
Architectures and Limits of GPU-CPU
Heterogeneous Systems

by

Henry Ting-Hei Wong

B.A.Sc., University of Toronto, 2006

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

in

The Faculty of Graduate Studies

(Electrical and Computer Engineering)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

October 2008

© Henry Ting-Hei Wong 2008

Abstract

As we continue to be able to put an increasing number of transistors on a single chip,

the answer to the perpetual question of what the best processor we could build with the

transistors is remains uncertain.

Past work has shown that heterogeneous multiprocessor systems provide benefits in

performance and efficiency. This thesis explores heterogeneous systems composed of a

traditional sequential processor (CPU) and highly parallel graphics processors (GPU).

This thesis presents a tightly-coupled heterogeneous chip multiprocessor architecture for

general-purpose non-graphics computation and a limit study exploring the potential ben-

efits of GPU-like cores for accelerating a set of general-purpose workloads.

Pangaea is a heterogeneous CMP design for non-rendering workloads that integrates

IA32 CPU cores with GMA X4500 GPU cores. Pangaea introduces a resource partitioning

of the GPU, where 3D graphics-specific hardware is removed to reduce area or add more

processing cores, and a 3-instruction extension to the IA32 ISA that supports fast commu-

nication between CPU and GPU by building user-level interrupts on top of existing cache

coherency mechanisms.

By removing graphics-specific hardware on a 65 nm process, the area saved is equiva-

lent to 9 GPU cores, while the power saved is equivalent to 5 cores. Our FPGA prototype

shows thread spawn latency improvements from thousands of clock cycles to 26. A set of

non-graphics workloads demonstrate speedups of up to 8.8×.

This thesis also presents a limit study, where we measure the limit of algorithm par-

allelism in the context of a heterogeneous system that can be usefully extracted from a

set of general-purpose applications. We measure sensitivity to the sequential performance

(register read-after-write latency) of the low-cost parallel cores, and latency and band-

width of the communication channel between the two cores. Using these measurements,

we propose system characteristics that maximize area and power efficiencies.

As in previous limit studies, we find a high amount of parallelism. We show, how-

ever, that the potential speedup on GPU-like systems is low (2.2× - 12.7×) due to poor se-

quential performance. Communication latency and bandwidth have comparatively small

performance effects (<25%). Optimal area efficiency requires a lower-cost parallel proces-

sor while optimal power efficiency requires a higher-performance parallel processor than

today’s GPUs.

ii

Table of Contents

Abstract . ii

Table of Contents . iii

List of Tables . vi

List of Figures . vii

Acknowledgements . ix

Statement of Co-Authorship . x

1 Introduction . 1

1.1 Motivation . 1

1.2 Thesis Contributions . 3

1.3 Background on GPU Computation . 4

1.3.1 GPU Organization . 4

1.3.2 Programmability . 5

1.3.3 Computation . 7

1.3.4 CUDA, ATI Stream . 7

1.3.5 CPU-GPU Integration . 7

1.3.6 Pangaea Preview . 9

1.4 Related Work . 11

1.4.1 Multicore Processors . 11

1.4.2 GPU Compute . 12

1.4.3 Limit Studies on parallelism . 15

References . 16

2 Pangaea: A Tightly-Coupled IA32 Heterogeneous Chip Multiprocessor 22

2.1 Introduction . 22

2.2 Related Work . 24

2.3 Background . 25

iii

Table of Contents

2.4 Pangaea Architecture . 27

2.4.1 CPU-GPU Integration . 27

2.4.2 ISA Extension for User-level Interrupts 29

2.4.3 User-level Interrupt Handler . 34

2.5 Pangaea Implementation . 36

2.5.1 Pangaea’s Synthesizable RTL Design 36

2.5.2 Area Efficiency Analysis . 38

2.5.3 Power Efficiency Analysis . 39

2.5.4 Thread Spawn Latency . 39

2.6 Performance Evaluation . 41

2.7 Conclusion and Future Work . 45

References . 47

3 The Performance Potential for Single Application Heterogeneous System . . . 52

3.1 Introduction . 52

3.2 Related Work . 55

3.3 Modeling a Heterogeneous System . 56

3.3.1 Serial Processor . 57

3.3.2 Parallel Processor . 57

3.3.3 Heterogeneity . 58

3.3.4 Latency . 60

3.3.5 Bandwidth . 60

3.4 Simulation Infrastructure . 61

3.4.1 Benchmark Set . 61

3.4.2 Traces . 62

3.5 Results . 65

3.5.1 Why Heterogeneous? . 65

3.5.2 Communication . 70

3.5.3 Latency . 72

3.5.4 Bandwidth . 73

3.5.5 Efficiency . 77

3.5.6 Area Cost . 78

3.5.7 Energy Per Instruction . 81

3.5.8 Efficiency Results . 81

3.6 Conclusion . 83

References . 85

iv

Table of Contents

4 Conclusion . 88

4.1 Summary . 88

4.1.1 Pangaea . 88

4.1.2 Limit Study . 89

4.2 Relation Between Works . 90

4.3 Potential Applications . 91

4.4 Limitations and Future Work . 92

4.4.1 Pangaea . 92

4.4.2 Limit Study . 92

References . 94

v

List of Tables

2.1 One Pangaea Prototype Configuration that fits one Xilinx Virtex-5. 35

2.2 Virtex-5 FPGA Resource Usage for the Pangaea configuration in Table 2.1. . . 37

2.3 Area distribution of two-EU systems. 38

2.4 Power distribution of a two-EU GPU. 39

2.5 Thread Spawn Latency in cycles. 40

2.6 Benchmark Suites . 41

3.1 Our microbenchmark set. We also employ many real benchmarks. (See

Section 3.4.1) . 62

vi

List of Figures

1.1 Discrete GPU Organization . 6

1.2 Single-chip "Fused" CPU-GPU Organization 8

1.3 Single-chip Pangaea CPU-GPU Organization 10

2.1 Organization of the Intel GMA X4500. 26

2.2 Pangaea: Integrated CPU-GPU without Legacy Graphics Front- and Back-End. 28

2.3 Example of User-Level Interrupt (ULI). 29

2.4 IA32 CPU Block Diagram. Shaded blocks indicate modifications to support

ULI. 32

2.5 Pangaea speedup vs. CPU w/ SSE alone. 42

2.6 Tolerance of Pangaea to Different Memory Access Latencies. 43

3.1 Conceptual Model of a Heterogeneous System. Two processors with differ-

ent characteristics may (a) or may not (b) share memory, affecting whether

data needs to be copied over the communication channel connecting them. . 56

3.2 Average Parallelism of Our Benchmark Set . 63

3.3 Proportion of Instructions Scheduled on Parallel Core. Real benchmarks (a),

Microbenchmarks(b) . 66

3.4 Average Parallelism on Parallel Processor . 67

3.5 Speedup of Heterogeneous System. Traces show speedup for ideal com-

munication (solid) and with communication forbidden (dashed, NoSwitch).

Real benchmarks (a), Microbenchmarks (b). 69

3.6 Slowdown of infinite communication cost (NoSwitch) compared to zero com-

munication cost. Real benchmarks (a), Microbenchmarks (b). 71

3.7 Slowdown due to 100,000 cycles of mode-switch latency. Real benchmarks. . 72

3.8 Slowdown due to a bandwidth constraint of 8 cycles per 32-bit value and

1,000 cycles latency, similar to PCI Express x16. Real benchmarks. 74

3.9 Speedup over sequential processor for varying bandwidth constraints. Real

benchmarks. 75

3.10 Heterogeneous system area, normalized to area of sequential processor. . . . 79

3.11 Normalized area efficiency. Real benchmarks. 80

vii

List of Figures

3.12 Normalized energy per instruction (EPI). Real benchmarks. 82

viii

Acknowledgements

I would like to thank my thesis supervisor Tor Aamodt for the guidance throughout my

masters career. Thanks also go to Steve Wilton and Sathish Gopalakrishnan for their com-

ments and feedback during the thesis defense process.

Thanks also goes to Wilson Fung, off whom I had bounced many ideas and had many

thought-provoking and insightful discussions over the last two years, and for proofreading

the thesis.

I would also like to thank Intel Microarchitecture Research Lab for providing me with

the opportunity to conduct research in an industrial setting. Particular thanks goes to

Hong Wang and Anne Bracy for the guidance throughout the project.

I acknowledge the financial support from the Natural Sciences and Engineering Re-

search Council of Canada (NSERC) during my masters program.

ix

Statement of Co-Authorship

Pangaea (Chapter 2) was work done while on internship at Microarchitecture Research

Labs, Intel Corp. The architecture was conceived by colleagues at MRL, and refined by me

to suit implementation constraints as work proceeded. The FPGA prototype of the het-

erogeneous system was designed and built by me from existing CPU and GPU code. Data

analysis was performed by me. The Pangaea manuscript was co-authored with colleagues

at MRL and Tor Aamodt.

The limit study (Chapter 3) experiment was designed collaboratively by Tor Aamodt

and I. The research, data collection and analysis, and manuscript preparation were done

by me.

x

Chapter 1

Introduction

1.1 Motivation

As we continue to be able to put an increasing number of transistors on a single chip, what

we build using these resources continually changes. One question is whether we should

devote increasing resources to improving serial performance using larger processors or to

increasing parallelism with more processors.

Amdahl [1] argued in 1967 that the correct method of improving computer perfor-

mance was to build ever-faster uniprocessors, as the now-famous Amdahl’s Law shows

that a program’s sequential fraction will dominate runtime if sequential performance im-

provements were neglected. The argument for building large uniprocessors was again

made in 1997 [2], arguing that multiple processor cores ought to be placed on separate

chips because communication latency is more tolerable between processors than within a

processor, and that we should build the largest uniprocessor that is possible on a single

chip, and use multiple chips for parallelism.

Gustafson [3] argues against Amdahl’s Law in 1988 that increasing problem sizes result

in increasing parallelism with a roughly constant sequential fraction, thus justifying large

multiprocessor systems. A more recent appeal for single-chip multiprocessor parallelism

was made in 1996 [4], noting that improving uniprocessor performance was achieving

diminishing returns.

One example of the effective use of a single-chip multiprocessor system is in commod-

ity 3D graphics accelerators. Graphics processing units (GPUs) are chips specialized to

implement 3D graphics acceleration as dictated by 3D APIs like OpenGL or DirectX. The

1

1.1. Motivation

abundance of parallelism in the workload naturally led to highly-parallel architectures.

GPUs became programmable by adding support for various types of programmable

shaders in the graphics APIs and the development of high-level shader programming lan-

guages [5, 6]. Being programmable, GPUs began to be interesting for unintended uses

[7, 8, 9]. Many of these early general-purpose (GPGPU) applications involved linear alge-

bra.

Originally, GPGPU applications were limited to using graphics APIs, using programmable

shaders embedded within the standard graphics pipeline defined by the APIs. For non-

graphics purposes, this presented an unnecessary overhead layer between the application

and the hardware doing the computation. This was also difficult to use, as it required the

developer with no interest in graphics to understand graphics APIs.

Some of the overhead of graphics APIs is reduced with the introduction of compute-

oriented APIs like Nvidia’s CUDA [10] or ATI’s Stream SDK [11], which allow access to the

computation cores in a GPU bypassing the graphics API.

These APIs allowed the GPU to be programmed directly and relatively easily, but the

GPU still is treated as a device, its memory space separate from that used by the CPU.

GPUs are still difficult to program as the developer needs to manually copy data between

the CPU and GPU, and programs on the GPU can not invoke operating system services.

The EXO [12] architecture reduces programmer effort by providing the appearance of a

shared memory space and supports exception handling by signaling the CPU to perform

address translation and exception handling on behalf of the GPU. The GPU hardware still

maintained all the hardware overhead needed to support graphics APIs.

In Chapter 2, we address some of these problems and present a heterogeneous mul-

ticore chip architecture, Pangaea, that further tightly-couples GPU cores with the CPU.

Pangaea proposes to integrate the processing cores from a GPU with a CPU on a single

chip, removing hardware support for legacy graphics APIs (reducing overhead), and shar-

ing cache and memory hierarchy between the two core types. Fast communication between

CPU and GPU cores would be done using proposed x86 ISA extensions which enable user-

2

1.2. Thesis Contributions

level interrupts implemented on top of existing cache coherence mechanisms. Removing

graphics-specific hardware results in significant area and power reductions.

Although we show that Pangaea succeeds in reducing communication latency between

CPU and GPU, the performance impact is small for highly-parallel applications that can

tolerate communication latency (and memory latency too, as the GPU philosophy goes).

This motivates an exploration of designs and applications around the design point pre-

sented by Pangaea. We want to find the potential impact of communication and GPU core

characteristics on performance, as well as which types of applications are sensitive to these

design choices. In our limit study (Chapter 3), we attempt to measure the potential im-

pacts of communication latency and bandwidth for general-purpose applications, without

requiring that they be manually parallelized.

Our limit study finds that when algorithms are optimally partitioned between GPU-

and CPU-like processors, the performance impacts of communication latency and band-

width are not large. Despite traditional wisdom, we notice many implementations of ap-

plications for GPUs do not report CPU-GPU communication as a major limiter of perfor-

mance [13]. We also find that despite the optimistic assumptions made in our limit study,

many general-purpose applications do not have sufficient parallelism to create thousands

or millions of threads to be used by the GPU to tolerate long register read-after-write la-

tencies, leaving GPUs under-utilized due to insufficient parallelism in the application.

1.2 Thesis Contributions

We summarize the contributions of this thesis here:

• We propose an architecture for GPU compute only, which achieves tighter coupling

with the CPU by sharing memory hierarchy and leveraging cache coherency mecha-

nisms for fast user-level signaling. (Chapter 2)

• We prototype a Pangaea design on an FPGA using RTL code from an IA32 CPU core

and the Intel GMA X4500 GPU.

3

1.3. Background on GPU Computation

• We show that removing support for the legacy graphics pipeline and sharing of mem-

ory hierarchy with the CPU result in significant area and power savings, and signifi-

cantly reduced communication latency.

• To explore the design and application space around Pangaea, our limit study ab-

stractly models a GPU and CPU heterogeneous system, using an algorithm that ex-

tracts parallelism from applications and optimally schedules instructions onto the

two processor types. (Chapter 3)

• Our limit study models GPU register read-after-write latency and a constrained

CPU-GPU communication channel, and shows that the register read-after-write la-

tency of GPU cores is a significant limiter of achievable speedup, while CPU-GPU

communication latency and bandwidth only have minor effects on achievable per-

formance.

• We use area and power efficiency metrics with our limit study data to propose de-

signs for GPU core properties that maximize efficiency. We observe that for area

efficiency, GPU cores with higher register read-after-write latency than today’s GPU

cores are optimal, while optimal power efficiency requires GPU cores with lower

read-after-write latency.

The rest of the thesis is structured as follows. We present a background on GPU com-

putation and related work in the following sections (Sections 1.3 and 1.4). In Chapter 2

we propose and evaluate the Pangaea architecture. In Chapter 3 we explore the CPU-GPU

design space in our limit study. We conclude in Chapter 4.

1.3 Background on GPU Computation

1.3.1 GPU Organization

Figure 1.1 shows the general system organization of a modern discrete GPU, used in con-

junction with a traditional CPU-based system.

4

1.3. Background on GPU Computation

The intended use of graphics processors is to accelerate 3D graphics rendering. This

is often done using a standard graphics API like OpenGL or DirectX [14]. Graphics APIs

present a pipeline where vertices are manipulated, rasterized, textured, and output to the

frame buffer to be displayed on a bitmapped display. The DirectX 10 [14] pipeline stages

(Input Assembler through Output Merger) are shown in Figures 1.1 and 1.2. Although it

is possible to render 3D graphics in software on the CPU, the processing performed by

the rendering pipeline is usually offloaded to the graphics processor (GPU), which is de-

signed specifically to implement the rendering pipeline, and provides a large performance

improvement.

When rendering, the graphics driver running on the host operating system is respon-

sible for interfacing between the graphics API runtime and the GPU hardware. Data and

commands are sent from driver software running on the CPU to the GPU over the PCI

Express bus, which is then processed by the hardware.

1.3.2 Programmability

Modern rendering pipelines have increased in programmability. Figure 3.1 shows the ren-

dering pipeline stages which are programmable. The Vertex Shader and Geometry Shader

stages take each vertex as input then runs a short program transforming each one. The

Pixel Shader stage takes each pixel fragment as input, and likewise runs a short program

on each to transform it. As vertices and pixels are essentially mutually independent, mul-

tiple instances of shaders can execute in parallel, which encourages highly parallel hard-

ware designs. In a typical GPU, there is an array of multi-threaded, SIMD processing cores

which executes the shader programs. These cores are architected to exploit the available

parallelism to get the most throughput in the least area. The graphics driver is responsible

for translating vendor-neutral shader code into the device-specific instruction set.

5

1.3. Background on GPU Computation

Memory

Cache

Core

I/O

Chipset
PCI Express

CPU

Rasterizer

Geometry
Shader

Stream
Output

Pixel
Shader

Output
Merger

Vertex
Shader

Input
Assembler

GPU

Memory

Instruction Set Processor

Fixed Graphics Pipeline Stage

Programmable Graphics Pipeline Stage

Figure 1.1: Discrete GPU Organization

6

1.3. Background on GPU Computation

1.3.3 Computation

Early efforts at GPU computation took advantage of the programmable shaders. Computa-

tion problems were mapped into graphics rendering problems, and shaders were written

which achieve the desired computation rather than output a rendered image. This ap-

proach leaves the hardware organization unchanged. Drawbacks include the requirement

that a computation be mapped onto vertex and pixel primitives, and that some stages of

the rendering pipeline are irrelevant to the desired computation and is thus wasted area,

power, and possibly performance.

1.3.4 CUDA, ATI Stream

Some of the problems of mapping computations to shaders can be avoided by allowing

the use of the array of cores by programs without using the graphics API, allowing com-

putation to be specified directly in programs without remapping into vertices and pixels

[10, 11]. The hardware organization remains nearly unchanged from Figure 1.1, but a

new mechanism to use the array of cores needs to be added (not shown). Since graphics

remains the main usage of GPUs, all of the hardware to support graphics is left intact and

simply left unused as appropriate.

1.3.5 CPU-GPU Integration

As seen in Figure 1.1, a discrete GPU is typically attached to the CPU system over an

off-chip PCI Express bus. Discrete GPUs typically have their own memory, physically

separate from the CPU’s memory, and data is transferred by copying over the PCI Express

bus using DMA. Current integrated GPUs are integrated into the chipset and use a portion

of the CPU’s memory instead of having its own dedicated memory. This results in lower

cost in exchange for a performance penalty. The general architecture is otherwise similar.

One issue with off-chip buses is their high latency and limited bandwidth [15]. This

thesis explores in Chapter 3 the impact that this latency and limited bandwidth can have

on performance. One solution to this issue is to integrate the GPU on the same chip as the

7

1.3. Background on GPU Computation

Cache

Core

I/O

Chipset

Rasterizer

Geometry
Shader

Stream
Output

Pixel
Shader

Output
Merger

Vertex
Shader

Input
Assembler

Memory Memory

Instruction Set Processor

Fixed Graphics Pipeline Stage

Programmable Graphics Pipeline Stage

Figure 1.2: Single-chip "Fused" CPU-GPU Organization

8

1.3. Background on GPU Computation

CPU.

There are planned products which integrate CPU and GPU on the same chip [16]. One

possible arrangement is shown in Figure 1.2. Unlike the discrete GPU, communication

between CPU and GPU is now on chip, and no longer across an off-chip PCI Express bus.

As the GPU still appears to the system as a graphics device, memory is logically separate,

although it would likely share the physical memory array with the CPU. Graphics-specific

hardware is left intact, as such a system is intended to support 3D rendering. This ar-

rangement is referred to as the fused GPGPU organization in Chapter 2.

The Nvidia CUDA and AMD Stream enhancements allowing direct use of the core

array are also applicable to single-chip CPU-GPU multiprocessors.

1.3.6 Pangaea Preview

Extending the integration further, Pangaea proposes to support only general-purpose com-

putation, and removes graphics-specific hardware to save area and power. It is also pro-

posed that memory address space be shared between the parallel cores and the CPU, and

that communication occur through cache coherence mechanisms. Sharing a cache allows

fast data sharing and reuse between CPU and the GPU-like core array. See Chapter 2 for

details.

9

1.3. Background on GPU Computation

Memory

Cache

Core

I/O

Chipset

Thread
Spawner

Instruction Set Processor

Fixed Graphics Pipeline Stage

Programmable Graphics Pipeline Stage

Figure 1.3: Single-chip Pangaea CPU-GPU Organization

10

1.4. Related Work

1.4 Related Work

1.4.1 Multicore Processors

In the beginning von Neumann [17] created the processor. "I’ll take one," Amdahl said

[1]. "I’ll take more," said Gustafson [3]. "Give me some on a chip," says Olukotun [4]. Patt

objected [2], "Only one on a chip." AMD [18] and Intel [19] disagreed and gave everyone

two on a chip. And then more [20], perhaps even a thousand someday [21].

Homogeneous Multicore Current personal computer systems use homogeneous multi-

core processors, where two or more processors of the same microarchitecture are placed

on a single chip. Oluktun et al. [4] make the argument that given diminishing returns

of improving single-processor performance, multiple processors on a chip provide better

performance in many cases.

Indeed, single-processor scaling has been shown historically to be fairly poor, with

performance increasing approximately proportional to the square root of resources (area,

power) used. This is Pollack’s Rule [21]. Multiple cores have the potential to scale through-

put linearly as the area and power consumed.

Heterogeneous Multicore As opposed to homogeneous systems, heterogeneous systems

use two or more types of processor cores in a system. As programs have both parallel and

sequential phases, it makes intuitive sense that in order to prevent Amdahl’s Law from

limiting speedup, a fast sequential processor should exist to run sequential portions of

programs.

Kumar et al. showed that single-ISA heterogeneous systems using different microarchi-

tectures implementing the same instruction set can reduce power consumption [22] at lit-

tle performance loss compared to a single high-performance processor. They also showed

improved performance [23] when running multiprogrammed workloads compared to a

homogeneous multicore system of equivalent area.

11

1.4. Related Work

Later work arrive at similar conclusions. Growchowski et al. [24] report improved per-

formance under a fixed power budget, and Annavaram et al. [25] demonstrate a prototype.

Kumar et al. also try to choose processor core sizes in a four-core single-ISA heteroge-

neous system to optimize for one set of multiprogrammed workloads [26]. They conclude

that a homogeneous multiprocessor system outperforms the best homogeneous system,

and chooses parameters that optimize the cores for the chosen workload.

Past work has focused mainly on single-ISA systems and single-threaded or multipro-

grammed workloads with few cores. In CPU-GPU heterogeneous systems the ISAs of the

two processors differ: The GPU uses an ISA specialized for supporting graphics. The GPU

is also far more parallel than the ∼4 thread contexts considered in earlier work, while

the single-thread sequential performance of GPU relative to the CPU is far greater than

between CPUs of varying microarchitectures (typically 100x between GPU and CPU).

This thesis concerns heterogeneous systems with a single-threaded CPU core and a

highly parallel GPU-like core, with parallelism and performance characteristics more ex-

treme than earlier work considers.

1.4.2 GPU Compute

Ever since graphics processors (GPU) became programmable, there has been interest in us-

ing it for computation beyond its intended use of 3D graphics rendering. Initially, custom

computation was essentially hacked into the standard graphics pipeline by transforming

the desired computation into a rendering computation, but recent hardware has allowed

programming the GPU directly.

GPGPU using shaders General-purpose programming of GPUs started when GPUs in-

corporated various programmable "shaders" into the graphics pipeline. OpenGL and Di-

rect3D defined virtual machine-like models for shaders. High-level languages were also

defined to ease programming. Examples include GLSL [6] for use with OpenGL, HLSL for

Direct3D, and Nvidia’s Cg [5] which can target both APIs.

12

1.4. Related Work

Early GPGPU work usually involved building algorithm primitives like sorting or ap-

plications using linear algebra [27, 28]. Sparse matrix solvers [7, 8] seemed especially pop-

ular. One example of an application of sparse matrix solutions is quadratic cell placement

[9].

General-purpose Languages Programming within a graphics model when working on a

general-purpose program is inconvenient. There have been some attempts at abstracting

away the graphics pipeline by providing a more general programming environment (usu-

ally C-like) that is then compiled for execution by the GPU shaders. Examples include

Brook for GPUs [29] and Accelerator [30]. Note that although these languages can abstract

away the graphics pipeline from the developer, the compiled program is still compiled to

shader programs within a graphics pipeline, and retain any related overheads.

ClawHMMER [31] is an example application using Brook.

Unified Shaders The increasing number stages of the graphics pipeline that became pro-

grammable (vertex, pixel, and, in DirectX 10, geometry shaders) eventually led to the

definition of a unified shader model, instead of different shader models for each type of

shader. DirectX 10’s Shader Model 4.0 [14] requires unified shaders.

GPU Compute Hardware Unified shaders with increasing programmability naturally

led to the desire to use them outside the graphics pipeline. Using the shader cores di-

rectly can improve performance by avoiding translation/compilation from vendor-neutral

shader code into the native instruction set of the GPU cores. It also avoids the program-

ming complexity of trying to fit a general-purpose problem into a graphics-specific pro-

gramming model.

Nvidia’s CUDA [10] and ATI’s CTM [11] allow programming of their respective GPUs

without using the graphics API. CUDA presents a C-like programming environment, re-

ducing programming complexity. However, much of the complexity caused by constraints

inherent in the GPU cores’ architecture remains that the developer still needs to consider,

13

1.4. Related Work

for example SIMD width, VLIW scheduling of instructions, or matching the number of

threads and registers used to hardware capabilities.

The relative ease of use of CUDA led to many applications [13, 32, 33]. It is interesting

to note that the communication latency and bandwidth over PCI Express is not a major

limiter on performance [13], an observation also seen in our limit study (Chapter 3).

Unified Programming Model Even with CUDA, programming GPUs is not easy. As the

GPU is viewed as a device in a CPU-based system, memory spaces are separate and the

developer needs to manage data copying between CPU and GPU memory. Programs on

GPUs also are unable to use OS services on their own.

Efforts to improve ease of programming have involved defining new programing model

that can target both CPU and GPU implementations [34, 35], so that a program need only

be written once. Another approach involves making the GPU programming model more

similar to the existing CPU model, for example the Exoskeleton Sequencer (EXO) archi-

tecture [12]. EXO gives the illusion of a shared memory space between GPU and CPU and

allows exception handling in GPU code using Address Translation Remapping and Col-

laborative Exception Handling, where the CPU handles page faults and other exceptions

on behalf of the GPU.

Unified Hardware: CPU-GPU integration Commercial products integrating the GPU

and CPU (single package or single chip) are expected to be available soon [16]. Although

likely lower in raw performance than a discrete GPU due to more stringent area and power

constraints, CPU-GPU integration offers interesting possibilities in supporting a unified

programming model.

Pangaea goes further than simple integration of GPU and CPU, but proposes that the

GPU be specialized for parallel compute only. Pangaea follows the EXO shared-memory

model, but also physically shares parts of the memory hierarchy, and adds mechanisms for

fast communication between CPU and GPU.

14

1.4. Related Work

1.4.3 Limit Studies on parallelism

Single Processor One of the early limit studies on available parallelism in programs

was done by Wall [36]. He reports fairly low available parallelism (∼5-7), due mainly

to branch mispredictions. The poor results due to branch prediction prompted Lam and

Wilson’s study [37] on the effects on available parallelism of various control flow con-

straints (prediction and/or condition dependence) and allowing multiple fetch streams,

using a similar methodology. This study finds that multiple fetch streams and condition

dependence analysis unlock much of the parallelism available (40 for integer and 561 for

floating-point applications).

Thread-Level Speculation There have also been limit studies modeling the potential

benefits of thread-level speculation machines [38, 39]. These placed additional constraints

on the model used by Lam and Wilson’s work.

Homogeneous Multiprocessor With the recent trend toward multicore processors, there

is an interest in evaluating the potential performance in parallelizing existing applica-

tions. The limit study by Vachharajani et al. [40] uses a similar methodology to earlier

work, but adds various scheduling algorithms that distribute instructions from a single

thread among processors in a homogeneous multiprocessor system. They find that there is

significant parallelism in ordinary applications when parallelized for homogeneous mul-

tiprocessor systems, but find that communication latency between cores is a significant

limiter of performance.

We are not aware of prior limit studies that attempt to model heterogeneous systems

where some processors are faster than others, which is characteristic of GPU-based com-

pute systems.

15

References

[1] G. M. Amdahl. Validity of the single-processor approach to achieving large scale

computing capabilities. In AFIPS Conference Proceedings vol. 30, pages 483–485, 1967.

[2] Y.N. Patt, S.J. Patel, M. Evers, D.H. Friendly, and J. Stark. One Billion Transistors, One

Uniprocessor, One Chip. Computer, 30(9):51–57, Sep 1997.

[3] J. L. Gustafson. Reevaluating Amdahl’s Law. Communications of ACM, 31(5):532–533,

1988.

[4] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K. Chang. The case for a

single-chip multiprocessor. In ASPLOS-VII: Proc. 7th international conference on Ar-

chitectural support for programming languages and operating systems, pages 2–11, New

York, NY, USA, 1996. ACM.

[5] William R. Mark, R. Steven Glanville, Kurt Akeley, and Mark J. Kilgard. Cg: a sys-

tem for programming graphics hardware in a C-like language. ACM Trans. Graph.,

22(3):896–907, 2003.

[6] John Kessenich, Dave Baldwin, and Randi Rost. The OpenGL Shading Language, ver-

sion 1.20. http://www.opengl.org/registry/doc/GLSLangSpec.Full.1.20.8.pdf, Sept.

2006.

[7] Jeff Bolz, Ian Farmer, Eitan Grinspun, and Peter Schröoder. Sparse matrix solvers on

the GPU: conjugate gradients and multigrid. In SIGGRAPH ’03: ACM SIGGRAPH

2003 Papers, pages 917–924, New York, NY, USA, 2003. ACM.

16

Chapter 1. References

[8] Nico Galoppo, Naga K. Govindaraju, Michael Henson, and Dinesh Manocha. LU-

GPU: Efficient Algorithms for Solving Dense Linear Systems on Graphics Hardware.

In SC ’05: Proceedings of the 2005 ACM/IEEE conference on Supercomputing, page 3,

Washington, DC, USA, 2005. IEEE Computer Society.

[9] Guilherme Flach, Marcelo Johann, Renato Hentschke, and Ricardo Reis. Cell place-

ment on graphics processing units. In SBCCI ’07: Proceedings of the 20th annual confer-

ence on Integrated circuits and systems design, pages 87–92, New York, NY, USA, 2007.

ACM.

[10] Nvidia. Compute Unified Device Architecture Programming Guide

Version 2.0. http://developer.download.nvidia.com/compute/cuda/2.0-

Beta2/docs/Programming_Guide_2.0beta2.pdf.

[11] J. Hensley. Close to the Metal. ACM SIGGRAPH 2007 courses, course 24 article 7,

2007.

[12] Perry H. Wang, Jamison D. Collins, Gautham N. Chinya, Hong Jiang, Xinmin Tian,

Milind Girkar, Nick Y. Yang, Guei-Yuan Lueh, and Hong Wang. EXOCHI: architec-

ture and programming environment for a heterogeneous multi-core multithreaded

system. In PLDI ’07: Proceedings of the 2007 ACM SIGPLAN conference on Program-

ming language design and implementation, pages 156–166, New York, NY, USA, 2007.

ACM.

[13] Shane Ryoo, Christopher I. Rodrigues, Sara S. Baghsorkhi, Sam S. Stone, David B.

Kirk, and Wen-mei W. Hwu. Optimization principles and application performance

evaluation of a multithreaded GPU using CUDA. In PPoPP ’08: Proceedings of the 13th

ACM SIGPLAN Symposium on Principles and practice of parallel programming, pages

73–82, New York, NY, USA, 2008. ACM.

[14] David Blythe. The Direct3D 10 system. ACM Trans. Graph., 25(3):724–734, 2006.

17

Chapter 1. References

[15] B. Holden. Latency Comparison Between Hyper-

Transport and PCI-Express in Communications Systems.

http://www.hypertransport.org/docs/wp/Latency_Comparison

_HyperTransport_PCIe_in_Communications_Systems.pdf.

[16] AMD. 2007 Financial Analyst Day. http://download.amd.com/Corporate/

MarioRivasDec2007AMDAnalystDay.pdf, 2007.

[17] John von Neumann. First Draft of a Report on the EDVAC. Technical report, Moore

School of Electrical Engineering, University of Pensylvania, June 1945.

[18] AMD. AMD "Shatters The Hourglass" With The Arrival Of The

AMD Athlon 64 X2 Dual-Core Processor. http://www.amd.com/us-

en/Corporate/VirtualPressRoom/0„51_104_543∼98647,00.html, May 2005.

[19] O. Wechsler. Inside Intel Core Microarchitecture: Set-

ting New Standards for Energy-efficient Performance.

ftp://download.intel.com/technology/architecture/new_architecture_06.pdf, 2006.

[20] AMD. Family 10h AMD Phenom Processor Product Data Sheet.

http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/44109.pdf,

November 2007.

[21] S. Borkar. Thousand Core Chips — A Technology Perspective. In Proc. 44th Annual

Conference on Design Automation, pages 746–749, 2007.

[22] Rakesh Kumar, Keith I. Farkas, Norman P. Jouppi, Parthasarathy Ranganathan, and

Dean M. Tullsen. Single-ISA Heterogeneous Multi-Core Architectures: The Poten-

tial for Processor Power Reduction. In MICRO 36: Proceedings of the 36th annual

IEEE/ACM International Symposium on Microarchitecture, page 81, Washington, DC,

USA, 2003. IEEE Computer Society.

[23] Rakesh Kumar, Dean M. Tullsen, Parthasarathy Ranganathan, Norman P. Jouppi,

18

Chapter 1. References

and Keith I. Farkas. Single-ISA Heterogeneous Multi-Core Architectures for Mul-

tithreaded Workload Performance. In ISCA ’04: Proceedings of the 31st annual inter-

national symposium on Computer architecture, page 64, Washington, DC, USA, 2004.

IEEE Computer Society.

[24] E. Grochowski, R. Ronen, J. Shen, and Hong Wang. Best of both latency and through-

put. Computer Design: VLSI in Computers and Processors, 2004. ICCD 2004. Proceed-

ings. IEEE International Conference on, pages 236–243, Oct. 2004.

[25] Murali Annavaram, Ed Grochowski, and John Shen. Mitigating Amdahl’s Law

through EPI Throttling. In ISCA ’05: Proceedings of the 32nd annual international

symposium on Computer Architecture, pages 298–309, Washington, DC, USA, 2005.

IEEE Computer Society.

[26] Rakesh Kumar, Dean M. Tullsen, and Norman P. Jouppi. Core architecture optimiza-

tion for heterogeneous chip multiprocessors. In PACT ’06: Proceedings of the 15th

international conference on Parallel architectures and compilation techniques, pages 23–

32, New York, NY, USA, 2006. ACM.

[27] Dinesh Manocha. General-Purpose Computations Using Graphics Processors. Com-

puter, 38(8):85–88, 2005.

[28] John D. Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens Krüger, Aaron E.

Lefohn, and Timothy J. Purcell. EUROGRAPHICS 2005 STAR - State of The Art

Report A Survey of General-Purpose Computation on Graphics Hardware, aug 2005.

[29] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian, Mike Hous-

ton, and Pat Hanrahan. Brook for GPUs: stream computing on graphics hardware. In

SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers, pages 777–786, New York, NY, USA,

2004. ACM.

[30] David Tarditi, Sidd Puri, and Jose Oglesby. Accelerator: using data parallelism to

19

Chapter 1. References

program GPUs for general-purpose uses. SIGARCH Comput. Archit. News, 34(5):325–

335, 2006.

[31] Daniel Reiter Horn, Mike Houston, and Pat Hanrahan. ClawHMMER: A Streaming

HMMer-Search Implementatio. In SC ’05: Proceedings of the 2005 ACM/IEEE confer-

ence on Supercomputing, page 11, Washington, DC, USA, 2005. IEEE Computer Soci-

ety.

[32] Samuel S. Stone, Justin P. Haldar, Stephanie C. Tsao, Wen-mei W. Hwu, Zhi-Pei Liang,

and Bradley P. Sutton. Accelerating Advanced MRI Reconstructions on GPUs. In CF

’08: Proceedings of the 2008 conference on Computing frontiers, pages 261–272, New

York, NY, USA, 2008. ACM.

[33] L. Nyland, M. Harris, J. Prins. Fast N-Body Simulation with CUDA. GPU Gems 3,

2007.

[34] Michael D. Linderman, Jamison D. Collins, Hong Wang, and Teresa H. Meng. Merge:

A Programming Model for Heterogeneous Multi-core Systems. In ASPLOS XIII: Pro-

ceedings of the 13th international conference on Architectural support for programming

languages and operating systems, pages 287–296, New York, NY, USA, 2008. ACM.

[35] Michael D. McCool, Kevin Wadleigh, Kevin Wadleigh, Brent Henderson, and Hsin-

Ying Lin. Performance evaluation of GPUs using the RapidMind development plat-

form. In SC ’06: Proceedings of the 2006 ACM/IEEE conference on Supercomputing, page

181, New York, NY, USA, 2006. ACM.

[36] David W. Wall. Limits of instruction-level parallelism. In ASPLOS-IV: Proceedings of

the fourth international conference on Architectural support for programming languages

and operating systems, pages 176–188, New York, NY, USA, 1991. ACM.

[37] M. S. Lam, R. P. Wilson. Limits of control flow on parallelism. In Proc. 19th Interna-

tional Symposium on Computer Architecture, pages 46–57, 1992.

20

Chapter 1. References

[38] Nakajima Akio, Kobayashi Ryotaro, ANDO HIDEKI, and SHIMADA TOSHIO. Lim-

its of Thread-Level Parallelism in Non-Numerical Programs. IPSJ Transactions on

Advanced Computing Systems, 47(SIG 7(ACS14)), May 2006.

[39] Katsuhiko Metsugi and Kazuaki Murakami. Limits of Parallelism on Thread-Level

Speculative Parallel Processing Architecture. In International Workshop on Information

and Electrical Engineering (IWIE2002), May 2002.

[40] N. Vachharajani, M. Iyer, C. Ashok, M. Vachharajani, D. I. August, D. Connors. Chip

multi-processor scalability for single-threaded applications. ACM SIGARCH Com-

puter Architecture News, 33(4):44–53, 2005.

21

Chapter 2

Pangaea: A Tightly-Coupled IA32

Heterogeneous Chip Multiprocessor1

2.1 Introduction

As Moore’s Law pushes for a more rapid pace of silicon development and even higher de-

gree of on-die integration, the number of cores in future multi-core designs will continue

to increase. As the microprocessor industry rapidly marches into the era of multi-core

design, the future generation of multi-core processors will essentially become an integra-

tion platform with not only numerous cores, but also different types of cores varying in

functionality, performance, power, and energy efficiency [1]. Fundamentally, ultra low

EPI (Energy Per Instruction) cores are essential to scale multi-core processor designs to

incorporate a large number of cores. One approach to improving EPI by an order of mag-

nitude is through heterogeneous multi-core designs, which have a small number of large,

general-purpose cores optimized for instruction-level parallelism (ILP) and many more

special-purpose cores optimized for data-level parallelism (DLP) and thread-level paral-

lelism (TLP). Such a multi-core processor offers opportunities for non-graphics application

software and usage models [2, 3, 4, 5, 6, 7] to aggressively exploit the combination of ILP,

DLP and TLP.

In this paper we present Pangaea, a synthesizable design of a heterogeneous chip mul-

1To appear in Proceedings of Parallel Architectures and Compilation Techniques (PACT 08), Toronto, Ontario,
Canada
Henry Wong, Anne Bracy, Ethan Schuchman, Tor M. Aamodt, Jamison D. Collins, Perry H. Wang, Gautham
Chinya, Ankur Khandelwal Groen, Hong Jiang, Hong Wang. Pangaea: A Tightly-Coupled IA32 Heteroge-
neous Chip Multiprocessor. In Proceedings of Parallel Architectures and Compilation Techniques, October 2008,
Toronto, Ontario, Canada.

22

2.1. Introduction

tiprocessor (CMP) that integrates IA32 CPU cores with GPU multi-cores. Architected to

support general-purpose parallel computation, Pangaea goes beyond the current state-

of-the-art CPU-GPU integration that physically “fuses” an existing CPU design and an

existing GPU design on the same die. In Pangaea, new enhancements are introduced to

both the CPU and GPU to support tighter architectural integration, improved area and

power efficiency, and scalable modular design. On the CPU side, a three-instruction ex-

tension to the IA32 ISA supports a fly-weight communication mechanism between the

CPU and the GPU and a fine-grain shared memory collaborative multithreading environ-

ment between the IA32 CPU cores and the GPU multi-cores. This ISA enhancement allows

an IA32 thread to directly spawn user-level threads to the GPU cores, bypassing most of

the legacy graphics specific fixed-function hardware (e.g., input assembler, vertex shader,

rasterization, pixel shader, output merger [8]) found in a modern GPU design. This can

achieve a two-order of magnitude reduction in thread spawning latency. On the GPU side,

a state-of-the-art existing GPU design (Intel GMA X4500 [9]) is rearchitected to signif-

icantly reduce the fixed-function hardware, which is traditionally dedicated to support

3D-specific graphics processing. The legacy front-end is replaced with a small FIFO con-

troller that can buffer and dispatch GPU threads spawned by the IA32 CPU. The legacy

back-end is replaced by sharing the memory hierarchy between the IA32 CPU and the

GPU multi-cores. The removal of the legacy fixed-function hardware can result in area

savings (on a 65 nm process) equivalent to nine additional GPU cores (of five hardware

threads each) and power savings equivalent to five GPU cores.

This paper makes the following contributions:

• We describe the architecture support and microarchitecture reorganization of both

CPU and GPU in Pangaea to achieve tighter architecture integration and power and

area efficiency of a heterogeneous CMP design.

• We detail a fully functional synthesizable implementation of a Pangaea design, based

on production quality RTL from an ILP optimized IA32 core and the GMA X4500

GPU.

23

2.2. Related Work

• We present an in-depth analysis of architectural tradeoffs between the Pangaea de-

sign and a state-of-the-art design that physically fuses existing CPU and GPU on the

same die.

• We report significant performance gains for a set of media and non-graphics parallel

applications by employing Pangaea to harvest ILP, DLP and TLP, achieving speedups

of up to 8.8×.

The rest of the paper is organized as follows. Section 2.2 reviews related work. Sec-

tion 2.3 provides a background on baseline GPU architecture. Section 2.4 introduces the

architectural enhancements to the IA32 CPU and the microarchitectural reorganization of

the X4500 GPU to support tighter architectural integration. Section 2.5 details the imple-

mentation of Pangaea and assesses the key architectural tradeoffs in terms of power and

area savings compared to the state-of-the-art CPU-GPU design with physical fusion. Sec-

tion 2.6 evaluates the performance of a set of general-purpose applications on a Pangaea

hardware prototype on an FPGA-based emulator. Section 2.7 concludes.

2.2 Related Work

We adopt the distinction between asymmetric and heterogeneous multi-core designs from

related work [7, 10]. All cores in an asymmetric multi-core design are of the same ISA but

differ microarchitecturally. In a heterogeneous multi-core design, some cores feature differ-

ent ISAs in addition to microarchitectural differences. Prior work on multi-core architec-

tures has demonstrated significant benefits for both power/performance and area/performance

efficiency [10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. However, those studies primarily focus on

asymmetric rather than heterogenous multi-core design.

Heterogeneous multi-core designs integrate cores of different ISAs and functionalities

and can potentially lead to even further improvement in power/area/performance effi-

ciency. IBM Cell’s heterogeneous architecture [20] offers a mix of execution elements opti-

mized for a spectrum of functions. Applications execute on this system, rather than a col-

24

2.3. Background

lection of individual cores, by partitioning the application and executing each component

on the most appropriate execution element. The exoskeleton sequencer (EXO) architecture

[7] presents heterogeneous cores as MIMD function units to the IA32 CPU and provides

architectural support for shared virtual memory, ensuring efficient data sharing across the

heterogeneous execution elements.

Recently, both AMD and Intel have made public announcements on their upcoming

mainstream heterogeneous processor designs for the 2009-10 timeframe. These processors

will be on-die integrations of the IA32 CPU and their respective GPUs, which are tradition-

ally found on the chipset or in discrete GPU cards. The so-called fusion integration phys-

ically connects existing CPU and GPU designs and supports some level of cache sharing

between them, while the designs themselves remain unchanged. Although the integrated

GPU is intended to run the legacy graphics software stack, there has been growing interest

in harvesting such heterogeneous multi-core processors to accelerate non-graphics appli-

cations. Furthermore, there have been extensive efforts to provide programming model

abstractions and runtime support to ease the otherwise daunting task for programmers to

use heterogeneous multi-cores [4, 5, 6, 21].

Although heterogeneous integration is key to Pangaea, Pangaea is different than fused

designs in that it supports a tighter-coupled integration through lightweight user-level

interrupts. Bracy et al. discuss these lightweight user-level interrupts and utilize existing

coherency logic to provide simple, preemptive, low-latency communication between cores

[22]. Many other microarchitectures also support preemptive communication [23, 24, 25,

26, 27, 28, 29, 30, 31].

2.3 Background

This section provides some necessary background on GPU architecture and defines ter-

minology that will be used in the following sections. Figure 2.1 depicts an architectural

organization of a modern GPU. It consists of three major components (from left to right):

• Front-end: a graphics-specific pipeline ensemble of fixed-function units, each corre-

25

2.3. Background

...

Command
Dispatcher

Fixed
Function

Units

1 EU,
m hardware threads

EU

n EUs,
nxm hardware threads

Graphics
-Specific
Caches

...

...

EU EU

EU EU

Figure 2.1: Organization of the Intel GMA X4500.

sponding to a certain phase of the pixel and vertex processing primitives, e.g., com-

mand streamer, vertex fetcher, vertex shader, clipper, strip/fan, windower/masker,

roughly in correspondence to DirectX’s input assembler, vertex shader, rasterization,

pixel shader, and output merger [8], respectively. The front-end translates graphics

commands into threads that can be run by the processing cores.

• Processing multi-cores: hereafter referred to as Execution Units (EU). This is where

most GPU computations are performed. Each EU usually consists of multiple SMT

hardware threads, each implementing a wide SIMD ISA. In the GMA X4500, each

thread supports 8-wide SIMD operations.

• Back-end: consists of graphics-specific structures like render cache, etc., which are

responsible for marshalling data results produced by the EUs back to the legacy

graphics pipeline’s data representation.

Non-graphics communities are understandably interested in harvesting the massive

amount of thread level and data-level parallelism offered by the EU to accelerate general-

purpose computation, for which the graphics specific hardware front-end and back-end

are largely overhead. The GPU is managed by device drivers that run in a separate memory

space from applications. Consequently, communication between an application and the

GPU usually requires device driver involvement and explicit data copying. This results in

26

2.4. Pangaea Architecture

additional latency overhead due to the software programming model.

Pangaea assumes the EXO execution model that supports user-level shared memory

heterogeneous multithreading and an integrated programming environment such as C

for Heterogeneous Integration (CHI) [7] that can produce a single fat binary consisting

of multiple code sections of different instruction sets that target different cores. The

focus of our study of the Pangaea design space is to investigate architectural improve-

ments beyond the physical on-die fusion of existing CPUs and GPUs and to assess the

power/area/performance efficiency using production quality RTL for both an IA32 CPU

design and a modern multi-core multithreaded GPU design. The proposed architecture

enhancements to both the CPU and GPU can enable much more efficient software man-

agement of parallel computation across heterogeneous cores. By minimizing resources

dedicated solely to 3D-specific graphics processing, significant improvements in area and

power efficiency can be achieved.

2.4 Pangaea Architecture

This section introduces Pangaea’s architecture enhancements to the IA32 CPU and archi-

tectural reorganization of the X4500 GPU to support tighter architectural integration.

2.4.1 CPU-GPU Integration

Pangaea is a novel CPU-GPU integration architecture design that removes the legacy graph-

ics front-end and back-end of the traditional GPU design to enhance general-purpose

(non-graphics) computation. With architectural support for shared memory and a fly-

weight user-level inter-core communication mechanism, Pangaea provides a tightly-coupled

architectural integration of CPU and GPU EUs to more efficiently support collaborative

heterogeneous multithreading between GPU threads and CPU threads.

Figure 2.2 shows a high level diagram of the Pangaea architecture. Pangaea physically

couples a set of EUs directly with each CPU via an agile thread spawning interface, but

27

2.4. Pangaea Architecture

Each EU has 5
hardware
threadsCPU

Thread Spawner
insn ptr data (ptr)

...

Shared Memory Hierarchy

Figure 2.2: Pangaea: Integrated CPU-GPU without Legacy Graphics Front- and Back-End.

without the legacy graphics front-end and back-end. Each EU works as a TLP/DLP co-

processor to the CPU. This mechanism allows for a more power and area efficient design,

which maximizes the utilization of the massively-parallel ALUs packed in the EUs.

The shared cache supports the collaborative multithreading relationship (peer-to-peer

or producer-consumer) between the CPU and EUs. Both CPU and EU cores fetch their

instructions and data from the shared memory. The common working sets between CPU

threads and EU threads benefit from the shared cache. Enabling a coherent shared ad-

dress space also make it easier to build a simple communication mechanism between the

CPU and EU cores. The communication mechanism between the CPU and EU cores is

introduced as an ISA extension.

In Panagea, the EUs appear as additional function units to which threads can be dis-

patched from the CPU. The CPU is responsible for both assigning and monitoring the

GPU’s work. The CPU can receive results from the GPU as soon as they are ready and

schedule new threads to the GPU as soon as EU cores become idle. Inter-processor in-

terrupts (IPIs) have often been leveraged for cross-core communication, but they intro-

duce performance overheads that are not appropriate in the intended fine grained multi-

28

2.4. Pangaea Architecture

{
 task_complete = false;

 EMONITOR(&task_complete, &user_handler);
 ...

 ...
}

User code
ucode_handler()
{

 user_handler();
}

Microcode handler
user_handler()
{
 if (task_complete) {

 }
 ERETURN();
}

ULI handler

EU writes to task_complete,
scenario fires:

control transfered to
microcode handler

return to after last committed
instruction; re-enable ULIs

disable ULIs
flush pipeline

save instruction
use task result

and/or
assign EU new taskother work

Figure 2.3: Example of User-Level Interrupt (ULI).

threaded environment of Pangaea. Instead of using IPIs, Pangaea leverages simple and fast

user-level interrupts (ULIs) which are discussed in the next section. A fast mechanism is de-

sirable as the EU threads are short lived and each EU thread processes only a small amount

of data. The CPU spawns a large number of threads to increase the resource utilization of

the EUs which are optimized for DLP and TLP.

Sections 2.4.2 and 2.4.3 describe the IA32 ISA extension that supports a user-level

communication mechanism between the CPU and EUs. Section 2.5 presents an analysis of

the power and area efficiency of Pangaea versus the fusion design.

2.4.2 ISA Extension for User-level Interrupts

Pangaea introduces a three-instruction IA32 ISA extension that supports communication

between heterogeneous cores. The three instructions are EMONITOR, ERETURN, and SIG-

NAL. The communication mechanism is as follows.

A scenario is a particular machine event that may occur (or fire) on any core. Example

scenarios include an invalidation of a particular address, an exception on an EU, or termi-

nation of a thread on an EU. EMONITOR allows application software to register interest

in a particular scenario and to specify a user-defined software handler to be invoked (via

user-level interrupt (ULI)) when the scenario fires. This scenario-to-handler mapping is

stored in a new form of user-level architecture register called a channel. Multiple channels

allow multiple scenarios to be monitored simultaneously.

29

2.4. Pangaea Architecture

When the scenario fires, the microcode handler disables future ULIs, flushes the pipeline,

pushes the current interrupted instruction pointer onto the stack, looks up the instruction

pointer for the user-defined handler associated with the channel, and redirects program

flow to that address. The change in program control flow is similar to what happens when

an interrupt is delivered. The key difference is that the ULI is handled completely in user

mode with minimal state being saved/restored when the user-level interrupt handler is

invoked.

ERETURN is the final instruction of the user-defined handler. It pops the stack and

returns the processor to the interrupted instruction while re-enabling ULIs.

Figure 2.3 shows an example of using ULIs. On the left and right is code provided by

software. In the middle is the microcode handler. Software activates a channel by execut-

ing the EMONITOR instruction, registering its interest in invalidations to the task_complete

variable and providing the handler that should be called when the invalidation occurs. In

this example—one of many possible usage models—the user code spawns a task to the EU

and then performs other work. When the EU completes its task, it writes to the variable

task_complete which is being monitored and the scenario fires. The microcode handler

invokes the user-defined interrupt handler. The user’s handler can use the result of the EUs

immediately and/or assign the EU another task. The user’s handler ends with ERETURN.

The program then returns to the instruction just after the last committed instruction prior

to the interrupt and the user code continues its work. Other usage models might have the

EU’s task completion affect the user code’s behavior upon returning from the interrupt.

To spawn a thread to the EU, the CPU stores the task (including an instruction pointer

to the task itself and a data pointer to the possible task input) at an address monitored

by the Thread Spawner, shown in Figure 2.2. The Thread Spawner is directly associated

with the thread dispatcher hardware on the EUs. The CPU then executes the SIGNAL

instruction—the third ISA extension—to establish the signaling interface between the CPU

and EU.

As in related work [10], the SIGNAL instruction is a special store to shared memory

30

2.4. Pangaea Architecture

that the CPU uses to spawn EU threads. Using SIGNAL, the EUs can be programmed to

monitor and snoop a range of shared addresses similar to SSE3’s MONITOR instruction

[32]. Upon observing the invalidation caused by the CPU’s SIGNAL, the Thread Spawner

loads the task information from the cache-line payload. The Thread Spawner then en-

queues the EU thread into the hardware FIFO in the EU’s thread dispatcher, which binds

a ready thread to a hardware thread core (EU), and then monitors the completion of the

thread’s execution.

Upon recognizing the completion of a thread, the Thread Spawner performs a final

store (here, writing to task_complete) that results in the scenario firing, as shown in Fig-

ure 2.3. The CPU thread can schedule and dispatch more EU threads in response (not

shown).

Because the thread spawning and signaling interface between the CPU and EUs lever-

ages simple loads and stores, it can be built as efficiently as regular cache coherence with

very low on-chip latencies.

A similar fly-weight signaling mechanism is also used in hardware to implement the

exoskeleton proxy execution mechanism [7]. In Pangaea the IA32 CPU handles exceptions

and faults incurred on the GMA X4500 cores for address translation remapping and collabo-

rative exception handling using proxy execution. These mechanisms are essential to support

a shared virtual address space between the IA32 CPU and the GMA X4500 cores.

Figure 2.4 shows the microarchitecture block diagram of the IA32 core used for this

study. The darkened units were modified to support ULIs. First, new registers are in-

troduced to support multiple channels (shown in Figure 2.4(a)). Each channel holds a

mapping between a user handler’s starting address and the associated ULI scenario. A

register is used to hold a blocking bit which specifies if ULIs are temporarily disabled.

Since the channel registers store application specific state, these registers need to be saved

and restored across OS thread context switches along with any active EU thread context.

Existing IA32 XSAVE/XRSTOR instruction support can be modified to save and restore ad-

ditional state across context switches [33]. These registers can be read and written under

31

2.4. Pangaea Architecture

T
L
B

intstruction cache

page
table
logic

bus
controller

(c) instruction
decoder

(b) exception /
interrupt unit

execution
unit

address .
generation .

data
cache

T
L
B

(d)
microcode

Floating
Point
Unit

(a)
machine

status
register

segment
description

cache

Figure 2.4: IA32 CPU Block Diagram. Shaded blocks indicate modifications to support
ULI.

the control of microcode.

The exception/interrupt unit (shown in Figure 2.4(b)) handles all interrupts and faults,

and determines whether instructions should be read from the instruction decoder or the

microcode. This unit is modified to recognize ULI scenarios. A new class of interrupt re-

quest, ULI-YIELD, triggers at the firing of a scenario and requests a microcode control-flow

transfer to the ULI microcode handler. This interrupt is handled in the integer pipeline.

All state logic associated with the ULI-YIELD, determining when an ULI-YIELD should

be taken, and saving pending ULI-YIELD events is found here. Because the ULI-YIELD

request has the lowest priority of all interrupt events, ULIs do not interfere with tradi-

tional interrupt handling. Once the ULI-YIELD has priority, the exception/interrupt unit

flushes the pipeline and jumps to the ULI microcode handler. If multiple channels are im-

32

2.4. Pangaea Architecture

plemented, when multiple instances of ULI-YIELD interrupts simultaneously occur, lower

indexed channels have higher priority over higher indexed channels.

The instruction decoder (shown in Figure 2.4(c)) is responsible for decoding instruc-

tions and providing information needed for the rest of the CPU to execute the instruction.

The decoder is modified to add entry points for the new IA32 instructions EMONITOR,

ERETURN and SIGNAL. These changes map the CPU instructions to the corresponding

microcode flows in the microcode. The microcode (shown in Figure 2.4(d)) is modified to

contain the ULI microcode handler and the microcode flows for EMONITOR, ERETURN

and SIGNAL. The ULI microcode handler flow saves the current instruction pointer by

pushing it onto the current stack, sets the blocking bit to prevent taking recursive ULI

events, and then transfers control to the user-level ULI handler. The EMONITOR mi-

crocode flow registers a scenario and the user handler instruction pointer in the ULI chan-

nel register. The ERETURN microcode flow pops the saved instruction pointer off the

stack, clears the blocking bit and finally transfers control to the main user-code where it

starts re-executing the interrupted instruction.

In Pangaea, we introduce a ULI scenario, ADDR-INVAL, which architecturally repre-

sents an invalidation event incurred on a range of addresses, which resembles the behavior

of a user-level version of the MONITOR/MWAIT instruction in SSE3. Unlike MWAIT [32],

when the IA32 CPU in Pangaea snoops a store to the monitored address range, the CPU

will activate the ULI microcode handler and transfer program control to the user-level ULI

handler. To implement a producer-consumer workload using a traditional polling model,

the producer regularly reads a designated semaphore address, checking for a value indi-

cating that the consumer has completed its task. With the ADDR-INVAL ULI, the producer

sets up a ULI channel to monitor future asynchronous updates to a semaphore and then

proceeds to work on other tasks in parallel while the hardware performs the monitoring.

When a consumer writes to the semaphore indicating task completion, this triggers the

ADDR-INVAL ULI scenario and the producer is informed of this asynchronously. This

ULI scenario is used for the signaling between the IA32 CPU cores, the thread spawner,

33

2.4. Pangaea Architecture

and the GMA X4500 EUs by leveraging the existing cache coherence protocol support,

which is much more efficient than traditional IPI mechanisms that are sent via the inter-

rupt controller. The address range that needs to be monitored is set up using the SIGNAL

instruction which directly communicates with the thread spawner.

2.4.3 User-level Interrupt Handler

Certain precautions need to be taken in designing and writing a user-level interrupt han-

dler as it runs in the context of the monitoring software thread. The monitoring software

thread is the thread that executes the EMONITOR instruction and monitors the execu-

tion of the EU threads. The monitoring software thread runs on the IA32 CPU concur-

rently with the EU threads that run on the GPU. The user-level interrupts are delivered

in the context of the monitoring thread without operating system intervention and they

pre-empt the execution of the monitoring thread. Due to the pre-emptive nature of the

user-level interrupt the user-defined interrupt handler should avoid attempting to acquire

locks or invoke system calls that acquire locks as the monitoring thread may be executing

in the middle of a critical section when it is pre-empted to execute the user-level interrupt

handler. If the user-level interrupt handler attempts to acquire the same lock that has al-

ready been acquired then a deadlock results. An ideal user-level interrupt handler does

not need to be complex or invoke system calls as the user-level interrupt handler is re-

sponsible for dispatching a new set of threads to the EU or resolving exception conditions

for the EU threads to make forward progress. The user-level interrupt handler usually

sets flags that are checked by the monitoring thread when exception conditions have to be

resolved. An example of this is shown in Figure 2.3.

The user-level interrupt serves as a notification mechanism of a exception that needs

to be resolved for the EU threads to make forward progress or to inform the monitoring

thread about the termination of a group of EU threads. The monitoring thread can re-

solve the exception condition and then resume the EU thread at a later point in time. The

interrupt mechanism is optional and the monitoring thread can always use the polling

34

2.4. Pangaea Architecture

Parameter Configuration

IA32 CPU
2-issue, in-order, 4-wide SIMD capabilities, optimistically giving 4x
speedup over non-SIMD

CPU-only L1
Caches

8KB 2-cycle access write-back data cache, 8KB Instruction cache, 2-
way set associative

EUs
2 EUs, 5 hardware threads each, 8-wide SIMD ISA, 4-wide SIMD ex-
ecution unit, 0 latency thread switch, 64 256-bit registers per thread.
Same clock speed as CPU

EU-only
Instruction

Cache
4KB shared instruction cache, 4-way set associative

Shared L2
Cache

256KB shared with EU for EU instructions and data, 32-bits/clock
bandwidth, configurable access latency by EU (2 to >100 cycles)

Table 2.1: One Pangaea Prototype Configuration that fits one Xilinx Virtex-5.

mechanism to poll on the status of the EU threads by reading the channel registers which

contain the scenarios that are being monitored as well as the current status of the scenario.

The monitoring thread may attempt to just poll the channel registers when there is no

more concurrent work to do or there is a need for a barrier synchronization between the

monitoring thread and the EU threads.

The user-level interrupt handler is also responsible for saving and restoring the regis-

ter state that is not saved/restored by the microcode handler. Since the user-level interrupt

handler runs in the context of the monitoring thread it is safe to assume that the code seg-

ment or stack segment registers do not change after the monitoring thread executes the

EMONITOR instruction as segmentation is not normally used for virtual memory man-

agement in modern operating systems. The only exception to this assumption is when the

monitoring thread is running in compatibility 32-bit mode under a wrapper on a 64-bit

operating system. A change in the code and stack segment occurs during transition from

compatibility 32-bit mode to 64-bit mode in user space. The microcode handler is modi-

fied to suppress any user-level interrupts to be delivered when the code segment values do

not match what was recorded when the EMONITOR instruction is executed. The delivery

of the user-level interrupt is frozen for the duration of execution in 64-bit user mode. The

EU threads that do not need to report any exceptions or terminate can continue to execute

35

2.5. Pangaea Implementation

even when the monitoring thread is executing in 64-bit user mode. When the monitoring

thread returns from executing in 64-bit mode back to 32-bit mode the microcode detects

the pending user-level interrupt and invokes the user-level interrupt handler. This simple

mechanism is sufficient to allow 32-bit applications to continue to work when migrated to

run on a 64-bit operating system that runs the application in compatibility mode.

The user-level interrupt mechanism provides a simple, fast and efficient core-to-core

communication mechanism without having to introduce new interrupts that need device

driver management or major changes to the interrupt controller.

2.5 Pangaea Implementation

To assess its power/area/performance efficiency, we implement a synthesizable design of

Pangaea using production quality RTL for both an IA32 CPU design and a modern multi-

core multithreaded GPU design. This section describes the Pangaea implementation and

prototyping on an FPGA. We also discuss the power/area efficiency analysis. Section 2.6

presents a performance evaluation of Pangaea using a set of non-graphics parallel work-

loads.

2.5.1 Pangaea’s Synthesizable RTL Design

We build a prototype of the proposed Pangaea architecture by implementing synthesizable

RTL of a fully functional single-chip heterogeneous CMP consisting of an IA32 CPU and

GMA X4500 multi-cores (i.e., EUs). The CPU used in our prototype (shown in Figure 2.4) is

a production two-issue in-order IA32 processor equivalent to a Pentium with a 4-wide SSE

enhancement. The EU is derived from the RTL for the full GMA X4500 production GPU.

We configure our RTL to have two EUs, each supporting five hardware threads. While the

baseline design is the physical fusion of the existing CPU and full GPU, in Pangaea much

of the front-end and back-end of the GPU have been removed, keeping only the EUs and

necessary supporting hardware. By attaching the EU onto the memory hierarchy of the

36

2.5. Pangaea Implementation

LUTs Registers Block RAMs DSP48 blocks
IA32 CPU 50621 24518 118 24

EU Subsystem 84547 36170 67 64
Other 1604 591 91 2

Table 2.2: Virtex-5 FPGA Resource Usage for the Pangaea configuration in Table 2.1.

CPU (sharing of the last-level cache), we no longer need to duplicate the hardware required

for accessing and caching memory on the GPU. This prototype design provides means to

adjust various configuration parameters, including capacities and access latencies for the

memory hierarchy, number of EUs and number of hardware threads per EU. The RTL can

be synthesized to either ASIC or FPGA targets.

Table 2.1 shows one particular design that can be synthesized to a Xilinx Virtex-5

XC5VLX330 FPGA using Synplify Pro 9.1 and Xilinx ISE 9.2.03i. Table 2.2 shows the re-

source usage as reported by Synplify Pro for our FPGA prototype. The IA32 core is larger

than one EU, taking up approximately 24% of the 207,360 available FPGA 6-LUTs. As the

table shows, the EU subsystem with 2 EUs is less than double the area IA32 CPU in our

prototype. The impact from the modifications to the CPU to support ULIs (not shown) is

negligible—on the order of 50 LUTs. The logic added to support the thread spawner (not

shown) is only 2% of a single EU.

The prototype can fit just two EU cores and occupies 66% of the 6-LUTs available on

the Virtex-5 LX330. Larger configurations consisting of multiple EUs have been evalu-

ated in RTL simulation. For parallelizable workloads evaluated in this paper (see Section

2.6), we expect throughput performance to scale roughly with the number of EUs. The

critical timing path within the EU allows us to clock the Pangaea prototype system at a

maximum of 17 MHz without any special tuning. Similar to [34], the FPGA system on

chip is mounted on an adapter that sits in a standard Intel Pentium motherboard with

256MB DRAM. Because of the critical path in our FPGA prototype, we underclocked the

motherboard to 17 MHz, down from the original 50 MHz. Note that by underclocking the

entire board, the relative speeds between all parts of the system remain unchanged, in-

37

2.5. Pangaea Implementation

cluding processor, RAM and cache. The main advantage of an FPGA prototype compared

to RTL simulation is the ability to execute orders of magnitude faster. Even at 17 MHz, the

FPGA emulation speed is quicker than fast IA32 platform functional simulators such as

SoftSDV [35]. This allows our prototype to run off-the-shelf operating system software, in-

cluding Windows XP and Linux, and execute fat binaries of heterogeneous multithreaded

programs produced by frameworks similar to EXOCHI [7].

2.5.2 Area Efficiency Analysis

To assess the area efficiency of Pangaea versus the baseline fusion design, we use the area

data collected from the ASIC synthesis of the baseline GMA X4500 RTL code. This ASIC

synthesis result corresponds to a processor built on a 65 nm process. The left column of

Table 2.3 shows the area distribution of a fusion-styled design with two EUs, including

both legacy graphics front- and back-ends. The total area used for graphics-specific legacy

hardware (the front- and back-ends) is 81%—the equivalent of over nine EUs. Even if this

cost were amortized across more EUs, the overhead remains significant. With 32 EUs, for

example, the front- and back-ends still occupy 23% of the chip area.

2-EU GPU 2-EU Pangaea
Processing 17% 94%
Thread Dispatch 1% 5%
Front-End 34% –
Memory Interface 1% –
Back-End 47% –
Interfacing Logic – 1%

Table 2.3: Area distribution of two-EU systems.

The right column of Table 2.3 depicts the distribution of chip area of the Pangaea con-

figuration shown in Table 2.1. Unlike the two EU GPU in a fusion design, a two EU Pangaea

design has much higher area efficiency. A majority (94%) of the area is used for computa-

tion. The extra hardware added to implement the thread spawner and its interface to the

interconnection fabric is minimal, amounting to 0.8% of the two-EU system, and easily be-

comes negligible in a system with more EUs. This significantly reduced overhead allows

38

2.5. Pangaea Implementation

us to efficiently use EUs as building blocks for DLP/TLP and couple them with the IA32

cores in a heterogeneous multi-core system.

2.5.3 Power Efficiency Analysis

Table 2.4 shows the total power consumption distribution for a two-EU GPU including

both dynamic power and leakage power. Like our area analysis, we use power data based

on ASIC synthesis. Most noticeable is that the legacy graphics front-end contributes a

lower proportion of power relative to its area. This is mainly due to extensive use of clock-

gating that results in reduced dynamic power consumed by the front-end, since only the

fixed-functions in the front-end that relate to the current task are switched on. We estimate

that removing the legacy graphics-specific hardware would result in the equivalent of five

EUs of power savings.

Processing 29%
Thread Dispatch 0.5%
Front-End 14%
Memory Interface 0.5%
Back-End 57%

Table 2.4: Power distribution of a two-EU GPU.

Because of the reduced front-end power, the power overhead for keeping the front-

end and back-end in the design is lower than the area overhead. Despite that, the power

overhead is still significant for a large number of EUs per GPU, and prohibitive for a small

number of EUs. For a two-EU Pangaea (not shown), the power increase due to the thread

spawner and related interfacing hardware is negligible compared to the amount of power

saved by removing the legacy graphics specific front- and back-ends of the two-EU GPU.

2.5.4 Thread Spawn Latency

Table 2.5 compares the latency of spawning a thread in fusion CPU-GPU integration ver-

sus Pangaea. The thread spawn latencies are collected from RTL simulations of the two

configurations. The latencies reported are for the hardware only. For the baseline GPGPU

39

2.5. Pangaea Implementation

case, thread spawn latency is measured from the time the GPU’s command streamer hard-

ware fetches a graphics primitive from the command buffer until the first EU thread per-

forming the desired computation requests is scheduled on an EU core and performs the

first instruction fetch. For the Pangaea case, we measure the time from when the IA32

CPU writes the thread spawn command to the address monitored by the thread spawner

set up by the SIGNAL instruction, until the thread spawner dispatches the thread to an EU

core and the first instruction is fetched. The latency in the GPGPU case is approximate, as

the amount of time spent in the 3D pipeline varies somewhat depending on the graphics

primitive performed.

GPGPU Pangaea
3D pipeline ∼ 1500 Bus interface 11

Thread Dispatch 15 Thread Dispatch 15
Total ∼ 1515 Total 26

Table 2.5: Thread Spawn Latency in cycles.

Unlike the Pangaea case, the measurement for the GPGPU case is optimistic since (1)

the latency numbers apply only when the various caches dedicated to the front-end all hit,

and (2) the measurement does not take into account of the overhead incurred by the CPU

to prepare command primitives. In the GPGPU case, the CPU needs to do a significant

amount of work before the GPU hardware can begin processing. For example, when the

GPGPU parallel computation is expressed in a shader language, the CPU needs to first

convert the device independent shader byte code into native graphics primitives, place

the appropriate commands into the command buffer, and notify the GPU that there is new

data in the command buffer. Since CPU and GPU operate in separate address spaces, the

CPU would also need to go through the device driver interface to copy the code and data

into non-cacheable memory the GPU can access. This process is usually inefficient due to

the involvement of privilege level ring transitions and data movement between cacheable

and non-cacheable memory regions. In effect, the 1515 cycle latency for GPGPU assumes

0-cycles of CPU work. In contrast, the Pangaea case simply involves a user-level 32-bit

store containing the instruction pointer of the EU thread to be spawned to the EU core.

40

2.6. Performance Evaluation

Kernel Description EU-kernel
code size

Data Size Threads Icount/
thread

1: 640x480 24-bit image 6,480 159

2: 2000x2000 24-bit image 83,500 159

1: 640x480 24-bit image 4,800 247

2: 2000x2000 24-bit image 62,500 247

Film Grain Technology
(FGT)

applies artificial film grain filter from H.264 standard 6.6 KB 1024x768 image 96 15,200

Bicubic Scaling scales YUV image using bicubic filtering 6.1 KB 360x240 → 720 x 480 2,700 691

k-means k-means clustering of uniformly distributed data 1.5 KB k=8, 100,000x8 200,000 94

SVM kernel from SVM-based face classifier 3.6 KB 704x480 image 1,320 11248

Linear filter 1,2 computes average of pixel and 8 neighbors 2.5 KB

Sepia Tone 1,2 modifies RGB values of each pixel 4.0 KB

Table 2.6: Benchmark Suites

Much of the latency for the GPGPU case comes from needing to map the computation

to the 3D graphics processing pipeline. Most of the work performed in the 3D pipeline

is not relevant to the computation, but is necessary if the problem were formulated as

a 3D computation. By bypassing the front-end of the 3D pipeline, we have successfully

reduced the thread spawning latency. With spawning latency reduction of two orders of

magnitude, Pangaea can enable more versatile exploration of ILP, DLP and fine grain TLP

through tightly-coupled execution on the heterogeneous multi-cores. In Section 2.6, we

will study a set of workloads with varying degrees of ILP, DLP and TLP.

2.6 Performance Evaluation

This section evaluates the performance of Pangaea. Our benchmarks are run on the FPGA

prototype with the configuration described in Table 2.1, under Linux, compiled using a

production IA32 C/C++ compiler that supports heterogeneous OpenMP with the CHI

runtime [7]. For the benchmarks, we select four product quality media processing ker-

nels and 2 informatics kernels that are representative of highly parallel compute-intensive

workloads rich in ILP, DLP and TLP. These benchmarks have been optimized to run on the

IA32 CPU alone (with 4-way SIMD) as the baseline, and on Pangaea to use both the IA32

CPU and the GMA X4500 EUs in parallel whenever applicable, including leveraging the

new IA32 ISA extension to support user-level interrupts. Table 2.6 gives a brief description

of the benchmarks. While FGT and SVM have relatively few threads of coarser granularity,

41

2.6. Performance Evaluation

7.7

5.3
5.9

6.3

8.8

1.9

3.6

8.1

0

1

2

3

4

5

6

7

8

9

10

LinearF
ilte

r 1

LinearF
ilte

r 2

Sepia
1

Sepia
2

FGT

Bicubic

k-m
eans

svm

S
p

e
e
d

u
p

F
a
c
to

r

Figure 2.5: Pangaea speedup vs. CPU w/ SSE alone.

the rest have many more threads of fine granularity.

Figure 2.5 shows the speedups of Pangaea relative to a CPU only case. Despite each EU

being slightly smaller in area than the CPU, running highly parallel workloads on Pangaea

rather than the IA32 CPU alone results in significant performance improvements, ranging

from 1.9 to 8.8× improvement on a two-EU Pangaea system.

The first four benchmarks are implementations of several key image and video pro-

cessing algorithms. They operate on image frames and tend to be highly parallelizable,

because an input image can usually be divided into independent macro-blocks (e.g., 8 by 8

pixels in dimension) which can be processed independently. Consequently, many parallel

threads can be created, each corresponding to a macro-block. Each thread can be further

optimized to exploit 8-wide SIMD operations. Between threads, spatial or temporal lo-

cality can also be exploited. For example, in some video processing algorithms, adjacent

macro-blocks along x-, or y- or the diagonal dimension may have overlapping stripe or

mini-blocks. It is advantageous to schedule the corresponding threads back-to-back so

that the overlapped data fetched by the first thread can be reused by the second thread.

With architectural support for fly-weight thread spawning and inter-core signaling, Pan-

gaea can efficiently support agile user-level thread scheduling. With these optimizations,

the benchmarks show impressive speedups. Linear filter computes the average pixel val-

42

2.6. Performance Evaluation

0

1

2

3

4

5

6

7

8

9

10

1 10 100 1000Memory Latency (cycles)

S
p

e
e
d

u
p

F
a
c
to

r LinearFilter

Bicubic

Sepia

FGT

SVM

k-means

Figure 2.6: Tolerance of Pangaea to Different Memory Access Latencies.

ues of a pixel with its 8 neighbors. Sepia tone modifies each pixel’s RGB values, dependent

only on the same pixel’s original RGB values. FGT applies an artificial film grain filter.

Bicubic performs a bicubic-filtered image scaling.

Although similar to Sepia tone, Linear filter sees a larger speedup mainly because Lin-

ear filter makes references to neighboring pixels, which the CPU cannot store entirely

in architectural registers, requiring cache accesses. When executed on the EU, an entire

block of pixels can be stored and manipulated in the EU’s large register file. The other

two benchmarks are classic machine learning informatics benchmarks that focus on ei-

ther clustering (k-means) or segregating (SVM) classes of high dimensional data. K-means

clustering finds k clusters in a set of points by finding the set of points closest to randomly-

generated centroids, then iteratively moving the centroid to be the mean of the set of points

that belongs to it. This benchmark is partially parallelized, and cooperatively executes on

both the CPU and EU simultaneously. Finding which cluster each point belongs to is par-

allel and runs on the EU, and computing the mean is performed serially, on the CPU. The

serial portion is the bottleneck in this benchmark, resulting in a small 1.9× speedup. The

transition between parallel and serial sections of the computations is made more efficient

through the fly-weight thread spawning and signaling between the CPU and the EU. The

Support Vector Machine (SVM) kernel performs the dot product of blocks of pixels with

an array of constant values. Unlike k-means, there is no significant serial portion to the

43

2.6. Performance Evaluation

code, and a speedup of 3.6× is achieved.

While it may seem that achieving almost a 9× speedup with only twice the number of

functional units is unrealistic, multiple architectural features combine to allow the EUs

to operate much more efficiently than the CPU’s SIMD unit and result in larger than ex-

pected speedup. As discussed in Section 3, Pangaea utilizes not only DLP but also TLP.

When multiple threads exist, multithreading significantly increases utilization of the EU’s

functional units (e.g. 92% on the EUs vs 65% on the CPU in Linear filter). Additional

performance improvement is attributable to the EUs’ ISA. The EU’s SIMD-8 instructions

allow a large reduction in the instruction count for these data parallel workloads. Fur-

thermore, the EU’s large register file minimizes spilling of registers to memory (57% of

CPU instructions in bicubic reference memory, whereas only 7.4% of the EU instructions

are loads and stores). Bicubic also heavily uses the multiply accumulate instruction and

the low latency accumulator registers (55% of EU instructions), which the CPU does not

support, giving this benchmark a particular advantage on the EUs.

To further explore the performance aspects of Pangaea, we assess its sensitivity to the

latency of the shared memory hierarchy. Here we vary the latency it takes the EU hardware

thread to access shared memory from 2 to 1000 cycles. Figure 2.6 shows the results of this

experiment. This experiment sheds light on the impact of not only different access times

for the shared L2, but also different shared memory configurations. While a latency of be-

tween 50 and 100 cycles might simulate a shared last level cache, latencies exceeding 100

cycles can indicate the performance impact of configuration where CPU and EUs share no

caches at all. Although the “performance knee” varies for each benchmark, performance

is insensitive to access latency up to approximately 60 cycles for all benchmarks. Once ac-

cess time exceeds 100-200 cycles, performance improvement slowly diminishes, but even

at 1000 cycles, speedups are still anywhere from 1.9× to 5.9×. Bicubic and FGT are the

most sensitive to access latency due to the fact that the EU’s instruction cache is only 4KB,

and each of these kernels is over 6KB in size (see Table 2.6). Consequently, higher memory

latency affects not only data accesses, but also the instruction supply. K-means shows the

44

2.7. Conclusion and Future Work

least sensitivity to memory latency. This is because the serial portion of the algorithm (the

part run on the CPU) continues to be the performance bottleneck.

The results of this sensitivity study indicate that a variety of shared cache configura-

tions and access times will produce similar speedups. The performance of the Pangaea ar-

chitecture does not depend entirely on sharing the closest level cache; the choice of which

level of memory hierarchy to share can be traded off with margins for ease or efficiency of

implementation without noticeably degrading performance.

2.7 Conclusion and Future Work

In this paper, we present Pangaea, a heterogeneous multi-core design, including its ar-

chitecture, an implementation in synthesizable RTL and an in-depth evaluation of power,

area, performance efficiency and tradeoffs. We demonstrate the potential to significantly

improve power/area/performance efficiency for heterogeneous multi-core designs, should

they be targeted for a general-purpose heterogeneous multithreading model beyond legacy

graphics. As long as Moore’s Law continues at its current pace, the level of integration in

mainstream microprocessors will continue to increase in terms of quantity and diversity

of heterogeneous building blocks, so will the need to achieve higher power/area efficiency.

It is advantageous to represent these heterogeneous building blocks as additional archi-

tectural resources to the general-purpose CPU. Such tighter architectural integration will

allow ease of programming and the use of these new building blocks without requiring

drastic changes in the software ecosystem (e.g., the OS). In turn, the software ecosystem

will continue to innovate and harvest the parallelism offered by the hardware more effi-

ciently. Even for graphics, leading researchers [36, 37] are actively investigating opportu-

nities beyond today’s brute-force, unidirectional rendering pipeline. They have proposed

programmable graphics and interactive rendering techniques to design adaptive, demand-

driven renderers that can efficiently and easily leverage all processors in heterogeneous

parallel systems and tightly couple the distinct capabilities of the ILP-optimized CPU and

45

2.7. Conclusion and Future Work

DLP/TLP-optimized GPU multi cores to generate far richer and more realistic imagery.

Like the famed wheel of reincarnation [38], an efficient heterogeneous multi-core design

like Pangaea potentially offers opportunities to significantly accelerate parallel applica-

tions like interactive rendering. We continue to actively investigate these opportunities in

our on-going exploration.

Acknowledgments

We would like to thank Prasoonkumar Surti, Chris Zou, Lisa Pearce, Xintian Wu, and Ed

Grochowski for the productive collaboration throughout the Pangaea project. We also ap-

preciate the support from John Shen, Shekhar Borkar, Joe Schutz, Tom Piazza, Jim Held,

Ketan Paranjape, Shiv Kaushik, Bryant Bigbee, Ajay Bhatt, Doug Carmean, Per Hammar-

lund, and Dion Rodgers. In addition, we would like to thank the anonymous reviewers

whose valuable feedback has helped the authors greatly improve the quality of this paper.

Henry Wong and Tor Aamodt are partly supported by the Natural Sciences and Engineer-

ing Research Council of Canada.

46

References

[1] E. Grochowski and M. Annavaram. Energy per Instruction Trends in Intel Micropro-

cessors. Technology@Intel Magazine, March 2006.

[2] GPGPU: General Purpose Computation using Graphics Hardware.

http://www.gpgpu.org.

[3] Michael D. McCool, Kevin Wadleigh, Brent Henderson, and Hsin-Ying Lin. Perfor-

mance Evaluation of GPUs Using the RapidMind Development Platform. In Proc.

2006 ACM/IEEE Conference on Supercomputing, 2006.

[4] Nvidia. Compute Unified Device Architecture (CUDA).

http://developer.nvidia.com/object/cuda.html.

[5] John D. Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens Krüger, Aaron E.

Lefohn, and Timothy J. Purcell. A Survey of General-Purpose Computation on

Graphics Hardware. In Eurographics 2005, State of the Art Reports, pages 21–51, Au-

gust 2005.

[6] Peakstream Inc. The PeakStream Platform: High Productivity Software Development for

Multi-core Processors, 2006.

[7] Perry H. Wang, Jamison D. Collins, Gautham N. Chinya, Hong Jiang, Xinmin Tian,

Milind Girkar, Nick Y. Yang, Guei-Yuan Lueh, and Hong Wang. EXOCHI: Architec-

ture and Programming Environment for a Heterogeneous Multi-core Multithreaded

System. In Proc. 2007 ACM Conference on Programming Language Design and Imple-

mentation, 2007.

47

Chapter 2. References

[8] Microsoft. A Roadmap for DirectX. http://msdn.microsoft.com/en-

us/library/bb756949.aspx.

[9] Intel. G45 Express Chipset. http://www.intel.com/Assets/PDF/prodbrief/319946.pdf.

[10] Richard A. Hankins, Gautham N. Chinya, Jamison D. Collins, Perry H. Wang, Ryan

Rakvic, Hong Wang, and John P. Shen. Multiple Instruction Stream Processor. In

Proc. 33rd International Symposium on Computer Architecture, 2006.

[11] Murali Annavaram, Ed Grochowski, and John Shen. Mitigating Amdahl’s Law

through EPI Throttling. In Proc. 32nd International Symposium on Computer Archi-

tecture, pages 298–309, 2005.

[12] S. Balakrishnan, R. Rajwar, M. Upton, and K. Lai. The Impact of Performance Asym-

metry in Emerging Multicore Architectures. In Proc. 32nd International Symposium

on Computer Architecture, pages 506–517, Jun. 2005.

[13] Soraya Ghiasi. Aide de Camp: Asymmetric Multi-core Design for Dynamic Thermal

Management. Technical Report TR-01-43, 2003.

[14] Ed Grochowski, Ronny Ronen, John Shen, and Hong Wang. Best of Both Latency and

Throughput. In Proc. IEEE International Conference on Computer Design, 2004.

[15] R. Kumar, K. Farkas, N. Jouppi, P. Ranganathan, and D. Tullsen. Single-ISA Hetero-

geneous Multi-Core Architectures: the Potential for Processor Power Reduction. In

Proc. 36th International Symposium on Microarchitecture, Dec. 2003.

[16] R. Kumar, K. Farkas, N. Jouppi, P. Ranganathan, and D. Tullsen. Single-ISA Hetero-

geneous Multi-Core Architectures for Multithreaded Workload Performance. In Proc.

31st International Symposium on Computer Architecture, Jun. 2004.

[17] R. Kumar, D. M. Tullsen, and N. P. Jouppi. Core Architecture Optimization for Het-

erogeneous Chip Multiprocessors. In Proc. 15th International Conference on Parallel

Architectures and Compilation Techniques, 2006.

48

Chapter 2. References

[18] T. Morad, U. Weiser, and A. Kolodny. ACCMP - Asymmetric Cluster Chip-

Multiprocessing. Technical Report 488, CCIT, 2004.

[19] Tomer Morad, Uri Weiser, Avinoam Kolodny, Mateo Valero, and Eduard Ayguade.

Performance, Power Efficiency and Scalability of Asymmetric Cluster Chip Multipro-

cessors. IEEE Computer Architecture Letters, 5(1), 2006.

[20] James A. Kahle, Michael N. Day, H. Peter Hofstee, Charles R. Johns, Theodore R.

Maeurer, and David Shippy. Introduction to the Cell Multiprocessor. IBM Journal of

Research and Development, 49(4/5):589–604, July/September 2005.

[21] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P. Hanrahan.

Brook for GPUs: Stream Computing on Graphics Hardware. In ACM Transactions on

Graphics, volume 23, pages 777–786, 2004.

[22] Anne Bracy, Kshitij Doshi, and Quinn Jacobson. Disintermediated Active Communi-

cation. IEEE Computer Architecture Letters, 5(2):15, 2006.

[23] A. Agarwal, B.-H. Lim, D. Kranz, and J. Kubiatowicz. APRIL: A Processor Architec-

ture for Multiprocessing. In Proc. 17th International Symposium on Computer Archi-

tecture, pages 104 – 114, May 1990.

[24] William J. Dally, Linda Chao, Andrew Chien, Soha Hassoun, Waldemar Horwat, Jon

Kaplan, Paul Song, Brian Totty, and Scott Wills. Architecture of a Message-Driven

Processor. In Proc. 14th International Symposium on Computer Architecture, pages 189

– 196, 1987.

[25] Dana S. Henry and Christopher F. Joerg. A Tightly-Coupled Processor-Network In-

terface. In Proc. 5th International Conference on Architectural Support for Programming

Languages and Operating Systems, pages 111–122, 1992.

[26] M. Horowitz, M. Martonosi, T. Mowry, and M. Smith. Informing Memory Opera-

tions: Providing Memory Performance Feedback in Modern Processors. In Proc. 23rd

International Symposium on Computer Architecture, pages 244–255, May 1996.

49

Chapter 2. References

[27] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Gharachorloo, J. Chapin,

D. Nakahira, J. Baxter, M. Horowitz, A. Gupta, M. Rosenblum, and J. Hennessy. The

Stanford FLASH Multiprocessor. In Proc. 21st International Symposium on Computer

Architecture, 1994.

[28] Olivier Maquelin, Guang R. Gao, Herbert H. J. Hum, Kevin B. Theobald, and Xin-

Min Tian. Polling Watchdog: Combining Polling and Interrupts for Efficient Message

Handling. In Proc. 23rd International Symposium on Computer Architecture, pages 179–

188, 1996.

[29] Shubhendu S. Mukherjee, Babak Falsafi, Mark D. Hill, and David A. Wood. Coher-

ent Network Interfaces for Fine-Grain Communication. In Proc. 23rd International

Symposium on Computer Architecture, 1996.

[30] Chandramohan A. Thekkath and Henry M. Levy. Hardware and Software Support

for Efficient Exception Handling. In Proc. 6th International Conference on Architectural

Support for Programming Languages and Operating Systems, pages 110–119, 1994.

[31] Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, and Klaus Erik Schauser.

Active Messages: A Mechanism for Integrated Communication and Computation. In

Proc. 19th International Symposium on Computer Architecture, pages 430–440, May

1992.

[32] Intel. Use MONITOR and MWAIT Streaming SIMD Extensions 3 Instructions.

http://softwarecommunity.intel.com/Wiki.

[33] Intel. IA Programmers Reference Manual 2008.

http://www.intel.com/products/processor/manuals/index.htm.

[34] Shih-Lien L. Lu, Peter Yiannacouras, Rolf Kassa, Michael Konow, and Taeweon Suh.

An FPGA-based Pentium in a Complete Desktop System. In International Symposium

on Field-Programmable Gate Arrays, pages 53–59, 2007.

50

Chapter 2. References

[35] Richard Uhlig, Roman Fishtein, Oren Gershon, Israel Hirsh, and Hong Wang.

SoftSDV: A Pre-silicon Software Development Environment for the IA-64 Architec-

ture. Intel Technology Journal, (Q4):14, 1999.

[36] Eric Haines. An Introductory Tour of Interactive Rendering. IEEE Computer Graphics

and Applications, 26(1), 2006.

[37] Matt Pharr, Aaron Lefohn, Craig Kolb, Paul Lalonde, Tim Foley, and Geoff Berry.

Programmable graphics: the future of interactive rendering. In SIGGRAPH ’08: ACM

SIGGRAPH 2008 classes, pages 1–6, 2008.

[38] T. H. Myer and Ivan E. Sutherland. On the Design of Display Processors. Communi-

cations of ACM, 11(6):410–414, 1968.

51

Chapter 3

The Performance Potential for Single

Application Heterogeneous Systems2

3.1 Introduction

As we blindly march towards thousands [1] of cores, one might be tempted to ask how

useful such systems might be for the average application. Achieving linear speedups with

more cores, like all good things, must eventually come to an end [2]. Gustafson [3] offers

a dissenting view, where applications will scale to utilize all available hardware.

Whereas architects have traditionally been the ones faced with the problem of limited

scalability [1, 4], the current trend of increasing cores lifts the performance scalability bur-

den from architects and places it onto algorithm designers, via restrictive programming

models [5]. It’s not entirely clear how well algorithms can deal with this problem. Am-

dahl makes the assumption that algorithms have inherently serial portions that will limit

performance on highly-parallel systems, whereas Gustafson assumes that algorithms can

always be scaled to increase parallelism if problem sizes are allowed to increase.

While there undoubtedly has been successes in achieving speedups using highly-parallel

GPU systems [6, 7], most applications do not have large amounts of easily-extracted par-

allelism.

Like earlier concerns about how much parallelism exists in applications that can be

extracted by extra hardware [8, 9, 10, 11] and the hardware area and power costs required

to extract it, we should also ask the same question in about many-core systems: How much

2Submitted for review to The 15th International Symposium on High-Performance Computer Architecture.
Henry Wong, Tor M. Aamodt. The Performance Potential for Single Application Heterogeneous Systems.

52

3.1. Introduction

parallelism exists in applications, and what does it cost to extract it with more hardware?

We make an attempt at answering this question in this paper.

We focus our analysis on heterogeneous systems. Heterogeneous systems offer better

performance [12, 13] and power efficiency [14] than homogeneous many-core systems.

Typically, heterogeneous systems perform computation using two types of processors.

There have been some commercial implementations [5, 15, 16]. These systems use a tra-

ditional microprocessor for serial tasks, while offloading parallel sections of algorithms to

an array of smaller cores to efficiently exploit the available parallelism. The Cell processor

[15] is a heterogeneous multi-core system, where a traditional PowerPC core resides on the

same die as an array of 8 smaller cores. GPU compute systems [5, 16] are typically off-chip,

attached to the CPU system on a card on a PCI Express bus, although commercial CPU-

GPU single-chip systems have been announced [17]. Whether a system is multi-core or

off-chip affects the performance of the communications channel (latency and bandwidth)

between the large cores and the array of small cores.

One common characteristic of heterogeneous multi-core systems is that the small multi-

cores for exploiting parallelism are unable to execute a single thread of execution as fast

as the larger sequential processor in the system. The Nvidia G80 series, for example, has

a register to register read-after-write latency of 24 shader clock cycles [5]. Our limit study

is designed to capture this effect.

There have been previous limit studies on parallelism in the context of single-threaded

machines [8, 9, 10], and homogeneous multi-core machines [11].

A heterogeneous system presents a somewhat different trade-off, as it is no longer just

a question of how much parallelism can be extracted in software, but also whether the par-

allelism is worth extracting in the face of slower sequential performance (higher register

read-after-write latency) and finite communication channels between processors.

We have avoided focus on applications with high thread-level parallelism, as those

have been studied well as examples of what works effectively on existing GPU compute

systems.

53

3.1. Introduction

This limit study makes the following contributions:

• We model an optimistic heterogeneous system consisting of a serial processor and

a parallel processor, modeling a traditional CPU and an array of cores for exploit-

ing parallelism, using an algorithm that can automatically extract parallelism across

function calls and loop iterations and optimally schedule instructions for the two

processors.

• We evaluate the effect of the parallel processor array’s sequential performance on the

ability of a heterogeneous system to accelerate a set of general-purpose applications.

We find sequential performance is a significant limitation on achievable speedup.

• We also evaluate the effects of constraining the communication channel between the

two processors (latency and bandwidth). We find that latency and bandwidth have

comparatively minor effects on speedup.

• We then look at the area and power efficiency of the heterogeneous system and pro-

pose design parameters to optimize those two metrics. We observe that the optimal

area-efficient design uses a lower sequential performance parallel processor, while

the optimal power-efficient design uses a higher sequential performance parallel

processor, relative to our model of current GPUs.

In the case of a heterogeneous system using a GPU-like parallel processor, speedup is

limited to only 12.7x for SPECfp 2000, 2.2x for SPECint 2000, and 2.5x for PhysicsBench

[18]. When connecting the GPU to the system using an off-chip PCI Express-like bus,

SPECfp achieves 74%, SPECint 94%, and PhysicsBench 82% of the speedup achievable

without latency and bandwidth limitations.

We review previous limit studies in Section 2, present our model in Section 3, method-

ology in Section 4, analyze our results in Section 5, and conclude in Section 6.

54

3.2. Related Work

3.2 Related Work

There have been many limit studies on the amount of parallelism within sequential pro-

grams.

Wall [8] studies parallelism in SPEC92 under various limitations in branch prediction,

register renaming, and memory disambiguation. Lam et al. [9] studies parallelism un-

der branch prediction, condition dependence analysis, and multiple-fetch. Postiff et al.

[10] perform a similar analysis on the SPEC95 suite of benchmarks. These studies showed

that significant amounts of parallelism exist in typical applications under optimistic as-

sumptions. These studies focused on extracting instruction-level parallelism on a single

processor. As it becomes increasingly difficult to extract ILP out of a single processor,

performance increases often comes from multi-core systems.

As we move towards multi-core systems, there are new constraints, such as communi-

cation latency, that are now applicable. Vachharajani et al. [11] studies speedup available

on homogeneous multiprocessor systems. They use a greedy scheduling algorithm to as-

sign instructions to cores. They also scale communication latency between cores in the

array of cores and find that it is a significant limit on available parallelism.

In our study, we extend these analyses to heterogeneous systems, where there are two

types of processors. Vachharajani examined the impact of communication between pro-

cessors within a homogeneous processor array. We examine the impact of communication

between a sequential processor and an array of cores. In our model, we roughly account for

communication latency between cores within an array of cores by using higher instruction

read-after-write latency.

Heterogeneous systems are interesting because they are commercially available [5, 15,

16] and, for GPU compute systems, can leverage the existing software ecosystem by using

the traditional CPU as its sequential processor. They have also been shown to be more area

and power efficient [12, 13, 14] than homogeneous multi-core systems.

Hill [12] uses Amdahl’s Law to show that there are limits to parallel speedup, and

55

3.3. Modeling a Heterogeneous System

Sequential
Processor

Sequential
Processor

Parallel
Processor

Parallel
Processor

MemMem Mem

a. b.

Figure 3.1: Conceptual Model of a Heterogeneous System. Two processors with different
characteristics may (a) or may not (b) share memory, affecting whether data needs to be
copied over the communication channel connecting them.

makes the case that when one must trade per-core performance for more cores, hetero-

geneous multiprocessor systems perform better than homogeneous ones because non-

parallelizable fragments of code do not benefit from more cores, but do suffer when all

cores are made slower to accommodate more cores. Arguments based on Amdahl’s Law

ignore communication latencies and assume that programs have one fraction that is in-

finitely parallel, while the remaining fraction is serial. We refine these simplistic assump-

tions with analysis of real workloads and their behavior scheduled on an idealized machine

that also models communication latency and bandwidth limits.

3.3 Modeling a Heterogeneous System

We model heterogeneous systems as having two processors with different characteristics

(Figure 3.1). The sequential processor models a traditional sequential processor, while

the parallel processor models an array of cores for exploiting parallelism. The parallel

processor models an array of low-cost cores by allowing parallelism, but with a longer

register read-after-write latency than the sequential processor. The two processors may

communicate over a communication channel whose latency and bandwidth we can limit.

56

3.3. Modeling a Heterogeneous System

We assume that the processors are attached to ideal memory systems. We model a system

with private memory (Figure 3.1(b)) by limiting the communication channel’s bandwidth

when data needs to be copied between processors, while a system with shared (Figure

3.1(a)) memory only needs to consider communication latency, as no data needs to be

copied across the link between the two processors.

We describe in Section 3.3.3 our algorithm for partitioning and scheduling an instruc-

tion trace to optimize its runtime on the serial and parallel processors.

The following sections describe each portion of our model in more detail.

3.3.1 Serial Processor

We model a serial processor as being able to execute one instruction per cycle. A simple

model has the advantage of having predictable performance characteristics that make the

optimal scheduling (Section 3.3.3) of work between serial and parallel processors feasi-

ble. A simple model preserves the essential characteristic of high-ILP processors that a

program is executed serially, while avoiding the modeling complexity of a more detailed

model. Although this simple model does not capture the CPI effects of a serial processor

which exploits ILP, we are mainly interested in the relative speeds between the sequential

and parallel processors. We account for sequential processor performance due to ILP by

making the parallel processor relatively slower. In the remainder of this paper, all time

periods are expressed in terms of the sequential processor’s cycle.

3.3.2 Parallel Processor

We model the parallel processor as a dataflow processor, where a data dependency takes

multiple cycles to resolve. Using a dataflow model, we avoid the requirement of partition-

ing instructions into threads, as done in the thread-programming model. This allows us to

model the upper bound of parallelism for future programming models that may be more

flexible than threads.

The parallel processor can execute multiple instructions in parallel, provided data de-

57

3.3. Modeling a Heterogeneous System

pendencies are satisfied. Slower sequential performance of the parallel processor is mod-

eled by increasing the latency from the beginning of an instruction’s execution until the

time its result is available for a dependent instruction.

We do not limit the parallelism that can be used by the program, as we are interested

in the amount of parallelism available in algorithms.

Our model can represent a variety of methods of building parallel hardware. In addi-

tion to an array of single-threaded cores, it can also model cores using fine-grain multi-

threading, like current GPUs.

In GPUs, fine-grain multithreading creates the illusion of a large amount of paral-

lelism (>10,000s of threads) with low per-thread performance, although physically there

is a lower amount of parallelism (100s of operations per cycle), high utilization of the

ALUs, and frequent thread switching. GPUs use the large number of threads to "hide"

register read-after-write latencies and memory access latencies by switching to a ready

thread. From the perspective of the algorithm, a GPU appears as a highly-parallel, low-

sequential-performance parallel processor.

To model current GPUs, we use a register read-after-write latency of 100 cycles. For

example, current Nvidia GPUs have a read-after-write latency of 24 shader clocks [5] and

a shader clock frequency of 1.3-1.5 GHz [19, 20]. The 100 cycle estimates includes the

effect of instruction latency, the difference between the shader clock and current CPU clock

speeds (about 2x), and the ability of current CPUs to extract ILP (about 2x).

3.3.3 Heterogeneity

We model a heterogeneous system by allowing an algorithm to choose between executing

on the serial processor or parallel processor and to switch between them (which we refer

to as a "mode switch"). We do not allow concurrent execution of both processors. This is a

common paradigm, where a parallel section of work is spawned off to a co-processor while

the main processor waits for the results. The runtime difference for optimal concurrent

processing is no better than 2x compared to not allowing concurrency.

58

3.3. Modeling a Heterogeneous System

We schedule an instruction trace for alternating execution on the two processors. Ex-

ecution of a trace on each type of core was described in Sections 3.3.1 and 3.3.2. For each

mode switch, we impose a "mode switch cost", intuitively modeling synchronization time

during which no useful work is performed. We use a dynamic programming algorithm to

choose points along the instruction trace where mode switches should occur such that the

total runtime of the trace, including the penalties incurred for switching modes, is mini-

mized. The mode switch cost is used to model communication latency, as described in the

next section.

The naïve optimal algorithm runs in quadratic time with respect to the instruction

trace length. Each instruction along the trace may be a mode switch point, and for each

potential mode switch point all future instructions along the trace are examined to find

the cumulative cost of the next mode switch point.

For traces of millions of instructions in length, quadratic time is too slow. We make an

approximation to reduce the algorithm to run in time linear in the length of the instruction

trace. Instead of looking ahead at all future instructions for each potential mode switch

point, we only look ahead 30,000 instructions. The modified algorithm is no longer op-

timal. We mitigate this sub-optimality by first reordering instructions before scheduling,

and observed that the amount of sub-optimality is insignificant.

To overcome the limitation of looking ahead only 30,000 instructions in our algorithm,

we reorder instructions in dataflow order before scheduling. Dataflow order is the order

in which instructions would execute if scheduled with our optimal scheduling algorithm.

This linear-time preprocessing step exposes parallelism found anywhere in the instruction

trace by grouping together instructions that can execute in parallel.

We remove instructions from the trace that do not depend on the result of any other

instruction. Most of these instructions are dead code created by our method of exposing

loop- and function-level parallelism, described in Section 3.4.2. Since dead code can ex-

ecute in parallel, we remove these instructions to avoid having them inflate the amount

of parallelism we observe. Across our benchmark set, 27% of instructions are removed by

59

3.3. Modeling a Heterogeneous System

this mechanism.

3.3.4 Latency

We model the latency of migrating tasks between processors by imposing a constant run-

time cost for each mode switch. This cost is intended to model the latency of spawning a

task, as well as transferring of data between the processors. If the amount of data trans-

ferred is large relative to the bandwidth of the link between processors, this is not a good

model for the cost of a mode switch. This model is reasonable when the mode switch is

dominated by latency, for example in a heterogeneous multi-core system where the mem-

ory hierarchy is shared (Figure 3.1(a)), so very little data needs to be copied between the

processors.

As described in Section 3.3.3, our trace scheduling algorithm considers the cost of a

mode switch when scheduling the instruction trace. A mode switch cost of zero would al-

low freely switching between modes, while a very high cost would constrain the scheduler

to choose to run the entire trace on one processor or the other, whichever was faster.

3.3.5 Bandwidth

Bandwidth is a constraint that limits the rate that data can be transferred between pro-

cessors in our model. Note that this does not apply to the processors’ link to its memory

(Figure 3.1), which we assume to be unconstrained. In our shared-memory model (Figure

3.1(a)) mode switches do not need to copy large amounts of data so only latency (Section

3.3.4) is a relevant constraint. In our private-memory model (Figure 3.1(b)), bandwidth is

consumed as a result of a mode switch.

If a data value is produced by an instruction in one processor and consumed by one or

more instructions in the other processor, then that data value needs to be communicated

to the other processor. A consequence of exceeding the imposed bandwidth limitation is

the addition of idle computation cycles while an instruction waits for its required operand

to be transferred. In our model, we assume opportunistic use of bandwidth, allowing

60

3.4. Simulation Infrastructure

communication of a value as soon as it is ready, in parallel with computation.

Each data value to be transferred is sent sequentially and occupies the communica-

tion channel for a specific amount of time. Data values can be sent any time after the

instruction producing the value executes, but must arrive before the first instruction that

consumes the value is executed. Data transfers are scheduled onto the communication

channel using an "earliest deadline first" algorithm, which produces a scheduling with a

minimum of added idle cycles.

Bandwidth constraints are applied by changing the amount of time each data value

occupies on the communication channel. Communication latency is applied by setting the

deadline for a value some number of cycles before the value is consumed.

Computing the bandwidth requirements and idle cycles needed, and thus the cost to

switch modes, requires a scheduling of the instruction trace, but the optimal instruc-

tion trace scheduling is affected by the cost of switching modes. We approximate the

ideal behavior by iteratively performing scheduling and bandwidth computation, using

bandwidth-caused idle cycles as an input into the scheduling algorithm, until conver-

gence.

3.4 Simulation Infrastructure

We evaluate performance using micro-op traces extracted from execution of a set of x86-

64 benchmarks on the PTLsim [21] simulator. Each micro-op trace was then scheduled

using our scheduling algorithm for execution on the heterogeneous system.

3.4.1 Benchmark Set

We chose our benchmarks with a focus towards general-purpose computing. We used

the reference workloads for SPECint and SPECfp 2000 v1.3.1 (23 benchmarks, except

253.perlbmk and 255.vortex which did not run in our simulation environment), Physics-

Bench 2.0 [18] (8 benchmarks), SimpleScalar 3.0 [22] (used here as a benchmark), and four

61

3.4. Simulation Infrastructure

Benchmark Description
linear Compute average of 9 input pixels for each output pixel. Each

pixel is independent.
sepia 3x3 constant matrix multiply on each pixel’s 3 components.

Each pixel is independent.
serial A long chain of dependent instructions, has parallelism ap-

proximately 1 (no parallelism).
twophase Loops through two alternating phases, one with no parallelism,

one with high parallelism. Needs to switch between processor
types for high speedup.

Table 3.1: Our microbenchmark set. We also employ many real benchmarks. (See Section
3.4.1)

small microbenchmarks (described in Table 1).

We chose PhysicsBench because it contains both sequential and parallel phases in the

benchmark, and would be a likely candidate to benefit from heterogeneity, as it would be

unsatisfactory if both types of phases were constrained to one processor type [18].

Our SimpleScalar benchmark used the out-of-order processor simulator from Sim-

pleScalar/PISA, running go from SPECint 95, compiled for PISA.

We used four microbenchmarks to observe behavior at extremes of parallelism, as

shown in Table 1. Linear and sepia are highly parallel, serial is serial, and twophase has

alternating highly parallel and serial phases.

Figure 3.2 shows the average parallelism present in our benchmark set. As expected,

SPECfp has more parallelism (611) than SPECint (116) and PhysicsBench (83). Linear

(4790) and sepia (6815) have the highest parallelism, while serial has essentially no paral-

lelism.

3.4.2 Traces

Micro-op traces were collected from PTLsim running x86-64 benchmarks, compiled with

gcc 4.1.2 -O2. Four microbenchmarks were run in their entirety, while the 32 real bench-

marks were run through SimPoint [23] to choose representative sub-traces to analyze. Our

traces are captured at the micro-op level, so in this paper instruction and micro-op are

62

3.4. Simulation Infrastructure

1

1
0

1
0

0

1
0

0
0

1
0

0
0

0

crafty
eon
gap
gcc
gzip
mcfparser

twolf
vpr

specint_average

ammp
applu

apsi
artequakefacerec

fma3d
galgel
lucas
mesa
mgridsixtrack
swimwupwise

specfp_averagenovis_breakable

novis_continuous

novis_deformable

novis_everything

novis_explosions

novis_highspeed
novis_periodic
novis_ragdoll

physbench_average
sim-outorder

linear
sepia
serialtwophase

Parallelism

Figure 3.2: Average Parallelism of Our Benchmark Set

63

3.4. Simulation Infrastructure

used interchangeably.

We used SimPoint to select simulation points of 10-million micro-ops in length from

complete runs of benchmarks. As recommended [23], we allowed SimPoint to decide how

many simulation points should be used to approximate the entire benchmark run. We

averaged 12.9 simulation points per benchmark. This is a significant savings over the

complete benchmarks which were typically several hundred billion instructions long. The

weighted average of the results over each set of SimPoint traces are presented for each

benchmark.

We assume branches are correctly predicted. Many branches, like loops, can often be

easily predicted or speculated or even restructured away during manual parallelization.

As we are trying to evaluate the upper-bound of parallelism in an algorithm, we avoid lim-

iting parallelism by not imposing the branch-handling characteristics of serial machines.

This is somewhat optimistic as true data-dependent branches would at least need be con-

verted into speculation or predicated instructions.

Each trace is analyzed for true data dependencies. Register dependencies are recog-

nized if an instruction consumes a value produced by an earlier instruction (read-after-

write). Dependencies on values carried by the instruction pointer register are ignored,

to avoid dependencies due to instruction-pointer-relative data addressing. Like earlier

limit studies [9, 10], stack pointer register manipulations are ignored, to extract paral-

lelism across function calls. Memory disambiguation is perfect: Dependencies are carried

through memory only if an instruction loads a value from memory actually written by an

earlier instruction.

It is also important to be able to extract loop-level parallelism and avoid serialization of

loops through the loop induction variable. We implemented a generic solution to prevent

this type of serialization. We identify instructions that produce result values that are stat-

ically known, which are instructions that have no input operands (e.g. load constant). We

then repeatedly look for instructions dependent only on values that are statically known

and mark the values they produce as statically known as well. We then remove dependen-

64

3.5. Results

cies on all statically-known values. This is similar to repeatedly applying constant folding

and constant propagation optimizations [24] to the instruction trace. The dead code that

results is removed as described in Section 3.3.3.

A loop induction variable [24] is often initialized with a constant (e.g. 0). Increment-

ing the induction variable by a constant depends only on the initialization value of the

induction variable, so the incremented value is also statically known. Each subsequent

increment is likewise statically known. This removes serialization caused by the loop con-

trol variable, but preserves genuine data dependencies between loop iterations, including

loop induction variable updates that depend on a variable computed value.

3.5 Results

In this section, we present analysis of our results. First, we look at the speedup that can be

achieved when adding a parallel co-processor to a sequential machine and show that the

speedup is highly dependent on the sequential performance of the parallel processor. We

then look at the effect of communication latency and bandwidth, and see that the effect is

significant, but small. We then derive area and power efficiency metrics and find parallel

processor designs that maximize those metrics.

3.5.1 Why Heterogeneous?

Figures 3.3 and 3.4 give some intuition for the characteristics of the scheduling algorithm.

Figure 3.4 shows the parallelism of the instructions that are scheduled to use the parallel

processor when our workloads are scheduled for best performance. Figure 3.3(a) shows

the proportion of instructions that are assigned to execute on the parallel processor. As

the instruction latency increases, sections of the workload where the benefit of parallelism

does not outweigh the cost of slower sequential performance become scheduled onto the

sequential processor, raising the average parallelism of those portions that remain on the

parallel processor, while reducing the proportion of instructions that are scheduled on the

65

3.5. Results

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 10 100 1000 10000 100000

Parallel Instruction Latency

F
ra

c
ti

o
n

o
f

In
s

tr
u

c
ti

o
n

s
o

n
P

a
ra

ll
e

l
P

ro
c

e
s

s
o

r
SPECfp

Average

SimpleScalar

SPECint

PhysBench

a.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 10 100 1000 10000 100000

Parallel Instruction Latency

F
ra

c
ti

o
n

o
f

In
s

tr
u

c
ti

o
n

s
o

n
P

a
ra

ll
e

l
P

ro
c

e
s

s
o

r

linear

sepia

twophase

serial

b.

Figure 3.3: Proportion of Instructions Scheduled on Parallel Core. Real benchmarks (a),
Microbenchmarks(b)

66

3.5. Results

10

100

1000

10000

100000

1 10 100 1000 10000 100000

Parallel Instruction Latency

A
v
e
ra

g
e

P
a
ra

ll
e
li

s
m

in
P

a
ra

ll
e
l

P
h

a
s
e
s

SPECfp

Average

SPECint

SimpleScalar

PhysBench

Figure 3.4: Average Parallelism on Parallel Processor

67

3.5. Results

parallel processor. The instructions that are scheduled to run on the sequential proces-

sor receive no speedup, but scheduling more instructions on the parallel processor in an

attempt to increase parallelism will only decrease speedup.

The microbenchmarks in Figure 3.3(b) show our scheduling algorithm works as ex-

pected. Serial has nearly no instructions scheduled for the parallel core. Twophase has

about 18.5% of instructions in its serial component that are scheduled on the sequential

processor leaving 81.5% on the parallel processor, while sepia and linear highly prefer the

parallel processor.

We look at the potential speedup of adding a parallel processor to an existing sequen-

tial machine. Figures 3.5(a) and (b) show the speedup of our benchmarks for varying

parallel instruction latency, as a speedup over a single sequential processor. Two plots for

each benchmark group are shown: The solid plots show the speedup of a heterogeneous

system where communication has no cost, while the dashed plot shows speedup when

communication is very expensive. We focus on the solid plots in this section.

It can be observed from Figures 3.5(a) and (b) that as the instruction latency increases,

there is a significant loss in the potential speedup provided by the extra parallel processor,

becoming limited by the amount of parallelism available in the workload that can be ex-

tracted, as seen in Figure 3.3. Since our parallel processor model is somewhat optimistic,

the speedups shown here should be regarded as an upper bound of what can be achieved.

With a parallel processor with GPU-like instruction latency of 100 cycles, SPECint

would be limited to a speedup of 2.2x, SPECfp to 12.7x, PhysicsBench to 2.5x, with 64%,

92%, and 72% of instructions scheduled on the parallel processor, respectively. The speedup

is much lower than the peak relative throughput of a GPU compared to a sequential CPU

(≈50x), which shows that if a GPU-like processor were used as the parallel processor in

a heterogeneous system, the speedup on these workloads would be limited by the paral-

lelism available in the workload, while still leaving much of the GPU hardware idle.

In contrast, for highly-parallel workloads, the speedups achieved at an instruction la-

tency of 100 are similar to the peak throughput available in a GPU. The highly-parallel

68

3.5. Results

1

10

100

1000

1 10 100 1000 10000 100000

Parallel Instruction Latency

S
p

e
e
d

u
p

SPECfp

SPECfp NoSwitch

SimpleScalar

SS NoSwitch

PhysBench

PhysBench NoSwitch

SPECint

SPECint NoSwitch

a.

1

10

100

1000

10000

1 10 100 1000 10000 100000

Parallel Instruction Latency

S
p

e
e
d

u
p

sepia

sepia NoSwitch

linear

linear NoSwitch

twophase

twophase NoSwitch

serial

serial NoSwitch

b.

Figure 3.5: Speedup of Heterogeneous System. Traces show speedup for ideal communi-
cation (solid) and with communication forbidden (dashed, NoSwitch). Real benchmarks
(a), Microbenchmarks (b). 69

3.5. Results

linear filter and sepia tone filter (Figure 3.5(b)) kernels have enough parallelism to achieve

50-70x speedup at an instruction latency of 100. A highly-serial workload (serial) does not

benefit from the parallel processor.

Although current GPU compute solutions built with efficient low-complexity multi-

threaded cores are sufficient to accelerate algorithms with large amounts of thread-level

parallelism, general-purpose algorithms would be unable to utilize the large number of

thread contexts provided by the GPU, while under-utilizing the arithmetic hardware avail-

able. In order to be useful for applications without copious amounts of parallelism, we

believe that instruction latencies of GPUs will need to decrease and can no longer rely

mostly on fine-grain multithreading to keep utilization high.

3.5.2 Communication

In this section, we evaluate the impact of communication latency and bandwidth on the

potential speedup, comparing performance between the extreme cases where communi-

cation is unrestricted and communication is forbidden. The solid plots in Figure 3.5 show

speedup when there are no limitations on communication, while the dashed plots (marked

NoSwitch) has communication so expensive that the scheduler chooses to run the work-

load entirely on the sequential processor or parallel processor, never switching between

them. Figures 3.6(a) and (b) show the ratio between the solid and dashed plots in Figures

3.5(a) and (b), respectively, to highlight the impact of communication. At both extremes of

instruction latency, where the workload is mostly sequential or mostly parallel, communi-

cation has little impact. It is in the moderate range around 100-200 where communication

potentially matters most.

The potential impact of expensive (latency and bandwidth) communication is signifi-

cant. For example, at a GPU-like instruction latency of 100, SPECint achieves only 56%,

SPECfp 23%, and PhysicsBench 44% of the performance of no communication, as can be

seen in Figure 3.6(a). From our microbenchmark set (Figures 3.5(b) and 3.6(b)), twophase

is particularly sensitive to communication costs, and gets no speedup for instruction la-

70

3.5. Results

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000 100000

Parallel Instruction Latency

S
lo

w
d

o
w

n

SPECint

SimpleScalar

PhysBench

SPECfp

a.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000 100000

Parallel Instruction Latency

S
lo

w
d

o
w

n

serial

sepia

linear

twophase

b.

Figure 3.6: Slowdown of infinite communication cost (NoSwitch) compared to zero com-
munication cost. Real benchmarks (a), Microbenchmarks (b).

71

3.5. Results

0.7

0.75

0.8

0.85

0.9

0.95

1

1 10 100 1000 10000 100000

Parallel Instruction Latency

S
lo

w
d

o
w

n
F

a
c
to

r
v
s
.

Z
e
ro

-C
o

s
t

S
w

it
c
h

SPECint

PhysBench

SPECfp

SimpleScalar

Figure 3.7: Slowdown due to 100,000 cycles of mode-switch latency. Real benchmarks.

tency above 10. We look at more realistic constraints on latency and bandwidth in the

following sections.

3.5.3 Latency

Poor parallel performance is often attributed to high communication latency [11]. Hetero-

geneous processing adds a new communication requirement — the communication chan-

nel between sequential and parallel processors (Figure 3.1). In this section, we measure

the impact of the latency of this communication channel.

We model this latency by requiring that switching modes between the two processor

types causes a fixed amount of idle computation time. In this section, we do not consider

the bandwidth of the data that needs to be transferred. This model represents a heteroge-

neous system with shared memory (Figure 3.1(a)), where migrating a task does not involve

72

3.5. Results

data copying, but only involves a pipeline flush, notification to the other processor of work,

and potentially flushing private caches if caches are not coherent.

Figure 3.7 shows the slowdown when we include 100,000 cycles of mode-switch la-

tency in our performance model and scheduling, when compared to zero-latency mode

switch.

The impact of imposing a delay for every mode switch has only a minor effect on run-

time. Although Figure 3.6(a) suggested that the potential for performance loss due to

latency is great, even when each mode switch costs 100,000 cycles (greater than 10us at

current clock rates), most of the speedup remains. We can achieve ≈85% of the perfor-

mance of a heterogeneous system with zero-cost communication.

For systems with private memory (e.g. discrete GPU), data copying is required when

migrating a task between processors at mode switches. We consider bandwidth constraints

in the next section.

3.5.4 Bandwidth

In the previous section, we saw that high communication latency had only a minor effect

on achievable performance. Here, we place a bandwidth constraint on the communication

between processors. Data that needs to be communicated between processors is restricted

to a maximum rate, and the processors are forced to wait if data is not available in time

for an instruction to use it, as described in Section 3.3.5. We also include 1,000 cycles of

latency as part of the model.

We first construct a model to represent PCI Express, as discrete GPUs are often at-

tached to the system this way. PCI Express x16 has a peak bandwidth of 4GB/s and latency

around 250ns [25]. Assuming current processors perform about 4 billion instructions per

second on 32-bit data values, we can model PCI Express using a latency of about 1,000

cycles and bandwidth of 4 cycles per 32-bit value. Being somewhat pessimistic to account

for overheads, we use a bandwidth of 8 cycles per 32-bit value (about 2GB/s).

Figure 3.8 shows the performance impact of restricting bandwidth to one 32-bit value

73

3.5. Results

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 10 100 1000 10000 100000

Parallel Instruction Latency

S
lo

w
d

o
w

n

SimpleScalar

SPECint

PhysBench

SPECfp

Figure 3.8: Slowdown due to a bandwidth constraint of 8 cycles per 32-bit value and 1,000
cycles latency, similar to PCI Express x16. Real benchmarks.

74

3.5. Results

1

10

100

0.001 0.01 0.1 1

Normalized Bandwidth

S
p

e
e
d

u
p

SPECfp

PhysBench

SPECint

SimpleScalar

PCI Express x16
AGP 4x

PCI

Figure 3.9: Speedup over sequential processor for varying bandwidth constraints. Real
benchmarks.

75

3.5. Results

every 8 clocks with 1,000 cycles of latency. Slowdown is worse than with 100,000 cycles of

latency, but the worst benchmark set (SPECfp) can still achieve ≈65% of the ideal perfor-

mance. Comparing latency (Figure 3.7) to bandwidth (Figure 3.8) constraints, SPECfp and

PhysicsBench has more performance degradation than under a pure-latency constraint,

but SPECint performs better, suggesting that SPECint is less sensitive to bandwidth.

The above plots suggest that a heterogeneous system attached without a potentially-

expensive, low-latency, high-bandwidth communication channel can still achieve much of

the potential speedup.

To further evaluate whether GPU-like systems could be usefully attached using even

lower bandwidth interconnect, we measure the sensitivity of performance to bandwidth

for instruction latency 100. Figure 3.9 shows the speedup for varying bandwidth. Band-

width (x-axis) is normalized to 1 cycle per datum, equivalent to about 16GB/s in today’s

systems. Speedup (y-axis) is relative to the workload running on a sequential processor.

SPECfp and PhysicsBench have similar sensitivity to reduced bandwidth, while SPECint’s

speedup loss at low bandwidth is less significant (Figure 3.9). Although there is some loss

of performance at PCI Express speeds (normalized bandwidth = 1/8), about half of the

potential benefit of heterogeneity remains at PCI-like speeds (normalized bandwidth =

1/128). At PCI Express x16 speeds, SPECint can achieve 92%, SPECfp 69%, and Physics-

Bench 78% of the speedup achievable without latency and bandwidth limitations.

As can be seen from the above data, heterogeneous systems can potentially provide

significant performance improvements on a wide range of applications, even when sys-

tem cost sensitivity demands high-latency, low-bandwidth interconnect. However, it also

shows that applications are not entirely insensitive to latency and bandwidth, so high-

performance systems will still need to worry about increasing bandwidth and lowering

latency.

The lower sensitivity to latency than to bandwidth suggests that a shared-memory

multi-core heterogeneous system would be of benefit, as sharing a single memory sys-

tem avoids data copying when migrating tasks between processors, leaving only synchro-

76

3.5. Results

nization latency. This could increase costs, as die size would increase, and the memory

system would then need to support the needs of both sequential and parallel processors.

A high-performance off-chip interconnect like PCI Express or HyperTransport may be a

good compromise.

3.5.5 Efficiency

Earlier we have shown that heterogeneous systems provide significant performance ben-

efits over a wide range of parameters. In this section, we examine the potential area and

power efficiency gains.

Earlier work has shown examples where their particular designs of heterogeneous sys-

tems are capable of improved area and power efficiency [13, 14]. Our motivation for eval-

uating efficiency is to find the parameters of the heterogeneous design that maximizes

efficiency.

To calculate efficiency, we need both the performance and cost of each design point.

We use performance normalized to the runtime of a serial processor as our performance

metric (Figure 3.5). As before, we schedule workloads among the two processors to mini-

mize runtime, so our efficiency metrics measure the efficiencies of the highest-performing

scheduling. We use the data presented in Figures 3.3 and 3.4.

To estimate cost, we assume that the area and power scales linearly with increasing

parallelism, and that Pollack’s Rule [1] regarding complexity holds when scaling the in-

struction latency of the core. Hill’s analysis [16] of multi-core scaling using Amdahl’s Law

uses the same performance-complexity scaling rule.

Pollack’s Rule states that the area and power complexity of a processor scales propor-

tional to the square of its performance, thus power/performance (energy per instruction,

EPI) scales linearly with performance. In this study, we use the inverse of instruction la-

tency as performance in Pollack’s Rule. One limitation of Pollack’s Rule is that it may not

generalize beyond cores already existing, in particular to very-low-cost cores. Pollack’s

Rule assumes one can continue to scale processor designs arbitrarily small, resulting in

77

3.5. Results

arbitrarily high area and power efficiency.

We normalize the performance and cost against the sequential processor. For cost cal-

culations, a parallel processor with latency=1 supporting parallelism=1 is equivalent to a

sequential processor. The area and EPI cost functions are described below.

3.5.6 Area Cost

When computing the area cost, we assume the hardware needs to be built large enough to

accommodate the parallelism of the entire benchmark set. Although it is possible to build

hardware with less parallelism than what the workload requires, this is similar to increas-

ing the instruction latency as the excess tasks need to share the same hardware, which

causes the optimal workload balance to change. The optimal workload balance is used

when scheduling for a higher-latency parallel processor, but building insufficient hard-

ware and scaling the parallel processor runtime leads to a sub-optimal workload balance.

Average parallelism for each workload (Figure 3.4) as well as the standard deviation

across the set of benchmarks (not shown) is measured. We do not use peak parallelism as

the metric as we wish to avoid outliers. Our area cost assumes we support parallelism of

two standard deviations above the average parallelism plotted in Figure 3.4. Using a value

other than two standard deviations does not appreciably change the shape of the area

efficiency plot in Figure 3.11. Since we are not building application-specific accelerators,

we do not use an area cost specific to each benchmark.

Equation 3.1 illustrates our area cost function:

costarea =
1.0 + parallelism

latency2 (3.1)

parallelism =

∑
benchmarks

parallelismbenchmark

nbenchmarks
+ 2σ

The normalized area cost is the sum of two terms: the area of the sequential processor

(1.0), and the area of the parallel processor, which scales linearly with parallelism sup-

78

3.5. Results

1

10

100

1000

10000

1 10 100 1000 10000 100000

Parallel Instruction Latency

N
o

rm
a
li

z
e
d

H
e
te

ro
g

e
n

e
o

u
s

S
y
s
te

m
A

re
a

Expensive

in area

Figure 3.10: Heterogeneous system area, normalized to area of sequential processor.

ported and scales as the inverse square of instruction latency following Pollack’s Rule. We

support parallelism two standard deviations above the average parallelism in our bench-

mark set.

The area cost relative to the sequential processor is shown in Figure 3.10. The paral-

lelism extracted from our benchmarks is an upper bound, so we expect the area cost as

presented to also be an upper bound. Nevertheless, building a parallel processor capa-

ble of providing the parallelism demanded by our benchmark set with instruction latency

below 10 likely uses too much area to be built.

Our area efficiency metric is performance per area, which should be maximized. This

metric is plotted in Figure 3.11 and illustrated in Equation 3.2. We discuss in Section 3.5.8.

area ef f iciency =
speedup

costarea
(3.2)

79

3.5. Results

0

1

2

3

4

5

6

1 10 100 1000 10000 100000

Parallel Instruction Latency

N
o

rm
a
li

z
e
d

A
re

a
E

ff
ic

ie
n

c
y

SPECfp

PhysBench

SPECint

SimpleScalar

Figure 3.11: Normalized area efficiency. Real benchmarks.

80

3.5. Results

3.5.7 Energy Per Instruction

Power consumption, unlike area, can be reduced on a per-workload basis by turning off

unused portions of hardware. Thus, we can model energy usage by estimating the EPI of

each core type, and weighting them by the number of instructions executed on each core

type. It is assumed that it is possible to shut down part or all of the cores when it is not

processing instructions, by clock gating or other means.

The following equations illustrate our EPI cost function.

EPIsequential = 1

EPIparallel = latency−1

EPIsystem =
insnsseq. ×EPIseq. + insnspar. ×EPIpar.

insnstotal
(3.3)

We set the EPI for the sequential core to 1 and assume that EPI scales inversely as

instruction latency, following Pollack’s Rule. System EPI is the weighted average of se-

quential EPI and parallel EPI.

System EPI, plotted in Figure 3.12, is the cost function we wish to minimize.

3.5.8 Efficiency Results

As SPECfp has the highest performance improvement from a heterogeneous processor

(Figure 3.5), it is not surprising that SPECfp also has the best area efficiency (Figure 3.11).

To maximize area efficiency, the parallel processor instruction latency should be near

500. At this design point, SPECfp can achieve 5x, SPECint about 1.47x, and PhysicsBench

about 1.31x the performance per area compared to using only a sequential processor. For

comparison, we estimate the latency of current GPUs to be 100 (See Section 3.3.4).

SPECfp shows the best (lowest) EPI, as SPECfp has more parallelism and is able to use

the more efficient parallel core more often (Figure 3.3). At 100 cycles of instruction latency,

SPECfp can achieve an EPI of 0.05, SPECint 0.30, and PhysicsBench 0.26, all significantly

81

3.5. Results

0

0.2

0.4

0.6

0.8

1

1.2

1 10 100 1000 10000 100000

Parallel Instruction Latency

N
o

rm
a
li

z
e
d

S
y
s
te

m
E

P
I

SimpleScalar

SPECint

PhysBench

SPECfp

Figure 3.12: Normalized energy per instruction (EPI). Real benchmarks.

82

3.6. Conclusion

better than using only the sequential core (EPI = 1). The parallel processor design resulting

in lowest system EPI has instruction latency around 50-100 for SPECfp, 20 for SPECint,

and 10 for PhysicsBench. At the optimal CPI for each benchmark set, SPECfp can achieve

EPI=0.047 at latency 70, SPECint EPI=0.11 at latency 20, and PhysicsBench EPI=0.12 at

latency 10.

Especially for SPECint and PhysicsBench, the optimal instruction latency for EPI is

significantly lower than current GPUs. This result is quite different from area efficiency,

where underutilized high-cost cores reduces area efficiency at low instruction latency.

With workloads scheduled for performance, it appears that the optimal area and EPI

design points are conflicting. If Moore’s Law continues to hold, future designs will be-

come increasingly power-limited rather than area-limited. As our data suggests that both

performance and EPI improves with lower-latency parallel processors, we believe optimal

designs in the future should have somewhat lower instruction latency and higher com-

plexity than current GPUs.

3.6 Conclusion

We have modeled the abstract behavior of a heterogeneous system with a sequential pro-

cessor and a parallel processor with higher instruction latency. We analyzed a set of bench-

marks, and optimally scheduled them onto the two processor types.

We showed that there is a significant, but limited, amount of parallelism that can be

extracted from our workloads, and that instruction latency of the parallel processor was a

significant factor in performance. Latency and bandwidth, while significant factors, have

comparatively minor effects on performance. Latency and bandwidth characteristics of

PCI Express was sufficient to achieve most of the available performance, and about half of

the available performance could be attained using a low-performance PCI-like intercon-

nect.

We also showed that, assuming Pollack’s Rule, area efficiency and EPI can be improved

83

3.6. Conclusion

with a heterogeneous system, and that the optimal area-efficient design differs from the

optimal power-efficient design. The optimal area-efficient design has a relative instruction

latency of around 500, while the optimal power-efficient design has latency around 20 to

70, depending on workload.

Note that since our results are normalized to the sequential processor, our results scale

as processor designs improve. As sequential processor performance improves in the fu-

ture, the absolute performance of the parallel processor will also need to improve to match.

Heterogeneous systems have the potential to improve performance and efficiency for

single application workloads, and still do so with low-performance interconnect. We see

little reason from a performance and efficiency perspective not to build heterogeneity in

some form. However, today’s restrictive hardware and programming models may fur-

ther limit attainable speedups and increase software developer effort. Intel’s upcoming

Larrabee [26] claims to improve ease of development by being x86-compatible.

As systems become more power constrained and less area constrained, our data sug-

gests that the parallel processor should have faster sequential performance than what is

commonly found in today’s GPUs, increasing performance and power efficiency at the ex-

pense of some area efficiency.

84

References

[1] S. Borkar. Thousand Core Chips — A Technology Perspective. In Proc. 44th Annual

Conference on Design Automation, pages 746–749, 2007.

[2] G. M. Amdahl. Validity of the single-processor approach to achieving large scale

computing capabilities. In AFIPS Conference Proceedings vol. 30, pages 483–485, 1967.

[3] J. L. Gustafson. Reevaluating Amdahl’s Law. Communications of ACM, 31(5):532–533,

1988.

[4] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, K. Chang. The case for a single-

chip multiprocessor. ACM SIGPLAN Notices, 31(9):2–11, 1996.

[5] Nvidia. Compute Unified Device Architecture Programming Guide

Version 2.0. http://developer.download.nvidia.com/compute/cuda/2.0-

Beta2/docs/Programming_Guide_2.0beta2.pdf.

[6] S. Che, J. Meng, J. W. Sheaffer, K. Skadron. A Performance Study of General Purpose

Applications on Graphics Processors. In First Workshop on General Purpose Processing

on Graphics Processing Units, 2007.

[7] L. Nyland, M. Harris, J. Prins. Fast N-Body Simulation with CUDA. GPU Gems 3,

2007.

[8] D. W. Wall. Limits of Instruction-Level Parallelism. Technical Report 93/6, DEC

WRL, 1993.

[9] M. S. Lam, R. P. Wilson. Limits of control flow on parallelism. In Proc. 19th Interna-

tional Symposium on Computer Architecture, pages 46–57, 1992.

85

Chapter 3. References

[10] M. A. Postiff, D. A. Greene, G. S. Tyson, T. N. Mudge. The Limits of Instruction Level

Parallelism in SPEC95 Applications. ACM SIGARCH Computer Architecture News,

27(1):31–34, 1999.

[11] N. Vachharajani, M. Iyer, C. Ashok, M. Vachharajani, D. I. August, D. Connors. Chip

multi-processor scalability for single-threaded applications. ACM SIGARCH Com-

puter Architecture News, 33(4):44–53, 2005.

[12] M. D. Hill, M. R. Marty. Amdahlś Law in the Multicore Era. IEEE Computer, 41(7):33–

38, 2008.

[13] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi. Single-ISA Heterogeneous

Multi-Core Architectures for Multithreaded Workload Performance. In Proc. 31st

International Symposium on Computer Architecture, page 64, 2004.

[14] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, D. M. Tullsen. Single-ISA Het-

erogeneous Multi-Core Architectures: The Potential for Processor Power Reduction.

In Proc. 36th IEEE/ACM International Symposium on Microarchitecture, page 81, 2003.

[15] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, D. Shippy. Introduc-

tion to the Cell multiprocessor. IBM Journal of Research and Development, 49(4/5):589–

604, 2005.

[16] J. Hensley. Close to the Metal. ACM SIGGRAPH 2007 courses, course 24 article 7,

2007.

[17] AMD. 2007 Financial Analyst Day. http://download.amd.com/Corporate/

MarioRivasDec2007AMDAnalystDay.pdf, 2007.

[18] T. Y. Yeh, P. Faloutsos, S. J. Patel, G. Reinman. ParallAX: an architecture for real-

time physics. In Proc. 34th International Symposium on Computer Architecture, pages

232–243, 2007.

[19] GeForce 8 Series. http://www.nvidia.com/page/geforce8.html.

86

Chapter 3. References

[20] GeForce GTX 280. http://www.nvidia.com/object/

geforce_gtx_280.html.

[21] M. T. Yourst. PTLsim: A Cycle Accurate Full System x86-64 Microarchitectural Simu-

lator. In IEEE International Symposium on Performance Analysis of Systems and Software

ISPASS, 2007.

[22] T. Austin, E. Larson, D. Ernst. SimpleScalar: An infrastructure for computer system

modeling. IEEE Computer, 35(2), 2002.

[23] T. Sherwood, E Perelman, G. Hamerly, B. Calder. Automatically Characterizing Large

Scale Program Behavior. In Proc. 10th International Conference on Architectural Sup-

port for Programming Languages and Operating Systems ASPLOS, 2002.

[24] S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kauffman, 1997.

[25] B. Holden. Latency Comparison Between Hyper-

Transport and PCI-Express in Communications Systems.

http://www.hypertransport.org/docs/wp/Latency_Comparison

_HyperTransport_PCIe_in_Communications_Systems.pdf.

[26] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey, S. Junkins,

A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski, T. Juan, P. Hanrahan.

Larrabee: A Many-Core x86 Architecture for Visual Computing. In International Con-

ference on Computer Graphics and Interactive Techniques, 2008.

87

Chapter 4

Conclusion

In this section we summarize the preceding two chapters, comment on limitations, and

discuss future work.

4.1 Summary

This thesis explores CPU-GPU heterogeneous architectures. Chapter 2 presented Pan-

gaea, a tightly-integrated heterogeneous multicore design where the GPU and CPU share

the memory hierarchy. The limit study in Chapter 3 explores the potential for GPU-CPU

heterogeneous systems to accelerate general-purpose applications and some requirements

of the architecture to do so.

4.1.1 Pangaea

In Chapter 2, we presented Pangaea, a heterogeneous GPU-CPU multicore architecture.

Pangaea aims to support only computation with the GPU cores, tighter integration for

lower communication latency, with a shared memory programming model.

As Pangaea is targeted for compute applications only and not graphics, the GPU’s

graphics-specific hardware can be removed. We find that in the Intel X4500 GPU, the

graphics-specific hardware occupies an area equivalent to 9 processing cores (Execution

Units, EU), and power consumption equivalent to 5 EUs. As the X4500 GPU has on the

order of 10 EUs, there is a large area and power savings by removing legacy 3D graphics

support. In our 2-EU prototype, the area and power savings are 81% and 70%, respec-

tively. In addition, the addition of a dedicated thread spawner while removing much of

88

4.1. Summary

the legacy graphics pipeline results in a reduced thread spawn latency, from ∼1500 clocks

down to 26.

Pangaea also boasts tighter integration between CPU and GPU than current GPU com-

pute systems. This is accomplished by locating the GPU cores on the same chip as the

CPU, and providing fast signaling mechanisms to communicate. Fast communication is

accomplished by IA32 ISA extensions implementing fast user-level interrupts on top of

existing cache coherency mechanisms. The signal instruction is a modified store to spawn

threads, the emonitor instruction sets up monitoring for writes to address ranges to trigger

user-level interrupts, and the ereturn instruction returns from a ULI routine.

Pangaea implements Exo’s [1] address translation remapping and collaborative exception

handling using similar mechanisms, allowing Pangaea’s GPU and CPU to shared a single

virtual memory address space. Pangaea also shares the last level cache between GPU and

CPU, supporting efficient collaboration between CPU and GPU (e.g. producer-consumer).

A synthesized prototype implemented on an FPGA is also presented.

4.1.2 Limit Study

The limit study presented in Chapter 3 explores GPU compute-like acceleration for general-

purpose applications. The limit study makes optimistic assumptions about the paralleliz-

ability of an instruction trace and attempts to model the upper-bound of performance un-

der various constraints found in typical GPU compute systems. We then assume Pollack’s

Rule [2] concerning processor scaling and observe some general trends in GPU compute

core design.

GPUs support large amounts of parallelism, but typically have high register read-after-

write latency [3], such that the sequential performance of GPUs is lower than CPUs. GPUs

are typically attached to the rest of the system via an off-chip interconnect like PCI Ex-

press. This limit study looks at the potential parallelism usable under the constraints of

lower GPU sequential performance, and limited bandwidth and latency of the intercon-

nect.

89

4.2. Relation Between Works

By analyzing instruction traces from general-purpose applications, the amount of par-

allelism available to be extracted by GPU-like systems can be measured. Like earlier limit

studies on available parallelism [4, 5], we find that under optimistic assumptions there is

a large amount of parallelism in general-purpose applications, but we find that the poten-

tial speedups are limited by the poor sequential performance of GPUs. We also showed

that limitations on latency and bandwidth of the interconnect have a relatively minor ef-

fect on achievable performance, such that it is not critical that a GPU needs to be on the

same die as the CPU for performance reasons. Anecdotally, this appears to be the case

in application examples, where most applications spend a very small proportion of time

transferring data between CPU and GPU. [6].

Using our performance model and assuming Pollack’s Rule on area and power scal-

ing holds, we can derive area and power efficiency metrics as the GPU core performance

scales. We see that with the exception of the fully-serial microbenchmark, heterogeneity

improves performance and efficiency. We find that the optimal area-efficient parallel core

has register read-after-write latency around 500x greater than the CPU, while the optimal

power-efficient design has a latency of 50-70. For comparison, we estimate the modern

GPU’s latency to be ∼100.

Future GPUs will need to rely less on extreme amounts of parallelism if it wishes to

accelerate ordinary applications.

4.2 Relation Between Works

The contributions presented earlier were toward improving accelerating general-purpose

computation on the GPU. Pangaea (Chapter 2) proposed an architecture, while the limit

study in Chapter 3 explored the design and application space around it.

The limit study was conceived to address some of the limitations of Pangaea’s narrow

coverage of design space and applications. Chapter 2 explored only one design point for

the CPU and GPU, and only a small set of highly-parallel workloads. To improve on that,

the limit study explores a wider range of benchmarks as well as a larger span of varying

90

4.3. Potential Applications

GPU core performance.

One interesting set of data from the limit study involves the two benchmarks that were

used in evaluating Pangaea (linear and sepia). As can be seen in Figures 3.2 and 3.3, these

two benchmarks are almost entirely parallelizable. Although they get good speedup on

Pangaea, these two benchmarks are not representative of the typical program. However,

there are several benchmarks in the SPECfp suite (Figure 3.2) which approach the paral-

lelism in linear and sepia (equake, galgel, and mgrid). These may be good targets for GPU

acceleration on today’s architectures.

4.3 Potential Applications

Pangaea’s proposed architecture can be used directly in designing processors. Our area

and power analysis (Section 2.5) shows that the current approach to GPU compute is in-

efficient because a significant part of the GPU is unused in general-purpose compute ap-

plications, and should be removed. Our FPGA prototype shows that the architecture is

functional as proposed.

The data from the limit study presented in Chapter 3 can be used to identify appli-

cations which may be amenable to GPU acceleration. Applications with large amounts

of parallelism (Figure 3.2) may be suitable candidates for GPU acceleration on today’s

architectures. As GPU cores improve in sequential performance, applications with less

parallelism will become suitable for acceleration.

The limit study also gives some suggestions on how future general-purpose acceler-

ators should be designed. In particular, the limit study suggests that GPU architectures

should be made to rely less on parallelism to improve utilization, but GPUs need to im-

prove single-threaded performance in order to accelerate a wider assortment of workloads.

Figure 3.5 shows that potential speedup is tied strongly to the parallel processor’s register

read-after-write latency. The same is true for minimizing energy per instruction (Figure

3.12), which will become increasingly important as designs become increasingly power

limited.

91

4.4. Limitations and Future Work

4.4 Limitations and Future Work

There are some limitations with the work presented in the preceding chapters. In this

section we point out some limitations and propose work to remedy them.

4.4.1 Pangaea

The most obvious drawback of the Pangaea design as proposed is that it does not support

legacy 3D graphics acceleration. It was a design decision to evaluate GPU cores for com-

pute purposes only. This design decision could be changed if one does not remove the

legacy 3D hardware, but instead merely turns them off when unused.

Another limitation of the performance evaluation of Pangaea is that the benefits of the

proposed communication mechanisms were not isolated. Future work to remedy this lim-

itation would involve a more detailed prototype that accurately modeled the communica-

tion mechanisms. Some insight on whether a fast communication mechanism is necessary

can be gained by the limit study we showed in Chapter 3, however.

Pangaea presents only a small set of benchmark kernels. Manually parallelizing a large

benchmark set optimally is unfortunately infeasible. We partially address this limitation

in the limit study, where we automatically extract parallelism from a large set of single-

threaded benchmarks.

4.4.2 Limit Study

Typical of limit studies, a limitation of the limit study presented in Chapter 3 does not

model the machine in detail. In our limit study, we modeled processors capable of ex-

ecuting one instruction in some fixed time, without considering effects such as memory

latencies or varying instruction latencies depending on the type of instruction. We also

do not model a thread-based architecture with inter-thread communication latency as is

popular in today’s hardware. Although it is infeasible to model in detail while still sam-

pling a large design space, future work should take insights from the limit study and do

92

4.4. Limitations and Future Work

detailed modeling of interesting applications and design points. Likewise, our assumption

of Pollack’s Rule may not generalize to cores that do not yet exist.

Another limitation with the limit study lies in its optimistic treatment of branches.

Currently, branch directions are assumed to be known a priori, essentially ignoring branches.

Although many branches are predictable and optimal manual parallelization may remove

a large number of branches from the code, mispredicted branches still limit parallelism.

Future work should perform condition dependence analysis and model the effects of mis-

predicted branches on available parallelism.

One major issue with GPU computation that was not addressed by this thesis is the

issue of ease of programming. Although there have been improvements from using pro-

grammable shaders to C-like high-level languages [3, 7] to shared virtual address spaces

[1], GPUs still remain difficult to program. It would be useful to objectively evaluate the

ease of use and performance of various programming models.

93

References

[1] Perry H. Wang, Jamison D. Collins, Gautham N. Chinya, Hong Jiang, Xinmin Tian,

Milind Girkar, Nick Y. Yang, Guei-Yuan Lueh, and Hong Wang. EXOCHI: architecture

and programming environment for a heterogeneous multi-core multithreaded system.

In PLDI ’07: Proceedings of the 2007 ACM SIGPLAN conference on Programming language

design and implementation, pages 156–166, New York, NY, USA, 2007. ACM.

[2] S. Borkar. Thousand Core Chips — A Technology Perspective. In Proc. 44th Annual

Conference on Design Automation, pages 746–749, 2007.

[3] Nvidia. Compute Unified Device Architecture Programming Guide

Version 2.0. http://developer.download.nvidia.com/compute/cuda/2.0-

Beta2/docs/Programming_Guide_2.0beta2.pdf.

[4] M. S. Lam, R. P. Wilson. Limits of control flow on parallelism. In Proc. 19th Interna-

tional Symposium on Computer Architecture, pages 46–57, 1992.

[5] David W. Wall. Limits of instruction-level parallelism. In ASPLOS-IV: Proceedings of

the fourth international conference on Architectural support for programming languages

and operating systems, pages 176–188, New York, NY, USA, 1991. ACM.

[6] Shane Ryoo, Christopher I. Rodrigues, Sara S. Baghsorkhi, Sam S. Stone, David B. Kirk,

and Wen-mei W. Hwu. Optimization principles and application performance evalua-

tion of a multithreaded GPU using CUDA. In PPoPP ’08: Proceedings of the 13th ACM

SIGPLAN Symposium on Principles and practice of parallel programming, pages 73–82,

New York, NY, USA, 2008. ACM.

94

Chapter 4. References

[7] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian, Mike Hous-

ton, and Pat Hanrahan. Brook for GPUs: stream computing on graphics hardware. In

SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers, pages 777–786, New York, NY, USA,

2004. ACM.

95

