural features due to low image quality or

poor computer displays.

1.2.2 Fully-automated Segmentation Techniques

Fully-automated segmentation techniques, on the other side of the segmentation

methods spectrum, offer faster segmentation task times and eliminate inter-operator

variability. However, they work best when their parameters are carefully tuned for

specific image properties and anatomy, which remains a challenge, and still require user

validation and refinement. An additional complication factor for these approaches is that

anatomical structures are typically affected by significant variations due to subject

diversity and pathology which reduces the segmentation accuracy, robustness, and

consistency between volumes. Under these conditions, an additional design difficulty is

locating and identifying the object(s) of interest without user guidance. Additional

literature review pertaining to automatic 3D segmentation and vessel segmentation are

presented in Section 2.1 and Section 3.1 respectively.

One of the most basic forms of segmentation is global or adaptive thresholding,

which assigns a binary value to each pixel on the image or sub-image, depending on

whether the pixel’s intensity is above/below a threshold value [10]. While simple and

effective on certain imaging modalities (i.e. segmenting bone from CT), this method does

not enforce tissue connectivity and performs poorly noisy environments.

Another segmentation group called region growing uses image intensity

information and enforces connectivity of segmented pixels. This method is seeded as a

single point, and a region propagates from this point until stopping conditions are met
15



based on image intensity change or statistical properties of the image [11]. A drawback of

this property is its tendency to ‘leak’ outside the region of interest since it is not as robust

to noise as more sophisticated techniques such as deformable models (explained later).

Similar to region growing are watershed techniques which view a 2D image in 3D, with

the third dimension being image intensity [101. Regions with low pixel intensity are

‘flooded’ and as basins begin to meet at higher intensity levels, ‘dams’ are constructed,

which translates into boundary paths between regions. This method suffers from the

same leakage problem as region growing.

The deformable models family of segmentation techniques is much more robust

than global image operators such as in the above. The goal of these techniques is to

evolve a closed contour to minimize its energy function, as defined by external forces

derived from image properties such as image intensity and internal forces such as contour

smoothness [121. The advantages to deformable models are that for any particular

contour, pixel connectivity is ensured, and an object’s boundaries can be defined even if

there is not enough gradient information in the region. However, they tend to settle into

local minima [12], are generally quite computational, are unpredictable during contour

evolution, and may not produce accurate results without user initialization or post

correction. The two main classes in this family are explicit models which evolve

explicitly defined contours [12][13][14] and implicit curves[15][16][17]. The main

difference is that while explicit models are based on parametric formulations during

deformation and less computational, implicit models represent the contours as a level set

of higher-dimensional scalar function and can handle topological changes to the object.

16



1.2.3 Semi-automated Interactive Techniques

Due to the above-mentioned difficulties with both manual and fully automated

segmentation techniques, semi-automated methods have drawn wide interest as a way to

facilitate computer-based segmentation of 3D anatomical structures using minimal human

interaction. Interaction in image segmentation typically involves parameter selection,

menu operation, or graphical input. Interactive segmentation types, similar to

segmentation techniques in general, are extremely varied; for in-depth surveys of existing

techniques, we refer readers to [9] [18]. Also, additional literature reviews specifically

pertaining to 3D interactive segmentation and semi-automated vessel segmentation are

presented in Section 2.1 and Section 3.1 respectively.

Tweaking parameter values, the user is given rapid feedback on the segmentation

result, which is derived from a largely ‘black box’ algorithm in the tool’s backend.

Example parameter values include weighting for a deformable model [19], threshold

parameters [20], and number of processing iterations [20]. This interaction scheme is

simple to implement, but oftentimes the user has to have a passing knowledge of the

computation algorithm and providing intuitive interaction is a design challenge [9].

However, if real-time feedback is achieved, algorithm understanding becomes less of an

issue, as the user can learn through experience.

Menu-based techniques place the largest emphasis on the computational

algorithm. The user is guided through the segmentation process by providing descriptive

instructions regarding the object’s properties using buttons and forms but otherwise does

not have direct control over the segmentation contour or parameterization. Numerous
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methods use this scheme to allow users to accept/reject automatically computed

segmentation [211, or adopt this as part of the overall interaction task [221. Other methods

use menus in a flowchart manner to let users narrow down the ROl’s topological

properties [23] or to let users choose templates [24]. While results tend to be more

reproducible and efficient, accuracy is not guaranteed and if the menu system is not able

describe the object exactly, program robustness suffers.

Lastly, graphical input techniques require the user to specify seedpoints or

manipulate artificial objects on top of the image itself, which bootstraps the computation

algorithm. With direct user control over segmentation regions, robustness is maximized.

This interaction scheme tends to be the most intuitive, but its design challenges are to

require only minimal interaction and to minimize user-input variability. There are 3 main

types of interactivity. The first is initiation of a deformable model [12][25] and

graphically specifying regions for the model to favour/avoid in real-time [13][14]. The

second type is specification of background and foreground seeds for computation of a

quick, but automatically determined segmentation [22][23]. Lastly, the third type is

specification of seedpoints along the contour itself, whether it is the object edge [261 or a

tubular structure’s medial path [27]. The focus of this thesis is this third type, and we

explore the graph theory optimal path finding involved in the next section.

1.3 Graph-Based Segmentation

Images are raster images, meaning that they are represented by pixels and voxels,

each represented by an intensity value (greyscale or RGB). While pixels and voxels are

not necessarily squares and cubes, they are tiled as an array and can be represented as a
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graph or matrix. A graph is a collection of nodes and the connections that each node has

with other nodes. Since segmentation contours are essentially paths along the graph and

delineates a sub-graph (the object or region of interest), graph-theory and graph-based

approaches are useful and intuitive methods. While there are numerous graph-based

segmentation approaches such as region growing [11] or Graph-Cuts based methods

[22] [28] [291, we focus on optimal pathfinding approaches.

1.3.1 Dynamic Programming

Dynamic programming [30] is a method of solving problems which have

incremental, optimal substructure on a graph, and applies to many fields including

mathematics, computer science, and economics. Using dynamic programming, the

globally optimal path on a graph between arbitrary nodes p to q is found by recursively

breaking the problem into sub-problems and finding the optimal path for these simpler

cases. In the first step, the lowest cost path to q from all adjacent nodes is determined.

However, while the local path costs from these nodes to q are known, this algorithm is

recursively applied to each node that is connected to q to find the globally optimal path

and associated cumulative cost. The result of this recursion is that not only is the globally

optimal path from p to q computed, but the globally optimal paths from p to all nodes

visited during recursion are found as well.

An example of solving a sub-problem is illustrated in Figure 1, where the globally

optimal (lowest cost) path from end node p to nodes 1, 2, and 3 were found in earlier

iterations to have costs 8, 5, and 6 respectively. Since the path segment from node 1 to q
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exhibits the lowest total cost (8+1), this segment becomes part of the globally optimal

path.

Figure 1 Although the path from Node I to the end node q has the highest optimal cost compared to
Nodes 2 and 3, it has the lowest cost to the starting node; therefore, the optimal path from the start

nodep to q passes through node 1 instead.

1.3.2 Dijkstra’s Algorithm

Dijkstra’s algorithm [31] is a graph search algorithm that uses the concepts of

dynamic programming to find the globally optimal (lowest cumulative path cost) path

between a node and every other node on the graph. It is assumed that each node has an

associated local cost and/or a path cost between it and each of its neighbours. However,

its main difference to traditional dynamic programming is that it uses iteration rather than

recursion. In summary, the algorithm is outlined as follows and illustrated in Figure 2:

1. Create a cumulative cost list, visited list, and a node queue list. These lists’

elements are initialized as co, 0, and 0 respectively. The starting node has a

cumulative cost of 0, is set to ‘visited’, and is placed on the node queue.

I 8

20



2. The node in the queue with the smallest cumulative cost is set to ‘visited’ and

processed. For each of this node’s unvisited neighbours, the cumulative cost is

calculated based on this new path. If this cost is smaller than the previously

calculated cost, it is updated in the list. If this neighbour node is not on the node

queue, it is inserted into the queue.

3. The node queue is resorted according to each node’s cumulative cost.

4. Steps 2 and 3 are repeated until all nodes are processed.

2H21H2H 2W

___ ___

II
5 4 1 3 I= 4 4

1

0 1 4 4
1=+5 4 6

54 3 5 4 6 3 5 4 6 3

Figure 2. In the graph search of Dijkstra’s algorithm, the cumulative costs of neighboring nodes
(dotted squares) of the ‘unvisited’ node with lowest cumulative cost (bold square) are updated. Costs

of ‘visited’ nodes (solid black squares) are no longer updated.

Using the above graph search algorithm, the final cumulative cost list is a data

structure that stores both the globally optimal cumulative cost and the globally optimal

path from a node to all nodes on the graph. The exact path from a starting node to a

destination node is determined backwards. Starting at the destination node, the ‘next’

node along the path is defined as the neighbour with the lowest cumulative cost. This

process is repeated until the starting node is reached. Figure 3 illustrates this process.
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Figure 3. In iteratively determining the optimal path from a node with cumulative cost of 32, the next
node on the path is always the neighboring node with the lowest cumulative cost until the seedpoint

(cumulative cost of 0) is reached.

A similar method is the Fast March method [32]. This is based on Dikjstra’s

efficient one-pass algorithm (each node is visited at most only once), and is used to solve

problems in continuous space because of its ability to interpolate between nodes.

However, for discrete path-minimizing problems in a discrete space, Dijkstra’ s algorithm

provides a more direct solution than Fast March.

1.4 The Livewire Formulation

Since segmentation contours are assumed to be continuous along the outside of

the region of interest, graph-based techniques such as Dijkstra’s algorithm can be easily

applied. The Livewire framework [26] incorporates Dikj stra’ s algorithm and interactivity

for real-time user-guided segmentation. Here, path optimization is based on edge

detection measures, and real-time contour feedback is provided by taking advantage of

the computationally inexpensive path determination step of Dijkstra’ s algorithm.
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1.4.1 Contour Optimization Process

Ideal segmentation contours lie along the boundaries of objects, which typically

exhibit high gradient. Therefore, edge detection is used to assign low local cost to edge

pixels. Initially, only Laplacian of Gaussian (LoG) edge detection [10] was used, but later

implementations used multiple algorithms including Canny edge detection [33] and

image gradient for higher algorithm robustness. Given that q = (x, y) is a pixel on the

image S and p = (x’, y’) is a neighbouring pixel of q, the Laplacian of Gaussian (LoG)

cost CLOG (q) is defined as

CLOG (q) = 1— (LOGkernel (x, y) *5) I(x,y)q

where S is convoluted with the LoG kernel

LOGkernel(X,Y) =
X+Y exp*

The gradient magnitude cost C0 (q) is defined as

C (q)=1—
1 /ds(x,y)2 dS(x,y)2

G max(G)’. dx ) L dy ,) =

(x,y) q

where max(G) denotes the largest gradient magnitude found in the image. Since object

edges are smooth, the gradient direction cost CGD (p, q) favours pixels that show small

differences in the direction of the gradient. This is defined as
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CGD (p, q) --- arccos[
S () • 5’ (q)]

G(p)G(p)

where G(p) and G(q) denote the gradient magnitude (not gradient cost) of the image at

pixel p and q respectively. Each of these filters has unique strengths [10], and their

aggregation results in a more robust algorithm. For instance, the LoG cost is less sensitive

to image noise due to its convolution with a Gaussian kernel, while the gradient

magnitude cost is more sensitive in detecting weak structural edges. Lastly, a scalar cost

Cd (p, q) that proportional to Euclidean distance J(x — x’)2 + (y
—

y’)2 is added in

between each node and its neighbours in order for the optimization to favour physically

shorter and therefore smoother contours.

1.4.2 Interactive Seeding

(a) (b) (c)

Figure 4. Livewire Interactive seeding. (a) Original image. (b) with a set seedpoint (circle), proposed
contours from the seedpoint to the user’s cursor is displayed in real time. (c) A proposed contour is

selected (green), and the process in (b) repeats.

In Livewire, the user specifies sparse seedpoints along an object boundary and the

object is segmented in this piecewise fashion. When the user specifies a seedpoint with

the mouse, the 2D version of Dijkstra’s algorithm using the above optimization costs is
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applied, resulting in a ‘cost map’ that contains the minimal cost from the starting node

(pixel) to all pixels on the image. Since the optimal paths from the starting pixel to all

other pixels can be quickly computed, the optimal contour from the starting node to the

mouse cursor location is displayed as overlay above the image. This contour is

continuously updated as the cursor moves and appears to ‘snap’ against the object’s

boundaries and other high-gradient regions. With this real-time feedback, users can retain

full control over how the contour looks without sacrificing efficiency to manually trace

the contour. Figure 4 illustrates this process.

If the temporary contour looks satisfactory, the contour segment is locked by

selecting the current pixel, and this process is repeated until the entire object is

segmented. For clearly visible objects, only sparse seedpoints are required, thus gaining

efficiency. However, for images of poorer quality, more shorter-spaced seedpoints are

needed in these corrupt image areas in order to retain algorithm accuracy.

To improve the efficiency of Livewire’s graph search step, numerous

modifications such as LiveLane [34] and Livewire on-the-fly [35][36], which limit the

algorithm’s graph search space, were proposed. While improvements in technology now

allow Livewire to operate in real-time without these modifications, automated Livewire

methods that emulate user input over multiple image slices in a 3D volume still benefit

from an abbreviated graph search implementation [37]. Figure 5 depicts how a 2D

Livewire contour is represented in a 3D volume.
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Figure 5. 2D Livewire contour on a caudate nucleus mask. (a) 2D contour (gray) segmenting a slice
of the caudate mask. (b) This same contour (black) is shown in the context of the entire object.
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Chapter 2

3D Livewire for Arbitrarily
Complex Topologies

This chapter first presents a review for existing 3D interactive segmentation

techniques (Section 2.1). This is followed by the details of the extension from 2D

Livewire to 3D (Section 2.2). This technique’s performance is then validated on synthetic

data, real medical volumes, and in robustness tests (Section 2.3).

2.1 Interactive 3D Segmentation

The incorporation of interaction in segmentation has been proposed for a large

variety of methodology families. One such family that support or can be extended to 3D

or user interaction include parametric, explicit [13][12][38][39][40][41][14], or implicit

(e.g. level-set based) [15][16][17] energy minimizing deformable models. However, these

models are prone to convergence to local minima. Active contours that converge to a
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global minima have been developed [42][43]; however, these rely on a coarser

discretization of the search space, succeeded by graph-theoretic optimization procedures

that are less amenable to user interaction. User-interaction in level-set approaches [44] is

not straight-forward because the contours in between the constraint points can be

unpredictable and many task attempts may be needed to find an acceptable contour.

Further, level-set approaches typically require more computations than other deformable

models since contours on 2D images (1D manifolds) and surfaces in 3D images (2D

manifolds) are represented using a higher dimensional (signed distance transform

images), thus increasing the complexity of the problem. Also, employing graphics

processing units (GPU’s) to perform level-set calculations [45] may be needed to achieve

interactivity [46], especially for 3D images. Other recent active contour methods that

incorporate user intervention include [47][25]. In Yushkevich et al’s approach,

implemented into the tool called ITK-SNAP [47], user-interaction is used for initializing

an evolving 3D active contour, for setting up parameters, as well as for manual post-

processing. However, while the initialization is largely graphical, user knowledge of this

method’s computational part is required for selecting cost parameters, and using

imprecise initialization parameters can cause the contour to deviate. Furthermore, the user

has no steering control during the curve evolution. In Mclnerney et al’s ‘Sketch

Initialized Snakes’ [25], the user uses a graphical tablet to quickly initialize a 2D Snake,

which is then automatically optimized. However, this approach requires specialized input

hardware. Also, its computational efficiency, reproducibility, and tolerance to user error

were not reported.
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In addition, while interaction with 2D deformable models is straightforward,

incorporating intuitive user-guidance and real-time visualization for 3D deformable

surfaces or meshes remains a challenging human-computer interface problem. One

approach to circumvent this problem is to iterate an interactive 2D algorithm on each

slice in the 3D volume [48][49]. However, it is highly inefficient to constantly repeat this

task, and without correlating computations within adjacent slices, segmentation results

are often jagged (similar to manually delineated ones) when viewed from other

orientations. By only requiring sparse user-guided contours or points to dramatically

reduce interaction time, there exists many automatic surface reconstruction methods

[50][51], some of which can even generate objects with arbitrary topologies [52][53][54].

However, their main drawback is that they do not consider image-based information;

rather, they draw point connectivity and object topology conclusions based on the

locations of the surface points alone. Also, their computation time is considerable and

does not allow for user intervention during the task should mistakes occur. Similarly,

Saboo et al’s ‘Geolnterp’ method uses sparsely interleaved manual segmentations in one

orientation to initialize a geodesic Snake [55]. However, the user-input is not actually

used as a hard constraint, and the Snake optimizes its shape without considering voxel

intensities.

An alternative to deformable models is the ‘Graph Cuts’ approach, originally

proposed by Boykov and Jolly [56] and further developed in [22]. Here, ‘cuts’, or

globally optimal segmentations, are computed using manually specified foreground and

background seeds (hard constraints) and boundary/region information (soft constraints).

Refinement of the ‘cut’ can be made using additional user-placed seedpoints. This
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method offers interaction simplicity especially in the 2D case; however, its main

drawback is that because the seedpoints lie in the region bodies and not on the

boundaries, results can be unpredictable along weak edges. Graph Cuts results will also

vary depending on the soft constraint weighting and choice of seeds. Similarly, Rother et

a!. proposed the ‘GrabCut’ method that performs an iterative Graph Cut algorithm that

decreases the amount of user interaction required [28]. Using the same interaction

scheme, Grady proposed a method, random walkers, where all pixels in an image are

assigned to each of the hard constraint seedpoints based on a probabilistic measure [29].

However, this method still shares the same limitations of the original ‘Graph Cuts’. Also,

3D visualization during the segmentation task remains a challenge with this interaction

scheme because user input is done in 2D but the segmentation task is not broken into 2D

modules.

In extending Livewire to 3D, several methods requiring only sparse 2D contours

were proposed, but they only consider image slices in one orientation. Souza et a!.

proposed a hybrid approach between Snakes and Livewire by projecting seedpoints from

a previous adjacent slice onto the current slice and then refining their locations [57].

Similarly, Schenk et a!. proposed an approach which takes sparsely spaced Livewire

contours and interpolates and optimizes the contours in between using minimal cost paths

[58]. Also, Malmberg et a!. [59] proposed a method to bridge sparsely separated Livewire

contours using haptic feedback and the image foresting transform [60]. However, special

equipment such as a haptic device and a stereo-capable monitor is required. Moreover,

image smoothness in orthogonal directions is not ensured, and medical images often

contain objects with complex 3D shapes (e.g. deep concavities, protrusions, non-spherical
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topologies, branching), which none of these parallel-slice approaches are able to

effectively handle.

An approach was put forth by Falcao et al. to extend 2D Livewire to 3D by

utilizing 2D contours on oblique slices to automatically mimic 2DLW on all slices in an

orthogonal direction [61]. However, considerable user supervision and knowledge

regarding the object’s exact topological features are required to break a complex object

down into ‘slabs’, which are groups of consecutive slices along the axis of automatic

computation where the sub-object exhibits constant topology. The restrictions on these

initial setup steps and on the selection of slices for 2DLW are critical to correctly

segment each slab properly. Moreover, the intersection of these 2D contours with each

slice in each slab generates seedpoints that need to be manually ordered in a clockwise or

counter-clockwise fashion before they can be fed into the automated Livewire process.

More recent 3D Livewire methods mitigate some of the above setup steps by using

orthogonal 2D Livewire contours instead of oblique contours [62][63]. In Lu et al.’s 3D

Livewire approach [62], seedpoint ordering is more automated than in [61], but it requires

the projection of a manually-supplied reference contour onto adjacent slices. In

Hamameh et al.’s approach [63], seedpoint ordering is automatically computed using an

algorithm based on turtle graphics [64] (part of Logo programming language) without

additional image-based or user-supplied information. However, while both of these

methods [62][63] do not require the complicated interaction steps of [61], these methods

fail to address the problem of segmenting objects of arbitrary topology. Though these

semi-automated methods presented reasonable solutions for certain segmentation tasks,

their limitations highlight the need for a robust 3D segmentation approach that can
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natively handle complex shapes of arbitrary topology, while at the same time still

offering the advantages of user control, efficiency, accuracy, intuitive operation, and

minimal user supervision.

2.2 Extending 2D Livewire to 3D

The user begins the segmentation process by performing sparsely separated 2D

Livewire (Section 1.4) segmentations on slices in any two orthogonal orientations. These

2D contours are then used to determine the Livewire seedpoints to be used in the third

orthogonal orientation by intersecting these contours and the unseen orthogonal slices

(Section 2.2.1). These intersection points are pre-processed to increase robustness

(Section 2.2.3) and are then used to create a ‘turtle map’ which consists of orthogonal line

segments (Section 2.2.2). Our ‘turtle’ point ordering algorithm is then applied to this map

such that the resulting ordered points mimic the sequence of points a user would select

during a Livewire segmentation, but now in a fully automated manner on the unseen

slices. Since these new seed points are a subset of the contours previously approved by

the user, they are therefore a suitable choice of seedpoints for guiding the Livewire

segmentation. In this scheme, user-generated contours that are circumscribed inside

another contour are automatically flagged, and such flags are used to split and merge

sections of the turtle map (Section 2.2.5). By doing so, multiple closed contours and

objects with non-spherical topologies such as, for example, a vertebra (which has a

toroidal topology due to the spinal canal) can be processed correctly. Figure 6 and

Algorithm 1 summarize this approach.
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Algorithm 1 Determining the segmentation for unvisited slice in xz given M

input contours { } in yz and N input contours { } in xy. Note that it is a

trivial change to process unseen slices in xy and yz.

Require: { } and { } on slices and Xm and z,, represent

arbitrary slice indices of x and z respectively.
Ensure: Closed contours { C } on slice

TurtleMap = 0. Turtlemap is the 2D area on which turtle tracks are placed.

TurtleMap ‘=Algorithm2({ }, building horizontal tracks of TurtleMap.

TurtleMap + Algorithm2({ },S0), building vertical tracks of TurtleMap.

P. (x, z) = TurtleMap(x, z), ordering seedpoints using Turtle algorithm (Section 2.2.2).

A = number of separate contours on S0
,

where A = max(a).

for each P, e(1..A) do

= ], using abbreviated graph search (Section 2.2.4).

end for

{ c yoz } = { }, all contours with y = are found.

(c)

(0 (g) (h)

Figure 6. Overall steps of this algorithm, shown on a binary image for clarity. (a)-(b) Seedpoints
(grey squares) are selected in user-guided Livewire contours on orthogonal slices. User-approved

segments are in green, and red contours represent the proposed, ‘live’ segment during the Livewire
task (crosshair denotes cursor location). (c) 3D plot of 11 user-guided contours. (d) Ordering

automatically generated seedpoints (gray squares) on a slice in the third orthogonal orientation using
our turtle-based algorithm (Section 2.2.2) results in the contour in (e). (1)-(g) 3D plots of

automatically generated contours at mid-task and at task completion (125 contours), respectively. (h)
Surface rendering of the segmentation result.
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2.2.1 Automated Seeding

To perform an automatic Livewire segmentation, seedpoints need to be

determined. These intersection points are simply the intersection between the 2D

Livewire contours and the unvisited orthogonal slice that this automatic step is taking

place on. For example, if 2D Livewire is used to create two contours C0 and C0 on

arbitrary yz and xy slices respectively, then given a slice in the xz orientation at

index Yo, the intersection points
‘xyOz

between and and between

and can be calculated as

Ix,yo,z Cx0yz fl = fl

Similarly, the following equations define the intersection points I and J on slice S if

different orientation combinations are chosen:

Ix,y,zo := fl = flS0

Ixa,y,z := CX), flSXOYZ <= C flS02

Figure 7 illustrates this determination mechanism.
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Figure 7. Orthogonal contours in (a) (red and blue) intersect with a slice in the third orientation
(green) in 10 different locations, as shown in (b). These intersections on the green slice in (c) become

seedpoints on a turtle map (Section 2.2.2).

2.2.2 Automatic Seedpoint Ordering

In order to mimic a user-guided 2D Livewire segmentation task in an automatic

fashion, the seedpoints, I and J, need to be ordered either clockwise or counter-clockwise

in the 2D space of slice S. To accomplish this, seedpoints on the 2D space which belong

to the same user-guided Livewire contour subset are paired and connected by lines

(tracks). Since there are seedpoint contributions from two orthogonal orientations, these

tracks, will themselves be orthogonal on slice S. Algorithm 1 summarizes this step and

Figure 8 illustrates the final result, called a ‘turtle map’.

(a) (b) (c)
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11 2 1 2 1 1 2 7

1_ = f

Figure 8. Example seedpoint map showing outer contour seedpoints (red), inner contour seedpoints
(green with ‘i’ suffix), and a disjoint object’s seedpoints (blue). For each contour, the turtle object

starts at the first point and follows the tracks (in grey) according to its rules in Section 2.2.2, visiting
other seedpoints in the order shown. Track values of ‘2’ denote track intersections.

To traverse the turtle map and determine the correct ordering of seedpoints, an

algorithm based on turtle graphics [64] is employed. Turtle graphics is based on the Logo

programming language, and its main idea surrounds a directional turtle object that can

only move forward and change directions on a graph-based system. Here, the turtle object

begins at an arbitrary seedpoint and moves forward along the orthogonal tracks, turning

to its left if it encounters a track intersection and reversing direction when it encounters

another seedpoint. The sequence in which the seedpoints are visited determines their

order (Figure 8). This process is repeated if there are multiple closed contours found on

the same unseen slice, and this method keeps track of which seedpoints have been visited

so that they are not encountered again.

While turtle map tracks usually intersect in a ‘+‘ like shape (Figure 9a),

oftentimes turtle maps can exhibit ‘T’ junctions (Figure 9b) and ‘L’ junctions (Figure 9c),
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as determined by how the user-guided contours intersect with this unseen slice. Here, our

proposed turtle algorithm detects these situations and resolves them correctly by altering

the turtle’s movement rules and ensuring these seedpoints are not duplicated in the

resulting seedpoint list.

00

_____

[Ir 1I1F1

(a) (b) (c)

Figure 9. Possible turtle map intersections resulting from seedpoint locations, denoted by 1, include
(a) the basic ‘+‘ junction, (b) the ‘T’ junction where a seedpoint overlaps a track, and (c) the ‘L’

junction where two seedpoints overlap. Pixels with values ‘1’ and ‘2’ represent non-seedpoint tracks
and track intersections respectively.

22.3 Intersection Point Pruning

Ideally, a 2D contour would intersect with an unvisited orthogonal slice at an even

number of locations, described by Hamameh et al. as ‘entering and exiting’ the object

[63]. However, objects with cusps can cause singular intersection points to exist as well.

Also, while a user-guided contour will always be orthogonal to the slice in question,

contiguous colinear contour pixels may intersect with this slice [62]. In the extreme

example of a cube, a user-guided contour (a square) may be orthogonal to an unseen

slice, but their intersection may comprise the entire square side of the contour (Figure

1 Oa). To combat this, our proposed method assumes intersection points appear in

cluster(s) or occupy consecutive pixel locations such as in Figure 10. Since the

intersection points found between each user-guided Livewire contour and the orthogonal

unvisited slice will always be a horizontal or vertical line on the slice, these colinear
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points are first sorted in ascending pixel location order. Next, by traversing these points,

cluster boundaries are easily found by determining the non-consecutive pixel location

values. Knowing where clusters start and end allows us to prune the unnecessary points in

between. An exception to the rule is when only one cluster is found, which corresponds to

a cusp (singular point). In this case, the start and end of the cluster are kept and the

middle points are discarded. With the extraneous contiguous points removed, the desired

case of having an even number of intersection points is achieved. This allows for each

automatically processed slice to be independent of all other parallel slices and to not

require a reference frame [62]. Therefore, shape and topology changes (e.g. branches,

cusps, saddle points) not observed in adjacent slices can now be seamlessly detected

without further user supervision.

(b)

Figure 10. Contiguous intersection points. (a) User-guided Livewire contours (black voxels) will
intersect with the cube’s end slice (gray) in multiple contiguous locations. (b) A contour intersecting

with an orthogonal image slice (gray) creates two clusters of contiguous points (black). White arrows
denote which pixels are kept after the pruning algorithm (Section 2.2.3).

2.2.4 Efficient Graph Search for Pre-determined Seedpoints

Since the seedpoints determined from orthogonal contours are pre-determined, no

user-interaction is required and thus, an exhaustive 2D search using Dijkstra’s algorithm

(a)

II 1 11 II I I Ii I II l.
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for each seedpoint is redundant. Our solution is similar to [35], as our modified graph

search algorithm terminates after the next target point in the ordered list of seedpoints has

been reached. The computational savings originate from the order in which the graph

search propagation is done: the propagation algorithm selects the unprocessed pixel with

the lowest accumulative cost to be analyzed next [26]. For example, when the graph

search propagates from seedpoint q to point r, the accumulative cost of r is Cr. At this

point, all arbitrary pixels p with accumulative cost Ci,, < Cr would have been found

already; thus the path from r back to q is guaranteed to be globally optimal. Figure 11

illustrates the impact of this technique. The graph search algorithm favours propagation

along high-gradient edges and will largely ignore homogenous regions because

seedpoints tend to be on or very close to gradient edges. Another advantage is that the

computational savings now depend on the distance between seedpoints and not image

resolution.

(a) (b) (c) (d)

Figure 11. Graph search required per pre-determined seedpoint. (a) Vertebra. (b) Full cost map
needed per seedpoint (circled). Darker areas indicate lower cost. (c)-(d) Abbreviated graph search

algorithm terminates when the next pre-determined seedpoint is reached.

2.2.5 Handling Arbitrary Topology

Anatomical structures often exhibit non-spherical topologies, concavities, and

protrusions. For convex objects (e.g. sphere), it is guaranteed that there will only be one
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or two clusters of seedpoints per input contour in unseen slices; thus, a turtle map can be

easily generated using the technique described in our previously proposed framework

[63]. However, for objects with concavities or protrusions (e.g. U-shaped tube), there

may be situations where a slice captures multiple objects and its turtle map will show

multiple disjoint groups accordingly (Figure 8). Since our current approach processes

each group independently, multiple objects can be segmented concurrently, such as the

left and right ventricles (Figure 14a). More complicated still are objects with non-

spherical topology (e.g. torus), which none of the previous Livewire methods can handle.

In order to correctly segment these objects, our method first identifies contours that are

circumscribed within another, using pairwise comparisons on all user-guided contours of

a given image slice. Let Ci and C2 represent two closed contours on the same slice. C1

and C2 are first converted to binary masks M (x, y) and M (x, y) respectively, where

pixels inside the contour have a value of 1 and 0 otherwise. If

M (x, y) fl M (x, y) = M (x, y)

then C1 is wholly situated inside C2, and if

M (x, y) fl M (x, y) M (x, y)

then C2 is wholly situated inside C1. This step is critical because these ‘inner’ contours

delineate pixels that do not encompass the object of interest, but rather a hole in the

object. Due to this, these contours and their derived seedpoints (Section 2.2.1) are flagged

as ‘negative’, whereas the contours and seedpoints that actually delineate the object are

flagged as ‘positive’. Both ‘positive’ and ‘negative’ intersection points are used on the
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turtle map; however, turtle tracks are only constructed between ‘positive’ seedpoints. In

contrast, ‘negative’ seedpoints in effect negate a section of an otherwise longer track line,

splitting the turtle map into two distinct parts. This process is illustrated in Figure 8,

where seedpoints 2i and 4i negate the otherwise longer turtle track between seedpoints 3

and 9. A central cavity results, which now correctly represents the toroidal object. This

process is outlined in Algorithm 2.

Algorithm 2 Constructs the horizontal tracks in TurtleMap that is used for ordering the

seedpoints found in Algorithm 1 for an unvisited slice For vertical tracks and if

orthogonal unvisited slices or are used, only trivial changes are required.

Require: An empty or incomplete TurtleMap array, G contours on slices

respectively. Xm represents arbitrary slice indices ofx.

Ensure: Construction of horizontal TurtleMap tracks.

for each e (1...G) do

=

Pairs” (z1 , z2) = ‘x,,yo,z pruning algorithm in Section 2.2.3 to determine B point pairs

for each Pairs” (1. ..B) do

z2 = Pairs” (z1 ,z2), extracting the z values from each pair

TurtleMap(xm, zj), TurtleMap(xm, z2) =

Let C be an arbitrary, closed, user-guided Livewire contour in the yz direction

if mask(C fl mask(C) = mask(C for any C then

TurtleMap(xm, z : z2) = TurtleMap(xm, Zj : z2) —

else
TurtleMap(xm, zi : z2) = TurtleMap(xm, Zj : Z2) + 1

end if
end for

end for

2.2.6 Implementation Details

This proposed framework was developed in MATLAB (the MathWorks Inc.,

Natick, MA.) and offers the standard concurrent orthogonal views of a volume as shown
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in Figure 12. As an overlay on top of the image data, user-guided contours are clearly

demarcated in all views, regardless of their orientation. One criticism of this type of 3D

Livewire extension [63] was that the slices used for user-guided contours had to be

carefully selected otherwise the segmentation will fail [62]. By displaying these contours

in this manner, our application gives users a clear idea of which areas have been

segmented and which areas exhibit more topological features. In our findings, these

feature-rich areas, if segmented correctly by the user, usually allow for higher accuracy.

Also, this software feature is useful for visually judging the accuracy of the delineation

result. Additionally, our user interface is able to display 3D plots of contours as well as a

surface rendering of the object of interest after the 3D Livewire procedure is completed.

In our tool, additional features such as point deletion and automatic contour

closing are available during the user-guided Livewire stage. Also, if the user selects a

seedpoint erroneously, the segmentation process can be reverted to an earlier state,

similar to the ‘undo’ command found in many common applications. While our technique

is flexible and robust, errors are bound to occur due to human error and poor image

quality. Our tool offers the undo operation described above, as well as the ability for

users to remove entire automatically generated contours for re-computing. From the

rendered result, users can quickly identify problematic areas, if any, and increase the

segmentation accuracy by providing additional user-guided contours in these areas and

re-running the 3D Livewire algorithm. For isolated refinement, users can also choose to

overwrite the automatically generated contour(s) using the 2D Livewire procedure.
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Figure 12. Screen-capture of the segmentation tool’s graphical user interface during a segmentation
task. Completed 2D contours are displayed in green for the three orthogonal views, providing

feedback on segmentation accuracy throughout the segmentation task. Yellow lines indicate the
current slice indices of the other two orientations.

2.3 Validation and Results

The proposed method was tested on both synthetic images (Section 2.3.1) and real

medical image data (Section 2.3.2) to demonstrate its capabilities. The application’s

performance during these tasks was quantified based on the three main recommended
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criteria for semi-automatic segmentation [9]. To report accuracy and reproducibility

measurements, Dice similarity (voxel agreement) CDice 2vol1,I(volA + VO1B) was used,

where CDICe is the Dice similarity coefficient. VOlsim is the sum of the voxels at the

intersection between trial A and trial B, and VOlA and VO1B represent the sum of the voxels

in trials A and B respectively. The Dice similarity coefficients were then averaged over all

trials. Since our 3D Livewire method is deterministic and produces identical results given

the same input contours, we measured reproducibility with different user-guided contours

and seedpoints as input because not all operators will choose the same slices nor will they

choose the same locations for seedpoints. The orientation of the 3D segmentation was

kept constant, but operators with different familiarity of Livewire to were used. The

untrained operators do not have prior understanding of topology and were trained for

approximately 10 minutes on the segmentation tool and the objects they had to segment.

Efficiency was calculated by comparing the time required for our technique to segment a

3D volume to the total time needed for performing 2D Livewire on each slice. Due to

poor image quality or user mistakes, contour errors may occur with 3D Livewire; thus,

the time it takes to correct such errors is included in the time measurements as well.

Finally, algorithm robustness to increasing levels of additive white Gaussian noise

(AWGN) as well as parameter sensitivity was also investigated in Section 2.3.3.

Synthetic data to validate our proposed method includes a mask of a left caudate

nucleus (elongated object), a torus (toroidal topology object), and a fork-shaped object

(branching object). We also demonstrate our method on real medical data such as the left

and right ventricles from magnetic resonance imaging (Tl-weighted MRI), a human
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vertebra (computer tomography (CT) from the Visible Human Project (VHP) [65]), and

both parts of the human pelvis (CT, also from VHP).

2.3.1 Synthetic Data Tests

(b)

Figure 13. Results of our proposed segmentation method on synthetic data. (a),(d),(g) Rendering of a
left caudate mask, torus, and fork object respectively. (b),(e),(h) 3D plot of user-guided contours

(red) and automatically generated contours (light blue). (c),(I),(i) Surface renderings of the
segmented synthetic examples above, using our proposed approach.

(e)

(g) (h) (i)
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For the caudate nucleus (Figure 1 3(a-c)), very few user-guided contours are

required to segment the body, and additional contours at the tail guarantees an accurate

delineation. The torus example (Figure 1 3(d-f)) highlights our technique’s ability to

segment objects with non-spherical topology. For this scenario, only 8 user-guided

Livewire contours are needed. If another orientation is chosen, only 6 user-guided

contours would be needed. For the fork-shaped object (Figure 13(g-i)), only 5 user-

guided Livewire contours were required to automatically generate 209 contours. The

segmentation shows a smooth transition at the branching site. Table 1 summarizes our

method’s accuracy and reproducibility rates, averaged over multiple trials. Figure 13

shows the efficiency of our method for each computing phase. Our results show that our

method is able to achieve these complex segmentation tasks in roughly 15% of the time it

takes to delineate all slices using 2D Livewire.

We found that the reproducibility rates for these images are high because the input

contours were computed using 2D Livewire, which has high reproducibility [26]. The

minor differences between each trial largely depend on the accuracy of the chosen

seedpoints, which varies by user. In terms of efficiency, total processing time naturally

increases for volumes with high shape complexity. As the number of user-guided

contours increases, so does the total amount of intersection points found on each unseen

slice and ultimately, computation time. However, this higher processing time is

counterbalanced by the fact that manual tracing of complex objects requires more user

attention and segmentation time for an accurate delineation. We found that scaling a

volume did not affect the number user-guided Livewire contours needed, as the same

amount of these contours can still create valid turtle maps for all slices.
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Table 1. Reproducibility and accuracy results of our proposed method, on both synthetic and real
medical image data. Each averaged over 4 trials with the corresponding standard deviation. For the

ventricles, vertebra, and pelvis examples, expert manual segmentations were not available.

Synthetic Data Reproducibility % Average Accuracy %

Left Caudate Mask 99.8 ± 0.2 98.7 ± 0.1

Torus 94.6±2.7 95.3± 1.1

Fork Object 99.7 ± 0.1 97.1 ± 0.7

Real Medical Data Reproducibility % Average Accuracy %

L+R Ventricles 92.4± 3.1

Vertebra 95.1±2.4

Pelvis (2 pieces) 98.1 ± 0.5

Table 2. Task time reduction (s), achieved by our proposed method compared to performing 2DLW
on each slice. Each step averaged over 4 trials. Standard deviation values between each set of trials
are included. (I) User interaction time with our tool. (II) Automatic processing time of our tool. (III)
Time required for manual corrections. (IV) Total task time of our tool. (V) Task time using 2DLW

on all slices. (VI) Fraction of time (%) required for our tool compared to 2DLW on all slices (IV)/(V).

Synthetic
(VI)

(I) User (II) Auto (III) Fix (IV) Total (V) 2DLW Fraction
Data (%)

245.8 ± 86.8 ± 332.5 ± 2197.5 ±
Caudate 0 14.9± 1.8

87.5 44.8 128.5 713.7

144.5± 162.8±
Torus 18.3 ± 3.9 0 778.8 ± 166 20.5 ± 3.5

56.6 59.2

Fork 146.5± 187.8± 2310.5±
41.3±3.4 0 8.2±1.3

Object 64.5 65.1 685.3

Medical
(VI)

(I) User (II) Auto (III) Fix (IV) Total (V) 2DLW Fraction
Data (%)

Left and
428.3± 75.8± 504± 3431.8±

0 14.5± 1.8Right
108.2 14.4 119.8 407.8

Ventricles
684.5 ± 162.5 ± 900.5 ± 3974.8 ±

Vertebra 53.5 ± 5.9 22.5 ± 2.7
209.3 89.6 221 599

Pelvis (2 1350.5 ± 467.3 ± 167.5 ± 1985.3 ± 6854.5
± 28.4 ± 5.3

pieces) 512.3 180.7 66.3 653.4 1469.3
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2.3.2 Real Medical Data

The first example presented here is a pair of ventricles segmented from an MRI

volume (Figure 14(a-c)). Here, both disjoint structures were segmented during the same

task, using a total of 24 input contours to automatically segment 105 slices

(approximately 200 contours). In order to accurately capture the tail regions, a higher

concentration of input contours was provided there. All object features were successfully

captured, including the separation. Next, a vertebra was extracted from the male CT scan

of the VHP [65] (Figure 14(d-f)). The human vertebra is toroidal, with pronounced

protrusions. Also, the volume contains multiple vertebrae, and parts of two vertebrae

often appear on the same slice. Here, our proposed method successfully extracted the

vertebra using 17 input contours to segment 88 slices. Lastly, the human pelvis (Figure

14(g-i)), also from the CT scan of the VHP, was segmented using 80 input contours to

segment 277 slices. For this example, due to the very thin bone characteristics at the

ilium, the minimal number of input contours to create correct turtle maps at this area is

difficult to achieve. This results in minor gaps in the segmentation, but these gaps were

easily fixed with our tool using 2D Livewire to overwrite these problematic slices. The

above examples were tested for reproducibility and efficiency over non-expert 2D

Livewire done on all slices (Table 1 and Table 2). Similar to the synthetic data

experiments, our proposed method is shown to be much more efficient than performing

2D Livewire on every slice in a real medical image and the segmentation is highly

reproducible when provided different input contours.
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Figure removed due to copyright
permission.

MRJ of brain from

A. Uthama, R. Abugharbieh, A.
Travoulsee, and M. McKeown,
Invariant SPHARM Shape
Descriptors for Complex Geometry
in MR Region of Interest Analysis,
IEEE EMBS (2007) 1322-1325.

(a)

Figure removed due to copyright
permission.

CT scan of vertebra from

M. Ackerman, “The visible human
project,” Proceedings of the IEEE
86, pp. 504—511, March 1998.

(d)

Figure removed due to copyright
permission.

CT scan of pelvis from

M. Ackerman, “The visible human
project,” Proceedings of the IEEE
86, pp. 504-511, March 1998.

(g)

Figure 14. Results of our proposed segmentation method on real 3D medical data. (a),(d),(g) Original
3D images of a human brain (T1-MRI), spine (CT), and pelvic region (CT) respectively. (b),(e),(h) 3D

plots of user-guided contours (red) and automatically generated contours (light blue). Twenty-four
(red) used to segment 200 (cyan), 17 to segment 88, and 80 to segment 277 respectively. (c),(t),(i)

Surface renderings of the segmented examples above, using our proposed method.

2.3.3 Analysis of Robustness and Parameter Sensitivity

Using consistent user-defmed seedpoints for the user-guided contours, the caudate

mask volume was subjected to incremental levels of AWGN and then segmented using

(b)

(e) (f)

(h) (i)
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our proposed method. Accuracy levels were then plotted against the peak signal to noise

ratio (PSNR) of the volume, defined as PSNR = 20 log10 max(Objectlntensity)Icrnoise

The segmentation results are shown in Figure 1 5a and accuracy results are shown in

Figure 1 5b. As expected, the accuracy level decreases as the increasing amount of noise

corrupts the image, but our method is able to recover much of the object even under high

amounts of noise.

Parameter selection was not a problem in obtaining accurate results, and our

implementation uses equal weighting for each term in our cost function (w(1..5) 1).

Nevertheless, we investigated the effect of parameter sensitivity on the synthetic

examples in Figure 13 to determine the change in accuracy when varying each weight

value. We found that varying each weight by as much as ±50% did not change the

accuracy by more than 3.1% in the test datasets.

100 —

__ 98

. 92

90

88

86 I 111111 I

inf 28.0 21.9 18.4 140 11.1 7.5 4.4 0.0

PS1NR

(b)

Figure 15. Our proposed method’s performance reflected in segmentation accuracy as AWGN is
progressively added. (a) Slices of a left caudate mask with increasing noise and PSNR levels of 1

dB,20.O dB,6.O dB, and 0 dB. (b) Accuracy level stays consistently high until very high noise levels
occur, obscuring the ability of the user to choose reliable Livewire seedpoints.

(a)
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Chapter 3

Live-Vessel: Extending
Livewire to Vascular Data

This chapter first presents a review for existing vessel segmentation techniques

(Section 3.1). This is followed by the details of the extension from 2D Livewire to 3D

(Section 3.2 and 3.3). This technique’s performance is then validated on synthetic data,

real medical volumes, and in robustness tests (Section 3.4).

3.1 Vessel Segmentation Overview

In addition to the aforementioned difficulties in medical image segmentation,

further complications in vascular images include vessel bifurcations and noise corruption

of vessel edges and centres, disrupting an otherwise boxcar-shaped vessel profile of an

ideal vessel. Noise can also create what appear to be gaps in vessels [66] that only experts

familiar with anatomy can discern. In vessel segmentation, topological conformity
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ensuring vessel tree connectivity is important for further analysis, such as discovering

branching patterns or branch lengths and tortuosity [3]. Many such analyses require the

determination of the vessel medial path (as opposed to vessel boundaries only). Vessel

medial axis extraction facilitates other forms of shape analysis, data registration [7], and

vessel boundary extraction itself [67][68].

Manual tracing by experts for vessel segmentation is considered accurate.

However, it is extremely time consuming due complex vascular networks. Also, long

segmentation tasks, particularly needed in vascular images, are commonly affected by

user fatigue [9]. Therefore, some level of automation is necessary in this application.

Numerous methods have been proposed for vessel segmentation. Kirbas and Quek

[69] provided a survey of several existing vessel segmentation methods. Automated

vessel segmentation methods are diverse. One family of methods uses pattern recognition

techniques combined with post processing steps such as pruning or pixel classification

after preliminary vessel detection. For example, Ricci and Perfetti [70] used a line

detector with a rotational interval of 30° which was coupled with a support vector

machine (SVM). Similarly, Soares et at. ‘s filtering method [71] used Gabor wavelets at

rotation intervals of 100 along with a Bayesian classifier. Staal et al. [72] employed ridge

analysis [73] and a ICNN classifier. Such classifier-based methods, however, require

training which complicates their applicability to clinical use. Lam and Yan [74] used

normalized gradient vector fields to locate vessel centerlines, and a Laplacian-based

vessel detector was used to prune the result. However, gradient vector fields are highly

susceptible to noise, especially when detecting thin vessels. A bigger limitation is that
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none of the above methods enforces vessel connectivity constraints. This often results in

broken vessels and the inability to determine accurate medials and vessel trees.

Another family of automatic vessel segmentation methods is based on energy-

minimizing evolution of deformable models [75][76][77][78][79][80]. Implicit, level-sets

based approaches (e.g. [75J[76]), as well as topologically adaptable explicit models, such

as T-snakes [38] or T-surfaces [811, are able to handle the complex vascular topology.

However, initializing topologically adaptable models with a single seed may not segment

distant branches, and using multiple distributed seeds does not ensure that all parts will

merge to produce a correct vessel tree connectivity (having correct topology). Other

methods that take advantage of vessel-specific properties include maximizing the

gradient vector field flux to optimize the contour or surface [82] and modeling of the

capillary force to segment small vessels [83]. In general, results of energy-minimizing

approaches can be unpredictable and many trials and modifications of the model

initialization and parameters may be needed. Also, these methods are not guaranteed to

give a globally optimal solution. Globally optimal energy minimizing segmentation

approaches have been proposed [84][42}. However, such approaches still suffer from

restrictions: to the best of our knowledge none were specifically designed for segmenting

tubular branching structures (or vessels); they simplify the cost terms to achieve global

minima of convex functionals; or they discretize and limit the search space of possible

solutions. The Graph Cuts [22] approach achieves a globally optimal segmentation (given

a set of foreground and background seeds). Hraiech et al. [85] segmented abdominal

aortic aneurysms using Graph Cuts. However their work is a direct application of Graph

cuts without any vessel-specific extensions. Li et a!. [86] used Graph Cuts to extract
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optimal surfaces in tubular 3D objects. However, a volume has to be partitioned into

carefully chosen regions in which the boundary surfaces can be unfolded in terrain-like

surfaces. In general, Graph-Cut contours are may also be unpredictable since user

interaction is obtained via interior region seeds and boundary constraints, so they

typically require user refinement in the form of additional seedpoints, thus this method’s

ability to segment complex vascular networks, not just major tubular structures, is not yet

proven.

Other approaches for automated vessel segmentation employ multiscale detection

of curvilinear structures, which is effective in discerning both large and small vessels. In

[87][88}[89], the eigenvector associated with the minimum eigenvalue of the Hessian

matrix across all scales was used to estimate the vessel direction at a given pixel as the

direction with the smallest image intensity curvature. Aylward and Bullit [90] applied

this directional information to traverse image ridges and estimate vessel centrelines.

Building on [881 [89], Frangi et al. [91] developed a “vesselness” filter using the Hessian

matrix eigenvalues. Other approaches combined vesselness with vessel enhancing

diffusion [92][93], region growing [94], cylindrical vessel models [95], and matched

filtering [96]. Sofka et al. [97] later developed another vesselness measure using matched

filters instead of Hessian-based techniques. Multiscale vessel detection proved useful in

detecting vessels; however, to the best of our knowledge, only the maximal response

across the scales was used at any particular pixel thus lacking regularization of scale

along the vessel. An exception is the Vessel Crawlers approach [98], where an estimate

of the scale is derived from the radius of the leading front of the crawler thus achieving a

form of scale regularization, but without any global scale optimality condition. Placing

54



seedpoints along a vessel’s medial axis can enable the implementation of vessel extraction

methods based on path optimization techniques in the image domain. Finding minimal

paths in 2D images was explored in [43]. Deschamps and Cohen [99] extended the

approach to 3D, where a fast marching front propagation was implemented to

approximate the medial axes of tubular structures in spatial dimensions (x,y,z). However,

that work did not address the problem of identifying the boundaries of tubular structures.

Young et al. [100] employed the vesselness filter of [911 with a front-propagation based

algorithm to segment the vessel and extract its medial axis. However, the scale that

achieves the maximum vesselness response for each pixel independently was used, and

not the scale that minimizes the total cost of the path. A key point here is that the

vesselness scale at each pixel should be chosen such that a globally optimal path is found,

and not chosen to maximize the vesselness response at that pixel. Our proposed approach

addresses this exact issue. The two vessel tracking methods that relate most to our

proposed method are the following. Li and Yezzi [101] optimized for both spatial

variables and a ‘radius’ variable, thus simultaneously determining the globally optimal

medial and vessel boundaries. However, this method did not incorporate features of

vesselness magnitude nor did it take advantage of vessel direction. Further, Wink et al.

[27] applied Dijkstra’s algorithm [311 to find the globally optimal medial and

corresponding scale values. They used multiscale vesselness filtering that did not discard

non-maximal response. The cost of selecting a certain scale at a particular pixel was

inversely proportional to the vesselness response for that given scale at that pixel.

However, this method does not take advantage of the vessel direction information and

does not utilize edge information at a scale-dependant distance from the medial.
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The Livewire segmentation framework [261 is an optimal path finding algorithm

for image segmentation that emphasizes user involvement during the segmentation

process. Such an interactive approach, unlike fully automated approaches, can be

beneficial to vessel segmentation as it combines the advantages of intuitive user

validation along with efficient computational speeds [9] [18].

3.2 Livewire to Live-Vessel: Extending Graph Search to (x,y,r)

Space

In our proposed method, rather than delineating a vessel by guiding a Livewire

contour along the vessel boundary, which is inefficient, our technique enables the user to

steer a contour along the centerline (or medial axis) of a 2D vessel. The contour along the

medial the vessel is computed as the optimal path between two points in 3D space (x,y,r),

where (x,y) are the image spatial coordinates at each medical node and r represents the

corresponding radius values at those nodes. This approach reduces the amount of

seedpoints needed, since a single optimal path defines three contours (the medial axis and

two boundary contours on either side). In 2D Livewire implementations, given an image

1(p), where p = (x, y), the only local path choices from node p are to one of the eight

neighbouring pixels, q = (x’, y’). In Live-Vessel, we optimize the medial axis path with

respect to three variables: the two spatial variables x and y, and the vessel radius variable

r. This extends the traditional Livewire graph search from 2D to 3D. However, since the

medial axis in reality is in 2D space and cannot connect p = (x,y,r) to q = (x,y,r’)

where r r’ (i.e. only a single radius value can be associated with each medial node), our

3D graph search is restricted accordingly (Figure 16). To accommodate for vessels that
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dilate and constrict rapidly, the radius value can change to any other set of values (albeit

penalized differently, as described in Section 3.3.4). This increases the computational

complexity, but the optimal medial path and optimal vessel thickness are then guaranteed.

(a) (b)

Figure 16. Live-Vessel’s 3D graph search algorithm depicted in 2D (x’) and 3D (x,y,r). (a) Medial
path sequence (green arrows) with two neighbouring nodes p=(x,y,r) and q(x’,y’,r9, projected on the
(x,y) plane. Red arrows denote the radius (r) dimension. (b) Alternative directions from p to q. Note

that the next node on the path afterp(x,y,r) cannot be q(x’,y’,r9 if x=x’ and y=y’.

While traditional Livewire displays the proposed contour between two points,

Live-Vessel displays the proposed medial path as well as its associated boundary

contours. In addition to specifying physical coordinates (x,y) with the cursor at seed

points, the radius (r) is increased/decreased via keyboard arrow keys. The user can then

quickly determine the next seedpoint such that the current vessel segment is delineated

correctly. One of Livewire’ s advantages, which Live-Vessel maintains, is the intuitive

control of desired segmentation accuracy and efficiency given varying degrees of noise

and object complexity. To actually extract the vessel, the medial path is first projected

back onto the (x,y) plane. Each medial node has an optimal radius value r, and its

preceding and succeeding nodes form a direction vector. These elements are used to

determine the two vessel boundary points on either side of the medial node. Repeating
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this for all medial nodes, all the boundary points of the vessel are found in sequence and

converted into a segmentation mask. This process is illustrated in Figure 17 and Figure 18.

Figure 18. Overview of Live-Vessel operation. (a) Original Image. (b) Vessel boundary points (yellow)
from a seedpoint (green cross) to the next potential seedpoint (red square) are graphically shown to
the user for approval. (c) Segmentation mask is created from boundary points determined in (b).

33 Live-Vessel External and Internal Costs

We define the incremental cost function, which describes the cost from node

p = (x,y,r)to a neighbouring node q = (x’,y,r’), as:

Cost(q,p)=w1C(p)+w2C(q,p)+W3C1e(P)+w4C(q,p)+w5C(q,p)

Figure 17. Flowchart depicting program operation from user point of view.
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Cv is associated with Frangi et al.’s multiscale vesselness filter [91]; however, quite

importantly, our vesselness response at p is evaluated at different scales rather than

choosing the scale with the maximal response at (x,y) (see Section 3.3.1). C5 refers to the

cost of vessel direction change between p and q, and Cie is a measure of the medial node

fitness assessed using the image edge evidence at a scale-dependent distance. Two

smoothness cost terms (CR and C) are used to penalize paths where the radius, r, or

spatial variables, (x,y), fluctuate rapidly (i.e. the two terms regularize the vessel thickness

and medial axis, respectively). Note that evaluating C, CE, Cie, and CR depends on

scale, which is a variable being optimized for during our graph search, whereas C5 does

not depend on scale. Each cost term is normalized to lie in the range [0,1] and is weighted

by w.,i e {1..5}. All cost terms are explained in Sections 3.3.1-3.3.4 and summarized in

Figure 19.

Initial
Node Cost: Vesselness Over Multiple Scales

Cost: Image Evidence using edge detection

Cost: Radial Cost: Spatial
Smoothness

Green Arrows:
Vessel Widths

Cost: Vessel direction consistency

Bold
arrows

indicate
medial path

sequence

Figure 19. Graphical representation of the cost terms in Live-Vessel’s minimum path search.
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3.3.1 Vesselness Cost

To detect curvilinear structures in 2D at a given scale a, the image is first

convolved with a Gaussian kernel with variance a2. Then, the ordered eigenvalues

IA1 I 221 of the 2 x 2 Hessian matrix H for each pixel can be used to determine whether

a pixel lies on a vessel of that scale [88]. Table 3 summarizes the eigenvalue conditions

for vessel detection at a given pixel.

Table 3. Needed eigenvalue conditions from the Hessian matrix at a given pixel for vessel detection.

Eigenvalue condition Visual interpretation

A1 < 0, IA1 /221 = large Dark background, bright vessel

A1 > 0, A1 / 22 I = large Light background, dark vessel

In our implementation, we used the filter proposed by Frangi et al. [91] to

quantify the likelihood of a dark vessel pixel into a ‘vesselness’ image feature. This filter

is adopted as a cost term in Live-Vessel’s optimization process as follows:

1 f22>O

C(q) = V(A1 ,22) = 2 \
R ( 1’ T”

1—expi 1—expi — I otherwise
I 2fl2,) L 2c2)

Rfi = A1 /22 represents the eccentricity of a second order ellipse and T = J2 + . /3 and

c affect filter sensitivity and have values 0.5 and 0.3 respectively. These values are

similar to those used in other vessel filter studies [91][27].
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Previous techniques proposed for detecting curvilinear structures using the

Hessian matrix, except Wink et a!. [27], chose the highest filter response for each pixel;

however, this is susceptible to noise and does not enforce spatial continuity (Figure 20b).

Our proposed method, in contrast, stores the results over a range of scales1, separately,

and optimizes for the scale-dependent variable r too. By combining the results with our

other cost terms, we place restrictions on the relationship of neighbouring nodes; hence,

ensuring robustness to poor image quality and bifurcations (Figure 20c).

The eigenvector Ev(x,y, r) of Hg, corresponding to 2, points in the direction of the

minimum principal curvature, which estimates the vessel direction [87]. By choosing

paths that minimize the change in direction of Ev, we can mitigate local noise and favour

Defining boundaries as zero crossings of the Laplacian of a Gaussian intensity profile across the vessel
yields a = r, where r = vessel radius. This is derived by equating the second derivative of the Gaussian
kernel to zero.
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Figure 20. Vessel bifurcation and noise poses problems for a maximal response vesselness filter. (a)
Original image, magnified for clarity. (b) Maximal response vesselness filter output. Note the filter
problems caused by vessel bifurcation or noise. (c) Segmentation result with our proposed method.

3.3.2 Vessel Direction Cost



vessel directions that change smoothly. We therefore incorporate the cost term CE(q,p)

from the incremental cost function and define it as:

2 Ev(p).Ev(q)
C(q,p) = —arccos

Ev(p)Ev(q)

which evaluates the direction change from neighbouring nodes q = (x,y,r) to

p = (x’, y’, r f)• From the vesselness filter, Ev(q) and Ev(p) (Figure 21) point arbitrarily in

either directions of a bidirectional vessel (i.e. ±Ev(q) and ±Ev(p)). The equation above

gives the same cost regardless whether the proceeds with segmentation in either vessel

directions: the medial path cost from a q top node transition is equal to ap to q sequence.

If an operand of a dot product is inversed, the dot product becomes negative but its

magnitude is unchanged (Ev(q) Ev(p) = —(Ev(q) —Ev(p))); thus we use the absolute

value operation above to cancel any potential negative signs and obtain the smaller angle

between the vectors (Figure 21).

q
— — -

Ev(’cj) —

-v(p)

Figure 21. Eigenvector consistency cost CEV(p,q) going from nodep(x,y,r) to q(x’,y’,r’) is calculated
using angle A, not angle B. Angle A is the smallest angle between ±Ev(p) and ±Ev(qJ.

Ev(q)
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3.3.3 Image Evidence Cost

Our proposed Live-Vessel also uses image evidence in the form of edge

information to favour medial nodes that are located at the centre of a vessel cross-section

of radius r. For this, we employ Canny, Laplacian of Gaussian (LoG), and gradient

magnitude based edge detection and average their responses into R(x,y). We chose these

filters because Canny and LoG filters are less sensitive to noise, whereas the gradient

magnitude filter does not involve pre-smoothing and thus complements the Canny and

LoG filters by detecting weak structural edges.

Specifically, for each p = (x,y,r) node in the image, we combine the vesselness

direction Ev(x,y,r) and R(x,y) to define another measure of node ‘medialness’. By finding

the two unit vectors that are normal to Ev in the (x,y) plane and scaling them by r, we can

determine two locations at which the vessel wall should be located. We thus retrieve the

corresponding R(x,y) at these points and their adjacent points R = {(x1 , y, ); 1 1,2.. .N} (N

is the total number of points considered on both sides) in parallel directions to Ev (Figure

22a). The image evidence cost Cje(p) in the incremental cost function is then defined as

C (p) = 1 — (i / n)’1R(PR) to average a potentially noisy response. This cost term is

minimized for a medial node that has equidistant (at distance = r) vessel boundaries,

which is expected for vessel medial nodes. Figure 22c-d show this cost’s effect when

other cost terms are not considered.
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(c)

t.. t

(d)

Figure 22. Image evidence cost and its effect. (a) points (0’s) parallel to vessel direction (white arrow)
at a scale-dependent distance r are tested for edge detection response. (b) Original retinal image. Red
square denotes close-up area in (c) and (d). (c) Image evidence cost function Cje(p) at a small value of

r (darker means less cost). Medial nodes of thin vessels are prominent and medial nodes of large
vessels exhibit higher cost. (d) Image evidence cost function Cje(p) at a larger r. Medial axes of larger

vessels become prominent and medials of smaller vessels exhibit higher cost and are dispersed.

3.3.4 Spatial and Radius Smoothness Costs

By encouraging the medial axis to be shorter, medial jaggedness is avoided and

spatial smoothness is improved (Figure 23a). To this end, Live-Vessel imposes a cost

proportional to the length of the medial axis. An incremental cost for each additional

node added to the path (connecting points q = (x, y, r) to p = (x’, y’, r’)) is used, which

accumulates during the graph search operation. This cost, Cs(q,p) in the incremental cost

function, is proportional to .J(x — + (y
—

(a) (b)
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Similarly, we penalize medial paths with rapidly changing radius values for two

reasons. Firstly, the vesselness filter is noise sensitive, and estimating the radius based

solely on the filter output is unreliable. Secondly, vessel radii tend to not change rapidly

unless branching or abnormalities such as aneurysms occur. By incorporating this cost

CR (q, ) = Ir — ri /(rm, — rmjn) to the incremental cost function, the vessel width in the

segmentation result is rendered smoother with gradually changing radius values (Figure

23b). Here, rm and rmjn are the maximum and minimum values r can take. In the case

where aneurysms or other causes of rapid vessel radius change, an extra seedpoint can be

placed at that location to force the optimal medial’s radius to correctly adapt.

—

— — — S

—
— —

(a) (b)

Figure 23. Difference in effects of radial and spatial smoothing. Unsmoothed elements are in gray
(solid line = medial, dotted line = boundaries), new medials are in red, and new boundaries are in

blue. (a) While vessel width was constant, favouring shorter medial axes results in a smoother medial
and vessel boundaries. (b) While the medial was already smooth, minimizing change in radius results

in smoother boundary contours.

3.4 Results and Discussions

In this section, we validate the performance of Live-Vessel on synthetic data as

well as real medical retinal image data from the publicly available Digital Retinal Images

for Vessel Extraction (DRIVE) database [1021. We also provide comparisons to other
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state-of-the-art vessel segmentation techniques, as well as demonstrate Live-Vessel’s

robustness to parameter sensitivity and increasing amounts of noise.

3.4.1 Performance Criteria

We benchmarked the performance of Live-Vessel using the three main criteria

typically used to evaluate segmentation results; accuracy, reproducibility, and efficiency

[9]. Reproducibility was measured by performing several segmentation trials of the same

task, which differed in seedpoint selection, since, realistically, different seedpoints would

be chosen by different users or the same user during different trials. Efficiency was

calculated as the fraction of the time a user needed to complete the segmentation task

using Live-Vessel versus manual tracing. To obtain manual tracing task times, we

segmented each image using a simple paint tool, and the task times were similar to those

reported in [102].

Accuracy and reproducibility were reported using the Dice similarity metric

(which captures the agreement in pixel labels) between the segmentation mask and the

golden truth or between resulting segmentation masks in different trials. In retinal vessel

segmentation, blood vessel boundaries are oftentimes unclear and thin vessels are

delineated differently, if at all, by different observers. Therefore, for evaluating the

segmentation of real retinal images, we calculated its similarity to each manual tracing

and compared that to how similar the manual tracings are to each other. Dice similarity

incorporates both true and false positives (TP and TN), and is defined as

CDice =2areasim /(areaA + areaB). CDICe is the Dice similarity coefficient and areasim is
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the intersection between segmentation areas of trials A and B (area4 and areaB

respectively). Dice similarity coefficients were averaged over multiple trials.

To compare with other current state-of-the-art vessel segmentation techniques, the

widely used accuracy measure Acc = (TP + TN) /(P + N), averaged over tested images,

was used. TP and TN here are the sums of true positive and negative pixels in the

images’ circular field of view (P + N total pixels). While we felt reporting this measure is

necessary for comparing Live-Vessel to other reported quantitative results (using the

same reporting metric), we believe this does not provide a true measure of accuracy,

especially for thin vessels. Since background pixels typically greatly outnumber vessel

pixels in an image (by approximately 10 to 1) in the field of view, this accuracy measure

is inherently inflated and, we believe, is not the best measure of accuracy in such

applications of segmentation (for example, Acc give 90% accuracy even if not a single

pixel is labeled as vessel, in a typical image where only 10% of the pixels are vessel

pixels).

We note that since 2D medical images suffer from partial area effects, our

proposed method’s segmentation result uses a fuzzy membership for each pixel,

evaluating the fraction of the pixel inside/outside the vessel. Note that the boundary of the

vessel obtained via Live-Vessel is calculated with sub-pixel accuracy, being a distant r

away from and normal to the vessel medial (Section 3.2). If crisp binary segmentation is

desired, a pixel is assigned to the object if this ratio is 0.5.
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3.4.2 Synthetic Data Segmentation

The manually-traced segmentation masks provided by the DRIVE database were

used as realistic ‘noise-free’ synthetic data. Varying levels of noise were subsequently

added. Three randomly selected manual tracings of observer 2 (images 4, 9, 10) from the

DRIVE database were each segmented twice, as illustrated in Figure 24. This synthetic

data does not suffer from partial area effects, but we found that binary vessel masks are

inherently jagged and the masks themselves possessed numerous flaws. One of these is

the presence of slight ‘indentations’ in the vessels that do not appear in the original data.

While these flaws were unintentional, our proposed method resolves these issues by

encouraging spatial and radial smoothness (Section 3.3.4). We found that vessels with 1-

pixel wide widths were segmented correctly (see also Section 3.4.3).

Table 4 summarizes our method’s reproducibility and accuracy rates on synthetic

data, averaged over 2 trials per image. We found that the reproducibility rate was

consistently high and consistent with traditional Livewire [26], reflecting that the

locations of the sparse seedpoints only marginally impact the optimal contour in between.

We found the accuracy results were also high and consistent (Table 4).

Table 4. Summary of Live-Vessel’s performance on 3 random manual tracings in the DRIVE
database. Results are shown as averages and standard deviation over 2 trials.

Dice similarity Reproducibility
Image 04 0.875±0.006 0.983
Image 09 0.849 ± 0.010 0.972
Image 10 0.890 ± 0.008 0.966
Average 0.871 ± 0.008 0.974
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Figure 24. Synthetic data segmentation. (a) Synthetic Image of retina. (b) Segmentation result using
Live-Vessel.

3.4.3 Retinography Data Segmentation

Ten randomly selected retinal images from the DRIVE database were segmented

using Live-Vessel to demonstrate our method’s performance on real medical vascular

images. Test images 1, 3, 4, 5, 6, 7, 9, 10, 19, 20 were ultimately chosen. Example

qualitative results are shown in Figure 26. Figure 25 illustrates our proposed method’s

ability to segment 1-pixel wide vessels with sub-pixel boundary accuracy on real vascular

image data.

Figure 25. Segmentation of 1-pixel wide vessels using Live-Vessel. (a) Original image. (b) Zoomed
(red square in (a)) area containing 1-pixel wide vessels. (c) Computed optimal medial path for one of
the vessels in (b). (d) Further zoomed view of vessel (green square in (c)). White line denotes optimal

medial axis, black lines indicate the optimal vessel boundaries.

(a) (b)

(a) (b) (c) (d)
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Figure removed due to copyright Figure removed due to copyright
permission. permission.

Figure removed due to copyright
permission.

Retinal image #4 from Retinal image #9 from Retinal image #10 from

M. Niemeijer, J.J. Staal, B. van
Ginneken, M. Loog, and M.D.
Abramoff, Comparative Study of
Retinal Vessel Segmentation
Methods on a new Publicly
Available Database, SPIE Medical
Imaging (2004) 648-656.

M. Niemeijer, J.J. Staal, B. van
Ginneken, M. Loog, and M.D.
Abramoff, Comparative Study of
Retinal Vessel Segmentation
Methods on a new Publicly
Available Database, SPIE Medical
Imaging (2004) 648-656.

M. Niemeijer, J.J. Staal, B. van
Ginneken, M. Loog, and M.D.
Abramoff, Comparative Study of
Retinal Vessel Segmentation
Methods on a new Publicly
Available Database, SPIE Medical
Imaging (2004) 648-656.

(a)

(b)

(c)

(d)

Figure 26. Sample results using our proposed method. For each column: (a) Original retinal image.
(b) Optimal medial axis computed by Live-Vessel (white curve) overlaid on original image. (c) Live

Vessel segmentation mask. (d) Close-up of segmentation mask.
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Table 5. Summary of the average accuracy and reproducibility results of Live-Vessel (LV) compared
to manual traces (MTI and MT2), reporting averages and standard deviation over two trials. Dice

similarity is the reported measure. Image size is 565 x 584 pixels throughout.

Segmentation Accuracy LV
Segmentation

MT1 VS. MT2 LV VS. MT1 LV VS. MT2 Reproducibility

Image 01 0.804 0.778 ± 0.023 0.8 10 ± 0.02 1 0.969

Image 03 0.785 0.784 ± 0.011 0.760 ± 0.008 0.972

Image 04 0.802 0.780 ± 0.02 1 0.794 ± 0.03 8 0.984

Image 05 0.790 0.744 ± 0.003 0.762 ± 0.008 0.976

Image 06 0.770 0.789 ± 0.006 0.8 15 ± 0.0 12 0.954

Image 07 0.768 0.729 ± 0.004 0.764 ± 0.025 0.966

Image 09 0.800 0.792 ± 0.032 0.786 ± 0.017 0.959

Image 10 0.787 0.779 ± 0.004 0.799 ± 0.024 0.98 1

Image 19 0.825 0.765±0.005 0.811±0.015 0.967

Image 20 0.770 0.728 ± 0.009 0.821 ± 0.006 0.956

Average 0.790 0.767 ± 0.012 0.792 ± 0.017 0.968
higher than

MT1 vs. MT2

Quantitative results indicated high reproducibility rates, similar to our results on

synthetic data. Accuracy was found to be similar to both manual segmentations, and this

similarity was comparable to that of manual tracings to each other. In some cases, Live-

Vessel had a higher pixel agreement with either or both manual tracings than between the

two manual tracings themselves. We also found that Live-Vessel had higher similarity

results for the second manual tracing (Table 5) than the first tracing in 8 out of 10 images.

We believe that in addition to user fatigue, there may be perceptive differences between

DRIVE’s different users, perhaps due to computer hardware such as display quality.

Figure 27 illustrates the differences between these users, computed using the ‘exclusive

or’ operation. Variability is evident for both thick and thin vessels. Table 6 summarizes
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our findings on Live-Vessel’s efficiency tests. By only requiring the user to guide the

medial path of vessels, we found that segmentation using Live-Vessel on average

required less than 25% of the time it takes to segment using manual tracing (75%

reduction). Images with more vessels or with vessels that are not as clear expectedly

required more time to segment.

Figure 27. Manual segmentation differences between experts. (a) Observer 1. (b) Observer 2. (c)
Difference between (a) and (b). (d-e) Close-up of (a) and (b) respectively. (I) Difference between (d)

and (e).

Table 6. Efficiency results of our proposed Live-Vessel (LV) compared to a manual trace (MT),
reporting average and standard deviation over two trials. Efficiency was measured as the fraction of

the manual task time needed to generate the mask. Results shown are averages of two trials, and are
reported in seconds. The images size is 565 x 584 pixels. Average reduction in time is 75.3%.

Segmentation Efficiency

LVIMT
MT LV

(%)

ImageOl 6154 1260±48 20.5±0.8

Image03 6689 1683±98 25.2± 1.5
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Imageo4 6839 1632±8 23.9±0.1

Imageo5 7613 2052± 132 26.9± 1.7

Image 06 5741 1437± 33 25.0± 0.6

Image07 6488 2042±67 31.5±1.0

Image09 5546 1382±52 24.9±0.9

Image 10 5394 1111± 52 20.6± 1.0

Imagel9 4877 1316±57 27.0±1.2

Image2o 6807 1490±87 21.9± 1.3

Average 6215 1541± 63 24.7± 1.0
•, 75.3%
reduction

Finally, we also quantitatively compared Live-Vessel’s performance to the latest

reported techniques in 2D retinography segmentation. In terms of measured accuracy, our

proposed technique is quite similar (Table 7), although as described previously, we

believe this accuracy measure is biased in all cases (as background pixels significantly

outnumber vessel pixels in all images). It is important to note that none of the other

reported techniques ensures topological integrity and thus may result in many broken

vessels and spurious (non-vessel like) detected structures (e.g. Figure 1 la in [70], Figure

6 in [72], Figure 6 in [71], and Figure 15 in [74]). Thin vessels (1-2 pixel wide), which

can constitute a large portion of a vessel tree’s total length, but may not contribute much

to the accuracy calculation, are especially problematic in reported methods; however,

they are handled well by Live-Vessel. Additionally, Live-Vessel computes the optimal

medial axes with radius values along the vessel (in addition to the boundaries and

segmentation masks), which simplifies subsequent vessel tree analysis (e.g. by avoiding

vessel skeletonization).
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Table 7. Accuracy comparison of state-of-the-art methods and the proposed method Live-Vessel,
using the widely used accuracy assessment method.

Technique Accuracy
Jiang et a!. 0.9337

Ricci and Perfetti 0.9595
Lam and Yan 0.9474
Soares et a?. 0.9466
Staal et al. 0.944 1

Live-Vessel 0.9460

3.4.4 Live-Vessel Robustness and Parameter Selection

We performed detailed sensitivity analysis in order to determine the extent of change in

accuracy (Dice similarity) when varying the weighting parameters using in our

optimization function the incremental cost function. Tests were done on observer 2’s

manual tracing for image 10 in the DRIVE database. Our implementation uses default

equal weighting (w1 = 1) for each cost term weight in the incremental cost function.

Results of changing the weight of each term are shown in Table 8. It can be seen that

even with ±50% variability in each parameter, Live-Vessel’s accuracy was stable, with an

average magnitude in percentage change of 2.44%, with a maximum of 7.78 1%, and a

minimum of 0%. This confirms d Live-Vessel’s insensitivity to significant parameter

variations.

Table 8. Effect of parameter selection on Dice similarity (accuracy) between Live-Vessel and each
manual tracing (MT1, MT2). Percentage of accuracy change provided for each experiment.
Weighting for vesselness (V), vessel direction consistency (Ev), image evidence (le), radius

smoothness (R), and spatial smoothness (XY) were raised or lowered (by *50%).

Changing Accuracy_and %_change
weights in the vs. MT1 vs. MT2 vs. MT1 vs. MT2

incremental 50% -50% +50% +50%
cost function

= 0.5 , 0.5 , = 1.5 w1 = 1.5

No change 0.784 0.760 0.784 0.760
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(w15__1)

V
0.723 0.73 8 0.779 0.792

(-7.781%) (-2.895%) (-0.638%) (4.211 %)

E
0.764 0.755 0.795 0.762

V
(-2.551%) (-0.658%) (1.403%) (0.263 %)

0.751 0.748 0.814 0.759
e

(-4.209%) (-1.579%) (3.827 %) (-0.132%)

R
0.735 0.729 0.791 0.760

(-6.250%) (-4.079%) (0.893%) (0.000 %)

0.775 0.774 0.762 0.773
XY

(-1.148%) (1.842%) (-2.806%) (1.711%)

To test Live-Vessel’s robustness to noise, observer 2’s manual tracing for image

10 in the DRIVE database was subjected to incremental levels of AWGN and then

segmented using consistent seedpoints in Live-Vessel, but only on vessels still visible to

the observer (given the progressing noise levels). Accuracy levels were then plotted

against the peak signal to noise ratio (PSNR) of the volume, defined as

PSNR = 20 log10 (max(Objectlntensity)) / nOjse• The segmentation results are illustrated in

Figure 28. As expected, we found that as noise increased, segmentation speed was

naturally reduced because denser sets of seedpoints were needed to maintain accuracy.

Under high noise, the eigenvector consistency, radial smoothness, and spatial smoothness

costs were especially important, as vesselness response and image evidence measures

were adversely affected. Our tests show that even under high noise (PSNR = -8.11 dB in

Figure 28d), our proposed method was still successfully tracking the medial axes of

reasonably large vessels.
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Figure 28. Segmentation of a synthetic image under increasing AWGN noise. Red squares in the first
column denote the field of view zoomed in the second column. (a) PSNR = 27.73 dU. (b) PSNR =

10.22 dB. (c) PSNR = 0 dB. (d) PSNR = -8.11 dB. In the right column of(a) and (b) segmentation
masks are shown. In the right column of (c) and (d), black contours denote detected boundary points.
White contours represent optimal medial axes from a seedpoint (green cross) to the next point (solid

red square).
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Chapter 4

Conclusions

Medical imaging poses many problems to structural segmentation. Although

much research is put into this field, it is still difficult to use computation alone to solve

these issues without incorporation of human insight to recognize and locate the object of

interest and to differentiate between a good and bad segmentation result.

4.1 Contributions

The two highly-automated, interactive frameworks that we presented here are efficient in

melding the advantages of both extremes of the fully-automated to manual segmentation

spectrum. Our contributions here are two interactive, globally optimal techniques

[103][104]. Both our 3D Livewire method and Live-Vessel have been submitted as

journal submissions after further refinement and testing.
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1. 2D to 3D Livewire extension for 3D objects:

M. Poon, G. Hamarneh, and R. Abugharbieh, “Segmentation of Complex Objects
with Non-spherical Topologies from Volumetric Medical Images using 3D
Livewire,” SPIE Medical Imaging 6512-31, pp. 1—10, 2007.

• Handles arbitrary topologies, protrusions, concavities, and branching

• Integrated into a user-friendly segmentation tool

• Accurate, highly reproducible, and efficient compared to traditional Livewire

• Robust to high levels of noise and insensitive to parameter variability

2. Live-Vessel for segmenting 2D retinography images:

M. Poon, G. Hamarneh, R. Abugharbieh, Live-Vessel: Extending Livewire for
Simultaneous Extraction of Optimal Medial and Boundary Paths in Vascular Images,
MICCAI (2007) 444-45 1.

• Simultaneously extracts vascular medial paths and boundaries

• Optimizes over spatial (x,y) and non-spatial (radius) variables

• Optimizes for vesselness, vessel direction consistency, edge information, and

radial and spatial smoothness

• Comparable accuracy to manual segmentation, reproducible, highly efficient

compared to manual segmentation

• Robust to high levels of noise and insensitive to parameter variability
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4.2 Limitations and Future Directions

Despite the proposed methods’ benefits, there are several limitations and areas for

improvement.

Extensibility to Other Modalities

For instance, their extensibility to other data types is yet to be proven. Other

modalities such as diffusion tensor imaging, ultrasound, or magnetic resonance

angiography pose different problems than MRI or CT, which require implementation

specifics that cater to these issues. Also, while 2D and 3D image modalities are common,

medical images can have higher dimensionalities, for example, the incorporation of the

time dimension to capture structural deformities or brain function changes.

Sub-pixel Accuracy

Another limitation of our approaches is that they do not offer sub-pixel accuracy,

as the contours in our 3D Livewire approach and the medial paths in Live-Vessel lies on

pixel centres. While this is less of an issue in high resolution images, medical images

oftentimes have low resolution in one or more dimensions. One possible way to

accomplish this is to use refinement subdivision procedures such as [105] or up-sample

the image prior to segmentation. Also, as an option, deformable models [12] may be used

to refine the segmentation at the expense of user-control and predictability.

79



3D Livewire - Algorithm Robustness to User Errors

With regard to the 3D Livewire method, the more immediate goals include

enhancing algorithm robustness to user-mistakes. While Livewire contours is adept in

snapping to object edges, incorrect input, even if it is off by one or two pixels, creates

small protrusions or indentations which can affect the quality of the final result. A

possible solution to this may be an option to allow our segmentation tool to search within

its neighbouring pixels to find a more suitable seedpoint. We believe this should remain

as a user option because we feel the user should be able to assert full control of seedpoint

locations if necessary.

3D Livewire - Parallehzation

Another potential improvement is that although graph search speed is not an issue

with traditional 2D Livewire, our method’s need to perform a large number of automated

Livewire operations on unseen slices can benefit from speed-up algorithms. One possible

method is to parallelize Dijkstra’s algorithm on multiple processors [108]. Also, since the

segmentation of an unseen slice is not dependent on adjacent slices, multiple processors

can linearly decrease the automated phase of our proposed method.

3D Livewire - Relationship Between Topology and Required User-guided Contours

Another limitation is that users currently require initial practice and understanding

of the properties of the structure they wish to segment, and place user-guided contours on

select slices. This is a concern because biological structures vary widely in size, shape,

and topology, and we wish to refine this method such that non-experts with minimal
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training can perform segmentation with reasonable results. Therefore, we believe that this

project’s future direction should include the understanding of the relationship between the

amount and orientation of user-guided contours necessary for a correct segmentation and

the shape, size, and topology of the object. A possible approach to solve this problem is

to apply Art Gallery Theorems [106], which applies for complex topology and 3D

extensions. Possible benefits include being able to automatically determine and suggest to

the user the locations of slices to place manually-guided Livewire contours, cutting down

on segmentation task time and improving reproducibility.

3D Livewire - Oblique Slices

In addition, we would like to look into how oblique slices, rather than just

orthogonal slices, can be used to initiate this 3D Livewire algorithm, because oblique

slices may characterize an object more accurately. The main challenge will be to

reformulate the turtle algorithm such that non-orthogonal ‘tracks’ can be traversed.

3D Livewire - Training Parameters

While we would like to maintain our algorithm’s flexibility over as many

modalities of medical images as possible, we believe that training the weights of the

optimization terms to suit a particular modality would benefit the accuracy and usability

of the segmentation. This may be obtained be collecting a set of training image

segmentation pairs, and optimizing for the weights that give delineations as close as

possible to the ground-truth training segmentation.
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Livewire for Globally Optimal Surfaces

Lastly, another ftiture direction may be to extend Livewire from finding an

optimal 1D contour in 2D (or even 3D space) to finding globally optimal 2D surfaces

such as those found in [86]. An idea is to use 1D Livewire contours along the surface of

an object in 3D space and iteratively partition the object surface for polygon generation.

Another potential method is to define surface ‘patches’ along an object and using

Livewire to determine an optimal path along these ‘surface nodes’, thus performing a 3D

segmentation problem using a 2D graph search. This approach would be similar to [107],

but without the need for pre-segmentation.

Live-Vessel Efficiency

For Live-Vessel, the immediate improvements we will pursue include the

reduction of the computation time required for the graph search. The reason is that our

2D+R graph search algorithm is exponentially more computational than a 2D graph

search, with each node currently having 32 neighbors compared to 8 for the 2D case. We

are again looking into parallelization [108], as well as limiting the graph search operation

similarly to [34][35].

Live-Vessel for 3D Vessel Segmentation

We believe Live-Vessel is well-suited for 2D retinography images, but the next

natural step would be to extend this framework even further to (x,y,z,r) for segmentation

of 3D vessels such as ones found using magnetic resonance. One of the design challenges

here will be to reduce the graph search as mentioned above, as Dijkstra’s algorithm in 4D
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would be even more computationally demanding. Also, in any interactive 3D

segmentation schemes, human computer interaction such as visualization and input

method becomes more complex. The goal here will be to develop an interaction scheme

that allows users to see the proposed vessel before they validate it. While rendering 3D

vessels is not difficult, users oftentimes judge the quality of a segmentation contour based

on intensity information from its surrounding pixels/voxels; thus this information will

have to be incorporated into the 3D vessel visualization as well.

Further Live-Vessel Validation

Also, in this thesis, we benchmarked our method’s accuracy on two different

measures; however, adopting a different validation method such as [1091 that evaluates

the medial itself would benefit the use of Live-Vessel in vessel tree analyses and vessel

tracking. Similar to this idea, while the DRIVE database only provides two sets of expert

segmentations, it would be beneficial to investigate exactly why these differ and to derive

a ground truth from these observers or by using additional experts.
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