
Vector Processing as a Soft-core
Processor Accelerator

by

Jason Kwok Kwun Yu

B.A.Sc, Simon Fraser University, 2005

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

Master of Applied Science

in

The Faculty of Graduate Studies

(Electrical and Computer Engineering)

The University Of British Columbia

June, 2008

(I) Jason Kwok Kwun Yu 2008

Abstract

Soft processors simplify hardware design by being able to implement complex control strate-

gies using software. However, they are not fast enough for many intensive data-processing

tasks, such as highly data-parallel embedded applications. This thesis suggests adding a vector

processing core to the soft processor as a general-purpose accelerator for these types of applica-

tions. The approach has the benefits of a purely software-oriented development model, a fixed

ISA allowing parallel software and hardware development, a single accelerator that can accel-

erate multiple functions in an application, and scalable performance with a single source code.

With no hardware design experience needed, a software programmer can make area-versus-

performance tradeoffs by scaling the number of functional units and register file bandwidth

with a single parameter. The soft vector processor can be further customized by a number

of secondary parameters to add and remove features for the specific application to optimize

resource utilization. This thesis shows that a vector processing architecture maps efficiently

into an FPGA and provides a scalable amount of performance for a reasonable amount of area.

Configurations of the soft vector processor with different performance levels are estimated to

achieve speedups of 2-24x for 5-26x the area of a Nios II/s processor on three benchmark

kernels.

ii

Table of Contents

Abstract ^ ii

Table of Contents ^ iii

List of Tables ^ viii

List of Figures ^ x

Acknowledgments ^ xii

1 Introduction ^ 1

1.1 Motivation ^ 3

1.2 Contributions 5

1.3 Thesis Outline ^ 6

2 Background ^ 7

2.1 Vector Processing Overview ^ 7

2.1.1^Exploiting Data-level Parallelism 8

2.1.2^Vector Instruction Set Architecture ^ 10

2.1.3^Microarchitectural Advantages of Vector Processing ^ 12

2.2 Vector Processors and SIMD Extensions ^ 12

2.2.1^SIMD Extensions ^ 12

2.2.2^Single-chip Vector Processors ^ 13

iii

Table of Contents

2.2.3 FPGA-based Vector Processors ^ 14

2.3 Multiprocessor Systems ^ 16

2.4 Custom-designed Hardware Accelerators ^ 17

2.4.1 Decoupled Co-processor Accelerators ^ 18

2.4.2 Custom Instruction Accelerators ^ 18

2.5 Synthesized Hardware Accelerators ^ 20

2.5.1 C-based Synthesis ^ 21

2.5.2 Block-based Synthesis ^ 24

2.5.3 Application Specific Instruction Set Processor ^ 26

2.5.4 Synthesis from Binary Decompilation ^ 27

2.6 Other Soft Processor Architectures ^ 28

2.6.1 Mitrion Virtual Processor ^ 28

2.6.2 VLIW Processors ^ 29

2.6.3 Superscalar Processors ^ 30

2.7 Summary ^ 31

3 Configurable Soft Vector Processor ^ 32

3.1 Requirements ^ 32

3.2 Soft Vector Architecture ^ 33

3.2.1 System Overview ^ 33

3.2.2 Hybrid Vector-SIMD Model ^ 35

3.3 Vector Lane Datapath ^ 36

3.3.1 Vector Pipeline ^ 36

3.3.2 Datapath Functional Units ^ 38

3.3.3 Distributed Vector Register File ^ 39

3.3.4 Load Store Buffers ^ 40

3.3.5 Local Memory ^ 40

iv

Table of Contents

3.4

3.5

3.6

3.7

Memory Unit ^

3.4.1^Load Store Controller ^

3.4.2^Read Interface ^

3.4.3^Write Interface ^

FPGA-Specific Vector Extensions ^

Configurable Parameters ^

Design Flow ^

40

42

42

43

44

47

47

3.7.1^Soft Vector Processor Flow versus C-based Synthesis ^ 48

3.7.2^Comment on Vectorizing Compilers ^ 50

4 Results ^ 51

4.1 Benchmark Suite ^ 51

4.2 Benchmark Preparation ^ 53

4.2.1^General Methodology ^ 54

4.2.2^Benchmark Vectorization ^ 54

4.2.3^Benchmark Tuning for C2H Compiler ^ 59

4.2.4^Soft Vector Processor Per Benchmark Configuration ^ 60

4.3 Resource Utilization Results ^ 60

4.4 Performance Results ^ 63

4.4.1^Performance Models ^ 64

4.4.2^RTL Model Performance ^ 66

4.4.3^Ideal Vector Model ^ 68

4.4.4^C211 Accelerator Results ^ 70

4.4.5^Vector versus C2H ^ 71

5 Conclusions and Future Work ^ 73

5.1^Future Work ^ 75

v

Table of Contents

References ^ 79

Appendices

A Soft Vector Processor ISA ^ 85

A.1 Introduction ^ 85

A.1.1 Configurable Architecture ^ 86

A.1.2 Memory Consistency ^ 87

A.2 Vector Register Set ^ 87

A.2.1 Vector Registers ^ 87

A.2.2 Vector Scalar Registers ^ 88

A.2.3 Vector Flag Registers ^ 88

A.2.4 Vector Control Registers ^ 89

A.2.5 Multiply-Accumulators for Vector Sum Reduction ^ 90

A.2.6 Vector Lane Local Memory ^ 90

A.3 Instruction Set ^ 92

A.3.1 Data Types ^ 92

A.3.2 Addressing Modes ^ 92

A.3.3 Flag Register Use ^ 92

A.3.4 Instructions ^ 92

A.4 Instruction Set Reference ^ 93

A.4.1 Integer Instructions ^ 94

A.4.2 Logical Instructions ^ 96

A.4.3 Fixed-Point Instructions (Future Extension) ^ 96

A.4.4 Memory Instructions ^ 99

A.4.5 Vector Processing Instructions ^ 102

A.4.6 Vector Flag Processing Instructions ^ 105

vi

Table of Contents

A.4.7 Miscellaneous Instructions ^ 106

A.5 Instruction Formats ^ 107

A.5.1 Vector Register and Vector Scalar Instructions ^ 107

A.5.2 Vector Memory Instructions ^ 108

A.5.3 Instruction Encoding ^ 109

vii

List of Tables

1.1 New soft vector processor instruction extensions over VIRAM ^ 6

2.1 Partial list of FPGA-based multiprocessor systems in literature ^ 17

3.1 List of configurable processor parameters ^ 48

4.1 Per benchmark soft vector processor configuration parameter settings ^ 60

4.2 Resource usage of vector processor and C2H accelerator configurations ^ 61

4.3 Resource usage of vector processor when varying NLane and MemMinWidth with

128-bit MemWidth and otherwise full features ^ 62

4.4 Resource utilization from varying secondary processor parameters^ 63

4.5 Ideal vector performance model ^ 65

4.6 Performance measurements ^ 67

A.1 List of configurable processor parameters ^ 87

A.2 List of vector flag registers ^ 88

A.3 List of control registers ^ 89

A.4 Instruction qualifiers ^ 93

A.11 Nios II Opcode Usage ^ 107

A.12 Scalar register usage as source or destination register ^ 108

A.13 Vector register instruction function field encoding (OPX=0) ^ 109

A.14 Scalar-vector instruction function field encoding (OPX=1) ^ 110

A.15 Fixed-point instruction function field encoding (OPX=0) ^ 110

viii

List of Tables

A.16 Flag and miscellaneous instruction function field encoding (OPX=1) ^ 111

A.17 Memory instruction function field encoding ^ 111

ix

List of Figures

2.1 8-tap FIR filter MIPS assembly ^ 9

2.2 8-tap FIR filter VIRAM vector assembly ^ 10

2.3 Nios II custom instruction formats ^ 19

2.4 Example Nios II system with C2H accelerators^ 22

3.1 Scalar and vector core interaction ^ 34

3.2 Vector chaining versus hybrid vector-SIMD execution^ 35

3.3 Vector co-processor system block diagram ^ 37

3.4 Vector Lane ALU ^ 38

3.5 Vector memory unit ^ 41

3.6 Soft vector processor write interface 43

3.7 Data alignment using crossbar and delay network for vector store. ^ 44

3.8 8-tap FIR filter vector assembly ^ 46

3.9 Altera C2H compiler design flow versus soft vector processor design flow ^ 49

4.1 Motion estimation C code ^ 52

4.2 5 x 5 median filter C code ^ 53

4.3 Simultaneously matching two copies of the macroblock to a reference frame^. . . 55

4.4 Code segment from the motion estimation vector assembly. The code to handle

the first and last rows of the windows are not shown^ 56

4.5 Vectorizing the image median filter ^ 57

4.6 Median filter inner loop vector assembly ^ 57

x

List of Figures

4.7 Vector assembly for loading AES data and performing AES encryption round^. 58

4.8 RTL Model speedup over Ideal Nios Model ^ 68

4.9 Ideal Vector Model and C2H Model speedup over Ideal Nios Model ^ 69

A.1 Connection between distributed MAC units and the vector register file ^ 91

xi

Acknowledgments

Foremost I would like to thank my supervisor Dr. Guy Lemieux for teaching me the many as-

pects of academic research, and for his guidance and support throughout my research project.

The many hours you spent proofreading my conference papers and thesis are very much appre-

ciated.

Thanks to Blair Fort for providing the UTIIe processor used in this research, without which

this project would have taken much longer.

I would like to thank my friends in the SoC lab and throughout the department, on the

ECEGSA executive, and in the faculty music group for making my graduate life at UBC

enjoyable, and allowing me to develop both academically and personally during my life at

UBC.

Finally, I would like to thank my loving family and dear Florence for their constant support

and encouragement.

xii

Chapter 1

Introduction

Advanced signal processing algorithms and large volumes of multimedia data in many embed-

ded applications today demand high performance embedded systems. These systems rely on

programmable microprocessors, digital signal processors (DSPs), or field-programmable gate

arrays (FPGAs) to do intensive computations. Designing embedded systems using these plat-

forms requires expertise in both hardware and software, and is increasingly becoming a challenge

due to growing complexity and performance requirements of today's applications. A high per-

formance platform that is also easy to use and reduces time to market is needed to address

these challenges, and an effective FPGA-based soft processor platform is one possible solution.

FPGAs are a specialized type of integrated circuit (IC) that can be programmed and re-

programmed by the user after fabrication to implement any digital circuit. FPGAs achieve

this reconfigurability through the use of flexible lookup tables and routing connections that

are configured by a user-downloaded bitstream. There are a number of advantages to using

FPGAs in embedded systems. Manufacturing a set of masks to fabricate application specific

integrated circuits (ASICs) such as most microprocessors and DSPs costs millions of dollars in

today's advanced fabrication technologies. The design, fabrication, and validation steps needed

to produce an ASIC is a lengthy process with a long turnaround time, and mistakes found

after fabrication require a new set of masks to correct and are thus very costly. These high

non-recurring engineering costs (NRE) make ASICs only practical for devices with sufficiently

large market and volume. FPGAs, on the other hand, can be purchased off the shelf with a

low up-front cost. The devices have been pre-tested by the FPGA vendor and are guaranteed

to function correctly. The reconfigurable nature allows users to quickly iterate their designs

1

Chapter 1. Introduction

during development, speeding up time to market. Even in the final product, reconfigurability

can allow the system firmware to be updated to take advantage of new firmware features or to

adhere to new standards. A single FPGA can also replace multiple components in a system

that would have required separate ICs, again reducing cost.

From a performance perspective, FPGAs are generally considered lower performance than

ASICs due to a lower maximum clock speed. Nonetheless, FPGAs are capable of tremendous

raw processing power. The reconfigurable lookup tables of an FPGA form one large compu-

tational fabric that is able to perform many operations in parallel, and the large number of

embedded on-chip memories can provide tremendous on-chip memory bandwidth. Consider the

largest Altera Stratix III FPGA, EP3SL340, which has approximately 135,000 adaptive logic

modules (ALMs). Each ALM is able to compute a one-bit function of up to six inputs per clock

cycle or implement up to two three-bit adders [1]. Taking the adders alone, if they can be fully

utilized, is equivalent to almost 8,440 three-input 32-bit adders. In comparison, many low-cost

microprocessors in embedded systems have only one two-input adder in a single arithmetic logic

unit (ALU).

Using FPGAs has traditionally required specialized hardware design knowledge and fa-

miliarity with a hardware description language (HDL) such as the VHSIC (Very High Speed

Integrated Circuit) Hardware Description Language (VHDL) or Verilog in order to implement

the desired circuitry. The introduction of embedded processor cores into FPGAs, both as hard

cores that are implemented in silicon like the rest of the FPGA circuitry, and as soft cores

that are synthesized and then programmed on to the FPGA like other user designs, has sim-

plified the design process and technical requirement of using FPGAs. According to a survey

conducted in 2007 [2], 36% of respondents used a processor (either hard or soft core) inside the

FPGA in their embedded designs, and this figure had increased from 33% in 2006, and 32% in

2005. Embedded software developers can now program in a high-level language such as C or

C++, and compile their programs to run on the embedded processor core within the FPGA.

This combination of embedded processor core and programmable logic has also opened up the

2

Chapter 1. Introduction

possibility of implementing custom hardware circuitry in the programmable logic to interact

with the processor core.

1.1 Motivation

More and more embedded systems today target multimedia, signal processing, and other com-

putationally intensive workloads. These applications typically have a relatively small set of

operations that have to be repeatedly performed over a large volume of data. This form of

parallelism is referred to as data-level parallelism. Current soft processors designed for FPGAs

such as Nios II [3] by Altera and MicroBlaze [4] by Xilinx frequently do not deliver enough com-

putational power to achieve the desired performance in these workloads. These soft processors

have only a single ALU and can only perform one computation per clock cycle. Although they

come in a few performance levels that successively add more advanced and complex architec-

tural features, even the highest performing core is frequently insufficient to handle the intensive

processing tasks.

Many solutions have been proposed in both commercial and academic spaces to improve the

performance of soft core processors on FPGAs. They can be largely categorized into four cat-

egories: multiprocessor systems, custom-designed hardware accelerators, synthesized hardware

accelerators, and other soft processor architectures. Multiprocessor systems contain multiple

processor cores, and rely upon shared memory or message passing to communicate and synchro-

nize. They generally require parallel programming knowledge from the user, and as a result are

more difficult to program and use. Hardware accelerators utilize the programmable logic of an

FPGA to implement dedicated accelerators for processing certain functions. Custom-designed

hardware accelerators have to be designed by the user in HDL, but the FPGA development

tools may provide an automated way to connect the accelerator to the processor core once it

has been designed. They still require the user to design hardware, and verify and test the

accelerator in hardware to ensure correct operation. Synthesized hardware accelerators are

3

Chapter 1. Introduction

automatically synthesized from a high-level language description or from a visual representa-

tion of the function to be accelerated. The major improvement is that users can use hardware

accelerators without knowledge of an HDL, and with little or no knowledge of hardware design.

An improved soft processor architecture has the benefit of a purely software solution, re-

quiring no hardware design or synthesis effort from the user. Depending on the complexity

of the programming model of the architecture, it can allow users to improve performance of

their applications with minimal learning curve. A soft processor also provides a specification

across hardware and software (in the form of a fixed instruction set architecture) that does not

change throughout the design cycle, allowing hardware and software development to proceed

in parallel.

Some common processor architectures have already been implemented in FPGAs. Very Long

Instruction Word (VLIW) architectures have been proposed for soft processors on FPGAs [5,

6, 7, 8, 9], and superscalar architectures have also been attempted [10, 11], but neither of them

map efficiently to the FPGA architecture, bloating resource usage and introducing unnecessary

bottlenecks in performance. To improve performance of data-parallel embedded applications

on soft processor systems, it is imperative to take advantage of the parallelism in the hardware.

Given the pure software advantage of using an improved soft processor architecture, an ideal

solution would be a processor architecture that is inherently parallel, and maps well to the

FPGA architecture.

The solution proposed by this thesis is a soft processor tailored to FPGAs based on a

vector processor architecture. A vector processor is capable of high performance in data-

parallel embedded workloads. Kozyrakis [12] studied the vectorizability of the 10 consumer and

telecommunications benchmarks in the EEMBC [13] suite using the VIRAM [14] compiler, and

found the average vector length of the benchmarks ranged from 13 to 128 (128 is the maximum

vector length supported by VIRAM). The study shows that many embedded applications are

vectorizable to long vector lengths, allowing significant performance improvements using vector

processing. Vector processing also satisfies the requirements of a parallel architecture, and can

4

Chapter 1. Introduction

be implemented efficiently in FPGAs, as will be shown in this thesis.

1.2 Contributions

The main contribution of this research is applying vector processing, an inherently parallel

programming model, to the architecture of soft core processors to improve their performance

on data-parallel embedded applications. A soft vector processor provides scalable and user-

selectable amount of acceleration and resource usage, and a configurable feature set, in a single

application-independent accelerator that requires zero hardware design knowledge or effort from

the user. The scalability of vector processing allows users to make large performance and

resource tradeoffs in the vector processor with little or no modification to software. A soft

vector processor can further exploit the configurability of FPGAs by customizing the feature

set and instruction support of the processor to the target application. Customization extends

even to a configurable vector memory interface that can implement a memory system tailored to

the application. This makes accessible to the user a much larger design space and larger possible

tradeoffs than current soft processor solutions. The application-independent architecture of the

vector processor allows a single accelerator to accelerate multiple sections of an application and

multiple applications.

As part of this research, a complete soft vector processor was implemented in Verilog tar-

geting an Altera Stratix III FPGA to illustrate the feasibility of the approach and possible

performance gains. The processor adopts the Nios II instruction set architecture (ISA) and

the VIRAM vector extensions, but makes modifications to tailor the VIRAM ISA features

to FPGAs. A novel instruction execution model that is a hybrid between traditional vector

and single-instruction-multiple-data (SIMD) is used in the processor. This work also identifies

three ways traditional vector processor architectures can be adapted to better exploit features

of FPGAs:

1. Use of a partitioned register file to scale bandwidth and reduce complexity,

5

Chapter 1. Introduction

Table 1.1: New soft vector processor instruction extensions over VIRAM

Instruction Description
vmac^Multiply-accumulate
vcczacc^Compress copy from accumulator and zero
vldl^Load from local memory
vstl^Store to local memory
veshift^Vector element shift
vabsdif f^Vector absolute difference

2. Use of multiply-accumulate (MAC) units for vector reduction,

3. Use of a local memory in each vector lane for lookup-table functions.

Table 1.1 lists new instructions that are added to the soft vector processor instruction set

over the VIRAM vector extensions to support new features.

1.3 Thesis Outline

The remainder of the thesis is organized as follows. Chapter 2 gives an overview of vector

processing and previously implemented vector processors, and describes other solutions to ac-

celerate applications on soft processor systems, highlighting their advantages and limitations.

Chapter 3 describes in detail the architecture of the soft vector processor and its extensions

to traditional vector architectures. Chapter 4 provides experimental results illustrating the

strengths of the soft vector processor compared to a recent commercial solution in the synthe-

sized accelerator category. Finally, Chapter 5 summarizes the work in this thesis and provides

suggestions for future work.

6

Chapter 2

Background

This chapter provides background on vector processing and application acceleration for soft

processor-based systems in FPGAs. First, an overview of how vector processing accelerates

data-parallel computations is presented, followed by a discussion of previously implemented

vector processors. The remainder of the chapter surveys other current solutions for improving

the performance of soft processors and accelerating FPGA-based applications. A representative

set of academic and commercial tools are described according to the four categories introduced

in Chapter 1: multiprocessor systems, custom-designed hardware accelerators, synthesized ac-

celerators, and other soft processor architectures.

2.1 Vector Processing Overview

Vector processing has been in use in supercomputers for scientific tasks for over three decades.

As semiconductor technology improved, single-chip vector processors have become possible, and

recent supercomputing systems like the Earth Simulator [15] and Cray X1 are based on such

single-chip vector processors. The next sections will give an overview of how vector processing

can accelerate data-parallel computations, and the characteristics of a vector instruction set,

with the goal of demonstrating that vector processing is a suitable model for soft processor

acceleration.

7

Chapter 2. Background

2.1.1 Exploiting Data-level Parallelism

The vector processing model operates on vectors of data. Each vector operation specifies an

identical operation on the individual data elements of the source vectors, producing an equal

number of independent results. Being able to specify a single operation on multiple data

elements makes vector processing a natural method to exploit data-level parallelism, which has

the same properties. The parallelism captured by vector operations can be exploited by vector

processors in the form of multiple parallel datapaths—called vector lanes—to reduce the time

needed to execute each vector operation.

To illustrate the vector processing programming model, consider an 8-tap finite impulse

response (FIR) filter
7

y[n] = E x[n — k]h[k],
k=0

which can be implemented in MIPS assembly code as shown in Figure 2.1. The code segment

contains one inner loop to perform multiply-accumulate on the data buffer and filter coefficients,

and an outer loop to demonstrate processing multiple new data samples. In a real application,

the outer loop will iterate as long as there are new inputs to be filtered. The inner loop iterates

8 times for the 8-tap filter. Adding the 10 instructions in the outer loop (assuming branch

taken on line 17) gives a total of 74 instructions per result.

The same FIR filter implemented in VIRAM vector code is shown in Figure 2.2. The

vector processor extracts data-level parallelism in the multiplication operation by multiplying

all the coefficients and data samples in parallel. One common operation in vector processing is

reduction of the data elements in a vector register. In the FIR filter example, the multiplication

products need to be sum-reduced to the final result. The vhalf instruction facilitates reduction

of data elements by extracting the lower half of a vector register to the top of a destination

vector register. A total of log(VL) vhalf and add instructions are needed to reduce the entire

vector. In the vector code, the filter coefficients and previous data samples are kept in vector

registers when a new data sample is read to reduce the number of memory accesses. Line 15

8

Chapter 2. Background

Loop while new inputs received
Zero sum
Load address of sample buffer
Set number of taps

Load data from buffer
Load coefficient

Multiply
Accumulate

Store filter result
Store new sample to buffer
Increment buffer position
Check for end of buffer
Reset new sample pointer

.L10:
mov r6, zero
mov r4, sp
movi r5, 8

.L8:
ldw^r12, 0(r4)
ldw^r3, 100(r4)
addi^r5, r5, —1
addi^r4, r4, 4
mul^r2, r12, r3
add^r6, r6, r2
bne^r5, zero, .L8

stw^r6, 0(r9)
stw^rll, 0(r7)
addi^r7, r7, 4
bgeu r10, r7, .L4
mov r7, sp

.L4:
addi^r8, r8, —1
addi^r9, r9, 4
bne^r8, zero, .L10

Figure 2.1: 8-tap FIR filter MIPS assembly

to 21 of Figure 2.2 stores the reduced result to memory, shifts the filter data elements by one

position using a vector extract operation to align them with the coefficients, and copies a new

data element from the scalar core. A total of 18 instructions are needed to calculate a single

result. The capitalized instructions are specific to the VIRAM implementation of the FIR filter,

and can be compared to Figure 3.8 for differences between the VIRAM and soft vector processor

implementations.

The vector code has a significant advantage over the MIPS code in terms of the number of

instructions executed. Scaling the FIR filter example to 64 filter taps, the MIPS code would

require executing 522 instructions, while the vector code would still only execute 18 instructions,

but have a different value of VL.

9

Chapter 2. Background

vmstc
vmstc
vmstc
vld.h
vld.h

vmstc
vext.vs
stw
VMSTC
VEXT.VV
vmstc
vins.vs
addi
addi
bne

vbase0, sp
vbasel, r3
VL, r2
v2, vbasel
v 1 , vbase0

vindex, r8
r10, v3
r10, 0(r4)
vindex, r7
vl, vl
vindex, r6
vl, r5
T3, r3, —1
r4, r4, 4
r3, zero, .L5

; Load base address
• Load coefficient address
Set VL to num taps
Load filter coefficients
Load input vector

Multiply data and coefficients
Extract half of the vector
VL is automatically halved by vhalf

3 half—reductions for 8 taps

Reset VL to num taps (vhalf changes VL)

Set vindex to 0
Extract final summation result
Store result
Set vindex to 1
Shift vector up 1
Set vindex to NTAP-1
Insert new sample

.L5:
VMULLO.VV v3, vO, v2
VHALF^v4, v3
VADD.VV^v3, v4, v3
VHALF^v4, v3
VADD.VV^v3, v4, v3
VHALF^v4, v3
VADD.VV^v3, v4, v3
vmstc^VL, r9

Figure 2.2: 8-tap FIR filter VIRAM vector assembly

2.1.2 Vector Instruction Set Architecture

Vector instructions are a compact way to encode large amounts of data parallelism, each spec-

ifying tens of operations and producing tens of results at a time. Modern vector processors

like the Cray X1 use a register-register architecture similar to RISC processors [16]. Source

operands are stored in a large vector register file that can hold a moderate number of vector

registers, each containing a large number of data elements.

A vector architecture contains a vector unit and a separate scalar unit. The scalar unit is

needed to execute non-vectorizable portions of the code, and most control flow instructions. In

many vector instruction sets, instructions that require both vector and scalar operands, such

as adding a constant to a vector, also read from the scalar unit and execute on the vector unit.

10

Chapter 2. Background

Vector addressing modes can efficiently gather and scatter entire vectors to and from mem-

ory. The three primary vector addressing modes are: unit stride, constant stride, and indexed

addressing. Unit stride accesses data elements in adjacent memory locations, constant stride ac-

cesses data elements in memory with a constant size separation between elements, and indexed

addressing accesses data elements by adding a variable offset for each element to a common

base address.

Vector instructions are controlled by a vector length (VL) register, which specifies the

number of elements within the vector to operate on. This vector length register can be modified

on a per-instruction basis.

A common method to implement conditional execution is using vector flag registers as an

execution mask. In this scheme, a number of vector flag registers are defined in addition to the

vector registers, and have the same vector length such that one bit in the vector flag register

is associated with each data element. Depending on this one bit value, the operation on the

data element will be conditionally executed. Some instructions use the flag register slightly

differently. For example the vector merge instruction uses the bit value in the flag register to

choose between two source registers.

Besides inter-vector operations, vector instruction sets also support intra-vector operations

that manipulate data elements within a vector. Implementing these instructions are, however,

tricky, as they generally require inter-lane communication due to partitioning of data elements

over multiple lanes. For example, the VIRAM instruction set implements a number of instruc-

tions like vhalf, vhalf up, and vhalfdn to support element permutations. These instructions

extract the lower half of a source vector to the beginning of a destination vector register, and

perform the upper and lower halves of a Fast Fourier Transform (FFT) butterfly operation,

respectively [12].

11

Chapter 2. Background

2.1.3 Microarchitectural Advantages of Vector Processing

The previous sections have already illustrated the ease-of-use and instruction set efficiency of

the vector programming model. Vector processing also has many advantages that simplify the

vector processor microarchitecture. Vector instructions alleviate bottlenecks in instruction issue

by specifying and scheduling tens of operations, which occupy the processor for many cycles at a

time. This reduces instruction bandwidth needed to keep the functional units busy [17]. Vector

instructions also ease dependency checking between instructions, as the data elements within a

vector instruction are guaranteed to be independent, so each vector instruction only needs to

be checked once for dependencies before issuing. By replacing entire loops, vector instructions

eliminate loop control hazards. Finally, vector memory accesses are effective against the ever-

increasing latency to main memory, as they are able to amortize the penalty over the many

accesses made in a single memory instruction. This makes moderate-latency, high-throughput

memory technologies such as DDR-SDRAM good candidates for implementing main memory

for vector processors.

2.2 Vector Processors and SIMD Extensions

Having discussed the merits of vector processing, the following sections will describe a number

of single-chip and FPGA-based vector processors in literature, and briefly explain processors

based on vector-inspired SIMD processing. SIMD processing is a more limited form of the

vector computing model. The most well-known usage of SIMD processing is in multimedia

instruction extensions common in mainstream microprocessors. Recent microprocessors from

Intel, IBM, and some MIPS processors all support SIMD extensions.

2.2.1 SIMD Extensions

SIMD extensions such as Intel SSE [18] and PowerPC AltiVec [19] are oriented towards short

vectors. Vector registers are typically 128 bits wide for storing an entire vector. The data

12

Chapter 2. Background

width is configurable from 8 to 32 bits, allowing vector lengths to range from 16 (8 bits)

to 4 (32 bits). SIMD instructions operate on short, fixed-length vectors, and each instruction

typically executes in a single cycle. In contrast, vector architectures have a vector length register

that can be used to modify the vector length during runtime, and one vector instruction can

process a long vector over multiple cycles. In general, SIMD extensions lack support for strided

memory access patterns and more complex memory manipulation instructions, hence they must

devote many instructions to address transformation and data manipulation to support the few

instructions that do the actual computation [20]. Full vector architectures mitigate these effects

by providing a rich set of memory access and data manipulation instructions, and longer vectors

to keep functional units busy and reduce overhead [21].

2.2.2 Single-chip Vector Processors

The Torrent TO [22] and VIRAM [14] are single-chip vector microprocessors that support a

complete vector architecture and are implemented as custom ASICs. TO is implemented in full-

custom 1.0 i.tm CMOS technology. The processor contains a custom MIPS scalar unit, and the

vector unit connects to the MIPS unit as a co-processor. The vector unit has 16 vector registers,

a maximum vector length of 32, and 8 parallel vector lanes. VIRAM is implemented in 0.18 p.m

technology and runs at 200MHz. It has 32 registers, a 16-entry vector flag register file, and two

ALUs replicated over 4 parallel vector lanes. VIRAM has been shown to outperform superscalar

and VLIW architectures in the consumer and telecommunications categories of the EEMBC

benchmarks by a wide margin [23]. These two vector processors share the most similarity in

processor architecture to this work.

RSVP [24] is a reconfigurable streaming vector coprocessor implemented in 0.18 .im technol-

ogy, and was shown to achieve speedup of 2 to 20 times over its ARM9 host processor alone on

a number of embedded kernel benchmarks. Some other vector architectures proposed recently

for ASIC implementation are the CODE architecture [25] which is based on multiple vector

cores, and the SCALE processor based on the vector-thread architecture [26] that combines

13

Chapter 2. Background

multi-thread execution with vector execution. These two architectures were only studied in

simulation.

2.2.3 FPGA-based Vector Processors

There have been a few past attempts to implement vector processors in FPGAs [27, 28, 29,

30, 31, 32, 33]. However, most of them targeted only a specific application, or were only

prototypes of ASIC implementations. A vector computer is described in [27] that has pipelined

32-bit floating-point units augmented with custom instructions for solving a set of sparse linear

equations. The vector computer has 8 adders and multipliers, supports a vector length of 16,

and has a 128-bit data bus that can transfer four 32-bit words. Little additional information is

given about the system other than it was mapped to a Xilinx Virtex II FPGA. ProHos [28] is

a vector processor for computing higher order statistics. Its core is a pipelined MAC unit with

three multipliers and one accumulator. The processor is implemented on the RVC [34] platform

consisting of five Xilinx 4000E devices, and runs at 7.5MHz. The SCALE vector processor [26]

was prototyped in an FPGA [29], but no specific attempt was made to optimize the architecture

or implementation for FPGAs.

Three vector processors that, similar to this work, were specifically designed for FPGAs are

described in [30], [31], and [32]. The first vector processor [30] consists of two identical vector

processors located on two Xilinx XC2V6000 FPGA chips. Each vector microprocessor runs at

70MHz, and contains a simplified scalar processor with 16 instructions, a vector unit consisting

of 8 vector registers, 8 lanes (each containing a 32-bit floating-point unit), and supports a max-

imum vector length (MVL) of 64. Eight vector instructions are supported: vector load/store,

vector indexed load/store, vector-vector and vector-scalar multiplication/addition. However,

only matrix multiplication was demonstrated on the system. Although the vector processor

presented in this thesis lacks floating-point support, it presents a more complete solution con-

sisting of full scalar unit (Nios II) and a full vector unit (based on VIRAM instructions) that

supports over 45 distinct vector instructions plus variations.

14

Chapter 2. Background

The second vector processor [31] was designed for Xilinx Virtex-4 SX and operated at

169MHz. It contains 16 processing lanes of 16-bit and 17 on-chip memory banks connected to a

MicroBlaze processor through fast simplex links (FSL). It is not clear how many vector registers

were supported. Compared to the MicroBlaze, speedups of 4-10x were demonstrated with four

applications (FIR, IIR, matrix multiply, and 8 x 8 DCT). The processor implementation seems

fairly complete.

The third vector processor [32] is a floating point processing unit based on the TO archi-

tecture, and operated at 189MHz on a Xilinx Virtex II Pro device. It has 16 vector registers

of 32 bits and a vector length of 16. Three functional units were implemented: floating-point

adder, floating-point multiplier, and vector memory unit that interfaces to a 256-bit memory

bus. All three functional units can operate simultaneously, which together with the 8 parallel

vector lanes in the datapath, can achieve 3.02 GFLOPS. No control processor was included for

non-floating-point or memory instructions, and it is unclear whether addressing modes other

than unit-stride access were implemented.

A Softcore Vector Processor is also presented in [33] for biosequence applications. The pro-

cessor consists of an instruction controller that executes control flow instructions and broadcast

vector instructions to an array of 16-bit wide processing elements (PE). Compared to this the-

sis, it is a more limited implementation with less features and instructions, but like this thesis

it also argues for a soft vector processor core.

Many SIMD systems have also been developed for FPGAs. A SIMD system is presented

in [35] that is comprised of 2 to 88 PEs built around DSP multiplier blocks on a Altera Stratix

FPGA, and controlled by a central instruction stream. The system utilizes all the DSP blocks

of an Altera Stratix EP1S80 FPGA, but only 17% of the logic resources. Only matrix multi-

plication was illustrated on the system, but the actual implementation of the application was

not described. This system demonstrates the tremendous amount of parallelism available on

modern FPGAs for performing parallel computations.

15

Chapter 2. Background

2.3 Multiprocessor Systems

In contrast to vector processing systems, where everything executes in lock-step, multiprocessor

systems have become popular recently as a way to obtain greater performance. In particular,

FPGA-based multiprocessors can be composed of multiple soft core processors l , or a combi-

nation of soft and hard core 2 processors. The parallelism in multiprocessor systems can be

described as multiple instruction multiple data (MIMD). Each processor in a MIMD multi-

processor system has its own instruction memory and executes its own instruction stream and

operates on different data. In contrast, SIMD systems have a single instruction stream that

is shared by all processors. For example, vector processing is a type of SIMD system. In the

context of soft processor acceleration, the discussion will focus on multiprocessor systems that

utilize multiple soft processors on FPGAs.

Most multiprocessor systems that have been implemented in FPGAs are unique as there

are not yet any de facto or formal standards. They usually differ in number of processors,

interconnect structure, how processors communicate, and how they access memory. However,

the communication scheme in multiprocessor systems can generally be categorized into shared

memory or message passing, and the memory architecture can be categorized as either central-

ized or distributed [36].

FPGA-based multiprocessor systems can be very flexible, allowing them to adapt to accel-

erate heterogeneous workloads that otherwise do not parallelize effectively. Specialized systems

with unique architectures can be designed to exploit the characteristics of a particular appli-

cation for better performance. For example, the multiprocessor system in [37] for LU matrix

factorization has a unique architecture that consists of a system controller that connects to a

number of PEs in a star topology. Each PE has its own local instruction and data memory, and

an additional shared memory block connects two neighbouring PEs for communication. The

'Soft core processors are described fully in HDL, and are synthesized into hardware and programmed into
the device with the rest of the user design.

2Hard core processors are implemented directly in transistors in the device, separate from the user design
which is programmed into the programmable logic fabric.

16

Chapter 2. Background

Multiprocessor Application # CPUs Speedup Communication Memory
CerberO [39] Discrete wavelet transform 4 4 Shared memory Centralized
Kulmala [40] MPEG-4 encoding 4 1-3 Shared memory Centralized
Martina [41] Digital signal processing 8 7-8 Shared memory Centralized
Ravindran [38] IPv4 packet forwarding 16 n/a Message-passing Distributed
SoCrates [42] General purpose 2 n/a Shared memory Distributed
Wang [37] Matrix operations 6 4 Shared memory Distributed

Table 2.1: Partial list of FPGA-based multiprocessor systems in literature

IPv4 packet forwarding system in [38] has 12 MicroBlaze processors arranged in four parallel

pipelines of processors with each stage performing a specific task. Table 2.1 lists a number of

FPGA multiprocessor systems found in literature and their features.

The disadvantage of MIMD multiprocessor systems is their complexity. Significant hard-

ware knowledge is needed to design a multiprocessor system, including consideration of issues

such as interconnect, memory architecture, cache coherence and memory consistency protocols.

Creating a custom multiprocessor system architecture to tailor to the needs of a particular

application can be a daunting task due to the large design space. On the software front, users

currently need parallel programming knowledge to use these systems, which is not within the

skill set of the average software developer. Specialized multiprocessor systems add further

difficulty of writing software to effectively take advantage of the architecture.

2.4 Custom-designed Hardware Accelerators

Hardware accelerators are frequently used in conjunction with soft processors to accelerate cer-

tain portions of an application. Traditionally these accelerators are designed manually in HDL

by a hardware designer, and connect to the processor via an interface specified by the processor

vendor. The next two sections describe two different methods of interfacing custom-designed

hardware accelerators to a soft processor. The fundamental disadvantage of these accelerators

is they require hardware design effort to implement, verify, and test. Each accelerator, in most

cases, also performs only one function. Hence for each portion of the application to accelerate,

17

Chapter 2. Background

a different hardware accelerator is needed. This adds further time and design effort.

2.4.1 Decoupled Co -processor Accelerators

The co-processor accelerator model is akin to the use of floating-point co-processors in early

computer systems. These accelerators are decoupled from the main processor in operation.

The processor provides inputs to start the accelerator, then has the option of executing a

different part of the program while the accelerator is running, and finally reads results when

they are computed. This is the model adopted by the Xilinx MicroBlaze to interface to custom

co-processor accelerators. The MicroBlaze interfaces to accelerators through 16 32-bit Fast

Simplex Link (FSL) channels, which are unidirectional point-to-point first in first out (FIFO)

communication buffers. The MicroBlaze CPU uses blocking or non-blocking reads and writes

to access the FSL channels, and can use up to 8 FSL channels for outputs from the CPU, and

8 FSL channels for inputs to the CPU.

Co-processor accelerators have the advantage that they are decoupled from the main CPU

core, allowing both the CPU and accelerator to execute concurrently. Adding co-processor

accelerators are less likely to negatively impact the performance of the CPU core compared

to more tightly-coupled methods due to their decoupled nature. The design tools also tend to

have good support for these accelerators, allowing the programmer to interact with them as

easily as calling a function, and without having to write parallel programs As an example,

the MicroBlaze FSL provides simple send and receive functions to communicate with multiple

accelerators. Co-processor accelerators also have the advantage that they can act as data master

and communicate directly to memory. However, it is frequently up to the user to create the

interface manually, which is added work.

2.4.2 Custom Instruction Accelerators

An alternate connection scheme interfaces an accelerator as a custom logic block within the

processor's datapath, in parallel to the processor's main ALU. This scheme allows an accel-

18

A

r
Nios

B

Chapter 2. Background

Optional FIFO, Memory, and Other Logic

I Embedded Processor

tla as
^ —^ates32

Custom^res It I
I datab

^♦^I^clk
clk_en

♦^I^reset

EH

ED u

^♦
ti

^• ♦ I^start

I

Out I N •

°^I

Nios II ALU^I

Figure 2.3: Nios II custom instruction accelerators can be combinational, multi-cycle, or contain
internal register states (parameterized) that can be specified by the custom instruction opcode
(a, b, c) and/or perform multiple operations (n) (Source: [43])

erator to fetch operands directly from the processor's register file, and write results back to

the processor's register file using the ALU's result bus. These accelerators effectively extend

the functionality of the processor's ALU. The Nios II CPU supports this type of accelerator as

custom instructions to the processor. To control the custom accelerators, new instructions are

added to the processor, mapping to an unused opcode in the Nios II ISA. These instructions

are then executed directly by the extended ALU of the processor.

The main advantage of custom instructions and other such tightly-coupled accelerators is

they can directly access the register file, saving the data movement instructions needed by

co-processor accelerators to move data between the processor and accelerator. They are well-

integrated into the CPU and development tools due to their exposed nature as CPU instructions,

allowing software developers to easily access them at the software level. For example, the

Nios II CPU can integrate up to 256 custom instruction accelerators, and they can be accessed

in software by calling special functions built into the development tools. These accelerators

are also relatively simple to interface to the CPU because the types of custom instructions

da ab^Logic

19

Chapter 2. Background

and their interfaces are already defined in the CPU specification. Nios II defines single-cycle

combinational and multi-cycle custom instructions that stall the CPU, and accelerators with

additional internal register state (internal flip-flops) programmed by CPU instructions to hold

data to process. Figure 2.3 summarizes the Nios II custom instruction formats.

Transferring large amounts of data into and out of these accelerators is, however, a slow

process. Due to their intended lightweight nature, custom instruction accelerators generally do

not define their own memory interface (although this can be done manually by the designer).

Instead, they rely on the processor to access memory. In the Nios II case, custom instructions

can only read up to two 32-bit operands from the processor register file and write one 32-

bit result per instruction, like other Nios II R-type instructions. Another drawback is the

accelerators lie on the critical path of the processor ALU. Adding one or more accelerators with

complex combinational logic can unnecessarily reduce the maximum frequency of the CPU core,

affecting performance of the entire system.

2.5 Synthesized Hardware Accelerators

Synthesized hardware accelerators use behavioural synthesis techniques to automatically create

hardware accelerators from software. These accelerators and processor systems take on different

architectures, and several of them will be described in this section. A common drawback of these

approaches is that since the tools synthesize hardware from the user's software application, if

the user changes hardware-accelerated sections of the software, the register transfer level (RTL)

description of the hardware accelerators, and possibly of the entire system, will have to be

regenerated and recompiled. This can make it difficult to achieve a targeted clock frequency

for the whole design, for example. Synthesis tools also generally create separate hardware

accelerators for each accelerated function, with no opportunity for resource sharing between

accelerators.

20

Chapter 2. Background

2.5.1 C-based Synthesis

Hardware circuits synthesized from software written in the C programming language or vari-

ations of it has long been advocated due to the widespread use of C in embedded designs.

Although the idea is attractive, in reality there are many difficulties such as identifying and

extracting parallelism, scheduling code into properly timed hardware, and analyzing commu-

nication patterns and pointer aliasing [44]. Due to these difficulties, C-based synthesis tools

usually do not support full American National Standards Institute (ANSI) C, but only a subset,

or employ extensions to the language. For example, floating-point data types are often not sup-

ported due to the hardware complexity required. With current automatic synthesis methods,

the user also needs to have a good understanding of how to write "C" code that synthesizes

efficiently to hardware. Unfortunately, the rules and language subsets often change from one

tool to the next.

Despite these limitations, C-based synthesis is still a powerful method for creating hardware

accelerators, which can be seen from the large number of solutions in this area. The follow-

ing sections will describe three compilers that support FPGAs: Altera C2H Compiler, Xilinx

CHiMPS, and Catapult C. Descriptions of some other C-based synthesis tools can be found

in [45].

Altera C2H Compiler

The Altera C2H compiler [46] is a recently released tool that synthesizes a C function into a

hardware accelerator for the Nios II soft CPU. The System-on-Programmable-Chip (SOPC)

Builder tool in Quartus II automatically connects these accelerators to the Nios II memory

system through the Avalon system fabric [47]. The compiler synthesizes pipelined hardware

from the C source code using parallel scheduling and direct memory access [46]. Initially, each

memory reference in the C language is handled by creating a master port in the accelerator

hardware for each memory reference. In theory, this allows the maximum number of concurrent

memory accesses. When several master ports connect to the same memory block, the Avalon

21

Chapter 2. Background

Nios II
Processor

Instruction Data

FT)

Control S

C2H
Accelerator

Avalon
Fabric I

AAA

Ar itratori \Ar itrator/

S

Instruction
Memory

— — ► Read Data

Data
Memory

Avalon Slave Port

Avalon Master Port

Data
Memory

Write Data & Control Path

Figure 2.4: Example Nios II system with C2H accelerators (Source: [46]).

system fabric creates an arbiter to serialize accesses. As an additional optimization, the C2H

compiler will merge several master ports connected to the same memory block by combining

the references and scheduling them internally. The ANSI C restrict keyword is used to indicate

no aliasing can occur with a pointer to help optimize concurrency. Figure 2.4 shows an exam-

ple Nios II processor system with C2H accelerators, and the connections between the various

components of the system.

The C2H compiler is convenient, and the design flow is simple and well-integrated into the

development tools. The pipelined, decoupled co-processors do not have the disadvantages of

tightly-coupled custom instruction accelerators, and direct memory access is a powerful feature

that further simplifies usage. Despite its ease of use, the performance of the automatically

synthesized accelerators are not as good as one might presume. The C2H compiler generates

only a single solution in the design space. It has no option to control the amount of loop

22

Chapter 2. Background

unrolling to set the performance and resource level of the accelerator. As can be seen from

Figure 2.4, if one of the accelerators have to access multiple data elements from a single data

memory, it will be forced to serialize the memory accesses, possibly creating a bottleneck in the

accelerator. To alleviate this bottleneck, data needs to be partitioned efficiently over multiple

memories to reduce overlap. However, this is a step that needs to be done manually by the

user, and requires a good understanding of the hardware system and application. The hardware

accelerators currently also do not have caches, nor do they support cache coherency with the

Nios II processor's cache. The user either has to ensure that data does not overlap, or force the

processor to flush its cache before transferring execution to the accelerator.

CHiMPS Target Language

Compiling HLL Into Massively Pipelined Systems (CHIMPS) is an experimental compiler by

Xilinx Labs [48] that compiles high level languages such as C into hardware accelerators that can

be implemented on Xilinx FPGAs. The compiler uses the CHiMPS Target Language (CTL),

which is a predefined instruction set, as an intermediate language for synthesis, then extracts

a dataflow graph from the CTL. This dataflow graph is then implemented in hardware, and

pipelined for performance. One additional feature of CHiMPS is it automatically generates

caches to cache data inside the FPGA, and supports coherency between multiple cache blocks

and multiple FPGAs. Few additional details have been released about CHiMPS, and it is still

unclear what further functionality it provides.

Catapult Synthesis

Catapult Synthesis [49] by Mentor Graphics synthesizes ANSI C++ into an RTL description

that can then be targeted to an ASIC or FPGA. Catapult Synthesis can actually synthesize

entire systems without processor cores, and it has been used to design production ASIC and

FPGA designs [49]. The tool automatically generates multiple microarchitectures for a given

design, allowing the user to explore performance, area, and power tradeoffs. The user can use

23

Chapter 2. Background

synthesis directives to specify high-level decisions. A number of main architectural transforma-

tions are applied to generate a hardware architecture. Interface synthesis generates hardware

and a communication protocol for the C function to communicate with the rest of the de-

sign, variable/array mapping controls how variables are mapped to registers or memory, loop

pipelining allows multiple iterations of a loop to execute in parallel, loop unrolling exploits

parallelism across subsequent loop iterations, and scheduling transforms the untimed C code

into an architecture with a well-defined cycle-by-cycle behaviour.

The Catapult Synthesis tool allows designers to automate parts of the detailed implementa-

tion of a design, while the automatic exploration process allows them to explore tradeoffs in the

implementation. However, the user must still specify how data is transferred to and from the

accelerator during interface synthesis, and use directives to guide the other phases of compila-

tion. User experience reports [50] emphasize that the user must have a good understanding of

the algorithm and implications of different C/C++ constructs to generate good hardware. As

Catapult Synthesis is designed to synthesize entire systems, it does not have natural support

for connecting to a processor.

2.5.2 Block-based Synthesis

The term block-based synthesis refers to methods that synthesize hardware from a graphical

design environment that allows the user to design systems by graphically connecting functional

blocks. This synthesis flow is frequently incorporated into model-based design environments, in

which the user creates a high-level executable specification using functional blocksets to define

the desired functional behaviour with minimal hardware detail. This executable specification

is then used as a reference model while the hardware representation is further specified. The

most commonly used such environment is the MathWorks Simulink design environment [51].

This design method allows algorithm designers and hardware designers to work in a common

environment, and allows architectural exploration without specifying detailed implementation.

Automated synthesis methods from these environments simplify the final implementation phase,

24

Chapter 2. Background

bridging the gap between algorithm and hardware designers.

The following subsections will describe four specific tools: Xilinx System Generator for DSP,

Altera DSP Builder, Simulink HDL Coder, and Starbridge Viva. Starbridge Viva is the only

solution of the four that does not operate within Simulink. Another similar tool that interfaces

to Simulink is DSPLogic Reconfigurable Toolbox [52].

Xilinx System Generator for DSP & Altera DSP Builder

The Xilinx System Generator for DSP [53] is an add-on that uses Simulink as a front-end to

interface to Xilinx IP cores for DSP applications. The Xilinx Blockset includes over 90 common

DSP building blocks that interface to Xilinx IP core generators. The System Generator also

allows hardware co-simulation of the Simulink model using a Xilinx FPGA-based DSP platform

communicating through Ethernet or JTAG to accelerate the simulation.

The Altera DSP Builder has mostly the same features as the Xilinx System Generator but

is targeted to Altera FPGAs. Pre-designed DSP blocks from the Altera MegaCore functions

can be imported into the Simulink design, and the system can be co-simulated using an Altera

FPGA through JTAG. The DSP Builder also has blocks for communicating with the Avalon

fabric so the accelerators generated by DSP Builder can be instantiated in SOPC Builder

systems, and used with the Nios II soft processor.

The advantage of these vendor-specific block libraries is they are highly optimized to the

vendor's platform. But since they are specific to a target platform, the Simulink models gener-

ated using these flows are no longer platform independent and suffer in portability.

Simulink HDL Coder

Simulink HDL Coder [54] generates synthesizable Verilog or VHDL code from Simulink models

and Embedded MATLAB [55] code for datapath implementations, as well as from finite-state

machines described with the Stateflow tool for control logic implementations. The generated

HDL is target independent, bit-exact and cycle-accurate to the Simulink model, and can be

25

Chapter 2. Background

implemented on FPGA or ASIC. The tool is a mix of synthesis and a set of supported Simulink

models with HDL code. Over 80 Simulink models are supported in version 1.0, with multiple

implementations included for some commonly used blocks. The HDL Coder can automatically

pipeline Embedded MATLAB function blocks and state machines.

Starbridge Viva

Starbridge Viva [56] provides its own drag and drop graphical and object oriented environment

for algorithmic development. A parallel algorithm can be modeled by connecting functional

objects on a design pallet using transports that represent the data flow. Objects are "poly-

morphic" and can be used with different data types, data rates, and data precisions allowing

reuse and experimentation with design tradeoffs. Built-in objects are, however, relatively prim-

itive constructs like comparators and registers compared to Simulink blocks or DSP blocks in

the Xilinx/Altera tools. The software supports a number of reconfigurable high-performance

computing (HPC) systems with both FPGA and CPUs, as well as the vendor's own Starbridge

Hypercomputers.

2.5.3 Application Specific Instruction Set Processor

Application-specific instruction set processors (ASIPs) have configurable instruction sets that

allow the user to extend the processor by adding custom hardware accelerators and instructions.

They provide a similar level of configurability as soft processors with custom instructions on

FPGAs, but are configured only once before being inserted into an ASIC flow. Adding cus-

tom hardware and instructions to ASIPs, however, frequently requires the use of proprietary

synthesis languages and compilers. They also share the common disadvantages of synthesized

hardware accelerators of requiring separate accelerators for each accelerated function. The Ten-

silica Xtensa [57] processor will be described in the next section. Another commercial ASIP is

the ARC configurable processor [58].

26

Chapter 2. Background

Tensilica Xtensa

The Tensilica Xtensa [57] processor is a configurable and extensible processor for ASIC and

FPGA design flows. It allows the customer to configure the processor to include or omit features,

and add application-specific extensions to the base processor using the Tensilica Instruction

Extension language (TIE). These instructions expand the base instruction set of the processor.

TIE is flexible and can be used to describe accelerators that range from multi-cycle pipelined

hardware to VLIW, SIMD, and vector architectures. The Tensilica XPRES (Xtensa PRocessor

Extension Synthesis) Compiler [59] furthermore creates TIE descriptions from ANSI C/C++

code, allowing direct generation of processor hardware RTL from C/C++ specification. It

also allows design space exploration by generating different TIE source files that represent a

range of Xtensa processors that trade off performance of the application versus area. However,

accelerators generated from TIE are optimized for ASIC and not for FPGA implementation.

FPGA support is mainly provided for validation purposes.

2.5.4 Synthesis from Binary Decompilation

Another method of synthesizing hardware accelerators is by binary decompilation techniques

that decompile the software binary, and synthesize hardware accelerators from the resulting

assembly instructions or description. Two commercial products in this category are Cascade [60]

by CriticalBlue and Binachip-FPGA [61]. There are not many details on the performance of

Binachip-FPGA, but [62] reported an average speedup of 1.4x from simulating eight benchmarks

targeting a single-chip MIPS processor plus hardware accelerators synthesized from binary

decompilation. CriticalBlue adopts a different architecture for its accelerators to achieve higher

performance, as will be described in the following section.

CriticalBlue Cascade

Cascade by CriticalBlue is another tool that automatically synthesizes co-processors to a

main processor for SoC, structured ASIC, and Xilinx FPGA platforms. Cascade differs from

27

Chapter 2. Background

synthesis-based solutions described in previous sections in that it synthesizes a co-processor

by analyzing the compiled object code of an application. The Cascade co-processor has a

distinct VLIW processor architecture, different from other dataflow or custom-hardware and

loop-pipelining based co-processors such as CHiMPS and the Altera C2H compiler. The co-

processor connects to the main CPU via the bus interface of the main processor, and can be

configured as a slave co-processor of the main CPU, or an autonomous streaming co-processor

with direct memory access. It is customizable, and the tool automatically performs architec-

ture exploration by generating a range of co-processors with different performance and area.

Furthermore, it has options to configure the instruction format and control the amount of

instruction decode logic. A single co-processor can also be reused to accelerate multiple non-

overlapping portions of an application. The VLIW architecture is, however, not ideal for FPGA

implementation, as will be explained in Section 2.6.2.

2.6 Other Soft Processor Architectures

Rather than offloading sections of an application from the soft processor to a hardware acceler-

ator or co-processor to speed up execution, the soft processor itself can be improved to achieve

higher performance without the addition of accelerators. More advanced architectures than

standard RISC architectures have been explored for soft processors, and several of these will

be described in the following sections.

2.6.1 Mitrion Virtual Processor

The Mitrion Virtual Processor by Mitrionics [63] is a fine-grained, massively parallel, config-

urable soft core processor. It is based on a collection of ALU tiles that each perform a different

function, and are interconnected by a network. The processor is programmed in the propri-

etary Mitrion-C programming language, which has C-like syntax and allows the programmer

to identify parallelism within the code. The user can partially control resource usage by se-

28

Chapter 2. Background

lecting the level of loop unroll in the application. The compiler and configurator then analyzes

the application source code, and generates a configuration of the processor that executes the

application. Currently, the processor is supported on Xilinx FPGAs.

Although the processor and tools provide a complete solution to automatically synthesize

a system to execute the user application, similar to synthesized hardware accelerators, the

processor has to be reconfigured whenever the application changes, due to the code-specific

nature of the processor configurator.

2.6.2 VLIW Processors

VLIW architectures have also been used in FPGAs for acceleration. VLIW soft processors like

[5] are designed for a specific application, while others like [6, 7, 8] are more general purpose.

The 4-way VLIW processor described in [7] has four identical, general-purpose functional units,

connected to a single, multi-ported, 32 x 32-bit register file. It supports automatically gener-

ated custom hardware units that can be placed inside each of the identical ALUs. A similar

VLIW processor in architecture is [8], which is configurable and is automatically generated by

a configuration tool. It has multiple heterogeneous functional units, but also supports custom

hardware units coded in VHDL. The register file is separated into three smaller register files for

address, data, and data to custom hardware units. Each of the smaller register files are further

separated into even and odd register banks to reduce the number connections.

Another FPGA-based VLIW processor is the VPF [9], which is a simplified version of the

EVP [64] ASIC. Each functional unit in the VLIW architecture is itself a SIMD unit that can

processes a number of 16-bit operands, with the SIMD width configurable at compile time.

The processor has three functional units: MAC, shuffle, and load/store, and seems relatively

complete with 52 instructions. A 200MHz clock frequency was achieved for SIMD width of 4

and 8, and performance degrades significantly past SIMD width of 16, mainly due to the shuffle

unit which allows arbitrary permutation of data elements across the SIMD unit.

A model of the Intel Itanium microarchitecture supporting a subset of the Itanium ISA was

29

Chapter 2. Background

also prototyped on an FPGA [65].

The drawback of VLIW architectures for FPGAs is the multiple write ports required in the

register file to support multiple functional units. Since embedded memory blocks on current

FPGAs have only two ports, and one is needed for reading, a register file with multiple write

ports is commonly implemented either as a collection of discrete registers as in [7], or divided

into multiple banks as in [8]. In either case, multiplexers are needed at the write side to connect

multiple functional units to the register file, and this overhead increases as the processor is made

wider with more functional units to exploit parallelism. For multiple bank implementations,

there are additional restrictions on which registers can be written to by each instruction.

2.6.3 Superscalar Processors

The PowerPC 440 core on Xilinx Virtex 5 devices has a superscalar pipeline, but it is a hard

processor core implemented in transistors inside the FPGA device, and does not provide the

level of customization available in soft core processors. However, the Auxiliary Processor Unit

(APU) does allow the PowerPC core to connect to custom co-processors implemented in the

FPGA fabric.

FPGAs are frequently used to prototype ASIC microprocessors, and recently there has

been interest in using FPGAs to more quickly and accurately explore microprocessor design

space [66]. The Intel Pentium was implemented on an FPGA and connected to a complete

computer system for architectural exploration in [10], and a speculative out-of-order superscalar

core based on the SimpleScalar PISA was implemented in an FPGA in [11]. The lack of soft

superscalar processors specifically designed for FPGAs could be due to a number of difficulties

in mapping this type of architecture to FPGAs. Wide-issue superscalar processors require

complex dependency checking hardware to identify dependencies during instruction decode, as

well as comparators to detect when operands are available so the instruction can be issued. The

data forwarding multiplexers that carry results from outputs of functional units to inputs also

add to complexity. And similar to VLIW processors, the register file of superscalar processors

30

Chapter 2. Background

also needs many read and write ports to support multiple functional units.

2.7 Summary

Each of the four categories of soft processor accelerators described in this chapter has its

advantages and drawbacks. Multiprocessor systems are very flexible with respect to the type

of application that can be accelerated, but are complex both to design and use. Custom-

designed hardware accelerators require significant hardware design knowledge and effort, and

generally require a separate accelerator for each accelerated function. Although synthesized

accelerators automatically create hardware accelerators from software, the accelerators have to

be regenerated and resynthesized when the software changes. An improved soft processor can

accelerate the entire application and does not require hardware design knowledge or effort to

use. However, current VLIW and superscalar soft processors implemented in FPGAs do not

scale well to high performance.

The next chapter will discuss in detail the design and architecture of the soft vector proces-

sor, an approach that combines the best advantages of most of these accelerator techniques.

31

Chapter 3

Configurable Soft Vector Processor

This chapter describes the design and implementation of the configurable soft vector processor,

targeted specifically to the Altera Stratix III FPGA. The chapter first outlines the require-

ments of an effective soft processor accelerator, and shows how the soft vector processor meets

these requirements. It then gives an overview of the processor, and presents the design and

implementation details. The novel features and instructions of the soft vector processor are

highlighted, and the improvements over the VIRAM instruction set are demonstrated using a

simple FIR filter example. Finally, the design flow of the soft vector processor is compared to

a commercial C-based synthesis flow, namely the Altera C2H compiler.

3.1 Requirements

The previous chapter described currently available soft processor accelerator solutions. Given

each of their advantages and drawbacks, an ideal soft processor accelerator that combines the

best of different solutions should:

• have scalable performance and resource usage,

• be simple to use, ideally requiring no hardware design effort,

• separate hardware and software design flows early in the design,

• allow rapid development by minimizing the number of times the design has to be synthe-
sized, placed and routed.

Vector processing, in particular a soft vector processor, addresses all these requirements. It

provides a simple programming model that can be easily understood by software developers,

32

Chapter 3. Configurable Soft Vector Processor

and its application-independent architecture allows hardware and software development to be

separated. A soft vector processor delivers scalable performance and resource usage through soft

processor configurability and a scalable architecture. Modifying the application also requires

only changing the software and a software recompilation.

3.2 Soft Vector Architecture

The soft vector architecture is a configurable soft-core vector processor architecture developed

specifically for FPGAs. It leverages the configurability of FPGAs to provide many parameters

to configure the processor for a desired performance level, and for a specific application.

The soft vector processor instruction set borrows heavily from the instruction set of VIRAM,

but makes modifications to target embedded applications and FPGAs. In particular, the soft

vector processor removes support for virtual memory, floating-point data types, and certain

vector and flag manipulation instructions, but adds new instructions to take advantage of DSP

functionality and embedded memories in FPGAs. The following sections describe the high

level architecture of the soft vector processor, and how the instruction execution differs from

traditional vector processors.

3.2.1 System Overview

The soft vector architecture specifies a family of soft vector processors with varying performance

and resource utilization, and a configurable feature set to suit different applications. A software

configurator uses a number of parameters to configure the highly parameterized Verilog source

code and generate an application- or domain-specific instance of the processor. The configura-

bility gives designers flexibility to trade-off performance and resource utilization, and to further

fine-tune resource usage by removing unneeded processor features and instruction support.

Figures 3.1 illustrates the high level view of the soft vector processor. The architecture con-

sists of a scalar core, a vector processing unit consisting of multiple vector lanes, and a memory

33

Instruction
Memory

Memory Unit

128

ID

]2

Scalar Core

r

LU

PC

^ 1111 11

Vector Lane •••

Vector Lane

1 Write port
2 Read ports Memory

Crossbars

Main
emery

Figure 3.1: Scalar and vector core interaction

Chapter 3. Configurable Soft Vector Processor

unit that controls the memory crossbars and address logic. The scalar core is the single-threaded

version of the UTIIe [67], a 32-bit Nios II-compatible soft processor with a four-stage pipeline.

The scalar core and vector unit share the same instruction memory and instruction fetch logic.

Vector instructions are 32-bit, and can be freely mixed with scalar instructions in the instruction

stream. The scalar and vector units can execute different instructions concurrently, but will

coordinate via the FIFO queues for instructions that require both cores, such as instructions

with both scalar and vector operands.

The soft vector processor architecture is tailored to the Altera Stratix III FPGA architecture.

The sizes of embedded memory blocks, functionality of the hard-wired DSP blocks, and mix of

34

C = A + B

E = C * D

<^).

3 6
C = A + B

E = C ' D

2 6

73

).<̂

2

7

Chapter 3. Configurable Soft Vector Processor

9 cycles^ 8 cycles

(a) (b)

Figure 3.2: Traditional vector processor execution using chaining is shown in (a), while hybrid
vector-SIMD execution is shown in (b). The numbers show how eight vector data elements are
processed in the two data-dependent instructions.

logic and other resources in the Stratix III family drove many of the design decisions.

3.2.2 Hybrid Vector-SIMD Model

Traditional vector processors are optimized towards processing long vectors. Since they tend

not to have a large number of parallel datapath or vector lanes, they rely on pipelining and

instruction chaining through the vector register file to achieve high performance. Instruction

chaining is illustrated in Figure 3.2(a), which refers to the passing of partial results from one

functional unit to the next between two data dependent instructions before the entire result

vector has been computed by the first unit. Chaining through the register file has a significant

drawback: it requires one read port and one write port for each functional unit to support

concurrent computations. This contributes to the complexity and size of the traditional vector

35

Chapter 3. Configurable Soft Vector Processor

register file. Since such a vector register file cannot be implemented efficiently on an FPGA, a

different scheme was implemented.

The soft vector processor combines vector and SIMD processing to create a hybrid vector-

SIMD model, illustrated in Figure 3.2(b). In the hybrid model, computations are performed

both in parallel in SIMD fashion, and over time as in the traditional vector model. Since the

number of vector lanes will generally be large in the soft vector processor to take advantage

of the large programmable fabric on an FPGA, the number of clock cycles required to process

each vector will generally be small. This allows chaining to be removed, simplifying the design

of control logic for the register file.

3.3 Vector Lane Datapath

The vector lane datapath of the vector unit is shown in detail in Figure 3.3. The vector unit

is composed of a configurable number of vector lanes, with the number specified by the NLane

parameter. Each vector lane has a complete copy of the functional units, a partition of the

vector register file and vector flag registers, a load-store unit, and a local memory if parameter

LMemN is greater than zero. The internal data width of the vector processing unit, and hence

width of the vector lanes, is determined by the parameter VPUW. All vector lanes receive

the same control signals and operate independently without communication for most vector

instructions. NLane is the primary determinant of the processor's performance (and area).

With additional vector lanes, a fixed-length vector can be processed in fewer cycles, improving

performance. In the current implementation, NLane must be a power of 2.

3.3.1 Vector Pipeline

The vector co-processor of the soft vector processor has a 4 stage execution pipeline, plus the

additional instruction fetch stage from the scalar core. The pipeline is intentionally kept short

so vector instructions can complete in small number of cycles to take advantage of many parallel

36

MAr

I
I Vector

register
elements

ALU

Vector
control

registers

Memor
unit

Load-store
buffers

Local
memoryN

Vector flags

Vector
bypass

L

Vector register partitioning

DDR-SDRAM
or on-chip SRAM

1128

Figure 3.3: Vector co-processor system block diagram. The vertical grey stripes in the vector
register file illustrate how the data elements of a single vector register are striped across the
vector lanes. Vector register partitioning is explained in detail in Section 3.3.3. The distributed
accumulators in the figure are described in Section 3.5.

vector lanes, and to eliminate the need for forwarding multiplexers for reduced area. With the

shared instruction fetch stage, the entire processor can only fetch and issue a single instruction

per cycle. As shown in Figure 3.1, the vector unit has a separate decoder for decoding vector

instructions. The memory unit has an additional decoder and issue logic to allow overlapped

execution of a vector instruction that uses the ALU and a vector memory instruction.

The vector unit implements read after write (RAW) hazard resolution through pipeline

interlocking. The decode stage detects data dependency between instructions, and stalls the

later instruction if a pipeline hazard is detected until it is resolved. The decode stage also

37

•••
• Shift

chain
(optional)

•-►

Vector
register

elementS

Vector flags

—P

Memory interface

r
Alignment

4 Load-store
buffers

Local
rnemor

MAC

• MAC
• chain
•

•
• Inputs from^:18)

• vector lanes

ALU

Chapter 3. Configurable Soft Vector Processor

Scalar register input^ Distributed accumulators
MAC chain result

(optional)

Chapter 3. Configurable Soft Vector Processor

ALUOP [5:0] Flag

zeroB

B

zero B2

Figure 3.4: The vector lane ALU is composed of two primary adders and additional control
logic. The lookup-tables (LUTs) at the two primary adder inputs are capable of performing
pre-adder logic.

detects RAW hazards between the vector processing core and the memory unit for load/store

and register instructions. Indexed memory access stalls the entire vector core for the memory

unit to read address offsets from the vector register file.

3.3.2 Datapath Functional Units

The functional units within each vector lane datapath include an ALU, a single-cycle barrel

shifter, and a multiplier. The ALU takes advantage of the Stratix III ALMS architecture to

implement an efficient adder/subtractor. Figure 3.4 shows how the ALU is implemented using

ALMs configured in arithmetic mode. The ALU supports arithmetic and logical operations,

maximum/minimum, merge, absolute value, absolute difference, and comparisons. The top

adder performs the bulk of the arithmetic operations, while the bottom adder is used for the

absolute difference instruction (to compute subtraction with inputs reversed), and for logical

3Adaptive logic modules (ALMs) are the basic logic units in the Altera Stratix III family of FPGAs. Each
ALM consists of an 8-input fracturable lookup-table, two dedicated adders, and two registers [1].

38

Chapter 3. Configurable Soft Vector Processor

operations (using the lookup tables at the adder inputs).

Not shown in Figure 3.4 are the barrel shifter, which is implemented in log(n) levels of

multiplexers, and the multiplier, which is implemented using embedded DSP blocks. The

multiplier takes up one quarter of a DSP block with 16-bit inputs, and half a DSP block with

32-bit inputs.

3.3.3 Distributed Vector Register File

The soft vector processor uses a vector register file that is distributed across vector lanes. This

differs from traditional vector architectures which employ a large, centralized vector register

file with many ports [25]. The vector register file is element-partitioned — each vector lane

has its own register file that contains all the vector registers, but only a few data elements

of each vector register [22]. The partitioning scheme naturally divides the vector register file

into parts that can be implemented using the embedded memory blocks on the FPGA. It also

allows SIMD-like access to multiple data elements in the vector register file by the vector lanes.

Furthermore, the distributed vector register file saves area compared to a large, multi-ported

vector register file. The collection of vertical dark-gray stripes in Figure 3.3 together represent

a single vector register spanning all lanes, and containing multiple vector elements per lane.

The soft vector processor ISA defines 64 vector registers4 . Assigning four 32-bit elements of

each register to each lane fills one M9K RAM; this is duplicated to provide two read ports. For

this reason, MVL is typically 4 times NLane for a 32-bit VPUW, and most vector instructions

that use the full vector length execute in 4 clock cycles. Vector flag registers are distributed

the same way.

4VIRAM supports only 32 architectural registers. The large embedded memory blocks in Stratix III encour-
aged the extension to 64 registers in the ISA.

39

Chapter 3. Configurable Soft Vector Processor

3.3.4 Load Store Buffers

The load store buffers within the vector lane interfaces with the memory unit for vector memory

access. Two FIFO queues buffer load and store data. For a vector memory store, the vector

lane datapath can process a different instruction as soon as it transfers data from the vector

register file to the store queue. During a vector memory load, the vector memory unit places

data from memory into the load buffers without interrupting the vector lane datapath while the

memory access completes. Pipeline interlocking allows vector loads to be statically scheduled

ahead of independent instructions for increased concurrency.

3.3.5 Local Memory

Each vector lane can instantiate a local memory by setting the LMemN parameter to specify the

number of words in the local memory. The local memory uses register-indirect addressing, in

which each vector lane supplies the address to access its own local memory. Like the distributed

vector register file, it is normally split into 4 separate sections — one for each of the four data

elements in a vector lane. However, if the parameter LMemShare is On, the four sections are

merged, and the entire local memory becomes shared between all the elements that reside in

the same lane. This mode is intended for table-lookup applications that share the same table

contents between data elements.

3.4 Memory Unit

The memory unit handles memory accesses for both scalar and vector units. Scalar and vector

memory instructions are processed in program order. Vector memory instructions are processed

independently from vector arithmetic instructions by the memory unit, allowing their execution

to be overlapped. The memory interface is intended to be connected to an external 128-bit

DDR-SDRAM module, which is suited for burst reading and writing of long vectors, or to large

on-chip SRAMs. As a result, it interfaces to a single memory bank, and supports access of

40

To/from
scalar unit

r

i

1 x1

2_
4-

From

vector lanes

To
vector lanes 4

,

1

r ^

Load

Store
Addr Gen1

ID _4. Store
i Ctrl Load
1

Addr Gen
I

L ^

x
Memory

1^

Memory
crossbars

Memory Unit
J

Chapter 3. Configurable Soft Vector Processor

Figure 3.5: Vector memory unit showing the controllers and memory crossbars.

this single memory bank in all three vector addressing modes. To support arbitrary stride and

access in different granularities (32-bit word, 16-bit halfword, 8-bit byte), crossbars are used to

align read and write data. Width of the crossbars are equal to Mem Width (default value of

128 bits), and the configurable parameter MemMinWidth (default value of 8 bits) specifies the

crossbar granularity which dictates the smallest width data that can be accessed for all vector

memory addressing modes.

The memory unit and crossbars are shown in Figure 3.5. The load store controller issues

load and store instructions to the address generators, which also control the memory crossbars.

The memory unit is also used to implement vector insert and extract instructions: a bypass

register between the write and read interfaces allows data to be passed between the interfaces,

and rearranged using the write and read crossbars.

Logically, the memory unit can be separated into the load store controller, read interface

(including read crossbar), and write interface (including write crossbar). The three components

will be discussed in more detail in the following sections.

41

Chapter 3. Configurable Soft Vector Processor

3.4.1 Load Store Controller

The load store controller implements a state machine to control the operation of the memory

unit. It handles both scalar and vector memory accesses, but only either one at a time, and

stalls the core that makes the later request if it is already busy. Memory access ordering between

the two cores is preserved by using a FIFO queue to store a flag that indicates whether a scalar

or vector memory instruction is fetched by the fetch stage. The load store controller reads

from this FIFO queue to maintain memory access order. The controller also generates control

signals to the load and store address generators depending on the memory instruction. For

vector stores, the controller commences the memory store after the vector lane datapath has

transferred data to the store buffers. For vector loads, the controller waits until all data has

been transferred by the load address generator to the vector lane load buffers, then notifies the

vector lane datapath that load data is ready. This causes the vector processing core to issue a

micro operation to move loaded data from the load buffers to the vector register file. After the

transfer, the load store controller is again free to accept the next memory instruction.

3.4.2 Read Interface

The read interface consists of the read address generator and the read data crossbar — a

full crossbar MemWidth bits wide, and MinDataWidth bits in granularity. The read address

generator produces select signals to control the read crossbar, and write enable signals to write

the read data to the vector lane load buffers. Each cycle, the address generator calculates how

many data elements can be aligned and stored into the vector lane load buffers given the stride

and byte offset into the MemWidth-bit wide memory word, and asserts the write enable of the

same number of vector lane load buffers. The read interface can align up to Memea dttaiWihdth

number of elements per cycle, where MemDataWidth is the data width of the particular vector

read instruction, for unit stride and constant stride reads. Indexed vector load executes at one

data element per cycle.

42

Scalar data
[MinDataWidth-1:0] Single bank

main
memory

1MinDataWidth

_\-

..4

Chapter 3. Configurable Soft Vector Processor

VPUW

IIIK
Lane 0

i MemWidth

III[:\ /\'
-.1r.Lane (MemWidth/VPUW) 1^

-/I
-41""

-
A-■

• *N••
-\-N

I I HAN

7

Data
Compress

Instruction
ope and

size

Lane N 1^ Selectable delay
network

Figure 3.6: Soft vector processor write interface. The write interface selects VPUW bit wide
data to be written from the store buffers and concatenates the elements into a MemWidth-bit
wide memory word. The data compress block discards the extra bits if the memory access gran-
ularity is smaller than VPUW. This compressed memory word is then stored in an intermediate
register, and passes through the delay network and crossbar before being written to memory.

3.4.3 Write Interface

The write interface consists of the write address generator and the write interface datapath.

The write interface datapath is shown in Figure 3.6. It is comprised of a multiplexer to select

data from vector lane store buffers to pass to the write logic, a data compress block, a selectable

delay network to align data elements, and a write crossbar in MinDataWidth-bit granularity,

and MemWidth bits wide that connects to main memory. The design of the selectable delay

network is derived from the TO vector processor [22]. If NLane * VPUW > MemWidth, a set

of multiplexers are placed between the store buffers and the first set of registers to select data

from vector lanes to write. The data compress block handles writing of smaller data widths

than VPUW by selecting the valid inputs bits to pass to the register.

Figure 3.7 shows how the delay network and alignment crossbars are used to handle write

offsets and data misalignment for a vector core with four lanes. The write address generator

43

1

(b)

Chapter 3. Configurable Soft Vector Processor

Lane 0

Lane 1

Lane 2

Lane 3

Lane 0

Lane 1

Lane 2

Lane 3

Lane 0

Lane 1

Lane 2

Lane 3

Lane 0

Lane 1

Lane 2

Lane 3

Memory

(a)
Memory

III I me 11 a
III i am P ri
III i dio 1 il
is I all P `111_ ,

(C)

Memory

Memory

(d)

Figure 3.7: Four cycles of a unit stride vector store with a one word offset. The delay network
aligns data elements to the correct write cycle, while the crossbar moves the data elements to
the correct positions (Source: [22]).

can generate a single write address to write several data elements to memory each cycle. A

unit stride vector store is shown in the figure, but the crossbar logic handles arbitrary stride.

The write address generator can handle writing up to memeDmataiwdtihdth number of elements per

cycle, where MemD ata Width is the data width of the particular vector write instruction, for

unit stride and constant stride writes. Indexed vector store executes at one data element per

cycle.

3.5 FPGA-Specific Vector Extensions

The soft vector processor borrows heavily from VIRAM. The instruction set includes 45 vector

integer arithmetic, logical, memory, and vector and flag manipulation instructions. For nearly

44

Chapter 3. Configurable Soft Vector Processor

all instructions, the instruction opcode selects one of two mask registers to provide conditional

execution. Complex execution masks are formed by special instructions that manipulate several

flag registers. Some flag registers are general-purpose, while others hold condition codes from

vector comparisons and arithmetic.

The soft vector processor also differs from VIRAM by extending it to take advantage of on-

chip memory blocks and hardware DSP blocks common in FPGAs. These features are described

below.

A new feature of this processor is distributed multiply-accumulators and a multiply-accumulate

chain, implemented using the multiply-accumulate (MAC) feature of the Stratix III DSP blocks,

and are shown in Figure 3.3. The MAC feature configures the DSP block in a 4-multiply-

accumulate mode, each of which can multiply and accumulate inputs from 4 vector lane dat-

apaths into a single distributed accumulator. The cascade chain in the Stratix III DSP blocks

allows cascade adding of these distributed accumulators, speeding up the otherwise inefficient

vector reduction operation. MACL specifies the number of distributed accumulators chained

together to produce one accumulation result. If MACL is smaller than N L4ane , the accumulate
4 *NAILMALL

Lchain generates partial results and writes them as a contiguous vector to the begin-

ning of the destination vector register so it can be accumulated again. The MAC units are

incorporated into the soft vector processor through the vmac and vcczacc instructions. The

vmac instruction multiplies two source vectors and accumulates the result to the distributed

accumulators. The vcczacc instruction cascade adds the distributed accumulator results in

the entire MAC chain, copies the final result (or the partial result vector if the cascade chain

does not span all MAC units) to a vector register, and zeros the distributed accumulators. The

accumulators allow easy accumulation of multi-dimensional data, and the accumulate chain

allows fast sum reduction of data elements within a vector.

The distributed vector register file efficiently utilizes embedded memory blocks on the

FPGA, as described in Section 3.3.3. The vector lane local memory described in Section 3.3.5 is

also implemented using these memory blocks. This local memory is non-coherent, and exists in

45

Chapter 3. Configurable Soft Vector Processor

vmstc^vbase0, sp^- Load base address
vmstc^vbasel, r3^Load coefficient address
vmstc^VL, r2^Set VL to num taps
vld.h^v2, vbasel^Load filter coefficients
vld.h^vl, vbase0^Load input vector

.L5:
VMAC^vl, v2^Multiply—accumulate up to 16 values
VCCZACC v3^Copy result from accumulator and zero
vmstc^VL, r9^Reset VL to num taps (vcczacc changes VL)
vmstc^vindex, r8^Set vindex to 0
vext.vs^r10, v3^Extract final summation result
stw^r10, 0(r4)^Store result
VESHIFT^vl, vl^Vector element shift
vmstc^vindex, r6^Set vindex to NTAP-1
vins.vs^vl, r5^Insert new sample
addi^r3, r3, —1
addi^r4, r4, 4
bne^r3, zero, .L5

Figure 3.8: 8-tap FIR filter vector assembly

a separate address space from main memory. The local memory can be read through the vlcil

instruction, and written using the vstl instruction. Data to be written into the local memory

can be taken from a vector register, or the value from a scalar register can be broadcast to

all local memories. A scalar broadcast writes a data value from a scalar register to the local

memory at an address given by a vector register, which facilitates filling the local memory with

values computed by the scalar unit.

The adjacent element shift chain is also shown in Figure 3.3. It allows fast single-direction

shifting of data elements in a vector register by one position, avoiding a slow vector insert

or extract instruction for this common operation. This feature can be accessed through the

veshift instruction.

One final extension is the inclusion of an absolute difference instruction, vabsdiff, which

is useful in sum of absolute difference calculations.

To demonstrate the effectiveness of the vector extensions, the same FIR filter example

implemented in VIRAM vector code in Figure 2.2 can be implemented in soft vector processor

46

Chapter 3. Configurable Soft Vector Processor

assembly as shown in Figure 3.8. The capitalized instructions highlight the differences in

the assembly code. The soft vector processor code sequence is significantly shorter, with 12

instructions in the loop instead of 18. The MAC units and cascade chain speed up the reduction

operation, and the shift chain simplifies adjacent element shifting.

The vabsdif f instruction is used by the MPEG motion estimation benchmark discussed

in the next chapter. Also, the vldl and vstl instructions are used by the AES encryption

benchmark also discussed in Chapter 4.

3.6 Configurable Parameters

Table 3.1 lists the configurable parameters and features of the soft vector processor architecture.

NLane, MVL, VPUW, MemWidth, and MemMinWidth are the primary parameters, and have

a large impact on the performance and resource utilization of the processor. Typically MVL

is determined by NLane and VPUW, as the number of registers defined in the ISA, a given

VPUW, and the FPGA embedded memory block size constrain how many data elements can fit

in a vector lane. The secondary parameters enable or disable optional features of the processor,

such as MAC units, local memory, vector lane hardware multipliers, vector element shift chain,

and logic for vector insert/extract instructions. The MACL parameter enables the accumulate

chain in the Stratix III DSP blocks, and specifies how many MAC units to chain together to

calculate one sum.

3.7 Design Flow

This section describes the design flow for using the soft vector processor. Section 3.7.1 describes

an ideal design flow based on vectorizing compilers, and Section 3.7.2 looks at the current state

of vectorizing compilers and the feasibility of adopting such compilers for this processor.

47

MACL
LMemN
LMemShare
Vmult
Vupshift
Vmanip

MAC chain length (0 is no MAC)
Local memory number of words
Shared local memory address space within lane
Vector lane hardware multiplier
Vector adjacent element up-shifting
Vector manipulation instructions (vector insert/extract)

0,1,2,4
0-1024
On/Off
On/Off
On/Off
On/Off

Chapter 3. Configurable Soft Vector Processor

Table 3.1: List of configurable processor parameters

Parameter Description Typical
4-128
16-512
8,16,32
32-128
8,16,32

NLane
MVL
VPUW
MemWidth
MemMinWidth

Number of vector lanes
Maximum vector length
Processor data width (bits)
Memory interface width
Minimum accessible data width in memory

Secondary Parameters

3.7.1 Soft Vector Processor Flow versus C-based Synthesis

One major advantage of using a general-purpose soft processor versus automatic hardware

synthesis methods is the hardware does not have to be resynthesized or recompiled when the

underlying software changes. To illustrate this difference, Figure 3.9 compares the soft vector

processor design flow versus the design flow of using a C-based synthesis tool designed for

FPGA, in this case, the Altera C2H Compiler.

The C2H design flow begins with software code development, and has hardware acceleration

as a second phase in development. The user must identify and isolate the sections to be

hardware-accelerated, run the C2H compiler, and analyze the compilation estimates. As the

compilation estimates only give the performance estimates of the accelerators, in order to

determine the maximum frequency and performance of the entire system, a full synthesis,

placement, and routing must be performed.

The soft vector processor design flow begins with determining the resource budget and

performance requirements of the design, which dictate the performance level and resource uti-

lization of the core that is to be selected. This initial specification phase sets the configuration

48

No^(requirements?

1Yes

Result meets

Chapter 3. Configurable Soft Vector Processor

C2H compiler
design flow

Vector soft processor
design flow

(^Develop C Determine FPGA
code for Nlos resource budget

Hardware-aware
transformations^I

I^I

I^I
Tune system
architecture

I
Apply optimizations
to C source code

1^ 1
_

Jr

I Identify areas for)
HW acceleration

Jr
(Isolate sections N

to accelerate into
C functions

Run C2H
Compiler

4
(Analyzecompilation)

estimates

Jr
(Synthesize system,)

place and route

Jr

1r

Configure soft
processor

parameters

Design vector
algorithm

Develop C code,
vector assembly

Software-only I
optimizations I

(Synthesize system,
place and route

uomplie source
I :ode, assemble with
I^vector assembler

•^

(Download software)
to processor

Result meets
requirements?

No

1Yes

Figure 3.9: Altera C2H compiler design flow versus soft vector processor design flow

and specifications of the processor, and allows software and hardware development to proceed

in parallel rather than serial. Fixing the hardware netlist of the processor simplifies hardware

design of other blocks, and fixing processor features and capabilities gives software developers

constraints for writing code that will remain fixed throughout the design cycle. Application de-

velopment is independent of the synthesis flow, which is only needed to determine the maximum

frequency and end performance. No resynthesis is necessary from modifications in software.

The optimization methods of the two design flows also differ. Due to the limitation of re-

quiring manual partitioning of memory, typical optimization steps with the C2H compiler are

to create more on-chip memories, reorganize data in memory by partitioning, use programming

49

Chapter 3. Configurable Soft Vector Processor

pragmas to control connections between accelerators and memories, and manually unroll loops

to increase parallelism of the accelerator. These optimizations, especially optimizing the mem-

ory architecture, require not only a good understanding of the algorithm, but also hardware

design knowledge and thinking. On the contrary, optimizations in the soft vector processor de-

sign flow do not require any understanding of the hardware implementation of the processor or

to alter any parts of the hardware besides setting a few high level parameters according to the

software needs. Optimizing the algorithm on the software level to achieve better vectorization

is something that an average software developer can do. Hence the soft vector processor can

deliver FPGA accelerated performance to a wider software developer user base.

3.7.2 Comment on Vectorizing Compilers

The ease-of-use of the vector programming model depends greatly on the availability of a

vectorizing compiler. No vectorizing compiler was developed or used in this thesis due to time

constraints. However, vectorizing compilers exist and have been used, for example, in the past

and present Cray supercomputers. The VIRAM project, which much of this work and the soft

vector processor instruction set is based on, originally developed a compiler based on the Cray

PDGS system for vector supercomputers. The compiler for the Cell processor supports auto-

SIMDization to automatically extract SIMD parallelism and generate code for the Cell SIMD

processors [68]. Furthermore, GCC also has an auto-vectorization feature (partially developed

by IBM) that is partially enabled and being continually developed. Therefore it should be

feasible to modify an existing vectorizing compiler for this soft vector processor.

50

Chapter 4

Results

This chapter presents performance results from benchmarking the soft vector processor, and

compares its performance to the Nios II soft processor and the Altera C2H compiler discussed in

Section 2.5.1. The chapter first describes the benchmarks and the methodology, then presents

the results and comparisons between the different systems.

4.1 Benchmark Suite

Three benchmark kernels representative of data-parallel embedded applications are chosen to

compare the performance of the different approaches. They are taken from algorithms in MPEG

encoding, image processing, and encryption. The following sections describe the operation of

the three benchmarks.

Block Matching Motion Estimation

Block matching motion estimation is used in video compression algorithms to remove temporal

redundancy within frames and allow coding systems to achieve a high compression ratio. The

algorithm divides each luma frame into blocks of size N x N, and matches each block in the

current frame with candidate blocks of the same size within a search area in the reference

frame. The best matched block has the lowest distortion among all candidate blocks, and the

displacement of the block, or the motion vector, is used to encode the video sequence. The

metric is typically sum of absolute differences (SAD), defined as:

51

Chapter 4. Results

for(1=0; 1<nVERT; 1++)
for(k=0; k<nHORZ; k=++) {

answer = 0;
for(j=0; j<16; j++)

for(i=0; i<16; i++) {
temp = x[1+j][k+i] — y[l+j][k+i];
answer += ((temp >> 31) == 1)? (-temp + 1) : temp;

}

result [1] [k] = answer;

Figure 4.1: Motion estimation C code

N-1 N -1
SAD(m,n) = E E j) - + m , j +

i=o i=o

A full search block matching algorithm (FSBMA) matches the current block c to all candi-

date blocks in the reference frame s within a search range [—p, p— 1], and finds the motion vector

of the block with minimum SAD among the (2p) 2 search positions. Performing full search re-

quires huge computational power. For example, real time motion estimation for CIF (352 x 288)

30 frames per second (fps) video with [-16, +15] search range requires 9.3 giga-operations per

second (COPS) [69]. Due to the large computational requirements and regularity of data flow,

many FSBMA hardware architectures have been developed. Figure 4.1 shows example C code

for the motion estimation kernel.

Image Median Filter

The median filter is commonly used in image processing to reduce noise in an image and is

particularly effective against impulse noise. It replaces each pixel with the median value of

surrounding pixels within a window. Figure 4.2 shows example C code for a simple median

filtering algorithm that processes an image using the median of a 5 x 5 image region. It operates

by performing a bubble sort, stopping early when the top half is sorted to locate the median.

52

Chapter 4. Results

for (i=0; i<=12; i++) {
min = array[i];
for (j=i; j<=24; j++) {

if (array[j] < min) {
temp = min;
min = arrayS];
arrays] = temp;

}

Figure 4.2: 5 x 5 median filter C code

AES Encryption

The 128-bit AES Encryption algorithm [70] is an encryption standard adopted by the U.S.

government. The particular implementation used here is taken from the MiBench benchmark

suite [71]. It is a block cipher, and has a fixed block size of 128 bits. Each block of data

can be logically arranged into a 4 x 4 matrix of bytes, termed the AES state. A 128-bit key

implementation, which consists of 10 encryption rounds, is used. Each round in the algorithm

consists of four steps: SubBytes, ShiftRows, MixColumns, and AddRoundKey. The first 3 steps

can be implemented efficiently on 32-bit processors using a single 1 KB lookup table. A single

round is then accomplished through four table-lookups, three byte rotations, and four EXOR

operations [72].

4.2 Benchmark Preparation

The following sections describe how the benchmarks were prepared for performance measure-

ments on the different systems. Specific steps taken to vectorize the benchmarks for the soft

vector processor, and to tune the benchmarks for the C2H compiler are also described.

53

Chapter 4. Results

4.2.1 General Methodology

The benchmarks include only the main loop section of the kernels. The median filter kernel

calculates one output pixel from the 5 x 5 window. The motion estimation kernel calculates

SAD values for each position of a [-16, +15] search range and stores the values into an array. It

makes no comparisons between the values. The AES encryption kernel computes all rounds of

encryption on 128 bits of data. The instruction and cycle counts for one intermediate round of

the 10-round algorithm are reported, as the final round is handled differently and is not within

the main loop.

As there is no vector compiler for this project, the benchmark kernels were vectorized by

embedding vector assembly instructions for the soft vector processor using GCC style inline

assembly, then compiled using the Nios II GCC (nios2-elf-gcc 3.4.1) with optimization 03. A

modified Nios II assembler that adds vector instruction support was used to assemble the code.

4.2.2 Benchmark Vectorization

The three kernel benchmarks were vectorized manually using a mix of assembly and C code. The

following sections describe at a high level how the kernels were vectorized, and show segments

of the vector assembly codes.

Motion Estimation

In a vector processor implementation of full search motion estimation, one of the dimensions

is handled by vectorizing (removing) the innermost loop. This vectorization step supports up

to a vector length of 16 due to the 16 x 16 pixel size of macroblocks in MPEG. With 8 lanes

and MVL of 32, two copies of the current macroblock can be matched against the search area

simultaneously, reducing the number of iterations required to process the entire search range.

To keep the innermost loop fast, only unit stride vector load instructions, which execute the

fastest, are used.

Figure 4.3 shows how the matching is accomplished using only unit stride load memory

54

0^•e•^15

16^31

• W1^•
• •
• •

223^238

239^•••^255

0^•••
16

32
W2

• •
• •
• •

239^•••^255

15

31

47

33 vertical
positions1

J

Chapter 4. Results

32 pixels

4- 32 pixels --).

16 horizontal
positions

Figure 4.3: Simultaneously matching two copies of the macroblock to a reference frame

instructions. The two copies of the macroblock are offset vertically by one row. For each

position within the search range, 17 rows are processed, with the calculations in the first and

last row partially masked using a vector flag register. The search range also increases by one

row vertically as a result of the offsetting. This implementation actually executes faster than

replicating the macroblock without the row offset, which requires a slow vector insert instruction

in the inner loop of the kernel.

Figure 4.4 shows the vector code for the inner loop, plus vector code in the next outer

loop to extract and accumulate results after processing the entire 16 x 16 window. Code to

handle the first and last rows are not shown, but the instruction sequence is similar to the inner

loop. The assembly code accumulates the rows of the two windows into a single vector register,

then uses a vector mask to select between the two accumulated rows to do the final sum using

the accumulate chain. The MAC chain is used to reduce partial results to one final result in

the vcczacc instruction. The ".1" instruction extension indicates conditional execution using

vfmaskl as the mask. This implementation requires 6 instructions in the innermost loop.

To further improve performance, the number of memory accesses can be greatly reduced

55

Chapter 4. Results

vmstc^vbasel, r5^ • Load x base
vmstc^vbase2, r6^ Load y base
vadd^v5, vO, v0^ Zero sum

.L15:^ Innermost loop over rows
vld.b^v2, vbasel, vincl^load block pixels, vincl = 16
vld.b^v3, vbase2, vinc2^load frame pixels, vinc2 = IMAGEWIDTH
vabsdiff^v4, v2, v3
vadd^v5, v5, v4^ Accumulate to sum
addi^r2, r2, —1^ j++
bne^r2, zero, .L15^Loop again if (j<15)

vfld^vfmaskl, vbase4, vinc4^Load flag mask
vmac.1^v6, v5^ Accumulate across sum
vcczacc^v6^ Copy from accumulator
vmstc^VL, r9^ Reset VL after vcczacc
vext.vs^r3, v6^ Extract result to scalar core

Figure 4.4: Code segment from the motion estimation vector assembly. The code to handle the
first and last rows of the windows are not shown.

by unrolling the loop so pixels in the floating blocks only need to be loaded once into vector

registers. To slide the window horizontally, the rows from the reference frame can be shifted

using vector element shift instead of loading the pixels repeatedly with new offsets.

Two versions of the motion estimation vector assembly are required. One is used for a 4

vector lane configuration to handle the one block, while the other is used to handle two offset

blocks with 8 or 16 vector lanes.

Image Median Filter

The median filter kernel vectorizes very nicely by exploiting outer-loop parallelism. Figure 4.5

shows how this can be done. Each strip represents one row of MVL number of pixels, and each

row is loaded into a separate vector register. The window of pixels that is being processed will

then reside in the same data element over 25 vector registers. After initial setup, the same

filtering algorithm as the scalar code can then be used. The vector processor uses masked

execution to implement conditionals, and will execute all instructions inside the conditional

56

Chapter 4. Results

Sliding window

—rj

Output pixel

Figure 4.5: Vectorizing the image median filter

.L8:
vmstc^vbase0, rl^load address of array[j]
vld.b^vl, vbase0^vector load array[j]
vld.b^v2, vbasel^vector load min
vcmpltu^vfl, vl, v2^compare, set vector flags
vmov.1^v3, v2^copy min to temp
vst.b.1^vl, vbasel^vector store array[j] to min
vst.b.1^v3, vbase0^store temp to array[j]
addi^r3, r3, 1
addi^r2, r2, 16
bge^r7, r3, .L8

Figure 4.6: Median filter inner loop vector assembly

block every iteration. Figure 4.6 shows the inner loop vector assembly. vbasel is initialized in

the outer loop to the address of min. This implementation of the median filter can generate

as many results at a time as MVL supported by the processor. An 8-lane vector processor will

generate 32 results at once, achieving a large speedup over scalar processing. This example

highlights the importance of outer-loop parallelism, which the vector architecture, with help

from the programmer, can exploit. The median filter vector assembly does not require any

modification for soft vector processor configurations with different number of vector lanes.

57

Chapter 4. Results

vlds.w^vl, vbase0, vstride4, vincl^• stride 4 word load one
AES state column (4 times)

Begin encryption round loop
vlds.w^v12, vbasel, vstride0, vincl^stride 0 word load one

round key column (4 times)
vadd^v8, v4, v0^ copy last column of AES state
vsrl.vs^v8, v8, r3^ shift right 24 bits
vldl^v8, v8^ S—box table lookup
vrot.vs^v8, v8, r8^ rotate byte
vadd^v7, v3, v0^ copy 3rd column of AES state
vsrl.vs^v7, v7, r2^ shift right 16 bits
vand.vs^v7, v7, r7^ mask with Ox000000ff
vldl^v7, v7^ S—box table lookup
vrot.vs^v7, v7, r8^ rotate byte
vxor^v8, v8, v7^ XOR 2 columns

Figure 4.7: Vector assembly for loading AES data and performing AES encryption round

AES Encryption

The AES encryption kernel can also exploit outer-loop parallelism by loading multiple blocks to

be encrypted into different vector lanes, achieving speedup over scalar processing. Each column

in the 128-bit AES state can fit into one element of a vector register in a 32-bit (VPUW)

soft vector processor. A vector processor with 8 lanes has MVL of 32, and can encrypt 32

blocks or 4096 bits of data in parallel. The vector assembly code for loading data and for two

rotate-lookup steps of a round transformation is shown in Figure 4.7. This implementation first

initializes all local memories with the substitution lookup table through broadcast from the

scalar core (not shown). The AES state is then loaded from memory with four stride-four, load

word instructions, which loads the four columns of multiple 128-bit AES blocks into four vector

registers. Each AES block will then reside within a single vector lane, across the four vector

registers. All the loaded AES blocks perform parallel table-lookup using the local memories.

Assuming the round keys have already been generated, a total of 92 instructions are needed to

perform the round transformation. The vector assembly for the AES encryption kernel does

not require any modification for processor configurations with different number of vector lanes.

58

Chapter 4. Results

4.2.3 Benchmark Tuning for C2H Compiler

The C2H compiler generates only a single hardware accelerator for a given C function. The

only built-in options for customization are pragmas for controlling interrupt behaviour and

generation of master ports to access memory. One set of accelerators were generated by directly

compiling the kernels with as little modification to the C code as possible. These are named

the "push-button" C2H accelerators. To compare the scalability of C2H-generated accelerators

versus the soft vector processor, the C source code of the benchmark kernels were manually

modified to generate accelerators with different performance and resource tradeoff for a second

set of results. Vector processing concepts were applied to the C code by unrolling loops and

declaring additional variables to calculate multiple results in parallel.

The median filter kernel did not require any additional optimization besides unrolling.

For the motion estimation kernel, the horizontal-move outer loop was moved inside and

unrolled, resulting in one pixel of the moving block being compared to up to 32 possible hori-

zontal locations in parallel, creating 32 accumulators for the SAD operation. One pixel datum is

loaded from memory to register once, then re-used 32 times by the 32 accumulators. Hardware

knowledge is needed to know that the 32 accumulators will be inferred to hold the intermediate

results. The manual unrolling also created very hard-to-maintain C code.

The AES encryption kernel requires four table lookup operations for the four columns in the

AES state. These operations were optimized to be performed in parallel by instantiating four

separate 256-entry, 32-bit memories local to the accelerator. This was not done automatically

by the compiler as the lookup tables were initially declared as global variables, which the

compiler automatically placed in main memory. The AES engine was further replicated to

increase performance at the expense of increased resources. The effects of these optimizations

on performance will be shown in Section 4.4.3.

59

Chapter 4. Results

Table 4.1: Per benchmark soft vector processor configuration parameter settings

Vector Processor Configuration
Parameter V4-Median V.4-Motion V4-AES
NLane 4 4 4
MVL 16 16 16
VPUW 16 16 32
MemWidth 64 64 64
MemMinWidth 8 8 32
MACL 0 1 0
LMemN 0 0 256
LMemShare Off Off On
Vmult On On On
Vmanip Off Off Off
Vupshift On On Off

4.2.4 Soft Vector Processor Per Benchmark Configuration

To illustrate the scalability of the soft vector processor, several configurations with a different

number of vector lanes were generated for each benchmark. These different configurations are

named Vx, with x being the number of vector lanes. Furthermore, for each of the benchmarks,

the soft vector processor was customized to the minimal set of features required to execute

the benchmark. Table 4.1 shows the configuration parameters for a V4 processor for each

of the benchmarks. Median filtering and motion estimation do not require any 32-bit vector

processing, so 16-bit ALUs are used. The AES encryption kernel only requires 32-bit word

memory access, so the minimum data width for vector memory accesses is set to 32 bits to

remove the byte and halfword memory crossbars.

4.3 Resource Utilization Results

The application-specific configurations of the soft vector processor, C2H accelerators, and the

Nios II/s processor were compiled in Quartus II to measure their resource usage. The Nios II/s

(standard) processor core is used as the baseline for comparison. The Nios II/s core has a 5-

60

Chapter 4. Results

Table 4.2: Resource usage of vector processor and C2H accelerator configurations

Stratix III (C3) ALM DSP Elements M9K Fmax
EP3SL50 device 19,000 216 108
EP3SL340 device 135,000 576 1,040
Nios II/s 537 4 6 203
UTIIe 376 0 3 170
UTIIe+V4F 5,825 25 21 106
UTIIe+V8F 7,501 46 33 110
UTIIe+V16F 10,955 86 56 105
UTIIe+V16 Median 7,330 38 41 111
UTIIe+V16 Motion 7,983 54 41 105
UTIIe+V16 AES 7,381 66 56 113
Stratix II (C3) ALM DSP Elements M4K Fmax
Nios II/s + C2H
Median Filtering 825 8 4 147
Motion Estimation 972 10 4 121
AES Encryption 2,480 8 6 119

stage pipeline and supports static branch prediction, hardware multiply, and shift. It is further

configured with 1 KB instruction cache, 32 KB each of on-chip program and data memory and

no debug core. The Nios II/s core and the soft vector processor cores were compiled targeting

a Stratix III EP3SL340 device in the C3 speed grade. The C2H accelerators were compiled

targeting a Stratix II device, also in the C3 speed grade, because the C2H compiler did not yet

support Stratix III devices.

Table 4.2 summarizes the resource usage of several configurations of the vector processor

with different number of vector lanes, as well as benchmark-specific configurations of the vector

processor and C2H accelerator. The VxF configurations of the soft vector processor support

the full feature set of the architecture, and can perform byte-level vector memory access. The

flexible memory interface which supports bytes, halfwords, and words is the single largest

component, using over 50% of the ALMs in the 174F processor, and 35% of the ALMs in

the V16F processor. The Median, Motion, AES configurations are the application-specific

configurations used for performance benchmarking.

61

Chapter 4. Results

Table 4.3: Resource usage of vector processor when varying NLane and MemMinWidth with
128-bit Mem Width and otherwise full features

Configuration NLane MemMinWidth ALM DSP Elements M9K Fmax
UTIIe+V16F 16 8 10,955 86 56 105
UTIIe+V16M16 16 16 9,149 82 57 110
UTlle+V16M32 16 32 8,163 82 54 107
UTIIe+V8F 8 8 7,501 46 33 110
UTIIe+V8M16 8 16 5,845 42 33 114
UTIIe+V8M32 8 32 5,047 42 30 109
UTIIe+V4F 4 8 5,825 25 21 106
UTIIe+V4M16 4 16 4,278 21 21 113
UTIIe+V4M32 4 32 3,414 21 20 116

Table 4.3 illustrates the range and gradual change in resource utilization when varying

NLane from 16 — 4, and MemMinWidth from 8 — 32 for each number of vector lanes. Mem Width

is 128-bit for all configurations in the table, and the configurations support the full feature set as

in the VxF configurations. The Mx tag represent the simpler memory crossbars that support

only vector memory accesses of width x or greater. Reducing the memory interface to 16-

bit halfword, or even 32-bit word access only, leads to a large savings in area. The minor

fluctuations in number of M9K memories is due to variations in the synthesis and placement

tool solutions.

Table 4.4 shows the effect of successively removing processor features from a baseline V8F

configuration. The three V8Cx custom configurations remove local memory, distributed accu-

mulators and vector lane multipliers, and vector insert/extract and element shifting instruc-

tions, respectively. The V8W16 configuration further uses 16-bit vector lane datapaths. The

results illustrate that resource utilization can be improved by tailoring processor features and

instruction support to the application, especially by supporting only the required data and

ALU width.

62

Chapter 4. Results

Table 4.4: Resource utilization from varying secondary processor parameters

Resource
Vector Processor Configuration (UTIIe+)
V8F^V8C1^V8C2^V8C3^V8W16

ALM 7,501 7,505 6,911 6,688 5,376
DSP Elements 46 46 6 6 6
M9K 33 25 25 25 25
Fmax 110 105 107 113 114
Parameter Values
NLane 8 8 8 8 8
MVL 32 32 32 32 32
VPUW 32 32 32 32 16
MemWidth 128 128 128 128 128
MemMinWidth 8 8 8 8 8
MACL 2 2 0 0 0
LMemN 256 0 0 0 0
LMemShare On Off Off Off Off
Vmult On On Off Off Off
Vmanip On On On Off Off
Vupshift On On On Off Off

4.4 Performance Results

The following sections present performance results of the soft vector processor, and compares

them to the Nios II/s processor and the C2H compiler. Performance models were used to

estimate the performance of each of the systems, with two models for the soft vector processor.

The performance models will be described in the following sections together with the results.

Execution time is used as the metric to compare the different performance models. It is

estimated from instruction count, clock cycle count, and operating frequency. Fmax estimates

are obtained by compiling the systems in Quartus II 7.2 targeting a EP3SL340 device, and

running the TimeQuest timing analyzer in single-corner mode.

63

Chapter 4. Results

4.4.1 Performance Models

Four performance models for the Nios II, soft vector processor, and C2H compiler are compared

using execution time for the three benchmark kernels. The four models are Ideal Nios Model,

soft vector processor RTL Model, Ideal Vector Model, and C2H Model.

Ideal Nios Model

The Ideal Nios Model simulates ideal execution conditions for a Nios II processor, and is used

as the baseline for comparison. The model executes all Nios II assembly instructions in a

single cycle; this presumes perfect caching and branch prediction. Execution time is calculated

by counting the number of cycles needed to execute the assembly code, and dividing by the

processor maximum frequency.

RTL Model

The RTL model measures performance of the soft vector processor by performing a cycle-

by-cycle functional simulation in ModelSim of the processor RTL description executing the

benchmarks kernels. The RTL implementation of the soft vector processor uses the UTIIe,

which is a multicycle processor, as a scalar unit. Each scalar instruction takes 6 cycles, with

additional cycles needed for shift instructions. The performance of a multicycle scalar processor

is significantly worse than a fully pipelined scalar processor such as the real Nios II. As a result,

the performance of the RTL model is highly limited by the use of the UTIIe core. Single cycle

memory access is also assumed for the functional simulation, which is realistic for accessing

on-chip memories on the FPGA.

Ideal Vector Model

The Ideal Vector Model is used to estimate the potential performance of the soft vector processor

with a fully pipelined scalar unit. The Ideal Vector Model incorporates the Ideal Nios Model

64

Chapter 4. Results

Table 4.5: Ideal vector performance model

Instruction Class^Instruction Cycles

Scalar instructions 1
Vector non-memory [VL/NLanel
Vector local memory IVL/NLanel
Vector memory store [VL/NLanel
Vector memory load 4 + rVLImin(NLane, MaxElem)1+ [VL/NLanel
MaxElem = MemWidth/MemDataWidth
MemDataWidth is the data width of the particular vector memory access

for scalar instructions (scalar instructions execute in a single cycle). Vector instructions are

separated into different classes, each taking a different number of cycles. Table 4.5 shows the

number of cycles needed for each vector instruction class. Memory store instructions take

the same number of cycles as non-memory instructions due to write buffering. The first non-

constant term in memory load cycles models the number cycles needed to transfer data from

memory to the load buffer. MaxElem is the maximum number of data elements that can be

transferred per cycle through the MernWidth-bit memory interface. The second term models

transferring data from load buffer to the vector register file. Single cycle memory accesses is

again assumed.

Performance of the Ideal Vector Model is calculated by manually counting the number of

assembly instructions executed, then multiplying the instruction count of different instruction

classes by the cycle per instruction of the instruction class to calculate the total cycle count.

Execution time is then calculated by dividing the cycle count by the maximum frequency.

The Ideal Vector Model is optimistic in that pipeline execution and memory accesses are

ideal. No pipeline interlocks due to dependent instructions are modeled in the scalar or vector

core. However, the Ideal Vector Model is also pessimistic in one aspect because it does not

model the concurrent execution of scalar, vector arithmetic, and vector memory instructions

that is accounted for in the RTL model.

65

Chapter 4. Results

C2H Model

The C2H model simulates performance of the C211 accelerators in a SOPC system built with

the Altera SOPC Builder. Execution times of the accelerators is calculated for the main loop

only from loop latency and cycles per loop iteration (CPLI) given in the C2H compilation

performance report as well as the Fmax calculated by Quartus II.

Performance Model Usage

No board-level measurement results are presented in this thesis because a Stratix III-based

development board (DE3 development board) was not available to test the processor at the time

of writing. Also, two different performance models of the soft vector processor are presented

because the RTL model alone is severely limited by the performance of the UTIIe and is not

indicative of speedups that can be obtained with a fully pipelined scalar unit.

4.4.2 RTL Model Performance

Table 4.6 shows the simulated performance of the soft vector processor on the three benchmarks

measured by instruction count and clock cycle count. The clock cycle count and Fmax are used

to compute speedup over the baseline Ideal Nios Model. All vector configurations show speedup

over the baseline, where greater performance is obtained when more vector lanes are used. The

instruction count and clock cycle per result decreases for median filtering and AES encryption

as more vector lanes are added because more results are computed in parallel. In particular,

the fractional instruction counts for AES encryption results from dividing the total instructions

by the number of blocks encrypted in parallel. For the motion estimation kernel, instruction

count changes from V4 to V8 because the assembly source was modified to handle two SAD

calculations in parallel, but no further modification was necessary for V16. Vector length is 16

for V4 and 32 for both V8 and V16. With 16 vector lanes, V16 can process a fixed 32 length

vector in fewer cycles, yielding a smaller cycle count.

Figure 4.8 plots speedup of the soft vector processor, comparing the RTL Model to the Ideal

66

Chapter 4. Results

Table 4.6: Performance measurements of the four performance models

Ideal Nios
Model

C2H
Model

Vector Architecture Models
V4^V8^V16

Fmax (MHz)
Median Filtering 203 147 117 108 111
Motion Estimation 203 121 119 108 105
AES Encryption Round 203 119 130 120 113
Dynamic Instruction Count
Median Filtering (per pixel) 5,375 n/a 166 83 41
Motion Estimation (entire search range) 2,481,344 n/a 113,888 64,185 64,185
AES Encryption Round (per 128-bit block) 94 n/a 5.9 2.9 1.5
Clock Cycles (RTL Model)
Median Filtering (per pixel) 5,375 2,101 952 484 277
Motion Estimation (entire search range) 2,481,344 694,468 755,040 411,840 333,168
AES Encryption Round (per 128-bit block) 94 25 29.6 14.8 7.4
Speedup (RTL Model)
Median Filtering (per pixel) 1 2.5 3.3 5.9 10.6
Motion Estimation (entire search range) 1 2.8 1.9 3.2 3.9
AES Encryption Round (per 128-bit block) 1 2.9 2.1 3.8 7.1
Clock Cycles (Ideal Vector Model)
Median Filtering (per pixel) - 748 374 187
Motion Estimation (entire search range) - 608,480 359,337 229,449
AES Encryption Round (per 128-bit block) 25 13 6
Speedup (Ideal Vector Model)
Median Filtering (per pixel) - 4.1 7.6 15.7
Motion Estimation (entire search range) - - 2.4 3.7 5.6
AES Encryption Round (per 128-bit block) - 2.5 4.4 8.3

Nios Model results in Table 4.6. This is plotted against the number of ALMs used, normalized

to the Nios II/s core. The 4-lane configurations for all three benchmarks have a 64-bit memory

interface, while configurations with more vector lanes have a 128-bit memory interface. The

64-bit interface requires fewer ALMs, which explains the "kink" in the V8 configuration that

is the most visible in median filtering.

All three benchmarks show relatively linear increase in performance relative to resource

usage, with a drop-off at large number of vector lanes due to decrease in attainable clock

speed. The three curves have noticeably different slopes. The vectorized median filtering and

AES encryption kernels efficiently exploit outer-loop parallelism, increasing the actual vector

67

25 30

—ID— Medan Filter Vector
—M— AES Vector
—A-- Motion Est. Vector

30

25

20

1 1 5

10

5

5^10^15^20
Normalized Resource (ALM/ALM)

(a)

-^Medan Filter Vector
—11–•• AES Vector

Motion Est. Vector

25

20

2^3^4 5^10^15
Normalized Resource (ALM/ALM)

(b)

20 25 30

30

15

10

4

3

2

Chapter 4. Results

Figure 4.8: RTL Model speedup over Ideal Nios Model shown in linear scale (a), and log-log
scale (b). The dashed line shows one to one speedup versus area. The data points for median
filtering and AES encryption are for 4, 8, 16, and 32 vector lanes, while the data points for
motion estimation are for 4, 8, 16 vector lanes.

length of the calculations proportionally to the number of vector lanes. As a result, these

two benchmarks achieve good speedup and scalability. Motion estimation has a shallower

slope due to the extra instruction overhead of processing two offset blocks in the V8 processor

configuration, and not being able to use the full vector length of the V16 processor configuration.

The shortened vector length causes data dependent instructions to stall the pipeline due to the

pipeline length and lack of forwarding multiplexers.

The V8 configuration for the AES encryption kernel is noticeably smaller due to the simpler

memory interface which supports only 32-bit vector memory transfers. This illustrates the large

overhead of the vector memory interface. As the number of vector lanes increases to 16 and 32,

AES quickly catches up in ALM usage because it uses a 32-bit ALU in the datapath.

4.4.3 Ideal Vector Model

The clock cycle count and speedup of the Ideal Vector Model on the three benchmarks are again

shown in Table 4.6. The instruction count of the Ideal Vector Model is the same as the RTL

68

15 20 25 302^3^4 5^10
Normalized Resource (ALWALM)

(b)

30
25

20

15

10

a 5
4

3

2

—411— Median Filter Vector
—41I— AES Vector
...lit— Motion Est. Vector

Median Filter C2H
AES C2H

' Motion Est. C2H

•

•
♦^

(a)

30

25

20

15

10

5

00
5^10^15^20

Normalized Resource (ALM/ALM)
25 30

•
•• 4111— Median Filter Vector^ .•
—•••••AES Vector ♦

^

-41— Motion Est. Vector^ • •
<^Median Filter C2H^ ♦

AES C2H ♦ ♦
Motion Est. C2H

• • •
♦ ♦

•

Chapter 4. Results

Figure 4.9: Ideal Vector Model and C2H Model speedup over Ideal Nios Model shown in linear
scale (a), and log-log scale (b). The dashed line shows one to one speedup versus area. The
solid grey points show performance of "push-button" C2H accelerators from direct compilation
with no optimizations. The soft vector processor data points for median filtering and AES
encryption are for 4, 8, 16, and 32 vector lanes, while the data points for motion estimation are
for 4, 8, 16 vector lanes.

Model. The bold/dark lines in Figure 4.9 plot speedup of the Ideal Vector Model over the Ideal

Nios Model against FPGA resource usage in number of ALMs, normalized to the Nios II/s core.

The Ideal Vector Model achieves greater speedup than the RTL Model largely due to single

cycle scalar instructions. The AES kernel, which has only 2 scalar instructions in the inner

loop, performs similarly in the Ideal Vector Model as the RTL Model. The performance of the

soft vector processor in the median filter kernel actually exceeds the diagonal for configurations

above 8 vector lanes, illustrating the effectiveness of vector processing over MIMD multipro-

cessing in this type of data-parallel application. Super-linear speedup is possible because the

soft vector processor configuration for median filter uses only 16-bit ALUs, while the baseline

Nios II/s core is a 32-bit processor. This also illustrates the effectiveness of customizing the soft

vector processor to the application. The "kink" in the V8 configuration for median filtering

and motion estimation is again due to the 4-lane configurations having only a 64-bit memory

interface, while the 8-lane configurations have a 128-bit memory interface.

69

Chapter 4. Results

4.4.4 C2H Accelerator Results

The C2H accelerator performance numbers are also summarized in Table 4.6, measured by

the same clock cycle count and speedup over the Ideal Nios Model. These numbers represent

results achievable by "push-button" acceleration with the compiler, with no modification to the

original C codes. These results are shown by the solid grey dots in Figure 4.9. Performance

of the "push-button" C2H accelerators are similar to those of the I/4 processor configurations,

but they do not match those of the larger vector processor configurations.

The thin/gray lines in Figure 4.9 show the performance improvement trend when the C2H

accelerators are scaled and optimized as described in Section 4.2.3. Applying vector processing

concepts and loop unrolling makes it possible to increase C2H performance at the expense of

increased resources.

Although performance increases, notice that it also saturates in all CHI accelerators as

memory access becomes the bottleneck. This occurs in the median filter kernel when the loop

is unrolled 64 times to find 64 medians in parallel, because each iteration requires 64 new data

items to be read and 64 new values to be written back. For motion estimation, comparing a

single pixel to 32 copies of the window and reading from 32 possible horizontal locations creates

a memory bottleneck.

For AES encryption, memory saturation was initially avoided by adding 4 memory blocks

for the 256-entry, 32-bit lookup tables in the Nios II system as a hardware-level optimization.

This single change achieved a large speedup over the "push-button" result, indicated by the

large jump of the second data point on the curve. Further replicating the AES engine up to four

times created contention at the lookup table memories. Resolving this bottleneck would require

a dedicated copy of all tables for each engine. In all three benchmarks, additional performance

from C2H accelerators is possible by making changes to the Nios II memory system.

5Stratix II was used for the CHI estimates because Quartus II does not yet support C2H hardware accelerators
for Stratix III-based designs. We expect results to be similar to Stratix II due to the similar ALM architecture.

70

Chapter 4. Results

4.4.5 Vector versus C2H

Figure 4.9 illustrated the difference in scalability of the soft vector processor and C2H accel-

erators. By scaling the number of vector lanes, the soft vector processor simultaneously scales

the vector register file bandwidth. And since most operations inside inner loops of kernels read

from and write to vector registers, increasing the register file bandwidth allows more data ele-

ments to be accessed and processed in parallel each cycle, increasing performance. The vector

programming model abstracts the scalable architecture, providing the same unified memory

system to the user across different configurations. This abstraction also allows the user to take

advantage of scalable performance with zero hardware design effort.

It is also possible to scale bandwidth to internal register states of the C2H accelerators, and

in fact that was already done by manually unrolling loops and declaring additional variables.

However, the C2H accelerators are not able to efficiently gather data from main memory when

bandwidth of the internal state registers is increased, leading to performance saturation. The

flexible vector memory interface of the soft vector processor did accomplish this.

The soft vector processor is an application-independent accelerator, where a single con-

figuration of the processor could have been used to accelerate all three benchmarks (albeit,

for slightly lower performance), or multiple portions of the application. Synthesized hardware

accelerator tools will require separate accelerators for different sections.

As a rough comparison of effort, it took approximately 3 days to learn to use the C2H com-

piler, modify the three benchmark kernels so they compile, and apply the simple loop unrolling

software optimization. It took another full day to apply the single hardware optimization for

the AES benchmark of adding the additional memories. With the vector processor, it took 2

days to design the initial vectorized algorithms and assembly code for all three kernels. The

rich instruction set of the processor allows many possible ways to vectorize an algorithm to

tune performance using software skills. The vector assembly code of the AES encryption and

motion estimation kernels have actually each been rewritten once using a different vectorization

method during the course of software development. Each iteration of designing and coding the

71

Chapter 4. Results

vector assembly took less than half a day.

72

Chapter 5

Conclusions and Future Work

As the performance requirements and complexity of embedded systems continue to increase,

designers need a high performance platform that reduces development effort and time-to-market.

This thesis applies vector processing to soft processor systems on FPGAs to improve their

performance in data-parallel embedded workloads. Previous work in vector microprocessors

[22, 14] have demonstrated the feasibility and advantages of accelerating embedded applications

with vector processing. The soft vector processor provides the same advantages, with the added

benefit of soft processor configurability. Compared to other soft processor accelerator solutions,

a soft vector processor allows application acceleration with purely software development effort

and requires no hardware knowledge. The application-independent architecture helps separate

hardware and software development early in the design flow.

The soft vector processor leverages the configurability of soft processors and FPGAs to

provide user-selectable performance and resource tradeoff, and application-specific tuning of

the instruction set and processor features. It incorporates a range of configurable parameters

that can significantly impact the area and performance of the processor, the most important

of which are NLane (the number of vector lanes; also determines the maximum vector length

supported by the processor), and VPUW (the vector lane ALU width). The processor also

introduces a flexible and configurable vector memory interface to a single memory bank that

supports unit stride, constant stride, and indexed vector memory accesses. The width of the

memory interface is configurable, and the interface can be configured to only support a minimum

data width of 8-bit bytes, 16-bit halfwords, or 32-bit words for vector memory accesses through

the MemMinWidth parameter. Setting the minimum data width to 32-bit words, for example,

73

Chapter 5. Conclusions and Future Work

removes logic for accessing smaller data widths, reducing the size of the memory crossbars and

results in a large savings in area. This additional level of configurability enlarges the design

space, allowing the designer to make larger tradeoffs than other soft processor solutions.

The soft vector processor is shown in this thesis to outperform an ideal Nios II and the

Altera C2H compiler. Functional simulation of the RTL model with a multicycle scalar unit

achieved speedup of up to 11 x for 16 vector lanes over an ideal Nios II processor model. The

ideal vector model that incorporates a fully pipelined scalar unit estimates speedup of up to 24 x

for 32 vector lanes, versus up to 8x for C2H accelerators. By customizing the soft processor

to the benchmarks, area savings of up to 33% was achieved for 16 vector lanes compared to a

generic configuration of the processor that supported the full range of features.

The instruction set of the soft vector processor is adapted from the VIRAM instruction

set. The architecture is tailored to the Stratix III FPGA, and introduces novel features to take

advantage of the embedded memory blocks and hardwired DSP blocks. The datapath uses a

partitioned register file to reduce complexity of the vector register file, and executes instructions

in a novel hybrid vector-SIMD fashion to speed instruction execution. MAC units are added

for accumulating multi-dimensional data and vector sum reduction. Together with new vector

adjacent element shift and vector absolute difference instructions, they significantly reduce

the execution time of the motion estimation kernel over an implementation with the VIRAM

instruction set. A vector lane local memory is also introduced for table lookup operations within

a vector lane, and is used by the AES encryption kernel.

A soft vector processor has advantages over many currently available soft processor acceler-

ator tools, and is most suitable when rapid development time is required, or when a hardware

designer is not available, or when several different applications must share a single accelerator.

74

Chapter 5. Conclusions and Future Work

5.1 Future Work

This thesis has described a prototype of a soft vector processor targeted to FPGAs, and illus-

trated its advantages and potential performance. The implementation details of the soft vector

processor prototype can be optimized and improved in many ways. However, the next sections

will focus on possible major improvements to the processor architecture that can potentially

have a significant impact on performance or area usage.

Pipelined and Multiple-Issue Scalar Unit

Performance of a vector processor depends significantly on performance of the scalar unit on

non-vectorizable portions of the application due to Amdahl's Law. Implementing a fully-

pipelined scalar unit in the soft vector processor will boost the performance of the current

processor prototype tremendously, as shown by the results in this thesis, and would be the

logical next step in improving the processor.

Even with a fully-pipelined scalar unit, the soft vector processor would still be limited by

the single instruction fetch from sharing a common fetch stage between the scalar and vector

units. As the scalar and vector units already have separate decode logic, a multiple instruction

fetch and issue core can be considered to further improve pipeline utilization. To avoid the

complexity of superscalar processors, the compiler can statically arrange the code (similar to

VLIW techniques) such that vector instructions always enter the vector issue pipeline, and

scalar instructions always enter the scalar pipeline.

Addition of Caches

Modern processors rely on multiple levels of cache to bridge the gap between processor clock

speed and speed of external memory. Instruction and data caches can be implemented for the

scalar unit of the soft vector processor in the same manner as other RISC processor cores.

Synchronization mechanisms will be required to keep the data cache of the scalar unit in sync

75

Chapter 5. Conclusions and Future Work

with vector memory accesses. Traditional vector processors like the NEC SX-7 [73] do not

employ data caches for the vector core, and instead hide memory latency by overlapping vector

execution and memory fetching. The soft vector processor is similar in this respect, plus the

fast on-chip SRAMs of FPGAs provide low latency memory access (if on-chip SRAM is used

as main data memory).

Integration as Nios II Custom Instruction

Nios II custom instructions with internal register file allow a single accelerator to execute up to

256 different instructions. This type of accelerator is tightly coupled to the Nios II processor,

and can read operands directly from the Nios II register file. The soft vector processor can

potentially be implemented as such a custom instruction, which would allow it to integrate to

a fully-pipelined Nios II processor. The 256 custom instruction limit would require processor

features and instruction set to be stripped down to reduce the number of instructions and

variations. The opcode formats will also have to be significantly altered. This integration

was not considered initially as it was unclear the number of vector instructions the soft vector

processor should implement.

Permutation & Shuffle Network

One of the underlying assumptions of the vector programming model is that different data

elements within a single vector are independent. However, this does not hold true in all appli-

cations, and it is sometimes necessary to manipulate a vector to reorder data elements within a

vector register. The butterfly structure in the FFT is one prime example. To address this need,

microprocessor SIMD extensions frequently provide a shuffle instruction that allows arbitrary

shuffling of subwords, which is akin to shuffling of data elements within a vector. The vector

manipulation instructions in this soft vector processor provide limited support for reordering

data elements. VIRAM provides vhalf up and vhalfdn instructions to support FFT butterfly

transformations, but no support for general shuffling.

76

Chapter 5. Conclusions and Future Work

A general permutation or shuffle network can be implemented to support these operations,

or an application-specific permutation network can be devised and configured with the rest

of the soft processor. Several efficient software permutation networks and instructions for

cryptography are considered in [74 and many of the ideas can be applied to the soft vector

processor. Another alternative is to implement arbitrary shuffling using the memory crossbars

as in [31]. The vector insert and vector extract operations in the soft vector processor are

already implemented this way.

Improvements to Configurable Memory Interface

The large overhead of the vector memory interface has been noted throughout this thesis.

Configurability was introduced into the vector memory interface to reduce its resource usage

by removing logic for memory access patterns not used in the benchmark kernel. Much of the

complexity stemmed from supporting complex access patterns on a single bank of memory.

Implementing a multi-banked and interleaved memory system like [31] may prove to be simpler

and more scalable as data alignment problems would be reduced. For example, it will no

longer be necessary to align data across memory words using a selectable delay network. In

the extreme, the memory interface can also be extended to multiple off-chip memory banks to

increase memory bandwidth.

Stream processors like [24] can describe more complex memory access patterns using stream

descriptors. The key additions are two parameters for memory access in addition to stride:

span, and skip. Span describes how many elements to access before applying the second level

skip offset. A streaming memory interface can describe complex data accesses with fewer

instructions, and the streaming nature of data potentially increases the amount of parallelism

that can be exploited for acceleration, improving performance.

77

Chapter 5. Conclusions and Future Work

Adopting Architectural Features from Other Vector Processors

More advanced vector architectures that depart from traditional vector architecture have been

proposed recently, and it would be instructive to evaluate these new architectural features for

their suitability on FPGAs. CODE [14] is a clustered vector processor microarchitecture that

supports the VIRAM ISA. Each cluster contains a single vector functional unit supporting one

class of vector instructions, and a small vector register file that stores a small number of short

vectors. The processor uses register renaming to issue instructions to different clusters, and

to track architectural vector registers. The clusters communicate through an on-chip network

for vector operation chaining. In general, CODE outperforms VIRAM by 21% to 42%, de-

pending on the number of lanes within each microarchitecture, but underperforms VIRAM in

benchmarks with many inter-cluster transfers [14].

The vector-thread (VT) architecture [26] combines multi-threaded execution with vector

execution, allowing the processor to take advantage of both data-level and thread-level paral-

lelism, and even instruction-level parallelism within functional units. The architecture consists

of a control processor, and a number of virtual processors in vector lanes. These virtual pro-

cessors can execute a common code block to simulate SIMD execution as in traditional vector

processors, or can each branch from the main execution path to execute its own stream of

instructions. The SCALE instantiation of the VT architecture also incorporates the clustering

idea of CODE to form several execution clusters with different functionality.

Both of the above architectures break up the traditionally large, centralized register file

and lock-step functional units into smaller independent clusters. The smaller cluster register

files are actually more suited to the small embedded memory blocks of FPGAs. It would be

interesting to investigate whether the rest of the architecture can also be mapped efficiently to

an FPGA.

78

References

[1] Altera Corp., "Stratix III device handbook, volume 1," Nov. 2007.

[2] R. Noss, "Annual study uncovers the embedded market," Embedded Systems Design,
vol. 20, no. 9, pp. 14-16, Sep. 2007.

[3] Nios II. [Online] Available:^http://www.altera.com/products/ip/processors/nios2/
ni2-index.html

[4] Xilinx, Inc. MicroBlaze. [Online] Available: http://www.xilinx.com/

[5] C. Grabbe, M. Bednara, von zur Gathen, J. Shokrollahi, and J. Teich, "A high performance
VLIW processor for finite field arithmetic," in Int. Parallel and Distributed Processing
Symp., Apr. 2003, p. 189b.

[6] V. Brost, F. Yang, and M. Paindavoine, "A modular VLIW processor," in IEEE Int. Symp.
on Circuits and Systems, May 2007, pp. 3968-3971.

[7] A. K. Jones, R. Hoare, D. Kusic, J. Fazekas, and J. Foster, "An FPGA-based VLIW proces-
sor with custom hardware execution," in ACM/SIGDA Int. Symp. on Field-programmable
gate arrays, Feb. 2005, pp. 107-117.

[8] M. A. R. Saghir, M. El-Majzoub, and P. Akl, "Datapath and ISA customization for soft
VLIW processors," in IEEE Int. Conf. on Reconfigurable Computing and FPGA's, Sep.
2006, pp. 1-10.

[9] M. Nelissen, K. van Berkel, and S. Sawitzki, "Mapping a VLIWxSIMD processor on an
FPGA: Scalability and performance," in Mt. Conf. on Field Programmable Logic and
Applications, Aug. 2007, pp. 521-524.

[10] S.-L. L. Lu, P. Yiannacouras, R. Kassa, M. Konow, and T. Suh, "An FPGA-based
Pentium®in a complete desktop system," in ACM/SIGDA Int. Symp. on Field pro-
grammable gate arrays, Feb. 2007, pp. 53-59.

[11] J. Ray and J. C. Hoe, "High-level modeling and fpga prototyping of microprocessors," in
ACM/SIGDA Mt. Symp. on Field programmable gate arrays, Feb. 2003, pp. 100-107.

[12] C. Kozyrakis, "Scalable vector media processors for embedded systems," Ph.D. disserta-
tion, University of California at Berkeley, May 2002, technical Report UCB-CSD-02-1183.

[13] The embedded microprocessor benchmark consortium. [Online]. Available: hap:
//www.eembc.org/

79

References

[14] C. Kozyrakis and D. Patterson, "Scalable, vector processors for embedded systems," IEEE
Micro, vol. 23, no. 6, pp. 36-45, Nov./Dec. 2003.

[15] S. Habata, M. Yokokawa, and S. Kitawaki, "The earth simulator system," NEC Research
& Development Journal, vol. 44, no. 1, pp. 21-16, Jan. 2003.

[16] Cray Inc. Cray assembly language (CAL) for Cray Xl. [Online]. Available:
http://docs.cray.com/books/S-2314-51/html-S-2314-51/S-2314-51-toc.html

[17] C. G. Lee and M. G. Stoodley, "Simple vector microprocessors for multimedia applica-
tions," in Annual ACM/IEEE Int. Symp. on Microarchitecture, Nov. 1998, pp. 25-36.

[18] S. Thakkur and T. Huff, "Internet streaming SIMD extensions," IEEE Computer, vol. 32,
no. 12, pp. 26-34, Dec. 1999.

[19] K. Diefendorff, P. K. Dubey, R. Hochsprung, and H. Scale, "Altivec extension to powerPC
accelerates media processing," IEEE Micro, vol. 20, no. 2, pp. 85-95, Mar./Apr. 2000.

[20] D. Talla and L. John, "Cost-effective hardware acceleration of multimedia applications,"
in Int. Conf. on Computer Design, Sep. 2001, pp. 415-424.

[21] J. Gebis and D. Patterson, "Embracing and extending 20th-century instruction set archi-
tectures," IEEE Computer, vol. 40, no. 4, pp. 68-75, Apr. 2007.

[22] K. Asanovic, "Vector microprocessors," Ph.D. dissertation, EECS Department, University
of California, Berkeley, 1998.

[23] C. Kozyrakis and D. Patterson, "Vector vs. superscalar and VLIW architectures for em-
bedded multimedia benchmarks," in IEEE/ACM Int. Symp. on Microarchitecture, 2002,
pp. 283-293.

[24] S. Ciricescu, R. Essick, B. Lucas, P. May, K. Moat, J. Norris, M. Schuette, and A. Saidi,
"The reconfigurable streaming vector processor (RSVPTm)," in IEEE/ACM Int. Symp. on
Microarchitecture, 2003, pp. 141-150.

[25] C. Kozyrakis and D. Patterson, "Overcoming the limitations of conventional vector pro-
cessors," in Int. Symp. on Computer Architecture, Jun. 2003, pp. 399-409.

[26] R. Krashinsky, C. Batten, M. Hampton, S. Gerding, B. Pharris, J. Casper, and
K. Asanovic, "The vector-thread architecture," in Int. Symp. on Computer Architecture,
Jun. 2004, pp. 52-63.

[27] M. Z. Hasan and S. G. Ziavras, "FPGA-based vector processing for solving sparse sets
of equations," in IEEE Symp. on Field-Programmable Custom Computing Machines, Apr.
2005, pp. 331-332.

[28] J. C. Alves, A. Puga, L. Corte-Real, and J. S. Matos, "A vector architecture for higher-order
moments estimation," in IEEE Int. Conf. on Acoustics, Speech, and Signal Processing,
vol. 5, Munich, Apr. 1997, pp. 4145-4148.

80

References

[29] J. Casper, R. Krashinsky, C. Batten, and K. Asanovic, "A parameterizable FPGA pro-
totype of a vector-thread processor," Workshop on Architecture Research using FPGA
Platforms, 2005 as part of HPCA-11. www.cag.csail.mitedufwarfp2005/slides/casper-
warfp2005.ppt, 2005.

[30] H. Yang, S. Wang, S. G. Ziavras, and J. Hu, "Vector processing support for FPGA-oriented
high performance applications," in Int. Symp. on VLSI, Mar. 2007, pp. 447-448.

[31] J. Cho, H. Chang, and W. Sung, "An FPGA based SIMD processor with a vector memory
unit," in Int. Symp. on Circuits and Systems, May 2006, pp. 525-528.

[32] S. Chen, R. Venkatesan, and P. Gillard, "Implementation of vector floating-point process-
ing unit on FPGAs for high performance computing," in IEEE Canadian Conference on
Electrical and Computer Engineering, May 2008, pp. 881-885.

[33] A. C. Jacob, B. Harris, J. Buhler, R. Chamberlain, and Y. H. Cho, "Scalable softcore vector
processor for biosequence applications," in IEEE Symp. on Field-Programmable Custom
Computing Machines, Apr. 2006, pp. 295-296.

[34] J. Alves and J. Matos, "RVC-a reconfigurable coprocessor for vector processing appli-
cations," in IEEE Symp. on FPGAs for Custom Computing Machines, Apr. 1998, pp.
258-259.

[35] R. Hoare, S. Tung, and K. Werger, "An 88-way multiprocessor within an FPGA with
customizable instructions," in Int. Parallel and Distributed Processing Symp., Apr. 2004.

[36] J. L. Hennessy and D. A. Patterson, Computer Architecture, Fourth Edition: A Quantita-
tive Approach. San Francisco, CA: Morgan Kaufmann Publishers Inc., 2006.

[37] X. Wang and S. G. Ziavras, "Performance optimization of an FPGA-based configurable
multiprocessor for matrix operations," in IEEE Int. Conf. on Field-Programmable Tech-
nology, Dec. 2003, pp. 303-306.

[38] K. Ravindran, N. Satish, Y. Jin, and K. Keutzer, "An FPGA-based soft multiproces-
sor system for IPv4 packet forwarding," in Int. Conf. on Field Programmable Logic and
Applications, Aug. 2005, pp. 487-492.

[39] S. Borgio, D. Bosisio, F. Ferrandi, M. Monchiero, M. D. Santambrogio, D. Sciuto, and
A. Tumeo, "Hardware DWT accelerator for multiprocessor system-on-chip on FPGA," in
Int. Conf. on Embedded Computer Systems: Architectures, Modeling and Simulation, Jul.
2006, pp. 107-114.

[40] A. Kulmala, 0. Lehtoranta, T. D. Hmlinen, and M. Hnnikinen, "Scalable MPEG-4 encoder
on FPGA multiprocessor SOC," EURASIP Journal on Embedded Systems, vol. 2006, pp.
1-15.

[41] M. Martina, A. Molino, and F. Vacca, "FPGA system-on-chip soft IP design: a reconfig-
urable DSP," in Midwest Symp. on Circuits and Systems, vol. 3, Aug. 2002, pp. 196-199.

81

References

[42] M. Collin, R. Haukilahti, M. Nikitovic, and J. Adomat, "SoCrates - a multiprocessor SoC
in 40 days," in Conf. on Design, Automation & Test in Europe, Munich, Germany, Mar.
2001.

[43] Altera Corp. (2008) Nios II harware acceleration. [Online] Available: http://www.altera.
com/products/ip/processors/nios2/benefits/performance/ni2- acceleration. html

[44] S. A. Edwards, "The challenges of synthesizing hardware from C-like languages," IEEE
Design & Test of Computers, vol. 23, no. 5, pp. 375-386, May 2006.

[45] HCS Lab. (2005, Dec.) University of florida high performance computing and simulation
research centre. [Online] Available: http://docs.hcs.ufl.edu/xdl/app_mappers

[46] Altera Corp. (2007, Oct.) Nios II C2H compiler user guide ver 1.3. [Online] Available:
http://www.altera.com/literature/ug/ug_nios2_c2h_compiler.pdf

[47] ^ . (2007, May) Avalon memory-mapped interface specification ver 3.3. [Online].
Available: http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

[48] D. Bennett, "An FPGA-oriented target language for HLL compilation," Reconfigurable
Systems Summer Institute, Jul. 2006.

[49] Mentor Graphics Corp. Catapult synthesis. [Online]. Available: http://www.mentor.com/
products/esl/high_level_synthesis/catapult_synthesis/index.cfm

[50] F. Baray, H. Michel, P. Urard, and A. Takach, "C synthesis methodology for implementing
DSP algorithms," Global Signal Processing Conf. & Expos for the Industry, 2004.

[51] The MathWorks, Inc. Simulink - simulation and model-based design. [Online] Available:
http: //www.mathworks.com/products/simulink/

[52] DSPLogic, Inc. Reconfigurable computing toolbox r2.0. [Online]. Available: http:
//www.dsplogic.com/home/products/rctb

[53] Xilinx, Inc. System generator for DSP. [Online]. Available: http://www.xilinx.com/ise/
optional_prod/system_generator.htm

[54] The MathWorks, Inc. Simulink HDL coder. [Online]. Available: http://www.mathworks.
com/products/slhdlcoder/

[55] ^ . Embedded MATLAB. [Online] Available: http://www.mathworks.com/products/
featured/embeddedmatlab/index.html

[56] Starbridge Systems Inc. Viva makes programming FPGA environments absurdly easy.
[Online] Available: http://www.starbridgesystems.com/

[57] Tensilica Inc. Xtensa configurable processors. [Online]. Available: http://www.tensilica.
com/products/xtensa_overview.htm

82

References

[58] ARC international. [Online]. Available: http://www.arc.com/configurablecores/index .
html

[59] Tensilica Inc. Tensilica - XPRES compiler - optimized hardware directly from C. [Online].
Available: http://www.tensilica.com/products/xpres.htm

[60] Cascade, Critical Blue. [Online]. Available: http://www.criticalblue.com

[61] Binachip, Inc. BINACHIP-FPGA. [Online] Available: http://www.binachip.com/
products .htm

[62] G. Stitt and F. Vahid, "Hardware/software partitioning of software binaries," in
IEEE/ACM Int. Conf. on Computer Aided Design, Nov. 2002, pp. 164-170.

[63] Mitrionics, Inc. The mitrion virtual processor. [Online] Available: http://www.mitrionics.
com/default.asp?pId=22

[64] K. van Berkel, F. Heinle, P. P. E. Meuwissen, K. Moerman, and M. Weiss, "Vector pro-
cessing as an enabler for software-defined radio in handheld devices," EURASIP Journal
on Applied Signal Processing, vol. 16, no. 16, pp. 2613-2625, 2005.

[65] R. E. Wunderlich and J. C. Hoe, "In-system FPGA prototyping of an Itanium microarchi-
tecture," in IEEE Int. Conf. on Computer Design: VLSI in Computers and Processors,
Oct. 2004, pp. 288-294.

[66] Int. Symp. on High-Performance Computer Architecture, "Workshop on architecture re-
search using FPGA platforms," San Francisco, 2005.

[67] B. Fort, D. Capalija, Z. G. Vranesic, and S. D. Brown, "A multithreaded soft processor
for SoPC area reduction," in IEEE Symp. on Field-Programmable Custom Computing
Machines, Apr. 2006, pp. 131-142.

[68] A. E. Eichenberger, K. O'Brien, K. O'Brien, P. Wu, T. Chen, P. H. Oden, D. A. Prener,
J. C. Shepherd, B. So, Z. Sura, A. Wang, T. Zhang, P. Zhao, and M. Gschwind, "Optimizing
compiler for the CELL processor," in Int. Conf. on Parallel Architectures and Compilation
Techniques, 2005, pp. 161-172.

[69] Y.-W. Huang, C.-Y. Chen, C.-H. Tsai, C.-F. Shen, and L.-G. Chen, "Survey on block
matching motion estimation algorithms and architectures with new results," J. VLSI Signal
Process. Syst., vol. 42, no. 3, pp. 297-320, 2006.

[70] "Specification for the advanced encryption standard (AES)," Federal Information Process-
ing Standards Publication 197, 2001.

[71] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and R. Brown, "Mibench: A
free, commercially representative embedded benchmark suite," in IEEE Int. Workshop on
Workload Characterization, Dec. 2001, pp. 3-14.

83

References

[72] J. Daemen and V. Rijmen, The design of Rijndael: AES — the Advanced Encryption
Standard. Springer-Verlag, 2002.

[73] K. Kitagawa, S. Tagaya, Y. Hagihara, and Y. Kanoh, "A hardware overview of SX-6 and
SX-7 supercomputer," NEC Research Development Journal, vol. 44:1, pp. 2-7, January
2003.

[74] R. B. Lee, Z. Shi, and X. Yang, "Efficient permutation instructions for fast software cryp-
tography," IEEE Micro, vol. 21, no. 6, pp. 56-69, Nov./Dec. 2001.

84

Appendix A

Soft Vector Processor ISA

A.1 Introduction

A vector processor is a single-instruction-multiple-data (SIMD) array of virtual processors

(VPs). The number of VPs is the same as the vector length (VL). All VPs execute the same

operation specified by a single vector instruction. Physically, the VPs are grouped in parallel

datapaths called vector lanes, each containing a section of the vector register file and a complete

copy of all functional units.

This vector architecture is defined as a co-processor unit to the Altera Nios II soft processor.

The ISA is designed with the Altera Stratix III family of FPGAs in mind. The architecture

of the Stratix III FPGA drove many of the design decisions such as number of vector registers

and the supported DSP features.

The instruction set in this ISA borrows heavily from the VIRAM instruction set, which

is designed as vector extensions to the MIPS-IV instruction set. A subset of the VIRAM

instruction set is adopted, complemented by several new instructions to support new features

introduced in this ISA.

Differences of this ISA from the VIRAM ISA are:

• increased number of vector registers,

• different instruction encoding,

• configurable processor parameters,

• sequential memory consistency instead of VP-consistency,

• no barrier instructions to order memory accesses,

85

Appendix A. Soft Vector Processor ISA

• new multiply-accumulate (MAC) units and associated instructions (vmac, vccacc, vcczacc),

• new vector lane local memory and associated instructions (vlcil, vstl),

• new adjacent element shift instruction (vupshift),

• new vector absolute difference instruction (vabsdiff),

• no support for floating point arithmetic,

• fixed-point arithmetic not yet implemented, but defined as a future extension,

• no support for virtual memory or speculative execution.

A.1.1 Configurable Architecture

This ISA specifies a set of features for an entire family of soft vector processors with varying

performance and resource utilization. The ISA is intended to be implemented by a CPU

generator, which would generate an instance of the processor based on a number of user-

selectable configuration parameters. An implementation or instance of the architecture is not

required to support all features of the specifcation. Table A.1 lists the configurable parameters

and their descriptions, as well as typical values. These parameters will be referred to throughout

the specification.

NLane and MVL are the the primary determinants of performance of the processor. They

control the number of parallel vector lanes and functional units that are available in the proces-

sor, and the maximum length of vectors that can be stored in the vector register file. MVL will

generally be a multiple of NLane. The minimum vector length should be at least 16. VPUW

and MemMinWidth control the width of the VPs and the minimum data width that can be

accessed by vector memory instructions. These two parameters have a significant impact on the

resource utilization of the processor. The remaining parameters are used to enable or disable

optional features of the processor.

86

Appendix A. Soft Vector Processor ISA

Table A.1: List of configurable processor parameters

Parameter^Description^ Typical
NLane
MVL
VPUW
MemWidth
MemMinWidth
MACL
LMemN
LMemShare
Vmult
Vupshift
Vmanip

Number of vector lanes
Maximum vector length
Processor data width (bits)
Memory interface width (bits)
Minimum accessible data width in memory
MAC chain length (0 is no MAC)
Local memory number of words
Shared local memory address space within lane
Vector lane hardware multiplier
Vector adjacent element shifting
Vector manipulation instructions (vector insert/extract)

4-128
16-512
8,16,32

32, 64, 128
8,16,32
0,1,2,4
0-1024
On/Off
On/Off
On/Off
On/Off

A.1.2 Memory Consistency

The memory consistency model used in this processor is sequential consistency. Order of vector

and scalar memory instructions is preserved according to program order. There is no guarantee

of ordering between VPs during a vector indexed store, unless an ordered indexed store instruc-

tion is used, in which case the VPs access memory in order starting from the lowest vector

element.

A.2 Vector Register Set

The following sections describe the register states in the soft vector processor. Control registers

and distributed accumulators will also be described.

A.2.1 Vector Registers

The architecture defines 64 vector registers directly addressable from the instruction opcode.

Vector register zero (vr0) is fixed at 0 for all elements.

87

Appendix A. Soft Vector Processor ISA

Table A.2: List of vector flag registers

Hardware Name Software Name Contents
$vf0
$vfl
$vf2
...
$vf15

vfmask0
vfmaskl
vfgrO
...
vfgrl3

Primary mask; set to 1 to disable VP operation
Secondary mask; set to 1 to disable VP operation
General purpose
...
General purpose

$vf16
$vf17
$vfl8
...
$vf29
$vf30
$vf31

...

vfzero
vfone

Integer overflow
Fixed-point saturate
Unused

Unused
All zeros
All ones

A.2.2 Vector Scalar Registers

Vector scalar registers are located in the scalar core of the vector processor. As this architecture

targets a Nios II scalar core, the scalar registers are defined by the Nios II ISA. The ISA defines

thirty-two 32-bit scalar registers. Vector-scalar instructions and certain memory operations

require a vector register and a scalar register operand. Vector scalar register values can also be

transferred to and from vector registers or vector control registers using the vext . vs, vins . vs,

vmstc, vmcts instructions.

A.2.3 Vector Flag Registers

The architecture defines 32 vector flag registers. The flag registers are written to by comparison

instructions and are operated on by flag logical instructions. Almost all instructions in the

instruction set support conditional execution using one of two vector masks, specified by a

mask bit in most instruction opcodes. The vector masks are stored in the first two vector flag

registers. Writing a value of 1 into a VP's mask register will cause the VP to be disabled for

operations that specify the mask register. Table A.2 shows a complete list of flag registers.

88

Appendix A. Soft Vector Processor ISA

Table A.3: List of control registers

Hardware Name Software Name Description
Svc()
$vcl
$vc2
$vc3
...
$vc28
$vc29
$vc30
$vc31

VL
VPUW
vindex
vshamt
...
ACCncopy
NLane
MVL
logMVL

Vector length
Virtual processor width
Element index for insert (vins) and extract (vext)
Fixed-point shift amount
...
Number of vccacc/vcczacc to sum reduce MVL vector
Number of vector lanes
Maximum vector length
Base 2 logarithm of MVL

$vc32
...
$vc39

vstride0
...
vstride7

Stride register 0
...
Stride register 7

$vc40
...
$vc47

vinc0
...
vinc7

Auto-increment Register 0
...
Auto-increment Register 7

$vc48
...
$vc63

vbase0
...
vbasel5

Base register 0
...
Base register 15

A.2.4 Vector Control Registers

Table A.3 lists the vector control registers in the soft vector processor. The registers in italics

hold a static value that is initialized at compile time, and is determined by the configuration

parameters of the specific instance of the architecture.

The vindex control register holds the vector element index that controls the operation of

vector insert and extract instructions. The register is writeable. For vector-scalar insert/extract,

vindex specifies which data element within the vector register will be written to/read from by

the scalar core. For vector-vector insert/extract, vindex specifies the index of the starting data

element for the vector insert/extract operation.

The ACCncopy control register specifies how many times the copy -from-accumulator instruc-

tions (vccacc, vcczacc) needs to be executed to sum-reduce an entire MVL vector. If the value

89

Appendix A. Soft Vector Processor ISA

is not one, multiple multiply-accumulate and copy-from-accumulator instructions will be needed

to reduce a MVL vector. Its usage will be discussed in more detail in Section A.2.5.

A.2.5 Multiply-Accumulators for Vector Sum Reduction

The architecture defines distributed MAC units for multiplying and sum reducing vectors. The

MAC units are distributed across the vector lanes, and the number of MAC units can vary

across implementations. The vmac instruction multiplies two inputs and accumulates the result

into accumulators within the MAC units. The vcczacc instruction sum reduces the MAC unit

accumulator contents, copies the final result to element zero of a vector register, and zeros the

accumulators. Together, the two instructions vmac and vcczacc perform a multiply and sum

reduce operation. Multiple vectors can be accumulated and sum reduced by executing vmac

multiple times. Since the MAC units sum multiplication products internally, they cannot be

used for purposes other than multiply-accumulate-sum reduce operations.

Depending on the number of vector lanes, the vcczacc instruction may not be able to sum

reduce all MAC unit accumulator contents. In such cases it will instead copy a partially sum-

reduced result vector to the destination register. Figure A.1 shows how the MAC units generate

a result vector and how the result vector is written to the vector register file. The MAC chain

length is specified by the MACL parameter. The vcczacc instruction sets VL to the length of

the partial result vector as a side effect, so the partial result vector can be again sum-reduced

using the vmac, vcczacc sequence. The ACCncopy control register specifies how many times

vcczacc needs to be executed (including the first) to reduce the entire MVL vector to a single

result in the destination register.

A.2.6 Vector Lane Local Memory

The soft vector architecture supports a vector lane local memory. The local memory is parti-

tioned into private sections for each VP if the LMemShare option is off. Turning the option

on allows the local memory block to be shared between all VPs in a vector lane. This mode is

90

• MAC
•
• chain

MACL
MAC units•••

result 0 -0

result 1 -0

:

result n/4/MACL -0

+

i MAC
• chain

1 -̂

:.
MACL

MAC units

••

result 0

•••

+

result n/4/MACL

Appendix A. Soft Vector Processor ISA

Vector
Register File

Figure Al:. Connection between distributed MAC units and the vector register file

useful if all VPs need to access the same lookup table data, and allows for a larger table due to

shared storage. With LMemShare, the VL for a local memory write must be less than or equal

to NLane to ensure VPs do not overwrite each other's data.

The address and data width of the local memory is VPUW, and the number of words in the

memory is given by LMemN. The local memory is addressed in units of VPUW wide words.

Data to be written into the local memory can be taken from a vector register, or the value from

a scalar register can be broadcast to all local memories. A scalar broadcast writes a data value

from a scalar register to the VP local memory at an address given by a vector register. This

91

Appendix A. Soft Vector Processor ISA

facilitates filling the VP local memory with fixed lookup tables computed by the scalar unit.

A.3 Instruction Set

The following sections describe in detail the instruction set of the soft vector processor, and

different variations of the vector instructions.

A.3.1 Data Types

The data widths supported by the processor are 32-bit words, 16-bit halfwords, and 8-bit bytes,

and both signed and unsigned data types. However, not all operations are supported for 32-bit

words. Most notably, 32-bit multiply-accumulate is absent.

A.3.2 Addressing Modes

The instruction set supports three vector addressing modes:

1. Unit stride access

2. Constant stride access

3. Indexed offsets access

The vector lane local memory uses register addressing with no offset.

A.3.3 Flag Register Use

Almost all instructions can specify one of two vector mask registers in the opcode to use as

an execution mask. By default, vfmask0 is used as the vector mask. Writing a value of 1 into

the mask register will cause that VP to be disabled for operations that use the mask. Some

instructions, such as flag logical operations, are not masked.

A.3.4 Instructions

The instruction set includes the following categories of instructions:

92

Appendix A. Soft Vector Processor ISA

1. Vector Integer Arithmetic Instructions

2. Vector Logical Instructions

3. Vector Fixed-Point Arithmetic Instructions

4. Vector Flag Processing Instructions

5. Vector Processing Intructions

6. Memory Instructions

A.4 Instruction Set Reference

The complete instruction set is listed in the following sections, separated by instruction type.

Table A.4 describes the possible qualifiers in the assembly mnemonic of each instruction.

Table A.4: Instruction qualifiers

Qualifier Meaning Notes
op.vv
op.vs
op.sv

Vector-vector
Vector-scalar
Scalar-vector

Vector arithmetic instructions may take one source
operand from a scalar register. A vector-vector op-
eration takes two vector source operands; a vector-
scalar operation takes its second operand from the
scalar register file; a scalar-vector operation takes
its first operand from the scalar register file. The
.sv instruction type is provided to support non-
commutative operations.

op.b
op.h
op.w

1B Byte
2B Halfword
4B Word

The saturate instruction, and all vector memory in-
structions need to specify the width of integer data.

op.1 Use vfmaskl as the mask^By default, the vector mask is taken from vfmask0.
This qualifier selects vfmaskl as the vector mask.

In the following tables, instructions in italics are not yet implemented.

93

Appendix A. Soft Vector Processor ISA

A.4.1 Integer Instructions

Name Mnemonic Syntax Summary
Absolute
Value

vabs . vv [.1]^vD,^vA Each unmasked VP writes into
vD the absolute value of vA.

Absolute Dif-
ference

vabsdif f . vv [.1]^vD, vA,^vB
. vs [. 1]^vD,^vA,^rS

Each unmasked VP writes into
vD the absolute difference of vA
and vB/rS.

Add vadd
vaddu

. vv [. 1]^vD, vA,^vB

. vs [. 1]^vD,^vA,^rS
Each unmasked VP writes into
vD the signed/unsigned integer
sum of vA and vB/rS.

Subtract vsub
vsubu

. vv [. 1]^vD,^vA,^vB

. vs [. 1]^vD,^vA,^rS

. sv [. 1]^vD,^rS,^vB

Each unmasked VP writes into
vD the signed/unsigned integer
result of vA/rS minus vB/rS.

Multiply Hi vmulhi
vmulhiu

. vv [. 1]^vD, vA,^vB

. vs [. 1]^vD,^vA,^rS
Each unmasked VP multiplies vA
and vB/rS and stores the upper
half of the signed/unsigned prod-
uct into vD.

Multiply Low vmullo
vmullou

. vv [. 1]^vD, vA,^vB

. vs [. 1]^vD,^vA,^rS
Each unmasked VP multiplies vA
and vB/rS and stores the lower
half of the signed/unsigned prod-
uct into vD.

Integer Divide vdiv
vdivu

. vv [C. 1]^vD, vA ,^vB

. vs [C. 1]^vD,^vA,^rS

. sv [. 1]^vD,^rS,^vB

Each unmasked VP writes into
vD the signed/unsigned result of
vA/rS divided by vB/rS, where
at least one source is a vector.

Shift^Right
Arithmetic

vsra . vv [.1]^vD,^vA,^vB
. vs [. 1]^vD,^vA,^rS
. sv [.1]^vD,^rS,^vB

Each unmasked VP writes into
vD the result of arithmetic right
shifting vB/rS by the number of
bits specified in vA/rS, where at
least one source is a vector.

Minimum vmin
vminu

. vv [. 1]^vD, vA,^vB

. vs [. 1]^vD,^vA,^rS
Each unmasked VP writes into
vD the minimum of vA and
vB/rS.

Maximum vmax
vmaxu

. vv [. 1]^vD,^vA,^vB

. vs [. 1]^vD,^vA,^rS
Each unmasked VP writes into
vD the maximum of vA and
vB/rS.

Compare
Equal,^Com-
pare^Not
Equal

vcmpe
vcmpne

. vv [C. 1]^vF,^vA,^vB

. vs C. 1]^vF,^vA,^rS
Each unmasked VP writes into
vF the boolean result of compar-
ing vA and vB/rS

94

Appendix A. Soft Vector Processor ISA

Name Mnemonic Syntax Summary
Compare Less
Than

vcmplt
vcmpltu

. vv [. 1]^vF,^vA, vB

. vs [.1]^vF,^vA,^rS

. sv [. 1]^vF,^rS,^vB

Each unmasked VP writes into
vF the boolean result of whether
vA/rS is less than vB/rS, where
at least one source is a vector.

Compare
Less Than or
Equal

vcmple
vcmpleu

. vv [. 1]^vF,^vA,^vB

.vs[.1]^vF,^vA,^rS

. sv [.1]^vF,^rS,^vB

Each unmasked VP writes into
vF the boolean result of whether
vA/rS is less than or equal to
vB/rS, where at least one source
is a vector.

Multiply^Ac-
cumulate

vmac
vmacu

.vv [. 1]^vA,^vB

. vs [.1]^vD,^vA,^rS
Each unmasked VP calculates the
product of vA and vB/rS. The
products of vector elements are
summed, and the summation re-
sults are added to the distributed
accumulators.

Compress
Copy^from
Accumulator

vccacc vD The contents of the distributed
accumulators are reduced, and
the result written into vD. Only
the bottom VPUW bits of the re-
sult are written. If the number
of accumulators is greater than
MA CL, multiple partial results
will be generated by the accu-
mulate chain, and they are com-
pressed such that the partial re-
sults form a contiguous vector in
vD. If the number of accumu-
lators is less than or equal to
MA CL, a single result is written
into element zero of vD. This in-
struction is not masked and the
elements of vD beyond the par-
tial result vector length are not
modified. Additionally, VL is set
to the number of elements in the
partial result vector as a side ef-
fect.

Compress
Copy^and
Zero Accumu-
lator

vcczac c vD The^operation^is^identical^to
vccacc, except the distributed
accumulators are zeroed as a side
effect.

95

Appendix A. Soft Vector Processor ISA

A.4.2 Logical Instructions

Name Mnemonic Synt ax Summary
And vand .vv [. 1]^vD,^vA,^vB

. vs [.1]^vD , vA ,^rS
Each unmasked VP writes into
vD the logical AND of vA and
vB/rS.

Or vor . vv [.1]^vD,^vA,^vB
. vs [. 1]^vD,^vA,^rS

Each unmasked VP writes into
vD the logical OR of vA and
vB/rS.

Xor vxor . vv [. 1]^vD,^vA,^vB
. vs [. 1]^vD,^vA,^rS

Each unmasked VP writes into
vD the logical XOR of vA and
vB/rS.

Shift^Left
Logical

vs11 . vv [.1]^vD, vA, vB
. vs [.1]^vD,^vA,^rS
. sv[.1]^vD,^rS,^vB

Each unmasked VP writes into
vD the result of logical left shift-
ing vB/rS by the number of bits
specified in vA/rS, where at least
one source is a vector.

Shift^Right
Logical

vsrl . vv [. 1]^vD,^vA,^vB
. vs [.1]^vD,^vA,^rS
. sv [. 1]^vD,^rS,^vB

Each unmasked VP writes into
vD the result of logical right shift-
ing vB/rS by the number of bits
specified in vA/rS, where at least
one source is a vector.

Rotate Right vrot . vv [. 1]^vD,^vA,^vB
. vs [. 1]^vD,^vA,^rS
. sv [. 1]^vD,^rS,^vB

Each unmasked VP writes into
vD the result of rotating vA/rS
right by the number of bits spec-
ified in vB/rS, where at least one
source is a vector.

A.4.3 Fixed-Point Instructions (Future Extension)

Name Mnemonic Syntax Summary

Saturate vsat
vsatu

.b

..h 1^[.1]^vD,^vAw Each unmasked VP places into
vD the result of saturating vA
to a signed/unsigned integer nar-
rower than the VP width. The re-
sult is sign/zero-extended to the
VP width.

96

Appendix A. Soft Vector Processor ISA

Name Mnemonic Syntax Summary

Saturate
Signed^to
Unsigned

vsatsu .b.h^[. 1]^vD,^vA
w

Each unmasked VP places into
vD the result of saturating vA
from a signed VP width value to
an unsigned value that is as wide
or narrower than the VP width.
The result is zero-extended to the
VP width.

Saturating
Add

vsadd
vsaddu

. vv [. 1]^vD , vA,^vB

. vs 1. 1]^vD,^vA,^rS
Each unmasked VP writes into
vD the signed/unsigned integer
sum of vA and vB/rS. The sum
saturates to the VP width instead
of overflowing.

Saturating
Subtract

vssub
vssubu

. vv [. 1]^vD, vA,^vB

.vs[. 1]^vD,^vA,^rS

. sv [.1]^vD,^rS,^vB

Each unmasked VP writes into
vD the signed/unsigned integer
subtraction of vA/rS and vB/rS,
where at least one source is a vec-
tor. The difference saturates to
the VP width instead of overflow-
ing.

Shift^Right
and Round

vsrr
vsrru

[. 1]^vD,^vA Each unmasked VP writes into
vD the right arithmetic/logical
shift of vD. The result is rounded
as per the fixed-point rounding
mode. The shift amount is taken
from VCvsharnt

Saturating
Left Shift

vsls
vslsu

[. 1]^vD,^vA Each unmasked VP writes into
vD the signed/unsigned saturat-
ing left shift of vD. The shift
amount is taken from vcvshamt •

Multiply High vxmulhi
vxmulhiu

. vv [. 1]^vD,^vA ,^vB

.vs[.1.]^vD,^vA,^rS
Each unmasked VP computes the
signed/unsigned integer product
of vA and vB/rS, and stores the
upper half of the product into
vD after arithmetic right shift
and fixed-point round. The shift
amount is taken from vcvshamt

97

Appendix A. Soft Vector Processor ISA

Name Mnemonic Syntax Summary
Multiply Low vxmullo

vxmullou
. vv [. 1]^vD,^vA,^vB
.vs[. 1]^vD,^vA,^rS

Each unmasked VP computes the
signed/unsigned integer product
of vA and vB/rS, and stores the
lower half of the product into
vD after arithmetic right shift
and fixed-point round. The shift
amount is taken from vcvshamt

Copy^from
Accumulator
and Saturate

vxccacc [. 1]^vD The contents of the distributed
accumulators are reduced, and
the result written into vD. Only
the bottom VPUW bits of the re-
sult are written. If the number
of accumulators is greater than
MA CL, multiple partial results
will be generated by the accu-
mulate chain, and they are com-
pressed such that the partial re-
sults form a contiguous vector in
vD. If the number of accumu-
lators is less than or equal to
MA CL, a single result is written
into element zero of vD. This in-
struction is not masked and the
elements of vD beyond the par-
tial result vector length are not
modified. Additionally, VL is set
to the number of elements in the
partial result vector as a side ef-
fect.

Compress
Copy^from
Accumulator,
Saturate and
Zero

vxcczacc vD [.1] The^operation^is^identical^to
vxccacc, except the distributed
accumulators are zeroed as a side
effect.

98

Appendix A. Soft Vector Processor ISA

A.4.4 Memory Instructions

Name Mnemonic Syntax Summary

Unit^Stride
Load

\rid
vldu

[,vinc]

b
/ : hw 1^[.1]^vD, vbase The VPs perform a contiguous

vector load into vD. The base ad-
dress is given by the control reg-
ister vbase, and must be aligned
to the width of the data being
accessed. The signed increment
vinc (default is vinc0) is added to
vbase as a side effect. The width
of each element in memory is
given by the opcode. The loaded
value is sign/zero-extended to the
VP width.

Unit^Stride
Store

vst /

[,vinc]

. b
: h 1w [.1]^vA, vbase The VPs perform a contiguous

vector store of vA. The base ad-
dress is given by vbase (default
vbase0), and must be aligned to
the width of the data being ac-
cessed. The signed increment in
vinc (default is vinc0) is added
to vbase as a side effect. The
width of each element in memory
is given by the opcode. The reg-
ister value is truncated from the
VP width to the memory width.
The VPs access memory in order.

99

Appendix A. Soft Vector Processor ISA

Name Mnemonic Syntax Summary

Constant
Stride Load

olds
vldsu

h .b
. w

}^[.1]^vD, vbase, The VPs perform a strided vector
load into vD. The base address is

vstride^[,vinc] given by vbase (default vbase0),
and must be aligned to the width
of the data being accessed. The
signed stride is given by vstride
(default is vstride0). The stride is
in terms of elements, not in terms
of bytes. The signed increment
vinc (default is vinc0) is added to
vbase as a side effect. The width
of each element in memory is
given by the opcode. The loaded
value is sign/zero-extended to the
VP width.

.b
Constant
Stride Store

vsts
1 .h }

. w
[. 1]^vA,^vbase, The VPs perform a contiguous

store of vA. The base address is
vstride [,vinc] given by vbase (default vbase0),

and must be aligned to the width
of the data being accessed. The
signed stride is given by vstride
(default is vstride0). The stride is
in terms of elements, not in terms
of bytes. The signed increment
in vinc (default is vinc0) is added
to vbase as a side effect. The
width of each element in memory
is given by the opcode. The reg-
ister value is truncated from the
VP width to the memory width.
The VPs access memory in order.

100

Appendix A. Soft Vector Processor ISA

Name Mnemonic Syntax Summary

Indexed Load vldx
vldxu

vbase

b
{^.. wh }^[.1]^vD,^vOff, The VPs perform an indexed-

vector load into vD. The base ad-
dress is given by vbase (default
vbase0), and must be aligned to
the width of the data being ac-
cessed. The signed offsets are
given by vOff and are in units of
bytes, not in units of elements.
The effective addresses must be
aligned to the width of the data
in memory. The width of each
element in memory is given by
the opcode. The loaded value
is sign/zero-extended to the VP
width.

Unordered In-
dexed Store

vstxu 1

vbase

. b

..h 1 [.1] vA, vOffw The VPs perform an indexed-
vector store of vA. The base ad-
dress is given by vbase (default
vbase0). The signed offsets are
given by vOff. The offsets are in
units of bytes, not in units of el-
ements. The effective addresses
must be aligned to the width of
the data being accessed. The reg-
ister value is truncated from the
VP width to the memory width.
The stores may be performed in
any order.

Ordered
Indexed Store

vstx

vbase

.b

.h^[.1]^vA,^vOff

.w
Operation is identical to vstxu,
except that the VPs access mem-
ory in order.

Local^Mem-
ory Load

vldl .vv[.1]^vD,^vA Each unmasked VP performs
a register-indirect load into vD
from the vector lane local mem-
ory. The address is specified in
vA/rS, and is in units of VPUW.
The data width is the same as VP
width.

101

Appendix A. Soft Vector Processor ISA

Name Mnemonic Syntax Summary
Local^Mem-
ory Store

vstl . vv C .1]^vA,^vB
. vs C .1]^vA,^rS

Each unmasked VP performs a
register-indirect store of vB/rS
into the local memory. The ad-
dress is specified in vA, and is in
units of VPUW. The data width
is the same as VP width. If
the scalar operand width is larger
than the local memory width, the
upper bits are discarded.

Flag Load vfld vF, vbase^[, vinc] The VPs perform a contiguous
vector flag load into vF. The base
address is given by vbase, and
must be aligned to VPUW. The
bytes are loaded in little-endian
order. This instruction is not
masked.

Flag Store vf st vF, vbase^[, vinc] The VPs perform a contiguous
vector flag store of vF. The base
address is given by vbase, and
must be aligned to VPUW. A
multiple of VPUW bits are writ-
ten regardless of vector length (or
more precisely, [(VL/VPUW) *
VPUW flag bits are written).
The bytes are stored in little-
endian order. This instruction is
not masked.

A.4.5 Vector Processing Instructions

Name Mnemonic Syntax Summary
Merge vmerge . vv [.1]

. vs C. 1]

. sv [. 1]

vD,
vD,
vD,

vA,
vA,
rS,

vB
rS
vB

Each VP copies into vD either
vA/rS if the mask is 0, or vB/rS
if the mask is 1. At least one
source is a vector. Scalar sources
are truncated to the VP width.

102

Appendix A. Soft Vector Processor ISA

Vector Insert vins . vv vD, vA The leading portion of vA is in-
serted into vD. vD must be differ-
ent from vA. Leading and trail-
ing entries of vD are not touched.
The lower vclogmvl bits of vector
control register vcvindex specifies
the starting position in vD. The
vector length specifies the num-
ber of elements to transfer. This
instruction is not masked.

Vector^Ex-
tract

vext .vv vD, vA A portion of vA is extracted to
the front of vD. vD must be dif-
ferent from vA. Trailing entries of
vD are not touched. The lower
vclogmvl bits of vector control reg-
ister vcvindex specifies the starting
position in vD. The vector length
specifies the number of elements
to transfer. This instruction is
not masked.

Scalar Insert vins . vs vD, rS The contents of rS are written
into vD at position vcvindex. The
lower vclogmvl bits of vcvindex are
used. This instruction is not
masked and does not use vector
length.

Scalar^Ex-

tract
vext
vextu

. vs rS, vA Element vcvindex of vA is writ-
ten into rS. The lower vclogmvl
bits of vc index are used to deter-
mine the element in vA to be ex-
tracted. The value is sign/zero-
extended. This instruction is not
masked and does not use vector
length.

Compress vcomp [. 1]^vD,^vA All unmasked elements of vA are
concatenated to form a vector
whose length is the population
count of the ask (subject to vec-
tor length). The result is placed
at the front of vD, leaving trailing
elements untouched. vD must be
different from vA.

103

Appendix A. Soft Vector Processor ISA

Expand vexpand [.1]^vD,^vA The first n elements of vA are
written into the unmasked posi-
tions of vD, where n is the popu-
lation count of the mask (subject
to vector length). Masked posi-
tions in vD are not touched. vD
must be different from vA.

Vector^Ele-
ment Shift

vupshif t vD, vA The contents of vA are shifted
up by one element, and the re-
sult is written to vD (vD[i] =
vA[i+1]). The first element in
vA is wrapped to the last element
(MVL-1) in vD. This instruction
is not masked and does not use
vector length.

104

Appendix A. Soft Vector Processor ISA

A.4.6 Vector Flag Processing Instructions

Name Mnemonic Syntax Summary
Scalar^Flag
Insert

of ins . vs vF, rS The boolean value of rS is writ-
ten into vF at position vcvind,•
The lower vciogmvi bits of VCvindex
are used. This instruction is not
masked and does not use vector
length.

And vf and . vv vFD, vFA, vFB
. vs vFD, vFA, rS

Each VP writes into vFD the log-
ical AND of vFA and vFB/rS.
This instruction is not masked,
but is subject to vector length.

Or vf or . vv vFD, vFA, vFB
.vs vFD, vFA, rS

Each VP writes into vFD the log-
ical OR of vFA and vFB/rS. This
instruction is not masked, but is
subject to vector length.

Xor vf xor . vv vFD, vFA, vFB
.vs vFD, vFA, rS

Each VP writes into vFD the log-
ical XOR of vFA and vFB/rS.
This instruction is not masked,
but is subject to vector length.

Nor vfnor . vv vFD, vFA, vFB
. vs vFD, vFA, rS

Each VP writes into vFD the log-
ical NOR of vFA and vFB/rS.
This instruction is not masked,
but is subject to vector length.

Clear vf clr vFD Each VP writes zero into vFD.
This instruction is not masked,
but is subject to vector length.

Set vf set vFD Each VP writes one into vFD.
This instruction is not masked,
but is subject to vector length.

Population
Count

vfpop rS, vF The population count of vF is
placed in rS. This instruction is
not masked.

Find^First
One

vfffl rS, vF The location of the first set bit of
vF is placed in rS. This instruc-
tion is not masked. If there is
no set bit in vF, then the vector
length is placed in rS.

105

Appendix A. Soft Vector Processor ISA

Find^Last
One

01 rS, vF The location of the last set bit of
vF is placed in rS. The instruc-
tion is not masked. If there is
no set bit in vF, then the vector
length is placed in rS.

Set^Before
First One

 vfsetbf vFD, vFA Register vFD is filled with ones
up to and not including the first
set bit in vFA. Remaining posi-
tions in vF are cleared. If vFA
contains no set bits, vFD is set to
all ones. This instruction is not
masked.

Set^Including
First One

vfsetif vFD, vFA Register vFD is filled with ones
up to and including the first set
bit in vFA. Remaining positions
in vF are cleared. If vFA contains
no set bits, vFD is set to all ones.
This instruction is not masked.

Set Only First
One

vfsetof vFD, vFA Register vFD is filled with zeros
except for the position of the first
set bit in vFA. If vFA contains no
set bits, vFD is set to all zeros.
This instruction is not masked.

A.4.7 Miscellaneous Instructions
Name Mnemonic Syntax Summary
Move^Scalar
to Control

vmst c vc, rS Register rS is copied to vc. Writ-
ing vcyp,„ changes ve iny' , vciogmvi
as a side effect.

Move Control
to Scalar

vmcts rS, vc Register vc is copied to rS.

106

Appendix A. Soft Vector Processor ISA

A.5 Instruction Formats

The Nios II ISA uses three instruction formats.

31
^

27 26
^

22 21
^

17 16
^

6 5
^

0

R-Type

I-Type

J-Type

I^A
^I^B^I^C^I^OPX

^ 1^OP
^1

5
^

5

31
^

27 26
^

22 21
^

6 5
^

D

IA
^I B^IMM16

^ I^OP^I
5
^

15
^

5

31
^

6 5
^

5

1
^

IMM26
^ 1^OP

^1
26
^

6

The defined vector extension uses up to three 6-bit opcodes from the unused/reserved Nios II

opcode space. Each opcode is further divided into two vector instruction types using the OPX

bit in the vector instruction opcode. Table A.11 lists the Nios II opcodes used by the soft vector

processor instructions.

Table A.11: Nios II Opcode Usage

Nios II Opcode OPX Bit Vector Instruction Type

Ox3D 0
1

Vector register instructions
Vector scalar instructions

Ox3E 0
1

Fixed-point instructions
Vector flag, transfer, misc

Ox3F 0
1

Vector memory instructions
Unused except for vstl . vs

A.5.1 Vector Register and Vector Scalar Instructions

The vector register format (VR-type) covers most vector arithmetic, logical, and vector pro-

cessing instructions. It specifies three vector registers, a 1-bit mask select, and a 7-bit vector

opcode. Instructions that take only one source operand use the vA field. Two exceptions are

the vector local memory load and store instructions, which also use VR-type instruction format.

107

Appendix A. Soft Vector Processor ISA

Table A.12: Scalar register usage as source or destination register

Instruction Scalar register usage
op.vs Source
op.sv Source

vins.vs Source
vext.vs Destination
vmstc Source
vmcts Destination

31
^

26 25
^

20 19
^

14^13
^

12^11
^

6^5
^

.

VR-Type 1^vD^ vA^ v13
^

IMASK I OPX I^FUNC
^I^OP^

I
6
^

.
^

.

Scalar-vector instructions that take one scalar register operand have two formats, depending

on whether the scalar register is the source (SS-Type) or destination (SD-Type) of the operation.

31
^

26 25
^

20 19
^

15 14^13
^

12^11
^

6^5

SS-Type

SD-Type

vD
^

vA
^

rS^10 (MASK I OPX I^FUNC
^1^OP ^1

6
^

5
^

,
^

6

31
^

27 26 25
^

20 19
^

13
^

12
^

6^5

rS
^

1°1^
vA
^

0^(MASK I OPX I^FUNC
^1^OP ^1

.
^

.
^

6

Table A.12 lists which instructions use scalar register as a source and as a destination.

A.5.2 Vector Memory Instructions

Separate vector memory instructions exist for the different addressing modes. Each of unit

stride, constant stride, and indexed memory access has its own instruction format: VM, VMS,

and VMX-type, respectively.

108

Appendix A. Soft Vector Processor ISA

31
^

26 25
^

23 22
^

19 16
^

10^13
^

12^11
^

6^5

VM-Type 1^vR^I INC I
^.^1^BASE

^
IMASK I OPX I^FUNC

^1^OP
^1

6
^

6
^

6

31
^

26 25
^

23 22
^

19 18
^

14^13
^

12^11
^

6^5

VMS-Type vR
^

1 INC 1 STRIDE 1^BASE^I MASK I OPX 1^FUNC
^

OP ^1
6
^

3
^

5
^

6
^

6

31
^

26 25
^

20 19 18
^

14^13
^

12^11
^

6^5
^

0

VMX-Type 1
^

vA / vD
^1^vOffset^10 1^BASE^IMASK I OPX 1^FUNC

^i^OP

6
^

6
^

6

Vector load and store to the local memory use the VR-type instruction format. Scalar store

to vector lane local memory uses the SS-type instruction format with all zeros in the vD field.

A.5.3 Instruction Encoding

Arithmetic/Logic Instructions

Table A.13 lists the function field encodings for vector register instructions. Table A.14 lists

the function field encodings for vector-scalar and scalar-vector (non-commutative vector-scalar)

operations. These instructions use the vector-scalar instruction format.

Table A.13: Vector register instruction function field encoding (OPX=0)

[2:0] Function bit encoding for .vv
[5:3] 000 001 010 011 100 101 110 111
000 vadd vsub vmac vand vor vxor
001 vaddu vsubu vmacu vabsdiff
010 vsra vcmpeq vsll vsrl vrot vcmplt vdiv vcmple
011 vmerge vcmpneq vcmpltu vdivu vcmpleu
100 vmax vext vins vmin vmulhi vmullo
101 vmaxu vminu vmulhiu vmullou
110 vccacc vupshift vcomp vexpand vabs
111 vcczacc

109

Appendix A. Soft Vector Processor ISA

Table A.14: Scalar-vector instruction function field encoding (OPX=1)

[2:0] Function bit encoding for .vs
[5:3] 000 001 010 011 100 101 110 111
000 vadd vsub vmac vand vor vxor
001 vaddu vsubu vmacu vabsdiff
010 vsra vcmpeq vsll vsrl vrot vcmplt vdiv vcmple
011 vmerge vcmpneq vcmpltu vdivu vcmpleu
100 vmax vext vins vmin vmulhi vmullo
101 vmaxu vextu vminu vmulhiu vmullou

[2:0] Function bit encoding for .sv
[5:3] 000 001 010 011 100 101 110 111
110 vsra vsub vsll vsrl vrot vcmplt vdiv vcmple
111 vmerge vsubu vcmpltu vdivu vcmpleu

Fixed-Point Instructions (Future extension)

Table A.15 lists the function field encodings for fixed-point arithmetic instructions. These

instructions are provided as a specification for future fixed-point arithmetic extension.

Table A.15: Fixed-point instruction function field encoding (OPX=0)
[2:0] Function bit encoding for fixed-point instructions

[5:3] 000 001 010 011 100 101 110 111
000 vsadd vssub vsat vsrr vsls vxmulhi vxmullo
001 vsaddu vssubu vsatu vsrru vslsu vxmulhiu vxmullou
010 vxccacc vsatsu
011 vxcczacc
100 vsadd.sv vssub.sv vxmulhi.sv vxmullo.sv
101 vsaddu.sv vssubu.sv vxmulhiu.sv vxmullou.sv
110 vssub.vs
111 vssubu.vs

Flag and Miscellaneous Instructions

Table A.16 lists the function field encoding for vector flag logic and miscellaneous instructions.

110

Appendix A. Soft Vector Processor ISA

Table A.16: Flag and miscellaneous instruction function field encoding (OPX=1)
[2:0] Function bit encoding for flag/misc instructions

[5:3] 000 001 010 011 100 101 110 111
000 vfclr vfset vfand vfnor vfor vfxor
001 vfffl vffll
010 vfsetof vfsetbf vfsetif
011 vfins.vs vfand.vs vfnor.vs vfor.vs vfxor.vs
100
101 vmstc vmcts
110
111

Memory Instructions

Table A.17 lists the function field encoding for vector memory instructions. The vector-scalar

instruction vstl. vs is the only instruction that has opcode of Ox3F and OPX bit of 1.

Table A.17: Memory instruction function field encoding

[2:0] Function bit encoding for memory instructions (OPX=0)
[5:3] 000 001 010 011 100 101 110 111
000 vld.b vst.b vlds.b vsts.b vldx.b vstxu.b vstx.b
001 vldu.b vldsu.b vldxu.b
010 vld.h vst.h vlds.h vsts.h vldx.h vstxu.h vstx.h
011 vldu.h vldsu.h vldxu.h
100 vld.w vst.w vlds.w vsts.w vldx.w vstxu.w vstx.w
101
110 vldl vstl vfld vfst
111

[2:0] Function bit encoding for memory instructions (OPX=1)
[5:3] 000 001 010 011 100 101 110 111
110 vstl.vs

111

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123

