
Cooperative and Intelligent Control of Multi-robot Systems

Using Machine Learning

by

Ying Wang

B.A.Sc., Shanghai Jiao Tong University, 1991

M.A.Sc., Shanghai Jiao Tong University, 1999

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in

THE FACULTY OF GRADUATE STUDIES

(Mechanical Engineering)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

March 2008

© Ying Wang, 2008

ABSTRACT

This thesis investigates cooperative and intelligent control of autonomous multi-robot

systems in a dynamic, unstructured and unknown environment and makes significant

original contributions with regard to self-deterministic learning for robot cooperation,

evolutionary optimization of robotic actions, improvement of system robustness, vision-

based object tracking, and real-time performance.

A distributed multi-robot architecture is developed which will facilitate operation of a

cooperative multi-robot system in a dynamic and unknown environment in a self-

improving, robust, and real-time manner. It is a fully distributed and hierarchical

architecture with three levels. By combining several popular AI, soft computing, and

control techniques such as learning, planning, reactive paradigm, optimization, and

hybrid control, the developed architecture is expected to facilitate effective autonomous

operation of cooperative multi-robot systems in a dynamically changing, unknown, and

unstructured environment.

A machine learning technique is incorporated into the developed multi-robot system

for self-deterministic and self-improving cooperation and coping with uncertainties in the

environment. A modified Q-learning algorithm termed Sequential Q-learning with

Kalman Filtering (SQKF) is developed in the thesis, which can provide fast multi-robot

learning. By arranging the robots to learn according to a predefined sequence, modeling

the effect of the actions of other robots in the work environment as Gaussian white noise

and estimating this noise online with a Kalman filter, the SQKF algorithm seeks to solve

several key problems in multi-robot learning.

As a part of low-level sensing and control in the proposed multi-robot architecture, a

fast computer vision algorithm for color-blob tracking is developed to track multiple

moving objects in the environment. By removing the brightness and saturation

information in an image and filtering unrelated information based on statistical features

and domain knowledge, the algorithm solves the problems of uneven illumination in the

environment and improves real-time performance.

ii

In order to validate the developed approaches, a Java-based simulation system and a

physical multi-robot experimental system are developed to successfully transport an

object of interest to a goal location in a dynamic and unknown environment with

complex obstacle distribution. The developed approaches in this thesis are implemented

in the prototype system and rigorously tested and validated through computer simulation

and experimentation.

iii

TABLE OF CONTENTS

Abstract^ ii
Table of Contents^ iv
List of Figures^ vii
Nomenclature^ xi
Acknowledgements^ xiv
Chapter 1 Introduction ^ 1

1.1 Goals of the Research^ 2
1.2 Problem Definition^ 3
1.3 Related Work^ 5

1.3.1 Multi-robot Architectures^ 9
1.3.2 Machine Learning in Multi-robot Systems^ 13
1.3.3 Computer Vision and Sensing Technologies for Multi-robot Systems ^ 17

1.4 Contributions and Organization of the Thesis^ 20
Chapter 2 Learning/Planning Based Hierarchical Multi-robot Architecture^ 22

2.1 Overview^ 22
2.2 General Architecture^ 25
2.3 Machine Learning Unit^ 28
2.4 Planning Unit^ 29

2.4.1 Planning and Learning in Multi-robot Applications^ 29
2.4.2 Local Path Planning for Multi-robot Cooperative Transportation^ 32

2.5 Integrating Learning with Planning^ 35
2.6 Behavior-based Distributed Control^ 36

2.6.1 Behavior Representation^ 37
2.6.2 Behavior Composition^ 38
2.6.3 Group Coordination^ 40
2.6.4 Communication Behaviors^ 40
2.6.5 Coordinated Object Transportation^ 41

2.7 Low-level Control^ 43
2.7.1 Robotic Manipulators^ 43
2.7.2 Mobile Robots^ 44

2.8 Distributed Control Issues^ 47
2.9 Summary^ 49

Chapter 3 Machine Learning for Multi-robot Decision-making^ 51
3.1 Overview^ 51

iv

3.2 Markov Decision Process (MDP) and Reinforcement Learning^ 52
3.2.1 Reinforcement Learning^ 55

3.3 Multi-robot Transportation Using Machine Learning: First Version^ 57
3.3.1 Multi-agent Infrastructure^ 59
3.3.2 Cooperation Based on Machine Learning^ 61
3.3.3 Simulation Result^ 68
3.3.4 Experimentation^ 72

3.4 Distributed Multi-robot Q-learning in Complex Environments^ 74
3.4.1 Distributed Q-learning^ 74
3.4.2 Task Description^ 76
3.4.3 Multi-robot Box-pushing With Distributed Q-learning^ 76
3.4.4 Simulation Results^ 82

3.5 Team Q-learning Based Multi-robot Cooperative Transportation^ 90
3.5.1 Stochastic Games and the Team Q-learning Algorithm^ 91
3.5.2 Simulation Results^ 92
3.5.3 Impact of Learning Parameters^ 95
3.5.4 Comparing Team Q-learning with Multi-robot Distributed Q-learning 102

3.6 Summary^ 110
Chapter 4 Sequential Q-learning with Kalman Filtering (SQKF)^ 112

4.1 Overview^ 112
4.2 Sequential Q-learning with Kalman Filtering^ 113

4.2.1 Sequential Q-learning^ 113
4.2.2 Kalman Filtering based Reward Estimation^ 115

4.3 Simulation Results^ 120
4.4 Summary^ 131

Chapter 5 Computer Vision in Multi-robot Cooperative Control^ 133
5.1 Overview^ 133
5.2 Multi-robot Transportation System^ 135
5.3 The Fast Color-blob Tracking Algorithm^ 137

5.3.1 Removal of the Lighting Disturbance^ 137
5.3.2 Statistical Feature Filtering^ 139
5.3.3 Color-blob Template Matching^ 140
5.3.4 Coordinate Transformation and Pose Reconstruction^ 140

5.4. Experimental Result^ 141
5.4.1 The Test-bed^ 141
5.4.2 Experimental Result^ 142

v

5.5 Multi-robot Route Planning^ 147
5.6 Summary^ 149

Chapter 6 Experimentation in Distributed Multi-robot Cooperative Transportation
^ 150

6.1 Overview^ 150
6.2 Test Bed^ 151
6.3 JAVA RMI^ 155

6.3.1 Remote Interface^ 158
6.3.2 Server Side^ 158
6.3.3 Client Side^ 160

6.4 A Physical Multi-robot Transportation System^ 161
6.5 Force/Position Hybrid Control^ 165
6.6 Summary^ 172

Chapter 7 Conclusions^ 173
7.1 Primary Contributions^ 173
7.2 Limitations and Suggested Future Research^ 175

7.2.1 Improvement of the Model and Algorithm of SQKF^ 176
7.2.2 GA-based Learning Space Compression^ 176
7.2.3 Local Modeling and Low-level Control^ 176
7.2.4 Integrating Planning and Learning^ 177

7.3 Summary^ 177
Bibliography^ 178
Appendix: JAVA Documents of the Developed System^ 190

vi

LIST OF FIGURES

Figure 1.1

Figure 2.1

Figure 2.2

Figure 2.3

Figure 2.4

Figure 2.5

Figure 2.6

Figure 2.7

Figure 2.8

Figure 2.9

Figure 2.10

Figure 2.11

Figure 2.12

Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Figure 3.5

Figure 3.6

Figure 3.7

Figure 3.8

Figure 3.9

Figure 3.10

Figure 3.11

Schematic representation of the developed system^ 3

A general and hierarchical multi-robot architecture^ 26

The principle of the machine learning unit^ 28

An example of the local minimum phenomenon in a purely learning-based

multi-robot cooperative box-pushing task^ 30

The bounded local environment in navigation potential function planning 33

The hierarchical behavior-based control layer^ 36

A SR diagram of a simple behavior^ 37

The diagram of a composite behavior with a competitive operator^ 39

The diagram of a composite behavior with a cooperative operator^ 40

Behavioral hierarchy describing the coordinated transport sub-task^ 41

A FSA describing the transitions of the group behaviors in the project of

coordinated object transportation^ 43

Control of a mobile robot^ 45

The block diagram of motion control of a mobile robot^ 46

The value iteration algorithm to calculate the utilities^ 55

The single-agent Q-learning algorithm^ 56

The developed multi-robot system^ 59

The multi-agent architecture used in the developed system^ 59

The world state representation^ 62

Representation of the cooperation strategy (action)^ 63

The Genetic Algorithm^ 64

The integration scheme of RL and GA^ 68

The robots move randomly and locate the box^ 70

The whole transportation process^ 71

The goal location was suddenly changed from (380,370) to (385,60) at t =

34s while the robots were transporting the box^ 72

vii

Figure 3.12

Figure 3.13

Figure 3.14

Figure 3.15

Figure 3.16

Figure 3.17

Figure 3.18

Figure 3.19

Figure 3.20

Figure 3.21

Figure 3.22

Figure 3.23

Figure 3.24

Figure 3.25

Figure 3.26

Figure 3.27

Figure 3.28

Figure 3.29

Figure 3.30

Figure 3.31

Figure 3.32

The robots have selected the "sweeping" action to remove a movable

obstacle in the path^ 73

Description of a multi-robot box-pushing task^ 76

The binary coding of the environmental states^ 77

Coding rule of the environmental states^ 78

Pushing actions available to each robot^ 79

The dynamics of the box pushed by three robots^ 80

Three box-pushing snapshots under different obstacle distributions and goal

locations 84

The environmental state with binary value "1000000" and six pushing

actions available to the robots^ 87

The Q values under the state of "1000000" in 100,000 rounds of

box-pushing^ 88

Probability density estimate of Q values under state of "1000000" in

100,000 rounds of box-pushing^ 88

Probability density estimate of action selection probability under the state

of "1000000" in 100,000 rounds of box-pushing^ 89

The box trajectory in a round of box-pushing^ 93

The rewards received by the robots in a round of box-pushing^ 94

The surface of the Q-table (the states from 1 to 32) after 10,000 training

cycles^ 94

The impact of training^ 96

Impact of the lower bound of the random action probability^ 97

The impact of the detection radius^ 98

The impact of the pushing force^ 99

The rewards received by the robots in a round of box-pushing^ 101

Simulation results with the single-agent Q-learning algorithm and the team

Q-learning algorithm^ 103

Performance index comparison of the single-agent Q-learning algorithm

before and after the training stage^ 106

viii

Figure 3.33 Performance index comparison of the Team Q-learning algorithm before

and after the training stage^ 109

Figure 4.1 The simulated multi-robot box-pushing system^ 120

Figure 4.2 A successful example of multi-robot box pushing with the new SQKF

algorithm^ 121

Figure 4.3 Probability density estimate of the number of steps per round before and

after training^ 122

Figure 4.4 Probability density estimate of the average global reward per round before

and after training^ 123

Figure 4.5 The number of steps per round in 1,000 rounds of continuous box-pushing

^ 124

Figure 4.6

Figure 4.7

Figure 4.8

Figure 4.9

Figure 4.10

Figure 4.11

Figure 4.12

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Figure 5.5

Figure 5.6

Figure 5.7

Figure 5.8

The average global reward per round in 1,000 rounds of continuous

box-pushing^ 125

The global rewards received by the robots in a round of box-pushing before

training^ 126

The probability density estimate of the global rewards in Figure 4.7^ 127

The global rewards received by the robots in a round of box-pushing after

training^ 128

The probability density estimate of the global rewards in Figure 4.9^ 128

Probability density estimate of number of steps per round in 500 rounds of

box-pushing 129

Probability density estimate of average global reward per round in 500

rounds of box-pushing^ 130

The developed physical multi-robot system^ 135

The color-blob tracking algorithm^ 137

A sample image of a color blob^ 139

The experimental system in IAL at UBC^ 142

An original image captured by the CCD camera^ 143

The hue component of the original color image in the HSI color space ^ 144

The hue component image after the background is filtered^ 145

The result after filtering Figure 5.7 using template matching^ 146

ix

Figure 5.9

Figure 6.1

Figure 6.2

Figure 6.3

Figure 6.4

Figure 6.5

Figure 6.6

Figure 6.7

Figure 6.8

Figure 6.9

Figure 6.10

The reconstructed result of the poses of the robots and the box^ 147

The multi-robot object transportation system developed in IAL^ 151

The color blobs used to identify the orientation of the box^ 153

The PioneerTM 3-DX mobile robot^ 154

The PioneerTM 3-AT mobile robot^ 154

JAVA RMI distributed computing^ 157

Multi-robot cooperative transportation^ 164

The robot hybrid force/position control scheme^ 166

The robots move to the desired position and push the box under hybrid

force/position control^ 168

Position control of the robotic arm^ 170

The force control of the robotic arm^ 171

x

NOMENCLATURE

Notations

I k(Xy)^Attraction function in the potential field approach

P(x, y)^Repulsion function in the potential field approach

Co(x, y)^Potential function

co(xi , y,)^Gradient of a potential field

D(q)^Inertia matrix of the manipulator

C(q,q)
^Coriolis matrix

Joint torque (see Chapter 2)

S = {s 1 , s 2 ,^s n }^Set of states in the environment

^{a„a 2 ,...,an }^Set of actions available to a robot

T(s,a,s')^Transition function, which decides the next environmental state

s' when robot selects action a 1 under current state s .

fl(s)^Probability distribution over the states

R : S x A —* R^Reward function. Gives the immediate reward when robot takes

action a, under current state s

Policy with which a robot selects its actions

7Z"^ Optimal policy

/3 (Chapter 2)^Mapping function

/3 (Chapter 3)^Discount factor

U(s)^Utility of a state

Maximum error allowed in the utility of any state

Maximum change in the utility of any state in an iteration

Q(s,,a,)^An entry in the Q-table

77^Learning rate

r^Direct reward

xi

r (Section 3.2)^" Temperature " parameter (see Chapter 3)

r (Section 3.3)^The angle between the net force vector and the position vector of

the closest obstacle

Net torque applied by the robots

Net force applied by the robots

A.^Action set of the ith robot

A set including all actions selected by the robots thus far

Empty set

A^Set including the currently available actions

g,^Global reward

b,^An additive noise process which models the effect of the

unobservable states on the global reward

z.^A Gaussian random variable

Mean
2^Variance

Covariance matrix

I s'^Total number of world states

L^Direction constraint matrix

Standard deviation

P^Composite behavior

xii

Abbreviations

MDP^Markov Decision Process

GA^Genetic Algorithm

RI_^Reinforcement Learning

SQKF^Sequential Q-learning with Kalman Filtering

AI^Artificial Intelligence

GLIE^Greedy in the Limit with Infinite Exploration

SG^Stochastic Game

RGB^Red, Blue, and Green

HSI^Hue, Saturation, and Intensity

LAN^Local Area Network

TCP/IP^Transmission Control Protocol/Internet Protocol
RMI^Remote Method Invocation

ACKNOWLEDGEMENTS

I wish to express my sincere appreciation to my supervisor, Prof. Clarence W. de

Silva. Four years ago, when I first contacted him to seek a Ph.D. student position in his

group, he was so kind and warm to accept my request, which enabled my memorable

Ph.D. career at The University of British Columbia. In the past 4 years, Prof. de Silva has

given me constant supervision, support, advice, and help. These include, to name a few,

supervising my Ph.D. research, suggesting and sharpening the research ideas, discussing

the research problems and helping to solve them, carefully revising and improving my

writing, generously funding me to attend top conferences in the robotics and controls

field and providing financial support for my Ph.D. studies, purchasing state-of-the-art

robots and other equipment for my experiments, kindly appointing me as Lab Manager of

the Industrial Automation Laboratory, and writing excellent recommendation letters for

scholarships and job applications. In particular, it was Prof. de Silva who suggested the

idea of integrating machine learning with multi-robot architectures for my Ph.D. research,

which has been proved to be an excellent and innovative idea as I carried out my research

in the subsequent years. In a word, I am very grateful to Prof. de Silva who has helped

me so much, and in my heart, he is not only a fantastic supervisor but also another

respected father.

I want to thank Dr. Otman Basir from University of Waterloo, Dr. Farrokh Sassani, Dr.

Jose Marti, Dr. Ian Yellowley, and Dr. Robin Turner to work as the examining committee

for my Ph.D. defense exam, who carefully assessed my thesis and gave me valuable

opinions. I also wish to express my appreciation to Prof. Farrokh Sassani, Prof.

Mohamed Gadala, and Dr. Roya Rahbari, who have kindly served as members of my

research committee. It is they who have helped and encouraged me to improve my

research in these years. In addition, I also want to thank Prof. Elizabeth Croft, Prof. Ian

Yellowley, Prof. Yusuf Altintas, Prof. Mu Chiao, Prof Ryozo Nagamune and Prof.

Xiaodong Lu for their valuable suggestions and assessments during our annual graduate

research seminars.

xiv

I would also want to thank Ningbo University in China and K.C.Wong Education

Foundation (Hong Kong) for offering me an amazing Ph.D. fellowship. In addition, I am

greatly indebted for the Ph.D. tuition award from The University of British Columbia.

The appreciation should also go to other generous financial support, including research

assistantships and equipment funding from the Natural Sciences and Engineering

Research Council (NSERC) of Canada and the Canada Foundation for Innovation (CFI)

through Prof de Silva as the Principal Investigator.

I take this opportunity to thank my close friends and colleagues in our research group;

especially, Dr. Poi Loon Tang, Mr. Roland (Haoxiang) Lang, Dr. Tao Fan, Mr. Duminda

Wijewardene, Mr. Jason J. Zhang, Mr. M. Tahir Khan, Mr. Arun Gupta, Mr. Mohammed

Alrasheed, Prof. Lalith Gamage, Mr. Richard McCourt, Dr. Yang Cao, and Ms. F. Nazly

Pirmoradi. You guys have made my life at UBC memorable and pleasant. In addition, I

want to thank my previous colleagues at Ningbo University in China, especially Prof.

Zhimin Feng, Dr. Chao Hu and Prof Shirong Liu, for their warm and constant support.

Finally, I want to thank my family for their powerful support. Above all, I wish to

express my exceptional appreciation to my wife Jiangfei Sun, my daughter Shihan (Lucy)

Wang, my father and mother, my sister and her family, for their continuous love, support,

and encouragement throughout. I dedicate this thesis to them.

xv

Chapter 1

Introduction

A multi-agent robotic system is a group of autonomous robots, which are organized

into a multi-agent architecture so as to cooperatively carry out a common task in a

possibly dynamic environment with or without obstacles. In such a system, each robot is

regarded as an agent, which possesses capabilities of independent sensing, actuation, and

decision making. Besides the physical agents (e.g., robots), some pure software agents

may be included into the system to help coordinate the physical agents, or implement

complex machine intelligence. The group of agents constitutes an "agent society," where

they cooperate, coordinate, and even compete with each other to achieve a common goal.

In the past decade, multi-agent robotic systems have received increased attention in the

robotics community as they possess important advantages over a single robot system. First,

a multi-agent robotic system is a parallel system, which can provide improved efficiency,

especially in such tasks as mapping, searching, and space exploration. Second, through

cooperation and communication, a multi-agent robotic system may become more powerful

than a single complex robot, at the same cost, and may be able to complete some special

tasks which a single robot is unable to carry out. Third, multi-agent robotic systems have

better fault tolerant capabilities than a single robot. For example, if one robot is damaged

or malfunctioned, the remaining robots in the system can takeover its role and continue to

complete the task, perhaps at a reduced level of performance.

Multi-agent robotic systems face some special challenges as well. These include

synchronization with regard to the locations, applied forces and actions of the robots;

determination of a cooperation strategy; and the way to learn and improve such a strategy

through interaction with the environment.

An important research topic in the multi-agent robotics is the multi-robot object

transportation problem. In this problem, several autonomous robots move cooperatively to

1

transport an object to a goal location and orientation in either a static or a dynamic

environment, which may contain fixed or removable obstacles. The object may be so

heavy or large that no single robot will be able to handle it alone. This is a rather

challenging problem. For example, in the transportation process, each robot needs to sense

possible changes in the environment, the locations of the obstacles, and the other robots in

the neighborhood. Then it needs to communicate with the peers, exchange sensing

information, discuss cooperation strategies, suggest obstacle avoidance schemes, plan

robot trajectories, assign or receive subtasks and roles, and coordinate robot actions so as

to transport the object quickly and successfully to the goal location. Because of many

challenges that belong to different research fields, the multi-robot object transportation

problem is a good benchmark to assess the effectiveness of various multi-agent

architectures and cooperation strategies. Furthermore, multi-robot cooperation has many

practical applications in fields such as space exploration, intelligent manufacturing, deep

sea salvage, dealing with accidents in nuclear power plants and other hazardous

environments, and robotic warfare. Therefore, multi-robot object transportation problem

has become an important topic in the area of multi-agent robotics.

1.1 Goals of the Research
In this thesis, a physical multi-robot transportation system operating in a dynamic and

unknown environment with complex obstacle distribution will be developed. In order to

complete this challenging task, several key approaches will be established. The four

primary research goals of the thesis are to:

• develop a fully distributed multi-robot architecture that accommodates behavior

coordination, resource assignment, and dynamic unknown environment.

• develop a new machine learning algorithm that will enable multi-robot systems to

deal with uncertainties in the environment.

• develop technologies of computer vision and sensing for carrying out multi-robot

tasks.

• study performance issues such as robustness, cooperative behavior, self-learning and

adapting capability, speed, and accuracy of the developed methodology.

2

Digital Camera

ObjectRobotic Arm
Mobile Robot

Fixed
Obstacles

•
Goal Location /// Movable

Obstacles

Force Sensors

Ethernet Network

1.2 Problem Definition
A primary objective of the present work is to develop a physical multi-robot system,

where a group of intelligent autonomous robots work cooperatively to transport an object

to a goal location and orientation in an unknown and dynamic environment where

obstacles may be present or even appear randomly during the transportation process.

Robot control, multi-agent planning, and machine learning are integrated into the

developed physical platform to cope with the challenges of the problem. A schematic

representation of the developed system is shown in Figure 1.1.

Figure 1.1: Schematic representation of the developed system.

In this system there are three or more autonomous mobile robots or fixed robotic arms,

which cooperatively transport an object to a goal location. During the course of the

transportation, they have to negotiate the cooperation strategy and decide on the optimal

locations and amplitudes of the individual forces applied by them so that the object is

transported quickly and effectively while avoiding any obstacles that may be present in the

path. In some special cases, they also need to consider whether to remove the obstacles

rather than negotiating around them. Other considerations such as the level of energy

utilization and avoiding damage to the transported object may have to be taken into

account as well. Charge Coupled Device (CCD) camera systems are used to monitor and

measure the current location and orientation of the object. The environment is dynamic

and unpredictable, and contains movable obstacles, which may appear randomly, and

3

some fixed obstacles. The robots, the camera and the sensors are separately linked to their

host computers, which are connected through a local network, to implement complex

controls and machine intelligence.

There are three major challenges in the developed systems, which are all key issues in

the multi-robot domain. The first one is the dynamic environment. In particular, the robots

are working in an environment with dynamic random obstacle distribution. The obstacles

maybe appear and disappear randomly. In addition, because there are multiple robots

working in parallel within the same environment, while one robot makes decisions, some

other robots may have changed the environment. This also can make the environment

dynamic from the standpoint of a single robot. The dynamic environment makes it very

difficult for the robots to make decisions and learn useful policies because there will be

hidden environment states, which are unobservable for the robots.

The second challenge results from the local sensing capabilities of the the robots. In

this project, it is assumed that each robot is able to only detect an object or obstacles

within a limited detection radius. It means that the robots possess local sensing capabilities

only, and the global environment is unknown to them. Before a robot moves close to an

obstacle, it does not know the location or the shape of the obstacle. The unknown

environment is another major challenge in the multi-robot domain. Because the robots

cannot know the complete environment in advance, in part due to the unfamiliarity and in

part due to the dynamic nature, they cannot employ the traditional planning technologies

for decision making associated with the execution of the task.

The third challenge arises due to the unreliability of communication among robots, as

assumed in the present project, where the disturbances are represented by white noise. Due

to unreliable communication, sometimes the robots may end up selecting a wrong

cooperation strategy. Because multi-robot systems are usually expected to work in some

extreme environments (for example, planetary surfaces) where communication may be

unreliable due to unknown disturbances, how to improve the robustness of multi-robot

decision-making in an environment with unreliable communication is a key issue in the
multi-robot domain.

A typical natural environment of a multi-robot system is usually dynamic and

unknown. In addition, robot communication is usually unreliable in such an environment.

4

In this thesis, several approaches will be developed to meet these key challenges in the

multi-robot domain and enable multi-robot systems to work effectively in an unstructured

natural environment.

1.3 Related Work

A considerable amount of work has been done in multi-robot cooperative control and

decision-making by the robotics community in the past 15 years, particularly to support

effective and robust operation of multi-robot systems in both dynamic and stationary

environments. Some pertinent work is surveyed below.

Kube and Bonabeau (2000) studied cooperative transport by ants and robots, and found

a "Phase Transition" phenomenon. Specifically, the ants were found to suddenly improve

their performance after a learning stage. They also noticed that the ants coped with the

deadlock problem in collective transportation using the method of "Realignment and

Repositioning." Based on these observations, a formalized model of cooperative

transportation was proposed, which included an FSM (Finite State Machine) based

controller, a reactive architecture, perceptual cues, and taxis-based or kinesthetic-based

actions. This biologically inspired approach was applied to a multi-robot box-pushing task

and they observed that local interactions among the robots resulted in a global action. The

main shortcoming of their approach stems from inefficiency for real multi-robot

applications.

Cao et al. (2006) studied a multi-robot hunting task in an unknown environment. They

proposed a distributed control approach involving local interactions with local coordinate

systems. This approach can cope with the cumulative errors of wheels and imperfect

communication networks. Computer simulations showed the validity of the proposed

approach.

Rus et al. (1995) employed a team of autonomous robots to move furniture. In this

project, they proposed four cooperative protocols and analyzed them in an information

invariant framework, and studied whether a global controller, a global planner, explicit

communication and a geometric model of the pushed object were necessary for

completing the task. They also presented a pushing-tracking reorientation method for a

multi-robot box-pushing task.

5

Kumar and Garg (2004) developed a multi-robot cooperative manipulation project with

two industrial robotic arms. They employed a fuzzy logic-based approach to coordinate

the motions of the two robotic manipulators so that the internal forces among them

became a minimum. In addition, they used Kalman Filtering to estimate the external force

on the end effector based on information from the force/torque sensor mounted on the

robot wrist.

Gustafson et al. (2006) studied the scaling issues of multi-robot systems. They used

several abstract models to elucidate that it was harmful to increase the number of robots or

the sensor strength in multi-robot systems. Stone et al. (2006) investigated the issue of

uncertainty in multi-robot systems. They identified several uncertainty sources and

introduced methods for reducing uncertainty and making decisions in the face of

uncertainty. These contributions enable effective planning under uncertainty for robots

engaged in goal-oriented behavior within a dynamic, collaborative and adversarial

environment.

Mataric et al. (1995) developed a behavior-based multi-robot box-pushing system. In

their project, they proposed a behavior-based reactive architecture for multi-robot systems

with explicit communication. The cooperative strategies among the robots were studied

and two legged robots with minimum computational capabilities were used to demonstrate

the proposed approach. In their latest work Lerman et al. (2006) presented a mathematical

model for dynamic task allocation in multi-robot systems, based on stochastic processes.

They assumed a large scale multi-robot system with local sensing, behavior-based

controller and distributed task allocation capabilities. Through storing the history of the

environment observed in the internal state of a robot, they tried to cope with the local

sensing and indirect communication issues in multi-robot systems. The model proposed by

them was demonstrated in a multi-robot foraging task and some statistical results and

comparisons were given. In another paper written by them (Jones and Mataric, 2004a), a

principled framework suitable for describing and reasoning about the intertwined entities

involved in any task-achieving multi-robot systems was addressed. Using this framework,

they presented a systematic procedure to synthesize controllers for the robots in a multi-

robot system such that a given sequential task would be correctly executed. Gerkey and

Mataric (2004) also proposed a taxonomy method for MRTA (multi-robot task allocation).

6

They proposed three axes for use in describing MRTA problems: (1) Single-task robots

(ST) versus multi-task robots (MT). (2) Single-robot tasks (SR) versus multi-robot tasks

(MR). (3) Instantaneous assignment (IA) versus time-extended assignment (TA). Based on

this method they compared six typical multi-robot architectures and their MRTA

approaches.

There are several useful surveys in the multi-robot domain. An older one on

"Cooperative Mobile Robotics: Antecedents and Directions" was done by Cao et al.

(1997). A newer overview is presented by Arai et al. (2002), where they identify seven

principal areas of multi-robot systems: biological inspirations, communication,

architectures/task allocation/control, localization/mapping/exploration, object

transportation and manipulation, motion coordination, and reconfigurable robots. They

also point out that the recent progress is beginning to advance the areas of reconfigurable

robotics and multi-robot learning. Dudek et al. (2002) also proposed a taxonomy of multi-

robot systems, which included seven dimensions: Collective size, Communication range,

Communication topology, Communication bandwidth, Collective Reconfigurability,

Processing ability, and Collective composition. In addition, a survey done by Parker

(2000b) studied the existing multi-robot architectures, and pointed out several challenges

in typical multi-robot tasks. In particular, she summarized that there were three multi-

robot architectures in the literature, identified as: general architecture, specialized

architecture and hybrid architecture. Further, she identified three typical multi-robot tasks

and their main challenges. For example, in multi-robot object transportation tasks, a major

challenge is uneven terrain; in multi-robot motion coordination, the key challenges are

physical demonstration, extending from a 2D environment to a 3D environment, and

computational complexity; For multi-robot learning, an important issue is how to assign

credits among robots. Moreover, Parker argued that an important direction in the multi-

robot domain was to extend the multi-agent learning approaches to multi-robot systems,

where real-time constraints challenged most existing multi-robot systems.

A recent survey on multi-robot systems is the one completed by Farinelli et al. (2004).

In this survey, they proposed a taxonomy-like methodology for multi-robot systems,

which focused on coordination among robots. They addressed the differences between

multi-robot systems (MRS) and multi-agent systems (MAS). They also classified multi-

7

robot tasks as unaware systems, aware but not coordinated systems, weakly coordinated

systems, strongly coordinated and strongly centralized systems, strongly coordinated and

weakly centralized systems, and strongly coordinated and distributed systems.

Furthermore, they pointed out several research trends in the area, which involved complex

coordination, distributed systems, uncertain environments and sensing, coordination

model, conflict resolution, large scale systems, more complex social deliberation

architecture, and weakly centralized approaches.

As Parker pointed out (Parker, 2000b), multi-robot learning has received increased

attention in the past decade in order for multi-robot systems to work in dynamic and

unknown environments. There are several surveys that summarize multi-robot learning or

multi-agent learning; for example, the survey done by Yang and Gu (2004). In this survey,

they identified that scaling an individual reinforcement learning algorithm to multi-robot

systems would violate its Markov assumption, which is the drawback of many existing

multi-robot reinforcement learning approaches. They also identified four frameworks of

multi-agent reinforcement learning; namely, the Stochastic Games (SGs) based framework,

the Fictitious Play framework, the Bayesian framework, and the Policy Iteration

framework. Next, they introduced seven typical multi-agent reinforcement algorithms for

possible application to multi-robot systems. They argued that there were four challenges to

applying reinforcement learning to multi-robot systems; namely, the Markov assumption,

continuous spaces, uncertainties, and incomplete information. Three future directions were

pointed out as well; as, the behavior-based approach with reinforcement learning, fuzzy

approximation functions, and continuous reinforcement learning.

Shoham et al. (2003) presented a critical survey of multi-agent reinforcement learning

(Shoham et al., 2003), where they criticized that the researchers had been focusing on

Nash equilibrium, which is very awkward. In addition, they identified four well-defined

problems in multi-agent reinforcement learning. Another famous survey in this area was

done by Stone and Veloso (2000). They proposed a taxonomy methodology for multi-

agent systems from a machine learning perspective, which classified multi-agent systems

as homogenous non-communicating agents, homogenous communicating agents,

heterogeneous non-communicating agents, and heterogeneous communicating agents.

Opportunities for applying machine learning to these multi-agent systems were

8

highlighted, and robotic soccer was presented as an appropriate test bed for multi-agent

systems.

Panait and Luke (2005) completed a survey on cooperative multi-agent learning, where

they pointed out that the huge learning space and dynamic environment were two main

challenges in cooperative multi-agent learning. Simultaneously, they identified two types

of learning: Team learning (Centralized learning) and Concurrent learning. Then four

issues in the area of concurrent learning were discussed, as: credit assignment, learning

dynamics, teammate modeling, and relationship between learning and communication. In

addition, some future directions in cooperative multi-agent learning were presented, as:

large-scale multi-robot systems, heterogeneity, agents with internal states (e.g., more

complex computational intelligence), and dynamic team size.

1.3.1 Multi-robot Architectures

To develop a general and flexible architecture for multi-robot cooperation and

coordination has been a standing objective in the robotics community. Five primary types

of multi-robot architectures are discussed in the literature; namely, the behavior-based

architecture, the planning-based architecture, the market-based architecture, the distributed

control based architecture, and the learning-based architecture. A brief description of these

architectures is given next.

1.3.1.1 Behavior-based multi-robot architecture

Parker (1998, 2000a) proposed a distributed and behavior-based multi-robot

architecture called L-ALLIANCE. It uses the concepts "Impatient" and "Acquiesce"

to dynamically motivate behaviors. Moreover, by assessing the performance of the

teammates and dynamic changes in the environment, L-ALLIANCE autonomously

updates its parameters to adapt to those changes. L-ALLIANCE was validated in a

cooperative box-pushing task with two heterogeneous mobile robots. Similar research in

multi-robot transportation can be found in (Rus et al., 1995), where a team of autonomous

robots were employed to move furniture, and in (Yamada and Saito, 2001) where a multi-

robot box-pushing system was adopted based on a reactive behavior architecture.

9

The behavior-based multi-robot architecture, CAMPOUT, has been employed in the

Robot Work Crew (RWC) project developed in Jet Propulsion Laboratory (JPL) of NASA

(Huntsberger et al., 2003; Schenker et al., 2000, 2003; Trebi-011ennu et al., 2002;

Bouloubasis et al., 2003). CAMPOUT is a fully distributed, behavior-based multi-robot

architecture. It employs the leader-follower decentralized control strategy. CAMOUT was

validated in a multi-robot cooperative transportation task in a PV tent autonomous

deployment project on a planetary surface and a cliff robot project. In their latest work

Stroupe et al. (2005, 2006) presented a multi-robot autonomous construction task based on

the CAMPOUT architecture.

Pimentel et al. (2002) developed a behavior-based architecture with application in a

two-robot cooperative carrying project. In this project, they considered simple obstacles in

the environment and compared the effects of implicit communication with explicit

communication.

Goldberg and Mataric (2002) demonstrated a successful application of behavior-based

control in a task of distributed multi-robot collection. They attempted to develop

controllers which were robust to noise and robot failures. Three versions of the collection

task were presented and were evaluated in a spatio-temporal context using interference,

time to completion, and distance traveled as the main diagnostic parameters.

Balch and Arkin (1998) proposed a formation control approach for multi-robot teams.

This is a behavior-based architecture using the motor scheme approach. In this

architecture, multiple behaviors can be activated simultaneously and combined

cooperatively. Four types of robot team formation were controlled and switched with the

proposed architecture. The developed system employed explicit communication and

worked in an environment with static obstacles. In addition, they developed a behavior-

based control project of a non-holonomic robot for pushing tasks where they proposed to

integrate the planning approach with the behavior-based approach to cope with the local

minimum problem (Emery and Balch, 2001).

In their pioneering work, Konidaris and Hayes (2005) proposed to integrate the

behavior-based approach with Reinforcement Learning for multi-robot coordination.

Furthermore, they suggested using topological maps to reduce the learning space in

Reinforcement Learning.

10

Camacho et al. (2006) developed a behavior-based architecture for coordinating robot

soccer agents. In their work, they assigned each robot a role for the task execution. A rule-

based RECCA control algorithm was presented as well.

1.3.1.2 Planning-based multi-robot architecture

Miyata, et al. (2002) studied cooperative transportation by multiple mobile robots in

unknown static environments. A centralized task planning and assignment architecture

was proposed in their work. Priority-based assignment algorithms and motion planning

approaches were employed. In their later paper (Yamashita et al., 2003), a motion

planning approach in a 3D environment was presented.

1.3.1.3 Distributed-control-based multi-robot architecture

Wang et al. (2003a, 2003b, 2003c, 2004a, 2004b, 2005), Kume et al. (2002), Zaerpoora

et al. (2005), Pereira et al. (2004), Sugar and Kumar (2002), and Chaimowicz et al. (2004)

studied the caging formation control problem in multi-robot cooperative transportation.

They proposed the "Object Closure" strategy to move the object with multiple mobile

robots while maintaining the formation. The key issue was to introduce a bounded

movable area for the object during its transportation and manipulation. In this case, the

contact between the object and the robots did not need to be maintained by the controller

of each robot. They termed it "Object Closure", which was employed as a type of

distributed formation control strategy for multi-robot cooperative carrying tasks.

Basically, the "Object Closure" approach is a sub-category of behavior-based multi-

robot coordination. However, it places its emphasis on the distributed control features.

Moreover, some other distributed-control strategies were employed by researchers to

implement task allocation among multiple robots or maintain formations of a robot team.

For example, Dahl et al. proposed to allocate tasks among multiple robots through

vacancy chains (Dahl et al., 2003). They also demonstrated how Reinforcement Learning

can be used to make vacancy chains emerge in a group of behavior-based robots.

Experiments showed that the proposed algorithm outperformed random or static strategies.

On the other hand, Marshall et al. proposed another distributed-control strategy for multi-

robot coordination, which was called "cyclic pursuit". They demonstrated that the "cyclic

11

pursuit" approach was surprisingly robust in the presence of un-modeled dynamics and

delays due to sensing and information processing.

1.3.1.4 Market-based multi-robot architecture

Multi-robot task allocation is a quite complex subject. It has been shown that

conventional task allocation approaches are not successful in this area, especially when the

number of the robots is large. However, market-based approaches seem promising in

solving the complex multi-robot task allocation problem, and they are becoming popular

in the multi-robot domain. For example, Gerkey and Mataric (2002a, 2002b) developed an

auction-based approach for multi-robot coordination. They used the publish/subscribe

first-price auction method and validated it in a multi-robot box-pushing task. A "watcher"

robot observed and monitored the course of the box transportation, and "published" the

required actions for use by the "pusher" robots in the same environment. The "pusher"

robots understood which kinds of tasks were available at this point through "subscribing"

to the information from the "watcher" robot. By matching its own skills to the required

tasks, each "pusher" robot bids for a task. When the "watcher" robot received all bids

from the "pusher" robots, it would select the most suitable one for each task and broadcast

its decisions to the "pusher" robots. This auction-based approach was demonstrated to be

quite successful in a multi-robot box-pushing task in a static environment without

obstacles.

A well-known work in this area was completed by Zlot and Stenz (2006). In this paper,

they integrated the market-based approach with a hierarchical task tree for complex task

allocation in a multi-robot system. They demonstrated their approach in a cooperative

reconnaissance task which required sensor coverage by a team of robots over a set of

defined areas of interest.

1.3.1.5 Learning-based multi-robot architecture

Multi-robot systems usually work in a dynamic and unknown environment where the

traditional behavior-based robots can easily fail because it is very difficult to design a

sufficiently extensive behavioral rule base to cope with all possible world states

encountered by the robots. Therefore, the learning capabilities are important for multi-

12

robot systems that work in such an environment. Most existing work in multi-robot

learning employs Reinforcement Learning due to its simplicity and good real-time

performance. For example, Mataric (1997) proposed a Reinforcement Learning approach

for a multi-robot foraging task. In this paper, she integrated the behavior-based approach

with Reinforcement Learning so as to condense the state/action space of Reinforcement

Learning. She also designed a new credit assignment method called the social credit

assignment, to speed up the convergence of the learning algorithm. Similar work can be

found in the paper by Elahibakhsh et al. (2004) which proposed a distributed form closure

strategy with Reinforcement Learning for a multi-robot cooperative carrying task.

Another interesting work in this area was completed by Ito and Gofuku (2004). They

proposed a two-layer multi-robot architecture for a multi-robot cooperative transportation

task. In the top level of this architecture, they employed a centralized machine learning

method for decision-making. For the lower level, a distributed rule-based control strategy

was developed, to control the robot movement to reach a specified position and take a

specific action according to the commands from the upper level. In addition, they

integrated Reinforcement Learning with Genetic Algorithms to reduce the learning space.

1.3.2 Machine Learning in Multi-robot Systems

As stated before, learning capabilities are desirable for multi-robot systems, especially

when they are required to work in a dynamic and unknown environment, and machine

learning technologies have been employed commonly for this purpose. Among these

machine learning approaches, Reinforcement Learning and especially Q-learning, has

been quite popular due to its simplicity and good real-time performance.

Parker et al. (2000a, 2002) studied multi-robot learning with regard to two aspects:

Learning new behaviors and learning parameter adjustments. In order to make robots learn

new behaviors autonomously, they proposed two approaches. The first one, distributed

pessimistic lazy Q-learning, combines lazy (or instance-based) learning with Q-learning

and uses a Pessimistic Algorithm for dealing with the credit assignment problem. The

second approach, called Q-learning with VQQL(Vector Quantization with Q-learning) and

Generalized Lloyd Algorithm, addresses the generalization issue in reinforcement learning.

The two approaches have been validated in a CMOMMT (Cooperative Multi-robot

13

Observation of Multiple Moving Targets) project. In the area of learning for parameter

adjustment, the L-ALLIANCE multi-robot architecture enables robots to autonomously

update their control parameters so that they can adapt their behavior over time in response

to changes in the capabilities of the robots, team composition, and the environment

(Parker et al., 2000a, 2002; Fernandez and Borrajo, 2005).

Kapetanakis and Kudenko (2002) have summarized machine learning for autonomous

agents and multi-agent systems. They established that there were two kinds of multi-agent

learning: multiple single-agent learning and social multi-agent learning. In multiple single-

agent learning, a learning agent regards other agents as a part of the environment and has

no explicit awareness of their existence, let alone their goals and beliefs. However, in

social multi-agent learning, agents can have a high awareness of other agents and

incorporate this knowledge in the learning process, potentially using communication,

coordination, and agent modeling techniques to support the learning task. In addition, they

studied the relationships among learning, communication and roles.

Martinson and Arkin (2003) developed a multi-robot foraging task with Q-learning.

They integrated Q-learning with the behavior-based approach. The learning space was

reduced by the behavior representation, and Q-learning was employed to dynamically

select the roles of robots. They compared the Q-learning strategy with a hand-crafted

strategy and the simulation results showed that the former outperformed the latter. In

another work (Martinson et al., 2002), they employed Q-learning to select behaviors for a

single robot.

Park et al. (2001) proposed a modular Q-learning based multi-agent cooperation for

robotic soccer. The basic idea was to use modular Q-learning to cope with the large

learning space problem. Ishiwaka et al. (2003) also developed an approach to the pursuit

problem in a heterogeneous multi-agent system using reinforcement learning. In their

paper, they proposed the angle-based state representation in Q-learning and employed

POMDP (Partially Observable Markov Decision Processes) to construct predictions of the

target position and its next moving direction. In addition, Q-values for each state and

action were updated via a radial basis function (RBF) due to the continuity of the sate-

action space.

14

Dahl et al. (2004) developed a Q-learning based multi-robot cooperative transportation

task in a simple environment. They proposed a two-layer multi-robot architecture where a

behavior-based reactive subsystem was placed in its lower level while a Q-learning based

behavior-selection subsystem was placed in the upper level. They also introduced two

communication strategies to speed up the convergence of Q-learning.

Svinin et al. (2000) employed another type of reinforcement learning, Classifier

System, in a multi-robot cooperative lifting task. In their project, they considered the issue

of continuous space in reinforcement learning. Kawakami et al. (2001) developed a multi-

robot cooperative carrying project by combining two reinforcement learning algorithms.

The first reinforcement learning algorithm was used to predict the states of other robots

while the second reinforcement learning algorithm was used to select the action of the

current robot.

Kovac et al. (2004) addressed a "pusher-watcher" multi-robot box-pushing problem

with reinforcement learning. In this project, one robot acted as a "watcher" which

observed the current world state and broadcasted it to other robots. Other robots in the

project acted as "pushers" which selected respective pushing actions with Q-learning. This

architecture had to rely on a fully robust communication network, which represents a

weakness of the approach.

Inoue et al. (2004) developed a reinforcement learning based multi-robot transportation

project in which they employed machine learning to correct the robot positions in the

course of transportation. Moreover, in this project they compared Q-learning with

Classifier System.

Talor and Stone (2005) addressed an interesting issue in reinforcement learning: how to

transfer the learned knowledge from one task to another one that has a different state-

action space. The main benefit of this kind of transfer is the reduction of the training time

in reinforcement learning. They used the specific domain knowledge to construct a

knowledge mapping function between two tasks so that the knowledge transfer happened
effectively.

Tangamchit et al. (2003) addressed several crucial factors affecting decentralized

multi-robot learning in an object manipulation task. They first gave a taxonomy of multi-

robot systems with the following dimensions: individual architecture (reactive,

15

deliberative, hybrid), group architecture (centralized vs. decentralized), number of robots

(small vs. large), diversity (homogenous vs. heterogeneous), learning type (decentralized

vs. centralized), learning reward (local reward vs. global reward) and learning algorithm

(Q-learning vs. Monte Carlo). Then, they identified four factors affecting distributed

multi-robot learning, which were the reward type, the learning algorithm, diversity, and

the number of robots. They concluded that the reward type and the learning algorithm

affected the final results significantly, and diversity and the number of robots could affect

the learning speed but had little effect on the final results.

In order to reduce the state-action space (learning space) of reinforcement learning in

multi-robot systems, Ferch and Zhang (2002) proposed a kind of graph representation of

the state-action space. They demonstrated their approach in a cooperative assembly task.

It is clear that Reinforcement Learning is rather popular in multi-robot coordination.

However, the applications used in this context do not have strong theoretical basis. The

environment in a multi-robot task is usually dynamic because it is changed by the robots

themselves. Simply extending the single-agent Reinforcement Learning algorithm to the

multi-robot field violates its assumption of stationary environment (Yang and Gu, 2004).

However, it is believed that this type of extension is feasible in a purely cooperative task

such as multi-robot transportation.

Several multi-agent reinforcement algorithms have been developed in the multi-agent

community. They include MiniMax Q-learning algorithm (Littman, 1994), Nash Q-

learning algorithm (Hu and Wellman, 1998), and Friend-or-Foe Q-learning algorithms

(Littman, 2001b). In particular, for purely cooperative games, Littman (2001a) suggested

the Team Q-learning algorithm, which is a simplified version of the Nash Q-learning

algorithm. All these algorithms assume a dynamic environment and allow each robot to

observe the actions of its peers before it makes decisions. Under some conditions, these

algorithms are proved to converge to the optimal policy (Yang and Gu, 2004).

The main disadvantage of the multi-agent reinforcement learning algorithms is that

they result in a tricky and extensive learning space (state/action space) because each robot

needs to monitor not only its own actions but also the actions of its peers. When the

number of robots increases, the resulting extensive learning space will make the algorithm

less effective. However, when the number of robots increases, the single agent

16

Q-learning algorithm still can work because its learning space is fixed.

Some researchers have tried to employ the neuro-fuzzy approach to coordinate multiple

robots. For example, Pham and Awadalla (2002) presented a neuro-fuzzy based action

selection architecture for cooperative robots to push a box in an obstacle-free environment.

However, the neuro-fuzzy approach is not popular in the multi-robot community due to

the need of complex training.

Another trend in multi-robot learning is to integrate Genetic Algorithms (GAs) with

Reinforcement Learning to reduce its large learning space. A representative work in this

area is done by Ito and Gofuku (2004). They tried to use GAs to search an optimal

learning space for Reinforcement Learning so that it can operate within a much smaller

space. Several papers discussed the benefits of integrating learning with evolution (Sen,

1998; Nolfi and Floreano, 1999). However, research in this area is still in its infancy.

There are many open questions yet to be explored.

1.3.3 Computer Vision and Sensing Technologies for Multi-robot Systems

In a multi-robot system, it is important for a robot to know the latest poses

(positions/orientations) of other robots and potential obstacles in the environment so as to

make rational decisions. There are many methods to detect the poses of objects or peer

robots in the environment; for example, using global/geographical positioning systems

(GPS), sonar, laser distance finders, wireless beacons, and digital CCD (charge-coupled

device) cameras. Today, the CCD camera, sonar and laser distance finder have become the

typical sensors included in a standard configuration of mobile robots. As a result, there has

been a need in the robotics community to develop sensing algorithms to recognize,

identify and estimate features or poses of objects in a robotic work environment. For

example, Stone and Veloso (1998) studied a multi-robot soccer system. In their work, they

used a global camera to monitor the positions of the robots and objects in the game. Rocha

et al. (2005) developed a cooperative multi-robot system to build 3-D maps of an

unknown environment using the vision-based approach. Kato et al. (2003) proposed a

method for identifying a robot and obtaining its relative position in a multi-robot system

using an omnidirectional vision sensor. They validated their approach using the simulation

and experiment results. Similar work has been done by Hajjdiab et al. (2004) where a

17

vision-based approach for multi-robot Simultaneous Localization and Mapping (SLAM)

was proposed. They proposed to calculate the locations of the robots using a collection of

sparse views of the planar surfaces on which the robots were moving on. The camera

motions were estimated using inter-image homographes computed by matching the

overhead transformed views.

Simultaneous tracking of multiple moving objects with vision sensors is an important
topic in road traffic control systems. For example, Veeraraghavan et al. (2003) developed
a computer vision algorithm to track the vehicle motion at a traffic intersection. A
multilevel approach using a Kalman filter was presented by them for tracking the vehicles
and pedestrians at an intersection. The approach combined low-level image-based blob
tracking with high-level Kalman filtering for position and shape estimation. Maurin et al.
(2005) presented a vision-based system for monitoring crowded urban scenes. Their
approach combined an effective detection scheme based on optical flow and background
removal that could monitor many moving objects simultaneously. Kalman filtering
integrated with statistical methods were used in their approach. Chen et al. (2005)
presented a framework for spatiotemporal vehicle tracking using unsupervised learning-
based segmentation and object tracking. In their work, an adaptive background learning
and subtraction method was applied to two real-life traffic video sequences in order to
obtain accurate spatiotemporal information on vehicle objects. Rabic et al. (2005)
developed a mobile bus-mounted machine vision system for transit and traffic monitoring
in urban corridors. They used a new computer vision approach: the active vision paradigm,
which has mechanisms that can actively control camera parameters such as orientation,
focus, and zoom in response to requirements of the task and external stimuli. Siyal (2004)
proposed a novel neural network and window-based image processing technique for road
traffic applications. In particular, they used morphological edge detection techniques to
detect vehicles. Once the vehicles were detected, a back-propagation (BP) neural network
was used for calculating various traffic parameters. Deng et al. (2005) developed an
adaptive urban traffic signal control system using vision sensors. They integrated and
performed vision-based methodologies that included object segmentation, classification
and tracking methods to determine the real-time measurements in urban roads.

The laser distance finder and the CCD camera are two standard sensing devices which
are commonly used in mobile robots today. The laser distance finder can accurately detect
objects within a radius of 50 meters. It can scan the surrounding environment and return a
distance measurement for each degree in a 180 degree view. Alternatively, the CCD
camera can return rich vision information instead of the distance information. It can detect

18

the shape, color and surface features of the objects of interest. Therefore, it is a natural
way for researchers to combine the two sensors for object recognition and localization.
For example, Alenya et al. (2005) used laser and vision to locate a robot in an industrial
environment. They combined the precision of laser-based local positioning with the
flexibility of vision-based robot motion estimation. Their proposed approach was
validated in the warehouse of a beer production factory. Tomono (2005) employed a
mobile robot equipped with a laser distance finder and a monocular camera to build a 3-D
environmental model. In this framework, they first built a 2-D map by scanning objects in
the environment with a laser sensor, and then verified the detected candidates by using
vision-based object recognition.

Takahashi and Ghosh (2005) integrated a laser range finder sensor with a vision sensor
to identify the parameters of a moving object. They showed that this approach could
reduce the dimension of the parameter ambiguity. Murarka et al. (2006) presented a hybrid
method using laser range-finders and vision for building local 2D maps to help an
intelligent robotic wheelchair for distinguishing between safe and hazardous regions in its
immediate environment. In this project, laser range-finders were used for localization and
mapping of the obstacles in the 2D laser plane while vision was used for detection of the
hazards and other obstacles in the 3D space. The information on the hazard and the
obstacle was then combined to construct a local 2D safety map.

Frontoni and Zingaretti (2005) compared the sonar-based Monte Carlo Localization
approach with the vision-based localization approach in terms of localization accuracy,
and found that both approaches bore some weaknesses in an environment with high
perceptual aliasing. However, it was shown that the overall accuracy was improved when
the approaches were combined. Asensio et al. (1999) developed a goal directed reactive
robot navigation system with relocation using laser and vision. In their project, the robot
first selected the initial goal location for the navigation task, and laser was used to
accomplish reactive navigation while avoiding obstacles. An extended Kalman filter was
used to solve the data association problem. Ortin et al. (2004) presented a method for
solving the localization problem using 2D laser and vision. A 2D laser scan together with
its corresponding image was obtained and it was segmented into textured vertical planes
which allowed safe plane recognition. Gopalakrishnan et al. (2005) also developed a
mobile robot navigation project which integrated laser and vision. The laser-based
localization, vision-based object detection, and route-based navigation techniques for a
mobile robot were combined.

19

1.4 Contributions and Organization of the Thesis
This thesis researches and develops new techniques and expertise which will help

multi-robot systems operate in a robust and effective manner in dynamic and unknown

environments. There are four main contributions in the thesis, as follows:

• A fully distributed hierarchical multi-robot architecture is developed, which

integrates the techniques of machine learning, path planning, behavior-based

paradigm and low-level control. This architecture enables multi-robot systems to

plan their sub-tasks dynamically, learn and adapt to new unknown environments,

promote cooperation among robots, detect any local minimum problems, switch

decision-making methods online, and complete the desired tasks in robust and

effective manner.

• A modified reinforcement learning algorithm termed the Sequential Q-learning

with Kalman Filtering (SQKF), is developed, which is designed to deal with some

crucial issues in multi-robot learning, such as credit assignment, reducing the

learning space, and Markov assumption. The proposed SQKF algorithm is

compared with the conventional single-agent Q-learning algorithm and Team Q-

learning algorithm through computer simulation, and it is shown that the SQKF

algorithm outperforms the conventional Q-learning algorithms.

• A fast computer vision algorithm is developed to track multiple objects

simultaneously, and applied to a multi-robot object transportation task. The

algorithm is validated using physical experimentation.

• A physical multi-robot transportation project, which integrates the developed

techniques, is developed in-house. This multi-robot system works in a dynamic

and unknown real-world environment and shows adaptivity, effectiveness, and

overall good performance.

The organization of this thesis is as follows. In Chapter 1, the background of multi-

robot systems and the research objectives of the thesis are introduced. Then the

research problem of the thesis is defined and a literature survey is carried out to

establish the related background work. In Chapter 2, a learning/planning based

hierarchical multi-robot architecture is presented. Various techniques included in this

architecture, such as the behavior-based approach, the machine learning and planning

20

techniques, are addressed. Their relationships are also studied. Finally, several

pertinent issues of distributed control are discussed. In Chapter 3, two conventional

reinforcement learning algorithms--the single-agent Q-learning and the Team Q-

learning--are extended to the multi-robot domain to facilitate decision making for

robots in a dynamic and unknown environment. The two algorithms are assessed

through a multi-robot transportation project. The simulation results are analyzed, and

the advantages and disadvantages of the two algorithms are assessed. In Chapter 4, a

modified reinforcement learning algorithm termed the Sequential Q-Learning with

Kalman Filtering (SQKF), which is suitable for multi-robot decision-making, is

proposed and developed. Simulation results are presented to show that the modified

algorithm outperforms the conventional Q-learning algorithms in multi-robot

cooperative tasks. In Chapter 5, a fast color-blob tracking algorithm is developed to

support robots to track multiple objects of interest in an environment with uneven

illumination. The algorithm is validated in a multi-robot object transportation project.

In Chapter 6, a physical multi-robot cooperative transportation system operating in a

dynamic and unknown environment is developed and presented. A JAVA RMI

distributed computing model is introduced to allow robots to communicate and

cooperate effectively. Multiple experimental results are presented to demonstrate the

performance of the developed system, particularly concerning adaptivity and

robustness. Chapter 7 summarizes the primary contributions of the thesis and indicates

some relevant issues for future research.

21

Chapter 2

Learning/Planning Based Hierarchical Multi-robot

Architecture

2.1 Overview
A multi-robot architecture represents the organization structure of the key components

and their function descriptions in a multi-robot system. It has two primary functions: to

promote cooperation or coordination among robots; and to enable a member robot to make

rational decisions and effectively complete the corresponding tasks.

As presented in section 1.3.1, there are five main types of multi-robot architectures as

given in the literature. They are the behavior-based architecture, the planning-based

architecture, the distributed-control based architecture, the market-based architecture and

the learning-based architecture. Especially, the behavior-based architecture, profiting from

its simplicity and robustness, is the most popular one and has enjoyed many successful

applications in industrial and academic fields (Parker, 1998, 2000b; Huntsberger et al.,

2003; Schenker et al., 2003; Balch and Arkin, 1998). If the designer can foresee all

possible world states the robots will encounter, designs the corresponding behavior rules

and carefully adjust their preference levels, a behavior-based multi-robot system will work

very well in a known and structured environment.

However, most multi-robot systems need to work in dynamic and unknown

environments; for example, planet surfaces or deep ocean floors, where they face several

challenges. First, the behavior-based approach requires a human designer to design all

behavior rules and determine their preferences for the individual robots in advance.

Because it is almost impossible for a designer to foresee all possible world states or

situations that the robots will encounter and design the corresponding behavior rules for

them, a behavior-based robot can easily fail in a dynamic and unknown environment with

a large number of states. Second, since for a dynamic and unstructured environment

usually there will be a large number of possible "world" states, the designer will be forced

to design an extensive rule base to deal with all these states. However, it is very difficult

22

and sometimes impossible to arrange the preference for each behavior rule in an extensive

rule base due to the "combination explosion" problem. It is clear then that a purely

behavior-based multi-robot system is doomed to be weak and not robust in a dynamic and

unknown environment.

The second multi-robot architecture is the planning-based architecture which

employs planning techniques of traditional Artificial Intelligence (AI) to find optimal

decisions for the robots (Miyata et al., 2002). There are two types of planning-based multi-

robot architectures: the centralized planning architecture and the distributed planning

architecture. In a centralized planning architecture, one robot will plan actions and assign

sub-tasks for all other robots in the team. Because task allocation among multiple robots is

a NP (Non-deterministic Polynomial time) problem in the computational complexity

theory, the main disadvantage of this approach is its computational complexity. When the

number of robots is large, it is very difficult and even impossible to find an analytical

solution. The only appropriate method might be to employ an AI-based optimization

technique to approximate it. In addition, the fragility and communication bottleneck of a

centralized system will make it weak. On the other hand, the distributed planning multi-

robot architecture attempts to enable each robot to plan its actions independently, and

reach a global optimal decision by merging the individual decisions of all robots. Due to

its difficulty, as reported in the literature, there have few successful examples in this field.

Furthermore, both centralized-planning architecture and distributed-planning architecture

will easily fail in a dynamic and unknown environment because they cannot adjust the

policies (action sequences) of robots quickly to adapt to a fast changing environment.

The third type of multi-robot architecture is based on distributed control strategies

(Pereira et. al, 2004; Sugar and Kumar, 2002; Wang et al., 2003a, 2003b, 2003c, 2004a,

2004b, 2005). They employed a distributed control strategy such as "Form Closure,"

"Object Closure," or "Leader-Follower Control" to allocate sub-tasks for robots so as to

control the team formation. The main disadvantage of this type of multi-robot architecture

is that it is only suitable for a special multi-robot task in the class of Multi-robot

Cooperative Transportation, and it is not a general architecture. In particular, the "Object

Closure" approach cannot be extended to other multi-robot systems such as multi-robot

23

cooperative foraging and multi-robot cooperative observation. In addition, this type of

multi-robot architecture also suffers from the computational complexity problem.

The fourth type of multi-robot architecture is the market-based architecture (Zlot and

Stenz, 2006; Gerkey and Mataric, 2002b). Rooted in the multi-agent coordination theory,

it is a new and promising approach for coordinating multiple robots in a complex

environment. However, there are still many open questions in this area, and its main

challenges are related to computational complexity and real-time performance.

The fifth type of multi-robot architecture is the machine learning-based architecture.

Rooted in iteration and dynamic programming techniques, machine learning technologies

approximate the optimal polices of the robots and attempt to avoid the computational

complexity problem which affect other multi-robot architectures. In particular, due to its

simplicity and good real-time performance, reinforcement learning, especially the Q-

learning algorithm, has been used commonly (Ferch and Zhang, 2002; Ito and Gofuku,

2004; Martinson and Arkin, 2003; Mataric, 1997; Stone and Veloso, 1998; Yang and Gu,

2004; Liu and Wu, 2001). In a survey paper, Arai et al. (2002) have suggested that area of

learning-based multi-robot system was one of two emerging trends in the multi-robot

domain.

As discussed in Chapter 1, the learning capability is crucial for multi-robot systems to

work in a dynamic and unknown environment. It will help robots to identify new world

states and learn how to adapt to them. Based on the experiences of past success and failure

in a dynamic environment, the robots with a learning capability can continuously adjust

their action policies and improve the performance, thereby completing the required tasks

in a quicker and more robust manner.

It has been shown, however, that simply extending learning algorithms that are

designed for a single robot to a multi-robot system is not appropriate (Yang and Gu, 2004).

In particular, our own work has shown that extending the single-agent Q-learning

algorithm to the multi-robot domain violated its assumption of a stationery environment,

and made the learning algorithm not converge to its optimal policy. In addition, a purely

learning-based multi-robot system cab be easily trapped into a local minimum (Wang and

de Silva, 2006a, 2006b).

24

From these observations it is clear that the problem of multi-robot decision and

control is a challenging one. No single approach can solve all the problems associated

with it. Accordingly, the combination of several existing mainstream techniques may be

necessary to build a new multi-robot architecture that can support multi-robot cooperative

operations in a dynamic and unknown environment, effectively and in a robust manner. In

this chapter, a new hierarchical multi-robot architecture is proposed, which integrates

machine learning, planning, and behavior-based approaches. In section 2.2, a preliminary

introduction of this general architecture is given. Its detailed implementation is presented

in the subsequent sections. Finally, some distributed control issues in multi-robot systems

are discussed. The multi-robot architecture developed in this chapter will be validated with

computer simulations and physical experiments in the subsequent chapters.

2.2 General Architecture
In order to support multi-robot systems that work in a dynamic and unknown

environment, a hierarchical multi-robot architecture that offers improved robustness and

real-time performance is developed in this chapter. This architecture, presented in Figure

2.1, will integrate machine learning, planning and behavior-based approaches for robotic

decision-making.

25

rocal Planning
Unit

[Sensors) (Actuators)
Communication

Hardware
A

High-level Task
Decomposition and
Assignment

Behavior-based
Distributed Control

711 Modeling Low-level Force/Position
Control

Model Base

Hardware Level

Robot j

4-- Low-level Control

meLeaming
Unit

Arbitrator

Composite Behaviors Group Behaviors
,

• '

Communication Behay . or

I

•^• •
Primitive Behaviors

Figure 2.1: A general and hierarchical multi-robot architecture.

This is a fully distributed multi-robot architecture which attempts to integrate several

popular artificial intelligence (AI) techniques for decision-making in a dynamic,

unstructured, and complex environment. By organizing different techniques in a

hierarchical manner, this architecture provides the robots with flexible and robust

capabilities of decision-makings to adapt to the external environment dynamically. It has

four layers which are: High-level Task Decomposition and Assignment, Middle-level

Behavior-based Control, Low-level Robot Force/Position Control, and Hardware Level.

In its top level, there is a learning unit and a planning unit, which are used to

implement inter-robot coordination. In particular, a specific robot will collect information

from its own sensors and from the sensors of the peer robots through the communication

network, determine the current world state, and decide its actions with its learning-based

or planning-based units to reach the goal of the robot team. Therefore, this level will carry

out inter-robot task decompositions and assignment.

As noted before, when making decisions, each robot may use a learning-based unit or

a planning-based unit. An arbitrator will monitor the current world state and decide which

26

unit will be used to make decisions for the robot. For example, when the robots work in a

dynamic environment, the learning-based unit is usually selected by the arbitrator to

decide actions for the robot. However, once the arbitrator realizes that the whole multi-

robot system is trapped in a local minimum, it will turn off the learning unit temporarily

and switch on the planning unit to plan actions for the robots in a local environment.

When the robots escape the local minimum, the arbitrator will return the decision-making

capability to the learning unit. Through this type of switch mechanism, the multi-robot

architecture benefits from both learning and planning, and can flexibly adapt to various

environments.

In the middle level of the architecture, a popular behavior-based approach is employed

to implement robust control of robot actions. As stated in Section 2.1, the behavior-based

approach is known to be effective in multi-robot cooperative control. Here, it is employed

to implement sub-tasks as decided by the top level. When the top level of the architecture

establishes the current sub-tasks for the robots, they will be sent down to the behavior-

based control level so as to be decomposed in further detail of robot behavior. There are

four types of behavior: group behaviors, composite behaviors, communication behaviors

and primitive behaviors. The group behaviors implement coordination among robots; for

example, "Follow the leader robot," and they are usually fired by the learning unit or the

planning unit in the top level of the robot architecture. The communication behaviors are

responsible for communication among robots. Composite behaviors control the actions of

individual robots; for example, "Avoid obstacle," and they can be decomposed further into

primitive behaviors such as "Turn left" or "Go straight." Through the design of

hierarchical behaviors and by carefully arranging their preferences, the robots can

complete the required tasks as defined by the top level, in a effective and robust manner.

The third level of the architecture is the low-level control layer. In this layer, various

low-level "hard" controllers, such as proportional-integral-derivative (PID) controllers or

force controllers, can be designed to accurately control the actions of the robots. The

required values of the controllers are established by receiving commands from the

behavior-based control layer. In addition, a local modeling unit may be designed to model

local interactions among the robots or between one robot and the manipulated object (or,

work environment) based on the online position/force information of the robots.

27

The lowest level of the architecture is the hardware level. It includes sensors,

actuators, communication hardware, video cameras of robots. They constitute the

hardware platform of the multi-robot architecture.

The first two levels of the architecture implement "soft" control of a robot while the

third level implements "hard" control. In particular, the top level is employed to

decompose and assign tasks among robots; the behavior-based control layer decomposes

the actions of a single robot further into more detailed primitive behaviors; and the third

level controls motions and forces of the robot with "hard" control laws. By combining

established mainstream approaches in multi-robot coordination, such as learning, planning

and behavior-based methods, this multi-robot architecture provides more flexiblity and

cooperating power in a dynamic, unknown and unstructured environment than those

presented in literature.

The proposed multi-robot architecture will be validated through computer simulation

and experimentation, as presented in the following chapters.

2.3 Machine Learning Unit
A machine learning unit is designed in the proposed multi-robot architecture and is

placed in its top layer. The objective of this unit is to learn optimal decision-making

policies in a given environment through continuously observing actions of the robots and

the corresponding environmental rewards. The principle of the machine learning unit is

presented in Figure 2.2.

Figure 2.2: The principle of the machine learning unit.

28

In Figure 2.2, each robot gains experience by continuously observing the current

environmental state, selecting and taking an action, and getting a reward from the

environment. Simultaneously, it also needs to observe actions of its peer robots and assess

their effects on the environment. Based on the past experience with the work environment,

each robot employs a machine learning technique, as developed in the thesis, to

continuously improve its performance and approximate its optimal decision-making policy.

In particular, with the help of the machine learning unit, the robot dynamically adjusts

the mapping relationship between the world (work environmental) states and its actions.

Therefore, it will outperform a robot that may use a conventional behavior-based approach

whose behavior rules and rule preferences are fixed.

In this thesis, Q-learning will be employed and enhanced to learn and improve the

mapping relationship between the world states and the robot actions. Here, the main

challenge is how to extend the single-agent Q-leaming algorithm to the multi-robot

domain. Chapter 3 and Chapter 4 will discuss this issue in detail.

2.4 Planning Unit
2.4.1 Planning and Learning in Multi-robot Applications

A multi-robot architecture integrating the behavior-based approach with machine

learning works well in a complex environment even when the environment is dynamic and

unknown. However, in our previous research (Wang and de Silva, 2006a), it was shown

that with this type of architecture, sometimes the multi-robot system may be trapped in a

local minimum, as exemplified in Figure 2.3.

29

Figure 2.3: An example of the local minimum phenomenon in a purely Q-learning-based

multi-robot cooperative box-pushing task.

Figure 2.3 shows a multi-robot cooperative box-pushing task which employs the

distributed Q-learning algorithm. This project will be described in detail in the next

chapter. In the present section, it is used just to demonstrate why planning capabilities are

still necessary for multi-robot tasks. In Figure 2.3, there are three autonomous robots

which attempt to push a rectangle box cooperatively from its starting position to a goal

location. Many challenges exist. For example, there are obstacles distributed randomly in

the environment and each robot possesses local sensing capabilities only, which means a

robot does not know about an obstacle before it moves sufficiently close to the obstacle.

Another challenge is that the box is very long and heavy so that no single robot will be

able to handle it alone. The robots have to find optimal cooperative pushing strategies to

move the box to the goal location while avoiding collision with any obstacles in the

environment. In our previous work (Wang and de Silva, 2006a, 2006b), a Q-learning

based distributed multi-robot architecture was proposed to complete the task. While it was

successful in most of trials, some failure examples like the one shown in Figure 2.3 were

observed.

30

In Figure 2.3, it is noted that the multi-robot system enters a local minimum area and

the box is stuck there. Even though there was a possible trajectory for the robots to move

the box out of the local minimum area, the learning-based robots could not find it. This

example shows that a purely learning-based multi-robot system sometimes fails in a

complex environment, due to the local minimum problem. In other words, a multi-robot

system with learning capability alone is not strong enough to deal with all possible

environmental states.

However, if the multi-robot system in Figure 2.3 possesses some local path planning

capabilities, it will be able to get out of the local minimum easily because of the presence

of at least one path for the robots to avoid the obstacles and move the box to the goal

location.

It follows that, both learning and planning are important for a multi-robot system to

successfully complete cooperative tasks in a dynamic and unknown environment in the

presence of complex obstacle distribution. The learning capability will help robots to

adapt to a fast changing environment and improve their performance continuously while

the planning capability will overcome shortcomings of a purely learning-based decision-

making system and make it escape any local minimum.

In the top level of the proposed multi-robot architecture shown in Figure 2.1, a local

planning unit is integrated with a machine learning unit to decompose tasks among the

robots. The so-called "local planning" means that planning is executed in a local world or

local environment instead of a global one. In Section 2.1, it is stated that a global planning

architecture suffers from shortcomings such as computational complexity and

communication bottleneck. However, a local planning unit does not possess these

problems or these problems are not very serious because it only needs to deal with local

decision-making issues in a part of the environment. The cost of a local planning unit is it

is not strong enough to make all decisions necessary for the robots to complete a task. It

has to combine with other AI techniques, such as machine learning and the behavior-based

paradigm, to constitute a more powerful and flexible decision-making unit for multi-robot

systems.

31

2.4.2 Local Path Planning for Multi-robot Cooperative Transportation

As presented in Section 1.1, one of the objectives of this thesis is to develop a multi-

robot cooperative transportation system which works in a dynamic and unknown

environment with complex obstacle distribution. In order to reach this goal, a local path

planning unit is designed. This planning unit will be activated when the learning-based

decision-making unit is trapped at a local minimum, and it will temporarily plan local

moving paths of the robots so as to escape the local minimum. Once the robots are away

from the local minimum, the decision-making right will be returned to the learning-based

unit from the planning unit.

The local planning unit is a centralized planning unit. In other words, when a local

minimum is detected, all learning units of robots will stop working and transfer their

decision rights to the planning unit of a leader robot whose role is designated in the design

stage. Then, the leader robot will merge the sensor information of all robots and establish

the current local world state. Based on the local world state, it will employ a potential-

function-based path planning algorithm to plan the moving paths for all robots in the

system.

Although the centralized planning approach is criticized in Section 2.1, it is acceptable

in the present multi-robot local planning unit. The first reason for this is that

computational complexity is not high here because only a small part of the environment is

considered when planning the moving paths for the robots. The second reason is that the

local planning unit is seldom activated when a multi-robot system is working. It is

activated only when a local minimum is detected. Once the local minimum is escaped, it

will transfer the decision-making right to the machine learning unit in the top level of the

architecture. Therefore, the local planning unit only works for a very short period of time

and during most of time the machine learning unit determines the action policy of a robot.

In this thesis, instead of the conventional attractive/repulsive potential function

approach, the navigation potential function approach developed by Rimon and Koditschek

(1992) is employed to plan the moving paths of multiple robots. The advantage of this

approach is that it has only one minimum so that the planner will not be trapped at a local

minimum. The navigation potential function approach is presented below.

32

Obstacles
Goal Location •

This approach initially assumes that the local environment is bounded by a circle

centered at (x0, yo) and has n spherical obstacles centered at (x1,3 21),(x2 2) , '" , (xn,yn),

as presented in Figure 2.4. The objective of the planning algorithm is to find a path from

(X start , Y start) to (xgoal ,ypa/) while avoiding all obstacles in the local environment..

Figure 2.4: The bounded local environment in navigation potential function planning.

In order to set up the potential function of the local environment, the distance functions

at a point (x, y) inside the local environment are defined as

N0 (x, Y) -(x - x0) 2 - (Y - Y0) 2 + /0 2

^
(2.1)

fl,(x,y)=(x-x,) 2 +(y- yi) 2 - ri2^1,2,' • ',n^ (2.2)

where ro is the radius of the local environment with the center at (x0 ,y0), and r, is the

radius of the^obstacle in the local environment. Instead of considering the distance to

the closest obstacle or the distance to each individual obstacle, the sum of the distance

functions is used as the repulsive function of this potential field approach; specifically,
n

18(x, Y) = EA(x,y)
=0

In addition, the attractive function is defined as

(2.3)

33

Yk (x , y) = ((x — xgoal) 2 + (y — ygoa,)) k

^
(2.4)

where k is a constant. Finally, the total potential function in the local environment is

defined as

 —93(x , y) (TIC (X, Y) ^)Ilk = ^(x XgOal)2 + (y YgOal)2

P(X ' y) rk (X, y)^(((x - xgoa,)2 +(Y ygoai)2)k fi(x, y)) 1 /IC (2.5)

It is shown that the potential function q)(x, y) has a unique minimum in the local

environment (Rimon and Koditschek, 1992) if k is sufficiently large. Therefore it is

desirable to employ a gradient descent algorithm on the potential field to find the local

goal location (the unique minimum) . The gradient descent algorithm is presented below.

Algorithm 2.1 Gradient Descent
Input: A means to compute the gradient V co(x,y) at a point q(x, y)
Output: A sequence of points fq(xo , yo),q(xl , yi), • • • ,q(x i , yi)}

1: q(xo , v) a(^v)- 0,^start,' start ,

2: i=0
3: While IV ca(xi , y)1> E do
4: q(x^= q(xi , y) + a(i)V co(xi , yi)
5: i=i+1
6: end While

In algorithm 2.1, e is chosen to be a sufficiently small positive number based on the

task requirement. In addition, the value of the scalar a(i) determines the step size at the

id, step. It is important to select a good a(i) because a small value will result in long and

unnecessary computation and a big value will cause the robots to "jump" into the

obstacles. Usually a(i) is selected based on empirical results. For example, it is

determined according to the distance to the nearest obstacle or to the goal.

34

2.5 Integration of Learning with Planning
As discussed in Section 2.1, multi-robot planning faces challenges such as

computational complexity and communication bottleneck. In particular, a planning-based

multi-robot system can easily fail in a dynamic and unknown environment because it does

not have the knowledge of the global environment and cannot adjust its planned policy

sufficiently fast to adapt to a fast changing environment. Therefore, learning capabilities

are crucial for a multi-robot system to work robustly in a dynamic environment. However,

as stated in Section 2.4.1, our previous research shows that a purely learning-based multi-

robot system can be easily trapped at a local minimum in a complex environment. It

indicates that both learning and planning capabilities are very important for multi-robot

systems when carrying out tasks in a dynamic and unknown environment.

Accordingly, in Figure 2.1, an arbitrator is designed in the top layer of the proposed

architecture to select either the learning unit or the local planning unit for multi-robot

decision-making. When a multi-robot system begins its work, the arbitrator selects the

machine learning unit as its decision-making unit to determine its action policy, which is

then communicated to its lower level: the behavior-based distributed control layer. By

observing the world states, the robotic actions and the rewards received when the multi-

robot system is in operation, the machine learning unit gains knowledge of cooperation

among the robots and improves its performance continuously. At the same time, the

arbitrator continuously monitors the progress of the multi-robot task and determines

whether it is trapped at a local minimum. If the arbitrator finds that the multi-robot system

is trapped at a local minimum, it will temporarily close the machine learning unit of the

current robot and transfer its decision making right to a leader robot which is designated in

advance. After all robots have transferred their decision-making rights to the leader robot,

a centralized planning architecture is formed temporarily. Through fusing sensor

information of all robots, a local environment is estimated by the leader robot. Based on

this local environment, the leader robot plans the actions of the robots by employing the

navigation-potential-function approach which is presented in Section 2.4.2. All the robots

take actions planned by the leader robot until they escape the local minimum. When the

robots are away from the local minimum, the arbitrator of each robot will return the

decision-making right to its machine learning unit. The temporarily centralized planning

35

Group Behaviors

- -

•^411.w

Other Behaviors

-
„

/ 0 0

Composite Behaviors

••0" •^•^•
Primitive Behaviors

architecture is then dismissed and the multi-robot system returns to a learning-based

distributed decision-making system.

In addition, a heuristic approach is used to recognize a local minimum for

implementing the planning/learning switch mechanism, as outlined above. In particular, if

n(n 3) successive q(xi , y i) are found to lie within a small region of the local

environment, it is possible that a local minimum exists. For example, if for a small

positive cm , Iq(xi, yi)—q(xi+1,yi+l)I«m , lq(x,, y)— q(x, +2 , yi+2)1< em and

q(x„ y,) — q(xi+3 , y i„)1< em are detected, then it is concluded that q(xi , yi) is close to a

local minimum.

2.6 Behavior-Based Distributed Control
In the proposed multi-robot architecture as presented in Figure 2.1, a behavior-based

distributed control layer is designed to control the local actions of a robot. The behavior

control layer is situated between the high-level task decomposition and assignment layer

and the low-level "hard" control layer. Actions selected by the high-level task

decomposition and assignment layer are usually quite abstract and cannot be directly sent

to the low-level "hard" control layer for execution. Therefore, these high-level abstract

actions need to be decomposed into more detailed actions in the layer of behavior-based

distributed control.

Here, a hierarchical behavior control architecture, which is based on the CAMPOUT

architecture developed at the NASA Jet Propulsion Laboratory or JPL (Huntsberger et al.,

2003), is developed to control the robot behavior in a robust manner. The general idea of

the behavior control layer is presented in Figure 2.5.

Figure 2.5: The hierarchical behavior-based control layer.

36

The so-called "Behavior-based systems" are systems that use behaviors as basic

building blocks of robotic actions. Here, a behavior is a reaction to a stimulus. Therefore,

in some literature, behavior systems are also called reactive systems. In such a system, the

use of an explicit abstract knowledge representation is usually avoided. Actions of robots

are coupled tightly with their perceptions without a knowledge reasoning process or time

history. The ideas of behavior-based systems are derived from animal models, which have

been proved to be quite successful in AI research.

There are several advantages of behavior-based systems over planning-based systems.

First, a behavior-based system is simple and easy to design. By tightly coupling

perceptions with actions and avoiding complex time-consuming reasoning and planning, it

is much easier to design a behavior-based system than a traditional AI system with

planning and reasoning. In addition, it is shown that planning is often "useless" in a fast

changing environment because it cannot adapt to it. Second, the behavior-based approach

has shown good performance of robustness in simulated and physical robotic systems. If

the designer can foresee all possible world states and arrange the corresponding behavior

rules to deal with them, a behavior-based system can be quite successful even in a

dynamic and unknown environment. Third, through the interaction of existing behaviors,

some "emergent behaviors" or new behaviors generated by uncertainties in the

environment will occur automatically, which can surprise the designer.

2.6.1 Behavior Representation

Here, behaviors are expressed using Stimulus-Response (SR) diagrams. Figure 2.6

shows a SR diagram.

Figure 2.6: A SR diagram of a simple behavior.

In Figure 2.6, a behavior can be expressed as a 3-tuple (S,R,fl) where S denotes the

set of all possible stimuli, R represents the range of the response, and fi denotes the

mapping function between S and R.

37

An individual stimulus s (s E S) is coded as a binary tuple (p,2) where p indicates the

type of stimulus and A denotes its strength. In addition, there is a threshold value r for

each stimulus. If the stimulus strength is bigger than r , a response will be generated.

Further, for mobile robots, a response r can be expressed with a six-dimensional vector

consisting of six subcomponents. Each subcomponent encodes the magnitude of the

translational and orientational responses for each of the six degrees of freedom of motion.

r=[x,y,z,0,0,p], where r E R
^

(2.6)

For ground-based mobile robots, the response vector can be further simplified as:

r =[x,y,0]
^

(2.7)

where x and y denote the position of the mass center of the robot, and 9 represents its

heading.

For a particular behavior 16 , a gain value g is to be defined to modify the magnitude of

its response further. Finally, a behavior is expressed as

r'=g*r=g*fl(s)^ (2.8)

2.6.2 Behavior Composition

In Figure 2.5, simple primitive behaviors can be combined to build more abstract

composite behaviors. Composite behaviors are behavior packages on which a behavior-

based robot system is built. Each composite behavior includes a behavior coordination

operator and a number of behavioral components (primitive behaviors or other composite

behaviors).

The power of composite behaviors results from abstraction of behaviors in which high-

level behaviors can be built on some simple behaviors, and they can be referred to without

needing to know its behavioral components.

A formal expression of a composite behavior is given by

p = C(G * R) = C(G * B(S))^ (2.9)

where

38

S l g i 0 ••^• 0

R 2 , S =
S2 , G =

0
•

g2

• . 0
, and B = P2

_rn _ sn _ 0 ••^• 0 grn Ai

In equation (2.9), B represents the n behaviors (fli ,f32 ,• • •, 16,) which constitute the

current composite behavior. Also, S denotes a vector of all detectable stimuli relevant for

each behavior A at time t ; R denotes a vector of responses of n behaviors

(flp P2 , • • • , fin) at time t; G denotes a gain matrix which modifies the response matrix R;

and C denotes the behavior coordination operator of this composite behavior.

There are two types of behavior coordination operators: the competitive operator and

the cooperative operator. Figure 2.7 shows the SR diagram of a composite behavior with a

competitive operator.

si
Behavior #1

Stimuli p

Response

Figure 2.7: The diagram of a composite behavior with a competitive operator.

In Figure 2.7, because multiple behaviors may be activated simultaneously and their

responses may conflict with each other, a competitive operator is designed to select the

winner of the behaviors, and only the winner's response can be directed to the robot for

execution. There are several competitive operators available in literature, such as

subsumption-based arbitration, arbitration via action-selection, voting-based arbitration,

and so on.

Another type of behavior coordination operator is the cooperative operator, which is

shown in Figure 2.8.

39

Stimuli

2.8: The diagram of a composite behavior with a cooperative operator.

In Figure 2.8, the outputs of multiple behaviors are fused and directed to the robot for

execution. It indicates that multiple behaviors are executed by the robot at a time if they

do not conflict with each other. The most straightforward cooperative operator is

performed through vector addition, which simply adds the outputs of multiple behaviors.

The key to a cooperative operator is to design the behaviors so that their responses can be

fused. The most popular approach is the potential field based method which defines

behavior outputs as positions and orientations of the robot, which can be added easily.

2.6.3 Group Coordination

In order to manage and solve conflicts among robots and make them contribute to

common tasks, the activities of the robots have to be carefully coordinated. Group

coordination is implemented in the proposed multi-robot architecture through the machine

learning unit or the planning unit which is located in its top level. The learning or planning

unit continuously decomposes sub-tasks among multiple robots and assigns them to each

robot. When a robot receives its sub-task, it will decompose the sub-task further into more

detailed composite behaviors in its behavior-based distributed control level and finally

convert them into primitive behaviors for execution.

2.6.4 Communication Behaviors

In order to coordinate the activities of the robots, communication behaviors are

designed to exchange sensing information, the objectives, and internal states of the robots.

40

f, Stop

Assume
F

Find Object

It'

Move, to a
location

grtIRRITITM81?
Sub-task

- ------
Search Color

Mea.surem t........
Laser^ Obstacle

Blobs voidance

Carry^ Dismiss

There are two types of communication: explicit communication and implicit

communication. Explicit communication concerns sending or receiving information via

express data links; for example, a computer network. However, a robot also can indirectly

exchange information with its teammates by interacting with the environment or using

some sensing approaches. For instance, it can estimate its relative distance from another

robot by using its CCD camera or laser distance finder.

2.6.5 Coordinated Object Transportation

In this thesis, a multi-robot coordinated object transportation system is developed. In

order to facilitate a robot to complete its sub-tasks as assigned by the learning/planning

units in the top level of the proposed multi-robot architecture, a behavior-based distributed

control subsystem which implements Figure 2.5 is developed, as shown in Figure 2.9.

^

/ Image ss
‘^Turn in^f' Move^Move ss ,' Detect

^

Analysis / 1^,/Place--___--^Forward,/ ' , ,Backward, ,)^Obstacle
s--____--

Legend: Primitive
Behavior ,/

Composite
Behavior

Figure 2.9: Behavioral hierarchy describing the coordinated transport sub-task.

41

In Figure 2.9, the group behavior of "Assume Formation" is to make the robot move to

a designated site around the transported object so as to establish a formation with its peers.

The learning/planning unit in the top level of the proposed multi-robot architecture

determines the transportation formation of the robots, decomposes it into the specific

poses and sites of the robots, and sends downward these sub-tasks to the behavior-control

layer for execution. When the "Assume Formation" behavior is activated, it will first

activate its child behavior of "Find Object" which attempts to search the transported object

and estimates its location and orientation in the environment by suing the CCD camera

and the laser distance finder. Accordingly, the "Find Object" behavior will call the

"Search Color Blobs" behavior to make the robot turn in place continuously and try to find

some predefined color blobs which are attached to the surface of the object of interest, by

using its CCD camera, so that it can be distinguished from other objects or obstacles in the

environment. When the robot finds the object of interest, the behavior of "Laser

Measurement" is activated to estimate the position and orientation of the object with the

laser distance finder sensor. Then, the behavior of "Move to a Location" will attempt to

move the robot to the designated position as determined by its higher level

learning/planning unit. As a robot moves to its goal location, the "Move" behavior and the

"Obstacle Avoidance" behavior are activated in turn, depending on the obstacle

distribution of the environment.

After all robots reach their designated positions and generate a formation around the

object of interest, the "Signal" behavior is waked to start a synchronization process which

notifies all robots to activate the "Carry" behavior so that the object is transported. While

the robots transport the object, they also monitor whether the object collides with any

obstacles in the environment. If the object does collide with an obstacle in the course of

transportation, the robots will cancel the "Carry" behavior and report this accident to their

learning/planning units in the top level and ask them to re-plan their formation.

In this thesis, Finite State Diagrams (FSA) is used to describe the aggregations and

sequences of the behaviors so that the process of behavior activation and transition

becomes more explicit. A finite state diagram can be specified by the quadruple

(Q, 5, q0 , F) with Q representing all behavioral states; qo representing the initial state;

F representing all final (termination) states; and g representing the mapping function

42

Not at the
designa^position

The formation
is established

Other

Not at the
goal position

which maps the current behavioral state q and input a into a new behavioral state q' , i.e.,

q = g(q,a). The FSA describing the transitions of the group behaviors in the project of

coordinated object transportation is shown in Figure 2.10.

Figure 2.10: A FSA describing the transitions of the group behaviors in the project of

coordinated object transportation.

2.7 Low-level Control
The third-level of the proposed multi-robot architecture presented in Figure 2.1 is the

low-level "hard" control layer. This layer receives commands such as "Move Forward",

"Move Backward" or "Turn in Places for a Certain Degree" from its higher level of

"behavior-based control," and exactly controls the physical motion of the robot.

Basically, there are two types of robots employed in multi-robot systems. They are

robotic manipulators or mobile robots whose models and corresponding control strategies

are quite different. Both types are employed in the present research.

2.7.1 Robotic Manipulators

A robotic manipulator is a robot with multiple links connected with some revolute or

prismatic joints which are driven by motors (typically DC motors). The robot is mounted

on a fixed base in the environment and the end effector at the other end of the robot can

43

move in a limited workspace by controlling the rotational angles of its joint motors. Over

the past thirty years modeling and control of robotic manipulators has become a mature

research field. For example, the dynamic model of a robotic manipulator with n joints can

be presented as (Spong et al., 2006)

^D(q) q+ C(q, q) q+ g(q) = r^ (2.10)

where

q = (q,, q2 , • • • , q n) T is a vector of generalized coordinates of n joints

and^D(q) =[ifm iJ^J^+ J^Ri(q)liRi(q)T J ,,,,, (q)}] is the n x n inertia

matrix of the manipulator. The (k, j) th element of the Coriolis matrix C(q, q) is defined as

x--, 1 { adk; adk. adu •
Cki =^ qi

2 aq,^ aqk

and the gravity vector g(q) is given by

g (q)
^(0,g2 (0,.. .,gn (of

In most cases, the dynamic model given by (2.10) is not used due to its nonlinear and

coupled nature, and the independent joint control approach which employs multiple

proportional-derivative (PD) controllers to control each joint independently is adequate to

meet the control requirements. However, sometimes, nonlinear control approaches based

on the dynamic model of (2.10), such as reverse dynamics control, are employed to

control the motion of robotic manipulators more accurately, at the expense of increased

computational effort.

2.7.2 Mobile Robots

Mobile robots are another class of robots which are used commonly in multi-robot

systems. Control issues of mobile robots are quite different from those of fixed robotic

manipulators. Figure 2.11 shows a control problem of a mobile robot with two standard

wheels (Siegwart and Nourbakhsh, 2004).

44

1^CO^7 ' CO21 +
2^2

rco —rw21 ±^
2/^2/

_

Figure 2.11 Control of a mobile robot.

In Figure 2.11, the axes X l and Y1 define a global reference frame from the origin

0 : {X,, Y, } . The coordinate axes {XR ,YR } define the robot's local reference frame with its

origin at point P centered between the two drive wheels, and each wheel is located at a

distance 1 from P. The angular difference between the global and local reference frames is

denoted by 0 . The diameter of each wheel is r, and the spinning speeds of the two wheel

are co, and (02 . The linear and angular velocities of the robot are v and w, respectively.

Given 0 , 1 ,

x

v and w , the

cos 0 0-

kinematic model of the mobile robot is presented as

5)
O

= sin 0 0
0^1 [vwl

-

(2.11)

(2.12)

where .i and j) are the linear velocities in the directions of X1 and Y, , respectively, of the

global reference frame.

45

Given an arbitrary position and orientation of the robot in the global reference frame,

the control objective is to drive the robot to a predefined goal position and orientation by

controlling the spinning speed of the wheels of the robot. The control block diagram is

shown in Figure 2.12.

x

rob°,

Mobile Robot

Figure 2.12: The block diagram of motion control of a mobile robot.

Here [x, y, O]g oai and [x,y,t9] rTobot give position and orientation of the goal and the robot,

respectively, in the global reference frame. The task of the controller layout is to find a

suitable control gain

K =[k"
k21

such that the control of v(t) and w(t)

ki2

k22 k23
(2.13)

Ho]
Lw(t)]

= K • e= K(
x

y

x
y

(2.14)

-8 - goal

robot

will drive the error e toward zero:

lim e(t) = 0^ (2.15)

A control law is proposed in (Siegwart and Nourbakhsh, 2004), which may be

presented as

v k p^ (2.16)

W = kaa^ (2.17)

where

46

Ax xgoal Xrobot , and , Ay = Y goal — Y robot
^ (2.18)

p _ /Ax2 Ay2^ (2.19)

a = —0 + a tan 2(Ay, Ax)^ (2.20)

fl = —0 — a^ (2.21)

When the following conditions are met:

kp >0,kfl <0,and ka —kp > 0^ (2.22)

the closed loop control system in Figure 2.12 will be locally exponentially stable

(Siegwart and Nourbakhsh, 2004).

2.8 Distributed Control Issues
The multi-robot architecture proposed in this chapter is a distributed control

architecture. It means that there does not exist a leader robot to make decisions for all

other robots in the team. Instead, each robot needs to decide its own actions independently

by observing the environment or communicating and negotiating with its teammates. The

only exception is the local path-planning unit which needs centralized decision-making

when the learning and behavior-based multi-robot units are found to being trapped in a

local minimum. However, the centralized planning unit works only for a very short period

of time. Once the multi-robot system leaves the local minimum, the learning and behavior-

based units will takeover the control of the robot again.

Compared with a centralized control architecture, a distributed architecture has many

advantages, especially for multi-robot systems. The most beneficial feature of a distributed

system is its scalability. For a distributed multi-robot system, it is very easy to scale the

robot team without significantly increasing its computational cost. For example, the multi-

robot architecture proposed in this chapter can accommodate a robot team with 3 to 20

robots, and the team size can change dynamically if some robot members quit or new

members enroll in the team in the course of transportation. However, for a centralized

multi-robot system, scalability is a very difficult issue because the computational

complexity of the centralized decision-making algorithm increases rapidly with the

number of robots. In most of cases, centralized decision-making is an N-P complexity

47

problem requiring superpolynomial time, which makes the algorithm useless in a real

multi-robot system.

Another advantage of a distributed system is its low communication volume. Because

there is no centralized leader, the communication bottleneck problem will not appear.

Instead, in a centralized multi-robot system, when the number of robots increases, the

communication bottleneck will be so serious that the algorithm becomes worthless. In

addition, through carefully designing its local behavior rules, a distributed system can

complete some cooperative tasks even without communication. It is always desirable for a

distributed multi-robot system to work with a limited communication capability because

most multi-robot systems need to run in an environment where communication among

robots is usually unreliable; for example, on a planetary surface or the bottom of a deep

ocean. When communication among robots is not reliable, while a distributed multi-robot

system may still work well, a multi-robot system with centralized decision-making

becomes weak because the robot members cannot receive commands from their leader in a

timely and accurate manner.

The third advantage of a distributed system is its robustness. Decision-making

capabilities are spread across the robot members. When one robot in the team fails or quits,

other robots still can make decisions for themselves so as to continue their tasks. However,

a centralized system is not a robust one. In such a system, because one leader robot makes

decisions for all other robots in the team, once the leader robot fails, the whole system will

totally fail.

A main disadvantage of a distributed system is its low efficiency, where multiple

robots reach their agreements through some negotiation technique such as voting, auction,

and so on. These negotiation approaches are usually time-consuming and not efficient. In

addition, the distributed planning and learning algorithms are much more difficult and

complex than their centralized counterparts. Consequently, compared to a centralized

system, the final policy reached by the members in a distributed system is usually not

optimal. Therefore, it is still an open question as to how to implement efficient and

optimal distributed decision-making, especially distributed planning and distributed

learning, for multi-robot systems.

48

2.9 Summary
In this chapter, a distributed multi-robot architecture, which accommodates distributed

machine learning, local path planning, behavior-based distributed control and low level

"hard" control, was developed. The objective of the architecture is to support multi-robot

systems for carrying out cooperative tasks in a dynamic and unknown environment in an

effective and robust manner.

In the beginning of the chapter, several popular multi-robot architectures given in the

literature were introduced and compared, and their advantages and disadvantages were

highlighted. Basically, there are five architectures that have been employed by the existing

multi-robot systems; namely, the behavior-based architecture, the planning-based

architecture, the distributed control based architecture, the market-based architecture, and

the learning-based architecture. Although each architecture possesses some advantages in

solving the multi-robot cooperative problem, all of them are generally weak in supporting

a multi-robot system that operates in a dynamic and unknown environment.

In order to facilitate multi-robot systems when operating in a dynamic and unknown

environment, which is quite common for multi-robot tasks, a distributed hierarchical

multi-robot architecture was developed in this chapter. This architecture is a general

platform that consolidates several existing techniques of multi-robot decision-making, and

accommodates homogenous or heterogeneous robots in the same framework.

Next, the top level of the proposed architecture was introduced, which includes a

machine learning unit, a local path planning unit and an arbitrator. By monitoring whether

the multi-robot system is trapped at a local minimum, the arbitrator dynamically selects

either the learning-based or the planning-based approach to make decisions for the robots.

In particular, the potential-field-based path planning algorithm was introduced.

The second level of the proposed multi-robot architecture constitutes a behavior-based

control layer which further decomposes the behaviors of the individual robots. The

behavior-based approach has been proved to be robust and effective in the literature. In

this thesis, it is combined with the learning and planning units in the top level of the

architecture to control the actions of a single robot.

Below the behavior-based control layer there exists the low-level "hard" control layer.

The low-level controller in this layer receives its commands from the "primitive

49

behaviors" in the upper level, and precisely controls the motion or force of a robot. The

dynamic or kinematic models of two types of representative robots--robotic manipulators

and mobile robots--were presented. In particular, a motion control law for a wheeled

mobile robot was introduced.

Finally, some distributed control issues of multi-robot systems were discussed. In the

inception of multi-robot systems, centralized architectures were used commonly due to

their simplicity. However, centralized architectures caused many problems when the robot

team size became large. The advantages of distributed architectures were pointed out and

some open questions in this field were identified.

The proposed multi-robot architecture provides a framework and guideline for

designing physical multi-robot systems. Its machine-learning based multi-robot decision-

making will be presented in more details in Chapter 3 and Chapter 4, and the simulation

and experimental results will be given in Chapter 6, which will validate this new multi-

robot architecture.

50

Chapter 3

Machine Learning for Multi-robot Decision-Making

3.1 Overview
Multi-robot decision-making has been a challenging problem because the actions of

multiple robots and their interactions have to be considered simultaneously so as to reach

a global optimal policy. Intuitively, planning is the suitable approach to deal with this

problem. However, it is shown that planning is usually not feasible if the environment

changes fast (Arkin, 1998) because a planned optimal policy can become inapplicable due

to changes of the environment.

Multi-robot environments, such as planet surfaces and urban environments are typical

dynamic and unstructured environments, where the terrain features can change

continuously. In addition, even though the physical environment is stationary, from the

viewpoint of a single robot, it is still a dynamic one because the other robots in the team

take actions in the work environment and change it continuously.

There are two solutions to the challenge of the dynamic environment: the behavior-

based approach and the machine learning approach. The behavior-based approach as

mentioned in Chapter 2, is known to be more robust than the planning approach in a

dynamic environment. By identifying the current world state and tightly coupling it with a

specific action, behavior-based systems can quickly adapt to a fast changing environment

and show good robustness. However, although the behavior-based approach is quite

successful in simple environments, it is shown to be weak in a complex environment with

a large number of states. In particular, it is almost impossible for a designer to consider

thousands or ten-thousands of world states and arrange the corresponding behavior rules

and preferences for those rules. Therefore, the behavior-based approach is sometimes

mocked as "the insect-level intelligence" which only can deal with a simple world.

By observing the human capabilities to deal with a dynamic environment, it is not

difficult to draw a conclusion that a human employs not only planning or reactive

(behavior-based) techniques but also learning techniques to successfully complete tasks in

51

a dynamic environment. Through learning, a human learns new world states, finds

corresponding optimal actions from the past experience, and improves his planning and

reactive techniques. In other words, learning makes a human deal with unexpected world

states, decreases uncertainties in the environment, and makes his decisions more robust

and effective in a dynamic environment.

Accordingly, machine learning has become an important topic in the robotics

community. Especially in the multi-robot field, machine learning is regarded as as a new

and important trend due to the highly dynamic character of typical multi-robot

environments.

Among the existing machine learning approaches, Reinforcement Learning (RL),

especially Q-learning, is used most commonly in multi-robot systems due to its simplicity

and good real-time performance. Few multi-robot systems employ neural network or

neuro-fuzzy approaches because they need complex training and longer computational

time.

In this chapter, machine learning is adopted to make decisions for a multi-robot object

transportation task. In section 3.2, Markov Decisions Processes (MDP) and the single-

agent Q-learning algorithm are introduced. The single agent Q-learning algorithm will

converge to an optimal policy in an MDP problem without a transition model, and it will

be integrated with Genetic Algorithms (GA) to constitute the centralized decision-making

unit in a multi-robot transportation task, as presented in section 3.3. In section 3.4, a

distributed version of Q-learning based multi-robot box-pushing is presented and it is

validated through computer simulation. In section 3.5, another Q-learning algorithm more

suitable for multi-robot tasks, the Team Q-learning algorithm, is applied to multi-robot

decision making, and it is compared with the single agent Q-learning algorithm, again

using computer simulation.

3.2 Markov Decision Process (MDP) and Reinforcement Learning
Markov Decision Process (MDP) is a popular topic in the artificial intelligence (AI)

community. Not only is it important in the theoretical research of AI, it also has some

practical applications such as facilitating an intelligent agent to make decisions in a real-

world situation. The basic idea of MDP is presented below.

52

MDP can be defined by the 4-tuple <S, A,7', R, 13 > , where

• S = {s 1 , s2 ,^, is a set of states of the environment

• A= {a i ,a2 ,...,am } , is a set of actions available to the robot

• T:SxA—> n(s), is a transition function, which decides the next environmental

state s ' when the robot selects an action a, under the current state s . n(s) is the

probability distribution over the states.

• R : S x A --->^is a reward function, which determines the immediate reward

when the robot takes an action a, under the current state s .

MDP describes a sequence of decisions made by an agent or a robot in an environment

with many states. At time t, the agent needs to observe the environment and determine its

current state s E S , and then select an action a E A based on its policy if which specifies

what the agent should do for any state that it might reach. In addition, there is a reward

function which determines the immediate reward when the agent takes an action a under

the current state s .

There are two things which make MDP interesting and challenging. The first one is

that the subsequent state s' is not deterministic when the agent takes an action a under the

current environmental state s . Instead, it has a probability distribution n(s) over all the

states. This probability distribution is defined by a transition function or transition model

T(s,a,^) . The second attribute of MDP is that the transitions among states are

Markovian; that is, the probability of reaching s' from s depends only on s and not on the

history of earlier states.

The performance of an agent policy 7z - is measured by the rewards the agent received

when it made a sequence of decisions according to this policy and visited a sequence of

states. This measurement is usually represented by a sum of discounted rewards, as given

by

f=0
fil(s,) I R-]

^
(3.1)

where, 0 < fl 1 is the discount factor, and R(s 1) is the reward received when the agent

visits the state st at time t . Because the transitions among states are not deterministic in

53

view of the probablistic nature of the transition function T(s,a,s'), given a policy, the

sequence of states visited by the agent each time is not fixed and has a probability

distribution. Therefore, an optimal policy 7r* is a policy that yields the highest expected

sum of the discounted rewards, which is given by

rc * =argmaxE[Ifl tR(s i)Iffi^ (3.2)
t=0

Given an MDP problem, one crucial consideration is how to find all optimal policies (if

there exist more than one optimal policy). The value iteration algorithm has been

developed to find the solution to this problem (Russel and Norvig, 2003).

In the value iteration algorithm, first the concept of "utility of a state" is defined as

U(s)=E[Ifi tR(st)1 7-1-* , S 0 = Si
t =0

(3.3)

From equation (3.3), the utility of a state s is given by the expected sum of discounted

rewards when the agent executes the optimal policy.

If we have the utilities of all states, an agent's decision making (or action selection)

will become easy; specifically, to choose the action that maximizes the expected utility of

the subsequent state:

(s) = arg max E T (s , a ,)U (s') (3.4)
a

However, the problem is how to find the utilities of all states. It is not an easy task.

Bellman found that the utility of a state could be divided into two parts: the immediate

reward for that state and the expected discounted utility of the next state, assuming that the

agent chooses the optimal action.

U(s) = R(s) + 13 max yT(s,a,s')U(s) (3.5)
a ,

Equation (3.5) is the famous Bellman equation. For each state, there is a corresponding

Bellman equation. If there are n states totally, then we can have n Bellman equations. The

utilities of the n states are found by solving the n Bellman equations. However, the

Bellman equation is a nonlinear equation because it includes a "max" operator. The

analytical solutions cannot be found using techniques of linear algebra. The only way to

find the solutions of n Bellman equations is to employ some iterative techniques. The

54

value iteration algorithm is such an approach to find the utilities of all states. This

algorithm is presented below (Russel and Norvig, 2003).

Function Value-Iteration (mdp, e) returns a utility function
inputs: mdp, an MDP with state S, transition model T, reward function R,

discount fi , and the maximum error s allowed in the utility of any
state.

local variables: U ,U ' are the vectors of the utilities for the states in S ,
initially zero. 8 is the maximum change in the utility of any state in an
iteration.

repeat
U <— U ' ; 5 4— 0
for each state s in S do

U'(s) R(s) + p max E T (s , a , s ')U (s ')
a^s,

If I U '(s) — U(s)1> 8 then 8 <— IU'(s) — U(s)1
until 5 < 8(1— 13)1 13

Figure 3.1: The value iteration algorithm to calculate the utilities.

3.2.1 Reinforcement Learning

In section 3.2, the value iteration algorithm is introduced to solve MDP problems. It

appears that MDP is no longer a difficult issue. However, in a real robot decision-making

situation, the value iteration algorithm is not practical because the environment model

T (s, a, s') and the reward function R(s) are usually unknown. In other words, it is usually

impossible for one to obtain perfect information of the environment model and employ the

value iteration algorithm to solve the Markov Decision Process (MDP) problem.

Reinforcement Learning is developed to meet this challenge.

In reinforcement learning, through trials of taking actions under different states in the

environment, the agent observes a sequence of state transitions and rewards received,

which can be used to estimate the environment model and approximate the utilities of the

states. Therefore, reinforcement learning is a type of model-free learning, which is its

most important advantage.

There are several variants of reinforcement learning among which Q-learning is the

most popular one. A typical Q-learning algorithm is presented below.

55

• For each state si E (s 1 , S2 ,• • •,s,i) and action a ./ E (a 1 ,a2 ,• • •
table entry Q(si ,a,) to zero.
Initialize z- to 0.9. Initialize the discount factor 0 < fi
rate 0< ^1.

• Observe the current state s
• Do repeatedly the following:

. Probabilistically select an action ak with probability
eQ(s,ak)Ir

, and execute itx-■ eQ(s,a1)1r

1=1
• Receive the immediate reward r
• Observe the new state s'
▪ Update the table entry for Q(s , ak) as follows:
▪ Q(s,ak) = (1 - ri)Q(s,ak)+ ri(r + flmaxQ[s ,a1)

P(ak) =

,am), initialize the

1 and the learning

a

■ z-^r*0.999

Figure 3.2: The single-agent Q-learning algorithm.

At the initiation of the Q-learning algorithm, an empty Q-table is set up and all its

entries are initialized to zero. The Q-table is a 2D table whose rows represent the

environment states and whose columns represent the actions available to the agent (the

robot). Here, the value of a Q-table entry, Q(si ,a,), represents how desirable it is to take

the action a ./ under the state s1 , while the utility U(s 1) in section 2.2 represents how

appropriate for the agent to be in the state Parameters such as the learning rate ri , the

discount factor /3 and the " temperature " parameter r , have to be initialized as well.

During operation, the agent observes the environment, determines the current state s ,

probabilistically selects an action ak with probability given by (3.6) and executes it.

e
Q(s,ak)11-

P(ak) = m^(3.6)z eQ(s,a1)Ir

1=1

56

After the agent takes the action a k , it will receive a reward r from the environment and

observe the new environment s' . Based on the information of r and s' , the agent will

update its Q-table according to

Q(s ,a k) = (1 — 77)Q(s ,a k) + ii(r + ft. max Q[s' ,a1)^ (3.7)
a

In this manner the current environment state is transited from s to s' . Based on the

new state, the above operations are repeated until the values of the Q-table entries

converge.

In the Q-learning algorithm described in Figure 3.2, a s — greedy search policy

presented in equation (3.6) is used instead of a greedy policy which always selects the

action with the maximum Q value. In a e — greedy search policy, with probability 6. , the

agent chooses one action uniformly randomly among all possible actions, and with

probability 1— 6 . , the agent chooses the action with a high Q value under the current state.

In addition, the probability s is decreased gradually. The advantage of the s. — greedy

search policy is its balance in exploring unknown states against exploiting known states

when the agent attempts to learn its decision-making skills and improve its Q-table. In

equation (3.6), the probability s is controlled through decreasing the " temperature "

parameter r .

3.3 Multi-robot Transportation Using Machine Learning: First Version
An important research topic in multi-agent robotics is multi-robot object transportation.

There, several autonomous robots move cooperatively to transport an object to a goal

location and orientation in a static or dynamic environment, possibly avoiding fixed or

removable obstacles. It is a rather challenging task. For example, in the transportation

process, each robot needs to sense any change in the environment, the positions of the

obstacles, and the other robots in the neighborhood. Then it needs to communicate with

the peers, exchange the sensing information, discuss the cooperation strategy, suggest the

obstacle avoidance strategy, plan the moving path, assign or receive the subtasks and roles,

and coordinate the actions so as to move the object quickly and successfully to the goal

location. Arguably, the success of this task will require the use of a variety of technologies

from different fields. As a result, the task of multi-robot transportation is a good

57

benchmark to assess the effectiveness of a multi-agent architecture, cooperation strategy,

sensory fusion, path planning, robot modeling, and force control. Furthermore, the task

itself has many practical applications in fields such as space exploration, intelligent

manufacturing, deep sea salvage, dealing with accidents in nuclear power plants, and

robotic warfare.

In this section, a physical multi-robot system is developed, integrated with machine

learning and evolutionary computing, for carrying out object transportation in an unknown

environment with simple obstacle distribution. In the multi-agent architecture,

evolutionary machine learning is incorporated, enabling the system to operate in a robust,

flexible, and autonomous manner. The performance of the developed system is evaluated

through computer simulation and laboratory experimentation.

As explained in section 3.1, a learning capability is desirable for a cooperative multi-

robot system. It will help the robots to cope with a dynamic or unknown environment, find

the optimal cooperation strategy, and make the entire system increasingly flexible and

autonomous. Although most of the existing commercial multi-robot systems are controlled

remotely by a human, the autonomous performance will be desirable for the next

generation of robotic systems. Without a learning capability, it will be quite difficult for a

robotic system to become fully autonomous. This provides the motivation for the

introduction of machine-learning technologies into a multi-robot system.

The primary objective of the work presented here is to develop a physical multi-robot

system, where a group of intelligent robots work cooperatively to transport an object to a

goal location and orientation in an unknown and dynamic environment. A schematic

representation of a preliminary version of the developed system is shown in Figure 1.1 and

it is repeated in Figure 3.3.

58

Digital Camera

Robotic Ann

Fixed
Obstacles

•
Goal Location A/I

Force Sensors

Movable
Obstacles

r —
1

Sonar

Ethernet Network
II

Vision
Agent

Robot
Assistant
Agent #1

Camera
Learning/
Evolution Agent

Robot
Assistant
Agent #2

High-level
Coordination

Physical
Agent #2

Low-level
Control

Physical
Agent #1

Figure 3.3: The developed multi -robot system.

3.3.1 Multi-agent Infrastructure

The multi-agent architecture as outlined before is used here as the infrastructure to

implement cooperative activities between the robots. This infrastructure is schematically

shown in Figure 3.4.

Figure 3.4: The multi-agent architecture used in the developed system.

In Figure 3.4 shows four software agents and two physical agents in the developed

architecture, forming the overall multi-agent system. Each agent possesses its own internal

59

state (intention and belief) and is equipped with independent sensing and decision-making

capabilities. They also are able to communicate with each other and exchange information

on their environment as acquired through sensors, and the intentions and actions of the

peers. Based on the information from their own sensors and their internal states, the agents

cooperatively determine a cooperation strategy to transport the object.

In Figure 3.4, the four software agents constitute a high-level coordination subsystem.

They will cooperate and coordinate with each other to generate cooperation strategies, and

assign subtasks to the two robot assistant agents. In the meantime, the two physical agents

(robots) form a low-level subsystem of control and execution, which receives commands

from the upper-level subsystem.

There is a vision agent, which is in charge of acquiring and processing the images

using a CCD camera. Because the present section focuses on developing a learning-based

multi-robot architecture, a simplified computer vision scheme is employed, which uses a

global camera and a global localization technology. The vision agent will analyze the

acquired images and compute the exact locations and orientations of the robots, the object

and the obstacles. All the information is then broadcasted to the other three software

agents so that they will immediately know the current world state (the position and

orientation messages of the robots, the object and the obstacles; and the environmental

map information).

A special learning/evolution agent is used in the architecture to play the combined role

of a learner, a monitor and an advisor. The machine-learning algorithm and the decision-

making capabilities are embedded in this agent. First, it will collect from other agents the

information of the environment, the robots, the object and the obstacles, to form the

current world state, which can be shared by its peers. Then it will make decisions on the

optimal cooperation strategy based on its own knowledge base so that the common task

can be completed effectively and quickly. Finally, it will assign the roles of other agents,

and monitor the task schedule.

Each physical agent (robot) is linked to a corresponding assistant agent, which needs to

forward the robot position/force information to the other agents in the upper level, and to

receive the desired force/trajectory of the robot from the learning/evolution agent and send

them to the corresponding robot in the low-level subsystem. All six agents will form a

60

tightly-coupled multi-agent system to transport the object cooperatively to the goal

location while avoiding obstacles.

3.3.2 Cooperation Based on Machine Learning

Learning ability is a desirable feature for a multi-robot transportation system. It will

help the robots to cope with dynamic changes in an unknown environment. Although

conventional planning algorithms can make the robots move effectively in a static

environment, they usually fail in an environment with dynamic obstacles. A multi-robot

system with learning capability possesses characteristics of adaptation and self-

organization, which will enable it to overcome the difficulties in an unknown environment.

In this section, two well-known machine learning approaches, Reinforcement Learning

(RL) and Genetic Algorithms (GAs), are integrated into the learning/evolution agent to

achieve robust and effective cooperation between robots.

3.3.2.1 Reinforcement learning

A key problem in a multi-robot transportation system is the determination of the

cooperation strategy; i.e., finding the optimal amplitudes and locations of the applied

forces of the robots so that a net force with maximum amplitude will point toward the goal

location, while avoiding any obstacles. Reinforcement Learning (RL) provides a way to

determine an appropriate cooperation strategy through experimentation with the

environment. A method of reinforcement learning known as the Q-learning algorithm, as

given in Figure 3.2, is employed here to find the optimal action policy for each robot.

In the system developed in this section, the world state is defined as the relative

position and orientation between the object and the goal location, and the positions of the

obstacles within a fixed detection radius around the object. It is shown in Figure 3.5.

61

Obstacles

0

y
Goal Locationi^0

,^...

0^'
%,

.............

..

..........

0^1^•

0

Detection
Radius

o^
.4% %CZ:2)^Object^0

•
0

0

Figure 3.5: The world state representation.

In Figure 3.5, only the obstacles located within the detection radius around the object

are detected and considered. The detection circle is evenly divided into 16 sectors and the

sectors are represented by a 16-bit binary code. If one obstacle is located in one of the

sectors, the corresponding bit of the binary code will become "1." Otherwise it will

become "0." Accordingly, this binary code represents the obstacle distribution around

the object. The world state s in the Q-learning algorithm is made up of this binary code

and the angel 9 in Figure 3.5, which describes the relative orientation between the goal

location and the object. For example, the world state shown in Figure 3.5 can be

represented by the vector / 000 1 0 0 0 0 0 / 1 0 0 0 0].

The cooperation strategies; i.e., the force locations and amplitudes for all robots, which

are shown in Figure 3.6, form the set of actions in the Q-learning algorithm.

62

Robot #i

S
Goal Location

Figure 3.6: Representation of the cooperation strategy (action).

In Figure 3.6, the application point of the force from each robot is represented by the

pair of angles (a, 13). Therefore, possible actions in the Q-learning algorithm for the robot

R, can be modeled as the set A i = {(a,fl,F) k }, k =1,2,...,m, .

There remains a special action called "sweeping" which instructs the robots to remove

all the obstacles in the path after establishing that they are capable of carrying out this

sweeping task.

The reward r is calculated as

r = D1 — Df^(3.8)

where, D, and^are the distance between the mass center of the object and the goal

location, at times t, and ti_ 1 , respectively.

3.3.2.2 Genetic Algorithms

Another approach that is used here to find the optimal cooperation strategy is Genetic

Algorithms (GAs). By simulating the biological evolution process, GA provides a

powerful way to quickly search and determine the optimal individual in a large candidate

space.

A typical Genetic Algorithm as found in (Karray and de Silva, 2004; Mitchell, 1997) is

given below.

63

• Initialize p (the number of individuals in the population), ti (the fraction of

the population to be replaced by crossover at each step), m (the mutation

rate), and fitness threshold.

• Generate p individuals at random to produce the first generation of

population P

• Calculate the fitness(i) for each i (individual) in P

• While (max fitness(i)) < fitness _ threshold , then repeat:

Produce a new generation Ps:

1. Probabilistically select (1— ii)p members of P to be included in P. The

selection probability is given by: 2(i) ^Fitness(i)
I Pj _ I Fitness(j)

2. Execute the Crossover operation to generate (rip)12 pairs of offspring

and add them to P.

3. Mutate m percent of the numbers of Ps

4. Update P

5. Calculate Fitness(i) for each i in P

• Return the individual with the highest fitness in P

Figure 3.7: The Genetic Algorithm.

In this section, the entire candidate space is formed by the "sweeping" action and

(I) = (a„ f31 ,F1 ,• • • ,ai „ 60 Fi ,• • • an , Ign ,F„) described in Figure 3.6, which is the set of all

possible cooperation strategies. This candidate space can be represented by a vector space

913n+1 which is made up of all possible actions: ((, sweeping). The Genetic Algorithm

given in Figure 3.7 is used to search for the optimal individual vector; i.e., the optimal

robot cooperation strategy, in this large vector space.

In the beginning, the "sweeping" action and nine individuals randomly selected from

the candidate space are used to constitute the first generation of population. Then the

64

Genetic Algorithm outlined before is used to search for the optimal individual with the

maximum fitness value. The fitness is calculated as follows:

if it is a "sweeping" action and some
C removable obstacles are in the path.

Fitness= 0 if a "sweeping" action without
removable obstacles in the path.

M otherwise

(3.9)

M= k
i *IFI+k,*(1+cos0) 2 +k3 1111+k4S+k5 1(1+cosi-)2

^
(3.10)

k,+k,+k,+k4 +k,

where, C is a threshold value which is determined through trials, F is the net force applied

by the robots, 0 is the angle between the net force vector and the goal location vector

which is described in Figure 3.5, F is the net torque applied by the robots, S is the area of

the polygon formed by the robot locations, r is the angle between the net force vector and

the position vector of its closest obstacle, and k i to k5 are the weights

(ki + k2 + k3 + + k5 =1).

The fitness function includes several practical considerations. First, the "sweeping"

action is always intended for use in the current world state. If a removable obstacle is

present in the forward path of the object (it is assumed that, based on its size, color, shape

and so on, the agents are able to judge whether the obstacle can be moved away by the

robots), the "sweeping" action will assume a high fitness value so that the obstacle can

be removed immediately. In order for it to always have the opportunity to be selected, the

"sweeping" action is included in the population of the first generation and it is always

copied to the next generation in the evolution process.

Second, a large net force that points to the goal location will earn a high fitness value

so that the internal force becomes minimum and the object is transported to the goal

location quickly and effectively. Third, a high net torque F is not encouraged, because the

resulting unnecessary rotation of the object will make it difficult for the robots to handle it,

while a small F may be encouraged for avoiding the obstacles. Fourth, a large S implies

that the spacing of the robots is quite adequate, which will receive a high fitness value,

because crowding of the robots will make their operations more difficult and less effective.

65

Finally, a small z- means that the probability of the presence of an obstacle in the path is

high, and this condition should be punished. The weights k — k5 are calibrated through

experimentation.

In each step of object transportation, the GA is used to search for the optimal

cooperation strategy. Then this strategy is broadcasted to the two robot assistant agents by

the learning/evolution agent. Next, the robot assistant agents forward the commands to the

physical robots. Based on their internal hybrid force/position controllers, the robots then

move themselves to the desired positions and transport the object for a specified time

period. In the meantime, the current force and position information is sent back to the

high-level coordination subsystem via the robot assistant agents for decision-making in the

next step. After the object is moved through some distance, the world state would be

changed (For example, new obstacles are observed and so on). In this manner, the GA is

used again to search for the new optimal cooperation strategy under the new world state.

This process will be repeated until the object is successfully moved to the goal location.

The main problem of GA in a physical robotic system is that its real-time performance

cannot be guaranteed because of its low convergence speed. However, in the present thesis,

this problem is solved partly by using the layered architecture shown in Figure 3.4. In this

two-layer multi-agent architecture, the low-level physical agents can continue to execute

the old commands before the new commands are given by the agents in the upper level. In

other words, the agents in the upper level are not necessary to work at the speed of the

physical agents in the lower level. This enables a " low-speed " GA agent to make

decisions for a real-time task.

3.3.2.3 Integrating reinforcement learning with Genetic Algorithms

Reinforcement Learning (RL) may face difficulties and generate non-optimal outputs.

A typical problem is that "the agent runs the risk of over-committing to actions that are

found to have high Q values during the early stages of training, while failing to explore

other actions that also have high values" (Mitchell, 1997). Another problem is that RL

may not be able to capture the slow changes in the environment. In other words, when the

environment changes very slowly, RL will have less opportunity to try the actions under

66

different world states. Consequently, the knowledge base of RL will be updated very

slowly. It means that the learning process will become very slow and the output of RL will

not be optimal.

Genetic Algorithms (GAs) can partly overcome these problems. Because of the special

evolution operations such as Crossover and Mutation in GAs (Karray and de Silva, 2004),

it is possible for GAs to select a new search point in the candidate space, which had not

been tried in the past steps. This will provide an opportunity for the actions with low Q

values in Reinforcement Learning to demonstrate their capabilities. Moreover, because a

GA simulates the biological evolution process, it provides better adaptivity than RL and is

able to capture slow changes in the environment.

On the other hand, GAs also benefit from RL because GAs cannot guarantee a

precisely optimal output. In particular, in the system developed in the present work, the

crowding phenomenon (Mitchell, 1997) was observed, where "very similar individuals

take over a large fraction of the population." In addition, GAs are unable to deal with

quick changes in the environment because the evolution process usually requires a

considerable duration of time. All these problems can greatly slow down the evolution

process and make the output of the GAs unacceptable.

However, by integrating GAs with RL, different individuals can be inserted into the

population of GA through RL, because RL uses an entirely different mechanism to select

the new cooperation strategy. Consequently, it would be possible to disturb the population

purity in a GA and resolve the "crowding" problem in part. In addition, RL is able to deal

with quick changes in the environment, where GA usually fails.

The combination of learning with evolution, which are two important adaptive

mechanisms that exist in nature, gives rise to distinct advantages, as discussed before. In

this section, a specific integration scheme of these two capabilities is implemented in the

multi-agent object transportation system, which is indicated in Figure 3.8.

67

Model KB

Action
Rewarding

Performance
Evaluation

Probabilistic
Arbitrator

Action j

GA
Knowledge
Base (KB)

Robot and Object Local
Modeling

World State
Extraction

World state at
time t

7.
Genetic

Algorithms
^•
Action
at time t

Sensory
Fusion

Reinforcement
Learning

Action i

RL KB II

Figure 3.8: The integration scheme of RL and GA.

In Figure 3.8, the sensor data is first sent to a sensory fusion module. This information

will form the current positions and orientations of the object, the robots and the obstacles,

and the state of the environment. Moreover, there is a model knowledge base in which the

geometry and dynamic parameters of the object and the robots are stored. These model

parameters are determined off line and stored in the model knowledge base prior to

operating the system. When the sensory data is sent to a local modeling module, the

module will identify and update the current model parameters by combining the off-line

information in the knowledge base and the new sensory data. The information from the

sensory fusion module and the model knowledge base is then integrated to form the new

world state, as described in Figure 3.5.

The two decision-making mechanisms, Reinforcement Learning and Genetic

Algorithm, are implemented based on the algorithms presented in the previous sections.

They both are able to determine a robot cooperation strategy according to the current

world state. Their outputs are probabilistically selected by an arbitrator, which determines

the winning output. In this chapter, it is assumed that the output of the reinforcement

learning block is selected by the arbitrator with a probability of 0.7, while the output of the

68

genetic algorithm block is selected with a probability of 0.3. The output of the arbitrator;

i.e., the cooperation strategy, is then broadcasted to the two robot assistant agents by the

learning/evolution agent to implement the object transportation task.

3.3.3 Simulation Results

Some simulation work has been carried out to demonstrate the performance of the

evolutionary learning mechanism described before. Because the simulation is used to

validate the evolutionary learning approach in section 3.3.2, a special case is assumed,

which is somewhat different from Figure 3.4. Specifically, it is assumed that there are

three autonomous robots, which cooperate to transport a rectangular box (object) to a goal

location in a 400*400-unit environment without any obstacles. The box has a width of 60

units and a height of 40 units. Each robot is simplified as a circular point in the

environment shown in the subsequent figures. The multi-thread programming of Java

language is used to simulate the parallel operations of the three robots.

The present work is applicable not only in object transportation tasks with small

displacements, described in Figure 3.4, but also in more challenging cases such as space

exploration. For example, consider the case of several robots sent to a planet for

exploration of a special ore, where they transport the ore cooperatively into a spacecraft.

In this application, it is impossible for a robot or an agent to possess global information. In

other words, each robot only possesses the local sensing ability and it will need to

communicate with the other robots to establish the global information. In the present

simulation, each robot is assumed to be only equipped with local sensing capability.

Moreover, the evolutionary learning mechanism is also embedded in each robot so that

they can cope with the possible existence of unreliable communication, in the planetary

exploration.

Because a robot only possesses local sensing capability and the environment dimension

is somewhat large, it will not know where the box is in the beginning. Therefore, a random

search strategy is used to find the object in the beginning of the simulation. Specifically,

the robots walk randomly to search the object. When one robot reaches a wall or another

robot, it simply changes its direction and continues the "wandering state." However, if a

robot reaches the box, the "wandering" behavior ceases and the position of the box is

69

immediately broadcasted to the peers. Then this robot will temporarily take over the

"leader" role in the subsequent transportation task. Next, it will use its embedded

evolutionary learning mechanism to compute the optimal cooperation strategy and send it

out to the other robots. Consequently, the other robots will move themselves to the desired

locations and orientations, which are described in the new cooperation strategy sent by the

leader robot. This process is shown in Figure 3.9.

X

Figure 3.9: The robots move randomly and locate the box.

The leader robot is responsible for synchronizing the forces and motions among the

teammates. It will check whether all the robots have moved to the desired position and

orientation. If all the robots are ready, the leader robot will send out a "transport"

command. Then the robots will exert the desired forces on the box, and the position and

orientation of the box will be changed as a result. Next, the leader robot will compute the

new world state and generate the new cooperation strategy. This process will be repeated

until the box is transported to the goal location and orientation. The overall process, as

simulated, is shown in Figure 3.10.

70

X

Figure 3.10: The whole transportation process.

Figure 3.11 demonstrates the adaptivity of the evolutionary learning mechanism

employed by the robots. In this example, the goal location was suddenly changed from

(380,370) to (385,60) at t = 34s, while the robots were transporting the box. From Figure

3.11 it is observed that the robots quickly adjusted the cooperation strategy and

successfully transported the box to the new goal location.

71

V

X

Figure 3.11: The goal location was suddenly changed from (380,370) to (385,60) at t =
34s while the robots were transporting the box.

From the simulation results presented here, it is seen that the evolutionary learning

mechanism described before is quite effective in meeting its design objective.

3.3.4 Experimentation

The experiment presented here is designed to test the multi-agent learning strategy

described before. Here, a movable obstacle is placed in the path while the robots are

cooperatively transporting the box to the goal location. Figure 3.12 shows how the robots

handle this problem.

72

(a) Initial state (Pushing of the box).^(b) Leaving the box.

(c) Removing the obstacle.^(d) Returning.

Figure 3.12: The robots have selected the "sweeping" action to remove a movable obstacle

in the path.

From Figure 3.12 it is seen that when the robots detect the existence of a movable

obstacle in the forward path with the help of the camera agent, they select the "sweeping"

action. Accordingly the mobile robot leaves the box, moves toward the obstacle, and

pushes it away from the path. While the mobile robot is sweeping the obstacle, the robotic

arm just stays in the same place, waiting for its peer to return. Once the obstacle is swept

away, the mobile robot returns to continue the task of box transportation in cooperation

with the robotic arm.

This experiment demonstrates that the multi-agent robotic system developed in the

present work, equipped with machine learning capability, exhibits good flexibility and

adaptivity in a complex environment, while effectively carrying out the intended task.

73

3.4 Distributed Multi-robot Q-learning in Complex Environments
In section 3.3, machine learning is used to find optimal cooperation policies for a

multi-robot transportation task. Although this fist version of learning-based multi-robot

transportation system is successful, it has two limitations. First, it is a partly centralized

system. In the proposed multi-agent architecture shown in Figure 3.4, a centralized

learning/evolution agent makes decisions for all robots (physical agents) in the

environment. As stated in section 2.1, this centralized learning/evolution agent will

decrease the scalability performance of the system and result in a communication

bottleneck problem. When the number of robots is large, the burden of the

learning/evolution agent will increase rapidly. In other words, the multi-agent architecture

in Figure 3.4 is not suitable for a large multi-robot system with many robots.

Second, a relatively simple environment is assumed in section 3.3. There are few

obstacles in the environment and the obstacles are usually stationary. However, in a real

multi-robot environment, the obstacle distribution will be more complex. In particular,

there may be many obstacles which may appear and disappear randomly. In such a

complex environment, a multi-robot system is expected to still complete its task in a

robust manner.

In this section, a multi-robot transportation system equipped with distributed Q-learning

is studied, which works in a dynamic and unknown environment with complex obstacle

distribution. In this more challenging environment, the Q-learning algorithm will still

show good adaptivity and robustness.

3.4.1 Distributed Q-learning

There are two options for extending single-agent Reinforcement Learning to the multi-

robot field. The first one is to simply regard the multi-robot learning as a combination of

multiple single-agent learning processes across the team members. In this case, each robot

is equipped with the reinforcement learning technique, and learns their skills as if the other

robots do not exist in the environment. This type of reinforcement learning is called

"distributed learning." The main advantage of "distributed learning" is its simplicity

(Yang and Gu, 2004). Every robot just needs to monitor its own actions and the

corresponding rewards, and it does not need to care about the behaviors of the peer robots.

74

As a result, the learning space is small and the computational cost is low. However,

directly extending the single-agent reinforcement learning algorithm to the multi-robot

domain violates the MDP (Markov Decision Processes) assumption, the theoretical basis

of reinforcement learning, which assumes that the agent's environment is stationary and

does not contain any other active agents. Although some research has shown that

"distributed learning" is effective in some cases, more investigation is needed on this

aspect.

The second one is the SG-based (Stochastic Game based) Reinforcement Learning. In

that extension, each robot not only monitors its own actions but also observes the actions

of the peer robots in the same environment. It believes that the rewards and the

environmental changes are caused by the joint actions of all the robots. This type of

reinforcement learning is called "SG-based learning." Several types of SG-based learning

algorithms have been developed in the multi-agent systems area, such as MiniMax-Q

learning, Nash-Q learning, and Friend-or-Foe-Q learning. With a solid theoretical basis,

these algorithms are shown to be effective in several multi-agent/ multi-robot simulations

and experiments. However, they introduce an extensive learning space (state/action space)

and complex calculations in the Reinforcement Learning algorithms because each robot

has to observe not only its own actions but also the actions of its peers. The extensive

learning space is absolutely a nightmare for researchers in the Reinforcement Learning

(RL) field, especially in the multi-robot RL field where the real-time performance is

important.

It follows that, "distributed learning" still makes sense in the multi-robot learning

domain because of its simplicity. Yang and Gu (2004) indicates that this type of learning

may work in a purely cooperative multi-robot task, and Littman (2001) theoretically

proves its convergence under some conditions. Next, "distributed Q-learning" is applied to

a multi-robot box-pushing task in a dynamic and unknown environment, which is a

challenging and important sub-field in the multi-robot domain. Effectiveness, robustness

and adaptivity of this learning-based multi-robot system will be shown through computer

simulation, and some issues of "distributed learning" will be discussed.

75

3.4.2 Task Description

Multi-robot box-pushing is a long-standing yet difficult problem in the multi-robot

domain. In this task, multiple autonomous robots have to cooperatively push a box to a

goal location and orientation in a dynamic and unknown environment. The box is big and

heavy enough so that no single robot can complete this task alone. In addition, each robot

only possesses local sensing capability and the obstacles may occur and disappear

randomly in the path, so the robots cannot plan the trajectory in advance. In such a

dynamic and unknown environment with a continuous space which is presented in Figure

3.13, any static planning technology is bound to fail. Although dynamic planning (Miyata

et al., 2002) may be useful to complete the task, it will fail if the environment changes

quickly and the calculation speed of the robots is not sufficiently fast.

Figure 3.13: Description of a multi-robot box-pushing task.

Because the learning-based architecture may be a better solution to this challenging

problem than a static/dynamic planning architecture, next, the single-agent Q-learning

described in Figure 3.2 is extended to this multi-robot box-pushing problem.

3.4.3 Multi-robot Box-pushing With Distributed Q-learning

In this section, single-agent Q-learning is directly extended to the multi-robot box-

pushing problem. The basic idea is as follows. Each robot is equipped with single-agent

Q-learning. When the robots begin to transport the box, each robot identifies the current

environmental state, and then independently employs the Q-learning algorithm in Figure

76

3.2 to select the "optimal" action to push the box. After the actions are taken, each robot

independently observes the new environmental state and receives its direct reward r. The

robots then update their own Q-tables with the reward and the new state information, and

continue with the next step of box-pushing. There are no communications among the

robots except the synchronization signal. Each robot independently maintains its own Q-

table and makes its decisions. Therefore, it is a fully distributed learning-based decision-

making system. In other words, the multi-robot box-pushing problem is solved with a

purely learning-based architecture instead of complex static or dynamic planning

approaches.

The main challenge of such a "distributed reinforcement learning" system is that it

violates the assumption of stationary environment in the MDP problem. While a robot is

pushing the box, its peer robots are also pushing it. It means that the environment is no

longer stationary from the viewpoint of this robot and Q-learning may not converge to the

optimal policy. In addition, the random obstacles in the environment can make the case far

worse. However, the simulation results in the following section will show that the task still

can be completed at the cost of slight reduction in efficiency or increase in the required

number of pushing steps.

3.4.3.1 The environmental states

Because the environmental space in the multi-robot box-pushing problem is continuous,

in order to employ the Q-learning algorithm, the continuous space is converted into a set

of finite states. In particular, each environmental state is coded into a 13-bit binary code

which is shown in Figure 3.14.

Obstacle Distribution^Goal Orientation

12^ 5 4
^

0

Figure 3.14: The binary coding of the environmental states.

77

0 0

0

Detection
Radius

Obstacles

0

•

Goal Location

x

In Figure 3.14, the higher 8 bits (from bit 5 to bit 12) in the code represent the current

obstacle distribution around the box within the detection radius. The lower 5 bits (from bit

0 to bit 4) represent the orientation of the goal relative to the current box pose. The coding

rule is explained in Figure 3.15.

Figure 3.15: Coding rule of the environmental states.

In Figure 3.15, it is assumed that the robots only possess local sensing abilities.

Consequently, only those obstacles within the detection radius can be detected and coded

into the higher 8-bits of the environmental state. In order to describe the obstacle

distribution in Figure 3.15, the detection circle is divided into 8 equal sectors. Each sector

corresponds to one of the higher 8 bits of the environmental state. If there is at least one

obstacle detected in this sector, the corresponding bit in the state will become "1."

Otherwise, it will become "0." For example, in Figure 3.15, the higher 8-bits of the

environmental state is "10100100" which indicates the current obstacle distribution

around the box within the detection radius.

The lower 5 bits of the environmental state indicate the orientation of the goal relative

to the current box pose. The orientation angle 9 of the goal in Figure 3.15 is used to

calculate the lower 5-bits of the state using

Stateba(0-4) = INT (01(360.0132))^ (3.11)

where, INTO is a function to covert a float value into an integer.

78

3.4.3.2 Robot actions

In a physical world, a robot usually can push a box at any contact point. It means that

there are infinite actions available to a robot to push the box. However, in this section,

because it is focused on extending the single-agent reinforcement learning algorithm to the

multi-robot domain, the action space is simplified and only six actions are assumed to be

available to each robot. The available actions (a, — a 6) are presented in Figure 3.16.

a4

Figure 3.16: Pushing actions available to each robot.

3.4.3.3 Box dynamics

Because this section focuses on extending the single-agent reinforcement learning

algorithm to the multi-robot box-pushing problem, the box dynamics is simplified in the

simulation system. It is assumed that the box displacement is proportional to the net force

exerted by the robots, and the rotational angle of the box is also proportional to the net

torque exerted by the robots. In Figure 3.17, the dynamics of the box is illustrated, where

the box is being pushed by three mobile robots.

79

(a)

•
Yenv

C l

• ,^,,r ♦

Yf' ♦

xenv

F2

Yb

Flt 1

Box

xb

Y2

Yl

xl^X2

(c)

Figure 3.17: The dynamics of the box pushed by three robots.

In Figure 3.17, three robots push the box and Fi F3 aretheir pushing forces. The box

dynamics is described with the following equations:

x2 = x, +^cos(y + cel)^ (3.12)

y 2 = y 1 + c^sin(y + a,)^ (3.13)

80

c€2 =^ctr^ (3.14)

where, EF is the net force, F is the net torque, cf and c, are coefficients, and

= arctg2(1EFy llIEF,)).

3.4.3.4 Reward function

A common payoff reward strategy is employed in this section. Specifically, each robot

gets the same reward after it pushes the box for a short period of time At . The reward

consists of the following three parts:

(1) The reward for pushing the box toward the goal location

Rdistace = (Dist old — Dist new)Cd^ (3.15)

where, Disc,/ and Dist,,,,„ are the distances between the goal location and the box center

before and after taking the pushing actions, and cd is a coefficient.

(2) The reward for the rotational behavior of the box

Rrotatton = cos(a2 — a1) — 0.9^ (3.16)

where, (a2 — a 1) is the rotational angle of the box when it is pushed by the robots for a

period of time At . While a small rotation is encouraged, a large rotation will be punished

because it will make handling the box difficult for the robots.

(3) The reward for obstacle avoidance

=1.0 if no obstacle
Robstacle =^ (3.17)

= 1.5(sin(v /2) — 0.3)

where, yr is the angle between the direction of the net force and the direction of the

obstacle closest to the net force.

Finally, the total reward is calculated as.

R = wiRdis tan ce W 2 R rotation + W 3R obstacle
^ (3.18)

where, w 1 w3 are the weights and w 1 + w2 + w3 =1.0 .

3.4.3.5 Random action

Reinforcement Learning may face difficulties in the action selection process. For

example, "the agent runs the risk that it will over-commit to actions that are found to have

81

high -.1 values during the early stages of training, while failing to explore other actions

that also have high values." One solution to this problem is to select actions with the GLIE

(Greedy in the Limit with Infinite Exploration) policy (Littman, 2001 a). However, here a

simpler strategy instead of the GLIE policy is used. The strategy is to let the robots

randomly select their actions at a low level of probability. In other words, most of the time,

the robots take their actions as determined by the Q-learning algorithm, while they do

select their actions randomly at a low level of probability.

3.4.4 Simulation Results

A simulation system is developed with the Java language to simulate a learning-based

multi-robot box-pushing system, which has been described in the foregoing sections. The

dimensions of the environment are 950x700 units and the dimensions of the box are

120x80 units. There are three robots, denoted by circles with a radius of 2 units in the

subsequent figures, which push the box to the goal location. The box is big and heavy so

that no individual robot can handle it without the help of its peers. The Java multi-thread

programming technique is used to implement the parallel operations of the robots.

When the simulation system starts to run, based on the current environmental state, the

robots independently select their actions using the single-agent Q-learning algorithm.

Then they begin to push box after synchronization. The box is moved for a short period of

time At , and the reward is collected and distributed equally among the robot. Based on the

reward and the new environmental state, the robots independently update their own Q-

tables. Then they start the next step of pushing, and so on, until the goal location is

reached or the total step number exceeds the maximum limit.

When the box reaches the goal location or the total step number in one round exceeds

the maximum allowed step number, this round of box-pushing is completed and a new

round of box-pushing is started. In addition, every time the next round of box-pushing is

started, the locations of the box, the obstacles, and the goal are selected randomly.

However, the Q-table of each robot is inherited from the last round. When the total

number of rounds reaches the desired number, the simulation system is stopped.

Parameters of the simulation system are: /3 =0.9, r = 0.9 , 77 = 0.8 ,

c f = 0.2,c, = 0.02,cd = 0.5, w l = 0.7,w2 = 0.05,^Iv, = 0.25,/ =10 , the probability of

82

ObstacleBox Traiectory

Goal

•

Obstacle

.1§tarting point

selecting random actions is 0.2, the total number of obstacles in the environment is 11, and

the maximum number of steps per round is 6,000.

3.4.4.1 Box-pushing simulation results

Three different box-pushing snapshots under different obstacle distributions are

presented in Figure 3.18 where three robots represented by very small circles are located

on the sides of the box. The eleven big circles in Figure 3.18 represent the obstacles in the

environment.

(a) A successful box-pushing task.

83

(b) Another successful box-pushing task with a different obstacle distribution

(c) A failed box-pushing task because of a local maximum

Figure 3.18: Three box-pushing snapshots under different obstacle distributions and goal

locations.

84

In Figure 3.18 (a), the three robots first cooperatively push the box upwards to

approach the goal location in the top right corner. However, the box reaches an obstacle in

the path. After several failed trials, the robots select to slightly push the box downwards to

avoid the obstacle. Then they push the box upwards again to approach the goal location.

However, before the box reaches the goal location, it reaches another obstacle. The robots

again adapt their actions to the new states and avoid the obstacle. Finally, the box is

successfully pushed to the goal location. Figure 3.18(b) presents another successful box-

pushing task with a different obstacle distribution.

Figure 3.18(a)-(b) demonstrates that the single-agent reinforcement learning algorithm

can be extended to the multi-robot box-pushing domain in an effective and successful

manner. Even though each robot is only equipped with a simple single-agent Q-learning

algorithm, and no communications exist among robots except the synchronization signal,

the robots still can cooperatively push the box to the goal location in an unknown

environment with a random obstacle distribution. In the process of pushing and obstacle

avoidance, the robots demonstrate a flexible and adaptive action selection strategy in a

complex and unknown environment. In addition, the system employs a fully distributed

multi-robot decision-making architecture with local sensing capability and limited

communications (only the synchronization signal). Consequently, it is robust and scalable,

and may be easily employed in various complex environments and applications.

It is also observed that the learning algorithm is not perfect in every aspect. It can

suffer from the lack of local sensing and the presence of a local maximum. A typical case

is shown in Figure 3.18(c), where the robots are trapped in a local maximum and they

cannot avoid the obstacles to reach the goal. The problem can be solved partly by

increasing the sensing radius. However, that will lead to rapid expansion of the learning

space, which makes the algorithm ineffective.

3.4.4.2 Effectiveness of single-agent reinforcement learning in a multi-robot cooperative

task

In general, in a multi-robot environment, because a robot's reward is affected by the

actions of its peers, the assumption of a stationary environment in the single-agent Q-

85

learning algorithm is violated. This means the Q-learning algorithm makes little sense in a

multi-robot environment. However, Yang and Gu (2004) suggested that it was possible for

single-agent Q-learning to learn the coordination among robots in a purely cooperative

multi-robot task. With the multi-robot box-pushing simulations presented in this section,

this observation is verified and supported. Furthermore, in the following figures, some

probability analysis results are employed to show why the single-agent Q-Learning can

work in a multi-robot cooperative task.

It should be noted that the Q-learning algorithm presented in this chapter is different

from Littman's algorithm (Littman, 2001a). The latter is a type of "SG-based" Q-learning,

and requires a robot to monitor the actions of all peer robots. Consequently, it also suffers

due to the extensive learning space problem, highlighting the difference between

Littman's algorithm and the "distributed learning" algorithm discussed in the present

section.

In the computer simulations, the robots are allowed to push the box continuously for

100,000 rounds to gain experience and update their respective Q-tables. Then one

environmental state is selected randomly for analysis, whose state value is binary

"1000000" or decimal "64," and its Q values corresponding to the six action candidates

are examined. According to the coding rule of the environmental states in section 3.4.3.1,

the binary value of "1000000" represents an environmental state, which is shown in
Figure 3.19.

86

Action #3 Action #2

Goal Location

x

Detection
Radius

Action #5

Figure 3.19: The environmental state with binary value "1000000" and six pushing actions

available to the robots.

The Q values under the state of "1000000" in 100,000 rounds of box-pushing are

recorded and shown in Figure 3.20, and the probability density estimate of these Q values

is given in Figure 3.21.

87

^Action 1
^ Action 2
^ Action 3

Action 4
^ Action 5

Action 6

18

16

14

12

4^6
Round number

8^10

x 10
4

4

2

0
0 2

10
vi
0 8

6

Action 1
Action 2
Action 3
Action 4
Action 5
Action 6

E 0.25

w

>, 0.15

0

15 205^10
0 Value

0
-5

0 35

0.3
a)

0.05

Q Values under State=64

Figure 3.20 The Q values under the state of "1000000" in 100,000 rounds of box-pushing.

Probability Density Estimate of Q Values under State=64

Figure 3.21: Probability density estimate of Q values under state of "1000000"

in 100,000 rounds of box-pushing.

It is known that if the environment is stationary, the Q values in a single-robot system

will usually converge to some values with probability one (Yang and Gu, 2004). However,

88

Action 1
Action 2
Action 3
Action 4
Action 5
Action 6

in the multi-robot box-pushing task presented in this chapter, from Figure 3.20, it is seen

that the Q values increase rapidly from the initial values of zero to some positive values in

a very early stage. Then they begin to fluctuate in a bounded area with an upper bound of

16 and a lower bound of 2. From Figure 3.20 and Figure 3.21, it is rather difficult to find

which action is selected at higher probability under the state of "1000000." The Q values

in Figure 3.20 seem to fluctuate randomly and all the curves overlap. Therefore, it appears

that the robots do not learn any cooperative strategy in the training process and only

randomly select their actions. This phenomenon conflicts with the results in Figure 3.18.

In order to reveal the action selection strategy learned by the robots, the action selection

e
0(s,ak)17-

probability in each round is calculated using the equation P(ak)—^ , and themz eQcs,aoh-
1=1

probability density estimate of the action selection probability is determined with the

sample of 100,000 rounds of box-pushing. The result is presented in Figure 3.22.

Probability Density Estimate of Action Selection Probabilty under State=e4
14

12

a)
76E 10

8
Cu'
a)
0

6
IL-(1

_a 4

2

0
-0.2 0 0.2 0.4 0.6 0.8 1 12

Action Selection Probabilty

Figure 3.22: Probability density estimate of action selection probability under the state of

"1000000" in 100,000 rounds of box-pushing.

89

Figure 3.22 gives the probability density estimate of action selection probability under

a special state in 100,000 rounds of box-pushing. From Figure 3.22 it is seen that there is a

high probability that the robots select action #1 in a low probability, and there is a lower

probability that the robots select action #4 in a low probability. In other words, action #1

is selected by the robots in low probability under the environmental state of "1000000"

and action #4 is selected by the robots in higher probability under this state. From Figure

3.19 it is observed that action #1 pushes the box away from the goal location, and action

#4 pushes the box towards the goal without colliding with the obstacle. By comparing

Figure 3.22 with Figure 3.19, it is easy to conclude that the robots learn the correct action

selection strategy when they cooperatively push the box to the goal location. This explains

why the robots in Figure 3.18 can cooperate to push the box to the goal successfully in a

complex and dynamic environment with random obstacle distributions.

3.5 Team Q-learning Based Multi-robot Cooperative Transportation
In section 3.4, the single-agent Q-learning algorithm is directly extended to the multi-

robot domain for decision-making. Although some positive results were obtained, such

extensions do not have a solid theoretical foundation because they violate the static

environment assumption in single-agent Q-learning. In the multi-robot domain, the

environment is no longer static because multiple robots may change it simultaneously

(Yang and Gu, 2004). Therefore, robots may be confused if the single-agent Q-learning

algorithm is directly employed in a multi-robot environment. This kind of confusion can

be observed in Figure 3.20 where no action prevails over other actions under a specific

state.

It appears important for a multi-agent Q-learning algorithm to model a dynamic

environment instead of a static environment in the single-agent Q-learning algorithm.

Several types of multi-agent reinforcement algorithms, such as MiniMax Q-learning and

Nash Q-learning, have been developed by the multi-agent community (Yang and Gu, 2004;

Littman, 1994). All of them assume a dynamic environment and are proved to converge to

optimal policies under certain conditions. These algorithms enjoy a good theoretical

foundation and are preferable in multi-agent tasks over the simple extension of single-

agent reinforcement learning. In particular, Littman suggests using the team Q-learning

90

algorithm for purely cooperative games, which is much simpler than the Nash Q-learning

algorithm but has comparable performance (Littman, 2001a).

In this section, the team Q-learning algorithm is applied to a multi-robot box-pushing

task in an unknown environment with a complex obstacle distribution. A fully distributed

multi-robot system will be developed, which is equipped with learning-based decision-

making and local sensing capabilities. Using computer simulations, it will be studied how

the learning parameters such as random action probability, detection radius, and the

number of robots affect the performance of the team Q-learning algorithm in a multi-robot

task.

3.5.1 Stochastic Games and the Team Q-learning Algorithm

Most multi-agent reinforcement learning algorithms are based on the framework of

Stochastic Games (SGs) (Yang and Gu, 2004). A learning framework of SGs is defined

by the tuple <S, A1 , , An , T, RI, Rn , f3 >, where

• S is a finite set of states and n is the number of agents.

• AI ,^, An are the corresponding finite sets of the actions available to each

agent.

• T: S x Al x A2 x x An^S , is a transition function which maps the current

state to the next state.

• R,: S x AI x A2 x x An^, is a reward function which describes the

rewards received by the i th agent.

• 0 < 13 <1 is the discount factor.

In a SGs framework, the joint actions of the agents determine the next state and the

rewards received by each agent. Based on the interaction history, each agent tries to find

the optimal action-selection policy that maximizes the expected sum of the discount

rewards in the future. For a purely cooperative game in which each agent shares the same

goal and receives the same payoff as its peers, Littman suggests the team Q-learning

algorithm, which is a simplified version of the Nash Q-learning algorithm, to find the

optimal policy (Littman, 2001a). The team Q-learning algorithm is given below

• For each state s, E S and joint action (a i ,... ,a n)e^, initialize the table

91

entry (s^a n) to zero

• Observe the current state s

• Do repeatedly the following:

• Let (a „

•^

,a n)= arg max Q(s,a,,... ,a,,) . Execute the joint action
^(a 1 ,^,a„)

(a l , ...,a n) .

• Receive an immediate reward r

• Observe the new state s'

• Update the table entry for 0(s , ,^,a n*) as follows:

,a„ *)= (1- - s)0(s,a,. ,...,a,:)+ e(r+)6' max 0[s' ,a„...,a„])

where, 0 < s <1 is the learning rate

• S^S

After a sufficient number of iterations, the 0(s, a„ , a,) will converge to the optimal

value. In a purely cooperative game, compared with the Nash Q-learning algorithm, the

team Q-learning algorithm requires less computational resources, and exhibits comparable

performance (Littman, 2001a).

The standard team Q-learning algorithm uses the greedy policy to choose actions

(Littman, 2001a). However, this policy may explore too few states to converge to the

optimal policy. Therefore, in this section, a modified GLIE policy (Greedy in the Limit

with Infinite Exploration) as given below is used to guarantee the team Q-learning

algorithm to converge to optimal policies (Littman, 2001a):

c In(s) if Cr I n(s)> Pthreshold
random =^ (3.19)

'threshold if cr I n(s)^

where, P.random is the probability of selecting random actions, n(s) is the number of times

state s has been encountered so far during learning, 0 < cr < 1 is a constant, and Pthreshold is

the threshold value of Prandom .

3.5.2 Simulation Results

A simulation system is developed with the Java language to simulate a multi-robot

box-pushing system using the team Q-learning algorithm. In this simulation system, the

Pthreshold

92

representation of environmental states, robot actions and the reward function of the team

Q-learning algorithm are the same as those in the single-agent Q-learning algorithm, as

described in section 3.4.3. The dimensions of the environment are 950x700 units and the

dimensions of the box are 120x80 units. There are three robots, denoted by circles with

radius 2, in the subsequent figures, which push the box to the goal location. Parameters of

the simulation system are fl =0.9, s = 0.8, cf = 0.2,c, = 0.02,cd = 0.5, w l = 0.7,w2 = 0.05,

w3 = 0.25,/ =10, c r = 0.9, Pthreshold = 0.1, the detection radius is 72, the maximum number

of steps per round of box-pushing (from the beginning position to the goal position) is

5,000, and the total number of rounds in the training stage is 10,000. Figure 3.23 presents

a round of box-pushing after training.

Figure 3.23: The box trajectory in a round of box-pushing.

The rewards received by the robots are shown in Figure 3.24 and the Q values learned

by the robots after 10,000 cycles of training are shown in Figure 3.25.

93

ft'

200^400^600^800^1000^1200
Step

1400

2.5

2

1.5

E 0.5

a 0

24

23

22

76-

20

19

18

17
35

30
25

20
15

10
50

State (1-32)

250
200

150
100

Joint action (1-216)

Figure 3.24: The rewards received by the robots in a round of box-pushing.

Figure 3.25: The surface of the Q-table (the states from 1 to 32) after 10,000 training

cycles.

94

From Figure 3.23 to Figure 3.25, it may be concluded that the team Q-learning

algorithm can be effective in a multi-robot box-pushing task. As shown in Figure 3.23, the

box was successfully pushed to the goal by the robots in an environment with complex

obstacle distribution. The rewards shown in Figure 3.24 indicate that the robots received

positive rewards most of the time although sometimes they received negative values for

colliding with the obstacles. The robots quickly adapted to new states with a different

obstacle distribution and pushed the box to the goal without any centralized strategies. The

Q-table surface in Figure 3.25 also indicates that the robots learned and increased the Q

values in 10,000 rounds of training.

3.5.3 Impact of Learning Parameters

In this section, the impact of several learning parameters on the team performance will

be assessed. These parameters are the random action probability, the detection radius, the

number of training rounds, the pushing forces of the robots, and the number of robots.

Prior to assessing the impact of the learning parameters, the robots are given 10,000

rounds of training in box-pushing. Then, based on the knowledge acquired in the training

stage, the robots push the box for 1,000 rounds and record the number of steps in each

round, to assess the performance of the team Q-learning algorithm, based on the number

of steps per round.

3.5.3.1 Impact of training

The impact of training on the team performance is assessed in Figure 3.26.

95

2

1 8

1 6

1 4

0.4

0.2

— — - no training
^ after 10,000 trainings

jrtll

x10 3

500^1000^1500^2000^2500
^

3 000
^

3500
Step number per round

Figure 3.26: The impact of training.

In Figure 3.26, two cases are compared. The first one corresponds to "no training" in

which the robots pushed for 1,000 rounds without any preliminary training. In the second

case, denoted by "after 10,000 trainings," the robots first pushed the box for 10,000

rounds to gain experience and then pushed the box for further 1,000 rounds to assess the

team performance. The probability distributions of the number of steps per round in the

two cases are shown in Figure 3.26. They indicate that training is helpful but it has only a

small influence on the team performance.

3.5.3.2 Random action probability.

In equation (3.19), the modified GLIE policy is used to determine the random action

probability of the robots so that the team Q-learning algorithm explores an adequate

number of states to converge to the optimal policy. Here, the impact of the random actions

is assessed. Three different lower bounds of the random action probability (Pthreshold =0, 0.3

and 0.6) are employed by the robots to push the box, and the results are presented in

Figure 3.27.

96

P(threshold)=0
P(threshold)=0.3

— — - P(threshold)=0.6

x10 3

11' 40

3
p
0

_a

2

0^500^1 000^1500^2000
-

11-111111tfith^
2500^3000 3500

Step number per round

Figure 3.27: Impact of pth,esholi, (Lower bound of the random action probability).

Figure 3.27 illustrates that random actions are very important for the team Q-learning

algorithm. When Pthr„hom is equal to zero, the number of steps per round is 3,000 at a high

probability. Because the maximum number of steps per round is set to 3,000 in the

simulation program, it means that the robots cannot complete the task in the desired

number of steps at a high probability when 13;hreshom is equal to zero. In other words, the

standard team Q-learning algorithm with GLIE policy (i.e., Pthreshold =0) cannot work in an

environment with complex obstacle distribution because it cannot escape from a local

minimum. When Pthr„hoid increases to 0.3, the number of steps per round decreases to 500

at all probabilities. It means that the robots push the box to the goal more quickly.

However, when Pthreshoid increases to 0.6, the number of steps per round increases to 700 at

all probabilities because too many random actions make the robots fail to commit

themselves to the goal and reduce the team performance.

97

--- R=92
+ R=132
^ R-222

Figure 3.28: The impact of the detection radius.

I+ \

0^500^1000^1500^2000^2500
Step number per round

411f

3 000

3.5.3.3 Detection radius

In the developed multi-robot box-pushing system, each robot only possesses the local

sensing capability. Only the obstacles within the detection radius can be sensed by the

robots. Here, the impact of the detection radius on the team performance is assessed, as

presented in Figure 3.28.

x10 3
3.5 ^

3500

In Figure 3.28, three multi-robot box pushing systems with different detection radii

(R=92, R=132, and R=222) are compared. Although a bigger detection radius helps the

robots to find more local obstacles, Figure 3.28 indicates that team performance degrades

when the detection radius increases.

3.5.3.4 Pushing force

In the previous sections, a team of homogenous robots each possessing the same

capabilities is assumed. In particular, each robot has the same pushing force

(F. =10, i =1,2,3). However, here a team of robots with different pushing forces are

98

1 F1 =10, F,=50,F3 =50

F1 = 10, F2=20,F3=20

F1 =10, F2 =10,F3 =10

500^1000^1500^2 000^250 0
^

3000^3 500
Step number per round

assessed, as presented in Figure 3.29.

x10 3

5
ct)

4

cv
o 3

Figure 3.29: The impact of the pushing force.

Figure 3.29 indicates that a bigger pushing force helps to improve the team

performance because it enables the robots to move the box more quickly and makes it easy

to escape from a local minimum. However, Figure 3.29 does not indicate that a bigger

pushing force will result in excessive box rotations, which can make it difficult for the

robots to handle the box.

3.5.3.5 The impact of the number of robots and the disadvantage of team Q-learning

In the previous sections, three robots were used to push the box. Now, five robots are

assumed to complete the same task and compare its team performance with that of the

three-robot team. The rewards received by the robots in a round of box-pushing are shown

in Figure 3.30.

99

rifirrir

-

-

- S0-

I I'

- S

-Z

S'0 a

00T

(q)

dais

0001,^008^009^00t^00Z

- Z -

(u)

dais

009E^0002^0096^0006^009
Z-

9Z

^ 3 robots
+^5 robots

1 8

1 6

1 4

0.6

0.4

0.2

^

\-^0 unlit
-3^-2^-1 0^1^2

reward
4

(c)

Figure 3.30: The rewards received by the robots in a round of box-pushing. (a) The

rewards received by the three-robot team. (b) The rewards received by the five-robot team.

(c) The probability density of the rewards.

Figure 3.30 indicates that the five-robot team does not do a better job than the three-

robot team. In particular, the former does not get more rewards than the latter. Because the

net force is bigger in the five-robot team, if the members cooperate correctly, the number

of steps per round should be much smaller, as indicated in Figure 3.30. However, this

team performance is improved at a cost of much heavier computational burden.

The main disadvantage of the team Q-learning algorithm is its extensive learning space

(state/action space). When the number of robots increases, the learning space grows

quickly. For example, in this section, there are three robots and 8,192 environmental states,

and each robot can select one of six available actions. Then the Q-table size is

8192 x 6 3 (z1.7M). However, if the number of robots increases to 10, the Q-table size will

increase to 8192 x 6 b0 (z495G) which will require an extensive memory space in the host

101

computer. Clearly, it is very difficult and even impossible to operate and maintain such a

huge memory space in a computer. Therefore, when the number of robots is more than 10,

the team Q-learning algorithm can become entirely ineffective. In this case, directly

extending the single-agent Q-learning algorithm to the multi-robot domain becomes an

appropriate alternative because its learning space is fixed.

In this section, the team Q-learning algorithm has been assessed in a multi-robot box-

pushing task. As a type of multi-agent reinforcement learning algorithm, the team Q-

learning algorithm possesses a good theoretical foundation. Hence, it is preferable over the

single-agent Q-learning algorithm for multi-robot problems. The algorithm of team Q-

learning has been presented in this section and a multi-robot box-pushing simulation

system developed to assess the algorithm. In addition, the impact of the learning

parameters has been studied. The simulation results show that the team Q-learning

algorithm is successful in a multi-robot box-pushing system with distributed decision-

making, local sensing capabilities and an unknown environment containing obstacles. The

main disadvantage of the team Q-learning algorithm is that it only can work in a small

robot team, typically with 2 to 5 members.

3.5.4 Comparison of Team Q-learning with Multi-robot Distributed Q-learning

In section 3.4, the single-agent Q-learning (or distributed Q-learning) has been directly

extended to a multi-robot box-pushing task. Now, the team Q-learning algorithm is

compared with distributed Q-learning, using the same benchmark problem: the multi-robot

box-pushing project described in Figure 3.13. Both Q-learning algorithms employ the

same representation of the environmental states, robot actions, and reward function, as

presented in section 3.4.3. A simulation system is developed to simulate the learning-

based multi-robot system, and compare the performances of the two Q-learning algorithms.

The maximum number of steps per round in the simulation is 5,000, and the total number

of rounds in the training stage is 10,000. The simulation results are presented below.

3.5.4.1 Simulation results without training

The simulation results of the two Q-learning algorithms are presented in Figure 3.31.

Note that the robots in Figure 3.31 do not receive any training before they begin to push

102

8

7

6

5

co 4
0

3

2

2.5

1.5

-8 0.5

a 0

-05

-1 5

•

Box Trajectory

(al)
0 value history when state=5

100^200^300^400^500
^

700^800
step

(bl) (b2)
Reward received by the agents

100^200^300^400^500^600^700^800
step

(c 1) (c2)

(a2)

0 value history when state=5

Reward received by the agents

the box. Accordingly, all the robots are novice and they do not have any experience in box

pushing.

Figure 3.31: Simulation results with the single-agent Q-learning algorithm and the team

103

Q-learning algorithm: (al) The box-pushing process with the single-agent Q-learning

algorithm; (a2) The box-pushing process with the team Q-learning algorithm; (bl) The

Q value history (state=5) in the single-agent Q-learning algorithm; (b2) The Q value

history (state=5) in the team Q-learning algorithm; (c 1) The received reward in the

single-agent Q-learning algorithm; (c2) The received reward in the team Q-learning

algorithm.

From Figure 3.31 (al) and (bl), it is seen that both Q-learning algorithms can

successfully push the box to the goal location in an unknown environment. Because each

robot independently makes decisions and chooses its actions, it is a fully distributed multi-

robot system. From Figure 3.31 (a2) and (b2), it is seen that the Q values converge to

some fixed values. In Figure 3.31 (a3) and (b3), it is observed that the rewards received by

the robots tend to fluctuate. This fluctuation results from reaching unknown obstacles

during the pushing process, or disturbance from the actions of its peers. However, most of

the time, the robots receive positive rewards.

3.5.4.2 Comparison between two Q-learning algorithms

In Figure 3.32, the performance of the single-agent Q-learning algorithm before and

after training is compared. Here, the performance index is taken as the reciprocal of the

total number of steps per round. All simulations are based on the same complex

environment with eleven obstacles, as shown in Figure 3.32 (a).

104

(a) The environment with 11 obstacles.

5 000 ^

4500

4 000

3 500

(,) 3000
a)

-(7) 2500

2000 -

1500

1000

500 ^
0

20^40^60^80
Round number

100

(b) The total steps per round BEFORE training.

105

II
VI^ 1

20^40^60
Round number

80^100

1.6

1.4
7'±
LOc 1.2
D
›, 1
co
-g 0.8
0

0.6

0.4

0.2

0

After Training

+ +
+

5000 ^

4 500

4000

3500

in 3000
eL
a)

2500

2000

1500

1000

500
0

(c) The total steps per round AFTER training.

X 10
-3^Probability density estimate of steps per round

2

1.8
Before Training

0^1000^2000^3000^4000
^

5000
Steps per round

(d) Probability density estimate of steps per round

Figure 3.32: Performance index comparison of the single-agent Q-learning algorithm

before and after the training stage.

6 000

106

From Figure 3.32 it is seen that the performance index is significantly improved in the

training stage. After training, the total number of steps per round is decreased from 5,000

to 1,000. Because the maximum number of steps is set at 5,000 for a round of box-pushing,

a total number of steps of 5,000 means that the robots fail to push the box to the goal

location within the desired number of steps in that round. Figure 3.32 indicates that the

success rate of box pushing greatly increases after training because the robots learn and

improve the box-pushing policy through experience.

Similarly, the performance of the team Q-learning algorithm before and after training

is compared in Figure 3.33. The simulations are based on the same environment as in

Figure 3.32 (a).

5 000

4500

4000

3500coeLa)
co

3000

2500

2000

1 500
0

I^ i

20^40^60^80
Round number

100

(a)

107

3

2.5

2

cio 1.5
0
2
0

1

5 000 ^

4 500

4 000

3 500

a 3000

2 500

2000

1500

1000 ^
0

X 10
-3

3.5 ^

20 40^60^80
Round number

(b)

Probability density estimate of steps per round

100

+

0.5

I I

5000 6 0001000^2000^3000^4000
Steps per round

(c)

108

Figure 3.33: Performance index comparison of the Team Q-learning algorithm before and

after the training stage. (a) The total number of steps per round BEFORE training. (b) The

total number of steps per round AFTER training. (c) Probability density estimate of steps

per round before and after training.

From Figure 3.33, the following conclusion may be drawn: Training is not required in

the team Q-learning algorithm. The robots do not learn any useful policy for pushing the

box in the training stage. It appears that the team Q-learning algorithm does not help the

robots to improve their skills using the experience received during the training stage. The

total number of steps per round has a high probability index of 5,000 before and after

training. It means that the robots always fail to push the box to the goal location in the

desired number of steps even after training.

By comparing Figure 3.32 (d) with Figure 3.33 (c), one observes a further interesting

result: The single-agent Q-learning algorithm seems to do a better job than the team Q-

learning algorithm even though the latter has a stronger theoretical foundation. A possible

explanation for this phenomenon is that some random actions are necessary to solve the

local minimum problem in a complex and unknown environment for a multi-robot box-

pushing task. Although the team Q-learning algorithm with GLIE policy does take random

actions, the probability of random action is still too low. Therefore, the team Q-learning

algorithm can be easily trapped in a local maximum.

The single-agent Q-learning algorithm is different since a robot/agent does not observe

the actions of its peers when it makes decisions. The peer actions are regarded as a type of

random disturbance or random "noise" in the environment. When this type of random

"noise" is large, it degrades the team performance. However, if the random "noise" is

small, it can help the robot team to escape from a local maximum. That is why the single-

agent Q-learning algorithm does a better job than the team Q-learning algorithm in the

present simulations.

There are two possible ways to improve the performance of the team Q-learning

algorithm in an unknown environment with a complex distribution of obstacles. First is to

increase the probability of random actions, which will overcome the local minimum

109

problem. Second is to increase the number of training rounds so that the robot can explore

enough states and converge to the optimal policy.

In the present section, the performance of two types of Q-learning algorithms has been

comparatively studied in the context of multi-robot box pushing. First, the single-agent Q-

learning algorithm was directly extended to the multi-robot domain. Such extensions do

not possess a solid theoretical foundation because they violate the static environment

assumption of the algorithm. Second, the team Q-learning algorithm was introduced into

the multi-robot box-pushing field, which had been specifically designed to solve the

purely cooperative stochastic game problem. This algorithm was shown to converge to the

optimal policy if an adequate number of explorations were executed. Both algorithms

were implemented in a multi-robot box-pushing system. The simulation results showed

that both algorithms were effective in a simple environment without obstacles or with a

very few obstacles. However, in a complex environment with many obstacles, the

simulation results showed that the single-agent Q-learning algorithm did a better job than

the team Q-learning algorithm. It is believed that more random disturbances in the former

helped it to escape from local minimum.

3.6 Summary
This chapter addressed the application of machine learning to multi-robot decision

making. Multi-robot systems face some special challenges; for example, dynamic and

unknown environments, which the traditional AI technologies cannot effectively deal with.

Therefore, it is important to integrate machine learning with the conventional planning or

behavior-based decision-making techniques to help multi-robot systems work in a

complex and unknown environment, in a robust and effective manner.

Reinforcement learning is commonly used to make decisions for a single robot due to

its good real-time performance and guaranteed convergence in a static environment. In

this chapter, first, the single-agent reinforcement learning was directly extended to multi-

robot decision-making. The basic idea of the single-agent Q-learning and its framework of

Markov Decision Processes were introduced in section 3.2. The first version of learning-

based multi-robot transportation was developed in section 3.3 to validate the feasibility of

the proposed algorithm. A centralized decision-making architecture was assumed for the

110

multi-robot system.

In section 3.4, a more challenging multi-robot environment was assumed, which is

dynamic and unknown and has more complex obstacle distribution. For such an

environment, a distributed multi-robot box-pushing system based on the single-agent Q-

learning algorithm was developed. The simulation results showed that the robots still

could complete the task well albeit at a slower speed.

In order to overcome the static environment assumption in the single-agent Q-learning

algorithm, the team Q-learning algorithm which inherently models the dynamic

environment was employed to build a multi-robot decision-making subsystem. The

performances of the two Q-learning algorithms were compared and analyzed on the same

platform of multi-robot box-pushing.

The simulation results show that both Q-learning algorithms have disadvantages when

they are used to make decisions in a multi-robot system, even though they can help robots

make good decisions and properly complete tasks in most of cases. Because it violates the

assumption of a static environment, directly applying the single-agent Q-learning

algorithm to the multi-robot domain will result in very slow convergence speed, and there

is no guarantee that the algorithm will converge to the optimal policies. On the other hand,

the team Q-learning algorithm will generate an extensive learning space which makes the

algorithm infeasible when the number of robots is large. It indicates that a new Q-learning

algorithm that is suitable for multi-robot decision-making is required, by integrating the

advantages of both single-agent Q-learning and team Q-learning.

111

Chapter 4

Sequential Q-learning with Kalman Filtering (SQKF)

4.1 Overview
Learning is important for cooperative multi-robot systems whose environments are

usually dynamic and unknown. In chapter 3, two Q-learning algorithms are employed to

find optimal action policies for the members of a multi-robot system. Although both Q-

learning algorithms can help robots find good cooperation policies, they also have some

serious disadvantages in a multi-robot environment. Furthermore, directly extending the

single-agent Q-learning algorithm to the multi-robot domain violates its assumption of

static environment, and as a result the values of the Q-table cannot converge. Although the

robots still can find some good policies for cooperation, the performance of the whole

team can be degraded when that approach is used. On the other hand, the team Q-learning

algorithm models a dynamic environment inherently and is clearly more suitable for

multi-robot systems, but it requires an extensive learning space (state/action space) and

this space increases rapidly with the number of robots in the system. It is very difficult for

a robot to manipulate and manage an extensive learning space in real-time. This is

exacerbated by the fact that all states of this extensive space should be visited to guarantee

that the team Q-learning algorithm converges to its optimal policies, which is quite

difficult to achieve in a real multi-robot system.

These observations indicate that it is important to develop a new Q-learning algorithm

which is suitable for real-time operation of cooperative multi-robot systems. In this

chapter, a modified Q-learning algorithm termed Sequential Q-learning with Kalman

Filtering (SQKF) is developed, which takes inspiration from human cooperation in

performing heavy-duty manual tasks, to meet the main challenges of Q-learning in the

multi-robot domain. The SQKF algorithm is presented in section 4.2, and it is validated

through computer simulation in section 4.3.

112

4.2 Sequential Q-learning with Kalman Filtering
The Sequential Q-learning algorithm with Kalman Filtering (SQKF) is specially

designed to cope with various challenges which the single-agent Q-learning algorithm and

the team Q-learning algorithm face in a multi-robot environment. The SQKF algorithm,

which is inspired by human cooperation in executing heavy-duty manual tasks, has two

parts: Sequential Q-learning and Kalman Filtering based Reward Estimation, which are

described next.

4.2.1 Sequential Q-learning

The sequential Q-learning algorithm may be summarized as follows:

• Assume that there are n robots, R" R2 , .^, which are arranged in a special

sequence. The subscripts represent their positions in this sequence.

• A,, A z , ...,A n are the corresponding action sets available for the robots. In

particular, the robot R i has m i actions available for execution as given by

R: A i = (a',a2i ,^)

• Qi (s,a),Q2 (s,a),^,Qn (s,a) are the corresponding Q tables for the robots. All

entries in the Q tables are initialized to zero.

• Initialize r to 0.99.

• is a set including all actions selected by the robots thus far, and q5 represents

the empty set.

• Do repeatedly the following:

■ Initialize kis =

■ Observe the current world state s

■ For (i=1 to n)

1) Generate the currently available action set A i = (A i — (A, n kif))

2) The robot R selects the action a ji E A, with probability

P(aid- (4.1)

113

where a ir e A, (r = 1,2,• • k) and k is the size of the set A,

3) Add action a f' to the set

■ End For

■ For each robot R i (i = 1,2,...,n), execute the corresponding selected action a

■ Receive an immediate reward r

■ Observe the new state s'

■ For each robot R,(i = 1, 2,...,n), update its table entry for Q(s,a1,(22;^as

follows:

2,a, • •^) = (1- 0)Q,^a2,, • •^) + efr + max Q,[5^2^di),a, • •

where 0 < s < 1 is the learning rate and 0 < ,u <1 is the discount rate.

■ ,^r*0.999

The basic idea of the Sequential Q-learning algorithm comes from a strategy that is

typically employed by humans when they cooperatively push a large and heavy object to a

goal location. In transporting the object, the group members typically do not select their

pushing locations and forces concurrently. Instead, one of them will select his pushing

location and apply a force first. Then, by observing the first person's action, the second

person will select his pushing action (i.e., a cooperative strategy) accordingly. Next, the

third person will determine his action by observing the actions of the first two people. In

this manner, when all the people in the group have determined their actions, they will

execute the overall pushing actions through simple synchronization. This cooperative

strategy is known to work well in manual tasks. By taking inspiration from human

cooperation, the same strategy is used here to develop the Sequential Q-learning algorithm

for multi-robot transportation tasks.

In the Sequential Q-learning algorithm, in each step of decision making, the robots do

not select their actions simultaneously. Instead, they select their actions one by one

according to a pre-defined sequence. Before a robot selects its action, it observes the

nature of actions that have been chosen by the robots who precede it in the sequence. By

(4.2)

114

not selecting exactly the same actions as those of the preceding robots and instead by

taking a complementary cooperative action, this robot is able to successfully solve the

behavior conflict problem and promote effective cooperation with its teammates.

The benefits of the Sequential Q-learning algorithm are obvious. Because each robot

observes the actions of the robots preceding it in the sequence before it makes its own

decision, the Sequential Q-learning algorithm is likely to avoid conflicts and promote

complementary actions, resulting in more effective cooperation and faster convergence

than a single-agent Q-learning algorithm in a multi-robot cooperative task. Furthermore,

because a robot does not need to observe the actions of all its teammates, the Sequential

Q-learning algorithm results in a significantly smaller learning space (or Q table) than that

for the team Q-learning algorithm. In addition, by selecting their actions according to a

particular pre-defined sequence, the robots avoid selecting the same action which would

result in behavior conflicts and cooperation failure in multi-robot cooperative

transportation tasks.

4.2.2 Kalman Filtering Based Reward Estimation

When the conventional Q-learning algorithms (single-agent Q-learning or team Q-

learning) are employed in a multi-robot environment, there are several factors that confuse

or even fail the learning agents. First, as argued before, a multi-robot environment is

essentially dynamic. In this dynamic environment the learning agent finds it very difficult

to assess all the rewards received and update its learning process effectively.

Second, usually a multi-robot environment is only partially observed. Due to

limitations in the sensor performance, a robot or an agent sometimes cannot see the

regions of the environment that are obstructed or far away from it. Consequently, it only

observes a part of the world. The feature of partial observation makes it difficult for a

learning agent to assess an action under a specific state. In particular, the agent may be

confused when an action receives different rewards under the "same" world state.

Third, the credit assignment is rather difficult in multi-robot learning. For example,

when multiple robots cooperatively push a box to a goal location, how to split the

observed global reward among the robots (e.g., how to assign a lazy or disruptive robot a

negative reward and a hard-working robot a positive value) is an important issue. In the

115

single-agent Q-learning or team Q-learning algorithm, the global reward is directly

assigned to each robot. It means that each robot receives the same reward regardless of

whether it makes a positive contribution to the collective task. Due to this global reward

policy, the simulation results in Chapter 3 have shown that the learning agents can

converge slowly or even become confused in a multi-robot cooperative task. It follows

that updating the Q-values with a global reward is not proper in a dynamic and unknown

environment. How to estimate the real reward of each robot from the global reward signal

has become a key topic in multi-robot Q-learning.

The issue of Kalman filtering based reward estimation was first studied by Chang and

Kaelbling (2003). In their paper, they proposed to model the effects of unobservable states

on the global reward as a random white noise process, and employed a Kalman filter to

remove the noise and continuously extract the real reward from the global reward. While

their simulation results validated this approach, they had made some crucial assumptions

to simplify their model, which degraded its value to some degree. Among those

assumptions, most importantly, they model the effect of unobservable states on the global

reward as a zero-mean Gaussian noise process, which may be not correct in a real multi-

robot system. Another limitation of their approach is the necessity to guess a variance

value o the random noise process before the algorithm is executed. Therefore, some

improvements are needed before the approach can be applied to a real multi-robot system.

In this section, a modified approach to estimate real rewards from global rewards,

which is based on the original approach given in (Chang and Kaelbling, 2003), is

proposed. A more general noise process is assumed and a method to estimate and update

the parameters of the noise process is included in the algorithm to improve its

performance. In addition, the approach of Kalman fitering based reward estimation is

integrated into the sequential Q-learning algorithm presented in the previous section, to

promote cooperation among robots and speed up the convergence process.

4.2.2.1 The system model

In the approach of Kalman filtering based reward estimation, the global reward

received by a learning agent is thought to be the sum of its real reward and a random noise

signal caused by changes in the environment and unobservable world states. In particular,

116

if the agent is in the world state i at time t and it receives a global reward g„ then it can

be expressed as

g, = r(i),+b,^ (4.3)

where r(i), is the real reward the agent receives in state i at time t , and 4 is an additive

noise process which models the effect of the unobservable states on the global reward and

evolves according to

b, + z r , z, N(,u,c,„)^ (4.4)bt+1

2Here z, is a Gaussian random variable with mean p and variance a. Based on these

assumptions, the system model may be presented as

{

x, = Ax,_, + w„ w,— N(A,E i)
g, = Cx, + v„ v, — N(0,E 2)

(r(1),
r(2),

(4.5)

where, x, =^is the state vector, Id is the total number of world states, w, is
r(is1),
b,

)(isroxi

0
0

the system noise having a Guassian distribution with mean A =
0

and covariance

matrix E I =

r0 0

0 0

0^• •^• 0

, and v, is the observation error which is a zero-

mean Gaussian white noise.

In addition, E 2 is set to zero because no observation error is assumed. The system

matrix is A= I , and the observation matrix is C = (0 • • • 0 1, 0 • • • 0 1)
1x (1,1+1)

where the 1, occurs in the position when state i is observed.

117

4.2.2.2 Kalman filtering algorithm

Kalman filter is a powerful tool to estimate states of a linear system with Guassian

noise. Here, the Kalman filtering algorithm is employed to dynamically estimate the real

rewards and process noise through observing global rewards received by the learning

agent. Then, the estimated real reward r(i), in state i at time t instead of the global

reward g, will be used to update the Q-table. The standard Kalman filtering algorithm is

based on a system model with zero-mean Gaussian white noise. In order to employ the

standard Kalman filtering algorithm, the system model in equation (4.5) is transformed to

{x i = Ax,_,+ Bu + et ,^e, — N(0, Z i)
(4.6)

g,=Cx,+v„^v,— N(0,E 2)

'o r
0 0

where, B = , u= : , e, is a zero-mean Gaussian white
0 0

1

noise signal with covariance matrix E l , and E 2 = 0 .

Based on the model given by (4.6), the Kalman filtering algorithm is presented below.

• Initialize xo = (0, • • • , 0) T , the covariance matrix Po = I , u= (0 • • • 0 0) T

2 = 0.1, and t =1.

• While (true)

■ From current state i , select an action a with Q-learning and execute it, observe

a new state k , and receive a global reward g,.

■ Update the estimate _i t and its covariance matrix Pt according to

= Ax,_,+ Bu

Pt =^+El

■ These priori estimates are updated using the current observation g,.

C,=(0,•••,1,,0,•••,0,1), whose i th element is 1.

)(1,1+0.(1 ,1+0 \/-1)(Is1+0.1

118

K,=13,c 7 (c,Pc r,) -1

x, = x, + K, (g, — Cric,)

P = (I — K,C,)P,

■ Replace the global reward r in equation (4.2) with x,(i) to update the Q-table.

■ Re-estimate the mean ,u and variance 6,, 2 of the noise process with the history

of b, (i.e., xt-width^+ 1), • —,x,(1s1 + 1)), and update u and E l .

■ t^t +1, i <—k

• End While

4.2.2.3 Online parameter estimation of the noise process

In the approach proposed by Chang and Kaelbling (2003), a value of a 2 , the

covariance of the process noise, has to be guessed before the Kalman filtering algorithm is

executed. However, in a real multi-robot task, it is usually very difficult to guess this

covariance value. In this section, an online estimation method is presented to estimate the

covariance 6 3,2 with the history of b, (i.e., x,(IsI + 1)). Moreover, the mean p is estimated

online because it is not assumed to be zero in the system model presented in equation (4.6).

The estimation method is given below.

• Initialize po = 0 , o-2 0 =0.1, and t= 0.

• Execute the Kalman filtering algorithm for n (n > 200) iterations with constant po

and awo , and record the historical values of x,, 1 (1s1 + 1), xt+2 (Isl +1),• • • ,x,+„ (Is' + 1) .

• While (true)

■ Estimate the mean and covariance as follows:

1^n
fit =

n —1 j=2
E(xt,.(Is1+1)—x, i_ i (Isi+ 1))

in2Cr =^L(x t+i + 1)— X i+i_ 1 (Isi + 1) — 10 2
n-1 1=2

■ Execute the Kalman filtering algorithm with p, and cr 2„ and record the value

of xt+.+I(Is1+ 1) •

119

• t+- t+1

• End While

4.3 Simulation Results
In order to validate the SQKF algorithm developed in this chapter, a multi-robot box

pushing simulation system is used as shown in Figure 4.1.

Figure 4.1: The simulated multi-robot box-pushing system.

Here, three autonomous robots attempt to cooperatively push a box to a goal location

and orientation in an unknown and dynamic environment. The box is sufficiently big and

heavy so that no single robot can complete the task alone. In addition, each robot only

possesses local sensing capability and the obstacles may occur and disappear randomly in

the path, so the robots are unable to plan the trajectory in advance. In such an unknown

and dynamic environment in continuous space, a static planning approach will fail.

A system is developed using the Java language to simulate the multi-robot box-pushing

system equipped with the proposed SQKF algorithm presented in the previous sections.

The dimensions of the environment are 950x700 units and the dimensions of the box are

120x80 units. There are three robots, denoted by circles with a radius of 2 in the

subsequent figures, which push the box to the goal location. The Java RMI (Remote

Method Invocation) is used to implement a fully distributed multi-robot simulation system.

120

The definitions of the environmental states, robot actions and reward functions of the

Q-learning algorithm are given in Chapter 3. Without any prior knowledge, the three

mobile robots employ the SQKF learning algorithm to find good cooperation strategies so

that the box is pushed to the goal location as quickly as possible. A successful example of

box-pushing is shown in Figure 4.2.

Figure 4.2: A successful example of multi-robot box pushing with the new SQKF

algorithm.

Figure 4.3 shows the effect of training on the number of steps per round of box-pushing

(The robots pushing the box from the start position to the goal position is counted as a

round).

121

2 5
x103

— — - before training
after training

0.5!

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000
Step number per round

Figure 4.3: Probability density estimate of the number of steps per round before

and after training.

In Figure 4.3, 500 rounds of box pushing are first executed, the number of steps per

round is recorded, and its probability density is estimated based on the 500 samples. When

each round of box pushing is started, the Q-table entries of each robot is filled with zeros

which means the robots do not have any prior knowledge of pushing the box. Then, the

robots are trained to improve their Q tables by pushing the box for 10,000 rounds

continuously. After training, another 500 rounds of box pushing are executed, the number

of steps per round is recorded, and its probability density is estimated. Similarly, every

time a round of box-pushing is started, the Q-table of each robot is reloaded with the Q-

table learned in the training stage. Figure 4.3 shows that the robots spent around 1,500

steps to push the box from the starting position to the goal location before the training

stage, while they only spent approximately 300 steps to complete the same task after

training, which demonstrates the effectiveness of learning. In addition, the variation of the

number of steps per round after training is much smaller than that before training.

0 o

122

Therefore, it is clear that the robots have learned good cooperative policies and improved

their performance significantly in the training stage.

Besides the number of steps per round, the average global reward per round also

increases after training. Figure 4.4 shows the effect of training on the global reward.

0.2^0.4^0.6^0.8^1^1.2^1_4^1_6^18
Average globe) reward per round

Figure 4.4: Probability density estimate of the average global reward per round

before and after training.

The average global reward per round is obtained by dividing the sum of global rewards

received by the number of steps in a round of box-pushing. Figure 4.4 shows the

probability density estimates of the average global reward per round before and after

training. Both probability density curves are obtained by analyzing 500 samples of data.

From Figure 4.4, it is clear that the average global reward is approximately 0.05 before

training while it becomes 1.15 after training. Because a bigger average global reward

indicates that the robots employed a better cooperation strategy in this round of box-

123

pushing, training/learning

performance and help the

pushing task.

Figure 4.5 shows the

continuous box-pushing.

is effectively used in the new SQKF algorithm to improve its

robots learn good cooperation policies in a multi-robot box-

history of number of steps per round in 1,000 rounds of

1

100
^

200
^

300
^

400
^

500^600
^

700
^

800
^

900
^

1000
Round #

3000

2500

2000
a
2

0_
1500

E

o_
55a)

1000

500

take only approximately 400 steps to complete the same task. It means that the robots have

learned correct strategies to cooperatively push the box in a faster manner and more

successfully avoid obstacles in the environment.

The above observation is also validated by Figure 4.6 which shows the history of the

average global reward per round in 1,000 rounds of continuous box-pushing.

3

2.5

o 1.5
as
cr)
as

0.5

100^200^300^400^500^600^700^800^900 1000
Round #

Figure 4.6: The average global reward per round in 1,000 rounds of continuous box-

pushing.

From Figure 4.6, it is clear that the average global reward per round is increased when

the robots obtained more experience of box-pushing. It increases from approximately 0.3

to 1.4 in 1,000 rounds of continuous box-pushing. Because a bigger average global reward

indicates that the robots have employed good cooperation strategies to move the box with

low probability of colliding with obstacles, Figure 4.6 confirms that the new SQKF

125

11

algorithm is effective in helping the robots to improve their performance in carrying out

the cooperative task.

The global rewards within one round are observed in order to understand the effect of

training on the performance of the robots. Figure 4.7 shows the global rewards received by

the robots in a round of box-pushing before training, while Figure 4.8 shows the

probability density estimate of the global rewards.

1
Toam

500 1000 1500
Step #

Figure 4.7: The global rewards received by the robots in a round of box-pushing before

training.

126

0 35

0 3 -

0 25

0.1

0_05

-4^-2^0
^

2
^

4^6
Global reward

Figure 4.8: The probability density estimate of the global rewards in Figure 4.7.

Figure 4.7 shows that the robots take 1,500 steps to cooperatively push the box to the

goal location while avoiding the obstacles in the environment. The global rewards are very

random in the course of transportation. Figure 4.8 describes the statistical nature of the

global rewards received when the box is moved from the start position to the goal location.

The average value of the global rewards is approximately 0 and the rewards fluctuate from

-4 to +4. Figure 4.8 and Figure 4.7 indicate that the robots receive both positive and

negative global rewards in a round of box-pushing before training. It means that at this

stage the robots are still exploring the world states and collecting experience to improve

their Q-tables.

Figure 4.9 show the global rewards received in a round of box-pushing after the

training stage, and the corresponding statistical result is shown in Figure 4.10.

127

Ji

50^100^150^200^250^300
^

350
Step #

Figure 4.9: The global rewards received by the robots in a round of box-pushing after

training.

0.5

0.45

0.4

0.35

Z." 0.3

0_25
F5ys

2—

•

0o_^-

0.15

0.1

0.05

-2
^

0^1^2
^

3
^

4
^

5
^

6
Global reward

Figure 4.10:.The probability density estimate of the global rewards in Figure 4.9.

128

o o 500 1000 1500^2000^2500^3000
Step number per round after training

3500 4000 4500

2.5
x 10

-3

SQKF algorithm
— — - Conventional Q-learning

2

0.5

From Figure 4.9 and Figure 4.10 it is clear that the global rewards are increased

significantly after training, thereby decreasing the number of steps to 300, which means

the robots have leaned good cooperation strategies in the training stage and improved their

performance significantly. In particular, now the average value of the global rewards is

approximately 1.5. By comparing Figure 4.7 and Figure 4.8 with Figure 4.9 and Figure

4.10, it is convincing that the new SQKF algorithm can improve the performance of the

robots to cooperatively transport the box through training.

Next the performance of the new SQKF algorithm is compared with that of a

conventional single-agent Q-learning algorithm for the same multi-robot task. The

comparison results are presented in Figure 4.11 and Figure 4.12.

Figure 4.11: Probability density estimate of number of steps per round in 500 rounds of

box-pushing.

129

1.8 21.6

4.5
— — - Conventional Q-learning

SQKF algorithm
4

3.5

0.2^0.4^0.6^0.8^1^1.2^1.4
Average global reward per round after training

0.5

0
0

Figure 4.12: Probability density estimate of average global reward per round in 500

rounds of box-pushing.

For both learning algorithms, the robots are trained for 10,000 rounds of box-pushing

first to improve their Q-tables. Then another 500 rounds of box-pushing are executed, and

the number of steps and the average global reward per round are recorded for statistical

analysis. From Figure 4.11 and Figure 4.12, it is clear that the new SQKF algorithm has

better performance than the conventional Q-learning algorithm in the multi-robot box-

pushing project. In particular, the new SQKF algorithm takes an average of 350 steps to

complete the task while the conventional Q-learning algorithm takes almost 1,200 steps to

complete the same task. Similarly, the new algorithm receives a higher average of global

rewards than the conventional Q-learning algorithm.

130

4.4 Summary
Most multi-robot operating environments, such as planet surfaces, are dynamic and

unstructured where the terrain features and the obstacle distribution change with time.

Furthermore, even if the external physical environment is stationary, the overall system

structure is still dynamic from the viewpoint of a single robot because other robots may

take actions thereby changing the environment of that particular robot continuously. The

environmental dynamics makes multi-robot decision-making quite complex, and the

traditional task planning becomes ineffective because a planned optimal policy can

become inappropriate a few minutes later due to changes in the environment.

By observing human capabilities of dealing with a dynamic environment, it is easy to

conclude that a human employs not only planning or reactive (behavior-based) techniques

but also learning techniques to successfully complete a task in such an environment.

Through learning, a human learns new world states, finds optimal actions under these

states, and improves his planning and reactive techniques continuously. Learning enables

him to deal with unexpected world states, decrease uncertainties in the environment, and

make his decision-making capability more robust in a dynamic environment.

Therefore, machine learning has become important in multi-robot applications. Among

the existing machine learning approaches, Reinforcement Learning, especially Q-learning,

is used most commonly in multi-robot systems due to its simplicity and good real-time

performance. Chapter 3 addressed how to employ two Q-learning algorithms, the single-

agent Q-learning and the team Q-learning, to find optimal cooperative strategies for a

multi-robot box-pushing task. While they help improve the performance of the robots in a

cooperative task, there are some serious disadvantages in both Q-learning algorithms. In

particular, the single-agent Q-learning has a slow convergence speed when applied to a

multi-robot task due to the presence of dynamic environment, and the learning space of

the team Q-learning algorithm can become too extensive to be practical in a real multi-

robot application. Consequently, it has become important to develop a new reinforcement

learning algorithm that is suitable for multi-robot decision-making.

In this chapter, a modified Q-learning algorithm suitable for multi-robot decision

making was developed. By taking inspiration from the execution of heavy-duty object

moving tasks by a team of humans, through arranging the robots to learn in a sequential

131

manner and employing Kalman filtering to estimate real rewards and the environmental

noise, the developed learning algorithm showed better performance than the conventional

single-agent Q-learning algorithm in a simulated multi-robot box-pushing project.

132

Chapter 5

Computer Vision in Multi-robot Cooperative Control

5.1 Overview
Multi-robot systems have become a promising area in robotics research (Cao et al.,

1997). In such a system, several autonomous robots cooperatively work to complete a

common task. Due to the advantages of robustness, flexible configuration, potential high

efficiency and low cost, and close similarity to human-society intelligence, multi-robot

systems have attracted researchers in the robotics community.

In a multi-robot system, it is important for a robot to know the latest poses

(positions/orientations) of other robots and potential obstacles in the environment so as to

make rational decisions. There are many means to measure the pose of a robot or an

obstacle; for example, using sonar or laser distance finders. However, most multi-robot

systems employ digital cameras for this purpose. The main reasons are: (1) A digital

image provides a rich source of information on multiple moving objects (robots and

obstacles) simultaneously in the operating environment, (2) The vast progress in computer

vision research in recent years has made it possible to build fast and accurate vision

subsystems at low cost, (3) Use of cameras by robots to observe and understand their

operating environment is as "natural" as the use of eyes by the humans to observe the

world.

Some work has been done to monitor multiple moving objects in a dynamic

environment by using computer vision. Stone and Veloso (1998) studied a multi-robot

soccer system. In their work, they used a global camera to monitor the positions of the

robots and objects in the game. Veeraraghavan et al. (2003) developed a computer vision

algorithm to track the vehicle motion at a traffic intersection. A multilevel approach using

a Kalman filter was presented by them for tracking the vehicles and pedestrians at an

intersection. The approach combined low-level image-based blob tracking with high-level

Kalman filtering for position and shape estimation. Maurin et al. (2005) presented a

133

vision-based system for monitoring crowded urban scenes. Their approach combined an

effective detection scheme based on optical flow and background removal that could

monitor many moving objects simultaneously. Kalman filtering integrated with statistical

methods was used in their approach. Chen et al. (2005) presented a framework for

spatiotemporal vehicle tracking using unsupervised learning-based segmentation and

object tracking. In their work, an adaptive background learning and subtraction method

was applied to two real-life traffic video sequences in order to obtain accurate

spatiotemporal information on vehicle objects

Nevertheless, significant difficulties exist in employing the conventional computer

vision algorithms in a multi-robot system. The first difficulty results from the real-time

constraints in the specific system. In a multi-robot system, multiple mobile robots move

quickly in an unpredicted manner, and the vision system needs to capture their positions

and orientations within a very short time. Consequently, it is not practical to employ an

effective yet time-consuming vision algorithm. The conventional algorithms, such as those

used by others in the work outlined above, are too complex for meeting real-time

constraints in a multi-robot system. The second difficulty arises when multiple mobile

robots move in a large area that has different levels of illumination. Multi-robot systems

usually work in large and unstructured environments with uneven lighting conditions. The

robots usually move into and move out of sub-areas having different brightness levels. In

order to track the robots effectively in such an environment, the vision system must be

robust with respect to different illumination conditions. However, most of existing

algorithms do not consider this problem.

A fast color-blob tracking algorithm has been developed (Wang and de Silva, 2006d)

for the multi-robot projects which are carried out in the Industrial Automation Laboratory

(de Silva, 2005; Karray and de Silva, 2004) of the University of British Columbia (UBC).

The algorithm meets the real-time constraints in our multi-robot projects, and can

effectively track the positions and orientations of the robots when they move quickly in an

unstructured environment with uneven illumination. In the next section, the multi-robot

transportation system in the laboratory is introduced. In Section 5.3, the developed

computer vision algorithm is presented. In Section 5.4, a representative experimental

result obtained through the developed approach is presented. Based on the proposed color-

134

Robotic Ann Object

- Force Sensors
Fixed
Obstacles

Movable
Obstacles

Sonar

Ethernet Network

Mobile Robot

blob tracking algorithm, a multi-robot route planning approach is designed and presented

in Section 5.5. The conclusions are given in Section 5.6.

5.2 Multi-robot Transportation System
The objective of our multi-robot transportation project in the Industrial Automation

Laboratory (IAL), is to develop a physical system where a group of intelligent robots work

cooperatively to transport an object to a goal location and orientation in an unknown and

unstructured dynamic environment. Obstacles may be present and even appear randomly

during the transportation process. Robot control, sensing, multi-agent technologies, and

machine learning are integrated into the developed physical platform to cope with the

main challenges of the problem. A schematic representation of the initial version of the

developed system is shown in Figure 1.1 and is repeated in Figure 5.1. The latest system

in the laboratory uses state-of-the art mobile robots together with fixed-base articulated

robots (one state-of-the art commercial robot and two multi-modular robot prototypes

developed in our laboratory).

Digital Camera

Figure 5.1: The developed physical multi-robot system.

In this first prototype there is one fixed robot and one mobile robot, which

cooperatively transport an object to a goal location. During the course of the transportation,

135

the robots have to negotiate the cooperation strategy and decide on the optimal location

and magnitude of the individual forces that would be applied by them so that the object

would be transported quickly and effectively while avoiding any obstacles that might be

present in the path. In some special cases, they also need to consider whether to move an

obstacle out of the way rather than negotiating around it. Other considerations such as the

level of energy utilization and damage mitigation for the transported object may have to

be taken into account as well. A global camera is used to monitor and measure the current

location and orientation of the object. The environment is dynamic and unpredictable with

some movable obstacles which may appear randomly, and some fixed obstacles. The

robots, the camera, and the sensors are separately linked to their host computers, which are

connected through a local communication network, to implement complex controls and

machine intelligence.

A robotic arm and a mobile robot are used in the system shown in Figure 5.1. The

system provides an opportunity to observe the cooperation between two robots with

different dynamics and obtain useful information on the system behavior. Moreover, with

the ability of exact localization of the robotic arm and the capability of broad ground

coverage of the mobile robot, it is possible to integrate different advantages of the two

robots in a complementary manner, so as to improve the effectiveness of the overall

system.

The vision subsystem is rather crucial in the current project. It is expected to

effectively and accurately track the poses (positions and orientations) of the robots and the

object in real-time. Several color-blobs with different colors are used to identify the poses

of the robots and the object, thereby simplifying the programming requirements. Two

difficulties arise in this vision subsystem. The first one is its speed of response, which is

subjected to real-time constraints. In order to simultaneously find the current poses of

multiple robots and the object, all the image processing work, such as image acquisition,

pre-processing, searching the positions of the color-blobs, and coordinate transformation,

must be completed within 500 ms so that the decision-making subsystem can effectively

track and update the new world model and make correct decisions. The second difficulty

is caused by the uneven lighting in the environment, which is unavoidable in a natural

environment. In our projects, it is found that uneven lighting greatly degrades the

136

Color-Blob Template Matching

CoordinateT

Poses of the robots and the object

performance of the vision subsystem, and it represents a primary disturbance in detecting

the positions of the color blobs. Because uneven illumination is inevitable in a large

physical environment, it is imperative to develop a computer vision algorithm that is

robust to uneven lighting conditions.

5.3 The Fast Color-blob Tracking Algorithm
In order to cope with the two main problems in our multi-robot project, as mentioned in

the previous section, a fast color-blob tracking algorithm is developed. This algorithm is

presented in Figure 5.2 and its steps are described in detail next.

Original Image

Figure 5.2: The color-blob tracking algorithm.

5.3.1 Removal of the Lighting Disturbances

As discussed before, uneven illumination in the operating environment greatly

degrades the performance of the color-blob tracking algorithm. In the first step of the

present algorithm, the disturbances caused by uneven illuminations are removed by

transforming the original image from the RGB (Red, Blue, and Green) color space to the

137

HSI (Hue, Saturation, and Intensity) color space and removing its Saturation and Intensity

components.

When the image is captured by the camera, it is usually represented in the RGB color

space. Each color corresponds to a point in the RGB space; i.e., any color is composed of

Red, Green, and Blue with different intensity levels. Although the RGB color space is a

good tool to generate color, it is not particularly suitable for describing color. The HSI

color space is another well-known color model, which is effectively employed in the

digital image processing field (Gonzalez and Woods, 2002). Its most important advantage

is that it corresponds closely with the way humans describe and interpret color. Another

advantage is that it successfully decouples the color and the gray-level information in an

image.

In this section, in order to remove the disturbances caused by uneven illumination in

the environment, the original color image is transformed from the RGB color space to the

HSI color space. Then the Saturation and the Intensity components in the image are

deleted and only the Hue component is retained. Because the Hue component in the image

represents the color attribute, the Saturation component represents the amount of white

light that is added into a monochromatic wave of light, and the Intensity component

represents brightness, by separating the Hue component from the Saturation and the

Intensity components, the disturbances arising from uneven illumination in the

environment are effectively removed.

Equations (5.1)-(5.3) indicate how to convert a color image from the RGB color space

to the HSI color space (Gonzalez and Woods, 2002).

{ 19^if B G
H =^ (5.1)

360 — t9 if B > G

with

0.5 [(R — G) + (R — B)]
0 = cos -1 {

[(R — G) 2 + (R — B)(G — B)1 1/2

3
(5.2)S^ G, B)]=1^[min(R,

(R+G+B)

I=-
1
(R+G+B) (5.3)

3

138

5.3.2 Statistical Feature Filtering

In this step, a type of statistical feature filtering is employed to remove the colors

which are not related to the color blobs of interest in the image so that the succeeding

algorithm will be able to easily determine the positions of these color blobs.

Figure 5.3: A sample image of a color blob.

A sample image of a color blob is shown in Figure 5.3. It is assumed that there are

n x n pixels in this image and h(i,i) represents the hue value of the pixel (i, j) . The

average hue value h and the standard deviation a of this sample color blob can be

calculated as follows:
n n
Ezh(i,j)

= i=1 j=1

n 2

E n

ELh(i j) --h 1 2
i=1 j=1

n 2 — 1

(5.4)

(5.5)

Given k color blobs in the image, and their corresponding average hue values

h1 , • • hk and standard deviations a1 , • • •, 6k , the statistical filtering algorithm that is

presented next is executed.

For each pixel in the original image

If its hue value is within the set of

th^— 1.2a1 h ^ h, + 1.2a, or

-1.262 h ^ h2 +1.172

or • • -hi —1.26i Sh ^ h i

or • • • orhk -1.2ak ^h ^ hk +1.2ak)

139

it will not be changed

Else

Its hue values will be replaced with the value of O.

5.3.3 Color-blob Template Matching

After statistical feature filtering, apart from the regions of color blobs there still exist

very small regions of pixels which are caused by unknown disturbances that arise when an

image is captured by a camera. A color-blob template matching algorithm is developed in

order to remove these small regions of pixels.

A color-blob template is a matrix of hue values of a given color blob. The

corresponding m x m matrix is generated off line from the image of the color blob, and is

used to search its position in the entire image of the environment which is captured by the

global camera. Given a n x n hue matrix H of the environment image, and a m x m

template matrix T , the following color-blob template matching algorithm is executed:

• Initialize min-distance=100000, blobpos=(1,1)

• For each element H(i, j) in the matrix of H,

distance=

+ k -1, j + 1 -1)- T (k,1)) 2

k---- I 1=1

m 2

if (distance < min-distance) then

• min-distance=distance

• update: blob_pos=(i,j)

• Output blobpos

5.3.4 Coordinate Transformation and Pose Reconstruction

Once the positions of all color blobs in the image are obtained, it is necessary to

transform their coordinates in the mage to those in the real world. Because the positions

are defined in a 2-D plane, this transformation is straightforward. Similarly, given all color

blob positions in the real world, it is easy to reconstruct the poses of all robots and the

140

object in the environment. Usually, two blobs with different colors are needed to

determine the position and orientation of a robot or an object. By checking the

corresponding color blobs of each robot or object, the poses of all robots and the object

can be reconstructed rather quickly.

5.4. Experimental Result
5.4.1 The Test-bed

A test bed is developed for multi-robot projects in the Industrial Automation

Laboratory (IAL), as shown in Figure 5.4. It includes a 4-joint 2D robotic arm, an
AmigoTM mobile robot, a JVCTM color CCD (charge-coupled device) camera, two

Transducer Techniques TM force sensors, a rectangular box (object), an indexing table, a

ServoToGoTM motion control board, a Matrox TM frame grabber board, a CISCO TM

wireless LAN access point and a Pentium NTM computer with 512M RAM. The robotic

arm is particularly designed to move an object on a 2-D surface. Its four joints (two arm

joints and two wrist joints) are equipped with optical encoders to accurately detect the

joint motions. One force sensor is mounted in its end effector. The encoder and force data

are acquired by the host computer via the motion control board.

The mobile robot is a two-wheel-driven intelligent machine with two 500-tick encoders,

8 sonar units, wireless LAN communication ability and a force sensor in its end effecter.

The mobile robot is connected to the host computer with the wireless LAN via a CISCO TM

wireless Ethernet access point equipment. It can wander within a radius of 50 meters

without any communication interruption.

141

Figure 5.4: The experimental system in IAL at UBC.

A color CCD camera with a resolution of 768x492 pixels is used to monitor the

positions and orientations of the box, the obstacles, and the mobile robot. The vision

images are captured into the computer by a frame grabber board at a sampling rate of 30

MHz.

5.4.2 Experimental Result

In order to speed up the image processing task and reduce the computational load of

the vision subsystem, the mobile robot and the box are marked with color blobs (a purple

and a green blob on the mobile robot; an orange and a blue blob on the box), which

represent their current poses, as shown in Figure 5.5. The poses of the mobile robot and

the box are determined by quickly localizing the four color blobs from the image,

followed by the necessary coordinate transformation operations.

142

Figure 5.5: An original image captured by the CCD camera (Note the color blobs on the

mobile robot and the box.)

The first step of the developed approach is to convert the original image from the RGB

color space to the HSI color space so as to remove the disturbances caused by uneven

lighting conditions. The result of this processing step is shown in Figure 5.6. By

comparing Figure 5.5 with Figure 5.6, it is noted that the influence of uneven lighting is

effectively removed and only the hue of the image is retained.

143

Figure 5.6 The hue component of the original color image in the HSI color space.

The second step is statistical feature filtering, which separates the color blobs of

interest from the background. In Figure 5.5, there are four types of sample hue (purple,

green, orange, and blue), which have to be detected from an image. First, the sample hue

values are extracted from the region of interest. For example, the 4*4=16 pixels, which

are around the center of the purple blob on the mobile robot in Figure 5.5, are extracted.

Then the average hp and the standard deviation crp are computed from the 16 sample data

values, using the equations (5.4)-(5.5) in Section 5.3. Here, the subscript p denotes the

color "purple." Next, hp±1.2*cfp is considered as the range of "purple hue," which is of

interest here. Through similar operations, the statistical results of hg±1.2*ug, h0+1.2*a0,and

hb±1.2*crb are obtained as well. In this experiment, the hue parameters of the four color

blobs are as follows:

hp = 0.93948, o-p = 0.00655

hb = 0.54805 , ab = 0.03896

hg = 0.35959, ag = 0.00527

144

ho = 0.02253, cy.„ 0.001

The hue component image in Figure 5.6 is filtered pixel by pixel according to the

algorithm described in Section 5.3.2. Only the pixels with hue values falling in the range

h,±1.2*cri (i=r, g, o, b) are retained. The filtering result obtained in this manner is shown in

Figure 5.7.

Figure 5.7: The hue component image after the background is filtered.

From Figure 5.7 it is clear that the background of the image is virtually removed and

only the four types of sample hue (purple, green, orange and blue) are retained, which are

distinguished with the distinct values 0.3, 0.5, 0.7 and 0.9. However, because the hue of

the mobile robot is quite similar to the orange blob and there still exist some small regions

of disturbance, the positions of the color blobs of interest are not very clear in Figure 5.7.

The third step is to use the template matching method described in Section 5.3.3 and

some known space information (for example, the distance between the blue and the purple

blobs is always greater than the distance between the blue and the orange blobs) to remove

the small unwanted regions and the mobile robot hue in Figure 5.7. The template matrices

of four color blobs are generated off line from their original images, which are presented

145

0.93723
0.93540
0.92946
0.93283

0.93841
0.93663
0.93457
0.93496

0.94077
0.93973
0.93535
0.93924

0.54085 0.50000 0.55731. -

0.54336 0.52108 0.53860
0.60163 0.62418 0.61359
0.53026 0.50000 0.53612

0.35129 0.36415 0.35065
0.36254 0.36306 0.35478
0.35636 0.36244 0.35636
0.35819 0.35960 0.35364

0.02252 0.02253 0.02253
0.02253 0.02253 0.02253
0.02253 0.02253 0.02253
0.02253 0.02253 0.02253

below.

0.95144
0.95047

purple = 0.94558
0.94960

0.53261
0.53026

Tblue^0.58946
0.50949

0.36359
0.36787

Tgreen^0.36301
0.36595

0.02253
0.02253

orange^0.02253
0.02253

The processing result is shown in Figure 5.8.

Figure 5.8: The result after filtering Figure 5.7 using template matching.

146

From Figure 5.8 it is observed that the positions of the four color blobs are accurately

established. Through coordinate transfoimation operations, the positions and orientations

of the mobile robot and the box are reconstructed, as shown in Figure 5.9.

Figure 5.9: The reconstructed result of the poses of the robots and the box.

Because the image processing scheme presented here does not require too many

complex operations and since some operations may be carried out off line, the total time

of acquiring and processing an image is found to be less than 500 ms, which meets the

requirement of the transportation task in the present application.

5.5 Multi-robot Route Planning
The positions and orientations of multiple robots and the object can be tracked

simultaneously using the color-blob tracking algorithm presented in this chapter.

Consequently, a potential-field-based multi-robot route planning algorithm can be

designed.

A main challenge in the multi-robot route planning is the avoidance of collisions with

other robots and objects. Finding an optimal and collision-free route in the presence of

multiple robots is rather difficult and requires complex and time-consuming computation.

147

Instead, a simplified multi-robot route-planning approach is employed in this chapter,

which is summarized below.

1) Before carrying out route planning, each robot broadcasts its current position and the

destination position to all other robots in the team.

2) Each robot broadcasts the positions of obstacles detected by its sensors to its team

members.

3) Each robot fuses the obstacle information received from its peers and its own sensors,

and computes a global obstacle distribution.

4) Each robot computes the moving distance between its current position and its

destination position. Based on the distance information of all robots, a robot queue is

generated by sorting the distances in the ascending order. In this queue, the robot with a

smaller moving distance will be placed farther ahead.

5) Based on the global obstacle distribution information, each robot computes its route

from its current position to its destination position, using the potential-field-based path-

planning approach. When computing the route of a robot, the other robots are regarded

as special obstacles whose positions are determined as follows: If a teammate is ahead

of the current robot in the queue mentioned in step 4, this teammate is regarded as an

obstacle whose position is the same as its destination position. If a teammate is behind

the current robot in the queue, this teammate is regarded as an obstacle whose position

is the same as its current position. In this manner all the robots compute their routes at

the same time.

6) After the routs of all the robots are computed in step 5, they will move to the

destinations one by one according to these routes. When one robot is in motion, the

other robots will remain stationary. In particular, the robot in the first place in the queue

will move first, until it reaches its destination positions, and during this period the other

robots will stay in their current positions. After the first robot reaches its destination,

the second robot in the queue will begin to move towards its destination. This

procedure will be repeated until all the robots reach their destinations.

Through the strategy of "Plan the routes simultaneously and move at different times,"

the multi-robot route planning approach presented here avoids complex optimal path-

planning algorithms. As a result it possesses superior real-time performance in practical

148

multi-robot tasks. The main drawback is that the robots are not allowed to move at the

same time. In some multi-robot tasks, as in multi-robot transportation, where the speed

may not be a critical specification, the present multi-robot route-planning algorithm can be

quite advantageous.

5.6 Summary
In this chapter, a fast and robust color-blob tracking algorithm was presented for use in

a developed prototype multi-robot transportation system. In order to remove the

disturbances caused by uneven lighting conditions, the original RGB image was converted

into the HSI color space and only the Hue component information was retained. Methods

of statistical feature filtering and template matching were developed to remove the

background and reconstruct the current world state. Because the algorithm did not involve

a high computing load, real-time performance could be achieved. A simplified multi-robot

route-planning algorithm was developed, which uses the information acquired by the

color-blob algorithm. The performance of the method was studied using an experimental

robotic object transportation task.

149

Chapter 6

Experimentation in Distributed Multi-robot Cooperative

Transportation

6.1 Overview
Multi-robot cooperative transportation has been an important subject of activity in the

robotics community. A typical task of a multi-robot system is where two or more

autonomous robots attempt to cooperatively transport an object of interest to a goal

location in a static or dynamic environment. There is both theoretical and practical

significance to address issues of multi-robot transportation. First, a multi-robot system

provides a good benchmark to validate and evaluate various artificial intelligence (AI)

techniques such as machine learning, and planning or reactive approaches in a multi-agent

environment. The traditional single-agent AI technologies face special challenges in a

multi-robot or multi-agent task. These challenges include task assignment, dynamic

environment, and distributed planning. New AI approaches such as multi-agent learning,

and planning techniques are in development, which will deal with important issues that

arise in a multi-agent environment. Multi-robot transportation provides an ideal platform

to test and validate these new techniques. Second, multi-robot transportation itself has

many practical applications in industrial projects and scientific explorations. It is desirable

to have multiple autonomous robots transport an object of interest in a dangerous or

hazardous environment, rather than employing human operators for it.

In this chapter, the techniques developed in the previous chapters, such as the

hierarchical multi-robot architecture, the SQKF algorithm, and the multi-robot color-blob

tracking algorithm, are integrated to implement a physical multi-robot transportation

system running in a dynamic and unknown environment. These techniques are tested and

validated with the physical robots in our laboratory (IAL). In addition, a hybrid

150

Obstacle Obstacle
,u) Obstacle

Obstacle

Mobile robot Mobile robot

Server

I. TCP/IP

TCP/IP

Mobile robot

Wired/wireless
Router

force/position control strategy suitable for multi-robot transportation is developed and

tested using the physical robots.

6.2 Test bed
An experimental system has been developed in the Industrial Automation Laboratory

(IAL) at The University of British Columbia to implement a physical multi-robot object

transportation system. An overview of this system is presented in Figure 6.1.

Goal

Figure 6.1: The multi-robot object transportation system developed in IAL.

151

In the developed system, three autonomous mobile robots are employed to transport a

long box to a goal location on the lab floor. In order to focus on the techniques developed

in the previous chapters, a simple global coordinate system is employed. Each robot is

informed its initial position and orientation in this global coordinate system when the

multi-robot system begins to operate, and it estimates its latest position and orientation by

recording and analyzing the data of the encoders mounted in its wheels and the data of its

compass sensor while it moves in the environment. It is also able to inquire the current

positions and orientations of its peer robots via the wireless network. In addition, the

robots are assumed to know the global coordinates of the goal location in advance.

However, the box and the obstacles are placed on the floor in a random manner.

Therefore the robots have to search and estimate the poses of the box and the obstacles in

the environment by fusing the sensory data from its sonar, laser distance finder and CCD

camera. Furthemiore, the sensors are assumed to only detect objects within a radius of 1.5

meters, and a robot is able to exchange its sensory information with its peers via wireless

communication to establish a larger local world state. In essence, this is a typical local

sensing system and the robots are able to know only a local part of the whole environment.

There are different color blobs on the four lateral sides of the box so that a robot can

estimate the orientation and position of the box by identifying the color blobs with its own

CCD cameras and fusing this information with the data from its sonar and laser distance

finder. If an object without any color blobs is detected, it will be regarded as an obstacle in

the environment. The box with the color blobs is shown in Figure 6.2.

Color blob

(a) A big blue blob and a small blue blob on the same surface of the box.

152

(b) A blue blob on one side and two green blobs on another side.

Figure 6.2: The color blobs used to identify the orientation of the box.

Each robot makes decisions independently by itself. However, before it makes a

decision, it needs to exchange information with its peers so as to form a cooperation

strategy, as presented in Chapter 4.

There is a computer server in the developed system, which is used to synchronize the

actions of the robots. However, it does not serve as a centralized decision maker because

the system is fully distributed where each robot makes decisions independently.

The mobile robots are manufactured by MobileRobots Inc. (formerly ActivMedia

Robotics Company) which is a main player in the mobile robot market. In this project, one

four-wheel driven Pioneerm4 3-AT robot and two two-wheel driven PioneerTm 3-DX

robots are used. They represent an agile, versatile, and intelligent mobile robotic platform

with high-performance current management to provide power when it is needed. Built on

a core client-server model, the P3-DX/AT robots contain an embedded Pentium III

computer, opening the way for onboard vision processing, Ethernet-based

communications, laser sensing, and other autonomous functions. The P3 robots store up

to 252 watt-hours of hot-swappable batteries. They are equipped with a ring of 8 forward

sonar and a ring of 8 rear sonar. Their powerful motors and 19cm wheels can reach speeds

of 1.6 meters per second and carry a payload of up to 23 kg. In order to maintain accurate

dead reckoning data at these speeds, the Pioneer robots use 500-tick encoders. Its sensing

moves far beyond the ordinary with laser-based navigation, bumpers, gripper, vision,

153

compass and a rapidly growing suite of other options. The appearance of the P3-DX robot

and P3-AT robot is shown in Figure 6.3 and Figure 6.4.

Figure 6.3: The PioneerTM 3-DX mobile robot.

Figure 6.4: The PioneerTM 3-AT mobile robot.

The P3-DX/AT robots with the ARIA software have the ability to:

• Wander randomly

• Drive under control of software, keys or joystick

• Plan paths with gradient navigation

• Display a map of its sonar and/or laser readings

• Localize using sonar and laser distance finder

154

• Communicate sensor and control information relating sonar, motor encoder, motor

controls, user I/O, and battery charge data

• Provide C/C++/JAVA development platform.

• Simulate behaviors offline with the simulator that accompanies each development

environment

With its Laser Mapping & Navigation System and MobileEyes, the robot can map

buildings and constantly update its position within a few cm while traveling within

mapped areas. With appropriate accessories, a user can view the view of the robot

remotely, speak, play and hear audio and send the robot on patrol.

In summary, the Pioneer-3 DX or AT robot is an all-purpose base, used for research

and applications involving mapping, teleoperation, localization, monitoring,

reconnaissance, vision, manipulation, cooperation and other behaviors.

6.3 JAVA RMI
The multi-robot system developed in this chapter is fully distributed. Each robot

identifies the current world state and selects the corresponding action independently. In

order to find good cooperation strategies with other robots and complete a common task

quickly and effectively, each robot has to observe the environmental states and actions of

other robots frequently through fusing its sensory data and communicating with its

teammates. Therefore, frequent communication takes place among the robots.

In the developed multi-robot transportation system as presented in Figure 6.1, the

IEEE 802.11g wireless TCP/IP protocol provides the communication infrastructure for the

robots. While the TCP/IP protocol is a reliable and convenient communication tool, it only

works in a low level of the communication hierarchy, which only transfers binary data

packages. However, the information which the robots in a multi-robot system may need

to exchange, can include data with high-level structures like an action list and world states.

As a result, the designer of a multi-robot system has to design his own high-level

communication protocol that can run on the TCP/IP protocol so that the robots can

exchange information effectively.

A considerable amount of energy and time is required to design a customized high-

level communication protocol. It is not sensible for the designer of a multi-robot system to

155

develop such a customized communication protocol. In this thesis, this problem is solved

by using the JAVA RMI technology (Horstmann and Cornell, 2005).

JAVA RMI (Remote Method Invocation) is the JAVA implementation of "Distributed

Computing." Its basic idea is the use of a family of objects which can be located anywhere

in the network and collaborate with each other through the standard TCP/IP

communication protocol. The concept of "distributed computing" or "distributed objects"

is proposed to solve critical problems in the traditional client/server computing model. In

the client/server model, if a client wants to request data from server, it has to first convert

the request into a specific data format which is suitable for transmission via the network.

When the server receives this data package, it parses the requested data format, finds the

response data in its database, converts it into the desired format, and send it to the client.

When the client receives the response data, it also needs to parse the data format and show

the result to the users. The traditional client/server mode requires users to design their own

data transmission format and develop the corresponding conversion program, which

increases the programming burden of the user and degrades the performance of

compatibility.

The idea of JAVA RMI is to let a client call a method of a remote object that runs in

another computer in the network. The JAVA RMI will automatically convert the request

and response data into an appropriate transmission format and administer the

communication process for the users. Its principle is presented in Figure 6.5.

156

Call stub
method locally Send marshalled

Call server
method locally

Parameters

•
Send marshaled Return resultI

Return value Return value

Figure 6.5: JAVA RMI distributed computing

In Figure 6.5, when a client wants to call a method of a remote object that runs on the

server, a proxy object termed stub will be called automatically. The stub object resides on

the client machine and it packages the parameters used in the remote method into a data

package which is encoded with a device-independent protocol. This encoding process is

called parameter marshalling whose purpose is to convert the data into a specific format

suitable for communication over the network.

When the server receives the data package sent by the stub object on the client machine,

it will parse the package, find the object of interest on the server machine and pass the

parameters to its corresponding method. The return value of the method will be packaged

by the server and sent to the client. When the stub object on the client machine receives

the return data package from the server, it will parse it, extract the return data and pass the

data to the client object locally.

157

The whole communication process is based on the TCP/IP protocol, and the data

conversion and transmission operations are administered by JAVA RMI automatically.

With the help of JAVA RMI, a client can call a remote method on the server machine as if

it were a method of a local object.

6.3.1 Remote Interface

In order to implement the JAVA RMI, some programming rules have to be established.

First, a remote interface has to be set up, which is used to declare which remote methods

can be invoked by the client. A representative remote interface of the developed multi-

robot project is presented below.

public interface robotServerinterface extends Remote{

void receiveRobotActionList(Vector actionList, boolean islnitialAction) throws

RemoteException;

objPose getPose0 throws RemoteException;

boolean awakeMeOthrows RemoteException;

boolean isSleeping0 throws RemoteException;

}

This JAVA interface declares that there are 4 remote methods of the robot server which

can be called by clients (other robots in the same environment). A robot can call these

methods to collect the information of another robot, such as its current action list, current

pose, or its sleeping status. In addition, it can wake another robot by calling the remote

method of awakeme .

The remote method information is shared by both the client and the server, so the

remote interface resides simultaneously on both machines.

6.3.2 Server Side

On the server machine, an object is created which implements the remote methods

revoked by the client. A program script of the server object is shown below.

158

public class robotServer extends UnicastRemoteObject

implements robotServerinterface{

public robotServer(robot r) throws RemoteException (

theRobot=r;

}

public objPose getPose() throws RemoteException(

Lock rlock rwlock.readLock();

rlock.lock();

try{

return theRobot.getPose();

}

finally{

rlock.unlock();

}

In addition, the server has to register the remote objects with the bootstrap registry

service so that the client can locate them and download their stub objects correctly. The

registration codes are as follows:

String robotName="Robot #2";

robotServer rServer = new robotServer(myRobot);

System.out.println("Binding robot server implementations to registry..');

Context namingContext = new InitialContextO;

namingContext.bind("rmi:"+robotName, rServer);

System.out.println("The robot server is ready for calling');

159

6.3.3 Client Side

In order to revoke the remote methods on the server machine, a client program first

looks for the remote objects on the server with a known IP address. This process is

described below.

try{

String url="rmi://142.103.17.138/";

Context namingContext = new InitialContext();

robotServerInterface rServer= (robotServerInterface)

namingContext.lookup(ur1+"Robot #2');

rServer.receiveRobotActionList(actionList,true);

}

catch (Exception e) {

e.printStackTrace();

}

Furthermore, a security manager should be loaded by the JAVA RMI to prevent a

malicious program from attacking the system. The program script is presented below.

try

{

System.setProperty(' ava.security.policy", "client.policy");

System.setSecurityManager(new RMISecurityManager());

}

catch (Exception e)

{

e.printStackTraceO;

160

This script will load the JAVA security policy file: client.policy, which is stored in the

same directory as the client program. The security policy is used to restrict the port range

and related operations. In the developed multi-robot transportation project, the content of

the security policy file is as follows:

grant

{

permission java.net.SocketPermission

"*:1024-65535" "connect, accept";

permission java.net.SocketPermission

"localhost:80", "connect";

permission java.io.FilePermission

".II-", "read,write,delete";

};

6.4 A Physical Multi-robot Transportation System
A physical multi-robot transportation system has been developed in the Industrial

Automation Laboratory at The University of British Columbia, which integrates various

advanced approaches developed in chapters 2 through 5. This is a distributed multi-robot

system with local sensing capability. An experiment is carried out to validate these

approaches in a real environment in the presence of sensor noise.

In this experiment, to test the cooperative transportation capability of the developed

system, three mobile robots equipped with the SQKF algorithm are employed to transport

a big box from one end of the environment to the other one.

Before the experiment is carried out, the simulation system described in the previous

chapters is employed to train the robots so that their Q-tables or knowledge bases are

improved. After 10,000 rounds of simulated box-pushing, the Q-tables of three simulated

robots are exported to the three physical robots to complete a physical cooperative box-

pushing task.

A different policy from the simulation system is employed in the experimental system

developed here. In the simulation system described in Chapter 4, after each step of box-

pushing, the robots will identify the new world state and select the corresponding actions

161

with the SQKF algorithm. However, it is time-consuming and not practical for the robots

in a real experimental system to change their actions (pushing positions) frequently.

Instead, a new policy is employed in the experimental system, where the robots will

continue with the actions selected in the previous step unless the reward earned in the

previous step is lower than a predefined threshold value. This policy avoids changing the

actions of the robots very frequently, which will be expensive and time-consuming for a

physical multi-robot box-pushing system.

The experimental results of cooperatively transporting a box in a real environment are

presented in Figure 6.6.

(a)

(b)

162

(0)

(p)

£91

(f)

(g)
Figure 6.6: Multi-robot cooperative transportation.

In Figure 6.6 (a), a big box is placed on the floor, which is within the detection radius

of the sensors of the mobile robots. The three robots are informed about their initial

positions and orientations in the global coordinate system before they begin to work.

When the system starts to operate, each robot uses its CCD camera to search and identify

the color blobs on the box surface and to estimate the orientation of the box relative to the

current pose of the robot. By fusing this relative orientation of the box and the sensory

data from its laser distance finder, the robot can estimate the position and orientation of

the box in the global coordinate system. If one robot cannot detect the box with its laser or

vision sensors, it will communicate with other robots to request the position and

164

orientation information of the box. If no robot finds the box, they will wander in the

environment until one of them detects the box.

At the same time, each robot scans its local environment with the laser distance finder.

If an object is detected which is not the box or one of the peer robots, the object will be

regarded as an obstacle.

By fusing the information of the box pose with the information of local obstacle

distribution, a local world state is established by the robot and the optimal action under

this state is selected using its Q-table.

Figure 6.6 (b) shows how the robots push the box with the selected actions, and Figure

6.6 (c) shows that the robots have changed to another formation so that the box is pushed

with the biggest net force.

In Figure 6.6 (c), the robots find out there exists an obstacle (the blue garbage bin) in

the path, which was not detected before by their sensors due to the limited detection radius.

In order to determine the position and area of the obstacle, Figure 6.6 (d) shows that one

of the robots moves close to the obstacle and measures the distance between the obstacle

and itself. The obstacle position estimated by this robot is sent to its two peers so that they

can re-compute their local world states and select the corresponding actions to adapt to the

new local world.

Figure 6.6 (e) and (f) show that the robots have changed their formation to adapt to the

new world state. Here they attempt to change the orientation of the box in order to avoid

the obstacle.

Figure 6.6 (g) shows that the robots have avoided the obstacle successfully and restored

to the formation which generates the biggest net pushing force.

From Figure 6.6 (a)-(g), it is observed that the learning based multi-robot system is

quite effective in carrying out a cooperative transportation task in an environment with

unknown obstacles. The learned Q-tables in the training stage help the robots select good

cooperation strategies in a robust and effective manner.

6.5 Force/position Hybrid Control
Force and position control of the robots is quite valuable in a physical multi-robot

transportation system. Without proper control of the forces and positions of the robots, the

165

1
Position
Controller

Parameter
Tuning

Model
Identification

----1 ----11.

4-

Direction
Constraints

Force
Controller

Model
Identification

+

4.--

Robot
Assistant
Agent

(Supervisor)

Parameter
Tuning

Robot

H

cooperation strategy described in the previous chapters may not be effective. The hybrid

force/position control scheme shown in Figure 6.7 is implemented in the low-level control

layer in the multi-robot system of the present work.

o.

Figure 6.7: The robot hybrid force/position control scheme.

In Figure 6.7, two sets of control modes, position control and force control, are

integrated into the robot control system. Here L and L' are the direction constraint

matrices (Craig, 2005), which, respectively, determine in which directions the force

control mode is used and in which directions the position control mode is employed. They

are diagonal matrices with ones and zeros on the diagonal. For a diagonal element of "1"

in L, there is a "0" as the corresponding diagonal element of L', indicating that position

control is in effect. On the other hand, if a "0" is present on the diagonal of L, then "1"

will be present as the corresponding element of L' , indicating that force control is in effect.

Note that L and L' are set by the robot assistant agent in the upper level. Moreover, the

robot assistant agent will provide the desired forces and positions for the low-level control,

based on the current cooperation strategy.

In addition, an adaptive control mechanism (Astrom and Wittenmark, 1994) is

166

integrated into the control scheme. In each control loop, a dynamic model of the robot is

identified on line and this information is used to tune the controller parameters.

Finally, a two-step control strategy is used in the practical control process. When the

robot assistant agent receives a new cooperation strategy from the high-level decision-

making subsystem, it computes the desired force and position of the corresponding robot.

As the upper level supervisor for the low-level control subsystem, the agent then sends

commands to the low-level position controller to initiate the first control step, which is to

move the robots to the desired position and orientation. Next, the agent starts the second

control step, which requires the position controller to continue the position control strategy,

while instructing the force controller to execute the desired force control strategy in a

specific direction in order for the robot to exert a constant pushing force on the object.

An experiment is developed to validate this force/position hybrid control scheme,

where the two robots have to first move to a specified location with a specified orientation,

and then cooperatively transport the box for 8 seconds while maintaining a constant

contact force. This process is shown in Figure 6.8 (a)-(c).

167

'144.

(b)^t^desired position

MEM

(a) The initial state

(c)Pushing of the box

Figure 6.8: The robots move to the desired position and push the box under hybrid

force/position control.

According to the control scheme given in Figure 6.7, the process is divided into two

stages: position control and hybrid force/position control. The former is used to move the

robots to a desired position with a desired orientation. The latter is employed to exert a

constant force in a specific direction while the position is kept unchanged in the other

directions. Figure 6.9 (a)-(d) shows the control process of the robotic arm in the first stage.

168

0.3

0.2

0.1

0
E

-0:1

-0.2

-0.3

-0.4
01 0.2 0.6 0.7 080.3 0.4^0.5

x(m)

Trajectory of the end effector

(a) The trajectory of the end effector.

X coordinate of the end effector

E

0.8

0.7

0.6

0.5

0.4

0.3 -

0.2

0.1 ^
0 10^20^30^40^50

^
60

time(s)

(b) The x coordinate of the end effector.

169

0 3

0.2

0.1

E•

Y coordinate of the end effector

\

10^20^30^40^50
^

60
time(s)

(c) They coordinate of the end effector.

Speed of the end effector

LL

10^20^30^40^50^60
time(s)

(d) The speed of the end effector.

Figure 6.9: Position control of the robotic arm.

Figure 6.10 (a)-(b) shows the force curve and the control input of the robotic arm under

the hybrid force/position scheme in the second stage.

0.35

0.3

0 25

0.2E
a)
6 0. 15

0.1

0.05

0

170

Force of the end effector

— measured force
— - desired value

200

I^ ,

56^57^58^59^60^61^62^63
^

64
time(s)

(a) The force on the end effector.

Control input of the force control

(b) The control input of the joint.

Figure 6.10: The force control of the robotic arm.

From Figures 6.8-6.10 it is observed that the hybrid force/position control scheme and

the two-step control strategy, which are presented in this chapter, perform properly in the

experiments.

0
55

2000 ^

1800

1600 -

1400

1200 -
+T
a' 1000 -
g-

800 -

600 -

400

171

6.6 Summary
In this chapter, a physical multi-robot transportation system is implemented in the

Industrial Automation Laboratory (IAL) at the University of British Columbia, which

integrated the approaches developed in the previous chapters. In this system, three mobile

robots were employed to push a big box to a goal location in the laboratory environment.

There were three challenges to reach the goal in the developed system. First, each robot

only possesses local sensing capability which means they have to make decisions while

they do not possess knowledge of the global environment. Second, there exist sensor noise

and uncertainty of actions in a physical system, which do not exist in a simulation system.

These constraints degrade the performance of the robots. Finally, the environment is

dynamic due to the presence of random obstacles. All these represent important challenges

which a multi-robot system has to meet in a real natural environment.

The distributed computing technology, JAVA RMI, was introduced into the developed

multi-robot system, which enabled the robots to cooperate in an easy and efficient manner.

It was demonstrated through experiments in this chapter that JAVA RMI was a powerful

tool to implement distributed multi-robot systems.

An experiment was carried out to evaluate the performance of the developed multi-

robot system. In this experiment, cooperative robotic transportation of a box in an

environment with unknown obstacles was carried out. The experimental results showed

that the developed multi-robot system was able to work well in a realistic environment. It

can be concluded that the approaches developed in chapters 2 through 5 are helpful and

effective in enable multi-robot systems to operate in a dynamic and unknown environment.

A force/position hybrid control scheme was proposed in this chapter, which is

important in multi-robot transportation systems. The developed scheme was evaluated

using a physical experiment involving a robotic arm pushing a box on a 2D surface. Good

performance was achieved by using the hybrid force/position control strategy.

172

Chapter 7

Conclusions

7.1 Primary Contributions
Multi-robot systems have to undergo many improvements before they can be used in

real-life applications. For example, there are enormous challenges to develop a multi-

robot system which can cooperatively transport an object of interest in a dynamic and

unknown environment like the Mars surface. In this thesis, several techniques have been

developed and integrated to support the operation of multi-robot transportation systems in

complex and unstructured dynamic environments with unknown terrains. In particular the

thesis has made contributions with respect to self-deterministic learning, robustness,

action optimization, and real-time operation of a cooperating team of robots in such

environments. Basically, the contributions of the thesis can be classified into four main

areas as follows.

First, a general distributed multi-robot architecture was developed in Chapter 2. This

hierarchical architecture integrated several techniques from artificial intelligence (AI) so

that multi-robot systems could operate in a robust and effective manner in a dynamic and

unknown environment. In its top level, a machine learning unit and a local path planning

unit were combined to establish good cooperation strategies for the robots while they

attempt to transport an object cooperatively. A machine learning unit with effective

training was used to select proper actions for the robots so that they could complete a

common task quickly and effectively. If a local minimum of decision-making was

detected, a local path planning unit would be temporarily activated by an arbitrator to

select a local transportation path for the object in order for the robots to escape the local

minimum. In the middle level of the architecture, the behavior-based approach, which has

been proved to be very effective for single robot systems, was employed to decompose the

abstract behavior sent by its upper level into more detailed primitive behaviors so that the

detailed control requirements could be generated and accepted by the lower level

controller. For the bottom level of the architecture, a low-level controller was designed to

173

receive control tasks from the behavior-based layer and control the motion or force of the

robot. This architecture also included a communication module so that any robot could

easily exchange information with other robots using standard network protocols. By

combining the learning, planning and behavior-based approaches, and carefully designing

the coordination mechanism among them, the developed multi-robot architecture was

found to be more flexible and powerful than a traditional two-layer architecture based on a

single AI technique.

Second, machine learning was employed to find optimal cooperation strategies for

multi-robot systems so that they could operate in a dynamic and unknown environment.

For the first prototype system, a centralized learning agent was proposed, where a Q-

learning unit and a Genetic Algorithm unit were integrated to search the optimal

cooperation strategies for all robots in the environment. While the approach was found to

be successful for a robot team with relatively few members, it faced challenges with

respect to scalability, computational complexity and communication bottleneck when the

number of robots increased. In order to meet these challenges, a distributed Q-learning

multi-robot transportation system was developed. By directly extending single-agent Q-

learning to the multi-robot domain and carefully designing the reward function, the

developed system was able to demonstrate good adaptivity and effectiveness in a complex

environment with multiple obstacles. However, due to lack of knowledge of the actions of

the peer robots, the single-agent Q-learning algorithm was found to converge very slowly

in a multi-robot environment. In order to improve the convergence speed, a team Q-

learning algorithm was developed for use in the same multi-robot task. An interesting

conclusion was drawn by comparing the simulation results of the team Q-learning

algorithm with those of the single-agent Q-learning algorithm. Specifically, single-agent

Q-learning showed a better performance (as measured by the average number of steps

required in a round of box-pushing) than team Q-learning even though the latter is usually

thought to be more efficient. Furthermore, the drawback of a large learning space in the

team Q-learning algorithm was demonstrated through computer simulation.

In order to overcome various disadvantages of the traditional single-agent Q-learning

algorithm and the team Q-learning algorithm, a modified Q-learning algorithm termed

Sequential Q-learning with Kalman Filtering (SQKF) was developed in this thesis. By

174

enabling the robots to learn in a predefined sequence and employing a Kalman filter to

extract the real rewards of a robot dynamically, the new SQKF algorithm was able to

overcome several major shortcomings in the single-agent Q-learning algorithm or the team

Q-learning algorithm, and consequently more suitable for multi-robot tasks. The

simulation results showed that the SQKF algorithm needed less time to complete a multi-

robot transportation task and received better reward than the traditional Q-learning

algorithms.

Third, a fast computer vision algorithm was developed to track multiple color-blobs

simultaneously so that the orientations and positions of the robots could be determined in

a multi-robot transportation task. This algorithm was found to meet two challenges in

carrying out the specific task: the changing illumination levels in the work environment

and the real-time operating requirement of the algorithm. By extracting the hue

information in the image and combining it with some statistical techniques and the

available domain knowledge, the algorithm was able to effectively and quickly track

multiple moving color blobs simultaneously in an environment with uneven illumination.

Finally, a physical multi-robot transportation project was developed in the laboratory to

implement and validate the approaches developed in the thesis. The physical system faced

more challenges than the computer simulation system; in particular, sensor noise, wheel

slip, real-time operation, and motion constraints. In addition, in order to implement

effective communication among multiple robots and facilitate proper execution of the new

SQKF algorithm, the JAVA RMI technology was incorporated into the system. The

experimental results showed that the physical system was able to operate effectively and

robustly in a dynamic physical environment with obstacles.

7.2 Limitations and Suggested Future Research
Although the developed multi-robot transportation system has demonstrated quite good

performance both in computer simulation and physical experimentation, there are some

areas that need improvement. Some directions for further research are indicated next.

175

7.2.1 Improvement of the Model and Algorithm of SQKF

The SQKF algorithm developed in this thesis assumes a linear model for use in the

Kalman filtering algorithm, which may not be true in a real multi-robot system. In practice,

there is a high possibility that the model is nonlinear. If the model nonlinearity is

significant, the standard linear Kalman filtering algorithm may not estimate the reward

values correctly, thereby making the SQKF algorithm ineffective. Therefore, more work

may be needed to identify a suitable nonlinear model for the SQKF algorithm.

Furthermore, with a nonlinear model one may have to incorporate advanced filtering

algorithms, such as the Extended Kalman Filter or the Unscented Kalman Filter, in

extending the SQKF algorithm.

7.2.2 GA-based Learning Space Compression

In this thesis, when applying the Q-learning algorithm to the multi-robot domain, the

resulting large learning space was not dealt with rigorously. When the number of robots in

the environment increases, the resulting extensive learning space will make the Q-learning

algorithm ineffective.

One possible solution to this problem would be to integrate a Genetic Algorithm (GA)

with the Q-learning algorithm. For example, when a step of Q-learning is completed, by

searching an optimal sub-space in the Q-table, the GA algorithm may be able to set up a

new learning sub-space for the Q-learning algorithm which is much smaller than the

original Q-table. The next step of Q-learning would be carried out using this smaller new

sub-space. The challenge is how to determine which sub-space in the Q-table is "optimal"

and how to deal with any "unexpected" world states that might be encountered by the

robots, which were not included into the "optimal" sub-space.

7.2.3 Local Modeling and Low-level Control

Most multi-robot systems have focused on high-level decision-making and ignored

low-level control of multiple robots. Although, some work has been done in this thesis,

there is room to improve the control methodology in the context of multi-robot

cooperation.

176

The control needs in a multi-robot system are different from those in a single robot

system. Local modeling may be a possible solution to the low-level control problem in

multi-robot systems.. The so-called local modeling will be such that one robot not only

collects information from its own sensors but also exchanges information with other

robots so that a local kinematic or dynamic model can be established to facilitate the

control task. The model may include the information of the formation and capabilities of

the robots, their current states and actions, the shared environment, and so on. Based on

the local model, an advanced force/position controller may be developed to meet the

control requirements communicated by the high-level decision-making sub-system.

7.2.4 Integrating Planning and Learning

Planning and learning are both important for multi-robot systems when operate in an

unknown and dynamic environment. In this thesis, a type of switching strategy between

learning and planning was developed. In particular, a local path planning unit was

temporarily activated when a local minimum of the machine learning approach was

encountered. However, a more advanced integration scheme would be useful so as to

make use of planning in a multi-robot task.

7.3 Summary
New developments in multi-robot systems will endow the next generation of robotic

systems with more powerful capabilities. It has been an important objective to allow

multiple robots to autonomously carry out such tasks as cooperative object transportation

or robotic soccer, in dynamic, unknown, and unstructured environments. In this thesis,

several key approaches were developed toward achieving this goal. It is believed that no

single AI technique can meet this objective. Instead, learning, reactive (behavior-based)

paradigm, planning, optimization, and low-level control approaches should be integrated,

and new approaches should be developed on that basis so that an autonomous multi-robot

system will be able to operate in a dynamic and unknown environment in an effective and

robust manner. Some significant work has been carried out in this thesis towards this

general objective, specifically with regard to self-deterministic learning, improved

robustness, optimization of robotic action, and real-time operation.

177

Bibliography

Alenya, G., Escoda, J., Martinez, A.B. and Torras, C., "Using laser and vision to locate a
robot in an industrial environment: a practical experience," Proceedings of IEEE
International Conference on Robotics and Automation, Barcelona, Spain, pp. 3528-3533,
April, 2005.

Alpaydin, E., Introduction to Machine Learning, The MIT Press, Cambridge, MA, 2004.

Arai, T., Pagello, E. and Parker, L.E., "Advances in multirobot systems," IEEE Trans. on
Robotics and Automation, Vol.18, No. 5, pp. 655-661, 2002.

Arkin, R.C., Behavior-Based Robotics, The MIT Press, Cambridge, MA, 1998.

Asada, M., Uchibe, E. and Hosoda, K., "Cooperative behavior acquisition for mobile
robots in dynamically changing real world via reinforcement learning and development,"
Artificial Intelligence, V ol. 110, No. 2, pp. 275-292, 1999.

Asensio, J.R., Montiel, J.M.M. and Montano, L., "Goal directed reactive robot navigation
with relocation using laser and vision," Proceedings of IEEE International Conference on
Robotics and Automation, Vol. 4, pp. 2905-2910, May, Detroit, MI, 1999.

Astrom, K.J. and Wittenmark, B., Adaptive Control, Second Edition, Addison-Wesley
Publishing Company, Menlo Park, CA„ 1994.

Balch, T. and Arkin, R.C., "Behavior-based formation control for multirobot teams,"
IEEE Trans. on Robotics and Automation, Vol. 14, No.6, pp. 926-939, 1998.

Bellman, R.E., Dynamic Programming, Princeton University Press, Princeton, New Jersey,
1957.

Bouloubasis, A.K., McKee, G.T. and Schenker, P.S., "A behaviour-based manipulator for
multi-robot transport tasks," Proceedings of IEEE International Conference on Robotics
and Automation, Taipei, Taiwan, pp. 2287-2292, 2003.

Camacho, D., Fernandez, F. and Rodelgo, M.A., "Roboskeleton: an architecture for
coordinating robot soccer agents," Engineering Application of Artificial Intelligence, Vol.
19, No. 2, pp. 179-188, 2006.

Cao, Y.U., Fukunaga, A.S. and Kahng, A.B., "Cooperative mobile robotics: antecedents
and directions," Autonomous Robots, Vol. 4, No. 1, pp. 7-27, 1997.

Cao, Z., Tan, M., Li, L. Gu, N. and Wang, S., "Cooperative hunting by distributed mobile
robots based on local interaction," IEEE Transactions on Robotics, Vol. 22, No. 2, pp.
403-407, 2006.

178

Casella, G. and Berger, R.L., Statistical Inference, Second Edition, Thomson Learning,
Belmont, CA, 2002.

Chaimowicz, L., Kumar, V. and Campos, M.F.M., "A paradigm for dynamic coordination
of multiple robots," Autonomous Robots, Vol. 17, No. 1, pp. 7-21, 2004.

Chang, Y.-H., Ho, T., and Kaelbling, L.P., "All learning is local: multi-agent learning in
global reward games," Proceedings of Neural Information Processing Systems (NIPS),
Vancouver, BC, Canada, 2003.

Chen, S., Shyu, M., Peeta, S. and Zhang, C., "Spatiotemporal vehicle tracking," IEEE
Robotics and Automation Magazine, Vol. 12, No. 1, pp.50-58, 2005.

Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L.E. and
Thrun, S., Principles of Robot Motion, The MIT Press, Cambridge, MA, 2005.

Chui, C.K. and Chen G., Kalman Filtering with Real-Time Applications, Third Edition,
Springer, Berkeley, CA, 1999.

Craig, J.J., Introduction to Robotics: Mechanics and Control, Third Edition, Pearson
Prentice Hall, Upper Saddle River, NJ, 2005.

Dahl, T.S., Mataric, M.J. and Sukhatme, G.S., "Multi-robot task-allocation through
vacancy chains," Proceedings of the 2003 IEEE International Conference on Robotics and
Automation, Taipei, Taiwan, pp. 2293-2298, 2003.

Dahl, T.S., Mataric, M.J. and Sukhatme, G.S., "Adaptive spatio-temporal organization in
groups of robots," Proc. of the 2002 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Lausanne, Switzerland, pp. 1044-1049, 2004.

De Silva, C.W, MECHATRONICS—An Integrated Approach, Taylor & Francis/CRC
Press, Boca Raton, FL, 2005.

Deng, L.Y., Tang, N.C., Lee, D., Wang, C.T. and Lu, M.C., "Vision based adaptive
traffic signal control system development," Proceedings of 19th International Conference
on Advanced Information Networking and Applications, Taipei, Taiwan, pp. 385-388,
2005.

Dudek, G., Jenkin, M. and Milios, E., "A taxonomy of multirobot systems," (Chapter 1),
Editor: Balch, T. and Parker, L.E., Robot Teams: From Diversity to Polymorphism, AK
Peters, Ltd., Natick, Massachusetts, 2002.

Elahibakhsh, A.H., Ahmadabadi, M.N., Janabi-Sharifi, F. and Araabi, B.N., "Distributed
form closure for convex planar objects through reinforcement learning with local

179

information," Proceedings of 2004 IEEE/RSJ International Conference on Intelligent
Robots and Systems, Sendai, Japan, pp. 3170-3175, 2004.

Emery, R. and Balch, T., "Behavior-based control of a non-holonomic robot in pushing
tasks," Proceedings of the 2001 IEEE International Conference on Robotics and
Automation, Seoul, Korea, pp. 2381-2388, 2001.

Farinelli, A., Iocchi, L. and Nardi, D., "Multirobot systems: a classification focused on
coordination," IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,
Vol. 34, No. 5, pp. 2015-2028, 2004.

Ferch, M. and Zhang, J., "Learning cooperative grasping with the graph representation of
a state-action space," Robotics and Autonomous Systems, Vol. 38, No. 3-4. pp.183-195,
2002.

Fernandez, F. and Borrajo, D., "A reinforcement learning algorithm in cooperative multi-
robot domains," Journal of Intelligent and Robotic Systems, Vol. 43, No. 2-4, pp. 161-174,
2005.

Frontoni, E. and Zingaretti, P., "A vision based algorithm for active robot localization,"
Proceedings of IEEE International Symposium on Computational Intelligence in Robotics
and Automation, pp. 347-352, June, Espoo, Finland, 2005.

Gerkey, B.P. and Mataric, M.J., "Pusher-watcher: an approach to fault-tolerant tightly-
coupled robot coordination," Proceedings of the 2002 IEEE International Conference on
Robotics and Automation, Washington, DC, pp. 464-469, 2002a.

Gerkey, B.P., and Mataric, M.J., "Sold!: auction methods for multirobot coordination,"
IEEE Trans. on Robotics and Automation, Vol. 18, No. 5, pp. 758-768, 2002b.

Gerkey, B.P., and Mataric, M.J., "A formal analysis and taxonomy of task allocation in
multi-robot systems," International Journal of Robotics Research, Vol. 23, No. 9, pp. 939-
954, 2004.

Goldberg, D. and Mataric, M.J., "Design and evaluation of robust behavior-based
controllers," (Chapter 11), Editor: Balch, T. and Parker, L.E., Robot Teams: From
Diversity to Polymorphism, AK Peters, Ltd., Natick, Massachusetts, 2002.

Gonzalez, R.C. and Woods, R.E., Digital Image Processing, Prentice Hall, Upper Saddle
River, NJ, 2002.

Gustafson, S. and Gustafson, D.A., "Issues in the scaling of multi-robot systems for
general problem solving," Autonomous Robots, Vol. 20, No. 2, pp. 125-136, 2006.

180

Gopalakrishnan, A., Greene, S. and Sekmen A., "Vision-based mobile robot learning and
navigation," Proceedings of IEEE International Workshop on Robot and Human
Interactive Communication, Nashville, TN, pp. 48-53, 2005.

Hajjdiab, H. and Laganiere, R., "Vision-based multi-robot simultaneous localization and
mapping," Proceedings of 1st Canadian Conference on Computer and Robot Vision, pp.
155-162, May, London, ON, Canada, 2004.

Hastie, T., Tibshirani, R. and Friedman, J., The Elements of Statistical Learning: Data
Mining, Inference, and Prediction, Springer-Verlag, New York, 2001.

Horstmann, C.S. and Cornell, G., Core Java 2, Volume II — Advanced Features, Seventh
Edition, Pearson Education, Inc., Upper Saddle River, NJ, 2005.

Hu, J. and Wellman, M.P., "Multiagent reinforcement learning: theoretical framework and
an algorithm," Proc. Of 15th International Conf on Machine Learning, San Francisco,
CA, pp. 242-250, 1998.

Huntsberger, T., Pirjanian, P., Trebi-011ennu, A., Nayar, H.D., Aghazarian, H, Ganino,
A.J., Garrett, M., Joshi, S.S. and Schenker, P.S., "Campout: a control architecture for
tightly coupled coordination of multi-robot systems for planetary surface exploration,"
IEEE Trans. on Systems, Man, and Cybernetics, Vol. 33, No. 5, pp. 550-559, 2003.

Ishiwaka, Y., Sato, T. and Kakazu, Y., "An approach to the pursuit problem on a
heterogeneous multiagent system using reinforcement learning," Robotics and
Autonomous Systems, Vol. 43, No. 4, pp. 245-256, 2003.

Inoue, Y., Tohge, T. and Iba, H., "Object transportation by two humanoid robots using
cooperative learning," Proc. of the 2004 Congress on Evolutionary Computation, Portland,
OR, pp. 1201-1207, 2004.

Ito, K. and Gofuku, A., "Hybrid autonomous control for multi mobile robots," Advanced
Robotics, Vol. 18, No. 1, pp. 83-99, 2004.

Jones, C. and Mataric, M.J., "Automatic synthesis of communication-based coordinated
multi-robot systems," Proceedings of the 2004 IEEE/RSJ International Conference on
Intelligent Robots and Systems, Sendai, Japan, pp. 381-387, 2004a.

Jones, C. and Mataric, M.J., "Utilizing internal state in multi-robot coordination tasks,"
Proceedings of Nineteenth National Conference on Artificial Intelligence (AAAI-2004),
San Jose, CA, pp. 958-959, 2004b.

Kalman, R.E., "A new approach to linear filtering and prediction problems," Transactions
of ASME - Journal of Basic Engineering, Vol. 82 (Series D), pp. 35-45, 1960.

181

Kapetanakis, S. and Kudenko, D., "Reinforcement learning of coordination in cooperative
multi-agent systems," Proceedings of Eighteenth national conference on Artificial
intelligence, Edmonton, Alberta, Canada, pp. 326-331, 2002.

Karray, F.O. and de Silva, C.W., Soft Computing and Intelligent Systems Design, Addison
Wesley/Pearson, New York, NY, 2004.

Kato, K., Ishiguro, H. and Barth, M., "Identification and localization of multiple robots
using omnidirectional vision sensors," Electronics and Communications in Japan, Part II:
Electronic, Vol. 86, No. 6, pp. 1270-1278, 2003.

Kawakami, K., Ohkura, K. and Ueda, K., "Reinforcement learning approach to
cooperation problem in a homogeneous robot group," IEEE International Symposium on
Industrial Electronics, Pusan, Korea, pp. 423-428, 2001.

Konidaris, G.D. and Hayes, G.M., "An architecture for behavior-based reinforcement
learning," Adaptive Behavior, Vol. 13, No. 1, pp. 5-32, 2005.

Kovac, K., Zivkovic, I. and Basic, B.D., "Simulation of multi-robot reinforcement
learning for box-pushing problem," Proceedings of the Mediterranean Electrotechnical
Conference — MELECON, Dubrovnik, Croatia, pp. 603-606, 2004.

Kube, C.R. and Bonabeau, E., "Cooperative transport by ants and robots," Robotics and
Autonomous Systems, Vol. 30, No. 1, pp. 85-101, 2000.

Kumar, M. and Garg, D.P., "Sensor-based estimation and control of forces and moments
in multiple cooperative robots," Journal of Dynamic Systems, Measurement, and Control,
Transactions of the ASME, Vol. 126, No. 2, pp. 276-283, 2004.

Kume, Y., Hirata, Y., Wang, Z. and Kosuge, K., "Decentralized control of multiple
mobile manipulators handling a single object in coordination," Proceedings of the 2002
IEEE/RSJ International Conference on Intelligent Robots and Systems, EPFL, Lausanne,
Switzerland, pp. 2758-2763, 2002.

Lerman, K., Jones, K., Galstyan, A. and Mataric, M.J., "Analysis of dynamic task
allocation in multi-robot systems," International Journal of Robotics Research, Vol. 25,
No. 3, p 225-241, 2006.

Liberty, J., Teach Yourself C++ in 21 Days, Third Edition, Sams Publishing, Indianapolis
IN, 1999.

Littman, M.L., "Markov games as a framework for multi-agent reinforcement learning,"
Proc. of the Eleventh International Conference on Machine Learning (ML-94), New
Brunswick, NJ, pp.157-163, 1994.

182

Littman, M.L., "Value-function reinforcement learning in Markov games," Journal of
Cognitive Systems Research, Vol. 2001, No. 1, pp.1-12, 2001a.

Littman, M.L., "Friend-or-Foe Q-learning in general-sum games," Proc. 18th
International Conf on Machine Learning, San Francisco, CA, pp. 322-328, 200 lb.

Liu, J. and Wu, J., Multi-agent Robotic Systems, CRC Press, Boca Raton, FL, 2001.

Marshall, J.A., Fung, T., Broucke, M.E., D'eleuterio, G.M.T., Francis, B.A., "Experiments
in multirobot coordination," Robotics and Autonomous Systems, Vol. 54, No. 3, pp. 265-
275, 2006.

Martinson, E., Stoytchev, A. and Arkin, R.C., "Robot behavioral selection using Q-
learning," Proceedings of the 2002 IEEE/RSJ International Conference on Intelligent
Robots and Systems, EPFL, Lausanne, Switzerland, pp. 970-977, 2002.

Martison, E. and Arkin, R.C., "Learning to role-switch in multi-robot systems," Proc. of
IEEE International Conference on Robotics & Automation, Taibei, Taiwan, pp. 2727-
2734, 2003.

Mataric, M.J., Nillsson, M., and Simsarian, K.T., "Cooperative multi-robot object-
pushing," Proc. of IEEE/RSJ Int. Conf on Human Robot Interaction and Cooperative
Robots, Pittsburgh, PA, pp. 556-561, 1995.

Mataric, M.J., "Reinforcement learning in the multi-robot domain," Autonomous Robots,
Vol. 1997, No. 4, pp.73-83, 1997.

Maurin, B., Masoud, 0. and Papanikolopoulos, N. P., "Tracking all traffic: computer
vision algorithms for monitoring vehicles, individuals, and crowds," IEEE Robotics and
Automation Magazine, Vol. 12, No. 1, pp. 29-36, 2005.

Mitchell, T.M., Machine Learning, McGraw-Hill Companies, Inc., New York, NY, 1997.

Miyata, N., Ota, J., Arai T. and Asama, H. "Cooperative transport by multiple mobile
robots in unknown static environments associated with real-time task assignment," IEEE
Trans. on Robotics and Automation, Vol. 18, No. 5, pp. 769-780, 2002.

Murarka, A., Modayil, J. and Kuipers, B., "Building local safety maps for a wheelchair
robot using vision and lasers," Proceedings of the 3rd Canadian Conference on Computer
and Robot Vision, Quebec City, QC, Canada, pp. 25-32, 2006.

Nolfi, S. and Floreano, D., "Learning and evolution," Autonomous Robots, Vol. 7, No. 1,
pp. 89-113, 1999.

Ogata, K., Modern Control Engineering, Third Edition, Prentice Hall, Inc., Upper Saddle
River, NJ, 1998.

183

Ortin, D., Neira, J. and Montiel, J.M.M., "Relocation using laser and vision," Proceedings
of IEEE International Conference on Robotics and Automation, New Orleans, LA, pp.
1505-1510, 2004.

Panait, L. and Luke, S., "Cooperative multi-agent learning: the state of the art,"
Autonomous Agents and Multi-Agent Systems, Vol. 11, No. 3, pp. 387-434, 2005.

Park, K., Kim, Y. and Kim, J., "Modular Q-learning based multi-agent cooperation for
robot soccer," Robotics and Autonomous Systems, Vol. 35, No. 2, pp. 109-122, 2001.

Parker, L.E., "ALLIANCE: an architecture for fault tolerant multirobot cooperation,"
IEEE Transactions on Robotics and Automation, Vol. 14, No. 2, pp. 220-240, 1998.

Parker, L.E., "Lifelong adaptation in heterogeneous multi-robot teams: response to
continual variation in individual robot performance," Autonomous Robots, Vol. 2000, No.
8, pp. 239-267, 2000a.

Parker, L.E., "Current state of the art in distributed autonomous mobile robotics,"
Distributed Autonomous Robotic Systems 4, Springer-Verlag, Tokyo, pp. 3-12, 2000b.

Parker, L.E., Touzet, C. and Fernandez, F., "Techniques for learning in multirobot teams,"
(Chapter 7), Editor: Balch, T. and Parker, L.E., Robot Teams: From Diversity to
Polymorphism, AK Peters, Ltd., Natick, Massachusetts, 2002.

Pereira, G., Campos, M. and Kumar, V., "Decentralized algorithms for multi-robot
manipulation via caging," The International Journal of Robotics Research, Vol. 23, No. 7-
8, pp. 783-795, 2004.

Pham, D.T., and Awadalla, M.H., "Neuro-fuzzy based adaptive co-operative mobile
robots," Proceedings of the 2002 28th Annual Conference of the IEEE Industrial
Electronics Society, Sevilla, Spain, pp. 2962-2967, 2002.

Pimentel, B.S., Pereira, G.A.S. and Campos, M.M.F.M., "On the development of
cooperative behavior-based mobile manipulators," Proceedings of the International
Conference on Autonomous Agents, Bologna, Italy, pp. 234-239, 2002.

Rabie, T., Abdulhai, B., Shalaby, A. and El-Rabbany, A., "Mobile active-vision traffic
surveillance system for urban networks," Computer-Aided Civil and Infrastructure
Engineering, Vol. 20, No. 4, pp. 231-241, 2005.

Rimon, E. and Koditschek, D.E., "Exact robot navigation using artificial potential
functions," IEEE Trans. on Robotics and Automation, Vol. 8, No. 5, pp. 501-518, 1992.

184

Rocha, R., Dias, J. and Carvalho, A., "Cooperative multi-robot systems: A study of vision-
based 3-D mapping using information theory," Robotics and Autonomous Systems, Vol.
53, No. 3-4, p 282-311, 2005.

Rosen, K.H., Discrete Mathematics and Its Applications, Fifth Edition, McGraw-Hill
Companies, Inc., New York, NY, 2003.

Ross, S.M., Introduction to Probability Models, 8 th Edition, Elsevier, Singapore, 2006.

Rus, D., Donald, B., and Jennings, J., "Moving furniture with teams of autonomous
robots," Proc. of IEEE/RSJ International Conference on Human Robot Interaction and
Cooperative Robots, Pittsburgh, PA, pp. 235-242, 1995.

Russell S. and Norvig P., Artificial Intelligence: A Modern Approach, Second Edition,
Pearson Education, Inc., Upper Saddle River, NJ, 2003.

Sanchez-Pena, R. and Sznaier, M., Robust Systems Theory and Applications, John Wiley
& Sons, Inc., New York, NY, 1998.

Sardag, A. and Akin, H.L., "ARKAQ-Learning: Autonomous state space segmentation
and policy generation," Lecture Notes in Computer Science, Vol. 3733, LNCS, pp. 512-
523, Springer Verlag, New York, NY, 2005.

Schenker, P.S., Huntsberger, T.L., Pirjanian, P., Trebi-011ennu, A., Das, H., Joshi, S.,
Aghazarian, H., Ganino, A.J., Kennedy, B.A. and Garrett, M.S, "Robot work crews for
planetary outposts: Close cooperation and coordination of multiple mobile robots,"
Proceedings of SPIE - The International Society for Optical Engineering, Boston, MA, pp.
210-220, 2000.

Schenker, P.L., Huntsberger, T., Pirjanian, P., Baumgartner, E.T. and Tunstel, E.,
"Planetary rover developments supporting MARs exploration, sample return and future
human-robotic colonization," Autonomous Robots, Vol. 14, No. 2-3, pp. 103-126, 2003.

Sen, S., "Evolution and learning in multiagent systems," International Journal of Human-
Computer Studies, V ol. 48, No. 1, pp. 1-7, 1998.

Shoham, Y., Powers, R. and Grenager, T., "Multi-agent reinforcement learning: a critical
survey," Technical report, Stanford University, Stanford, CA, 2003.

Siegwart, R. and Nourbakhsh, I.R., Introduction to Autonomous Mobile Robots, The MIT
Press, Cambridge, MA, 2004.

Siyal, M.Y., "A novel image processing based approach for real-time road traffic
applications," Proceedings of 2004 IEEE Region 10 Conference: Analog and Digital
Techniques in Electrical Engineering, Chiang Mai, Thailand, pp. 447-450, 2004.

185

Spong, M.W., Hutchinson, S., and Vidyasagar, M., Robot Modeling and Control, John
Wiley & Sons, Inc., Hoboken, NJ, 2006.

Stone, P. and Veloso, M., "Layered approach to learning client behaviors in the
ROBOCUP soccer server," Applied Artificial Intelligence, Vol. 12, No. 203, pp. 165-188,
1998.

Stone, P. and Veloso, M., "Multiagent systems: a survey from a machine learning
perspective," Autonomous Robots, Vol. 8, No. 3, pp. 345-383, 2000.

Stone, P., Sridharan, M., Stronger, D., et al., "From pixels to multi-robot decision-making:
A study in uncertainty," Robotics and Autonomous Systems, Vol. 54, No. 11, pp. 933-943,
2006.

Stroupe, A., Huntsberger, T., Okon, A, Aghazarian, H. and Robinson, M, "Behavior-based
multi-robot collaboration for autonomous construction tasks," Proceedings of the 2005
IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmont, Alberta,
Canada, pp. 1989-1994, 2005.

Stroupe, A., Okon, A., Robinson, M., Huntsberger, T., Aghazarian, H. and Baumgartner,
E., "Sustainable cooperative robotic technologies for human and robotic outpost
infrastructure construction and maintenance," Autonomous Robots, Vol. 20, No. 2, pp.
113-123, 2006.

Sugar, T.G., Desai, J.P. Kumar, V. and Ostrowski, J.P., "Coordination of multiple mobile
manipulators," Proceedings of the 2001 IEEE International Conference on Robotics &
Automation, Seoul, Korea, pp. 3022-3027, 2001.

Sugar, T.G. and Kumar, V., "Control of cooperating mobile manipulators," IEEE Trans.
on Robotics and Automation, Vol.18, No. 1, pp. 94-103, 2002.

Sutton, R.S. and Barto, A.G., Reinforcement Learning: An Introduction, The MIT Press,
Cambridge, MA, 1998.

Svinin, M.M., Kojiama, F., Katada, Y. and Ueda, K., "Initial experiments on
reinforcement learning control of cooperative manipulations," Proceedings of the 2000
IEEE/RSJ International Conference on Intelligent Robots and Systems, Takamatsu, Japan,
2000.

Takahashi, S. and Ghosh, B.K., "Parameter identification of a moving object based on
sensor fusion," Proceedings of IEEE International Conference on Mechatronics and
Automation, Niagara Falls, ON, Canada, pp. 171-176, 2005.

Tangamchit, P., Dolan, J.M. and Khosla, P.K., "Crucial factors affecting decentralized
multirobot learning in an object manipulation task," Proceedings of IEEE International
Conference on Intelligent Robots and System, Las Vegas, NV, pp. 2023-2028, 2003.

186

Taylor, M.E. and Stone, P., "Behavior transfer for value-function-based reinforcement
learning," Proceedings of the 4th International Conference on Autonomous Agents and
Multi agent Systems, Utrecht, Netherlands, pp. 201-207, 2005.

Thrun, S., Burgard, W. and Fox, D., Probabilistic Robotics, The MIT Press, Cambridge,
MA, 2005.

Tomono, M., "Environment modeling by a mobile robot with a laser range finder and a
monocular," Proceedings of 2005 IEEE Workshop on Advanced Robotics and its Social
Impacts, Nagoya, Japan, pp. 133-138, 2005.

Trebi-011ennu, A., Nayar, H.D., Aghazarian, H., Ganino, A., Pirjanian, P., Kennedy, B.,
Huntsberger, T. and Schenker, P., "Mars rover pair cooperatively transporting a long
payload," Proceedings of IEEE International Conference on Robotics and Automation,
Washington, DC, pp. 3136-3141, 2002.

Veeraraghavan, H., Masoud, 0. and Papanikolopoulos, N.P., "Computer vision algorithms
for intersection monitoring," IEEE Transactions on Intelligent Transportation Systems,
Vol. 4, No. 2, pp. 78-89, 2003.

Wang, Y. and de Silva, C.W., "An object transportation system with multiple robots and
machine learning," Proc. of American Control Conference (ACC 2005), Portland, OR,
pp.1371-13'76, 2005a.

Wang, Y. and de Silva, C.W., "A fast computer vision algorithm for multi-robot
cooperative control," Proceedings of International Symposium on Collaborative Research
in Applied Science, pp. 189-194, Vancouver, BC, Canada, October, 2005b.

Wang, Y. and de Silva, C.W., "Extend single-agent reinforcement learning approach to a
multi-robot cooperative task in an unknown dynamic environment," Proceedings of IEEE
2006 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC,
Canada, pp. 10098-10104, 2006a.

Wang, Y. and de Silva, C.W., "Multi-robot box-pushing: single-agent Q-Learning vs.
team Q-Learning," Proceedings of 2006 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Beijing, China, pp. 3694-3699, 2006b.

Wang, Y. and de Silva, C.W., "Cooperative transportation by multiple robots with
machine Learning, " Proceedings of 2006 IEEE Congress on Evolutionary Computation
(CEC), Vancouver, BC, Canada, pp. 10407-10413, 2006c.

Wang, Y. and de Silva, C.W, "A fast and robust algorithm for color-blob tracking in
multi-robot coordinated tasks," International Journal of Information Acquisition, Vol. 3,
No. 3, pp. 191-200, 2006d.

187

Wang, Y. and de Silva, C.W, "A machine learning approach to multi-robot coordination,"
Engineering Applications of Artificial Intelligence (Elsevier), 2007a (In Press).

Wang, Y. and de Silva, C.W, "A modified Q-learning algorithm for multi-robot decision-
making," Proceedings of ASME International Mechanical Engineering Congress and
Exposition (IMECE 2007), Seattle, WA, 2007b (In Press).

Wang, Y. and de Silva, C.W, "Assess team Q-learning algorithm in a purely cooperative
multi-robot task," Proceedings of ASME International Mechanical Engineering Congress
and Exposition (IMECE 2007), Seattle, WA, 2007c (In Press).

Wang, Z., Kumar, V., Hirata, Y. and Kosuge, K., "A strategy and a fast testing algorithm
for object caging by multiple cooperative robots," Proceedings of the 2003 IEEE
International Conference on Robotics and Automation, Taipei, Taiwan, pp. 2275-2280,
2003a.

Wang Z., Nakano, E. and Takahashi, T., "Solving function distribution and behavior
design problem for cooperative object handling by multiple mobile robots," IEEE Trans.
On Systems, Man, and Cybernetics — Part A: Systems and Humans, Vol. 33, No. 5, pp.
537-549, 2003b.

Wang Z., Hirata, Y. and Kosuge, K., "Control multiple mobile robots for object caging
and manipulation," Proceedings of the 2003 IEEE/RSJ International Conference On
Intelligent Robots and Systems, Las Vegas, Nevada, pp. 1751-1756, 2003c.

Wang, Z., Takano, Y., Hirata, Y., and Kosuge, K., "A pushing leader based decentralized
control method for cooperative object transportation," Proceedings of 2004 IEEE/RSJ
International Conference on Intelligent Robots and Systems, Sendai, Japan, pp. 1035-1040,
2004a.

Wang, Z., Hirata, Y. and Kosuge, K., "Control a rigid caging formation for cooperative
object transportation by multiple mobile robots," Proceedings of the 2004 IEEE
International Conference on Robotics and Automation, New Orleans, LA, pp. 1580-1585,
2004b.

Wang, Z., Hirata, Y., and Kosuge, K., "An algorithm for testing object caging condition
by multiple mobile robots," Proc. of IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Edmonton, Alberta, Canada, pp. 2664-2669, 2005.

Weiss, G., Multiagent Systems, The MIT Press, Cambridge, MA, 1999.

Wooldridge, M., An Introduction to Multiagent Systems, John Wiley & Sons, LTD,
Hoboken, NJ, 2002.

188

Yamada, S. and Saito, J., "Adaptive action selection without explicit communication for
multi-robot box-pushing," IEEE Trans. on Systems, Man, and Cybernetics, Vol. 31, No. 3,
pp. 398-404, 2001.

Yamashita, A., Arai, T., Ota, J. and Asama, H., "Motion planning of multiple mobile
robots for cooperative manipulation and transportation," IEEE Trans. On Robotics and
Automation, Vol. 19, No. 2, pp. 223-237, 2003.

Yang, E., and Gu, D., "Multiagent reinforcement learning for multi-robot systems: a
survey," Technical Report,
http://robotics.usc.edu/—maja/teaching/cs584/papers/yang04multiagent.pdf, 2004.

Zaerpoora, A., Ahmadabadia, M.N., Barunia, M.R. and Wang, Z., "Distributed object
transportation on a desired path based on constrain and move strategy," Robotics and
Autonomous Systems, Vol. 50, No. 2-3, pp. 115-128, 2005.

Zlot, R. and Stenz, A., "Market-based multirobot coordination for complex tasks," The
International Journal of Robotics Research, Vol. 25, No. 1, pp. 73-101, 2006.

189

Appendix

JAVA Documents of the Developed System

1. Summary

Package SQKF

Interface Summary
envServerInterface FThe interface for remote product objects.
robotServerInterface fThe interface for remote product objects.

Class Summary
robot
robotServer
box
env
envServer This is the implementation class for the remote product objects.
goal
main

-
ob*Pose
'obstacle
painter
point
robotData

2. Class box
SQKF

Class box

java.lang.Object
L SQKF . box

public class box
extends java.lang.Object

190

Method Summary
-

void;
7
boxResponse()

objPoselgetBoxPose()

double getDetectionRadius()

double l getGlobalReward()

int getHeight()

int getWidth()

voidfSetBoxPose(objPose bPose)

setEnvServer(envServer s)void

Constructor Summary

box(env e, java.util.Vector oGroup, objPose p, goal g)

Creates a new instance of box

Constructor Details
1) box

public box(env e,
java.util.Vector oGroup,
objPose p,
goal g)

Creates a new instance of box

Method Details
2) setEnvServer

public void setEnvServer(envServer s)

3) getBoxPose
public objPose getBoxPose()

4) setBoxPose
public void setBoxPose(objPose bPose)

5) get Width
public int getWidth ()

191

6) getHeight
public int getHeight ()

7) getDetectionRadius
public double getDetectionRadius()

8) boxResponse
public void boxResponse()

9) getGlobalReward
public double getGlobalReward()

3. Class env
SQKF
Class env
java.lang.Object
LsQKF.env

public class env
extends java.lang.Object

Field Summary
double height

doubleiwidth

Constructor Summary
env(double wid, double hei)

Method Summary

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

10) width
public double width

192

11) height
public double height

Constructor Details
12) env

public env(double wid,
double hei)

4. Class envServer
SQKF
Class envServer
java.lang.Object

Ljava.rmi.server.RemoteObject

Ljava.rmi.server.RemoteServer

Ljava.rmi.server.UnicastRemoteObject
L-SQKF.envServer

All Implemented Interfaces:
java.io.Serializable, java.mii.Remote, envServerInterface

public class envServer
extends java.rmi.server.UnicastRemoteObject
implements envServerInterface

This is the implementation class for the remote product objects.

See Also:
Serialized Form

Field Summary

Fields inherited from class java.rmi.server.RemoteObject
ref

Constructor Summary
envServer(goal g, box b, java.util.Vector oGroup)

Creates a new instance of envServer

193

Method Summary
int addRobot(robotData r)

boolean

void

void

void

allRobotReady()

awakeAllRobots()

awakeRobot(int id)

clearAllRobotReady()

point getBoxDimension ()

objPose getBoxPose()

double

double

getDetectionRadius()

getGlobalReward()

point getGoal()

J
java.util.Vector getObstacleGroup()

java.util.Vector

java.util.Vector

java.util.Vector

getRobotDataList() i

getRobotPoseList ()

getRobotStatusList()

java.util.Vector getRobotUr1List()

j
void setBoxPose(objPose bPose)

void setRobotAction(int id,^int action)

void setRobotPose(int id, objPose p)

void setRobotReady(int id)

void setRobotStatus(int id, boolean s)

Constructor Details
13) envServer

public envServer(goal g,
box b,
java.util.Vector oGroup)

194

throws java.rmi.RemoteException

Creates a new instance of envServer
Throws:
java.rmi.RemoteException

14) addRobot
public int addRobot(robotData r)

throws java.rmi.RemoteException

Specified by:
addRobot in interface envServerInterface
Throws:
java.rmi.RemoteException

15) getGoal
public point getGoal()

throws java rmi.RemoteException

Specified by:
getGoal in interface envServerInterface
Throws:
java.rmi.RemoteException

16) getObstacleGroup
public java.util.Vector getObstacleGroup()

throws java.rmi.RemoteException

Specified by:
getObstacleGroup in interface envServerInterface
Throws:
java.rmi.RemoteException

17) getBoxPose
public objPose getBoxPose()

throws java.rmi.RemoteException

Specified by:
getBoxPose in interface envServerInterface
Throws:
java.rmi.RemoteException

18) getBoxDimension
public point getBoxDimension()

throws java.rmi.RemoteException

Specified by:
getBoxDimension in interface envServerInterface
Throws:
java.rmi.RemoteException

19) getRobotUr1List
public java.util.Vector getRobotUr1List()

throws java.rmi.RemoteException

Specified by:
getRobotUr1List in interface envServerInterface

195

Throws:
java.rmi.RemoteException

20) getRobotStatusList
public java.util.Vector getRobotStatusList()

throws java.rmi.RemoteException
Specified by:
getRobotStatusList in interface envServerInterface
Throws:
java.rmi.RemoteException

21) getGlobalReward
public double getGlobalReward()

throws java.rmi.RemoteException

Specified by:
getGlobalReward in interface envServerInterface
Throws:
java.rmi.RemoteException

22) getDetectionRadius
public double getDetectionRadius()

throws java.rmi.RemoteException

Specified by:
getDetectionRadius in interface envServerInterface
Throws:
java.rmi.RemoteException

23) getRobotPoseList
public java.util.Vector getRobotPoseList()

throws java.rmi.RemoteException
Specified by:
getRobotPoseList in interface envServerInterface
Throws:
java.rmi.RemoteException

24) getRobotDataList
public java.util.Vector getRobotDataList()

25) awakeAllRobots
public void awakeAllRobots()

26) awakeRobot
public void awakeRobot(int id)

27) allRobotReady
public boolean allRobotReady()

28) setRobotAction
public void setRobotAction(int id,

int action)
throws java.rmi.RemoteException

196

Specified by:
setRobotActionini/ACtikeenvServerInterface
Throws:
java.rmi.RemoteException

29) setRobotReady
public void setRobotReady(int id)

throws java.rmi.RemoteException
Specified by:
setRobotReady in interface envServerInterface
Throws:
java.rmi.RemoteException

30) setBoxPose
public void setBoxPose(objPose bPose)

throws java.rmi.RemoteException
Specified by:
setBoxPose in interface envServerInterface
Throws:
java.rmi.RemoteException

31) clearAllRobotReady
public void clearAllRobotReady()

throws java.rmi.RemoteException
Throws:
java.rmi.RemoteException

32) setRobotPose
public void setRobotPose(int id,

objPose p)
throws java.rmi.RemoteException

Specified by:
setRobotPose in interface envServerInterface
Throws:
java.rmi.RemoteException

33) setRobotStatus
public void setRobotStatus(int id,

boolean s)
throws java.rmi.RemoteException

Specified by:
setRobotStatus in interface envServerInterface
Throws:
java.rmi.RemoteException

5. Interface envServer
SQKF
Interface envServerInterface
All Superinterfaces:

197

java.rmi.Remote
All Known Implementing Classes:

env S ery er

public interface envServerInterface
extends java.rmi.Remote

The interface for remote product objects.

Method Summary
int addRobot(robotData r)

point'getGoal()

java.util.Vector.getObstacleGroup()

java.util.VectorgetRobotPoseList()

java.util.VectorlgetRobotStatusList()

pointIgetBoxDimension()

objPoseigetBoxPose()

doubleigetDetectionRadius()

doubleigetGlobalReward()

java.util.VectorigetRobotUr1List()

-------^-
void:setBoxPose(objPose boxPose)

void setRobotAction(int id, int action)

voidisetRobotPose(int id, objPose p)

void setRobotReady(int id)

t- —^
voidisetRobotStatus(int id, boolean s)

198

Method Details
34) addRobot

int addRobot(robotData r)
throws java.rmi.RemoteException

Throws:
java.rmi.RemoteException

35) getGoal
point getGoal()

throws java.rmi.RemoteException

Throws:
java.rmi.RemoteException

36) getObstacleGroup
java.util.Vector getObstacleGroup()

throws java.rmi.RemoteException

Throws:
java.rmi.RemoteException

37) getBoxPose
objPose getBoxPose()

throws java.rmi.RemoteException

Throws:
java.rmi.RemoteException

38) getBoxDimension
point getBoxDimension()

throws java.rmi.RemoteException

Throws:
java.rmi.RemoteException

39) getRobotUr1List
java.util.Vector getRobotUr1List()

throws java.rmi.RemoteException

Throws:
java.rmi.RemoteException

40) getGlobalReward
double getGlobalReward()

throws java.rmi.RemoteException

Throws:
java.rmi.RemoteException

41) getDetectionRadius
double getDetectionRadius()

throws java.rmi.RemoteException

Throws:
java.rmi.RemoteException

42) getRobotPoseList
java.util.Vector getRobotPoseList()

throws java.rmi.RemoteException

199

Throws:
java.rmi.RemoteException

43) getRobotStatusList
java.util.Vector getRobotStatusList()

throws java.rmi.RemoteException

Throws:
java.rmi.RemoteException

44) setRobotAction
void setRobotAction(int id,

int action)
throws java.rmi.RemoteException

Throws:
java.rmi.RemoteException

45) setRobotReady
void setRobotReady(int id)

throws java.rmi.RemoteException

Throws:
java.rmi.RemoteException

46) setRobotPose
void setRobotPose(int id,

objPose p)
throws java.rmi.RemoteException

Throws:
java.rmi.RemoteException

47) setRobotStatus
void setRobotStatus(int id,

boolean s)
throws java.rmi.RemoteException

Throws:
java.rmi.RemoteException

48) setBoxPose
void setBoxPose(objPose boxPose)

throws java.rmi.RemoteException

Throws:
java.rmi.RemoteException

6. Class goal
SQKF
Class goal
java .lang.Object

sQKF.goal

public class goal
extends java.lang.Object

200

Field Summary
point position

Constructor Summary
goal(double x, double y)

Creates a new instance of goal

Method Summary

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Field Details
49) position

public point position. . .^. _^.

Constructor Details
50)goal

public goal(double x,
double y)

Creates a new instance of goal

7. Class main
SQKF
Class main
java.lang.Object

L ava .awt.Component
L j ava .awt.Container

L j avax.swing.JComponent
L j avax swing.JPanel

L SQKF .main
All Implemented Interfaces:

java.awt.image.ImageObserver, jaVa.awt.MenuContainer, java.io.Serializable,
javax.accessibility.Accessible

public class main
extends javax.swing.JPanel

See Also:

201

Serialized Form

Field Summary

Constructor Summary
main()

Method Summary
void clearCanvas()

static voidlmain(java.lang.String[] args)

void;paintComponent(java.awt.Graphics g)

static double randomNum(double al, double a2)

Constructor Details

51) main
public main()

Method Details

52) paintComponent
public void paintComponent(java.awt.Graphics g)

Overrides:
paintComponent in class j avax.swing.JComponent

53) clearCanvas
public void clearCanvas()

54) main
public static void main(java.lang.String[] args)

throws java.lang.Exception

Throws:
java.lang.Exception

55) randomNum
public static double randomNum(double al,

double a2)

202

Field Summary
double angle

point center

Creates a new instance of objPose

8. Class objPose
SQKF
Class objPose
java.lang.Object
LsOKF.objPose

All Implemented Interfaces:
java.io .Serializable

public class objPose
extends java.lang.Object
implements java.io.Serializable

See Also:
Serialized Form

Constructor Summary
objPose ()

Creates a new instance of objPose

Field Details
56) center

public point center

Creates a new instance of objPose

57) angle
public double angle

Constructor Details
58) objPose

public objPose()

Creates a new instance of objPose

9. Class obstacle
SQKF
Class obstacle
java.lang.Object

L sQKF.obstacle
All Implemented Interfaces:

203

java.io.Serializable

public class obstacle
extends java. lang . Object
implements java . io . Serializable
See Also:

Serialized Form

Field Summary
point position

double T;

Constructor Summary
obstacle (point p, double r1)

Creates a new instance of obstacle

Field Details
59) position

public point position

60) r
public double r

Constructor Details
61) obstacle

public obstacle (point p,
double r1)

Creates a new instance of obstacle

10. Class robotServer
SQKF
Class robotServer
java . lang . Obj ec t

L Java rmi . server .RemoteObject
L Java .rmi . server .RemoteServer

L ava rmi . server .UnicastRemoteObject
LsQKF.robotServer

All Implemented Interfaces:
javaio.Serializable, java.rmi.Remote, robotServerInterface

public class robotServer

204

extends java.rmi.server.UnicastRemoteObject
implements robotServerInterface

Field Summary

Fields inherited from class java.rmi.server.RemoteObject
ref

Constructor Summary
robotServer(robot r)

Creates a new instance of robotServer

Method Summary
boolean awakeMe()

objPose getPose()

boolean isSleeping()

void receiveRobotActionList(java.util.Vector actionList,
boolean isInitialAction)

Constructor Details
62) robotServer

public robotServer(robot r)
throws java.rmi.RemoteException

Creates a new instance of robotServer
Throws:
java.rmi.RemoteException

Method Details
63) receiveRobotActionList

public void receiveRobotActionList(java.util.Vector actionList,
boolean isInitialAction)

throws java.rmi.RemoteException

Specified by:
receiveRobotActionList in interface robotServerInterface
Throws:
java.rmi.RemoteException

64) getPose
public objPose getPose()

throws java.rmi.RemoteException

Specified by:

205

getPoseininterfWerobotServerInterface

Throws:
java.rmi.RemoteException

65) awakeMe
public boolean awakeMe()

throws java.rmi.RemoteException

Specified by:
awakeMe in interface robotServerInterface
Throws:
java.rmi.RemoteException

66) isSleeping
public boolean isSleeping()

throws java.rmi.RemoteException

Specified by:
isSleeping in interface robotServerInterface
Throws:
java.rmi.RemoteException

11. Class robot
SQKF
Class robot
java . lang . Obj ect

L j ava.lang.Thread
L sQKF . robot

All Implemented Interfaces:
j ava.lang.Runnable

public class robot
extends java.lang.Thread

Nested Class Summary

Nested classes/interfaces inherited from class java.lang.Thread
java.lang.Thread.State, java.lang.Thread.UncaughtExceptionHandler

Field Summary

Fields inherited from class java.lang.Thread
MAX_PRIORITY, MIN_PRIORITY, NORM_PRIORITY

206

f
void modiRobotActionList(java.util.Vector actionList,

boolean isInitialAction)

void run()

Constructor Details
67) robot

public robot(double fValue,
java.lang.String sUrl,
java.lang.String mUrl,
objPose mPose)

Creates a new instance of robot

Method Details

Constructor Summary
robot(double fValue, java.lang.String sUrl, java.lang.String mUrl,
objPose mPose)

Creates a new instance of robot

Method Summary

boolean amSleeping()

void awakeMe()

void becomeWaiting(int timeout)

void , frame2Tol(point p1, point p , point origin, double theta)

objPoseigetPose()

static void main(java.lang.String[] args)

68)main
public static void main(java.lang.String[] args)

69) run
public void run()

Specified by:
run in interface j ava lang . Runnable
Overrides:
run in class java . lang . Thread

207

70) become Waiting
public void becomeWaiting(int timeout)

71) awakeMe
public void awakeMe()

72) amSleeping
public boolean amSleeping()

73) modiRobotActionList
public void modiRobotActionList(java.util.Vector actionList,

boolean isInitialAction)

74) fivme27-61
public void frame2Tol(point pl,

point p2,
point origin,
double theta)

75) getPose
public objPose getPose()

208

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207
	Page 208
	Page 209
	Page 210
	Page 211
	Page 212
	Page 213
	Page 214
	Page 215
	Page 216
	Page 217
	Page 218
	Page 219
	Page 220
	Page 221
	Page 222
	Page 223

