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Abstract

Recent advances in graphics processing units (GPUs) have resulted in massively parallel hard-

ware that is easily programmable and widely available in commodity desktop computer systems.

GPUs typically use single-instruction, multiple-data (SIMD) pipelines to achieve high perfor-

mance with minimal overhead for control hardware. Scalar threads running the same computing

kernel are grouped together into SIMD batches, sometimes referred to as warps. While SIMD

is ideally suited for simple programs, recent GPUs include control flow instructions in the GPU

instruction set architecture and programs using these instructions may experience reduced per-

formance due to the way branch execution is supported by hardware. One solution is to add

a stack to allow different SIMD processing elements to execute distinct program paths after

a branch instruction. The occurrence of diverging branch outcomes for different processing

elements significantly degrades performance using this approach. In this thesis, we propose dy-

namic warp formation and scheduling, a mechanism for more efficient SIMD branch execution

on GPUs. It dynamically regroups threads into new warps on the fly following the occur-

rence of diverging branch outcomes. We show that a realistic hardware implementation of this

mechanism improves performance by an average of 47% for an estimated area increase of 8%.
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Chapter 1

Introduction

The computation potential of a single chip improves as semiconductor process technology con-

tinues to scale and transistor density increases exponentially following “Moore’s Law” [48].

Leveraging process technology scaling to improve the performance of real world applications

has always been a goal in computer architecture, but has become increasingly challenging as

power limitations restrict clock frequency scaling [52]. Now, perhaps more than before, hard-

ware must exploit parallelism efficiently to improve performance.

Single-instruction, multiple-data (SIMD) instruction scheduling is a technique for exploit-

ing data level parallelism efficiently by amortizing data-independent control hardware across

multiple processing elements. Multiple data elements are grouped and processed in “lock-step”

in parallel with a single instruction. This hardware simplification, however, restricts these pro-

cessing elements to have uniform dynamic control flow behavior. A data dependent branch, in

which each processing element resolves to a different outcome, generates a hazard, known as

branch divergence [67], on the SIMD hardware. Handling of this hazard usually involves serial-

izing the execution of these grouped processing elements, lowering the utilization of the SIMD

hardware. For some control-flow intensive applications, this performance penalty outweighs the

benefit of using SIMD hardware.

Nevertheless, SIMD has gained popularity in many applications that require little control

flow flexibility. Most of these applications, such as 3D rendering and digital signal processing [36,

38, 42, 53, 71], deal with large data sets and require frequent access to off-chip memory with long

access latency. Specialized processors for these applications, such as graphics processing units

(GPUs), often use fine-grained multithreading to proactively hide these long access latencies.

However, as these specialized processors start offering more and more programmability to meet

the demand of their users, branch divergence with SIMD hardware becomes a major performance

1



Chapter 1. Introduction

bottleneck.

This thesis proposes and evaluates a novel hardware mechanism, dynamic warp formation,

for improving performance of control-flow intensive applications on a SIMD architecture with

fine-grained multithreading. While this proposed mechanism is described in this thesis in the

context of GPU microarchitecture, it is equally applicable to any microarchitecture that uses

SIMD and fine-grained multithreading [13, 23, 25].

The rest of this chapter describes the motivation and background for this thesis, the method-

ology employed, the contribution of this thesis, and finally summarizes the thesis’s organization.

1.1 Motivation

Until recently, the dominant approach for exploiting parallelism has been to extract more in-

struction level parallelism (ILP) from a single thread through increasingly complex scheduling

logic and larger caches. As diminishing returns to ILP now limit performance of single thread

applications [1], attention has shifted towards using additional resources to increase throughput

by exploiting explicit thread level parallelism in software. In contrast to instruction level paral-

lelism, which mainly relies on hardware instruction scheduling logic for improving performance,

thread level parallelism is explicitly defined in the software as threads (sections of code that can

be executed in parallel), and the hardware simply provides support for executing these threads

in parallel to improve performance. The simplest way to do so is to have multiple copies of the

same processor on a chip, an approach known as a chip multiprocessors (CMP). This forces

software developers to share the responsibility for improving performance, but saves significant

effort in hardware design verification while potentially yielding a greater performance gain in

comparison to providing additional cache, for example.

The modern graphics processing unit (GPU), a hardware accelerator for 3D rendering widely

available on commodity computer systems, can be viewed as an example of this throughput

oriented approach [9, 40, 61]. Earlier generations of GPUs consisted of fixed function 3D

rendering pipelines. This required new hardware to enable new real-time rendering techniques,

which impeded the adoption of new graphics algorithms and thus motivated the introduction

of programmability, long available in traditional offline computer animation [77], into GPU

2
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Figure 1.1: Floating-Point Operations per Second for the CPU and GPU

hardware for real-time computer graphics. In modern GPUs, much of the formerly hardwired

pipeline is replaced with programmable hardware processors that run a relatively small shader

program on each input vertex or pixel [40]. Shader programs are either written by the application

developer or substituted by the graphics driver to implement traditional fixed-function graphics

pipeline operations. The compute model provided by modern graphics processors for running

non-graphics workloads is closely related to that of stream processors [18, 63].

The programmability of shader hardware has greatly improved over the past decade, and

the shader processors of the latest generation GPUs are Turing-complete. Together with the

impressive theoretical computation power of GPU when compared to conventional CMPs (see

Figure 1.1), this opens up exciting new opportunities to speed up “general purpose” (i.e., non-

graphics) applications. Based upon experience gained from pioneering efforts to generalize the

usage of GPU hardware [9, 61], GPU vendors have introduced new programming models and

associated hardware support to further broaden the class of applications that may efficiently

use GPU hardware [3, 58].

Even with a general-purpose programming interface, mapping existing applications to the

parallel architecture of a GPU is a non-trivial task. Although some applications can achieve

speedups of up to 431 times over a modern CPU [26, 27], other applications, while success-

fully parallelized on different hardware platforms, show little improvement when mapped to

a GPU [7]. One major challenge for contemporary GPU architectures is efficiently handling

control flow in shader programs [67]. The reason is that, in an effort to improve computation

3



Chapter 1. Introduction

0

0.2

0.4

0.6

0.8

1

NREC
SIMD

PDOM
SIMD

DWF SIMD MIMD

No
rm

al
ize

d 
IP

C

Figure 1.2: Performance loss due to branching when executing scalar SPMD threads using
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density, modern GPUs typically batch together groups of individual threads running the same

shader program, and execute them together in lock step on a SIMD pipeline [43, 45, 47, 49, 58].

Such thread batches are referred to as warps1 by NVIDIA [58, 67]. This approach has worked

well [37] for graphics operations such as texturing [6, 11], which historically have not required

branch instructions. However, when shader programs do include branches, the execution of

different threads grouped into a warp to run on the SIMD pipeline may no longer be uniform

across SIMD elements. This causes a hazard in the SIMD pipeline [49, 80] known as branch

divergence [43, 67]. We found that näıve handling of branch divergence incurs a significant

performance penalty on the GPU for control-flow intensive applications relative to an ideal

multiple-instruction, multiple-data (MIMD) architecture with the same peak IPC capability

(See Figure 1.2).

1In the textile industry, the term “warp” refers to “the threads stretched lengthwise in a loom to be crossed
by the weft” [21].

2
NREC SIMD and PDOM SIMD are described in Chapter 3 while DWF SIMD is described in Chapter 4.

Microarchitecture and Benchmarks are described in Chapter 2 and Chapter 5 respectively.
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1.2 Contributions

This thesis makes the following contributions:

1. It quantifies the performance gap between the immediate post-dominator branch recon-

vergence mechanism and the performance that would be obtained on a MIMD architecture

with support for the same peak number of operations per cycle. Thus, highlighting the

importance of finding better branch handling mechanisms.

2. It proposes and evaluates a novel hardware mechanism, dynamic warp formation, for

regrouping processing elements of individual SIMD warps on a cycle-by-cycle basis to

greatly improve the efficiency of branch handling.

3. It highlights quantitatively that warp scheduling policy (the order in which the warps

are issued from the scheduler) is an integral part to both the performance and area

overhead of dynamic warp formation, and proposes an area efficient implementation of a

well-performing scheduling policy.

4. It proposes and evaluates a detailed hardware implementation of dynamic warp formation

and scheduling.

5. It provides an extensive simulation infrastructure for enabling future research on GPU

architectures optimized to support non-graphics applications.

In particular, for a set of data parallel, non-graphics applications ported to our modern

GPU-like SIMD streaming processor architecture, we find the speedup obtained by reconverging

diverging threads within a SIMD warp at the immediate post-dominator of the diverging branch

obtains a speedup of 45% over not reconverging. Furthermore, dynamically regrouping scalar

threads into SIMD warps on a cycle by cycle basis increases speedup further to 114% (47%

speedup versus reconverging at immediate post-dominator). We estimate the hardware required

by this regrouping mechanism adds 8% to the total chip area.

5
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1.3 Organization

The rest of the thesis is organized as follows:

• Chapter 2 provides an overview of the fundamental concepts and the baseline GPU mi-

croarchitecture that this thesis builds on.

• Chapter 3 describes the immediate post-dominator control-flow reconvergence mechanism,

which represents a baseline equivalent to the performance of contemporary SIMD control-

flow handling mechanisms.

• Chapter 4 describes our proposed dynamic warp formation mechanism, an improvement

to the baseline. This is the main contribution of the work.

• Chapter 5 describes the simulation methodology of the proposed GPU microarchitecture,

including a detailed description of GPGPU-Sim, a novel GPU microarchitecture simulator.

• Chapter 6 describes our experimental results.

• Chapter 7 gives an estimation of the area overhead for implementing dynamic warp for-

mation.

• Chapter 8 describes related work.

• Chapter 9 summarizes this thesis and suggests future work.

6



Chapter 2

Background

This chapter provides an overview of the fundamental concepts, the compute model and the

baseline SIMD GPU microarchitecture used for the rest of this thesis. This baseline is repre-

sentative of contemporary GPUs used for accelerating non-graphics applications.

2.1 Fundamental Concepts

This section discusses the fundamental concepts and techniques that this thesis builds on. In

particular, we describe several techniques fundamental to the contributions of this thesis: thread

level parallelism, data level parallelism, single-instruction multiple-data, multiple-instruction

multiple-data, and fine-grained multithreading.

2.1.1 Thread-Level Parallelism

Thread-level parallelism (TLP) refers to the parallelism that is specified explicitly by the soft-

ware developer as threads in an application [76]. These threads run concurrently in the system,

and each thread is expected to progress independently with a register set of its own. In some

systems, these threads can be explicitly synchronized through message passing or locks3 and

barriers4. TLP can be exploited by adding extra processors to a system so that more threads

execute in parallel (provided that there are enough threads). However, as mentioned later in

Section 2.1.5, TLP can also be exploited as a way to increase efficiency in a system with high

memory access latency.

3Mutually exclusive access to data shared among threads [16].
4Global synchronization among a set of threads: none get pass the barrier until all threads within the set

have arrived [16].

7



Chapter 2. Background

2.1.2 Data-Level Parallelism

Data-level parallelism (DLP) exists in an application when a large pool of data is processed in a

regular fashion, where each element of the output data is only dependent on a few elements from

the input data pool [56]. A classic example of such an application is matrix multiplication, in

which each element in the destination matrix is calculated by a sum of products of elements from

the source matrices. As the outcome of each element does not depend on values of other output

elements, multiple elements in the destination matrix can be calculated in parallel. Data-level

parallelism can be exploited by adding extra processors, and distributing available work to

these processors. This allows data-level parallelism to scale easily as data set increases—the

larger the data set, the more work readily distributable to more processors [56]. In contrast to

thread-level parallelism, which assigns each processing unit a unique thread, and instruction-

level parallelism, which exploits independent operations within a single instruction stream [24],

the regularity of DLP allows it to be exploited in a much more efficient manner, as discussed

next.

2.1.3 Single-Instruction, Multiple-Data (SIMD)

SIMD has its roots in vector processors used for scientific computation. Vector processors are

effective for applications which involve repeating a set of identical operations across a large

amount of data (e.g., vector multiplication). As these repeated operations are independent

with each other, they may be executed in parallel on different data. Vector processors exploit

this DLP efficiently with an instruction set architecture (ISA) that operates on vectors of data.

This allows control hardware to be shared by multiple processing elements, greatly reducing

the hardware cost required to scale up the width of parallel operations. All that is required is

to attach extra ALUs to the control signal bus driven by a common control logic and provide

them with data. At a minimum, this saves instruction bandwidth and control logic otherwise

required for adding extra processors to exploit the same amount of DLP. However, by sharing

the control hardware, the processing elements are restricted to execute in lockstep, i.e., they all

execute the same instruction and advance to the next instruction at the same time.

Today, SIMD hardware exists in commodity desktop computers in two main forms: special
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purpose accelerators and short-vector instruction set architecture (ISA) extensions.

Short-vector ISA extensions refer to the SIMD instruction set extensions for general purpose

CPUs, such as the Streaming SIMD Extension (SSE) for x86 architecture [73] and AltiVec for

POWER architecture [44]. These SIMD instruction set extensions operate on short vector

registers (64-bit or 128-bit) that hold multiple data elements that will be operated on with a

single SIMD instruction. Multiple SIMD instructions are needed to process vectors that exceed

the length of a single vector register. While these ISA extensions allow general purpose CPUs

to exploit DLP in a limited way, the main focus of general purpose CPUs remains to be fast

execution of serial programs.

Historically, special purpose accelerators are hardware that is less tightly integrated with

a CPU and is designed to assist the CPU in specific applications. For example, Graphics

Processing Units (GPUs) are dedicated processors specialized in 3D rendering. In GPUs, SIMD

is used to exploit the DLP nature of 3D rendering—each pixel or vertex can be processed

independently (see Chapter 2 for more detail). Other special purpose accelerators, such as

digital signal processors (DSPs), are also using SIMD to exploit DLP in their application

domains [71].

2.1.4 Multiple-Instruction, Multiple Data

In this thesis, the performance of various SIMD control flow techniques is often compared to

that of a multiple-instruction, multiple-data (MIMD) architecture. According to Flynn’s tax-

onomy [20], any architecture that is not constrained by the lockstep execution of processing

elements as in SIMD is classified as a MIMD architecture. With this definition, any multi-

processor architecture is a MIMD architecture. In the context of this thesis, a MIMD architec-

ture refers to an architecture with the same configuration as our baseline SIMD architecture

in Chapter 2, except that the processing elements inside a shader core are free to execute any

instruction. These processing elements still share a common scheduler, which can schedule any

available thread to any free processing elements for execution.

9
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2.1.5 Fine-Grained Multithreading

Fine-Grained Multithreading (FGMT) is a technique allowing multiple threads to interleave

their execution on one or more hardware processors.

This technique differs from the traditional multitasking (time sharing) provided by an op-

erating system on an uniprocessor CPU. In a FGMT processor, switching to another thread

does not require flushing the pipeline nor offloading architectural registers to the main memory.

Instructions from multiple different processes co-exist in the pipeline of each single hardware

processor at the same time and the context (program counter and registers) of each thread is

kept in the register file and stays there until the thread terminates. Every cycle, the hardware

scheduler selects and issues an instruction from one of the threads sharing the processor. The

details of thread selection are hidden from the operating system, so a single processor with

FGMT appears as multiple single threaded processors.

FGMT was first proposed on the CDC 6600 as “barrel processing”, a flexible interface to

allow a single central processor to interface with multiple slower peripheral processors [75]. The

Heterogeneous Element Processor (HEP) computer [31] later employed FGMT as a technique

to provide a scalable interface for multi-threaded programs. In a HEP computer, each Process

Execution Module (PEM) can hold up to 128 threads. These threads communicate with each

other through the main memory, so that multi-threaded programs written for a single PEM can

also be executed by multiple PEMs sharing the same memory space. The threads are expected

to operate on different data, so that their instructions can exist in different stage in the PEM’s

pipeline at the same time without causing dependency hazards. In this way, instructions from

different threads can be aggressively scheduled into the pipeline without incurring the perfor-

mance penalty that a single-threaded processor would normally suffer (branch mispredictions

and data hazard stalls).

The Horizon [74] architecture also uses FGMT to provide a scalable interface, but focuses on

using this to hide the latency of memory accesses, which can take hundreds of cycles when hun-

dreds of processors and memory modules are connected via a message-passing interconnection

network.

Figure 2.1 shows a simplified version of the operation of FGMT. At any time, each pipeline
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Figure 2.1: A simplified illustration of how fine-grained multithreading can hide memory la-
tency. Notice it can also tolerate various long latency operations such as floating point division
(represented by the long execution stages). MSHR = miss status hold register [34]

stage (Fetch, Decode, Execute) can be occupied by a different thread; Provided there are more

threads than pipeline stages, the pipeline can be fully utilized. Threads that require access to

memory are stored in the memory unit (MSHR in Figure 2.1). Their request will be sent to

the memory system, while the threads wait inside the memory unit. In the meantime, other

threads that are not blocked by the memory will be executed in the pipeline to keep it utilized.

After threads inside the memory unit obtain their data from the memory system, they write

the data to the register file and resume execution in the pipeline. With this organization, longer

memory latency can be hidden using a larger number of threads sharing the pipeline.

While fine-grained multithreading allows efficient use of the pipeline, it requires multi-

threaded software. Also, to be able to switch quickly between threads, the hardware processor

stores the architectural states (registers and program counter) of all its threads. This requires

a significantly larger register file than the ones in single-threaded processors. For instance,

the Horizon architecture [74] allows up to 128 threads sharing a single processor, and each

thread contains 32 general purpose registers, requiring a register file of 4096 registers per pro-

cessor. For these reasons, FGMT’s popularity remains limited to architectures that optimize

for applications with plentiful thread-level parallelism.

Sun’s Niagara processor [35] features a FGMT architecture. The target applications for
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Niagara are server and database applications, which contains significant thread-level paral-

lelism. FGMT enables Niagara to deliver higher power efficiency (performance per Watt ratio)

compared to single threaded superscalar processors, while cache5misses are still a predominant

factor for the performance of Niagara [35].

Similar to FGMT, simultaneous multithreading (SMT) is a hardware technique that has

been used in general purpose CPUs to improve throughput by exploiting thread-level paral-

lelism [76]. To understand the difference between FGMT and SMT it is first necessary to point

out that all high performance CPUs today employ an approach to instruction processing called

superscalar execution6. In contrast to FGMT, instead of allowing only one thread to issue

an instruction to the pipeline each cycle, SMT allows multiple threads to compete for multi-

ple superscalar issue slots in the same cycle, meaning that the superscalar pipeline’s execution

stage can accept instructions from different threads in a single cycle. This thesis, however, uses

processor cores with a single-issue, SIMD pipeline, so FGMT is the only option.

Finally, graphics processing units (GPUs) uses FGMT to proactively hide memory access

latency just like the Horizon architecture, but each core has a SIMD pipeline to increase the

computation density [3, 39]. The SIMD pipeline shares data-independent control logic across

multiple stream processors.

2.2 Compute Model

In this thesis, we have adopted a compute model that is similar to NVIDIA’s CUDA program-

ming model [58]. In this compute model, the application starts off as a single program running

on the CPU. At some point during execution, the CPU reaches a kernel call and spawns a

parallel section to the GPU to exploit data-level parallelism. At this point, the CPU will then

stop its execution and wait for the GPU to finish the parallel section7. This sequence can repeat

multiple times until the program completes.

Each parallel section consists of a collection of threads executing the same code which we call

5A cache is a small and fast storage area close to the processor that reduces average memory access latency
by buffering data frequently accessed by the processor.

6A superscalar pipeline is designed to harness instruction-level parallelism within a single thread [24]. It has
the capability to issue multiple instructions to multiple functional units in a single cycle.

7A more recent version of CUDA allows the CPU to continue execution in parallel with the GPU [59].
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Figure 2.2: Baseline GPU microarchitecture. Blocks labeled ‘scalar pipeline’ include register
read, execute, memory and writeback stages.

a shader program. Similar to many thread programming APIs, a shader program is encapsulated

as a function call. In our implementation, at least one of the arguments is dedicated to pass in

the thread ID, which each thread uses to determine its behaviour during the parallel section.

For example, each thread may use its ID to index a different element in a vector. In this sense,

the programming model employed in this thesis is essentially the Single Program, Multiple Data

(SPMD) model commonly used to program shared memory multiprocessors.

All threads within a parallel section are expected to execute in parallel and share the same

memory space. Unlike most shared memory multiprocessors, cache coherence and memory

consistency are not enforced in our model as the threads are expected to be largely independent

of each other. In the present study, to ensure that threads of the next parallel section will have

access to the correct data, data caches are flushed and a memory fence operation is performed

at the end of each parallel section.

2.3 SIMD GPU Microarchitecture

Figure 2.2 illustrates the baseline microarchitecture used in the rest of this thesis. In this figure,

each shader core executes multiple parallel threads from the same parallel section, with each

thread’s instructions executed in-order by the hardware.8 The multiple threads on a given core

8Our shader core is similar to CUDA’s notion of a Streaming Multiprocessor (SM) [39].
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are grouped into SIMD warps by the hardware scheduler. Each warp of threads executes the

same instruction simultaneously on different data values in parallel scalar pipelines. Instructions

read their operands in parallel from a highly banked register file. Memory requests access a

highly banked data cache and cache misses are forwarded to the memory controller and/or cache

levels closer to memory via an interconnection network. Each memory controller processes

memory requests by accessing its associated DRAM, possibly in a different order than the

requests are received to reduce row activate and precharge overheads [64]. The interconnection

network we simulated is a crossbar with a parallel iterative matching allocator [17].

Since our focus in this thesis is non-graphics applications, graphics-centric details are omit-

ted from Figure 2.2. However, traditional graphics processing still heavily influences this design:

The use of SIMD hardware to execute SPMD software is heavily motivated by the need to bal-

ance “general purpose” compute kernel execution with a large quantity of existing graphics

shaders that have simple control-flow [67]. However, it is important to recognize that shader

programs for graphics may make increasing use of control flow operations in the future, for

example to achieve more realistic lighting effects.

2.4 Latency Hiding

Since cache hit rates tend to be low for streaming applications, performance would be severely

penalized if the pipeline had to stall for every memory request that misses the cache. This

is especially true when the latency of memory requests can take several hundreds of cycles

due to the combined effects of contention in the interconnection network and row-activate and

precharge overheads at the DRAM. While traditional microprocessors can mitigate the effects of

cache misses using out-of-order execution, a more compelling approach when software provides

the parallelism is to interleave instruction execution from different threads.

With a large number of shader threads multiplexed on the same execution resources, our

architecture employs fine-grained multi-threading, where individual threads are interleaved by

the fetch unit [74, 75] to proactively hide the potential latency of stalls before they occur

(as described in Section 2.1.5). As illustrated by Figure 2.3(a), instructions from multiple

shader threads are issued fairly in a round-robin queue. When a shader thread is blocked by
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Figure 2.3: Detail of a shader core. (a) Using barrel processing to hide data memory access
latency. N is the SIMD width of the pipeline. (b) Grouping 4N scalar threads into a SIMD
warp executed over 4 cycles.

a memory request, the corresponding shader core simply removes that thread’s warp from the

pool of “ready” warps and thereby allows other shader threads to proceed while the memory

system processes its request. With a large number of threads (768 per shader core, 12,288 in

total in this thesis, similar to the Geforce 8800GTX) interleaved on the same pipeline, barrel

processing effectively hides the latency of most memory operations since the pipeline is occupied

with instructions from other threads while memory operations complete. Barrel processing also

hides the pipeline latency so that data bypassing logic can be omitted to save area with minimal

impact on performance. In this thesis, we also simplify the dependency check logic design by

restricting each thread to have at most one instruction running in the pipeline at any time.

An alternative to barrel processing on a large number of threads is to interleave fewer

threads, but provide a large number of registers to each thread [28]. Each thread executes on

the pipeline until it encounters a dependency hazard, at which time the pipeline will switch

its execution to another thread. Latency hiding is essentially achieved via software loop un-

rolling, which generates independent instructions to be inserted between a memory access and

instructions depending on the access.
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2.5 SIMD Execution of Scalar Threads

While barrel processing can hide memory latency with relatively simple hardware, a mod-

ern GPU must also exploit the explicit parallelism provided by the stream programming

model [9, 58] associated with programmable shader hardware to achieve maximum perfor-

mance at minimum cost. SIMD hardware [8] can efficiently support SPMD program execution

provided that individual threads follow similar control flow. Figure 2.3(b) illustrates how in-

structions from multiple (M = 4N) shader threads are grouped into a single SIMD warp and

scheduled together into multiple (N) scalar pipelines over several (M/N = 4N/N = 4) cycles.

The multiple scalar pipelines execute in “lock-step” and all data-independent logic may be

shared to greatly reduce area relative to a MIMD architecture. A significant source of area

savings for such a SIMD pipeline is the simpler instruction cache support required for a given

number of scalar threads.

SIMD instruction processing can also be used to relax the latency requirement of the sched-

uler and simplify the scheduler’s hardware. With a SIMD warp size wider than the actual

SIMD hardware pipeline, the scheduler only needs to issue a single warp every M/N cycles

(M = warp size, N = pipeline width) [39]. The scheduler’s hardware is also simplified as it

has fewer warps to manage. This technique is used in the NVIDIA’s GeForce 8 series [58],

and the performance evaluations presented in this thesis assume the use of this technique (see

Section 4.4 of Chapter 4).

2.6 Summary

In this chapter, we have given an overview of the fundamental concepts and the baseline archi-

tecture to be used for the rest of this thesis. Details of the interconnection network and memory

subsystem are described in Chapter 5. In the following chapter, we describe a reconvergence

mechanism to handle branch divergence in SIMD hardware, which represents a reasonable proxy

of the performance of various contemporary control-flow handling mechanisms for SIMD. The

performance of this reconvergence mechanism is compared against our proposed dynamic warp

formation and scheduling mechanism in Chapter 6.
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SIMD Control Flow Support

To ensure the hardware can be easily programmed for a wide variety of applications, some recent

GPU architectures allow individual threads to follow distinct program paths [3, 46, 58, 60]. We

note that where it applies, predication [2] is a natural way to support such fine-grained control

flow on a SIMD pipeline. However, predication does not eliminate branches due to loops and

introduces overhead due to instructions with false predicates.

To support distinct control flow operation outcomes on distinct processing elements with

loops and function calls, several approaches have been proposed: Lorie and Strong describe a

mechanism using mask bits along with special compiler-generated priority encoding “else” and

“join” instructions [43]. Lindholm and Moy [49] describe a mechanism for supporting branching

using a serialization mode. Woop et al. [80] describe the use of a hardware stack and masked

execution. Kapasi et al. [32] propose conditional streams, a technique for transforming a single

kernel with conditional code to multiple kernels connected with inter-kernel buffers.

The effectiveness of a SIMD pipeline is based on the assumption that all threads running the

same shader program expose identical control-flow behaviour. While this assumption is true for

most existing graphics rendering routines [67], many existing parallel non-graphics applications

(and potentially, future graphics rendering routines) tend to have more diverse control-flow

behaviour. When a data-dependent branch leads to different control flow paths for different

threads in a warp, branch divergence occurs because a SIMD pipeline cannot execute different

instructions in the same cycle. The following sections describe two techniques for handling

branch divergence, both of which were implemented in the simulator developed as part of this

thesis.

The preliminary version of SIMD serialization mechanism presented in Section 3.1 was con-

tributed by Henry Tran. The initial implementation of the reconvergence mechanism presented
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in Section 3.2 and the limit study presented in Section 3.3 were contributed by Ivan Sham.

3.1 SIMD Serialization

A näıve solution to handle branch divergence in a SIMD pipeline is to serialize the threads within

a warp as soon as the program counters diverge. A single warp with branch divergence (threads

taking different execution paths) is separated into multiple warps each containing threads taking

the same execution path. These warps are then scheduled and executed independently of

each other, and they never reconverge back into a single warp. While this method is easy

to understand and implement, it achieves poor performance. Without branch reconvergence,

threads within a warp will continue diverging until each thread is executed in isolation from

other threads in the original warp, leading to very low utilization of the parallel functional units

as shown by NREC SIMD in Figure 1.2.

3.2 SIMD Reconvergence

Given the drawback of serialization it is desirable to use a mechanism for reconverging control

flow. The opportunity for such reconvergence is illustrated in Figure 3.1(a). In this example,

threads in a warp diverge after reaching the branch at A. The first three threads encounter a

taken branch and go to basic block9 B (indicated by the bit mask 1110 in Figure 3.1(a) inside

basic block B), while the last thread goes to basic block F (indicated by the bit mask 0001 in

Figure 3.1(a) inside basic block F). The three threads executing basic block B further diverge to

basic blocks C and D. However, at basic block E the control flow paths reach a join point [50]. If

the threads that diverged from basic block B to C wait before executing E for the threads that go

from basic block B to basic block D, then all three threads can continue execution simultaneously

at block E. Similarly, if these three threads wait after executing E for the thread that diverged

from A to F then all four threads can execute basic block G simultaneously. Figure 3.1(b)

illustrates how this sequence of events would be executed by the SIMD function units. In this

part of the figure solid arrows indicate SIMD units that are active.

9A basic block is a piece of code with a single entry and exit point.
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Figure 3.1: Implementation of immediate post-dominator based reconvergence.

Event Action

No Divergence
(single next PC)

Update the next PC field of the top of stack (TOS) entry to
the next PC of all active threads in this warp.

Divergence
(multiple next PC)

Modify the next PC field of the TOS entry to the reconver-
gence point. For each unique next PC of the warp, push a
new entry onto the stack with next PC field being the unique
next PC and the reconv. PC being the reconvergence point.
The active mask of each entry denotes the threads branching
to the next PC value of this entry.

Reconvergence
(next PC = reconv. PC
of TOS)

Pop TOS entry from the stack.

Table 3.1: Operational rules of the stack for reconvergence mechanism.

The behaviour described above can be achieved using a stack based reconvergence mecha-

nism [80]. In this thesis, each warp has a private stack tracking its control flow status. Each

entry in the stack consists of three fields: next PC, active mask and reconvergence PC. The

next PC field of the top of stack (TOS) entry indexes to the instruction that the warp will

execute at its next issue to the pipeline. The active mask field of the TOS entry indicates

which thread in the warp is currently active. The reconvergence PC field specify the point in

the shader program where these active threads will wait for other threads in the same warp

before proceeding further down the program. Table 3.1 summarizes the operational rules of the

stack.
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An example illustrating how these rules implement the reconvergence mechanism is shown

in Figure 3.1(c,d,e). Here we show how the stack is updated as the group of three threads in

Figure 3.1(a) that execute B diverge and then reconverge at E. Before the threads execute the

diverging branch at B, the state of the stack is as shown in Figure 3.1(c). When the branch

divergence is detected, the stack is modified to the state shown in Figure 3.1(d). The changes

that occur are the following:

1. The original top of stack (TOS) in Figure 3.1(c), also at (i) in Figure 3.1(d), has its next

PC field modified to the instruction address of the reconvergence point E (the address

could be specified through an extra field in the branch instruction).

2. A new entry (ii) is allocated onto the stack in Figure 3.1(d) and initialized with the

reconvergence point address (E) along with the next PC value of the fall through of the

branch (D), and a mask (0110) encoding which processing elements evaluated the branch

as “not-taken”.

3. A new entry (iii) is allocated onto the stack with the same reconvergence point address

(E), the target address (C) of the branch, and a mask (1000) encoding which processing

elements evaluated the branch as “taken”.

Note that the mechanism described above supports “nested” branch hammocks as well as data-

dependent loops. For a SIMD warp size of N , the size of this stack is bounded to 2N entries

per warp, which is all consumed when each thread in a warp is diverged to its own execution

path. At this point, no new entry will be pushed onto the stack because a single thread never

diverges, even if it is runnnig in a loop.

In this thesis we use the immediate post-dominator [50] of the diverging branch instruction

as the reconvergence point10. A post-dominator is defined as follows: A basic block X post-

dominates basic block Y (written as “X pdom Y”) if and only if all paths from Y to the exit

node (of a function) go through X. A basic block X, distinct from Y, immediately post-dominates

basic block Y if and only if X pdom Y and there is no basic block Z such that X pdom Z and Z

10While Rotenberg et al. [65] also identified immediate post-dominators as control reconvergence points, to
our knowledge we are the first to propose this scheme for SIMD control flow.
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Figure 3.2: Performance loss for PDOM versus SIMD warp size (realistic memory system).11

pdom Y. Immediate post-dominators are typically found at compile time as part of the control

flow analysis necessary for code optimization.

The performance impact of the immediate post-dominator reconvergence technique (which

we abbreviate in the rest of this thesis as PDOM) depends upon the SIMD warp size. Figure 3.2

shows the harmonic mean IPC of the benchmarks described in Chapter 5 compared to the

performance of MIMD hardware for 8, 16, and 32 wide SIMD execution assuming 16 shader

cores. Hardware utilization decreases from 26% for MIMD to 21% for 8-wide, to 19% for 16-

wide, and down to 16% for 32-wide.11 This increase of performance loss is due to a higher

impact of branch divergence when SIMD warps are widened and each warp contains more

threads. Although PDOM works well, the MIMD performance indicates that a performance

gain of 66% is still possible for a better branch handling mechanism if it can perfectly eliminate

the performance loss due to branch divergence.

In the following section we explore whether immediate post-dominators are the “best” recon-

vergence points, or whether there might be a benefit to dynamically predicting a reconvergence

point past the immediate post-dominator.

11The peak throughput remains the same for all three configurations of different SIMD widths. The config-
uration with a wider SIMD-width is implemented as a scheduler that issue a wider warp at a slower rate. See
Section 2.5 of Chapter 2 for more detail.
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   void shader_thread(int tid, int *data) {
1:     for (int i = tid % 2; i < 128; ++i) {
2:         if (i % 2)
3:             data[tid]++;
       }
   }

Odd:  12312 12312 12312 12312 1...
Even: 12 12312 12312 12312 1231...

TID

Time

Execution Sequence

(a) (b)

Figure 3.3: (a) Contrived example for which reconvergence at points beyond the immediate
post-dominator yields the significant improvement in performance shown on Figure 3.4. The
parameter tid is the thread ID. (b) Execution sequence for threads with odd or even tid. Note
the example in Figure 3.4 used 2D arrays.

3.3 Reconvergence Point Limit Study

While reconverging at the immediate post-dominator recovers much of the performance lost

due to branch divergence compared to not reconverging at all, Figure 3.3(a) shows an example

where this reconvergence mechanism is sub-optimal. In this example, threads with an even

thread ID diverge from those with an odd thread ID each iteration of the loop. If even threads

allow the odd threads to “get ahead” by one iteration, all threads can execute in lock-step until

individual threads reach the end of the loop. This suggests that reconverging at points beyond

the immediate post-dominator may yield better performance. To explore this possibility we

conducted a limit study assessing the impact of always predicting the best reconvergence point

assuming oracle knowledge of each thread’s future control flow.

For this limit study, dynamic instruction traces are captured from only the first 128 threads.

SIMD warps are formed by grouping threads by increasing thread ID, and an optimal alignment

for the instruction traces of each thread in a warp is found via repeated applications of the

Needleman-Wunsch algorithm [54]. With four threads per warp, the optimal alignment is found

by exhaustively searching all possible pair-wise alignments between threads within a warp. The

best reconvergence points are then identified from the optimal alignment.

Figure 3.4 compares the performance of immediate post-dominator reconvergence versus

the performance when reconverging at the predicted reconvergence points derived using this

method assuming a warp size of 4. In this figure we assume an idealized memory system (all

cache accesses hit) and examine both a contrived program with the behaviour abstracted in

Figure 3.3 and the benchmarks described in Chapter 5 (depicted by the bars labeled “Real Pro-
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Figure 3.4: Impact of predicting optimal SIMD branch reconvergence points. NREC = No
Reconvergence. PDOM = Reconvergence at immediate post-dominators. ORACLE = Recon-
vergence at optimal post-dominators.

grams”). While the contrived example experiences a 92% speedup with oracle reconvergence

point prediction, the improvement on the real programs we studied is much less (2.6%). Inter-

estingly, one of the benchmarks (bitonic sort) does have similar even/odd thread dependence as

our contrived example. However, it also contains frequent barrier synchronizations that ensure

loop iterations execute in lock-step. It is important to recognize the limitation of the preceding

limit study: We explored a very limited set of applications and used short SIMD width, and a

relatively small number of threads.

3.4 Summary

This chapter described a branch handling mechanism which reconverges control flow of threads

at the immediate post-dominators of the diverging branches and compared it against MIMD

hardware. It also performed a limit study to evaluate the potential performance gain of us-

ing more sophisticated reconvergence mechanisms. As this limit study seems to suggest that

more sophisticated reconvergence mechanisms may not improve performance significantly, this

thesis focuses on a mechanism which combines threads from distinct warps following branch

divergence. This mechanism is discussed in the next chapter.
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Chapter 4

Dynamic Warp Formation and

Scheduling

While the post-dominator reconvergence mechanism described in the previous chapter is able to

mitigate performance loss resulting from diverging branches, it does not fully utilize the SIMD

pipeline relative to a MIMD architecture with the same peak IPC capability (losing 40% of

performance for a warp size of 32 relative to MIMD). In this section, we describe our proposed

hardware mechanism for recovering the lost performance potential of the hardware.

The performance penalty due to branch divergence is hard to avoid with only one thread

warp since the diverged parts of the warp cannot execute simultaneously on the SIMD hardware

in a single cycle. Dynamic warp formation attempts to improve upon this by exploiting the fine-

grained multithreading aspect of the GPU microarchitecture: With fine-grained multithreading

employed to hide memory access latency, there is usually more than one thread warp ready for

scheduling in a shader core. Every cycle, the thread scheduler tries to form new warps from a

pool of ready threads by combining scalar threads whose next program counter (PC) values are

the same. As the shader program executes, diverged warps are broken up into scalar threads

to be regrouped into new warps according to their branch targets (indicated by the next PC

value of each scalar thread). In this way, the SIMD pipeline is fully utilized even when a shader

program executes diverging branches.

Figure 4.1 illustrates this idea. In this figure, two warps, Warp x and Warp y, are executing

the example program shown in Figure 4.1(a) on the same shader core and both suffer from

branch divergence. Figure 4.1(b) shows the interleaved execution of both warps using the

reconvergence technique discussed in Chapter 3.2, which results in the SIMD pipeline utilization

below 50% when basic blocks C, D and F are executed. As shown in Figure 4.1(c), using dynamic
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Figure 4.1: Dynamic warp formation example.

warp formation to regroup scalar threads from both warps in Figure 4.1(b) into a single warp

in Figure 4.1(c) for these blocks can significantly increase the pipeline utilization (from 65% in

Figure 4.1(b) to 77% in Figure 4.1(c)).

Implementing dynamic warp formation requires careful attention to the details of the register

file, a consideration we explore in Section 4.1. In addition to forming warps, the thread scheduler

also selects one warp to issue to the SIMD pipeline every scheduler cycle depending upon a

scheduling policy. We explore the design space of this scheduling policy in detail in Section 4.3.

We show that the thread scheduler policy is critical to the performance impact of dynamic warp

formation in Chapter 6.

4.1 Register File Access

To reduce area and support a large number of ports in a SIMD pipeline, a well-known approach

is to implement the register file in multiple banks, each accessible from a single scalar pipeline

(or lane) of the SIMD pipeline as shown in Figure 4.2(a). This hardware is a natural fit when

threads are grouped into warps “statically” before they begin executing instructions and each

thread stays in the same lane until it is completed. For our baseline architecture, each register
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Figure 4.2: Register file configuration for (a) static warp formation, (b) ideal dynamic warp
formation and MIMD, (c) unconstrained dynamic warp formation, (d) lane aware dynamic warp
formation. The solid line running across each register file bank in (a), (c) and (d) represents
whether individual banks are addressed by a common decoder (continuous line in part (a)) or
each bank has its own decoder for independent addressing ((c) and (d)).

file bank contains a separate set of registers per warp. Each scalar thread from the same warp

is statically assigned to a unique lane and always accesses the corresponding register file bank

for that lane. The registers used by each scalar thread within a given lane are then assigned

statically at a given offset based upon the warp ID.

However, so far we have not explicitly considered the impact of such static register assign-

ment on dynamic warp formation. As described so far, dynamic warp formation would require

each register to be equally accessible from all lanes, as illustrated in Figure 4.2(b). While group-

ing threads into warps dynamically, it is preferable to avoid the need to migrate register values

with threads as they are regrouped into different warps. To accomplish this, the registers used

by each scalar thread are assigned statically to the register banks in the same way as described

above. However, if we dynamically form new warps without consideration of the “home” lane of

a scalar thread’s registers, we must design the register file with a crossbar as in Figure 4.2(c).

Furthermore, warps formed dynamically may then have two or more threads with the same

“home” lane, resulting in bank conflicts. These bank conflicts introduce stalls into all lanes of

the pipeline and significantly reduce performance as shown in Chapter 6.

A better solution, which we call lane aware dynamic warp formation, ensures that each

thread remains within its “home” lane. In particular, lane aware dynamic warp formation
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assigns a thread to a warp only if that warp does not already contain another thread in the

same lane. While the crossbar in Figure 4.2(c) is unnecessary for lane aware dynamic warp

formation, the traditional hardware in Figure 4.2(a) is insufficient. When threads are grouped

into warps “statically”, each thread’s registers are at the same “offset” within the lane, thus

requiring only a single decoder. With lane aware dynamic warp formation, the offsets to access

a register in a warp will not be the same in each lane. Instead, the offset in each lane is

calculated according to the thread assigned to the lane in the dynamically formed warp. Note

that each lane is still executing the same instruction in any given cycle—the varying offsets are

a byproduct of supporting fine grained multithreading to hide memory access latency combined

with dynamic warp formation. This yields the register file configuration shown in Figure 4.2(d),

which is used for our area and performance estimation in Chapter 6 and Chapter 7.

One subtle performance issue affecting the impact of lane aware scheduling for one of our

benchmarks (Bitonic Sort) is related to the type of pathological even/odd thread identifier

control dependence described in Chapter 3. For example, if threads in all even lanes see a

branch as taken, while threads in all odd lanes see the same branch as not-taken, then it is

impossible for dynamic warp formation to create larger warps. A simple solution we employ

is to alternately swap the position of even and odd thread home lanes every other warp when

threads are first created (an approach we call thread swizzling).

4.2 Hardware Implementation

Figure 4.3 shows a high level block diagram illustrating how dynamic warp formation and

scheduling can be implemented in hardware. A detailed implementation for the Majority sched-

uler is described in Section 4.4. Referring to Figure 4.3, the two warp update registers, labeled

(a), store information for different target PCs of an incoming, possibly diverged warp; the PC-

warp LUT, labeled (b), provides a level of indirection to guide diverged threads to an existing

or newly created warp in the warp pool, labeled (c). The warp pool is a staging area holding

all the warps to be issued to the SIMD pipeline.

When a warp arrives at the last stage of the SIMD pipeline, its thread identifiers (TIDs)

and next PC(s) are passed to the thread scheduler (Figure 4.3(a)). For conditional branches,
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Figure 4.3: Implementation of dynamic warp formation and scheduling. In this figure, H
represents a hash operation. N is the width of the SIMD pipeline. See text for detail description.

there are at most two different next PC values.12 For each unique next PC sent to the scheduler

from writeback, the scheduler looks for an existing entry in the PC-warp LUT already mapped

to the PC and allocates a new entry if none exists13 (Figure 4.3(b)).

The PC-warp LUT (Figure 4.3(b)) provides a level of indirection to reduce the complexity

of locating warps in the warp pool (Figure 4.3(c)). It does this by using the IDX field to point

to a warp being formed in the warp pool. This warp is updated with the thread identifiers of

committing threads having this next PC value. Each entry in the warp pool contains the PC

value of the warp, N TID entries for N lanes in an N-wide SIMD pipeline, and some policy-

specific data (labeled “Prio”) for scheduling logic. A design to handle the worst case where

each thread diverges to a different execution path would require the warp pool to have enough

entries for each thread in a shader core to have its own entry. However, we observe that for

the benchmarks we simulated only a small portion of the warp pool is used, and we can shrink

the warp pool significantly to reduce area overhead without causing a performance penalty (see

Chapter 6).

To implement the lane aware scheduler mentioned in Section 4.1, each entry in the PC-warp

12Indirect branches that diverge to more than two PCs can be handled by stalling the pipeline and sending up
to two PCs to the thread scheduler every cycle.

13In our detailed model we assume the PC-warp LUT is organized as a small dual-ported 4-way set associative
structure.
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LUT has an occupancy vector (OCC) tracking which lanes of the current warp are free. This

is compared against the request vector (REQ) of the warp update register that indicates which

lanes are required by the threads assigned to this warp. If a required lane is already occupied

by a thread, a new warp will be allocated and the TIDs of the threads causing the conflict will

be assigned into this new warp. The TIDs of the threads that do not cause any conflict will

be assigned to the original warp. In this case, the PC-warp LUT IDX field is also updated to

point to the new warp in the warp pool. The warp with the older PC still resides in the warp

pool, but will no longer be updated. A more aggressive approach would be to continually try

to merge threads into the earlier warp, but this is beyond the scope of this thesis.

Each cycle, a single warp in the warp pool may be issued to the SIMD pipeline according to

one of the scheduling policies described in the next section. Once issued, the warp pool entry

used by the warp is returned to the warp allocator.

4.2.1 Warp Pool

As mentioned above, the warp pool holds the all the warps in the scheduler. Every cycle, the

incoming threads with the same PC value may be assigned to either an existing warp or a newly

allocated warp in the warp pool. To handle the case of a branch that diverges into two groups of

threads each with a distinct PC value, the warp pool must allow parallel access to four different

warps in each cycle.14 A näıve implementation of the warp pool with a single memory array

would require four write ports, which significantly increases the area requirement of dynamic

warp formation. However, with the observation that each incoming warp only contains a thread

executing in each SIMD lane (assuming lane aware scheduling is used here), a more efficient

implementation of the warp pool, shown in Figure 4.4(a), is possible. This implementation

eliminates the need of four write ports by separating the warp pool into banks, with each bank

storing the TIDs of threads executing in the same SIMD lane. Each bank requires only one

write port, because every incoming warp, no matter how diverged, never contains more than

one thread with the same home SIMD lane. The PC value and any scheduler specific data of

each warp are stored in a separate bank from the TIDs with two write ports.

14Threads in the same group may be assigned to an existing warp or a new warp. Both warps are updated in
the worst case.
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Figure 4.4: Implementation of the warp pool. (a) Implementation with lane aware scheduling.
(b) Generation of conflict vector (CNF) and the new warp signal. N is the width of the SIMD
pipeline.

In Figure 4.4(a), the write ports to each bank with TIDs is indexed by either the IDX from

PC-warp LUT or a new IDX from warp allocator. The choice is determined by a bit from the

conflict vector (CNF) which is the logical AND of the request vector (REQ) and the occupancy

vector (OCC). The input address to the bank containing PC value and scheduler specific data

is determined by a new warp signal which is set whenever CNF is not all zero. This new warp

signal also requests the warp allocator for an index to a free warp. Figure 4.4(b) summarizes

how CNF and new warp are generated.

A further refinement, that exploits the fact that a single warp may be executed over multiple

cycles (four cycle in our baseline configuration—see Chapter 5) is to use a single memory array

with one read port and one write port and perform the four warp updates over four cycles (one

every cycle). However, due to time constrains we do not explore this further in this thesis.

4.3 Scheduling Policies

Even though dynamic warp formation has the potential to fully utilize the SIMD pipeline, this

will only happen when the set of PC values currently being executed is small relative to the
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number of scalar threads. If each scalar thread progresses at a substantially different rate, then

all threads will eventually map to entirely different PCs. To avoid this, all threads should have

a similar rate of progress. We have found that the warp scheduling policy, namely, the order in

which warps are issued from the warp pool, has a critical effect on performance (as shown in

Chapter 6). We explored the following policies:

Time Stamp (DTime): Warps are issued in the order they arrive at the scheduler. Note that

when a warp misses the cache, it is taken out of the scheduler until its requested data arrives

from memory and this may change the order that warps are issued.

Program Counter (DPC): In a program sequentially laid out in instruction memory, the

program counter value itself may be a good indicator of a thread’s progress. By giving higher

issue priority to warps with smaller PCs, threads lagging behind are given the opportunity to

catch up.

Majority (DMaj): As long as a majority of the threads are progressing at the same rate, the

scheduling logic will have a large pool of threads from which to create a new warp every cycle.

The majority policy attempts to encourage this behaviour by choosing the most common PC

among all the existing warps and issuing all warps at this PC before choosing a new PC.

Minority (DMin): If a small minority of threads diverges away from the rest, the Majority

policy tends to leave these threads behind. In the minority policy, warps with the least frequent

PCs are given priority with the hope that, by doing so, these warps may eventually catch up

and converge with other threads.

Post-Dominator Priority (DPdPri): Threads falling behind after a divergence need to catch

up with other threads after the immediate post-dominator. If the issue priority is set lower for

warps that have gone beyond more post-dominators, then the threads that have yet to go past

the post-dominator tend to catch up.

4.4 A Majority Scheduling Policy Implementation

Majority scheduling logic, the best performing policy among the presented ones (as shown in

Chapter 6), can be implemented in hardware with a max-heap and a lookup-table as shown

in Figure 4.5. This hardware implementation may also be applied to other scheduling policies
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Figure 4.5: Implementation of majority scheduling policy with max-heap. See text for detail.

that require priority management, such as DPC and DPdPri, with some modifications, but

this thesis will focus on the implementation for Majority scheduling policy. The area of this

hardware implementation is included as part of the area overhead estimation for dynamic warp

formation and scheduling in Chapter 7. In Figure 4.5, the Majority Entry, labeled (a), keeps

track of the current majority PC value and a group of warps with this PC value15; the Max-

Heap, labeled (b), is a full binary tree of PC values (and its group of warps) sorted by number

of threads with this given PC value using the algorithm described in Chapter 6 of Cormen et al.

[15], and the MHeap LUT, labeled (c), provides a level of indirection for incoming warps to

update their corresponding entries in the Max-Heap (i.e., the function of the PC-warp LUT

in Figure 4.3). While we find a simple max-heap performing one swap per cycle per warp to

be sufficient for our usage, using a pipelined max-heap hardware implementation [4, 29] may

further reduce the bandwidth requirement of the max-heap.

Each entry in the Max-Heap represents a group of warps with the same PC value, and this

group of warps has CNT threads. This group of warps forms a linked list in the warp pool with

a “Next” entry referring to the next warp in the list. WPH keeps the head of this list and WPT

keeps the tail (so that the list can grow as warps arrive). LUT# is a back pointer to the entry

15This entry is separated because we finish executing all warps at a given PC value before selecting a new PC
value.
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in MHeap LUT, and is used to update the LUT for correctness after a swap (see detail below).

4.4.1 Warp Insertion

When a warp arrives at the thread scheduler, it is placed in the warp update register. The

warp’s next PC value (PC); the number of threads, or thread count, of this warp (NTHD); and

the ID of the warp (WID) in the warp pool (acquired via PC-warp LUT or warp allocator as

in Section 4.2), where these threads will be placed, are sent to the Majority scheduler. Inside

the Majority scheduler, the PC value is checked against the one stored in the Majority Entry,

and if they match, the Majority Entry will be updated directly. Otherwise, the MHeap LUT

will provide the index (MH#) into the Max-Heap entry with this PC value, or return an index

of an inserted new entry in the Max-Heap if an existing entry with this PC is not found in the

MHeap LUT. This Max-Heap entry, denoted by MH#, is then updated: CNT is incremented

by NTHD, and if WID is different from WPT, WPT will be updated with WID, and WID will

be assigned to the “Next” entry in the warp referred by the original WPT (essentially inserting

the warp referred by WID into the linked list of this entry). If this is an newly inserted entry,

the value of WID will be assigned to both WPH and WPT.

After the entry in the Max-Heap is updated or inserted, this entry is compared with its

parent entry and swapped up the binary tree until it encounters a parent with a larger thread

count (CNT) or it becomes the root of the binary tree. Whenever a swap occurs, the cor-

responding entry in MHeap LUT (denoted by LUT# in the swapping Max-Heap entries) is

updated. During this operation, no entries in the Max-Heap can be updated.

4.4.2 Warp Issue

In every scheduler cycle16, a warp from the warp pool will be issued to the SIMD pipeline. If the

Majority Entry has any warp remaining (CNT>0), the warp denoted by WPH will be issued to

the pipeline. WPH will then be updated with the value in the “Next” entry of the issued warp,

and CNT will be decremented by the number of threads in the issued warp. If the Majority

Entry runs out of warps (CNT=0), the root entry of the Max-Heap will be popped and will

become the Majority Entry. If the Max-Heap is in the process of rebalancing itself after a warp

insertion, no warp will be issued until the Max-Heap is eventually balanced. The Max-Heap
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then balances itself according to the algorithm described by Cormen et al. [15]. Similar to the

case of warp insertion, the MHeap LUT will be updated in parallel to any swap operation, and

during this operation, no entries in the Max-Heap can be updated.

4.4.3 Complexity

As max-heap is a tree structure, every warp insertion only requires as many as log(N) swaps

for a N-entry max-heap to rebalance, and experimentally we found that usually fewer swaps

are required. We find in Chapter 6 that a design with both the Max-Heap and the MHeap

LUT each having 2 read ports and 2 write ports (to perform 2 swaps in parallel to handle 2

warp insertion from each part of the incoming warp every scheduler cycle16) is sufficient for

keeping the Max-Heap balance in the common case. This is assuming that both structures are

clocked as fast as the SIMD pipeline, so that a total of 8 reads and 8 writes can be performed

in every scheduler cycle.16 If the number of PCs in flight exceeds the max-heap capacity, a

mechanism such as spilling the entries from the max-heap could be implemented. However, we

observed in Chapter 7 that with a 64 entry max-heap, the need for this never arises for our

benchmarks. We leave the exploration of the performance impact of spilling the max-heap with

smaller max-heap capacity as future work.

4.5 Summary

This chapter described our proposed branch handling mechanism—dynamic warp formation and

scheduling. It discussed various implementation details including a ways to avoid register file

bank conflict (lane aware scheduling) and a hardware implementation of the Majority scheduling

policy. Next chapter describes the simulation methodology we use in this thesis to evaluate this

mechanism.

16A scheduler cycle is equivalent to several pipeline cycles, because each warp can take several cycles (e.g. 4
for a warp size of 32) to execute in the pipeline (see Section 2.5 of Chapter 2), so the scheduler may operate at
a slower frequency.
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Methodology

While simulators for contemporary GPU architectures exist [19, 66], none of them model the

general-purpose GPU architecture described in this thesis. Therefore, we developed a novel

simulator, GPGPU-Sim, to model various aspects of the massively parallel architecture used in

modern GPUs with highly programmable pipelines.

The benchmark applications used for this study were selected from SPEC CPU2006 [69],

SPLASH2 [79], and CUDA [57]. Each benchmark was manually modified to extract and anno-

tate the compute kernels, which is a time-consuming task limiting the number of benchmarks

we could consider. The programing model we assume is similar to that of CUDA [58], which

uses a system call to a special GPU device driver in the operating system to launch parallel

sections on the GPU. In our simulator, this system call mechanism is emulated by a spawn

instruction, which signals the out-of-order core to launch a predetermined number of threads

for parallel execution of a compute kernel on the GPU simulator. If the number of threads to be

executed exceeds the capacity of the hardware configuration, the software layer is responsible

for organizing threads into blocks. Threads within a block are assigned to a single shader core,

and all of them have to finish before the shader core can begin with a new block.

The rest of this chapter describes our new simulator, GPGPU-Sim, in detail and gives an

overview of the benchmarks used in this thesis.

5.1 Software Design of GPGPU-Sim—A Cycle Accurate

GPGPU Simulator

This section describes the software design of GPGPU-Sim, the cycle accurate GPU simulator

used in this thesis.
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GPGPU-Sim consists of two top level components: functional simulation and performance

(timing) simulation. Functional simulation provides the behaviour that the program expects

from the architecture, whereas the performance simulation provides an estimate of how fast the

program would execute if it were to be run on the modeled microarchitecture. The two parts

of simulation are usually decoupled in a simulator to allow developers to introduce approxima-

tions to the performance model for fast prototyping of novel ideas. For example, our DRAM

performance model does not model DRAM refreshes. While DRAM refresh is an important

feature to maintain functional correctness of a DRAM module, omitting it has minimal impact

on the accuracy of a DRAM performance model due to the rare occurrence of DRAM refresh

(once every several million cycle). For this reason, like most modern architecture simulators in

widespread uses (such as SimpleScalar [10], SMTSIM [76], PTLsim [81]. . . etc.), GPGPU-Sim

employs the separation of functional simulation from performance simulation in its software

design.

GPGPU-Sim was constructed “from the ground up” starting from the instruction set sim-

ulator (sim-safe) of SimpleScalar version 3.0d [10]. We developed our cycle-accurate GPU

performance simulator, modeling the microarchitecture described in Chapter 2, around the

SimpleScalar PISA instruction set architecture (a RISC instruction set similar to MIPS) and

then interfaced it with sim-outorder, which only provides timing for code run on the CPU in

Figure 2.2.

Figure 5.1 provides an overview of GPGPU-Sim, with each source code file classified into

one of three main modules: Shader Core, Interconnection Network, and DRAM Model. Files

that do not fit into any of these three modules either contain code that provides miscellaneous

tools to all the modules (gpu-misc and delayqueue), or is glue code that connects all modules

together (gpu-sim). The following sections give an overview to the three main modules.

5.1.1 Shader Core

Each shader core contains a simple pipeline, much like the classic MIPS 5-stage in-order pipeline

described in [24]. This simple pipeline is extended to have fine-grained multithreading, SIMD,

miss status hold registers (MSHRs), the branch handling mechanisms that was discussed in this

thesis so far (Chapter 3 and Chapter 4), and various other microarchitecture details.
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Figure 5.1: Overview of GPGPU-Sim’s software design. A → B means “A is uses B”.

Figure 5.2(a) lists the pipeline stages in a shader core, and briefly illustrates the functionality

of each stage. Note that in the simulator, these stages are simulated in reverse order of the

pipeline flow to eliminate the need for two copies of each pipeline register. This is a well-known

technique, also used in SimpleScalar’s out-of-order simulator (sim-outorder).

Each shader core connects to the simulated memory subsystem (the memory system and the

interconnection network) via an abstract software interface that treats the memory subsystem

as an out-of-order queue with requests coming back in any order:

fq has buffer Query the memory subsystem for buffer space to hold a list of memory

requests, each with its requested memory address specified.

fq push Push memory request (memory address, number of bytes to access, and

whether the access is a read or a write) into the memory subsystem.

fq pop Pop serviced memory request from the memory subsystem and push it

into the return queue.
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Figure 5.2: Software design of pipeline stages in the shader core model.
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This abstract interface decouples the internal design of the shader core module from the rest

of the simulator.

The behaviour of every stage in a shader core is modeled by a function call in the simulator

with the general structure shown in Figure 5.2(b), and each stage has a set of pipeline registers

acting as the input into that stage. Each stage starts with a check to see if the pipeline register

between the current stage and the next stage is empty. If this pipeline register is not empty,

the next stage must be stalled, therefore the current stage should stall as well. Since each cycle

the activity of the pipeline stages are evaluated in reverse order, this implies that a hazard at

the end of the pipeline can stall the entire pipeline in a single cycle. If the pipeline registers

are empty, the simulator goes on simulating the behaviour of the stage. Whenever a stall is

generated in the simulator, the function call modeling the stage will just return, leaving the

content of its pipeline register unchanged. When the stage proceeds without generating a stall,

the content of the pipeline register of the current stage is copied to the next stage’s pipeline

register (to imitate the control signal transferring from one stage to the next in hardware). The

pipeline register of the current stage is then cleared, indicating to the earlier stage that no stall

has been generated.

The following is a description of each stage:

Fetch

The fetch stage starts by selecting the warp that will be issued to the pipeline. The selection is

performed by one of the schedulers implemented in the simulator as specified in the simulator’s

configuration, which can be specified either on the command line or via a configuration file. Each

scheduler implements one of the various branch handling mechanism discussed in Chapter 3

and Chapter 4. The MIMD architecture is modeled with a scheduler which can freely schedule

threads into the lanes of the pipeline regardless of their PC values.

After selecting which threads to issue, the scheduler passes the thread IDs and their PC

values to the fetch block, which will fetch the instruction from memory17 and put them into the

pipeline register of the decode stage. The fetch block also locks the issued threads by setting

a flag, indicating to the scheduler that this thread will not be available for scheduling until it

17We currently assume that all accesses to instruction cache hit because of the small kernel code size.
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is unlocked in later stages (this is done at the write-back stage). The warp size distribution (a

key statistic reported in Chapter 6) is collected in the fetch stage.

Decode

The decode stage decodes the instructions at the pipeline register between fetch and decode,

determining the instruction type (Arithmetic/Branching/Memory) and the registers that will

be used. It also checks for any violation of a dependency hazard (checking the scoreboard for

any use of the marked registers). If a dependency hazard is detected, it nullifies the instruction

(i.e., clears its input pipeline register). If no hazard is detected, a scoreboard entry will be set

to indicate that the output registers of these instructions are in use.

If the simulator is configured to perform “parallel functional simulation mode”, the decode

stage will also functionally simulate the instructions at its input pipeline registers using Sim-

pleScalar’s instruction set simulation kernel. Parallel functional simulation mode is described

in Section 5.1.4.

Register Read

The register read stage is only used when modeling the effects of register file bank conflicts.

The register file bank to be accessed by each thread is determined by the thread’s thread ID.

For each warp, the register read stage counts the number of threads accessing each bank, and

stalls when the count for any of the bank exceeds one. The stage then stalls for a number

of cycles equal to the maximum count of threads accessing any given bank. This models the

serialization of warp execution to resolve bank conflicts. This stage is only activated when using

the dynamic warp formation scheduler.

Execution

The execution stage is just an empty stage as functional simulation is done at the decode stage.

It may be retrofitted in the future to model the latency of transcendental functions (sine, cosine,

square root, reciprocal... etc.) and interpolator featured in modern GPU architectures [39].
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Pre-Memory

The pre-memory stage is an optional stage modeling the cache access latency, which can possibly

be longer than one shader cycle with a large cache. It is a series of pipeline registers in a

queue buffering up the instructions going from the execution stage to the memory stage. Each

instruction has to traverse through the length of the queue (equivalent to the number of cycles

it takes to access the cache minus one) to reach the Memory stage.

Memory

The memory stage handles accesses from the incoming threads to the data cache or to the

shared memory (a small, fast scratch pad memory featured in CUDA [58]).

To simulate this software controlled fast scratch pad memory, it first classifies each data

access as an access to the shared memory or to the data cache by the memory address. If the

data access falls into the region belonging to the shared memory18, it is classified as an access

to shared memory.

For instructions accessing the shared memory, the memory stage checks for bank conflicts

according to the addresses of all the accesses19, and stalls for a number of cycles equal to the

maximum number of threads accessing the same bank (similar to the register read stage).

For instructions accessing the data cache, the memory stage also checks for bank conflicts

at the data cache19 and stalls accordingly. Once the stalls due to bank conflicts are over, the

data cache is accessed. If all accesses hit, the threads will be sent to the write-back stage. If

some of the accesses miss, the memory stage will arbitrate for the resources (for example, miss

status hold registers [34] (MSHRs) and input buffers at the interconnect to store the requests)

required to generate all the required memory requests. If the allocation failed, the memory

stage stalls and tries again next cycle. Note that some of the misses can be merged with other

misses and serviced with the in-flight (already sent) memory requests, and in that case, only

MSHRs are allocated for these misses.

Once the resources are allocated, memory requests will be generated and sent to the inter-

18This is specified by the user and is unique to each benchmark. See Section 5.1.4 for details.
19The banks in shared memory and the data cache are determined by effective memory address rather than

by thread ID (as done for the register file).
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connection network and the memory system modules via an abstract interface. In this case,

the contents of the input pipeline registers will be stored in the MSHR, and will not be sent to

the write-back stage.

Write-Back

The write-back stage has two inputs, one directly from the memory stage, and another from the

return queue, which holds threads that missed the data cache and were serviced by a memory

access. The first step in the Write-Back stage is to arbitrate between the two inputs. In the

current version of GPGPU-Sim, priority is always given to the threads from the return queue,

which may generate sub-optimal results, as the pipeline can be stalled very frequently in yielding

to the return queue.

The threads that won the arbitration proceed to the rest of write-back stage. Scoreboard

entries corresponding to the output registers of the threads will be cleared, indicating that the

output values have already been written into the register file. Any subsequent instructions

from the same thread accessing the same registers will not cause a dependency hazard. After

that, the threads are unlocked and their IDs are sent to the commit queue, indicating to the

scheduler that these threads are ready to be scheduled again.

5.1.2 Interconnection Network

The interconnection network module is responsible for relaying messages between the shader

cores and the memory controllers (containing the DRAM model). It does not have any knowl-

edge about the content of the messages, other than the size of the message in bytes. This

module also models the timing and congestion for each message in the interconnect. It provides

the following abstract software interface to other modules (such as shader core and dram timing

model):
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icnt has buffer Query the interconnect for buffer space to hold all the given messages,

each with its size and output specified, at a given input.

icnt push Push a message (whose content is passed as void*) into the intercon-

nection network from a specific source to a specific destination.

icnt pop Pop a message from the interconnection network at a given output.

icnt transfer Advance one cycle in the interconnection network.

icnt busy Checks if the interconnect still has undelivered messages.

icnt drain Transfer all the messages to their destination buffers.

Currently there are two implementations of the interconnection network interface. One of

them is Intersim, a modified version of a general interconnection simulator created by Dally and

Towles associated with their textbook [17]. We have modified it to allow other modules to inject

and extract packets to the modeled interconnection, and to enable the packets to carry actual

payload (so that it is actually relaying messages from one module to another). Another, used

in this thesis, is a simplified implementation of the crossbar described in the same work [17].

The general structure of this interconnection model features two crossbars, one relaying the

messages from the shader cores to the memory controllers and the other doing the opposite.

This design simplified the allocator design, because it enables the use of two simple allocators

handling one-way traffic instead of one complex allocator handling bidirectional traffic. Sun’s

Niagara [70] also employs two crossbars to enable bidirectional traffic between processor cores

and the memory subsystem (Chapter 6 of [70]).

Crossbar Allocator

The crossbar allocator orchestrates the cross-points to satisfy multiple requests from different

inputs asking for cross-points to some desired outputs. When there are conflicts among these

requests, only one can be fulfilled, and the others will be delayed to the next cycle. The requests

from all N inputs to M outputs can be summarized into a N × M request matrix R (with a

request from input i to output j indicated by a 1 at row i column j), and the allocator will
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generate a N × M grant matrix G indicating which of the request has been granted:

R =



















1 1 0 1

0 1 1 0

1 0 1 1

0 0 0 1



















→ G =



















1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
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0 0 0 1

0 0 1 0

1 0 0 0

0 0 0 0



















or . . .

The above example shows a request matrix with 4 inputs and 4 outputs. Notice how with

the same request matrix the allocator can often generate many different grant matrices (two

of them shown above), with many of them being suboptimal. This shows that the crossbar

allocator is crucial to the crossbar’s bandwidth utilization.

In this thesis, we have chosen to use the Parallel Iterative Matching (PIM) allocator, a simple

separable allocator described in [17, Chapter 19]. First, the allocator randomly selects one of

the requested outputs for each input buffer (note: Not input, but input buffer) and neglects

all other requests from the input buffer. Each unmatched output then randomly chooses one

of the remaining requests asking for that output. Using the example above, the intermediate

matrix Y randomly chosen in the first step might be as follows:

Y =
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0 0 0 1
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0 0 0 1

0 0 1 0

1 0 0 0

0 0 0 0



















The right-most output in Y has more than one remaining request, and no matter which of

the requests the output choses, the overall bandwidth utilization is below optimal. This is

illustrated by the only two grant matrices G that can result from Y . Both grant matrices have

no requests routed to the second output and this fails to fully utilize the crossbar bandwidth.

Input Speedup

This non-optimal nature of the PIM allocator can be alleviated using multiple passes, allowing

the idle outputs to choose from the neglected requests in previous passes, at a cost of longer

44



Chapter 5. Methodology

allocation latency. Another way to improve utilization is to use input speedup [17, Chapter 17],

which splits the input buffer into multiple parts each containing message to be delivered to a

subset of the outputs. In this thesis, we use a crossbar configuration with a input speedup of

two. Each input has two input buffers, one connects exclusively to the odd outputs, and the

other to the even outputs. The doubled input buffers reduces the chance of a request being

neglected during the first step of PIM allocation, increasing the probability that an output will

have a bidding request per cycle. Dally and Towles [17, Chapter 17] has shown that with a

random traffic pattern, a input speedup of two can increases the bandwidth utilization of a

PIM allocator from 64% to 87% for a 16 by 16 crossbar.

Input Buffers and Output Buffers

To minimize the effect of contention within the interconnect to the host system (either shader

core or memory controller), incoming messages are first stored in the input buffer when they

are pushed into the interconnection network (using the icnt push() abstract interface). Inside

the input buffer, messages are broken down into flits. A flit is a small data packet that can be

transfered through the crossbar fabric in a single cycle. This allows the allocator to work at a

fine grained manner to schedule the transfer of different messages to achieve higher efficiency.

At the output buffer, these flits are assembled into their original messages, and wait to be

popped by the destination system.

In our implementation of the crossbar, we model the finite sizes of input buffers and output

buffers using credits [17, Chapter 13]. Each buffer starts with an amount of credits equivalent

to its maximum capacity in number of flits. When an incoming message is pushed into an

input buffer, a number of credits equal to the number of flits that the message occupies are

deducted. As flits are transfer out of the input buffer, credits are returned to the buffer. The

same applies to the output buffers, where credits are deducted as flits arrive from the crossbar

and are returned when messages are popped. For both cases, when credits run out, it means

the buffer is full. Our current interconnection interface forces its user to check for availability

of input buffer space with the icnt has buffer() query, which checks the amount of credits

available for the queried input buffer, before pushing messages into the interconnection network.

On the other hand, a buffer-full at an output is handled internally by disabling the transfer

45



Chapter 5. Methodology

of flits to that particular output, even if the allocator granted the request, until output buffer

space is available again. This behaviour allows congestion at the destination to propagate back

to the input. This propagation property is vital in modeling an interconnection system.

Bandwidth Modeling

The theoretical peak bandwidth of the modeled interconnection network is defined by the clock

rate of the crossbar, as well as the flit size. The clock rate of the crossbar is essentially the

calling rate of icnt transfer() in the simulator, which is currently identical to the shader

core clock rate. Future work will include implementing a mechanism to model relative clock

domains between different modules.

5.1.3 DRAM Access Model

Due to the high computational throughput in a GPU architecture, memory bandwidth and

latency often become a performance bottleneck. Capturing this behavior is vital to the pre-

cision of a GPU simulator. ATTILA, one related cycle accurate GPU simulator, models a

simplified GDDR memory accounting for read-write transition penalty and bandwidth, while

each memory module is treated as a single bank [19]. This fails to capture the memory latency

hiding mechanism via multiple banks that plays a significant role in bandwidth utilization [64].

Therefore, a detailed DRAM access model was created to capture this behaviour. While an

existing simulator, DRAMsim, provides an access model of slightly better accuracy (modeling

DRAM refreshes as well) than our access model [78], we did not know of its existence until our

access model was created.

Figure 5.3 presents an overview of the DRAM access model. It is divided into the access

timing model, the request scheduler, and the address decoder. An incoming memory request

is first processed by the address decoder, which breaks down the request address into chip ID,

row, column and bank. This information, together with the request itself, is passed through

the interconnection network to the appropriate memory controller (determined by the chip ID).

Inside the memory controller, the request scheduler determines when the request will be sent

to the access timing model. The access timing model then fulfills each incoming request by

issuing the appropriate commands in accordance to the DRAM timing specification.
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Figure 5.3: Dram access model.

Address Decoder

The address decoder translates a given memory address into multiple parts: chip ID, row,

column and bank. Chip ID determines which of the DRAM chips the memory address is

mapped to, while row, column and bank refers to structures inside each DRAM chip.

We have observed that address decoding has significant impact to the performance of a

system. For example, an application would be bottlenecked by memory bandwidth, no matter

how many DRAM chips are available in the system, if all of its memory request are mapped to a

single DRAM chip. The importance of address mapping to cache miss rate in a direct-mapped

cache has been evaluated in [82].

In effect, the address decoding module is designed to be as flexible as possible for future

research. The address mapping is defined by the user as a series of bit masks, one for each

of chip ID, row, column and bank. Each mask define which part of the address bits should

be mapped to which entry in the decoded address. For example, when given with a set of bit

masks:
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chip ID 00000000 00000000 00011010 00000000

Row 00001111 11111111 00000000 00000000

Column 00000000 00000000 11100000 11111111

Bank 00000000 00000000 00000101 00000000

The address decoder will create a mapping as follows:

31—24 23—16 15—8 7—0

XXXXR11R10R9R8 R7R6R5R4R3R2R1R0 C10C9C8K2K1B1K0B0 C7C6C5C4C3C2C1C0

where RX refers to the Xth bit in the row address, CX refers to the Xth bit in the column

address, BX refers to the Xth bit in the bank address, and KX refers to the Xth bit in the

chip ID. The flexibility of this interface allow the user to specify address mappings that are not

restricted to contiguous bits.

DRAM Request Scheduler

The request scheduler controls the order at which the memory requests are dispatched to

individual DRAM banks. It detects free DRAM banks (those not servicing any memory request)

and tries to dispatch a new request to the free bank. Currently, there are two different scheduling

policies implemented in the request schedulers:

FIFO (First-Come-First-Serve) All the requests are dispatched in the order they arrive at

the memory controller. When the oldest request is pending on a busy bank, all other

requests are not dispatch, even if the banks they bid for are free.

FR-FCFS (First-Ready First-Come-First-Serve) Reorder the requests to prioritize re-

quests that access an already opened row. This allows multiple requests with row locality

(accessing the same row) to be scheduled together and amortize the overhead of a single

row activation among these requests. To take advantage of this, the access timing model

is configured to open the row after serving a request. This is an implementation of the

open row scheduling policy proposed by Rixner et al. [64].

While we have chosen to use the FR-FCFS scheduling policy in this thesis, we acknowledge that

there exist more advanced policies that take fairness and overall performance into account, such
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Figure 5.4: DRAM organization overview and simplified DRAM bank state diagram.

as the ones proposed by Nesbit et al. [55] and Mutlu and Moscibroda [51]. We may implement

these or other more sophisticated policies in the request scheduler in the future.

Access Timing Model

Figure 5.4(a) shows the organization in a modern DRAM that the access timing model tries

to model. It consists of multiple memory arrays, called banks, each with its own set of sense

amplifiers, which double as row buffers storing the data for one of the rows in the memory array.

All banks share a single row decoder and column decoder. To access data in one of the banks,

the memory controller first issues a Row Activation command to retrieve the row containing

the requested data from the memory array to the row buffer. It then issues a Column Access

command to access the requested data in the row buffer. To access data in another row, the

memory controller needs to issue a Bank Precharge command to write the content of the row

buffer back to the memory array, and then issue a Row Activation command for the new row.

Figure 5.4(b) captures the actions required to satisfy a single memory request in a DRAM

bank into a state diagram with two states: Active and Idle. Essentially, whenever the opened

row in a bank is different from the one required by the request it is servicing, the command

issue unit precharges the bank, activates the requested row, and then services the request with
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Counter Scope Set by Constrained
Name Command Command

RRD Chip Activate Activate

CCD Chip Read/Write Column Access (Read/Write)

WTR Chip Column Access (Write) Column Access (Read)

RTW Chip Column Access (Read) Column Access (Write)

RCD Bank Activate Column Access (Read/Write)

RAS Bank Activate Precharge

RP Bank Precharge Activate

RC Bank Activate Activate

Table 5.1: Relationships between constrain counters and DRAM commands.

column accesses. After the request is completed, the row is left open for that bank to taking

advantage of row locality. Subsequent requests to the same row can perform column accesses

immediately without reopening the row.

Figure 5.3 shows the details of the access timing model. The model keeps track of the

current request that each bank is trying to service, and the hardware state of each bank: active

or idle, and which row is currently opened in the bank if it is active. This information is used

by the command issue unit in junction with the behaviour stated in Figure 5.4(b) to decide the

command to issue for each bank. The timing constraints specified by the DRAM specification

are modeled using two sets of constraint counters: One set representing timing constraints that

are local to a bank (per-bank counters), and another set representing timing constraints that

apply to all banks within a single DRAM chip (per-chip counters).

Every cycle, the command issue unit traverse through all the banks in a round-robin manner

to look for a command that is ready to be issued (i.e. all of its constraint counters are zero).

There is no priority to the command type, and the first command that is found to be ready

will be issued. After a command is issued, the per-chip counters and the per-bank counters of

the banks serviced by the issued command are set to reflect the timing constraints created by

that command. All of the counters are decremented every cycle until zero, and stay at zero

until they are set again by another command. Table 5.1 shows the relationship between the

constraint counters and the commands.

When a column access command is issued, the data associated with the command will not

have access to the bus until the CAS latency (CL) has elapsed. Within this period, another
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read-write command to the same row or to another activated bank may be issued, and these

commands can be pipelined for the data bus access. This pipelining behavior is modeled using a

delay queue, which is a queue with fixed length shifting its data towards its output every cycle.

In this way, while a single command takes a number of cycles to go through a delay queue, a

group of commands issued consecutively appears in the same order at the output of the queue.

The length of the delay queue can be changed dynamically from CAS latency (CL) to write

latency (WL) when the bus switches from read to write and vice versa. The burst length of a

column access command is modeled by pushing two commands into this delay queue when the

command is issued. All timing constrains and latencies in this timing model can be configured

by the user via command line options.

5.1.4 Interfacing with sim-outorder

As described in Section 2.2 of Chapter 2, the SimpleScalar out-of-order core (modeling the CPU

in our simulator) waits for the GPU when it reaches a parallel section. After GPU simulation

of the compute kernel is completed, program control is returned to the out-of-order core. This

repeats until the benchmark finishes.

The above behaviour is modeled in GPGPU-Sim by first providing the simulator with the

list of PC values of where the spawn call to a parallel section occurs in the benchmark. Inside

sim-outorder, the dispatch stage (where the functional simulation is done in sim-outorder) is

modified to check the target PC against this list of PC values whenever a function call is

dispatched. If the target PC of this function call matches with one of the PC values on this

list, a parallel section is detected and it is launched to the GPU performance simulator. To

prevent erroneously launching a parallel section during speculative execution from a branch mis-

prediction, a parallel section can only be launched when a spawn instruction commits. Since

the number of cycles for an instruction to go through the superscalar pipeline is small relative to

the length of time it takes a parallel section to complete, in the simulator we launch the parallel

section in dispatch stage when the functional simulation indicates that spawn instruction is on

the correct path.

The steps involved in launching a parallel section in the GPU can be different depending on

the mode of simulation to be done. Currently, we have implemented two modes of simulation
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in the GPU performance simulator: trace mode, and parallel functional simulation mode.

Trace Mode Simulation

In trace mode simulation, the parallel section to be launched in the GPU is first functionally

simulated serially as if each thread in the parallel section is just an iteration in a loop with

its loop counter as the thread ID. Instruction traces (the PC value, instruction type, and if

applicable, address of memory accessed for each dynamic instruction executed) for each thread

are collected during this functional simulation. These traces are then used for driving the

behaviour of the GPU performance simulator.

This simulation mode guarantees the functional correctness of the simulation, so that some

impreciseness in the GPU performance simulator will not have a drastic effect on the simulation

results. Also, the traces only need to be collected once and can then be used for multiple

performance simulations later, potentially saving a significant amount of simulation time.

However, due to the shear number of threads in a parallel section, the instruction traces size

becomes substantial (e.g. 16GB for HMMer) and cannot be completely loaded into memory

during performance simulation. While this problem can be solved by streaming the instruction

traces from disk on demand and allocating large buffer to minimize the number of disk access

required, we found the performance simulation seriously bottlenecked on the network file sys-

tem when we execute the simulation on a cluster using this mode (which was implemented).

Moreover, simulating each thread serially fails to capture some important parallel aspects of the

compute model. For example, it is impossible to simulate applications that make extensive use

of software controlled “shared memory” with a simple serial functional simulation. One of the

common usage cases for the shared memory involves having a block of threads cooperatively

loading data into the on-chip shared memory. This block of threads then waits for each other

at a synchronization barrier before operating on the data in the shared memory. These two

problems motivated the development of parallel functional simulation mode20.

20Other alternatives include using trace compression such as the one proposed by Liu and Asanovic [41], and
a functional simulator that switch threads at synchronization barrier.
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Parallel Functional Simulation Mode

Parallel functional simulation mode was implemented in the GPU simulator to address the

problems encountered with trace mode simulation. Instead of collecting instruction traces

before the performance simulation as in trace mode simulation, threads in a parallel section are

functionally simulated at the decode stage of the GPU performance simulator. In this way, the

threads are scheduled and functionally simulated as if they are executed on the true parallel

hardware, so that features such as barrier synchronization are exploited by our benchmarks.

On the other hand, the GPU performance simulator now has to handle the functional

correctness of the simulation as well. For example, consider a mechanism where instructions

are nullified and reissued later at a cache miss. With trace mode simulation, the instruction

reissue can be implemented as rolling back on the instruction trace. With parallel functional

simulation mode, the performance simulator has to ensure that the same instruction is not

executed twice for functional correctness.

When launching a parallel section with parallel functional simulation mode, contents of the

out-of-order core’s architecture register file is replicated to the register file of every thread. A

different offset is added to the stack pointer of each thread so ensure that register spill from

a thread does not corrupt the stack of another thread. Also, because the PISA instruction

set uses part of the out-of-order core’s stack to pass parameters into function call, this part of

stack is copied to the private stack of each thread so that they can be accessed by each thread.

Many of these issues are more related to the properties of PISA itself, but they are nevertheless

described here to illustrate the sort of functional correctness issues that need to be handled

with parallel functional simulation mode.

Shared Memory

Shared memory is a scratchpad memory local to a block of threads in a multiprocessor in the

CUDA programming model. While this feature is not used by the benchmarks evaluated in this

thesis, a contribution of this thesis is to implement it to allow CUDA applications written with

this feature to be easily ported over to GPGPU-Sim in the future. In the GPU performance

simulator, the shared memory is accessible via accessing to a special address range, which is the
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address range of a statically allocated array in the benchmark. This address range is unique

for each benchmark and needs to be specified explicitly by the user in the code info file.

5.2 Baseline Configuration

Table 5.2 shows the baseline configuration we simulated. The configuration is chosen to approxi-

mate the Geforce 8800GTX [39] as much as possible for a valid area overhead estimation present

in Chapter 7. Because GPGPU-Sim does not support a non-power-of-two number of memory

channels, we have changed the shader core to DRAM clock ratio, lowered the width per chan-

nel, and increased the number of memory controllers, to ensure that the amount of bandwidth

each shader core receives per cycle is equivalent to that of Geforce 8800GTX (4Bytes/Shader

core/cycle). We have used the GDDR3 timing parameters provided by Qimonda for their

512-Mbit GDDR3 Graphics RAM clocked at 650MHz [62]. While the Geforce 8800GTX does

not have a L1-data cache, we have long latency L1-data cache to approximate a memory-side

L2-cache. The sizes for the dynamic warp formation scheduler’s internal structures listed in

Table 5.2 are optimized for the best possible performance area ratio.

5.3 Benchmarks

Table 5.3 gives a brief description of the benchmarks simulated for evaluating dynamic warp

formation and scheduling in this thesis. The benchmarks are compiled with the SimpleScalar

PISA GCC version 2.7.2.3 cross compiler. The compiled binaries are then analyzed by a set

of scripts to extract the list of PC values of all the spawn calls to parallel sections, as well

as the starting PC value of the shader program of each parallel section. This information is

stored into a code information file unique to each benchmark, and is loaded into GPGPU-Sim

at the start of the simulation. The scripts also analyze the compiled binaries to extract the

immediate post-dominator of each branch instruction inside the shader program. The PC values

of these branch instructions and their immediate post-dominators are also stored in the code

information file and are loaded into GPGPU-Sim at the start of the simulation to emulate the

effect of adding an extra field in the branch instruction to specify the reconvergence point.
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Shader Core
Shader Core ALU Frequency 650 MHz
# Shader Cores 16
SIMD Warp Size 32 (issued over 4 clocks)
SIMD Pipeline Width 8
# Threads per Shader Core 768

Memory System
# Memory Modules 8
DRAM Controller Frequency 650 MHz
GDDR3 Memory Timing tCL=9, tRP =13, tRC=34

tRAS=21, tRCD=12, tRRD=8
Bandwidth per Memory Module 8Byte/Cycle (5.2GB/s)
Memory Controller out of order (FR-FCFS)
Data Cache Size (per core) 512KB 8-way set assoc. 64B line
# Data Cache Banks (per core) 16
Data Cache Hit Latency 10 cycle latency (pipelined 1 access/thread/cycle)

Dynamic Warp Formation Hardware
Default Warp Scheduling Policy Majority
PC-Warp LUT 64 entries, 4-way set assoc.
MHeap LUT 128 entries, 8-way set assoc.
Max-Heap 64 entries

Table 5.2: Hardware Configuration

From
Suite

Description Branch
Divergence

HMMer SPEC
CPU2006

A modified version of 456.hmmer: Protein sequence analysis
using profile hidden Markov models.

High

LBM SPEC
CPU2006

A modified version of 470.lbm: Implements the “Lattice-
Boltzmann Method” to simulate incompressible fluids in 3D.

Medium

Black CUDA Black-Scholes Option Pricing: Evaluates fair call and put
prices for a given set of European options by Black-Scholes
formula.

Low

Bitonic CUDA Bitonic Sort [5]: A simple parallel sorting algorithm. We
have extended the version from the CUDA website to work
with large arrays (by not using the shared memory).

High

FFT SPLASH Complex 1D FFT: We have modified the benchmark so that
multiple 1M-point arrays are processed by 12288 threads.

Medium

LU SPLASH Blocked LU Decomposition: Each thread is responsible for
the decomposition inside a block.

High

Matrix — A simple version of matrix multiply: Each thread computes
the result for a data element on the destination matrix inde-
pendently.

None

Table 5.3: Benchmark Description

55



Chapter 6

Experimental Results

First we consider dynamic warp formation and scheduling with the detailed implementation

described in Section 4.2 of Chapter 4 using the Majority scheduling policy with the detailed

max-heap implementation described in Section 4.4 of Chapter 4. The hardware is sized as in

Table 7.1 (on page 69) and employs the thread swizzling mechanism described in Section 4.1

of Chapter 4. This implementation uses the lane aware scheduling mechanism discussed in

Section 4.1 and 4.2 of Chapter 4. We also model bank conflicts at the data cache.

Figure 6.1 shows the performance of the different branch handling mechanisms discussed in

this thesis and compares them to a MIMD pipeline with the same peak IPC capability. Here we

use the detailed simulation model described in Chapter 5 including simulation of memory access

latencies. On average (HM), PDOM (reconvergence at the immediate post-dominator described

in Chapter 3.2) achieves a speedup of 44.9% versus not reconverging (NREC). Dynamic warp

formation (DWF) achieves a further speedup of 47.4% using the Majority scheduling policy.

The average DWF and MIMD performance only differs by 9.5%. The 47.4% speedup of DWF

versus PDOM justifies the 8% area cost (see Chapter 7) of using dynamic warp formation and

scheduling on existing GPUs. We note that this magnitude of speedup could not be obtained

by simply spending this additional area on extra shader cores.

For benchmarks with little diverging control flow, such as FFT and Matrix, DWF performs

as well as PDOM, while MIMD outperforms both of them with its “free running” nature. The

significant slowdown of Black-Scholes (Black) of DWF is a phenomenon exposing a weakness

of our default Majority scheduling policy. This will be examined in detail in Section 6.2.

For most of the benchmarks with significant diverging control flow (HMMer, LBM, Bitonic,

LU), MIMD performs the best, and DWF achieves a significant speedup over PDOM. Among

them, DWF achieves a speedup for Bitonic and LU purely due to better branch divergence

56



Chapter 6. Experimental Results

0

16

32

48

64

80

96

112

128

HMMer LBM Black Bitonic FFT LU Matrix HM

IP
C

NREC

PDOM

DWF

MIMD

Figure 6.1: Performance comparison of NREC, PDOM, and DWF versus MIMD.

handling, while for HMMer, DWF achieves a speedup in part due to better cache locality as

well, as observed from Table 6.2.

While LBM also has significant diverging control flow, it is memory bandwidth limited, as

shown in Table 6.1 and therefore sees little gain from DWF. Although the cache miss rate of

Bitonic is higher than that of LBM, its much higher pending hit21 rate significantly lowers the

memory bandwidth requirement of this benchmark (see Table 6.3).

6.1 Effects of Scheduling Policies

Figure 6.2 compares all the warp scheduling policies described in Section 4.3 of Chapter 4,

with a realistic memory sub-system, but ignoring the impact of lane conflicts (e.g. hardware in

Figure 4.2(b) with unlimited register file ports) to show the potential of each policy. Overall,

the default Majority (DMaj) policy performs the best, achieving an average speedup of 66.0%,

but in some cases, its performance is not as good as the PC policy (DPC) or PDOM Priority

(DPdPri) described in Section 4.3 of Chapter 4.

To provide additional insight into the differences between the scheduling policies, Figure 6.3

shows the distribution of warp sizes issued each cycle for each policy. Each bar is divided

into segments labeled W0, W4-1, ... W32-29, which indicate if the SIMD hardware executed

operations for 0, (1 to 4), ...(29 to 32) scalar threads on a given cycle. “Stall” indicates a

21A pending hit occurs when a memory access misses the cache, but can be merged with one of the in-flight
memory requests already sent to the memory subsystem.
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HMMer LBM Black Bitonic FFT LU Matrix

PDOM 57.47% 94.71% 8.18% 50.94% 75.43% 0.84% 84.02%

DWF 63.61% 95.04% 6.47% 71.02% 74.89% 1.47% 63.71%

MIMD 64.37% 94.99% 8.06% 80.48% 80.99% 1.52% 98.26%

Table 6.1: Memory bandwidth utilization.

HMMer LBM Black Bitonic FFT LU Matrix

PDOM 13.37% 14.15% 1.52% 21.25% 15.52% 0.05% 7.88%

DWF 5.05% 14.56% 1.50% 30.67% 14.68% 0.06% 9.71%

MIMD 3.75% 15.30% 1.20% 30.63% 14.18% 0.05% 7.86%

Table 6.2: Cache miss rates (pending hits21 classified as a miss).

HMMer LBM Black Bitonic FFT LU Matrix

PDOM 13.21% 13.55% 0.21% 3.86% 11.77% 0.03% 5.72%

DWF 5.03% 13.57% 0.21% 3.84% 12.53% 0.04% 4.23%

MIMD 3.74% 13.35% 0.21% 3.83% 12.92% 0.04% 5.75%

Table 6.3: Cache miss rates without pending hits21.

stall due to writeback contention with the memory system (see Figure 2.3(b) on Page 15). For

policies that do well (DMaj, DPdPri, DPC), we see a decrease in the number of low occupancy

warps relative to those policies which do poorly (DMin, DTime). Cycles with no scalar thread

executed (W0) are classified into “Mem” (W0 Mem) and “Idle” (W0 Idle). W0 Mem denotes

that the scheduler cannot issue any scalar thread because all threads are waiting for data from

global memory. W0 Idle denotes that all warps within a shader core have already been issued

to the pipeline and are not yet ready for issue. These “idle” cycles occur because threads are

assigned to shader cores in blocks. In our current simulation, the shader cores have to wait for

all threads in a block to finish before beginning with a new block. The warp size distribution

for Black-Scholes reveals that one reason for the Majority (DMaj) policy’s poor performance

on this benchmark is a significant number of “Idle” cycles, which can be mostly eliminated by

the PDOM Priority (DPrPri) policy. The data also suggest that it may be possible to further

improve dynamic warp formation by exploring scheduling policies beyond those proposed in

this thesis.
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Figure 6.2: Comparison of warp scheduling policies. The impact of lane conflicts is ignored.
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Figure 6.3: Warp size distribution.

6.2 Detail Analysis of Majority Scheduling Policy

Performance

The significant slowdown of Black-Scholes (Black) results from several phenomenon. First, in

this work we restrict a shader core to execute a single block. Second, we use software subroutines

for transcendentals, and these subroutines contain branches that diverge. Third, a quirk in our

default Majority scheduling policy can lead some of the threads in a shader core to starvation.

We explore the latter phenomenon in detail in this section. Figure 6.4 shows the runtime

behaviour (IPC and incomplete thread count22) of a single shader core using Dynamic Warp

Formation with the Majority scheduling policy.

Under the Majority scheduling policy, threads which have different control flow behaviour

22A thread is incomplete if it has not reached the end of the kernel call.
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Figure 6.4: Dynamic behaviour of Black-Scholes using DWF with Majority scheduling policy
in a single shader core (max IPC of 8). The warp size distribution time series in (c) uses the
same classification as in Figure 6.3.

from the rest of the threads can be starved during execution. Black-Scholes has several rarely

executed, short basic blocks that suffer from this effect, leaving behind several groups of mi-

nority threads23. When these minority threads finally execute after the majority of threads

have finished, they form incomplete warps and the number of warps formed are insufficient

to fill up the pipeline (in our simulations, each thread is only allowed to have one instruction

executing in the pipeline, as described in Section 2.4 in Chapter 2). This behaviour is illus-

trated in Figure 6.4(d) which shows the dynamic instruction count of each thread. After several

23We say a thread is a “minority” thread if its PC value is consistently given a low priority by the Majority
scheduling policy throughout its execution.
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Figure 6.5: Dynamic behaviour of Black-Scholes using DWF with PDOM Priority scheduling
policy.

branches diverged at A and B, groups of threads are starved (indicated by the stagnant dynamic

instruction count in Figure 6.4(d)), and are only resumed after C when the majority groups of

threads have finished their execution (indicated by the lower thread count after cycle 120000 in

Figure 6.4(b)). This is responsible for the low IPC of DWF after cycle 120000 in Figure 6.4(a).

Meanwhile, although the majority of threads are proceeding ahead after branch divergences

at A and B, the pipeline is not completely utilized (indicated by the IPC<8 from cycle 80000 to

120000 in Figure 6.4(a)) due to the existence of incomplete warps (see the warp size distribution

time series in Figure 6.4(c)). These incomplete warps are formed because the number of threads

taking the same execution path is not a multiple of the SIMD width. They could have been
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combined with the minority threads after the diverging branch to minimize this performance

penalty, but this does not happen when the minority threads are starved by the Majority policy.

Figure 6.5 shows how both of these problems can be mitigated by having a different schedul-

ing policy—PDOM Priority. The dynamic instruction count in Figure 6.5(d) shows that any

thread starvation due to divergence is quickly corrected by the policy and all the threads have

a similar rate of progress. The IPC stays at 8 for most of the execution (see Figure 6.5(a)),

except when the policy is giving higher priorities to the incomplete warps inside the diverged

execution paths (shown in Figure 6.5(b)) so that they can pass through the diverged execution

paths quickly to form complete warps at the end of the diverged paths. Overall, threads in a

block finish uniformly as shown in Figure 6.5(b), indicating that starvation does not happen

with this scheduling policy.

6.3 Effect of Limited Resources in Max-Heap
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Figure 6.6: Performance comparison of a resource-limited version of Max-heap (DWF-
MaxHeap) with an ideal, infinite resource implementation of Majority scheduler (DWF-
Inf.Rsrc).

Figure 6.6 shows the performance increase achievable by dynamic warp formation with an

infinite amount of hardware resources (infinitely ported and unlimited entries for MHeap LUT

and Max-Heap) given to the Majority scheduler. This unbounded version of the Majority

scheduler has a speedup of 6.1% over its resource-limit counterpart, and is 56.3% faster than

PDOM on average. This 6.1% speedup comes completely from HMMer, which is both a control

62



Chapter 6. Experimental Results

0

16

32

48

64

80

96

112

128

HMMer LBM Black Bitonic FFT LU Matrix HM

IP
C

DWF-DMaj w/o LAS
DWF-DMaj w/ LAS
DWF-DMaj no LC
PDOM

(a)

0

16

32

48

64

80

96

112

128

HMMer LBM Black Bitonic FFT LU Matrix HM

IP
C

DWF-DPdPri w/o LAS
DWF-DPdPri w/ LAS
DWF-DPdPri no LC
PDOM

v

(b)

Figure 6.7: Performance of dynamic warp formation evaluating the impact of lane aware
scheduling and accounting for lane conflicts and scheduler implementation details. (a) Us-
ing Majority scheduling policy. (a) Using PDOM Priority scheduling policy. LAS = Lane
Aware Scheduling LC = Lane Conflict

flow and data flow intensive benchmark. These properties of HMMer results in a large number of

in-flight PC values among threads as memory access from a warp following a branch divergence

can introduce variable slowdown among the threads in a warp ranging from tens to hundreds

of cycles. The large number of in-flight PC values in turn requires a large Max-Heap, which

takes more swaps to re-balance every scheduler cycle and introduces stalls when the limited

bandwidth resources are exhausted. With other benchmarks, however, the resource-limited

version of the Majority scheduling policy logic is sufficient to achieve similar performance.

6.4 Effect of Lane Aware Scheduling

To reduce register file design complexity of DWF we have chosen to use the organization in

Figure 4.2(d) on Page 26 which necessitates the use of lane aware scheduling discussed in
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Sections 4.1 and 4.2 of Chapter 4. The data in Figure 6.7(a) compares the detailed scheduler

hardware model we have considered so far with an idealized version of dynamic warp formation

and scheduling ignoring the impact of lane conflict and hardware resources (DWF-DMaj no LC).

This figure shows the impact on the performance of lane aware scheduling and, for comparison,

also shows the impact when not using lane aware scheduling but assuming the register file

organization in Figure 4.2(b) and modeling register bank conflicts when multiple threads from

the same “home” lane are grouped into a single warp (DWF-DMaj w/o LAS). While the

idealized version of DWF is on average 66.0% faster than PDOM, the realistic implementation

of DWF we have considered so far is able to achieve 89% of the idealized DWF’s performance.

The average performance of DWF improves without lane aware scheduling, because we did not

impose a hardware resource limit on the scheduler.

We also evaluated the performance of the PDOM Priority policy (DPdPri) with lane aware

scheduling (see Figure 6.7(b)), and found performance for Black-Scholes improves (IPC of 98.9

vs. IPC of 89.3 for DMaj) while that of HMMer is reduced (IPC of 11.9 vs. IPC of 23.7 for

DMaj) with an overall average speedup of 30.0% over PDOM. Thus, DMaj is the best scheduling

policy overall.

6.5 Effect of Cache Bank Conflict

Our baseline architecture model assumes a multi-ported data cache that is implemented using

multiple banks of smaller caches. Parallel accesses from a warp to different lines in the same

banks create cache bank conflicts, which can only be resolved by serializing the accesses and

stalling the SIMD pipeline.

With a multi-banked data cache, a potential performance penalty for dynamic warp forma-

tion is that the process of grouping threads into new warps dynamically may introduce extra

cache bank conflicts. We have already taken this performance penalty into account by modeling

cache bank conflicts in our earlier simulations. However, to evaluate the effect of cache bank

conflicts on different branch handling mechanisms, we rerun the simulations with an idealized

cache allowing threads within a warp to access any arbitrary lines within the cache in parallel.

The data in Figure 6.8 compares the performance of PDOM, DWF and MIMD ignoring
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Figure 6.8: Performance of PDOM, DWF and MIMD with cache bank conflict. “no$Bk” =
Ignoring Cache Bank Conflict

cache bank conflicts. It indicates that cache bank conflicts have more effect on benchmarks

that are less constrained by the memory subsystem (Black-Scholes, LU and Matrix). Overall,

performance of these benchmarks increase by a similar amount with an ideal multi-ported cache

regardless of the branch handling mechanism in place. Hence, we find DWF still has a speedup

of 47% over PDOM.

6.6 Sensitivity to SIMD Warp Size

While DWF provides a significant speedup over PDOM with our default hardware configuration,

we can gain further intuition into its effectiveness in handling branch divergence as SIMD warp

size increases. Figure 6.9 shows the performance of each mechanism for three configurations

with increasing warp size from 8 to 32. Notice that the width of the SIMD pipeline is not

changed, so that a decrease in warp size translates to a shorter execution latency for each

warp24.

None of the benchmarks benefit from SIMD warp size increases. This is expected as increas-

ing warp size in an area constrained fashion, as described above, does not increase the peak

throughput of the architecture while it constraints control flow and thread scheduling flexibil-

ity. The benefit of increasing SIMD warp size is to improve computational density by relaxing

24As described in Section 2.5 of Chapter 2, a warp with 32 threads takes 4 cycles to execute on a 8-wide SIMD
pipeline, whereas a warp with 8 threads can be executed in a single cycle on the same pipeline.
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Figure 6.9: Performance comparison of PDOM, DWF and MIMD with a realistic memory
subsystem as SIMD warp size increases. The theoretical peak IPC remains constant for all
configurations.

the scheduler’s latency requirement, reducing the number of warps to schedule (simplifying

scheduler hardware) and lowering instruction cache bandwidth requirements.

The slowdown of MIMD as SIMD warp size increases in various benchmarks is a result of

a longer scheduler cycle, which places some constraints of SIMD scheduling onto the MIMD

scheduler. For example, with a warp size of 32, after the MIMD scheduler has issued less

than 32 threads (other threads are not issuable as they are pending for data from memory)

in a scheduler cycle, it has to wait until the next scheduler cycle (4 pipeline cycles later) to

issue more threads to the pipeline, even if more threads become available for execution in the

meantime. For benchmarks that are constrained by the memory subsystem (HMMer, lbm and

Bitonic), this effect does not cause any significant slowing for MIMD as the scheduler frequently

runs out of threads that are ready to be issued due to memory access latency.

Overall, as SIMD warp size increases from 8 to 32, the average performance of PDOM

decreases by 24.9%, while the overall performance of DWF and MIMD decreases by 11.2% and

2.0% respectively. Most of the slowdowns experienced by PDOM as SIMD warp size is increased

is attributed to the control flow intensive benchmarks (HMMer, Bitonic, and LU), while these

slowdowns are alleviated with DWF. This trend shows that branch divergence becomes a more

serious performance bottleneck in control flow intensive applications as SIMD warp size is

increased to improve computational density, but a significant portion of this performance loss
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HMMer LBM Black Bitonic FFT LU Matrix

Max(Warp Pool Occupancy) 90 25 42 39 62 40 23

Max(Max-Heap Size) 44 16 10 8 24 11 7

Table 6.4: Maximum warp pool occupancy and max-heap size (in #Entries) for each benchmark.
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Figure 6.10: Cumulative distribution of warp pool occupancy for each benchmark.

can be regained using dynamic warp formation and scheduling.

6.7 Warp Pool Occupancy and Max Heap Size

Table 6.4 shows the maximum warp pool occupancy (the number of warps inside the warp

pool) and the maximum dynamic size of the max-heap for each benchmark. As shown in the

table, all of the benchmarks, including the control flow and memory intensive HMMer, use less

then 1/6 of a warp pool sized to the worst case requirement. This indicates that it should be

possible to use a warp pool with 128 entries (1/6 of the 768-entry warp pool designed for the

absolute worst case) without causing any performance penalty. The same argument can be

used to justify that 64 entries is sufficient for the max-heap used in implementing the Majority

scheduling policy.

Furthermore, Figure 6.10 shows the cumulative distribution of warp pool occupancy for each

benchmark used in this thesis. This distribution indicates that it may be feasible to reduce the

size of the warp pool to 64 entries, and handle <0.15% warp pool overflow (or 10% if we reduce

the warp to 32 entries) by spilling existing warp pool entries to the global memory. As our

simulator does not currently model this, we do not use this assumption in the area estimation

in Chapter 7 and leave this to future work.
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Area Estimation

The total area cost for dynamic warp formation and scheduling is the amount of hardware

added for the logic in Figure 4.3 (Page 28) plus the overhead of an independent decoder for

each register file bank. We have estimated the area of the five major parts of the hardware

implementation of dynamic warp formation and scheduling with CACTI 4.2 [72]: Warp update

registers, PC-warp LUT, warp pool, warp allocator, and scheduling logic. Table 7.1 lists the

implementation of these structures and their area and storage estimates. We use our baseline

configuration (32-wide SIMD with 768 threads) listed in Table 5.2 to estimate the size of the

PC-Warp LUT and MHeap LUT. Both are set-associative cache-like structures with two read

ports and two write ports capable of two warp lookups in parallel to handle requests from

the two diverged parts of a single incoming warp. Based on the maximum occupancy data

in Section 6.7 of Chapter 6, we use a 128-entry Warp Pool and a 64-entry Max-Heap. The

Max-Heap is implemented with a memory array with two read ports and two write ports as

discussed in Section 4.4 of Chapter 4, and the Warp Pool is implemented using a banked

structure described in Section 4.2.1 in Chapter 4.

For this area estimation, we have chosen to use a 10-bit thread ID, which should be sufficient

to identify the 768 threads in each shader core. We acknowledge that more bits may be needed

when shader cores can execute multiple blocks simultaneously as in Geforce 8800GTX, but

their impact on the overall area is not significant. We assumed that a 24-bit integer is sufficient

to store the PC value for each thread as the maximum number of instructions per kernel call

in CUDA is limited to 2 million instructions [58]. While this can be represented with a 21-bit

number, we have allocated a few extra bits to account for the possibility of the GPU executing

multiple parallel sections concurrently (for example, the Geforce 8 Series can execute vertex,

geometry, and pixel shaders in parallel). Referring to Figure 4.3, 32 bits are required by both
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# Entry Struct. Area
Structure Entries Content Size Implementation (mm2)

(bits)

Warp Update 2 TID (10-bit) × 32 752 Registers 0.0080
Register PC (24-bit), REQ (32-bit) (No Decoder)

PC-Warp LUT 64 PC (24-bit) 4032 4-Way 0.2633
OCC (32-bit) Set-Assoc. Mem.
IDX (7-bit) (2 RP, 2 WP)

Warp Pool 128 TID (10-bit) × 32 44928 Memory Array 0.6194
PC (24-bit) (33 Banks)

Scheduler Data (10-bit) (1 RP, 1 WP)

Warp Allocator 128 IDX (7-bit) 896 Memory Array 0.0342

Mheap LUT 128 PC (24-bit) 4992 8-Way 0.4945
MH# (7-bit) Set-Assoc. Mem.

(2 RP, 2 WP)

Max-Heap 64 PC (24-bit), CNT (10-bit) 3712 Memory Array 0.2159
WPH (8-bit), WPT (8-bit) (2 RP, 2 WP)

LUT# (8-bit)

Total 59312 1.6353

Table 7.1: Area estimation for dynamic warp formation and scheduling. RP = Read Port,
WP = Write Port.

REQ and OCC to represent the lanes in a 32-wide SIMD warp. Both the IDX field in the

PC-Warp LUT and one in the Warp Allocator uses only 7 bits because this is sufficient to

address all 128 entries in the Warp Pool. Referring to Figure 4.5, in the Max-Heap, while

WPH and WPT also index into the Warp Pool, they both require an extra valid bit. The

same argument applies to the Scheduler Data in the Warp Pool, which translates to the “Next”

pointer in Majority scheduling policy. LUT# and MH# in Figure 4.5 both also use an extra

bit to represent an invalid index. Finally, the CNT field in the Max-Heap has to be 10-bits to

account for the case when all 768 threads in a shader core have the same PC.

Overall, we have estimated the area of the dynamic warp scheduler in 90nm process tech-

nology to be 1.635 mm2 per core. The exact CACTI parameters we used for each structure are

listed in Table 7.2. Notice that we have skipped listing the CACTI parameters for the Warp

Update Registers because they are too small to be evaluated in CACTI. The parameter entries

for the Warp Pool is separated into the ones for TID banks and the ones for PC banks. As

discussed in Section 4.2.1 of Chapter 4, each Warp Pool is comprised of 32 TID banks and 1

PC bank.
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Structure Model SRAM/
Cache
Size
(Bytes)

Line
Size
(Bytes)

Assoc. #Banks Tech.
Node

#RWP #RP #WP #SERP #Bits
Out

#Tag
Bits

Type

PC-Warp
LUT

Cache 512 8 4 1 90nm 0 2 1 0 48 24 Fast

Warp Pool
(TID Bank)

SRAM 160 10 N/A N/A 90nm 0 1 1 0 10 N/A Fast

Warp Pool
(PC Bank)

SRAM 704 11 N/A N/A 90nm 0 1 2 0 42 N/A Fast

Warp
Allocator

SRAM 128 8 N/A N/A 90nm 0 1 1 0 14 N/A Fast

Mheap LUT Cache 1024 8 8 1 90nm 0 2 2 0 10 24 Fast

Max-Heap SRAM 512 8 N/A N/A 90nm 0 2 2 0 64 N/A Fast

Table 7.2: CACTI parameters for estimating structure sizes in Table 7.1. RWP = Read/Write
Port, RP = Read Port, WP = Write Port, SERP = Single Ended Read Port.

To evaluate the overhead of having the individual decoders for dynamic warp formation

and scheduling as described in Chapter 4, we first need to estimate the size of the register file.

The SRAM model of CACTI 4.2 [72] estimates a register file with 8192 32-bit registers and a

single decoder reading a row of eight 32-bit registers to be 3.863 mm2. After trying various line

sizes, we found CACTI 4.2 predicts that a line size of 512 Bytes results in minimum area. On

the other hand, since the SRAM model of CACTI 4.2 does not support banking directly, we

estimate the area of combining eight identical copies of a register file by 1024 32-bit registers.

The register file area is then estimated to be 0.5731 mm2 × 8 = 4.585 mm2. For this area

estimation, we have divided the 512 Bytes line in the single decoder estimation into eight 64

Bytes lines in each bank. Notice that both register file configurations have 2 read ports and 1

write port, and each port is accessing 32-bit. The area difference between the two register files

is 0.722 mm2. This is our estimation of the area requirement for adding a decoder to every

register file bank to support DWFS. We acknowledge that this method may under-estimate

the area requirement for adding a decoder to every register file bank since it may not entirely

capture all wiring complexity as the decoders are driven by different sources in our proposal.

However, this is already proportionally larger than the 11% overhead estimate by Jayasena

et al. [30] with CACTI and a custom floorplan for implementing a stream register file with

indexed access, which also requires multiple decoders per register file (11% of 3.863 mm2 is

only 0.425 mm2, which is smaller than our 0.722 mm2.). Ultimately, without an actual layout

of a GPU, the 0.722 mm2 overhead is our best estimate.
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Combining the two estimations above, the overall area consumption of dynamic warp for-

mation and scheduling for each core is 1.6353 + 0.722 = 2.357 mm2. With 16 cores per chip

as per our baseline configuration, this becomes 37.72 mm2, which is 8.02% of the total area of

the GeForce 8800GTX (470 mm2) [39].
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Related Work

This chapter discusses research related to this thesis. Section 8.1 discusses various mechanisms

for supporting control flow on SIMD hardware. Section 8.2 explores two prior proposals that

involve dynamically regrouping of scalar threads into SIMD instructions. Section 8.3 discusses

prior proposals for eliminating branch divergence in SIMD hardware.

On average, dynamic warp formation and scheduling performs significantly better than

most existing mechanisms for supporting control flow on SIMD hardware. It is applicable to a

widely SIMD architectures with fine-grained multithreading and does not require any software

modifications.

8.1 SIMD Control Flow Handling

This section discusses existing mechanisms for supporting control flows on SIMD hardware. We

classify these mechanisms into three groups: guarded instructions, control flow reconvergence,

and conditional streams.

8.1.1 Guarded Instruction/Predication

While supporting branches is a relatively new problem for GPU architectures, it has long

been a consideration in the context of traditional vector computing. Most of the approaches to

supporting branches in a traditional SIMD machine have centered around the notion of guarded

instructions [8].

A guarded instruction, also known as a predicated or vector masked instruction, is an

instruction whose execution is dependent on a conditional mask controlled by another instruc-

tion [8]. If the conditional mask is set, appropriately the predicated instruction will not update

architecture state. In a masked SIMD instruction, a vector of conditional masks, each con-
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trolled by an element in a stream, is functionally equivalent to a data dependent branch. This

approach has been employed by existing GPU architectures to eliminate short branches and

potential branch divergences [3, 58]. However, for longer branches and loops, guarded instruc-

tions are inefficient because the SIMD hardware has to execute every single execution path,

regardless of whether they are taken by any of the SIMD elements.

This inefficiency is mitigated by a proposed technique called branches on superword condition

codes (BOSCCs) [68]. BOSCC permits a sequence of consecutive vector instructions guarded by

the same vector predicate to be bypassed if all fields in the guarding vector predicate are false.

Shin et al. [68] examine compiler generation of BOSCCs for handling control flow for SIMD

instruction set extensions and show that it is effective for some kernels, but do not explore the

scalability of the approach to long SIMD vector width.

8.1.2 Control Flow Reconvergence Mechanisms

Guarded instructions and their variants, put constraints on input dependent loops. Branch

divergence may be inevitable, but the period of divergence can be kept short with reconvergence

to minimize performance lost due to unfilled SIMD pipelines. A patent filed by Lindholm et al.

describes in detail how threads executing in a SIMD pipeline are serialized to avoid hazards [49],

but does not indicate the use of reconvergence points to recover from such divergence. The

notion of reconvergence based on control flow analysis in SIMD branch handling was described

in a patent by Lorie and Strong [43]. However, this patent proposes to insert the reconvergence

point at the beginning of a branch and not at the immediate post-dominator as proposed in

this thesis.

8.1.3 Conditional Streams

Kapasi et al. [32] introduce conditional streams, a code transformation that creates multiple

kernels from a single kernel with conditional code and connects these kernels via inter-kernel

communication to increase the utilization of a SIMD pipeline. While being more efficient than

predication, it may only be practical to implement on architectures with a software managed

on-chip memory designed for inter-kernel communication, such as the stream register file on

Imagine [63] and Merrimac [18]. With conditional streams, each kernel ends at a conditional
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branch, which splits a data stream into two, each to be processed by one of the two subsequent

kernels (each representing a execution path from the conditional branch). The data streams

are then stored to the stream register file, and a filter would restrict the data stream to only

be loaded when its destined kernel is executing. When the two kernels representing execution

paths after the conditional branch have finished processing all the data elements, a “merger

kernel” merges the two diverged data streams back into one again and proceeds on processing

them uniformly.

For this scheme to be effective, an interprocessor switch is added to route data streams

from the stream register file to the appropriate processing elements for load balancing. Also,

the overhead of creating a filter and merger for each diverging conditional branch can be a

performance bottleneck in a control flow intensive kernel. Dynamic warp formation differs from

this approach in that it is a hardware mechanism exploiting the dynamic conditional behaviour

of each scalar thread, and implementation does not require a stream register file nor data

movement between register lanes.

8.2 Dynamic Grouping SIMD Mechanisms

This section discuss two proposals that are similar to our proposed dynamic warp formation

in so far as they describe scalar threads or instructions are grouped into SIMD instructions at

runtime.

8.2.1 Dynamic Regrouping of SPMD Threads for SMT Processors

The notion of dynamically regrouping the scalar SPMD threads comprising a single SIMD

“task” after control flow divergence of the SPMD threads was described by Cervini [12] in

the context of simultaneous multithreading (SMT) on a general purpose microprocessor that

provides SIMD function units for exploiting subword parallelism. However, the mechanism he

proposes does not specify any mechanism for grouping the diverged SPMD threads, whereas

such an implementation is one of the main contributions of this thesis.

Also, the mechanism Cervini proposes requires that tasks have their register values reloaded

each time threads are regrouped. To avoid performance penalties, Cervini proposes that the
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register file contain additional ports to enable the register values to be loaded concurrently

with ongoing execution. In addition, Cervini’s mechanism uses special “code stops” and tags

the control flow state of a SPMD thread with a loop counter list (in addition to the program

counter). We point out that in the context of a modern GPU the constant movement of data

in this proposal could increase power requirements per processing element, perhaps mitigating

the improvements in processing efficiency given the growing importance of the so-called “power

wall” [52]. In contrast, our proposal uses a highly banked large register file and maintains a

thread’s registers in a single location to eliminate the need for movement of register values.

8.2.2 Liquid SIMD

Clark et al. [14] introduce Liquid SIMD to improve SIMD binary compatibility on general

purpose CPUs by forming SIMD instructions at runtime by translating annotated scalar in-

structions with specialized hardware. In their proposal, when the annotated scalar instructions

reach the commit stage of a superscalar pipeline, a special hardware unit will translate these

scalar instructions into microarchitecture-specific SIMD instructions (i.e., SIMD instructions

with fixed width according to the hardware), and run the translated instructions on the SIMD

functional units in the processor. In this manner, the grouping of scalar instructions into SIMD

instruction is only done once in the hardware before their execution. In contrast, this thesis fo-

cuses on improving control flow efficiency of throughput-oriented architectures with fine-grained

multithreading. As dynamic control flow behaviour is unknown prior to a program’s execution,

our proposed mechanism is capable of regroup threads into new SIMD warps even after threads

start executing.

8.3 Eliminating the Existence of Branch Divergence

This section discuss two schemes to eliminate branch divergence in SIMD hardware. One scheme

is to used a complex SIMD branch instruction which always has only one branch outcome for

a SIMD instruction. Another is to allow processing elements in MIMD hardware to share

instruction bandwidth in the common case, and permit them to operate independently when

control flow diverges.

75



Chapter 8. Related Work

8.3.1 Complex SIMD Branch Instruction

Besides using a stack-based reconvergence mechanism to handle diverging control flow in their

Ray Processing Unit, Woop et al. [80] proposed a complex SIMD branch instruction which

combines the branch outcome of a set of masked elements in a SIMD batch to a single find branch

outcome with a reduction function. For example, the programmer may specify the branch to

be taken only when all the elements inside a SIMD batch evaluate to true. In this case, the

reduction function would be a logical AND of the branch outcomes of all elements in that SIMD

batch. In this manner, branch divergence never exists as the final branch outcome is always

consistent for all elements in a SIMD warp (as there is only one branch outcome). However,

this proposal may not be suitable for general-purpose applications requiring the flexibility of

allowing each thread to traverse in a unique execution path.

8.3.2 Vector-Thread Architecture

Krashinsky et al. [33] propose the vector-thread architecture which exposes instruction fetch

in the ISA. It provides two fetch mechanisms: vector-fetch and thread-fetch. Vector-fetch is

issued by a control processor to command all virtual processors (VPs) (similar to our notion

of scalar threads) to fetch the same atomic instruction block (AIB) for execution, whereas

thread-fetch can be issued by each VP to fetch an AIB to itself alone. Instruction bandwidth

is efficiently shared by multiple VPs as in normal SIMD hardware when they are executing on

instruction fetched by vector-fetch. Branch divergence does not exist in this architecture as

each VP executes on it own after a vector-fetch. However, instruction bandwidth can become a

bottleneck when each VP is executing a different execution path and may increase bandwidth

pressure on the L1-cache with thread-fetches. Also, this architecture requires each processing

element to have its own control logic, which eliminates a key merit of having SIMD hardware.

One the other hand, our proposed dynamic warp formation retains this merit by grouping scalar

threads dynamically into SIMD warps in the scheduler and issue them to a SIMD pipeline for

execution.
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Conclusions and Future Work

This chapter concludes the thesis. First, Section 9.1 provides a brief summary and conclusions.

Second, Section 9.2 lists the contributions made by this thesis. Finally, Section 9.3 discusses

several important areas for future work in this area.

9.1 Summary and Conclusions

In this thesis, we explore the impact of branch divergence on GPU performance for non-graphics

applications. Without any mechanism to handle branch divergence, performance of a GPU’s

SIMD pipeline degrades significantly. While existing approaches to reconverging control flow

at join points such as the immediate post-dominator improve performance, we found significant

performance improvements can be achieved with our proposed dynamic warp formation and

scheduling mechanism. We described and evaluated a implementation of the hardware required

for dynamic warp formation and tackle the challenge of enabling correct access to register data as

thread warps are dynamically regrouped and found performance improved by 47.4% on average

over a mechanism comparable to existing approaches—reconverging threads at the immediate

post-dominator. Furthermore, we estimated the area of our proposed hardware changes to be

around 8% if it is to be implemented on a modern GPU such as Geforce 8800GTX [39].

Our experimental results also highlight the importance of careful prioritization of threads

for scheduling in such massively parallel hardware, even when individual scalar threads are

executing the same code in the same program phase.
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9.2 Contributions

This thesis makes the following contributions:

1. It quantifies a performance gap of 66% between the immediate post-dominator branch re-

convergence mechanism and a MIMD architecture with the same peak operation through-

put. Thus, highlighting the importance of finding better branch handling mechanisms.

2. It proposes and evaluates a novel hardware mechanism, dynamic warp formation, for

regrouping threads of individual SIMD warps on a cycle-by-cycle basis to greatly improve

the efficiency of branch handling. For the data parallel, non-graphics applications we

studies in this thesis, dynamic warp formation and scheduling achieves a speedup of 47%

over the immediate post-dominator branch reconvergence mechanism (with 768 threads

per shader core).

3. It shows quantitatively that warp scheduling policy (the order in which the warps are

issued from the scheduler) affects both the performance gains and area overhead of dy-

namic warp formation, and proposes an area efficient implementation of a well-performing

Majority scheduling policy with max-heap.

4. It proposes and evaluates a detailed hardware implementation of dynamic warp formation

and scheduling. We estimate the hardware required by this hardware implementation adds

8% to the total chip area if it is implemented on a modern GPU such as Geforce 8800GTX

(470mm2) [39]. This does not include any area exclusive to the immediate post-dominator

branch reconvergence mechanism that might be subtracted from the baseline hardware.

5. It provides an extensive simulation infrastructure for enabling future research on GPU

architectures optimized to support non-graphics applications.
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9.3 Future Work

The work in this thesis is leads to several new areas of research. This section briefly lists and

discusses some of them.

9.3.1 Better Warp Scheduling Policies

In this thesis, we have observed that warp scheduling policies have significant impact on both

area (0.71 mm2, or 43%, of the 1.64 mm2 dynamic warp formation scheduler area is spent

on implementing the Majority policy—See Chapter 7) and performance of dynamic warp for-

mation. Performance varied from 37% to 66% across the scheduling policies we evaluated in

Section 6.1 of Chapter 6. While we have explored several different scheduling policies and ob-

tained significant speedup, the analysis in Chapter 6 indicates that our best performing policy

(Majority) may only provide a fraction of the performance potential of dynamic warp forma-

tion. A more effective policy, designed to better encourage warp recombination may further

improve performance and be more robust (i.e., it should not cause starvation of threads seen

in Section 6.2 of Chapter 6).

In addition, our best performing Majority policy requires sorting hardware which signifi-

cantly increases the area overhead (by about 77%) of dynamic warp formation. In this respect,

policies that need less area should be explored in the future as well.

9.3.2 Area Efficient Implementation of the Warp Pool

As mentioned in Chapter 4, it is possible to implement the warp pool with a single memory

array and thus reduce the area of the warp pool significantly if it is clocked at the SIMD pipeline

ALU frequency and serializes the 4 updates required per scheduler cycle. This brings up an

interesting trade-off between power and area, as clocking the warp pool faster may consume

more energy but require a smaller structure.

Another option, we have discussed in Section 6.7 of Chapter 6, is to reduce the area of the

warp pool by spilling existing warp pool entries to global memory. While this can improve

area overhead of dynamic warp formation, such a spilling mechanism may also introduce a

performance penalty, as warps spilled to the global memory may no longer be merged with
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threads from incoming warps at the scheduler. It is also unclear how the scheduling policy should

be changed to accommodate such a mechanism. In particular, it is uncertain what the scheduler

should do when the policy selects a warp that is spilled to the global memory. Or, taking this

one step further, the scheduling policy may have to account for memory access latency required

to load the spilled warps from global memory. The exact warp spilling mechanism, as well as

how the scheduling policy should accommodate this change in general should be explored in

the future.

Note that these two proposals are independent from each other, and it may be possible to

combine them for a highly area efficient implementation of the warp pool.

9.3.3 Bank Conflict Elimination

Bank conflicts in shared memory access, as noted by Hwu et al. [27], have been a major

performance bottleneck in GPU’s performance. While this thesis focuses on using dynamic

warp formation for improving control flow efficiency in a SIMD pipeline, we have also observed

that it is possible to regroup threads, in a fashion similar to how we propose to do this for

lane aware scheduling, to eliminate bank conflict in cache or shared memory access. The exact

implementation and hardware cost of this idea should be explored in the future.

9.3.4 Improvements to GPGPU-Sim

While GPGPU-Sim was initially created solely to evaluate the performance of dynamic warp

formation, we recognize that this simulator can be further improved in both accuracy and speed

to prototype other architectural ideas as well. Improvements that we currently envision include:

• Exploration into more sophisticated DRAM scheduling policies: As mentioned in Chap-

ter 5, DRAM request scheduling has significant impact on the overall system performance.

Modeling various aspect of a massively parallel architecture, GPGPU-Sim is a suitable

tool for exploring this design space.

• Direct interface to CUDA binary: Currently, GPGPU-Sim runs on benchmarks created

with the SimpleScalar PISA GCC, which limits our choice of benchmarks. Having a direct
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interface to CUDA binary will greatly broaden our choice benchmarks likely resulting in

additional insights.
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